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 Figure 14. The effect of individual mTORC1 activation and individual mTORC1 

and mTORC2 inhibition with and without hypoxia on IGFBP-1 secretion and 

phosphorylation 
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4.0 Discussion 

4 Key findings  

Using HepG2 cells as a model for human fetal hepatocytes (96, 192-195) we have 

identified a novel molecular mechanism by which mTOR regulates IGFBP-1 secretion 

and phosphorylation in response to hypoxia. We demonstrate that mTORC1 or C2 

inhibition increases whereas mTORC1 or C2 activation decreases IGFBP-1 secretion and 

phosphorylation. Further, hypoxia failed to induce additional IGFBP-1 secretion in cells 

with mTORC1 or C2 inhibition. Importantly, activation of mTORC1 or C2 prevented 

IGFBP-1 secretion and phosphorylation in response to hypoxia. These findings suggest 

that both mTORC1 and C2 signaling regulate IGFBP-1 secretion and phosphorylation in 

a coordinated manner and that inhibition of either complex is sufficient to drive these 

coordinated functional effects in hypoxia. We provide evidence that mTOR-mediated 

IGFBP-1 phosphorylation in hypoxia reduces IGF-1R signaling and draw a link between 

hypoxia-mediated mTOR inhibition and increased CK2 activity. Furthermore, we 

demonstrate that IGFBP-1 phosphorylation was significantly increased at three serine 

residues (Ser101, 119 and 169) in our treatments, of which phosphorylation at Ser169 

was most prominent. Together this work proposes that increased IGFBP-1 secretion and 

site-specific phosphorylation mediated by mTOR inhibition may contribute to restricted 

fetal growth in response to hypoxia.  

4.1 Mimicking fetal hypoxia in vitro  

Phosphorylation increases the affinity of IGFBP-1 for IGF-I (202) and it is likely that 

induction of IGFBP-1 phosphorylation in hypoxia is a powerful mechanism for the 

regulation IGF bioavailability in the modulation of fetal growth. This assumption was 

supported by our previous in vitro data demonstrating that hypoxia resulted in increased 

phosphorylation of IGFBP-1 which increased its binding affinity to IGF-I 300-fold and 

markedly inhibited IGF-I-stimulated cell growth (192). The use of 1% O2 in vitro to 

represent the in vivo hypoxic state has been well established (172, 192, 203). Low oxygen 

tension, which is usually defined as hypoxia in vitro, has been established in many tissues 

with an average of 3% O2 (204-206), and has been shown to reach as low as 1-2% in the 
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descending aorta within hypoxic fetal lambs (207) compared to healthy oxygen levels 

which range from 4% O2 in muscles to 12.1% O2 in the kidney (208). 1% O2 due to low 

oxygen tension has further been detected in bone marrow, thymus, and the kidney 

medulla (209). Using atmospheric air (20% O2) in vitro to represent normoxia in vivo is 

also commonly used (106, 172, 192, 203), and is usually referred to as normoxia although 

it may be a state of hyperoxia. Subsequently, we used 1% O2 (hypoxia) and 20% O2 

(normoxia) in our in vitro studies in this dissertation as in our previous work (192, 203).  

 

Studies on the role of IGFBP-1 phosphorylation and the mechanisms regulating hypoxia-

induced IGFBP-1 phosphorylation in the development of FGR are limited. However, we 

recently provided evidence that IGFBP-1 is hyperphosphorylated in human FGR (96). 

We also established a causative link between IGFBP-1 hyperphosphorylation and mTOR 

inhibition in a baboon model of FGR in vivo (96). Furthermore, we conducted 

mechanistic studies using HepG2 cells and validated the use of our HepG2 cell culture 

model using primary fetal hepatocytes (96). Using this as the basis, the mechanistic data 

in this current study was generated using HepG2 cells. HepG2 cells are human liver 

carcinoma cells that demonstrate biotransformation characteristics and the gene 

expression patterns similar to primary human fetal hepatocytes (194, 195). Thereby using 

HepG2 cells in this study we have now established a novel mTOR mediated mechanism 

linking hypoxia to increased IGFBP-1 phosphorylation that also inhibited IGF-I function.  

4.2 Regulation of IGFBP-1 in hypoxia 

Elevated IGFBP-1, resulting in decreased bioavailability of IGF-I, has been proposed to 

be an important mechanism restricting fetal growth in both human FGR and in animal 

models of chronic intrauterine hypoxia (104, 210-213). Hypoxia up-regulates IGFBP-1 

mRNA and protein expression in HepG2 cells and human fetal hepatocytes in vitro (106), 

as well in zebra fish in vivo (104). Previous studies on the role of IGFBP-1 in the 

regulation of fetal growth have mainly focused on the mechanisms that determine 

induction of IGFBP-1 gene transcription and expression. Regulation of gene transcription 

by hypoxia involves binding of the transcription factor HIF-1α to a HRE which has been 

identified in the IGFBP-1 gene (106). mTORC1 promotes the expression of HIF-1α by 
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regulating the translation of the α subunit of HIF which activates the transcription of 

several genes responsive to hypoxia such as Glut1, Pfkp, and Pdk1 (214). Furthermore, a 

role for HIF1 has been implicated in IGFBP-1 gene expression (106). Thus, there is an 

indirect indication for a role of mTOR signaling in linking hypoxia to the expression of 

IGFBP-1 in fetal hepatocytes. The mechanisms modulating IGFBP-1 phosphorylation 

and implications of mTOR signaling in changes to IGFBP-1 phosphorylation in response 

to hypoxia have received much less attention. Thus, the post-translational effects of 

IGFBP-1 phosphorylation due to hypoxia were investigated in this study. 

4.3 The functional significance of IGFBP-1 phosphorylation 
on IGF-I signaling 

The ability of hypoxia-induced IGFBP-1 phosphorylation to modulate IGF function due 

to mTOR inhibition was tested through our IGF-I induced IGF-1R autophosphorylation 

assay. The bioassay utilizing P6 cells (IGF-1R overexpressing BALB/c3T3 derivative) 

(126) in our current study was a direct adaptation of the previously established assay 

system using NIH-3T3 cells (215, 216). Here, we demonstrate the ability of recombinant 

human IGF-I to stimulate human IGF-1R expressed by P6 cells. Unstimulated 

BALB/3T3 cells contain approximately 8000 IGF-1 receptors per cell, whereas P6 cells 

transfected with human IGF-1R cDNA contain upwards of 43000 receptors, making them 

highly sensitive to induction by IGF-I (217).  

IGF-1R is a transmembrane receptor tyrosine kinase which is responsible for the 

mediation of IGF-I action. It has a high binding affinity towards IGF-I and IGF-II, and 

thus functions to facilitate IGF signaling (72). Upon ligand binding to IGF-1R, the 

receptor kinase is activated and IGF-1R tyrosine autophosphorylation, as well as 

downstream substrate tyrosine phosphorylation occur (60). This process leads to 

enhanced cellular proliferation and protein synthesis as well as the inhibition of apoptosis 

(218). IGF-1R is a tertameric protein which consists of 2 extracellular α-subunits that are 

disulphide-bound to each other and to 2 β-subunits which span the cell membrane and 

also contain a cytoplasmic portion (219). The β-subunits contain the kinase activity of 

IGF-1R, thus providing a rationale for our analysis of IGF-1Rβ phosphorylation only 

(220). The assessment of Tyr1135 phosphorylation as a representation of IGF-1R 
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activation has been well established (96, 126, 221, 222). The activation loop of IGF-1R is 

a flexible portion of the C-lobe of the kinase domain (223). In the unactivated state of 

IGF-1R, the activation loop forms an autoinhibitory conformation in which Tyr1135 is 

bound to the active site. This prevents Tyr1135 phosphorylation in the absence of IGF-1R 

ligand binding (223). IGF-I binding to IGF-1Rα induces IGF-1Rβ autophosphorylation 

which occurs in trans (one IGF-1Rβ kinase domain phosphorylating the other), and three 

tyrosine residues of IGF-1Rβ are phosphorylated by the process – Tyr1131, Tyr1135, and 

Tyr1136 (224). Although Tyr1131 and Tyr1136 are also phosphorylated by the event, 

studies have demonstrated that Tyr1135 is the first residue to be phosphorylated and in 

general is the most predominant phospho-site involved in IGF-1R activation (223). 

Furthermore, only Tyr1135 has been characterized to be bound in the active site during 

the autoinhibitory conformation (223). These data support our use of assessing Tyr1135 

phosphorylation as a means to determine IGF-1R activation due to IGF-I ligand binding. 

Our data demonstrates that IGF-I-mediated IGF-1R activation is reduced in the presence 

of HepG2 cell media, suggesting that IGFBP-1 was able to reduce interactions between 

IGF-I and IGF-1R.  

 

Through densitometric analysis of IGFBP-1 secretion from our rapamycin, hypoxia, and 

rapamycin+hypoxia treatment, we were able to quantify levels of total IGFBP-1 present 

in the conditioned medias. This allowed us to use aliquots of conditioned HepG2 cell 

media which were normalized to contain equal total IGFBP-1. As the induction of 

IGFBP-1 phosphorylation was proportionately higher than secretion in treated HepG2 

cell media, our resultant media aliquots contained equal total IGFBP-1, but differing 

degrees of phosphorylated IGFBP-1 - namely increased phosphorylation in the treated 

HepG2 cell media aliquots. Importantly, mixtures of treated HepG2 cell media containing 

a proportionately higher quantity of phosphorylated IGFBP-1 (from treated HepG2 cells) 

along with human recombinant IGF-I were able to reduce the degree of IGF-1R 

autophosphorylation to a greater extent compared to the untreated HepG2 cell media, 

reinforcing the notion that rapamycin and/or hypoxia-induced phosphorylated IGFBP-1 

from HepG2 cells was able to yield a greater inhibitory effect on IGF-I-mediated IGF-1R 

signaling. It is possible that secreted IGFBP-3 may interfere with IGF-I sequestration. 
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However, the use of equal concentration of total IGFBP-1 exposed to free IGF-I in 

control and treated samples suggests that increased interactions between IGFBP-1 and 

IGF-I were driven by IGFBP-1 phosphorylation, functioning to increase IGF-I 

sequestration and decrease IGF-1R signaling. This is supported by evidence showing that 

HepG2 cells secrete and IGFBP-3 in negligible quantities compared to the 

overabundance of IGFBP-1 secretion (203), and our previous studies showed that 

mutating key IGFBP-1 phospho-sites to alanine strongly reduced the binding affinity of 

IGFBP-1 to IGF-I (126). Here, we furthered these findings by showing that both mTOR 

inhibition by rapamycin and hypoxia functionally altered the degree of IGF-1R signaling 

observed, and that combined treatment did not further inhibit IGF-1R signaling, 

reinforcing the concept that hypoxia-induced IGFBP-1 phosphorylation is mediated 

through mTOR inhibition. 

4.4 HepG2 cell viability is unaltered by rapamycin and 
hypoxic treatments 

Although our rapamycin and hypoxia treatments resulted in increased IGFBP-1 secretion 

and phosphorylation, we tested the viability of cells post-treatment to ensure that the 

degree of induction seen was valid and not altered due to increased cell death via the 

Trypan Blue exclusion assay. Trypan blue is a diazo dye which is commonly used in 

microscopy for cell counting and tissue viability (225). It can allow for effective 

distinguishing of live versus dead cells by exploiting the high selectivity of live cell 

membranes. As cells must be highly selective regarding which compounds can pass 

through the cell membrane, foreign compounds such as trypan blue can be used to stain 

cells. Live cells will exclude the absorption of trypan blue, whereas dead cells will be 

stained blue throughout (225). We were able to utilize this technique using an automated 

cell counter to yield high-throughput results and effectively quantify a large number of 

cells for viability. Our results show that none of the rapamycin, hypoxia, or combined 

rapamycin+hypoxia treatments altered cell viability, demonstrating that the induction of 

IGFBP-1 secretion and phosphorylation quantified due to our treatments was accurate 

and not affected by cell death.  
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4.5 The involvement of CK2 in hypoxia-induced IGFBP-1 
phosphorylation 

The molecular mechanisms upstream or downstream of mTOR which ultimately induce 

IGFBP-1 secretion and phosphorylation are unknown. Although in our recent study we 

have provided clear evidence for a key role of CK2 in IGFBP-1 phosphorylation (96), 

whether CK2 directly phosphorylates IGFBP-1 is currently unknown. CK2 is a well 

established serine/threonine protein kinase which is classified to function in a messenger-

independent manner, as its activity is not dependent on small molecules which are 

typically involved in second messenger kinase regulation (226). CK2 functions in a 

tetrameric complex composed of CK2α and CK2α’ catalytic subunits as well as two 

CK2β regulatory subunits (227, 228). Variance in the subunits has been characterized 

between different organisms. The presence of both CK2α and CK2α’ catalytic subunits 

are well documented in humans (227, 228). However, various mammalian systems have 

been shown to contain either two CK2α or two CK2α’ catalytic subunits (229). Further, 

in humans, only one CK2β regulatory subunit has been identified, whereas in 

Saccharomyces cerevisiae multiple forms of CK2β have been established (230). We 

previously chose to investigate CK2 as a potential kinase for IGFBP-1 due to the 

identification of a consensus sequence within IGFBP-1 for phosphorylation by CK2 

(191).  

 

The regulation of CK2 under various conditions of cellular stress seems to occur in a cell- 

and tissue-type specific manner (96). We have previously demonstrated that CK2 subunit 

expression is increased in an in vivo maternal nutrient restriction model using baboon 

fetal liver (96). In these cells, CK2 activity was also increased. Interestingly, mTOR 

inhibition via rapamycin treatment increased CK2 activity in HepG2 cells, but not 

expression of the CK2 subunits (96). This suggests that mTOR inhibition regulates CK2 

activity, but not at the transcriptional or translational levels in HepG2 cells. Further, 

silencing of CK2 via siRNA resulted in significantly decreased IGFBP-1 phosphorylation 

in HepG2 cells, reinforcing the involvement of CK2 in IGFBP-1 phosphorylation (96). 

Here, we were able to replicate these results with rapamycin treatment on HepG2 cells, 
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where CK2 subunit expression was not altered but activity was increased. Interestingly, 

we have now demonstrated very similar results with hypoxic treatment as well as 

combined rapamycin+hypoxia treatment. In these treatments, CK2 subunit protein 

expression was not significantly different from control cells, although a trend of 

reduction in CK2α and CK2β subunit expression due to hypoxia was observed. However, 

these treatments did significantly induce CK2 activity to very similar levels as rapamycin 

treatment, further demonstrating mTOR inhibition as a mediatory step in hypoxia-

induced IGFBP-1 phosphorylation which involves the activity of CK2. It seems likely 

that inhibition of mTOR in hypoxia activates CK2 which in turn phosphorylates IGFBP-1 

either directly or through intermediate mechanisms which currently remain unknown. As 

mTOR is a kinase, we postulate that mTOR inhibition activates CK2 through inhibition 

of phosphatase activity, in which mTOR inhibition results in the downregulation of an 

unidentified phosphatase which otherwise prevents phosphorylation-mediated CK2 

activation (190). In this way, inhibition of a kinase (mTOR) can plausibly result in the 

activation of another kinase. Identification of this interaction remains to be investigated. 

IGFBP-1 is readily secreted out of the cell due to a signal peptide sequence for secretion 

in the IGFBP-1 precursor peptide (81), suggesting that protein maturation and 

phosphorylation occur in a localized manner near the cell membrane. Interestingly, 

numerous studies have reported localized CK2 activity at the cell membrane (231-234), 

providing indirect evidence for CK2-mediated IGFBP-1 phosphorylation.  

4.6 The roles of TSC2 and DEPTOR in mTOR regulation 
during hypoxia 

DEPTOR is a naturally occurring inhibitor of mTOR signaling and directly binds to 

mTORC1 and mTORC2 and inhibits mTOR activity (235). Reduced DEPTOR 

expression has been shown to increase 4E-BP1 (Thr70) (149) and S6K (Thr389), as well 

as Akt (Ser473) phosphorylation (236) – phospho-sites directly phosphorylated by 

mTORC1 and mTORC2, respectively, and thus constitutively activates the functions of 

both mTORC1 and mTORC2 (236). Indeed, our data demonstrates that there is a basal 

DEPTOR-mediated inhibition of both mTORC1 and mTORC2 signaling in HepG2 cells. 

Similarly, activation of mTORC1 individually has been achieved by silencing TSC2, a 
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negative regulator of mTORC1 (237) and by silencing TSC2 alone we were able to 

activate mTORC1 in our current studies.  

mTORC1 inhibition by TSC2 occurs upstream of mTOR, and the effects are indirect. The 

TSC1/2 complex acts as a negative regulator of mTORC1 by activating the GTPase 

activity of protein Rheb (187, 188). TSC2 specifically contains a GTPase activating 

protein (GAP) domain which, when stabilized by TSC1, facilitates the conversion of 

RhebGTP to RhebGDP (188). The presence of RhebGDP does not have an effect on 

mTORC1 signaling. However, cellular accumulation of RhebGTP is a potent activator of 

mTORC1 activity (187, 188). We demonstrate in this study that siRNA-mediated 

silencing of TSC2 was able to activate mTORC1 signaling with no effect on mTORC2 

signaling, which presumably occurred through the accumulation of RhebGTP. 

Furthermore, it is known that hypoxia functions to reduce mTORC1 signaling though this 

pathway. Hypoxic conditions result in the activation of the activation of HIF-1α, 

activating protein REDD1 which then induces TSC1/2 activity (186). Thus, silencing of 

TSC2 was able to prevent the effects of hypoxia on mTORC1 signaling.  

 

Interestingly, hypoxic effects on mTORC1 and mTORC2 signaling were also attenuated 

through DEPTOR silencing. It has been shown that DEPTOR binds directly to both 

mTORC1 and mTORC2 (144), and that silencing of DEPTOR results in the activation of 

both mTORC1 and mTORC2 signaling (150). This direct interaction between DEPTOR 

and both mTOR complexes has been implicated as a form of basal inhibition for mTOR 

signaling (150). Here we have demonstrated that alleviation of this interaction was able to 

increase both mTORC1 and mTORC2 activity in hypoxia. This reinforces the concept 

that mTOR signaling can be altered through multiple pathways, and that hypoxia-

mediated TSC1/2 activation was not able to effect mTOR signaling as the alleviation of 

direct DEPTOR:mTOR interaction resulted in increased mTOR signaling regardless of 

oxygen status. DEPTOR silencing activated mTORC1 and mTORC2, which reduced 

IGFBP-1 secretion/phosphorylation and prevented the IGFBP-1 response to hypoxia. 

These findings are consistent with the possibility that both mTORC1 and mTORC2 are 

involved in mediating the effect of hypoxia on IGFBP-1 secretion and phosphorylation. 

Using silencing of TSC2, which specifically activates mTORC1, we confirmed that 
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mTORC1 activation is sufficient to reduce IGFBP-1 secretion and phosphorylation and 

prevent the effects of hypoxia on IGFBP-1.  

4.7 mTOR signaling and hypoxia-induced IGFBP-1 
phosphorylation 

It is well-established that mTORC1 signaling is inhibited by hypoxia (172, 173), whereas 

the effects of hypoxia on mTORC2 have not been well characterized. Previous studies 

have generated inconsistent results, reporting both increased and decreased mTORC2 

activity in response to hypoxia in different cells (189). In agreement with previous 

literature, our data shows that mTORC1 and mTORC2 activity are decreased due to 

hypoxia in HepG2 cells (189). To determine the specific roles of the two mTOR 

complexes in regulating IGFBP-1 secretion and phosphorylation during hypoxia, we 

utilized systematic mTOR inhibition and activation strategies in combination with 

hypoxia. 

 

Constitutive inhibition of mTORC1 and mTORC2 via raptor and rictor siRNA, 

respectively, induced both IGFBP-1 secretion and phosphorylation, which was not 

enhanced further by hypoxia. This suggests that mTOR inhibition in hypoxia is 

responsible for the induction of IGFBP-1. As the siRNA treatment occurred for 72 hours, 

with only the last 24 hours with and without hypoxia, an additive effect in IGFBP-1 

induction would be expected if hypoxia was driving IGFBP-1 secretion/phosphorylation 

through a molecular pathway unrelated to mTOR signaling. We have shown here that 

constitutive mTOR inhibition is able to drive IGFBP-1 induction, and that the subsequent 

addition of hypoxia did not further enhance levels of IGFBP-1. Interestingly, cells 

exposed to scrambled siRNA with the last 24 hours of the 72 hour incubation in hypoxia 

resulted in levels of total and phosphorylated IGFBP-1 which were similar to cells 

exposed to raptor and rictor siRNA in normoxia for 72 hours. This suggests that siRNA 

treatment operates in a temporal manner, in which constitutive mTOR inhibition was 

more potent within approximately the last 24 hours of treatment. This is in agreement 

with the literature, in which 72 hour siRNA transfection periods in order to yield optimal 

effects of the treatment are common (238-240). Further, constitutive inhibition of either 
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complex due to individual raptor or rictor siRNA were both able to induce IGFBP-1 

secretion and phosphorylation to similar levels as hypoxia alone, with raptor silencing 

resulting in slightly higher induction than rictor silencing. Again, these effects were not 

augmented by hypoxia, suggesting that constitutive inhibition of mTORC1 or mTORC2 

are sufficient to drive IGFBP-1 secretion and phosphorylation. This suggests that both 

mTORC1 and mTORC2 may function in a coordinated manner to regulate IGFBP-1.  

 

Conversely, constitutive mTORC1 and mTORC2 activation via DEPTOR silencing 

reduced both IGFBP-1 secretion and phosphorylation suggesting that basal levels of 

mTOR signaling regulate IGFBP-1 under untreated conditions, and that increased mTOR 

activity due to alleviation of endogenous basal mTOR inhibition reduces IGFBP-1 

secretion and phosphorylation to below basal levels. This relief of basal inhibition 

resulted in increased mTOR activity which remained consistent in hypoxia, and the 

sustained and elevated mTOR signaling activity in hypoxia was able to prevent hypoxia-

induced IGFBP-1 secretion and phosphorylation. This strongly implicates the inhibition 

of mTOR signaling in the regulation of hypoxia-induced IGFBP-1 secretion and 

phosphorylation in HepG2 cells.  

 

We also investigated the effect of constitutive mTORC1 signaling via silencing of TSC2. 

TSC2 silencing alone caused a modest reduction in IGFBP-1 secretion, but a larger 

reduction in IGFBP-1 phosphorylation. As previously discussed, the TSC1/2 pathway is 

responsible for incorporating cellular responses to hypoxia with mTORC1 signaling. 

When TSC2 silencing was performed, resulting in constitutive mTORC1 activation in 

combination with hypoxia, both IGFBP-1 secretion and phosphorylation induction due to 

hypoxia were prevented. This data suggests that even though constitutive inhibition of 

mTORC1 or mTORC2 signaling were able to induce IGFBP-1 to similar levels as 

hypoxia alone, the inhibition of mTORC1 specifically due to hypoxia is responsible for 

hypoxic regulation of IGFBP-1. This is consistent the possibility that induction of 

IGFBP-1 and subsequent reduction in IGF-I bioavailability can be mediated by signaling 

events which only affect one mTOR complex, representing a wide array of possible 
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mechanisms by which IGFBP-1 secretion and phosphorylation, and therefore IGF-I 

bioavailability and fetal growth, can be regulated.  

4.8 IGFBP-1 phosphorylation at specific residues due to 
hypoxia 

It is known that IGFBP-1 is phosphorylated at multiple (five serine) sites (123, 128, 192, 

196, 197, 202, 241). We have earlier demonstrated that IGFBP-1 phosphorylation at three 

specific serine residues (Ser101, 119 and 169) was increased in amniotic fluid (196, 241) 

and umbilical cord plasma of human FGR babies as well as in fetal liver and cord plasma 

from our baboon model of maternal nutrient restriction which results in FGR (96). In 

FGR, reductions in nutrient and oxygen delivery are the most common challenges to the 

developing fetus. Interestingly, in our previous study using HepG2 cells we have 

demonstrated significant induction of IGFBP-1 phosphorylation at all three sites (Ser101, 

119 and 169) examined in hypoxia and leucine deprivation (192). Furthermore, using 

mass spectrometry (192) we earlier showed that although Ser101 was a common site, two 

distinct patterns of IGFBP-1 phosphorylation were detected between the two stimuli: 

hypoxia caused IGFBP-1 hyperphosphorylation at Ser98 and 169 while leucine 

deprivation at Ser119 which concomitantly led to 300- and 30-fold increases in IGF-I 

affinity, respectively (192). The data from the current study demonstrated a similar 

pattern of increases in IGFBP-1 phosphorylation at Ser101, 119 and 169. This suggests 

that site-specific phosphorylation of IGFBP-1 under conditions of cellular stress occurs in 

order to modulate the affinity of IGFBP-1 to IGF-I, potentially providing increased 

control over the bioavailability of IGF-I for IGF-I-mediated growth in FGR. Although 

Ser98 phosphorylation is considered to be highly significant in combination with Ser169 

in increasing binding affinity of IGFBP-1 for IGF-I and reducing IGF-I bioavailability, as 

suggested by our previous study (129), it could not be tested due to a lack of available 

antibody. Furthermore, it is also possible that additional novel sites may be involved in 

phosphorylation during mTOR inhibition and/or hypoxia for which further studies would 

need to be conducted.  
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4.9 Future studies 

Investigating the role of CK2 in hypoxia-induced IGFBP-1 phosphorylation 

Although data from this study implicates mTOR signaling in the regulation of hypoxia-

induced IGFBP-1 secretion and phosphorylation, numerous aspects of this regulatory 

system remain to be elucidated. Our recent data implicates protein kinase CK2 in the 

regulation of IGFBP-1 downstream of mTOR (96). Previous work in our lab with 4,5,6,7-

tetrabromobenzotriazole (TBB), a chemical inhibitor of CK2, has shown that 

phosphorylation of IGFBP-1 is attenuated when TBB is combined with rapamycin (96). 

This demonstrates the role of CK2 in mTOR-inhibition mediated IGFBP-1 

phosphorylation. Combining CK2 inhibitor TBB or CK2 siRNA with hypoxia would lead 

to a greater understanding of the specific role of CK2 in hypoxic regulation of IGFBP-1. 

It would be expected that hypoxia induces IGFBP-1 secretion and phosphorylation, and 

that silencing or inhibiting of CK2 in combination with hypoxia may prevent IGFBP-1 

secretion and phosphorylation. Another possibility would be probe for direct 

CK2:IGFBP-1 interaction via the utilization of immunofluorescence mircoscopy to test 

for co-localization between CK2 and IGFBP-1, as well as co-immunoprecipitation, GST 

pull-down assays, or fluorescence resonance energy transfer (FRET) binding assays with 

recombinant CK2 and IGFBP-1. These experiments would allow us to determine if 

intermediary processes occur between CK2 activation and IGFBP-1 secretion and 

phosphorylation or if CK2 directly phosphorylates IGFBP-1.  

Investigating the in vivo role of IGFBP-1 phosphorylation in regulation of 

fetal growth in hypoxia 

Previously, an in vivo study using chick embryos demonstrated that both hypoxia and 

nutrient deprivation were associated with FGR; however prenatal hypoxia and 

undernutrition may have differential effects on fetal development (238). As previous 

work in the literature has demonstrated an in vivo link between hypoxia and FGR in 

chicken embryos (25), investigating the effects of hypoxia on IGFBP-1 secretion and 

phosphorylation in chicken embryos in vivo would be a logical progression of our studies. 
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This would allow us to effectively compare site-specific IGFBP-1 phosphorylation and 

IGF-I actions between our in vitro model and fetal hypoxia in vivo. Phosphorylation may 

be induced at the same or even different sites compared to humans, but importantly it 

would be expected that IGFBP-1 phosphorylation would increase its affinity to and 

reduce the actions of IGF-I. In vivo chicken embryo hypoxia +/- experiments could be 

followed up with detailed mechanistic studies. The use of morpholino injection to target 

and silence mTOR components raptor and rictor in chicken embryos with and without 

hypoxia would allow us to investigate the role of mTOR in the hypoxic regulation of 

IGFBP-1 in vivo. The overall effects on fetal growth could be tested via tissue-specific 

and entire organism wet weights measurement, in order to validate chicken embryos as a 

model for hypoxia-induced FGR and to investigate the effects of our treatments on fetal 

growth in vivo.  

Development of therapeutic strategies 

Through in vitro studies, it may be possible to investigate the potential development of 

therapeutic small molecule inhibitors aimed at increasing levels of IGF-I signaling. For 

example, a small molecule which could bind to Cys38 of IGFBP-1 may be able to 

prevent IGF-I:IGFBP-1 binding, resulting in increased fetal growth. This is supported by 

evidence showing that mutation of Cys38 of IGFBP-1 abolished IGF-I binding (89). 

Another target residue on IGFBP-1 which binding of a small molecule inhibitor may 

prove beneficial is Ser169, as we have shown that phosphorylation of Ser169 occurs 

during hypoxia, and hypoxia-induced IGFBP-1 phosphorylation binds to IGF-I with 

markedly higher affinity (192). Initial proof of principle studies would need to be 

conducted, likely through IGF-I bioavailability assays as performed in this study and 

IGFBP-1:IGF-I binding affinity assays.   
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4.10 General summary 

Together we have demonstrated a novel molecular link between the mTOR and IGF 

signaling axes, providing compelling evidence that hypoxia-induced IGFBP-1 secretion 

and site-specific phosphorylation occurs through the inhibition of mTORC1 signaling. 

We also demonstrate that that prolonged inhibition of mTORC2 signaling is able to drive 

IGFBP-1 secretion and phosphorylation. Further, we have established that mTOR-

mediated hypoxia-induced IGFBP-1 phosphorylation is linked with increased CK2 

activity, and is functionally significant because these changes caused a marked decrease 

in IGF-I bioavailability. Thus, our data provide a mechanistic link between fetal hypoxia 

and reduced IGF-I signaling via mTOR-inhibition-mediated increases in IGFBP-1 

secretion and site specific phosphorylation (Figure 15). These pathways may contribute 

to restricted fetal growth in response to hypoxia in vivo.  
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Figure 15. Proposed model linking hypoxia to IGFBP-1  

Inhibition of mTOR signaling (resulting in an increase in CK2 activity) is a key 

molecular link between hypoxia, increased IGFBP-1 secretion and phosphorylation, and 

reduced IGF-I bioavailability in FGR (96). 

 

 

Figure 15. Proposed model linking hypoxia to IGFBP-1 
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4.11 Limitations 

Although we were able to determine site-specific phosphorylation of IGFBP-1 due to 

hypoxia, we were not able to investigate the effects of our treatments on other 

phosphorylation sites of IGFBP-1, namely Ser95 and Ser98, or novel phosphorylation 

sites. This was due to the lack of available phospho-site specific antibodies. Determining 

if phosphorylation at Ser95 and 98 as well as other novel sites was increased due to our 

treatments would have been an intriguing possibility that would have allowed us to 

determine if IGFBP-1 is preferentially phosphorylated in the linker and/or C terminal 

regions due to hypoxia. These possibilities are under investigation by the use of mass 

spectrometry.  

Further, we speculate that IGFBP-1 phosphorylation increases its affinity towards IGF-I 

through synergistic interactions of its phospho-sites. This synergism likely involves novel 

phosphorylation sites, as well as the previously established Ser95 and 98 phospho-sites. 

The investigation into this potential synergism through the use of site-directed 

mutagenesis of various combinations of phosphorylation sites would have provided 

compelling evidence of this synergism. 
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Appendices  

Appendix A: Supplementary figures, data, and permissions to use copyrighted 

material 

Figure A1. Broad perspective of mTOR signaling 

Schematic showing a thorough list of mTORC1 and mTORC2 interactions, 

demonstrating the complexity of mTOR signaling and its many roles in the cell (137).  
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Figure A2. The effect of rapamycin and/or hypoxia treatment on albumin secretion  

HepG2 cells were cultured for 24 hours in normoxia (20% pO2) or in low oxygen (1% 

pO2, hypoxia) with and without rapamycin (100 nM) (n=3 each).  

A representative western blots of secreted albumin in cell media of control, rapamycin, 

hypoxia and rapamycin+hypoxia treated HepG2 cells (n=3 each) using equal aliquots of 

cell media. Rapamycin, hypoxia, and combined rapamycin+hypoxia all modestly yet 

significantly reduced albumin secretion. Values are displayed as mean + SEM. *p< 0.05, 

**p= 0.001-0.05, ***p < 0.0001 versus control; One-way analysis of variance; 

Dunnet’s Multiple Comparison Test; n=3. 
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Figure A3. The effect of rapamycin and hypoxia on HepG2 cell viability.  

Summary of HepG2 cell viability after 24 hours of rapamycin, hypoxia, or 

rapamycin+hypoxia treatments. Cell viability was assessed using equal aliquots of cell 

suspension (10 µl) via the Trypan Blue exclusion assay. Cell viability was determined as 

a measure of live/total cells. Rapamycin, hypoxia, and rapamycin+hypoxia treatments all 

demonstrated nearly identical cell viability to control cells. Values are displayed as 

mean + SEM. *p< 0.05, **p= 0.001-0.05, ***p < 0.0001 versus control; One-way 

analysis of variance; Dunnet’s Multiple Comparison Test; n=3. 
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Figure A4. Copyright permission for Figure 1B.  
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Figure A5. Copyright permission for Figure 2B.  
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Figure A6. Copyright permission for Figure 15.  
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Abstract 

Impaired oxygen and nutrient delivery to the fetus result in fetal growth restriction 

(FGR). IGF-I is a key regulator of fetal growth and IGF-I bioavailability is determined by 

IGFBP-1, which binds IGF-I and inhibits its signaling. Hypoxia induces IGFBP-1 

hyperphosphorylation resulting in decreased IGF-I bioavailability. We recently 

established a link between inhibition of mechanistic target of rapamycin (mTOR) and 

IGFBP-1 hyperphosphorylation. Here, we tested the hypothesis that IGFBP-1 

hyperphosphorylation in hypoxia is mediated by mTOR inhibition. Using HepG2 cells, 

we inhibited mTOR signaling either by rapamycin or siRNA targeting raptor (mTORC1) 

and/or rictor (mTORC2) in hypoxia (1% O2) or normoxia (20% O2). Conversely, we 

activated mTORC1 or mTORC1+mTORC2 by silencing endogenous mTOR inhibitors 

(TSC2/DEPTOR) in hypoxia or normoxia. Western blotting was used to assess IGFBP-1 

secretion/phosphorylation and the effects of IGFBP-1 phosphorylation on IGF-I 

bioavailability using IGF-1R autophosphorylation. Using phospho-site specific IGFBP-1 

antibodies we demonstrated that hypoxia or inhibition of either mTORC1 and/or 

mTORC2 induced similar degrees of IGFBP-1 secretion and phosphorylation at 

Ser101/119, and 169, which markedly reduced IGF-1R autophosphorylation. Activation 

of mTORC1+C2 by DEPTOR silencing or activation of mTORC1 by silencing TSC2 

reduced IGFBP-1 secretion/phosphorylation and prevented IGFBP-1 

hyperphosphorylation in response to hypoxia. 

Multiple Reaction Monitoring Mass Spectrometry (MRM/MS) quantitatively validated 

IGFBP-1 hyperphosphorylation at Ser101/119, and 169. MRM MS analysis further 

showed increased phosphorylation at Ser98 and at a novel residue Ser174 which was 

sensitive to mTOR inhibition. Structural modeling indicated that rapamycin-sensitive 

phospho Ser174 being in close proximity to IGF-I binding site may directly influence 

IGF-I affinity. Together, this study demonstrates that signaling through either the 

mTORC1 or mTORC2 pathway is sufficient to induce site-specific hyperphosphorylation 

of IGFBP-1 in response to hypoxia. These data put forward a novel mechanistic link 



130 

 

between hypoxia, IGFBP-1 hyperphosphorylation and decreased IGF-I bioavailability 

mediated by inhibition of mTOR which may contribute to restricted fetal growth in 

response to hypoxia.  


