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Abstract 

The spectral analysis of data from three VHF radars (one high-Arctic and two mid-latitude) 

show general support for the universal spectrum theory for gravity waves in the lower 

atmosphere (altitudes of 2.0-11.0 km), provided that the impact of the off-vertical beam and 

noise are taken into consideration.  This analysis also reveals that local gravity wave 

generation is of secondary, but still significant, importance for determining the spectra. 

 A total of eight spectral methods were considered and scrutinized for the purposes of 

determining gravity wave spectra from VHF radar data.  A definition for the “best” method 

was given and examined.  The method selected as the “best” for the analysis presented was a 

date-compensated discrete Fourier transform with a Hamming window. 
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Chapter 1  

1 Introduction 

In 1960, Hines suggested internal gravity waves (or buoyancy waves) as a major 

contributor to upper atmosphere motions, carrying energy and momentum large distances 

through the atmosphere.  The literature fixated on singular waves until, in 1982, 

VanZandt proposed a “universal spectrum”—a shape to the intensity of gravity waves 

versus their wavenumber that is independent of geographic location, meteorological 

conditions, altitude, and time—based on the oceanographic work of Garrett and Munk 

(1972, 1975).  The literature absorbed the concept of universality: many (e.g. Medvedev 

and Klassen 2000) produced power spectral density forms based on theories such as 

Weinstock’s nonlinear wave diffusion, Hines’ Doppler shifted theory, and the 

inconsistent linear instability theory (Hines 1991).  Focus then shifted towards deviations 

from the spectrum (e.g. Eckermann 1995), which leaves us thinking, “How ‘universal’ is 

the universal spectrum anyway?” 

 I investigate the form of the gravity wave spectra at different geographic locations 

(Negrocreek, ON and Eureka, NU) and altitudes (selected altitudes between 1-14 km) in 

different seasons.  My analysis using Ferraz-Mello’s (1981) data-compensated discrete 

Fourier transform with a Hamming window reveals that “universality” is not a far-fetched 

idea; however, local gravity wave generation also affects the gravity wave spectra. 

 This thesis is comprised of seven chapters.  Chapter 2 reviews the gravity wave 

literature and provides motivation for this work.  The necessary prerequisite background 

on radars is given in Chapter 3.  Chapter 4 outlines the mathematical background to the 

analysis methods including reasoning for applying windows and selecting various 

analysis techniques.  Chapter 5 applies the methods described in Chapter 4 to determine 

the “best” method of computing atmospheric gravity wave spectra.  The results are 

presented and interpreted in Chapter 6.  Chapter 7 concludes this thesis and outlines 

potential future work. 
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Chapter 2  

2 Gravity waves 

Gravity waves (also known as buoyancy waves), named for the restoring force 

responsible for the wave motion, are perturbations in the atmosphere (density, pressure, 

velocity, and temperature) with typical horizontal wavelengths of a few to hundreds of 

kilometres, vertical wavelengths of approximately        , and periods of five 

minutes to many hours.  In general, these waves can propagate along the interface of two 

mediums (such as on the surface of a lake or ocean, where they are called surface gravity 

waves) or through a medium (such as through the ocean or atmosphere, where they are 

called internal gravity waves), provided that the density decreases with increasing height.  

This thesis specifically examines the geographical and temporal variation of the spectrum 

of atmospheric internal gravity waves, which will be referred to as “gravity waves”.   

2.1 Why gravity waves 

Atmospheric gravity waves have a large impact on aircraft and weather.  Early interest in 

mountain lee waves (a particular type of gravity wave, generated by flow over 

mountains) originated from sailplane pilots, who used the waves to soar to record 

altitudes (Gossard and Hooke 1975).  Waves can transport energy faster than mean flow 

transport.  In particular, gravity waves carry energy away from the source (a mountain 

range, thunderstorm, etc.) and distribute it throughout the atmosphere, produce 

phenomena such as turbulence in the night time atmospheric boundary layer or clear air 

turbulence (Nappo 2002), which can be hazardous to aircraft (Gossard and Hooke 1975). 

In addition to playing a major role in upper atmosphere dynamics (Hines 1960), 

gravity waves can slow—and even reverse—mean wind speeds throughout the 

atmosphere, including in the troposphere (e.g., Lindzen 1981, Holton 1983).  A better 

understanding of gravity waves could lead to better weather forecasting models. 
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2.2 Gravity wave overview 

While both surface and internal gravity waves propagate in a similar manner, it may be 

easier for the reader to conceptualize gravity waves using surface gravity waves, for 

example, on the surface of a lake.  Consider a small packet of water displaced vertically 

above the lake’s surface.  The mass of water above the mean level causes the surface of 

the water to fall.  When the water surface reaches equilibrium, it still has a downwards 

momentum and continues to fall.  The surrounding water applies a restoring force to the 

water surface, causing it to slow the downwards motion, eventually stop, and then return 

towards the equilibrium position.  The surface overshoots equilibrium again, causing it to 

be displaced above the water surface again, hence establishing an oscillation.  This 

motion propagates along the surface. 

Internal gravity waves propagate in the same manner, however, the atmosphere 

must satisfy a second condition (in addition to decreasing density with height); having a 

specific lapse rate.  A lapse rate is the rate at which air temperature decreases with 

increasing altitude.  For internal gravity waves to propagate through the atmosphere, the 

lapse rate of the air packet as it moves must be steeper than the lapse rate of the 

background atmosphere.  As air rises, it expands and becomes less dense.  After rising, 

the air packet needs to be denser than the surrounding air to oscillate.  If it isn’t, the air 

packet will continue rising, instead of oscillating, and internal gravity waves cannot 

occur.  Where the lapse rates are such that internal gravity waves can propagate, the 

atmosphere is called “stable”.  Otherwise, the atmosphere is called “unstable”. 

2.3 Causes of gravity waves 

One well accepted source of gravity waves is airflow over terrain, such as mountains and 

hills (Gossard and Hooke 1975).  Airflow over mountains causes the initial perturbation 

necessary to create waves, as demonstrated in Figure 2.1.  These waves are also known as 

“mountain lee waves”.  In a steady state, these waves are stationary with respect to the 

terrain, but propagate with respect to the mean airflow.  In a time-dependent state, airflow 

over terrain should cause propagating waves with respect to the ground.  On various  
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Figure 2.1: An example of mean wind flow over a mountain causing lee-waves and 

the accompanying mean wind and temperature structure.  From Hocking (in prep.), 

adapted from Röttger (2000) (who adapted it from Scorer (1997)). 

occasions Hines suggested (e.g. Hines 1991) that this may cause waves in the upper 

atmosphere. 

Other potential sources of gravity waves are: squall lines and frontal systems, 

velocity jets, large explosions (Nappo 2002), turbulence, penetrative convection, wave-

wave interactions, geostrophic adjustment, shear instability, Ekman-layer instability, and 

wave generation by boundary-layer turbulence (Gossard and Hooke 1975). 

2.4 A brief history of the understanding of gravity waves 

In 1960, Hines explored the theory of gravity waves as a major contributor to upper 

atmosphere motions.  He used linear perturbation theory, which assumes that the wave 

amplitudes (the perturbations in pressure, temperature, etc.) are sufficiently small, such 

that all variables dependent on nonlinear combinations of wave amplitudes are negligible.  

In 1976, Weinstock advanced the theory of gravity waves by using a nonlinear theory, 
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though he still treated the nonlinear pressure terms as negligible, since the pressure 

fluctuations are relatively small. 

 The literature focused on singular gravity wave sightings and measurements until 

1982, when Van Zandt introduced the idea of a “universal spectrum” of gravity waves, 

based on the oceanic work of Garrett and Munk (1972, 1975).  The universal spectrum 

quantifies the spectral “tail” (lower wavelengths) as a power law and claims the shape of 

the tail is roughly invariant with meteorological conditions, latitude and longitude, time, 

and, to some extent, altitude.  

In 1991, Hines developed a Doppler spread theory for gravity waves.  In general, 

literature focus shifted to this concept of universality, with many research groups 

developing similar models to describe the universality.  Focus then shifted to deviations 

from universality. 

2.5 Mathematical Background 

The mathematics of gravity waves starts with the standard fluid dynamics equations (a 

version of Newton’s second law, the first law of thermodynamics combined with the 

speed of sound in air, conservation of mass, and heat diffusion, respectively), viz.: 

  
  ⃗⃗ 

  
   ⃗⃗   ⃗     

 

 
 ⃗⃗       ⃗    (2.1)  

  
  

  
 

 

  
 

  

  
  (2.2) 

  
  

  
   ⃗⃗    ⃗    (2.3) 

  
  

  
 

 

 
    (2.4) 

where      represents differentiation following the motion,  ⃗  is the velocity,   is the 

density,  ⃗⃗  is the Earth’s angular rotation rate,    is the acceleration due to gravity (and is 

given by         ),   is the pressure,    is the speed of sound,  ⃗⃗  is the gradient 
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differential operator,   is the potential temperature,   is the heat diffusion coefficient, 

and   is the kinematic viscosity coefficient. 

 For gravity waves, solutions are assumed to be of the form: 

        
 ( ⃗         )

 (2.5) 

where   can be any one of the velocity components, the pressure, the density, or 

temperature, and may be complex.   ⃗  is the wavenumber vector         and   refers to 

the ground-based angular frequency of the wave.  These forms are substituted into the 

standard fluid dynamics equations above, keeping only first-order perturbation terms in 

an attempt to linearize the equations for gravity wave analysis.  If the effects of viscosity 

are ignored, a mean wind of zero is assumed (for simplicity), and the wave propagates in 

the  —  plane (with   being vertical), then the standard fluid dynamics equations (i.e. 

Equations 2.1 through 2.4) simplify to five equations; three momentum equations: 

      ̂    ̂      ̂ (2.6) 

      ̂    ̂    (2.7) 

      ̂   ̂   (   ̂  
 ̂

 ̅
) (2.8) 

a form of the first law of thermodynamics: 

      ̂  
 ̂  

 

 
   

  ̂

  
 ̅̅ ̅  (2.9) 

and a continuity equation: 

      ̂     ̂  
 ̂

 
    ̂    (2.10) 

where a hat (e.g.,  ̂) denotes a perturbation value,   √  ,   is the Coriolis parameter 

       (where   is the latitude),  ̂   ̂  ̅,  ̂   ̂  ̅, and    ̅̅̅ is the mean squared speed 
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of sound at the height of the wave.  The complex velocity perturbation is  ⃗    ̂  ̂  ̂ .  

The  ⃗ -vector is        , where it is assumed that the wave propagates in the  —  plane 

for simplicity.  The complex vertical wavenumber,  , is         (complex to indicate 

that the wave is oscillating and the amplitude increases exponentially with increasing 

height), where          ̅ .   ̅ is the scale height given by: 

   ̅  
  ̅

 
 (2.11) 

The Brunt-Vaisala frequency,   , is the natural oscillation frequency of a displaced air 

parcel in the atmosphere (below 100 km altitude, values are typically 5-10 minutes) and 

satisfies: 

    
  

 

 ̅

  ̅

  
  

 

 ̅
 

 

 ̅

  ̅

  
 (2.12) 

where       ,   is the gas constant for air,    is the specific heat of air at constant 

pressure, and   is potential temperature. 

 Solutions to these equations are various waves that satisfy two particular relations: 

the dispersion relation and polarization relations.  The dispersion relation relates the wave 

frequencies and wavenumbers.  It also restricts wave frequencies to the range between the 

Brunt-Vaisala frequency and the “inertial frequency”, the lower frequency limit set by the 

Coriolis parameter.  The polarization relations relate wave-velocity amplitudes to the 

temperature, density, and pressure amplitudes.  Both the dispersion and polarization 

relations can differ slightly, depending on the terms ignored/retained in the linearized 

approximations to the equations of motion. 

 For the approximated equations of motion, the dispersion relation is: 

    
  

  
    

     
   

 

    
 

  

  
  (2.13) 
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A simpler form of the approximation, called the Boussinesq approximation, is: 

    
  

  
    

     
   (2.14) 

for a wide range of frequencies larger than   and smaller than   , this dispersion 

relations can be approximated by: 

  
  

 
 

  

 
 (2.15) 

 The polarization relation is approximated by the following equations:   

   ̂   
 

  
 ̂  

 

  ̅     
 ̂ (2.16) 

   ̂    
 

 
 ̂ (2.17) 

   ̂  
  ̅

  
 ̂   

 

 

  ̅

  
 ̂   

 

 

  
 

 
 ̅ ̂  

  

    ̅   
 
  ̅

  
 ̂  (2.18) 

  
 ̂

 ̅
  

 ̂

 ̅
 (2.19) 

   ̂   ̂ ̅    ̅  (2.20) 

where  ̂ is the vertical displacement, and    ̅      is the “intrinsic phase speed” of 

the wave, or the wave phase speed with respect to the mean wind at the height of the 

wave.  Equations 2.16 and 2.17 are exact for the Boussinesq approximation and 

Equations 2.18, 2.19, and 2.20 are only valid for       . 

More precise relations can be developed; however, these approximations are useful since 

they are simple, yet are still fairly accurate over a wide range of frequencies.  Unlike the 

derivations above, the mean wind is allowed to be non-zero, equal to   ̅     . 
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2.6 The spectral tail 

While the theory of gravity wave spectra in the atmosphere and oceans is very similar, 

VanZandt (1982) summarized three key differences: (1) Doppler shifting by mean flows 

is more important in the atmosphere, (2) nonlinear wave interactions occur over shorter 

timescales, and (3) the atmospheric buoyancy frequency is roughly independent of 

height, whereas it decreases exponentially with depth in the ocean. 

 In the atmosphere, the slope of the tail is roughly invariant with altitude and 

flattens off at lower frequencies (see the sample tail in Figure 2.2).  At higher altitudes, 

the tail is longer (i.e. flattens off at a lower frequency).  Van Zandt (1982) claimed this  

 

Figure 2.2: (i) Measured atmospheric spectra (  ) of horizontal gravity wave 

fluctuations as a function of vertical wavenumber ( ) for various heights.  Note that 

the “roll off” point, which marks the transition between the     part of the 

spectrum and the flatter part changes with altitude.  (ii) Model spectra proposed by 

Smith et al. (1987).  These graphs were taken from Hocking (in prep.), who adapted 

them from Smith and Van Zandt (1987). 
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was the result of saturation of particular frequencies and left the physical cause for 

separate identification. 

Hodges (1967, 1969) introduced linear perturbation theory to model gravity 

waves, which assumes that the wave amplitudes are small enough such that the nonlinear 

terms are negligible.  When gravity waves propagate upwards in the atmosphere, the 

wave amplitudes grow exponentially (due to exponentially decreasing density).  Some 

authors (e.g. Lindzen 1981, 1984) used linear instability theory to account for the form 

and intensity of the tail; at a critical height, the linear approximation breaks down and 

above this height, nonlinearities cause saturation.  Hines (1991) reworked the linear 

instability formulation and found inconsistencies.  Hines (1991) created a Doppler shifted 

theory which accounts for the intensity and the form of the spectral tail, claiming that 

linear instability theory may account for the length of the tail. 

Another potential cause of gravity wave saturation is shedding.  As waves 

increase in altitude, their amplitude increases as well.  At a critical height (dependent on 

the frequency of the wave), the wave grows too big and any energy that would normally 

cause an increase in amplitude dissipates as turbulence instead. 

Extending Weinstock’s (1976) nonlinear wave diffusion theory and Hines’ (1991) 

Doppler spreading theory, Medvedev and Klaassen (2000) explained saturation by  

turbulence induced in waves that exceeded the convective instability thresholds.  They 

parameterized the power spectral density,  , as: 

   
    

 

   (2.21) 

where   is roughly a constant (which slowly varies with   and the mean wind),    is the 

Brunt-Vaisala frequency, and   is vertical wave number.  Throughout the literature, 

values of   range from 
 

 
 to 

 

 
 (see Medvedev & Klassen, 2000), with values typically 

being 
 

 
 (e.g. Smith et al. 1987).  Other literature even has   dependent on seasons.  This 

model gives reasonable magnitudes for acceleration of mean flow and some observations 

of saturated, near-monochromatic waves support this model.  This model is also attractive 
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for use in parameterization schemes because it has a clear physical interpretation.  

However, it has some disadvantages too; the theory only works for near monochromatic 

waves, it requires the gravity wave amplitudes to be nearly constant at and above the 

breaking level, and, when using this model, the vertical wave drag profiles and enhanced 

diffusion become step functions, which cause continuity problems in large scale models. 
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Chapter 3  

3 Radars 

3.1 The antennas 

The radars used to gather data for this thesis do not use a large dish for transmitting and 

receiving the signal, but rather use a large array of smaller antennas that work together as 

one coherent unit. This is called a "phased array" and its beam can be steered without 

actually tilting the ground upon which the antennas rest.  The specific radars for this 

study are comprised of 128 antennas (called Yagi antennas).  In the arrays used, each 

antenna acts as both a transmitter and receiver.  The antennas have three horizontal bars; 

from the top down, they are: the director, the driven element, and the reflector. 

 

Figure 3.1: Yagi antennas.  Part of the antenna array located at Eureka, NU. 
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3.2 How they work 

The transmitter, under the control of the computer, sends an electronic pulse to the 

antenna array and each antenna transmits the pulse as an electromagnetic wave.  Since 

there are many antennas transmitting the same pulse simultaneously (an exception, i.e. 

beam steering, is discussed below), the transmitted pulse appears as a plane wave 

propagating vertically upward from the array, as demonstrated in Figure 3.2.  Each of the 

planar waves is an interference pattern caused by the individual antenna wavelets.  The 

waves reflect off targets (or more specifically, gradients in refractive index) in the 

atmosphere.  Some of the reflected wave propagates back towards the antenna array.   

The reflected wave induces a current in the driven element (the middle horizontal 

bar).  The director and reflector play the role of narrowing the radar beam, and so in some 

senses "concentrating" the signal.  After going through hardware processing, the voltage 

is digitized at a rate corresponding to (in our case)        intervals. 

3.3 Beam steering 

The 3D interference pattern created by the antennas is called the beam pattern.  The beam 

pattern represents the "pattern of sensitivity" of the radar, with targets in the regions of 

highest sensitivity being most strongly detected; i.e. the direction of the beam pattern 

defines where the radar is “looking”.  The beam pattern is the diffraction pattern of the 

antennas and, therefore, depends on the layout of the antennas and their orientation with 

respect to each other.  Beam patterns often have one large central beam and several 

Figure 3.2: A schematic describing how the transmitted pulses from the antenna 

array appear to form a planar wave. 
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smaller beams (called sidelobes), which point in different directions than the main beam.  

Since the sidelobes are smaller (i.e. lower power), most of the atmospheric detections 

occur through the main lobe.  The effect of sidelobes is discussed below. 

In the case described above, the main beam points perpendicular to the plane of 

the radar (normally vertical).  To steer the beam (to “look” in other directions), a time 

delay is applied between nearby antennas transmitting the same pulse, as seen in Figure 

3.3. 

 

Figure 3.3: A schematic describing how the radar beam is steered through the sky.  

Rather than transmitting the pulse simultaneously, the left-most antenna started 

transmitting, followed by the second from the left, the third from the left, and then 

the rightmost antenna.  Typically delays are a small fraction of one wave-period; in 

our case typically      or so. 

3.4 Detection difficulties 

3.4.1 Detection through sidelobes 

Since the main beam is large in strength (so it has more power) in comparison to the 

sidelobes, it is assumed that targets detected are located within the main beam.  However, 

a strong reflector (e.g. a plane, a building, etc.) in a side lobe will have the same effect as 

a weaker reflector in the main beam. 

Once the radar is built (i.e. the position of the antennas is set), there is not much 

that can be done about detection through sidelobes.  In some cases, a special procedure 
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called "interferometry" can be used to obtain better directional information, but this 

requires extra antennas and is not needed for our particular studies.  

3.4.2 Non-atmospheric objects 

It’s a bird!  It’s a plane!  It’s not an atmospheric target.  The targets in the atmosphere are 

weak reflectors (small density changes) and typically move relatively slowly (most 

velocities are less than      ).  When something with strong reflectance is in the radar 

volume or an object moves unusually fast through the radar volume, it has a stronger 

influence on the data than the atmospheric targets.  However, their distinct nature often 

allows them to be recognized and ignored. 

The power returned to the antenna array depends on the square of the potential 

refractive index gradient.  The refractive index in the lower atmosphere is: 

                

 
           

  
 (3.1) 

where   is the pressure in millibars,   is the temperature in Kelvin, and   is the partial 

water vapour pressure in millibars.  Sometimes this equation also contains a plasma term, 

which is unnecessary in the region of interest for this study.  The gradient is given by 

(Tatarski 1961, with updated constants from Larsen and Röttger 1982): 

    
          

  
   [  
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] (3.2) 

where   is the temperaure in degrees celsius,    is the adiabatic lapse rate, and 

            is the specific humidity.  The power received by the radar,   , is 

proportional to the square of the refractive index gradient, viz.: 

        (3.3) 

Therefore, larger refractive index gradients, such as those between the atmosphere and a 

bird or plane, return more power to the radar than smaller refractive index gradients, such 

as the atmospheric targets we are interested in. 
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Often, highly reflective, non-atmospheric objects (e.g. birds, airplanes) do not 

stay in the radar volume for very long, perhaps a few tens of seconds.    Such targets can 

be removed in two ways: (1) recognizing the characteristic signature of the entity and 

removing it from the data-stream or (2) simply ignoring the entire data set.  Typically 

calculation of a wind measurement requires         of data, so if such a group is too 

severely contaminated, the entire         data set is ignored. 

Another type of non-atmospheric target that gets detected is ground clutter (e.g. 

mountains and buildings).  Reflections from ground clutter enter the radar beam through 

the sidelobes and are seen as having zero velocity.  Various tricks can be used to remove 

these contaminants, but they are only partly successful. In this thesis, we primarily use 

data collected using an off-vertical beam, since the horizontal movement of the air 

(generally) produces non-zero radial velocities and ground clutter (which occurs at     ) 

can be notched out.  Vertical beams are harder to use because the vertical winds are often 

close to zero and merge in with the ground-clutter, making separation of the different 

spectral sources more difficult, as shown in Figure 3.4. 

3.4.3 Poor low altitude range data: impedance mismatch 

If the impedance of the antenna and the cables are not exactly the same, then when the 

transmitted pulse passes from the coaxial cable to the antenna, some of the signal is 

reflected.  The reflected signal propagates back along the coaxial cable and is reflected at 

the transmitter end since it is not expecting to receive a signal of that strength (the 

receiver is disconnected when the voltage is over a particular threshold).  The reflected 

signal propagates back to the antenna where some is reflected again and some is 

transmitted.  This oscillation leads to a ringing after the pulse has been transmitted.  

Sometimes this ringing interferes with receiving reflections from the pulse scattered from 

atmospheric targets.  This often results in unreliable data for the lower end of the radar’s 

range (       for the radars used in this thesis), so conclusions here-in are primarily 

based on higher-altitude data. 
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Figure 3.4: An example of radial velocities when the radar beam is vertical (left 

hand side) and off-vertical (right hand side) with ground clutter removed.  Each 

successive spectrum corresponds to a different height.  The numbers to the left of 

each spectrum indicate the recorded power.  At the upper heights, the signal 

appears noisier due to a loss of signal (for reasons discussed in Section 3.4.4).  The 

off-vertical velocities appear to become noisier than the vertical velocities at lower 

altitudes because of the anisotropic scattering nature of the atmospheric targets.  

From Hocking (in prep.), originally from Gage and Green (1978). 
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3.4.4 Poor high altitude range data: low power 

If the scatterers are particularly weak, the reflected wave may go undetected by the radar.  

This is particularly true for the higher altitudes of the radar’s range (         for the 

radars used in this thesis) for a variety of reasons. 

The power transmitted from the radar diminishes in strength proportionally to the 

range squared.  Upon reflection, the power of the reflected wave also diminishes 

proportionally to the range squared, so the power received by the radar diminishes as the 

range to the power   .  This is partially compensated for by the fact that the radar 

volume (where the atmospheric targets are detected) increases proportionally to the range 

squared.  This still results in a net loss of returned power.  Specifically, the received 

power is inversely proportional to the square of the range—scatterers at       altitude 

return     times less signal than scatterers at      altitude. 

The properties of the atmosphere also come into play.  Air density decreases 

exponentially with altitude—air density at       is   times less than at the ground—

resulting in a loss of scattering capability.  Furthermore, the scattering cross-section also 

depends on water vapour content to some extent.  Water vapour densities are 

considerably less at       altitude.  All these factors combine to mean that above 

(typically)          altitude, the signal is too weak for our radars to detect. 

3.4.5 Range determination and range-aliasing 

The radar sends out a pulse, then “listens” for a response. The distance from the radar to a 

target (the range of the target) is determined from the expression: 

    
  

 
 (3.4) 

where   is the speed of light in air (the speed at which the pulse propagates) and   is the 

time between the radar pulse-transmission  and pulse reception.  In practice, there will be 

multiple targets and so multiple received pulses at different lags. The factor of   comes 

from the fact that the observed time is twice the time the wave took to get from the radar 

to the target (as the wave has to travel there and back again).  In this equation,   is used to 
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denote range as opposed to an   (implying height) since if the beam is pointing in a 

direction other than vertical, range and height are different. 

The detection process assumes that everything detected is a reflection from a 

target due to the last pulse that was transmitted.  This is not always true; sometimes a 

pulse from a very distant target may return to the radar after a subsequent pulse was 

transmitted, resulting in range aliasing (incorrectly calculating the range) for detections 

farther away than: 

     
   

 
 (3.5) 

where    is the time between successive radar pulses.  Since the radar is not designed to 

detect reflections above   , the returned pulses from beyond    are generally weak; 

however, a strong reflection (e.g. meteor) at a higher altitude may still reflect the pulse 

such that it is detected by the radar. 

For an example, consider a radar that transmits pulses at an interval allowing it to 

see up to       away.  If a meteor at       range reflected the pulse, the radar would 

interpret the meteor reflection as happening at       range (a reflection from the most 

recently transmitted pulse) as opposed to       (a reflection from the fourth last pulse, 

which is the true pulse of origin for the scattered pulse). 

3.5 Why radar? (As opposed to other methods) 

Consistent, short time interval data are needed for this study.  Radar is the only method 

that gathers atmospheric measurements of this nature. 

In-situ measurements, such as rockets and weather balloons, can yield very 

detailed data.  With in-situ measurements, the experimenter has no control over what 

section of atmosphere it samples and the time between successive launches (     

hours) is too long for this study. 

Other ground-based measurements (mainly lidar) can provide successive, highly 

detailed wind measurements, but until recently they were only useful on clear, dark 
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nights.  For mid-latitude sites, the lidar would be unoperational every day during sunlit 

hours, which would not be ideal.  For Arctic sites, the lidar would be unoperational for 

the entire summer (as the sun does not set).  These gaps in data collection are not well 

suited for this study.  Recent developments have allowed newer lidars to work in the 

daytime as well, but they are still restricted by fog and clouds and—for the present—are 

primarily useful below      or so in height (Stiller et al. 2012). 

3.6 Our sites 

This thesis uses three Canadian radar sites; Eureka, Negrocreek, and Markstay (as shown 

in Figure 3.5).  All three sites consist of 128 Yagi antennas and operate somewhere in the 

band 46-51 MHz, with specific frequencies being different at each radar. 

 

Figure 3.5: A map (courtesy of Google) indicating the locations of the three radar 

sites used. 
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3.6.1 Eureka, Nunavut 

Eureka, Nunavut (pictured below) is a high-Arctic site at GPS coordinates 80.00 N, 85.80 

W.  The radar at Eureka is surrounded by Arctic tundra.  The radar operates at 51.0 MHz 

and has been operational since 2007. 

 

Figure 3.6: A panoramic view of the radar station at Eureka, NU with Blacktop 

mountain in the distance.  The computer and transmitter are located inside the blue-

green building to the right. 

3.6.2 Negrocreek, Ontario 

Negrocreek (pictured in Figure 3.7) is located in southern Ontario at GPS coordinates 

44.36 N, 80.86 W near the town of Owen Sound, near the Great Lakes.  The land at 

Negrocreek is swampy and surrounded by trees.  The radar operates at 48.92 MHz and 

has been operational since 2008. 

3.6.3 Markstay, Ontario 

Markstay (picture in Figure 3.8) is also located in Ontario, north of Negrocreek at GPS 

coordinates 46.54N, 80.54 W, a short distance from Sudbury.  The area surrounding 

Markstay is mostly forest and Canadian shield.  The radar operates at 45.47 MHz and has 

been operational since 2010. 
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Figure 3.7: Part of the radar station at Negrocreek, ON. 

 

Figure 3.8: Part of the radar station at Markstay, ON. 
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Chapter 4  

4 Spectral analysis methods 

A repetitive function or signal can be represented as a superposition of simple sine and 

cosine waves, sometimes referred to as harmonics.  However, in a more developed 

theory, even non-periodic functions can be represented in this way, provided that an 

infinite number of frequencies are available.  The Fourier transform of a function 

determines which frequencies, and the amplitude of each frequency that the harmonics 

require, in order to sum to the original function.  For a continuous function in time,     , 

the Fourier transform has many equivalent definitions; however, this thesis will use the 

definition: 

      ∫              
 

  
 (4.1) 

for all real   and  , where   represents time (in seconds) and   represents frequency (in 

hertz). 

 The power spectrum (relative power of each harmonic vs. frequency) is often used 

to analyse the harmonics of a signal.  The power spectrum intensity is given by: 

       ‖    ‖  (4.2) 

The remainder of this chapter discusses issues arising from using the Fourier transform 

with our specific data (finite, discrete, and non-uniformly spaced data), and our solutions 

to those problems (windowing functions and the date-compensated discrete Fourier 

transform). 

4.1 Finite Data 

In practice, the measured signal is not infinite in extent, and the Fourier transform is 

usefully redefined as: 

   ̂    ∫  ̂            
 

 
 (4.3) 
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where   represents the signal length and the hat on the   signifies the finite data signal 

(which, for this section, is continuous; discretizing the signal causes other effects, which 

are discussed later).  For the purposes of this thesis,  ̂    is one component of the radar-

derived wind velocity.   In terms of the ideal, infinite signal, the finite signal is: 

   ̂             (4.4) 

where      is a boxcar window function: 

       {
          
          

 (4.5) 

so that: 

   ̂    ∫                  
 

  
 (4.6) 

From this perspective, it is evident that the finite nature of the data intrinsically applies a 

window function.  This has deleterious effects in the frequency domain, causing a 

broadening of spectral frequencies and “frequency leakage”. 

Multiplying the signal by the window function applies the window to the signal.  

In the frequency domain, this is equivalent to convolving the signal’s Fourier transform 

and the window function’s Fourier transform.  To see the full effects of a window, 

consider a pure sine wave.  The Fourier transform of a pure sine wave is a delta function 

at the wave’s frequency, as shown in Figure 4.1 (ii).  The Fourier transform of a boxcar 

window function is a sinc function, as shown in Figure 4.1 (iv).  The Fourier transform of 

a pure sine wave, after applying a boxcar window to it, is a sinc function (the boxcar’s 

Fourier transform) centred at the sine wave’s frequency, as shown in Figure 4.1 (vi).  

Note that the boxcar Fourier transform has a main lobe centred at zero with smaller 

“sidelobes” on either side.  While a wider main lobe broadens spectral peaks, the 

sidelobes spread spectral frequencies to higher and lower frequencies. 

However, a boxcar is only one type of window.  Sometimes, spectral clarity 

results from using a more restrictive window, with tapering at the edges.  It may seem 
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that such a process would further deteriorate the spectrum, but advantages ensue due to 

reduction of the sidelobes.  Since using a windowing function is unavoidable, a variety of 

window functions were examined. 

Figure 4.1: A demonstration of how a multiplication in the time domain is equivalent 

to a convolution in the frequency domain.  (i) A pure sine wave, (iii) a boxcar 

window function, and (v) the product of (i) and (iii).  The plots in the right column 

are the corresponding Fourier transforms of the plots shown to their immediate left.   
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4.2 Windows 

Creating the “best” window is a result of optimizing the main lobe width and relative 

amplitude of the sidelobes.  Since the data set is finite, there will always be sidelobes; 

however, they can be suppressed at the expense of widening the main lobe (broadening 

the main lobe is equivalent to smearing frequencies into neighbouring frequencies in the 

frequency domain).  Similarly, the main lobe can be narrowed at the expense of 

increasing the sidelobes (potentially leading to frequency aliasing).  Both large sidelobes 

and a wide main lobe are detrimental to the spectra.  Four windows are examined in this 

thesis to determine the optimal window for the gravity wave spectra.  The windows 

examined here are: boxcar, boxcar with 10% cosine tapering, Hann (sometimes called 

Hanning), and Hamming.  The windows and their Fourier transforms are displayed in 

Figure 4.2.  The normalization and Fourier transform of each window are displayed step-

by-step in the Appendix. 

4.2.1 Boxcar window 

The boxcar window (Figure 4.2(i)) for a signal length of   is: 

      {
       | |     
          

 (4.7) 

The boxcar window may appear to be ideal because it gives each data point equal 

weighting.  However, the sudden start and stop of the data causes detrimental ringing in 

the frequency domain. 

4.2.2 Boxcar with 10% cosine taper window 

The boxcar with 10% cosine taper (Figure 4.2 (iii)) for a signal length of   is: 

      

{
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 (4.8) 
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This window gives 80% of the data equal weighting and uses the outside 20% (10% at 

the beginning and 10% at the end) to smooth the ringing effect of the sudden start and 

stop. 

 

Figure 4.2: The left column contains representations of all the windows applied to 

data sets in this thesis.  While the windows in plots (i), (iii), (v), and (vii) span 10 

seconds in this sample, when applied to the data in this thesis, they span the same 

length of time as the data (typically a month).  The plots in the right column are the 

Fourier transform of the plots shown to their immediate left. 
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4.2.3 Hann window 

The Hann window, named for Julius von Hann, (Figure 4.2(v)) is the discrete window 

function: 

          (
  

   
) (4.9) 

for {    |     }, where   is the sample size.  For the purposes of this section (to 

demonstrate the effects of a windowing function rather than the effects of discretization 

of data), the Hann window is treated as the continuous function: 

      {
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 (4.10) 

where   is the signal length and the window has been shifted so that its centre is at    .  

The Hann window widens the main lobe to minimize the amplitude of all side lobes. 

4.2.4 Hamming window 

The Hamming window, named for Richard W. Hamming, (Figure 4.2(vii)) is the discrete 

window function: 
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) (4.11) 

for {    |     }, where   is the sample size.  For the purposes of this section, the 

Hamming window is treated as the continuous function: 

      {
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 (4.12) 

where   is the signal length,   is the normalization constant 
  

   
, and the window has 

been shifted so that its centre is at    .  Unlike the other windows in this thesis, the 

Hamming window tapers off at the beginning and end of the data set, but it is non-zero at 
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. While the Hann window aims to reduce the effect of all sidelobes, the Hamming 

window aims to reduce the first side lobe as much as possible. 

4.3 Discrete Data 

A second issue arises when trying to use the Fourier transform; the Fourier transform is 

defined for a continuous signal and the radar collects discrete data.  Discretizing the data 

is equivalent to multiplying the continuous signal (i.e. the north component of the wind 

velocity in our case) by a sampling function; specifically a series of Dirac delta functions 

evenly spaced at an interval of   .  The sampling function is: 

      ∑          
     (4.13) 

The Fourier transform of the sampling function is another sampling function: 

      ∑          
     (4.14) 

where the spacing in the temporal and frequency domains are related by: 

    
 

  
 (4.15) 

Recalling that a multiplication in the temporal domain is a convolution in the frequency 

domain, multiplying the signal by a sampling window leads to repetition of the signal’s 

Fourier transform in the frequency domain, as Figure 4.3 demonstrates. 

In order to determine a frequency, it must be sampled at least twice per cycle.  If a 

frequency is sampled less frequently, it appears as a wave of lower frequency.  For a 

visual example, see Figure 4.4.  Any wave of frequency        , which is above half the 

sampling frequency (termed the Nyquist frequency), appears as the lower frequency: 

                          (4.16) 

where    is the Nyquist frequency (           ).  This implies that all frequencies larger 

than the Nyquist frequency are mapped onto the range [    ], as demonstrated in Figure 
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4.5 to Figure 4.7.  Figure 4.5 is a sample spectrum.  If the data were discretized at a rate 

of 20 Hz, the resulting calculated spectrum would be given by Figure 4.6.  Figure 4.7 

shows how the sample spectrum and resulting spectrum are related.  Non-equally 

sampled data may produce harmonics beyond the Nyguist frequency.  This would add to 

the noise level at all frequencies and the harmonics would be aliased to the wrong 

frequency. 

 

Figure 4.3: The Fourier transform of a pure sine wave with a frequency of 10 Hz, 

sampled at a frequency of 30 Hz.  The Nyquist frequency (denoted as Nyq in the 

figure) is half the sampling frequency (15 Hz).  Beyond the Nyquist frequency, the 

spectrum repeats itself as described in the text. 
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Figure 4.4: The solid line shows a pure sine wave with frequency 1/10 Hz.  The black 

circles represent the sine wave if it were sampled at a rate of 1/12 Hz.  However, the 

black dots also correspond to a sine wave of frequency 1/60 Hz (
 

  
 

 

  
), shown by 

the dashed line.  If a 1/10 Hz sine wave was sampled at 1/12 Hz, the Fourier 

transform would mistake the original sine wave as a 1/60 Hz sine wave.  This leads 

to frequency aliasing when data are digitized too slowly. 
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Figure 4.5: A sample spectrum created to demonstrate the effects of sampling at an 

insufficiently high frequency.  The spectral peaks occur at frequencies:     ,      , 

     , and      .  See Figure 4.6 for the final result of sampling at a frequency of 

     .  See Figure 4.7 to see why that is the case. 
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Figure 4.6: The resulting calculated spectrum when the data set that was created in 

Figure 4.5 is sampled at a frequency of 20 Hz.  Notice that the four peaks present in 

the sample spectrum (    ,      ,      , and       in Figure 4.5) appear at     , 

    ,     , and     , respectively.  Figure 4.7 shows the relation between the 

sample spectra and this calculated spectra. 
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Figure 4.7: (i) The portion of the original spectrum in Figure 4.5 between 0 Hz and 

the Nyquist frequency (10 Hz).  (ii) The portion of the original spectrum in Figure 

4.5 between the Nyquist frequency and twice the Nyquist frequency.  (iii) The 

portion of the original spectrum in Figure 4.5 between twice the Nyquist frequency 

and thrice the Nyquist frequency.  (iv) The portion of the original spectrum in 

Figure 4.5 between thrice the Nyquist frequency and four times the Nyquist 

frequency.  (v) The spectrum resulting from sampling the data for Figure 4.5 at 20 

Hz and (as a result) the sum of plots (i) through (iv) as they are lined up.  Since the 

data in this example are sampled at 20 Hz, frequencies in plots ii, iii, and iv are 

mapped onto the range [       ].  This can be seen in more detail in Figure 4.6. 
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4.4 Fast Fourier transform 

To summarize thus far, the Fourier transform of a set of data from the radar is: 

  ̃    ∫  ̃            
 

  
 (4.17) 

where  ̃    is the radar data given by: 

  ̃                 (4.18) 

where      is the continuous atmospheric phenomenon,      is the window function, and 

     is the sampling function.  A simpler, more computer friendly method of computing 

Equation 4.17 is to implement the definition of the discrete Fourier transform (DFT) 

instead of the continuous version above.  The DFT is defined as: 

  ̂  ∑  ̂  
 

     

 

   

   
 (4.19) 

for   discrete points, where    , and  ̂  is the discrete windowed radar data (i.e. 

        ). 

4.5 Non-Uniformly Spaced Data 

The radar data are non-uniformly spaced in time for a variety of reasons.   On long time 

scales, interruptions to the radar’s operation (due to, for example, power interruption or 

equipment failure) require on-site technical intervention from London, ON.  This is not 

always feasible on a short timescale, leading to missing periods of data.  While 

Negrocreek and Markstay are approximately a 2-3 and 6-8 hour drive one way 

respectively, Eureka is an expensive, fly-in only service run.  Figure 4.8 depicts when the 

radar sites were operational. 

 Even when the radars are operational, the data sampling rate is inconsistent, as 

shown in Figure 4.9Error! Reference source not found..  In some cases, the data were 

gathered for previous studies, which may have been collected at different sampling rates.  

Some days the radar was shut down for a few hours to allow for repairs and maintenance.  
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If a wind velocity differs from the nearest    neighbouring measurements by more than 

        (user-definable), it is discarded as it is unlikely to be atmospheric data in the  

 

Figure 4.8: Black represents the radar site being non-operational.  Where the radar 

sites are operational (white), uniformly spaced data may still be unavailable.  The 

number on the ordinate is the year.  For ease of reading, the radar site names 

(Eureka, Negrocreek, and Markstay) are shortened to just the first initial (E, N,  

and M respectively). 
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expected radar volume (recall range aliasing, non-atmospheric scatterers, and detection 

through sidelobes).  For some atmospheric conditions, the radar is unable to measure 

within the extremes of its range (e.g. not enough power, pulse saturation), resulting in 

missing data for low (roughly 1.0-3.0 km altitude) and high (roughly 12.0-14.0 km 

altitude) ends of the radar’s range. 

 While there are numerous methods of coping with non-uniformly spaced data 

(e.g., Lomb-Scargle (Lomb 1976, Scargle 1982), MUSIC (Marple 1987,etc.), this thesis 

examines two solutions: (1) using averaging of bins and interpolating when necessary to 

use the fast Fourier transform and (2) using the date-compensated discrete Fourier 

transform. 

 

Figure 4.9: A typical data set over the span of a day.  Each of the points is a minute 

apart.  The blue circles represent minutes where there is an accepted radial velocity.  

The red triangles represent minutes for which data are missing (for a variety of 

reasons—see text). 
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4.6 Bin averaging and interpolation 

In an attempt to reduce the amount of interpolating necessary due to short-term (on the 

order of minutes to a few hours) non-uniform data, the radar data are averaged in bins of 

15 minutes.  When there are empty bins, the gaps are interpolated.  The interpolation is 

linear between the data points immediately before and after the empty bins, with random 

noise added.  The same standard deviation is used for the interpolated data as exists in the 

bins near the missing one(s) (5 points before and 5 points after).  Missing gaps of data are 

not interpolated if the gap spans six hours or longer.  As such, one month may have 

multiple “strands” of data to compute the spectra and spectral slope.  In this case, the 

longest data strand is selected as representative for the month.  The Fourier transform is 

then calculated using Matlab’s built in FFT function. 

 Matlab’s built-in FFT uses a combination of algorithms, including: the Cooley-

Tukey algorithm (Cooley & Tukey 1965), a variation of Cooley-Tukey (Oppenheim 

1989), a prime factor algorithm (Oppenheim 1989), a split-radix algorithm (Duhamel & 

Vetterli 1990), and Rader’s algorithm (Rader 1968).  For more information on the details 

of solving the DFT, see Matlab’s help page on FFT. 

4.7 Date-compensated discrete Fourier transform 

The second method this thesis uses to cope with non-uniformly spaced data is the date-

compensated discrete Fourier transform (DCDFT), as proposed by Ferraz-Mello (1981), 

which computes a power spectral density estimate for discrete, unequally time-spaced 

data.  For a particular frequency,  , this method involves fitting the following three 

curves to the data (after they are orthonormalized in a Gram-Schmidt fashion and the 

mean of the data is removed), as presented in Ferraz-Mello (1981): 

          (4.20) 

                  (4.21) 

                  (4.22) 
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This fit provides a power spectral density estimate to the data for frequency  .  To obtain 

a power spectrum for this thesis, this process is repeated for frequencies evenly spaced 

between  
   

 
 where   is number of data points in the signal.  In the special case of 

equally time-spaced data, the DCDFT simplifies to the discrete Fourier transform. 

4.8 Spectral slope 

Once the Fourier transform of the radial velocities is determined and converted into a 

power spectrum, the slope is determined.  All of the slopes are determined using a least 

squares fit to the frequencies between 6 hours and 2 days (approximately     

                   ).  The upper bound of the period range (i.e. 2 days) is the 

upper boundary to gravity wave periods.  The lower bound (i.e. 6 hours) was chosen such 

that it does not include the shallowing of the noise floor.  A sample spectrum is shown in 

Figure 4.10 with the green line showing the spectral slope for the section included in the 

calculation. 

 

Figure 4.10: A sample spectrum (Eureka, February 2010, 3.0 km range) with the 

spectral slope shown in green for the period range 6 hours to 2 days. 
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Chapter 5  

5 Spectral method selection 

This thesis examines two different ways of determining the monthly spectra with four 

different windows at three different radar sites.  To save on computation, the different 

methods are illustrated in detail for only one of the sites (Negrocreek, a mid-latitude site) 

for one year, with some comparisons to a second site (Eureka, a high-latitude site).  All 

sites, and a wider coverage of years, are presented once the methodologies are optimized. 

The year 2009 was selected as the comparison year since both Eureka and 

Negrocreek were operational for the majority of that year.  The “best” method of 

determining spectra is chosen from this comparison and then used to compare all three 

radar sites (Eureka, Negrocreek, and Markstay) over their operational periods (7, 6, and 4 

years respectively). 

5.1 Definition of “best” 

Each of the monthly spectra for Negrocreek for each altitude and each window type was 

examined visually and the “breakpoint” frequency was selected manually.  The 

breakpoint frequency separates the portion of the spectrum with an identifiable non-zero 

slope—sometimes referred to as the “signal” portion—and from the noise floor.  Figure 

5.1 shows a sample spectra with the breakpoint indicated.  The breakpoint value is used 

to determine which method is “best”; the higher frequency the breakpoint, the more of 

the spectra can be seen (i.e. is not hidden in noise).  Figure 5.2 to Figure 5.5 compare the 

breakpoint frequency between different windows and methods. 

The plots depicting the breakpoint frequency as a function of altitude and month, 

Figure 5.2 to Figure 5.5, show the difference in the breakpoint frequency between two 

methods (i.e. FFT or DCDFT) with the same window.  The methods being compared are 

noted on the colour bar axis.  The site and window that is being held constant is noted at 

the top of the figures.  Similarly, Figure 5.10 to Figure 5.16 show the difference in the 

breakpoint frequency between two windows with the same method.  The windows being  
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Figure 5.1: A typical monthly spectrum, indicating the breakpoint frequency.  This 

spectrum is for Negrocreek, January 2009 using the DCDFT method with the 

Hamming window. 

compared are noted on the colour bar axis (the boxcar with 10% cosine taper window is 

shortened to “10% cos”).  The site and method that is being held constant is noted at the 

top of the figures.  The colour indicates which of the method and window combinations 

has a higher break point (i.e. lower noise floor and are preferred).  A more intense colour 

implies that one method/window combination has a higher breakpoint frequency than the 

other.  However, the most intense colours do not necessarily imply a large difference in 

breakpoint frequency.  For spectra that did not have a noise floor (i.e. the majority of the 

spectra is noise), the breakpoint frequency was set to zero.  Where this is the case for one 

window (at a particular range gate in a specific month) and not the second, that colour-

coding at the appropriate altitude, month coordinate will appear as an intense colour 

favouring the second window.  Yellow values imply that the two windows have the same 
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breakpoint frequency.  White values imply that the spectra for both windows did not have 

a noise floor.  These plots demonstrate this definition of best. 

There is a second criterion to the “best” as well. Atmospheric phenomena, such as 

gravity waves and their spectra, are expected to be fairly continuous as a function of 

altitude and time.  Since the spectra used in this thesis are monthly averages, the spectra 

are not necessarily expected to be continuous from month to month; however, they 

should still be roughly continuous as a function of altitude.  Spectral methods that yield 

erratic spectral slopes as a function of altitude are probably not an accurate description of 

the physical scenario.  Therefore, the second criteria to being the “best” is that the slopes 

are smooth functions with altitude. 

5.2 The “best” method 

Under the breakpoint definition of “best”, the fast Fourier transform (FFT) method 

appears better than the date-compensated discrete Fourier transform (DCDFT) for all 

windows. 

While the FFT appears to be the better choice, the spectral slopes computed with 

the FFT are more erratic than those computed with the DCDFT.  Figure 5.6 to Figure 5.9 

depict the spectral slopes using the FFT and DCDFT methods for a representative 

window for both Negrocreek and Eureka in 2009.  These plots depict the erratic 

behaviour of the spectral slopes when analyzed with the FFT method.  The apparent 

better choice of breakpoint frequency for the FFT is possibly an artifact, as is described in 

Chapter 6. 

It is also possible that the FFT frequencies have been aliased, due to the time-

interval binning of data.  More analysis on the spectral methods is needed to reveal if this 

is the case.  For these reasons, the DCDFT has been chosen as the “best” method. 
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Figure 5.2: Comparisons between frequency break points at the junction between 

the signal and the noise floor for the DCDFT compared to the FFT for the boxcar 

window.  In this case, 80 comparisons show a preference (i.e. a larger break point 

frequency) for the DCDFT while 241 show a preference for the FFT.  Since this plot 

is overwhelmingly cyan, the FFT yields a lower noise barrier than the DCDFT. 
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Figure 5.3: Comparisons between frequency break points at the junction between 

the signal and the noise floor for the DCDFT compared to the FFT for the boxcar 

with a 10% cosine taper window.  In this case, 75 comparisons show a preference 

(i.e. a larger break point frequency) for the DCDFT while 243 show a preference for 

the FFT.  Since this plot is overwhelmingly cyan, the FFT yields a lower noise 

barrier than the DCDFT. 
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Figure 5.4: Comparisons between frequency break points at the junction between 

the signal and the noise floor for the DCDFT compared to the FFT for the Hann 

window.  In this case, 60 comparisons show a preference (i.e. a larger break point 

frequency) for the DCDFT while 255 show a preference for the FFT.  Since this plot 

is overwhelmingly cyan, the FFT yields a lower noise barrier than the DCDFT. 

A
lt
it
u
d
e
, 

k
m

Month

Hann window

 

 

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

FFT

 

same

 

DCDFT



46 

 

 

Figure 5.5: Comparisons between frequency break points at the junction between 

the signal and the noise floor for the DCDFT compared to the FFT for the 

Hamming window.  In this case, 92 comparisons show a preference (i.e. a larger 

break point frequency) for the DCDFT while 255 show a preference for the FFT.  

Since this plot is overwhelmingly cyan, the FFT yields a lower noise barrier than the 

DCDFT. 
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Figure 5.6: Spectral slope values as a function of altitude and month for Negrocreek 

2009, using the FFT and a representative window (the Hann window). 

 

Figure 5.7: Spectral slope values as a function of altitude and month for Negrocreek 

2009, using the DCDFT and a representative window (the Hann window). 
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Figure 5.8: Spectral slope values as a function of altitude and month for Eureka 

2009, using the FFT and a representative window (the Hann window). 

 

Figure 5.9: Spectral slope values as a function of altitude and month for Eureka 

2009, using the DCDFT and a representative window (the Hann window). 
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5.3 The “best” window 

The breakpoints for each method (FFT and DCDFT) were compared for different 

windows to determine which window is the best for each method.  Under the previously 

given definition of best, the Hann window (which aims to suppress the effect of all 

sidelobes) is the best window to use with the FFT method and the Hamming window 

(which aims to suppress the first sidelobe) is the best window to use with the DCDFT 

method. 

For both the FFT and DCDFT, the boxcar window was worse than the boxcar 

with 10% cosine taper.  It was therefore discarded after “round one”.  For the FFT, since 

the Hann window and Hamming window comparison lacked such a clear divide, both 

windows were compared to the boxcar with 10% cosine taper.  For the DCDFT, the Hann 

window was worse than the Hamming window.  Therefore, the Hann window was 

discarded and the boxcar with 10% cosine taper window was compared with the 

Hamming window.  Figure 5.10 to Figure 5.16 show each of these comparisons. 
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Figure 5.10: Comparisons between breakpoint frequency for a boxcar with 10% 

cosine tapering window and a boxcar window for the FFT method, as described in 

the text.  In this case, 202 comparisons show a preference (i.e. a larger breakpoint 

frequency) for the boxcar with 10% cosine tapering window while 104 show a 

preference for the regular boxcar window.  Since this plot is overwhelmingly 

magenta, the boxcar with 10% cosine tapering yields a lower noise barrier than a 

regular boxcar window, therefore, it is disregard for further analysis with the FFT. 
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Figure 5.11: Comparisons between breakpoint frequency for a Hamming window 

and a Hann window for the FFT method, as described in the text.  In this case, 133 

comparisons show a preference (i.e. a larger break point frequency) for the 

Hamming window while 168 show a preference for the Hann window.  The Hann 

window yields a lower noise barrier than the Hamming window.  Both of these 

windows are compared to the boxcar with 10% cosine tapering window. 
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Figure 5.12: Comparisons between breakpoint frequency for a boxcar with 10% 

cosine tapering window and a Hann window for the FFT method, as described in 

the text.  In this case, 137 comparisons show a preference (i.e. a larger break point 

frequency) for the boxcar with 10% cosine tapering window while 176 show a 

preference for the Hann window.  The Hann window yields a lower noise barrier 

than the Hamming window. 
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Figure 5.13: Comparisons between breakpoint frequency for a boxcar with 10% 

cosine tapering window and a Hamming window for the FFT method, as described 

in the text.  In this case, 153 comparisons show a preference (i.e. a larger break 

point frequency) for the boxcar with 10% cosine tapering window while 158 show a 

preference for the Hamming window.  The Hamming window yields a lower noise 

barrier than the boxcar with 10% cosine taper window; however, the Hann window 

yields lower break point values than both of these windows, as shown in Figure 5.11 

and Figure 5.12. 
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Figure 5.14: Comparisons between breakpoint frequency for a boxcar with 10% 

cosine tapering window and a boxcar window for the DCDFT method, as described 

in the text.  In this case, 184 comparisons show a preference (i.e. a larger break 

point frequency) for the boxcar with 10% cosine tapering window while 125 show a 

preference for the regular boxcar window.  The boxcar with 10% cosine tapering 

yields a lower noise barrier than a regular boxcar window, therefore, it is 

disregarded the boxcar window for further analysis using the DCDFT. 
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Figure 5.15: Comparisons between breakpoint frequency for a Hamming window 

and a Hann window for the DCDFT method, as described in the text.  In this case, 

194 comparisons show a preference (i.e. a larger break point frequency) for the 

Hamming window while 120 show a preference for the Hann window.  The 

Hamming window yields a lower noise barrier than a Hann window. 
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Figure 5.16: Comparisons between breakpoint frequency for a boxcar with 10% 

cosine tapering window and a Hamming window for the DCDFT method, as 

described in the text.  In this case, 140 comparisons show a preference (i.e. a larger 

break point frequency) for the boxcar with 10% cosine tapering window while 170 

show a preference for the regular Hamming window.  The Hamming window yields 

a lower noise barrier than a boxcar with 10% cosine tapering window.  The 

Hamming window also yields a lower noise barrier than the other windows, 

therefore, it is chosen as the “best” window to use with the DCDFT. 
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Chapter 6  

6 Results and Interpretation 

6.1 Breakpoint frequency 

Breakpoint frequencies were hand-selected for monthly spectra recorded at Negrocreek 

during 2009 for each window type and spectral method.  The purpose of this 

determination was initially to evaluate the best spectral method to use, since optimal 

fitting depends very much on a suitable determination of the breakpoint.  The breakpoint 

frequency defines where the spectra becomes visible (i.e. where the noise floor starts), 

and optimal fitting should include only the portion of the spectrum where the signal 

dominates over the noise.   Knowledge about the location of the breakpoint not only 

allows better determination of the spectral slopes, but also has other information of value. 

For example, superior windows should have break-points at higher frequencies. The 

behaviour of the location of the break-point might also give geophysical information, 

particularly if it shows systematic variations in height and/or time. 

 The breakpoint frequency does not appear to be a good indicator of what method 

(i.e. fast Fourier transform (FFT) or date-compensated discrete Fourier transform 

(DCDFT)) is better; the FFT produces breakpoints at higher frequencies, suggesting that 

the FFT with interpolated data is superior to the DCDFT.  However, there may be a 

reasonable explanation.  For the FFT, we binned the data into 15 minute intervals and 

time-averaged the data points.  This results in points being relocated in time.  For 

example, if a point occurs at 6:02 and we use 15 minute bins starting on the hour, quarter 

past, half-hour, and quarter to, then this point is relocated to 6:07 (i.e. the midpoint of the 

6:00-6:15 bin).  The problem is compounded by the fact that different bins have a 

different number of points, since the data are not equally spaced in time; one bin might 

have 3 points while another may have 7.  The net result of this is that points are allocated 

to the wrong time-marker, which must introduce additional (incorrect) Fourier 

components to the spectrum. This adds spectral power to the spectrum in a non-uniform 

manner, so the noise is not white noise (i.e. frequency dependent). Indeed the noise is 
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frequency dependent and the problem is exacerbated by the fact that, due to limited 

funding, we had to reduce the rate of data collection in the later years of the study.  Hence 

the fact that the breakpoint for the standard FFT is further into the higher frequencies is 

not an indicator of better data, but rather an indicator of added non-real spectral content 

due to incorrect sampling.  In order to confirm this, we looked at the variability of the 

spectral slopes.  As discussed in the previous chapter, it is clear that there is greater 

variability in the spectral slopes determined by the FFT method than from the DCDFT 

method.  For these reasons, we adopted the DCDFT as our standard for future analysis—

partly because the data points are correctly allocated in time and partly because of the 

evidence provided by the variability in slopes. 

6.2 Spectral slopes 

6.2.1 Spectral slope values 

The following 20 figures show monthly spectral slope values for altitude versus month 

using the date-compensated discrete Fourier transform with the Hamming window.  The 

site and year depicted for each plot are noted above the graph. 

Altitude and month pairs that did not have data or had fewer than 240 data points 

(equivalent to one data point every three hours for a month with 30 days, if they were 

evenly spaced) are plotted as white.  The theoretical slope value (for the middle and 

upper atmosphere) is      (i.e.      , see Figure 2.2), corresponding to a dark cyan. 

 These slopes were analysed with respect to altitude, season, and geographic 

location in subsequent sections. 
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6.2.2 Altitude comparison 

The slopes tend to flatten out above         and below        or so, as shown in Figure 

6.1.  This is likely due to instrument sensitivities, as discussed in Sections 3.4.4 and 3.4.3, 

respectively.  As a result, the following analyses rely more heavily on data between 

            altitude.  Otherwise, there is no apparent dependence on altitude. 

 

Figure 6.1: Spectral slope values, as a function of altitude, averaged over all 

operational years for the three radar sites. 

6.2.3 Seasonal comparison 

The spectral slopes for Eureka tend to be flatter than anticipated by the theoretical value, 

and further flatten in recent years, as shown in Figure 6.2.  Despite the fluctuations in 

spectral slope value at Eureka over seven years, there is no apparent seasonal dependence 

(as shown in Figure 6.3). 
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Figure 6.2: Spectral slope values for Eureka, averaged over 2.0-11.0 km altitude and 

four year intervals (indicated on the ordinate).  The spectral slopes tend to flatten 

out in recent years. 

The spectral slopes for Negrocreek hover around the theoretical value of     , 

with temporal fluctuations of steeper slopes.  The steeper slopes tend to occur in the 

winter months and there appears to be a slight seasonal dependence, as shown in Figure 

6.3.  At Markstay, steeper slopes also tend to occur in the winter months, though the 

slopes are (in general) shallower than the theoretical value and, like Negrocreek, there is 

a slight seasonal dependence, as shown in Figure 6.3. 

Results from Negrocreek and Markstay appear to have a slight seasonal 

dependence, but results from Eureka hint at a longer time scale dependence (e.g., maybe 

linked to the solar cycle).  
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Figure 6.3: Spectral slope values for all three radar sites, averaged over 2.0-11.0 km 

altitude and all operational years. 

6.2.4 Geographical comparison 

The spectral slopes at Negrocreek tend to be consistent between roughly      to     .  

The spectral slopes at Markstay are in general shallower, ranging from roughly      to 

    . 

In 2009, the spectral slopes at Eureka tend to be on par with those at Negrocreek, 

though more variable (consisting of shallower and steeper slopes than Negrocreek).  In 

2010 the spectral slopes at Eureka generally become flatter than Negrocreek (around 

September), but are still steeper than Markstay (which became operational in October of 

2010).  Throughout 2012, the slopes at Eureka continue to flatten and eventually become 

shallower than the slopes at Markstay. 
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If the gravity wave spectrum depended on latitude, one would expect to see very 

similar slopes at Markstay and Negrocreek (two fairly geographically close, mid-latitude 

radar sites) and different slopes at Eureka (an Arctic site).  The slopes at Markstay and 

Negrocreek are fairly different and Eureka fluctuates between the two, as summarized in 

Table 6.1.  Therefore, it is unlikely that the spectral slope value depends on latitude in 

any significant way. 

While there is a systematic difference in spectral slopes between sites, it is not 

clear what the geographical dependency is.  The noted differences could be terrain 

dependent.  Negrocreek is close to the Great Lakes area (specifically, both west and south 

of Lake Huron), which may be a source of gravity waves.  Markstay is surrounded by 

forest north of the Great Lakes region of Ontario.  Eureka is surrounded by barren and 

mountainous tundra.  The noted differences could also have some other dependence that 

appears geographical, such as whether a frontal system is near, close, or not present (as 

suggested by Belu (1999)). 

 

Radar site 
Average 

spectral slope 

Standard 

deviation 

Number of 

slopes used 

Eureka                 

Negrocreek                 

Markstay                

Table 6.1: Spectral slope values and standard deviations for each radar site 

averaged over all months and heights 2.0 km to 11.0 km.  The number of slopes 

(month-altitude pairs) used to calculate the spectral slope and standard deviation 

are also included. 
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6.2.5 Interpretation of the slopes 

Despite minor difference discussed in the previous sections, overall, there is little to no 

seasonal or geographical trend in the spectral slopes (which somewhat supports the idea 

of a universal spectrum), but mean slopes are around -1.2 to -1.5 (see Table 6.1for 

values) and do not reach -1.6 or -1.7 as predicted.  There are several reasons why this 

may not be the case. 

6.2.5.1 Off vertical beam 

Since we are using an off-vertical beam, the radial velocities measured are given by: 

                   (6.1) 

where   is the horizontal gravity wave component,   is the vertical component, and   is 

the vertical off-set of the radar beam, approximately    .  This means: 

               (6.2) 

However, in a gravity wave,   and   are correlated, either in-phase or      out of phase 

(depending on the wave propagation direction).  In addition, the relation between   and 

  is well known from the polarization relations.  For cases where the period is more than 

an hour, we can approximately use: 

  
 

 
  

  

 
 (6.3) 

where    is the Brunt-Vaisala period and   is the wave period.  Combining these and 

taking 0.18 as approximately 0.2: 

       (    
  

 
)   (   

  

 
)      (6.4) 
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Thus the radial-velocity spectrum we measure differs from the horizontal velocity 

spectrum (which is the one used in theoretical discussions).  Since we are only interested 

in spectral form, the relevant correction term is: 

 (  
   

 
) (6.5) 

Consider an example where          ,          , and consider the 

positive sign.  Then the correction term is:  

 (    
  

   
)      (6.6) 

This is a large correction term and means that our measured      values are     too 

large.  However, if           , then the correction is only 1.05.  Therefore, high 

frequency waves are over-represented and push the spectra to be higher at the high-

frequency end, flattening the spectral slope.  

To further complicate matters, this effect is more dominant because of our use of 

log-log plots. The frequencies between 10 and 100 min cover one decade, while the 

frequencies between 100 and 1000 min also cover one decade. So the character between 

10 and 100 mins has a disproportionate effect on the slope determination. 

Our calculations suggest that the flattening changes the slope by about 0.1.  To 

see this in a crude sense, consider the 100 min case:      is magnified 1.5 times (in a 

relative sense) so the powers are increased      times (or about twice).  This error is 

about 0.3 in log coordinates.  Taking the abscissa to cover 3 decades, the error in slope is 

about 0.3/3  (or about 0.1).  So if the ideal slope is -1.6, our measured one will be closer 

to -1.5. 

6.2.5.2 Noise 

The second cause of error in the slope is the noise. It does not disappear at the break-

point, and is still playing a role even as we move to lower frequencies from the break-

point (i.e. to the left).  The role becomes less important at the lowest frequencies, but in a 
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log-log plot, it has a disproportionate effect at the high-frequency end. This has a similar 

flattening effect to the off-vertical beam, possibly producing a further flattening of about 

0.1 or more for noisier data.  So this changes our original slope of -1.6 to 1.5 via the off-

vertical beam, and possibly to -1.4 due to noise. 

6.2.5.3 Presence of local gravity wave sources 

As shown by Belu (1999) the presence of local gravity wave sources (e.g. frontal 

systems, orography) has a particularly strong impact at the higher frequencies, while the 

universal spectrum is based on gravity waves that have propagated from afar.  

Enhancement of the high frequencies even further flattens the spectrum.  As such, our 

spectral slope values are probably fairly consistent with the universal spectrum, with 

some addition of high frequencies due to local gravity wave generation. 
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Chapter 7 

7 Conclusions and future work 

There appears to be some validity to the universal spectrum and the measured slopes are 

not inconsistent, provided that the impact of an off-vertical beam and noise are properly 

considered.  However, the universal spectrum does not explain the whole measured 

spectrum.  Some portion of the real spectra must be ascribed to local wave sources, 

although, the universal spectral component seems to provide a major part of the 

spectrum. 

The gravity wave spectral slopes approximately above         and below        

altitude are often not reliable.  Mid-latitude radar sites suggest a slight seasonal 

dependence while an Arctic radar site suggests a longer time dependence. While the 

spectral slopes do not appear to depend on altitude or latitude, there is geographic 

variability.  Other potential sources of the geographical variability (e.g., terrain, presence 

of frontal systems) should be examined.  

This study could benefit from a longer data acquisition time and more radar sites 

(both at different latitudes and near similar terrain).  Since the spectral slopes from 

Eureka suggest a longer time cycle, longer data acquisition would enable us to see (1) if 

there is a longer cycle to the gravity wave spectrum and (2) if roughly constant mid-

latitude sites (such as Negrocreek and Markstay) also vary on a longer time scale, in 

addition to the slight seasonal dependence. 

Each of the spectral slopes use a month of data.  This study may benefit from 

using shorter timescale averages, such as averaging over a week or a day. 

This study may also benefit from comparison to changes in the mean winds.  

Recently (over the past couple years), there have been more upper level jets above 

Eureka, as seen in Figure 7.1.  These jets are often a source of gravity waves.  When they 

are more common, there are more local wave-sources and we expect the universal 

spectrum to be most accurately followed when the sources are more distant.  Hence we 
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suspect that a universal spectrum will be more common when there are no such local 

sources. 

While the spectral slopes do not appear to depend on latitude, they may depend on 

terrain.  More radar sites in physically similar regions to Eureka, Negrocreek, and 

Markstay may enable us to determine if the spectral slope depends on nearby terrain, jet 

streams, and other local gravity wave sources.  This would enable us to determine 

whether proximity to gravity wave sources (such as at Negrocreek) affects the spectrum. 

This study could also benefit from reanalysis, examining dependencies other than 

altitudinal, geographical, and latitudinal.  One potential dependency of interest may be 

the effect frontal systems have on the gravity waves spectral slope. 
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Figure 7.1: Mean wind values above Eureka as a function of height (between 0.5 and 

12.5 km in 0.5 km increments) over a three day span (August 24-26, 2014).  The 

direction of the arrows indicate the direction of the wind: pointing up on the graph 

represents a northward wind, pointing to the right on the graph represents an 

eastward wind, and so on.  The colour and magnitude of the arrows indicates wind 

speed: dark blue is 0-8 m/s, cyan is 8-18 m/s, green is 18-24 m/s, yellow is 24-32 m/s, 

orangey red is 22-40 m/s, and dark red is greater than 40 m/s. 
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Appendix A: Mathematical derivations 

This appendix contains mathematical derivations for the normalization constant and 

Fourier transform of the filtering windows used in this thesis. 

A.1 Boxcar window 

The boxcar window function is a non-zero constant on a finite range, with the value of 

zero everywhere else, viz.: 
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The constant   should be normalized, such that the integral of the boxcar window 
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The normalized boxcar window function is therefore: 
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The Fourier transform of the normalized boxcar window function is: 
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Therefore, the Fourier transform of the boxcar window is: 

             

 

 

  



84 

 

A.2 Boxcar with 10% cosine taper window 

In attempt to reduce the ringing of a boxcar window function, this window function 

smooths the sharp edges of the boxcar window function.  The boxcar with 10% cosine 

taper is defined as: 
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The constant   should be normalized such that the integral of the window over all   is 1. 
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Therefore, 

  
  

  
 

The normalized boxcar with 10% cosine taper window function is: 
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The Fourier transform of this window is: 
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Splitting up the middle integral, then combining one half with the second and fourth 

integrals yields two integrals that resemble the Fourier transform of the boxcar window, 

viz.: 
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The third integral is the same as the boxcar window Fourier transform: 
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The other two integrals have the same integrand, which, for clarity’s sake, will be 

denoted as      : 

      ∫    (
   

 
 )           

For ease of reading, the following constants are defined: 

  
   

 
 

      

such that: 
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Using the complex exponential form of cosine, 
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Where the constant of integration has been dropped as this will later be used in a finite 

integral.  This simplifies to: 
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Grouping the   terms together and the   terms together: 
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Recalling the complex exponential forms of sine and cosine: 
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      simplifies further to: 

      
                     

          
 

Returning to the Fourier transform of the boxcar with 10% cosine taper window function: 
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In this evaluation, we have two cases of 

                     

where    is a constant.  To avoid overly messy equations and repeating calculations, the 

following variable is used: 
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which is simplified below and then substituted into the following equation for     . 
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Using the complex exponential forms of sine and cosine: 

            
 

          
                              

Which bears a striking resemblance to           .  Putting this back into the definition 

of      yields: 
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Recalling   
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Therefore, the Fourier transform of the boxcar with 10% cosine taper window is: 
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) 

To compare this to the Fourier transform of the regular box car and see the effects of the 

cosine tapering,      is written as a function of      : 
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Recall that the Fourier transform of the boxcar window function (with the same definition 

of  ) is: 
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A.3 Hann window 

The Hann window, is usually defined for   discrete points as: 

         (
  

   
) 

for  {    |        }.  In the continuous case of length  , the Hann window is: 
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To centre the window around    , like the boxcar and the boxcar with a 10% cosine 

taper, the Hann window is represented as: 
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Using the trigonometry identity               : 
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To reduce the mathematics for the similarly shaped Hamming window (to be considered 

shortly), the normalization and Fourier transform for the Hann window is worked through 

using: 
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 for the Hann window. 

  is the normalization constant satisfying 
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Then 
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Hence 

  
 

  
 

Recalling   
 

 
 for the Hann window,   

 

 
 and the normalized Hann window is: 

     {
 

 
    (

  

 
)     | |  

 

 
          

 

The Fourier transform of the Hann window (using   and  ) is: 
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Using the complex exponential form of cosine: 
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Recalling        and        : 

     
  

    
(            )  

  

         
(            )

 
  

         
(            ) 

 
  

 
(            ) (

 

   
 

 

         
 

 

         
) 

       (
            

                
) 

For the Hann window with   
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, this yields: 

           (
 

               
) 

     
       

            
 

 

  



94 

 

A.4 Hamming window 

The Hamming window, is usually defined for   discrete points as: 
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for         .  In the continuous case of length  , the Hamming window is: 
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To centre the window around    , as for the other windows, the Hamming window is 

represented as: 
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Note that this is the same form as the Hann window 
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Using the equation from the Hann window, the normalization constant for the Hamming 

window is: 

  
 

  
 

  
 

  
   

 

  
  

   
 



95 

 

Therefore, the normalized Hamming window centred around     is: 
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Using equation for the Fourier transform from the Hann window, the Fourier transform of 

the Hamming window is: 
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Appendix B: Matlab Code 

This appendix contains the Matlab scripts and functions used for analysis. 

B.1 FFT Script 
%% Run first 
% Makes all interpolated variable files. 
% Change site, beamdir, mon, start, and stop as necessary. 
site='negrocreek';      % radar site name 
beamdir='N';            % beam direction 
mon=200901:1:200912;    % months of interest, format YYYYMM 
start=mon*100+ones(1,12);   % days to start interpolation at, format YYMMDD 
stop=mon*100+[31,28,31,30,31,30,31,31,30,31,30,31]; % days to stop... 
    % interpolation at, format YYYYMMDD 

  
for i=1:length(start) 
    for a=1.0:0.5:14.0; 
        alt=num2str(a,'%2.1f'); 
        m=int2str(mon(i)); 
        close all 
        setReadInt(site,alt,beamdir,start(i),m,stop(i),1); 
    end 
end 

 
%% Run second 
% Performs the FFT on the interpolated data for all 4 window types. 
% Change site and beamdir as necessary. 
site='eureka';  % radar site 
beamdir='N';    % beam direction 

  
for a=1.0:0.5:14.0; 
    alt=num2str(a,'%2.1f'); 
    fileend=['.',site,'.',alt,beamdir,'_15min.mat']; 
    for ym=200901:200912 
        yyyymm=int2str(ym); 
        filename=['FFT/',site,'/',yyyymm,'/',yyyymm,fileend]; 
        for wintype=1:4; 
            FFTrun(filename,site,alt,beamdir,yyyymm,wintype) 
            wt=int2str(wintype); 
            filename2=['FFT/',site,'/',yyyymm,'/',yyyymm,'.win',wt,'.',... 
                site,'.',alt,beamdir,'_15min.mat']; 
            load(filename2,'w','I') 

             
            % Get slope 
            % Change f to be between 2 days and 6 hours 
            startf=1/(2*24*60*60);  % 2 days 
            endf=1/(6*60*60);       % 6 hours 
            f=w(w>=startf & w<=endf); 
            PSD=I(w>=startf & w<=endf); 
            % Want the least squares fit line to 
            %       log(PSD) =  n log(f) (+c) 
            y=log10(PSD); 
            x=log10(f); 
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            c=polyfit(x,y,1); 
            u=10^c(2)*f.^c(1); 
            slope=c(1); 
            amp=c(2); 
            fPSD=f; 
            save(filename2,'fPSD','PSD','slope','amp','-append') 
        end 
    end 
end 
 

%% Run third 
% Gather the slopes into one annual file. 
% Change site, beamdir, y, and alt as necessary. 
site='eureka';  % radar site 
beamdir='N';    % beam direction 
y=2009;         % year 
yyyy=int2str(y); 
alt=1:0.5:14;   % altitudes 
for win=1:4;    % all windows 
    wt=int2str(win); 
    slopes=zeros(length(alt),12); 
    amps=slopes; 
    for j=1:length(alt) 
        altstr=num2str(alt(j),'%2.1f'); 
        for m=1:12 
            yyyymm=int2str(y*100+m); 
            filename=['FFT/',site,'/',yyyymm,'/',yyyymm,'.win',wt,'.',... 
                site,'.',altstr,beamdir,'_15min.mat']; 
            load(filename,'slope','amp') 
            slopes(j,m)=slope; 
            amps(j,m)=amp; 
        end 
    end 
    savefile=['FFT/',site,'/win',wt,'.',site,'.',beamdir,'_15min.mat']; 
    save(savefile,'slopes','amps','-append') 
end 
 

%% Run fourth 
% Plots spectral slopes for a year on an altitude vs. month plot. 
% Change site, beamdir, and yyyy as necessary. 
site='Eureka';  % radar site 
beamdir='N';    % beam direction 
yyyy='2009';    % year (string) 
for win=1:4 
    wt=int2str(win); 
    file=['FFT/',site,'/win',wt,'.',site,'.',beamdir,'_15min.mat']; 
    load(file,'slopes','npoints') 
    x=slopes; 
    x(x==-999)=NaN; 

     
    figure 
    imagescnanEmily(x) 
    set(gca,'YDir','normal') 
    % Make the plot look pretty: 
    axis tight 
    set(gca,'fontsize',14) 
    set(gca,'YTick',[1 5 9 13 17 21 25]) 
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    set(gca,'YTickLabel',{'1.0','3.0','5.0','7.0','9.0','11.0','13.0'}) 
    set(gca,'XTick',1:12) 
    set(gca,'XTickLabel',{'J','F','M','A','M','J','J','A','S','O','N','D'}) 
    ylabel('Altitude, km','FontSize',18) 
    xlabel('Month','FontSize',18) 

     
    % Title, change as necessary: 
    text=[site,' FFT Window',wt]; 
    title(text,'FontSize',20) 

     
    % Colour bar and labels: 
    h=colorbar('location','EastOutside'); 
    ylabel(h,'Spectral slope','FontSize',18) 
    set(h,'fontsize',14) 
    set(h,'YTickLabel',{'-2.5','-2.0','-1.5','-1.0','-0.5','0'}) 
    caxis([-2.5 0]) 
end 

B.2 DCDFT Script 
%% Run first. 
% Calculates DCDFT values, slopes, and amps with window applied 
% varfileList.txt is a list of file names in the format: 
%   site/varfile/YYYY/YYYYMM/YYYYMM.site.altN_1min.mat 
% where 'site' is the radar site name, 'YYYY' is the year, 'YYYYMM' is the 
% year and month, 'alt' is the altitude in the form %2.1f, and 'N' can be 
% replaced by another beam direction (E, S, or W). 
fID=fopen('varfileList.txt'); 
file=strtrim(fgetl(fID)); 
win=1;      % window type, see winSel.m for the windows 
wt=int2str(win); 
while strcmp(file,'end')==0 
    DCDFT1(file,win) 
    newfile=[file(1:length(file)-3),'win',wt,'.mat']; 
    load(newfile) 
    I=2*(length(F)^(-1)).*(F.*conj(F)); 
    save(newfile,'I','-append') 
    % Change f to be between 2 days and 6 hours 
    startf=1/(2*24*60*60);  % 2 days 
    endf=1/(6*60*60);       % 6 hours 
    f=w(w>=startf & w<=endf); 
    PSD=I(w>=startf & w<=endf); 

     
    % Want the least squares fit line to 
    %       log(PSD) =  n log(f) (+c) 
    y=log10(PSD); 
    x=log10(f); 
    c=polyfit(x,y,1); 

     
    u=10^c(2)*f.^c(1); 
    slope=c(1); 
    amp=c(2); 
    fPSD=f; 
    save(newfile,'fPSD','PSD','slope','amp','-append') 
    file=strtrim(fgetl(fID)); 
end 
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%% Run second 
% With DCDFT window applied, gather multiple slopes and amps into one file. 
% Change site, years, beamdir, win, and alt as necessary. 
site='markstay';    % radar site 
years=2010:2014;    % years as integers 
beamdir='N';        % beam direction 
win=1;              % window type, see winSel.m for the windows 
wt=int2str(win); 
alt=1.0:0.5:14.0;   % altitudes 

  
for i=1:length(years) 
    y=years(i); 
    yyyy=int2str(y); 

     
    slopes=ones(length(alt),12)*-999; 
    amps=slopes; 
    npoints=zeros(length(alt),12); 
    for j=1:length(alt) 
        altstr=num2str(alt(j),'%2.1f'); 
        for m=1:12; 
            yyyymm=int2str(y*100+m); 
            

varfile=[site,'/varfile/',yyyy,'/',yyyymm,'/',yyyymm,'.',site,... 
                '.',altstr,'N_1min.win',wt,'.mat']; 
            if exist(varfile,'file')~=0; 
                load(varfile,'slope','amp','w') 
                slopes(j,m)=slope; 
                amps(j,m)=amp; 
                npoints(j,m)=length(w); 
            else 
                fprintf('No varfile for %s\r\n',varfile) 
            end 
        end 
    end 
    

savefile=['slopesandamps/',site,'/win',wt,'.',yyyy,'.',site,'.1minN.mat']; 
    save(savefile,'slopes','amps','npoints') 
end 

  
%% Run third 
% Plots spectral slopes for all years on an altitude vs. month plot. 
% Change site, wt, and y as necessary. 
site='Markstay';    % radar site 
wt='1';             % window type, see winSel.m for numbers 
% Set minimum number to base spectral estimates off of: 
minnp=240;  % Corresponds to once every 3 hours (so that it can measure 
            % at least 6 hour frequencies. 

  
for y=2014:-1:2010  % years 
    yyyy=int2str(y); 
    file=['slopesandamps/',site,'/win',wt,'.',yyyy,'.',site,'.1minN.mat']; 
    load(file,'slopes','npoints') 
    x=slopes; 
    x(x==-999)=NaN; 
    x(npoints<minnp)=NaN; 
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    x(isnan(npoints)==1)=NaN; 

  
    figure 
    imagescnanEmily(x) 
    set(gca,'YDir','normal') 
    set(gca,'fontsize',14) 
    axis tight 
    set(gca,'Color',[0 0 0]); 
    set(gca,'YTick',[1.5  5.5 9.5 13.5 17.5 21.5 25.5]) 
    set(gca,'YTickLabel',{'1.0','3.0','5.0','7.0','9.0','11.0','13.0'}) 
    set(gca,'XTick',1.5:12.5) 
    set(gca,'XTickLabel',{'J','F','M','A','M','J','J','A','S','O','N','D'}) 
    ylabel('Altitude, km','FontSize',18) 
    xlabel('Month','FontSize',18) 

     
    text=[site,' ',yyyy]; 
    title(text,'FontSize',20) 

     
    h=colorbar('location','EastOutside'); 
    ylabel(h,'Spectral slope','FontSize',18) 
    set(h,'fontsize',14) 
    set(h,'YTickLabel',{'-2.5','-2.0','-1.5','-1.0','-0.5','0'}) 
    caxis([-2.5 0]) 
end 

  
%% Run fourth 
% Calculates means, standard deviations, and the standard deviation of the 
% mean. 
% Change site, wt, and y as necessary. 
site='Markstay';    % radar site 
wt='1';             % window type, see winSel.m for numbers 
alls=[]; 
allnp=[]; 
for y=2010:2014     % years 
    yyyy=int2str(y); 
    file=['slopesandamps/',site,'/win',wt,'.',yyyy,'.',site,'.1minN.mat']; 
    load(file,'slopes','npoints') 

     
    alls=[alls,slopes]; 
    allnp=[allnp,npoints]; 
end 

  
% See how many points are used to calculate the average. 
n=ones(size(alls)); 
n(isnan(alls)==1)=0; 
n(alls==-999)=0; 
n(allnp<240)=0; 
size(n(1:2,:)) 
n(1:2,:)=zeros(size(n(1:2,:))); 
n(22:27,:)=zeros(size(n(22:27,:))); 
N=sum(sum(n)); 

  
% Format data so that no/not enough data is zero slope 
x=alls; 
x(isnan(x)==1)=0; 
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x=x.*n; 

  
% Calculate overall mean 
mean=sum(sum(x))/N; 
diff=abs(-5/3-mean); 

  
% Calculate std 
std=(sum(sum(((x-mean).^2.*n)))/(N-1)).^1/2; 
stdofmean=std/N.^(1/2); 

B.3 Breakpoint script 
% Hand select the break point frequency for all windows. 
% Change the site, beamdir, and a as necessary. 
site='negrocreek';  % radar site 
beamdir='N';        % beam direction 
a=1.0:0.5:14.0;     % altitude 
i=0; 
for win=1:4         % window type, see winSel.m for values. 
    wt=int2str(win); 
    bp=ones(length(a),12)*NaN; 
    for j=1:length(a) 
        alt=num2str(a(j),'%2.1f'); 
        for m=1:12 
            i=i+1; 
            yyyymm=int2str(200900+m); 
            file=['FFT/',site,'/',yyyymm,'/',yyyymm,'.win',wt,'.',... 
                site,'.',alt,beamdir,'_15min.mat']; 
            %file=['DCDFT/',site,'/',yyyymm,'/',yyyymm,'.win',wt,'.',... 
            %    site,'.',alt,beamdir,'_1min.mat']; 
            load(file,'I','w') 
            f=figure; 
            loglog(w,I,'k') 
            text=int2str(i); 
            title(text) 

             
            [x,y]=ginput(1); 
            close(f) 
            % Store breakpoint value: 
            bp(j,m)=x; 
        end 
    end 
    savefile=['FFT/',site,'/breakpoints2009.win',wt,'.',... 
        site,'.',beamdir,'.mat']; 
    %     savefile=['DCDFT/',site,'/breakpoints2009.win',wt,'.',... 
    %         site,'.',beamdir,'.mat']; 
    save(savefile,'bp') 
end 

B.4 createtf 
function varfile=createtf(site,alt,beamdir,tint,start,stop) 
%{ 
CREATETF  Reads in raw data and makes a new file with the values of f and 
t. 
    CREATETF(SITE,ALT,BEAMDIR,TINT,START) reads in the raw data and creates 
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a file of f and t for DCDFT.  The site, altitude, beam direction, and time 
interval are given by the chracter strings SITE, ALT, BEAMDIR, and TINT 
respectively.  ALT and TINT may be numbers.  The data spans the yyyymmdd 
day START. 

  
    CREATETF(...,STOP) saves f and t for days between START and STOP 
inclusively. 
%} 

  
if nargin==5 
    % Only use one day 
    stop=start; 
elseif nargin~=6 
    error('SRI:argChk','Wrong number of input arguments.') 
elseif isa(alt,'char')==0 
    alt=num2str(alt,'%2.1f'); 
elseif isa(tint,'char')==0 
    tint=num2str(tint,'%2.0i'); 
end 

  
%*************************************************************************% 
%           SET DAYS AS A VECTOR FROM START TO STOP 
%*************************************************************************% 

  
% Set a matrix for the days of the month for leap and non-leap years 
n=[31,28,31,30,31,30,31,31,30,31,30,31]; 
% First row is for leap years, second row is for non-leap years, columns 
% are representative days in the month. 
numofdays=[n;n]; 
numofdays(1,2)=29; 
clear('n') 

  
% Break start and stop into year, month, day 
yyyy=floor(start/10000); 
mm=floor((start-yyyy*10000)/100); 
dd=mod(start,100); 
stopy=floor(stop/10000); 
stopm=floor((stop-stopy*10000)/100); 
stopd=mod(stop,100); 

  

% See if start and stop are the same month.  If so, just gather days 
% between. 
if yyyy==stopy && mm==stopm 
    days=yyyy*10000+mm*100+(dd:stopd); 
else 
    % Spans multiple months. 
    % Determine if it is a leap year (use row 1) or not (use row 2). 
    leap=ceil(mod(yyyy,4)/4)+1; 
    % Put the remaining days of the current month into days. 
    days=yyyy*10000+mm*100+(dd:numofdays(leap,mm)); 

     
    % Determine days between the start and stop months: 
    while yyyy~=stopy && (mm+1)~=stopm 
        mm=mm+1; 
        if mm==13 



103 

 

            % If we reach "month 13", roll the clock over a year. 
            yyyy=yyyy+1; 
            % Determine if it is a leap year: 
            leap=ceil(mod(yyyy,4)/4)+1; 
            % Reset mm to zero since we add 1 to it before doing 
            % anthing else (otherwise we would skip January every roll 
            % over). 
            mm=0; 
        else 
            % Include the days of this month in days. 
            days=[days,yyyy*10000+mm*100+(1:numofdays(leap,mm))]; 
        end 
    end 

     
    % Include the first days of the stop month. 
    days=[days, yyyy*10000+(mm+1)*100+(1:stopd)]; 
end 
clear('numofdays','yyyy','mm','dd','stopy','stopm','stopd','leap') 

  

%*************************************************************************% 
%           READ AND SORT DATA 
%*************************************************************************% 

  
% Create filepath 
fileend=['.',site,'.',alt,beamdir,'_',tint,'min.txt']; 

  

vel=[]; 
npoints=[]; 
t=[]; 
for i=1:length(days) 
    % Read each file and put into variables 
    day=int2str(days(i)); 
    mon=day(1:6); 
    yr=day(1:4); 
    filepath=[site,'/',yr,'/',mon,'/',day,'/RadarData/',day,fileend]; 
    raw=dlmread(filepath,',',0,1); 

     
    % Convert time into seconds 
    time=raw(:,6)+60*(raw(:,5)+60*raw(:,4)); 
    % Sort data chronologically 
    [time,order]=sort(time); 
    vel=[vel;raw(order,8)]; 
    npoints=[npoints;raw(order,9)]; 
    % Convert add the appropriate number of days (in seconds) to time and 
    % combine it with our t vector 
    t=[t;time+60*60*24*(i-1)]; 
end 

  
%*************************************************************************% 
%           GET RID OF -999.00 DATA AND ALL UNNEEDED VARIABLES 
%*************************************************************************% 
t=t(vel>-999); 
f=vel(vel>-999); 

  
% For variables at the end 
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varfile=[site,'/varfile/',yr,'/',mon,'/',mon,'.',site,'.',alt,beamdir,'_',ti

nt,'min.mat']; 
save(varfile,'t','f') 
end 

B.5 DCDFT1 
function F=DCDFT1(varfile,wintype) 
%{ 
DCDFT1    Calculates the power spectral density using the date-compensated 
discrete Fourier transform as described by Ferraz-Mello (1981). 
    DCDFT1(VARFILE,WINTYPE) saves the power spectral density (F) and 
corresponding frequencies (w) to a file by the same name as VARFILE with 
the window code at the end.  VARFILE should be the name of the file 
containing the velocities (f) and time stamps (t) in the format: 
    SITE/varfile/YYYY/YYYYMM/YYYYMM.SITE.ALTN_1min.mat 
where SITE is the name of the radar site, YYYY is the year, YYYYMM is the 
year and month, ALT is the altitude in the format %2.1f, and N is the beam 
direction (N, E, S, or W).  WINTYPE is the window type, as specified by 
winSel.m 
%} 

  
load(varfile) 
wt=int2str(wintype); 
newfile=[varfile(1:length(varfile)-3),'win',wt,'.mat']; 
%*************************************************************************% 
%           DETERMINE W AND CHECK DIMENSIONS 
%*************************************************************************% 
N=length(f); 
% Find if spectra is odd or even in length as it slightly changes the math. 
if floor(N/2)~=N/2 
    % Then the signal length is odd 
    offset=1; 
else 
    % The signal length is even 
    offset=0; 
end 
% Sample frequency is one sample/unit time 
ws=N/(max(t)-min(t));      % Hz 
% Nyguist frequency (maxiumum measurable frequency) is half of the sample 
% frequency 
wN=ws/2;        % Hz 
% The Fourier transform has points equally spaced between zero and the 
% Nyguist frequency.  This corresponds to a frequency resolution of: 
dw=ws/N; 
% The FFT is at the frequencies: 
w=(-wN+dw/2*offset:dw:wN-dw/2*offset)'; 
clear('offset','ws','wN','dw') 
save(newfile,'w') 

  
%*************************************************************************% 
%           FERRAZ MELLO (1981) 
%*************************************************************************% 
% (3) Add constant so that sum(f) over all t = 0 
f=f-sum(f)/N; 
% Apply window 
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win=winSel(length(f),wintype); 
f=f.*win; 

  
F=zeros(size(w)); 
H0=ones(size(t)); 
a0=N^(-1/2); 
h0=a0*H0; 
clear('N') 

  
for j=1:length(w) 
    H1=cos(2*pi*w(j)*t); 
    H2=sin(2*pi*w(j)*t); 

     
    a1=(sum(H1.*H1)-a0^2*sum(H0.*H1)^2)^(-1/2); 
    a2=(sum(H2.*H2)-a0^2*sum(H0.*H2)^2-a1^2*sum(H1.*H2)^2-... 
        a1^2*a0^4*sum(H0.*H1)^2*sum(H0.*H2)^2+... 
        2*a0^2*a1^2*sum(H0.*H1)*sum(H0.*H2)*sum(H1.*H2))^(-1/2); 

     
    h1=a1*H1-a1*h0*sum(h0.*H1); 
    clear('a1','H1') 
    h2=a2*H2-a2*h0*sum(h0.*H2)-a2*h1*sum(h1.*H2); 
    clear('a2','H2') 

     
    F(j)=sum(f.*(h1+sqrt(-1)*h2))/(a0*sqrt(2)); 
    clear('h1','h2') 
end 
save(newfile,'F','-append') 
end 

B.6 FFTrun 
function FFTrun(filename,site,alt,beamdir,yyyymm,wintype) 
%{ 
FFTRUN    Calculates and saves the power spectral density and slope 
estimations. 
    FFTRUN(FILENAME,SITE,ALT,BEAMDIR,YYYYMM,WINTYPE) save the power 
spectral density and slopes for the variables in FILENAME to the file: 
FFT/SITE/YYYYMM/YYYYMM.winWT.SITE.ALTBEAMDIR_15min.mat 
where SITE is teh radar site name, ALT is teh altitude in format %2.1f, 
BEAMDIR is the beam direction (N, E, S, or W), YYYYMM is the year and 
month, and WINTYPE is the window code (see winSel.m for the codes). 
%} 

  
load(filename) 
% Get FFT spectra for various windows 
%*************************************************************************% 
%           COMPUTE FFT AND PLOT POWER SPECTRA 
%*************************************************************************% 
% Subtract the mean from the data 
len=length(vel); 
y=vel-(sum(vel)/len); 
% Multiply by window 
win=winSel(len,wintype); 
y=y.*win; 
Y=fft(y)/len; 
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PSD=Y.*conj(Y); 
% Arrange the PSD from most negative to most positive frequency.  Double 
% counts the Nyguist frequncy. 
PSDpos=PSD(1:floor(len/2)+1); 
PSDneg=PSD(ceil(len/2)+1:len); 
PSD=[PSDneg;PSDpos]; 
clear('win','y','Y','PSDneg'); 

  
% Find if spectra is odd or even in length as it impacts the frequencies. 
if floor(len/2)~=len/2 
    % Then the signal length is odd 
    offset=1; 
else 
    % The signal length is even 
    offset=0; 
end 

  
% The Fourier transform frequency spacing is 
df=1/max(t);    % Hz 
% Sample frequency is one sample/unit time (or equivalently the number of 
% samples divided by the total time) 
sf=len*df;      % Hz 
% Nyguist frequency (maxiumum measurable frequency) is half of the sample 
% frequency 
Nyg=sf/2;       % Hz 
% The FFT is at the frequencies: 
fpos=(0:df:Nyg-df/2*offset)'; 
f=(-Nyg+df/2*offset:df:Nyg-df/2*offset)'; 
clear('offset','Nyg','sf','df','offset') 

  
% CHECK: length of PSD and f is the same 
if size(f)~=size(PSD) 
    display('CHECK: Size of f and PSD do not match!') 
end 
% CHECK: centre of f is 0 
if f(ceil(length(f)/2))~=0 
    display('CHECK: Middle f value is not 0!') 
end 
w=f; 
wpos=fpos; 
I=PSD; 
Ipos=PSDpos; 
wt=int2str(wintype); 
filename=['FFT/',site,'/',yyyymm,'/',yyyymm,'.win',wt,'.',... 
    site,'.',alt,beamdir,'_15min.mat']; 
save(filename,'I','Ipos','w','wpos') 
end 

B.7 imagescnanEmily 
function [H,HNAN] = imagescnanEmily(varargin) 
%IMAGESCNAN   Scale data and display as image with uncolored NaNs. 
%Edited by E.M. 20130516 to change the colourmap. 
%Now: Uses a Moreland colormap (red to blue, through white) which is better 
%for colour deficient folks (red/green). See http://www.sandia.gov/~kmorel/ 
%documents/ColorMaps/ and his article Diverging Color Maps for Scientific  
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%Visualization (Expanded) for details: "Diverging Color Maps for Scientific 
%Visualization." Kenneth Moreland. In Proceedings of the 5th International  
%Symposium on Visual Computing, December 2009.  
%DOI 10.1007/978-3-642-10520-3_9. 
% 
%   SYNTAX: 
%                imagescnan(U) 
%                imagescnan(U,...,'NanColor',CNAN) 
%                imagescnan(U,...,'NanMask',MNAN) 
%                imagescnan(U,...,IOPT) 
%                imagescnan(X,Y,U,...) 
%     [H,HNAN] = imagescnan(...); 
% 
%   INPUT: 
%     U    - 2 dimensional N-by-M image or N-by-M-by-3 RGB image. 
%     X    - 2 extrema X-axis data; or the M values; or the N-by-M values 
%            as obtained from MESHGRID (see DESCRIPTION below).  
%            DEFAULT: [1 N] 
%     Y    - 2 extrema X-axis data; or the N values; or the N-by-M values 
%            as obtained from MESHGRID (see DESCRIPTION below).  
%            DEFAULT: [1 M] 
%     CNAN - Color for the NaNs elements. May be a char specifier or an [R 
%            G B] triplet specifying the color. 
%            DEFAULT: invisible (axes background color) 
%     MNAN - Elements to be ignored besides not finite values. May be an 
%            scalar or a logical M-by-N matrix indicating the elements to 
%            be ignored. 
%            DEFAULT: [] 
%     IOPT - IMAGE function normal optional pair arguments like 
%            ('Parent',H) or/and CLIM like optional last argument as in 
%            IMAGESC.  
%            DEFAULT: none 
%     map = the name of a colourmap to use. Default is Moreland (cool to 
%     warm) but you could also put in "jet" or "gray". 
% 
%   OUTPUT (all optional): 
%     H    - Image handle 
%     HNAN - Handle of every ignored (NaN) value colored patch. 
% 
%   DESCRIPTION: 
%     MATLAB function IMAGESC does not work properly with NaNs. This 
%     programs deals with this problem by including colored patches over 
%     this elements and maybe others specyfied by the user with MNAN.  
% 
%     Besides, those functions does not work properly with X,Y values 
%     variable interval, but this functions does it by generating a whole 
%     new image of several rectangular patches, but whose centers may not 
%     lay in the specified coordinate (see NOTE below). This functionality 
%     is experimental and not recommended (see ADDITIONAL NOTES inside this 
%     program). 
% 
%     In previous release, 2-dim input images were transformed into a 
%     3-dim RGB image. This is not used anymore (see ADDITIONAL NOTES 
%     inside this file). 
% 
%   NOTE: 
%     * Optional inputs use its DEFAULT value when not given or []. 
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%     * Optional outputs may or not be called. 
%     * If X is a two element vector, min(X) will be the coordinate of the 
%       first column and max(X) of the last column. 
%     * If Y is a two element vector, min(Y) will be the coordinate of the 
%       first row and max(Y) of the last row. 
%     * If vector X-axis is decreasing U=fliplr(U) will be used. 
%     * If vector Y-axis is decreasing U=flipud(U) will be used. 
%     * When X or Y do not have a constant increasing/decreasing step, the 
%       vertices of the color rectangules are set in the middle of each 
%       pair of coordinates. For this reason its center may not lay on the 
%       specified coordinate, except on the coordinates at the edges where 
%       it always lays on the center. 
%     * To get a non-scaled image (IMAGE instead of IMAGESC) use: 
%         >> H = imagescnan(...); 
%         >> set(H,'CDataMapping','direct') 
%     * ADDITIONAL NOTES are included inside this file. 
% 
%   EXAMPLE: 
%     % Compares with normal IMAGESC: 
%      N     = 100; 
%      PNaNs = 0.10; 
%      U     = peaks(N); 
%      U(round(1 + (N^2-1).*rand(N^2*PNaNs,1))) = NaN;         % Adds NaNs 
%      subplot(221), imagesc(U) 
%       title('With IMAGESC: ugly NaNs') 
%      subplot(222), imagescnan(U)  
%       title('With IMAGESCNAN: uncolored NaNs') 
%     % Compares with SPY: 
%      subplot(223), spy(isnan(U)) 
%       title('SPY(isnan(U))') 
%      subplot(224), imagescnan(isnan(U),'NaNMask',0), axis equal tight 
%       title('SPY with IMAGESCNAN') 
%      
%   SEE ALSO: 
%     IMAGE, IMAGESC, COLORBAR, IMREAD, IMWRITE 
%     and 
%     CMAPPING, CBFREEZE by Carlos Vargas 
%     at http://www.mathworks.com/matlabcentral/fileexchange 
% 
% 
%   --- 
%   MFILE:   imagescnan.m 
%   VERSION: 2.1 (Aug 20, 2009) (<a 

href="matlab:web('http://www.mathworks.com/matlabcentral/fileexchange/author

s/11258')">download</a>)  
%   MATLAB:  7.7.0.471 (R2008b) 
%   AUTHOR:  Carlos Adrian Vargas Aguilera (MEXICO) 
%   CONTACT: nubeobscura@hotmail.com 

  
%   ADDITIONAL NOTES: 
%     * I keep getting a kind of BUG with the edges of the patched NaNs. I 
%       added two NOTE inside this program that may fix this problem. 
%       Another way is to convert the intensity matrix U into RGB colors by 
%       using the CMAPPING function, as used by the first version of this 
%       program. 
%     * Besides, if the matrix is too large, sometimes there is an 
%       undocumented failure while drawing the patch NaNs. Is recommended 
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%       to use U = cmapping(U,[],'k','discrete') instead, and change the 
%       CLIM to [min(U(:)) max(U(:))]. 
%     * The use of not homogeneous step interval X,Y axes is not 
%       recommended because the program tries to put its value in the 
%       middle of the colored rectangule (as IMAGESC does) and soetimes the 
%       result may not be what the user wants. So this is for experimental 
%       use only. 

  
%   REVISIONS: 
%   1.0      Released. (Jun 30, 2008) 
%   1.1      Fixed bug when CAXIS used. Colorbar freezed colormap. Fixed 
%            bug in color vector input (Found by Greg King) and now  
%            accets RGB image as input. (Jul 14, 2008) 
%   2.0      Totally rewritten code. Do not converts to RGB anymore. Do not 
%            freezes the colormap anymore. Do not output any colorbar. New 
%            X and Y variable steps accepted input. Now uses patches. (Jun 
%            08, 2009) 
%   2.1      Fixed bug with RGB input. Added a NOTE about the use of 
%            CMAPPING. (Aug 20, 2009) 

  
%   DISCLAIMER: 
%   imagescnan.m is provided "as is" without warranty of any kind, under 
%   the revised BSD license. 

  
%   Copyright (c) 2008,2009 Carlos Adrian Vargas Aguilera 

  

  
% INPUTS CHECK-IN 
% ------------------------------------------------------------------------- 

  
% Initializes: 
X    = []; 
Y    = []; 
CNAN = []; 
MNAN = []; 
ha   = []; 
chooseCMAP = 'jet'; 
% chooseCMAP = 'MorelandColormapB'; 

  
% chooseCMAP = 'reversegray'; 
% map = gray; %EM added 20130614 
% map = MorelandColormapB; 

  
% Checks number of inputs: 
if     nargin<1 
 error('CVARGAS:imagescnan:notEnoughInputs',... 
  'At least 1 input is required.') 
elseif nargout>2 
 error('CVARGAS:imagescnan:tooManyOutputs',... 
  'At most 2 outputs are allowed.') 
end 

  
% Gets X,Y,U: 
if ((nargin==1) || (nargin==2)) 
 U = varargin{1}; 
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 varargin(1) = []; 
else 
 if (isnumeric(varargin{1}) && isnumeric(varargin{2}) && ... 
   isnumeric(varargin{3})) 
  X = varargin{1}; 
  Y = varargin{2}; 
  U = varargin{3}; 
  varargin(1:3) = []; 
 else 
  U = varargin{1}; 
  varargin(1) = []; 
 end 
end 

  
% Check U: 
ndim = ndims(U); 
if     (ndim==2) 
 [M,N]   = size(U); 
 O = 1; 
elseif (ndim==3) 
 [M,N,O] = size(U); 
 if (O~=3) 
  error('CVARGAS:imagescnan:incorrectRgbImage',... 
   'RGB image must be of size M-by-N-by-3.') 
 end 
else 
 error('CVARGAS:imagescnan:incorrectImageSize',... 
  'Image must be 2-dimensional or a 3-dim RGB image.') 
end 

  
% Check X: 
aequal = true;    % Equal intervals on x-axis? 
dX     = []; 
if isempty(X) 
 X = [1 N]; 
else 
 if (ndims(X)>2) 
  error('CVARGAS:imagescnan:incorrectXDims',... 
   'X must be a vector or a matrix as a result of MESHGRID.') 
 end 
 if any(~isfinite(X(:))) 
  error('CVARGAS:imagescnan:incorrectXValue',... 
   'X elements must be numeric and finite.') 
 end 
 [Mx,Nx] = size(X); 
 if ((Mx*Nx)==2) 
  if X(2)<X(1) 
   X = X([2 1]); 
   for k = 1:O % Fixed bug Aug 2009 
    U(:,:,k) = fliplr(U(:,:,k)); 
   end 
  end  
 else 
  if     ((Mx==M) && (Nx==N)) 
   % Checks if generated with MESHGRID: 
   dX    = abs(X(2:M,:)-repmat(X(1,:),M-1,1)); 
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   if any(abs(dX(:))>(eps*max(abs(dX(:)))*1000)) 
    error('CVARGAS:imagescnan:incorrectXMatrix',... 
     'X matrix must be as generated by MESHGRID.') 
   end 
   X = X(1,:); 
  elseif (~any([Mx Nx]==1) && ~((Mx*Nx)==N)) 
   error('CVARGAS:imagescnan:incorrectXSize',... 
     'X must be an scalar or a matrix.') 
  end      
  % Forces ascending x-axis: 
  [X,I] = sort(X(:).'); 
  for k = 1:O % Fixed bug Aug 2009 
   U(:,:,k) = U(:,I,k); 
  end 
  clear I 
  % Checks equal intervals: 
  dX = diff(X); 
  if any(abs(dX(1)-dX(2:end))>(eps*max(dX)*1000)) 
   if aequal 
    aequal = false; 
   end 
  else 
   X  = [X(1) X(end)]; 
   dX = []; 
  end 
 end 
end 

  
% Check Y: 
dY = []; 
if isempty(Y) 
 Y = [1 M]; 
else 
 if (ndims(Y)>2) 
  error('CVARGAS:imagescnan:incorrectYDims',... 
   'Y must be a vector or a matrix as a result of MESHGRID.') 
 end 
 if any(~isfinite(Y(:))) 
  error('CVARGAS:imagescnan:incorrectYValue',... 
   'Y elements must be numeric and finite.') 
 end 
 [My,Ny] = size(Y); 
 if ((My*Ny)==2) 
  if Y(2)<Y(1) 
   Y = Y([2 1]); 
   for k = 1:O % Fixed bug Aug 2009 
    U(:,:,k) = flipud(U(:,:,k)); 
   end 
  end 
 else 
  if     ((My==M) && (Ny==N)) 
   % Checks if generated with MESHGRID: 
   dY = abs(Y(:,2:N)-repmat(Y(:,1),1,N-1)); 
   if any(abs(dY(:))>(eps*max(abs(dY(:)))*1000)) 
    error('CVARGAS:imagescnan:incorrectYMatrix',... 
     'Y matrix must be as generated by MESHGRID.') 
   end 
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   Y = Y(:,1); 
  elseif (~any([My Ny]==1) && ~((My*Ny)==M)) 
   error('CVARGAS:imagescnan:incorrectYSize',... 
     'Y must be an scalar or a matrix.') 
  end      
  % Forces ascending y-axis: 
  [Y,I] = sort(Y(:).'); 
  for k = 1:O % Fixed bug Aug 2009 
   U(:,:,k) = U(I,:,k); 
  end 
  clear I 
  % Checks equal intervals: 
  dY = diff(Y); 
  if any(abs(dY(1)-dY(2:end))>(eps*max(dY)*1000)) 
   if aequal 
    aequal = false; 
   end 
  else 
   Y  = [Y(1) Y(end)]; 
   dY = []; 
  end 
 end 
end 

  
% Checks varargin: 
ind  = []; 
Nopt = length(varargin);  
for k = 1:Nopt-1 
 if (~isempty(varargin{k}) && ischar(varargin{k})) 
  if     strncmpi(varargin{k},'NanColor',4) 
   CNAN = varargin{k+1}; 
   ind  = [ind k k+1]; 
  elseif strncmpi(varargin{k},'NanMask',4) 
   MNAN = varargin{k+1}; 
   ind  = [ind k k+1]; 
  elseif (strncmpi(varargin{k},'Parent',2) && isempty(CNAN)) 
   try 
    CNAN = get(varargin{k+1},'Color'); 
    ha   = varargin{k+1}; 
   catch 
    error('CVARGAS:imagescnan:incorrectParentHandle',... 
     '''Parent'' must be a valid axes handle.') 
   end 
  end 
 end 
end 
varargin(ind) = []; 
Nargin = length(varargin); 

  

% Check ha: 
if isempty(ha) 
 ha = gca; 
end 

  
% Check CNAN: 
if     isempty(CNAN) 
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 CNAN = get(ha,'Color'); 
elseif ischar(CNAN) 
 switch lower(CNAN) 
  case 'y', CNAN = [1 1 0]; 
  case 'm', CNAN = [1 0 0]; 
  case 'c', CNAN = [0 1 1]; 
  case 'r', CNAN = [1 0 0]; 
  case 'g', CNAN = [0 1 0]; 
  case 'b', CNAN = [0 0 1]; 
  case 'w', CNAN = [1 1 1]; 
  case 'k', CNAN = [0 0 0]; 
  otherwise 
   error('CVARGAS:imagescnan:incorrectNancString',... 
    'Color string must be a valid color identifier. One of ''ymcrgbwk''.') 
 end 
elseif isnumeric(CNAN) && (length(CNAN)==3) 
 CNAN = CNAN(:).'; % Forces row vector. 
else 
 error('CVARGAS:imagescnan:incorrectNancInput',... 
  'Not recognized CNAN input.') 
end 

  
% Check MNAN: 
if isempty(MNAN) 
 MNAN = any(~isfinite(U),3); 
else 
 if (ndims(MNAN)==2) 
  [Mm,Nm] = size(MNAN); 
  if     ((Mm*Nm)==1) 
   MNAN = (any(~isfinite(U),3) | any(U==MNAN,3)); 
  elseif ((Mm==M) && (Nm==N) && islogical(MNAN)) 
   MNAN = (any(~isfinite(U),3) | MNAN); 
  else 
   error('CVARGAS:imagescnan:incorrectNanmSize',... 
   'MNAN must be an scalar or a logical matrix of size M-by-N.') 
  end 
 else 
  error('CVARGAS:imagescnan:incorrectNanmDims',... 
   'MNAN must be an scalar or a matrix.') 
 end 
end 

  

  
% EXTRA COLOUR MAPS ADDED BY EMILY 
% ------------------------------------------------------------------------- 

  
reversegray = 

[1,1,1;0.984126984126984,0.984126984126984,0.984126984126984;0.9682539682539

68,0.968253968253968,0.968253968253968;0.952380952380952,0.952380952380952,0

.952380952380952;0.936507936507937,0.936507936507937,0.936507936507937;0.920

634920634921,0.920634920634921,0.920634920634921;0.904761904761905,0.9047619

04761905,0.904761904761905;0.888888888888889,0.888888888888889,0.88888888888

8889;0.873015873015873,0.873015873015873,0.873015873015873;0.857142857142857

,0.857142857142857,0.857142857142857;0.841269841269841,0.841269841269841,0.8

41269841269841;0.825396825396825,0.825396825396825,0.825396825396825;0.80952

3809523810,0.809523809523810,0.809523809523810;0.793650793650794,0.793650793
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650794,0.793650793650794;0.777777777777778,0.777777777777778,0.7777777777777

78;0.761904761904762,0.761904761904762,0.761904761904762;0.746031746031746,0

.746031746031746,0.746031746031746;0.730158730158730,0.730158730158730,0.730

158730158730;0.714285714285714,0.714285714285714,0.714285714285714;0.6984126

98412698,0.698412698412698,0.698412698412698;0.682539682539683,0.68253968253

9683,0.682539682539683;0.666666666666667,0.666666666666667,0.666666666666667

;0.650793650793651,0.650793650793651,0.650793650793651;0.634920634920635,0.6

34920634920635,0.634920634920635;0.619047619047619,0.619047619047619,0.61904

7619047619;0.603174603174603,0.603174603174603,0.603174603174603;0.587301587

301587,0.587301587301587,0.587301587301587;0.571428571428571,0.5714285714285

71,0.571428571428571;0.555555555555556,0.555555555555556,0.555555555555556;0

.539682539682540,0.539682539682540,0.539682539682540;0.523809523809524,0.523

809523809524,0.523809523809524;0.507936507936508,0.507936507936508,0.5079365

07936508;0.492063492063492,0.492063492063492,0.492063492063492;0.47619047619

0476,0.476190476190476,0.476190476190476;0.460317460317460,0.460317460317460

,0.460317460317460;0.444444444444444,0.444444444444444,0.444444444444444;0.4

28571428571429,0.428571428571429,0.428571428571429;0.412698412698413,0.41269

8412698413,0.412698412698413;0.396825396825397,0.396825396825397,0.396825396

825397;0.380952380952381,0.380952380952381,0.380952380952381;0.3650793650793

65,0.365079365079365,0.365079365079365;0.349206349206349,0.349206349206349,0

.349206349206349;0.333333333333333,0.333333333333333,0.333333333333333;0.317

460317460317,0.317460317460317,0.317460317460317;0.301587301587302,0.3015873

01587302,0.301587301587302;0.285714285714286,0.285714285714286,0.28571428571

4286;0.269841269841270,0.269841269841270,0.269841269841270;0.253968253968254

,0.253968253968254,0.253968253968254;0.238095238095238,0.238095238095238,0.2

38095238095238;0.222222222222222,0.222222222222222,0.222222222222222;0.20634

9206349206,0.206349206349206,0.206349206349206;0.190476190476190,0.190476190

476190,0.190476190476190;0.174603174603175,0.174603174603175,0.1746031746031

75;0.158730158730159,0.158730158730159,0.158730158730159;0.142857142857143,0

.142857142857143,0.142857142857143;0.126984126984127,0.126984126984127,0.126

984126984127;0.111111111111111,0.111111111111111,0.111111111111111;0.0952380

952380952,0.0952380952380952,0.0952380952380952;0.0793650793650794,0.0793650

793650794,0.0793650793650794;0.0634920634920635,0.0634920634920635,0.0634920

634920635;0.0476190476190476,0.0476190476190476,0.0476190476190476;0.0317460

317460317,0.0317460317460317,0.0317460317460317;0.0158730158730159,0.0158730

158730159,0.0158730158730159;0,0,0;]; 

  

  
[MorelandColormapA] = [0.0 59 76 192 
0.03125 68 90 204 
0.0625 77 104 215 
0.09375 87 117 225 
0.125 98 130 234 
0.15625 108 142 241 
0.1875 119 154 247 
0.21875 130 165 251 
0.25 141 176 254 
0.28125 152 185 255 
0.3125 163 194 255 
0.34375 174 201 253 
0.375 184 208 249 
0.40625 194 213 244 
0.4375 204 217 238 
0.46875 213 219 230 
0.5 221 221 221 
0.53125 229 216 209 
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0.5625 236 211 197 
0.59375 241 204 185 
0.625 245 196 173 
0.65625 247 187 160 
0.6875 247 177 148 
0.71875 247 166 135 
0.75 244 154 123 
0.78125 241 141 111 
0.8125 236 127 99 
0.84375 229 112 88 
0.875 222 96 77 
0.90625 213 80 66 
0.9375 203 62 56 
0.96875 192 40 47 
1.0 180 4 38]; 

  
% This line is correct: 
% MorelandColormapB = MorelandColormapA(:,2:4) ./ 

max(max(MorelandColormapA(:,2:4))); %make all 0 to 1 
% It outputs the values below, which I've hardcoded in here to save 
% computation time when plotting stuff. 
MorelandColormapB = 

[[0.231372549019608;0.266666666666667;0.301960784313725;0.341176470588235;0.

384313725490196;0.423529411764706;0.466666666666667;0.509803921568627;0.5529

41176470588;0.596078431372549;0.639215686274510;0.682352941176471;0.72156862

7450980;0.760784313725490;0.800000000000000;0.835294117647059;0.866666666666

667;0.898039215686275;0.925490196078431;0.945098039215686;0.960784313725490;

0.968627450980392;0.968627450980392;0.968627450980392;0.956862745098039;0.94

5098039215686;0.925490196078431;0.898039215686275;0.870588235294118;0.835294

117647059;0.796078431372549;0.752941176470588;0.705882352941177;] 

[0.298039215686275;0.352941176470588;0.407843137254902;0.458823529411765;0.5

09803921568627;0.556862745098039;0.603921568627451;0.647058823529412;0.69019

6078431373;0.725490196078431;0.760784313725490;0.788235294117647;0.815686274

509804;0.835294117647059;0.850980392156863;0.858823529411765;0.8666666666666

67;0.847058823529412;0.827450980392157;0.800000000000000;0.768627450980392;0

.733333333333333;0.694117647058824;0.650980392156863;0.603921568627451;0.552

941176470588;0.498039215686275;0.439215686274510;0.376470588235294;0.3137254

90196078;0.243137254901961;0.156862745098039;0.0156862745098039;] 

[0.752941176470588;0.800000000000000;0.843137254901961;0.882352941176471;0.9

17647058823529;0.945098039215686;0.968627450980392;0.984313725490196;0.99607

8431372549;1;1;0.992156862745098;0.976470588235294;0.956862745098039;0.93333

3333333333;0.901960784313726;0.866666666666667;0.819607843137255;0.772549019

607843;0.725490196078431;0.678431372549020;0.627450980392157;0.5803921568627

45;0.529411764705882;0.482352941176471;0.435294117647059;0.388235294117647;0

.345098039215686;0.301960784313725;0.258823529411765;0.219607843137255;0.184

313725490196;0.149019607843137;]]; 

  

  

% COLOUR MAP TO ACTUALLY USE: 
% ------------------------------------------------------------------------- 

  
if strcmp(chooseCMAP,'reversegray') == 1 
 map = reversegray; 
elseif strcmp(chooseCMAP,'MorelandColormapB') == 1 
 map = MorelandColormapB; 
elseif strcmp(chooseCMAP,'gray') == 1 
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 map = gray; 
else 
 map = jet; 
end 

  

  

  

  
% ------------------------------------------------------------------------- 
% MAIN 
% ------------------------------------------------------------------------- 

  
% Generates the image: 
if aequal 
 % IMAGESC way. 
 H = imagesc(X,Y,U,varargin{:}); 
%  MorelandColormap = colormap(MorelandColormapB); 
colormap(map) 
%  if strcmp(map,'gray') == 1 
%      colormap(gray); 
%  elseif strcmp(map,'jet') == 1 
%      colormap(jet); 
%  end 

  

  

else 
 % PATCH way. 

  
 % Check clim: 
 if (rem(Nargin,2)==1) 
  clim          = varargin{end}; 
  varargin(end) = []; 
  if ((length(clim)~=2) || (clim(1)>clim(2))) 
   error('CVARGAS:imagescnan:incorrectClimInput',... 
    'clim must be a 2 element increasing vector.') 
  end 
 else 
  clim = []; 
 end 

  

 % Generates vertices between coordinates (coordinates may not be at the 
 % center of these vertices):  
 if (length(X)~=N) 
  X  = (0:N-1)*((X(2)-X(1))/(N-1)) + X(1); 
 end 
 if (length(Y)~=M) 
  Y  = (0:M-1)*((Y(2)-Y(1))/(M-1)) + Y(1); 
 end 
 if isempty(dX) 
  dX = diff(X); 
 end 
 if isempty(dY) 
  dY = diff(Y); 
 end 
 [X,Y] = meshgrid([X(1)-dX(1)/2 X+dX([1:N-1 N-1])/2],... 
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                  [Y(1)-dY(1)/2 Y+dY([1:M-1 M-1])/2]); 

  
 % Generates faces: 
 ind              = (1:(M+1)*N)'; 
 ind(M+1:M+1:end) = []; 

  
 % Generates patches: 
 H = patch(... 
  'Vertices'       ,[X(:) Y(:)],... 
  'Faces'          ,[ind ind+1 ind+M+2 ind+M+1],... 
  'FaceVertexCData',U(:),... 
  'FaceColor'      ,'flat',... 
  'EdgeColor'      ,'none',... % NOTE: Sometimes this is not required. 
  varargin{:}); 
 set(ha,... 
  'YDir' ,'reverse',... 
  'View' ,[0 90],... 
  'Box'  ,'on',... 
  'Layer','top') 
 axis(ha,'tight') 

  
 % Sets clim: 
 if ~isempty(clim) 
  set(ha,'CLim',clim) 
 else 
  set(ha,'CLimMode','auto') 
 end 

  
colormap(map) 
end 

  
% Adds NaNs patches: 
if any(MNAN(:)) 
 if aequal 
  % dX and dY is constant: 
  [MNAN,NNAN] = ind2sub([M,N],find(MNAN)); 
  Nnan        = length(MNAN); 
  dX   = (X(2)-X(1))/(N-1)/2; 
  dY   = (Y(2)-Y(1))/(M-1)/2; 
  HNAN = patch(repmat((X(1)+(NNAN(:)'-1)*(2*dX)),4,1) + ... 
                                       (repmat([-1 1 1 -1]'*dX,1,Nnan)),... 
               repmat((Y(1)+(MNAN(:)'-1)*(2*dY)),4,1) + ...                                        
                                       (repmat([1 1 -1 -1]'*dY,1,Nnan)),... 
               CNAN,... 
               'EdgeColor',CNAN,... 'EdgeColor','none',...  
               varargin{1:Nargin-rem(Nargin,2)}); 
 else 
  % dX and/or dY is not constant: 
  MNAN = find(MNAN); 
  HNAN = patch(... 
  'Vertices'       ,[X(:) Y(:)],... 
  'Faces'          ,[ind(MNAN) ind(MNAN)+1 ind(MNAN)+M+2 ind(MNAN)+M+1],... 
  'FaceColor'      ,CNAN,... 
  'EdgeColor'      ,'none',... 'EdgeColor',CNAN,... % NOTE: may be better? 
  varargin{:}); 
 end 
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else 
 HNAN = []; 
end 

  

  
% OUTPUTS CHECK-OUT 
% ------------------------------------------------------------------------- 

  
% Clears outputs?: 
if (nargout==0) 
 clear H 
end 

  
% [EOF]   imagescnan.m 

B.8 setReadInt 
function newfile=setReadInt(site,alt,beamdir,start,q,stop,pass) 
%{ 
SETREADINT    Sets days as a vector, reads the data, and interpolates. 
    SETREADINT(SITE,ALT,BEAMDIR,START,Q) saves the interpolated data to a 
.mat file to be loaded by a spectral algorithm.  All data is in 15 minute 
intervals.  The site, altitude, and beam direction are given by the 
character strings SITE, ALT, and BEAMDIR respectively.  ALT may be a 
number.  The data spans the yyyymmdd day START.  Q is the YYYYMM format in  
a string. 

  
    SETREADINT(...,STOP) saves the interpolated data to a .mat file for 
days between START and STOP inclusively. 

  
    SETREADINT(...,PASS) allows user to pass on clicking the initial and 
values to interpolate over (0), otherwise, the computer chooses the first, 
longest string of data.  Default is set to 1. 

  
    NEWFILE=SETREADINT(...) returns the name of the .mat file the data is 
stored in. 
%} 

  
if nargin==5 
    % Only use one day 
    stop=start; 
    pass=1; 
elseif nargin==6 
    pass=1; 
elseif nargin~=7 
    error('SRI:argChk','Wrong number of input arguments.') 
end 
if isa(alt,'char')==0 
    alt=num2str(alt,'%2.1f'); 
end 

  
% Set the maximum number of missing data points. 
miss=20; 
%*************************************************************************% 
%           SET DAYS AS A VECTOR FROM START TO STOP 
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%*************************************************************************% 

  
% Set a matrix for the days of the month for leap and non-leap years 
n=[31,28,31,30,31,30,31,31,30,31,30,31]; 
% First row is for leap years, second row is for non-leap years, columns 
% are representative days in the month. 
numofdays=[n;n]; 
numofdays(1,2)=29; 
clear('n') 

  
% Break start and stop into year, month, day 
yyyy=floor(start/10000); 
mm=floor((start-yyyy*10000)/100); 
dd=mod(start,100); 
stopy=floor(stop/10000); 
stopm=floor((stop-stopy*10000)/100); 
stopd=mod(stop,100); 

  
% See if start and stop are the same month.  If so, just gather days 
% between. 
if yyyy==stopy && mm==stopm 
    days=yyyy*10000+mm*100+(dd:stopd); 
else 
    % Spans multiple months. 
    % Determine if it is a leap year (use row 1) or not (use row 2). 
    leap=ceil(mod(yyyy,4)/4)+1; 
    % Put the remaining days of the current month into days. 
    days=yyyy*10000+mm*100+(dd:numofdays(leap,mm)); 

     
    % Determine days between the start and stop months: 
    while yyyy~=stopy && (mm+1)~=stopm 
        mm=mm+1; 
        if mm==13 
            % If we reach "month 13", roll the clock over a year. 
            yyyy=yyyy+1; 
            % Determine if it is a leap year: 
            leap=ceil(mod(yyyy,4)/4)+1; 
            % Reset mm to zero since we add 1 to it before doing 
            % anthing else (otherwise we would skip January every roll 
            % over). 
            mm=0; 
        else 
            % Include the days of this month in days. 
            days=[days,yyyy*10000+mm*100+(1:numofdays(leap,mm))]; 
        end 
    end 

     
    % Include the first days of the stop month. 
    days=[days, yyyy*10000+(mm+1)*100+(1:stopd)]; 
end 
clear('numofdays','yyyy','mm','dd','stopy','stopm','stopd','leap') 

  
%*************************************************************************% 
%           READ AND SORT DATA 
%*************************************************************************% 
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% Create filepath 
fileend=['.',site,'.',alt,beamdir,'_15min.txt']; 

  

vel=[]; 
npoints=[]; 
t=[]; 
for i=1:length(days) 
    % Read each file and put into variables 
    day=int2str(days(i)); 
    mon=day(1:6); 
    filepath=[site,'/',mon,'/',day,'/RadarData/',day,fileend]; 
    raw=dlmread(filepath,',',0,1); 

     
    % Convert time into seconds 
    time=raw(:,6)+60*(raw(:,5)+60*raw(:,4)); 
    % Sort data chronologically 
    [time,order]=sort(time); 
    vel=[vel;raw(order,8)]; 
    npoints=[npoints;raw(order,9)]; 
    % Convert add the appropriate number of days (in seconds) to time and 
    % combine it with our t vector 
    t=[t;time+60*60*24*(i-1)]; 
end 
clear('i','day','filepath','raw','time','order') 

  

% CHECK: data is equally spaced 
dt=zeros(1,length(t)-1); 
for i=2:length(t) 
    dt(i-1)=t(i)-t(i-1); 
end 
if max(dt)~=min(dt) 
    warning('FFT:dtChk','dt not equal!') 
end 
clear('dt','i') 

  
% Keep a copy of the raw data if necessary to look at 
velraw=vel; 

  
%*************************************************************************% 
%           INTERPOLATE DATA 
%*************************************************************************% 

  
% Find missing values in radar data.  Plot real values. 
len=length(vel); 
data=ones(len,1);   % Keeps track of which data points are real. 

  

if pass~=0 
    i1=1; 
    lold=0; 
    i=1; 
    while i<=length(vel) 
        if vel(i)==-999.0; 
            % Check to see if next miss are also -999.0 (no data) 
            if (i+miss-1)<=length(vel) 
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                x=vel(i:(i+miss-1)); 
            else 
                x=vel(i:length(vel)); 
            end 
            if x==(-999.0*ones(size(x))) 
                lnew=i1:(i-1); 
                % Set the longest strand to the new one 
                if length(lnew)>length(lold) 
                    lold=lnew; 
                end 
                i=i+miss; 
                % Check if there are any subsequent missing data points 
                while i<length(vel) && vel(i)==-999.0 
                    i=i+1; 
                end 
                i1=i; 
            end 
        end 
        i=i+1; 
    end 
    if lold==0; 
        lold=1:length(vel); 
    end 
    vel=vel(lold); 
    data=data(lold); 
    t=t(lold); 
    npoints=npoints(lold); 
    len=length(vel); 
    clear('lold','lnew','i','i1','x') 
end 

  
f1=figure; 
m=int2str(floor(start/100)); 
text=[alt,beamdir,' ',m,]; 
title(text) 
xlabel('Time (s)') 
ylabel('Radial velocity (m/s)') 
hold on 
for i=1:len 
    if vel(i)==-999 
        vel(i)=0; 
        data(i)=0; 
        plot(t(i), 0, 'r^') 
    else 
        plot(t(i), vel(i), 'bo') 
    end 
end 
hold off 
clear('i','text') 

  
% Select where to start/stop in the data here. 
if pass==0; 
    figure(f1) 
    msg=char('On the figure, click where you want interpolation to',... 
        'start and stop respectively.'); 
    h=msgbox(msg,'Select start and stop','help'); 
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    [ts,~]=ginput(2); 
    close(h) 

     
    % Find starting index 
    diff1=abs(t-ts(1)); 
    % Find where difference is minimum and choose as starting point 
    [~,i1]=min(diff1); 

     
    % Find ending index 
    diff2=abs(t-ts(2)); 
    [~,i2]=min(diff2); 

     
    % Set all data vectors to just data between indices i1 and i2 
    t=t(i1:i2); 
    vel=vel(i1:i2); 
    data=data(i1:i2); 
    len=length(vel); 

     
    clear('h','i1','i2','istart','istop','msg','ts') 
end 

  
% If the first point selected needs to be interpolated, drop it instead. 
while data(1)==0; 
    t=t(2:len); 
    vel=vel(2:len); 
    npoints=npoints(2:len); 
    data=data(2:len); 
    len=len-1; 
end 

  
% If the last data point selected needs to be interpolated, drop it 
% instead. 
last=len; 
rem=0; % Keeps track of how many data points at the end are removed. 
while data(last)==0; 
    last=last-1; 
end 
t=t(1:last); 
vel=vel(1:last); 
npoints=npoints(1:last); 
data=data(1:last); 
len=last; 
clear('last','rem') 
hold on 
plot(t(vel~=0),vel(vel~=0),'g-'); 
hold off 
% Shift the data so that the first data point occurs at t=0 (if necessary). 
% Assumed that data is in chronological order. 
if t(1)~=0; 
    t=t-t(1); 
end 

  
% Go through missing data and interpolate: 
skip=0; 
% Set the number of points to use before and after for interpolation. 
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group=5; 

  
% New method, don't use null 
for i=1:length(data) 
    if skip~=0 
        % This point has already been interpolated. 
        skip=skip-1; 
    elseif data(i)==0 
        % Need to interpolate 
        j=i; 
        while data(j+1)==0 
            j=j+1; 
        end 
        % Need to interpolate points on the span [i,j] 
        if i==j || i+1==j 
            % 1 or 2 data point missing.  Interpolate linearly between two 
            % closest. 
            m=(vel(j+1)-vel(i-1))/(t(j+1)-t(i-1)); 
            b=vel(i-1)-m*t(i-1); 
            vel(i:j)=m*t(i:j)+b; 
            skip=j-i; 
        elseif j-i+1>miss 
            % Too many data points missing 
            t=t(1:i-1); 
            vel=vel(1:i-1); 
            npoints=npoints(1:i-1); 
            data=data(1:i-1); 
            len=length(vel); 
            fprintf('Too many missing data points.  Ended at point 

%g.\n\n',i-1) 
            break 
        else 
            % Can interpolate the number of data points with interpol 
            % Check there are enough points before: 
            if i-group>0 
                % Then we have enough data points prior to the gap to 
                % interpolate using GROUP points at the beginning. 
                group1=group; 
            else 
                % We do not have enough points before the interpolation. 
                % Use the ones available. 
                group1=i-1; 
            end 
            % Check there are enough points after: 
            if j+group<=length(data) 
                % There are enough points after the gap to use GROUP 
                % points. 
                group2=group; 
            else 
                % There are not enough points after, use those available. 
                group2=length(data)-j; 
            end 
            % Interpolate: 
            vel(i:j)=interpol(vel(i-group1:j+group2),... 
                t(i-group1:j+group2),data(i-group1:j+group2),group1,... 
                group2); 
            skip=j-i; 
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        end 
    end 
end 

  
hold on 
plot(t,vel,'m-'); 
hold off 
clear('skip','group','miss','group1','group2','i','j','m','b','days',... 
    'diff1','diff2','mon') 

  
% Save variables to a .mat file so that I can use them in forming the 
% spectra and only need to interpolate once for multiple windows. 
start=num2str(start); 
stop=num2str(stop); 
if pass==0 
    newfile=['FFT/',site,'/',start,'to',stop,'mod',... 
        fileend(1:length(fileend)-3),'mat']; 
else 
    newfile=['FFT/',site,'/',q,'/',q,fileend(1:length(fileend)-3),'mat']; 
end 
clear('start','stop') 
fprintf('%s\r\n',newfile) 
save(newfile) 
end 

B.9 winSel 
function win=winSel(N,type) 
%{ 
WINSEL    Creates specified window. 
    WINSEL(N) is the specified discrete window with N elements. 

  
    WINSEL(...,TYPE) specifies the type of window without opening a 
dialogue box where TYPE is an integer: 
        0 -- cancel 
        1 -- Hamming 
        2 -- Hann (Hanning) 
        3 -- boxcar with 10% cosine taper 
        4 -- boxcar 
%} 

  

if nargin==1 
    % Need to choose window type 
    choices={'Hamming','Hann','Welch','Butterworth',... 
        'Box car with 10% cosine taper','Box car'}; 
    [type,ok]=listdlg('SelectionMode','single', 'Name','Window type',... 
        'ListSize',[175 300],'PromptString','Choose a window to use:',... 
        'ListString',choices); 
    % If the user pressed "cancel", pass value of zero. 
    if ok==0 
        type=0; 
    end 
elseif nargin==2 
    % Check that type is an integer 
    if isa(type,'numeric')==0 
        error('winsel:argChk','TYPE is an integer.') 
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    end 
else 
    error('winsel:argChk','Wrong number of input arguments.') 
end 

  
% If the user pressed "cancel", pass value of 0. 
if type==0 
    win=zeros(N,1); 
elseif type==1 
    % Hamming window 
    n=(0:N-1)'; 
    A=1/(25/46*N); 
    win=A*(25/46-21/46*cos(2*pi*n/(N-1))); 
elseif type==2 
    % Hann window 
    n=(0:N-1)'; 
    A=2/N; 
    win=A*(1/2-1/2*cos(2*pi*n/(N-1))); 
elseif type==3 
    % Box car with 10% cosine taper 
    % Create cosine taper shape for the first 10% and last 10% of the data. 
    n=(0:N-1)'; 
    tenperc=floor(N/10); 
    win=ones(N,1); 
    win(n<=tenperc)=(1-cos(10*pi/N*n(n<=tenperc)))/2; 
    win(n>=(N-tenperc))=(1-cos(10*pi/N*n(n>=(N-tenperc))))/2; 
    win=win*10/(9*N); 
elseif type==4 
    % Box car 
    win=ones(N,1)/N; 
else 
    error('winsel:argChk','TYPE is between 0 and 4 inclusive.') 
end 
end 
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