
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

9-25-2014 12:00 AM

Gravity wave spectra morphology in the Arctic and non-Arctic Gravity wave spectra morphology in the Arctic and non-Arctic

lower atmosphere lower atmosphere

Melanie C. Wright, The University of Western Ontario

Supervisor: Wayne K. Hocking, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Physics

© Melanie C. Wright 2014

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Fluid Dynamics Commons, and the Other Physics Commons

Recommended Citation Recommended Citation
Wright, Melanie C., "Gravity wave spectra morphology in the Arctic and non-Arctic lower atmosphere"
(2014). Electronic Thesis and Dissertation Repository. 2520.
https://ir.lib.uwo.ca/etd/2520

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F2520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/201?utm_source=ir.lib.uwo.ca%2Fetd%2F2520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/207?utm_source=ir.lib.uwo.ca%2Fetd%2F2520&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/2520?utm_source=ir.lib.uwo.ca%2Fetd%2F2520&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Gravity wave spectra morphology in the Arctic and non-Arctic lower atmosphere

(Monograph)

by

Melanie Wright

Faculty of Science
Department of Physics and Astronomy

Submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Physics

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada
August, 2014

© Melanie Wright 2014

ii

Abstract

The spectral analysis of data from three VHF radars (one high-Arctic and two mid-latitude)

show general support for the universal spectrum theory for gravity waves in the lower

atmosphere (altitudes of 2.0-11.0 km), provided that the impact of the off-vertical beam and

noise are taken into consideration. This analysis also reveals that local gravity wave

generation is of secondary, but still significant, importance for determining the spectra.

 A total of eight spectral methods were considered and scrutinized for the purposes of

determining gravity wave spectra from VHF radar data. A definition for the “best” method

was given and examined. The method selected as the “best” for the analysis presented was a

date-compensated discrete Fourier transform with a Hamming window.

Keywords

gravity waves, universal spectrum, analysis methods, VHF, radar

iii

Acknowledgments

I would like to thank the family and friends who have been most supportive of me

completing my masters and during my time at Western, specifically (in no specific order):

Gram Char and Grandpa Gary, Neil Bhatt, Jason Kirkness, John and Betty Kirkness, Emma

Cookson, Amanda DiCarlo, Mat Abado, Rob Weryk, and the lovely people at Dance Steps

(specifically Donna Bayley and Krista Conti).

I want to thank Emily McCullough for the use of her Matlab plotting function

(imagescnanEmily), which has been included in Appendix B. I would also like to thank

CANDAC for partial funding, including: Bob Sica, Pierre Fogal, Jim Drummond, and Ashley

Kilgour. I would also like to thank the ladies in the Physics and Astronomy Department

office (Clara, Jodi, Jackie, Lisa, Nelia, Loveleen, and Donna) who have been extremely

helpful, as well as my advisory committee: Bob Sica and John de Bruyn.

Above all else, I would like to extend my deepest gratitude to my supervisor, Wayne

Hocking, who has supported and pushed me the whole way through. I couldn’t have asked

for a better supervisor. And to think, it all started from a broken little finger.

iv

Table of Contents

Abstract .. ii

Acknowledgments ... iii

Table of Contents .. iv

List of Figures ... viii

Chapter 1 ...1

1 Introduction ..1

Chapter 2 ...2

2 Gravity waves ...2

2.1 Why gravity waves ..2

2.2 Gravity wave overview ..3

2.3 Causes of gravity waves ...3

2.4 A brief history of the understanding of gravity waves...4

2.5 Mathematical Background ...5

2.6 The spectral tail ..9

Chapter 3 ... 12

3 Radars ... 12

3.1 The antennas .. 12

3.2 How they work .. 13

3.3 Beam steering .. 13

3.4 Detection difficulties .. 14

3.4.1 Detection through sidelobes .. 14

3.4.2 Non-atmospheric objects .. 15

3.4.3 Poor low altitude range data: impedance mismatch 16

3.4.4 Poor high altitude range data: low power .. 18

v

3.4.5 Range determination and range-aliasing ... 18

3.5 Why radar? (As opposed to other methods) .. 19

3.6 Our sites ... 20

3.6.1 Eureka, Nunavut ... 21

3.6.2 Negrocreek, Ontario ... 21

3.6.3 Markstay, Ontario ... 21

Chapter 4 ... 23

4 Spectral analysis methods ... 23

4.1 Finite Data ... 23

4.2 Windows .. 26

4.2.1 Boxcar window .. 26

4.2.2 Boxcar with 10% cosine taper window ... 26

4.2.3 Hann window ... 28

4.2.4 Hamming window .. 28

4.3 Discrete Data ... 29

4.4 Fast Fourier transform .. 35

4.5 Non-Uniformly Spaced Data .. 35

4.6 Bin averaging and interpolation .. 38

4.7 Date-compensated discrete Fourier transform ... 38

4.8 Spectral slope ... 39

Chapter 5 ... 40

5 Spectral method selection .. 40

5.1 Definition of “best” .. 40

5.2 The “best” method ... 42

5.3 The “best” window .. 49

Chapter 6 ... 57

vi

6 Results and Interpretation .. 57

6.1 Breakpoint frequency ... 57

6.2 Spectral slopes ... 58

6.2.1 Spectral slope values .. 58

6.2.2 Altitude comparison ... 69

6.2.3 Seasonal comparison .. 69

6.2.4 Geographical comparison ... 71

6.2.5 Interpretation of the slopes.. 73

Chapter 7 ... 76

7 Conclusions and future work ... 76

References ... 79

Appendix A: Mathematical derivations .. 82

A.1 Boxcar window .. 82

A.2 Boxcar with 10% cosine taper window ... 84

A.3 Hann window ... 91

A.4 Hamming window .. 94

Appendix B: Matlab Code ... 96

B.1 FFT Script .. 96

B.2 DCDFT Script .. 98

B.3 Breakpoint script .. 101

B.4 createtf ... 101

B.5 DCDFT1 .. 104

B.6 FFTrun ... 105

B.7 imagescnanEmily ... 106

B.8 setReadInt .. 118

B.9 winSel .. 124

vii

Curriculum Vitae .. 126

viii

List of Figures

Figure 2.1 ... 4

Figure 2.2 ... 9

Figure 3.1 ... 12

Figure 3.2 ... 13

Figure 3.3 ... 14

Figure 3.4 ... 17

Figure 3.5 ... 20

Figure 3.6 ... 21

Figure 3.7 ... 22

Figure 3.8 ... 22

Figure 4.1 ... 25

Figure 4.2 ... 27

Figure 4.3 ... 30

Figure 4.4 ... 31

Figure 4.5 ... 32

Figure 4.6 ... 33

Figure 4.7 ... 34

Figure 4.8 ... 36

Figure 4.9 ... 37

file:///C:/Users/Mel/Desktop/Wright,%20Mel%20thesis%20new.docx%23_Toc403666210
file:///C:/Users/Mel/Desktop/Wright,%20Mel%20thesis%20new.docx%23_Toc403666217

ix

Figure 4.10 ... 39

Figure 5.1 ... 41

Figure 5.2 ... 43

Figure 5.3 ... 44

Figure 5.4 ... 45

Figure 5.5 ... 46

Figure 5.6 ... 47

Figure 5.7 ... 47

Figure 5.8 ... 48

Figure 5.9 ... 48

Figure 5.10 ... 50

Figure 5.11 ... 51

Figure 5.12 ... 52

Figure 5.13 ... 53

Figure 5.14 ... 54

Figure 5.15 ... 55

Figure 5.16 ... 56

Figure 6.1 ... 69

Figure 6.2 ... 70

Figure 6.3 ... 71

x

Figure 7.1 ... 78

1

Chapter 1

1 Introduction

In 1960, Hines suggested internal gravity waves (or buoyancy waves) as a major

contributor to upper atmosphere motions, carrying energy and momentum large distances

through the atmosphere. The literature fixated on singular waves until, in 1982,

VanZandt proposed a “universal spectrum”—a shape to the intensity of gravity waves

versus their wavenumber that is independent of geographic location, meteorological

conditions, altitude, and time—based on the oceanographic work of Garrett and Munk

(1972, 1975). The literature absorbed the concept of universality: many (e.g. Medvedev

and Klassen 2000) produced power spectral density forms based on theories such as

Weinstock’s nonlinear wave diffusion, Hines’ Doppler shifted theory, and the

inconsistent linear instability theory (Hines 1991). Focus then shifted towards deviations

from the spectrum (e.g. Eckermann 1995), which leaves us thinking, “How ‘universal’ is

the universal spectrum anyway?”

 I investigate the form of the gravity wave spectra at different geographic locations

(Negrocreek, ON and Eureka, NU) and altitudes (selected altitudes between 1-14 km) in

different seasons. My analysis using Ferraz-Mello’s (1981) data-compensated discrete

Fourier transform with a Hamming window reveals that “universality” is not a far-fetched

idea; however, local gravity wave generation also affects the gravity wave spectra.

 This thesis is comprised of seven chapters. Chapter 2 reviews the gravity wave

literature and provides motivation for this work. The necessary prerequisite background

on radars is given in Chapter 3. Chapter 4 outlines the mathematical background to the

analysis methods including reasoning for applying windows and selecting various

analysis techniques. Chapter 5 applies the methods described in Chapter 4 to determine

the “best” method of computing atmospheric gravity wave spectra. The results are

presented and interpreted in Chapter 6. Chapter 7 concludes this thesis and outlines

potential future work.

2

Chapter 2

2 Gravity waves

Gravity waves (also known as buoyancy waves), named for the restoring force

responsible for the wave motion, are perturbations in the atmosphere (density, pressure,

velocity, and temperature) with typical horizontal wavelengths of a few to hundreds of

kilometres, vertical wavelengths of approximately , and periods of five

minutes to many hours. In general, these waves can propagate along the interface of two

mediums (such as on the surface of a lake or ocean, where they are called surface gravity

waves) or through a medium (such as through the ocean or atmosphere, where they are

called internal gravity waves), provided that the density decreases with increasing height.

This thesis specifically examines the geographical and temporal variation of the spectrum

of atmospheric internal gravity waves, which will be referred to as “gravity waves”.

2.1 Why gravity waves

Atmospheric gravity waves have a large impact on aircraft and weather. Early interest in

mountain lee waves (a particular type of gravity wave, generated by flow over

mountains) originated from sailplane pilots, who used the waves to soar to record

altitudes (Gossard and Hooke 1975). Waves can transport energy faster than mean flow

transport. In particular, gravity waves carry energy away from the source (a mountain

range, thunderstorm, etc.) and distribute it throughout the atmosphere, produce

phenomena such as turbulence in the night time atmospheric boundary layer or clear air

turbulence (Nappo 2002), which can be hazardous to aircraft (Gossard and Hooke 1975).

In addition to playing a major role in upper atmosphere dynamics (Hines 1960),

gravity waves can slow—and even reverse—mean wind speeds throughout the

atmosphere, including in the troposphere (e.g., Lindzen 1981, Holton 1983). A better

understanding of gravity waves could lead to better weather forecasting models.

3

2.2 Gravity wave overview

While both surface and internal gravity waves propagate in a similar manner, it may be

easier for the reader to conceptualize gravity waves using surface gravity waves, for

example, on the surface of a lake. Consider a small packet of water displaced vertically

above the lake’s surface. The mass of water above the mean level causes the surface of

the water to fall. When the water surface reaches equilibrium, it still has a downwards

momentum and continues to fall. The surrounding water applies a restoring force to the

water surface, causing it to slow the downwards motion, eventually stop, and then return

towards the equilibrium position. The surface overshoots equilibrium again, causing it to

be displaced above the water surface again, hence establishing an oscillation. This

motion propagates along the surface.

Internal gravity waves propagate in the same manner, however, the atmosphere

must satisfy a second condition (in addition to decreasing density with height); having a

specific lapse rate. A lapse rate is the rate at which air temperature decreases with

increasing altitude. For internal gravity waves to propagate through the atmosphere, the

lapse rate of the air packet as it moves must be steeper than the lapse rate of the

background atmosphere. As air rises, it expands and becomes less dense. After rising,

the air packet needs to be denser than the surrounding air to oscillate. If it isn’t, the air

packet will continue rising, instead of oscillating, and internal gravity waves cannot

occur. Where the lapse rates are such that internal gravity waves can propagate, the

atmosphere is called “stable”. Otherwise, the atmosphere is called “unstable”.

2.3 Causes of gravity waves

One well accepted source of gravity waves is airflow over terrain, such as mountains and

hills (Gossard and Hooke 1975). Airflow over mountains causes the initial perturbation

necessary to create waves, as demonstrated in Figure 2.1. These waves are also known as

“mountain lee waves”. In a steady state, these waves are stationary with respect to the

terrain, but propagate with respect to the mean airflow. In a time-dependent state, airflow

over terrain should cause propagating waves with respect to the ground. On various

4

Figure 2.1: An example of mean wind flow over a mountain causing lee-waves and

the accompanying mean wind and temperature structure. From Hocking (in prep.),

adapted from Röttger (2000) (who adapted it from Scorer (1997)).

occasions Hines suggested (e.g. Hines 1991) that this may cause waves in the upper

atmosphere.

Other potential sources of gravity waves are: squall lines and frontal systems,

velocity jets, large explosions (Nappo 2002), turbulence, penetrative convection, wave-

wave interactions, geostrophic adjustment, shear instability, Ekman-layer instability, and

wave generation by boundary-layer turbulence (Gossard and Hooke 1975).

2.4 A brief history of the understanding of gravity waves

In 1960, Hines explored the theory of gravity waves as a major contributor to upper

atmosphere motions. He used linear perturbation theory, which assumes that the wave

amplitudes (the perturbations in pressure, temperature, etc.) are sufficiently small, such

that all variables dependent on nonlinear combinations of wave amplitudes are negligible.

In 1976, Weinstock advanced the theory of gravity waves by using a nonlinear theory,

5

though he still treated the nonlinear pressure terms as negligible, since the pressure

fluctuations are relatively small.

 The literature focused on singular gravity wave sightings and measurements until

1982, when Van Zandt introduced the idea of a “universal spectrum” of gravity waves,

based on the oceanic work of Garrett and Munk (1972, 1975). The universal spectrum

quantifies the spectral “tail” (lower wavelengths) as a power law and claims the shape of

the tail is roughly invariant with meteorological conditions, latitude and longitude, time,

and, to some extent, altitude.

In 1991, Hines developed a Doppler spread theory for gravity waves. In general,

literature focus shifted to this concept of universality, with many research groups

developing similar models to describe the universality. Focus then shifted to deviations

from universality.

2.5 Mathematical Background

The mathematics of gravity waves starts with the standard fluid dynamics equations (a

version of Newton’s second law, the first law of thermodynamics combined with the

speed of sound in air, conservation of mass, and heat diffusion, respectively), viz.:

 ⃗⃗

 ⃗⃗ ⃗

 ⃗⃗ ⃗ (2.1)

 (2.2)

 ⃗⃗ ⃗ (2.3)

 (2.4)

where represents differentiation following the motion, ⃗ is the velocity, is the

density, ⃗⃗ is the Earth’s angular rotation rate, is the acceleration due to gravity (and is

given by), is the pressure, is the speed of sound, ⃗⃗ is the gradient

6

differential operator, is the potential temperature, is the heat diffusion coefficient,

and is the kinematic viscosity coefficient.

 For gravity waves, solutions are assumed to be of the form:

 (⃗)

 (2.5)

where can be any one of the velocity components, the pressure, the density, or

temperature, and may be complex. ⃗ is the wavenumber vector and refers to

the ground-based angular frequency of the wave. These forms are substituted into the

standard fluid dynamics equations above, keeping only first-order perturbation terms in

an attempt to linearize the equations for gravity wave analysis. If the effects of viscosity

are ignored, a mean wind of zero is assumed (for simplicity), and the wave propagates in

the — plane (with being vertical), then the standard fluid dynamics equations (i.e.

Equations 2.1 through 2.4) simplify to five equations; three momentum equations:

 ̂ ̂ ̂ (2.6)

 ̂ ̂ (2.7)

 ̂ ̂ (̂
 ̂

 ̅
) (2.8)

a form of the first law of thermodynamics:

 ̂
 ̂

 ̂

 ̅̅ ̅ (2.9)

and a continuity equation:

 ̂ ̂
 ̂

 ̂ (2.10)

where a hat (e.g., ̂) denotes a perturbation value, √ , is the Coriolis parameter

 (where is the latitude), ̂ ̂ ̅, ̂ ̂ ̅, and ̅̅̅ is the mean squared speed

7

of sound at the height of the wave. The complex velocity perturbation is ⃗ ̂ ̂ ̂ .

The ⃗ -vector is , where it is assumed that the wave propagates in the — plane

for simplicity. The complex vertical wavenumber, , is (complex to indicate

that the wave is oscillating and the amplitude increases exponentially with increasing

height), where ̅ . ̅ is the scale height given by:

 ̅
 ̅

 (2.11)

The Brunt-Vaisala frequency, , is the natural oscillation frequency of a displaced air

parcel in the atmosphere (below 100 km altitude, values are typically 5-10 minutes) and

satisfies:

 ̅

 ̅

 ̅

 ̅

 ̅

 (2.12)

where , is the gas constant for air, is the specific heat of air at constant

pressure, and is potential temperature.

 Solutions to these equations are various waves that satisfy two particular relations:

the dispersion relation and polarization relations. The dispersion relation relates the wave

frequencies and wavenumbers. It also restricts wave frequencies to the range between the

Brunt-Vaisala frequency and the “inertial frequency”, the lower frequency limit set by the

Coriolis parameter. The polarization relations relate wave-velocity amplitudes to the

temperature, density, and pressure amplitudes. Both the dispersion and polarization

relations can differ slightly, depending on the terms ignored/retained in the linearized

approximations to the equations of motion.

 For the approximated equations of motion, the dispersion relation is:

 (2.13)

8

A simpler form of the approximation, called the Boussinesq approximation, is:

 (2.14)

for a wide range of frequencies larger than and smaller than , this dispersion

relations can be approximated by:

 (2.15)

 The polarization relation is approximated by the following equations:

 ̂

 ̂

 ̅
 ̂ (2.16)

 ̂

 ̂ (2.17)

 ̂
 ̅

 ̂

 ̅

 ̂

 ̅ ̂

 ̅

 ̅

 ̂ (2.18)

 ̂

 ̅

 ̂

 ̅
 (2.19)

 ̂ ̂ ̅ ̅ (2.20)

where ̂ is the vertical displacement, and ̅ is the “intrinsic phase speed” of

the wave, or the wave phase speed with respect to the mean wind at the height of the

wave. Equations 2.16 and 2.17 are exact for the Boussinesq approximation and

Equations 2.18, 2.19, and 2.20 are only valid for .

More precise relations can be developed; however, these approximations are useful since

they are simple, yet are still fairly accurate over a wide range of frequencies. Unlike the

derivations above, the mean wind is allowed to be non-zero, equal to ̅ .

9

2.6 The spectral tail

While the theory of gravity wave spectra in the atmosphere and oceans is very similar,

VanZandt (1982) summarized three key differences: (1) Doppler shifting by mean flows

is more important in the atmosphere, (2) nonlinear wave interactions occur over shorter

timescales, and (3) the atmospheric buoyancy frequency is roughly independent of

height, whereas it decreases exponentially with depth in the ocean.

 In the atmosphere, the slope of the tail is roughly invariant with altitude and

flattens off at lower frequencies (see the sample tail in Figure 2.2). At higher altitudes,

the tail is longer (i.e. flattens off at a lower frequency). Van Zandt (1982) claimed this

Figure 2.2: (i) Measured atmospheric spectra () of horizontal gravity wave

fluctuations as a function of vertical wavenumber () for various heights. Note that

the “roll off” point, which marks the transition between the part of the

spectrum and the flatter part changes with altitude. (ii) Model spectra proposed by

Smith et al. (1987). These graphs were taken from Hocking (in prep.), who adapted

them from Smith and Van Zandt (1987).

10

was the result of saturation of particular frequencies and left the physical cause for

separate identification.

Hodges (1967, 1969) introduced linear perturbation theory to model gravity

waves, which assumes that the wave amplitudes are small enough such that the nonlinear

terms are negligible. When gravity waves propagate upwards in the atmosphere, the

wave amplitudes grow exponentially (due to exponentially decreasing density). Some

authors (e.g. Lindzen 1981, 1984) used linear instability theory to account for the form

and intensity of the tail; at a critical height, the linear approximation breaks down and

above this height, nonlinearities cause saturation. Hines (1991) reworked the linear

instability formulation and found inconsistencies. Hines (1991) created a Doppler shifted

theory which accounts for the intensity and the form of the spectral tail, claiming that

linear instability theory may account for the length of the tail.

Another potential cause of gravity wave saturation is shedding. As waves

increase in altitude, their amplitude increases as well. At a critical height (dependent on

the frequency of the wave), the wave grows too big and any energy that would normally

cause an increase in amplitude dissipates as turbulence instead.

Extending Weinstock’s (1976) nonlinear wave diffusion theory and Hines’ (1991)

Doppler spreading theory, Medvedev and Klaassen (2000) explained saturation by

turbulence induced in waves that exceeded the convective instability thresholds. They

parameterized the power spectral density, , as:

 (2.21)

where is roughly a constant (which slowly varies with and the mean wind), is the

Brunt-Vaisala frequency, and is vertical wave number. Throughout the literature,

values of range from

 to

 (see Medvedev & Klassen, 2000), with values typically

being

 (e.g. Smith et al. 1987). Other literature even has dependent on seasons. This

model gives reasonable magnitudes for acceleration of mean flow and some observations

of saturated, near-monochromatic waves support this model. This model is also attractive

11

for use in parameterization schemes because it has a clear physical interpretation.

However, it has some disadvantages too; the theory only works for near monochromatic

waves, it requires the gravity wave amplitudes to be nearly constant at and above the

breaking level, and, when using this model, the vertical wave drag profiles and enhanced

diffusion become step functions, which cause continuity problems in large scale models.

12

Chapter 3

3 Radars

3.1 The antennas

The radars used to gather data for this thesis do not use a large dish for transmitting and

receiving the signal, but rather use a large array of smaller antennas that work together as

one coherent unit. This is called a "phased array" and its beam can be steered without

actually tilting the ground upon which the antennas rest. The specific radars for this

study are comprised of 128 antennas (called Yagi antennas). In the arrays used, each

antenna acts as both a transmitter and receiver. The antennas have three horizontal bars;

from the top down, they are: the director, the driven element, and the reflector.

Figure 3.1: Yagi antennas. Part of the antenna array located at Eureka, NU.

13

3.2 How they work

The transmitter, under the control of the computer, sends an electronic pulse to the

antenna array and each antenna transmits the pulse as an electromagnetic wave. Since

there are many antennas transmitting the same pulse simultaneously (an exception, i.e.

beam steering, is discussed below), the transmitted pulse appears as a plane wave

propagating vertically upward from the array, as demonstrated in Figure 3.2. Each of the

planar waves is an interference pattern caused by the individual antenna wavelets. The

waves reflect off targets (or more specifically, gradients in refractive index) in the

atmosphere. Some of the reflected wave propagates back towards the antenna array.

The reflected wave induces a current in the driven element (the middle horizontal

bar). The director and reflector play the role of narrowing the radar beam, and so in some

senses "concentrating" the signal. After going through hardware processing, the voltage

is digitized at a rate corresponding to (in our case) intervals.

3.3 Beam steering

The 3D interference pattern created by the antennas is called the beam pattern. The beam

pattern represents the "pattern of sensitivity" of the radar, with targets in the regions of

highest sensitivity being most strongly detected; i.e. the direction of the beam pattern

defines where the radar is “looking”. The beam pattern is the diffraction pattern of the

antennas and, therefore, depends on the layout of the antennas and their orientation with

respect to each other. Beam patterns often have one large central beam and several

Figure 3.2: A schematic describing how the transmitted pulses from the antenna

array appear to form a planar wave.

14

smaller beams (called sidelobes), which point in different directions than the main beam.

Since the sidelobes are smaller (i.e. lower power), most of the atmospheric detections

occur through the main lobe. The effect of sidelobes is discussed below.

In the case described above, the main beam points perpendicular to the plane of

the radar (normally vertical). To steer the beam (to “look” in other directions), a time

delay is applied between nearby antennas transmitting the same pulse, as seen in Figure

3.3.

Figure 3.3: A schematic describing how the radar beam is steered through the sky.

Rather than transmitting the pulse simultaneously, the left-most antenna started

transmitting, followed by the second from the left, the third from the left, and then

the rightmost antenna. Typically delays are a small fraction of one wave-period; in

our case typically or so.

3.4 Detection difficulties

3.4.1 Detection through sidelobes

Since the main beam is large in strength (so it has more power) in comparison to the

sidelobes, it is assumed that targets detected are located within the main beam. However,

a strong reflector (e.g. a plane, a building, etc.) in a side lobe will have the same effect as

a weaker reflector in the main beam.

Once the radar is built (i.e. the position of the antennas is set), there is not much

that can be done about detection through sidelobes. In some cases, a special procedure

15

called "interferometry" can be used to obtain better directional information, but this

requires extra antennas and is not needed for our particular studies.

3.4.2 Non-atmospheric objects

It’s a bird! It’s a plane! It’s not an atmospheric target. The targets in the atmosphere are

weak reflectors (small density changes) and typically move relatively slowly (most

velocities are less than). When something with strong reflectance is in the radar

volume or an object moves unusually fast through the radar volume, it has a stronger

influence on the data than the atmospheric targets. However, their distinct nature often

allows them to be recognized and ignored.

The power returned to the antenna array depends on the square of the potential

refractive index gradient. The refractive index in the lower atmosphere is:

 (3.1)

where is the pressure in millibars, is the temperature in Kelvin, and is the partial

water vapour pressure in millibars. Sometimes this equation also contains a plasma term,

which is unnecessary in the region of interest for this study. The gradient is given by

(Tatarski 1961, with updated constants from Larsen and Röttger 1982):

 [

] [

] (3.2)

where is the temperaure in degrees celsius, is the adiabatic lapse rate, and

 is the specific humidity. The power received by the radar, , is

proportional to the square of the refractive index gradient, viz.:

 (3.3)

Therefore, larger refractive index gradients, such as those between the atmosphere and a

bird or plane, return more power to the radar than smaller refractive index gradients, such

as the atmospheric targets we are interested in.

16

Often, highly reflective, non-atmospheric objects (e.g. birds, airplanes) do not

stay in the radar volume for very long, perhaps a few tens of seconds. Such targets can

be removed in two ways: (1) recognizing the characteristic signature of the entity and

removing it from the data-stream or (2) simply ignoring the entire data set. Typically

calculation of a wind measurement requires of data, so if such a group is too

severely contaminated, the entire data set is ignored.

Another type of non-atmospheric target that gets detected is ground clutter (e.g.

mountains and buildings). Reflections from ground clutter enter the radar beam through

the sidelobes and are seen as having zero velocity. Various tricks can be used to remove

these contaminants, but they are only partly successful. In this thesis, we primarily use

data collected using an off-vertical beam, since the horizontal movement of the air

(generally) produces non-zero radial velocities and ground clutter (which occurs at)

can be notched out. Vertical beams are harder to use because the vertical winds are often

close to zero and merge in with the ground-clutter, making separation of the different

spectral sources more difficult, as shown in Figure 3.4.

3.4.3 Poor low altitude range data: impedance mismatch

If the impedance of the antenna and the cables are not exactly the same, then when the

transmitted pulse passes from the coaxial cable to the antenna, some of the signal is

reflected. The reflected signal propagates back along the coaxial cable and is reflected at

the transmitter end since it is not expecting to receive a signal of that strength (the

receiver is disconnected when the voltage is over a particular threshold). The reflected

signal propagates back to the antenna where some is reflected again and some is

transmitted. This oscillation leads to a ringing after the pulse has been transmitted.

Sometimes this ringing interferes with receiving reflections from the pulse scattered from

atmospheric targets. This often results in unreliable data for the lower end of the radar’s

range (for the radars used in this thesis), so conclusions here-in are primarily

based on higher-altitude data.

17

Figure 3.4: An example of radial velocities when the radar beam is vertical (left

hand side) and off-vertical (right hand side) with ground clutter removed. Each

successive spectrum corresponds to a different height. The numbers to the left of

each spectrum indicate the recorded power. At the upper heights, the signal

appears noisier due to a loss of signal (for reasons discussed in Section 3.4.4). The

off-vertical velocities appear to become noisier than the vertical velocities at lower

altitudes because of the anisotropic scattering nature of the atmospheric targets.

From Hocking (in prep.), originally from Gage and Green (1978).

18

3.4.4 Poor high altitude range data: low power

If the scatterers are particularly weak, the reflected wave may go undetected by the radar.

This is particularly true for the higher altitudes of the radar’s range (for the

radars used in this thesis) for a variety of reasons.

The power transmitted from the radar diminishes in strength proportionally to the

range squared. Upon reflection, the power of the reflected wave also diminishes

proportionally to the range squared, so the power received by the radar diminishes as the

range to the power . This is partially compensated for by the fact that the radar

volume (where the atmospheric targets are detected) increases proportionally to the range

squared. This still results in a net loss of returned power. Specifically, the received

power is inversely proportional to the square of the range—scatterers at altitude

return times less signal than scatterers at altitude.

The properties of the atmosphere also come into play. Air density decreases

exponentially with altitude—air density at is times less than at the ground—

resulting in a loss of scattering capability. Furthermore, the scattering cross-section also

depends on water vapour content to some extent. Water vapour densities are

considerably less at altitude. All these factors combine to mean that above

(typically) altitude, the signal is too weak for our radars to detect.

3.4.5 Range determination and range-aliasing

The radar sends out a pulse, then “listens” for a response. The distance from the radar to a

target (the range of the target) is determined from the expression:

 (3.4)

where is the speed of light in air (the speed at which the pulse propagates) and is the

time between the radar pulse-transmission and pulse reception. In practice, there will be

multiple targets and so multiple received pulses at different lags. The factor of comes

from the fact that the observed time is twice the time the wave took to get from the radar

to the target (as the wave has to travel there and back again). In this equation, is used to

19

denote range as opposed to an (implying height) since if the beam is pointing in a

direction other than vertical, range and height are different.

The detection process assumes that everything detected is a reflection from a

target due to the last pulse that was transmitted. This is not always true; sometimes a

pulse from a very distant target may return to the radar after a subsequent pulse was

transmitted, resulting in range aliasing (incorrectly calculating the range) for detections

farther away than:

 (3.5)

where is the time between successive radar pulses. Since the radar is not designed to

detect reflections above , the returned pulses from beyond are generally weak;

however, a strong reflection (e.g. meteor) at a higher altitude may still reflect the pulse

such that it is detected by the radar.

For an example, consider a radar that transmits pulses at an interval allowing it to

see up to away. If a meteor at range reflected the pulse, the radar would

interpret the meteor reflection as happening at range (a reflection from the most

recently transmitted pulse) as opposed to (a reflection from the fourth last pulse,

which is the true pulse of origin for the scattered pulse).

3.5 Why radar? (As opposed to other methods)

Consistent, short time interval data are needed for this study. Radar is the only method

that gathers atmospheric measurements of this nature.

In-situ measurements, such as rockets and weather balloons, can yield very

detailed data. With in-situ measurements, the experimenter has no control over what

section of atmosphere it samples and the time between successive launches (

hours) is too long for this study.

Other ground-based measurements (mainly lidar) can provide successive, highly

detailed wind measurements, but until recently they were only useful on clear, dark

20

nights. For mid-latitude sites, the lidar would be unoperational every day during sunlit

hours, which would not be ideal. For Arctic sites, the lidar would be unoperational for

the entire summer (as the sun does not set). These gaps in data collection are not well

suited for this study. Recent developments have allowed newer lidars to work in the

daytime as well, but they are still restricted by fog and clouds and—for the present—are

primarily useful below or so in height (Stiller et al. 2012).

3.6 Our sites

This thesis uses three Canadian radar sites; Eureka, Negrocreek, and Markstay (as shown

in Figure 3.5). All three sites consist of 128 Yagi antennas and operate somewhere in the

band 46-51 MHz, with specific frequencies being different at each radar.

Figure 3.5: A map (courtesy of Google) indicating the locations of the three radar

sites used.

21

3.6.1 Eureka, Nunavut

Eureka, Nunavut (pictured below) is a high-Arctic site at GPS coordinates 80.00 N, 85.80

W. The radar at Eureka is surrounded by Arctic tundra. The radar operates at 51.0 MHz

and has been operational since 2007.

Figure 3.6: A panoramic view of the radar station at Eureka, NU with Blacktop

mountain in the distance. The computer and transmitter are located inside the blue-

green building to the right.

3.6.2 Negrocreek, Ontario

Negrocreek (pictured in Figure 3.7) is located in southern Ontario at GPS coordinates

44.36 N, 80.86 W near the town of Owen Sound, near the Great Lakes. The land at

Negrocreek is swampy and surrounded by trees. The radar operates at 48.92 MHz and

has been operational since 2008.

3.6.3 Markstay, Ontario

Markstay (picture in Figure 3.8) is also located in Ontario, north of Negrocreek at GPS

coordinates 46.54N, 80.54 W, a short distance from Sudbury. The area surrounding

Markstay is mostly forest and Canadian shield. The radar operates at 45.47 MHz and has

been operational since 2010.

22

Figure 3.7: Part of the radar station at Negrocreek, ON.

Figure 3.8: Part of the radar station at Markstay, ON.

23

Chapter 4

4 Spectral analysis methods

A repetitive function or signal can be represented as a superposition of simple sine and

cosine waves, sometimes referred to as harmonics. However, in a more developed

theory, even non-periodic functions can be represented in this way, provided that an

infinite number of frequencies are available. The Fourier transform of a function

determines which frequencies, and the amplitude of each frequency that the harmonics

require, in order to sum to the original function. For a continuous function in time, ,

the Fourier transform has many equivalent definitions; however, this thesis will use the

definition:

 ∫

 (4.1)

for all real and , where represents time (in seconds) and represents frequency (in

hertz).

 The power spectrum (relative power of each harmonic vs. frequency) is often used

to analyse the harmonics of a signal. The power spectrum intensity is given by:

 ‖ ‖ (4.2)

The remainder of this chapter discusses issues arising from using the Fourier transform

with our specific data (finite, discrete, and non-uniformly spaced data), and our solutions

to those problems (windowing functions and the date-compensated discrete Fourier

transform).

4.1 Finite Data

In practice, the measured signal is not infinite in extent, and the Fourier transform is

usefully redefined as:

 ̂ ∫ ̂

 (4.3)

24

where represents the signal length and the hat on the signifies the finite data signal

(which, for this section, is continuous; discretizing the signal causes other effects, which

are discussed later). For the purposes of this thesis, ̂ is one component of the radar-

derived wind velocity. In terms of the ideal, infinite signal, the finite signal is:

 ̂ (4.4)

where is a boxcar window function:

 {

 (4.5)

so that:

 ̂ ∫

 (4.6)

From this perspective, it is evident that the finite nature of the data intrinsically applies a

window function. This has deleterious effects in the frequency domain, causing a

broadening of spectral frequencies and “frequency leakage”.

Multiplying the signal by the window function applies the window to the signal.

In the frequency domain, this is equivalent to convolving the signal’s Fourier transform

and the window function’s Fourier transform. To see the full effects of a window,

consider a pure sine wave. The Fourier transform of a pure sine wave is a delta function

at the wave’s frequency, as shown in Figure 4.1 (ii). The Fourier transform of a boxcar

window function is a sinc function, as shown in Figure 4.1 (iv). The Fourier transform of

a pure sine wave, after applying a boxcar window to it, is a sinc function (the boxcar’s

Fourier transform) centred at the sine wave’s frequency, as shown in Figure 4.1 (vi).

Note that the boxcar Fourier transform has a main lobe centred at zero with smaller

“sidelobes” on either side. While a wider main lobe broadens spectral peaks, the

sidelobes spread spectral frequencies to higher and lower frequencies.

However, a boxcar is only one type of window. Sometimes, spectral clarity

results from using a more restrictive window, with tapering at the edges. It may seem

25

that such a process would further deteriorate the spectrum, but advantages ensue due to

reduction of the sidelobes. Since using a windowing function is unavoidable, a variety of

window functions were examined.

Figure 4.1: A demonstration of how a multiplication in the time domain is equivalent

to a convolution in the frequency domain. (i) A pure sine wave, (iii) a boxcar

window function, and (v) the product of (i) and (iii). The plots in the right column

are the corresponding Fourier transforms of the plots shown to their immediate left.

0 1 2 3 4

-1

0

1

i. Sample pure sine wave

Time, t (s)

 R
e
la

ti
v
e
 a

m
p
lit

u
d
e

0 2 4 6 8 10
-0.5

0

0.5

1

ii. Fourier transform of pure sine wave

Frequency, f (Hz)

 R
e
la

ti
v
e
 a

m
p
lit

u
d
e

0 1 2 3 4

-1

-0.5

0

0.5

1

iii. Boxcar window function

Time, t (s)

 R
e
la

ti
v
e
 a

m
p
lit

u
d
e

0 2 4 6 8 10
-0.5

0

0.5

1

iv. Fourier transform of boxcar window

Frequency, f (Hz)

 R
e
la

ti
v
e
 a

m
p
lit

u
d
e

0 1 2 3 4

-1

0

1

v. Sine wave with boxcar window

Time, t (s)

 R
e
la

ti
v
e
 a

m
p
lit

u
d
e

0 2 4 6 8 10
-0.5

0

0.5

1

vi. Fourier transform of sine wave

 with boxcar window

Frequency, f (Hz)

 R
e
la

ti
v
e
 a

m
p
lit

u
d
e

26

4.2 Windows

Creating the “best” window is a result of optimizing the main lobe width and relative

amplitude of the sidelobes. Since the data set is finite, there will always be sidelobes;

however, they can be suppressed at the expense of widening the main lobe (broadening

the main lobe is equivalent to smearing frequencies into neighbouring frequencies in the

frequency domain). Similarly, the main lobe can be narrowed at the expense of

increasing the sidelobes (potentially leading to frequency aliasing). Both large sidelobes

and a wide main lobe are detrimental to the spectra. Four windows are examined in this

thesis to determine the optimal window for the gravity wave spectra. The windows

examined here are: boxcar, boxcar with 10% cosine tapering, Hann (sometimes called

Hanning), and Hamming. The windows and their Fourier transforms are displayed in

Figure 4.2. The normalization and Fourier transform of each window are displayed step-

by-step in the Appendix.

4.2.1 Boxcar window

The boxcar window (Figure 4.2(i)) for a signal length of is:

 {
 | |

 (4.7)

The boxcar window may appear to be ideal because it gives each data point equal

weighting. However, the sudden start and stop of the data causes detrimental ringing in

the frequency domain.

4.2.2 Boxcar with 10% cosine taper window

The boxcar with 10% cosine taper (Figure 4.2 (iii)) for a signal length of is:

{

 (

)

 | |

 (

)

 (4.8)

27

This window gives 80% of the data equal weighting and uses the outside 20% (10% at

the beginning and 10% at the end) to smooth the ringing effect of the sudden start and

stop.

Figure 4.2: The left column contains representations of all the windows applied to

data sets in this thesis. While the windows in plots (i), (iii), (v), and (vii) span 10

seconds in this sample, when applied to the data in this thesis, they span the same

length of time as the data (typically a month). The plots in the right column are the

Fourier transform of the plots shown to their immediate left.

-6 -4 -2 0 2 4 6

0

0.1

0.2

Time, t (s)

R
e
la

ti
v
e
 A

m
p
lit

u
d
e i. Boxcar

-6 -4 -2 0 2 4 6

0

0.1

0.2

Time, t (s)

R
e
la

ti
v
e
 A

m
p
lit

u
d
e iii. Boxcar with 10% cosine taper

-6 -4 -2 0 2 4 6

0

0.1

0.2

Time, t (s)

R
e
la

ti
v
e
 A

m
p
lit

u
d
e v. Hann

-6 -4 -2 0 2 4 6

0

0.1

0.2

Time, t (s)

R
e
la

ti
v
e
 A

m
p
lit

u
d
e vi. Hamming

-1 -0.5 0 0.5 1

0

0.5

1

Frequency, f (Hz)

R
e
la

ti
v
e
 a

m
p
lit

u
d
e ii. Boxcar FT

-1 -0.5 0 0.5 1

0

0.5

1

Frequency, f (Hz)

R
e
la

ti
v
e
 a

m
p
lit

u
d
e ii. Boxcar with 10% cosine taper FT

-1 -0.5 0 0.5 1

0

0.5

1

Frequency, f (Hz)

R
e
la

ti
v
e
 a

m
p
lit

u
d
e ii. Hann FT

-1 -0.5 0 0.5 1

0

0.5

1

Frequency, f (Hz)

R
e
la

ti
v
e
 a

m
p
lit

u
d
e ii. Hamming FT

28

4.2.3 Hann window

The Hann window, named for Julius von Hann, (Figure 4.2(v)) is the discrete window

function:

 (

) (4.9)

for { | }, where is the sample size. For the purposes of this section (to

demonstrate the effects of a windowing function rather than the effects of discretization

of data), the Hann window is treated as the continuous function:

 {

 (

) | |

 (4.10)

where is the signal length and the window has been shifted so that its centre is at .

The Hann window widens the main lobe to minimize the amplitude of all side lobes.

4.2.4 Hamming window

The Hamming window, named for Richard W. Hamming, (Figure 4.2(vii)) is the discrete

window function:

 (

) (4.11)

for { | }, where is the sample size. For the purposes of this section, the

Hamming window is treated as the continuous function:

 {
 (

 (

)) | |

 (4.12)

where is the signal length, is the normalization constant

, and the window has

been shifted so that its centre is at . Unlike the other windows in this thesis, the

Hamming window tapers off at the beginning and end of the data set, but it is non-zero at

29

. While the Hann window aims to reduce the effect of all sidelobes, the Hamming

window aims to reduce the first side lobe as much as possible.

4.3 Discrete Data

A second issue arises when trying to use the Fourier transform; the Fourier transform is

defined for a continuous signal and the radar collects discrete data. Discretizing the data

is equivalent to multiplying the continuous signal (i.e. the north component of the wind

velocity in our case) by a sampling function; specifically a series of Dirac delta functions

evenly spaced at an interval of . The sampling function is:

 ∑
 (4.13)

The Fourier transform of the sampling function is another sampling function:

 ∑
 (4.14)

where the spacing in the temporal and frequency domains are related by:

 (4.15)

Recalling that a multiplication in the temporal domain is a convolution in the frequency

domain, multiplying the signal by a sampling window leads to repetition of the signal’s

Fourier transform in the frequency domain, as Figure 4.3 demonstrates.

In order to determine a frequency, it must be sampled at least twice per cycle. If a

frequency is sampled less frequently, it appears as a wave of lower frequency. For a

visual example, see Figure 4.4. Any wave of frequency , which is above half the

sampling frequency (termed the Nyquist frequency), appears as the lower frequency:

 (4.16)

where is the Nyquist frequency (). This implies that all frequencies larger

than the Nyquist frequency are mapped onto the range [], as demonstrated in Figure

30

4.5 to Figure 4.7. Figure 4.5 is a sample spectrum. If the data were discretized at a rate

of 20 Hz, the resulting calculated spectrum would be given by Figure 4.6. Figure 4.7

shows how the sample spectrum and resulting spectrum are related. Non-equally

sampled data may produce harmonics beyond the Nyguist frequency. This would add to

the noise level at all frequencies and the harmonics would be aliased to the wrong

frequency.

Figure 4.3: The Fourier transform of a pure sine wave with a frequency of 10 Hz,

sampled at a frequency of 30 Hz. The Nyquist frequency (denoted as Nyq in the

figure) is half the sampling frequency (15 Hz). Beyond the Nyquist frequency, the

spectrum repeats itself as described in the text.

0 10 Nyq 25 2*Nyq 40 3*Nyq 55 4*Nyq

0

0.2

0.4

0.6

0.8

1

Frequency, f (Hz)

R
e
la

ti
v
e
 a

m
p
lit

u
d
e

31

Figure 4.4: The solid line shows a pure sine wave with frequency 1/10 Hz. The black

circles represent the sine wave if it were sampled at a rate of 1/12 Hz. However, the

black dots also correspond to a sine wave of frequency 1/60 Hz (

), shown by

the dashed line. If a 1/10 Hz sine wave was sampled at 1/12 Hz, the Fourier

transform would mistake the original sine wave as a 1/60 Hz sine wave. This leads

to frequency aliasing when data are digitized too slowly.

0 20 40 60 80 100

-1

-0.5

0

0.5

1

Time, t (s)

R
e
la

ti
v
e
 a

m
p
lit

u
d
e

32

Figure 4.5: A sample spectrum created to demonstrate the effects of sampling at an

insufficiently high frequency. The spectral peaks occur at frequencies: , ,

 , and . See Figure 4.6 for the final result of sampling at a frequency of

 . See Figure 4.7 to see why that is the case.

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency, f (Hz)

R
e
la

ti
v
e
 a

m
p
lit

u
d
e

Sample spectrum

33

Figure 4.6: The resulting calculated spectrum when the data set that was created in

Figure 4.5 is sampled at a frequency of 20 Hz. Notice that the four peaks present in

the sample spectrum (, , , and in Figure 4.5) appear at ,

 , , and , respectively. Figure 4.7 shows the relation between the

sample spectra and this calculated spectra.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency, f (Hz)

R
e
la

ti
v
e
 a

m
p
lit

u
d
e

Resulting calculated spectrum

34

Figure 4.7: (i) The portion of the original spectrum in Figure 4.5 between 0 Hz and

the Nyquist frequency (10 Hz). (ii) The portion of the original spectrum in Figure

4.5 between the Nyquist frequency and twice the Nyquist frequency. (iii) The

portion of the original spectrum in Figure 4.5 between twice the Nyquist frequency

and thrice the Nyquist frequency. (iv) The portion of the original spectrum in

Figure 4.5 between thrice the Nyquist frequency and four times the Nyquist

frequency. (v) The spectrum resulting from sampling the data for Figure 4.5 at 20

Hz and (as a result) the sum of plots (i) through (iv) as they are lined up. Since the

data in this example are sampled at 20 Hz, frequencies in plots ii, iii, and iv are

mapped onto the range []. This can be seen in more detail in Figure 4.6.

0 Nyq
0

0.5
1

R
e

la
ti
v
e

a

m
p

li
tu

d
e i. Portion of spectra between 0 and Nyq

Nyq 2*Nyq
0

0.5
1

R
e

la
ti
v
e

a

m
p

li
tu

d
e ii. Portion of spectra between Nyq and 2*Nyq

2*Nyq 3*Nyq
0

0.5
1

R
e

la
ti
v
e

a

m
p

li
tu

d
e iii. Portion of spectra between 2*Nyq and 3*Nyq

3*Nyq 4*Nyq
0

0.5
1

R
e

la
ti
v
e

a

m
p

li
tu

d
e iv. Portion of spectra between 3*Nyq and 4*Nyq

0 1 2 3 4 5 6 7 8 9 10
0

0.5
1

R
e

la
ti
v
e

a

m
p

li
tu

d
e v. Resulting calculated spectrum

Frequency, f (Hz)

35

4.4 Fast Fourier transform

To summarize thus far, the Fourier transform of a set of data from the radar is:

 ̃ ∫ ̃

 (4.17)

where ̃ is the radar data given by:

 ̃ (4.18)

where is the continuous atmospheric phenomenon, is the window function, and

 is the sampling function. A simpler, more computer friendly method of computing

Equation 4.17 is to implement the definition of the discrete Fourier transform (DFT)

instead of the continuous version above. The DFT is defined as:

 ̂ ∑ ̂

 (4.19)

for discrete points, where , and ̂ is the discrete windowed radar data (i.e.

).

4.5 Non-Uniformly Spaced Data

The radar data are non-uniformly spaced in time for a variety of reasons. On long time

scales, interruptions to the radar’s operation (due to, for example, power interruption or

equipment failure) require on-site technical intervention from London, ON. This is not

always feasible on a short timescale, leading to missing periods of data. While

Negrocreek and Markstay are approximately a 2-3 and 6-8 hour drive one way

respectively, Eureka is an expensive, fly-in only service run. Figure 4.8 depicts when the

radar sites were operational.

 Even when the radars are operational, the data sampling rate is inconsistent, as

shown in Figure 4.9Error! Reference source not found.. In some cases, the data were

gathered for previous studies, which may have been collected at different sampling rates.

Some days the radar was shut down for a few hours to allow for repairs and maintenance.

36

If a wind velocity differs from the nearest neighbouring measurements by more than

 (user-definable), it is discarded as it is unlikely to be atmospheric data in the

Figure 4.8: Black represents the radar site being non-operational. Where the radar

sites are operational (white), uniformly spaced data may still be unavailable. The

number on the ordinate is the year. For ease of reading, the radar site names

(Eureka, Negrocreek, and Markstay) are shortened to just the first initial (E, N,

and M respectively).

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

E

2
0
0
7

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

N

E

2
0
0
8

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

N

E

2
0
0
9

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

M
N
E

2
0
1
0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

M
N
E

2
0
1
1

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

M
N
E

2
0
1
2

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

M
N
E

2
0
1
3

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

M
N
E

2
0
1
4

37

expected radar volume (recall range aliasing, non-atmospheric scatterers, and detection

through sidelobes). For some atmospheric conditions, the radar is unable to measure

within the extremes of its range (e.g. not enough power, pulse saturation), resulting in

missing data for low (roughly 1.0-3.0 km altitude) and high (roughly 12.0-14.0 km

altitude) ends of the radar’s range.

 While there are numerous methods of coping with non-uniformly spaced data

(e.g., Lomb-Scargle (Lomb 1976, Scargle 1982), MUSIC (Marple 1987,etc.), this thesis

examines two solutions: (1) using averaging of bins and interpolating when necessary to

use the fast Fourier transform and (2) using the date-compensated discrete Fourier

transform.

Figure 4.9: A typical data set over the span of a day. Each of the points is a minute

apart. The blue circles represent minutes where there is an accepted radial velocity.

The red triangles represent minutes for which data are missing (for a variety of

reasons—see text).

38

4.6 Bin averaging and interpolation

In an attempt to reduce the amount of interpolating necessary due to short-term (on the

order of minutes to a few hours) non-uniform data, the radar data are averaged in bins of

15 minutes. When there are empty bins, the gaps are interpolated. The interpolation is

linear between the data points immediately before and after the empty bins, with random

noise added. The same standard deviation is used for the interpolated data as exists in the

bins near the missing one(s) (5 points before and 5 points after). Missing gaps of data are

not interpolated if the gap spans six hours or longer. As such, one month may have

multiple “strands” of data to compute the spectra and spectral slope. In this case, the

longest data strand is selected as representative for the month. The Fourier transform is

then calculated using Matlab’s built in FFT function.

 Matlab’s built-in FFT uses a combination of algorithms, including: the Cooley-

Tukey algorithm (Cooley & Tukey 1965), a variation of Cooley-Tukey (Oppenheim

1989), a prime factor algorithm (Oppenheim 1989), a split-radix algorithm (Duhamel &

Vetterli 1990), and Rader’s algorithm (Rader 1968). For more information on the details

of solving the DFT, see Matlab’s help page on FFT.

4.7 Date-compensated discrete Fourier transform

The second method this thesis uses to cope with non-uniformly spaced data is the date-

compensated discrete Fourier transform (DCDFT), as proposed by Ferraz-Mello (1981),

which computes a power spectral density estimate for discrete, unequally time-spaced

data. For a particular frequency, , this method involves fitting the following three

curves to the data (after they are orthonormalized in a Gram-Schmidt fashion and the

mean of the data is removed), as presented in Ferraz-Mello (1981):

 (4.20)

 (4.21)

 (4.22)

39

This fit provides a power spectral density estimate to the data for frequency . To obtain

a power spectrum for this thesis, this process is repeated for frequencies evenly spaced

between

 where is number of data points in the signal. In the special case of

equally time-spaced data, the DCDFT simplifies to the discrete Fourier transform.

4.8 Spectral slope

Once the Fourier transform of the radial velocities is determined and converted into a

power spectrum, the slope is determined. All of the slopes are determined using a least

squares fit to the frequencies between 6 hours and 2 days (approximately

). The upper bound of the period range (i.e. 2 days) is the

upper boundary to gravity wave periods. The lower bound (i.e. 6 hours) was chosen such

that it does not include the shallowing of the noise floor. A sample spectrum is shown in

Figure 4.10 with the green line showing the spectral slope for the section included in the

calculation.

Figure 4.10: A sample spectrum (Eureka, February 2010, 3.0 km range) with the

spectral slope shown in green for the period range 6 hours to 2 days.

40

Chapter 5

5 Spectral method selection

This thesis examines two different ways of determining the monthly spectra with four

different windows at three different radar sites. To save on computation, the different

methods are illustrated in detail for only one of the sites (Negrocreek, a mid-latitude site)

for one year, with some comparisons to a second site (Eureka, a high-latitude site). All

sites, and a wider coverage of years, are presented once the methodologies are optimized.

The year 2009 was selected as the comparison year since both Eureka and

Negrocreek were operational for the majority of that year. The “best” method of

determining spectra is chosen from this comparison and then used to compare all three

radar sites (Eureka, Negrocreek, and Markstay) over their operational periods (7, 6, and 4

years respectively).

5.1 Definition of “best”

Each of the monthly spectra for Negrocreek for each altitude and each window type was

examined visually and the “breakpoint” frequency was selected manually. The

breakpoint frequency separates the portion of the spectrum with an identifiable non-zero

slope—sometimes referred to as the “signal” portion—and from the noise floor. Figure

5.1 shows a sample spectra with the breakpoint indicated. The breakpoint value is used

to determine which method is “best”; the higher frequency the breakpoint, the more of

the spectra can be seen (i.e. is not hidden in noise). Figure 5.2 to Figure 5.5 compare the

breakpoint frequency between different windows and methods.

The plots depicting the breakpoint frequency as a function of altitude and month,

Figure 5.2 to Figure 5.5, show the difference in the breakpoint frequency between two

methods (i.e. FFT or DCDFT) with the same window. The methods being compared are

noted on the colour bar axis. The site and window that is being held constant is noted at

the top of the figures. Similarly, Figure 5.10 to Figure 5.16 show the difference in the

breakpoint frequency between two windows with the same method. The windows being

41

Figure 5.1: A typical monthly spectrum, indicating the breakpoint frequency. This

spectrum is for Negrocreek, January 2009 using the DCDFT method with the

Hamming window.

compared are noted on the colour bar axis (the boxcar with 10% cosine taper window is

shortened to “10% cos”). The site and method that is being held constant is noted at the

top of the figures. The colour indicates which of the method and window combinations

has a higher break point (i.e. lower noise floor and are preferred). A more intense colour

implies that one method/window combination has a higher breakpoint frequency than the

other. However, the most intense colours do not necessarily imply a large difference in

breakpoint frequency. For spectra that did not have a noise floor (i.e. the majority of the

spectra is noise), the breakpoint frequency was set to zero. Where this is the case for one

window (at a particular range gate in a specific month) and not the second, that colour-

coding at the appropriate altitude, month coordinate will appear as an intense colour

favouring the second window. Yellow values imply that the two windows have the same

42

breakpoint frequency. White values imply that the spectra for both windows did not have

a noise floor. These plots demonstrate this definition of best.

There is a second criterion to the “best” as well. Atmospheric phenomena, such as

gravity waves and their spectra, are expected to be fairly continuous as a function of

altitude and time. Since the spectra used in this thesis are monthly averages, the spectra

are not necessarily expected to be continuous from month to month; however, they

should still be roughly continuous as a function of altitude. Spectral methods that yield

erratic spectral slopes as a function of altitude are probably not an accurate description of

the physical scenario. Therefore, the second criteria to being the “best” is that the slopes

are smooth functions with altitude.

5.2 The “best” method

Under the breakpoint definition of “best”, the fast Fourier transform (FFT) method

appears better than the date-compensated discrete Fourier transform (DCDFT) for all

windows.

While the FFT appears to be the better choice, the spectral slopes computed with

the FFT are more erratic than those computed with the DCDFT. Figure 5.6 to Figure 5.9

depict the spectral slopes using the FFT and DCDFT methods for a representative

window for both Negrocreek and Eureka in 2009. These plots depict the erratic

behaviour of the spectral slopes when analyzed with the FFT method. The apparent

better choice of breakpoint frequency for the FFT is possibly an artifact, as is described in

Chapter 6.

It is also possible that the FFT frequencies have been aliased, due to the time-

interval binning of data. More analysis on the spectral methods is needed to reveal if this

is the case. For these reasons, the DCDFT has been chosen as the “best” method.

43

Figure 5.2: Comparisons between frequency break points at the junction between

the signal and the noise floor for the DCDFT compared to the FFT for the boxcar

window. In this case, 80 comparisons show a preference (i.e. a larger break point

frequency) for the DCDFT while 241 show a preference for the FFT. Since this plot

is overwhelmingly cyan, the FFT yields a lower noise barrier than the DCDFT.

A
lt
it
u
d
e
,

k
m

Month

Boxcar

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

FFT

same

DCDFT

44

Figure 5.3: Comparisons between frequency break points at the junction between

the signal and the noise floor for the DCDFT compared to the FFT for the boxcar

with a 10% cosine taper window. In this case, 75 comparisons show a preference

(i.e. a larger break point frequency) for the DCDFT while 243 show a preference for

the FFT. Since this plot is overwhelmingly cyan, the FFT yields a lower noise

barrier than the DCDFT.

A
lt
it
u
d
e
,

k
m

Month

10% cosine window

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

FFT

same

DCDFT

45

Figure 5.4: Comparisons between frequency break points at the junction between

the signal and the noise floor for the DCDFT compared to the FFT for the Hann

window. In this case, 60 comparisons show a preference (i.e. a larger break point

frequency) for the DCDFT while 255 show a preference for the FFT. Since this plot

is overwhelmingly cyan, the FFT yields a lower noise barrier than the DCDFT.

A
lt
it
u
d
e
,

k
m

Month

Hann window

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

FFT

same

DCDFT

46

Figure 5.5: Comparisons between frequency break points at the junction between

the signal and the noise floor for the DCDFT compared to the FFT for the

Hamming window. In this case, 92 comparisons show a preference (i.e. a larger

break point frequency) for the DCDFT while 255 show a preference for the FFT.

Since this plot is overwhelmingly cyan, the FFT yields a lower noise barrier than the

DCDFT.

A
lt
it
u
d
e
,

k
m

Month

Hamming window

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

FFT

same

DCDFT

47

Figure 5.6: Spectral slope values as a function of altitude and month for Negrocreek

2009, using the FFT and a representative window (the Hann window).

Figure 5.7: Spectral slope values as a function of altitude and month for Negrocreek

2009, using the DCDFT and a representative window (the Hann window).

A
lt
it
u
d
e
,

k
m

Month

Negrocreek FFT

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

S
p
e
c
tr

a
l
s
lo

p
e

-2.5

-2.0

-1.5

-1.0

-0.5

0

A
lt
it
u
d
e
,

k
m

Month

Negrocreek DCDFT

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

S
p
e
c
tr

a
l
s
lo

p
e

-2.5

-2.0

-1.5

-1.0

-0.5

0

48

Figure 5.8: Spectral slope values as a function of altitude and month for Eureka

2009, using the FFT and a representative window (the Hann window).

Figure 5.9: Spectral slope values as a function of altitude and month for Eureka

2009, using the DCDFT and a representative window (the Hann window).

A
lt
it
u
d
e
,

k
m

Month

Eureka FFT

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

S
p
e
c
tr

a
l
s
lo

p
e

-2.5

-2.0

-1.5

-1.0

-0.5

0

A
lt
it
u
d
e
,

k
m

Month

Eureka DCDFT

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

S
p
e
c
tr

a
l
s
lo

p
e

-2.5

-2.0

-1.5

-1.0

-0.5

0

49

5.3 The “best” window

The breakpoints for each method (FFT and DCDFT) were compared for different

windows to determine which window is the best for each method. Under the previously

given definition of best, the Hann window (which aims to suppress the effect of all

sidelobes) is the best window to use with the FFT method and the Hamming window

(which aims to suppress the first sidelobe) is the best window to use with the DCDFT

method.

For both the FFT and DCDFT, the boxcar window was worse than the boxcar

with 10% cosine taper. It was therefore discarded after “round one”. For the FFT, since

the Hann window and Hamming window comparison lacked such a clear divide, both

windows were compared to the boxcar with 10% cosine taper. For the DCDFT, the Hann

window was worse than the Hamming window. Therefore, the Hann window was

discarded and the boxcar with 10% cosine taper window was compared with the

Hamming window. Figure 5.10 to Figure 5.16 show each of these comparisons.

50

Figure 5.10: Comparisons between breakpoint frequency for a boxcar with 10%

cosine tapering window and a boxcar window for the FFT method, as described in

the text. In this case, 202 comparisons show a preference (i.e. a larger breakpoint

frequency) for the boxcar with 10% cosine tapering window while 104 show a

preference for the regular boxcar window. Since this plot is overwhelmingly

magenta, the boxcar with 10% cosine tapering yields a lower noise barrier than a

regular boxcar window, therefore, it is disregard for further analysis with the FFT.

A
lt
it
u
d
e
,

k
m

Month

FFT

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

Boxcar

same

10% cos

51

Figure 5.11: Comparisons between breakpoint frequency for a Hamming window

and a Hann window for the FFT method, as described in the text. In this case, 133

comparisons show a preference (i.e. a larger break point frequency) for the

Hamming window while 168 show a preference for the Hann window. The Hann

window yields a lower noise barrier than the Hamming window. Both of these

windows are compared to the boxcar with 10% cosine tapering window.

A
lt
it
u
d
e
,

k
m

Month

FFT

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

Hann

same

Hamming

52

Figure 5.12: Comparisons between breakpoint frequency for a boxcar with 10%

cosine tapering window and a Hann window for the FFT method, as described in

the text. In this case, 137 comparisons show a preference (i.e. a larger break point

frequency) for the boxcar with 10% cosine tapering window while 176 show a

preference for the Hann window. The Hann window yields a lower noise barrier

than the Hamming window.

A
lt
it
u
d
e
,

k
m

Month

FFT

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

Hann

same

10% cos

53

Figure 5.13: Comparisons between breakpoint frequency for a boxcar with 10%

cosine tapering window and a Hamming window for the FFT method, as described

in the text. In this case, 153 comparisons show a preference (i.e. a larger break

point frequency) for the boxcar with 10% cosine tapering window while 158 show a

preference for the Hamming window. The Hamming window yields a lower noise

barrier than the boxcar with 10% cosine taper window; however, the Hann window

yields lower break point values than both of these windows, as shown in Figure 5.11

and Figure 5.12.

A
lt
it
u
d
e
,

k
m

Month

FFT

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

Hamming

same

10% cos

54

Figure 5.14: Comparisons between breakpoint frequency for a boxcar with 10%

cosine tapering window and a boxcar window for the DCDFT method, as described

in the text. In this case, 184 comparisons show a preference (i.e. a larger break

point frequency) for the boxcar with 10% cosine tapering window while 125 show a

preference for the regular boxcar window. The boxcar with 10% cosine tapering

yields a lower noise barrier than a regular boxcar window, therefore, it is

disregarded the boxcar window for further analysis using the DCDFT.

A
lt
it
u
d
e
,

k
m

Month

DCDFT

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

Boxcar

same

10% cos

55

Figure 5.15: Comparisons between breakpoint frequency for a Hamming window

and a Hann window for the DCDFT method, as described in the text. In this case,

194 comparisons show a preference (i.e. a larger break point frequency) for the

Hamming window while 120 show a preference for the Hann window. The

Hamming window yields a lower noise barrier than a Hann window.

A
lt
it
u
d
e
,

k
m

Month

DCDFT

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

Hann

same

Hamming

56

Figure 5.16: Comparisons between breakpoint frequency for a boxcar with 10%

cosine tapering window and a Hamming window for the DCDFT method, as

described in the text. In this case, 140 comparisons show a preference (i.e. a larger

break point frequency) for the boxcar with 10% cosine tapering window while 170

show a preference for the regular Hamming window. The Hamming window yields

a lower noise barrier than a boxcar with 10% cosine tapering window. The

Hamming window also yields a lower noise barrier than the other windows,

therefore, it is chosen as the “best” window to use with the DCDFT.

A
lt
it
u
d
e
,

k
m

Month

DCDFT

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

Hamming

same

10% cos

57

Chapter 6

6 Results and Interpretation

6.1 Breakpoint frequency

Breakpoint frequencies were hand-selected for monthly spectra recorded at Negrocreek

during 2009 for each window type and spectral method. The purpose of this

determination was initially to evaluate the best spectral method to use, since optimal

fitting depends very much on a suitable determination of the breakpoint. The breakpoint

frequency defines where the spectra becomes visible (i.e. where the noise floor starts),

and optimal fitting should include only the portion of the spectrum where the signal

dominates over the noise. Knowledge about the location of the breakpoint not only

allows better determination of the spectral slopes, but also has other information of value.

For example, superior windows should have break-points at higher frequencies. The

behaviour of the location of the break-point might also give geophysical information,

particularly if it shows systematic variations in height and/or time.

 The breakpoint frequency does not appear to be a good indicator of what method

(i.e. fast Fourier transform (FFT) or date-compensated discrete Fourier transform

(DCDFT)) is better; the FFT produces breakpoints at higher frequencies, suggesting that

the FFT with interpolated data is superior to the DCDFT. However, there may be a

reasonable explanation. For the FFT, we binned the data into 15 minute intervals and

time-averaged the data points. This results in points being relocated in time. For

example, if a point occurs at 6:02 and we use 15 minute bins starting on the hour, quarter

past, half-hour, and quarter to, then this point is relocated to 6:07 (i.e. the midpoint of the

6:00-6:15 bin). The problem is compounded by the fact that different bins have a

different number of points, since the data are not equally spaced in time; one bin might

have 3 points while another may have 7. The net result of this is that points are allocated

to the wrong time-marker, which must introduce additional (incorrect) Fourier

components to the spectrum. This adds spectral power to the spectrum in a non-uniform

manner, so the noise is not white noise (i.e. frequency dependent). Indeed the noise is

58

frequency dependent and the problem is exacerbated by the fact that, due to limited

funding, we had to reduce the rate of data collection in the later years of the study. Hence

the fact that the breakpoint for the standard FFT is further into the higher frequencies is

not an indicator of better data, but rather an indicator of added non-real spectral content

due to incorrect sampling. In order to confirm this, we looked at the variability of the

spectral slopes. As discussed in the previous chapter, it is clear that there is greater

variability in the spectral slopes determined by the FFT method than from the DCDFT

method. For these reasons, we adopted the DCDFT as our standard for future analysis—

partly because the data points are correctly allocated in time and partly because of the

evidence provided by the variability in slopes.

6.2 Spectral slopes

6.2.1 Spectral slope values

The following 20 figures show monthly spectral slope values for altitude versus month

using the date-compensated discrete Fourier transform with the Hamming window. The

site and year depicted for each plot are noted above the graph.

Altitude and month pairs that did not have data or had fewer than 240 data points

(equivalent to one data point every three hours for a month with 30 days, if they were

evenly spaced) are plotted as white. The theoretical slope value (for the middle and

upper atmosphere) is (i.e. , see Figure 2.2), corresponding to a dark cyan.

 These slopes were analysed with respect to altitude, season, and geographic

location in subsequent sections.

59

A
lt
it
u
d
e
,

k
m

Month

Eureka 2007

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

S
p
e
c
tr

a
l
s
lo

p
e

-2.5

-2.0

-1.5

-1.0

-0.5

0

A
lt
it
u
d
e
,

k
m

Month

Eureka 2008

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

S
p
e
c
tr

a
l
s
lo

p
e

-2.5

-2.0

-1.5

-1.0

-0.5

0

60

A
lt
it
u
d
e
,

k
m

Month

Eureka 2009

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

S
p
e
c
tr

a
l
s
lo

p
e

-2.5

-2.0

-1.5

-1.0

-0.5

0

A
lt
it
u
d
e
,

k
m

Month

Eureka 2010

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

S
p
e
c
tr

a
l
s
lo

p
e

-2.5

-2.0

-1.5

-1.0

-0.5

0

61

A
lt
it
u
d
e
,

k
m

Month

Eureka 2011

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

S
p
e
c
tr

a
l
s
lo

p
e

-2.5

-2.0

-1.5

-1.0

-0.5

0

A
lt
it
u
d
e
,

k
m

Month

Eureka 2012

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

S
p
e
c
tr

a
l
s
lo

p
e

-2.5

-2.0

-1.5

-1.0

-0.5

0

62

A
lt
it
u
d
e
,

k
m

Month

Eureka 2013

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

S
p
e
c
tr

a
l
s
lo

p
e

-2.5

-2.0

-1.5

-1.0

-0.5

0

A
lt
it
u
d
e
,

k
m

Month

Eureka 2014

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

S
p
e
c
tr

a
l
s
lo

p
e

-2.5

-2.0

-1.5

-1.0

-0.5

0

63

A
lt
it
u
d
e
,

k
m

Month

Negrocreek 2008

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

S
p
e
c
tr

a
l
s
lo

p
e

-2.5

-2.0

-1.5

-1.0

-0.5

0

A
lt
it
u
d
e
,

k
m

Month

Negrocreek 2009

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

S
p
e
c
tr

a
l
s
lo

p
e

-2.5

-2.0

-1.5

-1.0

-0.5

0

64

A
lt
it
u
d
e
,

k
m

Month

Negrocreek 2010

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

S
p
e
c
tr

a
l
s
lo

p
e

-2.5

-2.0

-1.5

-1.0

-0.5

0

A
lt
it
u
d
e
,

k
m

Month

Negrocreek 2011

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

S
p
e
c
tr

a
l
s
lo

p
e

-2.5

-2.0

-1.5

-1.0

-0.5

0

65

A
lt
it
u
d
e
,

k
m

Month

Negrocreek 2012

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

S
p
e
c
tr

a
l
s
lo

p
e

-2.5

-2.0

-1.5

-1.0

-0.5

0

A
lt
it
u
d
e
,

k
m

Month

Negrocreek 2013

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

S
p
e
c
tr

a
l
s
lo

p
e

-2.5

-2.0

-1.5

-1.0

-0.5

0

66

A
lt
it
u
d
e
,

k
m

Month

Negrocreek 2014

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

S
p
e
c
tr

a
l
s
lo

p
e

-2.5

-2.0

-1.5

-1.0

-0.5

0

A
lt
it
u
d
e
,

k
m

Month

Markstay 2010

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

S
p
e
c
tr

a
l
s
lo

p
e

-2.5

-2.0

-1.5

-1.0

-0.5

0

67

A
lt
it
u
d
e
,

k
m

Month

Markstay 2011

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

S
p
e
c
tr

a
l
s
lo

p
e

-2.5

-2.0

-1.5

-1.0

-0.5

0

A
lt
it
u
d
e
,

k
m

Month

Markstay 2012

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

S
p
e
c
tr

a
l
s
lo

p
e

-2.5

-2.0

-1.5

-1.0

-0.5

0

68

A
lt
it
u
d
e
,

k
m

Month

Markstay 2013

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

S
p
e
c
tr

a
l
s
lo

p
e

-2.5

-2.0

-1.5

-1.0

-0.5

0

A
lt
it
u
d
e
,

k
m

Month

Markstay 2014

J F M A M J J A S O N D
1.0

3.0

5.0

7.0

9.0

11.0

13.0

S
p
e
c
tr

a
l
s
lo

p
e

-2.5

-2.0

-1.5

-1.0

-0.5

0

69

6.2.2 Altitude comparison

The slopes tend to flatten out above and below or so, as shown in Figure

6.1. This is likely due to instrument sensitivities, as discussed in Sections 3.4.4 and 3.4.3,

respectively. As a result, the following analyses rely more heavily on data between

 altitude. Otherwise, there is no apparent dependence on altitude.

Figure 6.1: Spectral slope values, as a function of altitude, averaged over all

operational years for the three radar sites.

6.2.3 Seasonal comparison

The spectral slopes for Eureka tend to be flatter than anticipated by the theoretical value,

and further flatten in recent years, as shown in Figure 6.2. Despite the fluctuations in

spectral slope value at Eureka over seven years, there is no apparent seasonal dependence

(as shown in Figure 6.3).

A
lt
it
u
d
e
,

k
m

Eureka Negrocreek Markstay
1.0

3.0

5.0

7.0

9.0

11.0

13.0

S
p
e
c
tr

a
l
s
lo

p
e

-2.5

-2.0

-1.5

-1.0

-0.5

0

70

Figure 6.2: Spectral slope values for Eureka, averaged over 2.0-11.0 km altitude and

four year intervals (indicated on the ordinate). The spectral slopes tend to flatten

out in recent years.

The spectral slopes for Negrocreek hover around the theoretical value of ,

with temporal fluctuations of steeper slopes. The steeper slopes tend to occur in the

winter months and there appears to be a slight seasonal dependence, as shown in Figure

6.3. At Markstay, steeper slopes also tend to occur in the winter months, though the

slopes are (in general) shallower than the theoretical value and, like Negrocreek, there is

a slight seasonal dependence, as shown in Figure 6.3.

Results from Negrocreek and Markstay appear to have a slight seasonal

dependence, but results from Eureka hint at a longer time scale dependence (e.g., maybe

linked to the solar cycle).

Month

J F M A M J J A S O N D

2007-2011

2008-2012

2009-2013

2010-2014

S
p
e
c
tr

a
l
s
lo

p
e

-2.5

-2.0

-1.5

-1.0

-0.5

0

71

Figure 6.3: Spectral slope values for all three radar sites, averaged over 2.0-11.0 km

altitude and all operational years.

6.2.4 Geographical comparison

The spectral slopes at Negrocreek tend to be consistent between roughly to .

The spectral slopes at Markstay are in general shallower, ranging from roughly to

 .

In 2009, the spectral slopes at Eureka tend to be on par with those at Negrocreek,

though more variable (consisting of shallower and steeper slopes than Negrocreek). In

2010 the spectral slopes at Eureka generally become flatter than Negrocreek (around

September), but are still steeper than Markstay (which became operational in October of

2010). Throughout 2012, the slopes at Eureka continue to flatten and eventually become

shallower than the slopes at Markstay.

Month

J F M A M J J A S O N D

Eureka

Negrocreek

Markstay

S
p
e
c
tr

a
l
s
lo

p
e

-2.5

-2.0

-1.5

-1.0

-0.5

0

72

If the gravity wave spectrum depended on latitude, one would expect to see very

similar slopes at Markstay and Negrocreek (two fairly geographically close, mid-latitude

radar sites) and different slopes at Eureka (an Arctic site). The slopes at Markstay and

Negrocreek are fairly different and Eureka fluctuates between the two, as summarized in

Table 6.1. Therefore, it is unlikely that the spectral slope value depends on latitude in

any significant way.

While there is a systematic difference in spectral slopes between sites, it is not

clear what the geographical dependency is. The noted differences could be terrain

dependent. Negrocreek is close to the Great Lakes area (specifically, both west and south

of Lake Huron), which may be a source of gravity waves. Markstay is surrounded by

forest north of the Great Lakes region of Ontario. Eureka is surrounded by barren and

mountainous tundra. The noted differences could also have some other dependence that

appears geographical, such as whether a frontal system is near, close, or not present (as

suggested by Belu (1999)).

Radar site
Average

spectral slope

Standard

deviation

Number of

slopes used

Eureka

Negrocreek

Markstay

Table 6.1: Spectral slope values and standard deviations for each radar site

averaged over all months and heights 2.0 km to 11.0 km. The number of slopes

(month-altitude pairs) used to calculate the spectral slope and standard deviation

are also included.

73

6.2.5 Interpretation of the slopes

Despite minor difference discussed in the previous sections, overall, there is little to no

seasonal or geographical trend in the spectral slopes (which somewhat supports the idea

of a universal spectrum), but mean slopes are around -1.2 to -1.5 (see Table 6.1for

values) and do not reach -1.6 or -1.7 as predicted. There are several reasons why this

may not be the case.

6.2.5.1 Off vertical beam

Since we are using an off-vertical beam, the radial velocities measured are given by:

 (6.1)

where is the horizontal gravity wave component, is the vertical component, and is

the vertical off-set of the radar beam, approximately . This means:

 (6.2)

However, in a gravity wave, and are correlated, either in-phase or out of phase

(depending on the wave propagation direction). In addition, the relation between and

 is well known from the polarization relations. For cases where the period is more than

an hour, we can approximately use:

 (6.3)

where is the Brunt-Vaisala period and is the wave period. Combining these and

taking 0.18 as approximately 0.2:

 (

) (

) (6.4)

74

Thus the radial-velocity spectrum we measure differs from the horizontal velocity

spectrum (which is the one used in theoretical discussions). Since we are only interested

in spectral form, the relevant correction term is:

 (

) (6.5)

Consider an example where , , and consider the

positive sign. Then the correction term is:

 (

) (6.6)

This is a large correction term and means that our measured values are too

large. However, if , then the correction is only 1.05. Therefore, high

frequency waves are over-represented and push the spectra to be higher at the high-

frequency end, flattening the spectral slope.

To further complicate matters, this effect is more dominant because of our use of

log-log plots. The frequencies between 10 and 100 min cover one decade, while the

frequencies between 100 and 1000 min also cover one decade. So the character between

10 and 100 mins has a disproportionate effect on the slope determination.

Our calculations suggest that the flattening changes the slope by about 0.1. To

see this in a crude sense, consider the 100 min case: is magnified 1.5 times (in a

relative sense) so the powers are increased times (or about twice). This error is

about 0.3 in log coordinates. Taking the abscissa to cover 3 decades, the error in slope is

about 0.3/3 (or about 0.1). So if the ideal slope is -1.6, our measured one will be closer

to -1.5.

6.2.5.2 Noise

The second cause of error in the slope is the noise. It does not disappear at the break-

point, and is still playing a role even as we move to lower frequencies from the break-

point (i.e. to the left). The role becomes less important at the lowest frequencies, but in a

75

log-log plot, it has a disproportionate effect at the high-frequency end. This has a similar

flattening effect to the off-vertical beam, possibly producing a further flattening of about

0.1 or more for noisier data. So this changes our original slope of -1.6 to 1.5 via the off-

vertical beam, and possibly to -1.4 due to noise.

6.2.5.3 Presence of local gravity wave sources

As shown by Belu (1999) the presence of local gravity wave sources (e.g. frontal

systems, orography) has a particularly strong impact at the higher frequencies, while the

universal spectrum is based on gravity waves that have propagated from afar.

Enhancement of the high frequencies even further flattens the spectrum. As such, our

spectral slope values are probably fairly consistent with the universal spectrum, with

some addition of high frequencies due to local gravity wave generation.

76

Chapter 7

7 Conclusions and future work

There appears to be some validity to the universal spectrum and the measured slopes are

not inconsistent, provided that the impact of an off-vertical beam and noise are properly

considered. However, the universal spectrum does not explain the whole measured

spectrum. Some portion of the real spectra must be ascribed to local wave sources,

although, the universal spectral component seems to provide a major part of the

spectrum.

The gravity wave spectral slopes approximately above and below

altitude are often not reliable. Mid-latitude radar sites suggest a slight seasonal

dependence while an Arctic radar site suggests a longer time dependence. While the

spectral slopes do not appear to depend on altitude or latitude, there is geographic

variability. Other potential sources of the geographical variability (e.g., terrain, presence

of frontal systems) should be examined.

This study could benefit from a longer data acquisition time and more radar sites

(both at different latitudes and near similar terrain). Since the spectral slopes from

Eureka suggest a longer time cycle, longer data acquisition would enable us to see (1) if

there is a longer cycle to the gravity wave spectrum and (2) if roughly constant mid-

latitude sites (such as Negrocreek and Markstay) also vary on a longer time scale, in

addition to the slight seasonal dependence.

Each of the spectral slopes use a month of data. This study may benefit from

using shorter timescale averages, such as averaging over a week or a day.

This study may also benefit from comparison to changes in the mean winds.

Recently (over the past couple years), there have been more upper level jets above

Eureka, as seen in Figure 7.1. These jets are often a source of gravity waves. When they

are more common, there are more local wave-sources and we expect the universal

spectrum to be most accurately followed when the sources are more distant. Hence we

77

suspect that a universal spectrum will be more common when there are no such local

sources.

While the spectral slopes do not appear to depend on latitude, they may depend on

terrain. More radar sites in physically similar regions to Eureka, Negrocreek, and

Markstay may enable us to determine if the spectral slope depends on nearby terrain, jet

streams, and other local gravity wave sources. This would enable us to determine

whether proximity to gravity wave sources (such as at Negrocreek) affects the spectrum.

This study could also benefit from reanalysis, examining dependencies other than

altitudinal, geographical, and latitudinal. One potential dependency of interest may be

the effect frontal systems have on the gravity waves spectral slope.

78

Figure 7.1: Mean wind values above Eureka as a function of height (between 0.5 and

12.5 km in 0.5 km increments) over a three day span (August 24-26, 2014). The

direction of the arrows indicate the direction of the wind: pointing up on the graph

represents a northward wind, pointing to the right on the graph represents an

eastward wind, and so on. The colour and magnitude of the arrows indicates wind

speed: dark blue is 0-8 m/s, cyan is 8-18 m/s, green is 18-24 m/s, yellow is 24-32 m/s,

orangey red is 22-40 m/s, and dark red is greater than 40 m/s.

79

References

Belu, R. Gravity waves sources and propagation characteristics in the lower and middle

atmosphere, determined by Clovar radar and other ground-based methods.

London, Ontario, Canada: University of Western Ontario, 1999. Ph. D. thesis.

Cooley, J. W. and J. W. Tukey. "An algorithm for the machine computation of the

complex Fourier series." Mathematics of Computation 19 (1965): 297-301.

Duhamel, P. and M. Vetterli. "Fast Fourier transforms: A tutorial review and a state of

the art." Signal Processing 19 (1990): 259-299.

Eckermann, S., I. Hirota and W. Hocking. "Gravity wave and equatorial morphology of

the stratosphere derived from long-term rocket soundings." Quarterly Journal of

the Royal Meteorlogical Society 121 (1995): 149-186.

Ferraz-Mello, S. "Estimation of periods from unequally spaced observations." The

Astronomical Journal 86.4 (1981): 619-624.

Gage, K. S. and J. L. Green. "Evidence for specular reflection from monostatic VHF

radar observations of the stratosphere." Radio Science 13 (1978): 991-1001.

Garrett, Christopher and Walter Munk. "Space-time scales of internal waves." Geophys.

Fluid Dynamics 2 (1972): 225-264.

—. "Space-time scales of internal waves: a progress report." J. Geophys. Res. 80 (1975):

291-297.

Gossard, Earl E. and William H. Hooke. Waves in the atmosphere: atmospheric

infrasound and gravity waves, their generation and propagation. Netherlands:

Elsevier Scientific Pub. Co., 1975.

Hines, C. O. "Internal atmospheric gravity waves of ionospheric height." Canadian

Journal of Physics 38 (1960): 1441-1481.

80

Hines, Colin O. "The saturation of gravity waves in the middle atmosphere. Part I:

Critique of linear-instability theory." Journal of the Atmospheric Sciences 48.11

(1991): 1348-1359.

—. "The saturation of gravity waves in the middle atmosphere. Part II: Development of

Doppler-spread theory." Journal of the Atmospheric Sciences 48 (1991): 1360-

1379.

Hocking, Wayne K. Radar Methods in Mesosphere-Stratosphere-Troposphere (MST) and

Windprofiler Studies . In Preparation.

Hodges, R. "Generation of turbulence in the upper atmosphere by internal gravity

waves." Journal of Geophysics Res. 72 (1967): 3455-3458.

Holton, J. "The influence of gravity wave breaking on the general circulation of the

middle atmosphere." J. Atmos. Sci. 40 (1983): 2497-2507.

Lindzen, R. "Turbulence and stress owing to gravity wave and tidal breakdown." J.

Geophys. Res. 86 (1981): 9707-9714.

Lomb, N. R. "Least-squares frequency analysis of unequally spaced data." Astrophysics

and Space Science 39 (1976): 447-462.

Marple, S. Lawrence, Jr. Digital Spectral Analysis with Applications. New Jersey, USA:

Prentice-Hall, 1987.

Medvedev, A. S. and G. P. Klaassen. "Parameterization of gravity wave momentum

deposition based on nonlinear wave interactions: basic formulation and sensitivity

tests." Journal of Atmospheric and Solar-Terrestrial Physics 62 (2000): 1015-

1033.

Nappo, C. J. An introduction to atmospheric gravity waves. Vol. 1. San Diego,

California: Academic Press, 2002.

81

Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. Prentice-Hall,

1989.

Rader, C. M. "Discrete Fourier transforms when the number of data samples is prime."

Proceedings of the IEEE 56 (1968): 1107-1108.

Rottger, J. "Investigationg of lower and middle atmosphere dynamics with spaced

antenna drift radars." Journal of Atmospheric Terr. Physics 43 (1981): 277-292.

—. "ST radar observations of atmospheric waves over mountainous areas: a review."

Ann. Geophysicae 18 (2000): 750-765.

Scargle, Jeffrey D. "Studies in astronomical time series analysis. II. Statistical aspects of

spectral analysis of unevenly spaced data." The Astrophysical Journal 263 (1982):

835-853.

Scorer, R. S. Dynamics of Meteorology and Climate. Chichester, England: John Wiley,

1997.

Smith, S. A., D. C. Fritts and T. E. Van Zandt. "Evidence for a saturated spectrum of

atmospheric gravity waves." J. Atmos. Sci. 44 (1987): 1404-1410.

Stiller, B., et al. New generation compact pulsed infrared coherent Doppler Lidars

validation against Wind Profiler Radar and Radiosonde measurements at the

Lindenberg GRUAN site. Lidenberg Meteorological Observatory and Richard

ABmann Observatory, 2012. 08 2014.

Tatarski, V. Wave propagation in a turbulent medium. New York: McGraw-Hill, 1961.

VanZandt, T. E. "A universal spectrum of buoyancy waves in the atmosphere."

Geophysical Research Letters 9.5 (1982): 575-578.

Weinstock, J. "Nonlinear theory of acoustic-gravity waves: I. Saturation and enhanced

diffusion." Journal of Geophysical Research 81.4 (1976): 633-652.

82

Appendix A: Mathematical derivations

This appendix contains mathematical derivations for the normalization constant and

Fourier transform of the filtering windows used in this thesis.

A.1 Boxcar window

The boxcar window function is a non-zero constant on a finite range, with the value of

zero everywhere else, viz.:

 {
 | |

The constant should be normalized, such that the integral of the boxcar window

function over all is 1.

∫

∫

 ∫

 ∫

 ∫

 []

 (

 (

))

83

The normalized boxcar window function is therefore:

 {
 | |

The Fourier transform of the normalized boxcar window function is:

 ∫

 ∫

 ∫

 ∫

∫

[

]

()

Recalling

():

Therefore, the Fourier transform of the boxcar window is:

84

A.2 Boxcar with 10% cosine taper window

In attempt to reduce the ringing of a boxcar window function, this window function

smooths the sharp edges of the boxcar window function. The boxcar with 10% cosine

taper is defined as:

{

((

))

 | |

((

))

The constant should be normalized such that the integral of the window over all is 1.

∫

∫

 ∫

((

))

 ∫

 ∫

((

))

 ∫

 (

∫ ((

))

 ∫

∫ ((

))

)

 (

[

]

 []

[

]

)

 (

(

) (

 (

))

(

))

85

Therefore,

The normalized boxcar with 10% cosine taper window function is:

{

((

))

 | |

((

))

The Fourier transform of this window is:

 ∫

 ∫

 ∫

((

))

 ∫

 ∫

((

))

 ∫

(∫ (

)

 ∫

 ∫

 ∫

 ∫ (

)

)

86

Splitting up the middle integral, then combining one half with the second and fourth

integrals yields two integrals that resemble the Fourier transform of the boxcar window,

viz.:

(∫ (

)

 ∫

 (∫

 ∫

 ∫

)

 ∫ (

)

)

(∫ (

)

 ∫

 ∫

 ∫ (

)

)

The third integral is the same as the boxcar window Fourier transform:

∫

The second integral is merely a boxcar window function with boundaries of

 instead

of

, therefore, from the boxcar window function Fourier transform:

∫

87

The other two integrals have the same integrand, which, for clarity’s sake, will be

denoted as :

 ∫ (

)

For ease of reading, the following constants are defined:

such that:

 ∫

Using the complex exponential form of cosine,

()

 becomes:

 ∫

()

(∫ ∫)

(

)

Where the constant of integration has been dropped as this will later be used in a finite

integral. This simplifies to:

()

88

Grouping the terms together and the terms together:

 (() ())

Recalling the complex exponential forms of sine and cosine:

()

()

 simplifies further to:

Returning to the Fourier transform of the boxcar with 10% cosine taper window function:

(

)

(

 (

)

(

))

In this evaluation, we have two cases of

where is a constant. To avoid overly messy equations and repeating calculations, the

following variable is used:

89

which is simplified below and then substituted into the following equation for .

(

(

))

 () ()

Using the complex exponential forms of sine and cosine:

Which bears a striking resemblance to . Putting this back into the definition

of yields:

(

(

)

(

)

(

))

(

(

)

(

))

90

Recalling

 and ,

(

(

)

(

))

(

(

)

(

))

(

) (

)

(

) (

)

Therefore, the Fourier transform of the boxcar with 10% cosine taper window is:

(

)

To compare this to the Fourier transform of the regular box car and see the effects of the

cosine tapering, is written as a function of :

(

)

Recall that the Fourier transform of the boxcar window function (with the same definition

of) is:

91

A.3 Hann window

The Hann window, is usually defined for discrete points as:

 (

)

for { | }. In the continuous case of length , the Hann window is:

 { (

)

To centre the window around , like the boxcar and the boxcar with a 10% cosine

taper, the Hann window is represented as:

 { (

) | |

Using the trigonometry identity :

 {

((

)) | |

To reduce the mathematics for the similarly shaped Hamming window (to be considered

shortly), the normalization and Fourier transform for the Hann window is worked through

using:

 { ((

)) | |

where

 and

 for the Hann window.

 is the normalization constant satisfying

∫

92

Then

∫

 ∫ ((

))

 ∫

 ∫ ((

))

 [

 (

)]

 (

 (

)

)

Hence

Recalling

 for the Hann window,

 and the normalized Hann window is:

 {

 (

) | |

The Fourier transform of the Hann window (using and) is:

 ∫

 ∫

 ∫

((

))

 ∫

∫ ((

))

93

Using the complex exponential form of cosine:

∫ (

())

∫ (

)

[

]

()

()

()

Recalling and :

()

()

()

() (

)

 (

)

For the Hann window with

 and

, this yields:

 (

)

94

A.4 Hamming window

The Hamming window, is usually defined for discrete points as:

 (

)

for . In the continuous case of length , the Hamming window is:

 { (

 (

))

To centre the window around , as for the other windows, the Hamming window is

represented as:

 { (

 (

)) | |

Note that this is the same form as the Hann window

 { ((

)) | |

with

 and

.

Using the equation from the Hann window, the normalization constant for the Hamming

window is:

95

Therefore, the normalized Hamming window centred around is:

 {

(

 (

)) | |

Using equation for the Fourier transform from the Hann window, the Fourier transform of

the Hamming window is:

 (

)

 (

 (

)

)

 (

)

 (

)

96

Appendix B: Matlab Code

This appendix contains the Matlab scripts and functions used for analysis.

B.1 FFT Script
%% Run first
% Makes all interpolated variable files.
% Change site, beamdir, mon, start, and stop as necessary.
site='negrocreek'; % radar site name
beamdir='N'; % beam direction
mon=200901:1:200912; % months of interest, format YYYYMM
start=mon*100+ones(1,12); % days to start interpolation at, format YYMMDD
stop=mon*100+[31,28,31,30,31,30,31,31,30,31,30,31]; % days to stop...
 % interpolation at, format YYYYMMDD

for i=1:length(start)
 for a=1.0:0.5:14.0;
 alt=num2str(a,'%2.1f');
 m=int2str(mon(i));
 close all
 setReadInt(site,alt,beamdir,start(i),m,stop(i),1);
 end
end

%% Run second
% Performs the FFT on the interpolated data for all 4 window types.
% Change site and beamdir as necessary.
site='eureka'; % radar site
beamdir='N'; % beam direction

for a=1.0:0.5:14.0;
 alt=num2str(a,'%2.1f');
 fileend=['.',site,'.',alt,beamdir,'_15min.mat'];
 for ym=200901:200912
 yyyymm=int2str(ym);
 filename=['FFT/',site,'/',yyyymm,'/',yyyymm,fileend];
 for wintype=1:4;
 FFTrun(filename,site,alt,beamdir,yyyymm,wintype)
 wt=int2str(wintype);
 filename2=['FFT/',site,'/',yyyymm,'/',yyyymm,'.win',wt,'.',...
 site,'.',alt,beamdir,'_15min.mat'];
 load(filename2,'w','I')

 % Get slope
 % Change f to be between 2 days and 6 hours
 startf=1/(2*24*60*60); % 2 days
 endf=1/(6*60*60); % 6 hours
 f=w(w>=startf & w<=endf);
 PSD=I(w>=startf & w<=endf);
 % Want the least squares fit line to
 % log(PSD) = n log(f) (+c)
 y=log10(PSD);
 x=log10(f);

97

 c=polyfit(x,y,1);
 u=10^c(2)*f.^c(1);
 slope=c(1);
 amp=c(2);
 fPSD=f;
 save(filename2,'fPSD','PSD','slope','amp','-append')
 end
 end
end

%% Run third
% Gather the slopes into one annual file.
% Change site, beamdir, y, and alt as necessary.
site='eureka'; % radar site
beamdir='N'; % beam direction
y=2009; % year
yyyy=int2str(y);
alt=1:0.5:14; % altitudes
for win=1:4; % all windows
 wt=int2str(win);
 slopes=zeros(length(alt),12);
 amps=slopes;
 for j=1:length(alt)
 altstr=num2str(alt(j),'%2.1f');
 for m=1:12
 yyyymm=int2str(y*100+m);
 filename=['FFT/',site,'/',yyyymm,'/',yyyymm,'.win',wt,'.',...
 site,'.',altstr,beamdir,'_15min.mat'];
 load(filename,'slope','amp')
 slopes(j,m)=slope;
 amps(j,m)=amp;
 end
 end
 savefile=['FFT/',site,'/win',wt,'.',site,'.',beamdir,'_15min.mat'];
 save(savefile,'slopes','amps','-append')
end

%% Run fourth
% Plots spectral slopes for a year on an altitude vs. month plot.
% Change site, beamdir, and yyyy as necessary.
site='Eureka'; % radar site
beamdir='N'; % beam direction
yyyy='2009'; % year (string)
for win=1:4
 wt=int2str(win);
 file=['FFT/',site,'/win',wt,'.',site,'.',beamdir,'_15min.mat'];
 load(file,'slopes','npoints')
 x=slopes;
 x(x==-999)=NaN;

 figure
 imagescnanEmily(x)
 set(gca,'YDir','normal')
 % Make the plot look pretty:
 axis tight
 set(gca,'fontsize',14)
 set(gca,'YTick',[1 5 9 13 17 21 25])

98

 set(gca,'YTickLabel',{'1.0','3.0','5.0','7.0','9.0','11.0','13.0'})
 set(gca,'XTick',1:12)
 set(gca,'XTickLabel',{'J','F','M','A','M','J','J','A','S','O','N','D'})
 ylabel('Altitude, km','FontSize',18)
 xlabel('Month','FontSize',18)

 % Title, change as necessary:
 text=[site,' FFT Window',wt];
 title(text,'FontSize',20)

 % Colour bar and labels:
 h=colorbar('location','EastOutside');
 ylabel(h,'Spectral slope','FontSize',18)
 set(h,'fontsize',14)
 set(h,'YTickLabel',{'-2.5','-2.0','-1.5','-1.0','-0.5','0'})
 caxis([-2.5 0])
end

B.2 DCDFT Script
%% Run first.
% Calculates DCDFT values, slopes, and amps with window applied
% varfileList.txt is a list of file names in the format:
% site/varfile/YYYY/YYYYMM/YYYYMM.site.altN_1min.mat
% where 'site' is the radar site name, 'YYYY' is the year, 'YYYYMM' is the
% year and month, 'alt' is the altitude in the form %2.1f, and 'N' can be
% replaced by another beam direction (E, S, or W).
fID=fopen('varfileList.txt');
file=strtrim(fgetl(fID));
win=1; % window type, see winSel.m for the windows
wt=int2str(win);
while strcmp(file,'end')==0
 DCDFT1(file,win)
 newfile=[file(1:length(file)-3),'win',wt,'.mat'];
 load(newfile)
 I=2*(length(F)^(-1)).*(F.*conj(F));
 save(newfile,'I','-append')
 % Change f to be between 2 days and 6 hours
 startf=1/(2*24*60*60); % 2 days
 endf=1/(6*60*60); % 6 hours
 f=w(w>=startf & w<=endf);
 PSD=I(w>=startf & w<=endf);

 % Want the least squares fit line to
 % log(PSD) = n log(f) (+c)
 y=log10(PSD);
 x=log10(f);
 c=polyfit(x,y,1);

 u=10^c(2)*f.^c(1);
 slope=c(1);
 amp=c(2);
 fPSD=f;
 save(newfile,'fPSD','PSD','slope','amp','-append')
 file=strtrim(fgetl(fID));
end

99

%% Run second
% With DCDFT window applied, gather multiple slopes and amps into one file.
% Change site, years, beamdir, win, and alt as necessary.
site='markstay'; % radar site
years=2010:2014; % years as integers
beamdir='N'; % beam direction
win=1; % window type, see winSel.m for the windows
wt=int2str(win);
alt=1.0:0.5:14.0; % altitudes

for i=1:length(years)
 y=years(i);
 yyyy=int2str(y);

 slopes=ones(length(alt),12)*-999;
 amps=slopes;
 npoints=zeros(length(alt),12);
 for j=1:length(alt)
 altstr=num2str(alt(j),'%2.1f');
 for m=1:12;
 yyyymm=int2str(y*100+m);

varfile=[site,'/varfile/',yyyy,'/',yyyymm,'/',yyyymm,'.',site,...
 '.',altstr,'N_1min.win',wt,'.mat'];
 if exist(varfile,'file')~=0;
 load(varfile,'slope','amp','w')
 slopes(j,m)=slope;
 amps(j,m)=amp;
 npoints(j,m)=length(w);
 else
 fprintf('No varfile for %s\r\n',varfile)
 end
 end
 end

savefile=['slopesandamps/',site,'/win',wt,'.',yyyy,'.',site,'.1minN.mat'];
 save(savefile,'slopes','amps','npoints')
end

%% Run third
% Plots spectral slopes for all years on an altitude vs. month plot.
% Change site, wt, and y as necessary.
site='Markstay'; % radar site
wt='1'; % window type, see winSel.m for numbers
% Set minimum number to base spectral estimates off of:
minnp=240; % Corresponds to once every 3 hours (so that it can measure
 % at least 6 hour frequencies.

for y=2014:-1:2010 % years
 yyyy=int2str(y);
 file=['slopesandamps/',site,'/win',wt,'.',yyyy,'.',site,'.1minN.mat'];
 load(file,'slopes','npoints')
 x=slopes;
 x(x==-999)=NaN;
 x(npoints<minnp)=NaN;

100

 x(isnan(npoints)==1)=NaN;

 figure
 imagescnanEmily(x)
 set(gca,'YDir','normal')
 set(gca,'fontsize',14)
 axis tight
 set(gca,'Color',[0 0 0]);
 set(gca,'YTick',[1.5 5.5 9.5 13.5 17.5 21.5 25.5])
 set(gca,'YTickLabel',{'1.0','3.0','5.0','7.0','9.0','11.0','13.0'})
 set(gca,'XTick',1.5:12.5)
 set(gca,'XTickLabel',{'J','F','M','A','M','J','J','A','S','O','N','D'})
 ylabel('Altitude, km','FontSize',18)
 xlabel('Month','FontSize',18)

 text=[site,' ',yyyy];
 title(text,'FontSize',20)

 h=colorbar('location','EastOutside');
 ylabel(h,'Spectral slope','FontSize',18)
 set(h,'fontsize',14)
 set(h,'YTickLabel',{'-2.5','-2.0','-1.5','-1.0','-0.5','0'})
 caxis([-2.5 0])
end

%% Run fourth
% Calculates means, standard deviations, and the standard deviation of the
% mean.
% Change site, wt, and y as necessary.
site='Markstay'; % radar site
wt='1'; % window type, see winSel.m for numbers
alls=[];
allnp=[];
for y=2010:2014 % years
 yyyy=int2str(y);
 file=['slopesandamps/',site,'/win',wt,'.',yyyy,'.',site,'.1minN.mat'];
 load(file,'slopes','npoints')

 alls=[alls,slopes];
 allnp=[allnp,npoints];
end

% See how many points are used to calculate the average.
n=ones(size(alls));
n(isnan(alls)==1)=0;
n(alls==-999)=0;
n(allnp<240)=0;
size(n(1:2,:))
n(1:2,:)=zeros(size(n(1:2,:)));
n(22:27,:)=zeros(size(n(22:27,:)));
N=sum(sum(n));

% Format data so that no/not enough data is zero slope
x=alls;
x(isnan(x)==1)=0;

101

x=x.*n;

% Calculate overall mean
mean=sum(sum(x))/N;
diff=abs(-5/3-mean);

% Calculate std
std=(sum(sum(((x-mean).^2.*n)))/(N-1)).^1/2;
stdofmean=std/N.^(1/2);

B.3 Breakpoint script
% Hand select the break point frequency for all windows.
% Change the site, beamdir, and a as necessary.
site='negrocreek'; % radar site
beamdir='N'; % beam direction
a=1.0:0.5:14.0; % altitude
i=0;
for win=1:4 % window type, see winSel.m for values.
 wt=int2str(win);
 bp=ones(length(a),12)*NaN;
 for j=1:length(a)
 alt=num2str(a(j),'%2.1f');
 for m=1:12
 i=i+1;
 yyyymm=int2str(200900+m);
 file=['FFT/',site,'/',yyyymm,'/',yyyymm,'.win',wt,'.',...
 site,'.',alt,beamdir,'_15min.mat'];
 %file=['DCDFT/',site,'/',yyyymm,'/',yyyymm,'.win',wt,'.',...
 % site,'.',alt,beamdir,'_1min.mat'];
 load(file,'I','w')
 f=figure;
 loglog(w,I,'k')
 text=int2str(i);
 title(text)

 [x,y]=ginput(1);
 close(f)
 % Store breakpoint value:
 bp(j,m)=x;
 end
 end
 savefile=['FFT/',site,'/breakpoints2009.win',wt,'.',...
 site,'.',beamdir,'.mat'];
 % savefile=['DCDFT/',site,'/breakpoints2009.win',wt,'.',...
 % site,'.',beamdir,'.mat'];
 save(savefile,'bp')
end

B.4 createtf
function varfile=createtf(site,alt,beamdir,tint,start,stop)
%{
CREATETF Reads in raw data and makes a new file with the values of f and
t.
 CREATETF(SITE,ALT,BEAMDIR,TINT,START) reads in the raw data and creates

102

a file of f and t for DCDFT. The site, altitude, beam direction, and time
interval are given by the chracter strings SITE, ALT, BEAMDIR, and TINT
respectively. ALT and TINT may be numbers. The data spans the yyyymmdd
day START.

 CREATETF(...,STOP) saves f and t for days between START and STOP
inclusively.
%}

if nargin==5
 % Only use one day
 stop=start;
elseif nargin~=6
 error('SRI:argChk','Wrong number of input arguments.')
elseif isa(alt,'char')==0
 alt=num2str(alt,'%2.1f');
elseif isa(tint,'char')==0
 tint=num2str(tint,'%2.0i');
end

%***%
% SET DAYS AS A VECTOR FROM START TO STOP
%***%

% Set a matrix for the days of the month for leap and non-leap years
n=[31,28,31,30,31,30,31,31,30,31,30,31];
% First row is for leap years, second row is for non-leap years, columns
% are representative days in the month.
numofdays=[n;n];
numofdays(1,2)=29;
clear('n')

% Break start and stop into year, month, day
yyyy=floor(start/10000);
mm=floor((start-yyyy*10000)/100);
dd=mod(start,100);
stopy=floor(stop/10000);
stopm=floor((stop-stopy*10000)/100);
stopd=mod(stop,100);

% See if start and stop are the same month. If so, just gather days
% between.
if yyyy==stopy && mm==stopm
 days=yyyy*10000+mm*100+(dd:stopd);
else
 % Spans multiple months.
 % Determine if it is a leap year (use row 1) or not (use row 2).
 leap=ceil(mod(yyyy,4)/4)+1;
 % Put the remaining days of the current month into days.
 days=yyyy*10000+mm*100+(dd:numofdays(leap,mm));

 % Determine days between the start and stop months:
 while yyyy~=stopy && (mm+1)~=stopm
 mm=mm+1;
 if mm==13

103

 % If we reach "month 13", roll the clock over a year.
 yyyy=yyyy+1;
 % Determine if it is a leap year:
 leap=ceil(mod(yyyy,4)/4)+1;
 % Reset mm to zero since we add 1 to it before doing
 % anthing else (otherwise we would skip January every roll
 % over).
 mm=0;
 else
 % Include the days of this month in days.
 days=[days,yyyy*10000+mm*100+(1:numofdays(leap,mm))];
 end
 end

 % Include the first days of the stop month.
 days=[days, yyyy*10000+(mm+1)*100+(1:stopd)];
end
clear('numofdays','yyyy','mm','dd','stopy','stopm','stopd','leap')

%***%
% READ AND SORT DATA
%***%

% Create filepath
fileend=['.',site,'.',alt,beamdir,'_',tint,'min.txt'];

vel=[];
npoints=[];
t=[];
for i=1:length(days)
 % Read each file and put into variables
 day=int2str(days(i));
 mon=day(1:6);
 yr=day(1:4);
 filepath=[site,'/',yr,'/',mon,'/',day,'/RadarData/',day,fileend];
 raw=dlmread(filepath,',',0,1);

 % Convert time into seconds
 time=raw(:,6)+60*(raw(:,5)+60*raw(:,4));
 % Sort data chronologically
 [time,order]=sort(time);
 vel=[vel;raw(order,8)];
 npoints=[npoints;raw(order,9)];
 % Convert add the appropriate number of days (in seconds) to time and
 % combine it with our t vector
 t=[t;time+60*60*24*(i-1)];
end

%***%
% GET RID OF -999.00 DATA AND ALL UNNEEDED VARIABLES
%***%
t=t(vel>-999);
f=vel(vel>-999);

% For variables at the end

104

varfile=[site,'/varfile/',yr,'/',mon,'/',mon,'.',site,'.',alt,beamdir,'_',ti

nt,'min.mat'];
save(varfile,'t','f')
end

B.5 DCDFT1
function F=DCDFT1(varfile,wintype)
%{
DCDFT1 Calculates the power spectral density using the date-compensated
discrete Fourier transform as described by Ferraz-Mello (1981).
 DCDFT1(VARFILE,WINTYPE) saves the power spectral density (F) and
corresponding frequencies (w) to a file by the same name as VARFILE with
the window code at the end. VARFILE should be the name of the file
containing the velocities (f) and time stamps (t) in the format:
 SITE/varfile/YYYY/YYYYMM/YYYYMM.SITE.ALTN_1min.mat
where SITE is the name of the radar site, YYYY is the year, YYYYMM is the
year and month, ALT is the altitude in the format %2.1f, and N is the beam
direction (N, E, S, or W). WINTYPE is the window type, as specified by
winSel.m
%}

load(varfile)
wt=int2str(wintype);
newfile=[varfile(1:length(varfile)-3),'win',wt,'.mat'];
%***%
% DETERMINE W AND CHECK DIMENSIONS
%***%
N=length(f);
% Find if spectra is odd or even in length as it slightly changes the math.
if floor(N/2)~=N/2
 % Then the signal length is odd
 offset=1;
else
 % The signal length is even
 offset=0;
end
% Sample frequency is one sample/unit time
ws=N/(max(t)-min(t)); % Hz
% Nyguist frequency (maxiumum measurable frequency) is half of the sample
% frequency
wN=ws/2; % Hz
% The Fourier transform has points equally spaced between zero and the
% Nyguist frequency. This corresponds to a frequency resolution of:
dw=ws/N;
% The FFT is at the frequencies:
w=(-wN+dw/2*offset:dw:wN-dw/2*offset)';
clear('offset','ws','wN','dw')
save(newfile,'w')

%***%
% FERRAZ MELLO (1981)
%***%
% (3) Add constant so that sum(f) over all t = 0
f=f-sum(f)/N;
% Apply window

105

win=winSel(length(f),wintype);
f=f.*win;

F=zeros(size(w));
H0=ones(size(t));
a0=N^(-1/2);
h0=a0*H0;
clear('N')

for j=1:length(w)
 H1=cos(2*pi*w(j)*t);
 H2=sin(2*pi*w(j)*t);

 a1=(sum(H1.*H1)-a0^2*sum(H0.*H1)^2)^(-1/2);
 a2=(sum(H2.*H2)-a0^2*sum(H0.*H2)^2-a1^2*sum(H1.*H2)^2-...
 a1^2*a0^4*sum(H0.*H1)^2*sum(H0.*H2)^2+...
 2*a0^2*a1^2*sum(H0.*H1)*sum(H0.*H2)*sum(H1.*H2))^(-1/2);

 h1=a1*H1-a1*h0*sum(h0.*H1);
 clear('a1','H1')
 h2=a2*H2-a2*h0*sum(h0.*H2)-a2*h1*sum(h1.*H2);
 clear('a2','H2')

 F(j)=sum(f.*(h1+sqrt(-1)*h2))/(a0*sqrt(2));
 clear('h1','h2')
end
save(newfile,'F','-append')
end

B.6 FFTrun
function FFTrun(filename,site,alt,beamdir,yyyymm,wintype)
%{
FFTRUN Calculates and saves the power spectral density and slope
estimations.
 FFTRUN(FILENAME,SITE,ALT,BEAMDIR,YYYYMM,WINTYPE) save the power
spectral density and slopes for the variables in FILENAME to the file:
FFT/SITE/YYYYMM/YYYYMM.winWT.SITE.ALTBEAMDIR_15min.mat
where SITE is teh radar site name, ALT is teh altitude in format %2.1f,
BEAMDIR is the beam direction (N, E, S, or W), YYYYMM is the year and
month, and WINTYPE is the window code (see winSel.m for the codes).
%}

load(filename)
% Get FFT spectra for various windows
%***%
% COMPUTE FFT AND PLOT POWER SPECTRA
%***%
% Subtract the mean from the data
len=length(vel);
y=vel-(sum(vel)/len);
% Multiply by window
win=winSel(len,wintype);
y=y.*win;
Y=fft(y)/len;

106

PSD=Y.*conj(Y);
% Arrange the PSD from most negative to most positive frequency. Double
% counts the Nyguist frequncy.
PSDpos=PSD(1:floor(len/2)+1);
PSDneg=PSD(ceil(len/2)+1:len);
PSD=[PSDneg;PSDpos];
clear('win','y','Y','PSDneg');

% Find if spectra is odd or even in length as it impacts the frequencies.
if floor(len/2)~=len/2
 % Then the signal length is odd
 offset=1;
else
 % The signal length is even
 offset=0;
end

% The Fourier transform frequency spacing is
df=1/max(t); % Hz
% Sample frequency is one sample/unit time (or equivalently the number of
% samples divided by the total time)
sf=len*df; % Hz
% Nyguist frequency (maxiumum measurable frequency) is half of the sample
% frequency
Nyg=sf/2; % Hz
% The FFT is at the frequencies:
fpos=(0:df:Nyg-df/2*offset)';
f=(-Nyg+df/2*offset:df:Nyg-df/2*offset)';
clear('offset','Nyg','sf','df','offset')

% CHECK: length of PSD and f is the same
if size(f)~=size(PSD)
 display('CHECK: Size of f and PSD do not match!')
end
% CHECK: centre of f is 0
if f(ceil(length(f)/2))~=0
 display('CHECK: Middle f value is not 0!')
end
w=f;
wpos=fpos;
I=PSD;
Ipos=PSDpos;
wt=int2str(wintype);
filename=['FFT/',site,'/',yyyymm,'/',yyyymm,'.win',wt,'.',...
 site,'.',alt,beamdir,'_15min.mat'];
save(filename,'I','Ipos','w','wpos')
end

B.7 imagescnanEmily
function [H,HNAN] = imagescnanEmily(varargin)
%IMAGESCNAN Scale data and display as image with uncolored NaNs.
%Edited by E.M. 20130516 to change the colourmap.
%Now: Uses a Moreland colormap (red to blue, through white) which is better
%for colour deficient folks (red/green). See http://www.sandia.gov/~kmorel/
%documents/ColorMaps/ and his article Diverging Color Maps for Scientific

107

%Visualization (Expanded) for details: "Diverging Color Maps for Scientific
%Visualization." Kenneth Moreland. In Proceedings of the 5th International
%Symposium on Visual Computing, December 2009.
%DOI 10.1007/978-3-642-10520-3_9.
%
% SYNTAX:
% imagescnan(U)
% imagescnan(U,...,'NanColor',CNAN)
% imagescnan(U,...,'NanMask',MNAN)
% imagescnan(U,...,IOPT)
% imagescnan(X,Y,U,...)
% [H,HNAN] = imagescnan(...);
%
% INPUT:
% U - 2 dimensional N-by-M image or N-by-M-by-3 RGB image.
% X - 2 extrema X-axis data; or the M values; or the N-by-M values
% as obtained from MESHGRID (see DESCRIPTION below).
% DEFAULT: [1 N]
% Y - 2 extrema X-axis data; or the N values; or the N-by-M values
% as obtained from MESHGRID (see DESCRIPTION below).
% DEFAULT: [1 M]
% CNAN - Color for the NaNs elements. May be a char specifier or an [R
% G B] triplet specifying the color.
% DEFAULT: invisible (axes background color)
% MNAN - Elements to be ignored besides not finite values. May be an
% scalar or a logical M-by-N matrix indicating the elements to
% be ignored.
% DEFAULT: []
% IOPT - IMAGE function normal optional pair arguments like
% ('Parent',H) or/and CLIM like optional last argument as in
% IMAGESC.
% DEFAULT: none
% map = the name of a colourmap to use. Default is Moreland (cool to
% warm) but you could also put in "jet" or "gray".
%
% OUTPUT (all optional):
% H - Image handle
% HNAN - Handle of every ignored (NaN) value colored patch.
%
% DESCRIPTION:
% MATLAB function IMAGESC does not work properly with NaNs. This
% programs deals with this problem by including colored patches over
% this elements and maybe others specyfied by the user with MNAN.
%
% Besides, those functions does not work properly with X,Y values
% variable interval, but this functions does it by generating a whole
% new image of several rectangular patches, but whose centers may not
% lay in the specified coordinate (see NOTE below). This functionality
% is experimental and not recommended (see ADDITIONAL NOTES inside this
% program).
%
% In previous release, 2-dim input images were transformed into a
% 3-dim RGB image. This is not used anymore (see ADDITIONAL NOTES
% inside this file).
%
% NOTE:
% * Optional inputs use its DEFAULT value when not given or [].

108

% * Optional outputs may or not be called.
% * If X is a two element vector, min(X) will be the coordinate of the
% first column and max(X) of the last column.
% * If Y is a two element vector, min(Y) will be the coordinate of the
% first row and max(Y) of the last row.
% * If vector X-axis is decreasing U=fliplr(U) will be used.
% * If vector Y-axis is decreasing U=flipud(U) will be used.
% * When X or Y do not have a constant increasing/decreasing step, the
% vertices of the color rectangules are set in the middle of each
% pair of coordinates. For this reason its center may not lay on the
% specified coordinate, except on the coordinates at the edges where
% it always lays on the center.
% * To get a non-scaled image (IMAGE instead of IMAGESC) use:
% >> H = imagescnan(...);
% >> set(H,'CDataMapping','direct')
% * ADDITIONAL NOTES are included inside this file.
%
% EXAMPLE:
% % Compares with normal IMAGESC:
% N = 100;
% PNaNs = 0.10;
% U = peaks(N);
% U(round(1 + (N^2-1).*rand(N^2*PNaNs,1))) = NaN; % Adds NaNs
% subplot(221), imagesc(U)
% title('With IMAGESC: ugly NaNs')
% subplot(222), imagescnan(U)
% title('With IMAGESCNAN: uncolored NaNs')
% % Compares with SPY:
% subplot(223), spy(isnan(U))
% title('SPY(isnan(U))')
% subplot(224), imagescnan(isnan(U),'NaNMask',0), axis equal tight
% title('SPY with IMAGESCNAN')
%
% SEE ALSO:
% IMAGE, IMAGESC, COLORBAR, IMREAD, IMWRITE
% and
% CMAPPING, CBFREEZE by Carlos Vargas
% at http://www.mathworks.com/matlabcentral/fileexchange
%
%
% ---
% MFILE: imagescnan.m
% VERSION: 2.1 (Aug 20, 2009) (<a

href="matlab:web('http://www.mathworks.com/matlabcentral/fileexchange/author

s/11258')">download)
% MATLAB: 7.7.0.471 (R2008b)
% AUTHOR: Carlos Adrian Vargas Aguilera (MEXICO)
% CONTACT: nubeobscura@hotmail.com

% ADDITIONAL NOTES:
% * I keep getting a kind of BUG with the edges of the patched NaNs. I
% added two NOTE inside this program that may fix this problem.
% Another way is to convert the intensity matrix U into RGB colors by
% using the CMAPPING function, as used by the first version of this
% program.
% * Besides, if the matrix is too large, sometimes there is an
% undocumented failure while drawing the patch NaNs. Is recommended

109

% to use U = cmapping(U,[],'k','discrete') instead, and change the
% CLIM to [min(U(:)) max(U(:))].
% * The use of not homogeneous step interval X,Y axes is not
% recommended because the program tries to put its value in the
% middle of the colored rectangule (as IMAGESC does) and soetimes the
% result may not be what the user wants. So this is for experimental
% use only.

% REVISIONS:
% 1.0 Released. (Jun 30, 2008)
% 1.1 Fixed bug when CAXIS used. Colorbar freezed colormap. Fixed
% bug in color vector input (Found by Greg King) and now
% accets RGB image as input. (Jul 14, 2008)
% 2.0 Totally rewritten code. Do not converts to RGB anymore. Do not
% freezes the colormap anymore. Do not output any colorbar. New
% X and Y variable steps accepted input. Now uses patches. (Jun
% 08, 2009)
% 2.1 Fixed bug with RGB input. Added a NOTE about the use of
% CMAPPING. (Aug 20, 2009)

% DISCLAIMER:
% imagescnan.m is provided "as is" without warranty of any kind, under
% the revised BSD license.

% Copyright (c) 2008,2009 Carlos Adrian Vargas Aguilera

% INPUTS CHECK-IN
% ---

% Initializes:
X = [];
Y = [];
CNAN = [];
MNAN = [];
ha = [];
chooseCMAP = 'jet';
% chooseCMAP = 'MorelandColormapB';

% chooseCMAP = 'reversegray';
% map = gray; %EM added 20130614
% map = MorelandColormapB;

% Checks number of inputs:
if nargin<1
 error('CVARGAS:imagescnan:notEnoughInputs',...
 'At least 1 input is required.')
elseif nargout>2
 error('CVARGAS:imagescnan:tooManyOutputs',...
 'At most 2 outputs are allowed.')
end

% Gets X,Y,U:
if ((nargin==1) || (nargin==2))
 U = varargin{1};

110

 varargin(1) = [];
else
 if (isnumeric(varargin{1}) && isnumeric(varargin{2}) && ...
 isnumeric(varargin{3}))
 X = varargin{1};
 Y = varargin{2};
 U = varargin{3};
 varargin(1:3) = [];
 else
 U = varargin{1};
 varargin(1) = [];
 end
end

% Check U:
ndim = ndims(U);
if (ndim==2)
 [M,N] = size(U);
 O = 1;
elseif (ndim==3)
 [M,N,O] = size(U);
 if (O~=3)
 error('CVARGAS:imagescnan:incorrectRgbImage',...
 'RGB image must be of size M-by-N-by-3.')
 end
else
 error('CVARGAS:imagescnan:incorrectImageSize',...
 'Image must be 2-dimensional or a 3-dim RGB image.')
end

% Check X:
aequal = true; % Equal intervals on x-axis?
dX = [];
if isempty(X)
 X = [1 N];
else
 if (ndims(X)>2)
 error('CVARGAS:imagescnan:incorrectXDims',...
 'X must be a vector or a matrix as a result of MESHGRID.')
 end
 if any(~isfinite(X(:)))
 error('CVARGAS:imagescnan:incorrectXValue',...
 'X elements must be numeric and finite.')
 end
 [Mx,Nx] = size(X);
 if ((Mx*Nx)==2)
 if X(2)<X(1)
 X = X([2 1]);
 for k = 1:O % Fixed bug Aug 2009
 U(:,:,k) = fliplr(U(:,:,k));
 end
 end
 else
 if ((Mx==M) && (Nx==N))
 % Checks if generated with MESHGRID:
 dX = abs(X(2:M,:)-repmat(X(1,:),M-1,1));

111

 if any(abs(dX(:))>(eps*max(abs(dX(:)))*1000))
 error('CVARGAS:imagescnan:incorrectXMatrix',...
 'X matrix must be as generated by MESHGRID.')
 end
 X = X(1,:);
 elseif (~any([Mx Nx]==1) && ~((Mx*Nx)==N))
 error('CVARGAS:imagescnan:incorrectXSize',...
 'X must be an scalar or a matrix.')
 end
 % Forces ascending x-axis:
 [X,I] = sort(X(:).');
 for k = 1:O % Fixed bug Aug 2009
 U(:,:,k) = U(:,I,k);
 end
 clear I
 % Checks equal intervals:
 dX = diff(X);
 if any(abs(dX(1)-dX(2:end))>(eps*max(dX)*1000))
 if aequal
 aequal = false;
 end
 else
 X = [X(1) X(end)];
 dX = [];
 end
 end
end

% Check Y:
dY = [];
if isempty(Y)
 Y = [1 M];
else
 if (ndims(Y)>2)
 error('CVARGAS:imagescnan:incorrectYDims',...
 'Y must be a vector or a matrix as a result of MESHGRID.')
 end
 if any(~isfinite(Y(:)))
 error('CVARGAS:imagescnan:incorrectYValue',...
 'Y elements must be numeric and finite.')
 end
 [My,Ny] = size(Y);
 if ((My*Ny)==2)
 if Y(2)<Y(1)
 Y = Y([2 1]);
 for k = 1:O % Fixed bug Aug 2009
 U(:,:,k) = flipud(U(:,:,k));
 end
 end
 else
 if ((My==M) && (Ny==N))
 % Checks if generated with MESHGRID:
 dY = abs(Y(:,2:N)-repmat(Y(:,1),1,N-1));
 if any(abs(dY(:))>(eps*max(abs(dY(:)))*1000))
 error('CVARGAS:imagescnan:incorrectYMatrix',...
 'Y matrix must be as generated by MESHGRID.')
 end

112

 Y = Y(:,1);
 elseif (~any([My Ny]==1) && ~((My*Ny)==M))
 error('CVARGAS:imagescnan:incorrectYSize',...
 'Y must be an scalar or a matrix.')
 end
 % Forces ascending y-axis:
 [Y,I] = sort(Y(:).');
 for k = 1:O % Fixed bug Aug 2009
 U(:,:,k) = U(I,:,k);
 end
 clear I
 % Checks equal intervals:
 dY = diff(Y);
 if any(abs(dY(1)-dY(2:end))>(eps*max(dY)*1000))
 if aequal
 aequal = false;
 end
 else
 Y = [Y(1) Y(end)];
 dY = [];
 end
 end
end

% Checks varargin:
ind = [];
Nopt = length(varargin);
for k = 1:Nopt-1
 if (~isempty(varargin{k}) && ischar(varargin{k}))
 if strncmpi(varargin{k},'NanColor',4)
 CNAN = varargin{k+1};
 ind = [ind k k+1];
 elseif strncmpi(varargin{k},'NanMask',4)
 MNAN = varargin{k+1};
 ind = [ind k k+1];
 elseif (strncmpi(varargin{k},'Parent',2) && isempty(CNAN))
 try
 CNAN = get(varargin{k+1},'Color');
 ha = varargin{k+1};
 catch
 error('CVARGAS:imagescnan:incorrectParentHandle',...
 '''Parent'' must be a valid axes handle.')
 end
 end
 end
end
varargin(ind) = [];
Nargin = length(varargin);

% Check ha:
if isempty(ha)
 ha = gca;
end

% Check CNAN:
if isempty(CNAN)

113

 CNAN = get(ha,'Color');
elseif ischar(CNAN)
 switch lower(CNAN)
 case 'y', CNAN = [1 1 0];
 case 'm', CNAN = [1 0 0];
 case 'c', CNAN = [0 1 1];
 case 'r', CNAN = [1 0 0];
 case 'g', CNAN = [0 1 0];
 case 'b', CNAN = [0 0 1];
 case 'w', CNAN = [1 1 1];
 case 'k', CNAN = [0 0 0];
 otherwise
 error('CVARGAS:imagescnan:incorrectNancString',...
 'Color string must be a valid color identifier. One of ''ymcrgbwk''.')
 end
elseif isnumeric(CNAN) && (length(CNAN)==3)
 CNAN = CNAN(:).'; % Forces row vector.
else
 error('CVARGAS:imagescnan:incorrectNancInput',...
 'Not recognized CNAN input.')
end

% Check MNAN:
if isempty(MNAN)
 MNAN = any(~isfinite(U),3);
else
 if (ndims(MNAN)==2)
 [Mm,Nm] = size(MNAN);
 if ((Mm*Nm)==1)
 MNAN = (any(~isfinite(U),3) | any(U==MNAN,3));
 elseif ((Mm==M) && (Nm==N) && islogical(MNAN))
 MNAN = (any(~isfinite(U),3) | MNAN);
 else
 error('CVARGAS:imagescnan:incorrectNanmSize',...
 'MNAN must be an scalar or a logical matrix of size M-by-N.')
 end
 else
 error('CVARGAS:imagescnan:incorrectNanmDims',...
 'MNAN must be an scalar or a matrix.')
 end
end

% EXTRA COLOUR MAPS ADDED BY EMILY
% ---

reversegray =

[1,1,1;0.984126984126984,0.984126984126984,0.984126984126984;0.9682539682539

68,0.968253968253968,0.968253968253968;0.952380952380952,0.952380952380952,0

.952380952380952;0.936507936507937,0.936507936507937,0.936507936507937;0.920

634920634921,0.920634920634921,0.920634920634921;0.904761904761905,0.9047619

04761905,0.904761904761905;0.888888888888889,0.888888888888889,0.88888888888

8889;0.873015873015873,0.873015873015873,0.873015873015873;0.857142857142857

,0.857142857142857,0.857142857142857;0.841269841269841,0.841269841269841,0.8

41269841269841;0.825396825396825,0.825396825396825,0.825396825396825;0.80952

3809523810,0.809523809523810,0.809523809523810;0.793650793650794,0.793650793

114

650794,0.793650793650794;0.777777777777778,0.777777777777778,0.7777777777777

78;0.761904761904762,0.761904761904762,0.761904761904762;0.746031746031746,0

.746031746031746,0.746031746031746;0.730158730158730,0.730158730158730,0.730

158730158730;0.714285714285714,0.714285714285714,0.714285714285714;0.6984126

98412698,0.698412698412698,0.698412698412698;0.682539682539683,0.68253968253

9683,0.682539682539683;0.666666666666667,0.666666666666667,0.666666666666667

;0.650793650793651,0.650793650793651,0.650793650793651;0.634920634920635,0.6

34920634920635,0.634920634920635;0.619047619047619,0.619047619047619,0.61904

7619047619;0.603174603174603,0.603174603174603,0.603174603174603;0.587301587

301587,0.587301587301587,0.587301587301587;0.571428571428571,0.5714285714285

71,0.571428571428571;0.555555555555556,0.555555555555556,0.555555555555556;0

.539682539682540,0.539682539682540,0.539682539682540;0.523809523809524,0.523

809523809524,0.523809523809524;0.507936507936508,0.507936507936508,0.5079365

07936508;0.492063492063492,0.492063492063492,0.492063492063492;0.47619047619

0476,0.476190476190476,0.476190476190476;0.460317460317460,0.460317460317460

,0.460317460317460;0.444444444444444,0.444444444444444,0.444444444444444;0.4

28571428571429,0.428571428571429,0.428571428571429;0.412698412698413,0.41269

8412698413,0.412698412698413;0.396825396825397,0.396825396825397,0.396825396

825397;0.380952380952381,0.380952380952381,0.380952380952381;0.3650793650793

65,0.365079365079365,0.365079365079365;0.349206349206349,0.349206349206349,0

.349206349206349;0.333333333333333,0.333333333333333,0.333333333333333;0.317

460317460317,0.317460317460317,0.317460317460317;0.301587301587302,0.3015873

01587302,0.301587301587302;0.285714285714286,0.285714285714286,0.28571428571

4286;0.269841269841270,0.269841269841270,0.269841269841270;0.253968253968254

,0.253968253968254,0.253968253968254;0.238095238095238,0.238095238095238,0.2

38095238095238;0.222222222222222,0.222222222222222,0.222222222222222;0.20634

9206349206,0.206349206349206,0.206349206349206;0.190476190476190,0.190476190

476190,0.190476190476190;0.174603174603175,0.174603174603175,0.1746031746031

75;0.158730158730159,0.158730158730159,0.158730158730159;0.142857142857143,0

.142857142857143,0.142857142857143;0.126984126984127,0.126984126984127,0.126

984126984127;0.111111111111111,0.111111111111111,0.111111111111111;0.0952380

952380952,0.0952380952380952,0.0952380952380952;0.0793650793650794,0.0793650

793650794,0.0793650793650794;0.0634920634920635,0.0634920634920635,0.0634920

634920635;0.0476190476190476,0.0476190476190476,0.0476190476190476;0.0317460

317460317,0.0317460317460317,0.0317460317460317;0.0158730158730159,0.0158730

158730159,0.0158730158730159;0,0,0;];

[MorelandColormapA] = [0.0 59 76 192
0.03125 68 90 204
0.0625 77 104 215
0.09375 87 117 225
0.125 98 130 234
0.15625 108 142 241
0.1875 119 154 247
0.21875 130 165 251
0.25 141 176 254
0.28125 152 185 255
0.3125 163 194 255
0.34375 174 201 253
0.375 184 208 249
0.40625 194 213 244
0.4375 204 217 238
0.46875 213 219 230
0.5 221 221 221
0.53125 229 216 209

115

0.5625 236 211 197
0.59375 241 204 185
0.625 245 196 173
0.65625 247 187 160
0.6875 247 177 148
0.71875 247 166 135
0.75 244 154 123
0.78125 241 141 111
0.8125 236 127 99
0.84375 229 112 88
0.875 222 96 77
0.90625 213 80 66
0.9375 203 62 56
0.96875 192 40 47
1.0 180 4 38];

% This line is correct:
% MorelandColormapB = MorelandColormapA(:,2:4) ./

max(max(MorelandColormapA(:,2:4))); %make all 0 to 1
% It outputs the values below, which I've hardcoded in here to save
% computation time when plotting stuff.
MorelandColormapB =

[[0.231372549019608;0.266666666666667;0.301960784313725;0.341176470588235;0.

384313725490196;0.423529411764706;0.466666666666667;0.509803921568627;0.5529

41176470588;0.596078431372549;0.639215686274510;0.682352941176471;0.72156862

7450980;0.760784313725490;0.800000000000000;0.835294117647059;0.866666666666

667;0.898039215686275;0.925490196078431;0.945098039215686;0.960784313725490;

0.968627450980392;0.968627450980392;0.968627450980392;0.956862745098039;0.94

5098039215686;0.925490196078431;0.898039215686275;0.870588235294118;0.835294

117647059;0.796078431372549;0.752941176470588;0.705882352941177;]

[0.298039215686275;0.352941176470588;0.407843137254902;0.458823529411765;0.5

09803921568627;0.556862745098039;0.603921568627451;0.647058823529412;0.69019

6078431373;0.725490196078431;0.760784313725490;0.788235294117647;0.815686274

509804;0.835294117647059;0.850980392156863;0.858823529411765;0.8666666666666

67;0.847058823529412;0.827450980392157;0.800000000000000;0.768627450980392;0

.733333333333333;0.694117647058824;0.650980392156863;0.603921568627451;0.552

941176470588;0.498039215686275;0.439215686274510;0.376470588235294;0.3137254

90196078;0.243137254901961;0.156862745098039;0.0156862745098039;]

[0.752941176470588;0.800000000000000;0.843137254901961;0.882352941176471;0.9

17647058823529;0.945098039215686;0.968627450980392;0.984313725490196;0.99607

8431372549;1;1;0.992156862745098;0.976470588235294;0.956862745098039;0.93333

3333333333;0.901960784313726;0.866666666666667;0.819607843137255;0.772549019

607843;0.725490196078431;0.678431372549020;0.627450980392157;0.5803921568627

45;0.529411764705882;0.482352941176471;0.435294117647059;0.388235294117647;0

.345098039215686;0.301960784313725;0.258823529411765;0.219607843137255;0.184

313725490196;0.149019607843137;]];

% COLOUR MAP TO ACTUALLY USE:
% ---

if strcmp(chooseCMAP,'reversegray') == 1
 map = reversegray;
elseif strcmp(chooseCMAP,'MorelandColormapB') == 1
 map = MorelandColormapB;
elseif strcmp(chooseCMAP,'gray') == 1

116

 map = gray;
else
 map = jet;
end

% ---
% MAIN
% ---

% Generates the image:
if aequal
 % IMAGESC way.
 H = imagesc(X,Y,U,varargin{:});
% MorelandColormap = colormap(MorelandColormapB);
colormap(map)
% if strcmp(map,'gray') == 1
% colormap(gray);
% elseif strcmp(map,'jet') == 1
% colormap(jet);
% end

else
 % PATCH way.

 % Check clim:
 if (rem(Nargin,2)==1)
 clim = varargin{end};
 varargin(end) = [];
 if ((length(clim)~=2) || (clim(1)>clim(2)))
 error('CVARGAS:imagescnan:incorrectClimInput',...
 'clim must be a 2 element increasing vector.')
 end
 else
 clim = [];
 end

 % Generates vertices between coordinates (coordinates may not be at the
 % center of these vertices):
 if (length(X)~=N)
 X = (0:N-1)*((X(2)-X(1))/(N-1)) + X(1);
 end
 if (length(Y)~=M)
 Y = (0:M-1)*((Y(2)-Y(1))/(M-1)) + Y(1);
 end
 if isempty(dX)
 dX = diff(X);
 end
 if isempty(dY)
 dY = diff(Y);
 end
 [X,Y] = meshgrid([X(1)-dX(1)/2 X+dX([1:N-1 N-1])/2],...

117

 [Y(1)-dY(1)/2 Y+dY([1:M-1 M-1])/2]);

 % Generates faces:
 ind = (1:(M+1)*N)';
 ind(M+1:M+1:end) = [];

 % Generates patches:
 H = patch(...
 'Vertices' ,[X(:) Y(:)],...
 'Faces' ,[ind ind+1 ind+M+2 ind+M+1],...
 'FaceVertexCData',U(:),...
 'FaceColor' ,'flat',...
 'EdgeColor' ,'none',... % NOTE: Sometimes this is not required.
 varargin{:});
 set(ha,...
 'YDir' ,'reverse',...
 'View' ,[0 90],...
 'Box' ,'on',...
 'Layer','top')
 axis(ha,'tight')

 % Sets clim:
 if ~isempty(clim)
 set(ha,'CLim',clim)
 else
 set(ha,'CLimMode','auto')
 end

colormap(map)
end

% Adds NaNs patches:
if any(MNAN(:))
 if aequal
 % dX and dY is constant:
 [MNAN,NNAN] = ind2sub([M,N],find(MNAN));
 Nnan = length(MNAN);
 dX = (X(2)-X(1))/(N-1)/2;
 dY = (Y(2)-Y(1))/(M-1)/2;
 HNAN = patch(repmat((X(1)+(NNAN(:)'-1)*(2*dX)),4,1) + ...
 (repmat([-1 1 1 -1]'*dX,1,Nnan)),...
 repmat((Y(1)+(MNAN(:)'-1)*(2*dY)),4,1) + ...
 (repmat([1 1 -1 -1]'*dY,1,Nnan)),...
 CNAN,...
 'EdgeColor',CNAN,... 'EdgeColor','none',...
 varargin{1:Nargin-rem(Nargin,2)});
 else
 % dX and/or dY is not constant:
 MNAN = find(MNAN);
 HNAN = patch(...
 'Vertices' ,[X(:) Y(:)],...
 'Faces' ,[ind(MNAN) ind(MNAN)+1 ind(MNAN)+M+2 ind(MNAN)+M+1],...
 'FaceColor' ,CNAN,...
 'EdgeColor' ,'none',... 'EdgeColor',CNAN,... % NOTE: may be better?
 varargin{:});
 end

118

else
 HNAN = [];
end

% OUTPUTS CHECK-OUT
% ---

% Clears outputs?:
if (nargout==0)
 clear H
end

% [EOF] imagescnan.m

B.8 setReadInt
function newfile=setReadInt(site,alt,beamdir,start,q,stop,pass)
%{
SETREADINT Sets days as a vector, reads the data, and interpolates.
 SETREADINT(SITE,ALT,BEAMDIR,START,Q) saves the interpolated data to a
.mat file to be loaded by a spectral algorithm. All data is in 15 minute
intervals. The site, altitude, and beam direction are given by the
character strings SITE, ALT, and BEAMDIR respectively. ALT may be a
number. The data spans the yyyymmdd day START. Q is the YYYYMM format in
a string.

 SETREADINT(...,STOP) saves the interpolated data to a .mat file for
days between START and STOP inclusively.

 SETREADINT(...,PASS) allows user to pass on clicking the initial and
values to interpolate over (0), otherwise, the computer chooses the first,
longest string of data. Default is set to 1.

 NEWFILE=SETREADINT(...) returns the name of the .mat file the data is
stored in.
%}

if nargin==5
 % Only use one day
 stop=start;
 pass=1;
elseif nargin==6
 pass=1;
elseif nargin~=7
 error('SRI:argChk','Wrong number of input arguments.')
end
if isa(alt,'char')==0
 alt=num2str(alt,'%2.1f');
end

% Set the maximum number of missing data points.
miss=20;
%***%
% SET DAYS AS A VECTOR FROM START TO STOP

119

%***%

% Set a matrix for the days of the month for leap and non-leap years
n=[31,28,31,30,31,30,31,31,30,31,30,31];
% First row is for leap years, second row is for non-leap years, columns
% are representative days in the month.
numofdays=[n;n];
numofdays(1,2)=29;
clear('n')

% Break start and stop into year, month, day
yyyy=floor(start/10000);
mm=floor((start-yyyy*10000)/100);
dd=mod(start,100);
stopy=floor(stop/10000);
stopm=floor((stop-stopy*10000)/100);
stopd=mod(stop,100);

% See if start and stop are the same month. If so, just gather days
% between.
if yyyy==stopy && mm==stopm
 days=yyyy*10000+mm*100+(dd:stopd);
else
 % Spans multiple months.
 % Determine if it is a leap year (use row 1) or not (use row 2).
 leap=ceil(mod(yyyy,4)/4)+1;
 % Put the remaining days of the current month into days.
 days=yyyy*10000+mm*100+(dd:numofdays(leap,mm));

 % Determine days between the start and stop months:
 while yyyy~=stopy && (mm+1)~=stopm
 mm=mm+1;
 if mm==13
 % If we reach "month 13", roll the clock over a year.
 yyyy=yyyy+1;
 % Determine if it is a leap year:
 leap=ceil(mod(yyyy,4)/4)+1;
 % Reset mm to zero since we add 1 to it before doing
 % anthing else (otherwise we would skip January every roll
 % over).
 mm=0;
 else
 % Include the days of this month in days.
 days=[days,yyyy*10000+mm*100+(1:numofdays(leap,mm))];
 end
 end

 % Include the first days of the stop month.
 days=[days, yyyy*10000+(mm+1)*100+(1:stopd)];
end
clear('numofdays','yyyy','mm','dd','stopy','stopm','stopd','leap')

%***%
% READ AND SORT DATA
%***%

120

% Create filepath
fileend=['.',site,'.',alt,beamdir,'_15min.txt'];

vel=[];
npoints=[];
t=[];
for i=1:length(days)
 % Read each file and put into variables
 day=int2str(days(i));
 mon=day(1:6);
 filepath=[site,'/',mon,'/',day,'/RadarData/',day,fileend];
 raw=dlmread(filepath,',',0,1);

 % Convert time into seconds
 time=raw(:,6)+60*(raw(:,5)+60*raw(:,4));
 % Sort data chronologically
 [time,order]=sort(time);
 vel=[vel;raw(order,8)];
 npoints=[npoints;raw(order,9)];
 % Convert add the appropriate number of days (in seconds) to time and
 % combine it with our t vector
 t=[t;time+60*60*24*(i-1)];
end
clear('i','day','filepath','raw','time','order')

% CHECK: data is equally spaced
dt=zeros(1,length(t)-1);
for i=2:length(t)
 dt(i-1)=t(i)-t(i-1);
end
if max(dt)~=min(dt)
 warning('FFT:dtChk','dt not equal!')
end
clear('dt','i')

% Keep a copy of the raw data if necessary to look at
velraw=vel;

%***%
% INTERPOLATE DATA
%***%

% Find missing values in radar data. Plot real values.
len=length(vel);
data=ones(len,1); % Keeps track of which data points are real.

if pass~=0
 i1=1;
 lold=0;
 i=1;
 while i<=length(vel)
 if vel(i)==-999.0;
 % Check to see if next miss are also -999.0 (no data)
 if (i+miss-1)<=length(vel)

121

 x=vel(i:(i+miss-1));
 else
 x=vel(i:length(vel));
 end
 if x==(-999.0*ones(size(x)))
 lnew=i1:(i-1);
 % Set the longest strand to the new one
 if length(lnew)>length(lold)
 lold=lnew;
 end
 i=i+miss;
 % Check if there are any subsequent missing data points
 while i<length(vel) && vel(i)==-999.0
 i=i+1;
 end
 i1=i;
 end
 end
 i=i+1;
 end
 if lold==0;
 lold=1:length(vel);
 end
 vel=vel(lold);
 data=data(lold);
 t=t(lold);
 npoints=npoints(lold);
 len=length(vel);
 clear('lold','lnew','i','i1','x')
end

f1=figure;
m=int2str(floor(start/100));
text=[alt,beamdir,' ',m,];
title(text)
xlabel('Time (s)')
ylabel('Radial velocity (m/s)')
hold on
for i=1:len
 if vel(i)==-999
 vel(i)=0;
 data(i)=0;
 plot(t(i), 0, 'r^')
 else
 plot(t(i), vel(i), 'bo')
 end
end
hold off
clear('i','text')

% Select where to start/stop in the data here.
if pass==0;
 figure(f1)
 msg=char('On the figure, click where you want interpolation to',...
 'start and stop respectively.');
 h=msgbox(msg,'Select start and stop','help');

122

 [ts,~]=ginput(2);
 close(h)

 % Find starting index
 diff1=abs(t-ts(1));
 % Find where difference is minimum and choose as starting point
 [~,i1]=min(diff1);

 % Find ending index
 diff2=abs(t-ts(2));
 [~,i2]=min(diff2);

 % Set all data vectors to just data between indices i1 and i2
 t=t(i1:i2);
 vel=vel(i1:i2);
 data=data(i1:i2);
 len=length(vel);

 clear('h','i1','i2','istart','istop','msg','ts')
end

% If the first point selected needs to be interpolated, drop it instead.
while data(1)==0;
 t=t(2:len);
 vel=vel(2:len);
 npoints=npoints(2:len);
 data=data(2:len);
 len=len-1;
end

% If the last data point selected needs to be interpolated, drop it
% instead.
last=len;
rem=0; % Keeps track of how many data points at the end are removed.
while data(last)==0;
 last=last-1;
end
t=t(1:last);
vel=vel(1:last);
npoints=npoints(1:last);
data=data(1:last);
len=last;
clear('last','rem')
hold on
plot(t(vel~=0),vel(vel~=0),'g-');
hold off
% Shift the data so that the first data point occurs at t=0 (if necessary).
% Assumed that data is in chronological order.
if t(1)~=0;
 t=t-t(1);
end

% Go through missing data and interpolate:
skip=0;
% Set the number of points to use before and after for interpolation.

123

group=5;

% New method, don't use null
for i=1:length(data)
 if skip~=0
 % This point has already been interpolated.
 skip=skip-1;
 elseif data(i)==0
 % Need to interpolate
 j=i;
 while data(j+1)==0
 j=j+1;
 end
 % Need to interpolate points on the span [i,j]
 if i==j || i+1==j
 % 1 or 2 data point missing. Interpolate linearly between two
 % closest.
 m=(vel(j+1)-vel(i-1))/(t(j+1)-t(i-1));
 b=vel(i-1)-m*t(i-1);
 vel(i:j)=m*t(i:j)+b;
 skip=j-i;
 elseif j-i+1>miss
 % Too many data points missing
 t=t(1:i-1);
 vel=vel(1:i-1);
 npoints=npoints(1:i-1);
 data=data(1:i-1);
 len=length(vel);
 fprintf('Too many missing data points. Ended at point

%g.\n\n',i-1)
 break
 else
 % Can interpolate the number of data points with interpol
 % Check there are enough points before:
 if i-group>0
 % Then we have enough data points prior to the gap to
 % interpolate using GROUP points at the beginning.
 group1=group;
 else
 % We do not have enough points before the interpolation.
 % Use the ones available.
 group1=i-1;
 end
 % Check there are enough points after:
 if j+group<=length(data)
 % There are enough points after the gap to use GROUP
 % points.
 group2=group;
 else
 % There are not enough points after, use those available.
 group2=length(data)-j;
 end
 % Interpolate:
 vel(i:j)=interpol(vel(i-group1:j+group2),...
 t(i-group1:j+group2),data(i-group1:j+group2),group1,...
 group2);
 skip=j-i;

124

 end
 end
end

hold on
plot(t,vel,'m-');
hold off
clear('skip','group','miss','group1','group2','i','j','m','b','days',...
 'diff1','diff2','mon')

% Save variables to a .mat file so that I can use them in forming the
% spectra and only need to interpolate once for multiple windows.
start=num2str(start);
stop=num2str(stop);
if pass==0
 newfile=['FFT/',site,'/',start,'to',stop,'mod',...
 fileend(1:length(fileend)-3),'mat'];
else
 newfile=['FFT/',site,'/',q,'/',q,fileend(1:length(fileend)-3),'mat'];
end
clear('start','stop')
fprintf('%s\r\n',newfile)
save(newfile)
end

B.9 winSel
function win=winSel(N,type)
%{
WINSEL Creates specified window.
 WINSEL(N) is the specified discrete window with N elements.

 WINSEL(...,TYPE) specifies the type of window without opening a
dialogue box where TYPE is an integer:
 0 -- cancel
 1 -- Hamming
 2 -- Hann (Hanning)
 3 -- boxcar with 10% cosine taper
 4 -- boxcar
%}

if nargin==1
 % Need to choose window type
 choices={'Hamming','Hann','Welch','Butterworth',...
 'Box car with 10% cosine taper','Box car'};
 [type,ok]=listdlg('SelectionMode','single', 'Name','Window type',...
 'ListSize',[175 300],'PromptString','Choose a window to use:',...
 'ListString',choices);
 % If the user pressed "cancel", pass value of zero.
 if ok==0
 type=0;
 end
elseif nargin==2
 % Check that type is an integer
 if isa(type,'numeric')==0
 error('winsel:argChk','TYPE is an integer.')

125

 end
else
 error('winsel:argChk','Wrong number of input arguments.')
end

% If the user pressed "cancel", pass value of 0.
if type==0
 win=zeros(N,1);
elseif type==1
 % Hamming window
 n=(0:N-1)';
 A=1/(25/46*N);
 win=A*(25/46-21/46*cos(2*pi*n/(N-1)));
elseif type==2
 % Hann window
 n=(0:N-1)';
 A=2/N;
 win=A*(1/2-1/2*cos(2*pi*n/(N-1)));
elseif type==3
 % Box car with 10% cosine taper
 % Create cosine taper shape for the first 10% and last 10% of the data.
 n=(0:N-1)';
 tenperc=floor(N/10);
 win=ones(N,1);
 win(n<=tenperc)=(1-cos(10*pi/N*n(n<=tenperc)))/2;
 win(n>=(N-tenperc))=(1-cos(10*pi/N*n(n>=(N-tenperc))))/2;
 win=win*10/(9*N);
elseif type==4
 % Box car
 win=ones(N,1)/N;
else
 error('winsel:argChk','TYPE is between 0 and 4 inclusive.')
end
end

126

Curriculum Vitae

Name: Melanie Wright

Post-secondary The University of Western Ontario

Education and London, Ontario, Canada

Degrees: 2007-2011 B.Sc.

The University of Western Ontario

London, Ontario, Canada

2013-2014 B.Ed.

The University of Western Ontario

London, Ontario, Canada

2011-2014 M.Sc.

Honours and Great Ideas in Teaching Award

Awards: 2013

 Northern Scientific Training Program (Award)

 2011-2012

 TA Award of Excellence for Tutoring in Physics and Astronomy

 2012

Dean’s Honor List

2007-2011

Natural Sciences and Engineering Research Council (NSERC)

Undergraduate Student Research Award (USRA)

2010

The Western Scholarship of Excellence

2007

Related Work Teaching Assistant

Experience The University of Western Ontario

2011-2013

	Gravity wave spectra morphology in the Arctic and non-Arctic lower atmosphere
	Recommended Citation

	ETD word template

