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Abstract 

Inadequate understanding of radiation-induced water chemistry under supercritical 

conditions has been identified as one of the important obstacles in the development of a 

supercritical water-cooled reactor. Radiolysis of supercritical water generates a variety of 

redox reactive species, but their persistence in supercritical water is not well understood. This 

thesis describes the work performed towards addressing this deficiency: (1) the development 

of a reliable experimental method to determine the concentrations of water radiolysis 

products, primarily H2, O2 and H2O2, formed under -irradiation of sub- and supercritical 

water (SCW), (2) the expansion of the application ranges of the existing -radiolysis kinetic 

models for liquid water and water vapour to high temperatures and pressures, and (3) the 

development of the first versions of the supercritical water radiolysis models based on these 

two models.  With each model calculations were performed as a function of temperature and 

the computational results were analysed to identify the key reactions and reaction parameters 

that are important in determining the effect of temperature on the net radiolytic production of 

H2, O2 and H2O2.  The results indicate that the model approach that has been taken is 

promising and worthy of further development. 
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water radiolysis, vapor radiolysis, supercritical water, kinetic modeling, gamma 
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1 CHAPTER 1 

Introduction 

 Motivation and Rational 1.1

Ten countries joined together in January 2000 to form the Generation IV International 

Forum (GIF) to develop future advanced nuclear energy systems.  Their objective is to have 

GEN IV systems available for international deployment by 2030 when many of the world’s 

currently operating nuclear reactors will reach the end of their operating lives [1].  Several 

advanced reactor concepts have been selected by the GIF for development, one of which is a 

supercritical water-cooled reactor (SCWR).   

The use of supercritical water (SCW) as the coolant in a nuclear reactor has long been 

considered as the natural evolution of water-cooled reactor technology because of the 

increased thermal efficiency higher temperature operation would provide [1-2].  Canada is 

developing a pressure-tube SCWR concept [3] that would operate with a core outlet 

temperature of 625 °C and a thermal efficiency of ~48%.  However, the use of SCW as a 

reactor coolant poses some major challenges for the selection of in-core materials and an 

appropriate water chemistry control strategy that will enable in-core components to meet 

their service lives.  The most important risk factor for materials performance is the corrosion 

rate of the fuel cladding, either as bulk metal loss or as localized corrosion.  Although the 

effect of any dissolved oxygen on the corrosion of the candidate materials for fuel cladding 

(austenitic stainless steels and nickel-based alloys) in SCW remains unclear, it is clear that at 



 

 

 

 

2 

very high concentrations of oxidants the protective Cr-rich oxide film formed on many of 

these alloys can dissolve [4].   

In a reactor core one of the main sources of oxidizing species in the coolant is 

radiolytic decomposition of water (radiolysis).  As the coolant passes through the reactor core 

it is exposed to high fluxes of  and -radiation. Both forms of  radiation are very effective in 

ionizing water molecules and breaking them into a number of redox active species [5]: 

H2O    •OH, •eaq

, •H, H2, H2O2, H

+
                     (1.1)                                                                                      

Recent measurements [6] using an SCW convection loop with an irradiation cell 

coupled to a 10 MeV, 10 kW linear electron accelerator [7] have demonstrated the risk of Cr 

oxide dissolution in an SCWR core due to the production of oxidizing conditions by water 

radiolysis. 

The available data on the concentrations of oxidizing species in supercritical water in 

the radiation fields that are present in a reactor core are limited and the difficulties of 

performing well-controlled experiments on supercritical water means that this will likely 

remain the case for some time. While in-reactor experiments are planned [8] to measure the 

effect of ionizing radiation on the corrosion of materials under SCWR in-core conditions, 

until these data are available, it is necessary to use modelling to predict the expected 

concentrations of oxidizing species in an SCWR core.  These predictions are needed to plan 

and perform out-of-reactor tests using water chemistries that mimic the expected in-core 

chemistry.   



 

 

 

 

3 

Predicting the concentrations of oxidizing species in the presence of continuous 

fluxes of ionizing radiation is also very difficult.  Under continuous irradiation primary water 

radiolysis products are formed and react continuously, and the concentrations of important 

oxidizing species (such as OH, H2O2, O2) reach a (pseudo-) steady state very quickly [5]. 

The steady-state concentrations of redox active species in irradiated water are strongly 

affected not only by the primary radiolysis production rate (reaction 1.1), but also by the 

subsequent chemical reactions of the primary radiolysis products with each other and other 

species that may be present. The concentrations cannot be predicted based on the kinetics of 

pairs of simple competition reactions.  Consideration of multiple reactions linked together is 

required.   Since the rates of elementary chemical reactions and mass transport rates will have 

different dependences on temperature and solvent properties the problem is even more 

complicated. Chemical kinetic modelling that includes large numbers of linked reactions is 

required to predict the steady-state concentrations of radiolysis products.   

Supercritical water is an extremely challenging fluid that exists only at high 

temperatures and pressures (> 374 ºC and > 22 MPa). The solvation properties of water are 

important in controlling the chemical stability and transport behaviour of various species, 

particularly ions and radicals.  These are factors that strongly influence reaction rates. Hence 

prediction of the concentrations of radiolysis products in SCW is not a simple extrapolation 

from modelling of room temperature water behaviour. Unfortunately, the effects of solvent 

properties in the sub- and supercritical water phases on reaction kinetics are not well 

established. The net impact of ionizing radiation on the concentrations of oxidizing species in 

supercritical water can be studied experimentally, but the data that will be obtained will 
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necessarily be somewhat limited to specific test conditions.  The challenge in working with 

SCW will also limit the numbers of tests that can be performed.   

To provide more immediately useful guidance for reactor designers, it is possible to 

develop a model for the radiolytic chemistry of supercritical water (SCW) (and water in the 

sub-critical regime near the critical point) with a view towards predicting the concentrations 

of key oxidization species as a function of coolant conditions (e.g., temperature).  One of the 

most valuable applications of such model is its use to sort out the important from the 

unimportant reactions so that appropriate focus can be placed on ensuring that adequate 

accuracy of the rates of key reactions is obtained. In this regard, the data that is being 

obtained in supercritical water tests will provide crucial checks on the value of any modelling 

effort. 

 Research Objectives and Approaches 1.2

The overall research goal is to develop a sufficient understanding of steady-state 

radiolysis kinetics of SCW to be able to predict with reasonable accuracy the concentrations 

of key oxidizing species as a function of coolant conditions (e.g., temperature, hydrogen 

addition).  Towards this goal, the objectives of this work were: (1) to develop a reliable 

experimental method to determine the concentrations of water radiolysis products, primarily 

H2 and O2, formed under -irradiation of sub- and supercritical water (SCW), and (2) to 

develop a chemical kinetic model for the radiolysis of sub- and supercritical water and to 

perform sensitivity analysis of the model to radiation and solution conditions.   
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Due to the high temperatures and pressures (> 374 ºC and > 22 MPa) of SCW, the 

design and construction of a radiolysis test cell for SCW radiolysis studies poses serious 

challenges, as the cell must satisfy several demanding criteria.  Safety requirements and 

space limitations of the available -radiation chamber prevents on-line monitoring of the 

transient (reactive) radiolysis products using spectroscopic analyses.  Thus, the experiments 

that can be performed will be limited to ex-situ analyses of thermally stable radiolysis 

products such as H2 and O2 gases.  However, corrosion reactions of the materials that make 

up the radiolysis cell and gas-sampling lines (under SCW conditions) can influence the 

measurements of the radiolytically produced H2 and O2. Thus, to achieve objective (1), a 

main technical issue is minimization (ideally prevention) of such reactions. If surface 

reactions cannot be avoided, the effect the surface reactions under specific test conditions 

should be quantified. Calibration of the measured radiolysis product concentrations is not 

simple due to difficulties in preparing standard gas samples under SCW conditions.  Thus, 

we needed to develop a method to introducing accurate concentrations of O2 in SCW for 

calibration. 

To date, only one model for the radiolysis chemistry of an early U.S. SCWR concept 

has been published [9]. While providing some valuable insights, that model included many 

simplifying assumptions that reduce its predictive value.  A number of the physical properties 

of water (e.g., density and ion dissociation constant) change near the critical point [10,11].  

The effects of the solvent properties of water on reaction kinetics in the sub- and supercritical 

water regimes are not well established and these properties can strongly impact on the model 

reactions.   
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Our objective is to develop a model for the radiation chemistry of water near the 

critical point that takes into account the influences of the changing water properties. We are 

approaching the modelling effort from two directions by developing two chemical kinetics 

models: (1) a liquid radiolysis model (LRM) and (2) a vapour radiolysis model (VRM).  The 

liquid model (LRM) was constructed using a reaction set similar to that used in a radiolysis 

model that was developed and validated for liquid water at ambient temperatures [12–16]. 

The vapour model (VRM) uses the reaction set developed by Arkhipov et al. for vapour 

water radiolysis [17].  Comparison of the predictions of these models as the temperature 

approaches the SCW temperature should provide an insight into the effect of solvent 

properties on steady-state radiolysis kinetics, as the physical nature of supercritical water lies 

somewhere between a condensed state (liquid water) and a gas state (water vapour).    

As the first step in developing the two models, the work performed under this thesis 

included:  (1) critical evaluation of the reaction set and the rate constants as a function of 

temperature in the existing LRM and performing limited model validation experiments at 25, 

150 
o
C and 250 

o
C, (2) assembling the reaction set and rate constants as a function of 

temperature for the VRM and coding them into software for solving the reaction kinetics by 

numerical integration, and (3) performing model simulations of the time dependent chemistry 

for radiolysis of pure water at temperatures ranging from 25 to 400 
o
C using both the LRM 

and VRM models. 
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 Thesis layout 1.3

The layout of this thesis is as follows: 

 Chapter 1 describes the motivation, rationale and objectives of the thesis. 

 Chapter 2 presents the technical foundation for the work. It describes the properties of 

supercritical water, and the physics and chemistry of the interaction of radiation with 

matter. 

 Chapter 3 provides information on the instrumentation, experimental procedures and 

analytical methods that were used in experiments. 

 Chapter 4 describes the design and construction of a test cell to study the radiolysis of 

supercritical water. The design challenges and the evolution of the design are 

presented. 

 Chapter 5 focuses on the gamma-radiolysis kinetics of liquid water. It contains 

description of a kinetic model designed for the radiolysis of liquid water and the bases 

for the model parameters. This chapter also includes model calculations for liquid 

water radiolysis at 25 °C, 150 °C and 250 °C and at different pHs.  

 Chapter 6 describes the vapour radiolysis model and its parameters in detail. The 

temperature and pressure dependency of the vapour radiolysis products are presented 

in this chapter as well.  

 Chapter 7 presents the experimental results from the radiolysis of biphasic liquid 

water and water vapour obtained at 25 °C, 150 °C and 250 °C. Also, model 
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simulation results are compared with experimental results.  

 Chapter 8 addresses the assembly of two chemical kinetics models for the -radiolysis 

of sub-critical and supercritical water. The chapter includes preliminary predictions of 

the time dependent chemistry for radiolysis of water at temperatures near the critical 

temperature. 

 Chapter 9 provides a conclusion and future work 
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2 CHAPTER 2 

Technical Background and Literature Reviews 

This section provides information on the technology base of supercritical water-

cooled reactors. Also, it provides a technical foundation for the study of radiation-induced 

water chemistry under supercritical conditions. 

 Supercritical water-cooled reactor (SCWR) 2.1

The SCWR concept is being investigated by 32 organizations in 13 countries and is 

one of the six reactor technologies selected for further development under the Generation-IV 

program [1]. SCWRs are based upon two recognized technologies, light water reactors 

(LWRs) and supercritical fossil-fired boilers that are commonly deployed power-generating 

technologies in the world. An SCWR is a high-temperature, high-pressure water-cooled 

reactor that operates with the core coolant at temperatures above the thermodynamic critical 

point of water (374 °C and 22.1 MPa), Figure 2.1. Operation at pressures above the critical 

pressure eliminates coolant boiling, so the coolant remains single-phase throughout the 

coolant circuit.  SCWRs are among the most promising advanced nuclear systems because of 

their high thermal efficiency (about 45% vs. about 35% efficiency for advanced LWRs), 

considerable plant simplification, and their capability for actinide management (depending 

on the core design) [2].  

The long-term viability of a SCWR will depend on the ability of designers and 

operators to control and maintain water chemistry conditions that will minimize corrosion 
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and the transport of both corrosion products and radionuclides. To develop a successful 

design, engineers must be able to predict corrosion rates.  The principal challenge in 

predicting corrosion and fission product transport is the absence of thermochemical and 

kinetic data above 300 °C and, most importantly, from 300 °C to 450 °C, where the 

properties of water change dramatically [3]. 

 

Figure ‎2.1: Schematic of an SCWR. 
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 Properties of Sub- and Supercritical Water 2.2

Ionizing radiation (present in the reactor core) interacts with matter very differently 

from low energy radiation. The energy transfer from radiation particle to water molecules, 

the primary radiolysis and the subsequent chemical reactions are important in determining 

the net chemical effects induced by ionizing radiation.  The relative importance of different 

processes depends on the type of radiation, and the chemical and solvent properties of water.  

The physical and chemical processes involved in radiolysis, with a particular focus on -

radiation, are reviewed in Section 2.3.1.  

 Supercritical Fluids  2.2.1

Recently supercritical fluids have attracted attention from chemists and engineers 

because of their peculiar properties. For a pure compound the critical state is the set of 

conditions at which the distinction between the two phases, liquid and vapour in equilibrium 

with each other, disappears and there is no phase boundary. Usually the critical temperature 

(TC) and pressure (PC) refer to the point at which the boundary between the gas phase and 

liquid phase disappears, as shown in Figure 2.2.  The state of matter at temperatures and 

pressures above the critical point is labeled a fluid. 
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Figure ‎2.2: Schematic phase diagram. 

 

 Supercritical Water  2.2.2

The critical point for water is 374 ºC and 22 MP4. Supercritical water (SCW) 

possesses extraordinary properties that differ from those of liquid water at normal conditions 

[4,5]. Due to its high compressibility, its thermodynamics can be modified drastically with 

small changes in pressure and temperature. It has been shown that reaction rate constants in 

SCW depend on density [6]. Manipulation of the SCW density can change the relative 

stabilities of free radicals and ions, and change the dominant reaction mechanisms [7–9].  

The following sub-sections examine some of the differences between SCW and normal 

water. 
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 The Extent of Hydrogen Bonding in SCW 2.2.2.1

Water is an exceptional solvent at ambient conditions.  It can form short-ranged, 

strongly attractive hydrogen bonds and this makes water a challenging fluid to understand 

[10]. Many of the properties of water depend on its hydrogen bonding and this network of 

bonds can be strongly affected by temperature and pressure.  To study the structure of water 

and the statistical distribution of water molecules around each other, and to quantify the 

hydrogen bonding in water at supercritical conditions, a number of different techniques 

including neutron and X-ray diffraction, microwave, IR, Raman, and proton NMR 

spectroscopy are used. Also, theoretical and computational studies have greatly improved our 

knowledge of supercritical water at the molecular level. In principle, simulations by Monte 

Carlo and molecular dynamic techniques provide a valuable microscopic description of 

supercritical water, but these simulations are not yet precise enough for large scale 

applications [11]. 

Many experiments and model simulations have demonstrated that hydrogen bonds are 

still present in dense supercritical water although there is a reduction in the number of 

hydrogen bonds per molecule with respect to ambient conditions (Figure 2.3) [12]. At the 

critical temperature the energy of the hydrogen bond is still appreciably larger than the 

thermal energy of the water molecules [13]. However, the extended network structure that is 

responsible for the unique properties of liquid water is lost.  This has an impact on key 

properties of water as a solvent. 

 



 

 

 

 

15 

 

Figure ‎2.3: Schematic of hydrogen bonding in different states of water (© 

2001 Sinauer Associates, Inc. 

 

 Ionic Dissociation of SCW 2.2.3

A key property of water is its ability to stabilize ions in solution.  A measure of this is 

the dissociation equilibrium for water, which is characterized by the ionic product (Kw, 

mol
2
·dm

–6
). 

H2O     H
+
  +  OH


       Kw

298
 = 1.023 10

-14              
     (2.1) 

The dependence of the dissociation constant on temperature and pressure (shown as 

density) is shown in Figure 2.4.  The ion product for water increases as the temperature rises 

and approaches the critical point; it becomes about three orders of magnitude higher than it is 

for ambient liquid water. However, a sharp decrease in Kw is observed as soon as the critical 

point is passed [14]. Supercritical water cannot stabilize water ions well and is a poor solvent 

for ions [8]. However, by increasing the pressure (and density) at a temperature above the 

critical point, the ability of water to stabilize ions can be increased.  As a result SCW 

conditions can be ‘tuned’ to benefit ionic or free radical reaction mechanisms [15,16]. 

Solid Water  Gaseous Water  Liquid Water  
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Figure ‎2.4: Kw of water up to 1273 K and densities up to 1.5 gcm
–3

 [17] . 

 

 Transport Properties of SCW 2.2.3.1.1

Viscosity () is important in the analysis of liquid behaviour and fluid motion near 

solid boundaries. At normal conditions the viscosities of gases and liquids differ by about 

two orders of magnitude. In principle, a low viscosity is attractive in chemical processes 

because it reflects high molecular mobilities and facile mass transfer for diffusion-controlled 

chemical reactions [9,13]. The self-diffusion coefficient of a particle, D, of effective radius r 

obeys the Stokes–Einstein relation, where k
B is the Boltzmann constant, 
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This equation holds for water at temperatures up to the critical point [18]. The factor 

D/T is almost constant and this facilitates predictions of solute diffusion rates. In the dilute 

gas limit, D is proportional to the ratio of the viscosity and density (/). 

 Dielectric Properties of SCW 2.2.3.2

The dielectric constant () is a measure of the polarizability of a material.  Liquid 

water has a relatively high dielectric constant ( ≈ 80 compared to organic solvents with  < 

10) and this enables it to solvate charged species (ions) readily. The high value of  at normal 

conditions (low temperatures and high densities) results from the strong dipole moment of 

the water molecule and its ability to orient the dipole to surround ions within the water 

structure [19]. However, as temperature increases, the thermal energy of water molecules 

increases and the ability of a water molecule to maintain a particular dipole orientation 

decreases.  Model calculations [20] and experimental data for water at temperatures and 

pressures up to 550 C and 500 MPa respectively [21,22] show how  decreases with 

increasing temperature and increases with increasing density, Figure 2.5.  At low densities 

the dielectric constant, and the ability of water to dissolve ionic species decreases quickly. 

Supercritical water has a dielectric constant that is on the order of  = 10 – 25 [13]. These 

values are greater than those for non-polar solvents and are high enough to dissolve and 

stabilize ions, but are also low enough to make SCW miscible with nonpolar species.  
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Figure ‎2.5: Physical properties of water as a function of temperature at 

25 MPa. 

 

 Ionizing Radiation in a Nuclear Reactor 2.3

In a nuclear reactor, fission of uranium and plutonium isotopes leads to the release of 

radiation and the creation of fission product fragments, some of which are radioactive 

isotopes.  A radioactive nuclide decays to a stable isotope by emitting a high-energy (fast) 

4
He

2+
 (referred to as α-particle) or a fast electron (β-particle) with each particle emission 

accompanied by the emission of one or more high-energy  photons.  The energy of the 

radiation particle or photon emitted from a radionuclide is characteristic of the nuclide [23].  

Each  photon emitted from a radionuclide has a discrete energy that is characteristic of the 
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nuclide; the γ-rays emitted during the β-decay of 
60

Co have energies of 1.332 MeV and 1.173 

MeV.  The energy of radiation particles and photons range from 0.1 MeV to 5 MeV [23]. 

This energy is not high enough to induce nuclear reactions but it is high enough to ionize 

atoms and molecules that are present on its path. Hence these particles and photons are 

known as ionizing radiation.  In a reactor  particles are largely confined within the nuclear 

fuel and only the behaviour of  particles and  photons is of interest for water radiolysis. 

 Radiation - Matter Interaction 2.3.1

 Energy transfer in water  2.3.1.1

Ionizing radiation transfers its energy to an interacting medium mainly by colliding 

non-discriminately with the electrons bound to atoms and molecules in the medium.  Due to 

its high initial kinetic energy each radiation particle undergoes a series of collisions before it 

loses most of its kinetic energy and becomes thermalized.  The difference between - and -

radiation lies in the different initial energy transfer mechanism. For  particles the energy is 

transferred via elastic and inelastic collisions between the fast electron () and the bound 

electrons of the collision partners. For -radiation energy transfer is via photon-electron 

interaction (i.e. elastic and inelastic Compton scattering) [24–26]. The Compton-scattered 

recoiled electron can have a very high energy and is very much like a -particle. This is why 

the chemical effects induced by both  and  radiation in water (for the same absorbed 

energy) are essentially the same. The big difference between the two types of radiation is 

their penetration depth.  Because the probability of a Compton scattering event is much lower 
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than the probability of an electron scattering event,  photons can, on average, penetrate 

much further into matter than a  particle before they interact to form a Compton electron.   

The main interactions in a radiation particle track are between the fast electron and 

the electron cloud that surrounds the atoms in a molecule.  The larger the density of the 

bound electrons in the path (or track) of the radiation particle (or the primary electron), the 

higher the probability of energy transfers collision.  The density of the bound electrons in the 

interacting medium is nearly proportional to the mass density of the medium.  

The rate of energy transfer per unit of penetration depth through a medium is referred 

to as the linear energy transfer (LET) rate.  The LET rate is important in determining the 

density of ions and electronically excited molecules that are formed along the radiation track.  

Since this density can affect further collision/reactions of species in the track, it will have 

consequences on the yields of radiolysis products that reach the bulk phase (after diffusing 

out of the localized zone near the track) where they can undergo bulk chemical reactions. The 

physical and chemical processes that determine the energy transfer rate, the ionization 

efficiency, and chemical decomposition yields that follow the energy transfer, are reviewed 

below.  

 Primary radiolysis processes 2.3.1.2

Due to their high initial energy, each radiation particle undergoes many collisions 

while it loses its energy and eventually becomes “thermalized”. The multiple interactions are 

not selective (dependent on the atomic nature of the target matter) and instead depend only 
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on the relative abundance of electrons in the interacting matter.  This is important when 

irradiating dilute solutions.  The total mass of the solutes in such solutions is very much less 

than the mass of the surrounding water.  Hence, the probability of an incident electron 

interacting with solute impurities is very small compared to the probability of interacting 

with the bulk water phase.  For this reason, chemical processes induced by low LET radiation 

are often referred to as solvent-oriented processes. The amount of low LET energy absorbed 

by a solution depends primarily on mass and hence is expressed in units of energy absorbed 

per mass, the Gray (Gy), where 1 Gy = 1 Jkg
–1

.    

The average energy transferred from a radiation particle to a water molecule, per 

collision, typically ranges from 60 to 100 eV (1 eV≈1.6×10
–19

 J)[24,27,28]. This amount of 

energy is a small fraction of the initial radiation particle energy (on the order of 1 MeV), so 

the collisions neither slow the particle nor change the direction of the radiation path 

appreciably (except at the very end of the path).  The radiation particle moves in a straight 

line that is designated a radiation track.  The initial consequence of each energy transfer 

collision is ionization or electronic excitation of a water molecule.  The result is creation of 

ion pairs (H2O
+
 and e

−
hot) or electronically excited water molecules (H2O*) along the 

radiation track. The electron of this ion pair is labelled as ‘hot’ because it has a kinetic energy 

that is sufficiently high to excite or ionize one or more neighbouring water molecules (the 60 

- 100 eV transferred in a collision is well in excess of the ionization energy of a water 

molecule (12.6 eV)) [29]. Secondary (or the tertiary) ionization caused by this ‘hot’ electron 

will occur very near the first ionization that created the ‘hot’ electron, resulting in a cluster of 

2-3 ion pairs (or excited water molecules) near the radiation track.  This cluster is referred to 
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as a “spur”, see Figure 2.6 [24,27,28]. Any electronically excited water molecules that arise 

as a result of a hot electron impact have the option of being stabilized (by de-excitation 

collisions with other water molecules), dissociating into an ion pair (with a low energy 

electron), or separating into free radical fragments (such as •OH and •H). 

 

 

Figure ‎2.6: The radiation track of a fast electron (spur size not to scale). 

 

The density of spurs along a radiation track is an important parameter in determining 

the chemical yields of radiolysis products.  The spur density depends mainly on the collision 

rate of the radiation particle with the bound electrons in the water molecules.  If the spurs are 

close enough together, the ions and radicals in a spur can interact with those of an adjacent 

spur before they diffuse into the bulk water phase.  If the spur density is sufficiently high, 

these interactions can lead to a lower net decomposition rate of water (per absorbed energy 

unit) and a higher ratio of molecular to radical primary radiolysis products. For the low LET 

radiation, the inelastic collision mean free path of the radiation (the primary electron) in 
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liquid water at 25 
o
C is about 1 m, while the spur size is about 20 nm (see Figure 2.6) 

[27,28].  This is not the case for high LET -radiation, where the spurs overlap considerably. 

The effect of spur density can be most appreciated by comparing the G-values obtained for 

high LET -radiation and those of the low LET -radiation (see Table 2.1).  The large 

distance between the spurs for low LET radiation in liquid water means that spur interactions 

will be even less likely in lower density SCW.  

 

Table ‎2.1: Primary radiolysis yields* in liquid water at 25 °C [24]. 

 The G-values are in units of mol·J1. 

 

The electrons formed in a spur will typically have sufficient kinetic energy to move 

away from their counter H2O
+
 cations.  This process is referred to as expansion of the spur.  

As the spur is expanding, the ‘dry’ electrons that arose from the water molecule ionization 

will be solvated and become hydrated electrons (eaq

), a well-known species.  The water 

cations and any excited water molecules in the spur will interact with neighbouring water 

molecules.  

    Radiation 
H2O eaq

– 
H

+ OH H •HO2 H2 H2O2 
 

 –  0.41 0.26 0.26 0.27 0.06 0 0.04 0.07  

 – 0.26 0.02 0.02 0.02 0.01 0.008 0.12 0.11  
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 Dependences of Primary Radiolysis Yields on Water Properties  2.3.1.3

For a given solvent medium, the yields of the primary radiolysis products (G-values) 

depend mainly on the amount of energy absorbed by the medium and the chemical nature of 

the medium.  They are nearly independent of the rate of energy absorption for radiation with 

an energy in the range of 0.1 to 5 MeV [23].  Since the amount of energy absorbed depends 

primarily on the mass of the solvent, the density of the solvent medium will affect the linear 

rate of energy transfer (or absorption).  However, the primary radiolysis yields per unit 

absorbed energy are nearly independent of the rate of energy absorption and hence, the 

primary yields are nearly independent of the density of the medium.  The density of the 

solvent medium also has little impact on the spur density along the radiation track for low 

LET radiation.  Without significant overlap between spurs, the density of the solvent medium 

alone has very little effect on the chemistry occurring inside the spurs. Consequently, the G-

values of steam radiolysis do not vary with temperature or the steam density at low pressures 

[24].    

Water properties that can influence the Coulombic attraction between the ion pairs 

and radicals and their mobility inside the spurs can have a more significant effect. The 

influence of these solvent properties on the primary radiolysis yields can be appreciated from 

a comparison of the G-values for liquid water and water vapour (Table 2.2). The G-values for 

vapour water are independent of the steam density.  The comparison shows that the G-value 

for water decomposition and the ratio of radical to molecular yields are higher for water 
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vapour than liquid water.  Understanding the reason for this behaviour can provide a 

technical basis for estimation of G-values for supercritical water.  

 

Table ‎2.2: Primary -radiolysis yields
1
 in liquid water and water vapour at  

25 °C [30,31]. 

1. G-values in units of mol·J
1

. 

 

The differences in the G-values for liquid and vapour water arise from other 

properties of water (such as the dielectric constant, r, the viscosity, , and the ionic product) 

and not directly from differences in density. As discussed above, one of the features that 

controls the yields of primary radiolysis products is interaction within spurs. The probability 

with which electrons, ions and radicals avoid geminate recombination is related to the rate at 

which electrons are solvated and/or diffuse away from counter ions.  This probability is 

referred to as the escape probability, Pesc, and is determined by: 

 

          ( 
  

 ⁄ )                                                                                                                                                                                                             

  

where r is the separation distance between an electron and a cation.  In this equation, rc is the 

Onsager radius, the distance between an electron and its counter ion at which the Coulombic 

  Water phase H2O eaq
– 

H
+
 OH H H2 O H2O2 

 

Liquid – 0.41 0.26 0.26 0.27 0.06 0.04 0.0 0.07  

Vapour – 0.74 0.0 0.0 0.63 0.74 0.05 0.11 0.0  
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potential between them equals the average thermal kinetic energy of the particles in the 

solvent system [32]. 

    
  

         
                                                                                                                          

where e is the electron charge, εr is the dielectric permittivity of the medium, εo is the 

dielectric constant of permittivity in a vacuum (unitless), kB is the Boltzmann constant, and T 

is the temperature (K) (kBT is the average thermal kinetic energy of a system).  This equation 

shows that the escape probability increases exponentially with the dielectric constant of the 

solvent medium.  As a result the G-values, which are chemical yields, should decrease with 

decreasing dielectric constant. 

The escape probability also increases exponentially with the distance, r, which is the 

average distance traveled by the electron away from its partner cation before it becomes 

thermalized.  This distance depends on the mobility of the electron (or counter ion) in the 

solvent medium.  The ion or electron mobility, , in turn is inversely proportional to the 

viscosity, , of the medium [33]. The electron mobility is also very dependent on the extent 

of solvation.  In a low dielectric medium, where the Onsagar radius is large, the speed at 

which an electron can move beyond the Coulombic attraction range becomes important.  

Thus, in a low dielectric medium the solvent viscosity that influences the electron mobility 

becomes a more important parameter than the dielectric constant in determining the G-

values.  The G-values increase with decreasing viscosity. 
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The effects of dielectric constant and viscosity can be seen in the different radiolytic 

yields (G-values) for free ions (equivalent to the G-value of solvent decomposition) observed 

for different organic solvents, listed in Table 2.3.  Comparison of the G-values for water, 

methanol and benzene, solvents that have similar densities and viscosities but significantly 

different dielectric constants, shows that a decrease in dielectric constant decreases the G-

value.  Comparison of benzene, cyclohexane and neopentane, solvents that have similar low 

dielectric constants but different viscosities, shows that a decrease in viscosity increases the 

G-value.   

 

Table ‎2.3: Dielectric constants, viscosities, Onsager radii and free ion yields 

[33]. 

 

The effect of viscosity on G-values becomes more prominent in a low dielectric 

medium.  The effect of viscosity can be also seen in the difference in the G-values for water 

decomposition of liquid water and water vapour (listed in Table 2.2).  In addition the vapour 

phase favours radical production over ion production.  This is attributed to the difference in 

Liquid 
Density 

(kgm
–3

) 

Viscosity 

(centipoise) 

Dielectric 

Constant 

rc 

(nm) 

G (free ions) 

(mol·J
1

) 
 

Neopentane 586 0.007 1.86 32 0.09 – 0.11  

Cyclohexane 779 0.297 2.02 28 0.016 – 0.02  

Benzene 876.5 0.601 2.27 25 0.005 – 0.008  

Methanol 791.80 0.56 32.7 2.3 0.20  

Water 1000 0.89 80.1 0.7 0.28  
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the ionic product, KW, of the two phases.  It can be noted that G-values for irradiation of 

water vapour are reported to be independent of the steam density, as expected [24]. 

The data in Table 2.3 clearly demonstrate the importance of the nature of the water 

phase in determining the primary chemical yields per unit absorbed energy.  Since the water 

solvation properties of SCW are close to those of water vapour, the primary G-values 

observed for water near critical temperatures may approach those seen for water vapour at 

room temperature. 

In an equilibrium system, the average kinetic energy of a particle is proportional to 

the absolute temperature (EKE  ½ kBT).  Hence, an increase in water temperature from 25 

C to 325 C will only increase the average energy of a particle by a factor of two.  This 

results in only a small change in particle collision energies when compared to the energy 

required for ionization or electronic state excitation (EKE, 25 C = 0.013 eV vs. 1 - 12 eV).  

Hence we would not expect to see a significant change in primary radiolysis yields as a 

function of temperature over this range. Intramolecular energy transfer between different 

energy states of water cations or electronically excited water molecules is already fast at 25 

C and temperature change alone has no significant effect on ionization efficiency. As well, 

in liquid water the dipole moment orientation around a thermal electron e


th and hence the 

rate of solvation is also fast.  Thus, temperature has only a small effect on spur or track 

chemistry.  However, the water temperature can affect the G-values via its influence on the 

solvation properties of water (dielectric constant, viscosity and ionic product).   
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The electrons, ions and radicals within a spur continually experience a Coulombic 

attraction with each other.  This can lead to recombination of ions or radicals, thereby 

reducing the net chemical decomposition caused by absorption of radiation energy.  This 

process is referred to as geminate recombination.  When the water decomposition products 

have moved outside of the range of influence of Coulombic attraction to their counter 

partners (ions or radicals), it be said the radiation products are out-of-spur and they can be 

considered as free ions and free radicals.   

The Coulombic influence of counter ions diminishes as the spur expands and the 

counter ions and radicals are no longer distinguishable from other ions and radicals formed in 

other neighbouring spurs or already present in the bulk phase.  Once the system reaches this 

stage, the subsequent physical and chemical processes of these ‘free’ species can be treated 

as ordinary bulk phase chemistry.  Figure 2.7 illustrates the time evolution of radiolysis 

products in a radiation track and spurs. 
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Figure ‎2.7: Schematic of water radiolysis as a function of time 

following absorption of radiation energy as a pulse.  The right hand 

panel shows the expansion of spurs with time. 

 

The time frame during which spur expansion occurs is approximately 100 ns in liquid 

water at 25 C, Figure 2.7.  The species present at the end of this stage (blue box in Figure 

2.7) are normally referred to as ‘primary’ radiolysis products and their concentrations per 

absorbed energy are primary radiolysis yields.  In this sense ‘primary’ does not refer to the 

first species created upon interaction of a radiation particle with a water molecule but rather 

to the starting point for the chemical evolution of an irradiated system. 
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 Aqueous Reactions of Radiolysis Products 2.3.1.4

After primary radiolysis products are formed and have migrated into the bulk phase, 

they will undergo homogeneous chemical reactions.  These will include reactions with other 

water radiolysis products, water molecules, water dissociation ions (H
+
 and OH

–
), and any 

solute species that may be present (such as O2 from air in contact with the water, or dissolved 

metal ions).  These reactions can be described very effectively using simple, classical rate 

equations.  Nevertheless, the chemical kinetics is complex because, even for a simple system 

containing only water (H and O), there are a surprisingly large number of species (molecules, 

ions and radicals) present.  They require a quite large set of closely coupled reactions to 

model the chemical system (as schematically shown in Figure 2.8).  About 50 elementary 

reactions are required to describe the radiolysis kinetics of a pure water system. 

With a continuous, steady state radiation flux, water molecules are continuously 

interacting with radiation particles to form primary radiolysis products.  After the start of 

irradiation, the concentrations of water radiolysis products increase rapidly.  However these 

species also rapidly begin to react with each other and other species in the system and the 

chemical system reaches a pseudo-steady-state on a time scale that is on the order of minutes 

(quite long in comparison to the time scale in which primary radiolysis products are formed 

(~ 1 s after deposition of a particle’s energy)).  It is the pseudo-steady-state concentrations 

of reactive species and not the primary radiolytic yields of reactive species that are crucial in 

evaluating the effects of irradiation on corrosion.  In reaching steady state the back reactions 

of acid-base equilibria become important and some cyclic (autocatalytic) reaction sequences 
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can be established.  The steady-state concentrations of reactive species arising from 

radiolysis cannot be easily predicted by a simple assessment of individual reactions and their 

reaction rates [27].  However, the complex reaction kinetics can be followed through the use 

of a computer program that solves the problem of the set of coupled stiff differential 

equations that describe the individual reactions.  To perform this modelling analysis, a set of 

rate constants for the individual reactions is required.  These are well established for water up 

to 200 °C. 

 

 

Figure ‎2.8: Schematic of water reactions under long-term (> ms) 

continuous irradiation. 
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The rate constants for most chemical reactions in supercritical water are not available. 

However, the rate constants for reactions in liquid water and vapour water at high 

temperatures below the critical point are reasonably well established [31]. For chemical 

reactions with an activation energy associated with it, the rate constants generally have 

Arrhenius temperature dependence at ambient temperatures. This makes it possible to 

extrapolate rate constants to high temperatures. However, at high temperatures the reactant 

collision rate or diffusion rate can contribute significantly to rate determining step [34–37]. 

These mass transport processes strongly depend on the water density and the properties of 

water as a solvent.  This means that in raising temperatures above the critical point 

extrapolation of the rate constants for the reactions in supercritical water requires that the 

effects of solvent properties (such as ionic product, viscosity, diffusivity and dielectric 

constant) must be taken into account.  

 References 2.4

[1] "A Technology Roadmap for Generation IV Nuclear Energy Systems", U.S. DOE 

Nuclear Energy research Advisory Committee and the Generation IV International 

Forum, publisher, Dec. 2002. 

[2] P.E. Macdonald, "Supercritical Water Reactor", INEEL/EXT-03-01210, US, 2003. 

[3] D.A. Guzonas, F. Brosseau, P. Tremaine, J. Meesungnoen, "Water Chemistry in a 

Supercritical Water-Cooled Pressure Tube Reactor", Journal of Nuclear Technology, 

179, 2012, 205. 

[4] C.W. Kern, M. Karplus, F. Franks, "In Water: a Comprehensive Treatise", Plenum 

Press, New York, 1972. 

[5] T.J. Bruno, J.F. Ely, "Supercritical Fluid Technology", 3
rd

 ed., CRC Press, Boca 

Raton, 1991. 

[6] J. Cline, K. Takahashi, T.W. Marin, C.D. Jonah, D.M. Bartels, "Pulse Radiolysis of 

Supercritical Water. 1. Reactions Between Hydrophobic and Anionic Species", 

Journal of  Physical Chemistry A, 106, 2002, 12260. 

[7] M. Watanabe, T. Sato, H. Inomata, R.L. Smith, K. Arai, A. Kruse, E. Dinjus, 



 

 

 

 

34 

"Chemical Reactions of C1 Compounds in Near-Critical and Supercritical Water", 

Chemical Reviews, 104, 2004, 5803. 

[8] P.E. Savage, "Organic Chemical Reactions in Supercritical Water", Chemical Reviews, 

99, 1999, 603. 

[9] N. Akiya, P.E. Savage, "Roles of Water for Chemical Reactions in High-Temperature 

Water", Chemical Reviews, 102, 2002, 2725. 

[10] F.H. Stillinger, "Water Revisited", Science, 209, 1980, 451. 

[11] B.D. Bursulaya, H.J. Kim, "Molecular Dynamics Simulation Study of Water Near 

Critical Conditions. II. Dynamics and Spectroscopy", The Journal of Chemical 

Physics, 110, 1999, 9656. 

[12] M.C. Bellissent-Funel, J.C. Dore, "Hydrogen Bond Networks", Springer Netherlands, 

Dordrecht, 1994. 

[13] H. Weingärtner, E.U. Franck, "Supercritical Water as a Solvent", Angewandte Chemie 

Journal, 44, 2005, 2672. 

[14] J.H. Park, S.D. Park, "Kinetics of Cellobiose Decomposition Under Subcritical and 

Supercritical Water in Continuous Flow System", Korean Jornal of Chemical 

Engineering, 19, 2002, 960. 

[15] A. Loppinet-Serani, "Supercritical Water for Environmental Technologies", Journal of 

Chemical Technology and Biotechnology, 85, 2010, 583. 

[16] W. Wahyudiono, S. Machmudah, M. Goto, "Utilization of Sub and Supercritical 

Water Reactions in Resource Recovery of Biomass Wastes", Engineering Journal, 17, 

2013, 1. 

[17] W.L. Marshall, E.U. Franck, " Ion Product of Water Substance, 0–1000  °C, 1–10,000 

bars, New International Formulation and its Background", Journal of  Physical 

Chemistry Reference Data, 10, 1981, 295. 

[18] W.J. Lamb, "Self-diffusion in Compressed Supercritical Water", Journal of  Physical 

Chemistry, 74, 1981, 6875. 

[19] J.G. Kirkwood, "The Dielectric Polarization of Polar Liquids", Journal of  Physical 

Chemistry, 7, 1939, 911. 

[20] E.U. Franck, S. Rosenzweig, M. Christoforakos, "Calculation of the Dielectric 

Constant of Water to 1000 °C and Very High Pressures", Berichte Der 

Bunsengesellschaft Für Physikalische Chemie, 94, 1990, 199. 

[21] K. Heger, M. Uematsu, E.U. Franck, "The Static Dielectric Constant of Water at High 

Pressures and Temperatures to 500 MPa and 550 °C", Berichte Der 

Bunsengesellschaft Für Physikalische Chemie, 84, 1980, 758.  

[22] R. Deul, E.U. Franck, "The Static Dielectric Constant of the Water-Benzene Mixture 

System to 400 °C and 2800 bar", Berichte Der Bunsengesellschaft Für Physikalische 

Chemie, 95, 1991, 847. 

[23] CRC Handbook of Radiation Chemistry, CRC Press, 1991. 

[24] J.W.T. Spinks, R.J. Woods, "An Introduction to Radiation Chemistry", 3
rd

 ed., Wiley-

Interscience, New York, 1990. 

[25] J.H. O’Donnell, D.F. Sangster "Principles of Radiation Chemistry", Elsevier, New 

York, 1970. 



 

 

 

 

35 

[26] Z.D. Draganić, I.G. Draganić, "The Radiation Chemistry of Water", Academic Press, 

New York, 1971. 

[27] J.C. Wren, "Steady-State Radiolysis: Effects of Dissolved Additives", ACS 

symposium series, in: Nuclear Energy and The Environment, American Chemical 

Society, Washington, D.C, 2010, 271. 

[28] G.V. Buxton, "Radiation Chemistry", EDP Sciences, France, 2008. 

[29] L. Wojnarovits., "Radio Chemistry and Nuclear Chemistry", Kluwer Academic 

Publishers, Amsterdam, 2003 (e-Book). 

[30] A.J. Elliot, D.M. Bartel, AECL Report-11073, Chalk River, Canada, 2009. 

[31] O.P. Arkhipov et al., "Development and Verification of a Mathematical Model of the 

Radiolysis of Water Vapor", Atomic Energy, 103, 2007, 870. 

[32] J.F. Wishart, "Photochemistry and Radiation Chemistry: a Perspective", American 

Chemical Society, Washington, 1998. 

[33] G.R. Choppin, J.O. Liljenzin, J. Rydberg, "Radiochemistry and Nuclearchemistry", 3
rd

 

ed., Elsevier, New York, 2002. 

[34] D. Swiatla-Wojcik, G. V. Buxton, "Modeling of Radiation Spur Processes in Water at 

Temperatures up to 300 degree", Journal of  Physical Chemistry, 99, 1995, 11464. 

[35] G.V. Buxton, "Radiation Chemistry. Present Status and Future Trends", Elsevier, 

Amsterdam, 2001. 

[36] A.J. Elliot et al., "Estimation of Rate Constants for Near-Diffusion-Controlled 

Reactions in Water at High Temperatures", Journal of the Chemical Society, Faraday 

Transactions, 86, 1990, 1539. 

[37] D. Swiatla-Wojcik, G.V. Buxton, "On the Possible Role of the Reaction H + H2O 

H2 + OH in the Radiolysis of Water at High Temperatures", Radiation Physics and 

Chemistry, 74, 2005, 210. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

36 

3 CHAPTER 3 

Experimental Principles and Details 

The experiments performed for this thesis involved the irradiation of water samples 

using a high flux gamma cell. In this chapter, information regarding the experimental 

equipment, the experimental procedure and analytical techniques that were used is provided. 

 Solution preparation  3.1

All experimental solutions were prepared daily using water from a NANOpure 

Diamond UV system from Barnstead International, with a resistivity of 18.2 MΩ.cm in order 

to eliminate organic and inorganic impurities in the water. The experiments were performed 

at pHs of 7.0 and 10.6. The pH was adjusted to 10.6 by dropwise addition of 1 M sodium 

hydroxide for room temperature studies and of 10
–3

 M lithium hydroxide for higher 

temperatures studies. The solution pH was measured both before and after an irradiation test 

using an electronic pH meter (Accumet) that was calibrated with reference solutions.   

 Aeration  3.2

After pH adjustment, solutions were deaerated. The deaerated solutions were 

prepared by purging with ultra high purity argon (Praxair, impurity 0.001%) for one hour.  

The bulk solution was then transferred into an argon-filled glove box and consequently into 

radiolysis cells. The oxygen concentration in the glove box was kept below a 1000 ppm 
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threshold for O2, as verified by gas chromatographic analysis of the glove box air 

composition.  

 Gold Plating of Radiolysis Cell 3.3

A major focus of this research was the study of water radiolysis at supercritical water 

conditions.  At these very high temperatures, reactions of water and water radiolysis products 

with metallic cell wall materials can be accelerated [1].  It is necessary to use metal alloys for 

the cell walls to obtain the strength required at the test temperatures and pressures. Hence 

much of the effort in this thesis was devoted to the development and testing of an appropriate 

test cell. 

Stainless steel was the material of choice for a radiolysis cell because of its strength 

and relatively low corrosion rate.  However, even low corrosion rate is enough to influence 

the concentrations of radiolysis products at high temperatures, so gold plating was applied to 

the inner cell surfaces.  Gold was used because it is known to be very inert to both oxidizing 

and reducing reactions of water and water radicals, even at high temperatures. 

The gold plating was applied using an electroplating method. Electro-deposition of an 

adherent metallic coating upon a metal electrode for the purpose of securing a surface with 

properties or dimensions different from those of the base metal is defined as electroplating. 

The physical embodiment of an electroplating process consists of four parts: (1) the external 

circuit, (2) a negative electrode or cathode (material to be plated), (3) the plating solution, 
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containing a compound of the metal to be deposited, and (4) a positive electrode, a 

conducting material that serves solely to complete the circuit [2].  

The material to be plated is immersed in the plating solution (the bath) containing the 

plating metal in an oxidized form. The metal in solution migrates toward the negatively 

charged cathode.  Once the metallic ion has reached the cathode it is reduced and is deposited 

as a neutral metal atom onto the element being plated (Figure 3.1). The amount of metal 

deposited is a product of time, the total current flowing through the solution, and the bath 

efficiency, also called the cathode efficiency. Faraday's laws of electrolysis govern the 

amount of metal deposited; for each Faraday of electricity that flows through the cathode, 

one mole of metal will be deposited on the cathode. 

Gold plating of stainless steel in our laboratory was done using a 24K (karat) Bright 

gold plating solution supplied by Gold Plating Services. The solution contains 25 grams fine 

gold per litre and a small amount of cobalt, and the solution is acidic.  Gold plating using a 

Bright solution yields a relatively low stress, fine-grained deposit of gold with a hardness in 

the range of 130-200 Knoop. This solution produces 99.7% purity hardened gold plating. 

We performed the plating in two sequential steps to obtain a gold coating with a finer 

grain. The first step was the deposition of an initial layer of gold.  This step started with 

immersion the stainless steel part in the Bright solution and stripping the existing chromium 

oxide from the surface by acid in the solution. Based on the recommended procedure for 

plating with this solution, the temperature was increased to 38 ºC with continuous stirring. 

The required current was calculated using the surface area of stainless steel part. A current 
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density of 64.6 amp/m
2 

will result in the deposition of a 1micron thick layer of gold in 8 min. 

In the next step in order to make the gold layer thicker and compact, a current density of 32.3 

A/m
2
 for 13 min was applied to deposit 2.5 microns of gold. The temperature of the solution 

at this stage was increased to 55 ºC based on the recommended procedure. 

 

 

Figure ‎3.1: Schematic of an electroplating setup. 

 

 Sealing  3.4

The radiolysis cells were designed to minimize the leakage of the gasses formed 

inside the cell or any air ingress during sampling. Based on the radiolysis cell design and 

experimental conditions (pressure and temperature) different sealing strategies were chosen. 
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A proven quartz cell design was used for tests up to 150 °C. At these low temperatures and 

pressures, a metal cell was not necessary. For the quartz cell a PTFE 

(polytetrafluoroethylene) silicon septum was used to seal the cap (Figure 3.2). For the gold-

plated stainless steel cell, a piece of gold foil, which completely covered the surface area of 

the opening, was placed on top of the cell opening.  A cell closure before adding the screw on 

gold-plated cell closure (Figure 3.3 - note the flats on the sides of the top for wrench mating).  

An additional PTFE silicon septum is placed over the stainless steel cell during sampling, see 

Figure 3.4. 

 

       

Figure ‎3.2: Quartz cell cap with PTFE silicon septum. 
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Figure ‎3.3: Gold-plated stainless steel cell cap showing gold foil in the 

center. 

 

 

Figure ‎3.4: PTFE silicon septum placed over the stainless steel cell 

during sampling. 
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 Pressure and Temperature Control 3.5

For high temperature tests, the radiolysis test cells and vials were placed inside an 

autoclave (pressure vessel) with an external electrical heating coil (Figure 3.5). The 

temperature inside the autoclave was monitored with a Type J thermocouple (iron 

constantan, supplied by Parr Instrument Company) that is well suited to the operating 

temperature range of the autoclave. The autoclave, which was a N4760 model pressure vessel 

supplied by Parr Instruments, had a 300-ml volume (6.5-cm inside diameter, 10-cm inside 

depth) and a 4-kg weight. The maximum pressure and temperature that this autoclave can 

withstand are respectively, 350 °C and 20 MPa. The cross-section of the autoclave and the 

assembled autoclave with plug and rupture disc are illustrated in Figures 3.6 and 3.7.  

 

Figure ‎3.5: Schematic of an autoclave containing radiolysis cells. 
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Figure ‎3.6: Schematic of the autoclave’s cross-section. 

 

 

 

Figure ‎3.7: Assembled autoclave with plug and rupture disc. 
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In a test, power was supplied to the heating coil with a variable power supply set a 

desired voltage that was based on experience.  This caused the temperature inside the cell to 

rise to the desired temperature after it was placed inside the gamma cell.  It required 

approximately 30 min to reach 150 °C and 45 min to reach 250 °C. To maintain a pressure 

balance on the inside and outside of the radiolysis cells, the cells were placed in water in the 

autoclave.  The ratio of water to gas volume in both the cells and autoclave were 

approximately the same (1:2).   At the end of an experiment, the heating coil power was shut 

off and the autoclave was removed from the gamma cell.  It took approximately 40 min for 

the temperature of the autoclave to decrease to a level at which it could be easily handled and 

disassembled for removal of the test cells.  

 - Irradiation 3.6

Our experiments involved the -irradiation of small samples of water. The irradiation 

source was an industrial gamma cell irradiator, MDS Nordion model 220 (Figure 3.8). This 

gamma cell contains 
60

Co doubly encapsulated in aluminum and stainless steel tubes (Figure 

3.9), and fixed within a lead shield to supply the -radiation (1.33 and 1.13 MeV -rays). The 

gamma cell exposure chamber has a cylindrical geometry, 20.3 cm high and 7.5 cm in radius 

[3]. 

The exposure chamber is accessed by a vertical lift in the center of the gamma cell. 

Experimental samples were encased in an autoclave that is sized to fit the exposure chamber. 

The autoclave is positioned on the top of a lift and then lowered into the gamma cell to start 
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the irradiation. When the desired period of irradiation was complete, the autoclave was 

removed from the exposure chamber.  

 

Figure ‎3.8: Nordion Gamma Cell 220. 

 

 

Figure ‎3.9: Arrangement of 
60

Co source tubes in the gamma cell. 
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A typical absorbed dose distribution within the gamma cell exposure chamber is 

illustrated in Figure 3.10 [3,4]. The dose is relatively uniform over the central volume of the 

exposure chamber where our test samples were located. This justifies the use of a single 

value for the absorbed dose rate in our experimental analyses. The dose rate of the gamma 

cell that was used, was determined using Fricke dosimetry [4,5]. Fricke dosimetry uses an 

aqueous solution of sulfuric acid and ferrous sulfate in the following composition: 1 mM 

FeSO4 + 0.8 N H2SO4 + 1 mM NaCl. Irradiation of the Fricke solution causes radiolysis of 

water and the radiolysis product H2O2 oxidizes the ferrous ions to ferric ions. The ferric ions 

have a strong optical absorption coefficient with peaks at wavelengths 224 nm and 304 nm 

[6], and the concentration of the ferric ions that are produced during an irradiation period is 

determined by UV-visible spectrophotometry of the solution. The dose rate is then calculated 

using the known G-value for the production of H2O2 by water radiolysis. 

The gamma source is 
60

Co which has a half-life of 5.27 a, hence, the dose rate within 

the gamma cell appreciably decreases within the time scale of these studies. Fricke dosimetry 

measurements were carried out by members of the research team using the cell periodically 

to confirm the dose rate as a function of time. During the period in which the experiments 

documented in this thesis were performed, the dose rate varied from 4.5 kGy·h
–1 

to 4 kGy·h
–1

.  
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Figure ‎3.10: A typical isodose curves for a vertical cross sectional 

plane through the central axis of a gamma cell. 

 

 Sample Analysis 3.7

Upon the termination of irradiation the autoclave is taken out of the gamma irradiator. 

The radiolysis cell is allowed to cool down to around room temperature and then analyses of 

the aqueous and gaseous phases were performed. 
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 Gas Chromatography  3.7.1

The H2 and O2 concentrations in the headspace of a radiolysis cell were determined 

using gas chromatography. A gas sample was extracted from the radiolysis cell headspace 

using a gas-tight syringe with a Luer lock (Agilent Technologies) and injected into a GC 

system (GC-MS, 6580 Agilent Technologies) through a gas-tight septum. 

Gas chromatography is an analytical technique used for the separation, identification 

and quantitative determination of volatile compounds. In gas chromatography, separation of 

the components is achieved by their distribution between two phases. One is a stationary 

phase with large surface area and the other is a mobile phase (gas) that is in contact with the 

stationary phase [7]. A normal gas chromatograph has the solid phase on the walls of a small 

diameter column and the mobile phase moves through the column (Figure 3.11). Due to 

differential partitioning between the mobile phase and the stationary phase on the walls of the 

column, the components of the gas phase are separated in time. Transport of the gas to be 

analyzed through the column is achieved by the flow of an inert carrier gas [8]. 

We used a gas chromatograph with a 60-m long GS-GASPRO column (diameter 0.32 

m) connected to a micro-fluid three-way splitter to allow simultaneous analysis by different 

detectors. 
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Figure ‎3.11: Schematic of gas chromatography. 

 

A variety of detectors are available for use with the gas chromatograph column. The 

detectors use some physical or chemical property of the vapours that are to be identified. The 

H2 concentration was determined using a thermal conductivity detector (TCD) [9]. The TCD 

compares the thermal conductivities of two gas flows, carrier gas that bypasses the separation 

column (reference) and carrier gas that has passed through the column (column effluent). 

The sensitivity for a compound increases when there is a larger difference in thermal 

conductivities of the carrier gas and that particular compound. Typically, helium is used as 

the carrier gas because of the large difference in thermal conductivity of He compared to 

most compounds. But, because the thermal conductivities of He and H2 are close, a TCD is 

not very sensitive to H2 when using a helium carrier gas. Therefore, for hydrogen analysis 

with a thermal conductivity detector, argon is the recommended carrier gas. Another 

alternative for the carrier gas is N2, which we have used for our detection.   
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 The thermal conductivity detector holds a filament that is heated electrically. The 

filament temperature is kept constant while alternate streams of carrier gas and column 

effluent pass over it (Figure 3.12). When there is another component in the effluent gas, the 

thermal conductivity of the gas is different and power required keep the filament temperature 

constant changes. The power differences are measured and recorded and the output of a TCD 

is a number spikes for these differences as a function of time after the sample was introduced 

into the column (Figure 3.13). The elution times correspond to the different volatile 

components of the sample. Elution times are not uniquely associated with a particular species 

and the GC must be calibrated with known gas samples to identify a particular species. The 

TCD detector in our lab was calibrated by injecting certified gas mixtures with 

concentrations of 0.1%, 1%, 3% and 5% hydrogen gas in helium supplied by Praxair. The 

area under the curve of a GC spike can be related to the quantity of the species in the original 

sample. 

        

Figure ‎3.12: TCD - conceptual diagram. 
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Figure ‎3.13: Typical TCD chromatogram. 

 

The detector used for O2 in the gas chromatography was micro cell electron capture 

detector (μ-ECD). This type of detector is commonly used for components with 

high electronegativity. It contains a cell plated with 
63

Ni, a radioactive isotope. The 
63

Ni 

releases β particles that collide with carrier gas molecules to produce low-energy electrons. 

The free electrons produce a small current (reference or standing current) that is measured by 

applying a pulsed voltage across the flow path through the cell (Figure 3.14). 

When a sample component molecule comes into contact with the free electrons, they 

may capture an electron. The result heavy ions are not deflected by the applied cell voltage 

and are swept out of the cell vent with the carrier gas.  This results in a change in the current 

across the cell electrodes compared to a reference current. The pulse rate is adjusted to 

maintain a constant cell current. The fewer the number of electrons that are captured, the 

lower the pulse frequency that is required to match the reference current. When a compound 

that captures electrons passes through the cell, the pulse rate rises. This pulse rate is 
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converted to a voltage and recorded [10]. The calibration of the μ-ECD was carried out by 

injecting gas mixtures of 2%, 5%, 10% and 35% oxygen in argon, supplied by Praxair. 

     

 

Figure ‎3.14: Micro-cell electron capture detector operational diagram. 

 

 

Figure ‎3.15: Typical μ-ECD chromatogram. 
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 UV-Visible Spectrophotometry  3.7.2

The aqueous phase was analyzed using UV spectrophotometry to detect the presence 

of hydrogen peroxide.  The hydrogen peroxide analysis was performed as soon as possible 

after the termination of irradiation in order to minimize any thermal decomposition of 

hydrogen peroxide in the radiolysis cell.  In our tests the time interval was usually 

approximately 30 minutes.   

UV-Visible spectrophotometry has been used widely for the quantitative determination of 

substances. The criterion for the analysis of a compound by this method is that the compound 

or its derivatives should obey Beer’s law (3.1) in the range of concentrations to be measured 

[11]. 

    (
  

 
)                                           (3.1) 

where I0 is the intensity of the incident light, I is the intensity of emergent light, A is the 

absorbance,   is the absorptivity of the target compound at the incident light frequency,   is 

the cell light path-length, and c is the concentration of the absorbing species. In some cases 

where the absorbance is not proportional to concentration, i.e. when Beer’s law is invalid, 

analysis by spectrophotometry is still possible but it requires the use of a calibration curve. 

The concentration of a particular absorbing compound in a mixture is easily 

determined if a wavelength can be chosen at which the desired compound is the only 

absorbing species. In this case the absorbance of the mixture, Am, is compared with the 

absorbance, A0, of the target compound at a known concentration, c0, at the characteristic 
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absorption wavelength and the concentration of the target compound in the mixture, cm, can 

readily be calculated [12]. 

All spectrophotometric measurements were performed using a diode array UV 

spectrophotometer (BioLogic Science Instruments). A diode array is an assembly of 

individual detector elements in linear or matrix form that, in a spectrophotometer, can be 

mounted so that the complete spectrum is focused on an array of appropriate size. No 

wavelength change mechanism is required and output presentation is virtually instantaneous. 

Diode array instruments typically are less complex and have fewer optical surfaces than 

conventional ones. As a result, light throughput is higher and noise levels are lower. 

The concentrations of hydrogen peroxide in aqueous samples were determined using 

the Ghormley tri-iodide method [13,14]. An iodide reagent was prepared immediately before 

using by mixing 2.5 ml of two solutions containing: (a) 5 g potassium hydrogen phthalate in 

250 ml of water and (b) 0.5 g NaOH, 0.05 g (NH4)6 Mo7O24.4H2O, and 16.5 g KI in 250 ml 

of water. In the presence of an ammonium molybdate catalyst, I
− is rapidly oxidized to I3

−
 by 

H2O2. To measure the H2O2 in a sample, 1 ml of the sample was diluted in 5 ml of distilled 

water. To that, 2.5 ml each of the reagent solutions were mixed few drops of ammonium 

molybdate as a catalyst. Absorbance was measured at 350 nm (the wavelength of maximum 

absorption for I3
−
). The molar extinction coefficient of I3

− at 350 nm was taken as 25500 M
–1 

cm
–1 [15]. The concentration of H2O2 in the sample was then calculated from the measured 

absorbance of I3
−
. 
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4 CHAPTER 4 

 DEVELOPMENT OF RADIOLYSIS TEST CELL 

 Introduction  4.1

The design and construction of a radiolysis test cell for SCW radiolysis studies (up to 

450 ºC) poses serious challenges. The test cell must withstand the high temperatures and 

pressures required for supercritical water conditions and it must maintain this integrity while 

exposed to -irradiation.  Reliable sampling of gaseous and aqueous phase products must be 

possible following completion of the experiment.  Moreover, in order to obtain data that 

reflects the speciation of radiolysis products from water chemistry alone, the cell materials 

must be inert to any surface reactions that might influence the experimental yields of redox 

active species, such as H2, O2 or H2O2, produced during radiolysis. The last point is perhaps 

the most overlooked in current SCW radiolysis studies.  Many experimental setups use flow 

systems that can tremendously simplify the attainment of supercritical conditions and 

facilitate product-sampling [1].  However, such flow systems employ long lengths of metallic 

tubing whose surfaces can participate in corrosion reactions that consume oxidizing species 

(O2 and H2O2) and generate H2. Thus, the corrosion of the tubing material can significantly 

affect the measured concentrations of radiolytically-produced O2 and H2O2.  Furthermore, 

corrosion products released into the aqueous phase can quickly react with radiolytically-

generated radicals [2].  As a result, even small amounts of dissolved corrosion products can 

have a considerable impact on the concentrations of the radiolysis products and change the 
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solution redox conditions. One of our goals was to develop a cell for operation in stagnant 

solution conditions with minimal material interferences. 

The work started with the development of a new radiolysis test cell for experiments at 

temperatures up to 450 
o
C.  Based on past achievements in our laboratory, we were expecting 

to succeed in developing a new radiolysis cell and test protocol, but substantial time was 

required for the development task due to the care that must be taken during experiments and 

the long times required to reach supercritical conditions in a cell.  This chapter documents the 

different cell designs that we developed and tested. 

 Quartz Vial 4.2

Initially, we tried a handmade half silicate and half quartz radiolysis test cell (Figure 

4.1) that could withstand the required high temperature and radiation field.  We had 

successfully used a variant of this cell design for lower temperature studies.  We did not 

expect the design to be successful at supercritical conditions but we wanted to explore the 

failure modes. Although materials used for this radiolysis cell were satisfactory for 

moderately high temperature studies, disintegration of the PTFE (polytetrafluoroethylene) 

silicon septa used for the sealing vial (Figure 4.2) limited its use to 150 
o
C and short exposure 

times. The septum material is gamma compatible for low doses (up to 5 kGy), but at higher 

doses it breaks down and liberates fluorine gas. Excessive irradiation triggers brittleness [3] 

and this can lead to a loss of integrity of the gas seal.  
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Figure ‎4.1: Half/half silicate quartz radiolysis vial (discoloration of the 

silicate half is due to irradiation).  

 

                   

Figure ‎4.2: Aluminum crimp cap with PTFE silicon septum. 
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 Gold Bag 4.3

An alternative to the glass vial was a steel cell with an inert gold bag that contained 

the target solution. Gold is a promising design option because gold is known to be highly 

inert with respect to oxidation and a thin gold foil tube can be readily fabricated into a foil 

bag that isolates its contents (water and radiolysis products) during and after irradiation. A 

99.95% pure gold tube was purchased from Goodfellow Inc. It had a 0.1-mm wall thickness, 

7.8-mm inside diameter, and 8-mm outside diameter. In our design approach, a 35-mm 

length of gold tubing was cut to turn into a gold bag. In order to remove dirt and impurities 

from gold foil, it was cleaned in boiling (6%) hydrochloric acid for about 10 minutes. The 

next step was annealing of the gold tube inside a Thermolyne furnace (type 47900). The gold 

tube was placed inside a crucible and then inside the furnace for 15 minutes at 600 °C, as 

illustrated in Figure 4.3.  

 

Figure ‎4.3: Crucible contained gold tube inside the furnace. 

 

Afterwards, the gold tube was welded using a micro-spot-welder, supplied by 

Lampert Co. (model PUK
3
 Professional), to shut one flattened end of the gold tube. The 

Crucible 
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PUK
3 

welder was equipped with a microscope (MEZZO) to allow the user to observe the 

welding process and thereby ensure the proper fusing of end of the tube with no gaps, Figure 

4.4. There are a set of large capacitors inside the PUK
3
 unit that charge up, and then liberate 

their energy in a pulse when the welder fires. This creates an arc of plasma between the tip of 

the tungsten electrode in the PUK
3
 hand piece and the gold piece that is being welded. The 

heat of the plasma melts a small spot of gold, which fuses two parts together, Figure 4.5. The 

PUK
3
 used high-purity argon to avoid oxidation and porosity during welding.  In order to 

start the plasma firing sequence, the tip needed to be in contact with the target. You use 

sequential welding pulses to get a running seam weld as shown in Figure 4.5. The PUK
3 

power and impulse duration was adjusted by trial and error to obtain conditions suitable for 

welding our gold material (25% power and 7 ms impulse). 

The volume of the closed gold bag was estimated to be about 1.5 ml. After adding the 

solution inside the gold bag, the open end of gold bag welded shut using the same technique 

described above (Figure 4.6).  The sealed gold bag mass was measured at this stage for later 

comparison with the mass of gold bag after an experiment to see if there was any leakage 

during a test.  

For irradiation tests, the sealed gold bag was placed inside an autoclave. Water was 

added to autoclave with the same ratio of solution to headspace to match the contents of the 

gold bag (1:2) to provide a pressure balance. Irradiation was done for 2 hours at 150 °C and 

then the gold bag was taken out and allowed to cool down. At this stage, the gold bag was 

weighted to see if there was any leakage from inside or outside. In all of our experiments, the 
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mass of a gold bag before and after irradiation was the same indicating that the welds were 

leak tight and stayed intact. Sampling was carried out after a test by piercing the gold bag 

with a leak-tight syringe. 

 

Figure ‎4.4: PUK
3
 welder equipped with a microscope. 

 

 

Figure ‎4.5: The view of Tungsten electrode tip fusing metal under 

microscope. 
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Figure ‎4.6:  Welded gold bag. 

 

 Stainless-Steel Radiolysis Cell with a Gold Liner 4.4

The gold bag design is fragile and difficult to assemble.  As an alternative, we 

designed a stainless steel cell into which we could place a gold liner.  The stainless steel cell 

was designed by Dr. A.Y. Musa who is a qualified engineer. He designed the cell to meet 

appropriate rules for a pressure vessel that could be used to contain supercritical water.  The 

design meets ASME (American Society of Mechanical Engineers) meets Section VIII (Rules 

for Construction of Pressure Vessels) and Section III (Rules for Construction of Nuclear 

Facility Components) of the ASME Boiler and Pressure Vessel Code (BPVC) and B 31.1 

(Rules of Power Piping) and B 31.3 (Radioactive Fluid Services) codes. The result was a 3-

ml stainless steel radiolysis pressure cell with five removable parts (Figure 4.7) that can 

withstand temperatures as high to 420 C and pressures up to 25 MPa.  We designated this as 

our Mark I SCW test cell.   
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Figure ‎4.7: Stainless-steel radiolysis cell. 

 

The cell was comprised of a number of individual components that could be screwed 

together as shown in Figure 4.8. Each component of the cell has a specific purpose. Part IV 

essentially acts as a container for the solution when the whole cell is assembled. Part V, 

screws onto the bottom of part IV and, when closed properly, provides a sealing at the 

bottom. After screwing parts V and IV together, a test solution can be poured inside the cell. 

Part III sits on top of part IV. This part provides a solid surface to retain the top of a gold foil 

liner for the cell (see later). Part II screws onto Part IV and provides pressure on Part III to 

seal the cylinder. Part II and part III have a small cylindrical hole in the centre to allow for 

syringe insertion for post-test sample removal.  Part I screws into the hole in Part II and can 

be removed separately at the end of the test.  This allows gaseous sampling without the 

removal of part II and III, which would have, break the seal of the cell.  
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Figure ‎4.8: Exploded view of the components of the Mark I stainless-

steel radiolysis cell. 

 

We used the stainless steel cell with a gold-liner. Prior to inserting a gold liner, the 

Mark I cell components were gold plated using electroplating technique described in Chapter 

3. This was an ‘insurance’ step in case of any leaks in the gold liner.  A gold foil cylinder  

(0.1 mm wall thickness) with a diameter slightly smaller than the inside diameter of Part IV 

was placed inside the cylinder with the help of mechanical experts. This task was carried out 

such that there would be minimum possible gap between cylinder walls and gold liner. The 

gold foil cylinder extended a small distance beyond both ends of Part IV. The extra foil was 

mechanically folded onto the ends of Part IV to provide a sealing surface with flat discs of 

gold foil (with diameters equal to the outer diameter of Part IV) that were placed on the top 

and bottom of Part IV.  The discs were held in place by Part V at the bottom and Parts II and 

III at the top.  Pressure was applied to the joints of the gold foil at top and bottom when 

screwing the parts together.  It has hoped that the combination of the sealing pressure and the 
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Part III Part IV 
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malleability of the thin gold foil would provide a leak-tight seal.  The gold-plating of the cell 

components provided an inert ‘outer’ container in case the seals were not perfect. 

 Before any experiments we tested the cell for leakage. In these tests, we put 1 ml 

water inside the cell (leaving a 2 ml gas head-space). The gold-lined cell then was placed 

inside an autoclave which had the same ratio of liquid water to gas (1:2) and heated to 250 

°C. After 3 hours the gold-lined cell was taken out and cooled down to measure the volume 

of the water inside using a micro pipet. If the cell was leaking there could have been a change 

in water volume. In the tests the cells contained exact the same volume of water that was 

originally placed in the cells. Since the water in the autoclave provided a pressure balance, 

these tests were not an extreme test of the cell leak-tightness, but provided good evidence 

that the sealing system was adequate.  

To extract a gas sample from the gold-lined cell, the top fitting (part I) was removed 

and replaced with an alternative piece that contained a PTFE silicon septum. This created a 

new, leak tight seal on the top of the cell.  Then, a gas sample was extracted using our 

standard technique with a leak-tight syringe that penetrated through both the septum and the 

gold foil on the top of the cell liner (Figure 4.9).  This method prevents gas in-leakage or loss 

during sampling.  
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Figure ‎4.9: Sampling procedure using a leak-tight syringe. 

  

To verify the acceptability of the gold-lined cell design a couple of trial water 

radiolysis tests were performed to see if we could reproduce the results that were previously 

obtained for irradiation of pH 10.6 water in a quartz cell at 150 C in our laboratory. In this 

trial a quartz cell and a gold-lined cell where tested together in an autoclave. This assures that 

experimental conditions are the same for both cells.  

Unfortunately we were not able to reproduce results seen in the quartz cell with the 

gold-lined cell design. In particular we saw no gas phase irradiation products formed in the 

gold-lined cell.  We do not understand the reason for this failure.  The problem may have 

been due to the difference in the absolute volumes of water in the two cell designs (8-9 ml for 

the quartz cell and only 1 ml for the gold-lined cell).  



 

 

 

 

67 

Despite the failures of the gold-lined cell design to duplicate quartz cell results, the 

absence of radiolysis products may indicate that the cell met the design requirement for 

inertness. If there have been significant reaction of oxidizing radiolysis products with the cell 

walls (e.g., by penetrating the gold liner and reacting with the SS cell material) we might 

have expected to see a net change in the chemistry in the cell water and an unexpectedly high 

level of H2 in the cover gas.  To address the limitation in the cell volume, the test cell was 

redesigned.  

 Gold Plated Stainless-Steel Radiolysis Cell 4.5

The next design was designated the gold-plated SS cell.  This cell design was 

conceptually the same as the gold-lined cell design, with the same component arrangement, 

but the dimensions were changed and the gold foil liner was eliminated.  The central cell 

component was a 52-mm tall cylinder with 17-mm inner diameter and a 12-ml volume. The 

internal cell volume was now close to the internal volume of the quartz cells used for other 

studies in our laboratory (20 ml).   With no gold liner, there was a higher requirement for the 

integrity of the interior gold plating of the cell.  While, we had acquired experience in gold 

plating of the gold-lined cell, we were not confident that the thickness of the gold layer that 

we had achieved would be protective enough. Hence, the Precision Plating Company was 

contracted to gold plate the cylinder part of the cell with a 1.2-m gold coating. It was not 

essential to do as thick a gold plating on other parts of the cell since two gold foils were still 

used at the top and bottom of the cylinder and there was no direct contact between the cell 

solution and other parts of the cell.  



 

 

 

 

68 

Tests of the gold-plated cell were performed with no radiation at 250 C to verify the 

adequacy of the design of the new cell. All tests were carried out using pure water at neutral 

pH. We transferred 4 ml pure water into the cell (leaving an 8-ml headspace). Then, the cell 

was sealed and put inside an autoclave which contained same ratio of the water to headspace 

(1:2). The cell loading and sealing was done in an Ar-filled glove box with an O2 

concentration below 1000 ppm). The autoclave was heated for 3 hours at 250 C. 

 Since, all these tests were done with no radiation field, we anticipated no hydrogen 

production inside the cell unless there was a corrosion of the underlying SS cell material. 

Unfortunately the results of GC analysis of gas from the headspace showed the presence of 

hydrogen at a concentration of ~ 3×10
–5

 moll
–1

.  In comparison, tests under the same 

conditions with a quartz cell yielded no detectable hydrogen.  The presence of H2 in the gold-

plated cell indicates that there is some corrosion of the underlying SS cell material occurring.  

The gold plating was not sufficiently protective, or cracks at joints in the cell components 

were allowing water to contact the SS material.  

 Gold-Plated Stainless-Steel Radiolysis Cell with Quartz Container 4.6

In order to combat the problem of corrosion in the gold-plated cell, we decided to try 

a cell design with an alternative inert liner. Quartz was chosen for the fabrication of a 

container that could fit inside the gold-plated SS radiolysis cell. The quartz container was a 

cylinder with one end.  Its dimensions were 30-mm inside depth, 14-mm inner diameter and 

4.6-ml volume.  There was now no need for a gold foil seal at the bottom of the cell when 
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assembled.  However the top of the quartz container was still sealed by a disc of gold foil that 

was held in place by Parts II and III. 

As for the other cell designs, tests were performed to verify the performance of this 

cell design.  The quartz container was placed inside the gold-plated cell and filled with 4-ml 

water. Then the cell was sealed, placed in an autoclave in a manner similar to that described 

above and heated for 3 h at 250 C.  A GC analysis of the headspace gas in the cell after a 

test found no detectable hydrogen. This cell design appears to meet design requirements.  It 

is expected that a series of tests on the radiolysis of sub- and supercritical water will be 

performed in the future using this cell design. 

 Conclusion 4.7

The fabrication of a radiolysis test cell for water radiolysis studies at high 

temperatures (up to 450 ºC) is a challenging task. We have developed few design options for 

a test cell that can be used for the study of radiolysis kinetics of high-temperature liquid 

water and steam, subcritical and supercritical water.  All the designs have been tested and the 

final design, gold-plated SS radiolysis cell with quartz container, have successfully 

conducted radiolysis kinetic tests at temperatures up to 250 ºC. The cell design modification 

will be continued in the future studies. 
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5 CHAPTER 5 

 Gamma-Radiolysis Kinetics of Liquid Water: The Model and 

the Model Predictions as a Function of pH and Temperature  

 Introduction 5.1

One of the research objectives was to develop a radiolysis kinetic model for 

supercritical water that can predict the concentrations of oxidants important for corrosion of 

in-core materials under the proposed supercritical water reactor (SCWR) coolant conditions. 

Corrosion of alloys involves surface reactions and interfacial charge and mass transfer 

between solid metal and water phases, and, if present, through solid oxide [1] and hence is 

typically much slower than homogeneous aqueous phase reactions. Thus, it is the 

concentrations of radiolytic water decomposition products on a chemical reaction scale (> 

ms) that are crucial in determining the corrosion behaviour of in-core materials.  

As described in Chapter 2, the radiation of concern in assessing the concentrations of 

oxidants in the coolant is -radiation emitted from radioactive nuclides with exposure time 

typically longer than a few seconds. In this time scale, the water decomposition products that 

are formed continuously by radiolytic processes can undergo homogeneous aqueous phase 

reactions with each other, solvent water molecules and their dissociated ions, and, if present, 

dissolved species. As the secondary or intermediate radiolysis products accumulate their 

reactions become also more important. Some of these chemical reactions establish a catalytic 

cycle. Nevertheless, due to the chemically reactive nature of radiolytic decomposition 
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products of water the concentrations of redox active species (such as OH, H2O2, O2, O2

) 

reach pseudo-steady state within the water phase on a relatively short time scale (short for 

solution reactions) [2,3]. It should be noted that the steady state is not a thermodynamic 

equilibrium state but is a kinetic balance between production and decomposition reactions of 

the radiolysis products. The rate of a chemical reaction depends on the concentration of the 

reactants at a given time and not the overall amount of the reactants. Thus, it is the 

concentrations at pseudo-steady state, not the radiolytic yields that are critical in determining 

corrosion rates of SCWR in-core materials.  

Our current understanding of chemical reaction kinetics in sub-critical and 

supercritical water is not sufficient to construct a fully validated model for the -radiolysis of 

SCW under continuous (> ms) irradiation. In particular the effects of the changing water 

properties in the sub- and supercritical regimes are not fully understood. Thus, we are using a 

two-pronged approach to the kinetics modeling coming from high density (liquid) and low-

density (vapour) perspectives and hence creating two models: (1) a liquid radiolysis model 

(LRM) and (2) a vapour radiolysis model (VRM) for the continuous radiolysis of sub-critical 

and supercritical water. Our aim is to have the models converge as they mature.  Chapter 8 

describes the rationales behind the approach, the two models, assignment of the kinetic 

parameters (G-values and rate constants) at the SCW temperatures and pressures, and the 

analysis of the model results. 

The two models, LRM and VRM, are based on an existing liquid water radiolysis 

model [4–8] and an existing water vapour radiolysis model [9]. To extend the application of 
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these models to SCW conditions with any confidence, the radiolysis kinetics of liquid water 

and water vapour as a function of temperature and pressure should be well understood. Thus, 

the liquid water radiolysis kinetics as a function of pH and temperature is examined in detail 

in this chapter and the kinetics of vapour radiolysis in Chapter 6. Chapter 5 presents the 

model simulations of radiolysis experiments of liquid water in contact with saturated water 

performed at 25 °C, 150 °C and 250 °C. 

We have previously reported on a chemical kinetic model for liquid water radiolysis 

that was developed to determine the concentrations of radiolysis products as a function of 

time under continuous irradiation of -radiation [4,6]. This model has successfully simulated 

the observed time-dependent concentrations of molecular products, H2 and H2O2, as a 

function of pH and dissolved oxygen concentration during -irradiation of single phase liquid 

water [6] and a biphasic liquid water and gas system [8] at room temperature. The model 

with the addition of the reactions of nitrogen/oxygen species with the radiolytic water 

decomposition products was also successfully applied to the radiolysis of aqueous solutions 

containing nitrate and nitrite ions [7]. The successful simulations of experimental results 

obtained in tests with a range of different radiolysis and solution conditions demonstrate the 

robustness of the model at room temperature.   

Although it has not been validated extensively at higher temperatures the model has 

the capability to predict the kinetic behaviour of liquid water radiolysis as a function 

temperature. The model includes through the temperature dependences of its rate parameters 

such as rate constants and the density of water.  In this chapter, we present a brief description 
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of the model and the model parameters, and model calculation results as a function of pH and 

temperature. The computational results are further analysed to identify the key reactions and 

reaction parameters that are important in determining the effect of temperature and pH on the 

net radiolytic production of H2, O2 and H2O2. We also establish the relationships between the 

measurable quantities (concentrations of the molecular products) and non-measurable 

quantities (the concentrations of radical species). 

 Liquid Water Radiolysis Model 5.2

 Model description  5.2.1

In construction of a kinetics model, it is essential that all the relevant reactions are 

included in the model and that the rate constants of the individual reactions are accurate 

enough for the intended applications of the modelling results. The radiolysis kinetic model 

for liquid water consists of ~40 elementary homogeneous reactions (Table 5.1), including 

primary radiolytic production of water decomposition products and the aqueous phase 

reactions of the radiolysis products with each other and with solvent water molecules, and 

their acid–base equilibria (Table 5.3).  

 

Table ‎5.1: Reactions and their rate constants included in the model
1
. 

ID# Primary Radiolysis Rate Constants
2
 (Ms

1
) 

G1 H2O   •eaq
−
 10

–6
G•e (T) (T)DR 

G2 H2O  H
+
 10

–6
GH (T) (T)DR 

G3 H2O  •H 10
–6
G•H (T) (T)DR 
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G4 H2O  •OH 10
–6
G•OH (T) (T)DR 

G5 H2O  H2 10
–6
GH2(T)(T)DR 

G6 H2O  H2O2 10
–6
GH2O2(T)(T)DR 

 Aqueous Phase Reactions Rate Constants
3
 (M

1
s
1

 or s
1

) 

R1 •eaq
−   

+ •eaq
−  

 + 2 H2O 

  H2 + 2 OH
−
 

(T ≤150 °C)  

10@ [12.28  (3.76 × 10
2 

/ T)  (6.67
 
× 

10
4
/(T)

2
)   (1.07

 
× 10

7
/(T)

3
)] 

(T>150 °C)  

10@ [ 47.53 + (4.92 × 10
4 

/ T)  (1.03
 
× 

10
7
/(T)

2
] 

R2 •eaq
−   

+ •H  + H2O 

   H2 + OH
−
 

1.14 × 10
13 

× exp (1795.7 × T) 

R3 •eaq
−    

+  •OH    OH
−
 

10@ [13.12  (1.02 × 10
3 

/ T) + (7.63
 
× 

10
4
/(T)

2
] 

R4 •eaq
−    

+  O2    •O2
−
 2.52 × 10

12 
× exp (1401.5 × T) 

R5 •eaq
−    

+  H2O2    OH
− 

 + •OH 7.7 × 10
12 

× exp (1889.6 × T) 

R6 •eaq
−   

+  HO2•   HO2
−
 2.46 × 10

12 
× exp (1563.6 × T) 

R7 •eaq
−    

+  HO2

    •O

−  
+ OH

−
 3.51 × 10

9 
× exp (15400 × TF) 

R8 
•eaq

−    
+ •O

− 
  +  H2O    OH

− 
 + 

OH
−
 

2.31 × 10
10 

× exp (7900 × TF) 

R9 •H  +  •OH     H2O 4.26 × 10
11 

× exp (1091.9 × T) 

R10 •H  +  •H     H2 2.7 × 10
12 

× exp (1867.5 × T) 

R11 •H  +  O2    HO2• 
10@ [10.70 + (2.84 × 10

2 
/ T)  (1.36

 
× 

10
5
/(T)

2
] 

R12 •H  +  HO2•    H2O2 5.17 × 10
12 

× exp (1824.2 × T) 

R13 •H  +  H2O2   •OH  +  H2O 1.79 × 10
11 

× exp (2533.6 × T) 

R14 •H  +  •O2
−  
  HO2

−
 5.17 × 10

12 
× exp (1824.2 × T) 

R15
*
 •H  +  H2O    H2  +  •OH 10@ [9.40  (2.82 × 10

3 
/ T)  (3.79

 
× 
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10
5
/(T)

2
] 

R16 •OH  +  •OH    H2O2 
10@ [8.054 + (2.19 × 10

3 
/ T)  (7.39

 
× 

10
5
/(T)

2
) + (6.87

 
× 10

7
/(T)

3
)] 

R17 •OH  +  H2O2    HO2•   +  H2O 7.68 × 10
9 

× exp (1661.4  × T) 

R18 •OH  +  H2    OH
− 

 +  O2 

10@ [-11.55+(3.25 × 10
4
/T)  (1.86

 
× 

10
7
/(T)

2
) + (4.55

 
× 10

9
/(T)

3
)  (4.13

 
× 

10
11

/(T)
4
)] 

R19 •OH  +  •O2
− 
  OH

− 
 + O2 8.77 × 10

11 
× exp (1306.2 × T) 

R20 •OH  +  HO2•    H2O  +  O2 1.29 × 10
11 

× exp (799.2 × T) 

R21 •OH  +  HO2
−
    HO2•  +  OH

−
 1.0 × 10

12 
× exp (1434.6 × T) 

R22 •OH  +  •O
−  
  HO2

−
 1.0 × 10

12 
× exp (1434.6 × T) 

R23 •O
− 

 +  H2O2    •O2
− 

 +  H2O 5.0 × 10
8 

× exp (15600 × TF) 

R24 •O
− 

 +  H2    H• +  OH
−
 2.32 × 10

10 
× exp (1550.5 × T) 

R25 •O
−  

+  HO2
−
    •O2

−  
+  OH

−
 1.45 × 10

13 
× exp (2928.5 × T) 

R26 •O
− 

  +  •O2
−
    2 OH

− 
 + O2 6.0 × 10

8 
× Ea 

R27 •O
− 

 +  O2    •O3
−
 3.41 × 10

11 
× exp (1344.9 × T) 

R28 •O3
−
    O2  +  •O

−
 3.2 × 10

11 
× exp (5552.1 × T) 

R29 •O3
− 

 +  H2O2    •O2
− 

 +  O2 + 

H2O 

1.6 × 10
6 

× Ea 

R30 •O3
−  

+  HO2
−
    •O2

− 
+  O2 + 

OH
−
 

8.9 × 10
5 

× Ea 

R31 •O3
− 

 +  H2   O2 +  H• + OH
−
 2.5 × 10

5 
× Ea 

R32 HO2•  +  •O2
− 

   HO2
− 

 + O2 2.63 × 10
9 

× exp (974.3 × T) 

R33 HO2•  +  HO2•    H2O2  +  O2 2.78 × 10
9 

× exp (2416.4 × T) 

R34
*
 H2O2    •OH  +  •OH 2.3 × 10

–7 
× exp (71000 × TF) 

R35f H
+
 + OH

− 
   H2O 

10@ [20.934  (12360/TC) + (6364000/ TC
2
) 

 (14.75 × 10
8
 /

 
TC

 3
) + (12.37 × 10

10
 /

 
TC

4
) 

R35b H2O  H
+
 + OH

− 
   k35f × KW 

R36f  (7.22 × 10
9
) + (1.62× 10

8
 × TC) + (2.4 × 10

6
 × 
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H
+
 + HO2

−   
     H2O2 TC

 2
)  (7.81× 10

3
 × TC

 3
) + (10.6 × TC

 4
) 

R36b H2O2   H
+
 + HO2

− k36f /KH2O2 

R37f 
 

H
+
 + •O2

− 
    HO2• 

(7.22 × 10
9
) + (1.62 × 10

8
 × TC) + (2.4× 10

6
 × 

TC
 2

)  (7.81 × 10
3
  × TC

 3
) + (10.6 × TC

 4
) 

R37b HO2•  H
+
 + •O2

−  k37f / K

HO2 

R38f 
 

H
+
 + •O

− 
   •OH 

(7.22 × 10
9
) + (1.62 × 10

8
 × TC) + (2.4× 10

6
 × 

TC
 2

)  (7.81× 10
3
 × TC

 3
) + (10.6 × TC

 4
) 

R38b   •OH   H
+
 + •O

− 
  k38f / K


OH 

R39f 

 

H
+
 + •eaq

− 
    •H 

 

1.33 × 10
14

 × exp ( 38380/(8.314 ×T) 

R39b •H   H
+
 + •eaq

− 
  k39f / K


H 

1 Temperature T is in K, TF = [(1/298.15)-(1/T)]/R and TC is in °C 

2 The G-values and water density ((T)) as a function of temperature are presented in Tables 5.2 and 5.3, 

respectively. 

3 The rate constants for the elementary reactions are 2
nd

 order rate constants (M
–1
s

–1
) except for reactions 

denoted with * (R15 and R34). For the reactions involving H2O the concentration of H2O is included in the 

rate constant. 

4 The rate constants (kb) for the reverse reactions are calculated from the forward rate constants (kf) and the 

corresponding equilibrium constants (K).  The equilibrium constants as a function of temperature are 

presented in Table 5.3.      

 

In our model the primary radiolytic processes occurring at short times (< 0.1 s), 

from the interaction of a high energy photon or electron with a water molecule to the 

attainment of homogeneous (or out-of-spur) distribution of water decomposition products 

along the track (see Chapter 2), are not modelled in detail. Instead, the radiolysis is modelled 

using the homogeneous primary radiolysis yields per absorbed energy or G-values and the 

rate of radiation energy deposition into water. That is, the rate of production of species i (in 

units of M·s
–1

) by primary radiolysis processes is defined as 

 [ ]

  
                                     (5.1) 
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where Gi(T) is the G-value for species i at temperature T in units of mol·J
–1

, DR is the 

absorbed radiation dose rate in units of Gys
1

 (Jkg
1
s
1

), and (T) is the density of water at 

T in units of kg·dm
–3

 (the factor of 10
–6

 provides for unit conversion).  The dose rate is 

normally expressed as the rate of absorbed radiation energy per unit mass of the solvent 

medium that is irradiated (Chapter 2).  Since the rate of a chemical reaction depends on 

molarity, not molality, the rate of energy absorption per unit mass is converted to the rate of 

energy absorption per unit volume by multiplying it with the density of water. 

The rate of change in the concentration of a chemical species, i, due to aqueous phase 

reactions is described by the classical chemical reaction rate equation.  For a bimolecular 

reaction:  

 [ ]

  
  ∑        [ ]  [ ]     ∑         [ ]  [ ]        (5.2) 

where klm(T) is the 2
nd

 order rate constant at temperature T for the reaction of species l and m 

producing species i in units of M
–1

·s
–1

, and kij(T) is the 2
nd

 order rate constant at T for the 

reaction of species i and j in units of M
–1

·s
–1

.  The reactions involving water molecule are 

treated as pseudo-first-order reactions with a first-order rate constant (ki-H2O(T)[H2O]) in unit 

of s
–1

. For a given species the overall rate law is then  

 [ ]

  
                     ∑        [ ]  [ ]     ∑         [ ]  [ ]           (5.3) 

With a set of elementary reactions and their rate constants, the time evolution of the 

concentrations of radiolysis products can be followed by constructing the rate equations for 
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individual species and solving the coupled time-dependent rate equations using commercial 

software (the FACSIMILIE code).   

The effect of temperature on the overall radiolysis kinetics is modelled through the 

temperature dependences of the G-values and the rate constants of the individual elementary 

reactions and water density.  The temperature dependences of these model parameters are 

described below.    

 Model Parameters 5.2.2

The homogeneous G-values for the primary radiolysis products in liquid water are 

well established over a wide range of temperatures. Elliot and Bartels conducted an extensive 

review of the G-values reported for the range of 25 °C to 300 °C and recommended 

polynomial formulae for the G-values as a function of temperature [10]. In our radiolysis 

kinetic model, we have used their formulae to calculate G-values as a function of temperature 

except for the G-value for H2O2. For kinetic modeling mass balance must be strictly 

observed. Thus, the G-value for H2O2 at any T was obtained from charge and mass balance 

requirements that the atomic ratio of •eaq
−
 to H

+
 in the sum of the water decomposition 

product yields must be equal and the atomic ratio of H to O must be 2 to 1:  

GH+ (T)  = G•  (aq) (T)                    (5.4) 

GH2O2 (T) = [G•H (T)  + 2 GH2 (T)  + G•  (aq) (T) − G•OH (T)]/2                 (5.5) 

The temperature-dependences of the G-values used in the model are presented in 

Table 5.2. 
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Table ‎5.2: Temperature dependences of the homogeneous primary 

radiolysis yields (G-values in units of molJ
–1

) [11]. 

 

* Temperature in 
o
C 

 

The temperature dependence of a homogeneous chemical reaction rate constant arises 

from the activation energy and the pre-exponential factor according to the Arrhenius 

equation: 

                  ( 
  

   
)                                                                                 (5.6) 

where EA is the activation energy for the reaction and R is the gas constant.  The exponential 

component is a measure of the fraction of collisions between the reactants that have sufficient 

energy to overcome the activation energy barrier of the reaction.  The pre-exponential factor, 

Aij(T), is an effective collision frequency for the reactants, since not all collisions with 

sufficient energy will lead to chemical reaction.  

In the model the temperature-dependences of the rate constants are expressed using 

the Arrhenius equation. The activation energy and the temperature dependence of the pre-

G-value Temperature Dependence 

G (eaq
−
) 1.036 × [2.641 + (4.16 × 10

–3 
× T) + (9.09 ×10

–6 
× 

T
2
)  (4.72 × 10

–8
 ×

 
T

3
)] 

G (H2) 1.036 × [0.419 + (8.72 × 10
–4 

× T)  (4.79 ×10
–6 

× 

T
2
) + (1.50 × 10

–8
 ×

 
T

3
)] 

G (OH) 1.036 × [2.531 + (1.13 × 10
–2 

× T)  (1.26 ×10
–5 

× 

T
2
) + (3.51 × 10

–8
 ×

 
T

3
)] 

G (H+) 1.036 × [2.641 + (4.16 × 10
–3 

× T) + (9.09 ×10
–6 

× 

T
2
)  (4.72 × 10

–8
 ×

 
T

3
)] 

G (H) 1.036 × [0.556 + (2.19 × 10
–3 

× T)  (1.18 ×10
–5 

× 

T
2
) + (5.22 × 10

–8
 ×

 
T

3
)] 

G (H2O2) [G (H) + 2 G (H2) + G (H
+
) – G (OH)]/2 
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exponential factor, Aij (T), are those provided by Elliot and Bartels [10] and are listed in 

Table 5.1. The temperature dependences of the equilibrium constants for the acid-base 

equilibria of the radicals and water dissociation are also well established (Table 5.2) [12–15].  

For these equilibrium reactions, the rate constants for the forward bimolecular reactions 

(Table 5.1) are diffusion limited and the rate constants of the reverse reactions are obtained 

from the corresponding equilibrium constants.  

In addition to the kinetic parameters the density of water is an important parameter in 

the model.  The temperature dependence of the density of water is given in Table 5.3 and 

taken from Reference [16]: 

 

Table ‎5.3: Equilibrium rate constants and density as a function of 

temperature (°C) in the liquid model [11]. 

ID # Reaction 
Equilibrium Rate Constants 

(M
1
s
1

) 

R35f/R35b H2O     H
+
  +  OH

−   
pKw = 14.95  (4.27 × 10

–2 
× T) + 

(21.15 ×10
–5 

× T
2
)  (57.86 × 10

–8 
× 

T
3
) + (75. 92 × 10

–11 
× T

4
) 

R36f/R36b 

 

H
+
  +  HO2

−     H2O2 

 

pK (H2O2) = 12.5  (3.31 × 10
–2  

× 

T) + (1.96 × 10
–4 

× T
2
)
 
 (6.19 ×   

10
–7 

× T
3
) + (8.24 × 10

–10  T
4
) 

R37f/R37b 

 

H
+ 

 +  •O2
−     HO2• pK (HO2•) = 4.917  (3.81 × 10

–3 
× 

T ) + (8.77 × 10
–7 

× T
2
)
 
 (2.17 ×  

10
–7 

× T
3
) + (4.00 × 10

–10 
× T

4
) 

R38f/R38b 

 

H
+
  +  •O

−      •OH pK (•OH) = 12.5  (3.31 × 10
–2 

× T) 

+ (1.96 × 10
–4 

× T
2
)
 
 (6.19 × 10

–7  
× 

T
3
) + (8.24 × 10

–10 
× T

4
) 

R39f/R39b 

 

H
+
  +  •eaq

−     •H pK (H) = 10.49  (4.10 × 10
–2 

× T) 

+ (1.44 × 10
–4 

× T
2 

)  (2.32 × 10
–7 
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× T
3
) + (2.0 × 10

–10 
× T

4
) 

Water Density (kg
–1
L

–1
) 

ρ (T) 
0.999 + (1.094 × 10

–4 
× T)  (7.397 × 10

–6 
× T

2
) + (2.693 

× 10
–8 

× T
3
)  (4.714 × 10

–11 
× T

4
) 

  

 Model Results 5.3

We have performed a series of model calculations to identify the key reactions and 

reaction parameters that are important in determining the effect of pH, temperature and dose 

rate on the net radiolytic production of H2, O2 and H2O2, and to establish the relationships 

between the measurable quantities (concentrations of the molecular products) and non-

measurable quantities (the concentrations of radical species).  

 Time Evolution of Radiolysis Product Concentrations   5.3.1

For a given set of conditions (pH, temperature and dose rate) the concentrations of 

radiolysis products show distinct time dependences over different periods. For example, the 

model results obtained for -radiolysis at 4.5 kGyh
–1

, pH 6.0 and 25 °C are presented in 

Figure 5.1. The concentration of each species shows three distinct periods over the time span 

of 10
4
 s (~ 3 h), as indicated in Figure 5.1. In Stage I, the concentrations of the primary 

radiolysis products increase linearly but no secondary products are yet formed. In Stage II, 

the radical primary products reach steady state while the concentrations of the molecular 

primary products continue to increase and secondary products start being produced at fast 



 

 

 

 

83 

rates. In Stage III, the concentrations of all the radiolysis products are at steady state. (Note 

that in Figure 5.1 the results are plotted in log [i] vs log t, and not log [i] vs t.)   

 

 

Figure ‎5.1: The concentration of water radiolysis products as a 

function of irradiation time at pH 6.0 in deaerated water at 25 
o
C and a 

dose rate of 4.5 kGyh
–1

. 

 

In Stage I, the log [i] vs. log t plots for the primary radiolysis products show slopes of 

1.0 and their intercepts are proportional to    (     ), except for eaq
−
and H.  That is, the 

concentration of a radiolysis product increases at a rate determined only by the primary 

radiolytic production processes: 

[ ]                              (5.7a) 
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    [ ]                                         (5.7b) 

The time for the concentration of a species to reach a steady state depends on the 

chemical reactivity of the species. The most reactive eaq
− 

reaches steady state in ~10 s at 

pH 6.0.  This suggests that the rate of decomposition of eaq
− 

has already approached its 

radiolytic production rate within this short time. During this time, the net production rate of 

H is greater than the radiolysis production rate alone (slope>1) indicating that the removal 

path for eaq
− 

is R39f in Table 5.1 

eaq
− 

+ H
+
  H    (5.8) 

Since this reaction produces H, the net rate of H production in this stage is the sum 

of the primary radiolytic production (G3 in Table 5.1) and the rate of the decomposition 

reaction of eaq
−
 (R39f in Table 5.1). Since the latter rate is the same as the radiolytic 

production rate for eaq
−
, the net rate of H production in this stage is: 

   [ ]       (           )                   (5.9) 

Near the end of Stage I the concentrations of •OH and •H increase to sufficiently high 

levels that they start to react at substantial rates with each other and with the molecular 

species present through a series of reactions:  

•OH  +  •OH    H2O2   (5.10) 

•H  +  •H    H2    
 
(5.11) 

•OH  +  H2   •H  +  H2O   
 
(5.12) 
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•OH  +  H2O2    •HO2  +  H2O   
 
(5.13) 

•HO2  +  •HO2    H2O2  +  O2     
 
(5.14) 

•HO2  +  •O2

    HO2


  +  O2     

 
(5.15) 

•HO2    H
+
  +  O2


     

 
(5.16) 

The net effect is slow conversion of more reactive chemical species, •OH and •H, to 

less reactive species, HO2 and O2

, and to H2O2, O2 and H2. 

As the concentrations of the molecular primary products and the secondary products 

increase, the rates of the decomposition reactions of •OH and •H via reactions (5.10) to 

(5.16) increase and quickly approach those of their radiolytic production: 

                     ∑            [   ]  [ ] (5.17) 

                    ∑           [  ]  [ ] (5.18) 

The concentrations of •OH and •H reach near steady state in Stage II. In Stage II, the 

concentrations of H2O2 and H2 and those of the main secondary products increase linearly 

with time (i.e., the slopes of log [i] vs log t are ~ 1); the rates of net production of H2O2 and 

H2 are nearly constant. However, these rate constants are larger than their primary radiolytic 

production rate constants (                  ) due to the additional production of these 

species by the aqueous phase reactions of •OH and •H (reactions 5.10 and 5.11). In Stage II 

the net decomposition rate constants of •OH and •H are the same as their primary radiolytic 

production rate constants (equations 5.17 and 5.18). A fraction of the net decomposition of 

•OH and •H, fH2O2 and fH2, results in the production of H2O2 and H2, respectively. The 
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remaining fraction is used for producing the secondary products. Thus, the concentrations of 

H2O2 and H2 increase linearly with time in Stage II at rates: 

[    ]        (                      )            (5.19) 

[  ]        (                 )            (5.20) 

The fractions, fH2O2 and fH2, depend on pH and temperature. As the concentrations of H2O2 

and H2 as well as the secondary products continue to increase in Stage II, the net rates of 

their decomposition reactions also increase and become equal to the net rates of their 

production rates, and the whole radiolysis system reaches near steady state (Stage III):  

[  ]   
     (                 )         

   [  ] 
                                                        

[    ]   
     (                      )         

   [  ]      [   
 ] 

                                         

where the subscript Rn in kGn represents the rate constant of aqueous phase reaction 

Rn in Table 5.1. These relationships show how the molecular species reactions become 

progressively more important in controlling the concentrations of the radiolysis products at 

later stages (> ms).  Because of the complexity of the processes that form and remove 

molecular species, their concentrations cannot be predicted based on simple competition 

kinetics, see further discussion.   

The relationships between the molecular and radical product concentrations presented 

in equations (5.21) and (5.22) have many implications. Under -irradiation, in-situ 
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monitoring of radiolysis products, and particularly short-lived radical species, is practically 

impossible. Molecular products, particularly H2 and O2, are easier to measure than those of 

radical species, since they persist when irradiation ceases (e.g., when water moves out of a 

radiation zone). Equations (5.21) and (5.22) provide the means to extract the non-measurable 

quantities (the concentrations of radical species) from the measured quantities 

(concentrations of the molecular products) in irradiated water. 

Dissolved chemical additives (such as O2, N2O) at small concentrations (< 1 mM) 

may not react directly with H2 and H2O2 at a substantial rate but they can affect the net 

radiolytic production of H2 and H2O2 indirectly by reacting with the radical products, 

eaq
−
and •OH.  Similarly additives that change the pH or [H

+
] will have a strong impact on 

[eaq
−
] (through Eq. 5.8) and consequently [H2] and [H2O2], see further discussion in Section 

5.3.2.     

 Effect of pH on Radiolysis Kinetics 5.3.2

The model calculation results for -radiolysis at pHs 3.0, 7.0 and 10.6 at 25 
o
C are 

compared in Figure 5.2. The three stages observed at pH 6.0 are also present at pH 3.0.  At 

pH 10.6 there are only two stages seen within 10
4
 s; Stage III when the whole system reaches 

steady stat occurs at longer times. At pH 10.6, the radiolysis behaviour in Stage II is also 

markedly different from those observed at the lower pHs.  
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Figure ‎5.2: The concentration of water radiolysis products as a 

function of irradiation time at pH 3.0, 7.0 and 10.6 in deaerated water 

at   25 °C
 
and a dose rate of 4.5 kGyh

–1
. 

 

The time dependent behaviour of radiolysis products in Stage I is essentially the same 

at all pHs; the concentration of a radiolysis product increases linearly with time at a rate 

determined by primary radiolytic processes, according to Equation (5.7).  In Stage I, the main 

effect of pH is on [eaq
−
] due to the reaction: 

eaq
−
  +  H

+
    •H pKa of •H = 9.6  (5.23) 

The higher concentration of H
+
 at a lower pH increases the rate of reaction (5.23), 

leading to a faster attainment of steady state and a lower concentration of eaq
−
 in Stages II 

and III. At pH 3.0 [eaq
−
] in fact is never higher than 10

–13
 M and the rate of increase in [•H] 

in Stage I is proportional to the sum of G•e and G•H and not just G•H: 

[  ]       (             )                   (5.24) 
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At pH 7.0 [eaq
−
] reaches steady state at a later time and a higher level but this level is 

still low (about 10
–11

 M). The rate of increase in [•H] is initially proportional to G•H before 

[eaq
−
] reaches steady state but then becomes proportional to the sum of G•e and G•H. At pHs 

> 6.0, the steady-state concentration of eaq
−
 is not negligible. At pH 10.6 reaction (5.23) is 

very slow and [eaq
−
] increases linearly at a rate proportional to G•e for a long time (up to ~ 

ms) and [•H] also increases nearly linear at a rate proportional to G•H.   

Except for affecting the concentrations of eaq
− 

and •H, pH has a negligible effect on 

the production rates of other radiolysis products in Stage I. The levels of [•OH] and the sum 

of ([eaq
−
] + [•H]) reached near the end of Stage I when the secondary products, O2, O2


 and 

HO2, start to form (at~10
–13

 M) are nearly independent of pH. The concentrations of H2O2 

and H2 reached are also independent of pH.  

At pH 3.0  [•OH] and [•H] quickly reach constant levels and remain at the steady state 

values in Stage II. The main difference in radiolysis products between pH 3.0 and 7.0 is the 

ratio of [O2

] to [HO2] due to the fact that these pHs lie either side of the pKa of (O2


 + 

H
+
  HO2) (4.5 at 25 

o
C).  This results in a very small decrease in [H], [H2] and [H2O2] 

and a very small increase in [O2] but negligible effect on [OH] in Stage II.    

In Stage II the sums of the concentrations of acid-base pairs of the radicals, ([•eaq

] + 

[•H]) and ([O2

] + [HO2]), are the same at pH 3.0 and 7.0. These results further confirm 

that at pH << pKa of •H the net rates of the decomposition reactions of •OH and •H in Stage 

II quickly reach the net rates of their radiolytic production, according to equations (5.17 and 

5.18). In turn, the rate of the decomposition of •OH and •H controls the rate of secondary 
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products and additional production of H2O2 and H2 (equations 5.21 and 5.22). Thus, pH has a 

negligible effect on the overall radiolysis behaviour at pH < pKa of •H.   Similarly, the 

differences in Stage III between the radiolysis product concentrations at pH 3.0 and 7.0 are 

negligible. 

At pH 10.6, by the time the secondary products start to form at a substantial rate near 

the end of Stage I the concentration of eaq
−
reaches a much higher level (nearly the same 

level as that of •OH). This has a significant consequence. At the onset of Stage II when the 

concentrations of the secondary products start to increase rapidly [eaq
−
] and [•H] start to 

decrease and [•OH] initially reaches steady state but then quickly starts to decrease. The 

decrease in the concentrations of eaq
− 

and •OH accompanies increases in the concentrations 

of both the primary molecular products (H2 and H2O2) and the secondary products (O2 and 

O2

). These behaviours are the result of a catalytic cycle: 

O2    +  eaq
−  
  •O2

 
(5.25) 

•OH  +  •O2
  
  O2  +  OH

 
 (5.26)     

These cyclic reactions regenerate O2 while continuously removing eaq
−
 (+ H

+
  •H) 

and •OH. Since the secondary products are produced by the reactions of •H and •OH 

(reactions 5.10 to 5.16), the net effect is a steady conversion of reactive radical species, eaq
−
 

(+ H
+
  •H) and •OH to less reactive H2, O2 (and •O2


) and H2O2. The negative slopes in the 

log [i] vs log t for eaq
−
 and •OH at longer times are the same as the positive slopes for H2, O2 

(and •O2

) and H2O2. The absolute values of these slopes are slightly less than 1.0.  

Eventually the radiolysis system at pH 10.6 also reaches steady state, but this occurs at a 
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much later time than at lower pHs due to the slow reactions of the more stable molecular 

products.  At pH 7.0, the cyclic reactions do not progress as effectively and the changes 

occur more slowly.    

The effect of pH on the radiolysis product behaviour at 25 
o
C is summarized in Figure 

5.3 at three different times 1 ms, 1 s and 100 s. The concentrations of radiolysis products (or 

sum of [•H] + [eaq
−
] for •H and eaq

−
) observed at 1 ms are nearly independent of pH. The 

pH starts to affect the concentrations of radiolysis products in Stage II when the secondary 

product concentrations are significant. At pHs > pKa of •H at 25 
o
C, the cyclic reactions 

between the primary radiolysis products and secondary products accelerate the removal of 

•OH and eaq
−
 without affecting O2.  The changes in [•OH] and [eaq

−
], in turn, affect the 

concentrations of the molecular radiolysis products, H2O2, O2 and H2. Due to the catalytic 

cycles, the rates of increase in the concentrations of radiolysis products do not have simple 

time dependences (or reaction order) at longer times. Nevertheless, the concentrations of the 

molecular primary products are inversely related to those of the radical primary products at 

longer times independent of pH.    
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Figure ‎5.3: The concentrations of water radiolysis products obtained at 

three different times as a function of pH in deaerated water at 25 °C 

and at dose rate of 4.5 kGyh
–1

. 
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 Effect of Temperature (T ≤ 250 ºC) 5.3.3

The effect of temperature on the radiolysis kinetics was examined at different pH25
o
C 

values where pH25
o
C is the pH value measured at 25 °C.  As temperature increases the pH 

value (or [H
+
]) at a given T changes due to the temperature dependence of the water 

dissociation constant (see pKw(T) in Table 5.1). The corresponding pHT values as a function 

of temperature for various pH25
o
C values are listed in Table 5.4.  

 

Table ‎5.4: The equivalent pH values at different temperatures [13]. 

Temperature (
o
C) pH25

o
C 3.0 pH25

o
C 7.0 pH25

o
C 10.6 

25 3.0 7.00 10.6 

75 3.0 6.30 9.3 

100 3.0 6.10 8.85 

150 3.0 5.82 8.24 

200 3.0 5.65 7.91 

250 3.0 5.60 7.8 

300 3.0 5.67 7.94 

350 3.0 5.96 8.52 

 

The time-dependent behaviour of radiolysis product concentrations at pH25
o
C 7.0 at 

25, 150 and 250 °C are shown in Figure 5.4.  The three radiolysis kinetic stages observed at 

25 °C are all present at the higher temperatures.  
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Figure ‎5.4: Time-dependent behaviour of radiolysis product 

concentrations at pH25
o
C 7.0 at 25, 150 and 250 °C. 

 

At all temperatures the concentrations of the primary radiolysis products (except for 

eaq
−
 and H, see discussion below) increase linearly with time in Stage I, according to 

equation (5.7). The results show that temperature affects the radiolysis kinetics in Stage I 

through its effect on the primary G-values and water density. The primary radiolytic 

production rate constants                      are plotted as a function of temperature 

in Figure 5.6. The figure shows that temperature has negligible effect on the radiolytic 

production rate constants except for that of H2O2 and, hence, the time dependent behaviour of 

the radiolysis products in Stage I.  For H2O2 the radiolytic production rate constant decreases 

by a factor of 3 when temperature increases from 25 
o
C to 300 

o
C. 

Another influence of temperature in Stage I is its effect on the forward reaction of 

eaq
− 

+ H
+
  H. This reaction occurs at a faster rate at a higher temperature and this results 

in an increase in [H] at an earlier time. Thus, the net production rate of H becomes closer 
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to the sum of the primary radiolytic production rates of eaq
−
 and H at an earlier time, 

according to equation (5.24). 

The sum of the primary radiolytic production rate constants for eaq
− 

and H is also 

illustrated in Figure 5.5. At sufficiently high temperatures where the rate of the reverse 

reaction is also very fast, the acid-base equilibrium of (eaq
−
 + H

+
  H) is established very 

quickly. The ratio of the net production of eaq
−
 and H is determined by the product of the 

equilibrium constant, pH and the sum of (             ): 

 [ ]

  
      (

    [ 
 ]

      [  ]
)  (             )                                 (5.27) 

 [ ]

  
      (

 

      [  ]
)  (             )                                            (5.28) 

The relationship between the (          ) and the production rate of a species in 

Stage I can be seen from the concentrations observed at 0.1 ms (Stage I) as a function of 

temperature in Figure 5.6. The concentrations show the temperature dependences expected 

from the primary radiolytic production rate constants. That is, the concentration of H at 0.1 

ms has the same temperature dependence as the sum of the rate constants for the primary 

production of (eaq
−
+ H) as discussed above. The concentrations of other species have the 

same temperature dependences as their respective production rate constants. 
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Figure ‎5.5: The primary radiolytic production rate constants 

(                  ) as a function of temperature at a dose rate of 

4.5 kGy·h
–1

.  

 

Figure ‎5.6: The production rate of species in Stage I (0.1 ms) and Stage II 

(100 s), as a function of temperature at a dose rate of 4.5 kGy·h
–1 

at 

neutral pH. 
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As the concentration of H increases with time in Stage I, the rate of the removal 

reaction of H (H + H  H2) increases and approaches that of its production rate. As 

described earlier, this reaction results in the production of H2 temporarily. The concentrations 

of OH, H2O2 and H2 all reach sufficiently high levels at the end of Stage I such that their 

reactions with each other produce the secondary products, •O2

, •HO2 and O2 via reactions of 

(5.10) to (5.16) at substantial rates. The more reactive radical, H, reaches a steady state 

slightly faster than the less reactive OH, and this difference is more pronounced at a higher 

temperature.  This difference affects the kinetic behaviour of the secondary products at the 

beginning of Stage II and hence the overall radiolysis behaviour at longer times.    

In Stage II when [OH] is near steady state, [H2] and [H2O2] continue to increase at 

all temperatures. In Stage II the concentration of OH is nearly independent of temperature 

and constant with time, while [H] is lower at a higher temperature and decreases with time. 

The temperature dependence of [H] and [OH], in turn, affects the net production rates of 

the secondary products •O2

, •HO2 and O2. The concentrations of the secondary products 

increase at faster rates at a higher T, and consequently the whole system reaches steady state 

(Stage III) faster at a higher T.  At T ≥ 150 °C the system reaches steady state in less than 1 s.  

The effect of temperature on the steady-state concentrations reached at 100 s (Stage 

III) at pH25
o
C 7.0 are shown in Figure 5.6. Temperature affects the rates of many aqueous 

phase reactions and the net effect on the steady-state concentrations of individual species in 

Stage III is not easily formulated. Nevertheless, we can see that the steady-state 

concentrations of the primary radicals, [OH] and ([eaq
−
] + [H]) are nearly independent of 
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temperature. The concentrations of the secondary radical products ([•O2

] + [•HO2]) decrease 

slightly, by a factor of 2 when temperature increases from 25 °C to 250 °C. Temperature has 

the most effect on the molecular products. The concentration of H2O2 decreases steadily with 

increasing temperature (by an order of magnitude when temperature increases from 25 °C to 

250 °C).  The concentrations of H2 and O2 also decreases steadily with increasing 

temperature up to 150 °C, after which [H2] remains nearly constant with temperature whereas 

[O2] increases rapidly with temperature.   

The model calculation results on the effect of temperature at pH25
o
C 10.6 are shown in 

Figure 5.7, and those on the effect of pH at 150 °C and 250 °C is shown in Figure 5.8. These 

results show that the effect of pH diminishes as temperature increases.  The results obtained 

at pH25
o
C 7.0 (Figure 5.2) and at pH25

o
C 10.6 (Figure 5.7) show that at a given pH25

o
C, at the 

onset of Stage II when the secondary product concentrations are significant the ratio of [•OH] 

and [eaq
−
] increases with temperature.  As this ratio increases it is more difficult to establish 

the cyclic reactions (reactions 5.24 and 5.25) that accelerate the removal •OH and eaq
−
 

without affecting O2 even at pHs > pKa of •H.  Thus, the cyclic reactions that we see at pH 

10.6 at room temperature are no longer established at temperatures  150 °C. At high 

temperatures, the main effect of pH is still via the acid-base equilibrium of eaq
− 

+  H
+
    

•H, but all the aqueous phase reactions become faster and the whole radiolysis system 

reaches steady state before the catalytic cycle is established. 
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Figure ‎5.7: Time-dependent behaviour of radiolysis product 

concentrations at pH25 °C 10.6 at 25 °C, 80 °C and 150 °C. 

 

 

Figure ‎5.8: The concentration of water radiolysis products as a function 

of irradiation time at pH25 °C 3.0, 7.0 and 10.6 in deaerated water at 150 

°C and 250 °C and at a dose rate of 4.5 kGy·h
–1

. 
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 Conclusion 5.4

The -radiolysis of liquid water for a given set of conditions (pH, temperature and 

dose rate) the concentrations of radiolysis products show three distinct stages over the time 

span of 0 to 10
4
 s. In Stage I (< 1 ms), in all cases, the concentration of a radiolysis product 

increases linearly with time at a rate determined by primary radiolytic processes, except for 

eaq
−
. The concentrations of the less reactive radicals, •H and •OH, increase for a longer time 

before they reach steady state in Stage II. In Stage II, concentrations of the secondary 

products, •O2

, •HO2 and O2, start to accumulate at very fast rates and the concentrations of 

the primary molecular products, H2 and H2O2, continue to grow almost linearly with time at 

this stage. The whole radiolysis system approaches steady state (Stage III) when the net rate 

of H2O2 and H2 decomposition reactions become equal to the net rates of their production. 

We have presented that for -radiolysis of liquid water, the net production rates of 

radiolyis products in Stage I depend mainly on their primary radiolytic production rates. In 

this regard, the production rates of eaq
− 

 and H should be considered together due to the fast 

forward reaction between them. We have shown that temperature has negligible effect on the 

primary radiolytic production rates; the greatest change occurs for H2O2 but even then, the 

rate decreases only by a factor of 2 when the temperature increases from 25 °C to 300 °C. 

However, at later stages (> ms) as the concentrations of the primary molecular species and 

the secondary products increase their reactions become progressively more important in 

controlling the concentrations of the radiolysis products. At higher temperatures, the whole 

radiolysis system reaches steady state at a slightly faster rate due to an increase in chemical 
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reaction rates. 

 The pH affects the [•eaq

] and [•H] at very early times in Stage I via the acid-base 

equilibrium of eaq
− 

+  H
+
    •H. At a pH25

o
C > pKa of •H, at temperatures below  80 °C, 

[eaq
−
] increases to a level similar to that of [•OH] by the time when the secondary products 

are formed at substantial levels. At such conditions cyclic reactions between eaq
− 

and •OH, 

and secondary products can accelerate the removal of eaq
− 

and •OH without affecting the 

secondary products. Due to the catalytic cycles, pH can have significant effect on the 

behaviour of radiolysis products in Stage II and Stage III. Thus, at temperatures  80 °C, the 

radiolysis kinetics behaviour in Stage II at pH 10.6 is markedly different from the behaviour 

observed at lower pHs and steady-state is reached at a longer time. Nevertheless, the effect of 

pH becomes less significant as temperature increases.   
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6 CHAPTER 6 

Gamma-Radiolysis Kinetics of Water Vapour:  The Model 

and the Model Predictions as a Function of Temperature and 

Pressure 

 Introduction 6.1

As described in earlier chapters, one of the research objectives was to develop a 

radiolysis kinetic model for supercritical water that can predict the concentrations of oxidants 

important for corrosion of in-core materials under the proposed supercritical water reactor 

(SCWR) coolant conditions. Our current understanding of chemical reaction kinetics in sub-

critical and supercritical water is, however, not sufficient to construct a fully validated model 

for the radiolysis of SCW under continuous irradiation. Thus, we are approaching the 

modelling effort from two directions. We are developing models based on an existing liquid 

water radiolysis model [1–6] and an existing water vapour radiolysis model [7]. However, to 

extend the application of these models to SCW conditions with any confidence, the radiolysis 

kinetics of liquid water and water vapour as a function of temperature and pressure should be 

well understood. In Chapter 5, we have discussed the liquid water radiolysis model and 

presented model calculation results that examine how pH and temperature affect the liquid 

water radiolysis kinetics. In this chapter we present the water vapour radiolysis model and 

the model calculation results that examine how temperature and pressure affect the vapour 

water radiolysis kinetics.  
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 Water Vapour Radiolysis Model 6.2

The model was constructed based on the reaction set used by Arkhipov et al. to 

determine water vapour chemistry under different types of radiation, from -irradiation to the 

fission products of uranium nuclei, at high temperatures (625 ºC) [7].  Similar to the liquid 

water radiolysis model, the water vapour radiolysis model contains the primary radiolytic 

production of water decomposition products and the vapour phase reactions of the radiolysis 

products with each other.  The reactions and the rate constants included in the water vapour 

radiolysis model are listed in Table 6.1. The number of reactions in the model is significantly 

smaller than the number included in the liquid water radiolysis model since ionic species are 

not stable in the dilute vapour phase.  Hence the reactions of those species are not included in 

the water vapour model.  However, the oxygen atom is more stable in the vapour phase and 

hence the reactions of oxygen atom are added to the water vapour model.  

 

Table ‎6.1: Reactions and their rate constants
1
 as a function of temperature 

included in the water vapour radiolysis model. 

ID# Primary Radiolysis       Rate Constant
2
 (Ms

1
) 

G1 H2O  •H 10
–6
G•H  (T)DR 

G2 H2O  •OH 10
–6
G•OH  (T)DR 

G3 H2O  H2 10
–6
GH2(T)DR 

G4 H2O  •O 10
–6
G•O (T)DR 
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Gaseous Phase Reaction 

Rate Constant
3 

                 (
   

 ⁄ ) 

K0 x Ea 

R1 H + H + H2O  H2O + H2 1.0×10
13

 -1 0 

R2 H + OH + H2O  H2O+ H2O 1.4×10
17

 -2 0 

R3 

OH + OH + H2O  H2O2 + 

H2O 

6.0×10
16

 -2 0 

R4 O + OH  O2 + H 8.9×10
9
 0 2.5×10

2
 

R5 H + O2 + H2O  H2O + HO2 1.5×10
12

 -0.8 0 

R6 H + HO2  H2  + O2 2.4×10
10

 0.09 7.1×10
2
 

R7 H + HO2  OH + OH 1.7×10
11

 0 4.4×10
2
 

R8 H + HO2  H2O + O 2.5×10
10

 0 7.0×10
2
 

R9 HO2  + HO2  H2O2  + O2 1.8×10
9
 0 0 

R10 H + O + H2O  OH + H2O 4.7×10
12

 -1 0 

R11 H + H2O2  H2O + OH 1.0×10
10

 0 1.8×10
3
 

R12 OH + H2O2  H2O + HO2 4.5×10
9
 0 4.77×10

2
 

R13 OH + H2  H2O
 
+ H 2.5×10

5
 0.48 1.7×10

3
 

R14 OH + OH  H2O + O 1.5×10
6
 1.14 5.0×10

1
 

R15 O
 
 + O + H2O  O2

 
 + H2O 1.9×10

7
 0 9.0×10

2
 

R16 O + H2  OH + H 51 2.67 3.16×10
3
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R17 

H2O2 + H2O  OH + OH
 
+ 

H2O 

2.5×10
15

 0 2.41×10
4
 

R18 H + H2O  H2  + OH 1.0×10
7
 0 5.0 ×10

3
 

1 The reactions and the temperature-dependent rate constants are taken from refs [7,8].  

2 The G-values and the density of water vapour at saturation ((T)) as a function of 

temperature are presented in Tables 6.2 and 6.3, respectively. 

3 All temperatures are in K. The bimolecular reaction rate constants are in units of M
–1
s

–1
 

and the trimolecular reaction rate constants are in units of M
–2
s

–1
. 

 

As for the liquid water model, the primary radiolytic processes occurring at short 

times are not modelled in detail. Instead, the radiolytic production of water decomposition 

products is modelled using the homogeneous primary radiolysis yields per unit absorbed 

energy (G-values) and the rate of radiation energy deposition into water:    

 [ ]

  
                     (6.1) 

where Gi(T) is the G-value for species i at temperature T in units of mol·J
–1

, DR is the 

absorbed radiation dose rate in units of Gys
1

 (Jkg
1
s
1

), and (T) is the density of water at 

T in units of kg·dm
–3

 (the factor of 10
–6

 provides for unit conversion).   

The rate of change in the concentration of a chemical species, i, due to vapour phase 

reactions is described by the classical chemical reaction rate equation. For bimolecular 

reactions:  

 [ ]

  
  ∑     [ ]  [ ]     ∑      [ ]  [ ]                        (6.2) 
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where klm is the 2
nd

 order rate constant for the reaction of species l and m producing species i 

in units of M
–1

·s
–1

 , and kij is the 2
nd

 order rate constant for the reaction of species i and j in 

units of M
–1

·s
–1

. In the vapour phase the elementary reactions can be strongly dependent on 

the water vapour pressure because this affects the three-body collision frequency (where the 

third body is normally a water molecule).  We can note that in vapour phase combination 

reactions like R1, there must be a third body present to conserve momentum and hence the 

explicit recognition of the role of H2O in the reaction.  In the vapour phase the near 

neighbouring atoms assume this role and it is implicitly included in the bimolecular reaction 

rates for similar reactions. In the model this effect of water vapour pressure is incorporated in 

a 2
nd

 order rate constant for the appropriate reaction.  For a given species the overall rate law 

is then: 

 [ ]

  
                     ∑     [ ]  [ ]     ∑      [ ]  [ ]  (6.3) 

The model rate parameters, the G-values and the rate constants of the vapour phase 

reactions are also those recommended by Arkhipov et al. [7] and are listed in Table 6.1 and 

6.2.  Note that the G-values for water vapour radiolysis are known to be independent of 

temperature and pressure (up to 1 MPa) [7,9]. In their review Arkhipov et al. provided the 

rate constants for the vapour phase reactions as a function of temperature using the following 

temperature dependence function [7].  The values of the parameters in this function are 

included in Table 6.1. 

                 (
   

 ⁄ )                                                                            (6.4) 
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Table ‎6.2: Primary -radiolysis yields* of water vapour at 25-300 
o
C [7]. 

* G-values in units of mol·J
1

. 

 

 Model Results 6.3

We have performed a series of model calculations to determine the effect of 

temperature on the net radiolytic production of H2, O2 and H2O2 using the water vapour 

model. These calculations were performed for saturated steam conditions and hence the 

density of water vapour increases with temperature. The saturation pressure and the density 

of water vapour as a function of temperature are listed in Table 6.3.   

 

Table ‎6.3: Saturation pressure and vapour density of saturated steam 

as a function of temperature [10]. 

Temp ( 
o
C) 

Saturation 

Pressure (MPa) 

Vapour Density 

(gcm
–3

) 

25 0.003 2.31  10
–5

 

100 0.101 5.98  10
–4

 

150 0.476 2.55  10
–3

 

200 1.555 7.86  10
–3

 

250 3.976 1.996  10
–2

 

300 8.588 4.62  10
–2

 

350 16.529 0.114 

374 22.064 0.322 

Water phase H2O eaq
– 

H
+
 OH H H2 O H2O2  

Vapour –0.74 0 0 0.63 0.74 0.055 0.11 0.0  
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 Time Evolution of Radiolysis Product Concentrations   6.3.1

The model results obtained for -radiolysis of water vapour at 4.5 kGyh
–1

, at 25 °C, 

150 °C and 250 °C are presented in Figure 6.1. Although the absolute concentrations of 

radiolysis products depend on temperature, their time-dependent behaviours are very similar 

at all temperatures. At a given temperature, the concentrations of the primary radiolysis 

products, H, OH, O and H2, all initially increase linearly with time (i.e. [i]  t) and then 

reach steady state.  The chemically more reactive species reach steady state at earlier times.  

The most reactive species (H) reaches steady state very early and its concentration is below 

10
–13

 M at all temperatures studied.  The less chemically reactive radicals, OH and O, take 

longer to reach steady state (< 0.1 ms and < 1 s, respectively at 150 °C), whereas the 

concentration of H2 continues to increase over the 3-h period modelled.   

The net rate of production of H2 is higher than the rate of the primary radiolytic 

production of H2 and close to the production rate of H.  This observation and that the early 

plateau of [H] indicates that reaction R1 in Table 6.1 contributes significantly to the 

production of H2:  

H  + H  +  H2O    H2O  +  H2   (6.4) 

At steady state, the total rate of removal reactions of H is the same as its primary 

radiolytic production rate: 

                    ∑          [ ]   [  ] (6.5) 
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In addition to reaction (6.4) H is removed by other reactions (mainly with OH (R2 

in Table 6.2).  Thus, not all, but a fraction, fH2, of the H formed by primary radiolytic 

processes will be used in producing H2 via reaction (6.4).  Since H2 is chemically not very 

reactive, the net rate of its production can be approximated by the sum of the primary 

radiolytic production rate of H2 and a fraction arising from H: 

[  ]        (                    )            (6.6) 

The fraction, fH2, depends on the rate of reaction (6.4) relative to other reactions that 

compete for H, such as R2 in Table 6.1.  The third body [H2O] increases with temperature at 

saturation (the water density increases).  This increases the rate of reaction R1 compared to 

other reactions that don’t require a third body.  Hence we see a higher [H2] earlier at a higher 

temperature. 

The concentrations of the secondary products, H2O2 and O2, initially increase at 2
nd

 

order rates ([i]  t
2
), but the rates of increase switch to linear rate ([i]  t) at longer times. At 

high temperatures ( 150 °C) the times that these switches occur coincide with the times 

when the primary radicals, OH and O, reach steady state.  This is because those radicals 

are the primary precursors to those molecular species.  For example, for H2O2: 

OH   +  OH  +  H2O   H2O2  +  H2O (6.7) 

The rate of H2O2 production from this reaction will be 1
st
 order when [OH] is at 

steady state, but higher order prior to the steady state.  We can apply the same kinetic 
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analysis that was done for H2 above to approximate [H2O2] when [OH] is at steady state.  

We then obtain, 

                     ∑            [   ]  [ ] (6.8) 

[    ]        (                )            (6.9) 

where the fraction, fH2O2, depends on the rate of reaction (6.7) relative to the rates of other 

competing reactions for OH, such as R2 in Table 6.1.  Equation 6.9 explains the calculation 

results; [H2O2] is higher at a higher temperature and at a given temperature [H2O2] increases 

linearly with time except at very early times (Figure 6.1).  We can apply a similar analysis 

for the net production for O2.   
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Figure ‎6.1: Time evolution of radiolysis product concentrations 

predicted by the vapor model at 25 °C, 150
 
°C and 250 °C at dose rate 

4.5 kGyh
–1

. 
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 Temperature Dependences Predicted by Vapor Radiolysis Model 6.3.2

Since the concentrations of different radiolysis products evolve at different rates with 

time, the effect of temperature is examined by comparing model predictions at two different 

times, 1 s and 1 h, in Figures 6.2 and 6.3. The water vapour model predicts the temperature 

dependence of the radiolysis product concentrations to be more noticeable at lower 

temperatures (< 150 °C). The concentrations of all the molecular species plotted increase 

with temperature, but the increase is greatest a lower temperatures.   

As temperature increases the concentrations of the reactive radicals reach steady state 

at earlier times. Consequently the concentrations of the less reactive molecular species start 

to increase at a linear rate at earlier time stages, and their concentrations can be approximated 

by equations (6.6) and (6.9). The net consequence of the increases in both the radiolytic 

production and gas phase reaction rates is that the concentrations of molecular species, H2O2, 

H2, and O2, all increase proportionally with (T)DR when the temperature increases from 100 

°C to 400 °C.  At the lower temperatures the concentrations of the molecular species do not 

follow the simple linear dependence on (T)DR. 

The concentration of H2O2 follows the same behaviour as [H2] at short times for all 

temperatures, but deviates at longer times and higher temperatures.  This is because the 

concentration of H2O2 is affected by its rate of thermal decomposition (a problem it does not 

share with H2).  Hence [H2O2] at 1 h does not follow the simple linear dependence on 

(T)DR.  
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Figure ‎6.2: Radiolysis product concentrations as a function of temperature 

after 1 s of irradiation at a dose rate of 4.5 kGyh
–1

. 

 

 

 

Figure ‎6.3: Radiolysis product concentrations as a function of 

temperature after 1 hour of irradiation at a dose rate of 4.5 kGyh
–1

. 
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 Pressure Dependence of the Radiolysis of Vapor 6.3.3

The effect of water vapour density on the radiolysis kinetics was further investigated 

by performing the model calculations at 250 °C with different steam pressures (from 0.5 to 

20 MPa), Figure 6.4.  (Note that the saturation pressure at 250 °C is ≈ 4 MPa, so that the 

pressures > 4 MPa are hypothetical scenarios.)  As discussed above, in the concentrations of 

the molecular products, H2, O2 and H2O2 increase nearly linearly with the water vapour 

density (note the logarithmic scale of the plot). On the other hand, the concentrations of the 

radical species, •H, •OH and •O, are nearly independent of water density. The [•H] actually 

appears to decrease slightly with increased pressure, but the concentration is so low that it 

may not be appropriate, at this stage, to consider the change significant. 

 

 

Figure ‎6.4: Radiolysis product concentrations as a function of pressure 

after 5 h of irradiation at 250 °C and at a dose rate of 4.5 kGyh
–1

. 

 

10
0

10
1

10
-18

10
-13

10
-8

10
-3

M
o

le
c
u

la
r 

C
o

n
c
e

n
tr

a
ti
o

n
 (

M
)

Pressure (MPa)

H

H
2
O

2

OH

O
2

H
2

O



 

 

 

 

116 

  Conclusion 6.4

We have performed a series of water vapour model calculations to determine the 

effect of temperature and pressure on the net radiolytic production of H2, O2 and H2O2. Water 

vapour model calculations show that while the absolute concentrations of radiolysis products 

depend on temperature, their time-dependent behaviours are very similar at all temperatures. 

At a given temperature, the concentrations of the primary radiolysis products, H, OH, O 

and H2, all increase linearly with time initially and then reach steady state.  The chemically 

more reactive species ((H) most reactive specie) reach steady state at earlier times whereas 

the less chemically reactive radicals, OH and O, take longer to reach steady state.  

The main production precursors of molecular products are the reactions of the 

primary radical species, H, OH and O. Thus, the water vapour model predicts that the 

concentrations of H2 and H2O2 start to increase at very early times at linear rates related to 

the G-values of the respective reactant radicals. As temperature increases the concentrations 

of the reactive radicals reach steady state at earlier times. Thus the concentrations of the less 

reactive molecular species start to increase at a linear rate at earlier times. The net 

consequence of the increases in both the radiolytic production and gas phase reaction rates is 

that the concentrations of molecular species, H2O2, H2, and O2, all increase consistently with 

(T)DR when the temperature increases from 100 °C to 400 °C.  At the lower temperatures 

the concentrations of the molecular species do not follow the simple linear dependence on 

(T)DR. 
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7 CHAPTER 7 

 Radiolysis of Biphasic Liquid and Vapour Water System:  

Experimental and Model Simulation Studies  

 Introduction  7.1

  The radiolysis kinetics of pure liquid water phase under -irradiation is difficult to 

study experimentally. Due to safety restrictions, in-situ monitoring of any radiolysis products 

as a function of time is practically impossible. This leaves ex-situ measurements of more 

stable products (H2, O2 and H2O2) as the only practical option. The concentrations of volatile 

gases such as H2 and O2 are more easily and more accurately determined by measuring their 

airborne concentrations in the gas phase than in the aqueous phase. The flow cell set up 

commonly used for radiolysis of liquid water using short-term pulses is also not optimum for 

a kinetic study, particularly at high temperatures where water radiolysis can very effectively 

couple with corrosion reactions of the flow tube materials. The corrosion reactions consume 

O2 and H2O2 and produce H2. Thus, corrosion affects their concentrations, the very 

parameters that we want to measure, and must be minimized. The problem becomes more 

significant at higher temperatures where corrosion rates are accelerated.   

For this reason we have performed -radiolysis kinetic experiments in a static cell. 

Even with a static cell, the tests at high temperatures are very difficult since the surface 

reactions need to be minimized while leak-tight conditions during irradiation must be 
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maintained, and only ex-situ measurements can be performed with reasonable accuracies. We 

have described our efforts to achieve this balance in Chapter 4. 

In this chapter we present the results of limited tests performed at 25 °C, 150 °C and 

250 °C and model simulations of these experiments. The experiments were conducted in 

leak-tight cells which were partially filled with liquid water at room temperature before the 

cell was closed and heated to a desired temperature prior to irradiation. Thus, in our cell, 

liquid water is in contact with water vapour and the volume and concentration of steam in the 

cell is determined by the saturation pressure at the test temperature. At a given temperature, 

the radiolysis kinetics were studied by measuring the concentrations of H2 present in the gas 

phase ([H2(g)]) and the concentration of H2O2 present in the aqueous phase ([H2O2(aq)]) after 

irradiating the static radiolysis cell for different durations.  

The radiolysis system consists of a liquid water and steam biphasic system in which 

the less reactive molecular species (H2, O2 and H2O2) can undergo liquid-gas interfacial 

transfer in addition to the complex radiolysis reactions in pure liquid and pure vapour phases 

as described in Chapters 5 and 6. 

 Experimental results 7.2

Gamma-radiolysis kinetic experiments were carried out at 25 °C, 150 °C and 250 °C.  

At 25 °C and 150 °C, the radiolysis kinetics were investigated at two pH25
o
C values, 7.0 and 

10.6 under deaerated conditions. For 250 °C, only the neutral pH was investigated. The 

experimental procedures and conditions have been described in detail in Chapter 3 and 
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Chapter 4. Briefly, the experiments at 25 °C and 150 °C were conducted in the leak-tight 

quartz cell whereas those at 250 °C were conducted in the gold-plated stainless-steel 

radiolysis cell designed particularly in our lab.  For each experiment the radiolysis reaction 

cell was initially partially filled and purged with argon before the cell was sealed under a 

controlled environment in a glove box at room temperature. The whole radiolysis cell was 

heated to a desired temperature prior to the start of irradiation in the -cell. Upon termination 

of irradiation, the cell was cooled before the measurements of the concentration of H2 in the 

gas phase and the concentration of H2O2 in the aqueous phase were performed. The 

concentration of H2 was measured using gas chromatography and that of H2O2 was measured 

using the Ghormley method and UV spectrophotometry. Under a given set of pH and 

temperature conditions the irradiation time was varied from 30 min to 5 h. The absorption 

dose rate in these experiments varied during the period in which experiments were performed 

from 4.5 kGy·h
–1 

to 4 kGy·h
–1

.  

Tests to measure the concentrations of radiolysis products at high temperatures 

require that the experimental test cell includes a headspace. The measurements that can be 

performed are not the concentrations of radiolysis products in the liquid water phase but 

those of products that have become airborne during irradiation.  Thus, simulation of 

laboratory experiments requires modeling of liquid-gas interfacial transfer of H2 and O2.  The 

rate of interfacial mass transfer is easy to formulate but the rate coefficient is very specific to 

the thermalhydraulic condition of each system and hence the rate coefficient is normally an 

adjustable input parameter in a kinetic model.       
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Interfacial mass-transfer between the aqueous and gas phase is modelled using two 

fundamental parameters: kMT, the overall mass transfer coefficient and H, the partition 

coefficient. The partition coefficient is given by the ratio of the concentration of a species in 

the liquid phase to the concentration in the gas phase at equilibrium at a given temperature 

[1]. The interfacial mass transfer rate coefficient is an input parameter in the model because 

of its dependence on thermalhydraulic conditions.  In our model we typically use kM(aq) = 10
–

4
 and kM(g) = 10

–2
 and calculate the overall mass transfer rate as 

 

   
 

 

     

 
 

     

                                                                                                                

where kM(aq) and kM(g) are aqueous-to-gas phase and gas-to-aqueous phase mass transfer 

coefficients respectively.  

The partition coefficient used in the model has been defined as a function of 

temperature using the known thermodynamic properties of H2 and O2. The mass transfer rate 

coefficient kM(aq) was increased to a maximum value of 10
–2

 in some simulations (to match 

the reverse rate coefficient) to explore the change in the modeling predictions as a result of 

an increase in the kM(aq). 

The experimental data and the model simulation results using the liquid radiolysis 

model (with two different values for kM(aq), 10
–4 

and 10
–2

) and the water vapour radiolysis 

model at pH25
o
C 7.0 and pH25

o
C 10.6 are presented in Figure 7.1 and Figure 7.2 respectively. 

The liquid water radiolysis model simulates the time dependent radiolysis product behaviour 
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at both pHs very well at 25 °C.  It also predicts the effect of pH on the radiolysis kinetics 

accurately.   

Using the vapour model, the [H2O2] in the vapour phase was calculated and this was 

then converted to a concentration in the liquid phase using the number of moles present in the 

volume of the head space in the radiolysis cell at that particular temperature (0.009 L for 

radiolysis cell at 150 °C and 0.007 L for gold-plated radiolysis cell at 250 °C). At 150 °C, 

quartz radiolysis cell contains 8 ml of water at 25 °C (equals to 8.7 ml at 150 °C) and 10 ml 

headspace and the stainless steel gold plated radiolysis cell used for the experiments at 250 

°C had 12 ml volume totally that contains 4 ml water at 25 °C (equals to 5 ml at 250 °C).  At 

250 °C most of the liquid water originally introduced into the test cell is present as water 

vapour and it is reasonable to consider the test cell volume to be largely filled with water 

vapour.  There is actually quite good agreement between the equivalent concentrations of 

H2O2 determined by the water vapour model and the measured [H2O2(aq)] at both 150 °C and 

250 °C. 

 

Table ‎7.1: Calculated [H2O2] dissolved in liquid phase after radiolysis at 

a dose rate of 4.5 kGyh
–1 

for 3 h (deaerated water at pH25
o

C 7.0).   

Temperature 

(°C ) 

[H2O2(aq)] 

From Vapour Model 

(mol·L
–1

) 

Liquid Volume 

(L) 

Vapor Volume 

(L) 

[H2O2(aq)] 

Measured in Liquid Phase 

(mol·L
–1

) 

150 7.27 ×10
–6

 0.009 0.009 7.77 ×10
–6

 

250 9.73 ×10
–6

 0.005 0.007 1.36 ×10
–5
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The simulation results from the liquid water model start to deviate from experimental 

data as the temperature rises. As illustrated in Figure 7.1, experimentally measured [H2(g)] 

and [H2O2(aq)] at 150  °C have at least one order of magnitude difference from liquid water 

model predictions and they become closer to vapour radiolysis model predictions as 

temperature increases.   

The liquid model predicts [H2O2(aq)] to decrease significantly with increasing 

temperature and to be only 2×10
–8

 mol·L
–1

 at 250 °C. On the other hand, experimental 

measurements have shown an increase in [H2O2(aq)] with temperature and at 250 °C values 

for [H2O2(aq)], measured post-test, that are close to the detection limit have observed. This 

matches with the value predicted by the water vapour model at 250 °C, 1×10
–5

 mol·L
–1

. 

Similar behaviour is seen for [H2(g)]. Although [H2(g)] experimental values for 150 °C are 

higher than those predicted by both water vapour and liquid water models, at 250 °C the 

experimental data clearly match the water vapour model predictions better.  The same 

behaviour was seen for tests at pH25
o
C 10.6. The liquid water model works well in predicting 

[H2(g)] and [H2O2(aq)] at 25 °C but at 150 °C, both [H2(g)] and [H2O2(aq)] are better 

predicted using the water vapour model. 
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Figure ‎7.1: [H2(g)] and [H2O2(aq)] as a function of irradiation time for 

deaerated water (pH 7.0) at 25 °C, 150 °C and 250 °C at a dose rate of 4.5 

kGyh
–1

.  The symbols represent the experimental data and the solid lines 

are model results (Liquid Model* uses kM(aq) =10
–4

 and Liquid Model uses 

kM(aq) 10
–2

). 
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Figure ‎7.2: [H2(g)] and [H2O2(aq)] as a function of irradiation time for 

deaerated water (pH 10.6) at 25 °C and 150 °C at a dose rate of 4.5 kGyh
–

1
.  The symbols represent the experimental data and solid lines are model 

results (Liquid Model* uses kM(aq) =10
–4

 and Liquid Model uses kM(aq) 10
–2

) 
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 Conclusion 7.3

In this chapter, experimental results from the radiolysis of biphasic liquid-vapour 

water system at 25 °C, 150 °C and 250 °C presented and compared with the model 

simulation results using the liquid and vapour radiolysis models. Model calculations 

efficiently reproduced the experimental results. As temperature increases the saturation 

pressure (water vapour density) in the headspace increases, and the production of the 

molecular radiolysis products, H2, H2O2 and O2 in the vapour phase dominates the net 

production in the biphasic system.  The model simulation results show that the contribution 

from the radiolysis of liquid phase to the net production of H2 and H2O2 in a leak-tight 

radiolysis cell is negligible at T  150 °C. This suggests that at temperatures near critical 

region, when water approaches the supercritical fluid state, model predictions based on an 

extension to the low-pressure water vapour radiolysis model may be more useful. In the 

model simulations of the biphasic water system we have performed the calculations using 

each model individually.  
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8 CHAPTER 8 

Chemical Kinetics Model for the Gamma-Radiolysis of 

Supercritical Water 

 Introduction  8.1

There are plans to measure the corrosion of materials under supercritical water reactor 

(SCWR) conditions via in-reactor experiments [1]. Until these data are available, other 

approaches to predicting corrosion rates are being explored.  One option is to use chemical 

kinetics modelling to predict the concentrations of oxidizing species in an SCWR.  The 

model results can be used to plan out-of-reactor corrosion tests where the water chemistry is 

adjusted to mimic that expected in a reactor.  Our current understanding of chemical reaction 

kinetics in sub-critical and supercritical water is not sufficient to construct a fully validated 

model for the radiolysis of SCW under continuous irradiation.  To date, only one SCWR 

radiolysis model has been published.  Yeh et al. [2] have modelled the radiolysis chemistry 

of an early SCWR conceptual design.  While providing some valuable insights, their model 

made many simplifying assumptions that reduce its predictive value.   

We have approached the modelling effort from two directions and are developing two 

chemical kinetics models: (1) a liquid radiolysis model (LRM) and (2) a vapour radiolysis 

model (VRM) for the continuous radiolysis of sub-critical and supercritical water.  The liquid 

model (LRM) was constructed using the same reaction set used in the radiolysis model for 

liquid water [3–7] described in Chapter 5.  The vapour model (VRM) uses the reaction set 
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developed by Arkhipov et al. for water vapour radiolysis [8] described in Chapter 6.  

However, in order to extend the applications of these models to radiolysis of sub- and 

supercritical water, the model rate parameters must be defined as a function of pressure and 

temperature in the ranges of subcritical and supercritical conditions. As discussed in Chapter 

2, the solvent properties of water change rapidly with temperature and pressure in the 

subcritical (300 - 375 °C) and supercritical temperature regions. Solvent properties such as 

density, ionic product and viscosity have a considerable effect on homogeneous liquid and 

vapour reaction rates. Thus the changes in the solvent properties with T and P must be taken 

into account. Since these effects are not fully understood, we have used a two-pronged 

approach to the kinetics modeling coming from high density (liquid) and low-density 

(vapour) perspectives, and hence creating two models.  Our aim is to have the models 

converge as they mature.   

This chapter describes how the key model parameters values (G-values and rate 

constants) of the LRM and VRM were assigned, and presents preliminary predictions of the 

models for the time dependent chemistry for radiolysis at temperatures ranging from 250 °C 

to 400 °C.  Hydrogen addition is used in conventional nuclear reactors to lower the oxidation 

potential of coolant water and reduce corrosion rates.  Predictions of the effects of hydrogen 

addition on the production of oxidizing species in irradiated SCW are also presented. 
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 SCW Radiolysis Kinetics Model 8.2

The sets of reactions in the LRM and the VRM are the same as those of the radiolysis 

models for liquid water and water vapour and listed in Table 5.1 in Chapter 5 and Table 6.1 

in Chapter 6, respectively.  To extend the application of these models to SCW conditions, the 

rate constants used in the models must be extrapolated from those known for low temperature 

liquid water (for the LRM) and from those known for steam (for the VRM). 

 Primary Radiolysis Yields, the G-values  8.2.1

There are few measured G-values for sub-critical and supercritical water [9] and the 

reported values have large uncertainties. However, examination of the G-values reported for 

liquid water as a function of temperature and for vapour water can provide insight into the 

effects of temperature and changes in the solvation properties of water on radiolysis yields. 

This understanding can then be used to estimate the G-values of individual species for -

radiolysis of sub-critical and supercritical water. 

Uncertainties exist for the G-values obtained for liquid water radiolysis at high 

temperatures owing to the challenge in making the requisite measurements. The uncertainties 

in the G-values of species that require indirect measurement techniques can be even greater.  

For the same reasons, a complete set of G-values is not available for SCW; they are often 

reported for the sum of radical species.  For example, Katsumura et al. reported the G-value 

for the sum of (eaq

 + OH + H) as a function of water density but did not give individual 
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radical G-values [10].  This makes it difficult to adapt the reported G-values for use in a 

chemical kinetics model that follows individual species.  

The G-values for the radiolysis of liquid water as a function of temperature in the 

range from 25 °C to 350 °C have been thoroughly reviewed Elliot and Bartels [9].  In their 

review they also provided temperature-dependent polynomial functions for G-values that 

were formulated by polynomial fits to the available data in the literature.  In the current 

version of the LRM model we have used their formulae and extrapolated their application to 

calculate G-values for a wider temperature range (up to 400 °C) as presented in Figure 8.1.  

Note that eaq

 and H are in fast acid-base equilibrium and hence their individual G-values 

have large uncertainties.  The G-values for the sum of these species combined are more 

reliable and hence these values are presented in Figure 8.1.  The G-values of primary water 

radiolysis products at different temperatures are listed in Table 8.1. 
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Figure ‎8.1: G-values as a function of temperature used in the LRM (left 

axis) and VRM (right axis). The temperature dependences of the G-

values for the LRM were taken from ref [9]. The temperature 

independent G-values for the VRM were taken from ref [8]. 

 

In the first version of the VRM the G-values used by Arkhipov et al. [8] for water 

vapour radiolysis at low pressure were used without modification at sub-critical and 

supercritical temperatures, see Figure 8.1 and Table 8.1.  In Figure 8.1, the sum of the G-

values of OH and O is also shown and this sum coincides with the G-value of H. 
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Table ‎8.1: Primary -radiolysis yields* as a function of temperature in LRM 

and VRM. 

* G-values are in units of mol·J
1

. 

** The G-values were calculated from the temperature-dependent formula provided in ref [9]. 

 

 

 

 

The G-values for liquid water radiolysis show a small dependence on temperature in 

the range from 25 °C to 250 °C; the G-value for water decomposition (G(H2O)) (Table 8.1) 

and the G-values for the production of the main decomposition products, eaq

 and OH, 

increase with temperature.  This temperature dependence arises from decreases in the 

viscosity () and dielectric constant (r), and an increase in the ionic product (pKW) of water 

with temperature (See Chapter 2).  The decrease in  will increase, while the decrease in r 

will decrease, the escape probability of electrons from geminate recombination [11].  Due to 

Water State 
T (

o
C) H2O eaq


 H OH O H2 H2O2  

LRM   

Liquid water**
 

[9] 

 

25 –0.41 0.26 0.06 0.27 0.0 0.04 0.07  

150 0.51 0.33 0.08 0.41 0.0 0.05 0.05  

200 0.54 0.35 0.09 0.46 0.0 0.05 0.04  

250 -0.58 0.35 0.12 0.51 0.0 0.06 0.035  

300 0.61 0.34 0.15 0.57 0.0 0.06 0.02  

350 0.69 0.32 0.21 0.65 0.0 0.08 0.02  

400 0.75 0.27 0.29 0.73 0.0 0.09 0.01  

VRM   

Vapour 

[8] 

25 – 

400 
0.74 0.0 0.74 0.63 0.11 0.05 0.0  
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their opposite effects on the escape probability, the increase in G(H2O) over the range from 

25 °C to 250 °C is small (from 0.41 mol·J
1

 to 0.58 mol·J
1

) (Table 8.1).  In comparison, 

the rate constant of a chemical reaction can increase by several orders of magnitude over the 

same temperature range.  The increased rate of decomposition of H2O results in increases in 

the G-values for the production of radicals (eaq

 and OH).  

The G(H2O) value changes more rapidly in the temperature range from 250 °C to 

350 °C because the solvent properties of water change more rapidly in this range with 

temperature.  At these temperatures r is very small and ion mobility becomes the main factor 

affecting the rate of geminate recombination.  Ion mobility increases with decreasing  and, 

hence, with an increase in temperature.  Consequently the G(H2O) and G(OH) values 

continue to increase with temperature.  However, the G-value for eaq

 starts to decrease for 

T > 200 °C because of changes in the ionic product (Kw) of water. The KW increases (and 

pKw = log Kw decreases) slowly with increasing temperature up to 200 °C, but then 

decreases as the temperature rises above this point (Figure 2.1).  The change in Kw with 

temperature becomes faster near the critical point and above the critical point the ionic 

product is many orders of magnitude less than the value for ambient water (10
–23

 at 375 °C 

and 24 MPa compared to 10
–14

 at 25 °C and 0.1 MPa) [12–14].  

In using the Elliot and Bartels formulae to estimate the G-values at sub- and 

supercritical temperatures we have ignored the effect of this dramatic change in Kw for the 

model.  This should lead to an overestimate of the G-value of eaq

 and an underestimate of 

the G-value of H at temperatures near and above the critical temperature.  Similarly, in 
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using the G-values from water vapour radiolysis for sub-critical and supercritical 

temperatures we have ignored the effect of changes in density near the critical temperature 

that lead to changes in solvent properties.  The impact of such estimation errors is being 

explored by performing model sensitivity analyses but the results yet to be reported. 

It is interesting to note that even with the known simplifications in our estimates and 

extrapolations, the G-values of the reducing radicals (eaq

 + H) and the oxidizing radical 

OH in the LRM and those of H and (OH + O) in the VRM converge to very similar 

values at 400 °C (Figure 8.1).  This may be fortuitous, or it may be due to the fact that, even 

at supercritical pressures, the density of water does not have a direct impact on the G-values 

for low LET -radiolysis.  The Monte Carlo simulations performed by the Jay-Gerin group at 

the University of Sherbrooke also show that G-values (within 10
–7

 to 10
–8

 s) are independent 

of the density of SCW [15].  We can see that they change by less than a factor of 2 when the 

density of water changes from 2.310
–5

 g/cm
3
 (vapour) to ~1 g/cm

3
 (liquid water at 25 °C).  

It would appear that for pressures less than ~25 MPa, the main effect of water density on the 

G-values is its influence on the interaction of radiolysis product species between the spurs of 

a radiation track.  The maximum value that G(H2O) can have is 0.80 mol·J
1

.  This value is 

a limit set by the ratio of the absorbed energy per molecule to the ionization energy of a 

water molecule.  The G(H2O) value for water vapour radiolysis is close to this limit value.  

It is possible that water vapour at high densities and high temperatures can have some other 

influences on the physics and chemistry of the interaction of fast electrons with water 

molecules and the decay of excited species in the radiation spurs.  This can be investigated in 

developing further generations of the VRM. 
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 Homogeneous water phase reaction rate constants 8.2.2

As discussed in Chapter 5, a chemical reaction rate constant for a system at thermal 

equilibrium can normally be expressed using the Arrhenius equation: 

                  ( 
  

   
)        (8.1) 

where EA is the activation energy. The activation energy should be independent of 

temperature over the range of temperatures of interest for our model since most species will 

be in ground molecular energy states. Thus, the activation energy that is known for a reaction 

at low temperatures should be valid at SCW temperatures.  Nevertheless, to extrapolate the 

rate constants observed in lower temperature liquid water and water vapour, knowledge of 

activation energies alone is insufficient to predict rate constants as a function of temperature.  

We need to know the dependence of the pre-exponential factor on temperature, pressure, and 

solvent properties.  

Excellent reviews of the rate constants are available for reactions in water vapour [8] 

and in liquid water [9].  These reviews provide the rate constants as a function of temperature 

in their respective phases, as described in Chapters 5 and 6.  For the gas phase reaction rate 

constants, the temperature dependence was obtained from the best fit of the data using a 

general pre-exponential function [8] : 

          
        (8.2) 
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For the rate constants in the liquid phase, the temperature dependence of the pre-

exponential function, Aij (T), was obtained using mathematical functions provided by Elliot 

and Bartels [9] for a number of temperatures from 20 °C to 350 °C.  

The version.0 of the models use the temperature-dependent functions of the rate 

constants provided by these reviews to extrapolate for rate constants at sub- and supercritical 

temperatures.  The temperature dependences of the rate constants are empirically derived 

functions.  In using these functions the impacts of the temperature dependent properties of 

water (such as viscosity) on factors such as the diffusion rate is not specifically considered.  

This simplification was likely to be the main source of uncertainties in calculations using the 

version.0 models. The uncertainties in the validity of the assumptions for the rates constants 

as a function of temperature is one of the driving forces for the development of parallel 

models starting from low and high water densities.  Examination of the differences in the 

models and their predictions can help to identify the main sources of error and the reactions 

that are most important. 

 Model Simulation Results      8.3

In our preliminary calculations we started with a given set of initial molecular species 

concentrations, e.g., just pure H2O.  The irradiation source was ‘turned on’ and the evolution 

of the system chemistry was followed for 10
4
 s.  This partially simulates the experience in a 

nuclear reactor where coolant water would enter the reactor core and be exposed to a high 

flux of ionizing radiation for a short time.  The residence time of the coolant in the SCWR 
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core is expected to be on the order of seconds based on existing reactor designs.  The -

radiation field in a reactor core is expected to be on the order of a few 1000 kGyh
1

 [16].  

Coolant before entering the core and after exiting will be exposed to much smaller radiation 

fields (orders of magnitude lower) and the effects of such changes in radiation exposure rates 

are not considered in our preliminary calculations.  The radiation field in the reactor core will 

also include high fluxes of neutrons and -particles (most -radiation will be confined to the 

nuclear fuel and fuel cladding).  Again, for the sake of simplification, only the chemistry 

induced by -radiation is considered in our preliminary calculations. 

We have performed a series of calculations as a function of temperature from 25 °C 

to 400 °C using both the VRM and LRM models to examine and compare the model 

predictions.  We have discussed the effect of temperature on the radiolysis kinetics at 

temperatures below 250 °C and at a relatively low dose rate of 4.5 kGy
.
h

–1
 in the earlier 

chapters.  For the calculations presented in this chapter we used a single radiation dose rate 

of 1000 kGy
.
h

–1
 to more closely simulate the proposed SCW reactor coolant conditions.  All 

calculations start with pure water prior to a step function initiation of a continuous radiation 

flux.  For liquid water, the system pressure was the saturation pressure at the target 

temperature.  For vapour and SCW there can be many different combinations of temperature 

and pressure.  To reduce the scope of work, the VRM calculations at any given temperature 

were performed at the saturation pressure at that temperature.  The saturation pressure and 

water density [17] are listed in Table 8.2 for a number of temperatures.  In both LRM and 

VRM calculations changes in water density affect the amount of radiation energy absorbed 
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per volume.  In the VRM model calculations, the water density also affects the pseudo 2
nd

 

order rate constants used for three-body reactions involving a water molecule. 

 

Table ‎8.2: Densities of liquid water and water vapour as a function of 

temperature [IAPWS-IF97]. 

Temp ( 
o
C) 

Saturation 

Pressure (MPa) 

Liquid Density 

(gcm
–3

) 

Vapour Density 

(gcm
–3

) 

25 0.003 0.997 2.31  10
–5

 

100 0.101 0.958 59.8  10
–5

 

150 0.476 0.917 2.55  10
–3

 

200 1.555 0.865 7.86  10
–3

 

250 3.976 0.799 19.96  10
–3

 

300 8.588 0.712 46.2  10
–3

 

350 16.529 0.575 0.114 

374 22.064 0.322 0.322 

 

 Radiolysis product concentrations predicted by the LRM 8.3.1

The calculated time evolution of radiolysis product concentrations at three different 

temperatures representing normal liquid water (200 °C), sub-critical water (350 °C), and 

supercritical water (400 °C) are presented in Figure 8.2.  The radiolysis product 

concentrations in sub- and supercritical water show a similar time-dependent behaviour to 

that observed in liquid water. At times shorter than ~ 0.1 ms (Stage I) the concentrations of 

the primary radiolysis products, (eaq

 + H), OH, H2 and H2O2, all increase nearly linearly 

with time (i.e., the slope of log C vs log t is ~1).  The rate of increase in the concentration of 

each species is nearly proportional to G-value  dose rate  density indicating that no 
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significant aqueous reactions of these species has occurred within this short time scale, as 

expected.  However, as their concentrations build up chemical reactions between the primary 

radiolysis products occur at appreciable rates.  As these reactions produce secondary 

products such as O2

, HO2 and O2, the concentrations of the secondary radiolysis products 

start to increase at faster rates than those of the primary products in Stage II (10 ms – 100 

ms). As the concentrations of the secondary radiolysis products reach levels similar to those 

of the primary radiolysis products and the chemical reactions of the secondary products with 

the primary radiolysis products become significant the system reaches steady state (Stage 

III).  
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Figure ‎8.2: Time evolution of radiolysis product concentrations 

predicted by the LRM at 200 °C (liquid water), 350
 
°C (sub-critical 

water) and 400 °C (supercritical water) at a dose rate of 1000 kGyh
–1

. 
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As the rates of the chemical reactions of the radiolysis products approach their 

production rates their concentrations reach pseudo steady-state.  The concentration of a more 

reactive species reaches pseudo steady-state faster.  Hence, the concentrations of the primary 

radical products (eaq

, H, OH) reach a steady-state first (within ~ 0.1 ms) while the 

primary molecular products and secondary products all reach a steady-state in 10 ms – 100 

ms. The time for the whole chemical system to reach a steady-state increases slightly with 

temperature, from ~ 10 ms at 200 °C to ~ 100 ms at 400 °C.   

 

 Radiolysis product concentrations predicted by the VRM 8.3.2

The VRM was also used to calculate the time evolution of the radiolysis of water 

vapour at the same temperatures used in the LRM calculations.  The results for all 

temperatures are very similar as illustrated in Figure 8.3.  The concentrations of the primary 

radiolysis products H, OH, O and H2 all increase linearly with time initially. The time 

required reaching an initial pseudo steady-state value varies considerably from species to 

species.  The less chemically reactive the species, the longer it takes to reach steady-state and 

the higher concentration it reaches at steady-state.  As a result, the VRM predicts [H]SS < 

[OH]SS < [O]SS < [H2]SS.  The concentration of OH reaches pseudo steady-state by ~0.01 

ms, a slightly shorter time scale than that predicted for the same point with the LRM. It takes 

longer, ~ 0.1 s, for the less reactive radical, O, to reach steady-state.  The concentration of 

H also reaches pseudo steady-state by ~0.01 ms but its concentration is very low and hence 

is not shown in Figure 8.3. 
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Figure ‎8.3: Time evolution of radiolysis product concentrations predicted 

by the VRM at 200 °C (water vapour), 350 °C (sub-critical water) and 

400 °C (supercritical water) at a dose rate 1000 kGyh
–1
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The concentrations of the secondary products, H2O2 and O2, increase at faster rates 

initially ( t
2
), but their increase slow down to be approximately linear with t after the 

concentrations of OH and O approach near steady-state.  By 0.1 s their concentrations 

reach levels similar to that of primary radiolysis product H2.  The ratios of the concentrations 

of the radical primary radiolysis species at short times (t < 1 s) do not change much with 

temperature, but the concentrations of molecular products, H2, O2 and H2O2 increase 

continually with time and do not reach steady-state within the durations modelled (up to 10
4
 

s).  

 Comparison of the Temperature Dependences Predicted by VRM and LRM 8.3.3

Since the concentrations of different radiolysis products evolve at different rates with 

time, the effect of temperature was examined by comparing the two different model 

predictions at two different times, after 1 s in Figure 8.4 and after 1 h (3600 s) in Figure 8.5.  

For the LRM a change in temperature has a small impact on the radiolysis product 

concentrations at 1 s and a larger impact at 1 h.  This is because the slower, more temperature 

dependent, chemical reactions in the water phase become increasingly more important in 

determining the steady-state concentrations.  

With the VRM the temperature dependence of the radiolysis product concentrations is 

more pronounced in the lower temperature range (< 150 °C), but it diminishes at 

temperatures > 200 °C (Figure 8.4 and Figure 8.5).  An important factor that complicates the 

interpretation of these results is that the VRM calculations were performed at different 

pressures at different temperatures.  The water vapour saturation pressure at a given 
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temperature was used (Table 8.3). As a result the water vapour density changed considerably 

with temperature.  An increase in water vapour density increases the rate of energy 

absorption per unit volume (DR) and the rates of the primary radiolysis product formation.  

An increase in water vapour density also increases the rates of termolecular reactions that 

involve water molecules.  The net consequence of increased water vapour density is that the 

concentrations of molecular species, H2O2, H2, and O2, all increase by about an order of 

magnitude when the temperature increases from 200 °C to 400 °C.  The increasing 

divergence in the LRM and VRM predictions with increasing time is consistent with our 

understanding of how they model radiolysis and chemistry.  At short times the oxidizing 

species concentrations should depend more strongly on the primary radiolysis production 

rates than on the reactions of secondary radiolysis products. 

It is encouraging to see that the range of differences in the two model predictions is 

relatively moderate at short times (< 1 s).  This shows that the two different approaches for 

extrapolating the rate constants used in the VRM and LRM are useful and could provide 

bounding values for the chemical consequences of irradiation of SCW. 
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Figure ‎8.4: Radiolysis product concentrations as a function of 

temperature predicted by the LRM and VRM after 1 s of irradiation at 

a dose rate of 1000 kGyh
1

. 

 

 

Figure ‎8.5: Radiolysis product concentrations as a function of 

temperature predicted by the LRM and VRM after 1 h of irradiation at 

a dose rate of 1000 kGyh
1

. 
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 Suppression of Water by H2 Addition 8.3.4

Suppression of the net production of oxidizing radiolysis species by H2 addition is a 

common practice in pressurized light and heavy water reactors [18–20].  The effects of H2 

addition on the radiolysis of SCW (at 24 MPa, 0.148 gcm
–3

 water density) after 1 s at 400 °C 

as predicted by the LRM are shown in Figure 8.6.  The calculations shows that H2 addition 

could suppress the radiolytic production of O2; the [O2] at both 1 s and 1 h is below 10
–11

 

moldm
–3

 when [H2]0 > 10
–4

 moldm
–3

 is added.  However, addition of H2 is less effective at 

suppressing H2O2; the [H2O2] at both 1 s and 1 h remains at ~10
–7

 moldm
–3

, even when [H2]0 

> 10
–2

 moldm
–3

 is added.   
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Figure ‎8.6: Radiolysis product concentrations as a function of initial H2 

addition predicted by the LRM after 1 s and 1 h of irradiation at 400 °C 

and 1000 kGyh
1

.  
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times where the steady-state concentrations of O2 and H2O2 are even higher.  The only 

discernable effect of H2 addition is a reduction in the [O] with [H2]0 > 10
–4

 M due to the 

reaction: 

O + H2  OH + H                 (8.3) 

 

 

 
 

Figure ‎8.7: Radiolysis product concentrations as a function of initial H2 

concentration predicted by the VRM after 1 h of irradiation at 400 °C 

at a dose rate of 1000 kGyh
1

. 
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 Temperature Dependence of the Radiolysis of Supercritical Water 8.3.5

At this point we cannot extrapolate the values of rate constants of chemical reactions 

in liquid water to rate constants for the same reactions in SCW. Supercritical water will be 

more and more vapour-like as temperatures increase above 374 °C and hence our interest in 

using a VRM. The VRM predictions of the temperature dependence of the key molecular 

radiolysis products at 1 s and 1 h are presented in Figure 8.8 and Figure 8.9 respectively.  

The VRM predicts that a change in temperature over the range of 400 °C to 600 °C has only 

a small impact on the concentrations of H2 and O2 at both short and long times. Increasing 

temperature has a more significant impact on the concentration of H2O2, which is predicted 

to decrease by about one order of magnitude as the temperature is increased from 400 °C to 

600 °C.   If this result is verified, it could indicate that the coolant in an SCWR could be less 

chemically aggressive at higher temperatures, a result that is non-intuitive, but which could 

be beneficial. 
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Figure ‎8.8: Radiolysis product concentrations as a function of 

temperature predicted by the VRM after 1 s of irradiation at a dose 

rate of 1000 kGyh
1

. 

 

 

 

 

 

 

 

 

 

 

Figure ‎8.9: Radiolysis product concentrations as a function of 

temperature predicted by the VRM after 1 h of irradiation at a dose 

rate of 1000 kGyh
1

. 

 

 

400 500 600
10

-7

10
-6

10
-5

10
-4

1 s

 O2

 H2

 H2O2

 C
o
n
c
e
n
tr

a
ti
o
n
 (

M
)

Temperature ( C)

400 500 600
10

-6

10
-5

10
-4

10
-3

10
-2

1 h

 O2

 H2

 H2O2

 C
o
n
c
e
n
tr

a
ti
o
n
 (

M
)

Temperature ( C)



 

 

 

 

151 

 Conclusion 8.4

We have begun to develop a predictive model for the chemistry driven by radiation in 

supercritical water.  Owing to the paucity of data available, we are approaching the 

modelling effort with a parallel approach.  We are developing two models based on the 

radiolysis of liquid water or water vapour.  The starting points for both models are the sets of 

primary radiolysis G-values, and chemical reactions and rate constants that are available in 

the literature.  We have assembled first versions of both a liquid radiolysis model (LRM) and 

a vapour radiolysis model (VRM) based on extrapolations of literature data. 

Primary calculations with both models for supercritical water radiolysis show 

noteworthy results.  Both models predict similar concentrations of key molecular species 

after a short irradiation time (1 s) at 400 °C; the concentrations of key molecular oxidants, O2 

and H2O2, were in the range 10
–5

 and 10
–4

 moldm
–3

.  Though, as the irradiation time 

increases the gap between the two predictions widens.  Also, both models predict that 

addition of H2 will not be effective in suppressing the concentration of H2O2 that is generated 

by the radiolysis of supercritical water.  
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9 CHAPTER 9  

Conclusion and Future Work   

 

The research goal was to develop a sufficient understanding of steady-state radiolysis 

kinetics of SCW to be able to predict with reasonable accuracy the concentrations of key 

oxidizing species as a function of the proposed Canadian SCWR coolant conditions.  

Towards this goal, the objectives of this work were: (1) to develop a reliable experimental 

method to determine the concentrations of water radiolysis products, primarily H2 and O2, 

formed under -irradiation of sub- and supercritical water (SCW), and (2) to develop a 

chemical kinetic model for the radiolysis of sub- and supercritical water and to perform 

sensitivity analysis of the model to radiation and solution conditions.   

Under objective (1) we have developed and tested a few design options for a test cell 

that can be used for the study of radiolysis kinetics of high-temperature liquid water and 

steam, subcritical and supercritical water.  We have successfully conducted radiolysis kinetic 

tests at temperatures up to 250 °C. The cell design modification is continuing.   

For objective (2) our current understanding of chemical reaction kinetics in sub-

critical and supercritical water is not sufficient to construct a fully validated model for the -

radiolysis of SCW under continuous (> ms) irradiation. In particular the effects of the 

changing water properties in the sub- and supercritical regimes are not fully understood. 

Thus, we have used a two-pronged approach to the kinetics modeling coming from high 

density (liquid-like) and low-density (vapour-like) perspectives and hence creating two 
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models: (1) a liquid radiolysis model (LRM) and (2) a vapour radiolysis model (VRM) for 

the continuous radiolysis of sub-critical and supercritical water. The two SCW radiolysis 

models are based on an existing liquid water radiolysis model and an existing water vapour 

radiolysis model. To extend the application of these models to SCW conditions with any 

confidence, the radiolysis kinetics of liquid water and water vapour as a function of 

temperature and pressure should be well understood.  

Thus, under objective (2) we have modified the existing radiolysis models for liquid 

water and vapour to extend their application ranges to high temperatures and high pressures. 

The reactions considered in these models include primary radiolytic production of water 

decomposition products and the homogeneous chemical reactions of the radiolysis products 

in either aqueous or gas phase. In these models the detailed kinetics of the radiolytic 

processes were not modelled in detail. Instead the models used G-values for the creation of 

primary radiolysis products and the rate of radiation energy deposition into water. The 

kinetics of homogeneous phase chemical reactions were modelled using the classical 

chemical kinetics rate equations. In the models the rate parameters, mainly the G-values and 

the rates constants of the elementary chemical reactions, are defined as a function of 

temperature. Thus, although these models have not been validated extensively at higher 

temperatures, they have the capability to predict the evolution of the concentrations of 

radiolysis products as a function temperature. Using these models we have performed a series 

of calculations to determine the effect of pH and temperature on the net production of 

radiolysis products in liquid water and the effects of pressure and temperature on the net 

production of radiolysis products in water vapour.  
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For -radiolysis of liquid water for a given set of conditions (pH, temperature and 

dose rate) the concentrations of radiolysis products show three distinct periods over the time 

span of 0 to 10
4
 s (~ 3 h) (where time 0 corresponds to initiation of the radiation flux).  In all 

cases, in Stage I (< 1 ms) the concentration of a radiolysis product increases linearly with 

time at a rate determined by primary radiolytic processes, except for eaq
−
. The 

concentrations of the less reactive radicals, •H and •OH, increase for a longer time before 

they reach steady state in Stage II. In Stage II, the concentrations of the primary molecular 

products, H2 and H2O2, continue to increase nearly linearly with time and the concentrations 

of the secondary products, •O2

, •HO2 and O2, start to accumulate at very fast rates.  As the 

concentrations of H2O2 and H2 as well as the secondary products continue to increase in 

Stage II, the net rates of their decomposition reactions also increase and become equal to the 

net rates of their production rates. The whole radiolysis system approaches steady state 

(Stage III). 

We have shown that for -radiolysis of liquid water, the net production rates of 

radiolyis products in Stage I depend largely on their primary radiolytic production rates (G-

value  water density  dose rate). In this regard, the production rates of eaq
− 

 and H should 

be considered together due to the fast forward reaction between them. We have shown that 

temperature has negligible effect on the primary radiolytic production rates; the greatest 

change occurs for H2O2 but even then, the rate decreases only by a factor of 2 when the 

temperature increases from 25 °C to 300 °C. However, as the concentrations of the primary 

molecular species and the secondary products increase their reactions become progressively 

more important in controlling the concentrations of the radiolysis products at later stages (> 
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ms). Since the chemical reaction rates increase with temperature, the whole radiolysis system 

reaches steady state at a slightly faster rate at a higher temperature; within 1 s at temperatures 

 150 °C.  The liquid water radiolysis model predicts that the steady state concentrations of 

H2 and H2O2 should decrease by an order of magnitude when temperature increases 25 °C to 

250 °C. The steady-state concentration of secondary product O2 should decrease with 

temperature at T  80 °C but starts to increase with temperature at T  150 °C. The variation 

of the O2 concentration is within an order of magnitude.  

 The pH affects the [•eaq

] and [•H] at very early times in Stage I via the acid-base 

equilibrium of eaq
− 

+  H
+
    •H. At a pH25

o
C > pKa of •H, at temperatures below  80 °C, 

[eaq
−
] increases to a level similar to that of [•OH] by the time when the secondary products 

are formed at substantial levels. At such conditions cyclic reactions between eaq
− 

and •OH, 

and secondary products can accelerate the removal of eaq
− 

and •OH without affecting the 

secondary products. Due to the catalytic cycles, pH can have significant effect on the 

behaviour of radiolysis products in Stage II and Stage III. Thus, at temperatures  80 °C, the 

radiolysis kinetics behaviour in Stage II at pH 10.6 is markedly different from the behaviour 

observed at lower pHs and steady-state is reached at a longer time. However, the effect of pH 

diminishes as temperature increases.   

Water vapour model calculations show that although the absolute concentrations of 

radiolysis products depend on temperature, their time-dependent behaviours are very similar 

at all temperatures. At a given temperature, the concentrations of the primary radiolysis 

products, H, OH, O and H2, all initially increase linearly with time and then reach steady 
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state.  The chemically more reactive species reach steady state at earlier times. The most 

reactive species (H) reaches steady state very early whereas the less chemically reactive 

radicals, OH and O, take longer to reach steady state (< 0.1 ms and < 1 s, respectively at 

150 °C).   (Unlike for the water radiolysis model, the species eaq
−
 is not considered because 

ions are not stabilized in dilute water vapour.) We have shown that the reactions of the 

primary radical species, H, OH and O, are the main production precursors for the 

molecular products, H2, H2O2 and O2, respectively. Thus, the water vapour model predicts 

that the concentrations of H2 and H2O2 start to increase at very early times at linear rates 

related to the G-values of the respective reactant radicals. As temperature increases the 

concentrations of the reactive radicals reach steady state at earlier times. Consequently the 

concentrations of the less reactive molecular species start to increase at a linear rate at earlier 

times. The net consequence of the increases in both the radiolytic production and gas phase 

reaction rates is that the concentrations of molecular species, H2O2, H2, and O2, all increase 

proportionally with (T)DR when the temperature increases from 100 °C to 400 °C.  At the 

lower temperatures the concentrations of the molecular species do not follow the simple 

linear dependence on (T)DR. 

In Chapter 7 we have presented experimental results from the radiolysis of biphasic 

liquid-vapour water system at 25 °C, 150 °C and 250 °C, and compared them with the model 

simulation results using the liquid and vapour radiolysis models. Model calculations were 

capable of reproducing experimental results. As temperature increases the saturation pressure 

(water vapour density) in the headspace increases, and the production of the molecular 

radiolysis products, H2, H2O2 and O2 in the vapour phase dominates the net production in the 
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biphasic system.  The model simulation results show that the contribution from the radiolysis 

of liquid phase to the net production of H2 and H2O2 in a leak-tight radiolysis cell is 

negligible at T  150 °C. This suggests that at temperatures near critical region, when water 

approaches the supercritical fluid state, model predictions based on an extension to the low 

pressure water vapour radiolysis model may be more useful. In the model simulations of the 

biphasic water system we have performed the calculations using each model independently. 

In the future study, efforts should be made to merge the two radiolysis kinetic models and 

include the interfacial transfer of the molecular species as a function of time. 

We have begun to develop a predictive model for the chemistry driven by radiation in 

SCW.  Owing to the paucity of data available, we approached the modelling effort with a 

parallel approach, developing two models based on the radiolysis of liquid water or of water 

vapour.  Our aim is to have the models converge as they mature.  In Chapter 8 we have 

described the rationales behind this approach, the assignment of the kinetic parameters (G-

values and rate constants) at the SCW temperatures and pressures, and analysis of the 

modelling results.  

Preliminary calculations with both models show interesting results.  Both models 

predict similar concentrations of key molecular species after a short irradiation time (1 s) at 

400 °C; the concentrations of key molecular oxidants, O2 and H2O2, were in the range 10
–5

 

and 10
–4

 moldm
–3

.  The gap between the two predictions, however, widens as the irradiation 

time increases.  As well, both models predict that addition of H2 will not be effective in 
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suppressing the concentration of H2O2 that is generated by the radiolysis of supercritical 

water.  

A considerable number of approximations and assumptions were made in assembling 

the first versions of the radiolysis models.  The effects of changes in the temperature-

dependant properties of water have not been included in the models. Further critical 

evaluations of the input parameters in the models are needed to improve their applicability.  

A more comprehensive analysis of modelling results would be very useful to identify the key 

reactions and reaction rate parameters that are important in determining the net radiolytic 

production of H2, O2 and H2O2 under reactor coolant conditions. 

Irradiation experiments on sub- and supercritical water are extremely difficult due to 

the high temperatures and pressures that are involved.  The challenge is further compounded 

for -radiolysis studies where extra safety precautions are required, physical restrictions in 

the irradiation volume are present, materials selection is challenging, and sampling is delayed 

due to the necessary cool-down period for the reaction vessel.   

The high temperature radiolysis studies should be continued to include more tests at 

subcritical and supercritical temperatures.  That requires the development of a radiolysis test 

cell for experiments in the supercritical region.  We describe the initial steps in the 

development and evaluation of possible test cell options.  There have been failures and 

indication of a design direction leading to success.  Much future work is required to explore 

and improve the high temperature test cell design, and then to use this design to establish a 

database for model evaluation and validation. 
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