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Abstract 

Soil fauna are an integral component of terrestrial ecosystem function. The effects of global 

environmental change on soil biodiversity are poorly studied, particularly interactions among 

temperature, atmospheric CO2, precipitation intensity, and nutrient loading. Body size 

distributions can be used to quantify soil community responses to perturbation and 

consequences for ecosystem function. I quantified top-down and bottom-up effects of 

environmental change on the abundance, richness, and size distribution of the soil 

microarthropod group Collembola. I demonstrated negative effects in a lab experiment of 

increased precipitation on collembolan density and richness across all size groups. I 

demonstrated positive effects in a field experiment of N addition on collembolan richness, 

and a positive effect of C addition on evenness. These findings demonstrate that precipitation 

can act as a disturbance to soil communities, as well as the importance of bottom-up control 

in soils, and the responsiveness of body size distributions to environmental change.  

Keywords 

Body size, climate change, Collembola, community ecology, ecology, functional diversity, 

mesofauna, soil fauna  
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Chapter 1  

1 Soils and global environmental change 

1.1 Soil systems and soil biodiversity 

Soils are an integral part of all terrestrial ecosystems. Soil formation is one of the first 

stages of primary succession, where weathering of rock forms substrate for biological 

colonization and subsequent organic matter decomposition; soils continue to develop for 

thousands of years as generations of organisms contribute to their formation. In addition 

to acting as the substrate for almost all terrestrial primary productivity, soils are also the 

primary site of terrestrial decomposition, and it is estimated that 10 times as much CO2 is 

released from soils as from anthropogenic processes (Nielsen et al. 2011). At the same 

time, soils are the world’s largest biologically interactive terrestrial carbon sink, storing 

over 80% of accessible carbon (IPCC 2007). These functions in soil systems are driven 

by soil organisms. 

Soils are thought to be the most species-rich component of terrestrial ecosystems (Wall et 

al. 2005). For instance, in one gram of forest soil there can be up to 104 species of 

bacteria (Torsvik et al. 1990), in a handful there can be hundreds of species of animals 

(Whalen & Sampedro 2011), and there are an estimated 1.5 x 106 fungal species 

worldwide (Hawksworth & Rossman 1997). It is estimated that 40-80% of terrestrial 

animal biomass is found in soil (Fierer et al. 2009). Yet an estimated 95% of soil 

diversity is still undescribed (Wall et al. 2005). This wealth of biodiversity has led to 

soils being referred to as “the poor man’s tropical rainforest” (Giller 1996) and is largely 

driven by high habitat heterogeneity at small spatial scales (Berg 2012). Soil biodiversity 

is determined by a range of biotic and abiotic factors (e.g., soil pH, moisture, parent 

material), and is typically greatest in well-developed soils with high organic matter such 

as coniferous forests or fertile prairies (Petersen & Luxton 1982).  

Soil fauna are generally classified into different size groups ranging 10 orders of 

magnitude (Table 1.1). Microbial soil fauna (e.g., rotifers, other protists) and microfauna 

(e.g., nematodes, tardigrades) inhabit water films around or inside soil aggregates,  



2 

 

Table 1.1. Size classes, size ranges, and notable groups of soil fauna. Note size ranges represent largest and 

smallest fauna discovered from groups typically categorized in that size class. Numbers in brackets after 

group name indicate typical sizes. Adapted from Whalen and Sampedro (2011). 

whereas mesofauna (e.g., Acari, Collembola) inhabit air-filled pore spaces around these 

aggregates. Many macrofauna (e.g., earthworms, insect larvae) engineer their own 

habitable space among soil particles. There are an estimated 80,000 species of nematodes 

described, over 45,000 described species of mites, and in a relatively well defined group, 

approximately 8,000 species of the primitive arthropods in the subclass Collembola 

(Whalen & Sampedro 2011). However, for each of these groups, described species are 

likely to be only a small proportion of the true number of extant species (Behan-Pelletier 

& Bisset 1992). 

Soil fauna are involved in a vast array of ecosystem functions including releasing 

nutrients held within organic matter, increasing litter surface area through communition 

Size Class Size range Key taxa 

Macrofauna >2 mm 

Centipedes (1.5 - 50 mm) 

Isopods (2 - 20 mm) 

Spiders (0.7 - 20 mm) 

Earthworms (0.7 - 10 mm) 

Mesofauna 150 μm - 10 mm 
Enchytraeids (0.2 - 5.0 mm) 

Acari (0.1 - 2 mm) 

Collembola (0.1 - 2 mm) 

Microfauna 2 μm - 5.5 mm Nematodes (5 - 100 μm) 

Protists (5 - 50 μm) 

Microorganisms >2 μm 
Algae (5 - 50 μm) 

Fungi (1 - 50μm) (hyphal width) 

Bacteria (0.5 - 2.0 μm) 
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of primary detritus, altering litter nutrient ratios to more digestible forms, distributing 

litter through the soil profile, and contributing to soil structure through fecal pellet 

deposition (Sylvain & Wall 2011). Interactions of soil mesofauna with the microbial 

community are also an important indirect factor in decomposition and nutrient cycling 

processes (Seastedt 1984). Soil fauna grazing on bacteria and fungi leads to 

compensatory growth, and therefore, higher microbial activity (Hedlund & Öhrn 2000). 

Collembola also disperse microbial propagules to new substrates (Klironomos et al. 

1992). These activities make soil fauna a major component of decomposition rates, and 

therefore, terrestrial nutrient cycling.  

1.2 Global environmental change affects biodiversity 

While the importance of soil fauna in soil processes has been demonstrated, there is 

relatively little known about how soil faunal biodiversity will change under global 

environmental change, and what the consequences of these changes will be for soil 

structure and function. I refer to global environmental change (GEC) as the suite of 

changes in climate, nutrient deposition, and land use currently occurring at global spatial 

scales due to anthropogenic activities. The primary drivers of GEC are radiative forcing 

caused by anthropogenic emissions of greenhouse gases and the increasing area of land 

used for human activities (IPCC 2013). It is predicted that global mean surface 

temperature will increase by 2-6 °C by the year 2100, compared to 1900. One of the 

primary causes for this increase in temperature is increased atmospheric concentration of 

carbon dioxide (CO2) due to anthropogenic emissions predicted to rise between 510 and 

7005 Gt per year by 2100 depending on scenarios used (IPCC 2013). There are also 

changes expected for the hydrological cycle, with precipitation in middle latitudes 

becoming more sporadic and more intense when it does occur. In boreal forest regions of 

North America, precipitation has already increased between 1.4 and 3.8 mm yr-1 per 

decade between 1901 and 2008 (IPCC 2013). It is also expected that there will be an 

increased likelihood of extreme weather events in the next century, meaning a higher 

probability of drought and flooding, and periods of exceptionally high and low 

temperatures (IPCC 2007, 2013).  
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In addition to these changes in climate, human outputs and biotic interactions are 

expected to cause changes in nutrient availability. Humans are mobilizing large amounts 

of nitrogen as a consequence of industrial processes, energy generation, and agricultural 

practices, and it is estimated that anthropogenic reactive nitrogen (N) outputs will 

increase to 270 Tg yr-1  by 2050 (up from 156 Tg yr-1 in 1993), which would have 

enormous impacts on global N cycles (Galloway et al. 2004). Increased temperatures and 

atmospheric [CO2] may also increase rates of plant growth, which will cause plants to 

absorb more nutrients and increase the amount of productivity available for other 

organisms (Hansen et al. 2001). These changes in temperature, CO2, precipitation, and 

nutrient availability are all expected to detrimentally affect biodiversity, even in natural 

communities not directly subject to habitat destruction (Garcia et al. 2014).  

Biodiversity, in general, may be directly affected by environmental factors in two ways. 

Changes to environmental conditions may create “filters” that limit or reduce biodiversity 

because only certain organisms are able to tolerate the new conditions (Freedman et al. 

2014). For instance, rapid changes in climate may create new conditions that organisms 

are poorly adapted to, which reduces their ability to compete effectively with native or 

invasive species leading to competitive exclusion or extinction (Garcia et al. 2014). 

Environmental changes may also directly affect biodiversity through disturbance. For the 

purposes of my research I define disturbance as a discrete biogenic or environmental 

event that causes loss (e.g., of individuals or species) in a biotic community (Freedman et 

al. 2014). Individual disturbance events are often sudden and their effects are not 

immediately reversible. Examples under GEC may include extreme weather events such 

as major storms, flooding, and droughts, all of which are expected to become more 

common in the future (IPCC 2013).  

The two components that determine the effect of a disturbance are its intensity, which is 

the degree of the disturbance relative to prevailing conditions, and its frequency, which is 

how often the disturbance occurs (Freedman et al. 2014). Disturbance regimes in which 

disturbances are more intense and frequent are said to be more severe. In classic 

ecological theory, the Intermediate Disturbance Hypothesis (Connell 1978) predicts that 

maximum biodiversity should exist at an intermediate severity of disturbances: systems 
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with high severity of disturbance are expected to contain less diversity as few species can 

tolerate the environmental conditions, while systems with low severity of disturbance are 

expected to have less diversity as superior competitors exclude tolerant but less 

competitive species (Grime 1973).  

To further describe effects of environmental change on biological communities, it is 

important to identify which organisms are affected. Effects may be described as being 

top-down or bottom-up (sensu Hairston et al. 1960). Top-down effects alter the 

abundance, diversity, or distribution of organisms in higher trophic positions, i.e., 

predators and dominant omnivores with relatively fewer trophic positions above them 

(Freedman et al. 2014). This can lead to trophic cascades, whereby decreases in the 

abundance and diversity of predatory species allows an increase in the abundance the 

species they prey on, which may in turn decrease the abundance of the next lowest 

trophic level, and so on (Figure 1.1). The strength of a trophic cascade depends on the 

strength of trophic connections between predators and prey, i.e., the extent to which the 

population growth of a prey species is limited by its predators, and the extent to which a 

predator is reliant on a given prey species (Moore & Hunt 1988; Scheu 2002). Top-down 

effects on ecosystems are common under GEC because larger bodied, higher trophic 

level organisms are generally less abundant than their prey and less tolerant of 

disturbance, leading to a higher extinction proneness following perturbation (Lindo et al. 

2012). Predators are also expected to be more vulnerable to environmental change than 

grazers. 

Bottom-up effects are changes to biotic communities caused by changes in resource 

availability (Freedman et al. 2014), which is often considered to be net primary 

productivity but at a more basic level comprises the nutrients, light, and temperature 

conditions required to drive productivity. Bottom-up effects may cause a general increase 

or decrease in the abundance of all fauna as resources become more or less available. 

However, bottom-up effects can also cause cascades at higher trophic levels particularly 

through competition, as producers better adapted to more fertile conditions (faster 

growers) or less fertile conditions (superior extractors) gain an advantage over their 

competitors (Figure 1.1). Humans are causing bottom-up effects through fertilization of 
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commercial crops, pollution through resource extraction, and emissions from industrial 

processes. In addition, all other things being equal, increased global temperatures are 

likely to lead to increased decomposition rates, and therefore, higher nutrient availability 

as more nutrients from recalcitrant litter are mobilized (IPCC 2013). 

Despite the immense importance of soils to global productivity and nutrient cycling, and 

the key role of soil fauna in soil process rates, soil fauna are not currently included in 

GEC models (Nielsen et al. 2011). Therefore, it is important to improve our ability to 

predict changes in soil faunal biodiversity and how this biodiversity feeds back into 

terrestrial ecosystem function to better predict future conditions under GEC. Although 

changes in prevailing environmental temperature, CO2, precipitation, and nutrient 

conditions may result in loss of biodiversity and changes in community composition, 

their consequences for soils are poorly understood (Wall et al. 2008; Blankinship et al. 

2011; Kardol et al. 2011). The inclusion of soil fauna in GEC predictions is problematic 

because the relationship between biodiversity and ecosystem function is poorly defined in 

soil systems (Hunt & Wall 2002; Wardle et al. 2004; Hooper et al. 2005). However, it is 

known that soil fauna respond to both top-down (Schneider & Maraun 2009) and bottom-

up control (Scheu 2002). The effects of disturbance have also been demonstrated on soil 

communities, with agricultural practices such as tillage and soil compaction by livestock 

decreasing the diversity and density of soil mesofauna (Dittmer & Schrader 2000; Cole et 

al. 2008), but the effects of disturbance on non-agricultural soil communities have been 

poorly studied.  
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Fig 1.1. A simplified conceptual model of top-down and bottom-up effects in soil. Solid arrows represent 

direction of energy flow and empty arrows represent the direction of effects. Both bottom-up and top-down 

effects can cascade to different trophic levels by altering resource availability or predation pressure, 

respectively. For example, a loss of predators following disturbance may increase the abundances of 

microbiovores, which would then decrease microbial biomass. In a bottom-up cascade, increased plant 

growth may increase the quality and amount of detritus and root exudates, which would increase microbial 

biomass. These effects may be modified by competition at each trophic level. Adapted from Scheu (2002).  

1.3 Collembola as an ecological model 
Collembola (Hexapoda: Entognatha) are soil mesofauna ranging from 0.12 – 17 mm in 

length, with most species in the 1-5 mm body length range (Bellinger et al. 2014). 

Collembola are commonly called springtails because of a forked abdominal appendage 

(furcula) used for springing away from predators. There are approximately 8,000 

described species worldwide (Bellinger et al. 2014) and they are found in almost every 

soil with densities up to 105 individuals per m2 (Whalen & Sampedro 2011), making 

them one of the most common animals on the planet alongside two other common soil 

taxa: Nematoda (nematodes) and Acari (mites). Collembolan taxonomy in Canada is 
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relatively manageable, with the most recent checklist naming 412 species nationwide 

(Skidmore 1995).  

Collembola are generally considered mid-trophic level generalist feeders in the soil 

foodweb. Although they are often described as fungivores, Collembola exhibit a wide 

variety of feeding strategies and may consume plant litter, plant roots, bacteria, fungi, 

animal waste, and even nematodes (Whalen & Sampedro 2011). Collembola partly 

determine fungal succession (Klironomos et al. 1992), stimulate fungal respiration 

(Bengtsson & Rundgren 1983), and their abundances are positively correlated with 

microbial biomass (Addison et al. 2003) and plant diversity (Sabais et al. 2011). The 

presence of mesofauna including Collembola also decreases the retention of 

photosynthetically fixed C in soils, due to their grazing on microbes (Bradford et al. 

2007). Thus, Collembola play an important, albeit mostly indirect role, in decomposition 

and nutrient cycling of soils (Seastedt 1984), as well as serving as prey for other 

mesofauna (mites) and larger soil fauna. Collembola also respond to changes in GEC 

factors including increases in temperature (Briones et al. 2009), precipitation (Tsiafouli et 

al. 2005), and nutrient availability (Cole et al. 2005).  

How collembolan communities respond to GEC factors depends on interspecific 

differences and variation in collembolan traits. For the purposes of my research I define a 

trait as any morphological, physiological, or phenological characteristic of an organism 

that determines that organism’s response to environmental conditions and the effect of 

that organism on the rate of ecosystem processes (sensu Violle et al. 2007; Lavorel & 

Grigulis 2012). Previously studied collembolan traits include mainly morphological 

characteristics that denote the preferred vertical distribution of collembolan species in the 

soil profile. This includes body size (as measured by length or body mass), number of 

eyes, ratio of antenna length to body length, development of the furcula, level of 

pigmentation, reproductive strategy (sexual or parthenogenic), and preferred food source 

(Whalen & Sampedro 2011). Surface–dwelling (epigeic) species are typically larger and 

more pigmented, have many eyes, often reproduce sexually, and feed directly on plant-

litter. Species dwelling deeper in the soil (euedaphic) are often smaller, eyeless, 

parthenogenic, and fungivorous. Epigeic and euedaphic Collembola differ both in their 
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response to environmental conditions (Krab et al. 2010; Makkonen et al. 2011), and 

recovery from disturbance (Huebner et al. 2012; Malmström 2012). This combination of 

diversity, ubiquity, trophic importance, and trait variety make Collembola a superlative 

study group.  

1.4 Thesis rationale and overview  
To enhance our understanding of how GEC will influence soil biodiversity on a local 

scale, I studied the interactive effects of increased temperature, increased atmospheric 

CO2, more sporadic and intense precipitation, and increased nutrient loading on 

collembolan communities in the Canadian boreal forest. I chose to focus on and develop 

my taxonomic expertise on the Collembola because they play an important role in soil 

functioning and there is a dearth of national and global taxonomic expertise for this 

group. I conducted two separate experiments which are thematically linked by their 

simulation of GEC conditions.  

In the first experiment (Chapter 2) I focused on the direct effects of GEC factors, namely 

increased temperature, elevated atmospheric CO2, and altered precipitation regimes. I 

studied these factors in a full-factorial design to determine the interactive effects on 

collembolan communities. I varied precipitation treatments in both frequency and 

intensity in order to simulate the effects of drought or saturation as a disturbance on soil 

communities. To quantify the effects of these factors I measured changes in collembolan 

abundance, species richness, species diversity, community composition, and body size 

distributions.  

In the second experiment (Chapter 3) I focused on the bottom-up effects of nitrogen and 

carbon addition, once again in a full-factorial design. I used both short- and long-term 

nutrient addition to assess how collembolan communities will respond to nutrient inputs 

as both a perturbation and as a chronic change in conditions. As in the first experiment, I 

quantified changes in collembolan communities in terms of abundance, species richness, 

community composition, and body size distributions.  
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In Chapter 4, I discuss how collembolan communities may change in natural scenarios 

when temperature, CO2, precipitation, and nutrient loads are simultaneously increasing, 

incorporating both previous literature and key findings from Chapters 2 and 3. I discuss 

ways in which these GEC factors are likely to interact in the future to affect soil 

communities in novel ways. I extend the findings from Chapter 2 and 3 to predict how 

the observed changes in collembolan community composition may alter soil function 

under future GEC scenarios. To conclude, I suggest further avenues of research that may 

help to reconcile my novel findings and incorporate them into our understanding of the 

effects of GEC on collembolan communities in particular, and soil communities in 

general. 
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Chapter 2  

2 Effects of temperature, CO2, and precipitation on 
collembolan community structure and body size 
distribution  

2.1 Introduction 

2.1.1 Global environmental change and the boreal forest 

The Canadian boreal forest is predicted to be strongly affected by global environmental 

change (GEC) factors such as increases in temperature, atmospheric CO2 levels, and 

precipitation (IPCC 2013). For instance, the IPCC (2013) predicts a gradual but 

substantial increase in temperature between 2-8 °C by 2100 for the Quebec boreal forest, 

and global increases in atmospheric CO2 concentrations, rising to 540-970 ppm by the 

end of the century. Concurrent with these changes, there is also a high likelihood in the 

Quebec boreal forest of a 0.1-0.4 mm increase in annual mean daily precipitation rate 

(normalized for surface temperature) by 2100, delivered by more sporadic and intense 

precipitation events compared to the historic norms (IPCC 2013). Previous studies have 

identified changes in severity and frequency of precipitation events as a disturbance that 

can impact forest biodiversity by means of both drought (Archaux & Wolters 2006) and 

flooding (Chaneton & Facelli 1991; Bornette & Amoros 1996) events.  

The cumulative effects of GEC factors on the boreal forest are especially important 

because boreal systems represent a major global carbon sink (Nielsen et al. 2011) and 

contain substantial biodiversity, particularly in soils (Chagnon et al. 2000). It is suggested 

that soil fauna in these systems, and soil mesofauna (Acari and Collembola) in particular, 

are especially important drivers of microbial community structure and ecosystem 

function because of the relatively low diversity and abundance of macrofauna which 

would normally stimulate microbial communities and prey on mesofauna (Swift et al. 

1979). Interactions between these mesofauna and microbes are known to be a 

determinant of microbial diversity and activity, and therefore, decomposition rates 

(Seastedt 1984; Klirosomos et al. 1992; Hedlund & Öhrn 2000). Changes in soil 
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biodiversity and community structure as a result of GEC could be expected to change soil 

function, with ramifications for global C cycles. It is important to understand how long-

term changes in prevailing conditions, such as increased temperature and atmospheric 

CO2 concentrations, will affect the biodiversity of soil fauna. Shorter-term events which 

act as disturbances, such as drought or soil saturation caused by sporadic and intense 

precipitation, could have different effects on soil biodiversity and also require study. 

There is also strong potential for interactions between GEC factors that are currently 

unquantified. For example, increased temperatures are expected to decrease soil moisture 

content (IPCC 2013), but increased atmospheric CO2 levels may decrease 

evapotranspiration by plants, and therefore, increase soil moisture content (Dermody et 

al. 2007). These interactions make it difficult to predict what the net effect of GEC 

factors will be have soil biodiversity and functioning.  

2.1.2 Current knowledge of GEC effects on soil fauna 

Previous studies on the effects of GEC factors on soils, and on mesofauna in particular, 

have generally examined the effects of temperature, CO2, and precipitation regimes 

separately, despite the fact that they will each be changing simultaneously (e.g., Hansen 

et al. 2001, Tsiafouli et al. 2005; Briones et al. 2009). Previous studies have highlighted 

the sensitivity of Collembola (Hexapoda: Entognatha) to desiccation, reporting decreased 

abundance and species richness under drought conditions (Pflug & Wolters 2001; 

Tsiafouli et al. 2005; Kardol et al. 2011; Makkonen et al. 2011). Collembola are thought 

to be especially vulnerable to desiccation due to their small size (0.1 – 2 mm), cutaneous 

respiration method, and relatively thin exoskeleton (Tsiafouli et al. 2005; Bellinger et al. 

2014). In particular, smaller species with lower surface area to volume ratios are 

generally euedaphic (soil-dwelling) and especially susceptible to desiccation, should it 

occur (Krab et al. 2010). Makkonen and colleagues (2011) found a proportionally greater 

loss in abundance of smaller euedaphic Collembola under drought conditions.  

The effects of changes in temperature and atmospheric CO2 conditions on Collembola are 

not as well studied as soil moisture effects. A previous study on the interactive effects of 

increased temperature (+3 °C), increased CO2 (+300 ppm), and drought conditions (-

3.9% moisture) on the abundance and richness of soil microarthropods found a positive 
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correlation between moisture content and collembolan richness; however, there were no 

effects of increased temperature or CO2 found when the effects on soil moisture were 

controlled for (Kardol et al. 2011). This finding was echoed by a review of the effects of 

GEC factors on soil fauna community structure, which concluded that detritivore 

abundances in cold and dry forest ecosystems, such as the Canadian boreal, can be 

affected by increased CO2 concentration, increased temperatures, and decreased 

precipitation, but that decreased precipitation in particular substantially decreases the 

abundance of soil fauna in forest systems (Blankinship et al. 2011). Blankinship and 

colleagues (2011) also note the lack of studies on the interactive effects of GEC factors 

on soil communities and the need for higher taxonomic resolution when describing 

responses in community composition.  

2.1.3 Trait-based approaches in soils 

Studies that consider the effects of GEC on soil microarthropod communities typically 

quantify responses in abundance, species richness, and diversity. Studies with high 

(species-level) taxonomic resolution (e.g., Pflug & Wolters 2001; Krab et al. 2014; 

Salmon et al. 2014) are better equipped to assess changes in community structure than 

studies which consider soil fauna at coarser levels (i.e., class or order) of taxonomic 

resolution (e.g., Niklaus et al. 2003; Briones et al. 2009). The latter may underestimate 

community response to GEC factors (Krab et al. 2010; Makkonen et al. 2011) and 

consequences for soil function (Addison et al. 2003). Although taxonomic approaches are 

the most common, shifts in the richness and abundance of species does not necessarily 

equate to shifts in ecosystem function due to the uncertain (and hotly debated) 

relationship between soil species diversity and ecosystem function (Lavelle et al. 2006; 

Coleman 2008; Lavelle 2009). In order to quantify these shifts, we require some proxy of 

an organism’s ecological role. To more concretely quantify the relationship between 

biodiversity and ecosystem function, several ecologists have begun to quantify the 

diversity of traits in biological communities (see McGill et al. 2006). It has been shown 

that traits are better able to predict responses to disturbance than species identities 

(Mouillot et al. 2013), and recent research also indicates that trait diversity is a better 
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predictor of ecosystem function than species diversity (Petchey et al. 2004; Cadotte et al. 

2011; Lavorel & Grigulis 2012).  

Trait-based approaches have only very recently been applied to collembolan 

communities, but these studies have demonstrated a strong relationship between traits and 

response to climate change (Makkonen et al. 2011), and the community-level recovery 

from disturbance by fire (Huebner et al. 2012). In particular, recent studies highlight how 

large-bodied, epigeic (surface-dwelling) species are drought tolerant (Makkonen et al. 

2011) but more sensitive to fire disturbance (Huebner et al. 2012). However, one problem 

with trait-based analyses is that not all traits are equally descriptive of an organism’s 

response to environmental conditions or their effect on ecosystem function; different 

traits may be more suitable proxies depending on the environmental stressor or ecosystem 

function of interest (Lavorel & Grigulis 2012). Therefore, traits must be selected that are 

universal, quantifiable, responsive to multiple disturbances, and determine the organism’s 

influence on the rate of ecosystem functions.  

One morphological trait that has been proposed for this purpose is body size, which may 

act as a “universal indicator” of an organism’s ecological role and susceptibility to 

perturbation (Petchey & Belgrano 2010). Body size is an easily measurable characteristic 

of most organisms, and typically relates to many aspects of physiology and life history 

through allometry: larger organisms generally have lower mass-specific metabolic rates, 

smaller population sizes, higher extinction proneness, and slower population recovery 

from perturbation than smaller organisms (Brown et al. 2004). Quantifying organism 

body size requires less expertise than taxonomic-intensive approaches and may allow 

approximation of trophic complexity and stability. At the community level, the 

distribution of organismal body sizes (log10 transformed) may be plotted against the 

abundance of each body size (log10 transformed) to generate a body size spectrum (BSS). 

A regression line may be drawn for these data, and this line can provide quantitative 

information of changes in community structure and function. For instance, a more even 

distribution of body sizes in a biological community (i.e., a shallow BSS slope) is thought 

to be positively correlated with the efficiency with which nutrients and energy from 

resource pools are transferred to higher trophic positions (trophic transfer efficiency) 
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(Jennings et al. 2002; Jennings & Mackinson 2003; Barnes et al. 2010). The intercept of 

the BSS is also valuable for visualizing the abundance of different organism sizes. It has 

been demonstrated that BSS slopes respond to environmental perturbation (Brose et al. 

2012), and this allows visualization of differential loss of organism sizes under 

perturbation. For example, a steeper slope following environmental change may indicate 

increased abundances of small-bodied species and/or decreased abundances of larger-

bodied species. 

The ease of adding body size analyses to classic taxonomic approaches, the 

responsiveness of BSS to environmental change, and the relationship between body size 

distributions and ecosystem function has led to a proposal by Turnbull and colleagues 

(2014) to use the slope and intercept of BSS as a standard descriptor of soil communities. 

Currently, few soil studies have applied this framework, but those that have demonstrate 

the loss of larger bodied, higher trophic position in response to experimental warming 

(Brose et al. 2012) and drought (Lindo et al. 2012). Studies on soil fauna body size 

distributions have also demonstrated the principle of energy equivalence in soil 

communities, i.e., that energy usage is consistent between different size classes of 

organisms (sensu Damuth 1981). Although larger species contain more biomass per 

individual, smaller species are correspondingly more abundant, and increases in the 

abundance of these small species following the loss of larger bodied species due to 

perturbation keeps the energy used by soil fauna consistent in an energy equivalence 

scenario (Kampichler 1995; Meehan et al. 2006). This is an important finding because it 

indicates the potential for functional redundancy among soil fauna, thus, keeping the total 

resources used by taxa consistent. This would manifest on a BSS as an increased slope, 

indicating an increase in smaller-bodied organisms and corresponding decrease in larger-

bodied organisms.  

2.1.4 Objectives and predictions 

The objective of this research was to evaluate the individual and interactive effects of the 

anthropogenic climate change factors of temperature, CO2, and precipitation frequency 

and intensity on soil collembolan communities. Specifically, I evaluated the effects of 

these GEC factors on the abundance, richness, species diversity, species composition, and 
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body size distribution of Collembola in moss mesocosms using a full-factorial 

experimental design. First, I hypothesized that the most important influence on the soil 

community would be through changes in precipitation events and predicted drought 

conditions would result in a general loss in abundance and species richness (Pflug & 

Wolters 2001; Tsiafouli et al. 2005; Kardol et al. 2011). I predicted that this loss of 

abundance would be most pronounced in epigeic, and therefore, large Collembola 

species, resulting in a steeper BSS slope. Second, I predicted that mesocosms under 

increased temperature would have higher collembolan abundances due to greater 

metabolic activity and higher resource availability. Third, I hypothesized weak, indirect 

effects of atmospheric [CO2] on Collembola communities (Niklaus et al. 2003; 

Blankinship et al. 2011) through changes in moss growth and resource availability, but 

no direct effect of elevated atmospheric CO2 conditions, because collembolan 

communities tolerate CO2 levels up to ten times atmospheric concentrations when 

underground (Wall et al. 2005).  

The interactive effects of the GEC variables are harder to predict, but as increased 

temperature reduces soil moisture through increase evaporation between precipitation 

events (Harte et al. 1996), I predicted that the negative effects of drought treatments on 

collembolan abundances would be more pronounced at higher temperatures. Increased 

atmospheric CO2 has been shown to decrease plant evapotranspiration, and therefore, 

increase soil moisture (Dermody et al. 2007). It is also possible for increased plant 

growth caused by higher CO2 to increase exudation of labile carbon from plant roots, 

which has been shown to increase C availability for microbes; this C can be transferred 

all the way up to tertiary consumers in soil food webs (Ruf et al. 2006). Because of the 

potential for these indirect effects, I predicted collembolan abundances would be higher 

at elevated [CO2] in drought and intermediate moisture conditions compared to ambient 

[CO2]. 
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2.2 Methods 

2.2.1 Sample collection 

Forest floor soil and moss samples were collected from a black spruce (Picea mariana 

(Mill.) Britton, Sterns & Poggenb.) forest east of Lac St. Jean, Quebec (48° 23’N, 71° 

25’W). The average temperature in this region is 2.6 °C with average total precipitation 

of 864.9 mm; in October, when sampling was performed, it is generally warmer with an 

average temperature of 5.4 °C with a monthly average of 63.5 mm precipitation 

(Roberval A station, data 1981-2010, Environment Canada 2013). On October 2nd, 2012, 

four forest floor patches measuring 30 cm × 50 cm × 15 cm deep were removed and 

placed in individual Rubbermaid® bins. These were promptly transported to the 

University of Western Ontario in London, ON, and stored in a cold room at 4 °C. Each 

forest floor sample was covered by a 2-3 cm deep moss carpet dominated by the 

feathermosses Hylocomium splendens (Hedw.) Schimp. and Pleurozium schreberi (Brid.) 

Mitt.  

2.2.2 Mesocosm set-up and experimental design 

On November 23rd, 2012, the forest floor samples were removed from the cold room and 

cut into 7 cm × 7 cm subsamples. Bin origin was recorded to check for between-bin 

effects. Five subsamples from each bin (“Initial”, 20 subsamples total) were weighed to 

determine their fresh weight, and then placed in Tullgren funnels (Burkard Scientific) to 

extract soil fauna and assess initial community composition. Tullgren funnels operate by 

shining a 25w light bulb over a soil sample to create a 14 °C temperature gradient, 

causing soil fauna to move deeper into the soil and fall through a mesh into a preservative 

solution. Tullgren funnel extraction is one of the most common soil fauna extraction 

techniques and is more efficient at capturing fauna than manual sifting (van Straalen & 

Rijninks 1982). Fauna were extracted over 48 h into 75% ethanol preservative. After 

extraction, the soil/moss (hereafter “soil”) subsamples were dried at 60 °C for 48 h in an 

oven (ThermoScientific Heratherm OGS180), and weighed to obtain the dry weight of 

each sample. Moisture content of these initial samples was calculated using the equation: 
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(1)    Moisture content = �𝐹𝑊−𝐷𝑊
𝐹𝑊

�× 100% 

where FW is fresh weight of the soil before drying, and DW is the dry weight of the soil 

and moss after it has been dried to a constant weight (i.e., all moisture has evaporated). 

Moisture content then represents the percentage of the weight of the fresh sample that 

consists of water.  

Ninety 500 ml wide-mouth mason jars were prepared to each contain a single 7 cm x 7 

cm subsample and the fauna community residing within for the duration of the 

experiment (mesocosms). These mesocosms were wrapped in black construction paper to 

prevent any effects of light and then weighed. Once filled with soil, each mesocosm was 

weighed and jar weight was subtracted to give initial soil weight. Mesocosms were 

randomly assigned to treatment groups. 

 The controlled environment facilities (biomes) in the University of Western Ontario’s 

Biotron Institute for Experimental Climate Change were used to create a full-factorial 

design of temperature, precipitation, and CO2 conditions. Of the six biomes used, two 

biomes were maintained at each of the temperatures 11.5 °C, 15.5 °C, or 19.5 °C for the 

duration of the experiment. Of the two biomes at each temperature, one chamber had 

atmospheric CO2 conditions maintained at ambient levels (430 ppm) and the other 

chamber had elevated CO2 levels (750 ppm). Within each biome, five replicate 

mesocosms were exposed to one of three precipitation treatments: they were watered to 

50% of their initial weight every 3 weeks (Drought), 100% of their initial weight every 

other week (Control), or 125% of their initial weight every week (Saturated) (5 replicates 

× 3 precipitation levels × 2 CO2 levels × 3 temperatures = 90 total). Humidity was kept 

constant at 60% within each biome.  

Mesocosms were installed on Nov. 26-30, 2012 and destructively sampled 18 weeks later 

on a rolling schedule to account for fauna extraction times at the end of the experiment 

(March 25-29, 2012). Moisture regimes were maintained by the treatment conditions 

described above, and all mesocosms were weighed every week to measure fluctuations in 
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soil moisture. In order to reduce any within-chamber effects due to position, jars were 

moved within the biomes each week.  

2.2.1 Destructive sampling 

Starting on March 25th, 2013, after 18 weeks in the biomes, mesocosms were removed, 

weighed, and invertebrates were extracted from the soil over 48 h by Tullgren funnel into 

75% ethanol for preservation. Soils were then dried at 60 °C for 48 h to determine dry 

weight. This was used to calculate moisture content of the sample at each measurement 

point, using Equation (1). The amount of water added at each watering point was 

averaged for each mesocosm to determine average weekly water added. Weekly 

mesocosm weights were also used to calculate variance in moisture content for each 

mesocosm over the duration of the experiment using the equation: 

(2)      𝜎2 = ∑(𝑥−�̅�)2

𝑛
 

where σ2 is the variance, �̅� is the sample mean, and n is the number of watering events 

experienced over the course of the experiment by the mesocosm. This equation was used 

to quantify the variation in soil moisture during the experiment for each mesocosm. 

A 10-50 × magnification dissecting scope (Nikon SMZ745T) was used to sort and 

enumerate Collembola and a compound light microscope (Eclipse Ni-U) was used at 400 

× magnification to identify Collembola to species level using the taxonomic key provided 

in Christiansen & Bellinger (1998). The total abundance and species richness of 

Collembola in each mesocosm were divided by the dry weight of the moss/soil in that 

mesocosm to standardize among samples and derive collembolan individual and species 

density. These standardized values are used in all subsequent calculations and analyses.  

Species abundance and total richness were used to calculate Shannon-Weiner diversity 

index (H’) values for each mesocosm using the equation:  

(3)     H′ = −∑(𝑝𝑖)(ln(𝑝𝑖)) 
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where pi is the relative proportion of each species’ abundance in terms of the total 

collembolan abundance (Shannon 1948). Pielou’s evenness (J’) was calculated for each 

mesocosm using the equation:  

(4)      J′ = 𝐻′

ln (S)
 

where S is the number of collembolan taxa in the community (Pielou 1975). 

Average body size for each species was calculated by measuring the length and width of 

five-ten representative specimens from each species. Average length and width for each 

species was used to estimate body mass using the equation: 

 (5)      𝑊 = (𝑏𝐿)3 

where W is average species mass in μg, L is length in μm, and b is an empirically derived 

coefficient determined for collembolan biomass estimates at the family level (Edwards 

1967). Although other biomass estimates exist (Caballero et al. 2004), these calculations 

did not produce realistic average species masses and were incompatible with known 

values by several orders of magnitude.  

2.2.2 Data analysis 

Seven mesocosms were removed from analyses as outliers due to inconsistencies in 

substrate (e.g., large woody debris) noted during destructive sampling; these mesocosms 

also had drastically different community compositions compared to other mesocosms. An 

alpha level of 0.05 was used throughout analyses. Statistical tests were not statistically 

significant unless reported. 

Three-way analyses of variance (ANOVA) were performed on collembolan density, 

standardized richness, H’, and J’ values, and moisture content with temperature, 

precipitation treatment, and CO2 as fixed factors. For these analyses, collembolan density 

was log-transformed and standardized richness was square root-transformed to meet the 

assumptions of ANOVA. Percentage moisture content was transformed by taking the 

reciprocal to correct for skew. Significant differences between treatment groups were 
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identified using Tukey’s HSD post-hoc test. Multiple regression using stepwise 

backwards selection (F value to remove <10.00) was used to examine the relationship 

between mesocosm moisture content, average water added, and moisture variance with 

collembolan density, standardized richness, H’, and J’ sequentially as dependent 

variables. These analyses were conducted in Statistica 7 (StatSoft Inc., 2004). 

Community composition of each mesocosm was assessed and compared among 

treatments by generating similarity matrices using the standardized species abundance 

data and Bray-Curtis percent similarity values. Non-metric multidimensional scaling 

(NMDS) with 100 permutations was used to show community composition for 

temperature, CO2, and watering level treatment groups. Significant differences between 

clusters of treatments were tested using an Analysis of Similarity (ANOSIM) with 10,000 

randomized permutations. Simper analyses were used to quantify percent similarity 

between samples within groups. These analyses were performed using Primer 5 

(PRIMER-E Ltd., 2001).  

Body size spectra were created for each main factor treatment. Body size estimates for 

each species were log transformed and plotted against log transformed abundance of each 

species. A least-squares regression at the 75th quartile of the most common species was 

then plotted to estimate community body size distribution evenness (slope) and allow 

comparison between communities. Using the 75th quartile is a recommended practice 

because rare species can significantly affect the slope of the BSS regression line, even if 

only one or two individuals are present, because of the large range in sizes among 

collembolan species and the effect of log transformation on low abundances. These body 

size spectra were graphed in the context of temperature, CO2, and watering levels to 

elucidate patterns for each treatment. A homoscedasticity of slopes test was used to check 

for significant differences between slopes. These analyses were completed in R using the 

‘quantreg’ package (R Foundation for Statistical Computing, 2013).  

2.3 Results 
A total of 33,328 Collembola individuals in 23 species were extracted, identified, and 

analysed. Initial samples, assessed for any random pre-treatment effects, did not display  
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Fig 2.1. The effects of precipitation treatment on collembolan abundance (a) and species richness (b) per 

gram dry weight of soil. Mesocosms in Saturated precipitation treatments had significantly lower 

collembolan density (ANOVA, F2,65 = 46.930, p < 0.001) and  richness (ANOVA, F2,65 = 12.596, p < 

0.001) than Drought and Control treatments. Different letters denote significant differences between 

treatments. Box plot mid lines represent the mean, box limits are ±SE, whiskers are ±SD. 

any significant treatment effects with respect to abundance, richness, evenness, or 

diversity. Control moisture conditions as a treatment level were not significantly different 

from the Initial samples in moisture content, abundance, richness, evenness, or diversity, 

which indicated that Control conditions were a good fit for Initial conditions. As such, the 

remainder of the results discussed are for differences between treatment groups only. 

At the end of the experiment, overall collembolan densities were significantly affected by 

precipitation treatment whereby Saturated mesocosms had significantly lower density 

than the other precipitation treatments (F2,65 = 46.930, p < 0.001; Figure 2.1a). Species 

richness was significantly lower in Saturated mesocosms compared to Control or Drought 

treated mesocosms (F2,65 = 12.596, p < 0.001; Figure 2.1b). In terms of species diversity 

(H’), Drought treated mesocosms had significantly lower diversity than Control and 

Saturated mesocosms (F2,65 = 18.677, p > 0.001; Figure 2.2a); there was also a 

statistically significant difference in H’ between CO2 treatments, with 430 ppm treated 

mesocosms containing significantly higher species diversity (F1,65 = 4.767, p = 0.033) 

than elevated mesocosms. These differences in diversity were partly driven by 

differences in evenness. Drought treated mesocosms had significantly lower evenness  

a) b) 
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Fig. 2.2. The effects of precipitation treatment on collembolan community Shannon-Wiener diversity (H’) 

(a) and Pielou’s evenness (J’) (b). Mesocosms in Drought precipitation treatments had significantly lower 

diversity (ANOVA, F2,65 = 18.677, p > 0.001). In graph (b), treatments different letters are significantly 

different from one another (ANOVA, F2,65 = 42.628, p > 0.001). Drought treated mesocosms were less even 

than Control mesocosms, which were in turn less even than Saturated mesocosms. Different letters indicate 

significant differences between treatments. Box plot mid lines represent the mean, box limits are ±SE, 

whiskers are ±SD. 

than Control and Saturated mesocosms, and Control mesocosms had significantly lower 

evenness than Saturated mesocosms (F2,65 = 42.628, p > 0.001; Figure 2.2b).  

Collembolan density was significantly explained by moisture content and moisture 

variance (multiple regression, R2 = 0.304, F2,80 = 17.442, p < 0.001; Figure 2.3). 

Collembolan species diversity was significantly explained by moisture content alone 

(multiple regression, R2 = 0.166, F1,81 = 16.172, p < 0.001). Evenness was also 

significantly explained by moisture content alone (multiple regression, R2 = 0.250, F1,81 = 

26.941, p < 0.001). Richness was not significantly explained by these moisture variables. 

Temperature within the biomes interacted with moisture conditions during the experiment 

such that mesocosms at 11.5 °C had significantly higher average moisture content than 

15.5 °C and 19.5 °C (F2,82 = 67.755, p < 0.001). This effect was consistent at each 

watering level (F4, 82 = 10.652, p < 0.001). Mesocosms at 19.5 °C required significantly 

more water per watering event on average to reach their target weights than 15.5 °C or 

11.5 °C mesocosms (F2,82 = 15.013, p < 0.001). Variance in moisture content was also 

significantly affected by watering level, with Saturated treatments experiencing  

a) b) 
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Fig. 2.3. Regressions between collembolan density and moisture content (a) and variance in moisture 

content (b). Moisture content and variance in moisture content significantly explained collembolan density 

(multiple regression, R2 = 0.304, F2,80 = 17.442, p < 0.001). There was a negative relationship between 

density and moisture content (R2 = 0.223, y = 43.4253 – 0.4083x) and variance in moisture content (R2 = 

0.193, y = 22.8433 – 0.0386x).  

 

 

 
 
 

 

significantly higher moisture variance than Control or Drought treatments (F2,82 = 15.160, 

p < 0.001). Variance in moisture was also affected by the interaction between watering 

treatment and temperature, with warmer treatments causing less moisture variance in 

Drought treatments and more variance in Saturated treatments (F4,65 = 3.840, p = 0.007). 

There were no significant effects of CO2 treatment on moisture content, moisture 

variance, or average water added. 

In terms of community composition, all watering treatments were significantly different 

from one another (ANOSIM, global R = 0.334, p < 0.001), with each watering treatment 

becoming less similar between sample replicates (Figure 2.4). Saturated mesocosms were 

the least internally similar (average similarity 34.33%) followed by Control treated 

mesocosms (37.54%) and then Drought mesocosms (59.42%). When analysed by 

temperature, 11.5 °C treated mesocosms were significantly different in community 

composition compared to 19.5 °C mesocosms (ANOSIM, R = 0.078, p = 0.012). There 

was also a significant difference in community composition between ambient and 

elevated CO2 treated mesocosms (ANOSIM, R = 0.111, p < 0.001).  

a) b) 
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Fig. 2.4. Non-metric dimensional scaling (NMDS) of collembolan community composition by Bray-Curtis 

% similarity of species abundances by precipitation treatment (    = Drought treated mesocosms,   = 

Control,    = Saturated). Each point represents one collembolan community and the distance between points 

represents the degree of similarity between communities in terms of relative proportion of species present. 

Drought communities are significantly different from Control communities (ANOSIM, R = 0.085, p = 

0.006) which are in turn significantly different from Saturated communities (ANOSIM, R = 0.405, p < 

0.001). Lines are for visualization purposes only. 

Because watering treatments most consistently affected community composition 

characteristics, the BSS is demonstrated here with samples grouped for precipitation 

treatments. While the slopes of these lines were not significantly different, the intercept 

of the BSS for the Saturated watering treatment is visibly lower than that of the Control 

and Drought watering treatments, indicating a general loss of abundance with a similar 

community size evenness (Figure 2.5). 
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Fig. 2.5. Body size spectrum (BSS) for Collembola in response to precipitation manipulations. Collembolan 

lengths were derived from the average body length of 10 representative individuals from each species and 

biomass estimations were made using the equations of Edwards (1967). There was a general decrease in 

abundance in Saturated conditions for species of all body sizes.  

2.4 Discussion 

2.4.1 Frequency and intensity of precipitation events as 
disturbance 

The increasing likelihood of extreme climate events predicted for the next century is 

expected to have major impacts on biodiversity at local scales (Garcia et al. 2014). These 

extremes will primarily consist of periods of extreme heat, extreme cold, drought, and 

flooding with greater severity and less predictability than historical norms (IPCC 2013). 

It is these extreme events that may act as a source of disturbance to decrease biodiversity 

at local spatial scales. In this study, increased frequency and intensity of precipitation 

events was a major driver of lost collembolan abundance and richness. This suggests that 

precipitation events may act as a disturbance for soil invertebrate communities, and is 
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contrary to the often stated drought sensitivity of Collembola (Tsiafouli et al. 2005; 

Kardol et al. 2011; Makkonen et al. 2011). Although this decrease in collembolan 

richness and density with increased severity of precipitation events was unexpected, it is 

not unprecedented. For example, in a study of variable moisture frequency on 

Mediterranean montane pine forest soil populations, frequent watering (every 3 days) 

significantly decreased collembolan abundance (by 14%) compared to control plots 

(Tsiafouli et al. 2005). However, many counter-examples exist: Starzomski and 

Srivastava (2007) used repeated soil fauna removal through soil drying as a disturbance 

event in moss mesocosms to demonstrate increased severity of drought events reduces the 

abundance and richness of soil microarthropods. In a study by Makkonen and colleagues 

(2011), a 33% decrease in soil moisture content in plots covered by open top chambers 

resulted in a 51% decrease in collembolan density, while Tsiafouli and colleagues (2005) 

found reduced species richness under infrequent precipitation regimes. Unfortunately, 

due to the experimental setup of my study it was not possible to directly differentiate 

between frequency and intensity effects of watering; future studies could cross these 

factors to better quantify whether variation or amount of precipitation is a more important 

determinant of collembolan community structure. 

Moisture was not limiting in this experiment, even in low-precipitation mesocosms, and 

so precipitation events may have acted as a disturbance through several possible 

mechanisms. One explanation is that precipitation events may have disrupted feeding by 

changing fungal:bacterial ratios, as has been noted in previous studies (Filser 2002; 

Bardgett 2005). It is expected that under wetter conditions there will be a shift towards 

bacterial predominance and a change in collembolan diets as they exhibit switching, or a 

change in community composition as superior bacterial grazers out-compete other species 

(Filser 2002). It is also likely that increased precipitation decreased the amount of 

habitable air-filled pore space in the soil. This decrease in air-filled pore space, which 

mesofauna such as Collembola rely on, would primarily affect euedaphic species and 

have variable effects depending on soil structure (Bardgett 2005). This hypothesis is 

supported by observed changes in the community composition whereby abundances of 

dominant euedaphic species (primarily Folsomia penicula) were reduced and increased 

abundances of epigeic species (primarily in the family Sminthuridae, but also the 
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Entomyobryid Argenia cyanura and the Isotomid Isotomiella minor) were observed 

(Plate 1). Previous studies have also shown significant decreases in the abundance of 

euedaphic collembolan species in denser soil with less habitable pore space (Dittmer & 

Schrader 2000; Larsen et al. 2004). Although an increase in soil moisture and water-filled 

pore space may be expected to increase habitable area for microbial growth, it seems that 

this effect was not sufficient to overcome the lack of habitable space for Collembola. 

This finding also mirrors previous research indicating collembolan species are likely to 

be differentially affected by changes in environmental conditions such as increased 

precipitation events depending on morphology and life history, as has been reported 

previously on studies of collembolan trait distributions in response to warming and 

drying (Makkonen et al. 2011).   

Trait-based approaches to understanding how ecological communities will change under 

global environmental change scenarios is an area of active research (Lavorel & Grigulis 

2012; Lindo et al. 2012; Mouillot et al. 2013). Yet, identifying and defining appropriate 

traits can be problematic, especially traits for soil fauna that are reliable between groups 

and ecosystems (Pey et al. 2014). Body size has recently been proposed as a 

comprehensive trait metric for soil communities (Turnbull et al. 2014) because body size 

Plate 1. Collembolan species from experimental mesocosms, slide mounted in Hoyer’s medium. A shift 

was observed from the highly abundant Folsomia penicula (a) and euedaphic species including 

Tullbergia (M.) iowensis (b) to sminthurid species including Sminthurides (S.) violaceus (c).  

a) 

b) 

c) 
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correlates with many life history characteristics, and here we assessed its utility as an 

indicator of response to GEC in Collembola. While the BSS did not demonstrate a 

change in evenness in response to precipitation, it did demonstrate the general decrease in 

collembolan abundance. A previous study by Lindo and colleagues (2012) found that 

decreased moisture content was the most important explanatory variable in determining 

microarthropod abundance in a field climate change experiment, and that dry habitats had 

a lower intercept and steeper BSS slope, indicating a reduction in all species with large-

bodied microarthropod species especially affected. Although trait-based approaches on 

soil fauna are relatively uncommon, the recent examples that do exist have either found 

significant relationships with body size in response to disturbance (Makkonen et al. 2011; 

Huebner et al. 2012; Malmström 2012) or as a predictor of distribution along latitudinal 

(Pflug & Wolters 2002) and a large range of environmental and soil property (Salmon & 

Ponge 2012; Salmon et al. 2014) gradients. These studies have repeatedly demonstrated 

association between large-bodied organisms and vertical distribution, drought tolerance, 

and susceptibility of disturbance from local to continental scales. While this experiment 

was unable to differentiate extinction proneness based on body size for extreme 

precipitation events, body size, as measured by mass, is still an excellent example of a 

continuous, ubiquitous, ecologically significant trait to allow comparison between 

ecosystems as requested by Pey and colleagues (2014).  

2.4.2 Future temperature and CO2 conditions on Collembola 
communities 

While precipitation regimes were the overriding factor in patterns of collembolan 

diversity and community structure, elevated temperature and CO2 levels in the 

experimental biomes had interactive effects with precipitation. Previous studies have 

shown that temperature and CO2 do not strongly affect mesofaunal communities 

independently of their effects from soil moisture (Hodkinson et al. 1998; Blankinship et 

al. 2011; Kardol et al. 2011). This research highlights a similar interactive effect of 

precipitation with temperature, whereby warmer temperatures resulted in lowering the 

average moisture content, thereby increasing the amount of water added during 

precipitation events. Under future climate conditions, it is unclear to what extent 
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increased drying caused by warming will be counteracted by increased precipitation 

predicted for the boreal forest. However, this research highlights that increased variation 

in moisture content (more frequent and wider ranging wetting/drying cycles) is 

negatively correlated with collembolan abundance, indicating that the effect is likely to 

be negative.  

The lack of temperature effect on richness or collembolan density is contrary to 

predictions that increased temperature would increase the metabolic activity, increasing 

population abundances and maintaining species richness. Briones and colleagues (2009) 

found that +3.5 °C of experimental warming resulted in an increase in the relative 

proportion of fungivorous microarthropods and an increase in epigeic microarthropod 

diversity, while Lindo and colleagues (2012) found increased temperatures of 2 °C 

increased abundance and richness of soil microarthropods. This contrasts with the results 

of this study where soil moisture appeared to be the overriding factor in determining 

collembolan biodiversity, as any positive effects of increased temperature on 

decomposition (and therefore, resource availability) or collembolan activity were 

counteracted by the increased watering intensity and decreased moisture content in these 

mesocosms.  

Under elevated temperatures, there is the potential for biotic acclimation. It has been 

shown that Collembola reared under higher temperatures (15 °C) lose significantly less 

water under drought conditions than those reared under cooler temperatures (5 °C) 

(Leinaas et al. 2009). However, this acclimation also had an interaction with body size: 

smaller Collembola reared at 5 °C lost water at a faster rate (Leinaas et al. 2009). This 

indicates that even under a gradual temperature change, allowing for adaptation for 

decreased moisture loss in Collembola, smaller bodied species are more likely to be 

detrimentally affected. Collembola have also demonstrated the ability to empty their gut 

contents in order to decrease water loss during drought and freezing, but this comes with 

the tradeoff of decreased metabolic rates and halted reproduction (Testerink 1983). This 

indicates that increased variation in future precipitation regimes is likely to have negative 

effects on collembolan populations, even if adaptation or physiological strategies 

improve survival.  
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The only effect of CO2 was higher Shannon-Wiener diversity under ambient CO2 

conditions compared to elevated CO2; however, there were no significant differences in 

richness or evenness between CO2 treatments, so this is likely due to cumulative 

increases in both richness and evenness in ambient CO2 chambers. The effects of 

increased atmospheric CO2 on soil fauna are thought to be indirect, through effects on the 

plant community, and therefore, the root systems microbes rely on. Previous studies have 

shown either weak or neutral effects of CO2 enrichment on soil fauna (Niklaus et al. 

2003; Bardgett 2005; Kardol et al. 2011). For example, in a six-year CO2 enrichment 

study in a nutrient poor Swedish grassland, there were no changes in N availability or 

fungal:bacterial ratios indicating a lack of direct effect on nutrient cycling and 

decomposition rates (Niklaus et al. 2003). Increased CO2 may decrease soil aggregate 

size due to increases in soil moisture caused by decreased evapotranspiration, but this has 

not been observed to cause changes in mesofaunal communities over time periods studied 

(Blankinship et al. 2011). Further research would be required on varied CO2 levels for 

longer periods to determine if there are eventual shifts in microbial community 

composition that may have bottom-up effects on higher trophic positions. However, there 

is evidence that the limited effects of CO2 on soil communities diminish over time, 

whereas temperature and moisture effects become stronger (Blankinship et al. 2011), so 

the focus should continue to be on the intersection of these two key variables in the 

future.  

2.4.3 Biotic interactions as mechanisms for Collembola community 
change  

Direct effects of climate on Collembola communities are only likely to be observable for 

relatively strong, sudden effects (Blankinship et al. 2011), as demonstrated here in the 

precipitation treatments. Indirect effects, such as top-down or bottom-up effects, are more 

likely to affect and alter Collembola communities but the ability to observe and 

mechanistically disentangle indirect effects is challenging due to their mediation through 

other taxa trophically linked to Collembola. For instance, it is possible that large-bodied, 

drought-sensitive predators, predominantly soil mites, are moisture-limited, and 

therefore, increased in abundance with increased watering, causing a top-down trophic 
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cascade and decreasing the abundance of Collembola. Previous studies have 

demonstrated top-down control by predators on collembolan abundances. For example, 

Schneider and Maraun (2009) found that smaller, less sclerotized groups of mites in the 

suborder Oribatida were more susceptible to predation, and that Collembola in the family 

Entomobryidae were not significantly affected by increased predator density. This same 

relationship may hold true for smaller edaphic species of Collembola, and may explain 

the increase in relative abundance of species in this study. I would also expect the largest 

loss of collembolan density to be in the most abundant species strictly due to their 

availability to predators, which would also explain the increase in species evenness at 

higher moisture levels (Schneider & Maraun 2009).  

A previous study by Cole and colleagues (2005) found that N and lime addition to 

improve soil fertility increased soil microarthropod density, but did not change diversity, 

which indicates that soil fauna communities are primarily bottom-up controlled and that 

competition and predation are not dominant factors in determining species composition. 

Similar results were found by Ponsard and colleagues (2000) who found that densities of 

detrivorous and predatory soil fauna increased under higher litter deposition and that 

seasonal changes were determined by litter deposition, not predation, providing more 

evidence for the dominance of bottom-up control in soil food webs. This relates to a 

classic model by Hunter and Price (1992), who hypothesized that increased abiotic and 

biotic heterogeneity increases the strength of bottom-up control. Because of the high 

species diversity and physical heterogeneity in soil, soil fauna food webs are thought to 

favour bottom-up control (see Polis & Strong 1996). The cumulative results of these 

studies provide evidence for bottom-up control of collembolan community structure, 

which lends credence to the hypothesis that the observed community responses in this 

study may be due to fungal:bacterial ratio shifts.  

2.4.4 Consequences of Collembola community change  

It is difficult to tell what the functional ramifications of these shifts in collembolan 

density and community composition would be because different community 

compositions have not been explicitly tied to functional outcomes or process rates due to 

difficulties selectively removing certain soil groups and the immense complexity of  soil 
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food webs (Nielsen et al. 2011; Sylvain & Wall 2011). Filser (2002) suggests a 

conceptual model whereby under lower moisture conditions, fungi would be more 

prominent, leading to a switch to fungivory, dominance of fungivorous species, and 

increased N mobilization as fungal hyphae are broken down. The inverse is suggested for 

high moisture conditions, where bacteria are expected to dominate, leading to rapid 

consumption of labile substrates and N immobilization in bacteria and their collembolan 

consumers (Filser 2002). However, this is a simplification which disregards the strong 

effects of community composition on N cycles in soil (Nielsen et al. 2011). 

To predict the functional ramifications of these community shifts, we can examine the 

BSS generated for these communities. Because the distribution of collembolan body sizes 

is relatively consistent at higher watering levels, we can expect that trophic transfer 

efficiency will remain similar through this trophic level. The dominance of bottom-up 

control in soil systems (Cole et al. 2005) leads to the hypothesis that there will be similar 

effects in other groups and trophic positions. The general loss of abundance at all body 

sizes paired with changes in community composition indicates that collembolan traits are 

an important predictor of their response to new conditions (sensu Mouillot et al. 2013). 

Although Collembola of all sizes appear similarly affected by moisture saturated soil 

conditions, this could have long-term ramifications for community structure following 

disturbance, as larger-bodied species have smaller populations and may take longer to 

recover – in effect, their lower abundances leave them more vulnerable to extinction even 

if all size classes are affected equally. 
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Chapter 3  

3 Bottom-up effects of resource availability on 
collembolan communities 

3.1 Introduction 
It is very likely that nitrogen (N) is the primary factor limiting carbon (C) uptake by 

terrestrial plants in temperate forests (IPCC 2013). One of the predicted outcomes of 

anthropogenic climate change is an increase in atmospheric N deposition by 90-190 Tg 

per year by 2100 due to human activity (agriculture and industry) and biological 

feedbacks (IPCC 2013). Coupled with atmospheric N deposition, there is also a high 

likelihood that increased global surface temperatures will lead to increased 

decomposition rates, which would in turn increase N mineralization in soils worldwide 

(IPCC 2013). These increased decomposition rates may also increase the amount of 

readily available (labile) C in soils through increased root exudation by living plants, and 

increased breakdown of difficult to digest (recalcitrant) litter substances, such as lignin. 

Increased temperatures may also interact with increased CO2 levels to increase plant 

growth rates which may also increase plant C uptake, and therefore, C availability in 

terrestrial systems (Eisenhauer et al. 2012).  

Changes in nutrient availability could have major ramifications for soil communities, 

which are thought to be dominated by bottom-up forces, for the simple reason that litter 

continuously decomposes rather than accumulating (Hairston et al. 1960; Chen & Wise 

1999; Maraun et al. 2001). Changes in C and N availability are also expected to affect the 

C:N ratios of litter, which is a major determinant of decomposition rates and soil 

microbial community structure (Bardgett & Wardle 2003). Boreal forest systems 

generally have high C:N ratios due to low nutrient loading and plant productivity, with 

variation depending on wildfire and logging regimes (Paré et al. 2011). In a recent meta-

analysis, it was found that fungal:bacterial ratios in soil communities on a global scale 

can be consistently predicted by soil and litter C:N ratios, with higher C content 

favouring a higher proportion of fungi (Fierer et al. 2009). A shift in fungal:bacterial 

ratios will have cascading effects at higher trophic levels because primary soil consumers 
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rely on bacterial and fungal food sources (Moore & Hunt 1988; Laakso et al. 2000; Fierer 

et al. 2009). Previous studies have shown through 13C isotope analysis that C absorbed by 

plants as CO2 enters the soil food web in the form of root exudates and gets transferred 

up trophic positions to predatory mites (Ruf et al. 2006). Therefore, it is important to 

understand how soil communities will be affected by higher atmospheric N deposition 

and litter loading to understand how decomposition rates, C sequestration, and other soil 

functions may change (Maraun et al. 2001; Cole et al. 2005; Salamon et al. 2006; Cole et 

al. 2008).  

There are many important linkages between Collembola and nutrient cycling in soils: 

Collembola increase N mineralization, soil respiration, leaching of dissolved organic C, 

and plant growth (Setälä & Trofymow 1996; Filser 2002; Addison et al. 2003; Nielsen et 

al. 2011). The effects of Collembola on nutrient cycling are mediated by grazing on 

lower trophic positions, whereby Collembola increase fungal growth and microbial 

respiration, and also may prey on nematodes (Klironomos et al. 1992; Filser 2002; 

Sylvain & Wall 2011). All of these effects are, in turn, modulated by interactions 

between Collembola and their environment (chiefly temperature and moisture) and other 

soil biota (through competition and predation). Collembola are, therefore, an excellent 

model for determining the bottom-up effects of nutrient addition on intermediate soil 

consumers because they both affect and respond to changing resource availability, and 

because of their trophic links to both primary decomposers and predators. Further, the 

species diversity of Collembola can reciprocally influence the diversity of plant 

communities through their effects on nutrient cycling, with higher plant species and 

functional diversity supporting higher collembolan diversity (Sabais et al. 2011, 

Eisenhauer et al. 2012).  

3.1.1 Press versus pulse dynamics 

It is important to assess how soil biodiversity will respond both to short-term and long-

term inputs of nutrients because effects may differ depending on the frequency and 

intensity of nutrient changes. Although the terminology of short-term pulses and long-

term presses has more commonly been applied to perturbation and disturbance studies 

(Freedman et al. 2014), this framework may also be applied to the effects of nutrient 
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inputs on food webs (sensu Scheu 2002). A short-term burst of nutrients, or pulse, might 

occur if there is sudden die-off of certain herbaceous plant species or downstream 

washing of agricultural fertilizers. This may increase microbial biomass in the short term, 

especially of bacteria which are thought to take advantage of labile substrates more 

readily than fungi (Wardle et al. 2004). However, although experiments have 

demonstrated bottom-up effects on soil fauna as a result of increased microbial biomass 

(Jones et al. 1998; Rillig et al. 2009), in several previous studies increases in plant 

growth in response to nutrient addition have failed to cause increases in microarthropod 

abundance (Boxman et al. 1998; Cole et al. 2008). The variable response of 

microarthropod grazer abundance to resource availability highlights the tenuous linkages 

between microbial biomass and the community structure of organisms at higher trophic 

levels. Therefore, it is thought that the effects of microbial biomass on microarthropod 

abundance and diversity only appear after a lag period following the addition of labile 

substrates.   

A long-term, chronic change in nutrient availability, or press, may be expected if there is 

increased availability of nutrients decomposed from recalcitrant litters such as tree trunks, 

or if there is an ongoing increase in atmospheric N deposition. A press of nutrients is 

more likely to result in long-term increased plant growth, especially in the case of N 

addition, which may lead to an increase in litter deposition and larger nutrient pools in 

soils (Magill et al. 2000). However, the duration of these effects increases the probability 

of competitive exclusion as formerly nutrient-limited species of soil fauna are able to out-

compete specialist feeders and species adapted to poorer conditions (e.g., differences in 

nutrient retention efficiency shown by Larsen and colleagues (2009)). Murphy and 

colleagues (2012), in one of the few studies compare the effects of pulses and presses of 

nutrients on plant and soil communities simultaneously, demonstrated loss of arthropods 

following a N pulse but a sustained increase during a N press. They also demonstrated 

ongoing changes to predator-prey ratios in response to the nutrient press, indicating the 

effects of nutrient addition are dependent on trophic position and nutrient input regime 

(Murphy et al. 2012). 
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3.1.2 BSS responses to nutrient availability 

Previous studies on the body size distribution of soil fauna have demonstrated the 

responsiveness of soil community body size spectrum (BSS) slopes to nutrient 

availability. For example, in an analysis by Mulder and colleagues (2011) of Dutch soil 

community body size distributions incorporating bacteria, nematodes, mites, 

collembolans, enchytraeids, and earthworms, forest communities had significantly 

shallower BSS slopes than grasslands or fields, indicating a relatively higher prevalence 

of large-bodied organisms. In that study, forest communities were associated with several 

measures of soil fertility, and forest species compositions were negatively correlated with 

increased P and microbial C availability (Mulder et al. 2011). Another study by Mulder 

(2010) on Dutch pastures, grasslands, and heathlands found that N availability explained 

35.74% of body size distribution shifts, with a higher relative proportion of small-bodied 

organisms (nematodes) and loss of collembolans and enchytraeids under decreased 

nutrient availability. A third example comes from a study by Mulder and Elser (2009), 

who found that increased C:N ratios explained steeper BSS slopes for soil animal 

communities (i.e., higher available C relative to N increased the relative abundance of 

small species). It should be noted that P ratios were also a strong explanatory variable in 

these studies, with higher proportions of available P increasing dominance of large-

bodied species (Mulder & Elser 2009; Mulder 2010). These studies provide compelling 

evidence that body size distributions may be partially structured by soil nutrient 

availability and stoichiometric nutrient ratios, but research is required in systems other 

than Dutch grasslands.    

3.1.3 Objectives and predictions 

To assess and compare the effects of short- and long-term C and N availability on soil 

microarthropods I conducted an experiment in a black spruce (Picea mariana (Mill.)) 

forest near Chicoutimi, Quebec. I applied C, N, or a combination of the two at 

concentrations relevant to future climate predictions. I repeated this full-factorial cross 

using aqueous solutions of nutrients to simulate rapidly accessible labile inputs (pulse) or 

solid additions of nutrients to simulate a delayed, chronic increase in nutrient availability 

(press). Fauna were collected during setup to assess initial community status, after four 
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months to assess short-term responses, and after one year to account for seasonality and 

assess long-term responses. Although previous experiments have tested the effects of 

aqueous nutrients (Maraun et al. 2001; Salamon et al. 2006), solid fertilizer (Cole et al. 

2005), or whole food additions (Chen & Wise 1999), very few studies (Murphy et al. 

2012) have simultaneously tested and compared the effects of pulse and press fertilization 

types at biologically relevant levels on soil fauna communities from a single location. 

My overall objective was to examine the effect of press and pulse nutrient addition on 

Collembola abundance, species richness, diversity, community composition, and body 

size distribution over short (4 month) and long-term (12 month) temporal scales. I 

predicted that the addition of N in general would increase collembolan abundance and 

richness because it is thought to be limiting in forest systems at a global scale (Galloway 

et al. 2004; IPCC 2013). Increased N availability may lead to increased plant growth, 

increased root exudation, and increased fungal and bacterial growth, therefore causing a 

trophic cascade up to the level of mesofauna. I predicted that collembolan abundance 

would be further increased when C was included alongside N addition due to increased 

microbial activity caused by C supplementation. I also predicted that the collembolan 

community would respond more strongly to the aqueous pulse of nutrient inputs in the 

short term, demonstrating higher relative increases in abundance and richness after four 

months, but that the community would return to its initial state after one year. I predicted 

that the press of nutrients would increase collembolan abundance and richness after one 

year, signaling long-term effects of increased nutrient availability.  

In terms of body size, I predicted that nutrient supplementation of either type would lead 

to a steeper BSS slope as smaller-bodied organisms took advantage of increased 

microbial and fungal availability. I hypothesized that smaller bodied organisms would 

respond more quickly because of their ability to access bacteria and fungi in smaller pore 

spaces, their postulated preference for microbial feeding, and their larger initial 

population densities. I predicted that one year after treatment body size distributions 

would become more even. In the case of nutrient pulses, I predicted that this would be 

due to a decrease in the abundance of small species from their previously elevated levels 

as the nutrient pulse was exhausted. In the case of nutrient presses, I predicted that this 
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shallower BSS slope would be due to an increase in the relative abundance of large-

bodied species, as they took advantage of longer-term positive effects on plant growth, 

and therefore, litter amount and quality.  

3.2 Methods 

3.2.1 Site description 

The nutrient provisioning experiment was conducted in the Forêt d’Enseignement et de 

Recherche Simoncouche (48° 23’N, 71° 25’W; 350 m asl), administered by the 

University of Quebec at Chicoutimi (UQAC). The area is dominated by black spruce 

forest (Picea mariana (Mill.) Britton, Sterns & Poggenb.) which grew after a 1922 forest 

fire (Rossi et al. 2013). It has a mor-type humus soil on drained glacial till with a 10 cm 

deep organic horizon (Rossi et al. 2013). The forest floor is dominated by the 

feathermosses Hylocomium splendens (Hedw.) Schimp. and Pleurozium schreberi (Brid.) 

Mitt. with the haircap moss Polytrichum commune  (Hedw.) occasionally present. Snow 

cover up to 150 cm generally lasts from November to May (Rossi et al. 2013). The mean 

annual temperature at the research site from 2002-2008 was 1.9 °C and increased to an 

average 13.3 °C over the growing season (May-September) (Rossi et al. 2011).    

3.2.2 Experimental setup 

On June 10th and 11th, 2013, experimental plots were designated in a 200 m2 area of 

relatively flat continuous feathermoss forest floor. Forty 25 cm × 25 cm experimental 

plots were established every 2 m in a 5 × 8 plot grid pattern, and each was marked with a 

small central flag and GPS coordinates. Photographs of each plot were taken. This layout 

was used to ensure nutrient effects were independent while minimizing plot variability. 

Deviation from this pattern and spacing was sometimes necessary due to topographic or 

debris considerations (e.g., boulders or large fallen logs). A 5 cm diameter, 10 cm deep 

soil core was extracted from each plot using a PVC soil corer, and sealed in its corer for 

analysis to assess initial community structure pre-treatment (T0). Cores were kept chilled 

before being returned to the lab for fauna extraction.  
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Plots were treated with C and N additions in a full-factorial design under either a pulse or 

press nutrient addition regime. Treatments received an equivalent nutrient supplement of 

5.6 g per m2 yr-1 N, 6.4 g per m2 yr-1 C, both nutrients, or neither as a control. For the 

pulse nutrient treatments, plots were treated with aqueous nutrient addition in 20 ml 

MilliQ water. Control plots received only the 20 ml water, N treatments received a 5% 

aqueous solution of dissolved ammonium nitrate, and C treatments received a 5% 

aqueous solution of glucose. For plots where both N and C were applied, the solution was 

5% ammonium nitrate and 5% glucose in 20 ml water. For press nutrient treatments, solid 

fertilizers were used. Control treatments received no amendment, N treatments received 1 

g nitrogenous fertilizer (Scott’s Turf Builder, 30:0:3 N:P:K ratio), C treatments received 

1 g crushed glucose tablets (Dex 4 brand), and combination treatments received 1 g of 

each fertilizer. Five replications were used per treatment (total 40).  

3.2.3 Sampling 

On September 16th and 17th, 2013, a single 5 cm diameter by 10 cm deep soil core was 

removed from each plot to assess the short-term community response (4 months post-

application, T4). On May 30th, 2014, a final set of soil cores were extracted from each 

plot (12 months post-application, T12) to assess long-term community response. At each 

time point, each plot was photographed to help demonstrate differences in plant cover 

over time. For T4 and T12 sampling events, soil cores were kept cool at 4 °C pending soil 

fauna extraction within 72 hours of sampling using Tullgren funnel extractions over 48 h 

into 75% EtOH. At the final sampling period, an additional 25 g from each plot was 

removed with a trowel to perform further nutrient and soil property analyses. 

Collembola were sorted, identified to species level using the keys of Christiansen and 

Bellinger (1998), and enumerated using a 10-50 × magnification dissecting scope (Nikon 

SMZ745T) and a 400 × magnification compound light microscope (Eclipse Ni-U). Soils 

were sufficiently dried to a constant weight during Tullgren funnel extraction, and dry 

weights were recorded to allow for standardization. Collembolan abundance and richness 

in each soil core was divided by soil weight to standardize, generating individual and 

species density values. These standardized values were used in all subsequent analyses. 

Shannon-Wiener diversity (H’) was calculated for each soil core community as per 
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Equation (3). Pielou’s evenness (J’) was also calculated for each soil core, using Equation 

(4). The average body size of each species was found by measuring the length of 10 

representative specimens using the compound light microscope and applying the body 

mass estimates derived by Edwards (1967) (see Equation 5).  

3.2.4 Data analysis 

A nested repeated measures ANOVA was performed with sampling time acting as the 

repeated component, and full-factorial N and C treatments applied within pulse or press 

addition types. Standardized abundance and standardized richness were log-transformed 

to meet assumptions. A strong seasonal effect was observed in these preliminary 

analyses, so the standardized abundance, standardized richness, diversity, and evenness 

of T0 samples was subtracted from the values of T4 and T12 samples from the same plot 

to calculate the change in community structure between the initial community and post-

treatment. These initial-corrected values were then used in a second set of repeated 

measures ANOVAs to determine the change in abundance, richness, diversity, and 

evenness between the fall of 2013 and spring of 2014 compared to initial levels in 

response to nutrients  provided and pulse or press addition. These analyses were 

conducted in Statistica 7 (StatSoft Inc., 2004). 

Standardized species abundance data was used to construct Bray-Curtis percent similarity 

matrices for all samples at all sample times, and separately for samples within each time 

point. These similarity matrices were used to generate NMDS plots to observe changes in 

Collembola community composition throughout the experiment, and within each time 

point. A subsequent ANOSIM was used to determine differences in community 

composition between times (where applicable), nutrient addition, and addition (pulse 

versus press) types. These analyses were completed using Primer (PRIMER-E Ltd., 

2001). 
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Fig. 3.1. Seasonal effects on collembolan density and richness. Samples had significantly higher 

collembolan density (F2,96 = 16.992, p < 0.001) and richness (F2,96 = 11.491, p < 0.001) from T4 compared 

to T0 and T4. Different letters indicate significant differences between treatments. Box plot mid lines 

represent the mean, box limits are ±SE, whiskers are ±SD. 

Body size spectra were generated separately for both press and pulse treatments with 

species abundances pooled by nutrient addition. These spectra were generated by plotting 

the log-transformed average mass of each collembolan species against the log-

transformed abundance of each species and then plotting a regression line against the 75th 

quartile of most abundant species. A homoscedasticity of slopes test was used to check 

for differences in body size distribution evenness between nutrient treatments. These 

analyses were performed in R using the ‘quantreg’ package (R Foundation for Statistical 

Computing, 2013). 

3.3 Results 

A total of 7,595 Collembola individuals in 26 species were identified and sorted. Species 

richness and collembolan density had a strong seasonal trend whereby T4 samples had 

significantly greater collembolan density (F2,96 = 16.992, p < 0.001; Figure 3.1a) and 

species richness (F2,96 = 11.491, p < 0.001; Figure 3.1b) values than samples collected in 

the spring for both T0 and T12 sample times, which were not significantly different from 

each other. Analysis of T0 samples alone revealed that before treatment, plots randomly 

designated for pulse treatments had significantly higher collembolan density (F1,32 = 

a) b) 
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Fig. 3.2. The effects of 4g N per m2 yr-1 aqueous pulse addition on collembolan species richness per gram 

dry weight of soil, standardized by initial community richness at experimental setup. Note the increase 

richness in all T4 samples compared to T0, indicating a seasonal effect. Note also that N addition prevented 

the loss of species at T12 compared to T4 (repeated measures ANOVA, F1,16 = 6.828, p = 0.019). Box plot 

mid lines represent the mean, box limits are ±SE, whiskers are ±SD.  

5.120, p = 0.030) and richness (F1,32 = 7.780, p = 0.009) than plots randomly designated 

for press treatments. Therefore, to correct for starting differences between plots and focus 

on short-term versus long-term shifts from a seasonal pattern, T4 and T12 samples were 

standardized by subtracting the abundance, richness, diversity, and evenness of T0 

communities, to show change in these values compared to before nutrient addition.  

To correct for initial differences in plots designated for pulse and press treatments, and to 

more clearly demonstrate different effects between these treatments, data were analysed 

separately for pulse and press treatment types. For pulse treatments alone, the only effect 
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Fig. 3.3. Non-metric dimensional scaling (NMDS) based on Bray-Curtis % similarity of species 

abundances in response to nutrient additions after one year (     = Control treatment,     = Carbon addition,      

__= Nitrogen addition,      = both C and N addition). Each point represents one community and the distance 

between points represents the degree of similarity, in terms of species and abundances. There are 

significant differences in composition between N addition treatments and C addition treatments (R = 0.158, 

p = 0.026), as well as between N addition treatments and Control treatments (R = 0.346, p < 0.001). 

Combination treatments are significantly different in composition from Control treatments (R = 0.243, p = 

0.005). 

on collembolan density was significantly lower densities in T12 compared to T4 (F1,16 = 

11.005, p = 0.004). There was a significant difference in richness between T4 and T12 

pulse treatments with N addition (F1,16 = 6.828, p = 0.019; Figure 3.2), but although 

richness was highest richness in T12 N addition treatments, groups could not be 

distinguished pairwise with Tukey’s test. Pulse N addition treatments demonstrated 

significantly higher evenness in T12 compared to T4 (F1,16 = 4.806, p = 0.043). The only 

significant effects in press treatments when separated were decreased collembolan 

density (F1,16 = 6.522, p = 0.021) and richness (F1,16 = 5.069, p = 0.039) in T12 compared 

to T4. There seemed to be a trend of higher richness in press N addition samples without 
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C added, but this effect was not found to be significant. The only effect of other nutrient 

types was a significant effect on evenness in the interaction between time and C addition, 

whereby T12 plots with C added had a higher evenness than T4 (F1,16 = 5.045, p = 

0.039); however, once again, groups were not significantly different when compared 

pairwise with Tukey’s test.  

In terms of community composition, all T0 samples were relatively homogeneous with 

the exception of compositional differences in plots designated for press and pulse 

treatments (ANOSIM, global R = 0.091, p = 0.016). In T4 samples, the only significant 

differences in community composition were between Control and N addition samples 

(ANOSIM, R = 0.144, p = 0.024). In T12 samples, significant differences were observed 

between N addition treatments and C (R = 0.158, p = 0.026) and Control treatments (R = 

0.346, p < 0.001; Figure 3.3). In T12, Combination treatments were significantly 

different from C plots (R = 0.243, p = 0.005; Figure 3.3). There were no significant 

differences in community composition between pulse and press treatments in T4 or T12. 

 

Fig. 3.4. Body size spectrum (BSS) for Collembola in response to aqueous (a) and solid (b) nutrient 

treatments. Each point represents the log-transformed abundance of a collembolan species of a certain log-

transformed mass. Lines are 75th quartile regressions of the most abundant species. The slopes of the 

regression lines are not significantly different according to ANCOVA. However, it appears that treatments 

that included nitrogen had a relatively greater abundance of smaller-bodied species, as indicated by the 

steeper slope and higher intercept at smaller sizes.   

a) b) 
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Body size spectra were generated separately for each addition type with abundances 

pooled by nutrient type. For both aqueous and solid treatments, there were no significant 

differences between slopes according to ANCOVA tests (Figure 3.4). However, for both 

addition types, there appeared to be a relatively greater abundance of smaller-bodied 

species (as indicated by a higher intercept) under N and C+N nutrient addition.  

3.4 Discussion  

3.4.1 Nutrient addition on Collembola communities 

Concurrent and concomitant with changes in climate are the anticipated changes in 

resource and nutrient dynamics in boreal forest soil systems. Which nutrients and how 

these nutrients will enter the soil system are anticipated to dictate whether nutrient 

addition will have a positive (van der Wal et al. 2009), negative (Boxman et al. 1998;  

Xiankai et al. 2008; Xu et al. 2009) or neutral effect (Cole et al. 2008) on soil 

biodiversity. Generally, it is thought that highly productive ecosystems will sustain a 

greater proportion of fast-growing plants, which in turn will support higher soil bacterial 

biomass and a greater proportion of earthworms with a loss of microarthropods (Wardle 

et al. 2004). In this study, despite nutrient additions equivalent to 56 kg ha yr-1, nutrient 

addition in the form of labile C and biologically available N had only minor effects on the 

collembolan community. A study by Maraun and colleagues (2001) using aqueous 

nutrient addition added as much as 2.8 g m2 yr-1 glucose and 102 g m2 yr-1 ammonium 

nitrate (simulating five times greater natural litterfall input) split between treatments 

every two weeks without seeing direct effects of N addition on Collembola. In that 

experiment, it was found that C addition significantly reduced collembolan density unless 

phosphorus was also added, but this was theorized to be due to the detrimental effects of 

increased earthworm densities in response to C changing soil structure (Maraun et al. 

2001). 

The addition of N mimicking 2050 atmospheric deposition rates kept collembolan 

richness at 12 months post-application comparable to 4 month post-application, although 

T12 samples were not significantly different in richness with or without N. This contrasts 

with previous studies which found a loss of abundance and richness in response to N 
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inputs equivalent to 25 kg N ha-1 yr-1 (Xu et al. 2009). In a review of nutrient addition 

experiments, Xiankai and colleagues (2008) hypothesized that N deposition will actually 

cause global soil biodiversity loss. However, an experiment by van der Wal and 

colleagues (2009) found that a long term (40 year) addition of multiple nutrients, 

including 160 kg N ha-1 yr-1, resulted in a positive impact on collembolan biomass when 

paired with P (31 or 52 kg ha-1 yr-1) and K (291 or 332 kg ha-1 yr-1) addition. The current 

study seems to provide evidence for neutral or slightly positive bottom-up effects of N 

addition on Collembola. The short term pulse of N addition seemed to have a stronger 

effect than the N press because the interaction between nutrients and time appeared 

significant for species richness, although the effect was limited to a minor increase in 

richness. Aqueous addition of nitrogen, both individually and in combination with C, 

caused significant burning of the moss carpet, which may have upset microbial 

community composition (Plate 2). This burning effect persisted one year after treatment.  

Body size spectra revealed slight positive effects of N addition on smaller bodied species 

(Figures 3.4 and 3.5). This may be compared to previous findings by Mulder (2010), 

where N availability partially explained collembolan abundance. In that study, large soil 

fauna were particularly affected by lack of nutrients, leading to steeper BSS slopes 

(Mulder 2010). It appears that in my study, smaller species which would typically be 

associated with euedaphic, fungivorous or bacterivorous life history strategies were more 

Plate 2. Moss plot at experimental setup (left) and four months after aqueous addition of 5.6 g m-2 yr -1 

ammonium nitrate (right). Aqueous N addition, whether combined with aqueous carbon addition or not, 

caused significant burning of the moss carpet, which may have had further effects on belowground 

microbial communities.   
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affected by N addition, which is a preliminary indication that N addition positively 

affected the microbial community, either directly or through positive effects on plant 

growth which increased root exudate availability and litter quality for microbes. These 

positive effects may then have been transferred to these smaller species through a 

bottom-up trophic cascade.  

3.4.2 Mechanisms for indirect effects of nutrients 

Any effects of nutrient addition on collembolan communities would have to be indirect, 

through changes in microbial biomass or plant growth. One explanation is that an 

increase in microbial growth and availability in these plots over winter caused an increase 

in available resources for Collembola, and facilitated individual survival, and therefore, 

maintained species richness for T12 sampling. Microbial effects and microbial biomass 

have been indicated as a dominant factor in Collembola abundance (Filser et al. 2002). 

However, an increase in microbial biomass would lead to a general increase in the 

abundance of many species, and not just Collembola. For example, long-term Ca and N 

(120 kg N ha-1 yr-1) additions were found to increase microarthropod densities and the 

proportion of predators, but did not affect overall microarthropod diversity (Cole et al. 

2005). 

It is difficult to predict which species will benefit from resource addition due to the 

complexity of soil food webs caused by the prevalence of omnivory (Ruess et al. 2005) 

and diet switching (Ladygina et al. 2008), the heterogeneity of soil structure, and the 

mobility of predators (Chen & Wise 1999). Fountain and colleagues (2008) found that 

only two of 17 collembolan species and one of 44 spider species were affected by N 

addition (240 kg ha-1 yr-1) and liming in a Scottish soil. This is thought to indicate that in 

fertile soils where nutrients are transferred to higher trophic positions predation pressure 

is able to prevent competitive exclusion, and therefore, maintain grazer diversity (Cole et 

al. 2005). It is known that Collembola differ in their efficiency of resource retention, 

metabolic rates, and investment in reproduction, which are thought to be adaptations to 

different resource availabilities (Larsen et al. 2009). This may partially explain the 

increase in abundance of specific species following nutrient addition. In my study, it 

appears that small-bodied species were more positively affected than larger-bodied 
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species. Differences in T12 community composition between N added plots and Control 

and C plots were driven by higher abundances of the dominant Folsomia penicula and 

Onychiurus (A.) absaloni, a relatively high prevalence of the Entomobryid Argenia 

cyanura, and increased prevalence of a Neanurinae species from the genus Hypogastrura. 

Unfortunately, the sample plots in this experiment were too small to capture enough apex 

soil predators (spiders and centipedes) to draw definitive conclusions on predator 

densities or potential energy transfer to higher trophic positions. 

Another potential explanation for the small effect on collembolan richness one year after 

nutrient addition is indirect effects through the plant community. Increased moss growth 

under N deposition could lead to deeper moss mats and increased vascular plant root 

growth, which would in turn lead to higher microbial biomass and potentially buffer soil 

temperature over winter. It was found in a long-term nutrient addition study that 

collembolan density increased in parallel with plant biomass in response to NPK 

addition, leading to the hypothesis that microarthropod abundances are positively related 

to plant biomass (van der Wal et al. 2009). However, in a study by Cole and colleagues 

(2008), experimental additions of N fertilizer up to 24 g per m2 yr-1 over a 2-year period 

increased plant biomass but did not affect collembolan abundances in undisturbed 

conditions. Although increased root growth could give a competitive advantage to species 

which rely on saprotrophic microbes, it is not known if root growth or microbial biomass 

truly increased. Conversely, burning of the moss mat could cause a short term burst of 

nutrients as fungi and bacteria decompose the plant material, which would have bottom-

up effects on Collembola. The stronger positive effect of N addition on small species 

typically thought to be euedaphic and microbiovorous may indicate this was the case. 

Temperature buffering could be predicted to cause increased collembolan abundance for 

all species, with greater advantage given to species which are more cold-sensitive, but it 

is not known if those species which were higher in abundance in N treatments exhibit 

these characteristics. Further research could examine their feeding characteristics and 

temperature optima.    

The effects of C addition were less than for N addition. Treatments with C addition were 

meant to mimic increased availability of root exudates, which is predicted under 
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increased atmospheric CO2 and may lead to increased C uptake by soil microbes (Ruf et 

al. 2006). The only significant effect of C addition was higher evenness in T12 samples 

under press conditions, which was comparable to T4 samples but not significantly 

different from T12 samples without C addition. The addition of 6.4 g C per m2 is not 

likely to alter C:N ratios sufficiently to affect fungal:bacterial ratios in this system, given 

the slope of the global relationship (Fierer et al. 2009). This could be a further indication 

that this system is not C-limited and that N availability is a more important determinant 

of microbial growth. Although bacteria are thought to respond more to C limitation on a 

global scale (Bardgett & Wardle 2003), it is thought that bacteria require more N than 

fungi for each unit C of biomass growth (Bardgett & McAlister 1999; Kuijper et al. 2005; 

Fierer et al. 2009), which may explain the lack of effect with C alone. Another possible 

explanation is that changes in fungal:bacterial ratios did occur, but Collembola switched 

diets as they are well documented to do in response to food quality (Klironomos et al. 

1992; Ruess et al. 2005; Chamberlain et al. 2006; Ladygina et al. 2008), temperature, and 

age (Haubert et al. 2007). This diet switching may have provided a small advantage to 

less common species, leading to slightly increased evenness. 

3.4.3 Seasonality of Collembola Communities 

Deviations from regular seasonal patterns are of chief interest in determining the effects 

of nutrient additions. The data show a considerable seasonal effect, with abundance and 

richness of Collembola peaking in fall (T4) samples. There was also a seasonal shift in 

community composition where four species in the family Sminthuridae and one species 

in the family Isotomidae were more abundant in the fall and did not appear (or only a 

single individual appeared) in spring (T12) samples. This parallels findings by Chagnon 

and colleagues (2000) who found evidence of seasonal abundance changes in eight 

epigeic species from Quebec sugar maple forests but no evidence of seasonality in 

euedaphic species. However, a study by Rochefort and colleagues (2006) found no 

evidence of seasonal shifts in abundance during one year of May to October sampling in 

an urban Quebec City lawn. The findings of this study also contrast with Hijii (1987) who 

found that soil microarthropod abundances were similar between seasons in a Japanese 

cedar plantation. Seasonality may play a larger role in more northerly forests where 
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winters are more severe and productivity is generally lower, leading to greater costs of 

overwintering and a more pronounced recovery of faunal abundances during the growing 

season. Therefore, the most compelling result of this experiment is that collembolan 

density and richness in the spring one year after treatment were comparable to densities 

the preceding fall in plots supplemented with aqueous nitrogen fertilizer, whereas plots 

without N addition contained lower collembolan density and richness, and the overall 

trend indicated a significant decrease in collembolan density and richness from T4 to 

T12. However, there were no significant differences between nutrient treatments in the 

fall. This indicates that the primary effect of long-term N addition in the boreal forest will 

be more rapid rejuvenation of the collembolan community following winter, but only at 

relatively high levels of rapidly accessible N. 
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4 Interactions between environmental effects on soils 

4.1 Consequences of global environmental change on soil 
biodiversity 

As stressed by Kardol and colleagues (2011), it is important to study the multiple effects 

of GEC factors on soil communities simultaneously, as they will actually apply to soils, 

to discover interactions between environmental factors. My research has sought to do 

exactly this, and echoes previous findings that interactions between environmental 

variables can be more important than direct effects. The most notable example was the 

effect of air temperature directly and indirectly through changes in moisture on soil 

biodiversity. Many studies have reinforced that the effects of increased temperature on 

soil fauna are expressed by increased evaporation from soil, and therefore, drying 

(Blankinship et al. 2011; Kardol et al. 2011; Makkonen et al. 2011). Blankinship and 

colleagues (2011) especially stressed that the effects of temperature on soil mesofauna 

were mostly explained by resulting changes in soil drying and that only cold, dry forest 

communities demonstrated significant direct responses to warming.  

Temperature is also expected to interact with nutrient dynamics through increased 

decomposition and plant growth rates: for example, a model by Xu-Ri and colleagues 

(2012) suggests that warming could increase N2O emissions from natural systems by 1 

Tg yr-1 per approximate 1 °C increase in temperature. Their model also indicated that 

rising CO2 is most likely to interact with this pattern through its effect on warming (Xu-

Ri et al. 2012). Zaehle (2013) modeled a more conservative increase in N2O emissions of 

0.5 Tg N yr-1 per 1 °C of warming and reiterated the importance of N limitation in global 

C sequestration. Atmospheric CO2 levels, while not directly affecting soil communities 

that are adapted to high CO2 levels in soil, can also interact with nutrient cycles. 

Eisenhauer and colleagues (2012) found that increased atmospheric CO2 in a long-term 

field experiment had a positive effect on soil moisture and net primary productivity that 

resulted in increased detritivorous microarthropod densities which counteracted the 

negative effect of N fertilization.  
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Although temperature, precipitation, and CO2 may interact with nutrient levels to alter the 

community composition of soil fauna, significant functional redundancy in soils may 

buffer the system against changes in process rates. For example, Hunt and Wall (2002) 

developed a model of soil biodiversity incorporating 15 functional groups and 

successively removed them from the model to check for effects on the other functional 

groups. They found that only the removal of six of the 15 functional groups modeled 

affected the abundance of another group (Hunt & Wall 2002). Their model also predicted 

that only the loss of bacteria, saprotrophic fungi, and root-feeding nematodes would have 

major effects on ecosystem function (specifically decomposition). The functional 

redundancy of soil fauna has been supported by empirical studies, such as by Salminen 

and colleagues (2009), who found that exclusion of nematodes and enchytraeids changed 

bacterial community composition but did not affect decomposition rates or soil C and N 

content. While Wall and colleagues (2008) found that richness was a predictor of 

decomposition rates across geographic regions in a global litter bag study, the functional 

redundancy of soil fauna and the ability of fauna such as Collembola to switch diets 

(Ruess et al. 2007) makes predicting the effects of species loss at local scales 

problematic. 

I found that increased precipitation severity decreased the density and richness of 

Collembola, which contrasts with previous studies that have found decreased 

collembolan abundance under drought regimes (Pflug & Wolters 2001, Kardol et al. 

2011, Makkonen et al. 2011). This also contrasts with the collembolan susceptibility to 

desiccation noted by Tsiafouli and colleagues (2005) and others, suggesting that 

Collembola communities in general have an optima soil moisture and are sensitive to 

physical disturbances in soil systems. I also observed a shift in community composition 

towards species with epigeic characteristics, suggesting surface-dwelling collembolans 

are most responsive to climate changes. These results may be compared with the findings 

of Makkonen and colleagues (2011) who found similar shifts in epigeic species in 

response to the loss of soil moisture. However, collembolan community responses 

appeared to affect all size classes similarly. I posit that increasingly severe precipitation 

events, as well as severe drought act as a disturbance in the surface soil system, either by 

altering fungal:bacterial ratios or in the case of intense and frequent precipitation, by 
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decreasing the amount of habitable air-filled pore space. I am not aware of any previous 

studies framing the effects of severe precipitation on soil communities as a disturbance. 

However, my research provides evidence that moisture-related disruptions to soil 

microbial communities and pore composition can override positive effects of increased 

soil moisture. My research also provides evidence that variation in soil moisture content 

(wetting and drying cycles) may be a more important factor in determining mesofaunal 

response than moisture content alone. Other microarthropods may respond differently to 

increasingly intense precipitation – I refer primarily to mites, which do respond to 

changes in soil moisture but are thought to be more tolerant to moisture changes than 

Collembola due to their globular body shape and thicker cuticle (Harte et al. 1996). But 

moisture-tolerant mites may not be able to tolerate loss of pore space or shifts in 

microbial community composition, so the structural and biotic consequences of more 

severe precipitation regimes may detrimentally affect soil fauna formerly thought to be 

tolerant to moisture fluctuations. The effects of GEC on habitable soil pore space are 

poorly studied and require further research.  

The addition of N had a slight positive effect on collembolan density and richness, 

especially in smaller-bodied species, in contrast to reviews (Wardle et al. 2004; Xiankai 

et al. 2008) and studies (Boxman et al. 1998; Xu et al. 2009) that have found negative 

effects of N fertilization on mesofauna. Positive effects of N treatments on abundance 

and richness were apparent despite a lower level of N addition (56 kg ha-1 yr-1) and a 

shorter period of study (one year) than many other experiments used (e.g., 160 kg ha-1 yr-

1 over 40 years to show positive effects in van der Wal and colleagues (2009)). This may 

be caused by initial N availability in the system as it is known that boreal forests are 

generally N-limited (Galloway et al. 2004) and positive effects of N addition on 

mesofauna have been observed in nutrient-poor systems (Cole et al. 2008). Under 

aqueous N fertilization ‘burning’ of the moss carpet was observed without negative 

consequences for collembolan density and richness. This seemingly counter-intuitive 

result (i.e., loss of substrate resulting in increased diversity) may be by the death and 

decomposition of these mosses providing a temporary increase in fungal abundance, 

which subsequently bolstered their collembolan consumers, specifically the small 

euedaphic species most able to enter small pore spaces where fungal hyphae had 
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penetrated. This increase in collembolan abundances and richness would therefore be 

time-delayed as fungi spread to take advantage of decaying moss, but would also be 

temporary, and I would expect this shift to disappear as moss decay and fungal activity 

decreased. In order to determine if fungal (bottom-up) factors and ascertain whether more 

fertility-adapted plants could then colonize the former moss mat and support a 

collembolan community, longer-term monitoring would be required. 

4.2 Soil theory as it applies to general ecology 
Research in soil ecology has not yielded theories that can satisfactorily explain the 

immense complexity of the soil system (see Lavelle 2009). However, work in this 

exceptionally interconnected component of the environment is valuable for the theoretical 

perspective it can give on systems where certain key assumptions or patterns are not 

present. For example, the Intermediate Disturbance Hypothesis (IDH) does not apply 

well to soil systems: increasing disturbance leads to decreases in soil biodiversity in 

almost all cases, especially in response to agricultural processes, rather than reaching an 

optimum at intermediate levels (see Bardgett et al. 2005). My research suggests that this 

could be predominantly due to changes in physical soil structure caused by disturbance. 

For example, decreases in habitable pore space caused by more intense precipitation 

detrimentally affected all size classes of Collembola, rather than giving an advantage to 

the smaller species still able to navigate the soil environment. This suggests that 

disturbances and other top-down effects are likely to have a universally detrimental effect 

on biodiversity if they decrease habitable spaces, such as what occurs under land use 

change resulting in soil compaction or removal. My research also highlighted differential 

responses between species whereby certain globular, pigmented species (Family 

Sminthuridae) were more successful under increased precipitation and temperature 

regimes. This is a potential avenue for further use of trait-based research to better define 

which traits are most associated with tolerance to disturbances. An extension of the 

experiment detailed in Chapter 2 could be to return all mesocosms to normal conditions 

and track which species traits and body sizes are most associated with recovery following 

disturbance. 
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Trophic relationships have been difficult to quantify in soil food webs because of the high 

prevalence of omnivory, diet switching, and intraguild predation, combined with internal 

trophic feedbacks caused by turnover and decomposition of predatory mesofauna and 

macrofauna by their former prey (Scheu 2002). However, several studies have 

highlighted that soil communities do respond to bottom-up control (Cole et al. 2005) and 

that responses of soil fauna to bottom-up effects differ depending on age (Fountain et al. 

2008), trophic position (Maraun et al. 2001), and relationship to the plant community 

(Eisenhauer et al. 2012; Murphy et al. 2012). These studies showing variable effects 

highlight the need for trait-based approaches that assess the relative importance of basal 

resources to different trophic positions in the soil food web.  

My research indicates maintained richness after one year in response to short-term N 

addition and maintained evenness after one year in response to C addition, compared to 

seasonal patterns. This demonstrates that these differential effects of bottom-up control 

may apply to boreal forest soil communities. On a broader scale, this complexity of 

trophic relationships in soil encourages broader thinking about trophic relationships in all 

systems because of the coupling between production and decomposition processes. 

Strong linkages have been demonstrated between aboveground and belowground 

processes (Wardle et al. 2004), whereby litter qualities (such as C:N ratios) can have 

strong effects on soil communities (Bardgett 2005), and plant diversity can be 

reciprocally positively affected by soil diversity (Eisenhauer et al. 2012; Sabais et al. 

2011). Further research is needed to quantify the effects of certain traits and trait 

diversities on the rate of ecosystem processes, and work could be done to search for 

relationships between above and belowground organisms rather than treating the systems 

separately.  

4.3 Diversity and seasonality of boreal forest Collembola 
It should be noted that seasonality has not been a major factor in other collembolan 

studies (Rochefort et al. 2006) but appeared to be present in my nutrient-addition study, 

with populations in the fall demonstrating higher collembolan density and species 

richness compared to the spring. It is possible that this was due to an interaction with 

nutrient availability, as decomposition increases in the warm summer months creating 
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more fungal availability for Collembola, or due to increased precipitation over the 

summer which increased soil moisture content to support more species. However, there is 

also a strong possibility that decreased collembolan density and richness was the result of 

vertical migration by epigeic species which may appear to change community 

composition but does not truly change total abundance (Chagnon et al. 2000; Krab et al. 

2010). Broader sampling with deeper soil cores, several varieties of collection, and some 

measurement of egg or juvenile presence would be required to thoroughly examine 

species-specific responses to seasonality in this community. However, for any of these 

explanations for seasonal variation, these patterns are likely to become more pronounced 

under future GEC conditions as temperature and precipitation extremes become more 

common, either leading to more seasonal fluctuation in abundance or a greater prevalence 

of vertical migration.  

4.4 Concluding remarks 
In this thesis, I demonstrated that collembolan diversity and community composition 

respond to the increases in temperature, atmospheric CO2, precipitation, and nutrient 

deposition predicted for the next century of GEC. In a laboratory mesocosm study I 

demonstrated that warmer temperatures with more intense rainfall are likely to lead to 

decreased abundances and richness in collembolan communities, due to severe 

precipitation events acting as a direct disturbance. In a year-long field manipulation, I 

found that pulse events of N input are likely to increase abundance and richness, at least 

in the short term. Long-term effects will depend on changes in physical soil structure and 

chemical properties, as well as the effects of these factors on other soil biota and the 

aboveground plant community. In these experiments I found that GEC caused different 

effects on community composition depending on collembolan life strategies and body 

sizes. The potential consequences for a shift in epigeic species, with larger body size and 

more detritivorous feeding, may alter rates of mechanical breakup of litter leading to 

changes in ecosystem-level processes such as decomposition and nutrient cycles. 

Understanding soil biodiversity is intricately linked to our understanding of how 

ecosystems will change under future environmental conditions. This represents a step 
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forward in understanding the future of the living world beneath our feet, which all 

terrestrial life springs from and to which it must return. 
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Appendices 

Appendix A. Densities of Collembola (individuals per 100 g) from soil/moss mesocosms subjected to fully crossed temperature, CO2, and moisture 

conditions (D = Drought, C = Control, S = Saturated) for 18 weeks.  

  11.5 °C 15.5 °C 19.5 °C 

  430 ppm 750 ppm 430 ppm 750 ppm 430 ppm 750 ppm 

Species Initial D C S D C S D C S D C S D C S D C S 

Entomobryidae                    

Corynothrix borealis 

Tullberg, 1876  

6.35 ± 

0.31 

9.15 ± 

1.63 
- - 

3.91 ± 

0.45 
- - 

5.29 ± 

1.13 

13.24 ± 

5.08 
- 

5.34 ± 

0.91 
3.61 - 2.87 

4.99 ± 

0.51 
- 

7.81 ± 

0.50 

7.65 ± 

1.06 
- 

Hypogastruridae                    

Hypogastrura (H.) sp. 1 
2.03 

±0.16 
11.72 

7.11 ± 

0.72 
- - - - 4.07 

32.97 ± 

12.13 
- 

3.08 ± 

0.11 
3.61 - 14.33 

15.28 ± 

3.07 
2.62 - 4.07 - 

Neanurinae sp. 1 
97.33 

± 4.74 

52.48 ± 

9.90 

157.86 ± 

28.74 

16.87 ± 

4.31 

35.06 ± 

10.18 

20.53 ± 

2.50 

53.61 ± 

17.87 

110.75 ± 

25.44 

95.00 ± 

21.04 

12.29 ± 

3.59 

46.78 ± 

6.42 

90.77 ± 

12.05 

17.16 ± 

1.23 

59.18 ± 

19.91 

101.53 ± 

12.60 

8.31 ± 

2.70 

68.98 ± 

13.07 

188.94 ± 

29.85 

37.61 ± 

8.31 

Oudemansia sp. 1 
97.33 

± 4.74 

46.90 ± 

6.95 

21.08 ± 

3.81 

14.36 ± 

2.31 

87.75 ± 

20.11 

93.94 ± 

16.59 

20.76 ± 

6.32 

221.12 ± 

86.03 

42.11 ± 

13.10 

59.73 ± 

16.57 

19.73 ± 

3.75 

46.44 ± 

6.73 

50.51 ± 

21.48 

356.90 ± 

142.28 

98.12 ± 

34.48 

24.36 ± 

4.14 

12.17 ± 

1.88 

45.52 ± 

6.74 

313.78 ± 

14.48 

Paranura colorata Mills, 

1934 

2.36 ± 

0.32 

5.79 ± 

0.99 

6.43 ± 

1.79 
4.32 - 3.68 

7.70 ± 

1.47 

5.02 ± 

0.60 

15.48 ± 

5.73 
15.82 

5.93 ± 

0.73 

3.83 ± 

0.10 
- 

3.05 ± 

0.19 

7.00 ± 

1.58 
- 6.32 

3.66 ± 

0.18 
28.48 

Isotomidae                    

Argenia cyanura Fjellberg, 

1986 

18.44 

± 0.73 

100.69 ± 

18.96 

50.59 ± 

5.04 

19.65 ± 

2.38 

48.79 ± 

9.02 

30.63 ± 

3.55 

9.80 ± 

1.88 

20.33 ± 

2.59 

19.12 ± 

2.51 

18.80 ± 

7.35 

22.33 ± 

3.68 

63.63 ± 

11.69 

18.48 ± 

2.10 

43.11 ± 

5.73 

350.58 ± 

86.34 

171.61 ± 

58.76 
6.58 

200.70 ± 

35.28 

33.99 ± 

6.07 

Isotoma (D.) uniens 

Christiansen & Bellinger 

1980 

3.77 ± 

0.56 
5.05 

8.98 ± 

3.01 
4.04 - 

22.23 ± 

9.06 
- - 17.54 2.68 3.51 - - - - - - 3.31 - 
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Isotomid sp. 1 
2.48  ± 

0.29 
- - - 4.80 - - 15.09 - 

22.70 ± 

10.08 
- - - - - - 16.45 - - 

Isotomiella minor 

(Schäffer), 1896 

19.52 

± 0.94 

40.89 ± 

7.66 

98.63 ± 

22.38 

31.69 ± 

8.33 

42.60 ± 

10.23 

40.87 ± 

12.54 

9.86 ± 

2.20 

205.66 ± 

63.46 

56.29 ± 

15.34 

22.79 ± 

5.13 

48.75 ± 

5.20 

150.06 ± 

34.46 

6.09 ± 

0.53 

114.69 ± 

23.11 

132.70 ± 

25.09 

9.00 ± 

3.19 

247.14 ± 

62.48 

89.73 ± 

15.61 

20.18 ± 

4.73 

Folsomia penicula Bagnall, 

1939 

730.36 

± 

19.64 

2045.28 

± 207.4 

705.89 ± 

106.95 

97.60 ± 

12.41 

932.88 ± 

73.00 

1438.71 ± 

286.09 

253.39 ± 

47.28 

1037.83 ± 

81.30 

587.95 ± 

97.08 

75.37 ± 

22.22 

1571.30 ± 

99.12 

1068.52 ± 

130.71 

22.96 ± 

6.58 

1844.39 ± 

360.67 

774.48 ± 

160.78 

79.51 ± 

17.28 

1656.91 ± 

136.91 

753.32 ± 

96.26 

51.19 ± 

6.41 

Onychiuridae                    

Onychiurus (A.) absoloni 

(Börner), 1981 

45.31 

± 2.51 

150.33 ± 

25.55 

20.63 ± 

4.00 

78.08 ± 

6.03 

287.23 ± 

86.72 

358.61 ± 

41.41 

138.85 ± 

24.64 

293.51 ± 

77.54 

320.58 ± 

150.19 

59.57 ± 

13.89 

170.30 ± 

37.17 

696.34 ± 

65.57 

45.29 ± 

6.61 

102.52 ± 

14.61 

98.58 ± 

19.37 

239.98 ± 

33.96 

259.37 ± 

57.45 

625.57 ± 

100.16 

176.61 ± 

26.98 

Onychiurus sp. 1 - 
70.25 ± 

9.41 

308.83 ± 

78.16 
4.32 - 

21.34 ± 

2.12 
- 

98.37 ± 

25.99 

44.89 ± 

7.25 
3.57 - 32.49 - 

41.10 ± 

8.15 

134.53 ± 

17.99 
7.69 38.22 73.45 - 

Tullbergia (M.) iowensis 

Mills, 1932 

247.85 

± 

11.58 

91.82 ± 

14.84 

234.88 ± 

35.66 

18.44 ± 

2.81 

54.02 ± 

16.88 

29.47 ± 

1.88 

39.91 ± 

6.23 

143.69 ± 

18.68 

74.01 ± 

12.23 

19.12 ± 

4.87 

24.90 ± 

1.97 

40.60 ± 

2.35 

18.86 ± 

2.96 

358.57 ± 

88.62 

178.28 ± 

26.79 

13.63 ± 

1.57 

83.93 ± 

13.86 

17.67 ± 

2.67 

8.19 ± 

1.22 

Willemia sp. 1 
49.61 

± 1.64 

14.50 ± 

3.19 

19.22 ± 

2.48 
- - - - - 

13.43 ± 

2.37 
- - - - 11.46 

18.66 ± 

4.87 
10.47 - - - 

Willemia sp. 2 - - - - 
21.65 ± 

5.39 

7.88 ± 

0.17 

14.30 ± 

3.45 
- - - 

11.54 ± 

1.59 

27.65 ± 

2.36 

5.56 ± 

1.00 
- - - 

11.30 ± 

0.72 

14.30 ± 

2.66 

10.80 ± 

0.65 

Paronellidae                    

Salina sp. 1 
0.70 ± 

0.93 
3.49 - - - - - - - - - - - - - - - - - 

Sminthuridae                    

Arrhopalites obtusus 

Zeppelini & Christiansen, 

2003 

- 
7.09 ± 

0.85 

10.91 ± 

0.59 

6.64 ± 

0.32 
3.01 - - - 

11.43 ± 

2.35 
- 

7.76 ± 

2.31 
27.34 - 20.06 

46.91 ± 

5.87 

5.84 ± 

0.55 
32.37 

23.48 ± 

1.87 

16.04 ± 

4.15 

Arrhopalites sp. 1 - - - 3.64 
4.02 ± 

0.39 

3.91 ± 

0.07 
- 

4.76 ± 

0.66 
- 2.55 

15.70 ± 

4.34 
3.61 - 

6.04 ± 

0.83 
- 

15.54 ± 

6.02 
3.60 

13.07 ± 

2.87 

35.19 ± 

14.95 



75 

 

Collophura quadrioculata 

(Denis), 1933 
- - 11.36 10.92 

5.43 ± 

0.66 

14.04 ± 

3.25 
4.06 

14.20 ± 

2.64 

27.11 ± 

4.90 

8.59 ± 

2.22 

53.91 ± 

12.19 

46.24 ± 

8.92 

3.34 ± 

0.11 
- - 

157.97 ± 

72.55 

27.03 ± 

8.99 

62.24 ± 

13.06 

210.96 ± 

82.03 

Sminthurus (S.) medialis 

Mills, 1934 
- 

17.38 ± 

2.73 
11.36 

6.04 ± 

1.16 

10.11 ± 

1.09 
8.21 

5.37 ± 

0.46 
4.07 8.06 

3.06 ± 

0.26 

30.33 ± 

6.53 
2- ± 4.03 - 

2.99 ± 

0.11 

14.32 ± 

5.24 

10.65 ± 

2.48 

6.58 ± 

0.81 

54.06 ± 

17.70 

236.03 ± 

102.61 

Sminthurides (S.) violaceus 

Reuter, 1881 

0.74 ± 

0.07 

41.69 ± 

9.10 

28.13 ± 

5.63 

14.55 ± 

1.18 
9.60 

11.45 ± 

3.70 
- 

9.73 ± 

0.80 

8.48 ± 

0.61 
2.68 

25.96 ± 

6.88 

32.57 ± 

8.96 
- 

8.00 ± 

0.62 

276.72 ± 

37.09 
2.92 

9.71 ± 

0.08 

75.55 ± 

11.86 

39.89 ± 

10.94 

Tomocerinae                    

Tomocerus (P.) flavescens 

Tullberg, 1871 

9.06 ± 

0.47 

20.03 ± 

8.27 

4.64 ± 

0.18 
3.64 9.60 8.21 - 

4.60 ± 

0.51 

4.94 ± 

0.45 
- 7.17 

10.93 ± 

1.66 
2.65 - 20.58 - 9.87 - 14.08 

Tomocerus sp. 1 
0.54 ± 

0.07 
- - - - - - 7.55 - - - - - - 4.57 - - - - 
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Appendix B. Densities of Collembola (individuals per 100 g) from experimental plots in a black spruce forest treated with fully crossed aqueous or 

solid N, C, C + N nutrient additions or control (Con) conditions initially (T0), after four months (T4), and after twelve months (T12).  

 T0 T4 T12 

 Aqueous Solid Aqueous Solid Aqueous Solid 

Species Con N C N+C Con N C N+C Con N C N+C Con N C N+C Con N C N+C Con N C N+C 

Entomobyridae                         

Corynothrix borealis 

Tullberg, 1876 
- - - - - - - - 

11.71 

± 3.00 

0.81 ± 

0.32 

5.46 ± 

1.47 

9.86 ± 

3.54 

4.76 ± 

1.17 

1.65 ± 

0.66 

1.81 ± 

0.70 

0.80 ± 

0.32 
- 

4.99 ± 

2.00 

0.37 ± 

0.15 

1.36 ± 

0.54 

0.61 ± 

0.25 
- 

0.69 ± 

0.28 

0.45 ± 

0.18 

Hypogastruridae                         

Hypogastrura (H.) sp. 1 
2.65 ± 

1.06 

1.25 ± 

0.50 
- - 

5.94 ± 

2.38 
- 

0.77 ± 

0.31 

9.26 ± 

3.70 

4.12 ± 

1.48 
- 

56.28 

± 

14.24 

0.84 ± 

0.34 

24.32 

± 7.39 
- 

11.73 

± 4.69 

29.99 

± 

12.00 

0.47 ± 

0.19 

16.14 

± 4.16 

0.92 ± 

0.37 

2.06 ± 

0.77 
- 

6.57 ± 

1.85 
- - 

Oudemansia sp. 1 
15.80 

± 3.09 

6.69 ± 

1.04 

3.25 ± 

0.82 

3.85 ± 

1.27 

14.86 

± 5.94 

7.11 ± 

1.44 

0.77 ± 

0.31 

2.94 ± 

0.58 

6.53 ± 

1.63 

37.44 

± 5.38 

5.45 ± 

1.34 

6.15 ± 

2.11 

21.95 

± 5.51 

55.08 

± 

16.17 

12.24 

± 1.81 

29.43 

± 7.18 

5.71 ± 

1.08 

24.00 

± 7.69 

0.34 ± 

0.13 

3.30 ± 

0.83 

4.19 ± 

1.36 

18.97 

± 5.45 
- 

7.35 ± 

1.67 

Neanurinae sp. 1 - - - - - - - - 
11.92 

± 3.27 

12.05 

± 4.82 

4.38 ± 

1.10 
- 

6.20 ± 

1.59 
- - 

5.72 ± 

2.02 
- 

14.96 

± 5.99 

0.67 ± 

0.27 

2.57 ± 

0.97 

1.38 ± 

0.33 

13.49 

± 3.46 

0.27 ± 

0.11 

0.90 ± 

0.36 

Paranura colorata Mills, 

1934 

2.65 ± 

1.06 

0.87 ± 

0.35 
- 

2.57 ± 

0.44 

7.59 ± 

1.27 
- - 

0.78 ± 

0.31 
- 

1.77 ± 

0.71 
- - - - - 

2.70 ± 

0.68 

0.93 ± 

0.37 

0.28 ± 

0.11 

0.75 ± 

0.19 

5.13 ± 

1.94 

3.20 ± 

0.84 

1.83 ± 

0.73 

0.75 ± 

0.19 

1.76 ± 

0.70 

Isotomidae                         

Argenia cyanura 

Fjellberg, 1986 
- 

3.76 ± 

1.50 
- 

1.41 ± 

0.35 

55.18 

± 

16.45 

13.54 

± 3.34 

10.25 

± 2.52 

48.29 

± 

13.98 

42.49 

± 

12.16 

15.65 

± 3.09 

1.89 ± 

0.76 

14.36 

± 2.95 

1.21 ± 

0.48 

6.22 ± 

1.05 

21.74 

± 5.79 

40.13 

± 

11.67 

2.13 ± 

0.85 

22.31 

± 5.91 

1.28 ± 

0.15 

16.67 

± 4.50 

3.50 ± 

0.97 

30.30 

± 5.62 

8.53 ± 

2.64 

12.14 

± 3.41 

Folsomia penicula 

Bagnall, 1939 

437.08 

± 

91.40 

170.91 

± 

56.51 

66.80 

± 

12.73 

93.10 

± 

14.26 

363.38 

± 

24.38 

109.12 

± 

14.21 

101.09 

± 9.52 

270.97 

± 

49.47 

839.67 

± 

92.37 

674.41 

± 

86.96 

408.65 

± 

50.77 

451.86 

± 

105.38 

842.10 

± 

110.51 

234.17 

± 

37.31 

569.61 

± 

104.95 

417.06 

± 

41.39 

75.03 

± 5.00 

322.26 

± 

68.73 

35.15 

± 4.24 

355.94 

± 

73.54 

229.61 

± 

51.94 

568.61 

± 

143.04 

62.12 

± 2.89 

88.68 

± 

13.05 

Folsomina sp. 1 
2.87 ± 

0.75 

0.29 ± 

0.12 

12.54 

± 3.09 
- - - 

2.72 ± 

1.09 

21.63 

± 7.20 

7.88 ± 

2.98 

5.54 ± 

1.50 

7.37 ± 

2.95 

0.95 ± 

0.38 
- - - 

6.22 ± 

1.01 
- 

8.93 ± 

2.08 

0.52 ± 

0.14 
- - - - - 
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Isotomid sp. 1 - 
0.29 ± 

0.12 
- 

1.51 ± 

0.42 

2.97 ± 

1.19 
- - - - - - - - 

3.31 ± 

1.32 
- 

1.50 ± 

0.60 

3.97 ± 

1.59 

0.74 ± 

0.30 
- - - - - - 

Isotomid sp. 2 - 
1.04 ± 

0.42 
- - - - - - - - - - - - - - - - - - - - - - 

Isotomid sp. 3 
4.06 ± 

1.62 
- - - 

2.97 ± 

1.19 
- - - - - - - - - 

1.17 ± 

0.31 

1.50 ± 

0.60 
- - - - - - - - 

Isotomid sp. 4 - - - - - 
0.93 ± 

0.37 
- 

1.56 ± 

0.62 
- - - - - 

1.65 ± 

0.66 
- - - - - - - - - - 

Isotomid sp. 5 - - - - - - - - 
3.63 ± 

1.45 
- - 

1.11 ± 

0.44 
- - - 

4.50 ± 

1.80 
- - - - - 

8.94 ± 

2.75 
- - 

Isotomid sp. 6 - - - - - - - - 

30.87 

± 

10.38 

9.04 ± 

3.62 
- - 

24.24 

± 7.35 
- 

6.49 ± 

1.46 

3.37 ± 

1.16 
- - - - - - - - 

Isotomiella minor 

(Schäffer), 1896 

48.14 

± 8.66  

13.04 

± 2.47 

20.13 

± 6.02 

21.50 

± 4.78 

64.99 

± 6.88 

22.40 

± 3.52 

9.29 ± 

2.12 

169.73 

± 

52.76 

94.52 

± 

14.28 

58.01 

± 9.95 

11.46 

± 2.67 

35.88 

± 7.83 

167.08 

± 

51.67 

34.91 

± 4.03 

61.52 

± 

12.50 

74.83 

± 

14.72 

10.90 

± 2.57 

46.31 

± 

15.10 

3.27 ± 

0.48 

18.49 

± 2.78 

10.81 

± 3.44 

17.57 

± 1.28 

5.22 ± 

1.25 

11.72 

± 1.55 

Onychiuridae                         

Onychiurus (A.) absoloni 

(Börner), 1981 

23.60 

± 4.31 

2.62 ± 

0.53 

9.78 ± 

3.32 

10.70 

± 1.90 

33.47 

± 5.37 

23.72 

± 3.12 

21.12 

± 4.08 

84.29 

± 

21.37 

147.66 

± 

27.14 

85.69 

± 

25.61 

38.50 

± 6.62 

32.61 

± 6.73 

102.24 

± 5.71 

66.10 

± 8.23 

45.19 

± 7.94 

207.48 

± 

44.15 

4.74 ± 

0.73 

52.17 

± 

13.24 

6.45 ± 

0.99 

90.26 

± 

25.46 

13.10 

± 1.16 

69.86 

± 

12.47 

11.73 

± 2.61 

24.44 

± 2.85 

Tullbergia (M.) iowensis 

Mills, 1932 

3.13 ± 

1.25 

6.35 ± 

1.41 

9.59 ± 

3.59 

6.11 ± 

1.77 

43.98 

± 5.83 

5.96 ± 

1.58 

4.98 ± 

0.95 

95.47 

± 

36.75 

31.47 

± 8.11 

80.33 

± 

19.72 

44.55 

± 4.89 

43.96 

± 9.57 

43.53 

± 5.51 

34.91 

± 3.89 

36.57 

± 

10.05 

71.68 

± 

11.53 

9.38 ± 

1.70 

50.98 

± 

13.90 

6.85 ± 

1.14 

26.78 

± 5.40 

6.75 ± 

0.94 

96.72 

± 

22.58 

4.32 ± 

0.75 

38.53 

± 8.97 

Willemia sp. 
2.09 ± 

0.84 

0.42 ± 

0.17 

3.13 ± 

0.89 

2.17 ± 

0.87 
- - - 

0.78 ± 

0.31 

2.76 ± 

1.11 

21.94 

± 4.12 

7.49 ± 

1.47 

7.22 ± 

2.89 

6.96 ± 

1.87 

3.29 ± 

1.32 

1.81 ± 

0.72 

5.02 ± 

1.12 

0.47 ± 

0.19 

14.46 

± 5.66 
- 

1.47 ± 

0.53 
- 

0.64 ± 

0.26 
- - 

Paronellidae                         

Salina sp. 1 - 
2.60 ± 

1.04 
- - 

5.71 ± 

1.73 

1.23 ± 

0.49 

1.49 ± 

0.47 

0.65 ± 

0.26 
- - - - - - - - - 

4.99 ± 

2.00 
- 

0.22 ± 

0.09 

0.15 ± 

0.06 
- 

1.06 ± 

0.42 

7.53 ± 

1.03 

Sminthuridae                         

Arrhopalites obtusus - 0.29 ± 2.27 ± - - - - - - - - - - - - - - - - - - - 0.28 ± 2.21 ± 
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Zeppelini & Christiansen, 

2003 

0.12 0.91 0.11 0.68 

Arrhopalites sp. 1 
4.06 ± 

1.62 

2.03 ± 

0.51 
- - 

4.04 ± 

1.16 

0.44 ± 

0.17 
- 

9.91 ± 

3.65 
- - - - - 

3.31 ± 

1.32 
- - 

1.32 ± 

0.53 
- - 

2.45 ± 

0.98 

0.61 ± 

0.25 

3.65 ± 

1.46 

1.63 ± 

0.41 
- 

Collophura quadrioculata 

(Denis), 1933 

4.06 ± 

1.62 

0.29 ± 

0.12 

0.85 ± 

0.34 
- - - - - - - - - - - - - 

0.47 ± 

0.19 
- - 

1.95 ± 

0.78 
- - 

0.55 ± 

0.13 

3.70 ± 

1.39 

Sminthurus (S.)  medialis 

Mills, 1934 
- 

0.29 ± 

0.12 

2.27 ± 

0.91 
- 

2.97 ± 

1.19 
- - - - - - - - 

3.28 ± 

0.80 
- - - - - - - - - 

1.76 ± 

0.70 

Sminthurides (S.) 

violaceus Reuter, 1881 
- - - 

2.76 ± 

0.84 
- - 

2.72 ± 

1.09 

9.26 ± 

3.70 
- - 

1.15 ± 

0.46 
- - - - - - 

7.35 ± 

2.82 

0.43 ± 

0.17 

7.36 ± 

2.94 

0.81 ± 

0.15 
- 

0.47 ± 

0.19 

1.76 ± 

0.70 

Tomoceridae                         

Tomocerus (P.) flavescens 

Tullberg, 1871 

1.04 ± 

0.42 
- - - - 

1.92 ± 

0.77 
- 

0.73 ± 

0.29 
- - 

1.15 ± 

0.46 
- - - - - - - - - - - - - 

Tomocerus sp. 2 - - - - - - - - - - - - - - - - 
0.28 ± 

0.11 

3.55 ± 

1.42 
- 

0.56 ± 

0.14 
- - - - 
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