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Abstract

Obtaining stable aqueous dispersions is one of the main challenges hindering a widespread and
effective use of single-walled carbon nanotubes (SWNT) in many applications. Although it has been
recognized that their versatility makes them an extremely attractive material, the unique molecular
structure that gives SWNTs their unmatched electronic, mechanical, and thermal properties is also
responsible for strong attractive forces between the nanotubes themselves. These are the result of
hydrophobically driven van der Waals interactions, which are an inherent consequence of their carbon
sp? hybridization network. This, combined with extremely high aspect ratios and flexibility, causes
SWNTSs to adhere strongly into tightly bundled ropes. In these bundles, SWNTs are not as useful as
their linearized unbundled equivalents. Thus, in order to fully take advantage of their properties
effectively, SWNTs must be debundled into individual nanotubes. Although several strategies have
been suggested as a means to overcome these challenges, non-covalently coated nanotubes using
amphiphilic molecules such as surfactants and polymers have gained significant attention in recent

years.

In this contribution we will report a characterization study on such a system containing the surfactant,
centrimonium bromide (CTAB) and the polymer, polyvinylpyrrolidone (PVP) at different molecular
weights. Initial tests using Vis-NIR spectroscopy showed that although individually these molecules
are poor dispersers of SWNTs, they show a synergic effect when combined for all cases. We have
probed the reasons for this observation using a battery of characterization techniques including
atomic force microscopy (AFM) viscosity, dynamic light scattering (DLS), surface tension,

electrophoretic mobility, and pH to unravel the system.

Our data suggests that the observed synergistic effect is linked to the formation of stable
supramolecular structures: “a 2-dimensional dispersion” as opposed to “1-dimensional” dispersion
systems, based on a single surfactant, traditionally used. Specifically, the polymer appears to add an
additional layer of stability by sterically augmenting dispersions through two possible effects: 1)
contact area between the polymer and nanotube and 2) viscosity-based effects. We propose our
approach as a facile way of augmenting current nanotube dispersion techniques, potentially allowing

for increased usage in the world today.

Keywords: Carbon nanotubes, dispersion augmentation, surfactant, polymers, rheology,

cetyltrimethylammonium bromide (CTAB), polyvinylpyrrolidone (PVP),
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Chapter 1: Background

Part of the fullerene class of nanomaterials, carbon nanotubes possess superior mechanical, electrical,
and thermal properties when compared to other materials commonly used.? This makes them
extremely attractive for applications in many different fields across science and engineering. Their
potential applications include nano-electrical systems,>* reinforcement for composites,” insulators for
high heat systems,® hydrogen storage,”® and catalysis.® However, one of the primary challenges in the
development of carbon nanotube-based technology is the inherent difficulty to properly disperse
them in hydrophilic environments due to the hydrophobicity of carbon and the subsequent strong
van der Waals interactions in close proximity. This is significant because it negates the ability to fully
take advantage of a nanotubes high aspect ratio and surface area — a virtue critical to main of the

applications above.

Several research groups have worked to develop ways to disperse nanotubes in aqueous solution.
Methods that have been developed include mechanically shearing the structures apart using
ultrasonication followed by either covalent or non-covalent modifications. Covalent modifications
involve the use of chemical reactions to attach a functional group to the wall of the nanotube. This
results in alteration of the carbon nanotube wall which can potentially affect its surface and even
electronic properties or even fragment them. Non covalent modifications normally take advantage of
surfactants (cationic, anionic, or neutral) and polymers to disperse the nanotubes.’® The surfactant
and polymer molecules used for this purpose possess both hydrophobic and hydrophilic domains
making them amphiphilic. As compared to other methods, the use of amphiphiles preserves the many
important properties of nanotubes making this a better strategy for dispersion. Thus, there has been
a substantial amount of work exploring the uses of both types of molecules for carbon nanotube
dispersion in aqueous systems. Such work has created an unlisted but generally agreed upon set of
criteria in the literature for which different dispersing agents are effective. This includes the necessity
of specific molecular features such as hydrophobic tails, aromatic moieties and charged groups in
surfactants and polymers allowing them to effectively adsorb onto the surface of nanotubes and
lower its surface energy. Currently, much of the research investigating the effectiveness of different
dispersing agents focus on the comparison of these agents one at a time. However, recent applications
involving carbon nanotubes are multi-component systems involving the dispersing agent plus other
elements. Sometimes this other element can be an additional surfactant or polymer while other times

it can be even be ceramics. For example, both a sodium cholate (SC) - sodium dodecylsulfate (SDS)



and a SDS-carboxymethylcellulose system, have both been used to firstly disperse nanotubes and then
purify them via density gradient ultracentrifugation.'> Additionally, surfactants and polymers such
as hexadecyltrimethylammonium bromide, polyacrylic acid, and polyethylene oxide have been used

to disperse nanotubes for the incorporation into a SiO, ceramic matrix.*3
1.1 Motivation

Early research by our group led to the development of a polyvinylpyrrolidone/centrimonium bromide
(PVP/CTAB) system for the dispersion of carbon nanotubes (CNTs) into a chitosan matrix.
Incorporation of the nanotube system in the chitosan scaffold led to a dramatic 20 fold increase in
Young’s modulus of the composite, compared to that of the unmodified chitosan matrix.}* As a result
of this significant improvement, the CTAB-PVP system was further explored here to determine its
mechanism and how it could be exploited and improved for an even greater enhancement in
dispersion. In addition, any results generated would be beneficial towards fillings the gap in
knowledge for multi-component dispersing systems as remarked on above. Therefore, this thesis
focuses on the specific determination of the mechanism of the CTAB and PVP system as a tandem
dispersing method. The system is characterized using colloidal analysis techniques including viscosity,
surface tension, atomic force microscopy and dynamic light scattering. The quality of nanotube
dispersion is evaluated using Vis-NIR spectroscopy. By probing this system more deeply, we aim to
obtain a better understanding on how surfactants and polymers can be used together to disperse
nanotubes. This will undoubtedly allow for the tailoring of multi-component composite systems more
effectively for the integration of CNTs in a multitude of electrical, thermal, mechanical motivated

applications.?®
1.2 Thesis Outline

This thesis presents work aimed at describing the mechanism of the CTAB/PVP surfactant polymer
system to disperse nanotubes. Chapter 1 provides a general scope of the thesis including the
background, motivation and research goals. Chapter 2 is a literature review of the field with the intent
of broadening and also deepening the general background and motivation presented in Chapter 1.
The topics that will be presented include the attractive features of nanotubes, and the challenges and
strategies used for dispersing them into hydrophilic environments. With regards to the latter section,
properties of surfactants and polymers will also be presented along with general theory on different

techniques used to analyze these systems. Chapter 3 will further elaborate on these experimental



methods - the theory behind each technique and the rationale behind each specific procedure used.
The results will then be presented and discussed in Chapter 4 and lastly, the thesis will close off with
a conclusion of the findings and future recommendations in Chapter 5 to further flesh out the true

potential of this research.



Chapter 2: Literature Review

2.1 Introduction

The development and quality of materials for the creation of different goods has been at the forefront
of human research since the dawn of human invention and construction. Indeed, components such
as glasses, metals, and polymers can be seen instantly in every direction throughout the world today.
However, a large amount of objects seen in our daily lives are also a product of several materials
combined. These composites are generally designed to have greater performance with a reduced cost
compared to their individual make-up components alone. How a composite is designed and what
materials will be used is of course dependent on the purpose of the product, e.g. strength in
construction cement and electrical conductivity in wiring. Sometimes more than one particular
property needs to be enhanced in order for the product to be attractive such as flexibility and weight
in sports equipment; and heat resistance, hardness, and chemical stability in automotive parts.
Unfortunately, the more properties that need to be optimized, the harder it is to find a suitable
material such that all requirements are met. Truthfully, there will always be tradeoffs in the design of
a product. A prime example is the use of hard plates in body armor which is effective in preventing
ballistic injury but limits movement significantly. Thus, a truly captivating primary component would
be one that has long lasting, high, and diverse performance properties that are tunable and have
relatively low trade-off with one another. Such a material may seem hard to imagine, but modern
research has paved the way for the development of several exemplary materials which are becoming
increasingly promising. In 1991 Sumio lijima discovered one of these new materials - a graphitic
coaxial cylindrical carbon structure formed from arc-discharge evaporation of graphite electrodes.
These came to be known as carbon nanotubes (CNTs) and they possess prominent and theoretically
tunable mechanical, thermal, electrical, and optical properties which can be easily exploited for
detection purposes.’® Because of this potential, research soon followed investigating their
incorporation into different composites? and subsequent studies have only reinforced their

prospective role as filler material among other applications.
2.2 Nanotube Structure and Properties

Nanotubes are a type of nanomaterial comprised completely of carbon, making them part of the
carbonaceous classification together with graphite and diamond. The basic unit of the nanotube

structure can be likened to that of a honeycomb where each vertex of the hexagon contains a carbon



atom. By extending the basic hexagonal unit repeatedly in 2D, the resulting object is a planar graphene
sheet filled with hexagonal carbons interconnected with each other (Figure 2.1). A nanotube is
subsequently formed by rolling up the sheet into a cylindrical form. Because of this base molecular
patterning, nanotubes also fall under the fullerene class of nanomaterials as well, fullerenes (or

buckyballs) being the first carbonaceous nanomaterial discovered by Kroto et al. (1985).28

Ay
\
\,Armchair
.
N

Figure 2.1: A) Diagram by Thostenson et al. (2001) illustrating the unit cell found in graphene and nanotubes. In
addition, the unit vectors @, and a, are given along with magnitudes n and m, the chiral vector, and chiral angle.
The path of an armchair and zig-zag nanotube are also given which are further shown in B) which was designed
by Dresselhaus et al. (1995) gives a 3D representation of a) armchair b)zig-zag and c) chiral nanotubes.*2°

The direction in which a graphene sheet is rolled up is significant however, because it can generate
many different chiralities which are directly linked to the nanotubes optical and electrical properties.
Different chiralities are denoted by (n, m) where both values are indices indicating the magnitude of
two unit vectors, commonly denoted a, and a,. These vectors are placed at an arbitrary vertex to
serve as the origin of “rolling up” on the graphene sheet. From these unit vectors, their sum, the chiral

vector, C, can be defined as below:

Ch = Tlal + maz (2.1)

This vector becomes significant in describing the electrical and optical properties which will be
described shortly. Other basic parameters such as the diameter (d) of the nanotube and its chiral
angle (8) between the two unit vectors can also be derived from n and m by using equations (2.2)

and (2.3).

- (2.2)
T

L avn?+nm+m?2
T



V3m
sinf = (2.3)
2Vn? + nm + m2

where a in equation (2.2) describes the length of the unit lattice vector and is often approximated as
0.246nm. In terms of the angle, it can reach a maximum of 30° when n = m and nanotubes that have
this configuration are commonly known as armchairs. An angular minima is reached at 0° when either
n or m is equal 0 in which case nanotubes are commonly referred to as zig-zag. These extreme

classifications and other species in between can be seen in Figure 2.1B above.
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Figure 2.2: TEM images of different MWNT acquired by lijima (1991).2% A SWNT would be a tube with only one
ring.

There are primarily also two types of nanotubes, single-walled nanotubes (SWNT) and multi-walled
nanotubes (MWNT). As the name implies, MWNT are essentially like SWNT except they possess
multiple walls wrapping around each other like the concentric rings of a tree (Figure 2.2). Because of
this they can have diameters from 5nm-50nm whereas SWNT usually have diameters below 5nm.
However, because MWNT can have multiple layers, their structure related properties are not well
understood. They are however cheaper to produce but SWNTSs, because of their more pristine and

genuine structure, show generally better performance when incorporated into composites. %22

2.2.1 Electrical Properties

One of the primary driving qualities of nanotubes that makes them so desirable in composites is their
electrical properties. The unique band gap structure of nanotubes makes their ability to carry
electrons very high.? In fact, early predictions using functions to model atomic orbitals and theories

of electron movement in a solid lattice predicted CNT conductivity to be higher than that of metals at



room temperature. Yao et al. (2000) experimentally demonstrated this by showing that some SWNTs
possessed a high current carrying density of 10° A/cm?, 1000 times that of copper and aluminum.*?*
When nanotubes are incorporated into composites, is when their electrical prowess become very
evident. For example, Kim et al. (2004) achieved a polymethylacrylate (PMMA)/MWNT composite
that had a conductivity of 3000 S/m with only 0.4 %wt/v of nanotube.?® Furthermore, Potschke et al.
(2004) incorporated MWNT into a polyester composite and found a 16 fold increase in the
conductivity. They achieved this with approximately 1000 S/m with 15 %wt/v of nanotubes.?® In 2009,
Spitalski et al. reviewed and tabulated much of these prior achievements and have all shown to be in
the range of the studies mentioned.? Also, automotive companies such as Hyperion have successfully
incorporated nanotubes into many of their different composite products such as fuel lines, O-rings,
and pump modules as a means to dissipate charge build-up in engines.?! In these materials, nanotubes
can offer 1 — 10 S/m conductivities without hindering other performance requirements of the
automotive part such as low melting viscosity and high mechanical strength. Noticeably, it can be seen
within these examples that conductivity varies with filler material. This opinion is also reflected in a
review by Bauhofer et al. (2009) whom additionally showed that there is no clear consistency in using
either SWNT or MWNT nor the treatment method (oxidation, purification) when seeking to obtain
maximum conductance.?” They also remarked that exfoliated nanotubes can be 50 times more
conductive than bundled forms.?” Lastly, worth mentioning is perhaps the most recent and enticing
bit of electrical innovation which comes from Shulaker et al. (2013) whom exploited the fact that CNTs
can possess a carrier mobility of approximately 10 000 cm?/V-s, 200 times that of silicon, to develop
a faster type of computer processor.?*?® Overall, nanotubes hold a lot of promise in delivering almost

futuristic electrical applications.

These electrical properties of nanotubes can be tied to their chirality which as stated above is linked
to the unit vector magnitudes, n and m. Generally, if n - m = 31 where | is an integer then a tube is
considered to have metallic-like properties. Given this parameter, all armchair nanotubes are metallic
and in general, metallic nanotubes represent about a third of all possible tube structures. The
remaining two-thirds of nanotubes are semiconducting (when the above condition is not
satisfied).?>% Figure 2.3 below shows some of the different nanotube chiralities that are either

metallic or semiconducting.
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Figure 2.3: The different chiralities of nanotubes and whether they are metallic and semi-conducting as
prepared by Dresselhaus et al. (1995).2°

The stated general condition above comes from the analysis of a nanotube’s band structure which
can be revealed by studying the electronic 1 system of two adjacent carbon atoms within the
hexagonal lattice of graphene. In graphene, the bonding and antibonding bands of the mt orbitals cross
at the corners of the unit hexagonal cell (Brillouin zone) whereas the o bonding and antibonding bands
are too far from the Fermi level to affect electrical conductivity.! The band crossing means the Fermi
surface is concentrated at the 6 corners of the cell. Because nanotubes are bounded cylindrical and
not endlessly propagating like graphene, it is necessary to apply a constraint onto the graphene
electronic states in the circumferential direction. By applying this restriction onto a Bloch
wavefunction, which describes the energy states of an electron in a crystal and can be used because

a graphene lattice is also Bravais lattice, the states of a nanotube can be reduced to:
kC, = 2mn (2.4)

where n is the principal quantum number, k is the wavenumber (magnitude of wavevector) and Cj,
remains as defined before. Whether the quantized wavevector crosses the graphene Fermi level at
the first Brillouin zone the nanotube is metallic. If the wavevectors do not cross the Fermi points, then
the nanotube is semiconducting. The rule n - m = 3l as stated above is a generalization of this
phenomenon. The energy systems are linked to the diameters of the nanotube as well through C},
and therefore there are several effects worth noting with changes in diameter. Firstly, the band gap
of semiconducting nanotubes decreases logarithmically with diameter. Secondly, with metallic
nanotubes, small curvatures can induce minor pseudo-band gaps thereby leading to the production
of small semi-metallic properties. Armchair nanotubes are exempt from this however because of their
symmetry.3?2 Curvature strain can also lead to exceptions which can be seen, for example, in the (5,0)

nanotube which shows metallic properties instead of semiconducting.?® This is because small



diameters can lead to o-it band overlaps.3° Despite these dependences on curvature, it’s interesting

to note that nanotube electrical properties are almost independent on length.3*

2.2.2 Mechanical Properties

Length is however significant in terms of a nanotubes mechanical properties. Nanotubes have a large
aspect ratio, are highly flexible and very strong especially in the axial direction.?®3>3¢ Among the many
types of measurements to characterize mechanical strength, the two that arguably stand out the most
are Young’s Modulus and the tensile strength. The Young’s Modulus describes the ratio of stress
applied to the amount of resulting strain on the material. The tensile strength describes the maximum
amount of stress a material can be subjected to before it breaks. Some of the first studies on
nanotubes’ mechanical ability in terms of these values were performed by Treacy et al. (1996) whom
studied MWNT from a large bundle synthesized by the carbon arc method and used TEM to relate the
amplitude of a nanotubes thermal vibration to the Young’s modulus. They obtained an average value
of 1800 GPa.?” This result was confirmed by Wong et al. (1997) whom pinned one end of a MWNT to
molybdenum disulfide surface and measured the bending force against displacement along the
unpinned length. They found that the modulus was 1300 GPa and additionally found the average
strength to be 14.2 GPa.® In 1998, Krishnan et al. were able to isolate SWNT and used a similar
method to Treacy et al. (1996) to measure the Young’s modulus and obtained a value of 1250 GPa.*
Uniquely, Li et al. (2000) used modeling to predict the modulus and strength of a nanotube and found
values of 790 GPa and 0.4-22.2 GPa, respectively.*® Perhaps the most direct experiment of measuring
these properties were described in separate publications by Yu et al. (2000). In these articles they
attached both MWNT and SWNT to the ends of atomic force microscopy (AFM) tips and used them as
force sensors to read out the applied load. In their experiments they found that MWNTSs possessed a
tensile strength of 11-63 GPa and a Young’s modulus of 270-950 GPa.*! In comparison SWNTs
possessed a tensile strength ranging from 13-52 GPa and a Young’s modulus of 320-1470 GPa.*?> A
comparison, shown in Table 2.1 which also lists the Young’s Modulus of other materials and reveals

the mechanical properties of nanotubes far exceeds those of other common materials.*?

Material Young’s Modulus (GPa) Strength (GPa)
Stainless Steel 180 0.860
Copper 117 0.220
Titanium Alloy 105-120 0.900
Polystyrene 3.00-3.50 0.03-0.10

Polypropylene 1.50-2.00 0.028 - 0.036
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SWNT 320-1470%, 79038 13-52%2,0.4-22.2%°
MWNT 270-950%, 130038 11-63%2, 14,240

Table 2.1: Tabulated Young’s Modulus and Strength of different materials

Often materials can appear stronger given an increased quantity. Thus, another comparison can be
carried using the density-normalized modulus and strength. For SWNTs it has been observed that the
density normalized modulus and strength is 19 and 56 times that of steel wire and 2.4 and 1.7 times
that of silicon carbide.?! Steel wire can often be found in electrical wires and silicon carbide is a high
endurance ceramic found in car brakes. Additionally, SWNT can withstand pressures up to 25GPa at
which point it has been observed to adapt into a superhard phase which can withstand pressures up
to 55GPa without collapse. In this new phase, the bulk modulus is greater than that of a diamond

crystal (420 GPa), standing at 462-546 GPa.*

Akin to research targeted towards enhancing the electrical potential of nanotubes, there has been
just as much targeting mechanical properties.? Examples of products that have seen high mechanical
benefits from nanotube incorporation include thin films, cements and gel composites. Di et al. (2012)
formed pure nanotube films by drawing on a 40um thick polytetrafluoroethylene layer. After pealing
from the layer the films had a tensile strength of approximately 2 GPa and a Young’s modulus of
approximately 90 GPa,* which Wang et al. (2013), using a similar method, subsequently incorporated
into a Bis-Maleimide polymer composite to yield a tensile strength of 3.8 GPa, a Young’s modulus of
293 GPa and a conductivity of 1230 S/cm.*® In cements, Sobolkina et al. (2012) saw a 40% increase in
compressive strength and a moderate increase in tensile strength as well in their calcium silicate
hydrate cement paste,*” while for gels, recent groups such as Huang et al. (2011) developed a MWNT-
PVP/PVA composites and found a maximum improvement of 133% in tensile strength with 1%
loadings of MWNT.*® Davis et al. (2011) successfully incorporated SWNTs into a chitosan matrix
crosslinked with glutaraldehyde and reported a 20 fold increase in Young’s modulus with the
incorporation of 0.8 g/L nanotubes.'® Indeed, successfully dispersing nanotubes can lead to dramatic
increases in composite mechanical properties. In 2006, Coleman et al. stated that is perhaps the most
fundamental issue and is imperative for equal load transfer and the reduction of stress point. With
poor dispersion, when the loading level is increased beyond the point where aggregation begins, this

can lead to decreases in strength and modulus.*

2.2.3 Thermal Properties

Due to their long-range crystallinity (ie. repeatability of the hexagonal unit) and the possible long
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propagation of phonons (lattice vibrational states) along a relatively long mean free path, nanotubes
were theoretically predicted to have greater thermal conductivity than other carbon allotropes such
as graphite and diamond. Tests from both Kim et al. (2001) and Pop et al. (2005) on suspended
MWNTs and SWNTs have shown that the two types yielded thermal conductivities of 3500 W/(m-K)
and over 3000 W/(m-K), respectively at room temperature.®®>! To put this in context, silver has a
thermal conductivity of 400-430 W/(m-K) and natural diamond has a thermal conductivity of about
2000 W/(m-K).>2>* In 2000, Berber et al. predicted through modeling the conductivity of (10, 10)
armchair nanotubes to be 6600 W/(m-K) at room temperature which is two-fold greater than that of
isotopically enriched diamond (3320 (m-K)). As temperature is decreased, the conductivity of both
nanotubes and diamonds increased however nanotubes increased at a slightly higher rate.>® In 2002,
Biercuk et al. used 1% wt/v of nanotubes as filler for epoxy resin composites and successfully doubled
the thermal conductivity compared to their sample without the nanotubes. Comparatively, a quality
control of carbon fibers only showed a 40% improvement in conductivity when incorporated at the
same amount. It should be noted that Gojny et al. (2006) investigated the potential for thermal
advancement through nanotube incorporation into epoxy composites. This listed the overall size of
the interface, aspect ratio, and interfacial adhesion as the contributing factors. A low interfacial area,
weak interfacial adhesion and the existence of shielded internal layers is desired because it promotes
conduction of phonons and minimizes coupling loss. Most composites seen had large interfaces which
lead to increased phonon boundary scattering meaning lower than expected conductivity due to a
reduction in mean free path. However, the authors noted at the end that a higher dispersion of
nanotubes could reduce the distance between CNTs, facilitating phonon conduction through reduced
scattering.>® The necessity of high dispersion has also been stressed by several authors as reviewed

by Han et al. (2011).7

2.3 Nanotube Composite Challenges

Overall, nanotubes possess a variety of properties that make them attractable to be used as filler
material. However, a repeatedly cited problem is that the hydrophobicity of a nanotube can lead to
its aggregation upon synthesis and poor dispersions in solution.®® Truly, in this state their industrial
and academic value is greatly restricted because many of their inherent properties are limited. In
terms of composites in particular, if nanotubes are not dispersed, they can act as focal points for stress
and hinder both electrical and thermal conductivity. To better understand nanotube aggregation in

composite design, Kyrylyuk et al. (2008) used the continuum model to investigate how bending
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flexibility, length, polydispersity, and attractive interactions between nanotubes played a role. They
found that not only did all these make a difference but special consideration must be given to the
degree of nanotube aggregation, the presence of longer species, and the attractive interactions
between them.>® Indeed, the intrinsic aggregation of nanotube is a significant obstacle. Girifalco et al.
(2000) also used the continuum model to assess the interaction between two parallel tubes and found

that the driving force for aggregation is also linked to the CNTs radius.®°
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Figure 2.4: Parallel nanotube-nanotube interaction potential per length as calculated by Nativ-Roth et al.
(2007)%*

Observing Figure 2.4, a large attractive force (maximum of 40kT/nm or 1.644x10° J/nm at 25°C) can
be seen at an inter-tube distance below 2nm. This quickly rebounds and stabilizes to 0 kT/nm around
an inter-tube distance of 2.5nm onward. Note that kT is the product of the Boltzmann constant and
temperature, a unit for energy. From this observation, we can gather that two 1 um tubes bound in
parallel would have an attractive energy of 1.644x10°1¢ ).806263 Additionally, separating nanotubes also
seems to be an anisotropic in terms of the energy barrier. Using (10,10) nanotubes, Angelikopoulos
et al. (2012) observed through simulation that separating nanotubes through parallel sheering and
“ripping” a tube perpendicular to the plane require different amounts of energy : 9.864x10*° J/nm
and 4.932x10" J/nm, respectively at room temperature. Putting these values into perspective, the
energy between C-C single bonds under the same temperature condition is about 7.809x10%° J/nm.
Additionally, there also needs to be a consideration for static friction which has been estimated to be
0.066nN overall.®* In all, these barriers are quite substantial and the authors remark vehemently on
the challenges and needs of dispersion research. Indeed, in terms of ongoing investigations of
dispersion mechanisms, many groups have looked into covalently and non-covalently chemical
modifications of nanotubes to improve its interactions with its surrounding solvent whereas other
groups have even looked into modifying the solvent system itself i.e. using chloroform,

dimethylformamide, toluene, alcohols, etc instead of water.®*% To promote the initial separation of
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nanotubes, other methodologies involving physical separation using aggressive shearing techniques
such as sonication before the chemical modifications have also been explored. With so many options,

how to quantify and assess the quality of a nanotube dispersion is extremely important.

2.3.1 Assessing Nanotube Dispersions

Optical absorption is one of the most efficient ways to evaluate nanotube dispersion. However this is
possible only for SWNT because of the unique and distinct electronic band structure which present
spikes in the density of states termed van Hove singularities (Figure 2.5A). In MWNTs the density of
states can be significantly more complex due to m—m interactions between the different coaxial layers
present in a MWNT. Bandaru (2007) reports that generally, the resulting density of states comes from
the summation of the different chiralities of the MWNT but other phenomena can arise depending
on whether the layers of MWNT are metallic, semiconducting, or both in which case pseudo band
gaps can occur.? Understandably this would make interpreting absorption spectra difficult which is

why SWNT will be the main focus of our work.

For SWNT, when light of wavelengths usually in the visible-near infrared red is sent onto the nanotube,
it is absorbed causing electrons to be promoted through an interband transition E; between states in
the valence (occupied) and conduction (empty) bands. The theoretical calculations presented in
section 2.2.1 concerning electrical properties of nanotubes can also be used to predicting electronic
states and thus the energy required for these electronic transitions. These calculations show a clear
link between nanotube diameter and its band gap (transition energy). These quantized correlations
are best demonstrated through a Kataura plot of SWNT (Figure 2.5B).®® Indeed, because of this
predictability, there has been much work done into tying a particular nanotube chirality to its

absorption spectra .797!
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Figure 2.5: A) An example of the electron band structure of nanotubes. B) Kataura plot representing the band
gap energy as a function of nanotube diameter. Both figures were prepared by Weisman et al. (2003)"*
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Once a spectra is generated, the dispersion quality of a particular nanotube chirality or the solution
overall can be assessed by inspecting the sharpness or resolution of the peak(s) of interest. The
sharpness is related to the quality of the dispersion because nanotubes in a more dispersed sample
are more efficient in absorbing light, as bundling and agglomeration are known to quench that ability
increasing light scattering instead. The sharpness of the spectra can be quantified using several
different methods to gain information about nanotube dispersion. Several groups use the total area

above a baseline designated to account for Rayleigh scattering (Figure 2.6):
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Figure 2.6: The resonant band of nanotubes over its non-resonant background gives the resonance ratio. This
method was proposed by Tan et al. (2005) as a method of characterizing dispersion quality of nanotubes.”?

It’s important to notice that the baseline is slanted and this is done to reflect the Rayleigh scattering
which can lead to misleadingly higher amounts of absorbance. The relationship between scattering

and the particular wavelength is given in equation (2.5) below.

1

Ascattering x T (2.5)

Other groups have also divided the total area above the absorption baseline by the respective
scattering background under the baseline. The resulting value is termed the resonance ratio.”>”* A
similar method that has also been proposed includes taking the ratio between the maximum
absorbance of a peak at a certain wavelength and the corresponding background absorbance value

at the same wavelength.”

To measure the amount of nanotubes retained in solution after sample preparation, one can simply
compare absorbance values at a set wavelength as was done by Wenseleers et al. (2004).7® However,

other groups have also used the Beer-Lambert Law to quantitatively find the final concentration of
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nanotubes after sample preparation and compared it to the initial starting concentration (i.e. the

efficiency).*”"7>77

Thus, in such a way, optical absorption offers a fast and reliable way to predict SWNT dispersion. In
terms of other spectroscopic methodologies to assess dispersion, Raman and fluorescence
spectroscopy can also be used. However, in comparison with other techniques, absorption
spectroscopy is advantageous as Raman is limited by nanotube resonance with the laser used for the
measurement. This means that the technique is insensitive to those nanotubes not in resonance with
the laser. Fluorescence can also be used but can only analyze semiconducting nanotubes because of

the longer decay time of the excited states, compared to that of metallic nanotubes.
2.4 Methods of Improving Nanotube Dispersions

As stated, there have many methods to improve the dispersion of carbon nanotubes. The following

section will describe such methods in detail.

2.4.1 Physical Methods

To provide sufficient energy to physically separate nanotubes, the use of ultrasonicators has become
one of the more accepted methods for nanotube dispersion. Horn sonicators produce a tunable
oscillating conical field of high energy (surrounding temperatures that can instantly rise to 5000K) in
the fluid which has been proposed to provide high local shear to the ends of the nanotube.”®’® Many
groups such as Qian et al. (2000) used ultrasonication to disperse nanotubes when making
MWNT/polystyrene (PS) composites, obtaining homogenous dispersions. It should be noted though
that sonication can severely affect a nanotube initial structure. For instance, in the case of SWNT,
fragmentation and introduction of structural defects have been reported while in MWNT, the removal
of walls is also possible.”®8! However, while other methods exist including aggressive mixing (2000
rom) they are less efficient than ultrasonication.®2# Because of the potential cutting effect and the
fact that sonication is a very system dependent method, optimizing sonication requires significant
trial and error.®® Tan et al. (2005) explored the effects of sonication by obtaining absorption spectra
of nanotubes at different sonication times. They found that at 2 hours of sonication which was also
the highest time tried gave the highest resonance ratio value and therefore best dispersions. They
also observed that after sonication, undispersed nanotubes (whether fragmented or still aggregated)

can be removed by ultracentrifugation leading to a more homogeneous sample.”?

2.4.2 Covalent vs Non-covalent Chemical Modifications
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Covalently bonding different functional groups to the surface of nanotubes with the aim to improve
dispersion has been extensively reported in the literature.®* This methodology is widely used because
it can increase grafting potential between the nanotube and polymer matrix.”®* The first step usually
requires the introduction of hydrophilic chemical functionalities in the nanotube walls. This is usually
done through acid treatments which can also help remove catalytic metals and amorphous carbon
that would otherwise be present after nanotube synthesis.”® Strong acids such as sulfuric and/or nitric
are used typically as the starting point. Interestingly using the acid in liquid phase generates carboxylic
moieties mostly whereas using them in gas phase leads to the generation of carbonyl and ether
groups.”® Regardless, once the electrophilic carbon site is created, other molecules can be attached
via nucleophilic substitution forming more complex structures.®® Many variants of this general
methodology exist such as using 30% hydrogen peroxide together with the acid # or using F, gas to
introduce fluorinated sites. 7° These can then be substituted nucleophilically followed by a reduction
using a metal hydride to remove any remaining fluorine atoms attached.”® One last variant worth
mentioning is cycloaddition whereby a terminal dipolar oxide (usually nitrile oxide) group attaches to
the surface of the nanotube in non-polar solvent such as triethylamine.®” With the variety of
approaches one can take with covalent modifications however, there is a significant drawback to this
approach. Like sonication, over oxidation can also fragment nanotubes in places with structural
defects resulting in nanotubes of reduced length in solution.”#® Because of the shortening effect, the
aspect ratio of nanotubes decreases significantly affecting thermal, electrical, and mechanical
properties. An example of the latter includes a 15% reduction in buckling strength of SWNT as
compared to pristine nanotubes when an sp® bond is introduced.?? Covalent modifications protocols
also disproportionally affect nanotubes with higher curvature. Experiments by Zhou et al. (2001) and
Rinzler et al. (1998) have observed that oxidation from air and ozone occur more readily for nanotubes

with higher curvature strain and larger amount of defects.8%°

In contrast to these methodologies, non-covalent modifications involve using amphiphatic molecules
to stabilize the nanotube by adsorbing to its surface within the aqueous environment. Since the
nanotubes walls are not chemically modified, this type of modification preserves the nanotubes
inherent mechanical, thermal and electrical properties making this technique more attractive than
covalent modifications.® In this regard, molecules such as surfactants and different long-chain
polymers are fairly attractive.3®’® In the subsequent subsections, different relevant concepts of
surfactants and polymers will be introduced along with the progress of research in determining how

these molecules aid in dispersing nanotubes.
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2.4.2.1 Surfactants

Surfactant molecules offer one of the highest potential, when considering non-covalent approaches
to nanotube dispersion. Surfactants are amphiphilic molecules meaning they possess molecular
regions that enable them to readily interact with polar and nonpolar systems. There are four types of
surfactants: anionic, cationic, zwitterionic, and non-ionic. In all cases, the hydrophobicity comes from
a non-polar region of the molecule i.e. a long alkyl chain or cyclic rings. In cationic, anionic, and
zwitterionic surfactants, the hydrophilic region comes from charged head groups which forms ion-
dipole interactions with the water. Whereas cationic and anionic surfactants are stabilized through
their counter-ion in addition to water, a zwitterionic surfactant is considered to be neutral overall due
to the presence of opposing charges, however it still interacts with water in the same way. With a
non-ionic surfactant interactions occur with water through hydrogen bonding. These molecules can
also exist as individual molecules or form different macrostructures depending on the nature and
thermodynamic stability of the molecule as well as the environment around it. At extremely low
concentrations, surfactants are primarily found on the surface of the aqueous phase with their
hydrophilic ends facing into the water and the hydrophobic tails facing away from it. As concentration
increases the surface of the aqueous environment becomes saturated eventually and molecules have
to start existing within the solution. This point is known as the critical micelle concentration (CMC)
and immediately at this point, surfactant molecules are in the form of spherical micelles. A micelle in
general is a structure that amphiphatic molecules can form to achieve thermodynamic stability in
which the shell of the sphere are the hydrophilic head groups of the surfactant and the core consist
of the hydrophobic regions. Again, the profile of micelle structures varies depending on the molecule
used and the environment around it but generally if the concentration is increased, spherical micelles
can approach a cubic phase in which a “crystal” like system can be formed. This phase is known as the
isotropic phase. Beyond this, worm-like micelles can develop in the nematic phase and as the name
implies, micelles become tube-like, analogous to the shape of a nanotube in general. When these rod-
like micelles cluster, then the solution is said to be in its hexagonal phase. Lastly, at extremely high
concentrations, micelles can enter the lamellar phase and become bilayer sheets similar to those
found on the outer layers of cells. Between the hexagonal and lamellar phase, some surfactant
systems can generate a bicontinuous cubic phase where the micelle tubes can branch off forming a
2D network of tubes instead of the 1D singular tube system. Figure 2.7 illustrates all these possible

phases for the cationic surfactant, centrimonium bromide (CTAB).
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Figure 2.7: Phase diagram of CTAB at different temperatures and concentrations by Brinker et al. (1999).%2

The actual thermodynamic drive to form these structures can be illustrated by the equation:

K
u=vya + E (2.6)

where pu is the chemical potential at the micelle-water interface, y is the interfacial energy between
hydrocarbon tails and the aqueous phase, a is the surface area occupied per headgroup, and K is the
proportionality constant for repulsion of head groups. Deriving this equation with respect to a then
setting it to O reveals the presence of an optimal surface area per head group (ao), which can be used

to generate the packing parameter:

Ve

-~ (2.7)

which is essentially a ratio comparing the chain volume (v.) to the volume projected by the optimal
head group (a,l.). A small value indicates a small tail attached to a big head leading to high curvature

and vice versa. An analysis of this parameter with the surface area and volume of spheres and

cylinders shows that if the parameter is:

e Between 0 -1/, then spherical micelles are favored
e Between 1/, -1/, then cylindrical micelles are formed
e Between 1/, - 1then vesicles are formed

e Equal to 1 then bilayers are formed

Anything larger than 1 indicates unfavorable structures, specifically inverted micelles where tails are
pointing into solution and heads are at the core. These structures are not possible in aqueous

solutions and would form instead in non-polar environments. From the above equations it can be
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seen that parameters such as length and volume of the alkyl chain of surfactants as well as the
environment they’re in are largely influential in micelle formation dynamics. Repulsion of head groups
is another parameter that determines micelle form. This is influenced by the counter-ion in solution
and the stability it can provide. However, the exact mechanism of this is still debated. Feitosa et al.
(2006) reported higher counter-ion binding strength to micelle head groups as the mechanism for
which micelle size decreased.®® However, in 2002, both Joshi et al. and Aswal et al. reported that the
hydrophilicity/size of hydrated ion is the real driving force as they saw that micelle size decrease with

increasing ion hydrophilicity to water.9°>

2.4.2.2 Surfactants for Nanotube Dispersions

As stated, because of a surfactants ambiphilic nature they are extremely attractive for nanotube
dispersions. Of the much available literature it seems there is a common observation on the criteria
that a surfactant has to have in order for it to be an efficient nanotube dispersant agent. These include
the presence of charges, size of hydrophobic region, and the presence of aromatic groups. These
criteria were well established by Tan et al. (2005) whom evaluated the degree of nanotube dispersions
using several surfactants at their optimal concentration. Among the surfactants used were sodium
dodecylsulfate (SDS), sodium dodecylbenzene sulfonate (NaDDBS), Triton-X100 and sodium cholate
(SC).*5°7 Based on the calculated resonance ratio values, it seemed that SC had the highest dispersive

ability ratio followed by NaDDBS then Triton X-100 and lastly SDS.

Figure 2.8: Sample of the surfactants used by Tan et al. (2005) to determine dispersion ability. Structures were
acquired from Chemspider database and are as follows: A) SDS B) NaDDBS C) Triton X-100 D) SC.”?

Figure 2.8 shows the structures for these surfactants and it can be seen how the presence/absence of

the different functional groups affects their respective dispersion ability. Compounds containing
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aromatic moieties seem to consistently lead to better dispersions of SWNTs. This is primarily thought
to be due to ri-it stacking interactions which is the interaction of t-orbitals between the nanotube and
the aromatic ring of the surfactant.® This type of interaction was seen by Lu et al. (2004) to dominate
over the natural hydrophobic interaction of nanotubes by using fluorescence-based experiments.®
Different from this are the interactions of alkyl chain surfactants on the surface of nanotubes which
are typically accepted to promote dispersion through electrostatic repulsion,'® however their binding
to the surface of nanotubes is still somewhat contested. Though it was initially thought that micelles
formed on the nanotube surface there is gaining evidence that random adsorption of monomers takes
place on the nanotube surface instead especially for alkyl chain based surfactants.%19%102 Of alkyl
chain surfactants, Sahoo et al. (2010) proposed that NaDDBS was the best because it possessed a
relatively longer alkyl chain, and is both aromatic and ionic. Comparatively, Triton X-100 lacks a charge
but is still aromatic, enabling it to interact via m-mt stacking, and therefore making it a decent stabilizer.
103 5pS, while having a long an anionic charge, doesn’t possess aromaticity making it one of the worst
dispersing agents studied.®? Interestingly, the claim of longer alkyl chains by Sahoo et al. (2008) may
be somewhat misplaced as Tan et al. (2005) reasoned that long chain surfactants would have a harder
time penetrating the intertube region making its efficiency lower.”? Additionally, Sun et al. (2008) also
evaluated the role of chain length on dispersions. Their results showed that a shorter chain would
ultimately be better for nanotube dispersion especially with charged sufactants as it would allow for
more adsorption onto the nanotube surface. This in turn would mean electrostatic repulsion between
nanotubes would be higher, thus aiding in nanotube dispersion. In this regard, surfactant
concentration is also important as there would be different points of surfactant saturation on the
nanotubes surface. Research by Blanch et al. (2010) determined the concentrations at which different
surfactants dispersed best using the resonance ratio as the quantification technique. As predicted,
each surfactant had a different optimal concentration however they also noticed that for some
surfactants such as Triton X-405 and sodium deoxycholate (dehydroxylated SC) adding more
surfactant resulted in a decrease in dispersion. This contrasted the results obtained for sodium
dodecylbenzene sulfonate (NaDDBS) for which nanotube dispersion remained relatively constant with
increasing surfactant concentration. They explained this phenomenon using attractive depletion
interactions where pressure exerted by micelles would force nanotubes to reaggregate to reduce the
osmotic pressure. This effect would be more pronounced with longer nanotubes and larger micelles
due to the higher number of potential contacts between the two species. They noted though that this
reaggregation is not initially noticeable and depending on the surfactant can take weeks to months

until clear differences are observed.'® Lastly, it’s worth mentioning that the most effective dispersing
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agents observed by Tan and Resasco (2005), SC doesn’t contain any aromatic group but rather a
gonane core of which all steroid compounds are based on. In these compounds, the mechanism is an
apparent adsorption like other alkyl moieties however the planar aspect of the molecule likely
increases its adsorption ability.1%1% The pronounced dispersion ability of SC was also seen by
Haggenmueller et al. (2008) whom have added that the retention efficiency of SCis quite pronounced
as well. In addition, they also observed that long alkyl chain surfactants (anionic and cationic) lead to
poor nanotube dispersions, however they also noted that their efficiency in retaining nanotubes in
solution (determined using Beers-Lambert law) is relatively high. This means that these surfactants
seem to bind to aggregates as well as to dispersed nanotubes. Clearly then, by comparing the abilities
of SC and alkyl chain surfactants, it can further be seen that every surfactant behaves in its own unique
way. Overall, such observations only further drive research for better and better surfactants for

nanotube dispersions. %0775

2.4.2.3 Polymers

Another class of molecules, polymers have also been explored for nanotube dispersion. Polymers are
large molecules comprised of repeating chemical units called monomers. The chemical and physical
properties of a polymer are therefore very dependent on the monomer identity. For example, if a
monomeric unit is hydrophilic then likely, the entire polymer would be readily soluble in water. In
aqueous solution, polymers can exist in several regimes depending on the concentration. At very low
concentrations, they can be described as free floating chains with very little contact with each other.
This is known as the “dilute” region. However, as concentration increases polymers eventually reach
the semi-dilute region. In this region, polymer chains are very close together and chains overlap with
one another and entanglement occurs. The critical concentration in which this occurs is called the
overlap concentration usually denoted by c*. Beyond that, there also exists a region termed the
concentrated regime (c**) where the polymer has no space to freely move in solution, however this

term is not well defined.1®® These regimes can be seen in Figure 2.9.
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Figure 2.9: Regimes of polymers at different concentration levels as drawn by Mutch et al. (2007). A) represents
the dilute regime, B) represents the semi-dilute regime, and C) represents the concentrated regime.1%

In determining when these phenomena occur for different polymers, there have been many
theoretical formulas that have been proposed, some of which are based on geometry (assuming
random walk of a real chain system) while others are based on experimental results. The random walk
model is used to show that the direction of orientation of a bond in a polymer backbone is completely
random. It should be noted though that there doesn’t seem to be a generality within the literature as
many different formulas have been proposed based on polymers with different head group sizes and
backbone flexibility.}%®11%111 Be|ow are some example equations that are used to predict the transition

from dilute to a semi-dilute regime for random polymeric coils:
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where M,, is the molecular weight, R, is the radius of gyration, [n] is the intrinsic viscosity which will
be described later and h,, is the root-mean-square-end-to-end distance of the polymer.''° Because of
the potential chemical diversity and grand size of the molecules, polymers are also a very popular

dispersing agent.

2.4.2.4 Polymers as Nanotube Dispersants

In understanding and optimizing for polymer dispersing agents, many types of polymers have been
used to evaluate a mechanism in nanotube dispersion as will be seen. There are currently two main
theories on the mechanism of nanotube dispersion by polymers: wrapping and non-wrapping. The
two models differ in the strength of adsorption between the polymer and nanotube. Wrapping occurs
when a strong monolayer of polymer helically wraps a nanotube. This is considered a very strong
interaction since it affects the nanotubes electronic properties. In non-wrapping, polymers are weakly
interacting with the nanotube through Van der Waals interactions, therefore they typically do not
disrupt any electronic behaviour.5! Wrapping was once considered the only mechanism by which
polymers interact with nanotubes. It was first postulated by O’Connell et al. (2001) who used atomic
force microscopy (AFM) images to show that any aqueous monolayer of polymer

(polyvinylpyrrolidone, polystyrene, etc) would be wrapping the surface of the nanotube.'* They
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deduced this by observing changes in the length and height distributions of the AFM images and
remarking that there was also a decreased presence of bundled ropes as well. They also argued that
this was thermodynamically driven to eliminate the hydrophobicity between the nanotube and the
solvent. The authors however initially dispersed their samples with SDS surfactant and made no
reference to potential interactions between the two which can occur.1*>%6 Nevertheless, the model
was one of the first that prompted the use of polymers as dispersing agents.%®117-120 Maity et al. (2008)
demonstrated wrapping was indeed possible by using poly-N-vinylcarbazole (PNVC) to form
nanocomposites with SWNT and MWNT. PNVC monomers contain two aromatic rings giving the
polymer a strong affinity for the nanotube surface for the same reason as aromatic surfactants. To
assess the interaction between the polymer and the nanotubes, the authors used Raman
spectroscopy. In the case of MWNTSs, they observed a decrease in the intensity of the D (defect) and
G (graphitic) bands with the presence of polymer which the authors noted could only be caused by
two things: either more energy was needed to vibrate the nanotubes or the tubes themselves have
somehow become larger. Clearly the latter could not be true and since there was no shift in the
position of the Raman bands, PNVC was likely not forming covalent bonds with the MWNT and instead
was just adsorbed through wrapping. In contrast, when the authors used SWNTs they observed a band
shift in the G and D bands which would suggest that some grafting had occurred. Most prominently,
the results were supported by FE-SEM images which showed that the polymer was homogeneously
covering the surface of MWNT and was forming complex entangled networks in the case of SWNT.
Authors attributed the different results to a more reactive surface on SWNT. Another polymer that
has been shown to wrap nanotubes is single-stranded DNA (ssDNA). Zheng et al. (2003) found that
polythymine (T) wrapping was an enthalpically driven spontaneous process with energies favoring the
interaction of polymer-nanotube instead of nanotube-nanotube binding. Using modeling, the
adsorption mechanism was again thought to originate from m-mt interactions between the nanotube
and the nucleic acid, which was further promoted by the extreme solvability between the phosphate
backbone and the aqueous solution.? With regards to the effectiveness though, there has been some
conflicting reports on which DNA based system would be better. Haggenmueller et al. (2008) obtained
better dispersion using polyadenine (A) and even better results when using ssDNA using alternating
purine-pyrimidine bases.” From these examples, parallels can be drawn on polymer interactions and
surfactant interactions. If the monomeric unit is capable of interaction, such as through m-n
interactions then wrapping will likely occur and while these this is indeed a possible mechanism, weak
non-wrapping mechanisms have also been seen for polymer-nanotube interactions. Nativ-Roth et al.

(2007) used the block copolymer, polyethylene oxide-polypropylene oxide-polyethylene oxide (PEO-
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PPO-PEO) to disperse nanotubes in aqueous solution. Briefly, initial tests using molecular dynamic
modeling showed that PPO was the only block that had ability to bind to the nanotube with PEO blocks
projecting outward randomly from the surface of the nanotube in a random manner as seen in Figure

2.10.

Figure 2.10: Proposed adsorption mechanism of PEO-PPO-PEO triblock polymer by Nativ-Roth et al. (2007). Red
regions are PPO and blue regions are PEO.

No shift in the electronic structure of the nanotube was detected by both UV and Raman spectroscopy.
Instead, small angle neutron scattering (SANS) was used to evaluate the system. SANS measures the
interaction of neutrons with the nuclei of a sample where the resulting scattering intensity of a sample
(differs per nuclei) is proportional to the negative power of the scattering vector. The value of this
exponent can reveal information on the shape of the molecules within the system. For example, a
thin and long cylindrical molecule with an extremely high aspect ratio and large persistence length
like a nanotube or a wrapped nanotube would ideally have an exponent of -1 however this was not
the case for the PEO-PPO-PEO nanotube system. In fact, the data could not be fitted to such a relation
leading to the authors to conclude that the polymer retained their loose coil morphology. Interestingly,
through modeling the authors noted that increasing the PPO length or the PEO length while keeping
the other fixed will increase the dispersive potential of the block copolymer. In particular, they noted
20 monomeric units of PEO is sufficient in driving apart nanotubes apart at a separation distance of
2.5nm. It’s important to also note that these effects were more pronounced for SWNT as opposed to
MWNT because of the large differences in geometry. Dror et al. (2005) also performed a similar series
of experiments in which they used cryo-TEM as well as SANS as described above to analyze the ability
of two different polymers: Gum Arabic (GA) and alternating copolymer of styrene and sodium maleate
(PSSty) to disperse nanotubes. In addition to both being amphiphilic and charged, the latter of which
provides electrostatic repulsion, the polymers differed in two ways. GA is a highly branched
polysaccharide while PSSty is a linear copolymer of alternating hydrophobic and hydrophilic units.

They applied a modification of Pedersen’s model for spherical amphiphilic block copolymers and
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adapted it for cylindrical geometry.??? This model essentially describes a cylindrical core formed by a
nanotube or a thin bundle decorated with polymer coils loosely adsorbed onto the nanotubes’
surface.’® They found that this model fitted well their experimental data for both polymers despite
their physical differences. PSSty for example, surrounded a 2nm radius core of a nanotube, with a
radius of gyration of about 15nm. Interestingly, although the radius of gyration of GA is larger than
that of PSSty, more than double GA polymers can fit onto a nanotube compared to PSSty and this was
attributed to GA being a more compact molecule. Granite et al. (2012) also confirmed these
observations by again running SANS on the polymers PEO-PPO-PEO and PVP. They additionally noted
that surrounding the polymers was higher water density as compared to bulk solution. Also
noteworthy was Dror et al. (2005) using cryo-TEM, which was able to reinforce the non-wrapping
theory by showing what appeared to be spherical polymers in both aggregated and non-aggregated
form.'?® Indeed, these type of aggregates have also been seen by Cotiuga et al. (2006) in which TEM
was performed on dried dispersions where they used the copolymer PS-PEQ. In their images, they
saw that nanotubes were protruding from the polymer aggregates after drying had formed them.!?
Clearly then, if the polymer cannot interact strongly with the nanotube, it is most likely stabilizing
through a steric mechanism. Overall, with the presented studies, it’s evident that polymers can
disperse nanotubes by either wrapping or non-wrapping and like surfactants, there has been
significant research on elucidating different polymer-nanotube dispersion mechanisms. Polymers
ranging from synthetics like PVP, PEO, and PPO, to biologically relevant polymers like purine-based

DNA are only some of the few that have been tested.”>12>67

2.4.2.5 Surfactant and Polymers as Nanotube Dispersants

In presenting both types of molecules, surfactants and polymers have shown great promise on their
own however, the use of both together have also been explored but to a lesser extent. Many of the
studies have long focused on using surfactants to disperse and stabilize nanotubes for the
incorporation into a polymer matrix. For example, Gong et al. (2000) used polyoxyethylene 8- lauryl
as a dispersing agent then added epoxy resin and a hardener to form their composite. Expectedly, this
elevated the electrothermal properties of their composites compared to the sample in which the
surfactant was absent. At the end of their study however, they remarked that one of the ways to
improve their system required an understanding of the mechanism between surfactant, polymer, and
nanotube.’ In 2001, O’Connell et al. proposed a mechanism when they were determining how
polymers interacted with nanotubes as stated above. Again, there unaccounted analysis of potential

polymer-surfactant interaction casts doubt on the mechanism proposed. However, in 2002 O’Connell
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et al. did present UV spectroscopic evidence of the SDS-PVP system showing peaks that were red
shifted and broadened compared to pure SDS dispersed systems. Although they explained the
broadening of peaks by proposing a more polarizable and inhomogeneous environment around the
nanotubes through interactions between bundled tubes in side-by-side van der Waals contact, 1%
there was no explanation for the increase in intensity and the red-shifting bands as well. Typically, a
band shift would indicate a change in nanotube binding preference for the surfactant but again, this
was not discussed. Fukushima et al. (2003) and Bellayer et al. (2005) used imidazolium as a dispersing
agent for the creation of composites through melt mixing with polystyrene and low-temperature
crosslinking of ionic liquids, respectively, 127128 they proposed a m-cationic interaction primarily
between imidazolium and the nanotube with the polymer playing a minor role in dispersion. Generally,
this interaction can be rationalized in terms of cationic species associating with an electron rich
environment such as the it system of a benzene ring or carbon nanotube. Surfactant polymer-assisted
dispersion of nanotubes has also been used in the industry. Ma et al. (2010) reports their use in the
latex industry where nanotubes are firstly aqueously dispersed with surfactant and then mixed in with
the polymer latex solution and repeatedly freeze-dried and melted. Because the process is essentially

mixing of two solutions, the process is versatile, cheap, and reproducible.??

Recently, the use of polymers and surfactants tandem system has recently gained attention in
purification of nanotubes trough gradient centrifugation as well. Indeed, Qiu et al. (2011) used the
dualistic system of CTAB and PVP in the purification of nanoparticles *° and last year Tsuchiya et al.
(2013) explored an SDS-carboxymethylcellulose system for nanotube dispersion and purification of
different nanotube chiralities which is likely based on a co-surfactant system developed by Weisman
and collaborators for the same purpose.’*3! They proposed that when SDS is incorporated, it
preferentially binds metallic nanotubes, and as it passes through the gradient layers, the absence of
SDS caused a decrease in nanotube adsorption thereby accelerating their precipitation out of solution.
In contrast, carboxymethylcellulose stabilizes the semi-conducting nanotubes throughout the
gradient thereby allowing them to remain in solution and be separated.? This type of phenomenon
seems to indicate that surfactants and polymers can in fact have preferential binding to a nanotube,
however in addition to the ones described above, it can largely be seen that a clear mechanism on
how a surfactant, polymer, and nanotube system is still absent. This is understandable as a multi-
component system can be difficult to probe thoroughly. It was observed throughout so far that
although nanotube dispersion can be easily assessed by spectroscopy, the behavior and role the
surfactant and polymer are much harder to probe due to their less diverse chemical and physical

properties.
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2.5 Other Methods to Characterize Suspensions

Again, the analysis of a multi-component system can be rather difficult since the interactions among
surfactant micelles, polymers, and/or nanotubes are difficult to predict, due to their diverse chemical
and physical properties. However, in analyzing different suspensions there are a variety of techniques
available such as surface tension, viscosity, electrophoretic mobility and dynamic light scattering. Each
of these techniques can be extremely useful in elucidating the behavior of a surfactant, polymer, and
nanotubes in suspension. Beyond this point, a brief overview of how each technique has contributed

to the analysis of either surfactants, polymers, and/or nanotubes will be presented.

2.5.1 Surface Tension

A natural phenomenon of liquids, surface tension results from intermolecular interactions of the
molecules within the solution. However, not all molecules in the liquid experience the same level of
interaction. Inner molecules, which are defined as molecules surrounded from all sides by the same
molecule (i.e. Water molecules surrounded by more water molecules) will have a lower energy
because there is a cohesive force stabilizing from all sides. However, at the outer regions of the liquid,
where the liquid contacts the air, some molecules are devoid of that cohesive force from some
directions. This lack of exposure is unfavorable to the molecules because of high energy and so to
reduce the energy as much as possible to reach a stable form, the overall surface area of the liquid is

minimized.

To define the surface tension using physical principles, it is formally described as half the force per
unit length of a thin film liquid required to keep that film of liquid from being displaced. The half
originates from the fact that the force contributes equally from both sides of the film. However, the
surface tension can also be described in relation to energy as a force required to keep a liquid moving
at constant speed and with constant deformation of the surface area. Therefore, the relationship of

force to length can be converted to a relationship of work over area as shown below:

FAx w
y = =— (2.12)
2LAx  AA

where y is the surface tension F is the force, L is the length, Ax is the change in length, W is the
potential energy, and AA is the change in area. Given this relationship, common units for surface

tension are N/m or dyn/cm.
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As previously mentioned a surfactant in aqueous solution below its CMC exists at the air-liquid
interface with its hydrophilic head pointing into solution and its hydrophobic tail pointing out of it.
The presence of these molecules can therefore alter the interactions of the different water molecules.
When the surface of the water becomes saturated with surfactant, micelles form in solution. This
saturation effect is most easily seen in the size and shape of the droplets within the solution.
Therefore by analyzing the changes in droplet size respect to changes in the concentration of a
surfactant, the CMC can be determined. There are many methods to do this such as the capillary rise
method, maximum bubble pressure method, Du Nuoy Ring method, and the pendant drop method,
however the pendant drop method is one of the easiest to use.’3 Under the assumption that the drop
is about a central vertical axis and that only surface tension and gravity are the forces acting on it, it
minimizes the amount of factors that could be in play such as the cleanliness of a surface which is
found in many other techniques. Once drops are formed, the shape of it can be related to the surface
tension using a Young-Laplace fitting.*3 This technique is widely used in the literature to characterize
surfactant systems. Aguila-Hernandez et al. (2001) used it to determine how alkanolamines affected
the CMC of nonionic surfactants. Chang et al. (1998) used it to determine how the CMC of SDS
changes in the presence of styrene, dodecylmethacrylate, and or sodium bicarbonate with regards to
different emulsion systems for emulsion polymerization techniques. Lastly Nahringbauer (1997) used
it to determine the interaction between SDS and ethyl (hydroxyethyl) cellulose, a hydrophobic
polymer at the air-liquid interface. Indeed, using the technique to measure the CMC has been well
established however, surface tension can only reveal interactions at the air-liquid interface. Other

techniques are needed to reveal interactions within solutions.

2.5.2 Viscosity

Viscosity is another inherent property of fluids that can better reveal the interactions of different
species within solution. It can be thought of as the resistance to flow when a shearing force is applied
or the restoring force to any deformation. Mathematically, it is formally the proportionality constant

between the stress (o) applied and the resulting strain (€) of a liquid as seen below:
0= ne (2.12)

In defining the stress and strain, the basic model of a liquid in between two planar surfaces is used.

Then, the terms are defined as:

(2.13)
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where F is the resisting force applied to a plate with area, A, and V is the deformation velocity of
the plate at a height, H, where the height is from a point of little deformation. Collectively, g—z, is

known as the local shear velocity. Thus, the units are Pa-s which is equivalent to 10 poise (P).

Viscosity is the result of the molecules within the solution interacting together. Typically, those that
are large molecules or have strong intermolecular interactions with either each other or the solvent
will lead to high viscosities because of greater resistance to external shearing forces. Depending on
the molecule dissolved, there can also be a response to such forces such as alignment with respect to
the shearing force. If there is such a dependence then the solution is said to be Non-Newtonian as
opposed to the case of a Newtonian fluid where there is no such dependency. Non-Newtonian fluids
can further be broken down into shear-thickening and shear-thinning, where an increase in shear rate
will lead to solutions to thicken in the former and thin in the latter. An example of a Newtonian fluid,
shear-thickening, and shear-thinning fluid include water, oobleck, and latex paint. Some liquids can
behave as Newtonian at one shear rate and then as non-Newtonian in other. An example of this
includes long-chain polymers which in addition to being extremely large can also be extremely flexible,
therefore they can be coiled into an almost particle like form. When they are subjected to shear
however, the force causes them to strengthen and align in the direction of shear.’®* At maximum
alignment, the system reaches a Newtonian state. This was demonstrated for polyvinylpyrrolidone by

Ahmad et al. (1991) measuring changes in viscosity with increasing shear in water and ethanol.’**

Worth mentioning as well is that there are also different classifications of viscosity. Up to this point,
the use of the term viscosity is referring to dynamic viscosity which follows the definition as stated by
equation (2.15). Other useful variants of viscosity include the specific viscosity (5,) which compares

the absolute viscosity (1) and the solvent viscosity (1) and is defined as

(2.15)

By dividing the specific viscosity by the concentration and taking the limit, we can get the intrinsic

viscosity as below:

(2.16)
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The intrinsic viscosity has units of mL/g and describes the solutes contribution to viscosity i.e. an
increase in the solution viscosity when the concentration is raised to a critical level. The intrinsic
viscosity can be used mathematically to predict the overlap concentration using the formulas as stated

previously in section 2.4.2.3.

For nanotube-polymer solutions, the use of viscosity to characterize suspensions has been fairly
diverse. Grady (2006) and Cotiuga et al. (2006) specifically used it to assess the degree and type of
sonication that would be optimal for nanotubes. They looked at the intrinsic viscosity profiles of
nanotubes dispersed in polymethylacrylate(PMMA)-block polyethylene oxide (b-PEQ) using a probe
and bath sonicator and found trends in which the viscosity increased indicating exfoliation and then
a decrease indicating destruction and damage of the tubes. This makes sense as smaller particles
would generate a lower viscosity.?*13® Using epoxy as a dispersing agent for nanotubes, Fan et al.
(2007) evaluated the changes in steady-shear viscosity as a means of detecting improvements to
dispersion. They used different types of dispersion techniques seeking to test suspensions in which
the aspect ratios were different. Overall, they found that a higher aspect ratio and a higher
concentration made a substantial increase in their suspensions viscosity and overall storage
modulus.’® Another interesting observation was also made by Ben-David et al. (2009). They
compared the profile of viscosities with increasing shear rates to characterize the effects of SWNT on
CTAB and found that the presence of nanotubes induced Non-Newtonian behavior in CTAB. As the
concentration of CTAB increased, the profiles of CTAB solutions with and without nanotube became
more and more similar indicating the transition to wormlike micelles in solution. Strangely, this
phenomenon was only seen for SWNT and not MWNT nor carbon black and the authors suggested it
may be because wormlike micelles and SWNT have similar dimensions. Lastly, Camponeschi et al.
(2006) used viscosity as a means of characterizing the effects of adding carboxymethylcellulose to
their NaDDBS nanotube suspensions. Their goal was to align the nanotubes and they found that not
only did carboxymethylcellulose aid in dispersion by introducing a large steric hindrance to the system

but it provided a molecular template that promoted nanotube alighment under lower shear stresses.

2.5.3 Dynamic Light Scattering

Lastly, dynamic light scattering also known as quasi-light scattering is a technique used to observe the
size distribution of particles in solution. Light at a particular wavelength is emitted through a sample
where particles are undergoing Brownian motion. Because of this, there will be constant small
frequency shifts of the scattered light compared to the frequency of the incident radiation due to

constructive or destructive interference (Doppler Effect).!3® The magnitude and frequency of the
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intensity fluctuations are at a maximum when light is scattered from a single point in suspension and
then decreases with increasing solution complexity. The number of photons and the pattern at which
they enter the detector are detected with a digital correlator. The time between each photon counting
is known as the sample time (At) and the time in between two particular photon counts is the
correlation time (). If T is only a few multiples greater than At then the photon counts are said to be
correlated. If they’re several times greater then the photon counts are said to be not correlated. This

link between data is given by an autocorrelation function:

1 T
G (r) = lim ?f ig(t)ig(t + T)dt (2.17)
—00 0

Where i is the intensity reading at a particular time point with angle, 8. This function can be further

normalized to:

G®@ @)

B0 (2.18)
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This normalized function carries information relating to the rate of movement of the particle
molecules which can accessed through the Siegert relationship as shown below between g®(t) and

g'(t), the normalized electric field autocorrelation function.

g =A+ B|g(1)(‘r)|2 (2.19)
When the solute is a single species of unique molar mass,
lg®(@)| = exp(rr) (2.20)

whereas if the solution is polydispersed (ie. containing many species or the same species at different

sizes) then the magnitude is equated to ), — I},C,

lg® @) = Z Coe™"P" (2.21)

where the terms €}, and —T}, are the weighting factors and decay rate of species p in a polydispersed
solution. Thus, it can be seen that the autocorrelation function can be approximated by an exponential
fitting. Notice that if the solution is monodispersed then C,, = 1 and the fitting becomes equation (2.20)
again. It should be noted however that if the solution is polydispersed then equation (2.21) can
become difficult to solve due to transformations being ill-conditioned, measurement noise, baseline
drifts, and dust.!* Because of this, developing different algorithms is a large part of light scattering
research, as described below. Nevertheless, once the fitting parameters are acquired, I' can be

equated to Dg?where q is the scattering vector and D is the diffusion coefficient which can be used
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to calculate the hydrodynamic radius (Ry,) of the particle using the Einstein-Stokes equation and the

molecular weight of the polymer using the Mark-Houwink equation. These formulas are given below:

B 4nngsin(9/2)
i E— (2.22)
kT
"~ 6mnyRy, (2.23)
D = KM*¢ (2.24)

where ng is the refractive index of the solvent, 8 is the scattering angle, while K, a, and kT remain as
defined before. In using DLS for non-spherical particles such as nanotubes, there are two major
assumptions that need to be taken into consideration. One is that the Einstein-Stokes assumes that
the measured species are spherical. For non-spherical particles, the rate of settling is not that
predicted by Stokes law so the measured particle sizes are only approximations. Secondly, the Lorenz-
Mie theory which predicts how spherical particles scatter light cannot be directly translated to non-
spherical systems. However, DLS is still an option for comparative evaluations when dealing with non-
spherical dispersed systems since the particle shape, and size, and relative density shouldn’t change
between samples.!®® Because, non-spherical particles are also known to undergo anisotropic
translation, this leads to a coupling between translational and rotational modes of diffusion which
manifests itself in additional characteristic decay rates as mentioned above.* This is especially true
for flexible rods like particles such as nanotubes. Many groups have tried to decouple this problem
by generating new algorithms for scattering data analysis.*? Badaire et al. (2004) and Shetty et al.
(2009) have created algorithms involving multi-angle analysis to decouple readings from the length
and diameter of carbon nanotubes. Badaire et al. (2004) sought to determine the effects of sonication
on nanotubes and found that higher powers and long times can reduce the length of SWNT from
approximately 2000 nm to 800 nm and the diameter from 40nm to 10nm.8! Shetty et al. (2009) sought
to compare the particle sizes of nanotubes (surrounded with polymer) measured by DLS to those
measured by AFM. They found that when PEO was used as the polymer, DLS and AFM measured
similar lengths and diameters which were around 500nm and 5nm respectively. However when
poly(amino benzene sulfonic acid) (PABS) was used as the polymer the length as obtained form DLS
was almost double of that detected by AFM and the radius was about 4 times smaller. These
differences were attributed to high concentrations of polymer present in the measured AFM samples,

causing aggregation and the requirement of dry films which may have also promoted aggregation
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during sample preparation process. These aggregations would subsequently lead to bundling of

nanotubes.'®?

2.6 Summary

To disperse carbon nanotubes is a lofty goal. Doing so will enable researchers and engineers to further
tap into the multitude of properties that make carbon nanotubes an extremely attractive material.
These include unprecedented mechanical strength, and outstanding electrical and thermal properties.
Nanotube aggregation is a considerable problem due to the hydrophobic forces inherent in any
graphitic structure. Surfactants and polymers, alone or in combination have been used to create
nanotube dispersions using different mechanisms and structural features to achieve this goal. By
understanding how these mechanisms work we can develop more effective methods for nanotube
dispersion. To reiterate the motivation of this project — CTAB, a surfactant, and PVP, a polymer had
previously been shown to form a stable dispersed solution of carbon nanotubes. Thus the project is
to determine the mechanism of this system for the purposes of expanding the possibilities of CNTs

for composite formation.
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Chapter 3: Materials and Methods

3.1 Materials

The surfactant, centrimonium bromide (CTAB), sodium deoxycholate and polyvinylpyrrolidone (PVP)
at molecular weights of 10 000 g/mol, 40 000 g/mol, 360 000 g/mol, and 1 300 000 g/mol were
ordered from Sigma-Aldrich Chemicals. PVP at molecular weights 3 500 g/mol, and 8 000 g/mol were
ordered from Acros Organics through Fisher Scientific. From this point onward, the different
molecular weights of PVP will be denoted as PVP3.5, PVP8, PVP10, PVP40, PVP360, and PVP1300
where the digits correspond to the molecular weight in thousands. Single-walled carbon nanotubes
(SWNT) at a purity of >90% (SKU#0101) and C70 fullerenes were ordered from CheapTubes Inc. These
materials were used without further purification. GPC chromatography was used to confirm and

evaluate the molecular weight distribution of the polymer.

3.2 Methods
3.2.1 Solution Preparation

CTAB at 0.1% wt/v and a specific molecular weight of PVP at concentrations of 0, 0.25, 0.75, 1.1, 4, 6,
9 %wt/v were dissolved together in pure water on a warm hot plate. From the resulting solution, 25mL
was poured into a 40mL glass vial containing 5mg of either nanotubes or fullerenes to bring the
carbonaceous compound to a concentration of 0.2 mg/mL. The solution was then mixed via sonication
for 2 hours in an ice bath using a Fisher Scientific Model 500 Ultrasonic Dismembrator which had a
step-horn and a half-inch nut attached. The horn frequency used was about 19.850 — 20.050 kHz.
Other settings on the device include 180 W (i.e. 45% amplitude of a maximum of 400W) and a
sonication interval of 0.3 seconds ON and 0.7 seconds OFF. The solution was then centrifuged at 50
000 RPM for 1 hour using a Thermo T-1270 Fixed Angle Titanium Rotor placed in a Sorvall WX series
ultracentrifuge to separate dispersed and undispersed nanotubes. Lastly, the top half of the resulting
supernatant was filtered through 2 pieces of Whatman Grade 1 Qualitative Filter Paper to remove any

large undispersed solids.

3.2.2 Gel Permeation Chromatography (GPC)
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To ensure the quality of the PVP from suppliers, samples were sent to PolyAnalytik in London, Ontario,
Canada. Their procedure involved analyzed using 3 methacrylate-based gel columns PAA-206M, PAA-
203, PAA-202 in a mobile phase of 0.1M NaNOs on a Viscotek Tetra Detector Array at a flow rate of
0.5mL/min and a temperature of 30 °C. The Tetra Detector Array included a Refractive Index detector
(660nm LED), UV detector (variable wavelength, Deuterium lamp), Light Scattering detector (670nm
laser, 7° and 90° degrees) and Viscometer detector (four-capillary bridge). The samples were dissolved
in pure water and left on a rocker overnight shaking gently. The samples were filtered either through
a 0.2um (PVP samples) or a 0.45um (nanotube) Nylon filter before injection with no resistance
observed. The injection volume used was 100uL-150uL. For polymer samples, a combination of the
Refractive Index and Light Scattering detector were used to determine the molecular mass while the
Viscometer detector was used to determine the hydrodynamic radius. For samples containing SWNT,

the a combination of the Refractive Index and UV detectors were used.

3.2.3 Spectroscopic Characterization

Absorbance spectra of the samples were obtained using a Shimadzu UV-3600 from wavelengths of
400nm to 1400nm with a slit width of 8.0 and a medium scan speed. The contents of the blanks of all
nanotube dispersions were of the same material and concentrations of the samples themselves
except without the nanotubes present in solution. The dispersion area was then analyzed using Origin
8.5s Peak Analyzer tool whereas the total area under the curve was analyzed with the Integration

function available in the same program.

3.2.4 Atomic Force Microscopy

To obtain images of nanotube distributions for length and radius, 20 uL of sample was pipetted onto
a cm? of silicon wafer and spread into a thin film using a disposable cell spreader. The wafer was then
heated at approximately 185 °C for 4 hours followed by a wash with 1.5mL of pure water and dried
again at the same temperature for 10 minutes. They were then brought to the atomic force
microscope (AFM, Dimension 3100, Veeco Inc) for imaging. All images were captured under tapping
mode with a silicon nitride cantilever from Nanoscience which has a nominal spring constant of 40
N/m and a tip radius of around 10 nm. Distributions from the images were then processed using the

Gwyddion software.
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3.2.5 Dynamic Light Scattering (DLS)

This technique was used to determine and verify the size distribution of the particles within the
solutions. All samples were prepared at a polymer concentration of 1.1 %wt/v or less through simple
mixing and diluting. This was done to avoid any significant viscosity changes which would effect results
automatically calculated by the instrument software. The samples were then filtered using 2 pieces
of Whatman Grade 1 Qualitative Filter Paper to remove large dust particles. Samples were then
transferred into a cuvette and placed inside Brookhaven’s ZetaPlus Zeta Potential Analyzer. Using the
BIC Particle Sizing program (which runs Brookhaven’s MAS OPTION software), 10 runs of each sample
were analyzed at a temperature of 25 °C, angle of 90 °, and a wavelength of 659 nm. Note that the
viscosity and refractive index were automatically set by choosing water as the solvent (viscosity of
0.89cP, refractive index of 1.330,). The run time of each experiment varied between samples and was
set to the amount necessary to obtain a suitable exponential decay autocorrelation curve. The
software then outputs the data in the standard “lognormal” format which essentially gives a
distribution of the different sizes by solving the autocorrelation curve with the method of
CUMULANTS. A deeper breakdown of the distribution can also be obtained with the Multi-modal Size
Distribution (MSD) analysis tool which uses the non-negative least square (NNLS) algorithm to resolve

multimodal particle distributions.

3.2.6 Surface Tension Characterization

Surface tension was characterized using a First Ten Angstroms 1000B Class contact angle and surface
tension instrument. The corresponding software, FTA32, can be used to capture images and
automatically uses the Young-Laplace equation relating interfacial tension to drop shape produced at
the end of a needle. Before each sample was analyzed, 0.5mL of it was sacrificed for rinsing of the
needle to minimize contamination. Afterwards, sufficient amounts of the sample was aspirated and
the needle which had a blunt ended bevel was then loaded onto the machine apparatus. Important
settings include setting the needle type and the interfacial density to that of the sample solvent and
the environment around it. In this case, water and air, respectively. With each sample, several pictures
were taken to avoid error that may occur from asymmetrical droplet formation which can cause
minute errors in the determination of surface tension. After each sample, the needle was rinsed with
pure water and compressed air was gently flowed through it to ensure no dilution when rinsing with
the next sample. To obtain values such as the CMC, two lines were firstly drawn at regions of linearity:

one with decreasing points of surface tension indicating the saturating droplet surface and the other
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with points after the surface droplet had saturated with the surfactant. The intersection of these two
lines was determined to be the CMC. The 95% confidence interval (Cl) of the CMC values were

calculated using a method described by Filliben et al. (1972).1%

3.2.7 pH Measurements

The pH of different samples were determined using a non-glass ISFET probe attached to a Hach H160
pH meter which was calibrated using buffers from BDH. The point of zero charge in particular was
determined by initially preparing a series of 10mL solutions, each of which were adjusted to varying
pHs between 1-10 by using either 0.1M sodium hydroxide or 0.1M hydrochloric acid. Then, about
1.5mg of the SWNT were placed into each solution and allowed to equilibrate. Each solutions final pH
was then plotted with respect to its initial pH and the point of zero charge was then determined by

finding where the trendline crosses the function y = x.

3.2.8 Viscosity Characterization

To obtain viscosity values, 1.5mL of the samples were placed onto the stage of an AR 1500EX
rheometer. A 40mm 4° steel cone was lowered to a gap height of 162 pm and the sample was
subjected to steady state flow tests with a shear rate ramp from 0.02864 s to 2000 s with a
logarithmic step. The stage of the apparatus was also maintained at a temperature of 25 °C. As a
control for studying the effects of viscosity on dispersion, several dispersion samples using glycerol

were also prepared and characterized.
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Chapter 4: Results

Nanotubes hold immense potential as a material that can lead to the development of new technology,
however many of these potential products require nanotubes, which aggregate during synthesis, to
be adequately dispersed and stabilized in solution otherwise their mechanical, electrical, and thermal
properties remain locked in the bundle form. As previously discussed, one approach to stabilizing
nanotubes in solution involves non-covalent modifications of the nanotube surface by mixing via
ultrasonication in the presence of a stabilizing agent such as a polymer or surfactant. As the nanotubes
are separating, these stabilizing agents would coat the surface of the nanotube making them less likely
to bind with each other by providing an electrostatic or steric repulsing force to counteract the
intrinsic van der Waals forces driving nanotube aggregation thereby lowering the surface energy of
the nanotube as well. Although there has been a heavy amount of past research exploring the
potential dispersing ability of different surfactant and polymers, using both in combination has been
a fairly new approach. Davis et al. (2012) had previously used the surfactant, CTAB, and the polymer,
PVP in the design of a chitosan-based composite, seeing a 20 times increase in the mechanical
strength with the incorporation of nanotubes. To gain a better understanding of how these two types
of molecules interact with each other and in the presence of nanotubes, a battery of techniques such
as Vis-NIR absorption, atomic force microscopy (AFM), dynamic light scattering (DLS), surface tension,
pH, and viscosity were used to assess the chemical and physical phenomena of the system. Here, the
results of such experiments are presented, discussed and used to propose a model for the CTAB-PVP

dispersion system.

4.1 Characterization of Nanotube Dispersions

4.1.1 Vis-NIR of Nanotube Suspensions

Vis-NIR spectroscopy was used to characterize nanotube dispersion. This technique was chosen to
take advantage of the unique band structure of nanotubes. Nanotubes of different chirality require
different levels of energy in order for electrons to be promoted from the conduction to the valance
band. Assuming a suspension of nanotubes with a single chirality value, the theoretical spectra
produced should show a single absorbance peak. In a sample with nanotubes of multiple chiralities,
the peaks overlap and create a convoluted signal with multiple peaks. The resolution of the peaks
nevertheless, is strongly dependent on how well dispersed the nanotubes are in solution. Nanotubes

that are aggregated in bundles generally give poorly resolved spectra because of light scattering by
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the nanotube bundles. Therefore, a well dispersed sample would be reflected by a spectra that gives

sharp resolved peaks in the Vis-NIR region.

Prior research by Blanch et al. (2010), Haggenmueller et al. (2008) and Tan et al. (2005) have used Vis-
NIR absorbance spectroscopy to show that the surfactant centrimonium bromide (CTAB) was
moderately able to disperse nanotubes in aqueous solution.”>’#7> To validate our methodology, 5 mg
of SWNT were placed in 25 mL of 0.1 %wt/v solution of CTAB, ultrasonicated to mix, and
ultracentrifuged to remove impurities to ultimately achieve the dispersed sample. As a comparison, a
suspension using an aqueous solution of 2 %wt/v sodium deoxycholate was also prepared the same
way. Sodium deoxycholate was previously shown to be a much more effective dispersing agent

compared to CTAB.”? Figure 4.1 provides the obtained spectral profile for the two samples.
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Figure 4.1: Absorption spectra of CTAB dispersed nanotubes

The presence of peaks in the spectra for CTAB as seen in Figure 4.1 is indicative of nanotubes being
dispersed. In fact, the presence of multiple peaks indicates that there are multiple nanotube chiralities
present within the solution. Many of these peaks could be convoluted though as stated previously,
however using the theoretically predicted wavelengths required for electronic transitions by Bachilo
et al. (2002) and Weisman et al. (2003) their identities can still be predicted. Among those most
prominent are the [9,2], [8,7], and [7,5] species. Table 4.1 shows their measured wavelength against

the values predicted in the aforementioned publications.

Species [m, n] A11 Measured A 22 Measured A 11 Predicted A 22 Predicted
[9, 2] 1138 550 1138 551
8, 7] 1275 735 1265 728

(7, 5] 1031 645 1024 645
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Table 4.1: Nanotube species observable through peaks of CTAB-assisted dispersion of nanotubes. The measured
and predicted van Hove wavelengths from research by Bachilo et al. (2002) and Weisman et al. (2003) are
included.”®”!

To quantify the degree of nanotube dispersion using the optical absorption spectra, different methods
have been proposed. Tan et al. (2005) obtained the resonance ratio by dividing the area of the
absorbing peaks by the non-resonant background (Figure 2.6). Using this method, a total resonant
area of approximately 26.8 was found for CTAB. This value corresponds to a resonance ratio of
approximately 0.071 after dividing by the non-resonant background. Comparatively, this value is
within range of values observed for different dispersants by Tan et al. (2005) however it is notably
lower than their reported value of 0.119 for CTAB. The authors had also ran sodium cholate (SC) which
differs from sodium deoxycholate by the absence of one hydroxyl group on the gonane template.
Although not the same molecule, their dispersive ability should be similar given their similar structure.
Then, for sodium cholate, they achieved a resonance ratio of 0.147 whereas we achieved a total
resonant area of about 52.66 and a resonance ratio of about 0.094 for its derivative. Blanch et al.
(2010) and Haggenmueller et al. (2008) have both also confirmed similar results via Vis-NIR although
neither used the resonance ratio. Blanch et al. (2010) relied solely on observing the sharpness of
peaks however Haggenmueller et al. (2008) determined the ratio of the nanotube absorbance to the
background absorbance at the wavelength of 910 nm. For the obtained results, the wavelength of
1130 nm was used instead because there did not appear to be any nanotube chiralities present that
could absorb at 910 nm given the obtained spectra. For sodium deoxycholate they obtained a value
of 2.5 at a wavelength of 910 nm whereas a ratio of 1.73 for was achieved using 1130 nm for
deoxycholate. CTAB gave a value of 1.32. Unfortunately, Haggenmueller et al. (2008) did not test CTAB,
but its value is most comparable to 1.50 which they obtained for imidazonium based cationic
surfactants. While somewhat different, this comparison shows a trend in the dispersive ability of the
tested surfactant molecules. Comparatively again, CTAB has dispersive abilities but is generally poor.
The origins of the observed smaller values can be traced to purity of the initial nanotube sample (>90%
in our case) as well as differences in synthesis method. Multiple sources such as Hennrich et al. (2005)
and Blanch et al. (2010) report clear differences in their nanotube dispersion spectra when nanotubes

of different synthesis methods and catalysts were used.0414>

We tested different molecular weights of polyvinylpyrrolidone (PVP) as well. To the best of our
knowledge, there hasn’t been a robust investigation on the effects of the molecular weights of a
polymer on its nanotube dispersion ability. Prior research by Blanch et al. (2010) had shown that a

1 %wt/wt solution of PVP10 (where the 10 denotes the molecular weight in kg/mol) was relatively
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poor at dispersing nanotubes compared to CTAB. To ensure this observation was not simply because
the concentration was too low, an arbitrary concentration of 6 %wt/v for each molecular weight of
PVP available was tested. The dispersions were then prepared in the same manner as described above
in which 5 mg of SWNT were ultrasonicated in a 25mL aqueous solution of PVP at 6 %wt/v followed

by ultracentrifugation. A collection of the resulting spectra is shown below in Figure 4.2.
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Figure 4.2: Absorption spectra of 6% PVP-dispersed nanotubes

In contrast to CTAB, the dispersion of nanotubes obtained using pure PVP was of poor quality. This is
likely because PVP is a hydrophilic macromolecule and would not readily bind and stabilize
hydrophobic SWNTs. There appears to be selected regions such as between 1000 nm - 1200nm where
a slight increase in absorbance relative to the background could indicate nanotube dispersion though
generally PVP appears ineffective overall. Manivannan et al. (2009) and Blanch et al. (2010) observed
similar spectra and because of its poor quality, the authors did not quantitatively assess it.
Haggenmueller et al. (2008), however did test other hydrophilic polymers, namely
carboxymethylcellulose and chitosan at two different molecular weights. Using the Haggenmueller

ratio method once again, the ratios of PVP are reported below:

Expected Polymer Peak Absorbance Background .
Molecular Weight (g/mol) at 1130nm Absorbance at 1130nm Ratio
3500 N/A N/A N/A
8000 0.085 0.068 1.250
10 000 0.084 0.070 1.200
40 000 0.322 0.277 1.162
360 000 0.240 0.213 1.127

1300 000 0.324 0.280 1.157
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Table 4.2: Ratio of Absorbances for 6% PVP dispersion systems for 0.2 g/L SWNT calculated as described by
Haggenmueller et al. (2008)

Comparatively, Haggenmueller et al. (2008) reported approximate values of 2.10, 2.05, 1.83, and 2.00
for carboxymethylcellulose at 90 000 g/mol, 250 000 g/mol, and chitosan at 20 000 g/mol and 200
000 g/mol, respectively. Overall, these values reveal that both polymers are better than PVP at
dispersing nanotubes. This is likely due to their ionic character which aids in dispersion through
electrostatic repulsion. In addition, there may be an influence from size. For example, with
carboxymethylcellulose, the size of the polymer made no statistical difference in terms of effecting
dispersion whereas for chitosan it did. These subtle differences are also noticeable within the
collected results in Table 4.2 as it appears that smaller molecular weight polymers do lead to better
dispersions. Overall though, it appears that PVP at every molecular weight is a poorer dispersing agent
than CTAB.

For the next set of experiments it was decided that CTAB and PVP be mixed to observe the effects on
dispersion. Recently, many research groups have looked into dispersion strategies using two different
molecules especially for the purposes of nanotube chirality purification via ultracentrifugation.*3! |n
2011, Qiu et al. specifically used the CTAB-PVP system to purify iron nanoparticles via
ultracentrifugation. Specifically, CTAB was used to coat the nanoparticles which were then passed
through different viscosity layers generated by the presence of PVP at different concentrations.
Authors found no significant changes in the nanoparticles after purification.'*® Recently Davis et al.
(2012) also used both CTAB and PVP in conjunction to disperse nanotubes before incorporation into
a chitosan matrix. The incorporation lead to substantial increases in mechanical strength of the SWNT-
chitosan composite meaning SWNT were well dispersed. However within these tests, there again
appeared to be no optimization for the molecular weight of PVP to use. Based on the observation
presented in Table 4.2 above in which a lower molecular weight polymers can better disperse
nanotubes and previous studies suggesting that for the case of nanomaterials dispersion the choice
of molecular weight plays a critical role on the quality of the suspension obtained,® there is incentive
to try and use different molecular weights of PVP to augment the dispersion of nanotubes even
further. Thus, these samples were prepared as described above where 0.2 g/L of SWNT was
ultrasonicated, however now the solution mixture contained both 0.1% wt/v CTAB and 6 %wt/v PVP
at different molecular weights. It should be noted that upon performing these experiments, the non-
resonant background did not appear stable as it shifted in terms of the overall absorption intensity.
Despite this, the peaks which represent dispersion kept a more constant shape (Figure S 2, Appendix

1) therefore the use of the resonant area was selected beyond this point. Figure 4.3A shows the
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obtained spectra of two molecular weights tested at 6 %wt/v, PVP10 and PVP40 where a distinct
increase in peak resolution can be seen. Figure 4.3B compares and contrasts the quantified resonant
area of all 3 of the previously described systems and contrast them with each other using the resonant

area values obtained from the optical absorption spectra.
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Figure 4.3: A) The obtained spectra of 0.1 %wt/v CTAB. 0.2 g/L SWNT, and 6 %wt/v PVP at different molecular
weights. B) Resonant area comparison between 0.1 %wt/v CTAB (green), 6 %wt/v PVP (blue), and 0.1% CTAB
with 6% PVP (orange) as obtained in (A) at dispersing 0.2 g/L SWNT.

In addition to the remarked observation that 0.1 %wt/v of CTAB is better at dispersing nanotubes than
all samples containing pure PVP at 6 %wt/v, there are several observations worth noting on Figure

4.3. Firstly, in Figure 4.3A, it’s observable that PVP10 appears to show the most prominent resonant
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area. This is perhaps most observable in Figure 4.3B where quantifying the spectra reveals the
dramatic increase in resonant area in all cases when both the surfactant and the polymer are present.
For PVP10, there is almost a 3-fold increase compared to 0.1 %wt/v CTAB alone and almost a 9-fold
increase compared to 6 %wt/v PVP10 alone. From this dramatic increase, the effect appears
synergistic and not additive. Increasing or decreasing the molecular weight seemed to give poorer
dispersions relative to PVP10 however the synergy remains present. To gain a better understanding
on how the addition of polymer affects the resonant area, several different concentrations of PVP
were tested. SWNT dispersions were thus prepared at the additional concentrations of 0.25 %wt/v,

0.75% wt/v, 1.1% wt/v, 4% wt/v, and 9% wt/v with each molecular weight. Figure 4.4 below shows

the results.
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Figure 4.4: Resonant Area of PVP-CTAB-SWNT dispersions at a fixed CTAB concentration of 0.1 % wt/v and 0.2
g/L SWNT.

As indicated, the result shows an increase in dispersion with increasing polymer concentration for all
molecular weights. It can also be observed that each trend appears to plateau at a concentration of
9% wt/v. Comparing each molecular weight of PVP used, PVP10 remains one of the better sizes to
disperse nanotubes in terms of concentration. PVP40 was observed to have potential as well while
other molecular weight polymers such as the smaller, PVP3.5 and PVP8, and the larger, PVP360 and

PVP1300 show relatively poor nanotube dispersions.

The absorbance intensities of the Vis-NIR results can also be used to determine the final concentration
of nanotubes in each dispersion tested. Beer-Lamberts Law which relates absorbance to the product
of path length, concentration, and the extinction coefficient of the molecule is a common formula

used to determine concentration from absorbance. Previously, for the purposes of gel permeation
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chromatography (GPC), a separation and quantification technique, Bauer et al. (2008) determined the
extinction coefficient for nanotubes to be 26 000 cm?/g at a wavelength of 690 nm by using samples
of known nanotube concentration. Using this extinction coefficient, a path length of 1 cm, and the
absorbance values at 690 nm for each spectra, the final concentrations of nanotubes in each sample

were obtained and are shown below in Figure 4.5.
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Figure 4.5: Final concentration of dispersed nanotube solution (g/L) with respect to the PVP concentration
From this, it appears that a higher molecular weight of the polymer leads to a higher overall retention
of nanotubes (dispersed and aggregated) in the system. Indeed, with the smaller polymer, only 0.02
g/L or 10 % of SWNTs are retained whereas with larger polymers, 0.08 g/L or 40% of SWNTs are
retained. This effect is likely related to the terminal velocity, the velocity at which a particle moves

through a solution and is given as below when a solution is being centrifuged.

mro?

Ol — (4.1)

where m is the mass of the particle, r is the distance of a particle to the axis of rotation, w? is the
angular velocity, 7 is the viscosity of the medium, and 1 is the radius of the particle. Increases in
viscosity with the addition of polymer is a well-known phenomenon and has been shown to change
in our working concentration range (Figure S 5, Appendix 1) as well. Thus, a higher viscosity would
lead to a lower terminal velocity meaning that at a set centrifugation speed and time, particles would
take longer to sentiment. This result was reaffirmed by using C70 fullerenes, another carbonaceous
nanoparticle much smaller than SWNT at: 0.2 g of fullerenes/L dispersed with 0.1 %wt/v CTAB and 6%
wt/v PVP. Results (Figure S 3, Appendix 1) indicate that a higher molecular weight of PVP led to higher

concentration of fullerenes in suspension after centrifugation as indicated by differences in
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absorption intensity. It is worth noting that Qi et al. (2007) were able to retain a maximum of 0.075
g/L SWNT from an initial concentration of 0.1 g/L which translates into a 75% retention however, their
procedure did not involve centrifugation. Additionally, their zeta potential results indicated that at
least 75% of their retained nanotubes were saturated with surfactant when a CTAB concentration of
1 mM was used.' Given the lower concentration of nanotubes retained in our case and the amount
of CTAB used (0.1 %wt/v is approximately 3 mM), it is very likely that all the nanotubes in our samples

are saturated with surfactant as well.

4.1.2 Atomic Force Microscopy

Many researchers have previously reported that nanotubes can be fragmented during ultrasonication
resulting in nanotubes with smaller lengths.”*”® To assess whether this was a phenomenon occurring
within our system, AFM was used to acquire the length and diameter distributions of nanotubes in
our dispersed samples. Unlike traditional forms of microscopy which visualize a sample based on how
it interacts with particles from a particular source (light, electrons, etc), AFM uses a cantilever probe
with a fine tip to scan the surface of prepared samples. In this case, the sample for AFM was prepared
by aliquoting a solution containing 0.1 %wt/v CTAB and 0.2 g/L SWNT onto a polished silicon wafer.
The wafer which serves as a smooth non-interfering surface for analysis was then dried at 180 °C and
washed profusely with pure water to remove surfactant molecules. It was then dried again and
analyzed immediately on the AFM. This sample was chosen in particular instead of samples containing
polymers to avoid misinterpretation of polymers for nanotubes and vice versa. Figure 4.6 shows a

sample image that was acquired.

Figure 4.6: Sample AFM image of CTAB-suspended SWNT dried over a silicon wafer
From the image, there does appear to be nanotube strands of varying degrees of diameter and length.

Using several images, the diameter and length of the observable strands were subsequently measured

using the computer program, Gwyddion and presented below in Figure 4.7 in the form of histograms.
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These distributions show that most prevalent nanotube characteristics include a diameter of about 1
nm - 2 nm and a length of about 400 nm - 600 nm. Using these dimensions, a molecular weight
distribution of about 500 000 — 1 000 000 g/mol was also calculated stoichiometrically by using a
density of 1.33 g/cm?, as specified by Hadjiev et al (2001)**8, and assuming the nanotube as a rigid
cylinder. The acquired outer diameter and length were in range of those reported in previous research

in which sonication was part of the dispersion methodology (Table 4.3),102:121,149,150

Sonication Power Power/Area
Time (h) Length (nm) Diameter (nm) Reference
Type (W) (W/inch?)
1”7 Tip 180 229.30 2 400-600 1-2 Own results
Zheng et al.
0.125” Tip 3 244.59 1.5 100-200 1-2
(2003)%2t
Islam et al.
0.125” Tip 6 489.17 1 141-393 1-5
(2003)4°
Su et al.
0.157” Tip 13 671.51 1 200-500 N/A
(2007)%?
Yehia et al.
0.0785” Tip N/A N/A 0.0167 100-400 N/A
(2007)152
Elgrabli et al.
Tip (Size N/A) 40 N/A 0.0333 500 N/A
(2007)%53
Tip (Size N/A) N/A N/A 0.0167 2000 2.5-3 Hecht et al.
Tip (Size N/A) N/A N/A 15 500-1000 2-3 (2006)%54
Paredes et al.
Tip (Size N/A) N/A 40 N/A 400-700 1.3
(2004)1%>
Islam et al.
Bath 12 N/A 1 230-802 1-2
(2003)%4°

Table 4.3: Reported lengths and radii from various research groups after sonication. The italicized results are
the results obtained in our experiments

As seen, given the conditions used it’s reasonable that the nanotubes are being fragmented especially
considering that they are sold at a length of 5— 30 um. It’s noticeable as well that there doesn’t seem
to be much correlation between the power applied, time, nor the resulting length as it seems the
mere application of ultrasonication is enough to fragment nanotubes into various sizes. This is
especially true given that bath sonication can fragment nanotubes as well. Curiously, Islam et al. (2003)
observed bath sonication give a wider distribution of lengths but a fairly narrow diameter distribution
while tip sonication gave a wide distribution of diameters but a narrow distribution of length.

Although a reason was not stated, this is likely due to how the ultrasonics are applied to the sample.
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The discrepancy seen in the different reported ranges of nanotubes could be a result of aggregation
during sample preparation. Because of the drying and washing steps, there’s a large chance that
fragments could clump together thus leading to overestimation of sizes in the produced images.*
Nevertheless, it was also observed that the molecular weight of nanotubes obtained using GPC, 646
103 g/mol, (Table S 2, Appendix 1) falls within the expected range calculated using AFM data thereby

reconfirming the results.

The fact that nanotubes become fragmented during ultrasonication has several implications. Most
likely, it affects sample preparation in terms of ultracentrifugation. Seen in equation (4.1), smaller
nanotubes equates to a lower mass in determining the terminal velocity for separation during
ultracentrifugation, therefore fragmented nanotubes would remain in solution more readily than
their uncut forms leading to an overall increase in retention. Also, having a reduced length may also
help in dispersion as the shorter the nanotube, the less flexibility it has to coil with either itself or
adjacent nanotubes for the formation of aggregates. This is especially true considering the persistent
length of a nanotube is typically on the order of several microns, 32 — 174 um as reported by Duggal
et al. (2006).1°% Given that the persistent length is a measurement of stiffness and the obtained lengths
are almost a hundred times smaller, this means that the nanotubes in solution would be extremely

rigid.

4.1.3 Dynamic Light Scattering (DLS)

As a means of validating the size characterization by AFM and to observe any potential changes to
surfactant or polymer morphology in aqueous solution, the different chemical components of a
dispersed system were analyzed using DLS. DLS as its name implies is a light scattering-based
technique which uses fluctuations in the light scattered by particles over time and under the effects
of Brownian motion to determine suspended particle size distributions. Brownian motion is the
movement of particles from random collisions imparted by surrounding molecules. Scattering
intensity and time are related through an autocorrelation function which can subsequently be solved
by using different mathematical transformations. Two that are readily available are the CUMULANT
and non-negative least squares (NNLS) method. The CUMULANT algorithm estimates the
autocorrelation curve by expanding it as a sum of exponentials as defined previously in equation (2.21)

whereas the NNLS uses the least-square fitting with the constraint that the weighting factor, C,, in
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equation (2.21) is positive. The method of CUMULANTS typically projects size distributions as a

quadratic curve due to a lack of information beyond the third expansion term.

Having validated the molecular weight of the different PVP using GPC as mentioned above, the
distributions between these two techniques were compared. Aqueous PVP samples of different
molecular weights were ran at a concentration of 1.1 %wt/v because it was determined previously
through trial and error that the polymers were sufficiently concentrated to generate a satisfactory
autocorrelation curve. Table 4.4 below summarizes the results for a lognormal analysis which uses

the CUMULANT method.

Expected Polymer Molecular Obtained Molecular Hydrodynamic Radius (nm)
Weight (g/mol) Weight (g/mol) (lognormal)

3500 4870 + 325 1.8+0.1

8000 10900 * 835 25+0.1

10 000 53567 + 10 036 33$0.5

40 000 256 333 +14 978 6.6+0.4

360 000 1173333 +104 083 12.6+0.9

1300 000 1360000 +113 137 13.5+09

Table 4.4: Summary table of DLS results for the analysis of the different molecular weights of PVP

The outputted hydrodynamic radius and molecular weights obtained from the lognormal distributions
of DLS follow an increasing trend. However they appear larger compared to the listed supplier values
and are certainly larger than values obtained from GPC as reported in Table S 1, Appendix 1. At this
point it is necessary to comment on the similarity between PVP360 and PVP1300 in both DLS and GPC.
This observation was unexpected but also helps to explain the similarity in trends observed in previous
dispersion experiments. Differences in the readings between DLS and GPC could arise due to a
difference in technique as DLS relates scattering intensity to time and calculates molecular weight
based on the diffusion coefficient whereas the data collected via GPC involved the combination of a
low-angle laser static light scattering detector and refractive index detector. The former is a technique
based around solving the Zimm equation (4.2) by bringing the particle scattering function, P(8), to
unity and reducing the equation to its linear form equation (4.3):

Kc 1

R@) ~ Mup@) T (4.2

Kc 1

RG) M, " 24,¢ (4.3)
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Additional terms are c, for concentration, R(8) for the Rayleigh ratio, and A, for the second virial
coefficient. It can therefore be seen that the theory is vastly different. The later involves building a
refractive index profile based on solutions containing a known polymer of known concentration and
molecular weight. The signal from the sample is then compared to the profile of the standard solutions.

Therefore, having two detectors would lead to greater accuracy and is likely the source of discrepancy.

Having assessed the techniques precision, the next set of data presented will deal with the use of the
NNLS algorithm in conjunction with the CTAB-PVP-SWNT system as it allows for greater insight into
the dispersitivity of the system. The results will be interpreted after all the data is presented to provide

a more inclusive explanation.

Figure 4.8 below shows the distribution of aqueous 1.1 %wt/v PVP10 and serves as an example as to
what was seen using NNLS for other polymer solutions as well. As can be seen, two separate
distributions are presented indicating the presence of two differently sized forms of the polymer. It is
important to note that this observation was seen with 0.1 %wt/v CTAB as well. Table 4.5 reports the

sizes in which the smaller and larger forms are centered.
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Figure 4.8: Example of bimodal distribution seen in the MSD analysis of PVP at different molecular weights. This
particular example wasobtained for 1.1% PVP10

Expected Polymer Radius of PVP Smaller Radius of PVP Larger
Molecular Weight (g/mol)  Form using NNLS (nm) Form using NNLS (nm)

3500 1.6+09 74+5.1
8000 1.1+0.5 55+1.4
10 000 09 +1.0 41 £1.6

40 000 3.7 £0.6 13.4 +£35
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360 000 7.5 £0.5 27.2 £5.1
1300 000 7.1 £1.0 29.5 +9.2

Table 4.5: Values of the small and large forms of PVP under the MSD analysis option.

CTAB alone at a concentration of 0.1 %wt/v was also ran (Figure 4.9). In addition to obtaining an
overall hydrodynamic radius of 106.4 nm from the lognormal analysis, it can be seen that the
distribution derived from NNLS is quite complex as there appears to be three different domain sizes
with two of the three being convoluted and centered around diameters of 136.6 nm and 417.7 nm.
The third and also smallest distribution appears around 2.4 nm and are likely to be micelles. The
identity of the other two species will be discussed below. The first peak sitting at a diameter of
approximately 2.4 nm is likely that of micelles which can been predicted to be approximately 1.67 nm
—4.36 nm by taking the end-to-end distance of two CTAB molecules using a bond length of 0.120 nm
-0.157 nm and a bond angle of 109.5°. Additionally it is also in the vicinity of the hydrodynamic radius
of 2.92 nm reported by Movchan et al. (2012).%> However, the other distributions centered at larger
sizes are more difficult to interpret. Initially, it was thought that these species may be worm-like
micelles making them anisotropic in solution thereby giving radial and translational readings based
on its orientation to light. However a careful inspection of the phase diagram of CTAB (Figure 2.7)
indicates that worm-like micelles should not form at the conditions used in our experiments. Lee et
al. (2005) have also observed these multiple size distributions for CTAB and proposed that they
represent chemical byproducts formed from radical-containing surfactant molecules generated
during sonication. This seems unlikely as we have analyzed CTAB without sonication and have
observed distributions about the same size. However, we have experimentally observed that crystals
can form in CTAB solutions over time at room temperature. Indeed, Ray et al. (2005) and Movchan et
al. (2012) have reported self-aggregation of alkyltrimethylammonium bromide surfactants of various
sizes. According to the phase diagram (Figure 2.7), at working conditions, CTAB is very close to the
crystalline phase such that aggregates are a possibility. Based on this observations we attribute the

distributions peaks observed above 100nm to surfactant aggregates.
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Figure 4.9: Particle size distribution of 0.1% CTAB in solution

Having observed the distributions of both aqueous PVP and aqueous CTAB, dispersed nanotube
solutions were also analyzed using DLS. In choosing which molecular weight of PVP to use to prepare
dispersed samples, it was decided that PVP40-SWNT, PVP360-SWNT, and PVP1300-SWNT would
provide the most reliable data due to the limits of resolution. For PVP-SWNT, 0.25 %wt/v of the
polymer and 0.2 g/L of SWNT were used as it was noticed that higher concentrations of PVP would
interfere with SWNTSs readings. As mentioned above, PVP360-SWNT and PVP1300 are very similar in
size and so should provide similar results. The resulting particle size distributions are given below in

Figure 4.10.

A 100
80
60

40

Relative Intensity

20

1 10 100 1000

Particle Diameter (nm)



54

B D (0]
o o o

Relative Intensity

N
o

B 100 /\
0 J\_/—/\\_ -
10 100

Particle Diameter (nm)

C 100
90
80
: 70
60
50
: 40
30
20
10

0 N\ _ _

0 100

1 1

Particle Diameter (nm)

1000

Relative Intensity

1000

Figure 4.10: DLS of SWNT suspended with 0.25% A) PVP40, B) PVP360, and PVP1300

In both cases, the distribution is trimodal. In the figure the diameter distributions seem to be centered
around: 5.6 nm, 64.3 nm, and 258.5 nm for the PVP40-SWNT system; 7.9 nm, 22.3 nm, and 178.0 nm
for the PVP360-SWNT system; and 4.3 nm, 65.4 nm, and 348.0 nm for the PVP1300 system. Because
nanotubes are rod-like in nature, they are anisotropic in the way they scatter light as mentioned
previously.*! Because of this, two of the three distributions can be associated with the diameter and
length of the nanotubes. Given the AFM data above, it is very likely then that the distributions of
smallest and largest size represent the diameter and length of a nanotube (centered around 1-2 nm
and 400 — 600nm respectively as obtained by AFM). In each case though, there also exist a third
distribution in between. In the case of PVP360-SWNT, this size is centered around 22.28 nm whereas
for PVP40 and PVP1300 it is centered around 65 nm. It was expected that PVP360-SWNT and

PVP1300-SWNT would give very similar results given previously mentioned GPC results but the size of
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the middle distribution between the two are not the same. In the case of PVP360, this size is
approximately that of the larger species detected in aqueous PVP360 without nanotubes. These

bimodal distributions seen in aqueous solutions of PVP will now be discussed.

The double distribution profile observed in aqueous PVP was also observed by Xu et al. (1991) in which
they encountered a similar problem studying PS-PEO block polymers using DLS as a main technique
of investigation. They noted hypotheses from previous authors such as incomplete dissolution of the
polymer; solvent-driven aggregation between smaller species; and thermodynamically-driven
aggregation where the smaller species cluster due to favorability of a crystalline-like phase. The
authors postulated that these aggregates may appear as a large entity with a nucleus, an onion-like
particle, or several small particles aggregated together. Although in their report the authors could not
decisively conclude what the larger species was, later reports by various authors do seem to indicate
that they are indeed smaller polymers clustered together.’*®'° Indeed, considering the possibility of
aggregation, the size we obtained of the larger species (as reported in Table 4.5) always seems bigger
than the smaller particles by a ratio of 4:1 approximately. We could postulate then that every
agglomerate of PVP consists of approximately 4 polymeric chains. The particle of size 22.3 nm for
PVP360 could just be one of these agglomerates. However, this conclusion doesn’t seem to fit with
the middle peak observed for PVP40 and PVP1300. Given the literature, there are two other plausible
explanations: 1) PVP aggregate with carbonaceous compounds to produce larger clusters or 2) PVP
chains are swelling. With regards to the first hypothesis, since PVP is hydrophilic and nanotubes are
hydrophobic this hypothesis seem unlikely at first, however it is important to recall research by Dror
et al. (2005) and Cotiuga et al. (2006) in which they observed hydrophilic polymers such as a styrene
and maleate copolymer (PSSty), a polystyrene-polyethylene oxide copolymer, and gum arabic
aggregated together with amorphous carbon using cryo-TEM.'?312% The sizes of these aggregates did
vary but many of the images show particles do fall within the size domains we observed for the middle
peak. In addition, when CTAB-SWNT was ran at the working concentration of 0.1% wt/v it was found
to give detection patterns similar to those obtained on PVP samples with nanotubes. Three peaks
were also observed with the center peak around 71 nm in size. Due to the absence of PVP but the
presence of nanotubes, this suggests that the middle peak has carbonaceous origins. With the second
hypothesis, Tuteja et al. (2008) observed that with the incorporation of polystyrene nanoparticles into
a solution of polystyrene chains, the radius of gyration of the chains increased by 10%-20% due to
swelling. This only happened when the radius of gyration of the polymer was larger than the
nanoparticle radius.'® It’s possible that a similar phenomenon is occurring in our system however

with only a maximum of 20% seen in the increase of the polymer, hypothesis 1 seems more likely.
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Given that PVP360 and PVP1300 are very similar in terms of molecular weight, the reason why the
middle peak appears in different positions could also be influenced by the resolution of DLS. Typically
a minimum of 2:1 difference in particle size is necessary for two particles to be resolved confidently.
For instance, if a particle is 100 nm, only a particle at a size of 200nm or greater in solution will show
up as separate entities. However, this difference could expand depending on the distribution of sizes
in solution.®1%2 The middle species differ from another by a ratio of only 3:1 approximately and
considering the potential distribution of sizes available in an aqueous polymer solution, it’s possible
that the peak appears in different positions due to resolution. It’s important to note that this does not
mean that the two peaks are the same type of particle appearing at a different size but rather simply
pointing out that both polymer aggregates and amorphous carbon can exist in solution but the
apparatus could be having trouble differentiating the two as DLS is again a method based on changes

in scattering intensity.
4.2 Surface Tension

Due to the potentially complex and sensitive behavior of CTAB in aggregating and crystallizing, its
behavior in the presence of PVP was tested. Analyzing the surface tension is one possible method to
do this as the air-liquid boundary of a surfactant solution is directly related to surfactant concentration
and behavior. Specifically, because surfactant molecules are amphipathic, they would only want to
present its hydrophilic region to polar solvents like water while the non-polar region would project
away from the solution and into the air. This behavior would cause the surface tension to drop due to
interference of normal water molecule interactions. At the surface saturation point, surfactant
molecules at the air-liquid boundary would then form micelles, spherical structures in which the non-
polar region of surfactants are located in the core of the structure — protected from the aqueous
environment. Figure 4.11 illustrates an experiment carried to obtain this critical micelle concentration

(CMC) of CTAB.
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Figure 4.11: Surface tension behavior of CTAB

Given that the surface tension decreases from 72 dyn/cm (surface tension of water) to a stagnant
value of 38 dyn/cm, the CMC which occurs at the breaking point is approximately 0.0338 %wt/v or
0.93 mM. This is within the generally reported range of 0.9-1.0 mM determined by a variety of
techniques including calorimetry, surface tension, conductivity, viscometry, and fluorimetry.163-165
Additionally, using an abscissa confidence interval method described by Filliben et al. (1972) the CMC
has a determined 95% Cl range of about 0.058 mM. This value indicates that the true CMC value is
within the 0.93 £ 0.029 mM range with a 95% confidence level. Similarly, PVP was also tested however
being a hydrophilic polymer, there was minimal change compared to the value of water (Figure S 4,
Appendix 1). Also tested were samples at working conditions of 0.1% wt/v CTAB and the concentration
range previously stated for PVP: 0.25 %wt/v, 0.75 %wt/v, 1.1% wt/v, 4 %wt/v, 6% wt/v, 9% wt/v.
When the two were combined (for each molecular weight), the surface tension value was consistently
about 38 dyn/cm meaning that the surface of samples were still saturated with CTAB. Lastly, the CMC

was also tested in response to PVP at different molecular weights. It was found that within the

confidence interval, there weren’t any significant changes with the addition of the polymer as shown

in Table 4.6.
Mw of Polymer (g/mol) Concentration [%wt/v] CMC [mM] 95% Cl Range [mM]
0.25 1.055 0.0642
3500 1.10 1.137 0.0448
4.00 1.111 0.0746

10 000 0.25 1.013 0.0721
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1.10 0.965 0.0696
4.00 0.883 0.2258
0.25 1.022 0.2054
40 000 1.10 1.044 0.0690
4.00 1.040 0.0833
0.25 1.068 0.0668
360 000 1.10 0.940 0.0669
4.00 0.920 0.1482

Table 4.6: Estimated CMC values of CTAB with different molecular weights of PVP at different concentrations
with the 95% interval that the true CMC value lies between.

Overall, the CMC of CTAB acquired is consistent with previous reports. With the addition of PVP, Table
4.6 also shows that there are no significant changes in the CMC of CTAB no matter the molecular
weight or concentration. This can be surprising especially given as PVP has been shown to interact
with alkali metals and cationic nanoparticles.'®%'%” Nonetheless, this coincides well with reports such
as those by Feng et al. (2003), Bury et al. (1997), Wang et al. (1998), and Wan-Badhi et al. (1993) all
of whom have observed through various techniques such as calorimetry, H-NMR, and electrochemical
kinetics that CTAB and PVP don’t directly interact with one another.!1>116.168169 However, a recent
report by Ali et al. (2009) reported that the CMC of CTAB can increase quite sensitively to the addition
of PVP. In fact, they reported that the CMC of CTAB changed from the range of 0.9mM — 1.0 mM to
2.64mM with 0.02 %wt/v PVP40 and 3.87mM with 0.15 %wt/v PVP40.17° We tested these
concentrations as well (data not shown) using surface tension however, no changes in CMC were
observed. The origin of these inconsistencies may be due to a difference in technique. Conductivity
works on the premise of detecting how well an electric current can pass through a solution. At CMC,
the conductivity shifts due to the formation of micelles. Although PVP is largely considered a neutral
molecule with minimal conductivity readings'’! (compared to those observed by Ali et al. (2009)) it
has been reported to contain cationic groups!®® which may play a role in changing conductivity. Indeed,
Yang et al. (2012) observed that treatment of PVP-MWNT in an acidic solution of aqueous PVP at a
pH of 3.0 lead to the development of a positive charge on PVP.17? In addition, PVP is known to have
possible resonance structures through the shift in electron density from the nitrogen to the oxygen

as seen below in Figure 4.12.173174
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Figure 4.12: Different resonance structures of the pyrrolidone head group of PVP. The figure was designed by
Mishra et al. (2009).175

The presence of these phenomena by PVP may itself contribute to conductivity or there could in fact
be indirect changes in the electrochemical behavior of CTAB in solution that was not detected with
the surface tension method. One possible indirect change involves bromide ions interacting partially
with the nitrogen on PVP. Indeed, there have been reports of counter-ion dependence for cationic
surfactant-polymer interactions. Hamada et al. (1976) observed varying levels of interactions
between alkylammonium surfactants and PVP with the use of different counter-ions such as bromide,
chloride, and succinate.'’® There have also been reports in which polymers such as polysulfurnitride
and natural rubber have had their conductivities increased tenfold by doping with an electron
acceptor such as bromine.'”” Typically, conductive polymers possess a conjugated 1t system which
when doped causes an electron imbalance enabling electrons to move along the polymer backbone.'”’
This phenomena would lead to changes in micelle formation due to the necessity of counter-ion

stabilization in micelles. With regards to this analysis, it was deemed important to investigate the

system with regards to pH as well. These will be discussed further next.

It is important to note as well that at the surfactant and polymer concentrations used in the
preparation of dispersions, the incorporation of 0.2 g/L SWNT nanotubes did not show any difference
in terms of surface tension either with respect to the solutions without the nanotube. Prior results by
Sa et al. (2011) did show that increasing the nanotube concentration could change the CMC of a
surfactant.’® However, because the concentration of nanotubes and surfactant were kept constant
in our experiments, and because PVP was not causing observable changes in the CMC of CTAB nor did
it dramatically affect the surface tension on its own, it is reasonable to conclude that any effect on

solution dynamics due to CTAB-SWNT interaction would have been constant throughout experiments.

4.3 pH Measurements
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Briefly, the pH is a measure of the concentration of protons in solutions and is one of the fundamental
measurements of acidity and basicity in solutions. As mentioned previously, the pH of the system
should be considered as there may be changes influenced by the bromide counter-ion of CTAB. At the
working concentration of 0.1 %wt/v, CTAB was determined to have a pH of 4.81 £ 0.11. At the arbitrary
polymer concentration of 6 %wt/v as previously used to disperse nanotubes, solutions possessed a

pH less than 4 for all molecular weights of the polymer (Figure 4.13).
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Figure 4.13: The pH value of standard control solutions such as 0.1% CTAB and 6% of the different molecular
weights of the polymer.

In mixtures containing both PVP at concentrations of either 0.25 %wt/v, 1.1% wt/v or 6% wt/v and
0.1% wt/v CTAB, the pH appeared to decrease with increasing concentrations of PVP for all molecular

weights (Figure 4.14).
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Figure 4.14: pH reading of A) PVP40 and B) PVP360 at different concentrations. The blue represents of samples
with 0.1 %wt/v CTAB whereas the orange represents samples with both 0.1 %wt/v CTAB and 0.2g/L SWNT.

This suggest that changes in pH seem largely driven by PVP. Compared to CTAB, the mechanism
behind PVP driven pH appears rather complex. Nikiforova et al. (2012) sought to describe the acid-

base properties of PVP by presenting the tautomeric structures seen in Figure 4.15 below.
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Figure 4.15: Possible Tautomerism of PVP as shown in Nikiforova et al. (2012).17°

Theoretical comparisons of the energies (difference of 133.62 kJ/mol) and dipole moments of these
tautomers show that the normal carbamide form (l) is should be more stable. However, the authors
noted the rather mobile hydrogen atom at the alpha position of the carbonyl group (I) and the
hydroxyl group of (ll). With regards to structure (ll), it is expected that a very high pH would be
necessary to extract the hydroxyl proton however a range of 4.2-6.8 had been previously reported as
one in which the existence of structure (Il) is a possibility and one that would subsequently drive a
solution towards lower pH.'”° The authors also remark on the ability of each pyrrolidone monomer in
the polymer to be able to retain a water molecule even in the driest of states. This monohydration

effect can lead to other significant phenomena including the breaking of the lactam ring at the bond
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between the carbonyl carbon and the nitrogen as well as delocalization of positive and/or negative

charge depending on the solvent conditions.”

With the incorporation of nanotubes, there were minor changes in pH as can be seen in Figure 4.14
above. With low molecular weight polymers (PVP40 and below), the pH at the tested concentrations
seemed to increase whereas with higher molecular polymers such as PVP360 the pH seemed to
decrease with the presence of nanotubes. This result suggest that with low molecular weight
polymers and nanotubes, the amount of detectable protons in solution is lowered once nanotubes
were incorporated and vice versa with PVP360. To better understand the surface charge state of a
nanotube at different pH values, the point of zero charge of the nanotubes was determined. This was
done by measuring the initial and final pH of multiple aqueous solutions with an adjusted pH range of

2-10 after the addition of nanotubes.
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Figure 4.16: A) Demonstrates the determination of the point of zero charge while B) gives the pH value of
standard control solutions such as 0.1% CTAB and 6% of the different molecular weights of the polymer.

Figure 4.16 above reveals that the initial and final pH are equal at a value of 7.5, meaning that at this
point, there is a charge of 0 on the surface of the nanotube. This value was relatively close to
nanotubes that were purified using NaOH treatment by Matarredona et al. (2003).%® Thus, given
previous pH measurements, this implies that the nanotube surface is likely positively charged. The
increase in pH when using molecular weights below 40 000 g/mol might be influencing hydrogen
adsorption onto the surface of nanotubes — the basis for nanotube application in hydrogen
storage.!®8 This would mean less hydrogen in solution and an increase in pH as the nanotubes are
essentially buffering the system. However, this hypothesis doesn’t hold true when using high
molecular weight polymers such as PVP360 as the pH is decreasing instead of increasing. This suggest

then that nanotubes are encouraging more protons to be in solution. This observation may be because
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protons can no longer be adsorbed onto the surface of the nanotube or there is a change in the
behavior of CTA* or Br in solution however given the observations in section 4.2 there’s no reason to
suggest that either has changed in the presence of nanotubes making the former hypothesis more
reasonable. It’s interesting to note as well that high levels of dispersion occur in acidic conditions —
the link being increases in PVP concentration. Therefore, given the ability of nanotubes to adsorb
protons, there would be an increased positive surface charge on the nanotube which may help
dispersion through electrostatic repulsion. However, it’s important to consider that the change in pH
is most significant at lower PVP concentrations but in these regions, dispersion is barely increased
whereas at high PVP concentrations, the change in pH is low but the dispersion is significantly
augmented. If electrostatic repulsion was the main driving factor, then the change in pH should be
more correlated with changes in dispersion therefore electrostatic repulsion if present should not be

the only force driving dispersion.
4.4 \Viscosity

Our results indicate that nanotube dispersion generally increases with PVP concentration. However,
because of the molecular weight of each polymer, the resulting viscosity in each solution increases at
a different rate (Figure S 5, Appendix 1). Therefore, it became necessary to determine whether or not
viscosity played a role in the dispersion of nanotubes. To meet this objective the dynamic viscosity of
the PVP-CTAB system was acquired at PVP concentrations previously specified with each molecular
weight using a rheometer with the cone and plate geometry. Glycerol-CTAB suspensions of nanotubes

were also prepared to act as a positive control. Figure 4.17 presents these results.
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Figure 4.17: Relationship between viscosity and the total area of dispersion acquired from UV data
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Interestingly, from the figure above, it is seen that viscosity does indeed play a role in dispersing
nanotubes as generally dispersion increases with viscosity. The results obtained using glycerol
particularly illustrate this effect. However, the molecular weight of the polymer seems to play a bigger
role than that of viscosity in nanotube dispersion as PVP10 remains the most potent dispersing agent
while PVP3.5, PVP8, and PVP40 all cluster about the same region slightly below that of PVP10 while
PVP360 and PVP1300 are even poorer. In addition, another interesting observation is the presence of
two regions where the dispersion is being improved at different rates. The change in regions appears
to happen at approximately 2 — 3 mPa-S. Using equation (2.10)!'*!1® and the hydrodynamic radii
determined from GPC in Table S 1, Appendix, the overlap concentrations (c*) of PVP and its
corresponding viscosity values can be determined (Table 4.7). The overlap concentration is the
concentration at which polymers are abundant enough in solution such that polymer chains begin
crossing with each other. The determined overlap concentrations are consistent with values seen in

the literaturel82-184

and are also reasonable in terms of it being high with low molecular weights of
PVP and vice versa as there would need to be more a smaller polymer in order for overlap to occur.
With regards to the overlap viscosity It can be seen that the 2 — 3 mPa-S viscosity range is where PVP
molecules begin to overlap. Therefore, dispersion augmentation with PVP seems to be most
significant before the overlap concentration and after the polymer overlaps, the improvement is only

slight. These methods will be further discussed in section 4.5, nevertheless, based on this observation,

it seems PVP is likely augmenting dispersion through a physical mechanism.

Expected Polymer Overlap Overlap

Molecular Weight  Concentration Viscosity

(g/mol) (%wt/v) (mPa-S)
PVP3.5 14.53 2.50
PVP8 13.28 3.01
PVP10 9.28 2.44
PVP40 391 2.12
PVP360 0.61 2.06
PVP1300 0.68 2.35

Table 4.7: Overlap Concentration and the corresponding overlap viscosity of PVP as estimated using GPC and
equation (2.10)111113,

Another observation with regards to viscosity stems from its decrease in the system with higher
molecular weight polymers such as PVP360 when nanotubes are included as shown in Figure 4.18C

and compared to Figure 4.18A and Figure 4.18B below in which PVP3.5 and PVP10 were used.
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Indeed, there was an observed maximum of 77% decrease using 9 %wt/v aqueous PVP360. This is
interesting since Einstein once predicted that the inclusion of spherical particles in a fluid should

increase viscosity as described by the formula:

n =1ny(1+ 2.5¢) (4.4)

where 7 is the final viscosity, 71 is the viscosity of the fluid without the particles, and ¢ is the volume
fraction of the particles.'® With the inclusion of nanotubes which have a large aspect ratio, the
viscosity should then increase. Clearly, this does not seem to be the case. Several research groups
have reported similar observations. For example, Mackay et al. (2003) incorporated modified
polystyrene nanoparticles into linear polystyrene melts. They found that with the introduction of
about 50 %wt/v of nanoparticles, the viscosity decreased fourfold. They proposed that an increase in
free volume of 10% was the cause of the decrease where free volume is the amount of free space
available for a polymer to adopt different conformations and to move around in solution. The data
presented here could also be used to theoretically calculate the excluded volume. Given a single

nanotube, the free volume generated can be given by:
vy = mdLA (4.5)8

where d is the diameter of the nanotube, L is the length of the nanotube, and A is the thickness of
the excluded volume shell, respectively. The overall size of the excluded volume shell can be

calculated separately using the following formula:

32
Voy = ?nr3 + 8mLr? + 4L%r(sin(y)) (4.6)*

where in addition to the above terms, r is the radius of the nanotube and (sin(y)) is a term that takes
into consideration the orientation of nanotubes with respect to one another in solution. It is given by

the formula:

sin(y) = \/1 — [sin8;sin; cos(¢; — ¢;) + cosb,cosb;]? (4.7)%

where | and J denote two different nanotube species in 3D space with angle 8 along the X-Y plane and
¢ along the Z-XY plane. To do these calculations, we can use the most predominant nanotube sizes
acquired from the AFM seen in Figure 4.7. In particular the length of 500 nm and diameter of 2.5nm
were used. With regards to the contact angle (y) between the nanotubes, Néda et al. (1999) found

that sin(y) had an average value of approximately%or 0.785 in a solution of isotropic cylinders.'®

From this value, the excluded volume is approximately 1.00x10° nm3. This gives a A value of about
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25.28 nm. Based on this, the free volume of a single nanotube is approximately 9.92x10* nm?3. Taking
the extreme case of 9% PVP360, the concentration of nanotubes retained is roughly 0.08 g/L which
equates to approximately 6.42x10% individual nanotubes. Using a molecular weight of 750 000 g/mol
and assuming a volume of 1 L, the total free volume is approximately 6.37x103 L. Compared to the
original assumed volume of 1 L, this value is very small and therefore the concept of free volume at
the extremely low working concentration of nanotubes (0.2 g/L) should not play a significant role in

our system.

There are other theories as well such as those by Jain et al. (2008) whom have suggested that
decreases in viscosity are linked to adsorption between the polymer and the particle.® It is very
unlikely this is occurring given the hydrophobic nature of nanotubes and the hydrophilicity of PVP.
Even if CTAB were adsorbed onto the nanotube surface, CTAB-PVP interactions are not known to
occur as stated above. A publication by Roberts et al. (2001) also noted decreases in viscosity when
small silica particles (0.35 nm) were blended with polydimethylsiloxane however when larger particles
(2.2 nm), were included the viscosity increased.'® Given the size of nanotubes, this seems counter to
our observations. Xie et al. (2004) had used CaCOs particles during their composite formation and
explained decreases in viscosity by suggesting that under stress, their rotating spherical particles
created zones of increased shear. These shearing zones then allowed polymers to align more readily
which decreased viscosity. This can only be true with spherical particles however and nanotubes being
rod-like would not create these zones as readily.! Perhaps the most significant theory though comes
from Tuteja et al. (2005) in which their results show that viscosity decreases only arise if the polymer
is entangled. Otherwise, the viscosity would increase. The mechanism they claim is one in which the
added particles has a “constraint release” effect in which the particle interferes with the
entanglement of polymers chains.'®? Additionally, combined with the well-known observation that
macromolecules can align to the direction of shear!®, nanotubes could be increasing the
responsiveness of polymers to shearing forces thereby facilitating alignment. This seems to be the
most reasonable as given the size of PVP360, it would be heavily entangled at 9% wt/v. A review of
Table 4.7 shows that it occurs at 0.61 %wt/v, much more prominently than other molecular weights.
Also, given smaller molecular weight polymers, chains would not be as intertwined thus the
“constraint release” effect would be more negligible in those cases. This effect is also supported by
electrophoretic mobility in that, based on the observation of Figure S 6, Appendix 1, it seems that
there is an overall increase in the mobility of CTAB when nanotubes were added to a solution of a
heavily entangled PVP360 chains but not when nanotubes were added to a solution containing looser

PVP10 chains.
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It’s worth noting as well that there are also reports where this phenomenon does not seem to appear
despite similar test conditions. For instance, Camponeschi et al. (2006) used carboxymethylcellulose
with a molecular weight of 350 000 g/mol at a concentration of 1% wt/v and found that the viscosity
was no different with the addition of nanotubes despite the polymer being entangled at that

concentration according to overlap concentrations determined by Troszynska et al. (2008).1941%

4.5 Discussion

The results presented above detailed the rational and design of experiments as well as the data
acquired. SWNTs were dispersed in systems containing CTAB, PVP, or both and analyzed using Vis-NIR
spectroscopy. With regards to PVP, multiple molecular weights were tested to determine whether
there was an optimum. Subsequent tests were then used to characterize the system and elucidate a

potential mechanism for the improved dispersion.

Initial sample preparation using only 0.1 %wt/v CTAB to disperse nanotubes resulted in a stable
suspension in which nanotubes were appreciably dispersed. Although not as effective as 2 %wt/v
sodium deoxycholate, the use of CTAB as the dispersing agent yielded observable nanotube chiralities
in solution (from Vis-NIR absorbance). Suspensions prepared using PVP alone were, in contrast, a lot
poorer in separating different nanotube chiralities as Vis-NIR could not resolve any corresponding
peaks. Surprisingly then, the addition of PVP to a system already containing CTAB resulted in an
unexpected synergism in the augmentation of SWNT dispersions. This phenomenon was most
prominent with PVP10 with respect to the concentration and viscosity of the polymer as larger and

smaller molecular weights of PVP were less effective at dispersing nanotubes.

Probing the system using AFM and DLS to observe any changes in dimensionality of the system
components showed that the nanotube had been fragmented likely due to ultrasonication as
previously reported. In addition DLS revealed that the PVP appeared unaffected by the presence of
CTAB as sizes remained relatively constant throughout all experiments. Checking for changes in the
behavior of CTAB in the presence of PVP using surface tension also revealed no significant changes
with regards to the formation of micelles or the behavior of CTAB in general. PVP on its own was also
explored using tensiometry and was found to play little role in affecting surface tension. It appears
then that there are no direct changes in the behavior of PVP or CTAB when one is added to the other.
However, there may be some indirect effects between CTAB and PVP. As indicated in Figure 4.15, PVP
does have several resonance forms, of which the nitrogen can have a positive dipole moment and the

carbonyl oxygen can have a negative dipole moment. This may lead to slight interactions with the
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bromide ion on the nitrogen or the cationic head of CTAB on the oxygen, both of which could then
indirectly influence the formation of micelles. However, in addition to the studies listed above in
which a multitude of techniques were used to show no PVP and CTAB interaction, 11116168165 Hamada
et al. (1976) noted that alkylammonium surfactants were poorly influenced by PVP when bromide
was the counter-ion therefore any potential interactions would definitely be rare given what has been
seen. There was a report though by Shirahama et al. (1994) which stated cationic surfactants could
interact with PVP but only at pH values above 11.3'%® however in our solutions when CTAB and PVP
were together, the conditions were definitely acidic. Therefore, again, it appears that CTAB and PVP

don’t interact.

There were detectable changes in pH however and this appeared to be largely PVP driven since the
pH decreased beyond that of CTAB alone with increasing PVP concentrations irrespective of the
molecular weight. This latter fact indicates that this effect is likely related to the individual pyrrolidone
monomers and their ability to donate the alpha hydrogen in the pyrrolidone ring. When nanotubes
were added to the solution, there was a slight recovery of the pH which can be explained by hydrogen
adsorption onto the surface of nanotubes. This result is supported by the point of zero charge which
is a value of 7.5 indicating that hydrogen would adsorb onto the surface of nanotubes in acidic
solutions. Thus, the surface of nanotubes are most certainly positively charged not just from expected
CTAB adsorption but also protons as well. Jiang et al. (2003) noticed the same effect on the basic end
of the pH scale when they used SDS as their dispersing surfactant and noticed that at high pH values,
the surface of nanotubes became more negatively charged due to hydroxyl ion adsorption.®” Such a
phenomenon may aid in the electrostatic repulsion that keeps nanotubes separated, however this
was deemed unlikely as the magnitude of the changes in pH did not correspond to the magnitude of

changes in dispersion.

Expectedly there will be interactions between CTAB and the nanotube but with regards to PVP
interactions with the nanotube, Granite et al. (2012) showed that any interactions would be very weak.
In 1996, Smith et al. showed that if PVP was forming strong adsorbing interactions, it would lead to
decreased recovery of the polymer in GPC.*” Table S 2, Appendix 1, shows that there was a recovered
concentration of 0.80 %wt/v at a retention volume of 23.8mL. This detected concentration is very
close to the starting concentration aimed to be 0.75 %wt/v, therefore the fact that there was full
recovery corresponds with conclusions by Granite et al. (2012) regarding PVP weak interactions.
According to viscosity though, the PVP despite not interacting, can still augment dispersion at an

appreciable rate especially for PVP10 until which they overlap. Then, the increase is less pronounced.
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With regards to overlap, the incorporation of nanotubes into heavily entangled polymers such as
PVP360 resulted in a decrease of the viscosity when compared to solutions without the polymer. This
result was attributed by Tuteja et al. (2005) to have arisen from particles being able to disrupt the

magnitude of polymer entanglement which would help polymers align better to shearing forces.

Therefore, it seems CTAB is the molecule that adsorbs to the surface of nanotubes, fully saturating it

given prior literature reports,¥’

and enabling dispersion then PVP augments this effect mainly through
a physical mechanism, possibly by taking up space in solution and sterically buffering nanotubes in
solution as shown in Figure 4.19. A similar model in which coiled polymers are present with nanotubes
was proposed by Grunlan et al. (2006) in which they used just poly(acrylic acid) as the dispersing

agent.1¥’

™

Figure 4.19: Hypothesized interaction of polymer with nanotube. The nanotube is illustrated here as the black-
gray cylinder with an outer covering of surfactant (red glow). The spheres on top represent the PVP polymers.

Preliminary calculations were done to assess whether the polymer content was high enough to
provide such an effect. This was done by comparing the total available surface area of nanotubes in
solution and the area of a polymer projected onto the nanotubes surface assuming dimensions remain
constant throughout the solution. It’s important to note as well that the concentration of nanotube
is different for each sample therefore the total amount of available surface area is also different as
well. Thus, the total nanotube surface areas for each CTAB-PVP system was calculated using
concentration values from Beer-Lambert calculations presented in section 4.1.1 and the dimensions
assessed from AFM (i.e. a length of 500 nm, a radius of 0.75 nm and a molecular weight of 750 000
g/mol). The numerical values are presented in Table S 3, Appendix 1. To calculate the projected area
of the polymer, the projection was considered circular so that the hydrodynamic radius obtained via
GPC could be used. The results of these calculations are presented in Table S 4, Appendix 1. By taking

the ratio between the total projectable area and the total available nanotube area, it can be seen that
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the polymer can provide an excess amount of contact between it and the nanotube surface (Table 4.8)

meaning that the surface of nanotube is fully covered and in contact with PVP.

Concentration

[% Wt/V] PVP3.5 PVP8 PVP10 PVP40 PVP360 PVP1300
0.25 2779 2201 1595 1122 218 371
0.75 14773 4795 3451 2933 739 958

11 17733 9114 4930 3029 935 1261
4 39459 29788 13444 6761 2301 2493
6 65635 33904 15223 8590 1779 2295
9 76151 47295 20044 9648 1961 2236

Table 4.8: Ratio of total surface area projectable by the polymer to total surface area available of nanotubes

In addition, plotting the dispersion with respect to the total area provided by the polymer yields the

following trend:
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Figure 4.20: Percent ilncrease in dispersion over the total projectable area by PVP

Comparing Figure 4.20 to Figure 4.4, the plots appear similar in that PVP10 again is the most effective
molecular weight to use while other weights are worst for dispersion. This confirms that the observed
improvement on nanotube dispersion is the result of the physical presence of the polymer and the

likelihood that it is buffering the system.

To understand this physical effect more, a comparison was done with results by Smith et al. (1996).
In their study, the stabilizing ability of PVP on polystyrene nanoparticles was investigated using the
molecular weights: 10 000 g/mol, 40 000 g/mol, 360 000 g/mol, and 2 500 000 g/mol. They noted that
dispersions were only stable with molecular weights 40 000 g/mol or greater and above a polymer
concentration sufficient to give full surface coverage. Full coverage was stated to be important due to

steric repulsions between the adsorbed polymer layers. Their potential energy curve (reproduced
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below in Figure 4.21) shows a large vertical rise at particle separations corresponding to twice the
adsorbed layer thickness. For the effective molecular weights, a shallow secondary minimum was also
deemed important as they noted that the secondary minimum for PVP10 was sufficiently deep such

that flocculation could occur.*®®
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Figure 4.21: Potential energy of polystyrene nanoparticles stabilized with different molecular weights of PVP.
A) PVP10, B) PVP40, C) PVP360, and D) PVP2500 as produced by Smith et al. (1996).1%8

This is result is useful not only because it shows the existence of a potential cutoff for which PVP can
augment dispersion but a potential mechanism for it. This mechanism is centered around a link
between the thickness of the adsorbed layer of polymer and the interparticle separation distance it
can provide. This observations was also observed by Nativ-Roth et al. (2007) noting a minimum of 20
monomeric units of PEO in order for nanotubes to be sterically driven apart to a stable separation
distance of 2.5nm in their experiments. This distance (2.5nm) is the minimum required in order for
there to be no intertube attraction as indicated by Figure 2.4. Given the hydrodynamic diameters of
PVP as presented in Table S 1, Appendix 1, it is worth pointing out that PVP10 has a determined
hydrodynamic radius of 2.432 nm which is very close to the minimum separation distance of 2.5 nm
required. It is postulated that this may be an important factor governing the system as PVP3.5 and
PVP8, which have smaller hydrodynamic radii are less effective. It appears then that there needs to
be a particle with a hydrodynamic radius approximately the same size as the minimum intertube
distance in order for nanotubes to be effectively spaced out. On inspection though, it may be noticed

that PVP10 would provide a total separation distance of approximately 5 nm between each nanotube
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assuming rigidity. This is twice as large as the minimum intertube distance required however the key
should still lie in the hydrodynamic radius. Although rarely touched upon it was observed previously
by Bandyopadhyaya et al. (2002) in which the polymer gum arabic (GA) was found to generate
repulsive forces only at a distance twice its radius of gyration (1.54 times the hydrodynamic radius for
random coil polymer!®) therefore the 5 nm would be the minimum separation distance required in
order for the polymer generate an effect. The origins of this repulsive effect was attributed to a net
gain in translational entropy as ropes of 100 tubes separated could lead to a 2 fold increase in
translational entropy (i.e. the disorder of the system associated with movement of the particle).?®
Interestingly, a supporting piece of information for this may lie in the determination of nanotube
concentration after sample preparation. A close inspection of Figure 4.5 shows that there is a large
difference between the retention ability of PVP8 and PVP10 despite the fact that the two are only on
average 2000 g/mol apart from one another. This observation seems to indicate that PVP3.5 and PVP8
can’t support nanotubes in solution and that nanotubes are easily passing through the polymers
during centrifugation. Although this model may serve to explain why PVP3.5 and PVP8 are ineffective,

it doesn’t explain why PVP360 and PVP1300 are also ineffective thus it could be that these two are

worse for a different reason.

To answer this question, we sought to delve deeper into the contact mechanics between the polymer
and nanotube, specifically the contact area, as given by the Hertzian model. This approach contrast
the model considered previously in that the Hertzian model is specifically used to look at contact
mechanics whereas previously, only a projection was considered. Perhaps, the most common
derivation of Hertzian contact area (A) comes in the form of a sphere indenting an elastic surface and
is given by the formula:

2
3LRY3

A5 (4.8)

A=7ta2=n[

where a is the contact radius, and L is the force of the load, R is the radius of the indenter, and E is

the combined Young’s modulus of the two materials in contact respectively as given below:

(4.9)
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where v is Poisson’s ratio. Unfortunately, many of these terms are unknown however in 2007, Geike
et al. proposed that the 3D Hertzian model can be approximated 1D by considering a circle penetrating

an elastic surface given by the formula below:

A =a*n =Rdn (4.10)201.202

where d is the depth of penetration. This model was therefore used to get a deeper understanding of
our system due to its clear simplicity. Given that CTAB and PVP don’t significantly interact, the depth
of penetration should be negligible and constantly small across all molecular weights used. Therefore,
for ease, the depth of indentation was arbitrarily picked as 0.1 nm across all calculations whereas the
hydrodynamic radius is used as the radius of the indenter. It's noticed then that the contact area is
proportional to the hydrodynamic radius. Interestingly, by converting all PVP concentrations to the
amount of “contact area” (i.e multiplying mols of the polymer by the hydrodynamic radius) then
plotting with the percent increase in dispersion gives the resulting plot is given below in

Figure 4.22.
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Figure 4.22: Percent increase in dispersion versus the total possible contact area by PVP

Interestingly, unlike the previous plots such as Figure 4.4 and Figure 4.20, the trend of PVP360 and
PVP1300 shift and match that of PVP10 and PVP40. This result appears to cement the fact that the
quality of dispersion by different molecular weights of PVP is linked to the polymers hydrodynamic
radius. PVP3.5 and PVP8 remain as poor dispersing agents presumably because of its small size but
PVP360 and PVP1300 disperse nanotubes based on the same mechanism as PVP10 and PVP40. The
reason why PVP360 and PVP1300 could be worse than PVP10 and PVP40 as shown in Figure 4.4 and

Figure 4.20 is because given any specific concentration, the number of larger polymers in solution will
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always be a lot lower than the smaller polymer given stoichiometry. This means that even though
concentrations may be equal between different molecular weight, the number of molecules in
solution are different. Thus, when everything is standardized based off of contact area, the dispersion
profiles of PVP (>10 000 g/mol) match up as shown above. In addition, PVP360 and PVP1300, being
bigger polymers, have very low overlap concentrations (0.61 %wt/v) as described in section 4.4
meaning that these PVPs can overlap significantly at low concentrations where surface coverage is far
less than optimal. Given the overall results and the subsequent rationale, it appears then that the data

agrees well with the proposed mechanism in Figure 4.19.
4.6 Summary

Presented here were the results of several experiments to determine how a surfactant-polymer
system, namely the CTAB-PVP system worked to disperse nanotubes. It was seen using Vis-NIR that
CTAB had reasonable dispersion ability but PVP was relatively poorer. Together though, the dispersion
increased significantly with PVP10 being able to augment dispersion by almost 3 times compared to
CTAB alone and 9 times compared to PVP alone. Checking the state of nanotubes using AFM revealed
that the nanotubes were being fragmented as a result of sonication. This was confirmed using DLS
and references to the literature. In addition, DLS showed that PVP was not changing at the working
concentrations of CTAB, as the shape stayed relatively the same size. The effects of PVP on CTAB were
also investigated using surface tension and although there was a small amount of controversy in the
literature, it appears that PVP has no effect on CTAB as well. PVP does seem to increase the acidity of
the solution overall however in the presence of nanotubes, this effect is buffered as hydrogen can
adsorb onto the surface of nanotubes given a point of zero charge of 7.5. Interestingly, this only occurs
when using molecular weight polymers of 40 000 g/mol or less. The presence of nanotubes in a
solution of 0.1 %wt/v CTAB and PVP360 at all concentrations resulted in an increase in pH compared
to controls. The origins of this is still unknown however. In solutions of PVP360, it was also observed
that the presence of nanotubes lead to a decrease in viscosity. This is likely because nanotubes
blocked the larger PVP from becoming too entangled and served to ease shear alignment as well.
Overall, given the deficiency of chemical evidence, it is likely that both CTAB and PVP behaved
independently of one another. This implies that the long hydrophobic alkyl chain, CTAB is likely the
one binding to the nanotube surface while PVP is likely stabilizing the dispersion through steric
repulsion. Although, the exact mechanism isn’t fully characterized, the origins likely lie with relation
to the hydrodynamic radius of the polymer and its ability to separate nanotubes at a distance high

enough that nanotubes do not self-aggregate. In this regard, further tests towards validating the
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entropic origins are recommended however overall we find that the data gathered and presented
here seem to support the model displayed in Figure 4.19 in which PVP is essentially buffering a CTAB-

assisted dispersion of nanotubes.
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Chapter 5: Conclusion

A carbon nanotube is a recently discovered carbonaceous material expected to be able to elevate
modern technology to the next frontier as it has extraordinary electrical, mechanical, and thermal
properties. However, nanotubes are strongly driven to aggregate due to their hydrophobic nature
thereby their overall applicability is still limited. In its aggregated state, nanotubes are not as
electrically or thermally conductive and cannot provide mechanical support due to low percolation.
To remedy this, there are two chemical approaches to modifying nanotubes to make them more
homogeneously dispersed in solution: covalent and non-covalent modifications. Covalent
modifications involve attaching different functional groups to the surface of nanotubes however,
these processes typically involve harsh treatments with acids as the initial step which can lead to
destruction of the nanotube’s structure and therefore properties. Non-covalent modifications involve
using amiphatic molecules such as surfactants or different polymers to coat the nanotube so it
becomes stabilized to the environment around it. This strategy preserves much of the nanotubes
intrinsic properties therefore it is a much more appealing strategy. To this end, many different types
of surfactants (cationic, anionic, non-ionic, and zwitterionic) and polymers have been investigated for
their dispersal ability however, only recently have researchers began to combine these two types of

molecules together in dispersing nanotubes.

This thesis presented work describing the investigation of a surfactant and polymer based system for
the homogeneous dispersion of carbon nanotubes in solution through non-covalent modifications.
The approach involved the characterization of a system containing both the hydrophilic polymer,
polyvinylpyrrolidone (PVP) at different molecular weight, and the cationic surfactant, centrimonium
bromide (CTAB). The chosen molecular weights were: 3 500 g/mol (PVP3.5), 8 000 g/mol (PVP8), 10
000 g/mol (PVP10), 40 000 g/mol (PVP40), 360 000 g/mol (PVP360), and 1 300 000 g/mol (PVP1300).
Solutions with a volume of 25 mL were prepared using ultrasonication to mix CTAB, SWNT, and/or
PVP to concentrations of 0.1 %wt/v, 0.2 g/L, and one of 0.25 %wt/v, 0.75 %wt/v, 1.1 %wt/v, 4 %wt/v,
6 %wt/v, or 9%wt/v respectively. From there, samples were ultracentrifuged to remove unsuspended
aggregates. These samples were then systematically analyzed using a battery of techniques including
Vis-NIR, atomic force microscopy (AFM), dynamic light scattering (DLS), surface tension, pH, and

viscosity. From these results, there were several observations worth noting such as:

e Synergy in the CTAB-PVP system at dispersing nanotubes as compared to both CTAB alone

and PVP alone. The most synergistic molecular weight was PVP10.
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e More nanotubes were retained with the use of higher molecular weights of PVP.

e SWNT were fragmented as a result of ultrasonication.

e PVP appears to aggregate in solution in the presence and absence of nanotubes.

e No changes in the behavior of CTAB or PVP in the presence of one another.

e CTAB and PVP drives the formation of an acidic solution with PVP being more of a significant
contributor.

e The point of zero charge of nanotubes is at a pH of approximately 7.5.

e Dramatic increase in dispersion before PVP overlap concentration and then subtle increases
afterwards

e Decrease in viscosity when nanotubes are incorporated into a solution containing CTAB and

PVP360 or PVP1300.

After compiling these observations and comparing to those of literature the following conclusions

were drawn:

1. The fragmentation of nanotubes likely contributed to its retention in solution during the
ultracentrifugation step due to a decrease in the terminal velocity.

2. Because there were no changes in the behavior of CTAB nor PVP, the two act as they normally
would individually in the presence of nanotubes thus it is CTAB that adsorbs to the surface of
nanotubes through hydrophobic interactions while PVP remains as a separate entity in
solution.

3. Working in acidic conditions, hydronium ions are likely adsorbing onto the surface of
nanotubes in addition to CTAB.

4. Nanotubes are decreasing the viscosity of large polymers by reducing the extent of
intermolecular entanglement between different chains thereby allowing polymers to align

more readily to shearing forces.

With regards to the second point above, because PVP and CTAB acted without the influence of the
other in the presence of nanotubes, PVP is augmenting nanotube dispersion through a physical
mechanism. It was stated previously that dispersions were most amplified when PVP10 was used as
the molecular weight of choice. After reviewing prior research by Smith et al. (1996), PVP10 was
noticed to possess a hydrodynamic radius very close to that of the minimum separation distance
required in order for nanotubes to not be attracted to one another. Bandyopadhyaya et al. (2002)

also noted that steric repulsion only occurs at a distance twice that of the radius of gyration for



79

polymers therefore PVP10 possesses the exact size requirements to drive nanotubes through steric
repulsion.?® This served to explain why PVP3.5 and PVP8 were ineffective at dispersing nanotubes as
they both possessed smaller hydrodynamic radii however this reason doesn’t explain why PVP360
and PVP1300 were poor as well. From there, an approximation analysis of the contact area between
a single polymer and the nanotube was done and revealed that PVP360 and PVP1300 in fact behaved
under the same mechanism as PVP10. More specifically, when the amount of each molecular weight
of PVP was multiplied by the hydrodynamic radius of either PVP10, PVP40, PVP360 or PVP1300, their
respective dispersion trends overlapped. The fact that PVP360 and PVP1300 are poorer on the basis
of concentration was attributed to the fact that at any given concentration, there would be more
chains of the smaller polymer in solution (given the differences in mass) therefore there was a greater
total amount of potential contact when using smaller polymers such as PVP10 or PVP40. In addition,
PVP360 and PVP1300 are much larger, therefore they would overlap with each other more readily at

low concentrations.

Overall, PVP appears to be augmenting a normal CTAB-PVP dispersion system by physically buffering
its presence. This result brings great potential for the use of carbon nanotubes in a variety of
applications as aqueous processing is one of the most preliminary steps in customizing products for
its desired use. PVP is a cheap and readily available polymer and has been shown to possess no
interactive ability with alkylammonium surfactants such as CTAB. Nevertheless, it’s important to
investigate and further diversify the potential of this system to develop a more well-rounded
understanding. This thesis will conclude by presenting potential follow-up experiments to build on

what was learned here.

5.1 Future Directions

In response to the above, the following experiments are recommended below:

e Based on the results of the pH, it would be insightful to further investigate the exact nature
of hydrogen adsorption onto the nanotube surface in the presence of a cationic surfactant
such as CTAB. In relation, Grunlan et al. (2006) noted that increases in pH led to poly(acrylic
acid) being better able to interact with nanotubes. Thus, a dispersion study carried at different
pH values is suggested.

e Reports by Granite et al. (2012) and by Dror et al. (2005) have reported on the likely
conformation of polymer molecules in solution in the presence of nanotubes however none

of these were in the presence of a surfactant. Despite DLS results showing no significant
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changes in size, it may still be advantageous to perform small angle neutron scattering to
reaffirm these results.

PVP is one of many hydrophilic polymers. The effects of other hydrophilic polymers such as
polyethylene oxide and polyvinyl alcohol. The use of polypyrrole or polypyridine may also be
insightful due to similarities in structure.

It was suggested that the counter-ion of CTAB, bromide, may be playing an important role in
the behavior of the system. The effects of other alkylammoniumhalide surfactant variants

possessing different counter-ions and a different chain length can be tested as well.
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Appendix 1

GPC

To check the quality of the polymers received from suppliers. Table S 1 below shows the assessment

of the different molecular weights ordered from Sigma-Aldrich and Acros Organics:

Peak Ret. Mn Mw Mz Mp
Sample Mw/Mn | IV (dL/g) | Ru(nm)
Vol. (mL) | (g/mol) | (g/mol) (g/mol) | (g/mol)
3500 22.414 1551 3527 6296 4328 2.279 0.053 1.352
8000 21.723 3568 8009 14 720 7381 2.247 0.068 1.937
10 000 23.694 4359 14171 37087 11 340 3.252 0.083 2.432
40 000 22.373 21516 53200 131185 36 236 2.474 0.197 5.078
360 000 19.731 279736 | 803 087 2128 000 | 448 660 2.872 1.262 22.891
1300000 19.862 240318 | 605 688 1395000 | 385208 2.524 1.126 20.383

Table S 1: Summary table of GPC results for the analysis of the different molecular weights of PVP

The distribution of all the polymers is in general agreement with the expected molecular weights
provided by the manufacturer, with the exception of PVP1300. It should be noted that PVP3.5 and
PVP8 have elution times out of trend from other samples likely because they were ran after the
apparatus had undergone maintenance. CTAB alone was also ran before the maintenance occurred
and was found to elute at a volume of 29.6 mL. A dispersed nanotube sample in 0.75% PVP10, 0.1%
CTAB, and 0.2 g/L SWNT was also injected for separation and characterization via GPC. The outputted
data is given in Figure S 1 and Table S 2.
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Figure S 1: Obtained chromatogram of 0.75 %wt/v PVP10, 0.1 %wt/v CTAB, and 0.2 g/L SWNT from GPC

purification.
Peak Ret. Mn Mw Mz Mp v Concentration
Sample Mw/Mn
Vol. (mL) | (g/mol) | (g/mol) | (g/mol) | (g/mol) (dL/g) (mg/mL)
358 1020
Peak 1 18.153 646 103 520901 1.801 15.526 0.027
736 000
Peak 2 23.837 6 056 12 696 28 583 10301 2.093 0.0761 7.959

Table S 2: Summary table of GPC results for the resolution of SWNT in a dispersed solution of 0.75% PVP10,
0.1% CTAB, and 0.2 g/L SWNT.

Three distributions were detected after the run was complete. Peak 1 appeared at a retention volume
of 18.153, Peak 2 appeared at a retention volume of 23.837, while Peak 3 was seen at a retention of
approximately 29.4 mL (data not provided by PolyAnalytik). Given the retention times of Peak 2 and
Peak 3, these species likely correspond to PVP10 and CTAB. Thus, it is very likely then that Peak 1
represents purified nanotubes. Notable is that there was a detected amount of 0.027 mg/mL whereas
the initial concentration was targeted to be 0.2 g/L therefore there is a 10% retention after

ultracentrifugation.

Vis-NIR Spectra
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Figure S 2: Three separate trials of dispersions prepared with 0.1 %wt/v CTAB, 6 %wt/v PVP40, and 0.2 g/L SWNT
Shown are triplicates of 0.1 %wt/v CTAB, 6% wt/v PVP40, and 0.2 g/L SWNT each of which were
prepared separately. As seen, there is variation in the overall intensity of each spectra, which
contributes to the magnitude of the non-resonant background however the shape of the resonant

peaks stay fairly similar.
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Figure S 3: Absorbance spectra of C70 fullerenes dispersed with 0.1% CTAB and 6% PVP of different molecular
weights.

The above shows the absorbance spectra of C70 fullerene suspensions prepared with either 6% wt/v
PVP10, 6 %wt/v PVP40, or 6 %wt/v PVP360. As can be seen, the absorption intensity is significantly
higher in the solution prepared with 6 %wt/v PVP360. This is an indication that there are more

fullerenes suspended when using PVP360.
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Figure S 4: Surface tension behavior of PVP40 and PVP360
Figure S 4 reveals the surface tension behavior of PVP as demonstrated by PVP40 and PVP360. As
indicated, PVP does affect the surface tension of water slightly however the deviation is from the

normal surface tension of water (72 dyn/cm) is very minute.
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Figure S 5: Dynamic viscosity of the CTAB+PVP system at a CTAB concentration of 0.1 %wt/v and different PVP
concentrations and molecular weights.

The results show that, as expected, the increase in polymer concentration results in increased

viscosity. The viscosity of the PVP360 and PVP1300 systems increased at a much higher rate than the

other polymers. The dynamic viscosity of CTAB was also measured to be approximately 1.149 mPa S.

It's important to note as well that at all concentrations, the addition of CTAB did not significantly shift

the viscosity contributed by the PVP therefore the changes in viscosity come from the polymer itself.

Surface Area Tables

Concentration

(% Wi/v] PVP3.5 PVP8 PVP10 PVP40 PVP360 PVP1300
0.25 1.955E+18 1.558E+18 1.526E+18 1.206E+18 1.852E+18 1.285E+18
0.75 1.104E+18 2.145E+18 2.115E+18 1.384E+18 1.639E+18 1.494E+18

11 1.348E+18 1.655E+18 2.172E+18 1.966E+18 1.901E+18 1.664E+18
4 2.204E+18 1.842E+18 2.896E+18 3.203E+18 2.810E+18 3.062E+18
6 1.987E+18 2.427E+18 3.836E+18 3.781E+18 5.450E+18 4.989E+18
9 2.569E+18 2.610E+18 4.370E+18 5.050E+18 7.420E+18 7.682E+18
Table S 3: Total amount of surface area on nanotube
Cor[’;e:vttr/it]'on PVP3.5 PVPS PVP10 PVP40 PVP360 PVP1300
0.25 2.449E+22 2.214E+22 1.972E+22 2.291E+22 3.083E+22 3.242E+22
0.75 7.347E+22 6.642E+22 5.917E+22 6.872E+22 9.250E+22 9.725E+22
1.1 1.078E+23 9.741E+22 8.679E+22 1.008E+23 1.357E+23 1.426E+23
4 3.919E+23 3.542E+23 3.156E+23 3.665E+23 4.933E+23 5.186E+23




6

5.878E+23

5.313E+23

4.734E+23

5.497E+23

7.400E+23

7.780E+23

9

8.817E+23

7.970E+23

7.101E+23

8.246E+23

1.110E+24

1.167E+24

Table S 4: Total amount of surface area provided by projected polymer molecule

Table S 3 and Table S 4 list the total surface area of the nanotube and polymers respectively at the
final concentrations determined in the samples prepared. As can be seen, the surface area available
for nanotubes increases with increasing concentration and molecular weight used. This is expected as
with higher molecular weight polymer, there is also an increase in the viscosity and chain
entanglement leading to more nanotubes being retained. The total amount of surface area of the

polymer projection (assuming rigidity) also increases in the same manner expectedly due to the larger

PVPs having a larger hydrodynamic radius therefore resulting in a larger area value calculated.
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Figure S 6: Electrophoretic mobility measurements of solutions containing A) PVP10 and B)PVP360 with and
without nanotubes

According to the figures above, it appears the mobility of CTAB in general decreases linearly with
increasing polymer concentration. This is unsurprising as higher concentrations of PVP would lead to
higher polymer entanglement. Using a higher molecular weight also leads to a greater decrease in
mobility more readily as observed by the slope of Figure S 6A compared to that of Figure S 6B. Perhaps
the most significant observation though is the effect of nanotubes. With the use of a lower polymer
weight such as PVP10, it is observed that the electrophoretic mobility is unaffected by the presence
of nanotubes however there is a noticeable increase in the overall mobility with samples containing a
heavier molecular weight polymer and nanotubes. The “constraint release” hypothesis could be used

here as nanotubes can disrupt the entanglement of polymer allowing CTAB to move more prominently.
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advised that your fixure requests for Elsevier materiak may atiract a fee.
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18. For book authors the flowns clmses are applicable i addition to the above:  Authors are
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create an eleciromc version Posting to a repository: Amhors are pemmted to post 3 smmary of
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and Archives of Canada to supply single copies, on demand of the conplete thesis and mcinde
permission for TMI s supply smele copies, on demend, of the complete thesks. Should your thesis
e publshed commercialy, please reapply for permission
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Elsevier publshes Open Access articles m both £ Open Access journsls and via &5 Open Access
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Authors publishing i an Open Access journel or who choose to nuke ter articke Open Access
an Eksevier subscription journal select one of the followiz Creative Cominons wser censes, which
define how a reader may revse their work: Creative Conmons Atmibation Licenze (0O BY),
Creative Conmmons Atmibation — Mon Conmrercial - ShareAlks (CC BY NC 54) and Creative
Conmors Anribution — Mon Commercial - Mo Demvatives (CC BY WC WL

Terms & Conditions applicable to all Elevier Open Access arnticles:

Amy revse of the amicle nust not represent the suthor as endorsing the adaptation of the amiclke nor
shonild the article be modified m such a way as to dannge the amhor’s honowr or repuation.
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Additional Terms & Conditions applicable to each Creative Commons nser license:

CC BY: You may detrinee and copy the article, create extracts, sbsmacts, and other revised
wersions, adaptations or derivative works of or from an arficle (soch as a manskhtion), o nokde na
collective work (such as an anthology), to text or data mine the amicle, nending r conmercial
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