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Abstract

As the number of new drugs requiring companion diagnostics rises, more and more part-

nerships are formed between drug and diagnostics manufacturers to develop the necessary

companion diagnostic. An increasingly significant issue is that of the optimal revenue/profit

sharing or compensation schemes for such partnerships. We investigate the structure of an

optimal compensation scheme under a scenario where a large pharmaceutical firm that is de-

veloping a drug intends to partner with a smaller diagnostics firm to develop a companion

diagnostic test for the drug. We describe an optimal contract as one that maximizes the phar-

maceutical firm’s expected profits while offering enough incentives for the diagnostics firm to

accept the contract and then work at an effort level that is preferred by the pharmaceutical firm.

We formulate the problem of determining the optimal contract as an instance of the Principal-

Agent problem. We then present a numerical approach for solving the problem.

Keywords: Companion Diagnostics, Optimization, Principal Agent Problem, Moral Haz-

ard
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Chapter 1

Introduction

1.1 Introduction to Companion Diagnostics

In recent years, the pharmaceutical and medical fields have witnessed a significant gain of mo-

mentum in the drive towards personalized medicine. In contrast to standard clinical practice

which is primarily empirical, personalized medicine1 entails using clinical biomarkers2 or diag-

nostic tests to actively seek and match specific patient population characteristics with specific

therapies [1], specifically drugs. For a given personalized drug, the biomarkers, presented in

the form of approved companion diagnostic tests, typically identify patients who fall into one

of the possible scenarios:

• the drug is expected to have improved effectiveness or safety in the patient (I,III)

• the drug is expected to have minimal or no effect in the patient (II,IV)

• the drug may cause serious side effects in the patient (I,II)

• the patient is likely to experience no or reduced side effects (III,IV) [1, 2, 4]

Table 1.1 below provides a visual representation of these possible scenarios.

The use of companion diagnostic tests to prescribe treatment promises some considerable

clinical and/or economic benefits to the key stakeholders within the health care system. To
1Other alternative terms frequently used in literature include ‘stratified medicine’, ‘pharmacogenomics’ and

‘targeted therapy’
2A characteristic that is objectively measured and evaluated as an indicator of specific biological processes,

pathogenic processes or pharmacological responses to a therapeutic intervention [1].

1



2 Chapter 1. Introduction

Table 1.1: Possible Patient Outcomes From Drug Therapy

Benefit No Benefit

I II Side Effects

III IV No Side Effects

the patient and the physician, personalized medicine as guided by companion diagnostics is

clearly beneficial in that it leads to better patient outcomes through improved efficacy or re-

duced side-effects [2]. Formulary3 managers and third party payers4 such as insurers, who may

be particularly concerned about the cost-effectiveness of a treatment, will benefit from the ad-

ditional insight by directing resources towards more valuable treatments while spending less

on ineffective treatments [1].

While personalized medicine does restrict the potential market size of a drug, it has since

been observed that actual revenues might increase since such medicines tend to experience

faster and wider adoption due to their significantly improved performance over standard treat-

ments [1]. This implies that drug manufacturers can therefore adopt premium pricing strategies

based on the added value gained by use of personalized medicine. Even payers such as insur-

ance companies are willing to pay a higher price for therapy when diagnostics are factored in

[7].

1.2 The Value of Patient Stratification

A striking and motivating example of the significance of guiding treatment through diagnostic

testing is the case of the non-small cell lung cancer (NSCLC) drug crizotinib. Research had in-

dicated that about 5% of NSCLC patients had what is referred to as the EML4−ALK mutation

[9]. When treated with crizotinib, these patients were generally observed to have a markedly

3A list of drugs covered by a particluar drug benefit plan. Formularies are based on evaluations of efficacy,

safety and cost-effectiveness of drugs [5]
4An institution or company that is or may be liable to reimburse health care providers for services given to a

patient [6]
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different response rate5 of at least 50% as compared to the 10% response rate observed with

traditional treatment [9]. Clearly, the ability to identify patients beforehand can reduce clin-

ical uncertainty and thus provide to both the patient and physician additional benefits in the

form of what is termed “the value of knowing”[9]. According to the Academy of Medical

Sciences, beyond the benefits obtained at the patient level, the use of personalized medicine

can significantly improve allocation of limited health care resources by “focusing treatment

on those with a higher probability of responding” [9]. Another major benefit, and perhaps the

most significant one, is the potential savings that could result from minimizing the incidence

of adverse reactions to drugs. In the United States alone, the annual cost of adverse events has

been estimated to be about $177 billion [10].

1.3 The Pharmaceutical Industry and Companion Diagnos-

tics

The traditional pharmaceutical industry business model has largely been the mass-market block-

buster drug model. However, both industry insiders and analysts agree that the blockbuster

model is on the decline and the industry is inevitably being pushed toward a focus on what are

termed “mini-busters” or “niche-busters” [11, 12]. Blockbuster drugs may gradually no longer

be the preferred treatment with a stronger bias toward more targeted treatment alternatives hav-

ing the benefits outlined in the previous section [12, 13]. The development of a personalized

therapeutic drug will in many instances need to be complemented by the development of a

companion diagnostic necessary for identifying members of the patient population subgroup

for whom the drug is appropriate. While we have so far highlighted the advantages of using

companion diagnostics from the patient and payer’s perspective, we now briefly consider how

companion diagnostics can benefit the pharmaceutical industry from a business perspective.

We first consider the nature of revenues that a targeted drug manufacturer may anticipate.

Currently most therapeutic drugs are administered empirically with the expectation that the

5The percentage of patients whose cancer shrinks or disappears after treatment [8]
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drug will be beneficial for only some of the relevant patients [1, 13]. Referring back to Table

1.1, this means that a patient receiving the drug could well fall into any of the four categories

in the table. With the use of companion diagnostics the goal is often to restrict the prescription

of a drug to only those patients who are likely to respond well (specifically, mostly patients in

category III of Table 1.1) [1, 13]. This therefore means that the introduction of a companion

diagnostic will inevitably lead to a smaller potential market as fewer patients are subsequently

given the drug after being tested. However, it has since been observed that even with the nar-

rowed potential market, actual revenues of these niche drugs could match blockbuster revenues.

Drug manufacturers are often also able to adopt premium pricing strategies based on the added

value gained by use of personalized medicine [1].

The use of companion diagnostics can also greatly improve the development process of the

companion drug [2]. It has been estimated that the use of a companion diagnostic during the

drug development process can reduce both the time and cost of the entire process with potential

savings of as much as 60% of the development costs [12]. While most drugs take 10 to 15 years

to reach the market, vemurafenib did so in less than 6 years after the drug manufacturer, Roche,

partnered with a diagnostics company to identify patients with greater likelihood of responding

positively to the drug [3]. Apart from the fact that use of a companion diagnostic can improve

the likelihood and speed of regulatory approval, in some cases the presentation of a companion

diagnostic has been the only way some drugs have been able to obtain regulatory approval

while lack of a companion diagnostic has also resulted in some therapies being rejected by the

regulatory authorities [3, 11, 14].

1.3.1 Development of Companion Diagnostics

Pharmaceutical firms generally have three main options through which they acquire companion

diagnostics: the drug manufacturer may opt to either develop the test in-house; or to merge with

or acquire a diagnostics firm; or to enter into a development partnership with an external party

such as a specialist biotechnology lab [11]. However, very few pharmaceutical companies have

a diagnostics division. As a result, the most commonly taken route to developing a companion
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diagnostic has been the formation of development partnerships between the pharmaceutical

firm and another external party, typically a smaller lab or diagnostics company [2, 11]. In one

study of 31 companion diagnostics projects announced in the ten year period from 2001 to

2010, only two projects involved in-house development while the rest involved partnerships

between the drug manufacturer and a diagnostics firm [13].

Though they are clearly related industries, the pharmaceutical and diagnostics industries

operate along very different paths with “different development timelines, product lifecycles,

return on investment, customers and regulations” [15]. Co-development of companion diag-

nostics has itself been a relatively rare occurrence in the pharmaceutical industry [15]. This is

likely a significant reason why only a few pharmaceutical firms have an existing or permanent

diagnostics division. In most instances, the need for developing a companion diagnostic target-

ing a specific biomarker only emerges in the later phases of drug development. In some cases,

this has been as late as the phase 3 clinical trials [15]. In such instances, instead of attempting

to develop the diagnostic itself, the pharmaceutical company may opt to immediately outsource

test development to a diagnostic company that has since successfully developed related tests

that suit its new drug [16]. Consequently, the pharmaceutical companies lack expertise in dis-

covery, development and marketing of companion diagnostics [13, 17]. Even when it may have

the know-how, the pharmaceutical company may also need to consider manufacturing scale-up

to facilitate production development of the test [17]. These factors contribute to the drug man-

ufacturers choosing to partner with the experienced diagnostics firms for co-development.

1.4 Outline of the Thesis

As development of drugs requiring companion diagnostics continues to pick up pace and more

and more partnerships are formed between drug and diagnostics manufacturers, an increasingly

significant issue is that of the optimal revenue/profit sharing or compensation schemes for such

partnerships [2, 11, 18]. In this thesis, we investigate the structure of an optimal compensation

scheme under a scenario where a large pharmaceutical firm that is developing a drug intends
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to form a partnership with a smaller companion diagnostics firm to develop a companion diag-

nostic test for the drug.

In chapter 2, we introduce the modeling framework referred to as the Principal-Agent (PA)

problem and describe how this framework relates to employer-employee type relationships,

and in particular the contractual arrangement between the drug manufacturer and diagnostic

manufacturer. In the third chapter, we analyze and solve a basic form of the PA problem. We

then develop a numerical algorithm for solving the basic PA problem in chapter 4. We are able

to assess the performance of the numerical method by comparing its results to those obtained in

chapter 3. This numerical approach to solving the principal-agent problem is one of the novel

contributions of this thesis.

In chapter 5 we formulate and solve a mathematical model of the problem the pharma-

ceutical firm faces while designing a contract to offer the companion diagnostic manufacturer.

Solutions to the problem describe optimal contract structures from the pharmaceutical firm’s

perspective. The model formulation and solution approach we use in chapter 5 is based on

previous work in [35].

The main contributions of this thesis are contained in chapters 6 and 7. In chapter 6, we de-

velop a new numerical approach to solving the co-development model based on the numerical

work done in chapter 4. This numerical approach allows us to solve for problems with some

extensions beyond the original co-development model introduced in chapter 5. We present two

new extensions to the co-development model in chapter 7. We then solve instances of this mod-

ified co-development model using the numerical method. Chapter 8 contains a brief summary

of the work done in this thesis and serves as the conclusion.



Chapter 2

The Principal-Agent Problem

2.1 The Partnership Contract as a Principal-Agent Problem

As mentioned in section 1.1, one of the most common approaches drug manufacturers use to

obtain companion diagnostics is entering into a development alliance with another firm. The

pharmaceutical firm seeks a suitable biotech firm with which to enter into a contractual agree-

ment to develop the companion diagnostic. Since a primary goal of the pharmaceutical firm

is to induce the biotech firm to act on its behalf, the contractual relationship between the drug

manufacturer and the diagnostic manufacturer can be analyzed as a Principal-Agent problem

where the pharmaceutical firm is the principal and the diagnostics firm is the agent.

The Principal-Agent framework is a method that has been used frequently to model and

analyze a diverse array of contractual relationships between two parties where one party (the

principal) hires or desires the other party (the agent) to perform some task. The key objective

in the framework is to determine the optimal incentive scheme or contract that will induce the

agent to behave or work in a manner that maximizes the likelihood of an outcome desired by

the principal. Some of the most well known and earliest uses of the model in literature appear

in insurance related settings where an insurer (the principal) wishes to develop a contract that

guards against less careful behavior by the insured (the agent) [19, 20, 21, 22].

The insurance setting and our co-development problem are only two examples of con-

7
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tractual arrangements to which the principal-agent framework can be applied. We provide

examples of other scenarios where the model can or has been applied in table 2.1.

Table 2.1: Examples of problems that can be modeled with the Principal Agent framework

Principal Agent Problem

Employer Employee To induce employee to work harder to

increase employer’s profits

Plaintiff Lawyer To induce the attorney to put more

effort on a plaintiff’s case

An individual seeking Insurance broker To induce the broker to search for

insurance coverage the best policy [23]

Car Dealership Car Salesman Inducing the salesman to expend

more effort to sell cars [24]

Principal-agent problems are generally divided into two distinct classes namely adverse se-

lection problems1 and moral hazard problems2 [19]. Adverse selection represents the situation

where an agent has private information about his “inability or unwillingness” to complete the

principal’s task [19]. In the case of moral hazard, it is assumed that both principal and agent

are aware of the agent’s true capabilities before signing of the contract. The principal’s prob-

lem in this case is to ensure that the agent chooses a particular action or level of effort once

hired. The agent’s effort or actions is often described as either observable or unobservable. If

observable, then the principal is assumed to be have the ability to observe how well the agent

actually works once the contract is signed. If effort is unobservable, then it means it is too

costly or impractical for the principal to fully monitor and observe what exactly the agent does

[25].

1also called hidden information problems or asymmetric information problems
2also called hidden action problems
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2.2 The Principal-Agent Problem with Moral Hazard

We focus on the moral hazard problem since the co-development model we will formulate is

of this type. The moral hazard principal-agent framework is a standard approach adopted in

studying contractual relationships between two parties where one party (the principal) seeks

to induce another party (the agent) to perform an action, a, that is in the best interest of the

principal. The principal offers the agent a contract which specifies the agent’s payoff, w(x),

from accepting and fulfilling the contract requirements where x represents observed output.

The output, x is assumed to be a random variable with support χ = [x
¯
, x̄], the distribution func-

tion P(x|a) parameterized by a and the density function p(x|a). While both parties do have a

utility that is increasing in the payoff amount and wish to maximize their utility, effort is costly

to the agent, hence the agent generally tries to minimize effort. An important aspect of the

problem is therefore that the agent’s actions that may be in the best interest of the agent, may

not necessarily be in the best interest of the principal.

The principal’s problem is therefore to design a contract which maximizes her utility, Up(·),

while also offering the agent enough incentives or wages, w, to ensure the agent accepts the

contract and subsequently implements the optimal action, a, from the principal’s perspective.

The agent himself is a utility maximizer with a utility function, UA(·). We also assume that the

agent has a minimal level of utility, Ur, that he is willing to accept before he can agree to work

for the principal. A generic formulation of the principal’s problem can therefore be described

by the following program:

max
w

UP(w, a∗) (2.1)

subject to

UA(a∗|w) ≥ Ur (2.2)

a∗ = arg max
a

UA(a|w). (2.3)

By offering a reward which is greater than or equal to the agent’s reservation utility, inequal-

ity (2.2) represents the guarantee that the contract will be acceptable to the agent by offering

incentives that are at least as good as the best outside option available to the agent. This con-
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straint is referred to as the participation constraint or individual rationality (IR) constraint. The

principal also tries to design a contract such that the utility maximizing effort level from the

perspective of the principal coincides with the effort level that maximizes the agent’s utility.

This requirement is referred to as the incentive compatibility (IC) constraint and is represented

above by expression (2.3).

2.3 Solutions to the Principal-Agent Problem

Successful development of analytical solution concepts for the principal-agent problem have

largely been limited by the complexity of the incentive compatibility constraint [24]. This is

because the incentive compatibility constraint embeds an optimization problem within an opti-

mization problem. The problem can therefore be described as a bilevel programming problem

where the optimization of the principal’s utility function constitutes the upper-level problem

and the incentive compatibility constraint (optimizing the agent’s utility function) is the lower

level problem. In order to make the problem more mathematically tractable, different authors

have applied various simplifying assumptions to the problem. We briefly survey some of those

approaches.

Separable Utility Function for the Agent

A common feature among many proposed solution concepts is the use of the assumption that

the agent has a utility function that is multiplicatively or additively separable in compensation

and effort [24, 25, 26, 27, 28, 29]. The agent’s utility function can therefore be written as

UA(w, a) = K(a)V(w) − C(a) where K(a) is strictly positive, V(w) is strictly increasing and

C(a) is non-negative. Often, the agent’s utility function is left in the form V(w) − C(a) which

is equivalent to setting K ≡ 1.

The First-Best Solution

By assuming that the principal is able to observe the agent’s actions, the principal-agent prob-

lem simplifies significantly. When the principal can observe the agent’s performance, the incen-
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tive compatibility constraint becomes unnecessary as the principal can simply offer a contract

which specifies exactly how the agent should work and the penalties associated with deviation

from the contracted effort. Once an agent accepts the contract, he cannot deviate from the

contracted action since the principal is watching. The principal therefore only needs to make

a contract that is acceptable to the agent. The resulting generic problem the principal tries to

solve becomes:

max
w

UP(w, a∗) (2.4)

subject to

UA(a∗|w) ≥ Ur. (2.5)

The optimal solution to this problem where effort is observable is referred to as the first-best

solution. While the first-best solution only solves a more idealized problem, it can be used as

a benchmark solution for the complete principal-agent problem.

To solve some aspects of our problem, in this thesis we also use an approach that is quite

similar to the first-best problem. We call this the co-ordinated problem. In the co-ordinated

problem, we assume that the principal and the agent are actually acting together as one unit

with no conflict in objectives. In this case we solve the problem as a first-best problem but

without need to consider both the incentive compatibility and individual rationality constraints.

When effort is unobservable, both the individual rationality constrain and the incentive

compatibility constraint are retained. The solution to this principal-agent problem where ef-

fort is unobservable is referred to as the second-best solution. The net profit for the principal

under the second-best scenario is generally always less than or equal to the net profit under

the first-best scenario [29]. The difference between the first-best and second-best net profits

represent the principal’s loss from being unable to observe the agent’s actions. However, when

the agent’s utility function has certain properties, the principal’s net profits under the first-best

and second-best scenario are equal [29]. An example of such a utility function is the separable

function UA(w, a) = K(a)V(w) − C(a) where V(w) is linear and strictly increasing, K(a) is

strictly positive and C(a) is non-negative.
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The First Order Approach

A now standard simplifying approach adopted by many authors to deal with the incentive

compatibility constraint has been to use what is called the first order approach. With the first

order approach, instead of strictly requiring that the agent choose a utility maximizing level of

effort, the IC constraint is relaxed to require only that the agent choose an effort level that is

a stationary point on his utility function. The principal is assumed to be risk neutral and the

agent is assumed to have an additively separable utility function UA(a|w) = V(w)−C(a). Under

these assumptions the resulting PA problem to solve becomes :

max
w

∫
(x − w(x)) p(x|a) dx (2.6)

subject to∫
[V(w(x)) −C(a)] p(x|a) dx ≥ Ur (2.7)∫

V(w(x))
∂

∂a
p(x|a) dx −

∂

∂a
C(a) = 0. (2.8)

Under this method if (w, a) solves the relaxed problem, then there should exist two numbers

λ and δ such that

1
U′A(w)

= λ + δ
∂
∂a p(x|a)
p(x|a)

(2.9)

where δ solves the equation :∫
(x − w(x))

∂

∂a
p(x|a) dx + δ

[∫
V(w(x))

∂2

∂a2 p(x|a) dx −
∂2

∂a2 C(a)
]

= 0 [25, 30]. (2.10)

While many have used the first order approach, other authors have sought to highlight that the

approach is generally not valid and only works under certain conditions [27, 30]. We use Figure

2.1 to show the shortcomings of the first order approach. This type of example has been illus-

trated multiple times in the literature [19, 22, 29, 30] and we present, with slight alterations, the

specific example given in [30]. We only present a generic example without numerical values

but more detailed examples can be found in [19] and [22].
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Figure 2.1: Limitations of the first order approach

Now suppose the higher the principal’s indifference curve3 is, the higher her utility. The

principal therefore desires (w, a) that lies on the highest feasible indifference curve. She will

attempt to induce an action a by offering the agent wage w. Now, suppose curve ABCDE

shows the stationary points of the agent’s utility function. These would be the values of w and

a that satisfy the first order condition described by (2.8). For a given wage, w, we can see the

corresponding actions, a, at which the first order condition is satisfied. The agent is assumed

to strictly prefer lower actions hence the global maxima for the agent lie on AB and DE. For

example, offered the wage amount wx (indicated in the figure), the agent has three possible

points (p1, p2 and p3) at which the first order condition is satisfied. However, the agent would

never pick p2 or p3. Since the agent strictly prefers lower effort, his best response is at p1

which is the lowest of the actions for which he can obtain payment wx. This same issue would

arise for any value of w that corresponds to points on BCD. However, since no points on BCD

would ever be picked by the agent, the best the principal can do to maximize her utility is settle

3a plot of all the combinations of w and a which produce the exact same amount of utility for the principal

(contour surfaces of the principal’s utility)
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for a point on D which is clearly not on the highest feasible indifference curve. By using the

first order approach, one would most likely arrive at the solution that lies on the point C which

we have just demonstrated to be invalid. Offered wage wy which passes through C, the agent

will be faced with two choices of actions. Since he prefers lower action, he will respond to wy

with an action on AB and not at C as the principal intended.

Having highlighted issues like those raised and illustrated in Figure 2.1, some authors have

been able to provide conditions that are necessary for the first order approach to be valid.

The first order approach is shown to be valid when p(x|a) satisfies the monotone likelihood

ratio condition (MLRC) and the convexity of distribution function condition (CDFC) [29, 30].

The agent’s effort is said to satisfy MLRC if
∂

∂x

 ∂
∂a p(x|a)
p(x|a)

 ≥ 0 ∀ x and
∂

∂x

 ∂
∂a p(x|a)
p(x|a)

 >

0 for at least some values of x [23, 30]. CDFC is satisfied if
∂2

∂a2 P(x|a) ≥ 0 ∀ x. We begin

our own investigation of solution concepts for the problem in the next section by looking at a

version of the simplest form of the principal-agent problem with unobservable effort.



Chapter 3

A Basic Principal-Agent Model

3.1 Analytic Solution to a Basic Principal-Agent Model

We consider a basic contracting scenario where a risk neutral principal (she) hires a risk averse

agent (he), who in turn chooses an effort level. The principal only cares about the output, with

the goal of maximizing her payoff from the observed output. We assume the principal has a

diverse enough portfolio of projects to counter the risk associated with the project for which

she intends to hire an agent. It is therefore reasonable to assume a risk neutral principal.

Output will be dependent on the agent’s effort level and a random state of nature. The

higher the level of effort the agent expends, the higher the expected output. However, a high

output is not guaranteed due to the random state of nature. For the agent, effort is costly, hence

the agent has an incentive to expend as little effort as possible. The agent’s effort level is not

observable (or too costly to observe) by the principal. As a result, the principal proposes a

compensation scheme that is based on the observed output, which is only a noisy signal of

the agent’s effort level. In response, the agent chooses his optimal effort level based on the

proposed compensation scheme.

15
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3.1.1 Two Actions, Two Outcomes Model

We adopt a model setup and solution approach parallel to those presented in [19, 31]. Our

model assumes that the agent only has two possible effort levels, there are two states of nature

and only two possible output levels. Properties of the model are as follows :

• two possible output levels - high output, πh and low output, πl with πl < πh.

• agent has two possible actions, a ∈ {al, ah} where ah denotes high effort and al denotes

low effort.

• with high effort level, the probability of high output is p(πh|ah) = ph while with low

effort level, the probability of high output is p(πh|al) = pl < ph.

• the principal is “risk neutral” and so seeks only to maximize her expected payoff.

• the principal proposes a contract that pays the agent a wage w(πh) = wh if the observed

output is πh, and pays w(πl) = wl otherwise

• the principal is risk neutral such that her utility function satisfies UP(x) = x.

• the agent is a utility maximizer with a positive differentiable utility function, UA(·).

• the agent is risk averse with decreasing absolute risk aversion, hence his utility function

satisfies U′A > 0, U′′A < 0.

• the agent incurs a cost C(al) = Cl ≥ 0 when he applies low effort, and C(ah) = Ch > Cl

for high effort where C(·) denotes the agent’s cost function.

Solution Approach (Two Step Process)

The principal’s intention is to determine what the optimal values of wh and wl are so as to

maximize her payoff. A two step process which is similar to that suggested in [29] can be used

to determine the optimal solution for this problem. In the first step, the principal separately

determines the optimal contract (compensation schedule) for each effort level. In the second

step, she then compares her net profits from each of the contracts to determine the optimal

effort level. We solve the first step of the problem for the principal in the next section. Given

the values of pl, ph, πl, πh and the solutions for inducing high and low effort, the principal can

then decide which effort level she prefers to implement based on the net profits.
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3.2 The Two Step Approach

In the first step of our solution approach, we determine separately the optimal wages to offer

the agent for inducing high effort and inducing low effort. Of the two effort levels, the principal

will then offer a contract that induces an effort level that yields the greater profit. We begin by

determining the optimal contract for inducing high effort.

3.2.1 Inducing High Effort

Assuming the principal prefers high effort, the principal’s objective function is therefore

max
wl,wh

E[Π] = ph · (πh − wh) + (1 − ph) · (πl − wl). (3.1)

Maximizing (3.1) is equivalent to minimizing the expected amount the principal has to pay the

agent :

min
wl,wh

ph · wh + (1 − ph) · wl. (3.2)

The principal therefore has linear iso-cost lines1 of the form Z = ph · wh + (1 − ph) · wl where

Z is a constant.

Since the agent’s wage is based on observed output, if he uses high effort, then the prob-

ability of a high output, πh which results in wage wh is ph and the probability of low output

which results in low wage wl is 1 − ph. The agent’s expected utility given that he expends high

effort is therefore :

Uh = ph · UA(wh) + (1 − ph) · UA(wl) −Ch. (3.3)

The corresponding expected utility for the agent given that he uses low effort is therefore :

U l = pl · UA(wh) + (1 − pl) · UA(wl) −Cl. (3.4)

1a plot of all the combinations of wl and wh that cost the same total amount, Z, to the principal where Z is

some fixed value
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In order to induce the agent to work hard (high effort) instead of applying low effort, the

principal has to include the incentive compatibility constraint. This can be represented as

a∗ = arg max
a

p(πh|a) · UA(wh|a) + p(πl|a) · UA(wl|a) −C(a). (3.5)

The agent only has two possible actions and the principal wishes to induce high effort while

satisfying (3.5). To accomplish this, the principal then only has to ensure that Uh ≥ U l so that

the agent maximizes his utility by choosing high effort. This requirement therefore represents

the incentive compatibility (IC) constraint for this model. The constraint Uh ≥ U l implies

(ph − pl) · [UA(wh) − UA(wl)] ≥ Ch −Cl. IC (3.6)

We assume that the agent has some reservation utility, Ur ≥ 0. The agent will only accept the

contract offered by the principal if his expected utility from the contract is at least as high as

his reservation utility. This requirement is the individual rationality (IR) constraint. In the case

where the agent chooses high effort, the IR constraint is

ph · UA(wh) + (1 − ph) · UA(wl) −Ch ≥ Ur. IR (3.7)

Investigating the Problem Structure

To solve this problem we consider wh as a differentiable function of wl and search for the op-

timal solutions on the wl−wh plane. We consider the properties of the principal’s wage bill

first. On the wl−wh plane, we note that the principal has linear iso-cost lines of the form

wh = Z −
1 − ph

ph
wl. Each iso-cost line represents different pairs of wh and wl values that result

in the same expected cost, Z, to the principal. The iso-cost lines are therefore downward slop-

ing with slope −
(
1 − ph

ph

)
as seen in Figure 3.1 on page 19.

We now investigate the structure of the agent’s individual rationality constraint, (3.7). Dif-

ferentiating (3.7) with respect to wl we obtain

dwh

dwl
= −

1 − ph

ph
·

U′A(wl)
U′A(wh)

. (3.8)

Since U′A > 0 and 0 < ph < 1, it follows from (3.8) that
dwh

dwl
< 0 hence the IR constraint

is decreasing. We differentiate constraint (3.7) twice to determine its concavity. The result
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obtained is

d2wh

dw2
l

= −
1 − ph

ph

[
U′′A (wl)
U′A(wh)

−
U′A(wl)U′′A (wh)

[U′A(wh)]2 ·
dwh

dwl

]
. (3.9)

Since U′A > 0, U′′A < 0 and
dwh

dwl
< 0 we therefore have

d2wh

dw2
l

> 0 which implies that the IR

constraint is convex and decreasing (Figure 3.1).

Figure 3.1: The IR and IC constraints and the Principal’s wage bill on wl−wh plane.

(By moving downwards and/or to the left, the principal moves on to a lower iso-cost line)

To investigate the form of the incentive compatibility constraint we differentiate (3.6) and

get

dwh

dwl
=

U′A(wl)
U′A(wh)

. (3.10)

Since wl < wh and U′′A < 0 (i.e. U′A is decreasing), U′A(wl) > U′A(wh) hence
dwh

dwl
=

U′A(wl)
U′A(wh)

>

1 > 0. The IC constraint is therefore increasing. Differentiating the IC a second time to
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determine the concavity of the constraint yields :

d2wh

dw2
l

=
U′′A (wl)
U′A(wh)

−
U′A(wl) · U′′A (wh)

[U′A(wh)]2 ·
dwh

dwl
(3.11)

=
1

U′A(wh)

U′′A (wl) − U′′A (wh)
(
dwh

dwl

)2 . (3.12)

To determine whether
d2wh

dw2
l

is positive or negative, we note that
1

U′A(wh)
is positive since

U′A > 0.
dwh

dwl
> 1 implies that

(
dwh

dwl

)2

> 1. In contract theory literature, a now common

measure of risk aversion is called the Arrow-Pratt measure. The Arrow-Pratt measure of ab-

solute risk aversion, A, is defined as A =
−U′′A
UA

[32]. Since the agent has decreasing absolute

risk aversion, A′ < 0 which only holds if U′′′A > 0. U′′′A > 0 implies that U′′A (wl) < U′′A (wh). It

follows therefore that
d2wh

dw2
l

< 0 hence the IR constraint is increasing and concave in Figure 3.1.

First-Best Solution

Before considering the case with unobservable effort, we begin by deriving a simpler first-best

solution of the problem. In the first-best case, we assume effort is observable and the princi-

pal does not have to consider the IC constraint. We recall that we transformed the principal’s

problem from maximizing expected profit to minimizing the expected cost of paying the agent.

Since the principal wishes to minimize her wage bill, at optimality the IR constraint must be

binding. To see this, we consider the following proof by contradiction.

Suppose the solution (w∗l ,w
∗
h) is an optimal solution to the problem and the IR constraint is

not binding at optimality. The IR constraint, (3.7), is thus only satisfied as a strict inequality.

The optimal solution therefore satisfies

ph · UA(w∗h) + (1 − ph) · UA(w∗l ) −Ch > Ur. (3.13)

The inequality above implies that there exists some ε > 0 such that

ph · [UA(w∗h) − ε] + (1 − ph) · [UA(w∗l ) − ε] −Ch ≥ Ur. (3.14)
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Now let w̃h = U−1
A ( UA(w∗h)− ε ) and w̃l = U−1

A

(
UA(w∗l ) − ε

)
. Since UA is increasing in wages,

we know therefore that w̃l < w∗l and w̃h < w∗h. It follows then that the solution (w̃l, w̃h) is a lower

cost contract and thus results in higher profit for the principal than (w∗l ,w
∗
h). Clearly (w̃l, w̃h)

also satisfies the IR constraint. This violates the original assumption that (w∗l ,w
∗
h) was optimal

(profit maximizing) for the principal. We can conclude that at optimality, the individual ratio-

nality constraint is binding. This argument holds true even in the second-best solution.

To minimize her cost while satisfying the IR constraint, the principal can pick the point

of tangency between the IR constraint and an iso-cost line (point Y in Figure 3.1). Point Y

therefore corresponds to what would be the first-best solution of this problem. Now we recall

that the slope of any iso-cost line is −
(
1 − ph

ph

)
and that of the IR constraint is −

(
1 − ph

ph

)
·

U′A(wl)
U′A(wh)

. At the point of tangency the slopes should be equal hence
U′A(wl)
U′A(wh)

is equal to 1.

Since U′′A < 0, this is only possible if the agent’s wage for low effort is equal to the wage

for high effort i.e. wFB = wl = wh, where wFB represents the first best wage. We can then

use the binding IR constraint to solve for the optimal wage in the first-best scenario and get

wFB = U−1
A (Ur + Ch). This therefore means that, under the first-best scenario, the optimal

solution would be to offer the agent a fixed wage that is independent of output. This agrees

with the intuition that that if the principal can fully observe what the agent is doing, beyond

making him accept the contract, there is no reason for her to offer the agent a contract with

variable incentives to induce him to work at the agreed effort level.

Second-Best Solution

In the second best solution, we assume the principal cannot observe the agent’s effort hence the

incentive compatibility constraint has to be considered. We thus consider an optimal solution

as one which minimizes the principal’s wage bill while satisfying the agent’s individual ratio-

nality and incentive compatibility constraints.

We recall from the argument made in the first-best solution that at optimality, the IR con-

straint must be binding. However, unlike in the first-best solution the principal cannot simply
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look for the point of tangency between the IR constraint and an iso-cost line. This is because

she now has to consider the IC constraint. We highlight that a binding IR constraint is only a

property of this model. In general, IR is not binding in the second-best case. Looking at the IC

constraint, (3.6), we have

(ph − pl) [UA(wh) − UA(wl)] ≥ Ch −Cl (3.15)

⇒ UA(wh) ≥ UA(wl) + ω where ω =
Ch −Cl

ph − pl
> 0. (3.16)

We observe that since ω > 0, it means UA(wh) > UA(wl) hence wh > wl since U′A > 0. There-

fore in this case we know the solution that satisfies the second-best solution is different from

that of the first-best solution. In this case, the agent’s wage for high output, wh is strictly greater

than that for low output, wl. wh > wl also implies that the optimal solution must lie above and

to the left of point Y, the first-best solution on the IR constraint. As we would expect of a

second-best solution, the solution will therefore lie on a higher iso-cost line than the first-best

solution (i.e. the second-best solution is more costly to the principal than the first-best.) In

order to satisfy the IC constraint, the principal needs to set the values of wh and wl that satisfy

(3.16). We note that from the principal’s perspective, for any wl, the cost-minimizing value

of wh will thus be the value of wh that satisfies UA(wh) = UA(wl) + ω. At optimality, the IC

constraint must therefore be binding. It follows then that the optimal solution lies at the point

X in Figure 3.1. This is where the IC constraint intersects with the IR constraint.

To determine the optimal values of wh and wl, we start by solving for UA(wl) in the binding

IR constraint to get

UA(wl) =
1

1 − ph

[
Ur + Ch − phUA(wh)

]
. (3.17)

From the binding IC constraint we have

UA(wh) − UA(wl) = ω. (3.18)
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Combining (3.17) and (3.18), we obtain

UA(wh) −
1

1 − ph

[
Ur + Ch − phUA(wh)

]
= ω (3.19)

⇒ UA(wh) = Ur + Ch + (1 − ph)ω (3.20)

∴ w∗h = U−1
A (Ur + Ch + (1 − ph)ω) (3.21)

where w∗i denotes the optimal value of wi.

From (3.18) and (3.20) we can then find w∗l :

UA(wl) = UA(wh) − ω (3.22)

= Ur + Ch − phω (3.23)

∴ w∗l = U−1
A (Ur + Ch − phω). (3.24)

Comparing the optimal wages for high output and low output, we observe that there is a

common component to both wages, which is Ur + Ch. We recall that the first-best solution was

found to be wFB = U−1
A (Ur + Ch). Unlike in the first-best case, now the agent bears some level

of risk which is related to the probability of high output. Relative to the first-best scenario, the

agent faces a penalty ph · ω in the event of low output, while he stands to obtain a premium

amount (1 − ph) · ω in the event of high output. We observe that the greater the likelihood

of a high output given a high effort, the greater the penalty the agent faces if a low output is

realized. However, the smaller the probability of high output, the higher the premium over the

Ur +Ch. This suggests that the greater the likelihood of failure given high effort, the greater the

agent’s payment. As we would expect this means the risk averse agent should receive higher

incentives to accept bearing risk in a situation where the likelihood of failure is greater.

3.2.2 Inducing Low Effort

We suppose now that the principal prefers that the agent use low effort. The solution to this

problem can be derived through carrying out a process similar to the one used for inducing

high effort. We describe the solutions in the next section. We denote the agent’s wage given

low output as ŵl and his wage given high output as ŵh.
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First-Best Solution

As in the previous case where the principal wanted to induce high effort, we find that when

the agent has observable effort, the optimal wages are independent of output. The optimal

wages for the agent should therefore be fixed under high or low output and thus satisfy ŵFB =

ŵl = ŵh. From the binding individual rationality constraint we can then solve for ŵFB to get

ŵFB = U−1
A (Ur + Cl).

Second-Best Solution

We recall that the difference between the first-best and second-best problem is the presence of

the incentive compatibility constraint in the latter. The agent wishes to maximize his utility

hence, in order for the incentive compatibility constraint to be satisfied, the principal should

propose a wage schedule such that the agent’s expected utility from using low effort is not

lower than from using high effort. Suppose that the principal offers the agent wages that are

independent of output, then from the first-best scenario a candidate solution to consider is

ŵS B = ŵl = ŵh = U−1
A (Ur + Cl). We first verify whether the solution satisfies the individual

rationality constraints and the incentive compatibility constraints for the agent. If these condi-

tions are met, we then only need to check that the solution maximizes the principal’s profit.

Since the solution ŵS B = U−1
A (Ur + Cl) is directly derived from a binding individual ra-

tionality constraint, it follows that ŵS B clearly satisfies the constraint. We recall that under

the second-best scenario, the agent’s actions cannot be observed by the principal. Since the

principal wishes to induce low effort, incentive compatibility requires that choosing low effort,

al be optimal for the agent. Presented with a fixed wage that is independent of output, the

agent will choose to implement the less costly effort, al, in order to maximize his utility. Thus

the incentive compatibility constraint is satisfied in this case. We now only need to check that

ŵS B = U−1
A (Ur + Cl) is the profit maximizing (cost minimizing) solution in the second-best

case. We know that the second-best solution can only yield a profit that is at most equal to

that of the first-best solution (the first-best profit is an upper bound for the second-best profit).

ŵS B = ŵFB = U−1
A (Ur + Cl) is therefore the profit maximizing wage for the principal.
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3.2.3 The Effort Level To Implement

Given the two optimal contracts for inducing low effort and high effort, the principal then has

to calculate her expected profits. If her profit from inducing high effort is higher than that

from low effort, then she offers the agent a wage schedule that induces high effort. If not, the

principal offers the agent a contract to induce low effort. Should neither contract offer a positive

profit, the principal can choose to not offer any contract at all.



Chapter 4

Numerical Solution To The Basic Problem

4.1 Numerical Solution to the Basic Principal-Agent Model

Having solved the basic model analytically, we now consider how the same model can be

solved numerically. Solving this basic problem numerically will be instructive for developing

techniques for the more advanced principal-agent problems considered later in the thesis. We

intend to develop a method that can easily be adopted to solve the more advanced problems.

We consider again our basic two actions, two outcomes model but now with the following

parameters:

• two possible output levels - high output, π = 2 and low output, π = 1.

• agent has two possible actions - high effort, a = 1 and low effort, a = 0.

• with high effort level, the probability of high output is p(π = 2|a = high) = 0.8. while

with low effort level, the probability of high output is p(π = 2|a = low) = 0.4.

• the principal has a large number of these projects and so is “risk neutral” with a utility

function UP(x) = x and so seeks only to maximize her expected payoff.

• the agent is a utility maximizer with a log utility function, UA(·) = ln (·).

• the principal proposes a contract that pays the agent a wage w(2) = wh if the observed

output is πh = 2, and pays w(1) = wl otherwise.

• the agent incurs a cost Ch = 0.2 when he applies high effort, and Cl = 0 for low effort.

• the agent has reservation utility Ur = 0.

26
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Before we solve the optimal wage schedule for this model numerically, we apply the same

analytical solution approach as used in the last section for the basic two actions, two output

model. We can then use the exact results obtained this way to assess the performance of our

numerical approach. We will focus on the second-best solution of the problem.

4.1.1 Second Best Case: Analytical Solution (for assessing numerical ap-

proach)

Inducing High Effort

The optimal wage schedule for inducing high effort is the solution to the program:

max
wl,wh

E[Π] = 0.8 · (2 − wh) + 0.2 · (1 − wl) (4.1)

subject to

0.8 · ln (wh) + 0.2 · ln (wl) − 0.2 ≥ 0 IR (4.2)

0.8 · ln (wh) + 0.2 · ln (wl) − 0.2 ≥ 0.4 · ln (wh) + 0.6 · ln (wl). IC (4.3)

Applying the exact analytic approach as used previously but with the parameters and utility

functions as described above, we can find the optimal wages for inducing high effort. The

solution is found to be

w∗l = U−1
A

(
UR + Ch − ph ·

Ch −Cl

ph − pl

)
= e(0.2−0.8∗0.2/0.4) = e−0.2

≈ 0.8187

w∗h = U−1
A

(
UR + Ch + (1 − ph) ·

Ch −Cl

ph − pl

)
= e(0.2+0.2∗0.2/0.4) = e0.3

≈ 1.3498.
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The resulting expected net profit for the principal for inducing high effort is therefore:

E[Π] = 0.8 · (2 − e0.3) + 0.2 · (1 − e−0.2)

≈ 0.5564.

Inducing Low Effort

The corresponding wage schedule for inducing low effort can be obtained from solving the

program:

max
wl,wh

E[Π] = 0.4 · (2 − wh) + 0.6 · (1 − wl) (4.4)

subject to

0.4 · ln (wh) + 0.6 · ln (wl) ≥ 0 IR (4.5)

0.4 · ln (wh) + 0.6 · ln (wl) ≥ 0.8 · ln (wh) + 0.2 · ln (wl) − 0.2. IC (4.6)

The optimal wages for inducing low effort are found to be:

w∗l = w∗h = U−1
A (UR + Cl)

= e0 = 1.

In this case the principal’s expected net profit from inducing the agent to pick low effort is

E[Π] = 0.4 · (2 − 1) + 0.6 · (1 − 1)

= 0.4.

Comparing the principal’s net profits, we see that the principal should therefore prefer that

the agent apply high effort. The agent is therefore presented with a contract that pays the agent

wl = e−0.2 ≈ 0.8187 if low output is observed, and wh = e0.3 ≈ 1.3499 when high output is

observed. This will have the effect of inducing the agent to prefer high as opposed to low effort.

4.1.2 Verifying the Solution Graphically

Due to the relatively simple structure of the principal’s profit function and the agent’s con-

straints (IC and IR) we can deduce some properties of the relationship between any value of wl
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and the corresponding (optimal) value of wh given wl. This can then enable us to analyze the

problem graphically and hence serve as a verification of the analytical results.

Inducing High Effort

We recall that for this specific type of problem, maximizing the principal’s expected profit (4.1)

is equivalent to minimizing the total expected wage bill. Both the IR constraint (4.2) and the IC

constraint (4.3) can be rearranged to express a relationship between any wl value and a feasible

value of wh. The resulting program from applying these modifications is:

max
wl,wh

E[Π] = 0.8 · (2 − wh) + 0.2 · (1 − wl) (4.7)

subject to

wh ≥ e0.25−0.25· ln(wl) =

(
e
wl

)0.25

IR (4.8)

wh ≥ e0.5+ ln(wl) = e0.5wl. IC (4.9)

Given any value of wl, the least costly amount (profit maximizing value) of wh that satisfies

both (4.8) and (4.9) is therefore wh = max{ (e/wl)0.25 , e0.5wl }. We can then plot the value

of the principal’s expected profit across different values of wl in order to determine the profit

maximizing values of wl and wh. Figure 4.1 on page 30 shows the plot for inducing high effort

where we indeed observe that the optimal value of wl ≈ 0.82 and hence wh ≈ 1.35.

Inducing Low Effort

We can carry out the exact same process as above for implementing low effort. The problem

becomes:

max
wl,wh

Z = 0.4 · (2 − wh) + 0.6 · (1 − wl) (4.10)

subject to

wh ≥ w−1.5
l IR (4.11)

wh ≤ e0.5wl. IC (4.12)

We note that satisfying (4.11) and (4.12) implies that w−1.5
l ≤ wh ≤ e0.5wl. Within this region

of the feasible values of wh the cost minimizing value of wh = w−1.5
l . It is then apparent that
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Figure 4.1: The expected profit and corresponding optimal value of wh across values of wl for

inducing high effort.

we only need to search for an optimal solution in the region of wl where w−1.5
l ≤ e0.5 · wl ⇒

wl ≥ e−0.2. The plot of the principal’s expected profit across different values of wl is provided

in Figure 4.2 on page 31. As expected the observed profit maximizing value of wl is consistent

with the previously obtained result of wl = wh = 1 and a resulting expected net profit of 0.4.

4.1.3 Solving the Problem Numerically

For our numerical approach, we implement a strategy that is identical to the Sequential Uncon-

strained Minimization Technique (SUMT) Algorithm [33]. The SUMT works by transforming

the constrained minimization problem :

(A) : min f (x)

subject to gi(x) ≥ 0 (i = 1, 2, ...,m)
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Figure 4.2: The expected profit and corresponding optimal value of wh across values of wl for

inducing low effort

into the unconstrained problem :

(B) : min Y(x,Λk) = f (x) + Λk

i=m∑
i=1

1
gi(x)

.

The method minimizes Y(x,Λk) within the interior feasible region over a decreasing sequence,

{Λk}, where Λk > 0 ∀k. As Λk → 0, the sequence of solutions to (B) converge to the optimal

solution of (A).

The key feature of the SUMT which we adopt is the transformation of a constrained prob-

lem into an unconstrained problem. However in our case, instead of minimizing the objective

function, we implement the algorithm as a maximization problem as proposed in [34]. This

technique enables us to solve the originally constrained problem as an unconstrained maxi-

mization problem which is relatively less complicated to solve. To solve the unconstrained

optimization problem, we use a gradient search approach.
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Before we can introduce the new optimization problems, we define or recall the following

functions and symbols:

• Πh(wl,wh) and Πl(wl,wh) represent the principal’s expected profit functions given high

and low effort respectively.

• Lh(wl,wh) and Ll(wl,wh) are barrier functions obtained from the original constraints.

• Λ is a constant that regulates the overall weighting of the barrier functions relative to

Πh(wl,wh) and Πl(wl,wh).

• Ur is the agent’s reservation utility.

• Uh(wl,wh) and Ul(wl,wh) represent the agent’s expected utility from implementing high

and low effort respectively.

The new objective functions that incorporate both the original constraints and objective func-

tions are

Yh(wl,wh) = Πh(wl,wh) − Λ · Lh(wl,wh) (4.13)

= Πh(wl,wh) − Λ ·

(
1

Ur − Uh(wl,wh)
+

1
Ul(wl,wh) − Uh(wl,wh)

+
1

wh
+

1
wl

)
(4.14)

and

Yl(wl,wh) = Πl(wl,wh) − Λ · Ll(wl,wh) (4.15)

= Πl(wl,wh) − Λ ·

(
1

Ur − Ul(wl,wh)
+

1
Uh(wl,wh) − Ul(wl,wh)

+
1

wh
+

1
wl

)
(4.16)

where Yh(wl,wh) is the function we maximize to determine the optimal wage schedule for high

effort and Yl(wl,wh) is the corresponding function for low effort.

Rewriting the problem in the form of (4.14) or (4.16) implies that we have effectively re-

duced the multiple constraint problem into a single unconstrained objective function. The effect

of the rational expressions in the second part of both Lh(wl,wh) and Ll(wl,wh) is to encourage

the solutions obtained from optimizing (4.14) and (4.16) to stay within the feasible region that

satisfies all original constraints. The functions Yl(·) and Yh(·) are then optimized across a se-

quence of successively smaller values of Λ up to a desired number of iterations. Given a fixed
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Λ and an initial feasible trial solution w(0) = (w(0)
l ,w(0)

h ), we implement a gradient search pro-

cedure (steepest ascent) for maximizing the objective functions ( Yl(·) and Yh(·) ). We explain

the full sequence of steps for finding the optimal solutions. We focus on solving the problem

for inducing high effort. The optimal contract schedule for inducing low effort can be obtained

analogously.

The following sequence of steps will be carried out for different values of Λ and initial

feasible solution. We consider a feasible solution as one that satisfies the individual rationality,

incentive compatibility and non-negativity constraints.

Initialization

Set an initial value of Λ and pick an initial feasible point w(0) = (w(0)
l ,w(0)

h ). The algorithm will

not produce a reasonable result if the chosen initial point is not feasible. One way to determine

feasible points that satisfy all constraints is to create a contour plot indicating feasible and

non-feasible points. Figures 4.3 and 4.4 are examples of such a plot.

Gradient Search

Before we explain our approach, we highlight that the index k (superscript) is used to denote

iteration across values of w = (wl,wh). Later the index j (subscript) will denote iteration across

different values of λ̃ for a given point, w(k) = (w(k)
l ,w

(k)
h ).

Given a point w(k) obtained after the k-th iteration, we determine the non-negative number

λ̃ = λ(k) that maximizes Yh

(
w(k+1)

)
where w(k+1) = w(k) + λ(k) · ∇Yh

(
w(k)

)
. Finding the opti-

mal λ(k) is another optimization problem but only for one variable. We use an iterative search

procedure to determine the optimal value of λ̃. We outline the steps for finding this value below.

We note at this point that if the maximization problem is not convex, depending on the

chosen initial point this algorithm may only converge to a local maximum instead of the global

maximum. In order to minimize the likelihood of landing on a local extreme point, one should
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Figure 4.3: The feasible points for inducing high effort

run this algorithm multiple times from different initial points to increase the likelihood of find-

ing the global maximum.

Searching for Best Value of λ̃

We carry out an iterative process to determine the optimal λ̃ = λ(k) to permit transition from the

k-th solution w(k) to the (k + 1)-th solution. The optimal value of λ̃ should also ensure that any

candidate solutions we generate do not violate the non-negativity requirement for w(k+1). At

each iteration a new value of λ̃ is obtained according to a specific set of rules which we outline

below.

Reasonable Bounds for λ̃

Before we begin our search for λ(k) we need to establish reasonable bounds within which we

can search for this value. We can easily estimate these bounds from the previously plot-

ted feasible region. In this case we note that the feasible values of wl fall within the in-

terval [011, 2.12] and those of wh fall within [1.35, 2.22]. This therefore means that given
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Figure 4.4: The feasible points for inducing low effort

w(k), the value of λ̃(k) should satisfy both 1.35 ≤ w(k)
h + λ̃(k) ·

∂

∂wh
Yh

(
w(k)

l ,w
(k)
h

)
≤ 2.22 and

0.11 ≤ w(k)
l + λ̃(k) ·

∂

∂wl
Yh

(
w(k)

l ,w
(k)
h

)
≤ 1.182. We know λ̃(k) ≥ 0 hence we only need to deduce

the upper bound for λ̃(k) from the above inequalities. We let λ̃(k)
u represent this upper bound.

Search Procedure

Having established the upper bound of λ̃(k), we pick N equally spaced points in the interval 0

and λ̃(k)
u inclusive. Each of these N points is considered as a trial value for λ̃(k). N calculations

of Y = Yh

(
w(k) + λ̃∇Yh

(
w(k)

))
are then made, one using each of the trial values of λ̃(k). Suppose

the n-th candidate value of λ̃(k), (n < N), produces the largest value of Y . A narrower and

more refined interval of N points is formed between the n-th and the (n + 1)-th trial values of

λ̃(k). This process of searching within more refined search intervals can be repeated a desired

number of times assuming in each case that n < N. Ultimately, λ̃(k) is set equal to the n-th

trial value that produces the largest value of Y among the last N generated candidates. At any

iteration, if the N-th trial value of λ̃(k) produces the largest value of Y , then λ̃(k) is set equal to

the N-th trial value and the search is terminated at this point. Once λ̃(k) is determined, w(k+1) is
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set equal to w(k) + λ̃(k) · ∇Yh

(
w(k)

)
.

Checking candidate solutions for constraint violation

We recall that at each iteration, the search for λ̃(k) was carried out within what were only

assumed to be reasonable bounds. This implies that some of the values candidate values of

λ̃(k) may actually violate the IR or IC constraints. In order to avoid obtaining solutions that

violate the constraints, at each iteration when the N candidate values of λ̃(k) are calculated, the

corresponding candidate values of w(k+1) must immediately be checked against the constraints.

If any of these violates a constraint, the corresponding value of Y is set to a large negative value

so that it is never carried over into the next iteration.

Summary of Procedure

We conclude this section with a brief review of our method. A key aspect of the method

involves transforming the original problem into an unconstrained optimization problem. The

transformation uses a penalty function multiplied by some positive number, Λ, to represent the

original constraints. We use a sequence of successively smaller values of Λ and for each of

these values of Λ we perform the following steps :

1. Transform the multiple constraint Principal-Agent problem into an unconstrained maxi-

mization problem.

2. Identify a region within which all feasible candidate solutions are contained. Feasible

candidate solutions should satisfy both IR and IC.

3. Identify a feasible initial trial solution.

4. Determine the direction of steepest ascent from the current trial solution .

5. Move as far as feasible in the direction of steepest ascent (a feasible move is one that

yields a trial solution that satisfies the IR and IC constraints).

6. Once at the next trial solution, return to step 4 and repeat until a desired number of

iterations is reached or until the level of improvement in the objective value is sufficiently

small.
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As Λ → 0, the obtained solutions should converge to some point which we then take as the

optimal solution.

4.1.4 Numerical Results

For our numerical study, we optimized the functions Yh (wl,wh) and Yl (wl,wh) using succes-

sively smaller values of Λ. Our arbitrarily chosen sequence of Λ values was {100, 1, 0.01, 10−3, 10−5}.

We observed that for this problem as we successively changed the values of Λ there was no

apparent improvement in results. The method we outlined above produced results that were

acceptably consistent with those obtained analytically after running the algorithm a number

of times from different initial trial solutions. We recall that our method works by picking a

random but feasible initial point. From this initial point, the method then searches for a point

that maximizes the objective function.

In tables 4.1 and 4.2 below, we show a few random initial points and the final point to which

the method converges. The initial points are denoted by
(
w(0)

l ,w(0)
h

)
and the corresponding fi-

nal points by
(
w∗l ,w

∗
h

)
. The first set of numbers shows results for the case where we assume

the principal wishes to induce high effort. The second set of results is for the case where we

assume the principal wished to induce low effort. The table shows the results obtained by ap-

plying the method outlined above with Λ = 1 from 5 randomly generated initial points. The

highest expected profit is indicated in bold font.

We observe that the best results (from the 5 random initial points) obtained from this ap-

proach are comparable to the exact solutions previously determined. The best numerically

obtained net profit for inducing low effort was found to be approximately 0.3978 which is

close to the exact solution of 0.4. The best numerically obtained net profit for inducing high

effort was found to be approximately 0.5503 which is very close to the exact solution which

is 1.8 − 0.8e0.3 − 0.2e−0.2 ≈ 0.5564. We do however note that the proximity of the numerical

solution to that of the exact solution is heavily dependent on the initial point chosen, hence to

improve our results it would be necessary to recalculate the problem from many more initial
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Table 4.1: Solutions obtained from 5 random initial points denoted
(
w(0)

l ,w(0)
h

)
Inducing High Effort

w(0)
l w(0)

h w∗l w∗h Exp. Profit

0.5353 1.8188 0.4883 1.5360 0.4735

0.5570 1.9767 0.7755 1.3683 0.5503

0.5594 1.9461 0.7203 1.3938 0.5409

0.3292 2.1140 0.2178 1.8795 0.2528

0.5574 1.8361 0.5544 1.4880 0.4987

Table 4.2: Solutions obtained from 5 random initial points,
(
w(0)

l ,w(0)
h

)
Inducing Low Effort

w(0)
l w(0)

h w∗l w∗h Exp. Profit

1.3563 1.4077 0.9582 1.5798 0.1932

1.3298 1.1336 0.9477 1.0839 0.3978

1.3591 1.3547 0.9167 1.5114 0.2454

1.0778 1.6460 1.0203 1.6822 0.1149

0.8459 1.3324 0.8268 1.3302 0.3718

points. If instead we generate 100 initial trial solutions, we find that the numerical results are

even much closer to the exact solution. The optimal solution found for inducing high effort

results in an expected profit of 0.5540 for the principal, while that for low effort produces an

expected profit of 0.399998.

Figure 4.6 carries a visual sample of random initial points and the eventual ‘best’ solutions

it finds after starting at these points. The arrows in the figure point to the eventual best result

that the algorithm converges to from a given initial point. In the figure, the quantity X = wl,

Y = wh and the quantity Level refers to the principal’s expected profit.
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Figure 4.5: A sample of initial and final points obtained from implementing our search method

where we assume the principal wishes to induce high effort.

4.2 Conclusion

In this and the previous chapter, we have analyzed what is a very basic form of the principal-

agent model. We managed to completely solve the problem analytically and then worked on

a numerical method for solving the problem. In obtaining both the analytical and numerical

results, we adopted a two-step approach where, in the first step, we sought to maximize the

principal’s expected profit assuming the agent implemented a specific effort level. In this case

we only had to consider two distinct effort levels. In the second step, we then compared the

principal’s expected profits from implementing each of the effort levels. The optimal contract
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Figure 4.6: A surface plot of the principal’s expected profit from inducing high effort.

was then chosen as the one that induced the agent to pick an effort level that would produce

higher expected profits for the principal.

Equipped with this guiding solution strategy that has proven viable in the basic case, we

can now transition to the more interesting principal-agent model presented in the form of our

co-development problem. We begin the next chapter by formulating the model of the co-

development partnership.
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The Co-Development Model

5.1 Mathematical Formulation of Co-development Contract

We adopt the same Principal-Agent problem modeling framework introduced in [35], where

the principal (she) is the drug manufacturer and the agent (he) is the companion diagnostics

company. The principal proposes a contract which stipulates the amounts of initial investment,

mp and ma, that must be made by the principal and the agent respectively. The contract also

specifies the royalty percentage, r, of total test sales revenue, RT , that the agent will receive

while the principal collects revenue from sale of the drug, RD and the remaining share of test

sales, (1− r)RT . The agent then decides whether he should accept the contract proposed by the

principal and also the appropriate effort level, fa, that he should apply based on the contract

specifications.

The level of effort that the agent can exert is bounded above by fL > 0 and the effort is

associated with a unit cost of ca. If there is need for additional effort beyond fL, or a decision

is made to use an external workforce, then the external workforce would have to be hired at

a unit cost of ch, which is funded using the initial investments, ma and mp. We assume that

ch > ca. Both the principal and the agent borrow the amounts they need to make the initial

investment. The principal borrows her investment amount of mp at a cost of bp ≥ 1, while the

agent borrows his investment amount ma at a cost of ba ≥ 1. Since the diagnostics company

is a smaller firm, we assume it incurs a higher cost of borrowing than the principal hence we

41
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assume ba ≥ bp.

The probability of the project being a success is assumed to be a function, p(ma,mp, fa),

that is dependent on the effort expended in the project and the amount of the initial investment

made. If no initial investment is made, and the agent does no work, then the probability of

success is zero (i.e. p(0, 0, 0) = 0). The probability function is increasing in the variables fa,

ma and mp, however there is a diminishing rate of increase which implies that the probability

function is concave. We assume that the probability of success is described by the function :

p( fa,ma,mp) = 1 − e−k
(

fa+
ma+mp

ch

)
(5.1)

which has the properties just described. There is also another level of uncertainty attached to

the project that is a result of factors such as scientific and regulatory uncertainty which are be-

yond the control of the agent. This uncertainly is modeled using a Bernoulli random variable,

θ, with µ as its probability of success.

The principal’s profit function consists of the expected revenue from the sales of the test and

drug, (1− r)RT + RD , less the costs associated with the borrowed initial investment, bpmp. The

expected profit is described by the function E[Π] below. The agent’s expected utility, E[UA],

consists of his share of the expected revenues from the sale of the test, rRT , less the repayment

value of the previously borrowed investment amount, bama, and the cost of his effort, ca fa.

Under co-development, the goal of the pharmaceutical firm (principal) is to set the optimal

values of ma, mp and r so as to maximize her expected profit, E[Π] as described in equation

(5.2). The principal cannot directly control or observe the agent’s effort level, fa, hence she

must design a contract which will induce the agent to provide the optimal effort level that

maximizes her profit. The principal therefore attempts to ensure that the agent will choose the

desired effort level, fa. The incentive compatibility constraint, (5.3), is added to the model to

ensure that the optimal effort level coincides with the highest expected utility that the agent

can obtain from participating in the co-development project. The agent will choose the effort

level that maximizes his utility, which in turn will also maximize the principal’s profit. The
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co-development contract should also offer the agent enough incentives to accept the contract

voluntarily. If these incentives are not present the agent will not work with or for the principal.

This means that the minimal utility gained by the agent for participating in the project should

be at least equal to the agent’s reservation utility, denoted Ur. This requirement is referred

to as the individual rationality constraint, (5.4). We refer to the model that describes the co-

development problem as model D. This model serves as the base model upon which all further

extensions will be based, and can be stated as:

(D) max
ma,mp,r≥0

E[Π] = µ
(
1 − e−k( f ∗a +

ma+mp
ch

)
)

((1 − r)RT + RD) − bpmp (5.2)

s.t.

f ∗a = argmax
fa≤ fL

{
E[UA] = µ

(
1 − e−k( fa+

ma+mp
ch

)
)

rRT − ca fa − bama

}
(5.3)

Ur ≤ µ
(
1 − e−k( f ∗a +

ma+mp
ch

)
)

rRT − ca f ∗a − bama. (5.4)

To solve this co-development problem, we follow the approach used in [35] where the

model was first introduced. We begin by considering the the agent’s reservation utility and his

optimal effort levels. We then use those results to determine the principal’s expected profit.

5.1.1 Determining the agent’s reservation utility, Ur

To determine the agent’s reservation utility we consider first obtaining an upper bound, Umax

and then a lower bound, Umin for the agent’s reservation utility. Two modifications of model D

are used to determine the bounds for Ur. These are model C which represents a coordinated

problem and model A which is an agent-only problem.
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An upper bound on the agent’s reservation utility, Umax

A value for the agent’s maximum reservation utility, Umax, can be inferred from the solution of

the coordinated problem where we assume that all profits generated from the contacts are ac-

tually given to the agent, with the principal getting none. The coordinated problem represents

a scenario where we view the principal and the agent as a single entity. In this case the two

parties do not have to divide the profits between the principal and the agent since we assume all

profits are directed to one entity thus the agent’s royalty, r, is not considered. The total revenues

for the partnership will in this case consist of all of RT and RD. The profits are determined by

deducting the cost of effort (ca fa), and the costs and amount of borrowed capital for both the

principal and the agent (bpmp + bama).

Since under this model we assume that the agent and the principal are in partnership, we

need not consider the incentive related constraints necessary to control the agent’s actions. In

this case we do not consider individual rationality and incentive compatibility. The problem

can therefore be viewed as an optimization (maximization) problem with only non-negativity

constraints, where we seek to determine the optimal values of ma, mp and fa. The optimal val-

ues are then used to set a value for the maximum reservation utility. The coordinated problem

is described by model C below:

(C) max
0≤ fa≤ fL,ma,mp≥0

E[Π] = µ
(
1 − e−k( fa+

ma+mp
ch

)
)

(RT + RD) − ca fa − bama − bpmp. (5.5)

Assuming the agent prefers applying minimal effort while the principal wishes to maximize

likelihood of success, we have :

Proposition 1 The optimal solution of the Coordinated problem (C) is :

f C
a = min

{
max

{
0,

1
k

ln
(
kµ(RT + RD)

ca

)}
, fL

}
(5.6)

mC
a = 0 (5.7)

mC
p = max

{
0, ch

(
1
k

ln
(
kµ(RT + RD)

bpch

)
− fL

)}
. (5.8)
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Therefore an upper bound on the reservation utility is :

Umax = µ

1 − e
−k

(
f C
a +

mC
p

ch

) (RT + RD) − ca f C
a − bpmC

p . (5.9)

All proofs are contained in the Appendix.

We recall that the agent’s reservation utility refers to the potential payoff the agent is as-

sumed to get if he chose to decline the principal’s offer and pick another project instead. One

implication of the result we just obtained (Proposition 1) is therefore that if the alternative

project offers a potential reward greater than the maximum reservation utility as determined by

Proposition 1 (5.1.1), then the agent will not even have to consider the principal’s offer. This is

because the most the agent can gain from accepting the principal’s offer is still lower than the

returns from the alternative choice the agent has.

A lower bound on the agent’s reservation utility, Umin

The minimal utility that the agent should obtain to accept the co-development contract should

be at least the maximum utility that he can get without contracting. Thus the maximum utility

without contracting is equal to a lower bound for the agent’s utility, Umin. We consider the

agent-only model (Model A) where the agent tries to determine the optimal fa and ma to maxi-

mize his expected utility in the absence of the principal’s participation. In this case we also do

not consider the individual rationality and incentive compatibility constraints. We can therefore

view the problem as an unconstrained optimization problem with non-negativity requirements

for fa and ma. The agent-only problem is described by model A below:

(A) max
0≤ fa≤ fL,ma≥0

E[Π] = µ
(
1 − e−k( fa+

ma
ch

)
)

RT − ca fa − bama. (5.10)
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Proposition 2 The optimal solution of the Agent-only problem (A) is :

f A
a = min

{
max

{
0,

1
k

ln
(
kµRT

ca

)}
, fL

}
(5.11)

mA
a = max

{
0, ch

(
1
k

ln
(
kµRT

bach

)
− fL

)}
. (5.12)

The agent’s minimal reservation utility should therefore be :

Umin = µ

1 − e
−k

(
f A
a +

mA
p

ch

) RT − ca f A
a − bamA

a . (5.13)

5.2 Solutions to the Co-development Model

5.2.1 First Best Solution

To obtain the first best solution, we consider a relaxed form of model D where fa is determined

by the principal but the agent only accepts the co-development contract i.e. the Individual

Rationality constraint must be satisfied but the Incentive Compatibility Constraint does not

have to be satisfied. We label this model DF:

(DF) max
0≤ fa≤ fL,ma,mp,r≥0

E[Π] = µ
(
1 − e−k( fa+

ma+mp
ch

)
)

((1 − r)RT + RD) − bpmp (5.14)

s.t.

Ur ≤ µ
(
1 − e−k( fa+

ma+mp
ch

)
)

rRT − ca fa − bama. (5.15)

Since the principal intends to maximize her profit while satisfying the individual rationality

constraint, it must be that in the first best scenario constraint (5.15) is binding, and hence is

an equality. The equality can be rearranged to obtain r. Therefore the value of r set by the

principal is

r =
Ur + ca fa + bama

µ

(
1 − e−k

(
fa+

ma+mp
ch

))
RT

. (5.16)
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Replacing r in the objective function with (5.16) and simplifying, we obtain an updated

objective function :

max
0≤ fa≤ fL,ma,mp,r≥0

E[Π] = µ
(
1 − e−k( fa+

ma+mp
ch

)
)

(RT + RD) − Ur − ca fa − bama − bpmp. (5.17)

Comparing model C, (5.5), with the updated objective function of model DF, (5.17), we

note that the only difference between the two is the −Ur term which is present in model DF

but not in model C. Ur is not one of the decision variables but a constant within the objective

function hence it does not affect the derivatives with respect to ma, mp and fa which are used to

obtain the optimal solutions. It therefore follows that the optimal solution to model DF is iden-

tical to that of the coordinated problem, model C with the optimal value of r being as described

in (5.16). The optimal solution to the problem is therefore the one described in Proposition 3

below.

Proposition 3 The optimal solution to model DF is :

f DF
a = min

{
max

{
0,

1
k

ln
(
kµ(RT + RD)

ca

)}
, fL

}
(5.18)

mDF
p = max

{
0, ch

(
1
k

ln
(
kµ(RT + RD)

bpch

)
− fL

)}
(5.19)

mDF
a = 0 (5.20)

rDF =
Ur + ca f DF

a + bamDF
a

µ

1 − e
−k

(
f DF
a +

mDF
a +mDF

p
ch

) RT

. (5.21)

There are three possible cases we can consider for the resulting net profit, E[Π]. If
kµ(RT + RD)

ca
≤

1, then f DF
a = 0. Since bpch > ca, then

kµ(RT + RD)
ca

≤ 1 implies
kµ(RT + RD)

bpch
< 1, hence

mDF
p = 0. In this case E[Π] = −Ur. E[Π] is therefore only non-negative for Ur = 0.

If
kµ(RT + RD)

ca
> 1 and

1
k

ln
(
kµ(RT + RD)

ca

)
< fL then f DF

a =
1
k

ln
(
kµ(RT + RD)

ca

)
< fL and

mDF
p = 0. Under this scenario the expected net profit is given by

E[Π] = µ(RT + RD) −
ca

k
− Ur −

ca

k
ln

(
kµ(RT + RD)

ca

)
.
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The third case to consider is where
1
k

ln
(
kµ(RT + RD)

ca

)
> fL. In this case f DF

a = fL and

mDF
p = ch

(
1
k

ln
(
kµ(RT + RD)

bpch

)
− fL

)
. The corresponding expected profit is

E[Π] = µ(RT + RD) −
bpch

k
− Ur − ca fL − bpch

(
1
k

ln
(
kµ(RT + RD)

bpch

)
− fL

)
.

5.2.2 Second Best Solution

The second best solution corresponds to an optimal co-development contract which ensures

that the agent obtains at least his reservation utility if he participates and also induces the agent

to put in an optimal level of effort into the the project. The co-development model, model D,

represents the second best scenario. Solutions to (D) are partitioned according to the agent’s

optimal effort level, fa, which is the effort level that maximizes the agent’s utility. The optimal

effort level, f ∗a , may fall into one of three possible regions which are :

(i) f ∗a = 0 (ii) 0 < f ∗a < fL (iii) f ∗a = fL.

The optimal solution to the co-development problem is therefore as described by Proposition 4.

Proposition 4 The optimal solution of the Co-development problem (D) is the one with the

highest expected profit among the candidate solutions in Table 5.1.
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5.3 Conclusion

Following the work done in [35], we established a working model for our co-development

problem and we stated propositions 1 and 2 which gave us reasonable working lower and upper

bounds for the agent’s reservation utility, Ur. Bounds on Ur essentially impose regions outside

of which we may not expect feasible solutions to the problems. With these constraints in mind,

we then proceeded to investigate the nature of the optimal contracts to the co-development

problem, through solving the principal-agent model we have formulated.

We highlight that we were able to deduce analytical solutions for our problem mainly be-

cause we chose a conveniently stuctured function to describe the probability of success. This

function we chose essentially made our problem convex in nature and hence more tractable.

We also assumed fixed values of the borrowing costs, ba and bp. This may not necessarily

reflect reality as borrowing costs may be non-constant functions of the amount borrowed.

We begin in the next section by solving the base co-development model numerically. We

develop an algorithm for solving this problem and test its result against those obtained analyt-

ically. Once we verify that the numerical approach works well we can then adopt the method

for other functions that describe the probability of success and the borrowing costs.



Chapter 6

Numerically Solving for Optimal

Co-development Contracts

Development and testing of a numerical algorithm to the co-development model is the primary

novel contribution of this thesis. While chapter 5 contained analytical solutions of the co-

development problem first presented in [35], in this chapter we present a numerical method for

solving the same problem. The numerical method for solving the base co-development model

will allow us to go beyond the base model and solve modified versions of the model for which

analytical results cannot be obtained. We begin with a discussion of the parameters we use for

our numerical examples.

6.1 Setting Parameter Values

For our numerical examples we assume a unit of labour corresponds to an hour of work, with

all work being carried out over the period of a year. We now describe the parameters we use for

our base analysis. We set the unit cost of labour for the agent’s internal workforce, ca, at US$40

per hour which is consistent with the 2012 average hourly wage rates of biological scientists

and biochemists within the pharmaceutical and medicine manufacturing industry [40]. We as-

sume the cost associated with the use of an external workforce is ch = 1.25 × ca. According

to a report by the Biotechnology Industry Organization [36], the average biotech company has

fewer than 50 employees with 71% of them actually having fewer than 25 employees. Based

51
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on this description, we suppose in our numerical example that the agent has an internal work-

force of 25 individuals which can contribute a maximum effort level of fL = 50, 000 units of

labour over a year (40 hours a week over 50 weeks).

For the expected revenues from the test, RT , and the drug sales, RD, we adopted the esti-

mated 2015-2019 annual sales figures of the melanoma drug vemurafenib ($372 million) and

its associated diagnostic test ($10 million) [2]. Developed by Roche, vemurafenib is a targeted

therapy for melanomas containing a particular protein mutation known as V600E BRAF. Upon

noticing the effects the drug had on melanomas containing the mutation, Roche began a co-

development partnership with diagnostics firm Plexxikon. The companion diagnostic to detect

the V600E BRAF mutation was developed and approved in parallel with vemurafenib [9]. In

our work, we make the assumption that the diagnostic test is drug-specific and will only be

approved or cleared simultaneously with the companion drug as is recommended by the FDA

[41]. We suppose that the need for a companion diagnostic is based on phase 2 results of the

clinical trials [14] and the drug is about to enter phase 3, hence to represent uncertainty around

the transition of the diagnostic from initial development to launch we set µ equal to the product

of the average probabilities of a drug entering phase 3 transitioning to launch (0.637) [42] and

the successful development of companion a diagnostic(0.2) [2]. Therefore we set µ = 0.1274.

We will consider different values of k, fL and Ur to create different scenarios.

Table 6.1: A summary of our experimental parameters.

fL = 50, 000 µ = 0.1274 RT = 10M RD = 372M

ca = 40 ch = 1.25 · ca ba = 1.07 bp = 1.05

The approach used to solve the problem numerically is parallel to that used earlier for the

basic two actions, two output model in chapter 3. However, in this case we have three decision

variables for the principal which are ma, mp and r. All numerical calculations are carried out

in C++ with the resulting data plotted using MATLAB. In calculating the optimal contracts

based on the analytical results in Table 5.1, some of the results required use of the Lambert
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W function. We made use of published C++ code available through the Computer Physics

Communications Program Library [39]. We outline the key factors of the numerical approach

in the following section.

6.1.1 The Numerical Approach

As in section 4.1.3 for the basic principal agent model, we rewrite the entire co-development

model (the objective function and constraints) into an equivalent single expression to be opti-

mized. We also need to specify some limited region in which we can search for the optimal

solutions numerically. The reasonable space within which we can search for m∗a, m∗p and the

quantity r × RT is the interval [0, (RT + RD)]. This is equivalent to requiring that the largest

amount of money to be invested be between 0 and the total anticipated revenue RT + RD. This

also implies that the agent’s total wage from the project, (r × RT ) must be between 0 and

RT + RD. These restrictions provide upper bounds on the decision variables and allow use of

certain types of algorithms.

Unlike in the basic model of section 3.1 where all the constraints were inequalities, we note

that in the co-development model, this is not necessarily the case. As we did while deriving

the analytical solutions, we again note that the incentive compatibility constraint in the co-

development problem can be considered as an equality that corresponds to the optimal value of

fa. There are three different scenarios we need to consider. For any given contract, the agent’s

optimal response in terms of fa will satisfy at least one of the following three equalities :

i.) f ∗a = 0 , ii.)
∂E[UA]
∂ fa

= 0 , iii.) f ∗a = fL .

Each of these three equalities can be used in constructing objective functions that we can max-

imize to solve our problem. We have three such functions which we introduce below and refer

to each of them as Yi, for i = 1, 2, 3.

As we did for the basic PA problem in chapter 3, transformation of the original problem

with multiple constraints into an unconstrained problem requires rewriting each of the con-

straints into different but related forms that are then embedded into Yi. Each inequality of the
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form gk(x) ≥ bk is incorporated into Yi as −Λ ·
1

gk(x) − bk
while an inequality of the form

hk(x) ≤ dk is transformed into −Λ ·
1

dk − hk(x)
where Λ is some positive number. Directly

applying these transformation rules would imply that a non-negativity constraint of the form

xi ≥ 0 would be transformed into
1
xi

. We note that in this form, our method will only produce

results for the decision variables that are strictly positive. In order to allow for the decision

variables to take the value 0, we transform the non-negativity constraint xi ≥ 0 into Λ ·
1
exi

.

Equality constraints of the form qk(x) = rk are transformed into −
[rk − qk(x)]2

√
Λ

as suggested in

[34]. With these rules in mind, we describe the three cases of Yi that we will be optimizing.

Case I, f ∗a = 0

When the agent’s optimal action is f ∗a = 0 we recall that this implies a scenario where

1
k

ln
(
kµRT r

ca

)
−

ma + mp

ch
≤ 0.

Taking the equality constraint f ∗a = 0 into account the corresponding objective function

which we seek to optimize is:

Y1 = E[Π] − Λ ·

 1
ma+mp

ch
− 1

k ln
(

kµRT r
ca

)
− Λ ·

(
1

−Ur + E[UA]

)
− Λ ·

(
1

RT + RD − ma
+

1
RT + RD − mp

+
1

RT + RD − rRT
+

1
ema

+
1

emp

)
. (6.1)

Case II, 0 ≤ f ∗a ≤ fL

When the agent’s optimal action is 0 ≤ f ∗a ≤ fL , this implies that the agent’s optimal effort

level coincides with the equality
∂E[UA]
∂ fa

= 0. The resulting objective function we seek to
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optimize in this case is

Y2 = E[Π] − Λ−0.5
(
∂E[UA]
∂ fa

)2

− Λ ·

(
1

−Ur + E[UA]

)
− Λ ·

(
1

RT + RD − ma
+

1
RT + RD − mp

+
1

RT + RD − rRT
+

1
ema

+
1

emp

)
. (6.2)

Case III, f ∗a = fL

When the agent’s optimal response to a proposed contract is fL, then it must be that

1
k

ln
(
kµRT r

ca

)
−

ma + mp

ch
≥ fL.

The function we seek to maximize is therefore represented as

Y3 = E[Π] − Λ ·

 1

−
ma+mp

ch
+ ln

(
kµRT r

ca

)
− Λ ·

(
1

−Ur + E[UA]

)
− Λ ·

(
1

RT + RD − ma
+

1
RT + RD − mp

+
1

RT + RD − rRT
+

1
ema

+
1

emp

)
. (6.3)

Solution Procedure

We now solve our problem using the methods analogous to those used for solving the basic

two-actions, two-output model in section 4.1.3. We note that the above proposed objective

functions (6.1, 6.2, 6.3), can be viewed as implying that the principal is considering three dif-

ferent ‘types’ of effort levels that the agent can implement. The principal then has to find the

optimal values of ma, mp and r that maximizes her profit given the type of effort that the agent

implements.

The proposed objective functions already have the agent’s reservation utility, Ur, embedded

in them. We have included a term in the each of the Yi’s that should ensure that the agent’s
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expected utility is at least his reservation utility. Any of the optimal solutions found from max-

imizing the objective functions above is therefore expected to satisfy the individual rationality

constraint.

Once having determined the optimal contract values for each of the three cases of effort

level, the principal then needs to check which among these three contracts satisfy the incentive

compatibility constraint. To check whether the incentive compatibility constraint is satisfied,

the principal needs to verify that given the contract values ma, mp and r, the agent has no incen-

tive to deviate from the effort level the principal is trying to induce. In other words, the values

of ma, mp and r should be such that the agent can not obtain greater utility from implementing

a different effort level from the one the principal wishes the agent to implement. The contract

the principal chooses to implement will therefore be the one that maximizes her expected profit

among the ones that satisfy the incentive compatibility constraint.

Selecting a contract that satisfies incentive compatibility

Suppose the principal prefers that the agent implement effort level fa = f̃a. If the incentive

compatibility constraint is satisfied, then it means that given the contract values of ma, mp and

r, the agent should not be able to obtain higher expected utility from implementing an effort

level different from f̃a. We check to see whether a given contract satisfies these conditions

using a random process which we outline below. This process is implemented for each of the

three solutions obtained for the cases f ∗a = 0, 0 ≤ f ∗a ≤ fL and f ∗a = fL. Each of these three

solutions consists of the four numerically obtained values of ma, mp, r and f̃a.

Checking for incentive compatibility

1. Calculate, Ũ = E[UA( f̃a)], the agent’s expected utility from implementing f̃a given ma,

mp and r.

2. Randomly select N values of fa from an interval of desired width, W. The interval should

contain f̃a and can, at its widest, be the interval [0, fL]. In our work we use N = 30 and

an interval of width fL/10. In section 6.2.1 we discuss why a much narrower interval

than [0, fL] may be better.
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3. For each of the N random fa values, calculate the corresponding expected utility for the

agent given the values of ma, mp and r.

4. Count the number of times, n, that Ũ + tol is exceeded by the expected utilities obtained

from any of the random fa values.

5. If n exceeds a specific threshold value then conclude that the current solution violates the

incentive compatibility constraint since the agent is able to achieve greater utility from

implementing a different effort level than f̃a. We use n = N/3 in our work.

Summary of Procedure

The first part of the method is to transform the co-development model into three unconstrained

optimization problems each corresponding to the three possible forms of optimal effort: f ∗a = 0,

0 ≤ f ∗a ≤ fL and f ∗a = fL. The transformation involves subtracting a penalty function represent-

ing the constraints from the original objective function. The penalty function is multiplied by

some positive number, Λ, to represent the original constraints. We use a sequence of succes-

sively smaller values of Λ and for each of these values of Λ we perform the following steps:

1. Transform the multiple constraint co-development model into an unconstrained maxi-

mization problem.

2. Identify a region within which all feasible candidate solutions, (ma,mp, r), are contained.

Feasible candidate solutions should satisfy IR and produce a positive profit for the prin-

cipal.

3. Identify a feasible initial trial solution.

4. Determine the direction of steepest ascent from the current trial solution.

5. Move as far as feasible in the direction of steepest ascent (a feasible move is one that

yields a trial solution that satisfies the IR constraint and produces positive profit for the

principal).

6. Once at the next trial solution, return to step 4 and repeat until a desired number of

iterations is reached or until the level of improvement in the objective value is sufficiently

small.
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As Λ → 0, the obtained solutions should converge to some point which we then take as the

optimal solution for the assumed form of f ∗a . Test the three solutions to determine the ones that

satisfy the incentive compatibility constraint. Of these, the optimal contract is selected as the

one that yields the highest expected profit for the principal.

6.2 Numerical Results

Tables 6.2 to 6.8 below contain a sample of the solutions to the co-development problem ob-

tained using our numerical approach. The first row of each table shows the analytical solutions

derived from Table 5.1 for a given set of parameters. The second row, shows the solution

obtained under the assumption that f ∗a = 0, the second row is for 0 ≤ f ∗a ≤ fL and the last

row is for f ∗a = fL. Our base parameters are given in Table 6.1. We change two or three of

these parameters in each experiment in order to see how our numerical method compares to the

analytical solution. Of the three solutions obtained numerically, we then choose the one that

yields the highest expected profit for the principal amongst the ones that satisfy the incentive

compatibility constraint. We indicate the chosen contract with the double asterisk ∗∗.
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6.2.1 Analysis of the numerical results

We observe that in all cases explored so far and particularly those shown in the tables above,

the numerically obtained optimal profits for the principal and the corresponding utility values

for the agent are identical to those obtained analytically. What is interesting to note, however,

is that the two methods regularly produce significantly different optimal values of ma, mp, fa

and r that ultimately yield identical expected payoffs for both the principal and agent.

Do the results make sense?

We can check graphically whether the solutions we obtained are reasonable. In order to make

sense of the graphs, we need to keep in mind that the algorithm we have implemented works

by finding the values of ma, mp and r that maximize the principal’s expected profit when f ∗a is

fixed at 0, at fL and at a point between 0 and fL where
∂E[UA]
∂ fa

= 0. Now the effect of ma, mp

and r is to determine the shape of the function that describes the agent’s expected utility. The

principal’s goal is to offer the agent a contract with the values of ma, mp and r such that the

agent obtains his highest expected utility at the same effort level that the principal would like

to induce. The principal wishes to induce an effort level that maximizes her expected profits.

In order for this contract to be acceptable to the agent, the agent’s expected utility from the

contract should also exceed his reservation utility.

To completely demonstrate the graphical analysis of a solution, we consider here the fourth

of our tabulated examples. This is the case whose results are carried in Table 6.5 on page 60.

Now, for each of the proposed values of ma, mp and r, we plot the agent’s expected utility as a

function of his effort level on the interval [0, fL]. This will give us an indication of how ‘good’

a contract is from the principal’s perspective.

The analytical solution: f ∗a ≈ 29, 413 (ma = 0, mp = 0, r ≈ 5.947)

This corresponds to the optimal solution obtained using the analytical results in Table 5.1 on

page 49. The graphs in Figure 6.1 show the principal’s expected profit and the agent’s expected

utility as functions of fa. What we notice is that while the principal’s profit function is entirely



6.2. Numerical Results 63

increasing with effort, this is not the case with the agent’s utility. The agent’s utility function

is increasing up to a point and decreasing afterward. His expected utility reaches its maximum

at point fa ≈ 29, 413.

It is interesting to note that the agent’s utility in a wide interval about fa = 29, 413 is

virtually flat. In a way, this implies that the agent may be less sensitive to deviating from

fa = 29, 413 since his utility is somewhat constant around this region, fa ∈ [26, 000, 34, 000].

In this sense it becomes clear then that an even better contract from the principal’s perspec-

tive would be one that yields the same expected profit but with a much narrower region within

which the agent can deviate without incurring a significant loss in utility. This is the reason

why in comparing different numerically determined contracts, we settle on picking the one

with the narrowest range of fa within which the agent can deviate. While, this is not really an

issue for the analytical as we can determine the exact optimal fa value, this matters more in the

numerical solutions when all the contract values are approximations.

First numerical solution: f ∗a = 0 (ma ≈ 2, 727, 110, mp ≈ 3, 543, 918, r ≈ 7.318)

We see in Figure 6.2 that our method does find values of ma, mp and r that maximize the agent’s

utility at fa = 0. This contract also guarantees the agent his reservation utility for implementing

the effort level fa = 0. In this case the individual rationality constraint is seen to be binding.

We observe too that for all effort levels near fa = 0, the agent’s expect utility is lower than that

at fa = 0. Hence we can conclude that the incentive compatibility constraint is satisfied. If it

were that none of the other two proposed contracts offered better returns for the principal, then

this would be the optimal contract.

Second numerical solution:0 ≤ f ∗a ≤ fL ( f ∗a ≈ 28, 226, ma ≈ 396, 374, mp ≈ 4,

r ≈ 6.439)

First, we note that the obtained value of mp ≈ 4 in this case is not too different from the an-

alytically obtained value of mp = 0. We recall that ma and mp represent the amounts that are

borrowed to finance external effort at unit cost ch. Now in this case, the parameters we have are

such that ch = 5 · ca = 200. Hence ma = 396, 374 translates to 396, 374/200 ≈ 1982 additional
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units of external effort. The total amount of effort expended in this contract is thus not too

different from the one derived analytically. This solution can therefore be seen to resemble the

one obtained analytically.

In terms of the individual rationality constraint, the agent is guaranteed his reservation util-

ity by accepting this contract. We note however, that unlike the analytical solution, in this case

the agent will obtain more than his reservation utility by implementing f ∗a . f ∗a also maximizes

the agent’s utility hence this solution satisfies the incentive compatibility constraint.

Third numerical solution: f ∗a = fL ( f ∗a = 40, 000, ma ≈ 1, 697, 499, mp ≈ 4, r ≈ 7.4496)

What we note first about this solution is that of the three numerical contracts, this one offers

the principal the highest expected profit. We then only need to check whether this contract

provides the agent with an amount that is at least his reservation utility. This contract seeks

to induce an effort level of fa = fL = 40, 000. We note that for all feasible effort levels that

are upwards of about fa = 12, 500, the agent will indeed obtain an amount that is at least his

reservation utility.

While the principal prefers that the agent implement fa = fL, we see from the graph of his

expected utility that the agent can actually improve his expected utility by implementing an ef-

fort level significantly different from fL. In this case, given ma, mp and r as described above, the

agent’s optimal response is not to work at level fa = fL but instead to implement fa ≈ 23, 000.

This therefore implies that this solution does not satisfy the incentive compatibility constraint.

Picking the best contract

Between the two contracts above that satisfied both the individual rationality and incentive

compatibility constraints, we now pick the one that provides the principal with higher expected

profit. Comparing the expected profit of $33, 911, 762 from inducing f ∗a = 0, versus selecting

f ∗a between 0 and fL with corresponding expected profit of $38, 490, 662, the latter contract is

the optimal one. In this case it results in higher payoffs for both the principal and the agent.
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6.3 Optimal Contracts with ma = 0

In chapter 5, we observed that the optimal contracts presented in Table 5.1 had the property

m∗a × m∗p = 0, with m∗a = 0 in all but one of the cases. In our numerical results, we observe that

while a significant number of solutions had m∗p ≈ 0, this was not the case for m∗a. It is therefore

interesting to investigate the kind of solutions we would obtain numerically with ma fixed at

zero. Fixing the value of ma also effectively reduces the size of the search space. Implementing

the change only requires minimal adjustment to our numerical method. In particular we need

to exclude ma from all calculations of the optimal step size when iterating from one candi-

date solution to the next. Tables 6.9-6.11 contain some results obtained by implementing our

numerical method with ma = 0.
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Figure 6.1: Plots of the agent’s reservation utility, the principal’s expected profit and agent’s

expected utility as functions of agent’s effort, fa, given the values of ma, mp and r obtained

analytically.

Figure 6.2: Plots of the agent’s reservation utility; the principal’s expected profit and agent’s

expected utility as functions of agent’s effort, fa, given the values of ma, mp and r obtained

numerically with fa fixed at 0.
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Figure 6.3: Plots of the agent’s reservation utility; the principal’s expected profit and agent’s

expected utility as functions of agent’s effort, fa, given the values of ma, mp and r obtained

numerically with ∂E[UA]
∂ fa

fixed at 0.

Figure 6.4: Plots of the agent’s reservation utility; the principal’s expected profit and agent’s

expected utility as functions of agent’s effort, fa, given the values of ma, mp and r obtained

numerically with fa fixed at fL.
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Setting ma = 0 significantly increases the proximity of the numerically calculated solutions

to those obtained analytically. In contrast to the initial set of numerical solutions obtained

without fixing ma, when ma is fixed at zero, we note that the numerical solutions are much

more consistent with the exact optimal solutions. This is not just in terms of the expected

payoffs, E[UA] and E[Π], but also in terms of the other decision variables, fa, r and mp.

6.4 Conclusion

In this chapter we were able to develop and test a numerical approach to solving a principal-

agent problem presented in the form of a co-development model. In terms of the expected

payoffs for both principal and agent, when compared to the exact solutions obtained analyt-

ically, we found that our method was able to yield results that were similar to the analytical

ones. However, in most cases the numerically obtained values of ma, mp and r are found to be

significantly different from the analytical values. The corresponding optimal response for the

agent, fa, is thus usually significantly different from the analytical value.

Our observations indicate that near optimality, the co-development model is not very sen-

sitive to the values ma, mp and r. This suggests that in order to obtain the same objective

(expected net profit), the pharmaceutical company may have considerable leeway in how it

structures the contract it offers the biotech firm. For example, considering the results in Table

6.6, we see that using the optimal contracts determined both numerically and analytically, the

drug manufacturer and the biotech firm stand to get expected returns of $41 million and $4.75

million respectively. In both cases, we see that the biotech firm is expected to expend no effort

(beyond the intellectual property it brings) and it is preferable for all work to be done by an

external workforce. However, the solutions differ in that the numerically determined contract

requires that all funding for the project be sourced by the agent while the analytically deter-

mined contract requires that the principal source the funds instead.

However, we highlight that while the principal’s expected profit is not very sensitive to the

values of ma, mp and r, satisfying the incentive compatibility (IC) constraint becomes the key
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factor that determines the eventual values of the contract decision variables. Results in the last

two rows of Table 6.4 are a good example of how sensitive the IC constraint can be to the

decision variables. The last two candidate solutions contained in the table are not too far apart

in terms of m∗a, m∗p and r∗. The resulting expected payoffs for the principal are also identical

with one yielding E[Π] = 22, 468, 915 and the other yielding E[Π] = 22, 593, 013. However,

we see that only the first of the two contracts satisfies the incentive compatibility constraint.

The other contract therefore fails to satisfy all model constraints even though the values of ma,

mp and r are quite similar to those of a contract that satisfies all required constraints.

Based on the performance of our numerical approach for the base co-development model,

we know that we now have a viable method for solving more complicated models. For those

models, we can then rely on our numerical approach to derive optimal contracts. We consider

in the next chapter, a co-development model where the borrowing cost for the agent is variable

in the amount borrowed. We then look at how we could solve the co-development model when

other functions are used to describe the probability of success.



Chapter 7

Co-development Model Extensions

7.1 Extensions to the base model : The agent’s borrowing

cost, ba, considered as a function of the amount borrowed,

ma

Propositions 1 to 4 in chapter 5 represent solutions obtained by and under the assumptions spec-

ified for the base model proposed by the authors of [35]. We now present an extension to the

work done by the authors of [35] by investigating the optimal solutions to the co-development

problem under an additional set of conditions that enhance the model’s approximation to actual

practice. Our ability to extend beyond the base co-development model and derive solutions for

the modified problem is the primary highlight of this thesis. Specifically, we adjust assump-

tions about the nature of the borrowing cost, ba. We now assume that the agent’s borrowing

cost is not constant but rather a variable linear function of the amount borrowed by the agent.

This variability in the cost of borrowing may be reflective of associated costs like adminis-

tration fees and one time up-front fees. An example of such a borrowing facility for smaller

enterprises is the Canada Small Business Financing (CSBF) Loan [37].

We consider a function of the form ba(ma) = b0 + γma, where b0 ≥ 1 and γ > 0 is some

constant. We assume that ma is non-negative and in general b′a(ma) cannot be negative (i.e. the

cost of borrowing is not expected to decline as the amount borrowed is increased). We con-

71
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sider first the case where ba(0) ≥ bp. This is a reasonable assumption since from the lender’s

perspective lending to the small biotech firm would likely be deemed riskier than lending to the

larger pharmaceutical company. With ba(ma) ≥ bp, obtaining some analytical results for some

of the models we previously solved is straightforward. Specifically, we are still able to solve

models A and C which we used previously to determine the upper bound and lower bound of

Ur respectively. Once we relax the requirement that ba(ma) be constant or ba(ma) ≥ bp and

replace that requirement with a less restrictive ba(ma) = b0 + γma where b0 ≥ 1 and not nec-

essarily greater than bp, then we have to rely on numerically solving the problem. Solving the

full co-development problem will also require the numerical approach. We highlight that while

not too likely, the case with b0 ≤ bp reflects a scenario where the biotech firm is actually able

to secure funding at a lower rate than the pharmaceutical firm. This could perhaps be through

a government provided facility for small businesses such as the US SBA loans [38].

In the two sections that follow, we examine analytical approaches to models A and C given

the variable borrowing costs. We then transition to solving the full co-development problem

numerically under variable borrowing functions and different functions to describe the proba-

bility of success.

7.1.1 Revised Model C

By obtaining the optimal solution to model C earlier, we were able to establish an upper bound

on Ur. We now investigate the implications of a variable borrowing cost on the optimal solu-

tion to model C. We refer to the model with this modified assumption as model Č.

When we consider the derivatives for model Č with respect to fa , ma , mp respectively

we note that the only difference between the derivatives of model C and of model Č is with

differentiation with respect to ma. In this case we have :

∂E[Π]
∂ma

=
kµ
ch

(RT + RD)e−k
(

fa+
ma+mp

ch

)
− ba(ma) − mab′a(ma) (7.1)

where b′a(ma) is the derivative of ba with respect to ma.

The optimal value of ma in Proposition 1 was determined on the basis that
∂E[Π]
∂ma

≤
∂E[Π]
∂mp

.
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Since we assume that b′a(ma) ≥ 0, we therefore observe in model Č that same relationship

between the derivative with respect to ma and the derivative with respect to mp. The optimal

value of ma in model Č is therefore identical to that in model C. Hence the overall optimal

solution of model Č is the same as that of model C, (i.e. mČ
a = 0). This implies that the upper

bound for the agent’s reservation utility is independent of whether or not the agent’s borrowing

costs are fixed or variable.

7.1.2 Revised Model A

We used model A to determine the lowest rational value of the agent’s reservation utility in the

co-development project. In this case, we are reconsidering model A where ma is dependent on

ba. We refer to this model as model Ǎ. In deriving the optimal solution for model Ǎ, we adopt

the same approach used for solving model A, however we note the difference in the derivative

with respect to ma. In this case

∂E[Π]
∂ma

=
kµRT

ch
e−k( fa+

ma
ch

)
− ba(ma) − mab′a(ma). (7.2)

To investigate the optimal values of ma under the three different cases where the optimal fa

values are fa = 0, 0 < fa < fL and fa = fL.

f Ǎ
a = 0

f Ǎ
a = 0 is only optimal if

∂E[Π]
∂ fa

≤ 0. By the same arguments given in the proof of Proposition

2, we know that
∂E[Π]
∂ma

<
∂E[Π]
∂ fa

= 0. Hence it must be that the optimal value of ma is at 0.

Therefore, when f Ǎ
a = 0 ; mǍ

a = 0.

0 < f Ǎ
a < fL

If the optimal effort level, f Ǎ
a , for the agent is between 0 and the upper limit fL, then it must

be that
∂E[Π]
∂ fa

∣∣∣∣∣
fa= f Ǎ

a

= 0. Solving
∂E[Π]
∂ fa

= 0 for fa, we obtain f Ǎ
a =

1
k

ln
(
kµRT

ca

)
. Now,

∂E[Π]
∂ fa

= 0 again implies that
∂E[Π]
∂ma

< 0, hence the optimal value of ma must be mǍ
a = 0.

Therefore, when f Ǎ
a =

1
k

ln
(
kµRT

ca

)
; mǍ

a = 0.
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f Ǎ
a = fL

f Ǎ
a = fL implies that

∂E[Π]
∂ fa

∣∣∣∣∣
fa= f Ǎ

a

≥ 0. This implies that for a corresponding optimal value of

ma, we can consider the value of ma such that
∂E[Π]
∂ma

= 0. We can therefore determine the

optimal ma by solving :

∂E[Π]
∂ma

=
kµRT

ch
e−k

(
fa+

ma
ch

)
− ba(ma) − ma · b′a(ma) = 0 (7.3)

⇒ ma =
1

b′a(ma)

(
kµRT

ch
e−k

(
fL+

ma
ch

)
− ba(ma)

)
. (7.4)

We can solve (7.3) for the optimal ma using a simple iterative approach such as the bisection

method where we seek a root that lies within the interval [0,mL], where mL is an upper bound

on the value of ma. We make use of some properties of ba(ma) to determine mL.

Since ba(ma) ≥ 1 and b′a(ma) > 0, then (7.4) implies that if ma ≥ 0 then it must be that

kµRT

ch
e−k

(
fL+

ma
ch

)
− ba(ma) ≥ 0 (7.5)

⇒
kµRT

ch
e−k

(
fL+

ma
ch

)
≥ 1 (7.6)

⇒ ma ≤ ch

[
1
k

ln
(
kµRT

ch

)
− fL

]
= mL. (7.7)

We therefore consider (7.7) as a suitable value of mL, an upper bound of the optimal ma.

A closed form solution for optimal ma in model Ǎ, when fa = fL

We observe that if we assume that the function ba(ma) is linear in ma we are able to deduce a

closed form solution to the problem of determining the optimal amount to borrow. This closed

form solution makes use of the Lambert W function. Since ba(ma) = bp + γma and bp = ba(0),
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(7.3) can be written as

kµRT

ch
e−k fae−

k
ch

ma − bp − 2γma = 0

now let H =
kµRT

ch
e−k fL (7.8)

⇒ He−
k

ch
ma − bp − 2γma = 0

H = (2γma + bp)e
k

ch
ma

Hk
2γch

e
bpk
2γch =

(
k
ch

ma +
bpk
2γch

)
e
(

k
ch

ma+
bpk
2γch

)

⇒ ma =
ch

k

[
W

(
kH

2γch
e
(

bpk
2γch

))
−

bpk
2γch

]
(7.9)

where W(·) represents the Lambert W function.

This therefore implies that the optimal solution to model Ǎ is

f Ǎ
a = min

{
max

{
0,

1
k

ln
(
kµRT

ca

)}
, fL

}
(7.10)

mǍ
a = max

{
0,

ch

k

[
W

(
kH

2γch
e
(

bpk
2γch

))
−

bpk
2γch

]}
(7.11)

with H as described in 7.8.

The agent’s minimal reservation utility should therefore be :

Umin = µ

1 − e
−k

 f Ǎ
a +

mǍ
p

ch

 RT − ca f Ǎ
a − bamǍ

a . (7.12)

7.2 Solutions for contracts where borrowing costs are not

fixed

In the previous chapter, we assumed that the agent faced a constant borrowing cost. Analyti-

cal and numerical results for seven different parameter sets were provided in tables 6.2 to 6.8.

For these same parameters, we now determine the optimal contracts under the assumption that

ba = b0 + γma. As we indicated earlier, if the agent’s lowest possible borrowing cost is greater

than the principal’s borrowing costs, that is b0 > bp, then we generally do not expect our ana-

lytical results to change. However, if we allow b0 to sometimes be lower than bp then some of
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the rules by which we derived our optimal contracts to the co-development problem no longer

hold and we have to switch to numerical computations.

Implementing this change will only require the slight adjustment of substituting ba with

b0 + γma in the code we used in the previous chapter. It will be of interest to see how sensitive

the expected returns are to the assumed structure of the borrowing costs. We also noted in

earlier results that in most cases, the optimal contracts resulted in the agent getting expected

utility that was very close to his reservation utility. We will also check how far from the agent’s

reservation utility the agent earns in this case.

We present in the following tables results for a sample of cases where the agent’s borrowing

costs are variable. The first row of each table shows the solution to each problem as previously

obtained with a fixed ba. The rest of the rows contain results for variable cost functions.

Table 7.1: Variable ba: fL = 5250; Ur = 23, 250, 000; bp = 1.05

ba(ma) f ∗a m∗a m∗p r∗ E[UA] E[Π]

ba = 1.07 5250 1,568,544 184,668 20.09 23,250,007 22,470,761

ba = 1.01+10−7×

ma

5250 246,092 1,456,295 18.99 23,250,004 22,466,866

ba = 1.01 + 3 ×

10−7 × ma

0 563,427 1,676,478 18.99 23,250,015 22,440,521

ba = 1.03+10−6×

ma

0 321,688 1,768,087 18.88 23,250,011 22,380,611

ba = bp + 10−7 ×

ma

5250 238,092 1,465,142 18.99 23,250,005 22,458,140
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Table 7.2: Variable ba: fL = 40, 000; Ur = 1, 750, 000; ch = 200; bp = 1.05

ba(ma) f ∗a m∗a m∗p r∗ E[UA] E[Π]

ba = 1.07 20,340 463,108 4 3.026 2,145,513 40,161,952

ba = 1.01+10−7×

ma

19,675 1,130,334 4 3.952 2,578,596 40,165,512

ba = 1.01 + 3 ×

10−7 × ma

18,301 1,236,149 5 3.632 1,787,903 40,232,606

ba = 1.03+10−6×

ma

22,529 105,587 5 3.149 2,591,395 40,202,768

ba = bp + 10−7 ×

ma

22,267 58,486 4 2.997 2,465,412 40,150,078

Table 7.3: Variable ba: fL = 40, 000; Ur = 6, 000, 000; ch = 200; bp = 1.05

ba(ma) f ∗a m∗a m∗p r∗ E[UA] E[Π]

ba = 1.07 28,226 396,374 4 6.439 6,249,854 38,490,662

ba = 1.01+10−7×

ma

29,801 109 80 6.183 6,284,389 38,718,700

ba = 1.01 + 3 ×

10−7 × ma

29,946 264,400 4 7.159 7,234,668 37,811,880

ba = 1.03+10−6×

ma

29,455 935 4 5.975 6,032,598 38,897,576

ba = bp + 10−7 ×

ma

27,485 536,735 4 6.414 6,079,378 38,513,259

What is most apparent from these experiments is that the principal’s expected profits are

not very sensitive to the agent’s borrowing cost even when the agent’s borrowing cost is al-

lowed to take values lower than the principal’s. What is interesting is that in maintaining the

levels of expected returns for the principal and agent, the optimal values of mp and r also stay
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relatively unchanged. In nearly all instances, we observe that changing ba only seems to affect

the eventual values of fa and ma with the optimal fa increasing as the optimal ma decreases and

vice-versa.

These observations lead to a significant insight into the co-development problem. The

results suggest that the pharmaceutical company may not have to concern itself much with the

biotech firm’s associated borrowing costs. If borrowing costs are too high, the project will

rely more on the biotech firm’s internal workforce and less on an external workforce. This is

because of the inverse relationship between the amount of internal labour effort, fa, and the

amount of external labour effort at cost ma. As borrowing costs increase, it becomes more

costly to obtain a required amount of total effort through external labour at cost ma than to

obtain the required effort using the internal workforce at cost ca × fa. We notice then that the

agent’s borrowing costs only push ma and fa in opposite directions in a manner that preserves

the principal’s expected profits. The principal therefore is largely unaffected by the agent’s

borrowing costs.

7.3 Numerical Results for different functions describing prob-

ability of success

In the original co-development model, we represented the probability of success with the ex-

pression p( fa,ma,mp) = 1−e−k( fa+(ma+mp)/ch). The key properties of this function that we require

of any function that we could use to describe this probability are that p( fa,ma,mp) is increasing

in its arguments but with dimishing marginal returns. Once we deviate from the original form

of p( fa,ma,mp), we may have to rely on numerical computations. We cannot directly apply

the same code we used in past cases and have to make some significant changes. Previously

we had three different objective functions based on the optimal value of fa as a function of ma,

mp and r. We were able to do this because we had a conveniently chosen p( fa,ma,mp) which

permitted us to easily deduce the structure of the agent’s optimal responses.
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We introduce a change in our numerical approach which will allow us to obtain solutions

to the co-development problem without explicitly solving for the optimal effort level from
∂E[UA]
∂ fa

= 0. In transforming the original co-development problem into an unconstrained

problem, instead of using a transformation of
∂E[UA]
∂ fa

= 0 or an expression for fa derived

from solving
∂E[UA]
∂ fa

= 0, we substitute either of the two with the forward finite difference,

p( fa + ∆,ma,mp) − p( fa,ma,mp)
∆

at fa where ∆ << 1.

We carry out a gradient search procedure from a randomly generated point, ( fa,ma,mp, r),

which satisfies the individual rationality constraint and produces a non-negative expected profit

for the principal. As was the case in the previous chapter, we begin and carry out the search

for optimal ma, mp and r × RT in the interval [0, (RT + RD)]. All trial values of fa are confined

within the interval [0, fL]. For every initial trial solution, if the final point ( fa,ma,mp, r) that

is obtained yields a higher expected net profit than the current ‘best’ solution, it is tested for

incentive compatibility. If it passes both these tests, then it becomes the current best solution.

While the original form of p( fa,ma,mp) was strictly convex, we now solve the co-development

model using other functions that are not necessarily convex. Figure 7.3 shows the general

shapes of the functions we use to describe the probability of success. We present some of the

results obtained using the different functions in tables 7.3-7.7.
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Figure 7.1: The general shapes of the different functions describing probability of success.
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The functions describing the probability of success appear to have the most impact on the

optimal ‘total amount of effort’,
(

fa +
ma + mp

ch

)
, which we present as Total Effort in tables 7.3-

7.7. If we consider the results in table 7.3 as an example, we observe that the values of E[Π]

remain largely unaffected as we change the form of p( fa,ma,mp). However, the total effort re-

quired to maintain the payoff levels changes drastically as p( fa,ma,mp) is varied. Compared to

the principal’s expected profit, the agent’s expected utility is significantly more sensitive to the

the changes in p( fa,ma,mp). We observe that there are cases where the agent’s expected payoff

nearly doubles while the principal’s payoff changes by a far smaller margin as p( fa,ma,mp) is

changed.

However, since we note that p( fa,ma,mp) has the potential to significantly affect the ex-

pected profits for the principal, it implies that the principal may need to exercise due diligence

in understanding how to model the translation of the agent’s effort into results. Perhaps before

finding the optimal structure, determining p( fa,ma,mp) may be the most important aspect of

principal’s problem; more than the determination of the agent’s utility function, µ or the projec-

tions for RT and RD. Since the function p( fa,ma,mp) translates the biotech firm’s intellectual

property and expertise into the final project outcome, the pharmaceutical firm therefore has to

put considerable effort or resources to gain some understanding of the biotech firm’s knowl-

edge in order to better formulate p( fa,ma,mp).

7.4 Conclusion

In this chapter we carried out two different sets of experiments. We began by modifying our

solution concept so as to investigate the consequences of the agent having variable borrowing

cost. We found that having borrowing cost that was variable had little impact on the overall

expected payoffs for both the principal and agent. The key implications of these findings are

that in designing a contract to offer the diagnostics firm, the pharmaceutical company may not

have to direct much focus on the diagnostic firm’s associated borrowing costs.
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In the second set of experiments, we reconsidered the co-development problem with dif-

ferent functions describing the probability of success, p( fa,ma,mp). Changing the functional

form of p( fa,ma,mp) had most apparent impact on total effort input as described by the quan-

tity
(

fa +
ma + mp

ch

)
. We noted that while the optimal amount of total effort changed drastically

in response to a changing p( fa,ma,mp), it was possible for the expected returns for the prin-

cipal and agent to stay relatively unchanged. Overall, we determined that the formulation

of p( fa,ma,mp) would likely have a significant impact on the pharmaceutical firm’s expected

profits hence there was need to be as accurate as possible in modeling the translation of effort

into success.



Chapter 8

Conclusion

8.1 Discussion

The principal-agent problem is a framework commonly used to model contractual arrange-

ments between an employer and employee. In this thesis we adopted the framework to model

a companion diagnostic co-development project between a larger pharmaceutical firm as the

principal and a smaller biotech company as the agent. The pharmaceutical firm sought to de-

sign a profit maximizing contract that would be acceptable to the biotech firm and also induce

the biotech firm to work in a manner that maximized the pharmaceutical firm’s expected profits.

For the base co-development model, we were able to produce a set of results contained in

Table 5.1 of which one represented the optimal contract if it existed for the given set of pa-

rameters. Since we were able to deduce exact analytical results, we therefore had a benchmark

that we could use for assessing the performance of any numerical algorithms we developed.

With this in mind, we then presented a numerical approach that could be used for solving the

base co-development model. Presentation and testing of the numerical method for solving the

co-development problem and its extensions in chapters 6 and 7 respectively is the primary

highlight of this thesis. This same numerical approach can then be used as a basis for solving

other forms of principal-agent problems with moral hazard.

We observed that in terms of expected returns for both principal and agent, the numerical
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method produced results that were consistent with those obtained analytically. What was inter-

esting to note was that these expected payoffs would mostly be achieved at different effort and

investment levels from those obtained analytically. The analytical approach mostly produced

contracts that required that the companion diagnostics firm do as much as possible first before

any extra investment was sourced for any additional workforce. The additional funding almost

always had to be accessed by the pharmaceutical firm. In contrast to this, the numerically ob-

tained contracts typically required a mix of the biotech company’s own effort and investment

amounts provided mostly by the biotech firm. The additional investments were required even

while the biotech firm was not utilizing the full capabilities of its internal workforce.

We further adjusted our numerical method so that we could have more leeway in how we

modeled the borrowing costs and probability of success. We found that changing the functions

that describe the biotech firm’s borrowing costs had limited impact on the expected payoffs of

both the biotech and pharmaceutical firms. On the other hand, changing the function repre-

senting the probability of success had significant impact on the payoffs. To a greater extent the

pharmaceutical firm had the more sensitive expected payoff of the two.

8.1.1 Future Work

We have been able to develop a numerical approach for solving two instances of the principal-

agent problem - a basic two actions, two output problem and our co-development model.

For future work it will be interesting to see how well this method performs for more gen-

eral principal-agent problems especially those where the contracting parties are not assumed to

be risk neutral. In our co-development model, we implicitly assumed the companion diagnostic

test had perfect sensitivity and specificity and hence no chance of false positives and false neg-

atives. It would be interesting to incorporate test performance into the co-development model

to improve the model’s approximation to actual practice.
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Table A.1: Definitions of Variables and Symbols

Symbol Description Additional Notes

a agent’s action an element of some non-empty set A containing

all possible agent actions

x observed output a random variable, dependent on agent’s ac-

tions/effort

w(x) agent’s wage a function of observed output, x

p(x|a) density function of output given takes ac-

tion a

nondecreasing in a

P(x|a) distribution function of output

Up(·) principal’s utility function increasing in principal’s payoff

UA(·) agent’s utility function increasing in agent’s payoff

Ur agent’s reservation utility Ur ≥ 0

πh high output πl < πh

πl low output πl < πh

ph probability of high output given high ef-

fort

pl < ph

pl probability of high output given low effort pl < ph

wh agent’s wage given high output wh ≥ Ur

wl agent’s wage given low output wl ≥ Ur

Ch cost of implementing high effort for agent Ch > Cl

Cl cost of implementing low effort for agent Ch > Cl

ω ω = (Ch −Cl)/(ph − pl)

Π Principal’s net profit from co-

development

RD revenue from sale of companion drug

RT revenue from sale of companion diagnos-

tic test
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Table A.1 continued. Definitions of Variables and Symbols

Symbol Description Additional Notes

r agent’s share of revenue from diagnostic

test

r ≥ 0

fa agent’s effort level 0 < fa < fL

fL maximum effort level the agent can ex-

pend

fL > 0

ca cost of using agent’s internal workforce

per unit of effort

ca < ch

ch cost of hiring additional labour per unit of

effort

ca < ch

mp amount borrowed by principal to use for

external workforce

mp ≥ 0

ma amount borrowed by agent to use for ex-

ternal workforce

ma ≥ 0

bp cost of borrowing amount mp for the prin-

cipal

bp ≥ 1

ba cost of borrowing amount ma for the agent ba ≥ bp

k constant for translating effort into proba-

bility of success

k > 0

θ Bernoulli random variable to represent

the random state of nature

E[θ] = µ

µ the probability of success for the

Bernoulli random variable θ



Appendix B

Proof of Proposition 1

We obtain the partial derivatives of E[Π] with respect to fa, ma and mp:

∂E[Π]
∂ fa

= kµ(RT + RD)e−k( fa+
ma+mp

ch
)
− ca (B.1)

∂E[Π]
∂ma

=
kµ
ch

(RT + RD)e−k( fa+
ma+mp

ch
)
− ba (B.2)

∂E[Π]
∂mp

=
kµ
ch

(RT + RD)e−k( fa+
ma+mp

ch
)
− bp (B.3)

We note that for positive values of the parameters k, ch, µ,RT and RD, the second derivatives are

less than or equal to zero ( i.e.
∂2E[Π]
∂ fa

2 ≤ 0 and
∂2E[Π]
∂ma

2 =
∂2E[Π]
∂mp

2 ≤ 0. This implies that each

of the partial derivatives above, (B.1, B.2, B.3), are strictly decreasing for positive parameter

values.

Determining mC
a

Since ba ≥ bp, we know from (B.2) and (B.3) that
∂E[Π]
∂ma

≤
∂E[Π]
∂mp

. Therefore at any point it

is always more preferable to obtain an additional unit of mp than of ma which implies mC
a = 0.

It is preferable to fund any level of production at cost bp than at ba. There is no upper bound on

both ma and mp, hence in the coordinated problem, any required amount of funding is obtained

at lower cost bp, which means mC
a = 0.

Determining f C
a and mC

p
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We note that for fa there are three critical points to consider:

a) fa = 0 (Lower limit of fa)

b) 0 < fa < fL where ∂E[Π]
∂ fa
| fa= f b

A
= 0 (Stationary point of E[Π])

c) fa = fL (Upper limit of fa)

We evaluate the optimal values of mp based on the optimal effort levels for the coordinated

problem, f C
a .

Case 1 : f C
a = 0

Since
∂2E[Π]
∂ f 2

a
≤ 0, fa = 0 is optimal only if

∂E[Π]
∂ fa

| fa=0 ≤ 0. Now, from (B.3), we have :

ch
∂E[Π]
∂mp

= kµ(RT + RD)e−k( fa+
ma+mp

ch
)
− bpch (B.4)

Since ch > ca and bp ≥ 1, we have bpch ≥ ch > ca, which implies that ch
∂E[Π]
∂mp

<
∂E[Π]
∂ fa

.

Therefore
∂E[Π]
∂ fa

≤ 0 implies
∂E[Π]
∂mp

< 0. Since mp ≥ 0 (non-negative), when f C
a = 0, we

have
∂E[Π]
∂mp

< 0 which means the optimal value of mp has to be mC
p = 0. Therefore when

f C
a = 0; mC

a = 0 and mC
p = 0. In this case the resulting expected profit is E[Π] = 0.

Case 2 : 0 < f C
a < fL

If the optimal value f C
a is strictly between 0 and fL, then it must be that

∂E[Π]
∂ fa

∣∣∣∣∣
fa= f C

a

= 0 .

Solving for fa we obtain

f C
a =

1
k

ln
(
kµ(RT + RD)

ca

)

where ln
(
kµ(RT + RD)

ca

)
< k fL by definition of the case. We determined in case 1 above that

∂E[Π]
∂mp

<
∂E[Π]
∂ fa

hence
∂E[Π]
∂ fa

= 0 implies
∂E[Π]
∂mp

< 0. This implies again that the optimal

value of mp cannot be larger than zero hence mC
p = 0. Therefore when f C

a =
1
k

ln
(
kµ(RT + RD)

ca

)
; mC

a =
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0, mC
p = 0. The corresponding optimal profit is

E[Π] = µ(RT + RD) −
ca

k
−

ca

k
ln

(
kµ(RT + RD)

ca

)

Case 3 : f C
a = fL

If the optimal value of fa is such that f C
a , 0 and f C

a ,
1
k

ln
(
kµ(RT + RD)

ca

)
, then it must

be that
∂E[Π]
∂ fa

∣∣∣∣∣
fa= f C

a

> 0. This also means
∂E[Π]
∂mp

= 0 cannot be ruled out. In this case,

since we only have a non-negativity constraint for mp, the optimal value of mC
p occurs when

∂E[Π]
∂mp

= 0. Solving for mp we obtain mC
p = ch

(
1
k

ln
(
kµ(RT + RD)

bpch

)
− fL

)
. Therefore when

f C
a = fL; mC

a = 0, mC
p = ch

(
1
k

ln
(
kµ(RT + RD)

bpch

)
− fL

)
. �

In this case, expected profit

E[Π] = µ(RT + RD) −
bpch

k
− ca fL − bpch

(
1
k

ln
(
kµ(RT + RD)

bpch

)
− fL

)
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Proof of Proposition 2

To derive the solution for model A, we begin by obtaining the partial derivatives :

∂E[Π]
∂ fa

= kµRT e−k
(

fa+
ma
ch

)
− ca (C.1)

∂E[Π]
∂ma

=
kµRT

ch
e−k

(
fa+

ma
ch

)
− ba (C.2)

Determining f A
a and mA

a

We consider again the three critical points of E[Π] which are fa = 0, 0 < fa < fL and fa = fL.

Case 1 : f A
a = 0

For a maximization problem with non-negativity constraints, fa = 0 is only optimal if
∂E[Π]
∂ fa

≤ 0. As in the proof of Proposition 1, we have ch
∂E[Π]
∂ma

<
∂E[Π]
∂ fa

, hence
∂E[Π]
∂ma

< 0.

Since ma is non-negative, the fact that
∂E[Π]
∂ma

< 0 implies the optimal value of ma occurs at 0.

Therefore when f A
a = 0; mA

a = 0.

Case 2 : 0 < f A
a < fL
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An optimal value satisfying 0 < f C
a < fL must occur when

∂E[Π]
∂ fa

∣∣∣∣∣
fa= f A

a

= 0. Solving for

fa, we obtain fa =
1
k

ln
(
kµRT

ca

)
.
∂E[Π]
∂ fa

= 0 implies that
∂E[Π]
∂ma

< 0. The optimal value of ma

must therefore be mA
a = 0. Therefore when f A

a =
1
k

ln
(
kµRT

ca

)
; mA

a = 0.

Case 3 : f A
a = fL

f A
a = fL must imply that

∂E[Π]
∂ fa

∣∣∣∣∣
fa= f A

a

> 0. Since ma has no upper limit, it must be that the

optimal value of ma occurs at
∂E[Π]
∂ma

= 0. Solving for ma, we obtain mA
a = ch

(
1
k

ln
(
kµRT

bach

)
− fL

)
�
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Proof of Proposition 4

In the second best solution, the agent and the principal’s actions are not coordinated. Therefore

the agent considers optimality from the perspective of his utility function while the principal

considers optimality from the perspective of her expected profit. As previously described, the

solutions will be derived by cases based on the agent’s optimal effort level, f ∗a . The agent

chooses his optimal effort level in response to the values of ma, mp and r, proposed by the prin-

cipal in the co-development contract. Each of the proposed values of ma, mp and r can either be

equal to zero or greater than zero. Each solution should satisfy the incentive compatibility con-

straint. While every solution will satisfy the individual rationality constraint, at optimality the

constraint can be either binding or not. We will investigate the structure of each of the possible

optimal contracts and the required conditions necessary for a solution to be optimal. We begin

our investigation of the optimal solutions by looking first at the agent’s royalty percentage, r.

We note that since the agent’s expected utility is

E[UA] = µ
(
1 − e−k( fa+

ma+mp
ch

)
)

rRT − ca fa − bama, (D.1)

and all other variables and parameters are non-negative, then the agent can only have a non-

negative expected utility for r = 0 when both fa and ma are zero, otherwise if either ma > 0 or

fa > 0, then he can only have a non-negative expected utility when r > 0.

If a contract is optimal and the individual rationality constraint (participation constraint) is
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binding, then at optimality the agent’s expected utility, E[UA] will be equal to his reservation

utility, Ur. Therefore in this case we can rearrange the individual rationality constraint to obtain

r:

Ur = µ

(
1 − e−k( f ∗a +

m∗a+m∗p
ch

)
)

r∗RT − ca f ∗a − bam∗a

⇒ r∗ =
Ur + ca f ∗a + bam∗a

µ

(
1 − e−k

(
f ∗a +

m∗a+m∗p
ch

))
RT

(D.2)

Determining the optimal values of ma, mp, r and fa

We begin by obtaining the derivative of E[UA] with respect to the agent’s effort level, and the

derivatives of E[Π] with respect to ma and mp.

∂E[UA]
∂ fa

= kµRT re−k( fa+
ma+mp

ch
)
− ca (D.3)

In the cases where the individual rationality constraint is binding, r is as described by (D.2),

hence we can substitute r in (D.1) to obtain:

∂E[UA]
∂ fa

= kµ


Ur + ca fa + bama

µ

(
1 − e−k

(
fa+

ma+mp
ch

))
RT

 RT e−k( fa+
ma+mp

ch
)
− ca (D.4)

∂E[Π]
∂ma

=
kµ
ch

(RT + RD)e−k( fa+
ma+mp

ch
)
− ba (D.5)

∂E[Π]
∂mp

=
kµ
ch

(RT + RD)e−k( fa+
ma+mp

ch
)
− bp (D.6)

Case 1a : f ∗a = 0, m∗a = 0, m∗p = 0, r∗ ≥ 0

Since ba ≥ bp ≥ 1 and ch > 0, then from the perspective of the principal we know
∂E[Π]
∂ma

≤

∂E[Π]
∂mp

hence we only need to have
∂E[Π]
∂mp

≤ 0 as a condition for ma = mp = 0 to be optimal.
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When f ∗a = m∗a = m∗p = r∗ = 0 we have:

∂E[Π]
∂mp

=
kµ
ch

(RT + RD)e−k( f ∗a +
m∗a+m∗p

ch
)
− bp ≤ 0

⇒
kµ
ch

(RT + RD) − bp ≤ 0

kµ(RT + RD)
bpch

≤ 1 (D.7)

Now when f ∗a = m∗a = m∗p = 0 the corresponding expected profit, assuming the agent’s

reservation utility is not violated, is E[Π] = −Ur. Therefore the only way the principal can

obtain a non-negative expected profit is if the agent’s reservation utility, Ur, is equal to zero

which would imply that E[Π] = 0. As explained in the previous subsection, when fa = ma =

mp = 0, the corresponding value of r can only be r = 0.

Case 1b : f ∗a = 0, m∗a = 0, m∗p > 0

Suppose the principal proposes a contract with ma = 0 and mp and r greater than zero. If we

assume that the individual rationality constraint is not binding, then the principal’s expected

profit is described by

E[Π] = µ(1 − e−k
mp
ch )(RT − rRT + RD) − bpmp (D.8)

⇒
∂E[Π]
∂r

= µRT e−k
mp
ch (D.9)

From (D.9), the principal can not infer an optimal value of r, hence no contract with an optimal

r with respect to E[Π] can be set when individual rationality constraint is not binding, therefore

an appropriate value of r can be determined by using the individual rationality constraint as an

equality.

We consider a scenario where the individual rationality is binding. If the agent sets his effort

level at fa = 0 then satisfying the incentive compatibility constraint implies that the agent’s

optimal expected utility coincides with fa = 0. This can only be the case if
∂E[UA]
∂ fa

≤ 0

and
∂2E[UA]
∂ f 2

a
≤ 0 where

∂E[UA]
∂ fa

is given by (D.3). Since kµRT r ≥ 0, then for any non-

negative values of fa, ma and mp,
∂2E[UA]
∂ f 2

a
≤ 0. Now, since fa = ma = 0 and using the (D.4),
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∂E[UA]
∂ fa

≤ 0 implies that

kUr

ca
+ 1 ≤

kµ(RT + RD)
bpch

(D.10)

which we consider as a required condition for an optimal solution that has f ∗a = 0 when m∗a = 0,

m∗p > 0

There is no upper bound for the possible values of mp and thus the optimal value of mp

occurs when
∂E[Π]
∂mp

= 0. If f ∗a = 0 and m∗a = 0 then from (D.6), we can obtain m∗p when :

∂E[Π]
∂mp

= 0

⇒ m∗p =
ch

k
ln

(
kµ(RT + RD)

bpch

)
(D.11)

A required condition for m∗p > 0 is therefore that
kµ(RT + RD)

bpch
> 1.

Since m∗p =
ch

k
ln

(
kµ(RT + RD)

bach

)
and f ∗a = m∗a = 0, from (D.2) we obtain the optimal value

of r as

r∗ =
Ur(

1 − bpch

kµ(RT +RD)

)
µRT

(D.12)

Case 2a : 0 < f ∗a < fL, m∗a = 0, m∗p = 0

Suppose the principal proposes a contract with ma = mp = 0 and the individual rationality

constraint is satisfied but not necessarily binding. If the agent’s corresponding optimal effort

level is between 0 and fL then it must be that at f ∗a ,
∂E[UA]
∂ fa

= 0. We solve for the optimal

effort level using (D.3) with ma and mp set to zero :

∂E[UA]
∂ fa

= krµRT e−k fa − ca = 0

⇒ f ∗a =
1
k

ln
(
kµrRT

ca

)
(D.13)
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Now for the principal, setting ma = mp = 0 and with fa as described by (D.13), then an

optimal value of r occurs when
∂E[Π]
∂r

= 0. Now in this case we have :

E[Π] = µ(1 − e−k f ∗a )((1 − r)RT + RD)

= µ

(
1 −

ca

krµRT

)
(RT − rRT + RD)

hence
∂E[Π]
∂r

= −µRT +
ca(RT + RD)

kr2RT

Solving
∂E[Π]
∂r

= 0 for r∗, we get

r∗ =

√
ca(RT + RD)

kµR2
T

(D.14)

We now substitute this value of r∗ back into the f ∗a described by (D.13) to get

f ∗a =
1
k

ln
√kµ(RT + RD)

ca

 (D.15)

Since 0 < f ∗a < fL then

1 <

√
kµ(RT + RD)

ca
< ek fL (D.16)

Since the individual rationality constraint must be satisfied, a required condition for this so-

lution is that E[UA] ≥ Ur. Using the values of r and fa as specified by (D.14) and (D.15)

respectively with ma = mp = 0, E[UA] ≥ Ur implies that :

kUr

ca
+ 1 ≤

√
kµ(RT + RD)

ca
− ln

√kµ(RT + RD)
ca

 (D.17)

Case 2b : 0 < f ∗a < fL, m∗a = 0, m∗p = 0

Suppose the individual rationality constraint is binding and the agent’s optimal effort level is

0 < f ∗a < fL. Then this implies that

1
k

ln
(
kµrRT

ca

)
< fL. (D.18)
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A non-negative value of f ∗a implies that a feasible value of r must satisfy r >
ca

kµRT
. If ma =

mp = 0 and r is given by (D.2) we find that (D.18) is equivalent to the condition that

kUr

ca
+ k fL + 1 < ek fL (D.19)

At optimal the value of r should also coincide with the value of fa such that
∂E[UA]
∂ fa

= 0. We

previously found the value of optimal r to be of the form given in (5.21), and plugging this r

into the binding individual rationality constraint with ma = mp = 0, we find that the optimal r

should also satisfy

kUr

ca
+ 1 =

kµrRT

ca
− ln

(
kµrRT

ca

)
(D.20)

We can then solve for r using the Lambert W function to obtain

r∗ = −
ca

kµRT
W

(
−e−( kUr

ca
+1)

)
(D.21)

where W(·) denotes the Lambert W function. Since k, Ur and ca are non-negative, we can easily

verify that the argument of W(·) in our case satisfies −1
e ≤ −e−(kUr/ca+1) ≤ 1. For x between −1

e

and 0, W(x) is double-valued. This therefore implies that there are two values of r that satisfy

(D.20). The principal’s expected profit can be computed with both values of r to determine the

preferable value between the two.

To find the corresponding optimal value of fa, we note that (D.20) above is equivalent to

kUr

ca
+ 1 =

kµrRT

ca
− k f ∗a

where f ∗a is as given in (D.13). Solving for the optimal effort level, we find that f ∗a is as shown

below

f ∗a =
µrRT

ca
−

Ur

ca
−

1
k

(D.22)

Case 3a.i : f ∗a = fL, m∗a = 0, m∗p = 0

Suppose the principal proposes a contract with ma = mp = 0 and the individual rationality
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constraint is binding. If the agent’s optimal effort level, f ∗a = fL, then from (D.2) we know that

the corresponding optimal value of r under this case would be

r∗ =
Ur + ca fL

(1 − e−k fL)µRT
(D.23)

If the agent’s optimal effort level f ∗a = fL > 0 then it must be that
∂E[UA]
∂ fa

≥ 0 at fa = fL.

Substituting r in
∂E[UA]
∂ fa

= kµrRT e−k fL − ca ≥ 0 with (D.23) where ma = mp = 0 we can obtain

the equivalent expression:

kUr

ca
+ k fL + 1 ≥ ek fL

Optimal ma and mp values of zero imply that
∂E[Π]
∂mp

≤ 0 hence :

kµ
ch

(RT + RD)e−k fL − bp ≤ 0 ⇒
kµ(RT + RD)

bpch
≤ ek fL

Hence a required condition for the solution fa = fL , ma = mp = 0 to be optimal is that

kµ(RT + RD)
bpch

≤ ek fL ≤
kUr

ca
+ k fL + 1 (D.24)

Case 3a.ii : f ∗a = fL, m∗a = 0, m∗p > 0

An optimal mp > 0 occurs where
∂E[Π]
∂mp

= 0. We can solve
∂E[Π]
∂mp

= 0 for the optimal mp

with f ∗a = fL and m∗a = 0 to obtain

m∗p = ch

(
1
k

ln
(
kµ(RT + RD)

bpch

)
− fL

)
(D.25)

A required condition for m∗p > 0 is therefore that
1
k

ln
(
kµ(RT + RD)

bpch

)
> fL which means

kµ(RT + RD)
bpch

> ek fL (D.26)

Also if fL > 0 and f ∗a = fL then it must be that with mp as described above in (D.25) and ma = 0

and r given by (D.2), then
∂E[UA]
∂ fa

≥ 0 which implies that

ek fL ≤
kUr

ca
+ k fL + 1 (D.27)
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With ma = 0, fa = fL and mp as described above in (D.25) we obtain the optimal value of r

as

r =
Ur + ca fL(

1 − bpch

kµ(RT +RD)

)
µRT

(D.28)

Case 3b : f ∗a = fL, m∗a > 0, m∗p = 0

Previously we determined that
∂E[UA]
∂ fa

reaches zero at a point where fa =
1
k

ln
(
kµRT r

ca

)
−

ma + mp

ch
with mp fixed at 0 in this case. Now if the agent exerts an effort level of fa = fL, then

it may be that
∂E[UA]
∂ fa

≥ 0, as fL is the upper bound of the agent’s actual capabilities. fL may

in fact be lower than or equal to the value of fa at which E[UA] is maximized. Therefore we

consider a case where

fL ≤
1
k

ln
(
kµRT r

ca

)
−

ma

ch
(D.29)

We determined earlier that the optimal value of r where
∂E[Π]
∂r

= 0 is as given in (D.14) .

Substituting this value of r into (D.29) we obtain

ek fL ≤

√
kµ(RT + RD)

ca
(D.30)

If m∗a is optimal, then solving
∂E[Π]
∂mp

= 0 for ma with mp = 0 and fa = fL we obtain an

optimal ma value of

m∗a = ch

(
1
k

ln
(
kµRT r

ca

)
− fL

)
(D.31)

Substituting r∗ into (D.31) we obtain the optimal ma as

ma = ch

1
k

ln
√kµ(RT + RD)

ca

 − fL

 (D.32)

These values of ma , r , fa and mp should satisfy the individual rationality constraint,

E[UA] ≥ Ur which means

kUr

ca
+ k fL + 1 +

bachk
ca

1
k

ln
√kµ(RT + RD)

ca

 − fL

 ≤ √
kµ(RT + RD)

ca
(D.33)
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Case 3c : f ∗a = fL, m∗a = 0, m∗p > 0

Suppose that
∂E[UA]
∂ fa

= 0 when fa = fL. This implies that

kµRT re−k
(

fL+
mp
ch

)
− ca = 0

mp = ch

[
1
k

ln
(
kµRT r

ca

)
− fL

]
(D.34)

Now the optimal value of r must also satisfy (D.2) when ma = 0, fa = fL and with mp as

described above in (D.34). This gives an r value of

r =
ca

kµRT

(
kUr

ca
+ k fL + 1

)
(D.35)

Substituting back (D.35) for r in (D.34) we obtain

mp = ch

[
1
k

ln
(
kUr

ca
+ k fL + 1

)
− fL

]
(D.36)

An optimal mp > 0 implies that

1
k

ln
(
kUr

ca
+ k fL + 1

)
> fL

⇒
kUr

ca
+ k fL + 1 > ek fL �



Appendix E

C++ Code for solving Co-Development

Model

The code and header files required for calculations involving the Lambert W function can be

found at [39].

E.1 Header Files

E.1.1 MyFxns.h

Declaration of variables and functions used

#ifndef MYFXNS_H

#define MYFXNS_H

#include<vector>

using namespace std;

// Declare variables and Vectors

extern double h , pen , pen2, EPS, RT, RD, c_a, c_h, b_p, b_a, Mu, k, ur, f_L;

extern int ParaSet;

extern vector<double> Parameters;

extern vector<double> result1, result2, result3;

109
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void ParameterSet(const int ParaSet);

int Contour(const int ParaSet);

vector<double> Numerical(const int ParaSet, const int type);

vector<double> search(const double k, const double ur, const double f_L);

vector<double> search(const int ParaSet);

// fxn for Principle’s profit

double principal( const double m_a, const double m_p, const double r, const double Agent_f);

// fxn for Agent’s utility

double agent(

const double m_a, const double m_p, const double r, const double Agent_f);

// NUMERICAL FUNCTIONS

// Optimal effort f_a = max(0, .) where delE[U] / delf = 0

double f_a(const int type,const double m_a, const double m_p, const double rRT0);

// Principal’s net profit

double E_Pi(const int type,const double m_a, const double m_p, const double rRT0);

// Agent’s expected utility

double U(const int type, const double m_a, const double m_p, const double rRT0);

// SUMT objective fxn (transformed problem)

double Z(const int type, const double m_a, const double m_p, const double rRT0);

// Contract Finder (Checks IC constraint)
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int ContractFinder(const vector<double> SolnContainer);

#endif

E.1.2 MatlabFxns.h

in-line declaration of functions that have the same fucntionality as specific MATLAB

functions

#ifndef MATLABFXNS_H

#define MATLABFXNS_H

#include<vector>

// mimics MATLAB linspace

std::vector<double> linspace(const double a, const double b, const int n);

// mimics MATLAB rand

double urand();

// mimics MATLAB min

double min(const double a, const double b);

// mimics MATLAB max

double max(const double a, const double b);

#endif

E.2 CPP Files

E.2.1 Main.cpp

file containing main() method
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#include "MyFxns.h"

#include <iostream>

#include <ctime>

#include <iomanip>

#include <fstream>

using namespace std;

int ParaSet = 0;

int main(){

//overall timer

clock_t t0;

t0 = clock();

int prsn = 8; // output precision

// for the Parameter set ...

for (int ParaSet = 1; ParaSet <= 7; ParaSet++){

//Print out results for each parameter set

cout << "Parameter Set :" << ParaSet << endl << endl;

vector<double> Analytical(7);

Analytical = search(ParaSet);

cout << "ANALYTICAL: " << endl;

for (int iii = 1; iii < 7; iii++){

cout << setprecision(prsn) << Analytical[iii] << " "; }

cout << endl << endl;

time_t tic = time(0);

vector<double> result1, result2, result3, Null;

result1 = Numerical(ParaSet, 1); //f_a = 0

result2 = Numerical(ParaSet, 2); // f_a>0

result3 = Numerical(ParaSet, 3); // f_a =f_L
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Null = { 0 };

if (result1 == Null || result2 == Null || result3 == Null){

cin.get();

return 0; }

cout << "NUMERICALS: " << endl;

for (int iii = 0; iii <= 5; iii++){

cout << setprecision(prsn) << result1[iii] << " "; }

cout << endl;

for (int iii = 0; iii <= 5; iii++){

cout << setprecision(prsn) << result2[iii] << " "; }

cout << endl;

for (int iii = 0; iii <= 5; iii++){

cout << setprecision(prsn) << result3[iii] << " "; }

cout << endl;

vector<double> SolnContainer(18);

for (int i = 0; i < 18; i++){

if (i<6)

SolnContainer[i] = result1[i];

else if (i>5 && i < 12)

SolnContainer[i] = result2[i - 6];

else

SolnContainer[i] = result3[i - 12]; }

int bestSolnType = ContractFinder(SolnContainer);

cout <<endl

<< "-----------------------------------------------" << endl; }

cout << "Total Time : " << setprecision(prsn) <<

double((clock() - t0)) / CLOCKS_PER_SEC

<< " seconds....." << endl << endl;
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cout << "press ENTER to exit";

cin.get();

return 0;}

E.2.2 MatlabFxns.cpp

#include "MatlabFxns.h"

using namespace std;

// mimics MATLAB rand

double urand(){ return double(rand()) / RAND_MAX; }

// mimics MATLAB min

double min(const double a, const double b){

if (a < b) return a;

else return b;

}

// mimics MATLAB max

double max(const double a, const double b){

if (a < b) return b;

else return a;

}

// mimics MATLAB linspace fxn; returns a vector type of size n

vector<double> linspace(const double a, const double b, const int n){

vector<double> lspace(n); // the (n) refers to number of elements

double intvl = (b - a) / (n - 1);
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for (int i = 0; i < n; i++){

lspace[i] = a + (i*intvl);

}

return lspace;

}

E.2.3 MyFxns.cpp

#include "MatlabFxns.h"

#include <vector>

#include "MyFxns.h"

using namespace std;

double h = 0.1, EPS = 1e-3,pen =100, pen2=1 ;

// Define base parameter set

double RT = 10E6; double RD = 372E6; double c_a = 40;

double c_h = 1.25*c_a; double b_p = 1.05; double b_a = 1.07;

double k = 1e-4; double Mu = 0.1274; double ur = 0;

double f_L = 0;

void ParameterSet(const int ParaSet){

/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% This part simply carries initial parameter settings %

% I use frequently.Use ’ParaSet’ for labelling %

% each set of initial parameters %

% %
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */

switch (ParaSet){

case 1:

f_L = 10250; ur = 23.25e6; break;

case 2:

f_L = 5250; ur = 23.25e6; break;

case 3:

c_h = 5 * c_a; f_L = 40e3; ur = 1.75e6; break;

case 4:

c_h = 5 * c_a; f_L = 40e3; ur = 6e6; break;

case 5:

c_h = 1.25*c_a; f_L = 30e3; ur = 4.75e6; break;

case 6:

c_h = 1.25*c_a; f_L = 20e3; ur = 2.8e3; break;

case 7:

c_h = 1.25*c_a; f_L = 22e3; ur = 33e6; break;

case 8:

RT = 10E6; RD = 372E6; c_a = 40; c_h = 1.25*c_a;

b_p = 1.05; b_a = 1.07; k = 2e-4; Mu = 0.1274;

f_L = 10250; ur = 23.25e6; break;

case 9:
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RT = 10E6; RD = 372E6; c_a = 40; c_h = 1.25*c_a;

b_p = 1.05; b_a = 1.07; k = 5e-4; Mu = 0.1274;

f_L = 10250; ur = 23.25e6; break;

case 10:

c_h = 5 * c_a; f_L = 50e3; ur = 1000; break;

}

}

// fxn for Principle’s profit

double principal(

const double m_a, const double m_p, const double r, const double Agent_f){

return Mu*(1 - exp(-k*(Agent_f + (m_a + m_p) / c_h)))

*((1 - r)*RT + RD) - b_p*m_p;}

// fxn for Agent’s utility

double agent(

const double m_a, const double m_p, const double r, const double Agent_f){

return Mu*(1 - exp(-k*(Agent_f + (m_a + m_p) / c_h)))*r*RT

- c_a*Agent_f - b_a*m_a;}

////////////////////////////////////////////

// NUMERICAL FUNCTIONS

// Optimal effort f_a = max(0, .) where delU / delf = 0

double f_a(const int type,

const double m_a, const double m_p, const double rRT0){

switch (type){

default:
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return min(f_L, max(0, 1 / k * log(k*Mu*rRT0 / c_a)

- (m_a + m_p) / c_h)); break;

case 1 :

return 0; break;

case 3: return f_L; break;

} }

// Principal’s net profit

double E_Pi(const int type,

const double m_a, const double m_p, const double rRT0){

return Mu* (1 - exp(-k * (f_a(type, m_a, m_p, rRT0) + (m_a + m_p) / c_h)))

*(RT - rRT0 + RD) - b_p*m_p;

}

// Agent’s expected utility

double U(const int type,

const double m_a, const double m_p, const double rRT0){

return Mu*(1 - exp(-k * (f_a(type, m_a, m_p, rRT0) + (m_a + m_p) / c_h)))

*rRT0 - b_a*m_a - c_a*f_a(type, m_a, m_p, rRT0);

}

// SUMT objective fxns for each case

double Z(const int type,

const double m_a, const double m_p, const double rRT0){

switch (type){

default:

return
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E_Pi(type, m_a, m_p, rRT0) - pen * (

1 / (-ur + U(type, m_a, m_p, rRT0)) +

pow(pen, -1.5) * (

-c_a + k*Mu*rRT0*

exp(-k*(f_a(type, m_a, m_p, rRT0) + (m_a + m_p) / c_h))) *

(

-c_a + k*Mu*rRT0*

exp(-k*(f_a(type, m_a, m_p, rRT0) + (m_a + m_p) / c_h)))

+

1 / (RT + RD - m_a) + 1 / (RT + RD - m_p) + 1 / (RT + RD - rRT0) +

1 / exp(m_a) + 1 / exp(m_p) + 1 / rRT0); break;

case 1:

return

E_Pi(type, m_a, m_p, rRT0) - pen*(

1 / (-ur + U(type, m_a, m_p, rRT0)) +

1 / (

(m_a + m_p) / c_h - 1 / k*log(k*Mu*rRT0 / c_a)) +

1 / (RT + RD - m_a) + 1 / (RT + RD - m_p) + 1 / (RT + RD - rRT0) +

1 / exp(m_a) + 1 / exp(m_p) + 1 / rRT0); break;

case 3:

return

E_Pi(type, m_a, m_p, rRT0) - pen*(

1 / (U(type, m_a, m_p, rRT0) - (ur + 1)) +

pen2 / ((1 / k * log(k*Mu*rRT0 / c_a) - (m_a + m_p) / c_h) - (f_L + 1)) +

pen2 / ((k*Mu*rRT0 * exp(-k*(f_L + (m_a + m_p) / c_h))) - (c_a + 1)) +

1 / (RT + RD - m_a) + 1 / (RT + RD - m_p) + 1 / (RT + RD - rRT0) +

1 / exp(m_a) + 1 / exp(m_p) + 1 / rRT0); break;

}}
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E.2.4 search.cpp

/* For a given set of parameters, this function determines the

the best contract type from the the analytical options */

#include <cmath>

#include <vector>

#include "MyFxns.h"

#include "LambertW.h"

using namespace std;

vector<double> search(

const double k, const double ur, const double f_L){

// declaring the values to store

const int vectorSize = 7; const int endo = vectorSize - 1;

vector<double> optimalSoln(vectorSize);

vector<double> currentSoln(vectorSize);

// INITIALIZE optimalSoln

optimalSoln[0] = 9; // if not soln keep it at 9

for (int i = 1; i < 7; i++) optimalSoln[i] = 0;

double m_a, m_p, r, Agent_f, E_U, E_Pi;

m_a = m_p = r = Agent_f = E_U = E_Pi = 0;

// Define k*m => k*Mu*(RT + RD);

double m = Mu*(RT + RD);

double solnNum;
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// SEARCH FOR BEST SOLUTION STARTS HERE

// SOLUTION 1a;

if ((k*m / (b_p*c_h) <= 1) && (ur == 0)){

solnNum = 1;

currentSoln = { solnNum, Agent_f, m_a, m_p, r, E_U, E_Pi };

//currentSoln = { solnNum, m_a, m_p, r, Agent_f, E_U, E_Pi };

optimalSoln = currentSoln; // if condition satisfied, becomes optimal

}

// SOLUTION 1b;

if (((k*m / (b_p*c_h)) > 1) && ((k*m / (b_p*c_h)) >= (k*ur / c_a + 1))){

solnNum = 2;

m_a = 0;

m_p = c_h / k * log(k*m / (b_p*c_h));

r = ur / ((1 - (b_p*c_h) / (k*m))*Mu*RT);

Agent_f = 0;

E_Pi = principal(m_a, m_p, r, Agent_f); //(k, Mu, m_a, m_p, r, Agent_f);

E_U = agent(m_a, m_p, r, Agent_f);

currentSoln = { solnNum, Agent_f, m_a, m_p, r, E_U, E_Pi };

if (((E_Pi > optimalSoln[endo]) && ((E_U - ur) > -1))){// % if current soln better, replace optimal

optimalSoln = currentSoln;

} }

// SOLUTION 2a;

if (((1 < sqrt(k*m / c_a)) && (sqrt(k*m / c_a) < exp(k*f_L))

&& (sqrt(k*m / c_a) - log(sqrt(k*m / c_a)) >= k*ur / c_a + 1))){

solnNum = 3;

m_a = 0;

m_p = 0;
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r = sqrt(c_a*(RT + RD) / (k*Mu* RT*RT));

Agent_f = 1 / k * log(sqrt((k*Mu*(RT + RD)) / c_a));

E_Pi = principal(m_a, m_p, r, Agent_f); //(k, Mu, m_a, m_p, r, Agent_f);

E_U = agent(m_a, m_p, r, Agent_f);

currentSoln = { solnNum, Agent_f, m_a, m_p, r, E_U, E_Pi };

if (((E_Pi > optimalSoln[endo]) && ((E_U - ur) > -1))){// % if current soln better, replace optimal

optimalSoln = currentSoln;

} }

// SOLUTION 2b;

if ((exp(k*f_L) > k*ur / c_a + k*f_L + 1)){

solnNum = 4;

m_a = 0;

m_p = 0;

// Upper Branch LambertW

r = -c_a / (k*Mu*RT) * utl::LambertW(0, -exp(-k*ur / c_a - 1));

Agent_f = Mu*r*RT / c_a - ur / c_a - 1 / k;

E_Pi = principal(m_a, m_p, r, Agent_f); //(k, Mu, m_a, m_p, r, Agent_f);

E_U = agent(m_a, m_p, r, Agent_f);

currentSoln = { solnNum, Agent_f, m_a, m_p, r, E_U, E_Pi };

if (((E_Pi > optimalSoln[endo]) && ((E_U - ur) > -1))){// % if current soln better, replace optimal

optimalSoln = currentSoln;

}

// Lower Branch LambertW

r = -c_a / (k*Mu*RT) * utl::LambertW(-1, -exp(-k*ur / c_a - 1));

Agent_f = Mu*r*RT / c_a - ur / c_a - 1 / k;

E_Pi = principal(m_a, m_p, r, Agent_f); //(k, Mu, m_a, m_p, r, Agent_f);

E_U = agent(m_a, m_p, r, Agent_f);
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currentSoln = { solnNum, Agent_f, m_a, m_p, r, E_U, E_Pi };

if (((E_Pi > optimalSoln[endo]) && ((E_U - ur) > -1))){// % if current soln better, replace optimal

optimalSoln = currentSoln;

} }

// SOLUTION 3a.i;

if (((k*m / (b_p*c_h) <= exp(k*f_L)) &&

(exp(k*f_L) <= k*ur / c_a + k*f_L + 1) && (exp(k*f_L) > 1))){

solnNum = 5;

m_a = 0;

m_p = 0;

r = (ur + c_a*f_L) / ((1 - exp(-k*f_L))*Mu*RT);

Agent_f = f_L;

E_Pi = principal(m_a, m_p, r, Agent_f); //(k, Mu, m_a, m_p, r, Agent_f);

E_U = agent(m_a, m_p, r, Agent_f);

currentSoln = { solnNum, Agent_f, m_a, m_p, r, E_U, E_Pi };

if (((E_Pi > optimalSoln[endo]) && ((E_U - ur) > -1))){// % if current soln better, replace optimal

optimalSoln = currentSoln;

} }

// SOLUTION 3a.ii;

if (((exp(k*f_L) < (k*m / (b_p*c_h))) &&

((k*m / (b_p*c_h)) <= (k*ur / c_a + k*f_L + 1)))){

solnNum = 6;

m_a = 0;

m_p = c_h*(1 / k*log(k*m / (b_p*c_h)) - f_L);

r = (ur + c_a*f_L) / ((1 - b_p*c_h / (k*m)) * Mu*RT);

Agent_f = f_L;

E_Pi = principal(m_a, m_p, r, Agent_f); //(k, Mu, m_a, m_p, r, Agent_f);
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E_U = agent(m_a, m_p, r, Agent_f);

currentSoln = { solnNum, Agent_f, m_a, m_p, r, E_U, E_Pi };

if (((E_Pi > optimalSoln[endo]) && ((E_U - ur) > -1))){// % if current soln better, replace optimal

optimalSoln = currentSoln;

} }

// SOLUTION 3b;

if (((sqrt(k*m / c_a) >= exp(k*f_L)) &&

(sqrt(k*m / c_a) >= (k*ur / c_a + k*f_L + 1 + (k*b_a*c_h / c_a)*

(1 / k * log(sqrt(k*m / c_a)) - f_L))))){

solnNum = 7;

m_a = c_h*(1 / k*log(sqrt(k*m / c_a)) - f_L);

m_p = 0;

r = sqrt(c_a*(RT + RD) / (k*Mu*RT*RT));

Agent_f = f_L;

E_Pi = principal(m_a, m_p, r, Agent_f); //(k, Mu, m_a, m_p, r, Agent_f);

E_U = agent(m_a, m_p, r, Agent_f);

currentSoln = { solnNum, Agent_f, m_a, m_p, r, E_U, E_Pi };

if (((E_Pi > optimalSoln[endo]) && ((E_U - ur) > -1))){// % if current soln better, replace optimal

optimalSoln = currentSoln;

} }

// SOLUTION 3c;

if ((exp(k*f_L) <= (k*ur / c_a + k*f_L + 1))){

solnNum = 8;

m_a = 0;

m_p = c_h*(1 / k * log(k*ur / c_a + k*f_L + 1) - f_L);

r = c_a / (k*Mu*RT)*(k*ur / c_a + k*f_L + 1);

Agent_f = f_L;

E_Pi = principal(m_a, m_p, r, Agent_f); //(k, Mu, m_a, m_p, r, Agent_f);
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E_U = agent(m_a, m_p, r, Agent_f);

currentSoln = { solnNum, Agent_f, m_a, m_p, r, E_U, E_Pi };

if (((E_Pi > optimalSoln[endo]) && ((E_U - ur) > -1))){// % if current soln better, replace optimal

optimalSoln = currentSoln;

} }

return optimalSoln;

}

vector<double> search(const int ParaSet){

ParameterSet(ParaSet);

return search(k, ur, f_L);

}

E.2.5 Numerical.cpp

primary code for numerical approach

#include <iostream>

#include "MatlabFxns.h"

#include "MyFxns.h"

#include <vector>

#include<ctime>

using namespace std;

vector<double> Numerical(const int ParaSet, const int type){

// will keep track of best soln from diff initial pts
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double CurrentSoln = 0, fCurrent = 0,

maCurrent = 0, mpCurrent = 0, rRTCurrent = 0, UCurrent = 0;

// load Parameters

ParameterSet(ParaSet);

double ma, mp, rRT, Echeck, Ucheck; int N = 10;

vector<double> ma_values(N), mp_values(N), rRT_values(N);

// generate nCurr random feasible points and iterate frm there

int nCurr = 100;

for (int Currents = 1; Currents <= nCurr; Currents++){

// Randomly Generate initital trial soln

// and Check Feasibility

//overall timer

clock_t loopTimeStart;

loopTimeStart = clock();

int loopcount = 0;

do{

loopcount++;

ma = urand() * (RT + RD);

mp = urand() * (RT + RD);

rRT = urand() *(RT + RD);

Echeck = E_Pi(type, ma, mp, rRT);

Ucheck = U(type, ma, mp, rRT);

if ((clock() - loopTimeStart)/CLOCKS_PER_SEC > 10){

cout << "taking too long generating feasible random initial solution"

<< endl << "Random Trial Number : " << Currents << endl
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<<"Number of generation attempts : "<<loopcount<<endl

<< "Last attempt : "

<< "ma = " << ma << "; mp = " << mp << "; rRT = " << rRT << endl

<< "E_Pi = " << Echeck << "; E_U = " << Ucheck << endl

<< "Consider changing method of generation" << endl;

cout << "press ENTER twice to quit" << endl;

cin.get();

return{ 0 };

}

} while ((Echeck < 0) || (Ucheck < ur));

for (int trials = 1; trials <= 10; trials++){

int opt_indx = 0; // will keep track of optimal indx

//calc gradient

double mah, mph, rRTh, del_ma, del_mp, del_rRT;

//double h = 0.1, pen = 100, pen2 = 1, EPS = 1e-3;

mah = ma + h; mph = mp + h; rRTh = rRT + h;

del_ma = (Z(type, mah, mp, rRT) - Z(type, ma, mp, rRT)) / h;

del_mp = (Z(type, ma, mph, rRT) - Z(type, ma, mp, rRT)) / h;

del_rRT = (Z(type, ma, mp, rRTh) - Z(type, ma, mp, rRT)) / h;

// if gradient is "zero" we are done

if (((abs(del_ma) < EPS) && (abs(del_mp) < EPS)

&& (abs(del_rRT) < EPS))){

trials = 11;

}

// Finding upper bound on L (stepsize for gradient search)
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double L_for_ma, L_for_mp, L_for_rRT, L_ryt, L_lft;

L_for_ma = max((RT + RD - ma) / del_ma, -ma / del_ma);

L_for_mp = max((RT + RD - mp) / del_mp, -mp / del_mp);

L_for_rRT = max((RT + RD - rRT) / del_rRT, -rRT / del_rRT);

L_ryt = min(L_for_ma, min(L_for_mp, L_for_rRT));

L_lft = 0;

// for (int L_search = 0; L_search <= 7; L_search++){

int L_search = 0; bool quitLsearch = 0;

do{

L_search++;

//****************

vector<double> L_values(N), Z_values(N);

L_values = linspace(L_lft, L_ryt, N);

for (int ii = 0; ii < N; ii++){

Z_values[ii] = 0;

ma_values[ii] = ma + L_values[ii] * del_ma;

mp_values[ii] = mp + L_values[ii] * del_mp;

rRT_values[ii] = rRT + L_values[ii] * del_rRT;

}

// Calculate the Z value for each L trial

double top_Z = 0;

for (int z = 0; z < N; z++){

Z_values[z] =

Z(type, ma_values[z], mp_values[z], rRT_values[z]);

// Check that each of the Z values dsnt violate IR

// if IR violated, make Zvalue = -Inf
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double IRcheck;

IRcheck =

U(type, ma_values[z], mp_values[z], rRT_values[z]);

if (IRcheck < ur) Z_values[z] = -1e9;

// keep track of best case

if (Z_values[z] >= top_Z){

opt_indx = z;

top_Z = Z_values[z];

} }

L_lft = L_values[opt_indx];

if (opt_indx == N - 1) { quitLsearch = 1; }

else {

L_ryt = L_values[opt_indx + 1];

}

} while (L_search <= 7 && quitLsearch == 0); // end search for best L

ma = ma_values[opt_indx];

mp = mp_values[opt_indx];

rRT = rRT_values[opt_indx];

} // ends for trials

double NewSoln = E_Pi(type, ma, mp, rRT);

if (NewSoln > CurrentSoln){

fCurrent = f_a(type, ma, mp, rRT);
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CurrentSoln = NewSoln;

maCurrent = ma;

mpCurrent = mp;

rRTCurrent = rRT;

UCurrent = U(type, ma, mp, rRT);

} }

double r = rRTCurrent / RT;

return // vector containing optimal solution

{ fCurrent, maCurrent, mpCurrent, r , UCurrent, CurrentSoln };

}

E.2.6 ContractFinder

Code for checking IC and determining best contract

#include <iostream>

#include "MyFxns.h"

#include "MatlabFxns.h"

using namespace std;

// Contract Finder

int ContractFinder(const vector<double> SolnContainer){

if (!(SolnContainer.size() % 6 == 0)){

cerr << "The solution container must contain 6,12 or 18 elements";

return 1;
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}

int Num2Compare = (SolnContainer.size())/6 - 1;

ParameterSet(ParaSet);

int Best = -1; // -1->No contract, 0->f_a = 0; 1 -> 0<f_a<f_L

// 2->f_a = f_LZ

double BestUP = -1; // Stores best current expected profit

bool a, b, c; // to store contract types that satisfy IC

a = b = c = 0;

int nn = 30;

double SearchInterval = f_L / 10;

double dist = 0.5 * SearchInterval;

double AcceptTol = nn / 3;

for (int counta = 0; counta <= Num2Compare; counta++){

int iter = -1;

double f_A = SolnContainer[++iter + (6 * counta)];

double m_A = SolnContainer[++iter + (6 * counta)];

double m_P = SolnContainer[++iter + (6 * counta)];

double rr = SolnContainer[++iter + (6 * counta)];

double U_A = SolnContainer[++iter + (6 * counta)];

double U_P = SolnContainer[++iter + (6 * counta)];

double Search_lft = min(max(0, (f_A - dist)), (f_L - 2 * dist));

double Search_ryt = min(f_L, max((f_A + dist), (2 * dist)));
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// Randomly generate nn different f_a values

// for each of the nn rndm f values calculate E[U]

int NumBetter = 0;

for (int tests = 1; tests <= nn; tests++){

// Randomly generate f_a value

double random_f = Search_lft + ((Search_ryt - Search_lft)*urand());

// cout << "random f " << random_f << " : ";

// calculate E[U]

double AgentUtility =

agent(m_A, m_P, rr, random_f);

if (AgentUtility >= U_A){

NumBetter++;

} }

/*% if all solutions are either lower than for f_a or

close enough to f_a then then change send to

hold solution... then compare to current best*/

bool cond1 = ( NumBetter <=AcceptTol);

bool cond2 = (U_P >= BestUP);

if (cond1 && cond2){

BestUP = U_P;

Best = counta;

switch (counta){

case 0: a = true; break;

case 1: b = true; break;
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case 2: c = true; break;

} } }

// determine the best of the 3 contracts

int BestIndx = Best; //

cout<<endl << "BEST NUMERICAL CONTRACT : " ;

if (BestIndx == -1){

cout << endl

<< "\t No optimal Contract from given Parameters!!" <<

endl; }

else{

cout << "IC satisfied : " << a << b << c << endl;

cout << "Type " << BestIndx + 1 << endl;

for (int iii = 0; iii <= 5; iii++){

cout << SolnContainer[iii + (6 * BestIndx)] << " "; }

cout << endl << endl; }

return BestIndx + 1;}
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