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Abstract 

The natural convection of non-Fourier fluids of the dual-phase-lagging (DPL) type is 

examined. These fluids possess a relaxation time and a retardation time, reflecting the delay 

in the response of the heat flux and the temperature gradient with respect to one another. 

DPL fluids span a wide range of applications, including low-temperature liquids, fluids 

subjected to fast heat transfer processes, and nanofluids (NFs), for which both the relaxation 

and retardation times are expressed in terms of nanoparticle concentration and solution 

properties. Both stationary and oscillatory convection become equally probable as the 

relaxation time increases. A nonlinear spectral approach is also used to model the post-

critical convective state for thermo-gravitational instability in a non-Fourier fluid of the 

single-phase-lagging (SPL) type heated from below. The Spectral approach reveals the 

number and type of required modes. It is found that the Cattaneo number increases the 

Nusselt number compared to a Fourier fluid. 

 

Keywords 

Non-Fourier, Single-phase-lagging (SPL), Dual-phase-lagging (DPL), Nanofluids, Rayleigh-
Bénard convection, Nonlinear spectral solution, perturbation expansion.  
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Chapter 1  

1.1 Non-Fourier characteristic 

Fourier's law is the most common equation to study the conduction heat transfer, which 

states that the rate of heat transfer through a medium is proportional to the negative 

temperature gradient across the medium. Fourier’s law assumes that when a thermal 

disturbance is applied to an object, the perturbation is felt immediately at all points of the 

object accordingly. Sometimes Fourier’s law is not accurate enough and another equation 

is needed to study conduction heat transfer [1]. Peshkov [1] was the first one who found 

the second sound wave in superfluid helium (He II) at low temperatures (T < 2.2 K) 

experimentally. Cattaneo [2] and Vernotte [3] proposed Cattaneo-Vernotte (C-V) 

equation including a transient term multiplied by the thermal relaxation time of the 

subject. In most of materials, thermal relaxation time is negligible and Cattaneo equation 

returns back to the Fourier model. Also, there are some conditions and materials in which 

the relaxation time is considerable and should be attended such as non-homogeneous 

medium [2]–[4], high speed electronic devices [4], ultrashort laser pulses [4], [5], skin 

burns[6], processed meat [7], heat transfer in stars[8], , drying sand [9] heat transport in a 

nuclear fuel rod in a light water reactor [10] and microscale” applications[3]. Note that 

beside the relaxation time, the rate of heating could also cause the transient term and non-

Fourier effect to become significant. For example, some thermal processes like laser 

pulse heating, generates a sizeable amount of energy in a short time on the scale of 

femto- or 10-15 seconds [11]. Non-Fourier effects have been studied using numerical [2], 

[12]–[22] and analytical [23], [24] methods in a wide variety of geometries such as 

cylindrical [25], spherical [26], slabs [27], crack tip [28] and fins geometry [29].  

Different models have been used to describe the non-Fourier heat transfer. Single-Phase-

Lag model (SPL) suggests that materials have only a relaxation time exposing the delay 

in the response of the heat flux in the Christov’s study [30]. Recently, Khayat and co-

workers used the extended Cattaneo-Vernotte equation to study the natural convection in 

non-Fourier fluids of single phase-lagging type [31], [32]. The present study however, 

focuses on the natural convection in non-Fourier fluids using dual phase-lagging model. 

Despite being more accurate than Fourier’s heat transfer, SPL models could not explain 
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some heat transfer processes. Dual-Phase-Lag (DPL) model offers presence of relaxation 

and retardation times in materials exposing the delay in the response of the heat flux and 

the temperature gradient, respecitvely. For example, to analyze the non-Fourier heat 

transfer process in skin tissue, Xu et al. [33] used the Dual-Phase-Lag model. Vadasz 

[34] represents a specific case of Dual-Phase-Lagging heat conduction as, 

( ) ( )Q r, r,q Tt k T tτ τ+ = − ∇ +  (1.1.1b) 

 

where �� is relaxation time of heat flux and �� is the retardation time of temperature 

gradient. The retardation time, �� ,  is interpreted as being induced by micro-structural 

interactions such as phonon-electron interaction or phonon scattering, and is called the 

phase-lag of the temperature gradient. Vadasz [34] and Quaresma [35] found that the 

correlation between the heat flux and temperature gradient is not instantaneous but quite 

affected by the two time lags, a temperature gradient time lag and a heat flux time lag. 

They also elaborated an estimated equivalence between Fourier heat conduction in 

porous media and dual-phase-lagging heat conduction not including the coupled thermal 

conductivity which has been attended by Wang and Wei [36]. Vadasz [34] proposed that 

the heat conduction is not valid at the macro-system level when nano-elements are 

suspended in a fluid. Donzelli [37] observed transient oscillatory convection when a 

homogeneous suspension of nanofluids was heated suddenly from below in the Rayleigh-

Benard convection.  

Nanofluids are suspensions of solid nanoparticles (NPs), with normally at least one of 

their principal dimensions in the order of 1–100 nm, in a base fluid such as water or 

ethylene glycol. The NPs could be the oxides of aluminum and silicon, as well as metals 

such as copper and gold [38]–[40]. In recent years, nanofluids received significant 

attention because of the significant enhancement in their thermophysical properties such 

as thermal conductivity, thermal diffusivity, viscosity and convective heat transfer 

coefficients compared to those of base fluids [41]–[45]. A small percent of nanoparticles 

causes a major increase in the effective thermal conductivity of nanofluids, which rises 

with increasing concentration of nanoparticles. For example, a small amount of 

nanoparticles dispersed in ethylene glycol or oil can increase their inherently thermal 

conductivity by 40% [38], [46]–[48]. Vadasz [34] and Quaresma [35] have studied the 
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heat conduction mechanism in nanofluid suspensions for transient processes and found 

that the relationship between the heat flux and temperature gradient is not instantaneous 

but rather affected by two time lags, a heat flux time lag and a temperature gradient time 

lag. They developed an approximate equivalence between Fourier heat conduction in 

porous media and dual-phase-lagging heat conduction not considering the coupled 

thermal conductivity which has been attended by Wang and Wei [36]. The connection 

between the two-phase model and non-Fourier effect was also recognized in other 

systems. See, for instance, Donnelly [49] on the two-fluid theory and second sound in 

liquid helium. 

 

Nanofluids are non-Fourier fluids with a wide range of applications. Having enhanced 

properties as thermal conductivity for example, nanofluids could be employed in various 

engineering applications such as medical field, automotive industry, computers and 

power plant cooling systems. 

Through an experimental examination, Das et al. [52]  observed thermal conductivity 

enhancement of nanofluids consisting of CuO and Al2O3  nanoparticles and recommend 

that nanofluids could operate as cooling fluids for devices. Han et al. [53] observed 

considerable increase in the nanofluids effective specific heat and thermal conductivity 

using melting-freezing phase transition of the Indium particles in nanofluids. Donzelli et 

al. [37] observed bi-stable heat transfer while studding a specific class of nanofluids and 

suggested that they can be employed as a smart material serving as a heat valve 

controlling the heat flow rate.  

1.2 Motivation 

Previous studies have reported some unusual behaviours in the heat transfer of some 

fluids such as nanofluids and superfluid helium and used different approaches to explain 

observed behaviours in those fluids. Buongiorno [46]  argued that thermophoresis and 

Brownian motion as the only significant factors that could suitably describe the higher 

heat transfer capabilities of nanofluids. Tzou [54] by using the two-phase flow, suggests 

the possibility of oscillatory convection at instability, depending on the imposed 

boundary conditions. In fact, the adoption and nature of the boundary conditions for the 
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concentration of NPs is one of the major drawbacks of the two-phase approach for NFs. 

These conditions are unrealistic, and lead to dramatically different stability pictures, 

depending on their relative values. In reality, NFs are quite homogeneous solutions. 

Indeed, if the concentrations at the upper and lower surfaces are taken equal, the two-

phase model predicts that the effect of the NPs on the instability is lost, despite the 

presence of Brownian motion and thermophoretic effects [55]. 

There are some studies for conduction state of nanofluids based on non-Fourier effect but 

to our knowledge, there is no existing study on the effect of non-Fourier heat transfer for 

nanofluids in the convection state. Behaviour of non-Fourier fluids (such as nanofluids) 

must be better understood before they can be safely employed. The aim of this work is to 

study this problem mathematically and show that one can model and simulate the 

behavior of non-Fourier fluids.  

1.3 Objective 

The objectives of the present study are to: 

1- Investigate the effect of non-Fourier characteristics in the stability of non-Fourier 

fluids in the Rayleigh Bernard Convection.  

2- Clarify the unsusal behaviors of nanofluids and establish the explanation using 

non-Fourier equations. 

3- Model the post-critical convective state for thermo-gravitational instability in a 

non-Fourier fluid of the single-phase-lagging (SPL) type heated from below using 

a nonlinear spectral approach. 

In this study, a different approach is adopted to study the heat transfer in non-Fourier 

fluids especially nanofluids, by considering the fluid as a homogeneous solution, and 

accounting for the thermal relaxation time resulting from the non-Fourier 

characteristic.  
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1.4 Thesis layout 

First chapter provides an introduction to the non-Fourier fluids and a short literature 

review on the previous works and the models that have been used. The limitations of 

these models are also provided.  Then the motivation and the objective of the present 

study are described.  

In the second chapter, natural convection of non-Fourier fluids of the dual-phase-lagging 

(DPL) type is examined. Linear stability analysis indicates that, in contrast to ordinary 

fluids, a DPL fluid can lose its conductive mode to stationary or oscillatory convection. 

As Cattaneo number related to the non-Fourier fluid increases and reaches a critical 

value, both stationary and oscillatory convection become equally probable, confirming 

the existence of the bistable mode observed in experiment [37]. 

In the third chapter, a spectral approach is used to treat nonlinear convection which is not 

based on arbitrary mode selection. It has been shown that the leading-order contribution 

is essentially dominant for temperature field and stream function which usually are 

ignored in the other models. 

Fourth chapter summarizes the conclusions of each chapter and presents an 

understanding of the heat transfer in non-Fourier fluids and lists some future 

recommendations.  
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Chapter 2  

2 Thermal convection of dual-phase-lagging non-Fourier 
fluids. Linear stability and application to nanofluids 

2.1 Introduction 

In general, when a thermal disturbance applies to an object, the perturbation effects 

immediately at all points of the object where the temperature diffusion is described by 

Fourier's law and gives a parabolic equation. By Fourier's law, the flow rate of heat 

energy through a surface is proportional to the negative temperature gradient across the 

surface. Unlimited speed of heat propagation is assumed in Fourier’s law as a result 

Fourier’s law is not accurate enough and sometimes another equation is needed to study 

heat transfer [1] and [2]. Cattaneo [3] and Vernotte [4] proposed Cattaneo-Vernotte (C-

V) equation including a transient term multiplied by the thermal relaxation time of the 

subject. The thermal relaxation time is related to the average communication time among 

the collisions of electrons and phonons[5], and theoretically has been estimated for 

metals, semiconductors and superconductors to be in the order of microseconds (10-6 s) to 

picoseconds (10-12 s)[6]–[9]. The lagging behavior in the transient process is caused by 

the infinite time required for the substractural interaction to occur. These interactions 

may take place on the order of several seconds (such as delayed response induced by the 

low-conducting pores in sand media ) to nanoseconds ( the delayed respond caused by 

inert behavior of molecules at low temperatures) to picoseconds ( the delayed response 

due to phonon  scattering or phonon-electron interaction)[10]. It is important to realize 

that not only relaxation times but also the rate of heating could make the transient term 

considerable. For example laser pulse heating makes a significant amount of energy over 

a small time. There are some applications where the duration of the laser pulse can be 

measured on the scale of femto- or 10-15 seconds [11]. Limited literature is available on 

non-Fourier convection, and most of it concerns only to thermal instability [12]–[14].  

Recently, Khayat and co-workers  examined the natural convection of non-Fourier fluids 

of the single phase-lagging type, using the extended Cattaneo-Vernotte equation [15], 

[16]. They showed that the neutral stability curve contains a Fourier branch and an 
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oscillatory branch as well as the possibility of existence of a bistable mode, even for 

small relaxation time. They also showed that for high enough Cattaneo number, only 

oscillatory convection is predicted, and the critical Rayleigh number decreases with 

Cattaneo number. For large Cattaneo number, oscillatory convection becomes 

increasingly the mode of preference. Nanofluids are a base fluid, consisting of solid 

nanoparticles, with sizes normally on the order of 1–100 nm. Antaki [17] proposed that 

non-homogeneous structures apparently induce waves by delaying the response between 

heat flux and temperature gradient. Vadsaz [18] suggested that Fourier’s law is not valid 

at the macro-system level when nano-elements are suspended in the fluid. As a non-

homogeneous material with nano-elements, nanofluids have been studied widely as a 

non-Fourier substance.   

Experiments confirmed that the CV constitutive relation produces a more precise forecast 

than the classical Fourier law but a number of its predictions disagree with experimental 

results [10], [19]. A complete study illustrates that the Cattaneo-Vernotte constitutive 

relation takes into consideration the fast-transient effects only, but not the micro-

structural interactions. Both of these effects can be reasonably represented by the dual-

phase-lag between q and T∇ . In the other hand, Energy equation at a general position r 

and time t during the transient process may be written as, 

( ) ( ) ( )p
T

, t F , t c , t
t

∂
−∇ ⋅ + = ρ

∂
Q r r r  (2.1.1) 

where Q being the heat flux, T the temperature, pcρ  the volumetric heat capacity, F the 

volumetric heat source. Although allowing for a delayed response between the heat flux 

vector and the temperature gradient, evidently, the Cattaneo-Vernotte wave model still 

assumes an immediate response between the temperature gradient and the energy 

transport this response occurs right after a temperature gradient is established across a 

material volume; in other words, the Cattaneo-Vernotte wave model assumes an 

instantaneous heat flow, the temperature gradient is always the cause for heat transfer, 

while the heat flux is always the effect. The small scales in both space and time challenge 

the concept of Fourier model (thermal diffusion) and thermal relaxation (Cattaneo-

Vernotte wave model) when used alone for describing the heat transport process [10]. 
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The most commonly used base fluids are water and organic fluids such as ethanol and 

ethylene glycol. The materials that have been utilized as NPs include oxides of aluminum 

and silicon, as well as metals such as copper and gold. Diamonds and nanotubes have 

also been widely experimented with [20], [21]. This makes NFs extremely valuable, 

especially in processes where cooling is of primary concern, and thus there is an 

increasing focus on the convective properties of NFs in the literature. The presence of 

flow is expected to lead to complex and rich physical behaviour[7]. One advantage that a 

fluid containing NPs has over its milliparticle and microparticle counterparts is the small 

size of the NPs, which may be on the same order of magnitude as the molecules in the 

base fluid. This allows the solution to exist in a very stable manner without the 

occurrence of gravitational settling or particle agglomeration [20], [22], [23]. If the fluid 

in a cooling process has improved thermal properties, then the workload of other driving 

components in the system can be reduced. Better thermal conductivity and heat transfer 

coefficients would allow systems involving microelectronics to run with increased power, 

while still maintaining appropriate operating temperatures, furthering the processing 

capabilities. The potential positive impact of NFs in many applications is very promising.  

Earlier attempts to examine NFs were based on modelling the overall change in the 

thermophysical properties, such as thermal conductivity and viscosity of the NF, as a 

result of the addition of NPs [24]. More recently, extensive efforts have been devoted to 

understand heat transfer enhancement during conduction [22]. Relative to conduction, the 

convection of NFs has received little attention. So far, emphasis has been on forced 

convection (see, for instance, [22], [25];), and not so much on natural convection, despite 

the rich dynamics expected for a NF. Buongiorno [20] examined several potential factors 

that could be responsible for the observed heat transfer enhancement in forced 

convection, namely, the mechanisms behind slip (the difference between the absolute 

velocity of a NP and the velocity of the base fluid). The potential mechanisms for slip 

include inertia, gravity settling, diffusiophoresis, the Magnus effect, fluid drainage, 

Brownian diffusion and thermophoresis. However, Brownian motion and thermophoresis 

seem to be the only significant factors that could properly explain the unexpected heat 

transfer capabilities of NFs observed in experiment [20]. The Brownian motion, in this 

case, is the induced random drifting caused by the collisions of NPs with the molecules in 
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the base fluid, whereas thermophoresis is a diffusive effect that causes particles to move 

as a result of a temperature gradient within the fluid. 

As to natural convection, Tzou [26] carried out the linear thermal stability of Rayleigh-

Benard convection using a two-phase system approach, incorporating the effects of 

Brownian motion and thermophoresis. Tzou [26] showed that adding NPs to the base 

fluid increases the ability of the fluid to transfer heat by promoting the onset of 

convection, at a Rayleigh number lower by one or two orders of magnitude when 

compared to the base fluid. A similar stability analysis was carried out later by Nield  

[23], confirming Tzou’s findings and suggesting the possibility of oscillatory convection 

at instability, depending on the boundary conditions imposed. In fact, the adoption and 

nature of the boundary conditions for the concentration of NPs is one of the major 

drawbacks of the two-phase approach for NFs. So far, only Dirichlet conditions, 

specifying the unequal NP concentrations at the top and bottom boundaries, have been 

used. These conditions are not only impractical to control, but are unrealistic, and lead to 

dramatically different stability pictures, depending on their relative values. In reality, NFs 

are quite homogeneous solutions. Indeed, if the concentrations at the upper and lower 

surfaces are taken equal, the two-phase model predicts that the effect of the NPs on the 

instability is lost, despite the presence of Brownian motion and thermophoretic effects 

[23]. Consequently, the NF behaves as if it were solely the base fluid with different fluid 

properties. This prediction seems to contradict experiment. In fact, in their experiment on 

the thermal convection of a NF solution of copolymer NPs in water, Donzelli [1] 

observed oscillatory convection for uniformly distributed NPs. One possible explanation 

for the discrepancy between the two-phase model and experiment is that a small 

temperature difference at criticality may not be sufficient to cause a significant 

concentration gradient resulting from thermophoresis. This issue will be revisited in 

section 2.4. Generally, however, the two-phase model suggests the existence of stationary 

and oscillatory convection, depending on flow and fluid parameters [23], [27]. 

In this study, an alternative approach to the two-phase model is adopted to examine the 

heat transfer in a NF, and non-Fourier fluids in general, by considering the fluid as a 

homogeneous solution, and accounting for the finite thermal relaxation time resulting 
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from the addition of NPs to the base fluid. This is a similar approach to that used in 

modelling viscoelastic fluids with colloidal and particle suspensions: the addition of the 

polymer to a base solvent leads to a finite relaxation time of the stress [28]. The non-

Fourier character of NFs has also been recognized in the literature[26], [29], [30]. [29] 

established the equivalence between the conduction of a two-phase Fourier solution and 

that of a homogeneous dual-phase-lagging (DPL) fluid. The resulting DPL constitutive 

equation for heat conduction is of the non-Fourier type, relating the temperature gradient 

to the heat flux with lagging relaxation and retardation times. Also, the equivalence 

between the conduction of a two-phase Fourier solution and conduction of a 

homogeneous dual-phase-lagging has been made in other research. Vadasz [18] and 

Quaresma [31] has studied the heat conduction mechanism in nanofluid suspensions for 

transient processes and found that the relationship between the heat flux and temperature 

gradient is not instantaneous but rather affected by two time lags, a heat flux time lag and 

a temperature gradient time lag. They developed an approximate equivalence between 

Fourier heat conduction in porous media and dual-phase-lagging heat conduction not 

considering the coupled thermal conductivity which has been attended by Wang and Wei 

[29]. The connection between the two-phase model and non-Fourier effect was also 

recognized in other systems. See, for instance, Donnelly [32] on the two-fluid theory and 

second sound in liquid helium. The equivalence between the two-phase and DPL 

configurations is fundamentally significant, as it offers an alternative approach to the 

traditional two-phase formulations, where possible advantages of the DPL approach 

include: easier implementation of measureable/controllable initial and boundary 

conditions in heat flux and temperature, reduction in the number of fluid parameters, 

more manageable analytical steady solution for the base state, and a wider range of 

applications including the non-Fourier heat transfer of single-phase-lagging (SPL) fluids 

for fast heating processes. The DPL approach will be the premise of the current work, 

and will be revisited in section 2.2, to include convective effects, generalizing the 

existing SPL model [33], [34]. Although the DPL formulation and current analysis apply 

to a variety of phenomena[35], [36] , the emphasis in this work will be on the convection 

of NFs. The formulation is then applied to the thermal convection of a DPL fluid (section 
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2.3) and its linear stability (section 2.4). Discussion and results will be covered in section 

2.5. Finally, concluding remarks are given in section 2.6. 

 

2.2 Non-Fourier character of nanofluids 

It is envisaged at both the theoretical [10], [29], [37] and the experimental [30] levels that 

non-Fourier effects as being behind heat transfer enhancement in NFs, resulting from the 

addition of NPs to the base fluid. As mentioned above,[29] established the equivalence 

between DPL and two-phase systems for heat conduction of NFs, by assuming each of 

the base solvent and NP phases to obey Fourier’s law. Following [38] and accounting for 

interfacial interaction, the energy equation in each phase is then integrated over a 

representative volume element, yielding averaged coupled equations in terms of an 

effective thermal conductivity tensor, the NP concentration, ϕ, the film heat transfer 

coefficient, h, the interfacial area per unit volume, av, and the base fluid and NP 

properties. The two averaged equations are then combined to obtain an equation for heat 

conduction of the NF, of the DPL type (as opposed to the SPL Maxwell-Cattaneo 

equation), involving both a relaxation time and a retardation time, which can be 

expressed in terms of the properties of the original two-phase system (see below). The 

DPL model for heat conduction is now generalized for thermal convection. 

Following the formulation for viscoelastic constitutive equations for polymeric solutions 

[28], consider a NF solution of thermal conductivity K, comprising a solvent Fourier 

fluid of thermal conductivity KF and a solute of NPs of thermal conductivity KNP. The 

addition of NPs causes a change (normally increase) in the thermal conductivity of the 

solvent given by 

 

FK' K K= −  (2.2.1) 

 

In this case, the heat flux of the solution may be written as a superposition of Fourier and 

non-Fourier contributions:  
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F F F', K TQ Q Q Q= + = − ∇  (2.2.2) 

 

The Maxwell-Cattaneo equation for heat conduction [39] is the most commonly used 

constitutive equation for 'Q . Christov  [33] reformulated and rendered objective for a 

moving fluid, Khayat [34] revisited later. The resulting equation is simply reproduced 

here: 

 

Q
'

' K ' T
t

Q
+Q

δ
τ = − ∇

δ
 (2.2.3) 

 

where τQ is the relaxation time, and the Jaumann or Li type derivative is given by 

 

( ) ( ) ( ) ( ) ( )
t t

V V V
δ ∂

≡ + ⋅∇ − ⋅∇ − ∇⋅
δ ∂

 (2.2.4) 

 

In this case, the constitutive equation for the solution heat flux is obtained from (2.2.2) 

and (2.2.3) to read 

Q Q F T
T T

K T K K T
t t t

Q
+Q

δ δ∇ δ∇ τ = − ∇ −τ = − ∇ +τ δ δ δ 
 (2.2.5) 

 

where 

F
T Q Q

K

k
τ = τ ≡ τ γ  (2.2.6) 

 

is the retardation time, expressed as the product of the relaxation time and γ, the thermal 

conductivity ratio of the solvent to that of the NF solution. Relation (2.2.6) is the same as 

that relating the relaxation and retardation times in terms of the solvent-to-solution 

viscosity ratio of purely elastic (non-shear thinning) Boger fluids (see, for instance, Park 
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and Lee 1996 in the context of thermal convection). For pure heat conduction, equation 

(2.2.5) reduces to the dual-phase-lagging model [19], [29]: 

 

Q T
T

K T
t t

Q
+Q

∂ ∂∇ τ =− ∇ +τ ∂ ∂ 
 (2.2.7) 

 

It is not difficult to see that this equation relates the temperature gradient at a material 

point x and time t + τT to the heat flux vector at the same point at time t + τQ for a 

medium of thermal conductivity k. The relation reads: 

 

( ) ( )Q T, t K T , tQ x x+ τ = − ∇ + τ  (2.2.8) 

 

Both of the phase-lags are treated as intrinsic thermal or structural properties of the 

material.  When T 0τ = , this relation diminishes to the Cattaneo-Vernotte relation. For a 

NF, it is generally observed that the thermal conductivity increases relative to that of the 

base fluid. In this case, expression (2.6) suggests that the retardation time should be 

smaller than the relaxation time for a NF. Thus, it will be assumed that 

 

T Qτ < τ  (2.2.9) 

 

The inequality is in agreement with the observation made by Wang and Wei  [29] but in 

disagreement with [18] and [31] finding because they have not considered the coupled 

thermal conductivity. The coupled thermal conductivity is not negligible especially in 

low concentration of NPs (see Figure 2-2). Wang and Wei  [29] showed that the 

relaxation and retardation times can be related to the properties of the two-phase system, 

of the Fourier solvent phase (F) and nanoparticle phase (NP), with corresponding 

concentrations 1− φ and φ , respectively. The relations are rewritten here as: 
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( ) ( )( )
( ) ( )( )

( ) ( )( )
( )

F NPNP F NP F
Q T

v NP F NP / Fv NP F

c 1 c c K 1 c K
,

ha K K 2Kha c 1 c

φ ρ − φ ρ φ ρ + − φ ρ
τ = τ =

+ + φ ρ + − φ ρ 
 (2.2.10) 

 

Here ρ, c and K are the density, specific heat and thermal conductivity of each phase, 

respectively, and KNP/F is a coupling term arising from the averaging process [29], [38]. 

Recall that h is the film heat transfer coefficient, and v
F NP

2
a =

δ + δ
 is the interfacial 

area per unit volume, where Fδ  and NPδ  are mean interaction length in the base fluid 

and NP phase, which in the present case, are identified as the mean inter-particle distance 

and particle diameter, dNP, respectively. Thus, the relaxation time can be explicitly 

determined in terms of NP concentration from (2.2.10) once av is evaluated. The 

interfacial area per unit volume may be estimated as is customarily done in condensed 

matter physics, by recalling the radius of a sphere of solvent whose volume is equal to the 

mean volume per NP, the Wigner-Seitz radius, rs (see, for instance, page 123 in [41]. In a 

3-D system with N particles in a volume B, the radius is defined by 3
s

4 B 1
r

3 N n
π = ≡ , 

where n is the particle density. Thus, noting that 3
NP

6
n

d

φ
=

π
, then NP

F 1/3

d

2
δ =

φ
 and 

NP NPdδ = . In this case, 

 

( )
1/3

v 1/3
NP

4
a

d 2 1

φ
=

φ +
 (2.2.11) 

 

Note that, typically, for a NF, the interaction lengths are of the same order of magnitude. 

The retardation time is determined from (2.2.6) once the thermal conductivity of the NF 

is estimated. Generally, the retardation increases with NP concentration and vanishes in 

the absence of NP (see below). In this case, Q T, 0τ τ →  as 0φ→ , and the Fourier limit is 
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recovered as expected. Interestingly, kNP/F can be estimated by combining (2.2.6) and 

(2.2.10). The retardation time can be estimated from (2.2.6) once the thermal 

conductivity of the NF is known and the relaxation time is evaluated from (2.2.10). Here, 

the dependence of the thermal conductivity on NP concentration for Al2O3, TiO2 and 

CuO are determined following [20],[24] and [42] respectively: 

 

F

K
1 7.47

K
= + φ      (Al2O3)  

2

F

K
1 2.92 11.99

K
= + φ− φ     (TiO2)  (2.2.12 a, b and c) 

( )
( )

NP F NP F

F NP F NP F

K 2K 2 K K 1.33K

K K 2K K K 1.33

+ + − + φ
=

+ − − + φ
.  (CuO)   

 

Obviously, thermal conductivity of NPs affects the relaxation and retardation times. 

Figure 2-1 illustrates the dependence of the relaxation (Figure 2-1a) and the retardation 

times (Figure 2-1b) on NP concentration. In this case, the NF solution comprises water, 

as a base (Fourier) fluid solvent, and Al2O3, TiO2 and CuO, as solute NPs. Figure 2-1 

illustrates that Al2O3 has the highest relaxation and retardation time. The main reason is 

higher thermal conductivity of Al2O3 compare to the other NPs. Surprisingly, Figure 2-1 

shows that despite of lower thermal conductivity of TiO2 compare to CuO, TiO2 has 

higher relaxation and retardation times than CuO. It rises from dependence of time and 

phase lags on specific heat and density of NPs. In the other word, time and phase lags 

intensively increase with specific heat and density of NPs. In Figure1, Al2O3 has a higher 

relaxation and retardation times because of its higher specific heat and density (and 

thermal conductivity). Obviously the ability to store the heat of NPs is a considerable 

parameter for induced time and phase lags and it is even more important than thermal 

conductivity. Note that the cρ  term of Al2O3, CuO and TiO2 are 63.5 10× , 62.4 10×  and 

62.9 10×  respectively. Both times or phase lags increase with concentration, with the 

retardation time remaining always lower than the relaxation time (γ < 1). The inset 
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displays an essentially power-law growth for both times, particularly at low 

concentration: 3.5
Q T, ~τ τ φ . Using (2.6), (2.10) and (2.12) one obtains 

 

( )
( )( )

( )
( )

( )( )
NPF

NP / F NP F NP
F FNP F

c1 cK K
K 1 K K K K

K c K 1 c

   φ ρ− φ ρ 
= − + + +       φ ρ − φ ρ    

 (2.2.13) 

 

The influence of the NP concentration on the coupled thermal conductivity for Al2O3, 

TiO2 and CuO in the water is illustrated in Figure 2-2. From (2.2.13), definitely, 

conductivity of NPs is the most important parameter in the coupled thermal conductivity 

and as Figure 2-2 illustrates, it increases by thermal conductivity of NPs. Note that 

thermal conductivity of Al2O3, CuO and TiO2 are 40, 20 and 11.7 watts per meter Kelvin 

respectively. The coupled thermal conductivity is high at low NP concentration, 

decreases monotonically with NP concentration and eventually vanishes. It means that 

the thermal resistance, which grows with the NP concentration, should be considered 

especially at higher NP concentrations.   

Finally, and as mentioned above, a dimensionless relaxation time is given by the 

Cattaneo number: Q
2

C
D

τ κ
= , which will be formally introduced in the next section, and 

should be compared with the elasticity number, 
2

E ,
D

τκ
=  for a polymeric solution with 

relaxation time, τ for stress, Thus, both C and E are the ratios of a relaxation time over a 

thermal diffusion time. For a NF solution of water and TiO2 NPs, the relaxation time is 

obtained as per the procedure in section 2.2. In this case, 4
Q 2.05 10 s−τ = ×  for NP 

concentration of 7%, and can lead to a non-negligible Cattaneo number for a moderately 

small gap: C = 0.003 for D = 0.1 mm. The corresponding retardation time is

4
T 1.775 10 s−τ = × . 
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(a) 

(b)

 
Figure 2-1: Influence of the NP concentration on (a) the relaxation and (b) retardation times for 

Al2O3, TiO2 and CuO. 
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Figure 2-2: Dependence of the coupled thermal conductivity on NP concentration for Al2O3, 

TiO2 and CuO in the water. 

 

2.3 Governing equations and boundary conditions 

Consider a thin layer of a Newtonian non-Fourier liquid confined between the (X, 

Z) planes at Z 0=  and the planes, maintained at fixed temperatures 0T T+δ  and 0T , 

respectively. The fluid layer is assumed to be of infinite horizontal extent. Convection 

emerges when the buoyancy effect exceeds a critical threshold relative to the viscous 

effect. The gravity acceleration vector is given by g = - gez, where ez is the unit vector in 

the Z direction. The fluid density, ρ, is assumed to depend on the temperature, T, 

following 

 

( )Tρ = ρ 1- α T - T0 0    (2.3.1) 

 

where α
T is the coefficient of volume expansion and 0ρ  is the mass density of the fluid at 

T
0
. The fluid is assumed to be incompressible, of specific heat at constant pressure Cp, 

thermal conductivity K and viscosityµ . In this case, the general governing equations for 

a non-Fourier fluid comprise the conservation of mass, linear momentum and energy, as 

well as the constitutive equation for the heat flux. In this case, the conservation equations 

are given by 
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0V∇ ⋅ =  (2.3.2) 
  

( )0 t P gρ + ⋅∇ =−∇ −ρ +µ∆zV V V e V  (2.3.3) 

  

( )0 p tc T TV Qρ + ⋅∇ = −∇ ⋅  (2.3.4) 

 

where ∇ and ∆  are the gradient and Laplacian operators, respectively, and a subscript 

denotes partial differentiation. Here V = (U, W) is the velocity vector, P is the pressure, T 

is the temperature and Q is the heat flux vector. Note that the Boussinesq approximation, 

which states that the effect of compressibility is negligible everywhere in the 

conservation equations except in the buoyancy term, is assumed to hold. In this work, the 

heat flux is assumed to be governed by dual-phase-lagging equation (2.2.5), explicitly re-

written here as 

 

( ) ( )Q t T tK T T T TQ V Q Q V Q V V τ + ⋅∇ − ⋅∇ = − − ∇ + τ ∇ + ⋅∇∇ −∇ ⋅∇   (2.3.5) 

 

where Qτ  and Tτ  are the relaxation and retardation times, respectively. It is also possible 

to generate a generalized energy equation. Indeed, upon taking the divergence of (2.3.4), 

noting the identity ( ) ( ):a b a b a b∇⋅ ⋅∇ =∇ ∇ + ⋅∇ ∇⋅ , a and b being two general vectors, 

and using (3.5), one obtains 

 

( )

( )
Q tt t t

2 2 2
t T t

T 2 T T T

T T T T T ,

V V V V

V V

τ + ⋅∇ + ⋅∇ + ⋅∇ ⋅∇  

 + + ⋅∇ = κ ∇ + τ ∇ + ⋅∇∇  

 (2.3.6) 

 

where 
0 p

K

c
κ =

ρ
 is the thermal diffusivity. The boundary conditions at the lower and 

upper surfaces are taken to correspond to free-free conditions. In this case 
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( ) ( )z zX,Z 0, t X,Z D, t 0,V e V e= ⋅ = = ⋅ =   

( ) ( )zz z zz zX,Z 0,t X,Z D,t 0,V e V e= ⋅ = = ⋅ =  (2.3.7) 

( ) ( )0 0T X,Z 0,t T T, T X,Z D,t T .= = +δ = =   

 

Other boundary conditions could be adopted, such as the rigid-rigid or rigid-free 

conditions. However, the free-free conditions are convenient and most commonly used in 

the literature. Moreover, no qualitative change in behaviour is expected if one set of 

boundary conditions is used over another [43]. In fact, [44] confirmed this consistency in 

behaviour for rotating flow as well.  

The base state corresponds to stationary heat conduction, which remains the same 

as for a Fourier fluid since both transient and upper convective terms in (3.5) vanish in 

this case. Consequently, the temperature, pressure gradient and heat flux for the 

conductive state are given by  

 

( )B 0T Z D T T T=− δ + +δ   

( )B 0 TdP / dZ 1 T 1 Z D g = −ρ −α δ −   (2.3.8) 

B
T

0,K
D

Q
δ =  

 
  

 

respectively. The problem is conveniently cast in dimensionless form by taking the 

length, time and velocity scales as 
2D

D, and
D

κ
κ

, respectively. Let ( )
2

B
D

p P P= −
κµ

 and 

BT T

T

−
θ =

δ
 be the dimensionless pressure and temperature deviations from the base 

(conductive) state. In this case, the dimensionless equations are given by 

 

0v∇ ⋅ =  (2.3.9) 

( )1
t zPr p Rav v v e v− + ⋅∇ = −∇ + θ + ∆  (2.3.10) 
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t j wvθ + ⋅∇θ= − +  (2.3.11) 

( ) ( )t z t zC S− + ⋅∇ − ⋅∇ =− −∇θ− ∇θ + + ⋅∇∇θ−∇θ⋅∇q v v q q v q v v v  (2.3.12) 

 

where v(u, w) and q are the dimensionless velocity and heat flux vectors, respectively. 

Here j q= ∇ ⋅ . It is interesting to note the presence of four linear terms of non-Fourier 

origin in equation (2.3.12), namely the transient terms and the velocity gradient in the z 

direction. This contrasts with the convection of viscoelastic fluids where the transient 

terms are the only linear terms that survive in the stress equations (see [45]). This is an 

important point that will be explored further in section 2.4. Equation (2.3.6) takes the 

form: 

 

( )

( )
tt t t t

2 2 2
t t

C 2 w

- w S .

v v v v

v v

θ + ⋅∇θ + ⋅∇θ − + ⋅∇ ⋅∇θ  

+ θ + ⋅∇θ = ∇ θ + ∇ θ + ⋅∇∇ θ
 (2.3.13) 

 

The following non-dimensional groups have been introduced, namely, the Prandtl 

number, the Cattaneo number, the Rayleigh number and dimensionless retardation time, 

respectively, given by 

 

3
Q T T

2 2

T gD
Pr , C , Ra , S

D D

τ κν δ α τ κ
= = = =

κ νκ
 (2.3.14) 

 

From the discussion in section 2.2, C and S are not entirely unrelated. In fact, they 

are both related directly to the NP concentration. Since Fk
S C

k
= , S must always be 

smaller than C for a NF. In this work, although C and S involve other parameters, they 

will be interpreted as reflecting the effect of NP concentration (see Figure 2-1). Note that 
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Fk
S C, 1

k
= γ γ = <  (2.3.15) 

 

The problem can be simplified by casting the constitutive equation for heat flux in 

terms of the scalar variable j. Thus, upon taking the divergence of equation (2.3.12), and 

recalling again the identity ( ) ( ):a b a b a b∇⋅ ⋅∇ =∇ ∇ + ⋅∇ ∇⋅ , one obtains the following 

constitutive equation for j: 

 

( ) ( )t tC j j j Sv v+ ⋅∇ + = −∆θ− ∆θ + ⋅∇∆θ  (2.3.16) 

 

where the continuity equation (2.3.9) is used. The boundary conditions (2.3.7) reduce to 

 

( ) ( )
( ) ( )

( ) ( )
z z

w x, z 0, t w x, z 1, t

u x, z 0, t u x, z 1, t

x, z 0, t x, z 1, t 0,

= = =

= = = =

= θ = = θ = =

 (2.3.17) 

 

which must be used to solve equations (2.3.9), (2.3.10), (2.3.11) and (2.3.16). Finally, the 

Fourier model is recovered upon setting C = 0 (zero relaxation time) in (2.3.12), (2.3.13) 

or (2.3.16). Moreover, the Fourier limit is also recovered upon setting γ = 1 (thermal 

conductivity of the NF solution is the same as that of the base fluid solvent). In this case, 

q =−∇θ  and j= −∆θ  satisfy equations (2.3.12) and (2.3.16), respectively. 

2.4 Linear stability analysis 

Comparable to a Fourier fluid, the conduction of a non-Fourier fluid is lost to 

convection once a critical value of the Rayleigh number, Rac(k), is exceeded, where k is 

the wavenumber of the disturbance. However, in contrast to a Fourier fluid, and similar to 
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a viscoelastic fluid [45], non-Fourier conduction can be lost to steady or oscillatory 

convection, depending on the flow parameters. The linear stability analysis of the 

conduction state is similar to the case of a viscoelastic fluid, except that, unlike a 

viscoelastic fluid, a non-Fourier fluid at rest does further recognize the non-Fourier 

character, which is reflected by the presence of the additional linear velocity gradient on 

the two sides of (3.12), in addition to the transient term. The stability of the conduction 

state is examined to a small (infinitesimal) perturbation of the form 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

st ikx st ikx

st ikx st ikx

x,z, t z e , x,z, t z e ,

p x,z, t P z e , j x,z, t J z e ,

v V
+ +

+ +

= θ = Θ

= =
 (2.4.1) 

where k is the perturbation  wavenumber in the x direction, and s dictates the time 

evolution of the disturbance. Thus, the conduction/base state is stable (unstable) if the 

real part of s is negative (positive). Following the standard procedure in linear stability 

analysis, the z-dependent eigenvector components are governed by 

 

( )
( )

( ) ( )( )

1 2 2

1 2 2

2 2

ikU DW 0,

Pr sU ikP D k U,

Pr sW DP D k W Ra ,

s J W,

Cs 1 J Cs 1 D k ,

−

−

+ =

= − + −

= − + − + Θ

Θ = − +

+ = − γ + − Θ

 (2.4.2) 

     

where D = d/dz. In this case, taking W = sin(nπz), and eliminating U, P, Θ and J, lead to 

the following dispersion relation: 

 

( )
2

3 2 2 3 2
n n n n n

n n

1 Pr 1 k Ra Pr Pr
s Pr s Pr s k Ra 0

C C C

 ++ β + + γβ + β − + γ β + β − =   β β   
 (2.4.3) 
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where 2 2 2
n k nβ = + π , and n is the mode number. In contrast to a Fourier fluid, the 

presence of the cubic term in (2.4.2) hints to the possibility of stationary or oscillatory 

convection. Interestingly, the retardation time always appears in the ratio S/C = γ. Thus, 

the stability picture depends on the relaxation time and thermal conductivity ratio (as well 

as on Pr and Ra). This is a similar situation to viscoelastic fluids where the retardation 

time also appears in the form of viscosity ratio [45]. 

For steady convection, one recovers the same critical Rayleigh number, Rac, as a 

Fourier fluid, namely 

 

3
n

c cF 2
Ra =Ra

k

β
=  (2.4.4) 

 

In this case, the n > 1 neutral curves are all above the n = 1 curve, with Rac 

displaying a minimum, 
4

m
27

Ra
4

π
=  at mk

2

π
= . For oscillatory convection, the 

corresponding neutral curves are obtained upon setting s i= ω  in (4.3), ωc being the 

frequency, and separating real and imaginary parts to give 

 

( )
( )

2
n

c cF2 2
n

Pr 2 Pr C Pr 1
Ra + Ra

C Pr Pr

 + γ + γ β + +
 = γ
 β + γ  

 

( )n
c

C Pr 1 Pr 11

C Pr

β − γ − −
ω =

+ γ
. 

(2.4.5) 

 

Clearly, oscillatory convection is possible only if 
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( )n
1 Pr

PrC 1

+
β >

− γ
 or 

( )
2 21 Pr

k n
Pr C 1

+
> − π

− γ
. (2.4.6) 

 

This criterion constrains the range of wavenumber for oscillatory convection. 

Thus, it is anticipated that each marginal stability curve in the Ra-k plane comprises two 

distinct branches: a Fourier branch, corresponding to steady convection, for k < ki, and a 

non-Fourier branch, corresponding to oscillatory convection, for k > ki, where ki is the 

wavenumber at which the two branches intersect, and satisfies the relation: 

 

( )
2 2

i
1 Pr

k n
Pr C 1

+
= − π

− γ
 (2.4.7) 

 

since, at intersection, the frequency vanishes. It is not difficult to verify that substituting 

(4.6) into (4.5) leads to ( ) ( )c i i cF iRa k k Ra Ra k k= ≡ = = . Expression (4.7) suggests 

that a limit, C ,∞  of C exists for which ki = 0.  

Two limits are worth examining here. Consider first the limit of large Cattaneo 

number (high NP concentration and relaxation time or the case of a very small gap). In 

this case, (4.5) reduces to 

 

( )
( )

n
c cF c

C C

Pr 1
lim Ra Ra , lim

C Pr→∞ →∞

β − γ
= γ ω =

γ +
 (2.4.8) 

 

A couple of interesting observations can be made. First, the oscillation frequency 

behaves like c ~1/ Cω , suggesting that oscillatory rolls may not be detectable in reality 
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for large C. Second, the critical Rayleigh number is lower than the Fourier level. Whether 

this behaviour holds for any C will be examined below. Third, in the absence of 

retardation, the critical Rayleigh number diminishes like cRa ~1/ C , suggesting that 

convection may be spontaneously observed (without a conduction phase), for any 

temperature differential, for large C. However, real NFs tend to possess non-zero 

retardation, which leads to a non-zero minimum critical Rayleigh number equal to cFRaγ  

for large C, above which convection sets in. In this case, conduction is always present, 

but its range of temperature differential may decrease significantly with NP 

concentration. Another limit of interest is the large Pr limit. This is also a limit of 

practical interest since most NFs possess a relatively large Prandtl number. In this limit, 

(4.5) reduces to  

 

( )c cF c n
Pr Prn

1 1
lim Ra Ra , lim 1 C 1

CC→∞ →∞

 
= γ ω = − γ β −  β 

+  (2.4.9) 

 

In this case, the intersection wavenumber becomes 

 

( )
2 2

i
Pr

1
lim k n

1 C→∞
= − π

− γ
 (2.4.10) 

 

In the double limit of large C and Pr, (2.4.9) suggests that oscillatory convection 

sets in at a Rayleigh number smaller than the Fourier level by a factor γ. Further physical 

insight of these limits will be gained below when numerical results are reported. 

Finally, it is helpful to list the eigenvector components, which will be used later, and 

take the form: 

( ) ( ) ( )
1

2

in Pr s
U cos n z , W sin n z , P n cos n z ,

k k

− π + β
= π = π = − π π 
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( )
( )

( )
( )n2 2

n n n

Cs 1 Cs 1
sin n z , J sin n z

Cs C 1 s Cs C 1 s

   + γ +
   Θ = π = β π
   + γ β + +β + γ + + β   

 (2.4.11) 

 

Of particular interest here is the non-Fourier character reflected in the flow and 

heat transfer. In fact, (2.4.11) clearly reflects the absence of non-Fourier effects at 

criticality for stationary convection. This is easily verified upon setting s = 0, as one 

recovers the Fourier limit. This is, of course, not the case for oscillatory convection. 

Consequently, stationary convection of a non-Fourier fluid or a NF is expected to be 

Fourier in character, near criticality. It is observed that other modes will be present near 

criticality, which do exhibit a non-Fourier character, but they will be dominated by the 

critical mode. Of course, as the Rayleigh number increases beyond the critical value, non-

Fourier effects become increasingly palpable. Similarly, in the case of a viscoelastic or a 

non-Newtonian fluid, in general, any convective steady state emerging near criticality 

will not have a significant non-Newtonian character to it given the absence of shearing 

and elongation rates of the base (conductive) state [45]. However, despite the apparent 

similarity, there is a significant difference between the current non-Fourier and non-

Newtonian loss of conduction to steady convection. For non-Newtonian convection near 

criticality, the elastic component of the stress remains small given the absence of flow in 

the pre-critical range of Rayleigh number. More generally, for a non-Newtonian flow, the 

destabilization of the base to a steady state leads to a Newtonian state at criticality. 

However, if the base state involves shearing and elongation, as in the case of Taylor-

Couette flow, the steady vortex flow, does exhibit non-Newtonian character near 

criticality [44].  

The lack of Fourier character in the stationary convection mentioned above is 

only apparent, as (4.11) does not reflect the whole situation. At the center of the argument 

is the relation between the heat flux vector components and the temperature (gradient), 

which has not been invoked so far in the discussion since j, and not q, is needed for the 

solution of the problem. The replacement of the heat equation (2.3.12) by (2.3.16) leads 

to significant simplification in the current linear stability (and, eventually, any nonlinear) 

analysis as the formulation includes the scalar variable, j instead of the vector q, reducing 
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the number of degrees of freedom. Moreover, the upper-convective terms are replaced by 

a convective term, jv ⋅∇ . This term does not survive in the linear analysis given the 

stationary character of the base conductive state. Even the generalized energy equation 

(2.3.13) illustrates the absence of non-Fourier character upon the onset of stationary 

convection. However, the heat flux vector does exhibit a non-Fourier contribution at 

criticality, emerging from the upper-convective terms. Indeed, near criticality, the heat 

flux in (3.12) reduces to 

 

( ) zC 1q= v−∇θ+ γ −  (2.4.12) 

 

Although, as deduced upon setting s = 0 in (4.11), the temperature, velocity and 

pressure do not display any non-Fourier character at criticality, the heat flux does, as 

(4.12) suggests. This is verified further by substituting for the temperature and velocity 

from (4.11) into (4.12), to give 

 

( ) ( ) ( )
2 2

x 2
n

C 1 k Cs 1n
Q i sin n z

sC 1 k Cs s

 γ + γ +π
= − + π 

+ + +β  
 (2.4.13 a, b ) 

( )z 2
n

1 Cs 1
Q n C cos n z

Cs 1 Cs s

 γ + γ +
= π − π  + + +β 

  

 

Clearly, the non-Fourier character survives when s = 0. However, given the 

decoupling from q, as equations (2.3.9)-(2.3.11) and (2.3.16) suggest, the flow and 

temperature fields are not expected to reflect a significant non-Fourier character upon the 

onset of stationary convection. Of course, this is not the case for the onset of oscillatory 

convection (see below).  
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2.5 Results and discussion 

In this section, results based on the formulation above are discussed. The case of a 

SPL fluid with no retardation time is presented first before examining DPL fluids. 

Conditions for both stationary and oscillatory convection are emphasized. It is helpful to 

schematically summarize the stability picture and notations used, in anticipation of the 

ensuing discussion and details. The neutral curves are illustrated in the (Rac-k) plane in 

Figure 2-3 for different non-Fourier levels or, equivalently, different levels of NP 

concentrations. The Fourier limit is reflected by the C = 0 curve. For a weakly non-

Fourier fluid (C< < CH) the neutral curve comprises a Fourier branch and an oscillatory 

branch, intersecting at (Rai, ki). In this case, the minimum critical Rayleigh number is 

that of the Fourier branch
4

mF mF
27

Ra ,k
4 2

 π π
= =  

 
. As C increases, a minimum 

develops in the oscillatory branch. At C = CH, the minima of the stationary and 

oscillatory branches reach the same Rayleigh number but different wavenumbers. For a 

moderately strongly non-Fourier fluid (C > CH), there is only one minimum 

( )m mF m mFRa Ra ,k k< > . Finally, it is well established that the n = 1 mode is the most 

dangerous mode for a Fourier fluid. Although this is not easy to establish analytically for 

a DPL fluid, by examining (2.4.5), the n = 1 mode turns out to be the most dangerous 

mode, for both stationary and oscillatory convection. This is particularly obvious for 

large C as suggested by (2.4.7), and not difficult to establish for large Pr from (2.4.8). 

Consequently, only the n = 1 mode will be considered hereafter. 

  



36 

 

Figure 2-3: Schematic illustrating notations used in the (Ra-k) plane, showing qualitatively 

various marginal stability curves and corresponding regimes with respect to the critical Cattaneo 

number, CH. The curves 1, 2, 3, 4 and 5 correspond to C << CH, C < CH, C = CH, C > CH and 

C >> CH, respectively. 

2.5.1 Stability of single-phase-lagging fluids 

Consider now the case of a SPL fluid, with zero retardation time (γ = 0). In 

analogy with viscoelastic fluids, this is equivalent to examining an upper-convected 

Maxwell fluid (pure polymeric melt). Although somewhat unrealistic as a model for NFs, 

this limiting case has multiple advantages over a fluid with retardation. It serves as 

reference case for a fluid with strong non-Fourier character (relaxation time of the same 

order as the process time), is mathematically more manageable, and can, in the limit, 

reflect the behaviour of a NF with very high NP concentration. The influence of the 

Cattaneo number on the overall marginal stability picture is typically illustrated in Figure 

2-4, where the marginal stability curves (Figure 2-4a) and corresponding frequency 

(Figure 2-4b) are plotted against the wavenumber for Pr = 10 and γ = 0. At the center, is 

the marginal stability curve for a Fourier fluid, which is recalled to be independent of Pr. 

For a Fourier fluid, there is an exchange of stability between the pure conduction state 

and stationary convection for any wavenumber. For relatively small C > 0, each non-

Fourier curve comprises a stationary branch, also part of the Fourier curve, for k < ki, and 

an oscillatory convective branch (overstability) for k > ki. The critical Rayleigh number 

and frequency for the oscillatory branch simplify from (2.4.5) to 
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2

c cF c2 2 2

C Pr Pr 1 1 C Pr Pr 1
Ra Ra ,

C PrC Pr

β + + β − −
= ω =

β
 (2.5.1) 

Clearly, oscillatory convection is possible only if 

 

2
i

1 Pr
k k

Pr C

+
> = −π  (2.5.2) 

 

Upon using inequality (2.5.2), it is not difficult to show that the oscillatory branch 

always lies below the Fourier curve. This is also evident from Figure 2-4a. Thus, 

 

2

c cF2 2 2

C Pr Pr 1
1, or Ra Ra

C Pr

β + +
< <

β
 (2.5.3) 

 

Inequality (5.2) constrains the range of wavenumbers for oscillatory convection.  
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(a)

(b)

Figure 2-4: Influence of the Cattaneo number on (a) the marginal stability curves in the Ra-k 

plane and (b) corresponding oscillation frequency for a single-phase-lagging fluid  

(Pr = 10 and γ = 0). 

 

2.5.2 Stability of dual-phase-lagging fluids 

Most nanofluids, at least the ones currently used in practice, possess a finite (non-

zero) and significant retardation time (0 < γ < 1). Similar to viscoelastic fluids, where the 

retardation-to-relaxation time ratio is equal to the solvent-to-solute viscosity ratio, the 

retardation time for a NF is also smaller than the relaxation time, as its ratio to the 

relaxation time is equal to the solvent-to-NF thermal conductivity ratio (2.6). This ratio 
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decreases with NP concentration as reported in Figure 2-1. The presence of the 

retardation time is expected to reflect the Fourier character of the NF. In this regard, the 

NF solution is analogous to a Boger (viscoelastic) fluid, obeying the Oldroyd-B 

constitutive equation [28], [40]. 

Thus, consider next the stability of a DPL fluid with γ = 0.5; or a NF of thermal 

conductivity twice that of the base fluid. The marginal stability curves and corresponding 

frequencies are displayed in Figures 2-5a and 2-5b, respectively, for Pr = 10. The range 

of C values [0, 0.3] includes the range [0, 0.2] in Figure 2-4 for reference. Thus, in 

comparison with a SPL fluid or NF with negligible retardation (γ = 0), the presence of 

retardation tends to be stabilizing, resulting in higher critical Rayleigh number and 

narrower oscillatory range. Interestingly, in contrast to the critical Rayleigh number, the 

frequency range does not seem to be significantly affected by retardation (compare 

Figures 2-4b and 2-5b). 
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(a)

(b)

Figure 2-5: Influence of relaxation time on (a) the marginal stability curves in the Ra-k plane 

and (b) corresponding oscillation frequency for a dual-phase-lagging fluid (Pr = 10 and γ = 0.5). 

 

 Again, as C increases, the conductive state loses its stability eventually to 

oscillatory convection at a critical Rayleigh number that decreases with C. The limit in 

(4.8), as well as Figure 2-5a, reflects a saturation to this decrease, with the Rayleigh 

number for the oscillatory curve reaching cFRaγ . Consequently, for large C (very high NP 

concentration), in contrast to a SPL fluid, a DPL fluid is expected to always exhibits pure 

conduction before oscillatory convection. 
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The influence of retardation is further assessed upon examining the behavior of 

the Rayleigh number, Rai, and corresponding wavenumber, ki, at the intersection of the 

oscillatory and stationary branches (see Figure 2-3). Figure 2-6 illustrates the interplay 

between relaxation and retardation, displaying the dependence of Rai (Figure 2-6a) and ki 

(Figure 2-6b) on C for Pr = 10 and [0,0.75]γ∈ . Recall that the case γ = 1 corresponds to a 

Fourier fluid, with iRa →∞ . The curves in Figure 2-6 are more easily interpreted in 

conjunction with the marginal stability curves as in Figures 2-4a and 2-5a. Recall from 

those curves that two intersection points are possible for the same critical Rayleigh 

number, one for a weakly, and another for a strongly non-Fourier fluid, on the right and 

left branch of the Fourier curve, respectively. The intersection wavenumber is given by 

 

2
i ik = β −π  (2.5.4 a) 

 

where 
( )i

1 Pr

Pr C 1

+
β =

− γ
. The double-valuedness is reflected in Figure 2-6a as well as in 

the expression of the Rayleigh number at intersection, namely 

 

( )
( )

2
i

i 2

1 Pr
Ra

1 Pr PrC 1

+ β
=

+ −π −γ
 (2.5.4 b) 
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(a)

(b)

Figure 2-6: Influence of relaxation and retardation times on (a) the Rayleigh number, Rai, and 

(b) wavenumber, ki, at the intersection between the steady and oscillatory marginal stability 

branches (Pr = 10). 

The minimum of Rai is the same regardless of the thermal conductivity ratio or 

the Prandtl number, but occurs at different C values, corresponding to ik
2

π
= , and 

given by 
( ) ( )

2

2 Pr 1 1
C

3 Pr

+ − γ
=

π
. These C values coincide with the intersection of the ki 

curves and the 
2

π
 line in Figure 2-6b. Figure 2-6a shows a widening of the C range as γ 

increases. The intersection wavenumber in Figure 2-6b decreases monotonically with C 
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(or relaxation time), signaling a wider oscillatory range for NFs with higher NP 

concentration (refer to Figure 2-5a). The decrease is more rapid for small retardation, 

leading to oscillatory convection over the whole k range at some critical C value. Beyond 

a level of retardation (here, roughly, 0.6γ > ), there is always a range of small 

wavenumber for stationary convection. 

The marginal stability curves discussed so far only reflect the threshold for the 

loss of stability of the conduction state, but do not indicate how the stable and unstable 

states behave with time (monotonically or oscillatorily). This transient behaviour is 

dictated by the sign of the discriminant in the dispersion cubic relation (4.3). Thus, 

monotonic or oscillatory behaviour is predicted if the discriminant, ( )Ra, k,Pr,C,∆ γ , is 

positive or negative, respectively.  

Figure 2-7 illustrates the stability picture for a non-Fourier fluid with C=0.05, for 

a SPL fluid (γ = 0) in Figure 2-7a, and DPL fluid (γ = 0.3) in Figure 2-7b. The marginal 

stability curve is shown is solid thick line. Recall that the marginal stability curve has two 

branches, a stationary or Fourier branch and an oscillatory branch lying to the left (k < ki) 

and right (k > ki) of the intersection point (Rai, ki), respectively. The curve corresponding 

to zero discriminant lies below the Fourier branch and above the oscillatory branch since 

it must pass through the intersection point. In fact this curve is tangent to the Fourier 

branch at the intersection point. Thus, the dark region between the ∆ = 0 curve and the 

marginal stability curve for k < ki is a stationary stable region (any perturbation from the 

conduction state is damped monotonically). For k > ki, the cross-hatched region between 

the two curves is oscillatory unstable (any perturbation from the conduction grows 

oscillatorily). The region below the ∆ = 0 curve for k < ki is termed as oscillatory stable 

region (any perturbation from the conduction state decays oscillatorily). Recall that the 

region below the oscillatory branch of the marginal stability curve (k > ki) is also an 

oscillatory stable region. Figures 2-7a and 2-7b indicate that the stationary stable (dark) 

region is larger for a DPL fluid compared to a SPL fluid. This region grows with fluid 

retardation (as γ increases), eventually invading the whole region below the neutral curve 
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for a Fourier fluid. The Figures also indicate that the oscillatory unstable (cross-hatched) 

region diminishes with fluid retardation, and disappears in the Fourier limit.  

(a)

(b)

Figure 2-7: Stationary and oscillatory regions in the marginal stability curve for (a) SPL fluid 

(C=0.05, γ = 0, Pr=10), (b) DPL fluid (C=0.05, γ = 0.3, Pr=10). 

Figure 2-8 shows the influence of Rayleigh number relaxation time on the 

temperature perturbation of the critical point for a single-phase-lagging fluid with and Pr 

= 10. The critical point corresponds to k
2

π
= and Ra=657 when C < CH. For a Fourier 

fluid (C = 0), Figure 2-8a indicates a linear increase in the effective root with respect to 

the Rayleigh number. As the Cattaneo number increases, this quasi-linear increase does 

not persist. Recall that s0 = 0 at the neutral point. Unlike the Fourier case, a break-point is 
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observed in the effective root curves for the non-Fourier (C ≠ 0) fluids. At this point, a 

discontinuity is observed in the slope with respect to Ra. The break-point signals a mode 

change for the non-Fourier fluid and shows a transition from oscillatory mode (lower 

Rayleigh number) to the stationary mode (higher Rayleigh number). Thus, the transition 

does not occur in the case of a Fourier fluid, and the stability mode is always stationary. 

As the Cattaneo number exceeds CH (0.0655 for γ =0)=0), the critical wave number increases 

and the critical Rayleigh number decreases, which is confirmed from Figure 2-8. By 

increasing the Cattaneo number, the onset of convection occurs at a lower Rayleigh 

number (or temperature difference). At high Rayleigh numbers (> 900 in Figure 2-8a), 

there is a monotonic increase in the effective root with respect to C. There is no clear 

trend, however, for smaller Ra. When the mode of the non-Fourier fluid turn from 

oscillatory to monotonic at the break-point, the slope of the curves increases sharply, 

reflecting a strong tendency toward instability. The break-point occurs at higher Rayleigh 

number for a fluid with higher Cattaneo number. Figure 2-8b shows the marginal stability 

and oscillatory curves for a nanofluid with C=0.05 and γ = 0.3. The presence of 

retardation broadens the stationary stable zone when k < ki. It means that at wave 

numbers smaller than ki, perturbations are damped monotonically (refer to Figure 2-7).  
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(a)

(b)

Figure 2-8: Influence of relaxation time on the effective (or biggest) root of dispersion relation 

(a) γ = 0 and (b) γ = 0.5 (Pr = 10). 

 

2.5.3 Overstability threshold for dual-phase-lagging fluids 

The emergence of oscillatory convection is an important phenomenon for non-

Fourier fluids and NFs. In their experimental study, [1] observed that above a certain 

Rayleigh number, “the Nusselt number has a bistable behaviour: an upper permanent 

oscillatory convection branch and a lower conduction branch separated by a forbidden 

gap. The selection of the branch is attained by changing the initial concentration profile. 

Whenever the initial concentration of NP is homogeneous the system bifurcates into the 
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upper branch, while in the presence of a fully developed concentration profile the lower 

branch is selected.” It is, therefore, expected that homogeneous NFs are more likely to 

exhibit oscillatory behaviour. These are specifically the type of NFs considered in this 

study, which obey the DPL non-Fourier constitutive equation (2.3.12). Although the 

bistable mode observed by [1] is clearly a nonlinear phenomenon, it can, to some extent, 

be captured in the current linear stability analysis by examining the post-critical 

convection near criticality, particularly when C approaches CH, allowing the critical 

Rayleigh number to experience a second minimum, as apparent from Figures 2-4a and 2-

5a (see next).  

Consequently, the quantity of prime interest is CH, the value of C at which the 

minimum Rayleigh number for oscillatory convection coincides with the minimum of the 

Fourier curve for stationary convection. At C = CH, the minimum Rayleigh number, 

Ram, coincides with the Fourier value 
4

mF
27

Ra
4

π
= . It is helpful to refer to the curve 

corresponding to C = CH = 0.0655 in Figure 2-4a for a SPL fluid. A similar curve exists 

for a DPL fluid (γ > 0). This would be the curve corresponding to C = CH = 0.1415 for γ 

= 0.5. At around C = CH, the neutral curve possesses two minima in Rac, which suggests 

the existence of the bistable mode observed by [1]. Thus, depending on the initial NP 

concentration or even possibly the imposed cell size, as the curve in Figure 2-4a suggests, 

conduction can be lost to stationary or oscillatory convection.  

For C > CH, linear stability predicts that oscillatory, and not stationary, 

convection is bound to be observed in reality, with a Hopf bifurcation expected to emerge 

at Ram. Figure 2-9 displays the dependence of the critical Cattaneo number CH (Figure 2-

9a), corresponding wavenumber kH (Figure 2-9b) and oscillation frequency ωH (Figure 2-

9c) on the Prandtl number for different levels of the thermal conductivity ratio. Both the 

low and high ranges of Pr values are examined to cover a wide range of non-Fourier 

fluids and NFs. In this regard, low-temperature liquids (Pr < 1) display a strong non-
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Fourier character (see [46] and references therein). For most NFs of practical interest, Pr 

>> 1. In this case, Figure 2-9 suggests that the conditions for onset of oscillatory 

convection are independent of the Prandtl number. Consequently, it is helpful to examine 

the critical conditions for large Pr. In this case, recalling the critical Rayleigh number 

from (4.8) and setting to mFRa : 

 

2 4
H H H

c mF2Pr H H

1 C 27
lim Ra Ra

C 4k→∞

 + γβ β π
= = = 

 
 (2.5.5) 

 

Seeking the minimum gives 
( )

2
H

H 2
H H

2
C

2 3

π −β
=

γ β − π β
, which, upon substitution 

into(5.5), leads to the following cubic equation for the wavenumber: 

 

( )3 2
H mF HRa 2 0γβ + β − π =  (2.5.6) 

 

Interestingly, the presence of retardation leads to a cubic equation in β, as 

opposed to the linear equation for γ = 0. However, there seems to be only one positive 

real root for any γ.  

Figure 2-9a indicates that NFs with higher thermometric conductivity (smaller Pr) 

are less likely to exhibit oscillatory convection, which sets in only at a relatively high NP 

concentration, and is difficult to detect in practice given the low oscillation frequency 

(especially for γ > 0 as Figure 2-9c suggests). However, for typical NF solutions (Pr >> 

1), the influence of fluid conductivity is less significant as indicated by the flattening of 

the curves at larger value of Pr, especially for strong retardation. Thus, it is the thermal 

conductivity ratio of the NF that determines the likelihood for steady or oscillatory 

convective motion. It is observed that kH is always larger than, but decreases 
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asymptotically to, the Fourier limit, 
mFk

2

π
= , as 1γ →  for any Pr (as illustrated here 

by the curve γ = 0.75 in Figure 2-9b). The critical C decreases monotonically with Pr for 

any level of the thermal conductivity ratio, at a steeper rate in the small Pr range (Figure 

2-9a). Thus, a more viscous NF tends to exhibit oscillatory convection more easily. 

Consequently, the choice of the base fluid (viscosity) is crucial if oscillatory convection 

is desired. However, there is a limit to the influence of the Prandtl number. Indeed, CH 

remains essentially unchanged for Pr > 3, for any γ. In this case, only the NP 

concentration becomes the controlling parameter as it influences both the thermal 

conductivity ratio and the relaxation time (for a given layer gap).  

In contrast to the threshold in Cattaneo number (Figure 2-9a), both the 

wavenumber (Figure 2-9b) and frequency (Figure 2-9c) exhibit an inconsistent response 

against both the Prandtl number and thermal conductivity ratio. For a NF with small 

conductivity ratio, both the wavenumber and frequency generally decrease monotonically 

with Prandtl number, except that the frequency exhibits a weak maximum at small Pr. It 

appears that this maximum weakens further as γ increases from zero for a fluid with 

retardation, and eventually disappears to give way to a monotonic increase in frequency 

with Pr (see Figure 2-9c). A similar trend is predicted for the wavenumber, which also 

exhibits a maximum that weakens with retardation. Figure 2-9c also reflects the difficulty 

to observe oscillatory convection as 1γ →  (see the ωH curve for γ = 0.75). 
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(a)

(b) 

(c)

Figure 2-9: Influence of the Prandtl number on (a) the critical Cattaneo number, CH, (b) the 

corresponding wavenumber, kH, and (c) the oscillation frequency, ωH, for a dual-phase-lagging 

fluid with γ ∈ [0, 1). 
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2.5.4  Overstability for strongly non-Fourier fluids ( )HC C>  

The onset of overstability coincides with the emergence of a pair of imaginary 

eigenvalues in the characteristic equation (2.4.3). Oscillatory convection (overstability) 

always emerges for strongly non-Fourier DPL fluids (C > CH) at a critical Rayleigh 

number m mFRa Ra<  (see curve C = 0.3 in Figure 2-5a). The conductive state remains 

unconditionally stable for mRa Ra< , and becomes overstable for mRa Ra> . The 

influence of the thermal conductivity ratio on the onset of overstability is shown in Figure 

2-10 for Pr = 10, where the critical Rayleigh number, mRa , the corresponding 

wavenumber, mk , and frequency, mω , for the onset of overstability are plotted against C 

for γ  ∈ [0, 1). Both mRa  (Figure 2-10a) and km (Figure 2-10b) generally decrease with C. 

The jump in wavenumber coincides with the sudden shift from 
mFk

2

π
=  to m mFk k>  

when C exceeds CH. The corresponding frequency, mω  (Figure 2-10c) generally 

displays a maximum that occurs at larger C as γ  increases. The overall frequency 

decreases with thermal conductivity ratio. The frequency increases sharply (from zero) at 

C = CH, reaching the maximum and drops at a rate that decreases with thermal 

conductivity ratio. Indeed, the maximum weakens significantly with increasing γ  (see the 

γ  = 0.75 curve in Figure 2-10c), but eventually vanishes. The large C behaviour inferred 

from (4.8) clearly suggests that this is always the case. The minimum Rayleigh number 

and corresponding frequency reduce to 

( )
( )
m

m mF m
C C

Pr 1
lim Ra Ra , lim

C Pr→∞ →∞

β − γ
= γ ω =

γ +
 (2.5.7) 

 

Interestingly, Figures 2-10a and 2-10c reflect a smooth dependence of the 

minimum critical Rayleigh number and corresponding frequency on the thermal 

conductivity ratio or retardation time. Figure 2-10b depicts a discontinuity for the 

wavenumber, which is  
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(a)

(b)

(c)

Figure 2-10: Influence of retardation and relaxation on (a) the critical Rayleigh number, RaH, 

(b) the corresponding wavenumber, kH, and (c) the oscillation frequency, ωH, for a dual-phase-

lagging fluid with γ ∈ [0, 1) and Pr = 10. 
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 easily established for large C. Indeed, (2.5.7) shows that m mF
C
lim k k

2→∞

π
= =  for γ > 0. 

Recalling the expression for the wavenumber in section 2.5.1, then m
C
lim k
→∞

= π  for γ = 0. 

An important question regarding oscillatory behaviour is the prediction that 

various models provide, and the connection with experiment. As mentioned earlier, 

oscillatory behaviour predicted by the two-phase model is heavily dependent on the type 

and value of boundary conditions used for the concentration. By accounted for Brownian 

motion and thermophoretic effects, and generalizing Tzou’s work [26], Nield & 

Kuznetsov’s linear stability analysis[23] predicts the existence of oscillatory convection 

for a relatively narrow range of Rayleigh numbers, starting with twice the value of the 

minimum critical Rayleigh of the base fluid (Ram > 2RamF). For any oscillatory 

convection to exist, the concentration at the top boundary must be maintained lower than 

that at the lower boundary. Understandably, this causes a density gradient to oppose that 

caused by the temperature differential, leading to oscillatory convection. However, aside 

from the difficulty in realistically maintaining fixed NP concentrations at the boundaries, 

the theoretical predictions based on the two-phase model do not agree with experiment. 

[1] observed that oscillatory behaviour sets in whenever the initial concentration of NP is 

homogeneous, while in the presence of a fully developed concentration profile, only 

stationary convection is observed. The current DPL analysis does, indeed, suggest the 

possibility of oscillatory behaviour for homogeneous NP distribution. In particular, the 

onset of overstability appears to be enhanced for a more non-Fourier fluid, and is more 

difficult to achieve for a fluid with significant retardation time or that is highly (heat) 

conductive. It is important to note that oscillatory convection is not predicted by the two-

phase formulation, often adopted in the literature, when the concentrations are taken 

equal at the two boundaries [23]. 

Comparison of the theoretical and measured critical oscillation frequencies led to 

no agreement. This discrepancy was earlier noted by [47] who attributed it to the 

inadequacy of existing constitutive models, which do not account for the transport of 

DNA molecules by the flow and their accumulation in stagnation points. These issues are 
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also bound to plague existing models for the heat transfer in NFs, given the tendency, 

albeit small, of NPs to accumulate. However, on the one hand, in such cases, the cause of 

the onset of oscillatory convection is still the elasticity of the polymeric solution, or the 

non-Fourier effect of a NF. On the other hand, for both solution types, the time scale of 

the oscillation may also be dictated by solute diffusion [1], [47]. 

The temperature perturbation of a non-Fourier fluid is an important characteristic 

which represents the thermal behaviour of the fluid close to criticality. Some nonlinear 

methods, such as amplitude equations, use the temperature perturbation at the critical 

point (and other eigenfunctions) to obtain the convection state of the fluid. Figure 2-11 

shows the influence of the Cattaneo and Rayleigh numbers on the temperature 

perturbation, cΘ , at the critical wave number for a single-phase-lagging fluid relative to a 

Fourier fluid with Pr = 10 and γ=0. At the boundaries, since the temperature is fixed, the 

corresponding temperature perturbation is zero. So the temperature perturbation is 

evaluated at a point between the two boundaries (in this case, z=1/2) at the critical wave 

number ck
2

π
=  relative to the temperature perturbation, cFΘ , of a Fourier fluid (C=0), 

which is considered as reference value. Recall that here n=1 and cFΘ  = 
o n

1

s + β
 is 

dependent on Ra since os  depends on Ra as given by equation (2.4.11).  Recall that os

increases with Ra as illustrated in Figure 2-8 and sharply decreases with wave number. 

The relative temperature perturbation increases form 1 (when C=0) with Cattaneo 

number (or relaxation time). As Figure 2-11 shows, the Cattaneo number affects 

significantly the temperature perturbation. Note that cFΘ and cΘ  both decrease with Ra 

but the ratio of c

cF

Θ

Θ
 increases. The Figure shows that the effect of Cattaneo number is 

not linear and higher Cattaneo numbers causes more rapid increase. Finally, Figure 2-11 

suggests a higher heat transfer due for higher relaxation time in the SPL fluids. Figure 2-

12 displays the influence of retardation time on the temperature perturbation at the 

critical wave number for a dual-phase-lagging fluid with constant Cattaneo number 

(C=0.06). As expected, the presence of retardation time (or γ > 0) leads to a decrease in 



55 

 

the non-Fourier character of DPL fluids. The Figure includes five curves for different γ 

values from 0 to 1. Interestingly, γ diminishes the effect of the Cattaneo number on the 

temperature perturbation, and finally at γ=1, curve collapses back to the Fourier level

cF
1

 Θ
= 

Θ 
. 

 

 
Figure 2-11: Influence of relaxation time on the temperature perturbation of the critical point 

for a single-phase-lagging fluid with Pr = 10 and γ=0. Here cFΘ
is the temperature perturbation 

at z=1/2, when C=0,
2

k
π

= . ( cF
1

s
Θ =

+β
) 
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Figure 2-12: Influence of retardation time on the temperature perturbation of the critical point 

for a dual-phase-lagging fluid with and Pr = 10. Here C=0.06 and cFΘ is the temperature 

perturbation when, Z=1/2, C=0,
2

k
π

= . ( cF
1

s
Θ =

+β
) 

2.6 Conclusions 

This study examines the natural convection of non-Fourier fluids of the dual-

phase-lagging (DPL) type. These fluids possess a relaxation time and a retardation time, 

reflecting the delay in the response of the heat flux and the temperature gradient with 

respect to one another. The limit of a single-phase-lagging (SPL) fluid is recovered upon 

setting the retardation time to zero. The SPL model is particularly relevant to low-

temperature liquids or to fast heat transfer processes. The relevance of the DPL model to 

nanofluids (NFs) has recently been recognized in the literature, and is emphasized here. 

The equivalence between the two-phase and DPL models allows the expression of the 

relaxation time in terms of the nanoparticle (NP) concentration [29]. The retardation-to-

relaxation time ratio is then found to be equal to the NF solution-to-solvent thermal 

conductivity ratio, γ (see section 2.2). The parallels between NFs and polymeric solutions 

of the Boger type, obeying the Oldroyd-B constitutive equation for stress are established 

throughout the paper. Similar to viscoelastic fluids, the constitutive equation for heat flux 

used in the present analysis is frame invariant. 

Linear stability analysis indicates that, in contrast to ordinary fluids, a DPL fluid 

can lose its conductive mode to stationary or oscillatory convection. For small relaxation 
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time (small Cattaneo number, C), the neutral stability curve comprises a Fourier branch 

(k < ki) and an oscillatory branch (k > ki). As C increases and reaches a critical value, 

CH(γ), both stationary and oscillatory convection become equally probable, confirming 

the existence of the bistable mode observed in experiment [1]. For C > CH, only 

oscillatory convection is predicted, at a Rayleigh number decreasing with C (see Figures 

2-4a and 2-5a). Thus, oscillatory convection increasingly becomes the mode of 

preference, compared to both conduction and stationary convection. In fact, it is found 

that, for strongly non-Fourier fluids, oscillatory convection becomes spontaneously 

observed with no prior conduction. The oscillatory roll size grows with both relaxation 

and retardation. There is a discontinuity in roll size with respect to retardation, which is 

clearly reflected in the limit of large C (see Figure 2-10b). Although the oscillation 

frequency decreases monotonically with roll size (Figures 2-3b and 2-5b), it exhibits a 

non-monotonic response with respect to relaxation time (emergence of a maximum with 

respect to C). As expected, retardation tends to attenuate oscillation (see Figures 2-4c and 

2-10c).  
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Chapter 3  

3 Thermal convection of non-Fourier fluids with spectral-
perturbation approach 

3.1 Introduction 

In general, when a thermal disturbance applies to an object, the perturbation felt 

immediately at all points of the object and the temperature diffusion is described by 

Fourier's law which gives a parabolic equation. By Fourier's law, the flow rate of heat 

energy through a surface is proportional to the negative temperature gradient across the 

surface. Unlimited speed of heat propagation is assumed in Fourier’s law as a result 

Fourier’s law is not accurate enough and sometimes another equation is needed to study 

heat transfer [1]. Cattaneo [2] and Vernotte [3] proposed Cattaneo-Vernotte (C-V) 

equation including a transient term multiplied by the thermal relaxation time of the 

subject. [4] 

q
q

∂
+ = − ∇

∂
k T

t
τ  (3.1.1) 

where q is heat flux, � is the thermal conductivity,� is relaxation time and T is 

temperature. Thermal relaxation time is related with the average communication time 

among the collisions of electrons and phonons [5], and theoretically has been estimated 

for metals, semiconductors and superconductors to be in the order of microseconds (10-6 

s) to picoseconds (10-12 s)[6]–[8]. In most of materials, thermal relaxation time is 

negligible and Cattaneo equation returns back to the Fourier model. In the other hand, 

there are some states which the relaxation time is significant and should be considered 

like non-homogeneous medium [9]–[11], high speed electronic devices [11], ultrashort 

laser pulses [11], [12] processed meat [13], skin burns[14], heat transfer in stars[15], heat 

transport in a nuclear fuel rod in a light water reactor [16], drying sand [17] and 

microscale” applications[10]. It is important to realize that not only relaxation times but 

also the rate of heating could make the transient term considerable. For example laser 

pulse heating makes a significant amount of energy over a small time. There are some 
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applications which the duration of the laser pulse can be measured on the scale of femto- 

or 10-15 seconds [18]. 

Non-Fourier heat conduction is described with different models. In the Single-Phase-

Lag model (SPL), materials have only a relaxation time which exposing the delay in the 

response of the heat flux [19]. But Dual-Phase-Lag (DPL) model offers existing of a 

relaxation time and a retardation time in materials exposing the delay in the response of 

the heat flux and the temperature gradient with respect to one another. Xu et al. [20] used 

the Dual-Phase-Lag model to analyze the non-Fourier heat transfer process in skin tissue. 

Vadasz [21] proved that the problem formulated by the energy equation with Fourier 

law of conduction in the solid and liquid phases, set up for a particular case of transient 

hot wire experiments, subject to suitable initial and boundary conditions represents a 

specific case of Dual-Phase-Lagging heat conduction as 

( ) ( )q r, r,+ = − ∇ +q Tt k T tτ τ  (3.1.2) 

where �� is relaxation time of heat flux and �� is the relaxation time of temperature 

gradient. According to this relation, the temperature gradient at a point r of the material at 

time � � �� corresponds to the heat flux density vector at r at time � � ��. The delay time 

�� is interpreted as being caused by the micro-structural interactions (smallscale heat 

transport mechanisms occurring in the micro-scale, or small-scale effects of heat 

transport in space) such as phonon-electron interaction or phonon scattering, and is called 

the phase-lag of the temperature gradient. Peshkov [22] was the first one who found the 

second sound wave in superfluid helium (He II) at low temperatures (T < 2.2 K) 

experimentally. Non-Fourier effects have been studied in various geometries such as 

spherical [23], cylindrical [24], slabs [25], crack tip [26] and fins geometry [27], Using 

numerical [9], [28]–[38] and analytical [39], [40] methods.  

Antaki [10] proposed that non-homogeneous structures apparently induce waves by 

delaying the response between heat flux and temperature gradient. Vadasz [21] suggested 

that Fourier’s law is not valid at the macro-system level when nano-elements are 
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suspended in the fluid. As a non-homogeneous material with nano-elements, nanofluids 

have been studied widely as a non-Fourier substance.  

Nanofluids are a base fluid, such as water or ethylene glycol, consisting of solid 

nanoparticles, with sizes normally in the order of 1–100 nm. The NPs could be the oxides 

of aluminum and silicon, as well as metals such as Titanium, copper and gold [41]–[43].  

In recent years nanofluids are very popular topic because of significant enhancement in 

their thermal properties.  In presence of a small percents of nanoparticles, a major 

increase of the effective thermal conductivity of nanofluids has been stated. For example, 

a small amount of nanoparticles dispersed in water, ethylene glycol or oil can increase 

their inherently poor thermal conductivity by 40% [41], [44]–[46].  

Different approaches have been used in order to study heat transfer in nanofluids. 

Buongiorno [44]  obtained that thermophoresis and Brownian motion seem to be the only 

significant factors that could suitably describe the surprising heat transfer capabilities of 

nanofluids. It should be noted that the Brownian motion is the induced random drifting 

caused by the collisions of NPs with the molecules in the base fluid, whereas 

thermophoresis is a diffusive effect that causes particles to move as a result of a 

temperature gradient within the fluid. Xuan [47] developed the dispersion model of 

nanofluids and supposed two increases the heat transfer in nanofluids, the enhanced 

thermal conductivity of nanofluids, and the irregular movement of nanoparticles.  

Natural convection has broad applications in different fields such as thermal insulations 

for earth’s mantle [48], solar collectors [49], [50], cooling systems for nuclear reactors 

[51], atmosphere [52], ocean’s circulation [53], [54], heat exchangers [55], double pane 

windows, micro-electromechanical systems (MEMS) and electronics cooling. 

The natural convection of a fluid confined between to horizontal plates and heated 

from below, under the action of gravity,  is called Rayleigh-Bénard convection (RBC). 

Because of thermal expansion the fluid close to lower plate is lighter than the upper fluid 

close to the upper plate. A lot of investigations have been done about RBC in before, 

experimentally [56]–[62]  and theoretically[63]–[70]. Due to RBC Cellular flow patterns 

occurs and these patterns have been seen in many industrial processes, such as in micro-
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processing [71], [72], in polymer processing [73]–[75]. In the RBC, fluid is motionless 

before criticality and the only parameter which could change the flow type, is fluid 

properties so the best way to study the fluid properties is using RBC [76].  In the other 

hand, experiment studies of RBC are convenient so the onset of convection, pattern 

formation and turbulence could be studied by using RBC [77]. The linear stability 

analysis of Rayleigh-Bénard convection for free-free, rigid-rigid or rigid-free boundary 

conditions is available in many textbooks [78], [79]. Note that presuming slip condition 

at both (free-free) boundaries considerably shortens the solution process. Additionally, in 

RBC problem, the free-free and rigid-rigid conditions have the same flow and heat 

transfer attributes qualitatively [80]. 

Conduction of a non-Fourier fluid is lost to convection once a critical value of the 

Rayleigh number, Rac is exceeded and finally leads to a variety of pattern formations in 

which the fluid goes up in some areas and goes down in others with a finite [81]. When 

Rayleigh number is close to Rac, convective flow carries part of heat applied then 

diminishing the temperature gradient and subsequently the buoyancy force, accordingly 

the gain of this pattern is restricted. Finally at a point temperature gradient and the 

reduction due to convective motion are equal and stability achieved. In this situation, any 

convective pattern like rolls, squares or hexagons have been seen but the most probable 

pattern is convective rolls [80].  

In the linear stability analysis nonlinear terms are omitted and it can only determine the 

critical threshold for loss of steady conduction or steady convection but to get the 

convective flow behavior, the interaction among all linear and nonlinear terms should be 

considered and more nonlinear analysis is needed. Many nonlinear approaches have been 

used to foresee the convective flow patterns in the slightly supercritical convection and 

they expand the solution to the nonlinear governing equations on the basis of solution to 

the linearized problem. Perturbation approach near criticality [69], [82], the method of 

amplitude equations [83]–[85], and the extended Lorenz model [68] are some of these 

nonlinear approaches. 
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 Lorenz [63] proposed a low-order dynamical system approach named the Lorenz 

model. Following the Lorenz model some low-dimensional dynamical systems have been 

progressed, including intense truncation [65]–[67], [86].Also finite amplitude convection 

has been considered with the perturbation expansion approach. Malkus and Veronis [69] 

created evolution equations by taking care of the nonlinear inertial and thermal 

convection terms as perturbations of the linear convection problem. In this approach, the 

temperature and velocity, with insignificant disturbances from the post-critical range, 

have a spatial dependence which strongly simulates the critical mode. 

Most of the Presented nonlinear approaches of natural convection are restricted to the 

weakly nonlinear convection and arbitrary mode selection [70], [87], [88]. In this paper a 

spectral approach has been used, which is spectral in character and applicable for wider 

range of the post-critical regime, to study nonlinear convection of a non-Fourier fluid.  

As mentioned before, superfluid helium (He II) at low temperatures (T < 2.2 K) has 

non-Fourier behavior. Nusselt number of low-temperature gaseous helium in free 

convection obeys the relation 0.28Nu 0.173Ra= [89] which is higher compare with a 

regular fluid like Nitrogen [90]. Regarding the non-Fourier behavior of nanofluids, 

enhancement of heat transfer has been seen in many studies such as vertical enclosure 

[91]–[93],  CNTs [94] and forced convection [95]–[97]. Few studies have been carried 

out for natural convection heat transfer characteristics of nanofluids. Khanafer et al. [91] 

simulated natural convection of nanofluids in a vertical rectangular enclosure 

numerically. They used copper nanoparticles in water and found that heat transfer 

increases with the volumetric fraction at any Grashof number. However, Putra et al. [98] 

detected conflicting findings in the experimental research that in natural convection heat 

transfer in enclosures, presence of nanoparticles in base fluid may result in noticeable 

diminution, instead of gain. Ding [99] reported systematic decrease in the natural 

convective heat transfer coefficient with increasing particle concentration and mentioned 

that possible reasons could be the convection made by concentration difference, particle–

surface and particle–particle interactions, and modifications of the dispersion properties. 
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3.2 Problem formulation 

Consider a thin layer of a Newtonian non-Fourier liquid confined between the (X, Y) 

planes at Z 0=  and the plane Z D= , maintained at fixed temperatures 0T T+ δ  and 0T , 

respectively. The fluid layer is assumed to be of infinite horizontal extent. Convection 

sets in whenever viscous effects are overcome by buoyancy. Here g = - gez, where g is 

the acceleration due to gravity. Boussinesq's approximation, which express that the effect 

of compressibility is insignificant everywhere in the conservation equations except in the 

buoyancy term, is supposed to hold so the density ρ  depends on the temperature T, 

following: 

( )Tρ = ρ 1- α T - T0 0    (3.2.1) 

Here α
T is the coefficient of volume expansion and 0ρ  is the mass density of the fluid 

at T
0
. The fluid is assumed to be incompressible, of specific heat at constant pressure Cp, 

thermal conductivity Κ and viscosityµ . In this case, the temperature and pressure 

gradient for a stationary fluid are given by ( )s 0T Z D T T T= − δ + +δ  and

( )s 0dP / dZ 1 T 1 Z D g = −ρ −α δ − T , respectively αT and is the thermal expansion 

coefficient. The main governing equations two-dimensional flow patterns are as 

following,  

 
0V∇ ⋅ =  (3.2.2) 

( )0 t P gρ + ⋅∇ = −∇ −ρ +µ∆zV V V e V  (3.2.3) 

( )0 p tc T TV Qρ + ⋅∇ = −∇ ⋅  (3.2.4) 

 

In this work, the heat flux is assumed to be governed by the generalized Cattaneo-

Vernotte equation (Christov [19]), namely,  

 

( )Q t K TQ V Q Q V Q V Qτ + ⋅∇ − ⋅∇ + ∇⋅ = − − ∇  (3.2.5) 
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where τ  is a relaxation coefficient. Note that the term Q V∇ ⋅  is zero. Here V = (U, V, 

W) is the velocity vector and Q being the dimensional heat flux. It is also feasible to 

produce a generalized energy equation. In fact, upon taking the divergence of (3.2.5), 

noting the identity ( ) ( ):a b a b a b∇⋅ ⋅∇ = ∇ ∇ + ⋅∇ ∇⋅ , a and b being two general vectors, 

and using (3.2.5), one attains 

 

( )Q tt t t

2
t

T 2 T T T

T T T,

V V V V

V

τ + ⋅∇ + ⋅∇ + ⋅∇ ⋅∇  

+ + ⋅∇ = κ∇
 (3.2.6) 

The related boundary conditions at the lower and upper plates are taken to correspond to 

free-free conditions. In this case: 

 

( ) ( )z zX, Y, Z 0, t X, Y, Z 1, t 0,V e V e= ⋅ = = ⋅ =  

( ) ( )zz z zz zX,Y,Z 0, t X,Y,Z 0, t 0,V e V e= ⋅ = = ⋅ =  

( ) ( )X,Y,Z 0, t X,Y,Z 0, t 0.θ = = θ = =  

(3.2.7) 

 

We introduce perturbations ( V ,θ ,π , iq ) and put them into equations (3.2.2) to (3.2.5), 

respectively and obtain a set of equations as  

 

0V∇ ⋅ =  (3.2.8) 

t T z
0

1
gV V V e V+ ⋅∇ = − ∇π+α θ + υ∆

ρ
 (3.2.9) 

( )Q tt t t t

2
t

T 2 T T W T W

T T W T,

V V V V

V

τ + ⋅∇ + ⋅∇ − + ⋅∇ ⋅∇ −  

+ + ⋅∇ − = κ∇
 (3.2.10) 

 

Equations (3.2.8)- (3.2.10)is non-dimensionalized with the length, time and velocity 

scales L,Γ and U given by
2D

L D, , U
D

κ
= Γ = =

κ
, then we introduce temperature, 
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pressure, and heat flux scales as, [ ]# *

2

T
T T, P , [q ] K ,

D D

µκ δ
  = δ = =  where 

p

K

c
κ =

ρ
. 

The following non-dimensional groups have been stated, namely the Rayleigh number, 

the Prandtl number and the Cattaneo number, given by 

 

3
T

2

T gD
Pr , C , Ra .

D

δ αν τκ
= = =

κ νκ
 (3.2.11) 

 

To get non-dimensional state, all non-dimensional variables with their scales are put in 

equations (3.2.8) - (3.2.10)  

 

0v∇ ⋅ =  (3.2.12) 

( )1
t zPr p Rav v v e v

− + ⋅∇ = −∇ + θ + ∆  (3.2.13) 

( )tt t

2

C θ 2 θ θ w θ w

θ θ w θ

t t

t

v v v v

v

+ ⋅∇ + ⋅∇ − + ⋅∇ ⋅∇ −  

+ + ⋅∇ − = ∇  (3.2.14) 

The influence of the Cattaneo number on the overall marginal stability picture is typically 

illustrated in Figure 3-1, where the marginal stability curves are plotted against the 

wavenumber for Pr = 10. Note that Rac corresponds to critical Rayleigh number. For a 

Fourier fluid, the marginal stability curve is independent of Pr and there is an exchange of 

stability between the pure conduction state and stationary convection for any 

wavenumber. For relatively small C > 0, each non-Fourier curve includes a stationary 

branch, also part of the Fourier curve and an oscillatory convective branch (overstability). 
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Figure 3-1: Influence of the Cattaneo number on the marginal stability curves in the Rac-k 

plane for a single-phase-lagging fluid (Pr = 10). 

 

3.3 Spectral solution for steady convection 

Only steady convection is examined in this paper. A spectral approach has been used 

to obtain the flow and temperature fields in the post-critical range of Rayleigh number. 

The presented approach is valid for strongly nonlinear convection. In the spectral method 

the flow and temperature fields expand periodically in the streamwise direction using 

orthonormal shape function in the transverse direction.  

The flow and temperature fields are periodic in the x direction with wavelength 2π/k 

and of the general form 

 

( ) ( )∑ ∑ ∑ ∑
L M L M

iakx iakx
am m am m

a=-L m=1 a=-L m=1

ψ(x, z)= ψ e f z , θ(x, z)= θ e g z  (3.3.1) 

 

where amψ  and amθ  are invariable coefficients, and fm and gm are properly selected 

orthonormal polynomials being suitable for the boundary conditions. Here indices 

[ ]∈ −a,b,c L,L  and [ ]∈m,n, p 0,M , where L and M are the number of modes in the x and z 
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directions, respectively. Because of the homogeneity of conditions under the symmetry 

transformation 

 

→ − → → − →x x, z z, ψ ψ, θ θ  (3.3.2) 

 

solution (3.3.1) shrinks to 

 

( ) ( )∑ ∑
L M

am m

a=1m=1

ψ(x,z)= ψ sin akx f z , (3.3.3) 

 

( ) ( ) ( )∑ ∑ ∑
M L M

0m m am m

m=1 a=1m=1

θ(x,z)= θ g z + θ cos akx g z  (3.3.4) 

 

To obtain the governing equation of coefficients, above equations should substitute into 

the equations (3.2.13) and (3.2.14) and project onto the proper modes. (3.2.13) and 

(3.2.14) multiply by ( ) ( )psin ckx f z  and ( ) ( )pcos ckx f z  respectively, and integrate over 

the intervals ≤ ≤0 x 2π / k; and ≤ ≤0 z 1 , to obtain 

 

( )∑ ∑ ∑ ∑
L M L M

abc,mnp am bn ac,mp am ac,mp am

a,b=1m,n=1 a=1m=1

A1 ψ ψ +Pr A2 ψ +RaA3 θ = 0  (3.3.5) 

 
L M L M

abdc,mnqp am bn dq abc,mnp am bn
a,b 1,d 0m,n,q 1 a 1,b 0m,n 1

L M L M L M

abc,mnp am bn ac,mp am ac,mp am
a 1,b 0m,n 1 a 1m 1 a 0m 1

C A4 C A5

A6 A7 A8 0

= = = = = =

= = = = = = =

ψ ψ θ + ψ ψ

+ ψ θ + ψ + θ =

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

 (3.3.6) 
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where the matrix coefficients are  

 

( )
( )

′ ′′ ′= −

′ ′′′

′′= − −

= −

3 3
abc,mnp a b c m n p a b c m n pc>0

2 2
a b c m n p m n p

4 4 2 2 iv
ac,mp a c m p m p m pc>0

ac,mp a c m pc>0

A1 bk S C S f f f b k S C S f f f

+ak C S S b k f f f - f f f

A2 S S a k f f 2a k f f + f f

A3 S S ak g f

 (3.3.7) 

 

and 

 

2 2 2
abdc,mnqp a b d c m n q p a b d c m n q p

2 2 2
a b d c m n q p a b d c m n q p

2 2
a b d c m n q p a b d c m n q p

2 2
a b d c m n q p a b d c m n q p

ab

A4 bdk S C S C f f g g d k S S C C f f g g

b k S S C C f f g g bdk S C S C f f g g

adk C S S C f f g g adk C S S C f f g g

abk C C C C f f g g abk C C C C f f g g

A5

+ +′ ′ ′ ′=

′ ′ ′ ′− −

′′ ′ ′− −

′ ′ ′′− −

2 2 2
c,mnp a b c m n p a b c m n p

abc,mnp a b c m n p a b c m n p

ac,mp a c m p

2 2
ac,mp a c m p m p

b k S S C f f g abk C C C f f g

A6 bk S S C f g g ak C C C f g g

A7 ak C C f g

A8 C C a k g g g g

′ ′= + +

′ ′= +

= −

 ′′= − −
 

 

(3.3.8
) 

 

where ( ) ( ),≡ ≡a aS sin akx C cos akx  , [ ]∈a,b,c 0,L  (unless otherwise specified) and the 

brackets < > denote integration over x or z. It is convenient to extrude one equation from 

equations (3.3.5) and (3.3.6) and rewrite them as 
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= ∑ ∑ ∑ ∑
L M L M

-1
cp abc,mnp am bn ac,mp am

a,b=1m,n=1 a=1m=1

cRaπθ Pr A1 ψ ψ + A2 ψ  (3.3.9) 

 
L M L M

ab0c,mnqp am bn 0q abdc,mnqp am bn dq
a,b 1m,n,q 1 a,b,d 1m,n,q 1

L M M

abc,mnp am bn m n p cm 0n
a,b 1m,n 1 m,n 1

L M L M M

abc,mnp am bn ac,mp am ac,mp am
a,b 1m,n 1 a 1m 1 a m 1

C A4 C A4

C A5 c f g g

A6 A7 A8

= = = =

= = =

= = = = = =

ψ ψ θ + ψ ψ θ

′+ ψ ψ + π ψ θ

+ ψ θ + ψ + θ

∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑
L

1

0=∑

 (3.3.10) 

 

L M L M

ab00,mnqp am bn 0q abd0,mnqp am bn dq
a,b 1m,n,q 1 a,b,d 1m,n,q 1

L M L M M

ab0,mnp am bn ab0,mnp am bn 00,mp 0m
a,b 1m,n 1 a,b 1m,n 1 m 1

C A4 C A4

C A5 A6 A8 0

= = = =

= = = = =

ψ ψ θ + ψ ψ θ

+ ψ ψ + ψ θ + θ =

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

 
(3.3.11) 

 

Note that indices now [ ]∈a,b,c 1,L . This general system of equations (3.3.9-3.3.11) is 

valid for any boundary conditions. At this stage, functions ( )mf z and ( )mg z  need be 

specified which satisfy the boundary conditions at z = 0 and z = 1. This study considers 

the free-free conditions, one chooses the z-dependent functions as 

 

( ) ( ) ( )m mf z = g z = 2sin mπz  (3.3.12) 

 

Thus, the equations (3.3.9) to (3.3.11) simplify to: 

 

∑ ∑
L M

2 -1
cp cp cp abc,mnp am bn

a,b=1m,n=1

π
β ψ +cRaπθ = Pr C1 ψ ψ

k
 (3.3.13) 
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L M L M

ab0c,mnqp am bn 0q abdc,mnqp am bn dq
a,b 1m,n,q 1 a,b,d 1m,n,q 1

L M M L M

abc,mnp am bn cm 0n am bn
a,b 1m,n 1 m,n 1 a,b 1m,n 1

cp cp cp

C A4 C A4

C A5 c

c
k

= = = =

= = = = =

ψ ψ θ + ψ ψ θ

+ ψ ψ + π ψ θ + ψ θ =

π
πψ + β θ

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑mnp abc,mnpB1 C2
 (3.3.14) 

L M L M

ab00,mnqp am bn 0q abd0,mnqp am bn dq
a,b 1m,n,q 1 a,b,d 1m,n,q 1

L M L M

ab0,mnp am bn ab0,mnp am bn
a,b 1m,n 1 a,b 1m,n 1

0p 0p

C A4 C A4

C A5 A6

2
0

k

= = = =

= = = =

ψ ψ θ + ψ ψ θ

+ ψ ψ + ψ θ

π
− β θ =

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑  (3.3.15) 

 

where 2 2 2 2
cpβ = c k + p π  . The most important benefit of these equations is reliability 

over any range of the parameters, specifically the post-critical range of the Rayleigh 

number. The only problem is the possible existence of multiple solution branches. These 

nonlinear equations must be solved numerically. In this study, a perturbation approach, as 

a weakly nonlinear approach, is employed. 

 

3.4 Convection close to criticality 

To treat nonlinear convection, a spectral approach is presented in this section which is 

not based on arbitrary mode selection. The spectral methodology consists of expanding 

the flow and temperature fields periodically along the layer, and using orthonormal shape 

functions in the transverse direction. The Galerkin projection is then implemented to 

generate the equations for the expansion coefficients. Since most of the interesting 

bifurcation picture is close to criticality, a perturbation approach is developed to solve the 

nonlinear spectral system in the weakly post-critical range. To leading order, the Lorenz 

model is recovered. Spectral approach reveals the number and type required modes. Here, 

the perturbation parameter in the problem defines a small deviation from the critical 

Rayleigh number for the onset of convection, and is given by 
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cr

cr

Ra - Ra
ε = < 1,

Ra
 (3.4.1) 

 

where 3 2
crRa = β k  is critical Rayleigh number. Experimentally has been shown taht 

the amplitude of motion is proportional to ε [80], [100].In this case, the unknown 

stream function and temperature coefficients could expand as 

 

am am am

am am am

3/ 2
0m 0m 0m

ψ = εψ1 +εψ2 +...

θ = εθ1 +εθ2 +...

θ = εθ2 +ε θ3 +...

 (3.4.2) 

 

After substituting (3.4.2) into (3.3.13)-( 3.3.15), terms will be sorted in order of ε. To 

( )O ε  which is leading order, one has 

 

0 , 0
2
cp

cr cp cp cp cp cp

β 1
Ra θ1 + ψ1 cψ1 + β θ1

ck k
= =  (3.4.3) 

 

and to the next order, that is to ( )O ε , 

 

0=2 -1 2
cp cp cr cp 11c,11p 11

π
β ψ2 +cπRa θ2 = Pr C1 ψ1

k
 (3.4.4a) 

 

0.=cp cp cp 11c,11p 11 11
π

cπψ2 + β θ2 = C2 ψ1 θ1
k

 (3.4.4b) 
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0= =cp cp cp cpθ1 =ψ1 θ2 =ψ2  can be exclude from equations (3.4.3) and (3.4.4) except 

for 11 11
k

θ1 = - ψ1
β  

and 11 11
k

θ2 = - ψ2
β

, which by solving the higher order solution will 

be found. In this case, from equation (3.3.15), 

 

2

02 11 11
2k 1

2 C 1 1 .
8

 
θ = − ψ ψ π β 

 (3.4.5) 

 

Also, to ( )O 3/ 2ε , one has 

 

2
cp

cp cr cp cr cp

β
ψ3 +cRa θ3 = -cRa θ1

k
 (3.4.6a) 

( )

L M

cp cp cp abdc,mnqp am bn dq
a,b,d 1m,n,q 1

L M M

abc,mnp am bn am bn m n p cm 0n
a,b 1m,n 1 m,n 1

c 3 3 C A4 1 1 1
k

C A5 1 2 2 1 c f g g 1 2

= =

= = =

π
πψ + β θ = ψ ψ θ

′+ ψ ψ + ψ ψ + π ψ θ

∑ ∑

∑ ∑ ∑

 (3.4.6b) 

 

by setting c = p = 1,  

 

2 2

0,

1 1
,

1 1 1 1
k C C

4 4 4 4

=

± ±
      π π
   − − + β − − +         β β β β      

11 11

11 11

ψ1 = θ1

ψ1 = θ1 =  (3.4.7) 
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which is the same as Lorenz flow and consists of the conduction state and the 

supercritical bifurcation convective branches. If c = p =1, 11 11 11
k

θ3 = - ψ3 - θ1
β

, with 

11θ3  and 11ψ3 are yet to be obtained. If c =1and p =3 one has 

 

23
13

13 11 113 3 3 3
13 13

k
3 1 , 1

   ββ
ψ = − ψ = ψ   

   ββ −β β −β   

2
13

13 133

kβ
θ3 = - ψ3

β
 (3.4.8) 

 

Also, to this order, 

 

02 11 11 11 11 11 11
02

2k
3 Ck 1 2 1 2 2 1

2 2

π π θ = πψ ψ + ψ θ + ψ θ β  
 (3.4.9) 

 

To ( )O 2ε  and ( )O 5 / 2ε , 

 

0, 0,am am 0mψ2 = θ2 = θ3 a m= ∀ > ∀  (3.4.10) 

and 
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2 2
02 11 11 11 11 11 11 11

2
11 11 11 11 11 11 11 11 13

2 2
11 13 11 13 11 11

2 2
11 11 11 02 13 11 11

11 13 11 13

11

2 2 1 C 1 1 1 C 1 1 1
k

1
Ck 1 1 1 1 1 1 Ck 1 1 3

2 4

Ck 1 3 1 Ck 3 1 1

1 1
Ck 1 1 1 2 Ck 3 1 1

22

k k
1 3 1 3 1

4 4
3

β
πθ θ −β π ψ θ θ −β π ψ θ θ

β
+ ψ βψ θ +ψ θ θ − π ψ ψ θ

− π ψ ψ θ − π ψ ψ θ

− πψ ψ ψ θ + ψ ψ ψ

+ ψ θ ψ + ψ θ
θ =

( )

11 11 13 02

2 2
cr 02 11 11 11 112

2
11 11 11 11 11 11 11 11

11 11 11

1 2 3 2

k
Ra 2 2 Ck 1 1 C 1 1

k

1 k
C 1 1 Ck 1 1 1 1 1 1

2 4 4

3 3 1 ,
k

 
 
 
 
 
 
 
 
 
 
 
 ψ + πψ θ
 

β − − πθ − π ψ ψ +β π ψ θ β 
 β
+β π ψ θ − ψ βψ + ψ ψ −ψ θ 

 
β

ψ = − θ + θ

 (3.4.11) 

 

Note, all coefficients are found in this relation. At this stage, it is helpful to give the 

expressions for the stream function and temperature to: 

 

( ) ( ) ( )

( ) ( ) ,

3 / 2
11 11

3 / 2
13

ψ(x,z)= 2 εψ1 + ε ψ3 sin kx sin πz

+ε 2ψ3 sin kx sin 3πz

 (3.4.12) 

 

( ) ( ) ( ) ( )

( ) ( ) ( ).

 
  

3 / 2 3 / 2
11 11 13

2 2
02 02 04

θ(x,z)= 2cos kx εθ1 + ε θ3 sin πz + ε θ3 sin 3πz

+ 2 εθ2 + ε θ4 sin 2πz + 2ε θ4 sin 4πz

 (3.4.13) 

 

Clearly, these expressions show the modes required to each desired order. The 

corresponding Nusselt number will obtain in the next section. 
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Figure 3-2 displays the influence of ε on the expansion coefficients in (3.4.12) and 

(3.4.13) in a Fourier fluid (C=0). The leading- and higher-order contributions for modes

amϕ , amθ  and 0mθ are presented in Figures 3-2a, 3-2b and 3-2c, respectively. Figure 3-

2a indicates that the leading-order contribution is essentially dominant for 11ϕ . The 31ϕ  

mode is essentially negligible, suggesting that, for Fourier fluid convective rolls do not 

exhibit any significant deformation from elliptical geometry which is limited to the 

stream function and the temperature geometry would change. Figures 3-2b and 3-2c 

indicate, respectively, that the higher order contributions for modes 11θ and 02θ are 

significant. Although the small contributions of modes 13θ  and 04θ , they are not 

negligible.  

(a) 

 

(b) 
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(c) 

 
Figure 3-2: Influence of higher-order terms in the perturbation of the stream function (a), the x-

dependent (b) and x-independent (c) temperature deviation for a Fourier fluid. Here k
2

π
= and 

C=0. In this Figure dashed line corresponds to the leading-order term ( of Spectral solution) and 

solid lines correspond to Spectral solution including leading and higher order terms. 

These modes, lead to the deformation of the temperature field which, are shown more 

precisely in the Figure 3-3. Figures 3-3a, 3-3b and 3-3c illustrate the influence of ε on the 

temperature and stream function for a Fourier fluid (C=0) in ε=0.1, 0.5 and 1.0 

respectively. Generally, by increasing the ε, higher order terms have more effect which is 

more obvious for temperature field shown in Figure 3-3. Deformation of the temperature 

fields are shown in Figure 3-4a to 4c for ε=0.1, 0.5 and 1.0 respectively. Obviously, when 

ε=1, the high order term of 13θ is governing and the dominant mode.  
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(a) 

 

(b) 

 

(c) 

 
Figure 3-3: Distributions of the leading-order and higher-order terms on the stream function 

and temperature deviation at (a) ε = 0.1, (b) ε = 0.5 and (c)ε = 1 for a Fourier fluid.  Here C=0, 

k
2

π
= and z = ½.In this Figure dashed line corresponds to the leading-order term ( of Spectral 

solution) and solid lines correspond to Spectral solution including leading and higher order 

terms. 
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(a) 

 

(b) 

 

(c) 
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Figure 3-4: Distributions of the leading-order and higher-order temperature deviation at (a) ε 

= 0.1, (b) ε = 0.5 and (c) ε = 1 for a Fourier fluid.  Here C=0, k
2

π
= and z = ½. In this Figure 

the left columns corresponds to the leading-order term ( of Spectral solution) and right columns 

correspond to Spectral solution including leading and higher order terms. 

Figure 3-5 depicts the influence of the higher-order correction as function of the Rayleigh 

number (Figure 3-5a) and wave number (Figure 3-5b) in a Fourier fluid. As predicted, the 

discrepancy between the leading- and higher-order corrections in Figure 3-5a is the same 

as for the temperature deviation in Figure 3-3 and higher-order contributions diminish 

both temperature deviation and Nusselt number. In high Rayleigh numbers, the high-

order terms overcome the leading-order terms finally. Figure 3-5b reveals that the 

influence of higher-order terms depends significantly on the wave number. Interestingly, 

in Fourier fluids, NuLO is independent of wave number although leading-order terms of 

theta are dependent. 

(a) 

(b) 
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Figure 3-5: Influence of higher-order terms in the perturbation of the Nusselt number as 

function of ε (a) and the wavenumber (b). Here C=0 and in (b) ε=0.5. In this Figure dashed line 

corresponds to the leading-order term ( of Spectral solution) and solid lines correspond to 

Spectral solution including leading and higher order terms. 

For any wave number, there is one specific Cattaneo number which directs 11ψ1 and 11θ1

to infinity namely maximum feasible Cattaneo number. Figure 3-6 illustrates the typical 

dependence of the maximum feasible Cattaneo number on wave number. Figure 3-6 

expresses that the higher value of Cattaneo number, the less range of applicable wave 

number. In Fourier fluids (C=0), there is no restriction for wave number and non-Fourier 

fluids could not have Cattaneo number more than
2

1

5π
. Ordinary value of relaxation time 

is low, as is shown in Figure 2-1, which makes Cattaneo number very small even for 

small dimensions and having high value of Cattaneo number is impractical. In the other 

hand, equation (2.2.10) confirms that for any concentration of nano-particles, relaxation 

time is limited and as a result, Cattaneo number is limited too. 
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Figure 3-6: Influence of the wave number on maximum acceptable Cattaneo number. 

 

The influence of the Cattaneo number on the perturbation of the stream function, the x-

dependent and x-independent temperature deviation for two non-Fourier fluids with C = 

0.005 ( left column) and C = 0.01( right column) is typically illustrated in Figure 3-7, 

where the stream function curves (first row), the x-dependent (second row) and x-

independent temperature deviation (third row) are plotted against the ε ( deviation from 

the critical Rayleigh number) for Pr = 10. At the first row, are the stream function curves 

of leading and higher order terms for two non-Fourier fluids which show that Canttaneo 

number increases both leading term in the stream function, as the 11 mode, which 

comprises leading( 111ψ ) and higher order( 113ψ ) terms, increases generally. In the other 

hand, for C=0.005, magnitude of 113ψ decreases compare to Fourier case (Figure 3-2a). 

At a value of Cattaneo number 113ψ becomes zero and finally for relatively high Cattaneo 

number, it turns to negative value with higher magnitude as diminishes the 11 mode 

curve for high Cattaneo numbers. The same results arise from the x-dependent and x-

independent temperature deviation curves which show relatively high Cattaneo numbers 

improve the effect of high order modes.  
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(a)  

(b)   

(c)  
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Figure 3-7: Influence of Cattaneo number on the perturbation of (a) the stream function, (b) the 

x-dependent and (c) x-independent temperature deviation for two non-Fourier fluids with C = 

0.005 (left column) and C = 0.01(right column). Here k
2

π
= .In this Figure dashed line 

corresponds to the leading-order term ( of Spectral solution) and solid lines correspond to 

Spectral solution including leading and higher order terms. 

Figure 3-8 illustrates the influence of Cattaneo number on the temperature and stream 

function for two non-Fourier fluids (C=0.005 and C=0.01) in ε=0.1, 0.5 and 1.0 

respectively. Comparing Figure 3-8 with left column of Figure 3-3 shows that in the 

relatively small/high Cattaneo numbers, the higher order terms have additive/decreasing 

role in the stream function. For Cattaneo numbers close to 0.005, the higher order terms 

have no effect in the stream function.    

  



89 

 

(a) 

 

(b) 

 

(c) 

 

Figure 3-8: Distributions of the leading-order and higher-order terms on the stream function at 

(a) ε = 0.1, (b) ε = 0.5 and (c) ε = 1 for two non-Fourier fluids with C = 0.005(left column) and 

C = 0.01(right column).  Here k
2

π
=  and z = ½.In this Figure dashed line corresponds to the 

leading-order term ( of Spectral solution) and solid lines correspond to Spectral solution 

including leading and higher order terms. 
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Figure 3-9 illustrates the influence of Cattaneo number on the leading-order and higher-

order terms of the temperature deviation at ε = 0.1, ε = 0.5 and ε = 1 for two non-Fourier 

fluids with C = 0.005 and C = 0.01.  As expected, the difference between the leading- and 

higher-order corrections in Figure 3-9 agrees with the temperature deviation in Figure 3-

7. Generally Cattaneo number increases the discrepancy which means higher magnitude 

of higher order terms. Distributions of the leading-order and higher-order temperature 

deviation in the x-z domain are illustrated in Figures 3-10 and 3-11. The left columns 

contribute to the leading-order terms and the right columns include the higher order 

corrections. Generally increasing ε (or Rayleigh number) amplifies the effect of higher 

order terms which the dominant term changes with Cattaneo number. When ε=1 , Figure 

3-10 shows that 13 mode is the dominant mode for C=0.005 but for C=0.01, 02 mode is 

the dominant mode. Note the temperature profiles are horizontal for 02 mode. Despite the 

obvious changes in the temperature profiles with Cattaneo number, there is no noticeable 

change as shown in Figure 3-12.  

(a)  
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(b) 

 

 

 

 

 

 

(c)  
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Figure 3-9: Distributions of the leading-order and higher-order terms on the temperature 

deviation at (a) ε = 0.1, (b) ε = 0.5 and (c) ε = 1 for two non-Fourier fluids with C = 0.005(left 

column) and C = 0.01(right column).  Here k
2

π
=  and z = ½.In this Figure dashed line 

corresponds to the leading-order term ( of Spectral solution) and solid lines correspond to 

Spectral solution including leading and higher order terms. 

 

 

(a) 

 

(b) 
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(c) 

 

Figure 3-10: Distributions of the leading-order and higher-order temperature deviation at (a) ε 

= 0.1(b), ε = 0.5 and (c) ε = 1 for a non-Fourier fluid.  Here C=0.005, k
2

π
= and z = ½. In 

this Figure the left columns corresponds to the leading-order term ( of Spectral solution) and 

right columns correspond to Spectral solution including leading and higher order terms. 

 

 

 

(a) 
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(b) 

 

(c) 

 

Figure 3-11: Distributions of the leading-order and higher-order temperature deviation at (a) ε 

= 0.1, (b) ε = 0.5 and (c) ε = 1 for a non-Fourier fluid.  Here C=0.01, k
2

π
= and z = ½. In this 

Figure the left columns corresponds to the leading-order term ( of Spectral solution) and right 

columns correspond to Spectral solution including leading and higher order terms.. 

 

 

(a) 
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(b) 

 

(c) 

 
Figure 3-12: Distributions of the leading-order and higher-order stream function at(a) ε = 0.1, 

(b) ε = 0.5 and (c) ε = 1 for a non-Fourier fluid.  Here C=0.01, k
2

π
= and z = ½. In this 

Figure the left columns corresponds to the leading-order term ( of Spectral solution) and right 

columns correspond to Spectral solution including leading and higher order terms. 

 

3.5 Nusselt number 

Usually the most interesting parameter for description convective heat transport is a non-

dimensional term, Nusselt number Nu, which is characterized as the ratio of the heat 

transports with and without convection. To be more convenient, Nusselt number is 

defined as the average over the whole horizontal extent at the lower or upper plane as,  
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qz+
z =0

Nu = 1  (3.5.1) 

 

where qz is heat flux in z direction. In Fourier case, heat flux could obtain from the 

Fourier’s law but in non-Fourier case, qz is engaged in a set of coupled equations. Here, 

equation (3.2.14) for steady state is as,  

 

( )z x z x z zC w uqz wqz w qx w qz qz− + + − − = − − θ  (3.5.2) 

 

Since the Nusselt number is defined in the lower or upper plate, the boundary condition 

of ( )w x,z 0, t 0= =  could be implemented to equation (3.5.2) as following,  

 

( ) ( )x z z zCu qz 1 Cw qz Cw+ − = + − θ  (3.5.3) 

 

where velocities and temperature are determined in the previous section. Thus, the most 

general steady state solutions of equation (3.5.3), presuming periodicity in the x direction 

with wavelength 2π/k, is of the form 

 

1 2 1 2
0 a akx a akx x a akx a akx

a 1 a 1

qz qz qz C qz S , qz akqz S akqz C
= =

   = + + = − +
   ∑ ∑  (3.5.4) 

 

After substituting equation (3.5.4) into equation (3.5.3) and keeping terms in the same 

factor of akxS or akxC , all coefficients of equation (3.5.4) are determined. Because of 

periodicity in the x direction, the only term which plays role in Nusselt number is 
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( ) ( )
( )

2 7 4 4 6 7 4 1 5
0

7 4 4 6 7 4 3

A 1 A A A A 1 A A A A
qz

1 A A A A 1 A A A

+ − − +
=

+ − − +
 

(3.5.5) 

 

Where 1A to 7A are given in appendix A. Thus, the final Nusselt number equation 

becomes:  

 

0qz+Nu = 1  (3.5.6) 

 

Figure 3-13 illustrates the influence of Cattaneo number on the Nusselt number, 

including the leading-order (left column) and higher-order terms correction (right 

column) as a function of ε and wavenumber for non-Fourier fluids. 
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(a)  

(b)   

Figure 3-13: Dependence of the Nusselt number, including the leading-order and higher-order 

terms on (a) ε and (b) wavenumber. In this Figure dashed line corresponds to the leading-order 

term ( of Spectral solution) and solid lines correspond to Spectral solution including leading and 

higher order terms. 

 

The discrepancy between the leading- and higher-order corrections in non-Fourier cases 

is more than in a Fourier case which increases by the perturbation of Rayleigh number. 

The Cattaneo number increases the Nusselt number which decreases for higher ε, because 
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ε increases the influence of higher-order terms. In non-Fourier fluids the leading order 

terms are dependent on wave number and increase significantly for higher wane numbers. 

Interestingly, unlike 111θ (equation (3.4.7)), Nusselt number increases with wave number 

in non-Fourier fluid. Generally, Nusselt number increases with Cattaneo number or, by 

taking a nanofluid as the non-Fourier fluid, adding nano particles to the base fluid, 

increases the heat transfer as it was expected before. Buyuk [101] has studied natural 

convection heat transfer of water-based nanofluids in an inclined square enclosure with 

effective properties of nanofluids and found Nusselt number increases by increasing 

nanoparticle concentration ( or non-Fourier characteristic) when enclosure is heated from 

below. Also, Wen and Ding [102] found that existence of Al2O3 nanoparticles in water 

can result in considerable increment of convective heat transfer even more than the 

enhancement of the effective thermal conductivity of nanofluids.  

3.6 Conclusion 

A nonlinear spectral approach is used to model the post-critical convective state for 

thermo-gravitational instability in a non-Fourier fluid of the single-phase-lagging (SPL) 

type heated from below. To treat nonlinear convection, a spectral approach is presented 

in this section which is not based on arbitrary mode selection. Non-Fourier heat 

conduction has been described with different models. Single-Phase-Lag model (SPL) has 

been considered comprising relaxation time which exposes the delay in the response of 

the heat flux. Spectral approach reveals the number and type required modes. Finally the 

effect of relaxation time on the heat transfer has been studied a compared with the 

Fourier fluid. It has been shown that the leading-order contribution is essentially 

dominant for temperature field and stream function. Although modes 13θ  and 04θ  have 

small contributions, but they are not negligible and lead to the deformation of the 

temperature field especially in higher Rayleigh numbers. At the end, it has been shown 

that the Cattaneo number increases the Nusselt number. 
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Chapter 4  

4 Conclusions and Recommendations 

4.1 Conclusions 

This study examines the natural convection of non-Fourier fluids of the dual-

phase-lagging (DPL) type. These fluids possess a relaxation time and a retardation time, 

reflecting the delay in the response of the heat flux and the temperature gradient with 

respect to one another. The limit of a single-phase-lagging (SPL) fluid is recovered upon 

setting the retardation time to zero. The SPL model is particularly relevant to low-

temperature liquids or to fast heat transfer processes. The relevance of the DPL model to 

nanofluids (NFs) has recently been recognized in the literature, and is emphasized here. 

The equivalence between the two-phase and DPL models allows the expression of the 

relaxation time in terms of the nanoparticle (NP) concentration [1]. The retardation-to-

relaxation time ratio is then found to be equal to the NF solution-to-solvent thermal 

conductivity ratio, γ (see section 2.2). The parallels between NFs and polymeric solutions 

of the Boger type, obeying the Oldroyd-B constitutive equation for stress are established 

throughout the paper. Similar to viscoelastic fluids, the constitutive equation for heat flux 

used in the present analysis is frame invariant. 

Linear stability analysis indicates that, in contrast to ordinary fluids, a DPL fluid 

can lose its conductive mode to stationary or oscillatory convection. For small relaxation 

time (small Cattaneo number, C), the neutral stability curve comprises a Fourier branch 

(k < ki) and an oscillatory branch (k > ki). As C increases and reaches a critical value, 

CH(γ), both stationary and oscillatory convection become equally probable, confirming 

the existence of the bistable mode observed in experiment [2]. For C > CH, only 

oscillatory convection is predicted, at a Rayleigh number decreasing with C (see Figures 

2-4a and 2-5a). Thus, oscillatory convection increasingly becomes the mode of 

preference, compared to both conduction and stationary convection. In fact, it is found 

that, for strongly non-Fourier fluids, oscillatory convection becomes spontaneously 

observed with no prior conduction. The oscillatory roll size grows with both relaxation 

and retardation. There is a discontinuity in roll size with respect to retardation, which is 
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clearly reflected in the limit of large C (see Figure 2-10b). Although the oscillation 

frequency decreases monotonically with roll size (Figures 2-3b and 2-5b), it exhibits a 

non-monotonic response with respect to relaxation time (emergence of a maximum with 

respect to C). As expected, retardation tends to attenuate oscillation (see Figures 2-4c and 

2-10c).  

A nonlinear spectral approach is used to model the post-critical convective state for 

thermo-gravitational instability in a non-Fourier fluid of the single-phase-lagging (SPL) 

type heated from below. To treat nonlinear convection, a spectral approach is presented 

in this section which is not based on arbitrary mode selection. Non-Fourier heat 

conduction has been described with different models. Single-Phase-Lag model (SPL) has 

been considered comprising relaxation time which exposes the delay in the response of 

the heat flux. Spectral approach reveals the number and type required modes. Finally the 

effect of relaxation time on the heat transfer has been studied a compared with the 

Fourier fluid. It has been shown that the leading-order contribution is essentially 

dominant for temperature field and stream function. Although modes 13θ  and 04θ  have 

small contributions, but they are not negligible and lead to the deformation of the 

temperature field especially in higher Rayleigh numbers. At the end, it has been shown 

that the Cattaneo number increases the Nusselt number. 

 

4.2 Recommendations for future work 

Some assumptions have been made in this study to develop the mathematical 

formulations, which generate some limitations for the direct use of the current work in 

practical applications. For instance, the results are acceptable for Rayleigh numbers close 

to the critical Rayleigh number. The non-Fourier fluid is confined between two horizontal 

planes and it is assumed that there is no friction between fluid and the planes (free- free 

boundary condition).  

The current study focuses on the linear stability analyses of DPL fluids and thermal 

convection of SPL fluids and the current work can be expanded in the following ways:  



113 

 

a) In the current study, liquid is confined between two infinite horizontal plates. 

Linear stability analysis and thermal convection can be performed to examine the 

stability of DPL and SPL fluids in other geometries like vertical and inclined 

infinite plates.  

b) A spectral approach has been employed to attain the flow and temperature fields 

in the post-critical range of Rayleigh number. Other mathematical approaches 

could be used to verify the results, for instance amplitude equations and Lorenz 

models.  

c) Perturbation from the critical Rayleigh number has been defined as cr

cr

Ra - Ra
ε =

Ra
 

which limits the accuracy for small Rayleigh numbers. A change in this definition 

could help to have accurate results in a wide span of Rayleigh numbers. The 

proposed perturbation is crRa - Ra
ε =

Ra
 which always is smaller than one.  
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Appendices 

Appendix A  
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