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Abstract

In this thesis, we propose a systematic approach called the doubly adaptive LASSO tai-
lored to time series analysis, which includes four specific methods for four time series models,
respectively:

The PAC-weighted adaptive LASSO for univariate autoregressive (AR) models. Although
the LASSO methodology has been applied to AR models, the existing methods in the literature
ignore the temporal dependence information embedded in AR time series data. Consequently,
the methods may not reflect the characteristics of underlying AR processes, especially, the lag
order of AR models. The PAC-weighted adaptive LASSO incorporates the partial autocorrela-
tion (PAC) into the adaptive LASSO weights. The PAC-weighted adaptive LASSO estimator
has asymptotic oracle properties and a Monte Carlo study shows promising results.

The PAC-weighted adaptive positive LASSO for autoregressive conditional heteroscedastic
(ARCH) models. We have not found any results in the literature that apply the LASSO method-
ology to ARCH models. The PAC-weighted adaptive positive LASSO incorporates the PAC
information embedded in squared ARCH process into adaptive LASSO weights. The word
positive reflects the fact that the parameters in ARCH models are non-negative. We introduce
a new concept named the surrogate of the second-order approximate likelihood, and propose a
modified shooting algorithm to implement the PAC-weighted adaptive positive LASSO com-
putationally. The PAC-weighted adaptive positive LASSO estimator has asymptotic oracle
properties and a Monte Carlo study shows promising results.

The PLAC-weighted adaptive LASSO for vector autoregressive (VAR) models. Although
the LASSO methodology has been applied to building VAR time series models, the existing
methods in the literature ignore the temporal dependence information embedded in VAR time
series data. Consequently, the methods may not reflect the characteristics of VAR time se-
ries data, especially, the lag order of VAR models. The PLAC-weighted adaptive LASSO
incorporates the partial lag autocorrelation (PLAC) into the adaptive LASSO weights. The
PLAC-weighted adaptive LASSO estimator has oracle properties and Monte Carlo studies
show promising results.

The PLAC-weighted adaptive LASSO for BEKK vector ARCH (VARCH) models. We have
not found any results in the literature that apply the LASSO methodology to VARCH processes.
We focus on the BEKK VARCH models. The PLAC-weighted adaptive LASSO incorporates
the PLAC information embedded in the squared BEKK VARCH process into the adaptive
LASSO weights. We extend the concept of the surrogate of the second-order approximate like-
lihood, and propose a modified shooting algorithm to implement the PLAC-weighted adaptive
LASSO computationally. We conduct a Monte Carlo study and have preliminary results from
the study.
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Chapter 1

Introduction

1.1 Parsimonious models and shrinkage

A large number of statistical models have linear structure. Say we have a data set with

xi1, · · · , xip being the inputs and yi the outcome. The models with linear structure have the

form

f (E[yi|xxxi]) = β1x1 + · · ·+βpxp, (1.1)

where the input xi j can be continuous, binary, or categorical, and f would have different func-

tional forms depending on whether we have a classification or regression problem. If yi is

continuous, we often use the identity function for f , which is the linear regression model. If yi

is binary, we often use the logit function for f , which is the logistic regression model. If yi is

the number of occurrence of a rare event, we often use the Poisson regression model with the

log function for f . If yi is the hazard rate, we often use the log function for f , which is the Cox

proportional hazard model. What is common in all these models is that they are all linear in

the inputs xi1, · · · , xip. There are good reasons for these linear-structured models to be widely

used. First, they are simple in functional structure and thus more interpretable than complex

nonlinear models. Moreover, they often provide an adequate description of how the inputs af-

fect the output. Finally, they sometimes outperform more complicated nonlinear models with

regard to prediction.

When we fit the model to the data, we are not always satisfied with the full model, especially

when the number of the inputs is large. The so-called subset selection or variable selection

procedures eliminate the insignificant variables from the model while keeping those significant

1
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ones in the model. We need parsimonious models for two reasons. The first is prediction

accuracy. Prediction accuracy may be improved by excluding insignificant variables although

the bias of estimators may be increased by doing so. With the full model, the estimators for

the parameters have lower bias but larger variance. In contrast, for a parsimonious model,

the estimators may have larger bias but smaller variance. We would like to sacrifice a little

bit of bias but reduce the prediction variance with the net benefit of reduced mean squared

error of prediction. This is the so-called the bias-variance tradeoff. The second reason for

parsimonious models is the ease of interpretation. From a smaller model it is easier for us to

see the inputs that have the strongest effects on the outcome.

Variable selection is a crucial but difficult problem in building statistical models. A large

amount of research has been and continues to be devoted to this topic. There are a variety

of subset selection strategies in the literature. (i) The best subset selection fits models of all

possible subsets, then puts these models into categories corresponding to 0,1, · · · , p parameter

models, then selects one from each category by minimal residual sum of squares which results

in p + 1 candidate models that contain 0,1, · · · , p variables, respectively, and finally chooses

the model that satisfies some optimal criterion, say, the Akaike Information Criterion (AIC).

This approach is feasible for moderate p. (ii) The forward Stepwise selection starts with the

intercept, then sequentially adds into the model the variable that most improves the fit to yield

p + 1 nested candidate models, and finally chooses the model that satisfies the some optimal

criterion like the AIC. (iii) The backward Stepwise selection starts with the full model, and

sequentially removes the least significant variables. (iv) The forward stagewise selection starts

with an intercept equal to ȳ, and includes the next variable that is most correlated with the

current residual. The process continues until none of the variables have correlation with the

current residuals and the final model is obtained.

Subset selection procedures are discrete in the sense that variables are either retained or

discarded. They often have high variability (Breiman, 1996). Apart from instability issue they

quickly become computationally infeasible as p becomes large. Methods using shrinkage,

regularization or penalization are more continuous procedures, and thus do not have as much

high variability, and can also better deal with algorithmic problems when p is large. The
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penalization problem for the model (1.1) has the general form

β̂ββ = argmin
βββ

n∑
i=1

`((yi, xxxi),βββ) +λnP(βββ), (1.2)

where `(yi, xxx′iβββ) is a convex loss function, P(βββ) is a penalty function, λn > 0 is the tuning

parameter. Depending on the functional form of f in (1.1) there are many loss function, for

example, the square error loss in linear regression, the negative log-likelihood in generalized

linear models, the negative partial log-likelihood function in Cox proportional hazards model,

and etc. The tuning parameter λn balances the loss and the penalty. It determines the bias-

variance tradeoff by controlling the amount of penalty. A variety of penalty functions has been

proposed in the literature. An example is the Bridge penalty function of Frank and Friedman

(1993) defined as

P(βββ) =

p∑
j=1

|β j|
γ, (1.3)

where γ ≥ 0. While they did not solve for the Bridge estimator, Frank and Friedman pointed

out that it is desirable to get the optimal value of γ. The Bridge penalty includes a few well

known penalty functions as special cases. For γ = 0, P(βββ) reduces to many well-known model

selection criteria such as the Akaike Information criterion (AIC) and the Bayesian Information

criterion (BIC). For γ ∈ (0,1], P(βββ) is known as the soft-thresholding penalty (Donoho and

Johnstone, 1994). Particularly for γ = 1, it is the penalty for the least absolute shrinkage

and selection operator (LASSO) (Tibshirani, 1996). For γ = 2, it is the penalty for the ridge

regression (Hoerl and Kennard, 1970).

In this dissertation, we focus on the the LASSO methodology only. We adapt the LASSO

to the context of time series analysis and propose a doubly adaptive LASSO methodology for

time series models.

1.2 The LASSO methodology

The LASSO (Tibshirani, 1996) is a celebrated breakthrough in the area of model selection.

The LASSO becomes increasingly popular because its optimization objective is convex, it

performs variable selection and parameter estimation simultaneously, and there exist efficient
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algorithms. In this section, we review the definition, asymptotic properties, algorithms, and the

irrepresentable condition, and the adaptive version of the LASSO.

1.2.1 The shrinkage mechanism

Consider the linear regression model, yi = xxxiβββ+ εi, where ε1, · · · , εn are iid(0, σ2). Let xxxi =

(x1, · · · , xp)′ and βββ = (β1, · · · , βp).

Definition (The LASSO (Tibshirani, 1996)). The LASSO estimator, denoted by β̂ββ
L
n , is defined

as

β̂ββ
L
n = argmin

βββ

n∑
i=1

(yi− xxx′iβββ)2 +λn

p∑
j=1

|β j|, (1.4)

or, equivalently,

β̂ββ
L
n = argmin

βββ

n∑
i=1

(yi− xxx′iβββ)2 subject to
p∑

j=1

|β j| ≤ t.

There is no closed form formula for β̂ββ
L
n in general. However, for the special case of the

orthonormal design, an analytical formula exists, and we record it here as a proposition, which

may shed light on our intuitive understanding of the shrinkage mechanism of the LASSO.

Proposition 1.2.1 (The LASSO estimator in orthonormal design (Tibshirani, 1996)). For

the orthonormal design in which
∑n

i=1 xxxixxx′i = I with I being the identity matrix, the LASSO

estimator (1.4) is a function of λn > 0 in the form

β̂L
j (λn) =

(
|β̂ols

j | −
λn

2

)+

sgn(β̂ols
j ), (1.5)

for j = 1, · · · , p where (z)+ = max{z, 0} and sgn(z) = +1,0,−1 if z > 0,= 0,< 0, respectively.

Also t is a function of λn defined by

t(λn) =

p∑
j=1

(
|β̂ols

j | −
λn

2

)+

. (1.6)

To get the results of Proposition 1.2.1, note that for the orthonormal design,
∑n

i=1(yi −

xxx′iβββ)2 =
∑n

i=1(yi− ŷi)2 +
∑p

j=1(β j− β̂
ols
j )2, where β̂ols

j is the ordinary least squares (OLS) estimator
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for β j and ŷi is the OLS predicted value. Applying the Karush-Kuhn-Tucker (KKT) theorem

for the constrained optimization problem 1, we have
(a) β̂L

j − β̂
ols
j +

λn
2 sgn(β̂L

j ) = 0, j = 1, · · · , p,

(b) λn ≥ 0,
(c) λn(

∑p
j=1 |β̂

L
j | − t) = 0,

(d)
∑p

j=1 |β̂
L
j | ≤ t <∞.

(1.7)

Consider the two cases. In the first case, λn = 0. Then from (1.7)(a) we have β̂L
j = β̂ols

j so that

from (1.7)(d) we have
∑p

j=1 |β̂
ols
j | ≤ t <∞, which is not true because β̂ols

j is the unconstrained

minimizer.

- β̂ols
j

6

β̂L
j

�
�
�
�
��

@
@
@
@
@@

@
@

@
@

@@

�
�

�
�

��

�
�

�
�

��

|β̂L
j | = |β̂

ols
j | −λn/2

λn
2−

λn
2

(a)

- β̂ols
j

6

β̂L
j

�
�
�
�
��

�
�

�
�

��

�
�
�
�
��

�
�

�
�
��

|β̂L
j | = |β̂

ols
j | −λn/2

sgn(β̂L
j ) = sgn(β̂ols

j )

λn
2

−
λn
2

λn
2

(b)

Figure 1.1: (a) Illustration of (1.11); (b) Illustration of the LASSO estimator in the orthonormal
design.

Now consider the second case in which λn > 0. From (1.7)(c) we have

p∑
j=1

|β̂L
j | = t. (1.8)

We write (1.7)(a) as |β̂L
j |sgn(β̂L

j ) = |β̂ols
j |sgn(β̂ols

j )− λn
2 sgn(β̂L

j ) or

|β̂L
j | = |β̂

ols
j |sgn(β̂L

j )sgn(β̂ols
j )−

λn

2
. (1.9)

The LHS of (1.9) is non-negative. For the RHS of (1.9) to be non-negative, it is necessary that

sgn(β̂L
j ) = sgn(β̂ols

j ), (1.10)

1 Karush-Kuhn-Tucker theorem (Chong and Zak, 2008, p.458): Let f ,ggg,hhh ∈ C1. Let xxx∗ be a regular point
and a local minimizer for the problem of minimizing f subject to hhh(xxx) = 000 and ggg(xxx)≤ 000 where f :Rn→R, hhh :Rn→

Rm(m < n) and ggg : Rn→ Rp. Then there exist λλλ∗1 ∈ R
m and λλλ∗2 ∈ R

p such that (a) D f (xxx∗)+λλλ∗
′

1 hhh(xxx∗)+λλλ∗
′

2 ggg(xxx∗) = 000′,
(b) λλλ∗2 ≥ 000, (c) λλλ∗

′

2 ggg(xxx∗) = 0, (d) hhh(xxx∗) = 000 and (e) ggg(xxx∗) ≤ 000.
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so that

|β̂L
j | = |β̂

ols
j | −

λn

2
. (1.11)

With pictorial aid it is easy to find the solution. Figure 1.1(a) is the plot of (1.11) whereas

Figure 1.1(b) is the plot of (1.5) because it satisfies both (1.10) and (1.11). Substituting the β̂L
j

into (1.8) we have (1.6).

Proposition 1.2.1 gives us insight into the shrinkage mechanism of the LASSO. From Fig-

ure 1.1(b) we see clearly that the lasso shrinkage causes the estimates of the non-zero coeffi-

cients to be biased towards zero. We also see that the LASSO translates each coefficient by

a constant factor λn/2, truncating at zero, which is known as soft thresholding (Donoho and

Johnstone, 1994). The LASSO also performs continuous subset selection. Let us look at a sim-

ple example. Suppose that we have three standardized and orthonormal input variables x1, x2

and x3. We assume that β̂ols
1 > β̂ols

2 > β̂ols
3 > 0. We make use of Proposition 1.2.1. If λn ≥ 2β̂ols

1 ,

we have β̂L
j = 0, for j = 1,2,3, and t = 0. If 2β̂ols

2 ≤ λn < 2β̂ols
1 , we have β̂L

1 = β̂ols
1 −λn/2, β̂L

j = 0

for j = 2,3, and 0 < t ≤ β̂ols
1 − β̂

ols
2 , t1. If 2β̂ols

3 ≤ λn < 2β̂ols
2 , we have β̂L

j = β̂ols
j − λn/2 for

j = 1,2 β̂L
3 = 0, and t1 < t ≤ β̂ols

1 + β̂ols
2 −2β̂ols

3 , t2. If 0 ≤ λn < 2β̂ols
3 , we have β̂L

j = β̂ols
j −λn/2 for

j = 1,2,3 , and t2 < t ≤ β̂ols
1 + β̂ols

2 + β̂ols
3 , t3. A bit of mechanical manipulation and rearranging

gives us the following solution

β̂L
1 =


t if 0 ≤ t ≤ t1
1
2 t + 1

2 t1 if t1 < t ≤ t2
1
3 t + 1

2 t1 + 1
6 t2 if t2 < t ≤ t3

,

β̂L
2 =


0 if 0 ≤ t ≤ t1
1
2 t− 1

2 t1 if t1 < t ≤ t2
1
3 t− 1

2 t1 + 1
6 t2 if t2 < t ≤ t3

,

β̂L
2 =


0 if 0 ≤ t ≤ t1
0 if t1 < t ≤ t2
1
3 t− 1

3 t2 if t2 < t ≤ t3

.

We see that the LASSO solutions are continuous paths over the tuning parameter t, and each

path is piecewise linear between thresholding points.
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1.2.2 The computational algorithms

The LASSO procedure has an attractive property in terms of optimization. The objective func-

tion to be minimized is convex. Thus it does not suffer from the issue of multiple local minimal

points, and the global minimum problem can be solved efficiently using a variety of algo-

rithms, including but not limited to the quadratic programming for the LASSO (Tibshirani,

1996), the shooting algorithm for the LASSO (Fu, 1998), the homotopy algorithm for the

LASSO (Osborne, Presnell and Turlach, 2000a, 2000b), the least angle regression and shrink-

age (LARS) (Efron, Hastie, Johnston, and Tibshirani, 2004), the coordinate descent algorithm

for the LASSO (Friedman, Hastie, Hoefling and Tibshirani, 2007). Note that in principle, the

shooting algorithm belongs to the class of coordinate descent algorithms. The LARS belongs

to the class of continuation methods or homotopy methods. That is why we put the definite

article the before the name of each algorithm.

In this dissertation, we make use of the LARS algorithm of Efron, et al (2004). We also

modify the shooting algorithm of Fu (1998) to minimize the LASSO regularized negative likeli-

hood functions in Chapter 3 and Chapter 5 . Here we briefly review the LARS and the shooting

algorithms.

The LARS algorithm

Perhaps the LARS algorithm (Efron, et al 2004) is the most well-known continuation algorithm

in data mining. The LARS gives path solutions and the path is piece-wise linear, It is contrived

with great ingenuity 2. It is also extremely efficient so that the computational cost of the entire

steps is of the same order as that of the ordinary least squares solution for the full model. See

Algorithm 1 for details.

2In the preface to the book The Science of Bradley Efron: Selected Papers (Edited by Morris and Tibshirani),
Tibshirani recount the story of how Efron contrived magically the lars algorithm pretty much single-handedly
using geometric insight and analysis.
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Algorithm 1: Least angle regression for the LASSO (Hastie, et al, 2009, p.74 - 76).
1 Standardize the predictors to have mean zero and unit norm. Start with the residual

rrr = yyy− ŷyy, β1, · · · , βp = 0
2 Find the predictor x j most correlated with rrr.
3 Move β j from 0 towards its least-squares coefficient , until some other competitor
< xxx j,rrr > has as much correlation with the current residual as does x j.

4 Move β j and βk in the direction defined by their joint least squares coefficient of the
current residual on (xxx j, xxxk), until some other competitor xxxl has as much correlation with
the current residual.

5 If a non-zero coefficient hits zero, drop its variable from the active set of variables and
recompute the current joint least squares direction.

6 Continue in this way until all p predictors have been entered. After min(n−1, p) steps,
we arrive at the full least-squares solution.

The shooting algorithm

Fu (1998) proposed a shooting algorithm for solving the LASSO problem numerically. Let

Q(βββ) = (yyy − XXXβββ)′(yyy − XXXβββ), where yyy = (y1, · · · , yn)′, and XXX is the design matrix. Then the

LASSO estimator for the linear regression model is to minimize the objective function Q(βββ) +

λ
∑p

j=1 |β j|. The first order necessary condition of optimization is ∂Q(βββ)/∂βββ = −λsgn(βββ), and

∂Q(βββ)/∂βββ = −2XXX
′

(yyy−XXXβββ) = 2XXX
′∑p

i=1 xxxiβi−2XXX
′

yyy, which is the vector

2
∑p

i=1(xxx1)
′

xxxiβi−2(xxx1)
′

yyy
...

2
∑p

i=1(xxx j)
′

xxxiβi−2(xxx j)
′

yyy
...

2
∑p

i=1(xxxp)
′

xxxiβi−2(xxxp)
′

yyy


=



2(xxx1)
′

xxx1β1 + 2
∑

i,1(xxx1)
′

xxxiβi−2(xxx1)
′

yyy
...

2(xxx j)
′

xxx jβ j + 2
∑

i, j(xxx j)
′

xxxiβi−2(xxx j)
′

yyy
...

2(xxxp)
′

xxxpβp + 2
∑

i,p(xxxp)
′

xxxiβi−2(xxxp)
′

yyy


,



S 1
...

S j
...

S p


,

with xxx j = (x1 j, · · · , xn j)
′

being the jth column of XXX. Letting

S 0, j = S 0(0,βββ(− j),XXX,yyy) = 2
∑
i, j

(xxx j)
′

xxxiβi−2(xxx j)
′

yyy,

where βββ(− j) is the coefficient vector without β j, we have

S j = S j(βββ,XXX,yyy) = 2(xxx j)
′

xxx jβ j + S 0, j,

for j = 1, · · · , p.

In Figure 1.2, shoot from the point S 0 in the direction of slope 2(xxx j)
′

xxx j. If no target was hit,

as shown on middle figure, the solution is set to zero; if the target is hit, as shown on the left
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λ
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β j
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�
��

S j
rS 0

β j

Figure 1.2: The shooting algorithm (Fu, 1998).

or right figure, the unique non-zero solution is obtained. The solution is expressible in closed

form as

β̂ j =


λ−S 0, j

2(xxx j)′ xxx j if S 0, j > λ,

0 if |S 0, j| < λ,
−λ−S 0, j

2(xxx j)′ xxx j if S 0, j < −λ,

for j = 1, · · · , p.

1.2.3 The asymptotic properties

Knight and Fu (2000) set up a paradigm for asymptotic analysis of the whole class of Bridge

estimator defined in (1.2) and (1.3) with the loss being the squared error loss, including the

LASSO estimator. We follow Knight and Fu to conduct the asymptotic analysis. So we quote

the following theorems from Knight and Fu (2000).

Consider the linear regression model, yi = xxxiβββ + εi, where ε1, · · · , εn are iid(0, σ2) with

regularity conditions for the design:

A1: CCCn = 1
n
∑T

i=1 xxxixxx′i → CCC with CCC being a positive definite p× p matrix,

A2: 1
n max1≤i≤n xxx′i xxxi → 0, as n→∞.

Let βββ∗ be the true unknown parameter vector, β̂ββ
ols
n the ordinary least squares estimator for βββ∗,

and β̂ββ
L
n the LASSO estimator for βββ∗ defined in (1.4). Recall that β̂ββ

ols
n is consistent, unbiased

and
√

n(β̂ββ
ols
n −βββ

∗)
D
−→ N(0,σ2CCC−1).
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Theorem 1.2.2 (Consistency (Knight and Fu, 2000)). Under A1 and A2, if λn/n→ λ0 ≥ 0

then

β̂ββ
L
n

P
−→ argmin

βββ
(Z(βββ)),

where

Z(βββ) = (βββ−βββ∗)′CCC(βββ−βββ∗) +λ0

p∑
j=1

|β j|.

Theorem 1.2.3 (
√

n-Consistency (Knight and Fu, 2000)). Under A1 and A2, if λn/
√

n→

λ1 ≥ 0 then
√

n(β̂ββ
L
n −βββ

∗)
D
−→ argmin

uuu
(V1(uuu)),

where

V1(uuu) = −2uuu′www + uuu′CCCuuu +λ1

p∑
j=1

{
u jsgn(β j)I(β j , 0) + |u j|I(β j = 0)

}
.

and www ∼ N(000,σ2CCC))).

Remarks:

(i) By Theorem 1.2.2, if λ0 = 0, then argmin(Z(βββ)) = βββ∗ and so β̂ββ
L
n is consistent.

(ii) By Theorem 1.2.3, if λn = O(
√

n), then β̂ββ
L
n is
√

n-consistent.

(iii) By Theorem 1.2.3, if λ1 = 0, then
√

n(β̂ββ
L
n −βββ

∗) has the same asymptotic distribution as

does
√

n(β̂ββ
ols
n −βββ

∗).

(iv) From Theorem 1.2.3, we see that if λ1 > 0, the non-zero parameters are estimated with

some asymptotic bias.

1.2.4 Selection consistency and irrepresentable conditions

Estimation consistency does not necessarily imply selection consistency. Without loss of

generality, suppose that β1, · · · , βr , 0 and βr+1, · · · , βp = 0. Let S = {1,2, · · · , r}. Let

Sc = {r + 1, · · · , p}. Let Ŝn = { j : β̂L
j,n , 0}. Let Ŝc

n = { j : β̂L
j,n = 0}. Let βββS = (β1, · · · , βr)′. We

rewrite the the matrix CCC as follows (
CCCSS CCCSSc

CCCSSc CCCScSc

)
,

where CCCSS is r× r matrix, CCCScSc is (p− r)× (p− r) matrix.
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Definition (Selection consistency (Zou, 2006)). The LASSO variable selection is consistent

if and only if limn P(Ŝn = S) = 1.

Proposition 1.2.4 . Under A1 and A2, if λn/
√

n→ λ1 > 0 then

liminf
n

P(Ŝc
n = Sc) = c > 0.

Proposition 1.2.4 is summarized from a result of Knight and Fu (2000). For the proof, see

the paragraph before Example 1 in the paper of Knight and Fu (2000). Proposition 1.2.4 says

that when some of β j’s are exactly 0, the limiting distribution specified in Theorem 1.2.3 of the

LASSO estimator puts positive probability at 0 if λn = O(
√

n).

Proposition 1.2.5 (Zou, 2006). Under A1 and A2, if λn/
√

n→ λ1 ≥ 0 then

limsup
n

P(Ŝn = S) ≤ c < 1.

Proposition 1.2.5 is quoted from Zou (2006). For the proof, see the paper of Zou (2006).

Proposition 1.2.5 says that if λn = O(
√

n), which is the optimal rate of convergence in estima-

tion, then the set Ŝn is not the true set S with a positive probability.

We then wonder if the LASSO could achieve selection consistency if we are willing to

sacrifice the convergence rate of estimation. It turns out that the slower convergence rate of es-

timation does not guarantee selection consistency. The problem lies in several quite restrictive

conditions (Meinshausen and Bühlmann, 2006). The main and restrictive assumption for con-

sistent variable selection is the so-called neighborhood stability (Meinshausen and Bühlmann,

2006), coherence condition (Donoho, Elad and Temlyakov, 2006) or irrepresentable condi-

tion (Zhao and Yu, 2006). The irrepresentable condition concerns the design matrix XXX and

cannot be relaxed (Meinshausen and Bühlmann, 2006). Several authors independently investi-

gated this issue, including Zou (2006), Zhao and Yu (2006), and Meinshausen and Bühlmann

(2006). Bühlmann and van de Geer (p.22 and 190-194, 2011) gives an excellent comprehensive

exposition of the irrepresentable condition.

Definition (Irrepresentable condition (Zou, 2006; Zhao and Yu, 2006; Bühlmann and van

de Geer, 2011)). Assume that CCCSS is non-singular. We say that the strong irrepresentable
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condition is met if

‖CCCSScCCC−1
SSsgn(βββS)‖∞ < 1. (1.12)

We say that the weak irrepresentable condition is met if

‖CCCSScCCC−1
SSsgn(βββS)‖∞ ≤ 1. (1.13)

Theorem 1.2.6 (Sufficiency and essential necessity of selection consistency(Zou, 2006; Zhao

and Yu, 2006)). Under regularity assumptions A1 and A2, we have

(i) Essentially necessary condition: If limn P(Ŝn = S) = 1, then the weak irrepresentable

condition (1.13) follows.

(ii) Sufficient conditions: If the strong irrepresentable condition (1.12) holds, then limn P(Ŝn =

S) = 1.

The irrepresentable condition corresponds to a condition on the design matrix of the form

‖(XXX′SSXXXSS)
−1XXX′SSXXXScSc‖∞ ≤ 1−η for some η ∈ (0,1].

This means that the least squares coefficients for the columns of XXXScSc on XXXSS are not too large,

that is, the relevant variables in S are not too highly correlated with the nuisance variables in

Sc. It is not so much that Theorem 1.2.6 allows us to say when the LASSO is consistent for

selection and when not as that it gives us a warning message that the LASSO would perform

poorly for variable selection with strongly correlated design.

A variety of remedies has been suggested to improve the performance of the LASSO, for

example, the relaxed LASSO of Meinshausen (2007), the smoothly clipped absolute deviation

(SCAD) of Fan and Li (2001), and so forth. The adaptive LASSO (Zou, 2006) is a simple

yet effective remedy. The adaptive LASSO yields consistent estimators and selects variables

consistently even if the irrepresentable condition fails while retaining the attractive convexity

property of the LASSO.

1.2.5 The adaptive LASSO and its oracle properties

We review the definition, computational algorithm, and asymptotic properties of the adaptive

LASSO of Zou (2006).
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Definition (The adaptive LASSO (Zou, 2006)). The adaptive LASSO estimator, denoted by

β̂ββ
aL
n , is defined as

β̂ββ
aL
n = argmin

βββ

n∑
i=1

(yi− xxx′iβββ)2 +λn

p∑
j=1

ŵ j|β j|, (1.14)

where

ŵ j =
1
|β̂ j|γ

(1.15)

for some γ > 0, and β̂ j is a
√

n-consistent estimate for β j.

The analytical formula for β̂ββ
aL
n exists only for orthonormal models while there is no closed

form formula for general designs. Following the same process shown in Section 1.2.1, we

obtain the following results for the orthonormal models.

Proposition 1.2.7 (The adaptive LASSO estimator in orthonormal design). For the or-

thonormal design in which
∑n

i=1 xxxixxx′i = I with I being the identity matrix, the adaptive LASSO

estimator defined by (1.14) and (1.15) is a function of λn > 0 in the form

β̂aL
j (λn) =

|β̂ols
j | −

λn

2|β̂ j|γ

+

sgn(β̂ols
j ), (1.16)

for j = 1, · · · , p where (z)+ = max{z, 0} and sgn(z) = +1,0,−1 if z > 0,= 0,< 0, respectively.

And t is a function of λn defined by

t(λn) =

p∑
j=1

|β̂ols
j | −

λn

2|β̂ j|γ

+

.

The adaptive LASSO estimator (1.16) for the orthonormal design is illustrated by Figure

1.3 where we set β̂ j = β̂ols
j . Proposition 1.2.7 and Figure 1.3 gives us insight into the mechanism

of the adaptive LASSO. We see that the adaptive LASSO shrinkage still causes the estimate

of a non-zero coefficient to be biased towards zero but the bias becomes much smaller, espe-

cially when the coefficient is large, compared to the bias caused by the LASSO. Moreover,

we see that a nuisance coefficient becomes easier to be truncated at zero due to the adaptive

soft thresholding. As the sample size increases, the adaptive weights for zero coefficients ap-

proaches infinity while the weights for non-zero ones approaches finite constants. We then get

unbiased (in asymptotic sense) estimates for significant coefficients and at the same time get
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β̂ols
j

β̂aL
j

−
λn

2|β̂ols
j |

γ

λn
2|β̂ols

j |
γ

Figure 1.3: Illustration of the adaptive LASSO estimator in the orthonormal design with the
adaptive weight ŵ j being 1/|β̂ols

j |
γ.

the nuisance ones truncated at zero. In addition, the adaptive LASSO still attains continuous

subset selection property of the LASSO.

The adaptive LASSO attains the attractive convexity property of the LASSO in terms of

optimization. In addition, the LARS algorithm (Efron et al 2004) can be directly employed

to solve the adaptive LASSO problem. Let WWW = diag(ŵ1, · · · , ŵp). The adaptive LASSO

objective can be rewritten as

(
yyy−XXXWWW−1WWWβββ)′(yyy−XXXWWW−1WWWβββ

)
+λ

p∑
j=1

ŵ j|β j| =
(
yyy− X̃XXβ̃ββ)′(yyy− X̃XXβ̃ββ

)
+λ

p∑
j=1

|β̃ j|,

where X̃XX = XXXWWW−1, and β̃ββ = WWWβββ (i.e. β̃ j = ŵ jβ j). Thus, the LARS algorithm for the adaptive

LASSO consists of the following steps:

Algorithm 2: The LARS algorithm for the adaptive LASSO (Zou, 2006).

1 Calculte X̃XX = XXXWWW−1, i.e. x̃xx j = xxx j/ŵ j, j = 1, · · · , p.

2 Apply Algorithm 1 to obtain ˆ̃βββ(λ) = argminβ̃ββ
{
(yyy− X̃XXβ̃ββ)′(yyy− X̃XXβ̃ββ) +λ

∑p
j=1 |β̃ j|

}
.

3 Output β̂ββ
aL

(λ) = WWW−1 ˆ̃βββ.

Fan and Li (2001) discussed nice properties that a good shrinkage estimator should provide.

(i) Unbiasedness. The estimator is nearly unbiased when the true unknown parameter is large.

(ii) Sparsity. The estimator has a thresholding rule that automatically truncates the nuisance
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coefficients at zero to reduce model complexity. (iii) Continuity. The estimator avoids insta-

bility in prediction. In the same paper, they proposed the smoothly clipped absolute deviation

(SCAD) penalty to remedy the selection inconsistency of the LASSO. They demonstrate that

the SCAD estimator is
√

n-consistent. Moreover, in language similar to Donoho and John-

stone (1994), and they showed that the estimator performs as well as the oracle estimator,

which knows in advance the sparsity structure of the true model. Zou (2006) showed that the

adaptive LASSO also possesses these oracle properties.

Theorem 1.2.8 ((Oracle properties of the adaptive LASSO (Zou, 2006)). Under A1 and A2,

if λn/
√

n→ 0 and λnn(γ−1)/2→∞ then the adaptive LASSO estimator must satisfy

(i) Selection consistency: limn P(Ŝn = S) = 1.

(ii) Asymptotic normality:
√

n(β̂ββ
aL
S −βββ

∗
S)

D
−→ N

(
0, σ2CCC−1

SS

)
.

1.2.6 Critiques for the oracle properties

The LASSO methodology is successful and popular in statistical modeling, especially in high

dimensional data analysis, due to the fact that it performs model selection and parameter esti-

mation simultaneously. Most existing studies have focused on the prediction, estimation and

selection properties ranging from prediction consistency and estimation consistency to selec-

tion consistency with the aim of recovery of the true underlying sparse model, as we summa-

rized in previous sections. Some important questions are less well studied. For example, a

classical variable selection procedure sets a coefficient in a model to zero if it is marginally

insignificant, i.e. the 95% confidence interval contains 0 whereas the LASSO sets a param-

eter directly to zero due to optimization of a penalized objective function, which is hard to

understand from a statistical point of view. Another example concerns statistical inference.

In practice, data analysts would like to assess how significant a selected variable is and to

make multiple comparisons between a number of variables simultaneously. A new advance

has been made recently by Lockhart, Taylor, Tibshirani and Tibshirani (2014) in the regard of

testing significance for the LASSO. Yet, some of criticisms in the literature to the LASSO and

shrinkage methods at large remain unanswered.

Leeb and Pötscher (2008) related the oracle properties of shrinkage estimators to the su-
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perefficient Hodges’ estimator, a well-known pitfall that holds only for a set of parameters

with Lebesgue measure zero. They argued that the oracle properties are often a consequence

of sparsity of an estimator. They showed that any estimator satisfying a sparsity property has

maximal risk that converges to the supremum of the loss function; in particular, the maximal

risk diverges to infinity whenever the loss function is unbounded.

Pötscher and Schneider (2009) and Pötscher and Leeb (2009) studied the distribution of

the adaptive LASSO estimator (and other shrinkage estimators). They showed that while the

oracle properties predict normality, the finite-sample distribution of the adaptive LASSO es-

timator is highly non-normal, and non-normality persists even in large samples. They argued

that the oracle properties based on fixed-parameter asymptotics are not reliable tools to assess

the estimator’s actual performance. To determine if the non-normality of the finite-sample dis-

tribution really is a transient feature as n→∞ as the oracle properties suggest, one needs to

study moving-parameter asymptotics rather than fixed-parameter asymptotics. They argued

that the mathematical reason for the failure of the pointwise asymptotic distribution to cap-

ture the behaviour of the finite-sample distribution well is that the convergence of the latter

to the former is not uniform in the underlying parameter. In particular, small non-zero coef-

ficients cannot be detected consistently and their presence are related to the phenomenon of

super-efficiency. Selection consistency needs the so-called beta-min condition (Bühlmann and

van de Geer, 2011, page 35 and 187), a condition requiring some lower non-zero bound on

|βββ∗|min ,min j∈S |β
∗
j |, for example, |βββ∗|min�

√
s log p/n in linear regression, where s = |S| is the

cardinality of the set S. Pötscher and Leeb (2009) showed that the uniform convergence rate of

the adaptive estimator is slower than 1/
√

n in the case of consistent model selection. Pötscher

and Schneider (2010) also showed that the intervals based on the adaptive LASSO estimator

are larger than the standard intervals by an order of magnitude in the case of consistent model

selection.

Leeb and Pötscher (2003, 2005) discussed the effects of model selection on inference.

They showed that the finite-sample distribution of a post-model selection estimator is typi-

cally not uniformly close to the pointwise asymptotic distribution. They claimed the impossi-

bilty, namely, the finite-sample distribution of a post-model-selection estimator is typically too



CHAPTER 1. INTRODUCTION 17

complicated to be estimated. Hence, regardless of sample size the asymptotic distribution can

not be safely used to replace the finite-sample distribution. Leeb and Pötscher (2005) viewed

a post-model-selection estimator as a discontinuous form of shrinkage estimators. The two

types of estimators show similar features in the asymptotic distributions. The finite distribu-

tion functions or the risks of the two types of estimators often can not be estimated uniformly

consistently.

While they do not invalidate the LASSO methodology and shrinkage methods at large,

these critiques do shed light on some critical issues in the area of shrinkage methods and

definitely provide motivation for further investigation.

1.3 Literature review of the LASSO methodology in time se-
ries analysis

As of now we have not found any research results in the literature that apply the LASSO

methodology to build the autoregressive conditional heteroscedastic (ARCH) model of Engle

(1982) and multivariate ARCH models.

There exist a lot of research examples that utilize the LASSO methodology to build autore-

gressive (AR) models and vector AR models. In this section we briefly review these existing

results. Readers are notified that our review is not a complete list. For example, we do not

touch upon the applications of the LASSO to time series regression model, frequency-domain

analysis, change-point models, and non-parametric time series analysis. We do not touch upon

the Bayesian LASSO and the fused LASSO.

For a linear regression model with autoregressive errors (REGAR) with fixed autoregressive

(AR) order, Wang, Li, and Tsai (2007) adapted the LASSO to the REGAR models to shrink

both the regression coefficients and the autoregressive (AR) coefficients. Yoon, Park, and Lee

(2013) applied three shrinkage methods, the adaptive LASSO, the bridge, and the SCAD to

the REGAR model, proposed computational algorithm, studied asymptotic properties such as

consistency, selection consistency, and asymptotic normality, and compared the performances
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of the three estimators. Chand (2011) implemented LASSO-type shrinkage methods to linear

regression and time series models in his dissertation.

Autoregressive models with infinite variance are important in modeling heavy tailed time

series. Tang, Zhou, and Wu (2012) proposed a self-weight composite quantile regression

(SWCQR) and applied the adaptive LASSO on SWCQR for estimation and selection of in-

finite variance autoregressive models. Xu, Xiang, Wang and Lin (2012) applied the adaptive

LASSO penalty to the least absolute deviation loss function and they reported that the proposed

method is able to consistently identify the true model and at the same time produce efficient

estimators. Xu et. al (2012) also provided a unified way to conduct variable selection for AR

models with finite or infinite variance.

Nardi and Rinaldo (2011) applied the LASSO to the AR process whose maximal lag order

p grows with sample size n at certain rate. They referred this scheme as a double asymp-

totic framework. The AR model with an increasing p lies between a fixed order AR and an

infinite-order AR process. They showed that the Lasso procedure is particularly adequate for

this double asymptotic scheme. They derived theoretical results establishing nice asymptotic

properties, under a much faster rate of growth of the AR order. In particular, model selec-

tion consistency, estimation consistency, and prediction consistency hold if the maximal lag

p grows with n as p = o(n), p = o(n1/2), and p = o(n1/3), respectively. Medeiros and Mendes

(2012) studied the asymptotic properties of the adaptive LASSO in sparse high-dimensional

linear time-series models where both the number of autoregressive variables can increase with

the number of observations and might be larger than the number of observations. They showed

that the adaptive LASSO has oracle properties even when the errors are non-Gaussian and con-

ditionally heteroskedastic.

Most existing applications of shrinkage estimators focus on the stationary AR processes.

Some recent research extend the literature by applying shrinkage methods to nonstationary AR

processes. Kock (2012) applied the adaptive LASSO to both stationary and non-stationary AR

models. He showed that the adaptive LASSO has oracle efficiency. In particular, his results
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imply that the adaptive LASSO is able to discriminate between stationary and non-stationary

AR processes and thereby constitutes an addition to the set of unit root tests. He also studied

the finite properties of the adaptive LASSO using the AR(1) model. Caner and Knight (2013)

applied the Bridge estimators to nonstationary AR processes, and proposed a novel way to test

nonstationarity of AR processes. The method of Caner and Knight (2013) can select the correct

model with probability tending to 1, and select the optimal lag length and unit root simultane-

ously, thereby outperforming the existing unit root tests.

Park and Sakaori (2013) prosed the lag weighted LASSO. Their method imposes different

penalties on each coefficient based on weights that reflect not only the coefficients size but also

the lag effects. They reported that the lag weighted LASSO is superior to both the LASSO and

the adaptive LASSO in forecast accuracy. They modified the adaptive LASSO weight as

w j,l =
1

(|β̂ j,l|α(1−α)l)γ
,

where 0< α< 1, l represents the l-th lag. They constructed this weight formula based on the as-

sumption that the the effects of autoregressors decay geometrically as the lag length increases.

Interestingly enough, their method shares the similar spirit as our methodology.

In the literature the LASSO methodology has been applied to multivariate (vector) au-

toregressive processes of order p, abbreviated as VAR(p). Valdés-Sosa et al. (2005) used

sparse VAR(1) models to estimate brain functional connectivity where the LASSO is applied

to achieve sparsity of VAR(1) models. Fujita, et al (2007) applied sparse VAR model to es-

timate gene regulatory networks based on gene expression profiles obtained from time-series

microarray experiments where sparsity was reported to have been achieved by LASSO.

Hsu, Huang and Chang (2007) applied the LASSO to achieve subset selection for VAR

models of high order. In their methodology, they first used AIC or Bayesian Information Crite-

rion (BIC) to select the optimal lag order paic or pbic. They proposed the top-down, bottom-up

and hybrid strategies to reduce the full VAR(paic) or VAR(paic) models. The performance of

the several strategies was compared. Ren and Zhang (2010) applied the adaptive LASSO to
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achieve subset selection for VAR models with higher lag order. Ren and Zhang (2010) first

used AIC or Hannan and Quinn (HQ) criterion to determine the optimal lag order paic or phq

and then the adaptive LASSO was applied to reduce the full VAR(paic) or VAR(phq) models.

Haufe, Muller, Nolte, and Kramer (2008) applied the grouped LASSO to VAR models.

Song and Bickel (2011) proposed an integrated approach for large VAR processes that yields

three types of estimators; that is, the adaptive LASSO with (i) universal grouping, (ii) no

grouping, and (iii) segmented grouping. Kock and Callot (2012) investigated oracle efficient

estimation and forecasting of the adaptive LASSO and the adaptive group LASSO for VAR

models.

1.4 The doubly adaptive LASSO for time series models

In this section, we explain our source of motivation. We also present the general idea underly-

ing our methodology, and discuss how to choose tuning parameter and weighting parameters.

1.4.1 Motivation

Although the LASSO and the adaptive LASSO have been successfully applied to AR and VAR

models, some aspects of existing methods are not very satisfactory for time series data analysts.

(i) Suppose that we have time series data generated from AR(p) model but we do not know

the true order p. We arbitrarily guess a large value for the order h and we assume that h > p.

The LASSO and adaptive LASSO often include in the model the autoregressive variables with

lags beyond the true order albeit the model is sparse. This is not surprising because time series

random variables are temporally dependent. Both the LASSO and adaptive LASSO are con-

servative and reluctant to discard the autoregressive variables with lags beyond p. Thus, the

existing methods first determine the right order using some criteria such as the AIC, BIC, and

Hannan and Quinn (HQ). Then the LASSO methodology is applied to shrink some interme-

diate coefficients to zero. This is good but it is definitely better if we could let the LASSO to

determine the order for us.
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(ii) It does make sense to have a time series model to reflect the natural assumption that the

effects of autoregressors decay as the lag length increases, although the decay patterns are not

necessarily geometrical.

(iii) There are no applications of the LASSO methodology to the ARCH and VARCH mod-

els. It is desirable if we could extend the literature of the LASSO methodology to the area of

volatility models.

These facts motivate us to propose the doubly adaptive LASSO tailored to the time series

analysis, which is the theme of this dissertation.

1.4.2 The doubly adaptive LASSO (daLASSO)

For time series data y1, · · · ,yT , the doubly adaptive LASSO estimators take the form

θ̂θθ
daL

= argmin
θθθ

T∑
t=1

`(yyyt, θθθ) +λT

∑
j

ŵT, j|θ j|,

where λT > 0 is the tuning parameter, θθθ is the coefficient vector in a time series model, `(yi, xxx′iθθθ)

is the loss function, which is the squared error loss for AR and VAR models or the negative

log-likelihood function for ARCH and VARCH models, and the adaptive weight ŵT, j is defined

as the product of the two weights 3, namely,

ŵT, j = ŵZ
j ŵB

j ,

ŵZ
j =

1
|β̂|γ1

(1.17)

and ŵB
j , say, for the AR models is

ŵB
j =

1

(
∑h

i= j |ρ̂ii|
γ0)γ2

, (1.18)

where ρ̂ii is the partial autocorrelation at lag i, and γ0, γ1 and γ2 are some non-negative con-

stants called weighting parameters. The formula (1.17) is borrowed from Zou (2006) (denoted

3 An examiner suggested an alternative way: the maximum of the two.
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by superscript Z). We borrow the idea in Box-Pierce test statistic and Monti (1994) test statis-

tics 4 (denoted by superscript B) to construct formula (1.18). In weight formula for ŵT, j, we

let ŵZ
j make use of magnitude information of the coefficient, and we let ŵB

j make use of decay

structure and lag order information of the corresponding autoregressive variable. We use dou-

bly adaptive to emphasize this form.

In this dissertation the doubly adaptive LASSO is actually the general name for specific

four methods: the partial autocorrelation or PAC-weighted adaptive LASSO for AR model,

the PAC-weighted adaptive positive LASSO for ARCH model, the partial lag autocorrelation

matrix norm or PLAC-weighted adaptive LASSO for VAR model, and the PLAC-weighted

adaptive LASSO for BEKK VARCH model.

1.4.3 Determining optimal values for tuning and weighting parameters

The adaptive Lasso and the doubly adaptive Lasso yield a path of possible solutions defined by

the continuum depending on the values of the hyperparameters which represent the amount of

shrinkage. The choice of the weighting parameters γ0, γ1, and γ2 and the tuning parameter λT

determines the tradeoff between model fit and model sparsity. We desire a good value for these

parameters unknown a priori to satisfy certain criteria. In the literature, a variety of criteria have

been proposed for such selection. Some of well-known criteria include cross validation (CV)

(e.g. leave-one-out CV, 5-fold CV), generalized cross validation (Craven and Wahba, 1979,

Tibshirani, 1996, Fan and Li, 2010), Mallow’s Cp (Mallows, 1973), AIC (Akaike, 1973, 1974),

Bayesian information criterion (BIC) (Schwarz, 1978), final prediction error (FPE) (Akaike,

1969, 1971) and HQ (Hannan and Quinn, 1979).

Perhaps the CV is the most commonly used method. However, it is important to note that

CV picks values of hyperparameters that result in predictive optimality. So the values chosen

by CV are not usually the same values as those that are likely to recover the true model. In-

deed, it was proved (Meinshausen and Bühlmann, 2006) that the prediction-optimal value of

4 Box-Pierce portmanteau test statistic is defined as QBP = T
∑h

i=1 |ρ̂(i)|2, where ρ̂(i) is the estimated autocor-

relation at lag i. Monti portmanteau test statistic is defined as QM = T (T + 2)
∑h

i=1
|ρ̂ii |

2

T−i , where ρ̂ii is the estimated
partial autocorrelation at lag i.
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the tuning parameter does not result in model selection consistency. Generally speaking, we

often need a larger penalty for variable selection and a smaller penalty for good prediction.

When CV is used, the LASSO often selects too many variables, which is good in the variable

screening situation, but not good for variable selection.

We also note that the CV scheme is difficult to implement for time series analysis due to

the nature of temporal dependence present in time series data. In univariate time series, the

problem may be not that serious and we may implement CV, as demonstrated in Chapter 2.

But the CV is quite difficult to implement for multivariate time series data.

In this dissertation, except for univariate AR models in Chapter 2, we use the BIC to choose

the optimal values of tuning and weighting parameters. Many authors have used the BIC for

this purpose in the literature including Caner and Knight (2013), Wagener and Dette (2012),

Wang and Leng(2007), and Wang, et al (2007). Note that we apply double penalization when

we use the BIC to choose hyperparameters. The first is L1 penalization from the LASSO, which

yields the path solution by the LASSO,

θ̂θθ((λT ,γ0,γ1,γ2)) = argmin
θθθ

T∑
t=1

`((yt, xxxt), θθθ) +λT

∑
j

ŵT, j((λT ,γ0,γ1,γ2))|θ j|,

and the the second is the penalization from the BIC, which yields optimal values for these

hyperparameter.

(λT ,γ0,γ1,γ2)∗ = argmin
Λ

BIC((λT ,γ0,γ1,γ2)) = −2`T (θ̂θθ((λT ,γ0,γ1,γ2))) + |ŜT | log(T ).

where |ŜT | is the cardinality of the set Ŝ. Then the solution θ̂θθ
daL

is read off from the path against

(λT ,γ0,γ1,γ2)∗.

1.5 Thesis organization

The remaining of this thesis are organized in the following.

In Chapter 2, we will propose the partial autocorrelation or PAC-weighted adaptive LASSO

for univariate autoregressive process with lag order p fixed (AR(p)). We will prove the asymp-
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totic oracle properties of the PAC-weighted adaptive LASSO estimator, conduct Monte Carlo

study on the performance of the doubly adaptive estimator. The proposed methodology shows

promising results for modelling stationary AR(p) processes, and show some application exam-

ples for real world time series data analysis.

In Chapter 3, we will propose the partial autocorrelation or PAC-weighted adaptive positive

LASSO for univariate autoregressive conditional heteroscedastic process with lag order q fixed

(ARCH(q)). We will prove the asymptotic oracle properties of the PAC-weighted adaptive

positive LASSO estimator, propose a computational algorithm based on the quadratic approx-

imation of likelihood function, conduct Monte Carlo study on the performance of the doubly

adaptive LASSO estimator, and apply the methodology to analysis of some financial time series

data such as the US S&P 500 index returns and the Japanese Nikkei returns.

In Chapter 4, we will review the concept and algorithm of the partial lag autocorrelation

(PLAC) matrix developed by Heyse (1985), and then propose the PLAC-weighted adaptive

LASSO for multivariate autoregressive process with lag order p fixed (VAR(p)). We will prove

the asymptotic oracle properties of the PLAC-weighted adaptive positive LASSO estimator,

conduct Monte Carlo study on the performance of the doubly adaptive LASSO estimator, and

show an application example for real world time series data analysis.

In Chapter 5, we will propose the PLAC-weighted adaptive LASSO for BEKK multivariate

autoregressive conditional heteroscedastic with lag order q fixed (VARCH(q)). We will propose

a computational algorithm based on the quadratic approximation of likelihood function for

which we derive the analytical score gradient and analytical Hessian matrix. We will conduct

Monte Carlo study on the performance of the doubly adaptive LASSO estimator.

In Chapter 6, we will give a general discussion and present our future research plan.

Appendix A contains some concepts and theorems in probability. Appendix B contains

some definitions and formulae in matrix calculus. Appendix C records the details of partial

lag autocorrelation matrix including computational algorithm. Appendix D contains detailed

derivations of analytical score and Hessian for BEKK VARCH(q) models.



Chapter 2

The Doubly Adaptive LASSO for AR(p)
Models

2.1 Introduction

We recall that under quite general conditions a second-order stationary process with constant

mean can be approximated well by an autoregressive (AR) model, which specifies that the

output variable depends linearly on its own past values. Let {yt} be a stationary stochastic pro-

cess. Let Ft be the information available at t. Ft−1 ≡ {yt−1,yt−2, · · · } denotes the past history

of a stationary stochastic process. By specifying the stationary process as an AR(p) model

, we implicitly assume that only the most recent values yt−1, · · · ,yt−p matters for specifying

the dynamics of yt so that Ft−1 ≈ {yt−1,yt−2, · · · ,yt−p}. It is also reasonable to assume that

some autoregressors between yt−1 and yt−p do not matter either. In other words, we desire a

sparse AR(p) with the order p sufficiently large but finite. Due to its successful application in

high dimensional linear regression model, Cox proportional hazards model and other areas, the

LASSO may be naturally the first choice for many time series data analysts if they like to build

a sparse AR(P) model by shrinking irrelevant autoregressive coefficients to zero. In fact, there

have been quite a few results in the literature that employed the LASSO methodology to build

AR(p) models, as we reviewed in Section 1.3.

We start with a review on some basic concepts regarding the AR(p) process, and classic

procedure for building an AR(p) model. In Section 2.3 we review the adaptive LASSO of Zou

(2006) for the situation in which the AR order is is known a priori or has been identified al-

25
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ready, and then propose the doubly adaptive LASSO for the situation in which the AR order

is unknown or difficult to identify a priori, as is the usual case. In Section 2.4 we study the

asymptotic properties of the doubly adaptive LASSO estimators. The algorithmic implementa-

tion is discussed in Section 2.5. Results from simulation study are summarized in Section 2.6.

Examples of real data analysis using the doubly adaptive LASSO procedure are presented in

Section 2.7.

2.2 The AR(p) process and standard modelling procedure

Definition (The AR(p) process). The time series {yt}, t ∈ Z = {0,±1,±2, · · · } is said to be an

AR(p) process if it is stationary, and it is the solution of the specification

yt = φ1yt−1 + · · ·+φpyt−p + at, t ∈ Z, (2.1)

where φ1, · · · ,φp are unknown parameters, at ∼ WN
(
0, σ2

a

)
. We say that {yt} is an AR(p)

process with mean µ if {yt −µ} is an AR(p) process.

In this thesis, for convenience and without loss of generality, we deal with only the de-

meaned AR(p) process.

Recall that for the stationary process {yt} the autocovariance between yt and yt+k is

γ(k) = Cov(yt,yt+k) = E[(yt −µ)(yt+k −µ)],

and the autocorrelation between yt and yt+k is

ρ(k) =
γ(k)
γ(0)

,

where γ(0) = VAR[yt] = VAR[yt] = σ2
a. Note that ρ(0) = 1 and ρ(k) < 1∀k , 0. The partial

autocorrelation coefficient (PAC) at lag k, ρkk, is the autocorrelation between yt and yt+k after

their dependency on the intervening variables yt+1, · · · ,yt+k−1 has been removed, namely,

ρkk = Cor(yt, yt+k|yt+1, · · · ,yt+k−1) . (2.2)



CHAPTER 2. THE DOUBLY ADAPTIVE LASSO FOR AR(P) MODELS 27

Note that ρ00 = 1 and ρ11 = ρ(1). Using Durbin’s recursive algorithm, we compute ρkk for

|k| > 1. Starting with ρ11 = ρ(1), compute recursivelyρkk =
ρ(k)−

∑k−1
j=1 ρk−1, jρk− j

1−
∑k−1

j=1 ρk−1, jρ( j)

ρk j = ρk−1, j−ρkkρk−1,k− j, j = 1, · · · ,k−1
. (2.3)

To estimate ρkk using observed data y1,y2, · · · ,yT , we estimate ρ(k) by the sample autocor-

relation defined as

ρ̂(k) =
γ̂(k)
γ̂(0)

=

∑T−k
t=1 (yt − ȳ)(yt+k − ȳ)∑T

t=1(yt − ȳ)2
,

for k = 0,1,2, · · · . Starting with ρ̂11 = ρ̂(1), compute recursively via Durbin’s algorithm (2.3) to

get ρ̂kk for k = 2,3, · · · .

The sample PAC coefficients have a nice asymptotic property. The variables
√

T ρ̂p+1,p+1,
√

T ρ̂p+2,p+2, · · · are asymptotically iid(0, 1) (Quenouille, 1949, 1957). On a sample partial

correlogram, a plot of ρ̂kk versus k, there would display a sharp cutoff at lag p, and ρ̂kk for

k > p appear insignificant. So the lag at which the PAC function cuts off is the indicated lag

order of the AR model.

Estimation of the AR(p) model

Given the order p there are a variety of approaches to estimating the parameters (see, for exam-

ple, Hamilton p.117 - 146, 1994). If the distribution of the innovation process {at} is known, we

may obtain the maximum likelihood estimates MLE by maximizing the log-likelihood func-

tion. Through the Yule-Walker equations we may obtain the method-of-moments estimator.

Maximizing the Gaussian quasi-likelihood may yield qausi maximum likelihood estimates

(QMLE) if the normal distribution is used as a proxy for the unknown innovation distribu-

tion {at}. Another possibility is to treat yt = φ1yt−1 + · · ·+φpyt−p + at, t = 1, · · · ,T as regression

equations and employ the ordinary least squares (OLS) method for estimation. The OLS es-

timator has downward bias, which is known as Hurwicz bias (Hurwicz, 1950). However, the

OLS estimator has nice asymptotic properties such as consistency (Hurwicz bias vanishes as

T →∞) and asymptotic normality under some regularity conditions (see, for example, Hayashi

p.109 - 117, 2000).
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Model selection via minimizing criteria

A sequence of AR models are estimated with sequentially increasing orders 1,2, ...,h with h

sufficiently large. Then the model that minimizes some criterion is chosen. Some frequently

used criteria include the final prediction error (FPE) (Akaike, 1969), the Akaike information

criterion (AIC) (Akaike, 1974), the Bayesian information criterion (BIC) (Schwarz, 1978), and

the HQ criteria (Hannan and Quinn, 1979).

Box-Jenkins methodology

Perhaps the most popular procedure for time series data analysis is the Box-Jenkins method-

ology, which starts with identification of the AR lag order. Parameter estimation follows the

a priori identification. A variety of methods has been proposed for order identification. De

Gooijer, Abraham, Gould and Robinson (1985) reviewed and discussed the most important of

the order determination methods in their survey paper. Choi (1992) devoted a monograph to

the identification of ARMA models. A popular method employed by time series data analysts

is via the the partial autocorrelation (PAC) function using the cut-off property of the partial

autocorrelation functions on the sample partial correlogram (e.g. Hipel, McLeod, and Lennox,

1977).

Subset selection

Because the true order is generally unknown a priori, the problem of the criterion-based model

selection approaches is that a nested structure is enforced on the various models, in the sense

that only models in which the first h coefficients are non-zero are considered. McLeod and

Zhang (2006) propose a subsets selection method to circumvent this problem by examining the

problem in partial autocorrelation space.

2.3 The adaptive and doubly adaptive LASSO

Classical approaches we reviewed in the previous section consist of several separate steps, and

quickly become computationally infeasible as the AR order grows. In this section, we use the

LASSO methodology to model the AR(p) process. There are two situations. If the order is
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known in advance or has been identified already, we recommend the adaptive LASSO of Zou

(2006). If the order is not known in advance or difficult to identify, we propose the doubly

adaptive LASSO, or partial autocorrelation or PAC-weighted adaptive LASSO. By employing

the PAC-weighted adaptive LASSO we want to get order identification, subset selection and

parameter estimation properly done in one go.

2.3.1 The doubly adaptive LASSO when p is unknown

Suppose that we observe a time series y1,y2, · · · ,yT , which is a realization of a stationary AR

process with the true order p as well as true parameters φφφo = (φo
1, · · · ,φ

o
p) unknown. For this

situation we propose the doubly adaptive LASSO approach for a sparse estimator. We first set

our guess of the AR order to be h, a sufficiently large positive integer1. Since the initial values

y0, · · · ,y−h+1 are not available, we use y1, · · · ,yh as a presample, hence the effective sample size

is T −h. Now, having the data, we formulate the following AR(h) model

yt = φ1yt−1 + · · ·+φhyt−h + at, t = h + 1, · · · , T. (2.4)

Let

φφφ = (φ1, · · · , φh)′, and (2.5)

xxxt = (yt, yt−1 · · · , yt−h+1)′, (2.6)

and we may write the model equivalently as

yt = xxx′t−1φφφ, t = h + 1, · · · , T. (2.7)

Let

yyy = (yh+1, · · · , yT )′, (2.8)

aaa = (ah+1, · · · , aT )′, and (2.9)

XXX = (xxxh, · · · , xxxT−1) =


yh yh+1 · · · yT−1

yh−1 yh · · · yT−2
...

...
...

y1 y2 · · · yT−h


h×(T−h)

, (2.10)

and we may write the same model (2.4) compactly in matrix form as

yyy = XXX′φφφ+ aaa. (2.11)
1h is set to be quite large, for instance, h = κTα, 0 ≤ α ≤ 1 for some constant κ.
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Definition (The doubly adaptive LASSO). The doubly adaptive LASSO or PAC-weighted

adaptive LASSO estimator, denoted by φ̂φφdaL
T , is defined as

φ̂φφ
daL
T = argmin

φ

(yyy−XXX′φφφ)′(yyy−XXX′φφφ) +λT

h∑
j=1

ŵT, j|φ j|

 . (2.12)

where

ŵT, j =
1

|φ̃ j|
γ1

(∑h
i= j |ρ̂ii|

γ0
)γ2

=
1

|φ̃ j|
γ1 Aγ2

j

, (2.13)

A j =

h∑
i= j

|ρ̂ii|
γ0 , (2.14)

for j = 1, · · · ,h, φ̃ j is any consistent estimate for φ j, ρ̂ii is the estimate for ρii defined in (2.2),

and γ0 > 0, γ1 ≥ 0, and γ2 ≥ 0 are some fixed constants.

Remark 1. Both the LASSO (Tibshirani, 1996) and the adaptive LASSO (Zou, 2006) are

special cases of the doubly adaptive LASSO. In former case, γ1 = γ2 = 0, and in latter case,

γ2 = 0.

Remark 2. In the doubly adaptive LASSO procedure the PAC information and the Y-W or

OLS estimates of the AR(h) model work in tandem to perform subset selection and parameter

estimation simultaneously. The basic idea can be elucidated from the following points:

Firstly, note that A j is the tailed cumulative sum of PAC coefficients to power γ0 from

jth lag to the maximum lag h, and A1 ≥ · · · ≥ Ap ≥ · · · ≥ Ah. Hence, ŵT, j is decreasing with

increasing j. Therefore monotonically increasing penalties are imposed on φ j’s as j increases

from 1 to h. Consequently, depending on the structure of the PAC, an AR term with smaller

lag is more likely to be included in the model.

Secondly, due to the cutoff property of the PAC function, namely, that the value of |ρ̂ii| for

i = p+1, p+2 · · · ,h are relatively tiny, it is expected that the A j will exhibit a sharp jump at j = p

as j goes from h backwards to p, the true order of AR process. Consequently, the AR terms

with lags greater than p get much more penalties so that they are more likely to be excluded

from the model, and the true order of the ARCH process is thus automatically identified.
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Finally, |φ̃ j|
γ1 imposes larger penalty on φ j if the corresponding AR term is not significant.

This is obvious because if an AR term is not important, the consistently estimated value of

the corresponding coefficient is close to zero, and the penalty is close to ∞. Consequently, the

insignificant AR terms get more penalties so that they are more likely to be excluded from the

model whereas the significant AR terms are more likely to be included in the model.

Remark 3. Let φφφo be the unknown true parameter vector, that is,

φφφo = (φo
1, · · · , φ

o
p)
′

. (2.15)

Using the PAC-weighted adaptive LASSO, we actually estimate the extended true parameter

vector, φφφ∗, defined as

φφφ∗ = (φ∗1, · · · ,φ
∗
p,φ
∗
p+1, · · · ,φ

∗
h)
′

= (φo
1, · · · ,φ

o
p,0, · · · ,0)

′

(2.16)

It is clear that the AR(p) process with the true parameter vector φφφo and the AR(h) process with

the extended true parameter vector φφφ∗ are equivalent.

2.3.2 The adaptive LASSO when p is known

Suppose that the true order p is known or has been identified. Then we set h = p and γ2 = 0 in

(2.13). We use y1, · · · ,yp as a presample, hence the effective sample size is T − p. The doubly

adaptive LASSO reduces to the adaptive LASSO.

2.4 Asymptotic properties of the doubly adaptive LASSO

The adaptive LASSO and the doubly adaptive LASSO methods yield biased estimators. In this

section, however, we show that with properly chosen values for γ0, γ1, and γ2 in (2.13), together

with a proper choice of λT , the doubly adaptive LASSO enjoys desirable asymptotic properties.

We actually study the asymptotic properties of the doubly adaptive LASSO estimator for the

extended true parameter vector φφφ∗ in (2.16) instead of φφφo in (2.15).

First, we clarify notations. Let S be the set of the true nonzero coefficient, i.e. S = { j : φ∗j ,

0}= supp(φφφ∗)⊂ {1,2, · · · ,h}with h being set large enough such that h> p. Let Sc = {1,2, · · · ,h}\
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S. Let s = |S| be the cardinality of the set S. The model sparsity implies that s< p. Let φ̃ j be any

consistent estimate for the true φ∗j, say the OLS or Yule-Walker estimate. Let φ̂daL
T, j be the doubly

adaptive LASSO estimate for φ∗j. Let ŜT = { j : φ̂daL
T, j , 0} and Ŝc

T = {1,2, · · · ,h} \ ŜT . Let φφφ∗S be

the s-dimensional vector for true underlying nonzero parameters, and φφφ∗Sc be the vector for true

underlying null parameters, i.e. φφφ∗S = {φ∗j : j ∈ S} and φφφ∗Sc = {φ∗j : j ∈ Sc}. Let φ̂φφdaL
T,S be the vector

for the PAC-weighted adaptive LASSO estimate for φφφ∗S and φ̂φφdaL
T,Sc the vector for PAC-weighted

adaptive LASSO estimate for null vector φφφ∗Sc , i.e. φ̂φφdaL
T,S = {φ̂daL

T, j : j ∈ S} and φ̂φφdaL
T,Sc = {φ̂daL

T, j : j ∈ Sc}.

Let φ̂φφdaL
ŜT

be the vector for nonzero estimates from the doubly adaptive LASSO and φ̂φφdaL
Ŝc

T
the

vector for null estimates, i.e. φ̂φφdaL
ŜT

= {φ̂daL
T, j : j ∈ ŜT } and φ̂φφdaL

Ŝc
T

= {φ̂daL
T, j : j ∈ Ŝc

T }.

Proposition 2.4.1 (The condition for the ergodic stationarity). The AR(h) process specified

by (2.1) is ergodic stationary if and only if the corresponding characteristic equation satisfies

the stability condition, namely,

1−φ1z− · · ·−φpzh , 0, for |z| ≤ 1.

See Hayashi (2000) p.374 for proof.

Let Γ be the covariance matrix of xxxt in (2.6), namely,

Γ = E[xxxtxxx′t] =


σ2

a γ(1) · · · γ(h−1)
γ(1) σ2

a · · · γ(h−2)
...

...
...

γ(h−1) γ(h−2) · · · σ2
a


h×h

. (2.17)

Γ is symmetric and can be partitioned as follows

Γ =

(
ΓSS ΓSSc

ΓScS ΓScSc

)
,

where the ordering is retained according to the lag index of xxxt within each partition.

Assumptions:

A0: The coefficients vector φφφ belongs to a compact parameter space.

A1: ∀φφφ in the parameter space, 1−φ1z− · · ·−φpzh , 0 for |z| ≤ 1.

A2: The process at is a strong white noise, i.e. E[at] = 0, at and as are independent for

s , t, and E[a4
t ] < M <∞.
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A3: ΓSS is not singular and therefore invertible.

Remarks:

1) A0 is always assumed.

2) A1 ensures that {xxxt} is ergodic stationary.

3) No normality of at is assumed.

4) A2 requires the existence of fourth moments of {yt}.

Lemma 2.4.2 . Under A1 and A2, we have

(i) 1
T−h XXXXXX′

a.s.
−−−→ Γ,

(ii) 1
T−h XXXaaa

a.s.
−−−→ 000, and

(iii) 1√
T−h

XXXaaa
D
−→ www ∼ N(000, σ2

aΓ).

Proof (i) It is easy to check that XXXXXX′ =
∑T−1

t=h xxxtxxx′t . By A1, xxxt is ergodic stationary. By Theorem

A.3.1 for ergodicity of functions, xxxtxxx′t is also ergodic stationary. By Ergodic Theorem A.3.2,

we have
1

T −h
XXXXXX′

a.s.
−−−→ E[xxxtxxx′t] = Γ.

(ii) It is not very hard to check that XXXaaa =
∑T

t=h+1 xxxt−1at. Since xxxt is ergodic stationary by A1, so

is xxxt−1at by Theorem A.3.1 for ergodicity of functions. By Ergodic Theorem A.3.2, we have

1
T −h

XXXaaa
a.s.
−−−→ E[xxxt−1at],

where E[xxxt−1at] = E [[xxxt−1at|Ft−1]] = xxxt−1E[at|Ft−1] = 000.

(iii) Let νννt = xxxt−1at. Then {νννt} is a vector martingale difference (MDS) because E[νννt|Ft−1] =

000. By A1, A2, and Theorem A.4.1, the CLT for the MDS (Billingsley, 1961), we have

1
√

T −h

T∑
t=h+1

νννt
D
−→ N(000, Σν),

where Σν = Var[νννt] = Var[xxxt−1at] = E[xxxt−1xxx′t−1a2
t ] = σ2

aΓ.
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Definition (Estimation consistency). An estimator φ̂φφT is said to be consistent for φφφ∗ if

‖ φ̂φφT −φφφ
∗ ‖

P
−→ 0 as T →∞.

Theorem 2.4.3 (Estimation Consistency). Let aT =
√

T −hmin
j∈S

(
|φ̃T, j|

γ1 Aγ2
j

)
. If λT = op(aT ),

then under assumptions A0 – A2, φ̂φφdaL
T must satisfy:

‖ φ̂φφ
daL
T −φφφ∗ ‖= Op

(
(T −h)−1/2

)
.

Proof Let ΨT (φφφ) by defined as

ΨT (φφφ) =‖ yyy−XXX′φφφ) ‖2 +λT

h∑
j=1

ŵT, j|φ j|, (2.18)

where XXX is defined by (2.10) and yyy by (2.8). Following Fan and Li (2001), we show that for

every ε > 0 there exists a sufficiently large C such that

P

(
inf
‖uuu‖≥C

ΨT
(
φφφ∗+ uuu/

√
T −h

)
> ΨT (φφφ∗)

)
≥ 1− ε,

which implies that with probability at least 1− ε that there exists a minimum in the ball {φφφ∗ +

uuu/
√

T −h : ‖uuu‖ ≤ C}. Hence there exists a local minimizer such that ‖ φ̂φφdaL
T − φφφ∗ ‖= Op((T −

h)−1/2). Observe that

ΨT
(
φφφ∗+ uuu/

√
T −h

)
−ΨT

(
φφφ∗

)
=

∥∥∥∥yyy−XXX′
(
φφφ∗+ uuu/

√
T −h

)∥∥∥∥2
−

∥∥∥yyy−XXX′φφφ∗
∥∥∥2

+λT

h∑
j=1

ŵT, j

(∣∣∣∣∣∣φ∗j +
u j
√

T −h

∣∣∣∣∣∣− ∣∣∣∣φ∗j ∣∣∣∣)

= uuu′
(

1
T −h

XXXXXX)
)
uuu−2uuu′

(
1

√
T −h

XXXaaa
)
+λT

∑
j∈S

ŵT, j

(∣∣∣∣∣∣φ∗j +
u j
√

T −h

∣∣∣∣∣∣− ∣∣∣∣φ∗j ∣∣∣∣)+λT

∑
j<S

ŵT, j
|u j|
√

T −h

≥ uuu′
(

1
T −h

XXXXXX′
)
uuu−2uuu′

(
1

√
T −h

XXXaaa
)
+λT

∑
j∈S

ŵT, j

(∣∣∣∣∣∣φ∗j +
u j
√

T −h

∣∣∣∣∣∣− ∣∣∣∣φ∗j ∣∣∣∣)

≥ uuu′
(

1
T −h

XXXXXX′
)
uuu−2uuu′

(
1

√
T −h

XXXaaa
)
−λT

∑
j∈S

ŵT, j
|u j|
√

T −h

Consider the third term, which can be expressed as

λT

h∑
j=1

ŵT, j
|u j|
√

T −h
=

λT
√

T −h

∑
j∈S

∣∣∣φ̃ j
∣∣∣−γ1 A−γ2

j |u j|

≤
λT
√

T −h

(
min
j∈S

(
|φ̃ j|

γ1 Aγ2
j

))−1

‖ uuu ‖

=
λT

aT
‖ uuu ‖= op(1) ‖ uuu ‖ .



CHAPTER 2. THE DOUBLY ADAPTIVE LASSO FOR AR(P) MODELS 35

For the second term, by Lemma (2.4.2) (iii), we have

uuu′
(

1
√

T −h

)
XXXaaa = uuu′op(111) ≤ op(1) ‖ uuu ‖ .

For the first term, in view of Lemma (2.4.2) (i), we have

1
T −h

XXXXXX′→ Γ a.s..

So the first term is a quadratic form in uuu.

Then it follows that in probability,

ΨT
(
φφφ∗+ uuu/

√
T −h

)
−ΨT

(
φφφ∗

)
≥ uuuT Γuuu−2op(1) ‖ uuu ‖ .

Therefore, for any ε > 0, there exists a sufficiently large C such that the quadratic term

dominates the other terms with probability ≥ 1− ε.

Let us look at a condition for Theorem 3.4. Observe that

A j =

 h∑
i= j

|ρ̂ii|
γ0


γ2

≥

 h∑
i=p

|ρ̂ii|
γ0


γ2

=

|ρ̂pp|
γ0 +

h∑
i=p+1

|ρ̂ii|
γ0


γ2

'
(
|ρ̂pp|

γ0 + (h− p)(T −h)−γ0/2Op(1)
)γ2
,

A j ≤

 h∑
i=1

|ρ̂ii|
γ0


γ2

=

 p∑
i=1

|ρ̂ii|
γ0 +

h∑
i=p+1

|ρ̂ii|
γ0


γ2

'

 p∑
i=1

|ρ̂ii|
γ0 + (h− p)(T −h)−γ0/2Op(1)

γ2

,

for j ∈ S. Also φ̃T, j
P
−→ φ∗j for j ∈ S. Hence, aT =

√
T −hOp(1). So the condition λT = op(aT )

in Theorem 3.4 is satisfied if the condition λT = op
(√

T −h
)

in Thereom 1.2.2 is satisfied.

Therefore, we may conclude that the LASSO, the adaptive LASSO and the doubly adaptive

LASSO are all able to achieve estimation consistency under the same asymptotic condition

λT = op
(√

T −h
)
. Their performance may be different in finite samples; we need to compare

their finite sample properties.

Proposition 2.4.4 . Let aT =
√

T −hmin
j∈S

(
|φ̃T, j|

γ1 Aγ2
j

)
, and bT =

√
T −hmax

j<S

(
|φ̃T, j|

γ1 Aγ2
j

)
. If

λT = op(aT ) and λT/bT
P
−→ ∞, then under assumptions A0 – A3, we have:
√

T −h
(
φ̂φφ

daL
T,S −φφφ

∗
S

)
D
−→ N

(
000, σ2

a(ΓSS)−1
)

√
T −h

(
φ̂φφ

daL
T,Sc −φφφ∗Sc

)
D
−→ 000

,

as T →∞.
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Proof We follow the methodology of Knight and Fu (2000) and Zou (2006).

Let φφφ = φφφ∗+ uuu/
√

T −h and define

ΨT (uuu) =

∥∥∥∥∥∥yyy−XXX
(
φφφ∗+

uuu
√

T −h

)∥∥∥∥∥∥2

+λT

h∑
j=1

ŵT, j

∣∣∣∣∣∣φ∗j +
u j
√

T −h

∣∣∣∣∣∣ .
Let the reparameterized objective function be defined as

VT (uuu) = ΨT (uuu)−ΨT (000).

Then the minimizing objective is equivalent to minimizing VT (uuu) with respect to uuu. Let ûuuT =

argminVT (uuu), then

φ̂φφ
daL
T = φφφ∗+ ûuuT/

√
T −h,

or

ûuuT =
√

T −h
(
φ̂φφ

daL
T −φφφ∗

)
.

Observe that

VT (uuu) = uuu′
(

1
T −h

XXXXXX′
)
uuu−2uuu′

(
1

√
T −h

XXXaaa
)
+

λT
√

T −h

h∑
j=1

ŵT, j
√

T −h
(∣∣∣∣∣∣φ∗j +

u j
√

T −h

∣∣∣∣∣∣− ∣∣∣φ∗j ∣∣∣) .

By Lemma (2.4.2) we have 1
T−h XXXXXX′

a.s.
−−−→ Γ, and 1√

T−h
XXXaaa

D
−→ www ∼ N(000, σ2

aΓ). Consider

the limiting behaviour of the third term. First, by the conditions required in the theorem, we

have λT ŵT, j/
√

T −h ≤ λT/
(√

T −hmin j∈S
(∣∣∣φ̃ j

∣∣∣γ1 Aγ2
j

))
= λT/aT

P
−→ 0 for j ∈ S and λT√

T−h
wT, j =

λT√
T−h
|φ̃ j|
−γ1 A−γ2

j ≥ λT/
(√

T −hmax j<S
(∣∣∣φ̃ j

∣∣∣γ1 Aγ2
j

))
= λT/bT

P
−→ ∞ for j < S. In summary, we

have
λT
√

T −h
ŵT, j =

λT
√

T −h
∣∣∣φ̃ j

∣∣∣γ1 Aγ2
j

P
−→

0 if j ∈ S
∞ if j < S.

Secondly, we have

√
T −h

(∣∣∣∣∣∣φ∗j +
u j
√

T −h

∣∣∣∣∣∣−φ∗j
)
→

u jsgn(φ∗j) if j ∈ S (φ∗j = 0)

|u j| if j < S (φ∗j , 0)

By Slutsky’s theorem, we have the following limiting behaviour of the third term

λT
√

T −h
ŵT, j
√

T −h
(∣∣∣∣∣∣φ∗j +

u j
√

T −h

∣∣∣∣∣∣− ∣∣∣∣φ∗j ∣∣∣∣) P
−→


0 if ∀ j ∈ S
0 if u j = 0, ∀ j < S
∞ otherwise.
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Thus, we have VT (uuu)→ V(uuu) for every uuu, where

V(uuu) =
(
uuu′
S

uuu′
Sc

) (ΓSS ΓSSc

ΓScS ΓScSc

)(
uuuS
uuuSc

)
−2

(
uuu′
S

uuu′
Sc

) (wwwS
wwwSc

)
+

∑
j∈Sc

λT
√

T −h
ŵT, j
√

T −h
(∣∣∣∣∣∣φ∗j +

u j
√

T −h

∣∣∣∣∣∣− ∣∣∣∣φ∗j ∣∣∣∣)

=

uuu′
S
ΓSSuuuS−2uuu′

S
wwwS if uuuSc = 000

∞ otherwise.

VT (uuu) is convex with the unique minimum at
(
(ΓSS)−1wwwS, 000

)′
. Following the epiconvergence

results of Geyer (1994) and Knight and Fu (2000), argminuuu VT (uuu)
D
−→ argminuuu V(uuu), 2 we haveûuuS

D
−→ (ΓSS)−1wwwS

ûuuSC
D
−→ 000

,

or 
√

T −h
(
φ̂φφ

daL
T,S −φφφ

∗
S

)
D
−→ N(000, σ2

a(ΓSS)−1)
√

T −h
(
φ̂φφ

daL
T,Sc −φφφ∗Sc

)
D
−→ 000

.

Proposition 2.4.4 is very interesting. Imagine a Teacher-Student dual in which the teacher

generates 500 data sets from a sparse AR(p) model and the student fits sparse AR(p) models

for the teacher. The teacher will give the student a good mark if the student could statistically

identify the sparsity structure and estimate the coefficients with
√

T -consistency. Because

the set S is unknown for the student, therefore, the student does not know φ̂φφ
daL
T,S whereas the

teacher knows everything. In particular, the teacher knows the set S, and he thus knows φ̂φφdaL
T,S .

Proposition 2.4.4 is therefore useful for the teacher, the data generator, but of little use for the

student, the data analyst.

Corollary 2.4.5 . Let aT =
√

T −hmin
j∈S

(
|φ̃T, j|

γ1 Aγ2
j

)
, and bT =

√
T −hmax

j<S

(
|φ̃T, j|

γ1 Aγ2
j

)
. If

λT = op(aT ) and λT/bT
P
−→ ∞, then under assumptions A0 – A3, we have that

P
(

j ∈ ŜT
)
→ 1 if j ∈ S,

as T →∞.
2In fact, since VT can be infinite, we can no longer define convergence via uniform convergence on compact

sets but instead defined it via epiconvergence which allows for extended real-valued functions (Knight and Fu,
2000).
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Proof By Theorem A.5.1, the
√

T −h-normality of φ̂φφdaL
T,S in Proposition 2.4.4 implies that

‖φ̂φφ
daL
T,S −φφφ

∗
S‖= Op

(
1/
√

T −h
)
. Thus, φ̂φφdaL

T,S
P
−→ φφφ∗S, which implies that ∀ j ∈S, we have P

(
j ∈ ŜT

)
→

1, as T →∞.

Fan and Li (2001) discussed the oracle properties of a sparse estimator in the language of

Donoho and Johnstone (1994). Heuristically, an oracle procedure can perform as well asymp-

totically as if the true submodel were known in advance. We extend the notion of the oracle

properties of an estimator to the context of AR times series models.

Definition (Oracle properties) . The doubly adaptive positive LASSO estimator φ̂φφdaL
T for φφφ∗

is said to have the oracle properties if, with probability tending to 1, it could (i) identify the

true sparsity pattern, i.e. lim P(ŜT = S) = 1, (ii) identify the true lag order of the AR process,

i,e, lim P( p̂daL
T = p) = 1, and (iii) have an optimal estimation rate of the coefficients as T →∞.

The following theorem says that the doubly adaptive LASSO procedure is an oracle proce-

dure.

Theorem 2.4.6 (Oracle properties of φ̂φφdaL
T ). Let aT =

√
T −hmin

j∈S

(
|φ̃T, j|

γ1 Aγ2
j

)
, and

bT =
√

T −hmax
j<S

(
|φ̃T, j|

γ1 Aγ2
j

)
. If λT = op(aT ) and λT/bT

P
−→ ∞, then under assumptions A0

– A3, φ̂φφdaL
T must satisfy:

(i) Selection Consistency: P
(
ŜT = S

)
→ 1 as T →∞.

(ii) Identification consistency: P
(
p̂daL

T = p
)
−→ 1, and

(ii) Asymptotic Normality:
√

T −h
(
φ̂φφ

daL
ŜT
−φφφ∗S

)
D
−→ N(000, σ2

a(ΓSS)−1) as T →∞.

Proof (i) In view of Corollary 2.4.5, we know that ∀ j ∈ S, P( j ∈ ŜT )→ 1. So it suffices to

show that ∀m < S, P(m ∈ ŜT )→ 0. Now, we follow the methodology of Zou (2006).

Consider the event {m ∈ ŜT }. The KKT conditions for optimality entail that

2XXX(m,···)

(
yyy−XXX′φ̂φφdaL

T

)
= λT ŵT,msgn

(
φ̂daL

T,m

)
,

where the subscript (m, ···) denotes the m-th row of a matrix. If λT/bT
P
−→ ∞, we have

λT
√

T −h
ŵT,m =

λT
√

T −h

1
|φ̃m|γ1 Aγ2

m
≥
λT

bT

P
−→∞,
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whereas
XXX(m,···)

(
yyy−XXX′φ̂φφdaL

T

)
√

T −h
=

(
XXX(m,···)XXX′

T −h

)
√

T −h
(
φφφ∗− φ̂φφ

daL
T

)
+

XXX(m,···)aaa
√

T −h
.

Note that XXX(m,···)aaa is the m-th element of the vector XXXaaa, denoted by (XXXaaa)m. By Lemma 2.4.2,

we have
1

√
T −h

(XXXaaa)m
D
−→ N

(
0, σaΓ(m,m)

)
,

where Γ(m,m) is the m-th diagonal element of Γ. Note also that XXX(m,···)XXX′ is the m-th row of the

matrix XXXXXX′, denoted by (XXXXXX′)(m,···). By Lemma 2.4.2, we have

1
T −h

(XXXXXX′)(m,···)
a.s.
−−−→ Γ(m,···) .

By Slutsky’s theorem and the results of (i), we see that

1
T −h

XXX(m,···)XXX′
√

T −h
(
φφφ∗− φ̂φφ

daL
T

)
D
−→ Γ(m,···)zzz ,

where zzz is a normally-distributed vector, and thus Γ(m,···)zzz a normally-distributed scalar variable.

Therefore,

P(m ∈ ŜT ) ≤ P
(
2XXX(m,···)

(
yyy−XXX′φ̂φφdaL

T

)
= λT ŵmsgn

(
φ̂daL

T,m

))
→ 0.

(ii) The AR order estimated by the doubly adaptive LASSO is

p̂daL
T = min

{
j : φ̂daL

k = 0 ∀k = j + 1, j + 2, · · · , h
}
,

or equivalently,

p̂daL
T = min

{
k : k ∈ Ŝc

T ∀k = j + 1, j + 2, · · · , h
}
. (2.19)

The true order p of the AR model is

p = min
{
k : k ∈ Sc ∀k = j + 1, j + 2, · · · , h

}
. (2.20)

We have from (i) that Ŝc
T → S

c in probability, so the RHS of (2.19) and (2.20) are equal in

probability. Therefore, limP( p̂daL
T = p) = 1.

(iii) From (i), we have that limP
(
φ̂φφ

daL
ŜT

= φ̂φφ
daL
T,S

)
→ 1. Then, the asymptotic normality of φ̂φφdaL

ŜT

follows from Proposition 2.4.4.
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We continue the story of the Teacher-Student dual. The student knows ŜT and φ̂φφdaL
ŜT

. Theo-

rem 2.4.6 assures that apart from estimating the coefficients with
√

T -consistency, the student

could statistically identify the sparsity structure as if he knew S. Theorem 2.4.6 is therefore

useful particularly useful for the student, the data analyst.

Let us look at a condition in Proposition 2.4.4, Corollary 2.4.5 and Theorem 2.4.6. Observe

that

A j =

 h∑
i= j

|ρ̂ii|
γ0


γ2

≤

 h∑
i=p+1

|ρ̂ii|
γ0


γ2

' (h− p)γ2(T −h)−γ0γ2/2Op(1)

for j > p, and

A j ≤

 h∑
i=1

|ρ̂ii|
γ0


γ2

=

 p∑
i=1

|ρ̂ii|
γ0 +

h∑
i=p+1

|ρ̂ii|
γ0


γ2

'

 p∑
i=1

|ρ̂ii|
γ0 + (h− p)(T −h)−γ0/2Op(1)

γ2

for j < p and j ∈ Sc. Also φ̃T, j
P
−→ (T − h)−1/2Op(1) for j ∈ Sc. Hence,

√
T −h|φ̃T, j|

γ1 Aγ2
j '

(h− p)γ2(T −h)(1−γ1−γ0γ2)/2Op(1) = (T −h)(1−γ1−γ0γ2)/2Op(1) for j > p, and
√

T −h|φ̃T, j|
γ1 Aγ2

j '

(T − h)(1−γ1−γ0γ2)/2Op(1) = (T − h)(1−γ1)/2Op(1) for j < p and j ∈ Sc. Recall that Theorem

1.2.8 needs a condition, λT/(T − h)(1−γ1)/2 → ∞; if this condition is satisfied, the condition

λT/bT
P
−→ ∞ is also satisfied in Proposition 2.4.4, Corollary 2.4.5 and Theorem 2.4.6. Notice

also that λT/(T −h)(1−γ1−γ0γ2)/2 P
−→ ∞ does not imply λT/(T −h)(1−γ1)/2→∞.

Remarks:

(1) Although the asymptotic distributions of φ̂φφdaL
T,S and φ̂φφdaL

ŜT
are identical, φ̂φφdaL

T,S and φ̂φφdaL
ŜT

rep-

resent different identities; φ̂φφdaL
T,S is the doubly adaptive LASSO estimator for the vector of the

true non-zero parameters we do not know in advance whereas φ̂φφdaL
ŜT

is the vector for non-zeros

estimated by the doubly adaptive LASSO. The delicate difference between φ̂φφdaL
T,S and φ̂φφdaL

ŜT
can

be understood via the thought experiment of the Teacher-Student dual.

(2) In the literature, the oracle properties concern φ̂φφdaL
T,S , as shown by Theorem 1.2.8, which we

argue is not quite correct because we, as data analysts, do not really know φ̂φφ
daL
T,S from the start

to the end. The oracle properties we discuss here concern φ̂φφdaL
ŜT

rather than φ̂φφdaL
T,S .
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(3) Proposition 2.4.4 concerns φ̂φφdaL
T,S , the daLASSO estimators for the true non-zero parameters,

which are unknown in advance whereas Theorem 2.4.6 concerns φ̂φφdaL
ŜT

, the non-zeros estimated

by the doubly adaptive LASSO.

(4) Estimation consistency is necessary for oracle properties whereas oracle properties are

sufficient for the former.

(5) Under the same asymptotic condition for tuning parameter λT (and other regularity condi-

tions), the LASSO, the adaptive LASSO and the doubly adaptive LASSO all have estimation

consistency property.

(6) Under the same asymptotic condition for tuning parameter λT (and other regularity condi-

tions), the adaptive LASSO and the doubly adaptive LASSO both have oracle properties.

(7) The LASSO, the adaptive LASSO and the doubly adaptive LASSO estimator might be-

haviour quite differently when finite samples are used. We need to investigate and compare

their finite sample properties.

2.5 Computation algorithms for the doubly adaptive LASSO

Given values of λT , γ0, γ1, and γ2, the PAC-weighted adaptive LASSO procedure is imple-

mented via the lars algorithm (Efron et al., 2004). The lars algorithm is very efficient, re-

quiring the same order of computational cost as that of a single least squares fit. The doubly

adaptive LASSO methodology yields a path of possible solutions defined by the continuum

over tuning and weighting parameters. The choice of λT , γ0, γ1, and γ2 plays a crucial role

in the implementation of the doubly adaptive LASSO since it determines the tradeoff between

model fit and model sparsity.

Although the BIC criterion has been reported to be the best for the choice of tuning and

weighting parameters, other criteria may also be applicable. Madigan and Ridgeway (2004) re-

ported that the Cp performs as well as the cross-validation in linear regression. McQuarrie and

Tsai (p. 251-290, 1998) suggested the leaving-one-out cross-validation (LOOCV) or leaving-

one-block-out cross-validation (LOBOCV) for nonparametric model selection in time series
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analysis. Here we use the Mallows’ Cp to choose the optimal value for λT , and the LOBOCV

to determine the optimal value of γ0, γ1 and γ2.

Choosing λT

The lars package offers a simple statistic, the Mallows’ Cp, which can be used for model

selection. We adapt the Cp used in linear regression to AR models

Ck =
SSEk

s2 − (T −h) + 2df, (2.21)

where k ∈ {1, · · · ,h} denotes the number of autoregressors in the fitted model, SSEk is the sum

of the squared errors, i.e. SSEk =
∑T

t=h+1(yt − Êk[yt])2 with Êk
[
yt
]

being the predicted value

for yt from a sparse AR model fitted via the doubly adaptive LASSO, s2 = SSEh/(T − 2h) =∑T
t=h+1(yt − Êh[yt])2/(T − 2h) with Êh[yt] being the predicted value for yt from the full AR(h)

model, and

df =

∑T
t=h+1 cov(Êk

[
yt
]
, yt)

s2 ,

which is roughly the number of non-zero parameters in the model.

Choosing γ0, γ1 and γ2

Recall that for the linear regression model yi = zzziβββ+ εi, i = 1, · · · ,n, one measure for the per-

formance of a fitted model is based on its prediction ability. The best model is the one that

minimizes the mean squared error of prediction (MSEP). To estimate the MSEP, Allen (1974)

suggested the so-called leaving-one-out cross validation (LOOCV) approach. The i-th obser-

vation is removed from the data set, and the remaining (n− 1) observations are used to fit the

model. The estimated coefficients vector is denoted as βββ(i) with (i) indicating that the ith obser-

vation is removed from the data. the prediction error e(i) = yi − ŷ(i) where ŷ(i) is the predicted

value for yi. Under independent errors assumption, yi and ŷ(i) are independent, and e2
(i) is un-

biased for MSEP. Successively removing i = 1, · · · ,n gives e(1), · · · ,e(n). It seems that we need

to fit n regression models to n data of size n− 1 in order to get e(i)’s. Fortunately, we do not

have to fit n models because it can be shown that e(i) = ei/(1−hi), where hi’s are the diagonal

elements of the projection matrix or so-called hat matrix. So it is all sufficient to fit once a
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regression model to the whole data of sample size n. The LOOCV is defined as 1
n
∑n

i=1 e2
(i).

Thus the LOOCV can be calculated efficiently using LOOCV = 1
n
∑n

i=1 e2
i /(1−hi)2.

A key assumption that the observation removed is independent of the remaining ones in

linear regression models fails for AR models. However, McQuarrie and Tsai (1998) showed

in their simulation study that the LOOCV is still valid for AR model selection. But the direct

formula for the LOOCV in the ordinary regression setting we showed in the previous para-

graph is no longer available for AR models so computation of LOOCV is not as efficient.

McQuarrie and Tsai (1998) also proposed a method called leaving-one-block-out cross valida-

tion (LOBOCV) that may reduce the temporal dependence in data. Suppose that there exists a

constant b such that yi and y j are approximately independent for |i− j|> b. When leaving yt out,

one leaves out ±b additional observations around yt, namely, the block [yi−b, · · · , yi, · · · , yt+b]

in yyy, and the block composed of columns [xxxi−b, · · · , xxxi, · · · , xxxt+b] are removed correspondingly.

The model is then fitted to the data with the block deleted. So the LOOCV and LOBOCV are

defined as

LOOCV =
1

T −2h

T∑
t=h+1

(
yt − xxx′t−1φ̂φφ

daL
(t)

)2
,

LOBOCV =
1

T −2h

T∑
t=h+1

(
yt − xxx′t−1φ̂φφ

daL
(t±b)

)2
, for some b,

where xxx′t−1 is defined in (2.6), φ̂φφdaL
(t) is the double adaptive LASSO estimate with the t-th column

are removed from XXX, and φ̂φφdaL
(t±b) with (t− b) – (t + b) columns removed from XXX. Interestingly,

we use both the LOOCV and LOBOCV and we found little difference between the LOOCV

and LOBOCV in choosing the parameters so we stick to the LOOCV.

Computational algorithms

Algorithm 3 is the detailed computational procedure for the doubly adaptive LASSO given

the value of the triple (γ0,γ1,γ2). Algorithm 4 shows the complete computation steps via the

LOOCV.
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Algorithm 3: The lars algorithm for the doubly adaptive LASSO given (γ0,γ1,γ2).
Input: Data yyyt, t = 1, · · · ,T , and a specific value for (γ0,γ1,γ2).

Output: φ̂φφ
daL
T for specific (γ0,γ1,γ2).

1 START
2 Compute ŵT, j defined by (2.13).
3 Compute XXX∗ = XXXWWW−1, where WWW = diag[ŵ1, · · · , ŵh], i.e. xxx∗j = xxx j/ŵ j, j = 1, · · · ,h.

4 Apply lars to obtain φ̂φφ(λT ) = argminφφφ
{
(yyy−XXX∗φφφ)T (yyy−XXX∗φφφ) +λT

∑h
j=1 |φ j|

}
.

5 Compute φ̂φφdaL
T (λT ) = WWW−1φ̂φφ.

6 Compute Cp(λT ) according to (2.21) for the whole path.

7 Output φ̂φφ
daL
T (λ∗T ) where λ∗T is such that Cp(λ∗T ) ≤Cp(λT ). END

Algorithm 4: Complete algorithm for the doubly adaptive positive LASSO via the
LOOCV

Input: Data: yyyt, t = 1, · · · ,T

Output: The doubly adaptive positive LASSO estimator φ̂φφ
daL
T

1 Start: Set up a grid G = γ0×γ1×γ2 with G = |G|.
2 for g← 1 to G do
3 Apply Algorithm 3 to get φ̂φφT

(
γ

(g)
0 ,γ

(g)
1 ,γ

(g)
2

)
.

4 Calculate LOOCV(γ(g)
0 ,γ

(g)
1 ,γ

(g)
2 ).

5 Choose (γ∗0,γ
∗
1,γ
∗
2) such that

LOOCV(γ∗0,γ
∗
1,γ
∗
2) = min{LOOCV(γ(g)

0 ,γ
(g)
1 ,γ

(g)
2 ) : ∀g = 1, · · · ,G}.

6 Output φ̂φφ
daL
T ← φ̂φφT (γ∗0,γ

∗
1,γ
∗
2).

7 End

2.6 Monte Carlo study

We use Monte Carlo to empirically assess the statistical properties of the doubly adaptive

LASSO estimator with respect to AR order identification, sparse pattern recovery, and param-

eter estimation. We summarize the empirical minimum, maximum, mean, medium, mode (for

AR lag order only), standard error, bias, MSE, MAD, and selection proportion. The definitions

of empirical bias, MSE, and MAD are listed as the following

B̂ias( p̂daL) = Ê[ p̂daL]− p =
1
M

M∑
m=1

(p̂daL)(m)− p

M̂S E( p̂daL) = Ê[p̂daL− p]2 =
1
M

M∑
m=1

(( p̂daL)(m)− p)2
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M̂AD(p̂daL) = Ê| p̂daL− p| =
1
M

M∑
m=1

|(p̂daL)(m)− p|

B̂ias(φ̂daL
j ) = Ê[φ̂daL

j ]−φ∗j =
1
M

M∑
m=1

(φ̂daL
j )(m)−φ∗j

M̂S E(φ̂daL
j ) = Ê[φ̂daL

j −φ∗j]
2 =

1
M

M∑
m=1

(
(φ̂daL

j )(m)−φ∗j

)2

M̂AD(φ̂daL
j ) = Ê|φ̂daL

j −φ∗j | =
1
M

M∑
m=1

∣∣∣∣(φ̂daL
j )(m)−φ∗j

∣∣∣∣
where M denotes the total number of MC runs.

2.6.1 Performance of the daLASSO with an appropriate choice of tuning
and weighting parameters using samples of different sizes

We would like to assess the performance of the doubly adaptive LASSO with an appropriate

choice of tuning and weighting parameters using small, medium and large samples. We gen-

erated 10,000 data sets of 6 different sample sizes T = 100,250,500,500,800,1500,2000 from

the stationary AR(15) model:

Yt = 0.2Yt−1 + 0.1Yt−3 + 0.2Yt−5 + 0.2Yt−10 + 0.25Yt−15 + at (2.22)

Pretending that we do not know the true lag order of the underlying model, corresponding to

each sample size we set maximum order h to be 25, 50, 100, 150, 200, 250, respectively. We set

γ0 = 4.5, γ1 = 5, and γ2 = 1.45 3 and use the doubly adaptive LASSO to fit AR models. Figure

2.1 shows the distribution of estimated AR orders corresponding to the 6 different sample

sizes. Figure 2.2 shows the proportions of the coefficients of the AR model being selected

corresponding to the 6 different sample size. Table 2.1 shows the empirical statistics of the AR

order estimates when the sample size is quite large (T = 2000). Table 2.2 shows the empirical

statistics of coefficients estimates and proportion of AR coefficients being selected when the

sample size is quite large (T = 2000). We highlight a few observations.

Observations:

3The other choices of values for tuning and weighting parameters might also work.
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Table 2.1: Empirical statistics of the doubly adaptive LASSO estimates for the AR order, based on 10,000 repli-
cations (10,000 data sets each of size T=2,000 were generated from Yt = 0.2Yt−1 + 0.1Yt−3 + 0.2Yt−5 + 0.2Yt−10 +

0.25Yt−15 + at. Set h = 250. Set γ0 = 4.5, γ1 = 5, and γ2 = 1.5. Use the Cp to choose the value of λT .)

True Minimum Maximum Mean Median Mode SE Bias MSE MAD
15 10 15 15 15 15 0.05 -0.0005 0.0025 0.0005

Table 2.2: Empirical statistics of the doubly adaptive LASSO estimates for the AR coefficients, based on
10,000 replications (10,000 data sets each of size T=2,000 were generated from Yt = 0.2Yt−1 +0.1Yt−3 +0.2Yt−5 +

0.2Yt−10 + 0.25Yt−15 + at. Set h = 250. Set γ0 = 4.5, γ1 = 5, and γ2 = 1.5. Use the Cp to choose the value of λT .)

Lag True Minimum Maximum Mean Median SE Bias MSE MAD Proportion
1 0.2 0.114 0.278 0.2000 0.199 0.0207 -0.0012 0.0004 0.01652 1
2 0 -0.087 0.091 -0.0003 0 0.0135 -0.0003 0.0002 0.00453 0.132
3 0.1 0 0.187 0.0980 0.099 0.0224 -0.0015 0.0004 0.01689 0.990
4 0 -0.093 0.081 -0.0004 0 0.0129 -0.0004 0.0002 0.00404 0.114
5 0.2 0.116 0.309 0.2000 0.199 0.0231 -0.0006 0.0005 0.01836 1
6 0 -0.088 0.085 -0.0000 0 0.0079 -0.0001 0.0001 0.00115 0.024
7 0 -0.077 0.074 -0.0001 0 0.007 -0.0001 0.0000 0.00105 0.025
8 0 -0.087 0.081 -0.0001 0 0.0081 -0.0001 0.0001 0.00129 0.028
9 0 -0.092 0.09 -0.0001 0 0.0072 -0.0001 0.0001 0.00105 0.024

10 0.2 0.115 0.285 0.2000 0.198 0.0226 -0.0015 0.0005 0.01805 1
11 0 -0.079 0.085 -0.0000 0 0.0038 -0.0000 0.0000 0.00026 0.005
12 0 -0.096 0.063 -0.0001 0 0.0032 -0.0001 0.0000 0.0002 0.004
13 0 -0.082 0.078 -0.0001 0 0.0037 -0.0001 0.0000 0.00024 0.005
14 0 -0.09 0.075 -0.0001 0 0.0037 -0.0001 0.0000 0.00025 0.005
15 0.25 0 0.323 0.2500 0.249 0.0226 -0.0013 0.0005 0.01797 1.000

(1) Distributions of the AR(15) order estimates and order identification consistency. From

Figure 2.1, we observe that the daLASSO chose most frequently orders lager than the true

order 15 for the sample of small size (T = 100), chose most frequently the true order 15 as the

sample sizes increased to 250 and over, and chose almost always the true order as the sample

sizes increased to 1500 and over. So it is evident that as sample size gets increasing, the AR

order estimated by the doubly adaptive LASSO tends to the true order (15) with probability

tending to 1. In addition, the distribution of the daLASSO estimates for the AR(15) order from

the small sample (T = 100 or 250) is flatter, more dispersed, and more dependent on h, ranging

from 1 to h (h = 25 or 50), the distribution of the daLASSO estimates for the AR(15) order

from the moderate sample (T = 500 or 800) is sharper around the mode (15) but right-skewed

with long tails with a positive probability of the largest possible order that we initially guessed

(25 or 50), and the distribution of the daLASSO estimates for the AR(15) order from the large

samples (T = 1500 or 2000) concentrates almost all probability mass at the true order with a
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small potion of probability mass at 10, and is not dependent on h. Table 2.1 provides another

evidence that the daLASSO estimates for the AR order from a large sample (T = 2000) are

very close to the true order.

(2) Variable selection consistency. As shown in Figure 2.2, the daLASSO is excellent in exclud-

ing the autoregressors beyond the true order 15; the coefficients 16 – 20 are set to 0 even when

the samples of moderate size (T = 500) are used. Figure 2.2 also shows that the daLASSO

is powerful in choosing the true sets of variables (Yt−1, Yt−5, Yt−10, and Yt−15 except Yt−3)

with probability close to 1 even when the samples used are of moderate size (T = 500). The

daLASSO is still conservative in the sense that zeros below the true order are falsely chosen

with high probability (Yt−2 and Yt−4) when the samples used are not large (T < 2000). How-

ever, both Figure 2.2 and Table 2.2 shows that the doubly adaptive LASSO can satisfactorily

recover the sparsity pattern when the sample size is large (T = 2000). We may also see that the

values for h are almost irrelevant in recovering the sparse pattern.

(3) Estimation consistency. Table 2.2 shows M̂S E(φ̂daL
j ) ' 0, j = 1, · · · , p̂ when the sample size

is quite large (T = 2000), which is an evidence that φ̂φφdaL is asymptotically consistent.

In one word, the simulation shows evidences for the asymptotic properties stated in Section

2.4, that is, with the values of λ, γ0, γ1, and γ2 properly chosen, the doubly adaptive LASSO

can achieve identification consistency, selection consistency, and estimation consistency.

2.6.2 Performance of the daLASSO with tuning and weighting parame-
ters being chosen via LOOCV using a sample of moderate size

In the previous subsection, we were lucky to have an appropriate choice of values for γ0, γ1,

and γ2. In reality, however, we are not able to determine a proper choice of values for γ0, γ1,

and γ2 a priori. Now we would like to assess the performance of the doubly adaptive LASSO

with tuning and weighting parameters being chosen via LOOCV using a sample of moderate

size. We generated 1,000 data sets of a moderate size T = 800 from a stationary AR(15) model

used by Nardi et. al.(2010):

Yt = 0.2Yt−1 + 0.1Yt−3 + 0.2Yt−5 + 0.3Yt−10 + 0.1Yt−15 + at (2.23)
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Figure 2.1: Empirical distributions of the doubly adaptive LASSO estimates for the AR order as sample size
increases, based on 10,000 replications (10,000 data sets for each of 6 different sample sizes were generated form
Yt = 0.2Yt−1 + 0.1Yt−3 + 0.2Yt−5 + 0.2Yt−10 + 0.25Yt−15 + at. Set γ0 = 4.5, γ1 = 5, and γ2 = 1.5. The optimal value
of λT was chosen by the Cp.)
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Figure 2.2: Empirical probabilities of AR coefficients being selected in the model by the doubly adaptive
LASSO for as sample size increases, based on 10,000 replications (10,000 data sets for each of 6 different
sample sizes T = 100,250,500,800,1500,2000 were generated form Yt = 0.2Yt−1 + 0.1Yt−3 + 0.2Yt−5 + 0.2Yt−10 +

0.25Yt−15 + at. Set h = 25,50,100,150,200,250 accordingly with respect to the different T. Set γ0 = 4.5, γ1 = 5,
and γ2 = 1.5. The optimal value of λT was chosen by the Cp.)
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Pretending we do not know the true lag order of the underlying model, we set maximum

order h = 50. First, we employ the adaptive LASSO (Zou, 2006) to fit an AR models to each

of the simulated 1,000 data sets of size 800. As Table 2.3 shows, the adaptive LASSO (Zou,

2006) tends to choose a model with larger AR order.

Table 2.3: Empirical statistics of the adaptive LASSO estimates for the AR order, based on 1,000 replications
(1,000 data sets each of size T=800 were generated from Yt = 0.2Yt−1 +0.1Yt−3 +0.2Yt−5 +0.2Yt−10 +0.1Yt−15 +at
(Nardi, 2011). Set h = 50,γ0 = γ2 = 0. The optimal value of γ1 was chosen by the LOOCV and the optimal value
of λT chosen by the Cp)

True Minimum Maximum Mean Median Mode SE Bias MSE MAD
15 10 50 38.4 41 49 651.8 10.2 23.4 23.5

We use the double adaptive LASSO to fit an AR model to each of the simulated 1,000 data

sets of size 800. We choose the optimal values for γ0, γ1, and γ2 via the minimum LOOCV

criterion, and choose the optimal value for λT via the minimum Cp criterion. Table 2.4 shows

some empirical statistics of the soubly adaptive LASSO estimates for AR order, and Table 2.5

shows some empirical statistics for coefficients estimates, and selection probabilities for the

the AR coefficients. We highlight a few some observations from Table 2.4 and 2.5.

Table 2.4: Empirical statistics of the doubly adaptive LASSO estimates for the AR order, based on 1,000
replications (1,000 data sets each of size T=800 were generated from Yt = 0.2Yt−1 + 0.1Yt−3 + 0.2Yt−5 + 0.2Yt−10 +

0.1Yt−15 + at (Nardi, 2011). Set h = 50. The optimal values of γ0, γ1, and γ2 were chosen by the LOOCV and the
optimal value of λT chosen by the Cp)

True Minimum Maximum Mean Median Mode SE Bias MSE MAD
15 10 50 23 16 15 197.0 11.8 7.6 9.7

Observations:

(1) Order identification. Table 2.4 shows that the mode of 1,000 AR order estimates is 15,

indicating that the doubly adaptive LASSO choose the right AR order most frequently for a

sample of moderate size. This is evident also in Table 2.5: The selection probabilities of AR(h)

coefficients beyond the true order 15 is very small. The mean and median of 1,000 AR order

estimates are 23 and 16, respectively, indicating that the distribution of AR order estimates is
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skewed to the left, which is not surprising since the CV criteria tend to select a larger number

of variables as it is often observed in practice.

(2) Variable selection. Table 2.5 shows that Yt−1, Yt−3, Yt−5, Yt−10 are always selected by the

doubly adaptive LASSO, which is desirable. Yt−10 is selected over 70% of times. It is not

always selected largely because its true value is relatively small (0.1). Also, Yt−2, Yt−4, Yt−6

through Yt−9 are selected with over 40% of times, respectively. This is not desirable but not

surprising since the CV criteria tend to select a larger number of variables.

(3) Coefficients Estimation. Table 2.5 shows that M̂S E(φ̂daL
j ) ' 0, j = 1, · · · , p̂, indicating that

the estimation consistency is valid even for the moderate sample size T = 800.

2.7 Real data analysis

2.7.1 Chemical process time series

Figure 2.3 shows the data set of Series A in the text by Box et al. (1994). Cleveland (1971)

fitted an AR(1,2,7), where the numbers in the brackets denote the indices of AR coefficients.

McLeod and Zhang (2005) fitted an AR(1,2,6,7). Setting h = 30, using LOOCV to determine

the optimal value of γ0, γ1, γ2, and Mallows Cp to determine λT , the PAC-weighted adaptive

LASSO yield a sparse AR(1,2,6,7) model:

Ŷt = 2.7376 + 0.3616Yt−1 + 0.2032Yt−2 + 0.1142Yt−6 + 0.1605Yt−7

2.7.2 Annual tree ring width

Figure 2.4 shows 771 consecutive annual tree ring width measurements on Douglas fir at Nine

Mile Canyon, UT, for the years 1194− 1964 (McLeod and Hipel, 1995). McLeod and Hipel

(1995) fitted an AR(1,9) model. McLeod and Zhang (2005) fitted an AR(1,2,9) model. Our

adaptive LASSO yields an AR(1,2,3,4,7,9,17) model:

Ŷt = 39.574 + 0.376Yt−1 + 0.102Yt−2−0.06Yt−3 + 0.106Yt−4

+ 0.059Yt−7 + 0.106Yt−9−0.086Yt−17
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Table 2.5: Empirical statistics of the doubly adaptive LASSO estimates for the AR coefficients, based on 1,000
replications (1,000 data sets each of size T=800 were generated from Yt = 0.2Yt−1 + 0.1Yt−3 + 0.2Yt−5 + 0.2Yt−10 +

0.1Yt−15 + at (Nardi, 2011). Set h = 50. The optimal values of γ0, γ1, and γ2 were chosen by the LOOCV and the
optimal value of λT chosen by the Cp)

Lag TRUE Minimum Maximum Mean Median SE Bias MSE MAD Proportion
1 0.2 0.080 0.323 0.1993 0.1990 0.036 -0.0007 0.0013 0.0288 1
2 0 -0.110 0.108 -0.0009 0 0.033 -0.0009 0.0011 0.0210 0.545
3 0.1 -0.028 0.209 0.0988 0.0998 0.038 -0.0012 0.0014 0.0296 0.974
4 0 -0.154 0.110 -0.0002 0 0.035 -0.0002 0.0012 0.0224 0.532
5 0.2 0.089 0.305 0.2036 0.2027 0.039 0.0036 0.0015 0.0311 1
6 0 -0.103 0.105 -0.0018 0 0.031 -0.0018 0.0010 0.0184 0.429
7 0 -0.108 0.114 -0.0001 0 0.032 -0.0001 0.0010 0.0188 0.427
8 0 -0.139 0.107 -0.0015 0 0.034 -0.0015 0.0011 0.0199 0.437
9 0 -0.105 0.123 0.0014 0 0.031 0.0014 0.0010 0.0179 0.415

10 0.3 0.157 0.409 0.3008 0.3008 0.038 0.0008 0.0014 0.0303 1
11 0 -0.174 0.103 -0.0002 0 0.025 -0.0002 0.0006 0.0088 0.138
12 0 -0.110 0.116 0.0010 0 0.024 0.0010 0.0006 0.0084 0.135
13 0 -0.117 0.111 -0.0011 0 0.023 -0.0011 0.0005 0.0083 0.141
14 0 -0.131 0.128 -0.0012 0 0.026 -0.0012 0.0007 0.0091 0.137
15 0.1 0.000 0.230 0.0815 0.0952 0.056 -0.0185 0.0035 0.0453 0.735
16 0 -0.157 0.122 -0.0006 0 0.022 -0.0006 0.0005 0.0063 0.092
17 0 -0.157 0.104 -0.0012 0 0.020 -0.0012 0.0004 0.0056 0.085
18 0 -0.130 0.128 -0.0002 0 0.024 -0.0002 0.0006 0.0070 0.097
19 0 -0.116 0.129 0.0005 0 0.022 0.0005 0.0005 0.0065 0.097
20 0 -0.123 0.129 0.0000 0 0.023 0.0000 0.0005 0.0070 0.099
21 0 -0.112 0.135 0.0015 0 0.020 0.0015 0.0004 0.0054 0.078
22 0 -0.116 0.110 -0.0015 0 0.020 -0.0015 0.0004 0.0053 0.076
23 0 -0.138 0.113 0.0004 0 0.022 0.0004 0.0005 0.0060 0.083
24 0 -0.130 0.111 0.0008 0 0.018 0.0008 0.0003 0.0044 0.067
25 0 -0.120 0.128 0.0000 0 0.018 0.0000 0.0003 0.0039 0.051
26 0 -0.101 0.104 0.0011 0 0.016 0.0011 0.0003 0.0037 0.056
27 0 -0.119 0.119 0.0008 0 0.018 0.0008 0.0003 0.0041 0.059
28 0 -0.132 0.118 -0.0002 0 0.017 -0.0002 0.0003 0.0037 0.053
29 0 -0.113 0.115 0.0001 0 0.017 0.0001 0.0003 0.0041 0.06
30 0 -0.124 0.105 -0.0020 0 0.018 -0.0020 0.0003 0.0039 0.051
31 0 -0.099 0.125 0.0012 0 0.016 0.0012 0.0003 0.0035 0.049
32 0 -0.114 0.117 -0.0002 0 0.015 -0.0002 0.0002 0.0030 0.042
33 0 -0.111 0.132 0.0005 0 0.017 0.0005 0.0003 0.0034 0.046
34 0 -0.101 0.099 -0.0002 0 0.013 -0.0002 0.0002 0.0023 0.033
35 0 -0.127 0.108 0.0001 0 0.014 0.0001 0.0002 0.0024 0.032
36 0 -0.135 0.124 -0.0009 0 0.015 -0.0009 0.0002 0.0026 0.036
37 0 -0.114 0.095 0.0000 0 0.016 0.0000 0.0003 0.0035 0.048
38 0 -0.112 0.128 0.0000 0 0.014 0.0000 0.0002 0.0025 0.035
39 0 -0.127 0.095 0.0001 0 0.011 0.0001 0.0001 0.0015 0.021
40 0 -0.099 0.094 -0.0007 0 0.012 -0.0007 0.0001 0.0022 0.033
41 0 -0.109 0.102 -0.0005 0 0.011 -0.0005 0.0001 0.0015 0.019
42 0 -0.119 0.105 0.0000 0 0.012 0.0000 0.0001 0.0017 0.022
43 0 -0.097 0.113 -0.0001 0 0.012 -0.0001 0.0002 0.0018 0.023
44 0 -0.137 0.088 -0.0002 0 0.010 -0.0002 0.0001 0.0013 0.018
45 0 -0.125 0.100 -0.0003 0 0.012 -0.0003 0.0001 0.0017 0.02
46 0 -0.110 0.106 -0.0001 0 0.011 -0.0001 0.0001 0.0014 0.016
47 0 -0.090 0.097 0.0000 0 0.008 0.0000 0.0001 0.0008 0.011
48 0 -0.108 0.088 0.0000 0 0.007 0.0000 0.0000 0.0006 0.008
49 0 -0.106 0.114 0.0000 0 0.009 0.0000 0.0001 0.0009 0.01
50 0 -0.100 0.107 -0.0001 0 0.008 -0.0001 0.0001 0.0008 0.009
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Figure 2.3: Chemical process time series (Data source: Box et al. 2004)
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Figure 2.4: Annual tree ring width measurements on Douglas fir (1194-1964) (Data source: McLeod
and Hipel, 1995)
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2.7.3 Annual sunspot numbers

Figure 2.5 shows 312 consecutive annual sunspots numbers for the years 1700− 2011 (Solar

Influence Data Analysis Center). There exists quite a few ARMA(p,q) models (Woodward

and Gray, 1978). McLeod et al. (1977) proposed an AR(1,2,9) model with mean 11.77 for a

transformed series 2(
√

yt + 1−1). Our adaptive LASSO yields an AR(1,2,3,4,5,9) model for

yt:

Ŷt = 6.521 + 1.167Yt−1−0.393Yt−2−0.172Yt−3 + 0.138Yt−4−0.072Yt−5 + 0.2Yt−9

Figure 2.5: Annual sunspots numbers (1700-2011) (Data source: SIDC website http://sidc.be/sunspot-
data/)
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Chapter 3

The Doubly Adaptive Positive LASSO for
ARCH(q) Models

3.1 Introduction

Financial time series have some characteristics of empirical statistical regularities dubbed as

stylized facts. Many empirical studies have documented properties of stylized facts in financial

time series data like daily stock returns. Let pt be the stock price at time t. The continuously

compounded return, called log return or simply return, at t is defined as εt = log(pt/pt−1).

The return εt approximately represents relative price increase since εt ≈ (pt − pt−1)/pt−1 . It

is convenient to use the return to make comparisons between stocks since it is independent

of monetary units. Some stylized facts of {pt} and {εt} that have been amply documented in

the financial literature include but are not limited to: (i) Stationarity: The price series {pt} is

generally close to a random walk without intercept whereas the return series {εt} is compatible

with the second-order stationarity assumption; (ii) Memory: the return series {εt} has weak

autocorrelation or short memory whereas the squared return series {ε2
t } or absolute returns

series {|εt|} has strong autocorrelation or long memory; (iii) Volatility clustering: The squared

return series {ε2
t } or absolute returns series {|εt|} tend to appear in clusters with some periods

being highly volatile and other periods being tranquil; (iv) Heteroscedasticity: The volatility

of the return series {εt} is not constant over time; (v) Leptokurticity: The return series {εt}

generally has a heavy-tailed distribution.

The autoregressive conditional heteroscedastic (ARCH) model was proposed by Engle

(1982) to capture some of these stylized facts. The ARCH model expresses the conditional

55
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variance at time t of the return series {εt} as a deterministic linear function of the past observa-

tions of the squared returns. The dynamic model for conditional variances evolves over time

by making use of the most recent information available. The ARCH model is a standard tool

for modeling financial volatilities as well as a benchmark model for evaluating other volatility

models. The ARCH model is simple and straightforward in algebraic structure yet powerful in

interpretation and volatility forecasting.

Due to the long memory property of the squared or absolute returns series, the lag order of

the ARCH model needs to be large enough in order for the model to have a good fit to the data

and to have a good forecasting capacity. Naturally, for an ARCH model with large lag order,

only a subset of ARCH autoregressors are relevant for forecasting financial volatilities. There-

fore, we desire a large-order but sparse ARCH model with some of the parameters being null.

The sparsity gives rise to the model selection problem. Classical model selection approaches

are not only unstable (Breiman, 1996) but also computationally infeasible. Due to its success-

ful applications in AR models, the LASSO may be naturally the first choice for many time

series data analysts if they would like to build a sparse ARCH(q) model by shrinking irrelevant

ARCH coefficients to zero.

Unfortunately, in the literature we have not found any results that applied the LASSO

methodology to modeling ARCH processes. The curse of dimensionality that we would en-

counter in optimizing the (quasi) maximum likelihood function for large-order ARCH mod-

els might be the major reason for the scarcity of examples in the literature. In this chapter,

we propose the doubly adaptive positive LASSO, the partial autocorrelation or PAC-weighted

adaptive positive LASSO, for modelling the sparse ARCH processes. By applying the doubly

adaptive LASSO procedure we may obtain identification, selection and estimation done all in

one go.

We review the ARCH models and standard modeling procedure in Section 3.2. We for-

mulate the doubly adaptive positive LASSO tailored to ARCH processes in Section 3.3. In

Section 3.4 we study asymptotic properties of the doubly adaptive positive LASSO estimator.

Computational details are described in 3.5. Results from numerical experiments are contained
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in Section 3.6. Section 3.7 showcases real data analysis examples.

3.2 The pure ARCH(q) process and standard modelling pro-
cedure

In this section, we review the basic concepts of the ARCH model and the standard modeling

methods including order identification and quasi maximum likelihood estimation.

The pure ARCH(q) process

Let {εt}, t = 0,±1,±2 · · · ,±∞ be a time series and Ft be the σ-field generated by past {εt}, i.e.

Ft = σ(εt, εt−1, · · · ). Suppose that εt is square-integrable and

εt = σtηt with ηt ∼ iid(0,1). (3.1)

The time series {εt} is a martingale difference

E[εt|Ft−1] = 0 a.s.,

with time-varying conditional variance

E[ε2
t |Ft−1] = σ2

t .

The pure ARCH(q) specification for σ2
t ,∀t ∈ Z (Engle, 1982) is defined as

σ2
t = α0 +α1ε

2
t−1 + · · ·+αqε

2
t−q, ∀t ∈ Z, (3.2)

where ηt ⊥ εt− j for j > 0, and α0 > 0, α j ≥ 0, j = 1, · · · ,q− 1, and αq > 0. The parameters

are restricted to be non-negative to guarantee that the conditional variances are always non-

negative. Recall that non-negativity of ARCH coefficients is necessary and sufficient for the

conditional variances to be always nonnegative (Engle, 1982; Nelson and Cao 1992; Tsai and

Chan 2008).
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Identification

The lag order of the pure ARCH(q) model is unknown a priori. In practice, we sequentially

fit a variety of candidate models ARCH(1), ARCH(2), up to ARCH(h), where h is an integer

with large enough value. We then conduct diagnosis to check if the models are adequate or not.

We finally choose from all adequate candidates the most parsimonious model by some criteria

such as minimum BIC or AIC.

Alternatively, we may first identify the order of the ARCH(q) model, then estimate the

parameters. Define the process {νt} of ε2
t ,∀t ∈ Z as

νt = ε2
t −σ

2
t .

It is easy to verify that E[νt|Ft−1] = 0, cov(νt, νt− j) = 0 and cov(νt, εt− j) = 0, for j > 0. A little

bit of manipulation yields

ε2
t = α0 +α1ε

2
t−1 + · · ·+αqε

2
t−q + νt,∀t ∈ Z,

which suggests that the AR lag order of ε2
t corresponds to the ARCH lag order of εt. So to

identify the order of the ARCH process εt, we compute the sample partial autocorrelation from

a realization of the AR process ε2
t . From the partial correlogram for ε2

t , the AR lag order of ε2
t ,

or the ARCH lag order of εt is determined. Shin and Kang (2001) argued that, to a first-order

approximation, a power transformation preserves the theoretical autocorrelation function and

hence the order of a stationary ARMA process. Their result suggests that the ARCH order may

also be identified by studying the absolute returns. Also see Francq and Zakonian (2010 page

109).

The quasi-maximum likelihood estimator

The standard approach is the quasi-maximum likelihood (QML) estimation which minimizes

the negative quasi-log likelihood function. Let (ε1, · · · , εT ) be a realization of the ARCH process

Given initial observations εεε0 = (ε0, ε−1, · · · , ε1−q), the conditional Gaussian quasi-likelihood is

given by

LT (θθθ) =LT (θθθ;εT , · · · , ε1, εεε0) =

T∏
t=1

1
√

2πσt
exp

(
−
ε2

t

2σ2
t

)
,
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and the negative log conditional quasi-likelihood function LT (θθθ) is defined as

LT (θθθ) =

T∑
t=1

{
1
2

log
(
σt

2(θθθ)
)
+

εt
2

2σt2(θθθ)
+

1
2

log(2π)
}
,

where θθθ = [α0,ααα
′]′ with ααα = [α1, · · · , αq]′.

The quasi maximum likelihood estimator is defined as any measurable solution of

θ̂θθ
qml
T = argmin

θθθ∈Θ
LT (θθθ).

Subset selection

Subset selection is the restricted optimization. First we have to know which coefficients are

zero. Francq and Zakoïan (2009) proposed the method to test the nullity of the ARCH coeffi-

cients. Francq and Zakoïan (2007) also studied the asymptotic distribution of the QML estima-

tor when the true parameter may have zero coefficients. They approximated quasi-likelihood

by a quadratic function and project the asymptotic distribution of a normal vector distribution

onto a convex cone.

3.3 The adaptive and doubly adaptive positive LASSO

In this section, we adapt the LASSO methodology to modeling the ARCH process. There are

two situations. If the order is known in advance or has been identified already, we recommend

the adaptive positive LASSO. If the order is not known in advance or difficult to identify, we

propose the doubly adaptive positive LASSO, or PAC-weighted adaptive positive LASSO. We

use the word positive following Efron et. al (2004) since the coefficients of ARCH(q) models

are restricted to be nonnegative.

3.3.1 The doubly adaptive positive LASSO when q is unknown

Suppose that we have the data ε1, ε2, · · · , εT , which is a realization of the ARCH(q) process

defined by (3.1) and (3.2) with the true order q and true parameters αααo = (αo
0,α

o
1, · · · ,α

o
q) both

unknown. We first set our guess of the ARCH order to be h, which has a sufficiently large
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positive integer 1 so that h > q. Since the initial values ε0, · · · , ε−h+1 are not available, we use

ε1, · · · , εh as a presample, hence the effective sample size is T − h. Now, having the data, we

formulate the negative log conditional quasi-likelihood function LT (θθθ) as

LT (θθθ) =

T∑
t=h+1

`t(θθθ), (3.3)

where

`t(θθθ) =
1
2

log
(
σt

2(θθθ)
)
+

εt
2

2σt2(θθθ)
+

1
2

log(2π), (3.4)

and

σ2
t (θθθ) = α0 +α1ε

2
t−1 + · · ·+αhε

2
t−h, (3.5)

for t = h + 1, · · · , T with θθθ = [α0,ααα
′]′ and ααα = [α1, · · · , αh]′.

Definition (The doubly adaptive positive LASSO). The doubly adaptive positive LASSO

estimator or PAC-weighted adaptive positive LASSO, θ̂θθ
dapL
T , is the penalized conditional quasi-

maximum likelihood estimators defined as

θ̂θθ
dapL
T = argmin

θθθ∈Θ

LT (θθθ) +λT

ŵT,0α0 +

h∑
j=1

ŵT, jα j


 , (3.6)

where α0 > 0,α j ≥ 0,

ŵT,0 =

 0 if intercept not to be penalized
1

α̃
γ1
0

(∑h
i=0|ρ̂ii|

γ0
)γ2 if intercept to be penalized (3.7)

ŵT, j =
1

α̃
γ1
j

(∑h
i= j |ρ̂ii|

γ0
)γ2

=
1

α̃
γ1
j Aγ2

j

, (3.8)

A j =

h∑
i= j

|ρ̂ii|
γ0 , (3.9)

for j = 1, · · · ,h, θ̃ j is any consistent estimate, for example, θ̂qml
j , ρ̂ii is the estimate for the ith-lag

partial autocorrelation of {ε2
t }

T
t=1, and γ0 > 0, γ1 ≥ 0, and γ2 ≥ 0 are some fixed constants.

Remark 1: Both the LASSO (Tibshirani, 1996) and the adaptive LASSO (Zou, 2006) are

special cases of the doubly adaptive LASSO. When γ1 = γ2 = 0, then w j = 1, and the doubly

1h is set to be quite large, for instance, h = κTα, 0 ≤ α ≤ 1 for some constant κ.
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adaptive LASSO reduces to the LASSO. When γ2 = 0, then w j = θ̂
−γ1
j , and the doubly adaptive

LASSO reduces to the adaptive LASSO.

Remark 2: In the ARCH(q) model, the intercept is required to be strictly positive, so we

recommend not to penalize the intercept. However, we may have some data that lead us to fit

a model with unduly large intercept and unduly small coefficients. In this situation, it might be

better for us to penalize the intercept also.

Remark 3: In the doubly adaptive LASSO procedure the partial autocorrelation information

and the quasi-maximum likelihood estimates for the ARCH model work in tandem to perform

subset selection and parameter estimation simultaneously. The basic idea can be elucidated

from the following points:

Firstly, the monotonically decreasing (with respect to j) A j’s impose monotonically in-

creasing penalty on θ j as j goes from 1 to h. Hence wT,i < wT,k for lag values satisfying i < k.

Also, because A j is a function of the sample PAC, the serial correlations embedded in the data

are factored into the adaptive positive LASSO procedure. As a consequence, depending on the

structure of serial correlations, an ARCH term with smaller lag is more likely to be included in

the model.

Secondly, a big bump of {A j}
h
j=1 at j = q relative to j > q provides the cutoff lag correspond-

ing to the true order of the ARCH process, since |ρ̂ii| = OP(1/
√

T ) for i = q+1,q+2 · · · ,h. This

means that the A j’s for j > q are relatively very small. If j goes from h backwards to q, it is

expected that the {A j}
h
j=1 will exhibit a sharp jump at j = q. Consequently, the ARCH terms

with lags greater than q get so much penalties that they will be excluded from the model, and

the true order of the ARCH process is thus identified.

Finally, |θ̃ j|
γ1 imposes a larger penalty on θ j if the corresponding ARCH term is not signifi-

cant, and smaller penalty on θ j if the corresponding ARCH term is significant. This is obvious

because for an ARCH term ε2
t− j that is not significant, the value of θ̃ j is close to zero, |θ̃ j|

−γ1 is

close to∞. Consequently, the insignificant ARCH terms get so much penalties that they will be

excluded from the model whereas the significant ARCH terms will be included in the model.
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Remark 4: Actually, we use the doubly adaptive LASSO to estimate the extended true param-

eter vector, θθθ∗, defined as

θθθ∗ = (α∗0,α
∗
1, · · · ,α

∗
q,α
∗
q+1, · · · ,α

∗
h)′ = (αo

0,α
o
1, · · · ,α

o
q,0, · · · ,0)′ (3.10)

It is clear that the ARCH(q) process with the fixed parameters αααo = (αo
0,α

o
1, · · · ,α

o
q) and the

ARCH(h) processes with the fixed parameters θθθ∗ are equivalent.

3.3.2 The adaptive positive LASSO when q is known

Suppose that we have the data ε1, ε2, · · · , εT , which is a realization of the ARCH(q) process

defined by (3.1) and (3.2) with the true order q known and true parameters αααo = (αo
0,α

o
1, · · · ,α

o
q)

unknown. Since the initial values ε0, · · · , ε−q+1 are not available, we use ε1, · · · , εq as a presam-

ple, hence the effective sample size is T − q. We set h = q and γ2 = 0 in (3.7) and (3.8). The

doubly adaptive LASSO reduces to the adaptive LASSO.

3.4 Asymptotic properties of the doubly adaptive positive
LASSO

The adaptive positive LASSO and the doubly adaptive positive LASSO methods yield biased

estimators. In this section, however, we show that with properly chosen values for weighting

parameters γ0, γ1, and γ2 in (2.13) and tuning parameter λT , the doubly adaptive positive

LASSO enjoys desirable asymptotic properties. Let q be the true unknown order of the ARCH

model. Let θθθo = (θo
1, · · · , θ

o
q)
′

, where θo
j = 0 for some j < p and θo

q , 0, be the true unknown

parameters of the ARCH(q) model. We actually study the asymptotic properties of the doubly

adaptive LASSO estimator for θθθ∗, the extended true parameter vector defined by (3.10).

First, we clarify notations. Let S be the set of the true nonzero coefficient, i.e. S = { j : θ∗j ,

0} = supp(θθθ∗) ⊂ {1,2, · · · ,h} with h being set large enough such that h > q. Let Sc = {1,2, · · · ,h}\

S. Let s = |S| be the cardinality of the set S. The assumption of the model sparsity implies that

s < q. Let θ̃ j be any consistent estimate for the true θ∗j , say the QML estimate. Let θ̂dapL
T, j

be the doubly adaptive positive LASSO estimate for θ∗j . Let ŜT = { j : θ̂dapL
T, j , 0} and Ŝc

T =

{1,2, · · · ,h} \ ŜT . Let θθθ∗S be the s-dimensional vector for true underlying nonzero parameters,
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and θθθ∗Sc be the vector for true underlying null parameters, i.e. θθθ∗S = {θ∗j : j ∈ S} and θθθ∗Sc = {θ∗j :

j ∈ Sc}. Let θ̂θθ
dapL
T,S be the vector for the PAC-weighted adaptive positive LASSO estimate for θθθ∗S

and θ̂θθ
dapL
T,Sc the vector for the PAC-weighted adaptive positive LASSO estimate for null vector

θθθ∗Sc , i.e. θ̂θθ
daL
T,S = {θ̂daL

T, j : j ∈ S} and θ̂θθ
daL
T,Sc = {θ̂daL

T, j : j ∈ Sc}. Let θ̂θθ
dapL
ŜT

be the vector for nonzero

estimates from the doubly adaptive positive LASSO and θ̂θθ
dapL
Ŝc

T
the vector for null estimates, i.e.

θ̂θθ
dapL
ŜT

= {θ̂
dapL
T, j : j ∈ ŜT } and θ̂θθ

dapL
Ŝc

T
= {θ̂

dapL
T, j : j ∈ Ŝc

T }.

Theorem 3.4.1 (Second-order stationarity (Bollerslev, 1986)). The necessary and sufficient

condition for the second-order stationarity of the pure ARCH(q) process defined by (3.1) and

(3.2) is that
∑q

i=1αi < 1.

Let Bt be a random matrix defined as

Bt =


α1η

2
t α2η

2
t · · · αh−1η

2
t αhη

2
t

1 0 · · · 0 0
...

...
...

...
0 0 · · · 1 0

 . (3.11)

Definition (The top Lyapunov exponent). Let BBBt be the sequence of random matrices {Bt}

with Bt defined as (3.11).The top Lyapunov exponent is defined as

γ(BBBt) ≡ inf
t∈N∗

1
t

E
(
log‖Bt · · ·B1‖

) a.s.
= lim

t→∞

1
t

log‖BtBt−1 · · ·B1‖ . (3.12)

Theorem 3.4.2 (Stationarity and ergodicity (Bougerol and Picard, 1992)). The necessary

and sufficient condition for the strict stationarity and ergodicity of the pure ARCH(q) process

defined by (3.1) and (3.2) is that the top Lyapunov exponent is strictly negative , i.e. γ(BBB0) < 0.

Let B⊗m = B⊗ B⊗ · · ·B with m factors, where ⊗ denote the tensor product, or Kronecker

product.

Theorem 3.4.3 (Even-order moments (Ling and McAleer, 2002)). The necessary and suffi-

cient condition for E
[
ε2m

t

]
< ∞, where εt is the pure ARCH(q) process defined by (3.1) and

(3.2), is that ρ
(
E

[
B⊗m

0

])
< 0, where ρ denotes the spectral radius of a matrix.

Let

JJJ := Eθθθ∗
[
∂2`t(θθθ∗)
∂θθθ∂θθθ′

]
= Eθθθ∗

[
1

σ4
t (θθθ∗)

∂σ2
t (θθθ∗)
∂2θθθ

∂σ2
t (θθθ∗)
∂2θθθ′

]
. (3.13)
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We can partition JJJ as follows

JJJ =

(
JJJSS JJJSSc

JJJScS JJJScSc

)
,

where we retain the ordering according to the lag index of εεεt within each partition.

Assumptions:

A1: θθθ∗ ∈ (0,1)× [0,1)q−1× (0,1)× [0,1)h−q ⊂ Θ and Θ is a compact set;

A2: ηt has a nondegenerate distribution with E[ηt] = 0 and E[η2
t ] = 1;

A3: κη = E[η4
t ] <∞;

A4: γ(BBB0) < 0;

A5: ρ
(
E

[
B⊗3

0

])
< 0;

Remarks on assumptions:

1) Compactness in A1 is always assumed.

2) Some of the parameters in the ARCH(h) model are on the boundary. When we talk

about derivatives with respect to parameters on the boundary, i.e. θθθ∗Sc , we always mean the

right derivatives.

3) A4 ensures that {εt} is ergodic stationary.

4) A5 ensures the existence of sixth moments of {εt}.

Lemma 3.4.4 Under A1 – A5, we have

(i) Eθθθ∗
∥∥∥∥∂`t(θθθ∗)

∂θθθ
∂`t(θθθ∗)
∂θθθ′

∥∥∥∥ <∞;

(ii) Eθθθ∗
∥∥∥∥∂2`t(θθθ∗)
∂θθθ∂θθθ′

∥∥∥∥ <∞;

(iii) There exists a neighbourhood Υ(θθθ∗) of θθθ∗ such that

Eθθθ∗ sup
θθθ∈Υ(θθθ∗)

∣∣∣∣∣∣ ∂3`t(θθθ)))
∂θi∂θ j∂θk

∣∣∣∣∣∣ <∞.
Lemma 3.4.4 can be proved using the arguments similar to Francq and Zakoian (2010,

p.159 - 168).



CHAPTER 3. THE DOUBLY ADAPTIVE POSITIVE LASSO FOR ARCH(Q) MODELS 65

Lemma 3.4.5 Under A1 – A5, the matrix JJJSS is positive definite and invertible.

The submatrix JJJSS corresponds to the parameters in the interior of parameter space, i.e.

θθθ∗S. So Lemma 3.4.5 can be proved using the arguments similar to Francq and Zakoian (2010,

p.159 - 168).

Lemma 3.4.6 Under A1 – A5, we have

(i) 1√
T−h

∑T
t=h+1

(
∂`t(θθθ∗S)
∂θθθ′S

)
D
−→ N

(
000, (κη−1)JJJSS

)
;

(ii) 1
T−h

∑T
t=h+1

∂2`t(θθθ∗)
∂θθθ∂θθθ′

P
−→ JJJ.

Lemma 3.4.5 can be proved using the arguments similar to Francq and Zakoian (2010,

p.159 - 168).

Francq and Zakoïan (2007) studied the asymptotic distribution of the QML estimator when

the true parameter may have zero coefficients using their projection method. It is interesting

enough to see that their results bear similarities to the results from the doubly adaptive LASSO.

Definition (Estimation consistency). The PAC-weighted adaptive positive LASSO estimator

θ̂θθ
dapL
T is said to be estimation consistent if ||θ̂θθ

dapL
T − θθθ∗||

P
−→ 0 as T →∞.

Theorem 3.4.7 (Estimation Consistency of θ̂θθdapL
T ). Let aT =

√
T −hmin

j∈S

(
|θ̃ j|

γ1 Aγ2
j

)
. If λT =

op(aT ), then under A1 – A5, we have

‖θ̂θθ
dapL
T − θθθ∗‖ = Op

(
(T −h)−1/2

)
as T →∞.

Proof Let ΨT (θθθ) be defined as

ΨT (θθθ) =

T∑
t=h+1

`t(θθθ) +λT

h∑
j=1

ŵT, j|θ j|.

Following Fan and Li (2001), we show that for every ε > 0 there exists a sufficiently large C
such that

P

(
inf
‖uuu‖≥C

ΨT
(
θθθ∗+ uuu/

√
T −h

)
> ΨT (θθθ∗)

)
> 1− ε,
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which implies that with probability at least 1− ε that there exists a local minimum in the ball {θθθ∗ +

uuu/
√

T −h : ‖uuu‖ ≤C}. Hence there exists a local minimizer such that ‖ θ̂θθ
dapL
T − θθθ∗ ‖= Op(T−1/2). Observe

that

ΨT
(
θθθ∗+ uuu/

√
T −h

)
−ΨT

(
θθθ∗

)
=

T∑
t=h+1

`t
(
θθθ∗+ uuu/

√
T −h

)
−

T∑
t=h+1

`t(θθθ∗) +λT

h∑
j=1

ŵT, j

(∣∣∣∣∣∣θ∗j +
u j
√

T −h

∣∣∣∣∣∣− ∣∣∣θ∗j ∣∣∣)
= AT,1 + AT,2 + AT,3 + AT,4,

where

AT,1 =
1
2

uuu′
 1

T −h

T∑
t=h+1

∂2`t(θθθ∗)
∂θθθ∂θθθ′

uuu,

AT,2 =
1

√
T −h

T∑
t=h+1

uuu′
(
∂`t(θθθ∗)
∂θθθ′

)
,

AT,3 =
1

6
√

T −h

T∑
t=h+1

1
T −h

h∑
i=1

h∑
j=1

h∑
k=1

∂3`t(θθθ)))
∂θi∂θ j∂θk

uiu juk,

AT,4 = λT

h∑
j=1

ŵT, j

{∣∣∣∣∣∣θ∗j +
u j
√

T −h

∣∣∣∣∣∣− θ∗j
}
.

For AT,4, observe that

AT,4 = λT

∑
j∈S

ŵT, j

(∣∣∣∣∣∣θ∗j +
u j
√

T −h

∣∣∣∣∣∣− ∣∣∣θ∗j ∣∣∣)+λT

∑
j<S

ŵT, j
|u j|
√

T −h

≥ λT

∑
j∈S

ŵT, j

(∣∣∣∣∣∣θ∗j +
u j
√

T −h

∣∣∣∣∣∣− ∣∣∣θ∗j ∣∣∣)
≥ −λT

∑
j∈S

ŵT, j
|u j|
√

T −h
,

and

λT

h∑
j=1

ŵT, j
|u j|
√

T −h
= λT

∑
j∈S

∣∣∣θ̃ j
∣∣∣−γ1 A−γ2

j

|u j|
√

T −h

≤
λT
√

T −h

(
min
j∈S

(
|θ̃ j|

γ1 Aγ2
j

))−1

||uuu||

=
λT

aT
||uuu|| = op(1)||uuu||,

so that AT,4 > −op(1)‖uuu‖. For AT,3, by virtue of Lemma 3.4.4(iii), we have

1
T −h

T∑
t=h+1

h∑
i=1

h∑
j=1

h∑
k=1

∂3`t(θθθ)))
∂θi∂θ j∂θk

uiu juk
P
−→ E

[
M(ε2

t ) |uuu|3
]
<∞.

Thus, AT,3
P
−→ 0. For AT,2, in light of Lemma 3.4.6 (i), we have AT,2

D
−→ uuu′www = uuu′N(000, (κη−1)JJJ), hence

AT,2 = uuu′op(111) > −op(1)‖uuu‖. For AT,1, in light of Lemma 3.4.6 (ii), we haveAT,1
P
−→ 1

2 uuu′JJJuuu.
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It follows that in probability

ΨT
(
θθθ∗+ uuu/

√
T −h

)
−ΨT

(
θθθ∗

)
≥

1
2

uuu
′

JJJuuu−2op(1)||uuu||,

as T →∞. The first term 1
2 uuu
′

JJJuuu is a quadratic form in uuu. For any ε > 0, there exists a sufficiently large
C such that the term of quadratic term dominates the other terms with probability ≥ 1− ε.

Proposition 3.4.8 Let aT =
√

T −hmin
j∈S

(
|θ̃ j|

γ1 Aγ2
j

)
, and bT =

√
T −hmax

j∈Sc

(
|θ̃ j|

γ1 Aγ2
j

)
. If λT =

op(aT ) and λT/bT
P
−→∞, then under A1 – A5, we have
√

T −h
(
θ̂θθ

dapL
T,S − θθθ

∗
S

)
D
−→ N

(
000, (κη−1)(JJJSS)−1

)
√

T −h
(
θ̂θθ

dapL
T,Sc − θθθ∗Sc

)
D
−→ 000

.

Proof We follow the methodology of Knight and Fu (2000) and Zou (2006).

Let θθθ = θθθ∗+ uuu/
√

T −h and define

ΨT (uuu) = L
(
θθθ∗+

uuu
√

T −h

)
+λT

h∑
j=1

ŵT, j

∣∣∣∣∣∣θ∗j +
u j
√

T −h

∣∣∣∣∣∣ .
Let VT (uuu) = ΨT (uuu)−ΨT (000). Then the minimizing objective is equivalent to minimizing VT (uuu)

with respect to uuu. Let ûuuT = argminΨT (uuu), then

θ̂θθ
dapL
T = θθθ∗+ ûuuT/

√
T −h,

or

ûuuT =
√

T −h
(
θ̂θθ

dapL
T − θθθ∗

)
.

Observe that

VT (uuu) =

T∑
t=h+1

{
`t

(
θθθ∗+

uuu
√

T −h

)
− `t(θθθ∗)

}
+λT

h∑
j=1

ŵT, j

{∣∣∣∣∣∣θ∗j +
u j
√

T −h

∣∣∣∣∣∣− θ∗j
}

= AT,1 + AT,2 + AT,3 + AT,4,

where

AT,1 =
1
2

uuu′
 1

T −h

T∑
t=h+1

∂2`t(θθθ∗)
∂θθθ∂θθθ′

uuu,

AT,2 =
1

√
T −h

T∑
t=h+1

uuu′
(
∂`t(θθθ∗)
∂θθθ′

)
,
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AT,3 =
1

6
√

T −h

T∑
t=h+1

1
T −h

h∑
i=1

h∑
j=1

h∑
k=1

∂3`t(θθθ)))
∂θi∂θ j∂θk

uiu juk,

AT,4 = λT

h∑
j=1

ŵT, j

{∣∣∣∣∣∣θ∗j +
u j
√

T −h

∣∣∣∣∣∣− θ∗j
}
.

In light of Lemma 3.4.6, we haveAT,1
P
−→ 1

2uuu′JJJuuu, and AT,2
D
−→ uuu′www = uuu′N(000, (κη − 1)JJJ). By

virtue of Lemma 3.4.4(iii), we have

1
T −h

T∑
t=h+1

h∑
i=1

h∑
j=1

h∑
k=1

∂3`t(θθθ)))
∂θi∂θ j∂θk

uiu juk
P
−→ E

[
M(ε2

t ) |uuu|3
]
<∞.

Thus, AT,3
P
−→ 0. Now, consider the limiting behaviour of AT,4. First, by the conditions required

in the theorem, we have λT ŵT, j/
√

T −h ≤ λT/
(√

T −hmin j∈S
(∣∣∣θ̃ j

∣∣∣γ1 Aγ2
j

))
= λT/aT

P
−→ 0 for

j ∈ S and λT√
T−h

wT, j =
λT√
T−h
|θ̃ j|
−γ1 A−γ2

j ≥ λT/
(√

T −hmax j<S
(∣∣∣θ̃ j

∣∣∣γ1 Aγ2
j

))
= λT/bT

P
−→ ∞ for

j < S. In summary, we have

λT
√

T −h
ŵT, j =

λT
√

T −h
∣∣∣θ̃ j

∣∣∣γ1 Aγ2
j

P
−→

0 if j ∈ S
∞ if j < S

.

Secondly, we have

√
T −h

(∣∣∣∣∣∣θ∗j +
u j
√

T −h

∣∣∣∣∣∣− θ∗j
)
→

u jsgn(θ∗j) if j ∈ S (θ∗j = 0)

|u j| if j < S (θ∗j , 0)
.

By Slutsky’s theorem, we have the following limiting behaviour of the third term

λT
√

T −h
ŵT, j
√

T −h
(∣∣∣∣∣∣θ∗j +

u j
√

T −h

∣∣∣∣∣∣− ∣∣∣∣θ∗j ∣∣∣∣) P
−→


0 if ∀ j ∈ S
0 if u j = 0, ∀ j < S
∞ otherwise

.

Thus, we have VT (uuu)→ V(uuu) for every uuu, where

V(uuu) =
1
2

(
uuu′
S

uuu′
Sc

) ( JJJSS JJJSSc

JJJScS JJJScSc

)(
uuuS
uuuSc

)
+

(
uuu′
S

uuu′
Sc

) (wwwS
wwwSc

)
+

∑
j∈Sc

λT
√

T −h
ŵT, j
√

T −h
(∣∣∣∣∣∣θ∗j +

u j
√

T −h

∣∣∣∣∣∣− ∣∣∣∣θ∗j ∣∣∣∣)

=

1
2uuu′
S

JJJSSuuuS+ uuu′
S
wwwS if uuuSc = 000

∞ otherwise
.
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where www ∼ N(000, (κη−1)JJJ), and wwwS ∼ N(000, (κη−1)JJJSS). V(uuu) is convex with the unique mini-

mum (−(JJJSS)−1wwwS,000)T . Following the epi-convergence results of Geyer (1994) and Knight-Fu

(2000), argminuuu VT (uuu)
D
−→ argminuuu V(uuu), we haveûuuS

D
−→ −(JJJSS)−1wwwS

ûuuSC
D
−→ 000

,

or 
√

T −h
(
θ̂θθ

dapL
T,Sc − θθθ∗Sc

)
D
−→ 000

√
T −h

(
θ̂θθ

dapL
T,S − θθθ

∗
S

)
D
−→ N

(
000 (κη−1)(JJJSS)−1

) .

Corollary 3.4.9 Let aT =
√

T −hmin
j∈S

(
|θ̃ j|

γ1 Aγ2
j

)
, and bT =

√
T −hmax

j∈Sc

(
|θ̃ j|

γ1 Aγ2
j

)
. If λT =

op(aT ) and λT/bT
P
−→∞, then under A1 – A5, we have that

P
(

j ∈ ŜT
)
→ 1 if j ∈ S,

as T →∞.

Proof By Theorem A.5.1, the
√

T −h-normality of θ̂θθ
dapL
T,S in Proposition 3.4.8 implies that

‖θ̂θθ
dapL
T,S −θθθ

∗
S‖= Op

(
1/
√

T −h
)
. Thus, θ̂θθ

dapL
T,S

P
−→ θθθ∗S, which implies that ∀ j ∈S, we have P

(
j ∈ ŜT

)
→

1, as T →∞.

We extend the concept of oracle properties of an estimator discussed by Fan and Li (2001)

to the context of time series analysis.

Definition (Oracle properties) . The doubly adaptive positive LASSO estimator θ̂θθ
dapL
T for θθθ∗

is said to have the oracle properties if, with probability tending to 1, it could (i) identify the

true sparsity pattern, i.e. lim P(ŜT = S) = 1, (ii) identify the true lag order of the VAR process,

i,e, lim P(q̂dapL
T = q) = 1, and (iii) have an optimal estimation rate of the coefficients as T →∞.

The following theorem says that the doubly adaptive positive LASSO procedure is an oracle

procedure.
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Theorem 3.4.10 (Oracle properties of θ̂θθdapL
T ). Let aT =

√
T −hmin

j∈S

(
|θ̃ j|

γ1 Aγ2
j

)
, and

bT =
√

T −hmax
j∈Sc

(
|θ̃ j|

γ1 Aγ2
j

)
. If λT = op(aT ) and λT/bT

P
−→∞, then under A1 – A5, θ̂θθ

dapL
T must

satisfy:

i) Selection Consistency: P
(
ŜT = S

)
−→ 1,

ii) Identification consistency: P
(
q̂dapL

T = q
)
−→ 1, and

iii) Asymptotic Normality:
√

T −h
(
θ̂θθ

dapL
ŜT
− θθθ∗S

)
D
−→ N

(
000, (κη−1)(JJJSS)−1

)
as T →∞.

Proof (i) In view of Corollary 3.4.9, we know that ∀ j ∈ S, P( j ∈ ŜT )→ 1. So it suffices to

show that ∀k < S, P(k ∈ ŜT )→ 0. Now, we follow the methodology of Zou (2006).

Consider the event {k ∈ ŜT }, where k < S. The event {k ∈ ŜT } entails the KKT conditions for

optimality, which requires that

T∑
t=h+1

∂`t(θ̂θθ
dapL
T )

∂θk
+λT ŵT,k = 0.

Thus,

P(k ∈ ŜT ) ≤ P

 1
√

T −h

T∑
t=h+1

∂`t(θ̂θθ
dapL
T )

∂θk
+

λT
√

T −h
ŵT,k = 0

 .
By Taylor series expansion of ∂`t(θ̂θθ

dapL
T )

∂θk
around θ∗k = 0, we have

1
√

T −h

T∑
t=h+1

∂`t(θ̂θθ
dapL
T )

∂θk
= BT,1 + BT,2 + BT,3,

where

BT,1 =
1

√
T −h

T∑
t=h+1

∂`t(θθθ∗)
∂θk

,

BT,2 =
1

√
T −h

T∑
t=h+1

∂2`t(θθθ∗)
∂2θk

θ̂
dapL
k ,

BT,3 =
1

2
√

T −h

T∑
t=h+1

∂3`t(θ̃θθ)
∂3θk

(θ̂dapL
k )2,

with θ̃θθ between θθθ∗ and θ̂θθ
dapL
T .

From Theorem 3.4.6, we have BT,1 = 1√
T−h

∑T
t=h+1

∂`t(θθθ∗)
∂θk

P
−→ N(0, (κη − 1)JJJ(k,k)), where

JJJ(k,k) denotes the (k,k)-entry of the matrix JJJ. Thus, BT,1 = Op(1/
√

T −h). From Lemma 3.4.6,
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we also have 1
T−h

∑T
t=h+1

∂2`t(θθθ∗)
∂2θk

P
−→ JJJ(k,k), where JJJ(k,k) denotes the (k,k)-entry of the matrix

JJJ. In addition, Proposition 3.4.8 implies that θ̂dapL
k

P
−→ 0. Thus, by the Slutsky’s theorem,

we have BT,2 = Op(1/
√

T −h). Likewise, from Lemma 3.4.6 and Proposition 3.4.8, we have

BT,3 = Op(1/
√

T −h). Hence,

BT,1 + BT,2 + BT,3 = Op(1/
√

T −h),

whereas by the condition of the theorem,

λT
√

T −h
ŵT,k =

λT
√

T −h

1
|θ̂k|γ1 Aγ2

j′
≥
λT

bT

P
−→∞.

Therefore,

P(k ∈ ŜT ) ≤ P
(
BT,1 + BT,2 + BT,3 +

λT
√

T −h
ŵT,k = 0

)
→ 0,

and the property of selection consistency holds.

(ii) The ARCH order estimated by the doubly adaptive LASSO is

q̂dapL
T = min{ j : θ̂dapL

T,k = 0,∀k = j + 1, j + 2, · · · , h},

or equivalently,

q̂dapL
T = min{ j : k ∈ Ŝc

T ,∀k = j + 1, j + 2, · · · h}. (3.14)

The true order q of the ARCH model is

q = min{ j : k ∈ Sc,∀k = j + 1, j + 2, · · · , h}. (3.15)

We have from (i) that Ŝc
T → S

c in probability, so the RHS of (3.14) and (3.15) are equal in

probability. Therefore q̂dapL
T = q in probability.

(iii) From (i), we have that P
(
θ̂θθ

dapL
ŜT

= θ̂θθ
dapL
T,S

)
→ 1. Then, from Proposition 3.4.8, the asymp-

totic normality of θ̂θθ
dapL
ŜT

follows.

Remarks:

(1) Although the asymptotic distributions of θ̂θθ
daL
T,S and θ̂θθ

daL
ŜT

are identical, θ̂θθ
daL
T,S and θ̂θθ

daL
ŜT

rep-

resent different identities; θ̂θθ
daL
T,S is the daLASSO estimator for the vector of the true non-zero
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parameters unknown in advance whereas θ̂θθ
daL
ŜT

is the vector for non-zeros estimated by the

daLASSO.

(2) Proposition 3.4.8 concerns θ̂θθ
daL
T,S , the daLASSO estimators for the true non-zero parameters

that are unknown in advance whereas Theorem 3.4.10 concerns θ̂θθ
daL
ŜT

, the non-zeros estimated

by the daLASSO.

(3) Estimation consistency is necessary for oracle properties whereas oracle properties are

sufficient for the former.

(4) Under the same asymptotic condition for tuning parameter λT (and other regularity condi-

tions), the LASSO, the aLASSO and the daLASSO all have estimation consistency property.

(5) Under the same asymptotic condition for tuning parameter λT (and other regularity condi-

tions), the aLASSO and the daLASSO both have oracle properties.

(6) The LASSO, the aLASSO and the daLASSO estimator might behaviour quite differently

when finite samples are used. We need to investigate and compare their finite sample properties.

3.5 Computation algorithm for the doubly adaptive positive
LASSO

We will modify the shooting algorithm described in Section 1.2.2 for the doubly adaptive

LASSO. This requires quadratic approximation to the negative log quasi likelihood. The idea

of quadratic approximation is not new. Chernoff (1954) implemented the idea of approxi-

mating the likelihood function by a quadratic function to establish the asymptotic properties

of likelihood ratio tests. Tibshirani (1996) suggested the algorithm of iteratively reweighted

least squares (IRLS) that would make use of quadratic approximation to a likelihood func-

tion. Andrews (1999) used this approach for estimation of a parameter on the boundary. Fan

and Li (2001) proposed an unified algorithm for penalized likelihood based on the quadratic

approximation of the log likelihood function. Francq and Zakoïan (2007) approximated the

quasi-likelihood by quadratic function when they studied asymptotic distribution of the QML
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estimator for ARCH processes when the true parameter may have zero coefficients. Wang and

Leng (2007) proposed unified LASSO estimation via quadratic approximation.

3.5.1 Quadratic approximation to the negative log quasi likelihood

Let (ε1, · · · , εT ) be a realization of the ARCH(q) process defined by (3.1) and (3.2). Use

(εh, εh−1, · · · , ε1) as a presample. The negative log of the Gaussian quasi-likelihood LT (θθθ) is

given by

LT (θθθ) =

T∑
t=h+1

`t(θθθ),

`t(θθθ) =
1
2

logσt
2 +

εt
2

2σt
2 +

1
2

log(2π), (3.16)

where θθθ = [α0,ααα
′]′ with ααα = [α1, · · · , αh]′. Let

xxxt−1 =
(
ε2

t−1, ε
2
t−2, · · · ε

2
t−h

)′
we express the conditional variance σt as

σ2
t = α0 + xxx′t−1ααα.

We approximate the negative likelihood LT (θθθ) by second-order Taylor polynomial as fol-

lows.

LT (θθθ) ≈ LT
(
θθθ∗

)
+ SSS T (θθθ∗)′

(
θθθ− θθθ∗

)
+

1
2
(
θθθ− θθθ∗

)′ JJJT (θθθ∗)
(
θθθ− θθθ∗

)
=

1
2
θθθ′JJJT (θθθ∗)θθθ−

[
JJJT (θθθ∗)θθθ∗−SSS T (θθθ∗)

]′
θθθ+ cT (θθθ∗), (3.17)

where θθθ∗ is the unknown true parameter vector, and cT (θθθ∗) = 1
2θθθ
∗′JJJT (θθθ∗)θθθ∗ − SSS T (θθθ∗)′θθθ∗ +

LT (θθθ∗), the negative score vector SSS T (θθθ) is

SSS T (θθθ) =
∂LT (θθθ)
∂θθθ

=

T∑
t=h+1

ssst(θθθ) =

T∑
t=h+1

1
2σ2

t

(
1−

ε2
t

σ2
t

)
∂σ2

t

∂θθθ
,

and the negative Hessian matrix JJJT (θθθ) is

JJJT (θθθ) =
∂SSS T (θθθ)
∂θθθ

=

T∑
t=h+1

∂ssst(θθθ)
∂θθθ′

=

T∑
t=h+1

1
2σ4

t

(
2ε2

t

σ2
t
−1

)
∂σ2

t

∂θθθ

∂σ2
t

∂θθθ
′ .
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Since
∂σ2

t

∂θθθ
=

(
1

xxxt−1

)
,

we have

SSS T (θθθ) =

T∑
t=h+1

1
2(α0 + xxx′t−1ααα)

(
1−

ε2
t

α0 + xxx′t−1ααα

)(
1

xxxt−1

)
,

and

JJJT (θθθ) =

T∑
t=h+1

1
2(α0 + xxx′t−1ααα)2

(
2ε2

t

α0 + xxx′t−1ααα
−1

)(
1 xxx′t−1

xxxt−1 xxxt−1xxx′t−1

)
.

Now, we need to transform (3.17) into least squares and then iteratively minimize the penal-

ized least squares, which will involve the decomposition of negative Hessian JJJT (θθθ). However,

in each iteration step, say the k-th step, the Hessian evaluated at the estimated value θθθ[k] may

not be positive definite, which precludes the Cholesky or LU decomposition. We may try the

spectral decomposition instead. Since it is symmetric, the matrix JJJT (θθθ) has a spectral decom-

position

JJJT (θθθ) = QQQ(θθθ)ΛΛΛ(θθθ)QQQ(θθθ)′,

where ΛΛΛ(θθθ) is a diagonal matrix with its diagonal elements being the eigenvalues of JJJT (θθθ), and

QQQ(θθθ) some orthogonal matrix. In order to use least-squares method, square-rooting the matrix

JJJT (θθθ) is required. Unfortunately, we may not be able to calculate the square-root of diagonal

matrix ΛΛΛ(θθθ) because some of the eigenvalues are negative. To bypass this problem, we define

a surrogate for the Hessian matrix.

3.5.2 The surrogate of the quadratic approximation of likelihood

The surrogate for the Hessian matrix JJJT (θθθ), denoted by J̃JJT (θθθ), is defined as

J̃JJT (θθθ) = ΓΓΓ(θθθ) |ΛΛΛ(θθθ)|ΓΓΓ(θθθ)′,

where |ΛΛΛ(θθθ)| is a diagonal matrix with its diagonal elements being the absolute eigenvalues of

JJJT (θθθ), and ΓΓΓ(θθθ) some orthogonal matrix. Accordingly, the surrogate for the quadratic approxi-

mation of likelihood LT (θθθ) in (3.17), denoted by ST (θθθ), is defined as

ST (θθθ) =
1
2
θθθ′ΓΓΓ(θθθ∗)

∣∣∣ΛΛΛ(θθθ∗)
∣∣∣ΓΓΓ(θθθ∗)′θθθ− θθθ′

[
JJJT (θθθ∗)θθθ∗−SSS T (θθθ∗)

]
+ cT (θθθ∗).
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Now, define and use the matrix

X̃XX(θθθ∗) = |ΛΛΛ(θθθ∗)|1/2ΓΓΓ(θθθ∗)′, (3.18)

and the vector

ỹ(θθθ∗) = |ΛΛΛ(θθθ∗)|−1/2ΓΓΓ(θθθ∗)′
(
JJJT (θθθ∗)θθθ∗−SSS T (θθθ∗)′

)
. (3.19)

A bit of manipulation yields the least squares form of the surrogate ST (θθθ) as follows

ST (θθθ) =
1
2

(̃
yyy(θθθ∗)− X̃XX(θθθ∗)θθθ

)′ (̃
yyy(θθθ∗)− X̃XX(θθθ∗)θθθ

)
+ dT (θθθ∗).

3.5.3 The modified shooting algorithm

The least squares form of the surrogate ST (θθθ) suggests an iterative algorithm for estimation.

Suppose we get the estimates θ̂θθ
[k]

and θ̃θθ[k] after the kth step, then at the (k+1)st step, we simply

minimize the following least squares objective function

(̃
yyy(θ̂θθ

[k]
)− X̃XX(θ̂θθ

[k]
)θθθ

)′ (̃
yyy(θ̂θθ

[k]
)− X̃XX(θ̂θθ

[k]
)θθθ

)
+λT

h∑
j=1

ŵT, j(θ̃
[k]
j )θ j, (3.20)

where X̃XX and ỹ are defined as in (3.18) and (3.19), respectively, and ŵT,1(θ̃[k]
1 ) corresponds to

(3.7),

ŵT,1(θ̃[k]
1 ) =

 0 if intercept not to be penalized
1

(α̃[k]
0 )γ1

(∑h
i=0|ρ̂ii|

γ0
)γ2 if intercept to be penalized (3.21)

and ŵT, j(θ̃
[k]
j ) for j = 2, · · · , h corresponds to (3.8),

ŵT, j(θ̃
[k]
j ) =

1

(α̃[k]
j−1)γ1

(∑h
i= j−1 |ρ̂ii|

γ0
)γ2
, j = 2, · · · , h + 1 (3.22)

.

Applying the first optimization necessary condition to (5.22) with respect to θθθ yields q + 1

equations. Now, with reference to Section 1.2.2, we define

S [k]
0, j = S 0

(
0, θθθ(− j), X̃XX(θ̂θθ

[k]
), ỹyy(θ̂θθ

[k]
)
)

= 2
∑
i, j

(̃
xxx(θ̂θθ

[k]
) j
)′

x̃xx(θ̂θθ
[k]

) jθi−2
(̃
xxx(θ̂θθ

[k]
) j
)′

ỹyy(θ̂θθ
[k]

), (3.23)

S [k]
j = S j

(
θθθ, X̃XX(θ̂θθ

[k]
), ỹyy(θ̂θθ

[k]
)
)

= 2
(̃
xxx(θ̂θθ

[k]
) j
)′

x̃xx(θ̂θθ
[k]

) jθ j + S [k]
0, j,
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and

λ[k]
j = λT ŵ[k]

T, j = λT ŵT, j(θ̃
[k]
j ),

where x̃xx(θ̂θθ
[k]

) j represents the jth column of X̃XX(θ̂θθ
[k]

), and ŵT, j(θ̃
[k]
j ) is defined by (3.21) and

(3.22).

Now, with aid of Figure 3.1, the (k+1)st step estimates for θ j can be obtained using

θ̂ j
[k+1]

=


−λ[k]

j −S [k]
0, j

2
(̃
xxx(θ̂θθ

[k]
) j
)′

x̃xx(θ̂θθ
[k]

) j
if S [k]

0, j < −λ
[k]
j ,

0 otherwise.

Note that superscripts [k] are suppressed on Figure 3.1.

−λ j

��
�
��

�
��

�
��

��
��

�
��
�

S j

θ j

S j

−λ j

tθ̂ j

�
��

�
��

�
��

�
��

��S j

tS 0

θ j

Figure 3.1: The modified shooting algorithm for the doubly adaptive positive LASSO. Left:
Estimate for θ j is 0. Right: S 0, j < −λ j, the intersection of S j and −λ j yields a positive estimate
for θ j.

Algorithm 5 shows computation steps in detail.
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Algorithm 5: Modified shooting algorithm for the doubly adaptive positive LASSO given
a value for the quadruple (λT ,γ0,γ1,γ2)

Input: Data ε1, · · · , εT , given values of (λT ,γ0,γ1,γ2)
Output: The h + 1-dimensional vector estimate θ̂θθ(λT ,γ0,γ1,γ2)

1 Start: k = 1, initialize, say θ̂θθ
[k]
← [0.0001, · · · ,0.0001]

2 Set stopping rule, ‖θ̂θθ
[k+1]
− θ̂θθ

[k]
‖∞ < ζ, where ζ is a tiny number, say 0.00005

3 Iteration: Compute X̃XX(θ̂θθ
[k]

) and ỹyy(θ̂θθ
[k]

)

4 Compute θ̃θθ[k]
←

(
X̃XX(θ̂θθ

[k]
)′X̃XX(θ̂θθ

[k]
)
)−1

ỹyy(θ̂θθ
[k]

)

5 for j← 1 to h + 1 do
6 λ[k]

j ← λT ŵT, j(θ̃
[k]
j ) using (3.21) and (3.22)

7 Compute S [k]
0, j using (3.23)

8 if S [k]
0, j < −λ

[k]
j then

9 θ̂[k+1]
j ←

(
−λ[k]

j −S [k]
0, j

)
/
[
2
(̃
xxx(θ̂θθ

[k]
) j
)′

x̃xx(θ̂θθ
[k]

) j
]

10 else
11 θ̂[k+1]

j ← 0

12 if
∥∥∥∥θ̂θθ[k+1]

− θ̂θθ
[k]

∥∥∥∥
∞
< ζ then

13 θ̂θθ
[k]
← θ̂θθ

[k+1]

14 k← k + 1
15 return Iteration

16 else
17 Output: θ̂θθ← θ̂θθ

[k+1]

18 End

The LASSO methodology yields a path of possible solutions defined by the continuum over

tuning and weighting parameters. The choice of Λ = (λT ,γ0,γ1,γ2) determines the tradeoff

between model fit and model sparsity. We use the BIC criteria to select the optimal value for

Λ. The BIC is defined as

BIC = 2LT (θ̂θθ) + |ŜT | log(T −h),

where LT is the negative log quasi-likelihood function defined in (3.3), |ŜT | is the cardinality

of the set ŜT . Define a 4-dimensional grid G = λT ×γ0×γ1×γ2 with a total number of G grid

points. By using information criteria for LASSO, we have double penalization to be involved.
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One is L1 penalization by the LASSO, which yields the path solution of the LASSO,

θ̂θθ(Λ) = argmin
θθθ

ST (θθθ) +λT

h+1∑
j=1

ŵT, j(Λ)θ j,

and the other is the L0 penalization by the BIC, which yields

Λ∗ = argmin
Λ∈G

BIC(Λ) = 2LT (θ̂θθ(Λ)) + |ŜT | log(T −h).

Then the solution θ̂θθ
daL

is read off from the path against Λ∗. Algorithm 6 shows the complete

computation steps.

Algorithm 6: Complete algorithm for the doubly adaptive positive LASSO
Input: Data: ε1, · · · , εT

Output: The doubly adaptive positive LASSO estimator φ̂φφdapL
T

1 Start: Set up a grid G = λT ×γ0×γ1×γ2 with G = |G|

2 for g← 1 to G do
3 Apply Algorithm 5 to get θ̂θθ(Λ(g))
4 Calculate BIC(Λ(g)) = 2LT (θ̂θθ(Λ(g))) + |Ŝ

(g)
T | log(T −h)

5 Choose Λ∗ such that BIC(θ̂θθ(Λ∗)) = min{BIC(Λ(g)) : ∀g = 1, · · · ,G}

6 Output θ̂θθ
daL
T ← θ̂θθ(Λ∗)

7 End

3.6 Monte Carlo study

We use Monte Carlo to empirically the performance of the adaptive positive LASSO estimator.

The empirical minimum, maximum, mean, medium, mode (for ARCH lag order only), stan-

dard error, bias, MSE, MAD, and selection proportion were summarized. The definitions of

empirical bias, MSE, and MAD are listed below for reference:

B̂ias(q̂dapL) = Ê[q̂dapL]−q =
1
M

M∑
m=1

(q̂dapL)(m)−q

M̂S E(q̂dapL) = Ê[q̂dapL−q]2 =
1
M

M∑
m=1

((q̂dapL)(m)−q)2

M̂AD(q̂dapL) = Ê|q̂dapL−q| =
1
M

M∑
m=1

|(q̂dapL)(m)−q|
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B̂ias(θ̂dapL
j ) = Ê[θ̂dapL

j ]− θ∗j =
1
M

M∑
m=1

(θ̂dapL
j )(m)− θ∗j

M̂S E(θ̂dapL
j ) = Ê[θ̂dapL

j − θ∗j]
2 =

1
M

M∑
m=1

(
(θ̂dapL

j )(m)− θ∗j

)2

M̂AD(θ̂dapL
j ) = Ê|θ̂dapL

j − θ∗j | =
1
M

M∑
m=1

∣∣∣∣(θ̂dapL
j )(m)− θ∗j

∣∣∣∣
where M denotes the total number of MC runs.

We generated 764 data sets of sample size T = 1000 from the following sparse ARCH(12)

model. εt =
√
σtηt,

σ2
t = 0.01 + 0.15ε2

t−1 + 0.3ε2
t−4 + 0.2ε2

t−6 + 0.15ε2
t−10 + 0.19ε2

t−12
(3.24)

Pretending that we did not know the true lag order q, which is 12 in this case, of the

underlying bivariate ARCH process, we set the maximum order h = 50. For the sake of sim-

plicity we used h = 50 for all 764 models. To find an approximately optimal values for the

quadruple (λT ,γ0,γ1,γ2), we used grid-search method and the BIC criteria. Specifically, let

G = λT ×γ0×γ1×γ2 = [0.5,1.7]∆=0.2×2× [0,1.75]∆=0.25× [0,1.5]∆=0.25
2. For the sake of sim-

plicity, the same 4-dimensional grid G was used for all 764 models. Algorithm 6 was applied

to fit 764 models. Table 2.4 shows some empirical statistics such as Bias, MSE, and MAD of

the ARCH order estimates. Empirical statistics were summarized in Table 3.1 and 3.2, from

which a few points were observed.

Table 3.1: Empirical statistics of the doubly adaptive positive LASSO estimates for the ARCH order, based
on 764 replications each of size T=1,000 generated from the model (3.24). The BIC was used to choose
(λT ,γ0,γ1,γ2)

True Minimum Maximum Mean Median Mode SE Bias MSE MAD
12 10 50 15 12 12 46.2 6.3 2.7 2.7

Observations:

(i) Order identification. Table 3.1 shows that the mode of 764 estimates for ARCH order is

12, suggesting that from a data set of moderate sample size the doubly adaptive positive
2∆ in the subscript represents the increment of the sequence.
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Table 3.2: Empirical statistics of the doubly adaptive positive LASSO estimates for the ARCH coefficients,
based on 764 replications each of size T=1,000 generated from the model (3.24). The BIC was used to choose
(λT ,γ0,γ1,γ2)

Lag TRUE Minimum Maximum Mean Median SE Bias MSE MAD Proportion
0 0.01 0 0.0426 0.01206 0.011755 0.004333 0.002056 0.0000230 0.00360 0.995
1 0.15 0.0219 0.2597 0.13427 0.133238 0.037328 -0.015734 0.0016391 0.03277 1.000
2 0 0 0.0913 0.00254 0 0.010838 0.002540 0.0001238 0.00254 0.077
3 0 0 0.0721 0.00143 0 0.006229 0.001429 0.0000408 0.00143 0.073
4 0.3 0.0872 0.4691 0.27735 0.277100 0.052775 -0.022652 0.0032947 0.04563 1.000
5 0 0 0.0886 0.00169 0 0.008777 0.001691 0.0000798 0.00169 0.051
6 0.2 0 0.3618 0.17649 0.174962 0.054078 -0.023509 0.0034733 0.04684 0.993
7 0 0 0.0877 0.00100 0 0.006708 0.000997 0.0000459 0.00100 0.034
8 0 0 0.0925 0.00153 0 0.008291 0.001535 0.0000710 0.00153 0.052
9 0 0 0.0405 0.00072 0 0.003993 0.000716 0.0000164 0.00072 0.042

10 0.15 0 0.2762 0.11118 0.111969 0.049576 -0.038817 0.0039613 0.05128 0.959
11 0 0 0.0717 0.00102 0 0.006089 0.001021 0.0000381 0.00102 0.043
12 0.19 0 0.2949 0.14790 0.148414 0.047376 -0.042105 0.0040143 0.05183 0.993
13 0 0 0.0656 0.00043 0 0.003984 0.000433 0.0000160 0.00043 0.020
14 0 0 0.0627 0.00064 0 0.004714 0.000641 0.0000226 0.00064 0.026
15 0 0 0.0811 0.00031 0 0.003531 0.000309 0.0000125 0.00031 0.016
16 0 0 0.0791 0.00079 0 0.005920 0.000789 0.0000356 0.00079 0.027
17 0 0 0.0538 0.00053 0 0.004225 0.000527 0.0000181 0.00053 0.021
18 0 0 0.0584 0.00034 0 0.003390 0.000338 0.0000116 0.00034 0.013
19 0 0 0.0274 0.00020 0 0.001909 0.000196 0.0000037 0.00020 0.014
20 0 0 0.0296 0.00022 0 0.002173 0.000216 0.0000048 0.00022 0.012
21 0 0 0.0357 0.00035 0 0.002796 0.000351 0.0000079 0.00035 0.021
22 0 0 0.0460 0.00025 0 0.003003 0.000252 0.0000091 0.00025 0.009
23 0 0 0.0283 0.00015 0 0.001544 0.000147 0.0000024 0.00015 0.017
24 0 0 0.0342 0.00032 0 0.002883 0.000318 0.0000084 0.00032 0.016
25 0 0 0.0233 0.00013 0 0.001552 0.000133 0.0000024 0.00013 0.009
26 0 0 0.0279 0.00009 0 0.001268 0.000090 0.0000016 0.00009 0.007
27 0 0 0.0325 0.00023 0 0.002102 0.000230 0.0000045 0.00023 0.014
28 0 0 0.0183 0.00011 0 0.001307 0.000113 0.0000017 0.00011 0.009
29 0 0 0.0375 0.00012 0 0.001920 0.000117 0.0000037 0.00012 0.004
30 0 0 0.0141 0.00004 0 0.000636 0.000041 0.0000004 0.00004 0.005
31 0 0 0.0137 0.00004 0 0.000681 0.000040 0.0000005 0.00004 0.005
32 0 0 0.0197 0.00011 0 0.001341 0.000114 0.0000018 0.00011 0.010
33 0 0 0.0284 0.00009 0 0.001294 0.000087 0.0000017 0.00009 0.007
34 0 0 0.0128 0.00003 0 0.000581 0.000029 0.0000003 0.00003 0.003
35 0 0 0.0152 0.00002 0 0.000550 0.000021 0.0000003 0.00002 0.003
36 0 0 0.0235 0.00013 0 0.001569 0.000131 0.0000025 0.00013 0.009
37 0 0 0 0 0 0 0 0 0 0
38 0 0 0.0175 0.000038 0 0.000697 0.000038 0.0000005 0.00004 0.004
39 0 0 0.0126 0.000016 0 0.000455 0.000016 0.0000002 0.00002 0.001
40 0 0 0.0086 0.000011 0 0.000309 0.000011 0.0000001 0.00001 0.001
41 0 0 0.0074 0.000010 0 0.000266 0.000010 0.0000001 0.00001 0.001
42 0 0 0.0130 0.000021 0 0.000481 0.000021 0.0000002 0.00002 0.003
43 0 0 0.0079 0.000010 0 0.000285 0.000010 0.0000001 0.00001 0.001
44 0 0 0.0228 0.000065 0 0.001088 0.000065 0.0000012 0.00007 0.004
45 0 0 0 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0 0 0 0
47 0 0 0.0175 0.0000229 0 0.000633 0.000023 0.0000004 0.00002 0.001
48 0 0 0.0045 0.0000059 0 0.000163 0.000006 0.0000000 0.00001 0.001
49 0 0 0 0 0 0 0 0 0 0
50 0 0 0.0019 0.0000024 0 0.000067 0.000002 0.0000000 0.00000 0.001
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LASSO estimator is able to choose the true ARCH order most frequently . This is evident

also from Table 3.2: The selection probabilities of ARCH(12) coefficients beyond the

true order 12 is very little. The mean and median of estimates for ARCH order are 15 and

12, respectively, indicating that the distribution of ARCH order estimates is skewed to

the left, which is not surprising since the LASSO methodology is conservative, as often

observed in practice.

(ii) Variable selection. Table 3.2 shows that εt−1, εt−4, εt−6, εt−10, and εt−12 are almost always

selected by the doubly adaptive LASSO.

(iii) Coefficients Estimation. Table 3.2 shows that the bias, MSE, and MAD are very small on

average, indicating that the estimation consistency is valid even for the moderate sample

size.

The numerical example shows promising results for the doubly adaptive LASSO for ARCH

models. It is consistent with the asymptotic properties, that is, with the values of γ0, γ1, and

γ2 properly chosen, the proposed doubly adaptive positive LASSO can achieve identification

consistency, variable selection consistency, and variable estimation consistency.

3.7 Real data analysis examples: models for stock indices

3.7.1 The US S&P500 Return Data

We collected 4804 observations of the S&P500 index that cover the period from January 2,

1990 to January 22, 2009 from the website of Yahoo Finance and the log returns were calcu-

lated. Some of the stylized facts are evident from Figure 3.2 and Figure 3.3, as we discussed

in Section 3.1, which justify the use of ARCH models to capture those characteristics.

We set the maximum lag order h = 70, and used the minimum BIC criterion to select the

optimal combination of values for λT ,γ0, γ1, γ2. The doubly adaptive positive LASSO yields a

sparse ARCH(61) model with 16 ARCH terms 1,2,3,4,5,6,8,10,11,19,25,33,38,39,46 and 61:
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Figure 3.2: The S&P500 Daily Returns and Squared Daily Returns from January 2, 1990 to January
22, 2009. Data source: Yahoo Finance
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σ̂2
t = 0.1354 + 0.0233εt−1 + 0.1209εt−2 + 0.0506εt−3 + 0.1013εt−4

+ 0.083εt−5 + 0.0295εt−6 + 0.0533εt−8 + 0.0745εt−10 + 0.0506εt−11

+ 0.1013εt−19 + 0.083εt−25 + 0.0295εt−33 + 0.0506εt−38 + 0.1013εt−39

+ 0.083εt−46 + 0.0295εt−61

3.7.2 The Japan Nikkei Return Data

We collected 4804 observations of the the Japanese Nikkei index that cover the period from

January 2, 1990 to January 22, 2009. Some of the stylized facts are evident from Figure 3.4 and

Figure 3.5, as we discussed in Section 3.1, which justify the use of ARCH models to capture

those characteristics.

We set the maximum lag order h = 70, and use the minimum BIC criterion to select the

optimal combination of values for λT ,γ0, γ1, γ2. The Adaptive Positive LASSO yields a sparse
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Figure 3.3: The ACF of S&P500 Daily Returns and Squared Daily Returns from January 2, 1990 to
January 22, 2009
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ARCH(21) model with 10 ARCH terms 1, 2, 3, 4, 5, 6, 7, 9, 15, and 21:

σ̂2
t = 0.642 + 0.0482εt−1 + 0.1082εt−2 + 0.1069εt−3 + 0.0893εt−4 + 0.1053εt−5

+ 0.066εt−6 + 0.0832εt−7 + 0.0198εt−9 + 0.049εt−15 + 0.0386εt−21
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Figure 3.4: The Nikkei Daily Returns and Squared Daily Returns from January 2, 1990 to January 22,
2009. Data source: Yahoo Finance
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Figure 3.5: The ACF of Nikkei Daily Returns and Squared Daily Returns from January 2, 1990 to
January 22, 2009. Data source: Yahoo Finance
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Chapter 4

The Doubly Adaptive LASSO for
Multivariate AR(p) Models

4.1 Introduction

The multivariate or vector autoregressive (VAR) model is a generalization of univariate AR

process that can be used to model the dynamics of vector stationary time series. Recall that

Wold’s decomposition theorem tells us that any purely undeterministic multivariate stationary

process with constant mean vector can be represented as the output of a causal linear filter with

multivariate white noise input, and can be approximated well by a VAR(p) process, where the

order p is finite, under quite general condition of absolute summability of the coefficients of the

linear filter (see Lütkepohl, 2006 p.25). Naturally, we desire sparse VAR models since sparse

ones may yield better forecasts compared to full models and may be easier to interpret. Because

the number of VAR coefficients can be prohibitively large for even moderate dimensions, it is

computationally infeasible to employ classical approaches such as all subsets selection to fitting

a sparse VAR model quickly. Due to ample applications of the LASSO methodology to model

selection, we naturally consider to apply the LASSO methodology to VAR modeling. There

are quite a few results in the literature that applied the LASSO methodology to building VAR

models, as we reviewed in Section 1.3.

In Chapter 2, we proposed the doubly adaptive LASSO for univariate AR models. The

doubly adaptive LASSO integrates the temporal partial autocorrelations of a time series with

the OLS or Yule-Walker estimates into the adaptive weights. This chapter inherits the same

spirit from Chapter 2. We propose the doubly adaptive LASSO for modelling a VAR(p) pro-

86
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cess, which integrates the norms of the partial lag autocorrelation matrices (Heyse, 1985) of a

vector time series with the OLS or Yule-Walker estimates into the adaptive weights.

We start with a review on some basic concepts regarding the VAR(p) process, and standard

procedure for building a VAR(p) model. In particular, we discuss the notion of partial lag au-

tocorrelation (PLAC) matrix function (Heyse, 1985). In Section 4.3 we review the adaptive

LASSO (Zou, 2006) for VAR(p) models when the lag order is known, and we propose the

doubly adaptive LASSO for VAR models with the lag order is unknown a priori, as is the usual

case. In Section 4.4 we study the asymptotic properties of the doubly adaptive LASSO esti-

mators. The algorithmic implementation is discussed in Section 4.5. Results from simulation

study are summarized in Section 4.6.

4.2 The VAR(p) process and standard modelling procedure

The content of this section can be found in advanced textbooks on multivariate time series

analysis (e.g. Brockwell and Davis, 1991, p.401 - 420; Hannan, 1970, p.8 - 31, 1970; Hamilton,

1994, p.257 - 279; Lütkepohl, 2006, p.13 - 87, p.146 - 153; Wei, 2005, p.408 -412).

Definition (The VAR(p) process). The K-variate time series {yyyt}, t ∈ Z = {0,±1,±2, · · · } is said

to be a VAR(p) process if it is stationary, and it is the solution of the specification

yyyt = ΦΦΦ1yyyt−1 + · · ·+ΦΦΦpyyyt−p + εεεt, t ∈ Z, (4.1)

where ΦΦΦi’s are fixed K ×K coefficient matrices, and the innovation process εεεt ∼WNK (000, Σε).

We say that {yyyt} is an VAR(p) process with mean µµµ if {yyyt −µµµ} is an VAR(p) process.

In this thesis, for convenience and without loss of generality, we deal with only the de-

meaned VAR(p) process.

Estimation of the VAR(p) model

Given the VAR order p there are a variety of approaches to estimating the parameters (see,

for example, Lütkepohl (2006) p.69 - 102). If the distribution of the innovation process is

known, we can get MLE by maximizing the log-likelihood function. Through the Yule-Walker
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equations we can obtain the method-of-moments estimator. Maximizing the Gaussian quasi-

likelihood yields QMLE if the normal distribution is used as a proxy for the unknown innova-

tion distribution. A further possibility is to treat yyyt = ΦΦΦ1yyyt−1 + · · ·+ ΦΦΦpyyyt−p + εεεt, t = 1, · · · ,T as

multivariate regression equation and employ the ordinary least squares (OLS) method for esti-

mation. As in the univariate case, the OLS estimator has downward bias (Jiostheim and Paulser,

1983; Nicholls and Pope 1988; Brannstrom, 1995). However, Hannan (1970) shows that the

OLS estimator has nice asymptotic properties such as consistency and asymptotic normality

under some regularity conditions.

Identification via information criteria

A sequence of VAR models are estimated with successively increasing orders 1,2, ...,h with h

sufficiently large. Then the model that minimizes some criterion is chosen. Some frequently

used criteria include the final prediction error (FPE) (Akaike, 1969), the Akaike informa-

tion criterion (AIC) (Akaike, 1974, 1978), the Bayesian information criterion (BIC) (Shwarz,

1978), and the HQ criteria (Hannan and Quinn, 1979).

The Partial lag autocorrelation matrix 1

We may employ the Box-Jenkins methodology, starting with identification of the lag order.

Then parameter estimation follows after the lag order identification. In extending the partial

autocorrelation concept to vector time series, Heyse (1985) introduced the notion of the partial

lag autocorrelation matrix function 2, which is the autocorrelation matrix between the ele-

ments of yyyt and yyyt+s, after removing the linear dependence of each on the intervening vectors

yyyt+1, · · · ,yyyt+s−1 , which is defined as the ordinary correlation between the elements of residuals,

uuus−1,t+s = yyyt+s−
(
Ψs−1,1yyyt+s−1 + · · ·+Ψs−1,s−1yyyt+1

)
, (4.2)

and

vvvs−1,t = yyyt −
(
Θs−1,1yyyt+1 + · · ·+Θs−1,s−1yyyt+s−1

)
. (4.3)

1For more detailed derivation and numerical computation, please go to Appendix C.
2 De Jong (1976) extended the Durbin-Levinson recursive algorithm to vector case.
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Definition (Partial lag autocorrelation matrix (Heyse, 1985)). The partial lag autocorrela-

tion matrix function of lag s is defined as

PPP(s) = Dvvv(s)−1/2VVVvvvuuu(s)Duuu(s)−1/2, (4.4)

where

VVVuuu(s) = VAR[uuus−1,t+s],

VVVvvv(s) = VAR[vvvs−1,t],

VVVvvvuuu(s) = Cov(vvvs−1,t,uuus−1,t+s),

and Dvvv(s) and Duuu(s) are the diagonal matrices of VVVvvv(s) and VVVuuu(s), respectively.

The K ×K matrix function of the lag s, PPP(s), is a vector extension of the partial autocorre-

lation function in the same manner as the autocorrelation matrix function is a vector extension

of the autocorrelation function. It can be shown that for s ≥ 2, we have

VVVuuu(s) = Γ(0)−
∑s−1

k=1
Ψs−1,kΓ(k), (4.5)

VVVvvv(s) = Γ(0)−
∑s−1

k=1
Θs−1,kΓ

′(k), (4.6)

VVVvvvuuu(s) = Γ(s)−
∑s−1

k=1
Γ(s− k)Ψ′s−1,k. (4.7)

For the case s = 1 since there are no intervening vectors between yyyt and yyyt+s we have

VVVuuu(1) = VAR(yyyt+1) = Γ(0),

VVVvvv(1) = VAR(yyyt) = Γ(0),

VVVvvvuuu(1) = Cov(yyyt,yyyt+1) = Γ(1),

and

PPP(1) = D−1/2Γ(1)D−1/2 = ρρρ(1),

where D is the diagonal matrix of Γ(0), and ρρρ(1) the regular autocorrelation matrix at lag 1.

It can be shown that for K = 1 the partial lag autocorrelation matrix function PPP(s) reduces

to the partial autocorrelation function of a univariate autoregressive process.
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Analogous to the partial autocorrelation function for the univariate case the partial lag au-

tocorrelation matrix, PPP(s) has the cut-off property for autoregressive processes. So if {yyyt} is a

vector autoregressive process of order p then PPP(s) will be nonzero for s = p and will equal 0

for s > p. This property makes PPP(s) a useful tool for identifying VAR processes.

Heyse (1985) also proposed a recursive procedure (See Algorithm 12) for computing PPP(s),

which is a vector generalization of Durbin’s (1960) recursive computational procedure for uni-

variate partial autocorrelations. The algorithm requires that we first estimate the sample cross-

covariance matrices. Given a realization an K-dimensional vector time serie yyy1,yyy2, · · · ,yyyT , the

sample autocovariance matrix at lag s is computed by

Γ̂(s) =
1
T

T−s∑
t=1

(yyyt − ȳyy)(yyyt − ȳyy)′,

where ȳyy is the vector of sample mean. The sample partial lag autocorrelation matrix, P̂PP(s), can

be obtained by using Γ̂(r) of Γ(r) for r = 0, · · · , s−1 in the recursive algorithm.

VAR order identification via sample PLAC matrix

Under the null hypothesis that {yyyt} is a VAR(s-1) process, the two series of residuals {uuus−1,t+s}

and {vvvs−1,t} are uncorrelated, and each consists of K independent white noise series. Using

Quenouille (1957, p.41) and Hannan(1970, p.400), the elements of P̂PP(s), denoted by P̂i j(s),

are asymptotically N(0,1/T ) distributed. Use Tiao and Box’s notations "+++" to indicate that

P̂i j(s) > 2/
√

T , "−−−" to indicate that P̂i j(s) < −2/
√

T , and "···" to indicate that −2/
√

T ≤ P̂i j(s) ≤

2/
√

T . In addition, T
(
P̂i j(s)

)2
∼ χ2(1) asymptotically, which implies that asymptotically

X(s) = T
K∑

i=1

K∑
i=1

(
P̂i j(s)

)2
∼ χ2(K2). (4.8)

X(s) provides a diagnostic aid for determining the order of a vector autoregressive model.

4.3 The adaptive LASSO and doubly adaptive LASSO

In this section, we use the LASSO methodology to model the VAR(p) process. There are two

situations. If the order is known in advance or has been identified already, we recommend
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the adaptive LASSO of Zou (2006). If the order is not known in advance or difficult to iden-

tify, we propose the doubly adaptive LASSO, or partial lag autocorrelation or PLAC-weighted

adaptive LASSO. By employing the PLAC-weighted adaptive LASSO we want to get order

identification, subset selection and parameter estimation properly done in one go.

4.3.1 The doubly adaptive LASSO when p is unknown

Suppose that we observe a time series yyy1,yyy2, · · · ,yyyT , which is a realization of a stationary K-

variate VAR(p) process with the true order p and true parameter matrix ΦΦΦo = (ΦΦΦo
1, · · · , ΦΦΦo

p)

unknown. We also denote the parameters in a vector form

φφφo ≡

(
φo

1, φ
o
2, · · · , φ

o
pK2

)
(4.9)

= vec(ΦΦΦo) =
(
vec(ΦΦΦo

1)′, vec(ΦΦΦo
2)′, · · · , vec(φφφo

p)′
)′

=
(
φo

11,1, · · · , φ
o
KK,1, · · · , φ

o
11,p, · · · , φ

o
KK,p

)′
.

Because the true lag order p is not known a priori, we set the order to be h, which is

sufficiently large such that h > p. Since the initial values yyy0, · · · ,yyy−h+1 are not available, we

may use yyy1, · · · ,yyyh as a presample. This will reduce the effective sample size from T to T −h.

Now, having the data, we formulate the following VAR(h) model

yyyt = ΦΦΦ1yyyt−1 + · · ·+ΦΦΦhyyyt−h + εεεt, t = h + 1, · · · T. (4.10)

Let

ΦΦΦ = (ΦΦΦ1,ΦΦΦ2, · · · , ΦΦΦh)K×(hK) , (4.11)

xxxt =
(
yyy′t ,yyy

′
t−1, · · · , yyy′t−h+1

)′
(hK)×1

. (4.12)

Then the model (4.10) can be written as

yyyt = ΦΦΦxxxt−1, t = h + 1, · · · T.

If we define

YYY =
(
yyyh+1, yyyh+2, · · · , yyyT

)
K×(T−h) , (4.13)

XXX = (xxxh, xxxh+1, · · · , xxxT−1)(hK)×(T−h) , (4.14)

EEE = (εεεh+1, εεεh+2, · · · , εεεT )K×(T−h) ,
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To estimate the model via the OLS method, we formulate compactly the multivariate-regression-

type equations as

YYY = ΦΦΦXXX + EEE.

To see its structure, we expand the design matrix XXX as

XXX =


yyyh yyyh+1 · · · yyyT−1

yyyh−1 yyyh · · · yyyT−2
...

...
...

...
yyy1 yyy2 · · · yyyT−h)


(hK)×(T−h)

.

Equivalently, using vec operator and Kronecker product operator (see Appendix B for def-

initions of the two operators), we formulate the univariate-regression-type equations as

yyy =
(
XXX′⊗ IIIK

)
φφφ+ εεε, (4.15)

where yyy and εεε are K(T −h)×1 vectors defined as

yyy = vec(YYY) =
(
yyy′h+1, yyy′h+2, · · · ,yyy

′
T

)′
, (4.16)

eee = vec(EEE) =
(
εεε′h+1, εεε

′
h+2, · · · , εεε

′
T

)′
, (4.17)

and φφφ is a (hK2)×1 vector defined as

φφφ =
(
φ1, · · · , φl, · · · , φhK2

)′ (4.18)

= vec(ΦΦΦ) =
(
vec(ΦΦΦ1)′, vec(ΦΦΦ2)′, · · · , vec(ΦΦΦh)′

)′
=

(
φ11,1, · · · , φKK,1,φ11,2, · · · , φKK,2, · · · ,φi j,k, · · · , φ11,h, · · · , φKK,h

)′
. (4.19)

Note that the index l in (4.18) corresponds to the l-th element of the vector φφφ, and the index

(i j,k) in (4.19) corresponds to the (i, j)-th element of the matrix ΦΦΦk. The relation between

(i, j,k) and l is bijective and defined by

l = f (i, j,k) = (k−1)K2 + ( j−1)K + i (4.20)

where l = 1,2, · · · , (hK2), i, j = 1,2, · · · , K, and k = 1,2, · · · , h.

We actually estimate the extended true parameter vector, ΦΦΦ∗ or φφφ∗ defined as

ΦΦΦ∗ = (ΦΦΦ∗1, · · · ,ΦΦΦ
∗
p,ΦΦΦ

∗
p+1, · · · ,ΦΦΦ

∗
h)′,
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where

ΦΦΦ∗j =

ΦΦΦo
j if j ≤ p

000 if p < j ≤ h
,

or

φφφ∗ ≡
(
φ∗1, φ

∗
2, · · · , φ

∗

hK2

)
(4.21)

= vec(ΦΦΦ∗) =
(
vec(ΦΦΦ∗1)′, vec(ΦΦΦ∗2)′, · · · , vec(ΦΦΦ∗h)′

)′
=

(
φ∗11,1, · · · , φ

∗
KK,1, · · · , φ

∗
11,p, · · · , φ

∗
KK,p, · · · , φ

∗
11,h, · · · , φ

∗
KK,h

)′
=

(
φo

11,1, · · · , φ
o
KK,1, · · · , φ

o
11,p, · · · , φ

o
KK,p, 0, · · · , 0

)′
.

It is clear that under appropriate assumptions on the initial values for the VAR(p) and

VAR(h) processes, the VAR(p) with the fixed true parameters ΦΦΦo,

yyyt =

p∑
j=1

ΦΦΦo
jyyyt− j + at, t = 1, · · · ,T,

and the AR(h) with the fixed extended true parameters ΦΦΦ∗,

yyyt =

h∑
j=1

ΦΦΦ∗jyyyt− j + at, t = 1, · · · ,T

are equivalent.

Definition (Entrywise norm). For an m×n matrix A, its entrywise p-norm, denoted as ‖A‖p,

is defined as

‖A‖p = ‖vec(A)‖p =

(∑m

i=1

∑n

j=1
|ai j|

p
)1/p

.

The Frobenius norm, which is the spacial case p = 2, is defined as

‖A‖F =

√∑m

i=1

∑n

j=1
|ai j|2

Definition (The doubly adaptive LASSO). The doubly adaptive LASSO or PLAC-weighted

adaptive LASSO estimator φ̂φφdaL
T for φφφ∗ is defined as

φ̂φφ
daL

= argmin
φφφ

∣∣∣∣∣∣yyy− (
XXX′⊗ IIIK

)
φφφ
∣∣∣∣∣∣2 +λT

h∑
k=1

K∑
i=1

K∑
j=1

ŵi j,k
∣∣∣φi j,k

∣∣∣ , (4.22)
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where

ŵi j,k =
1∣∣∣φ̃i j,k

∣∣∣γ1

(
h∑

s=k

∥∥∥∥P̂PP(s)
∥∥∥∥γ0

γ0

)γ2
=

1∣∣∣φ̃i j,k
∣∣∣γ1 Aγ2

k

, (4.23)

Ak =

h∑
s=k

∥∥∥∥P̂PP(s)
∥∥∥∥γ0

γ0
, (4.24)

φ̃i j,k is the ordinary least squares estimate or any other consistent estimate for φi j,k,
∥∥∥∥P̂PP(s)

∥∥∥∥
γ0

=(∑K
i=1

∑K
j=1 |P̂i j(s)|γ0

)1/γ0 is the entrywise γ0-norm of the sample partial lag autocorrelation

matrix P̂PP(s) at lag s, and γ0 > 0, γ1 ≥ 0, and γ2 ≥ 0 are some fixed constants, and h is the

maximum lag we initially set.

Remarks:

(1) Both the LASSO (Tibshirani, 1996) and the adaptive LASSO (Zou, 2006) are special

cases of the doubly adaptive LASSO. In former case, γ1 = γ2 = 0, and in latter case, γ2 = 0.

(2) In the doubly adaptive LASSO procedure the PLAC information and the Y-W or OLS

estimates of the VAR(h) model work in tandem to perform subset selection and parameter

estimation simultaneously. The basic idea can be elucidated from the following points:

Firstly, note that A1 ≥ · · · ≥ Ap ≥ · · · ≥ Ah. Hence, wi j,k is decreasing with increasing k.

Therefore monotonically increasing penalties are imposed on φi j,k’s as k increases from 1 to

h. Consequently, depending on the structure of the PLAC, an VAR term with smaller lag is

therefore more likely to be included in the model.

Secondly, due to the cutoff property of the PLAC, namely, the value of ‖P̂PP(s)‖ for s =

p + 1, p + 2 · · · ,h are relatively tiny, if k goes from h backwards to p, it is expected that the Ak

will exhibit a sharp jump at k = p. Consequently, the VAR terms with lags greater than p get

much more penalties compared to those with k ≤ p. so that they are more likely to be excluded

from the model, and the true order of the VAR process is thus automatically identified.

Finally, |φ̃i j,k|
γ1 imposes larger penalty on φi j,k if the corresponding VAR term is not signifi-

cant. This is obvious because if an VAR term is not important, the consistently estimated value
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of the corresponding coefficient is close to zero, and the penalty is close to ∞. Consequently,

the insignificant VAR terms get more penalties so that they are more likely to be excluded from

the model whereas the significant VAR terms are more likely to be included in the model.

4.3.2 The adaptive LASSO when p is known

Suppose that we observe a time series yyy1,yyy2, · · · ,yyyT , which is a realization of a stationary K-

VAR process with the true order p known or has been identified and true parameters ΦΦΦo =

(ΦΦΦo
1, · · · , ΦΦΦo

p) unknown. Since the initial values yyy0, · · · ,yyy−p+1 are not available, we may use

yyy1, · · · ,yyyp as a presample. This will reduce the effective sample size from T to T − p. We

set h = p and γ2 = 0 in (4.23). The PLAC-weighted adaptive LASSO reduces to the adaptive

LASSO.

4.4 The asymptotic properties of the doubly adaptive LASSO

The adaptive LASSO and the doubly adaptive LASSO methods yield biased estimators. In this

section, however, we show that with properly chosen values for γ0, γ1, and γ2 in (4.23), together

with a proper choice of λT , the doubly adaptive LASSO enjoys desirable asymptotic properties.

We actually study the asymptotic properties of the doubly adaptive LASSO estimator for the

extended true parameter vector φφφ∗ in (4.21) instead of φφφo in (4.9).

First, we clarify notations. Let S be the set of the true nonzero coefficient, i.e. S = {l :

φ∗l , 0} = supp(φφφ∗) ⊂ {1,2, · · · ,hK2} with h being set large enough such that h > p. Let Sc =

{1,2, · · · ,hK2} \ S. Let s = |S| be the cardinality of the set S. The assumption of the model

sparsity implies that s < pK2. Let φ̃l be any consistent estimate for the true φ∗l , say the OLS or

Yule-Walker estimate. Let φ̂daL
T,l be the doubly adaptive LASSO estimate for φ∗l . Let ŜT = {l :

φ̂daL
T,l , 0} and Ŝc

T = {1,2, · · · ,hK2} \ ŜT . Let φφφ∗S be the s-dimensional vector for true underlying

nonzero parameters, and φφφ∗Sc be the vector for true underlying null parameters, i.e. φφφ∗S = {φ∗l : l ∈

S} and φφφ∗Sc = {φ∗l : l ∈ Sc}. Let φ̂φφdaL
T,S be the vector for the PAC-weighted adaptive LASSO estimate

for φφφ∗S and φ̂φφdaL
T,Sc the vector for PAC-weighted adaptive LASSO estimate for null vector φφφ∗Sc , i.e.

φ̂φφ
daL
T,S = {φ̂daL

T,l : l ∈ S} and φ̂φφdaL
T,Sc = {φ̂daL

T,l : l ∈ Sc}. Let φ̂φφdaL
ŜT

be the vector for nonzero estimates from
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the doubly adaptive LASSO and φ̂φφdaL
Ŝc

T
the vector for null estimates, i.e. φ̂φφdaL

ŜT
= {φ̂daL

T,l : l ∈ ŜT }

and φ̂φφdaL
Ŝc

T
= {φ̂daL

T,l : l ∈ Ŝc
T }.

Proposition 4.4.1 (The condition for the ergodic stationarity). The VAR(p) process specified

by (4.1) is ergodic stationary if and only if the corresponding characteristic equation satisfies

the stability condition, namely,

det(I−ΦΦΦ1z− · · ·−ΦΦΦpzp) , 0

for |z| ≤ 1.

See Lütkepohl (2006) p.14-16 for proof.

Let ΓΓΓ be the covariance matrix of xxxt in (4.12), namely,

ΓΓΓ = E[xxxtxxx′t] =


Γ(0) Γ(−1) · · · Γ(−h + 1)
Γ(1) Γ(0) · · · Γ(−h + 2)
...

...
...

Γ(h−1) Γ(h−2) · · · Γ(0)


(hK)×(hK)

,

where Γ(s) is covariance matrix of yyyttt. Note that ΓΓΓ is symmetric whereas Γ(s) is not symmetric.

Instead, Γ(s)′ = Γ(−s). We can partition ΓΓΓ as follows

ΓΓΓ =

(
ΓΓΓSS ΓΓΓSSc

ΓΓΓScS ΓΓΓScSc

)
,

where we retain the ordering according to the lag index of xxxt within each partition.

Assumptions:

A0: The coefficients matrix ΦΦΦ defined in (4.11) belongs to a compact set.

A1: For all ΦΦΦ, det(I−ΦΦΦ1z− · · ·−ΦΦΦhzh) , 0 for |z| ≤ 1 .

A2: εεεt = (ε1, · · · , εK)′ is a strong white noise process, i.e. E[εεεt] = 000, E
[
εεεtεεε
′
t
]

= Σε � 0, εt

and εs are independent for s , t, and E|εitε jtεktεlt| < M <∞ for i, j, k, l = 1, · · · , K.

A3: The submatrix ΓΓΓSS is not singular and therefore invertible.

Remarks on assumptions:

1) A0 is always assumed.

2) A1 ensures that xxx′t) is ergodic stationary
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3) A2 requires the existence of finite fourth moments of {yyyt}.

4) No normality of εεεt is assumed.

5) A2 guarantees the existence of the covariance matrix ΓΓΓ.

Lemma 4.4.2 3 Under A1 – A2, we have

(i) 1
T−h XXXXXX′

a.s.
−−−→ ΓΓΓ,

(ii) 1
T−h (XXX⊗ IK)eee

a.s.
−−−→ 000, and

(iii) 1√
T−h

(XXX⊗ IK)eee
D
−→ www ∼ N(000, ΓΓΓ⊗Σε),

where ⊗ denotes the Kronecker product.

Proof (i) It is easy to check that XXXXXX′ =
∑T−1

t=h xxxtxxx′t . By A1, xxxt is ergodic stationary. By Theorem

A.3.1 for ergodicity of functions, xxxtxxx′t is also ergodic stationary. By Ergodic Theorem A.3.2,

we have
1

T −h
XXXXXX′

a.s.
−−−→ E[xxxtxxx′t] = ΓΓΓ.

(ii) It is not very hard to check that (XXX ⊗ IK)eee =
∑T

t=h+1(xxxt−1 ⊗ IK)εεεt. Since xxxt is ergodic

stationary by A1, so is (xxxt−1⊗ IK)εεεt by Theorem A.3.1 for ergodicity of functions. By Ergodic

Theorem A.3.2, we have

1
T −h

(XXX⊗ IK)eee
a.s.
−−−→ E[(xxxt−1⊗ IK)εεεt],

where E[(xxxt−1⊗ IK)εεεt] = E [[(xxxt−1⊗ IK)εεεt|Ft−1]] = (xxxt−1⊗ IK)E[εεεt|Ft−1] = 000.

(iii) Let νννt = (xxxt−1⊗ IK)εεεt. Then {νννt} is a vector martingale difference because E[νννt|Ft−1] =

000. By A1, A2, and Theorem A.4.1, the CLT for the MDS (Billingsley, 1961), we have

1
√

T −h

T∑
t=h+1

νννt
D
−→ N(000, Σν),

where Σν = Var[νννt] = Var[(xxxt−1⊗ IK)εεεt] = E[(xxxt−1⊗ IK)εεεtεεε
′
t(xxx′t−1⊗ IK)] = ΓΓΓ⊗Σε .

Definition (Estimation consistency). The PLAC-weighted adaptive LASSO estimator φ̂φφdaL
T

is said to be consistent for φφφ∗ if

‖ φ̂φφ
daL
T −φφφ∗ ‖

P
−→ 0 as T →∞.

3Lütkepohl (1996) p.73 states the lemma without proof.
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Theorem 4.4.3 (Estimation Consistency of φ̂φφdaL
T ). Let aT =

√
T −hmin

l∈S

(
|φ̃l|

γ1 Aγ2
l

)
, where(

|φ̃l|
γ1 Aγ2

l

)
corresponds to

(
|φ̃(i j,k)|

γ1 Aγ2
k

)
by the bijective function (4.20). If λT = op(aT ), then

under A0 – A2 we must satisfy:

‖ φ̂φφ
daL
T −φφφ∗ ‖

P
−→ 0 as T →∞,

as T →∞.

Proof Let ΨT (φφφ) be defined as

ΨT (φφφ) =‖ yyy− (XXX′⊗ IK)φφφ) ‖2 +λT

hK2∑
l=1

ŵT,l|φl|,

where XXX is defined in (4.14) and yyy in (4.16).Following Fan and Li (2001), we show that for

every ε > 0 there exists a sufficiently large C such that

P

(
inf
‖uuu‖≥C

ΨT
(
φφφ∗+ uuu/

√
T −h

)
> ΨT (φφφ∗)

)
≥ 1− ε,

which implies that with probability at least 1− ε that there exists a minimum in the ball {φφφ∗ +

uuu/
√

T −h : ‖uuu‖ ≤ C}. Hence there exists a local minimizer such that ‖ φ̂φφdaL
T −φφφ∗ ‖= Op(T−1/2).

Observe that

ΨT
(
φφφ∗+ uuu/

√
T −h

)
−ΨT

(
φφφ∗

)
=

∥∥∥∥yyy− (XXX′⊗ IK)
(
φφφ∗+ uuu/

√
T −h

)∥∥∥∥2
−

∥∥∥yyy− (XXX′⊗ IK)φφφ∗
∥∥∥2

+λT

hK2∑
l=1

ŵT,l

(∣∣∣∣∣∣φ∗l +
ul
√

T −h

∣∣∣∣∣∣− ∣∣∣φ∗l ∣∣∣)

= uuu′
(

1
T −h

(XXXXXX′⊗ IK)
)
uuu−2uuu′

(
1

√
T −h

(XXX⊗ IK)eee
)
+λT

hK2∑
l=1

ŵT,l

(∣∣∣∣∣∣φ∗l +
ul
√

T −h

∣∣∣∣∣∣− ∣∣∣φ∗l ∣∣∣)
= uuu′

(
1

T −h
(XXXXXX′⊗ IK)

)
uuu−2uuu′

(
1

√
T −h

(XXX⊗ IK)eee
)
+λT

∑
l∈S

ŵT,l

(∣∣∣∣∣∣φ∗l +
ul
√

T −h

∣∣∣∣∣∣− ∣∣∣φ∗l ∣∣∣)+λT

∑
l<S

ŵT,l
|ul|
√

T −h

≥ uuu′
(

1
T −h

(XXXXXX′⊗ IK)
)
uuu−2uuu′

(
1

√
T −h

(XXX⊗ IK)eee
)
+λT

∑
l∈S

ŵT,l

(∣∣∣∣∣∣φ∗l +
ul
√

T −h

∣∣∣∣∣∣− ∣∣∣φ∗l ∣∣∣)
≥ uuu′

(
1

T −h
(XXXXXX′⊗ IK)

)
uuu−2uuu′

(
1

√
T −h

(XXX⊗ IK)eee
)
−λT

∑
l∈S

ŵT,l
|ul|
√

T −h
.

First, consider the third term, which can be expressed as

λT

hK2∑
l=1

ŵT,l
|ul|
√

T −h
=

λT
√

T −h

∑
l∈S

∣∣∣φ̃l
∣∣∣−γ1 A−γ2

l |ul|

≤
λT
√

T −h

(
min
l∈S

(
|φ̃l|

γ1 Aγ2
l

))−1
‖ uuu ‖

=
λT

aT
‖ uuu ‖= op(1) ‖ uuu ‖ .
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For the second term, by Lemma (4.4.2) (iii), we have

uuu′
(

1
√

T −h

)
(XXX′⊗ IK)′eee = uuu′oP(111) ≤ op(1) ‖ uuu ‖ .

Fir the first term, by Lemma (4.4.2) (i), we have(
1

T −h
(XXXXXX′⊗ IK)

)
→ (ΓΓΓ⊗ IK) a.s..

So the first term is a quadratic form in uuu.

Then it follows that in probability

ΨT
(
φφφ∗+ uuu/

√
T −h

)
−ΨT

(
φφφ∗

)
≥ uuuT (ΓΓΓ⊗ IK)uuu−2op(1) ‖ uuu ‖,

as T →∞. Therefore, for any ε > 0, there exists a sufficiently large C such that the term of

quadratic term dominates the other terms with probability ≥ 1− ε.

Proposition 4.4.4 Let aT =
√

T −hmin
l∈S

(
|φ̃l|

γ1 Aγ2
l

)
, and bT =

√
T −hmax

l∈Sc

(
|φ̃l|

γ1 Aγ2
l

)
, where(

|φ̃l|
γ1 Aγ2

l

)
corresponds to

(
|φ̃(i j,k)|

γ1 Aγ2
k

)
by the bijective function (4.20). If λT = op(aT ) and

λT/bT
P
−→∞, then under A0 – A3, we have

√
T −h

(
φ̂φφ

daL
T,S −φφφ

∗
S

)
D
−→ N

(
000, (ΓΓΓSS)−1⊗Σε

)
,

√
T −h

(
φ̂φφ

daL
T,Sc −φφφ∗Sc

)
D
−→ 000.

Proof We follow the methodology of Knight and Fu (2000) and Zou (2006).

Let φφφ = φφφ∗+ uuu/
√

T −h and define

ΨT (uuu) =

∥∥∥∥∥∥yyy− (XXX′⊗ IK)
(
φφφ∗+

uuu
√

T −h

)∥∥∥∥∥∥2

+λT

h∑
j=1

ŵT, j

∣∣∣∣∣∣φ∗j +
u j
√

T −h

∣∣∣∣∣∣ ,
where XXX is defined by (4.14) and yyy by (4.16). Define the reparameterized objective function as

VT (uuu) = ΨT (uuu)−ΨT (000).

Then the minimizing objective is equivalent to minimizing VT (uuu) with respect to uuu. Let ûuuT =

argminVT (uuu), then

φ̂φφ
daL
T = φφφ∗+ ûuuT/

√
T −h,
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or

ûuuT =
√

T −h
(
φ̂φφ

daL
T −φφφ∗

)
.

Observe that

VT (uuu) = uuu′
(

1
T −h

(XXXXXX′⊗ IK)
)
uuu−2uuu′

(
1

√
T −h

(XXX⊗ IK)eee
)
+

λT
√

T −h

hK2∑
l=1

ŵT,l
√

T −h
(∣∣∣∣∣∣φ∗l +

ul
√

T −h

∣∣∣∣∣∣− ∣∣∣φ∗l ∣∣∣) .
By Lemma (4.4.2) we have

(
1

T−h (XXXXXX′⊗ IK)
) a.s.
−−−→ (ΓΓΓ⊗ IK),and 1√

T−h
(XXX ⊗ IK)eee

D
−→ www ∼

N(000, ΓΓΓ⊗Σε). Consider the limiting behaviour of the third term. First, by the conditions required

in the theorem, we have λT ŵT,l/
√

T −h≤ λT/
(√

T −hminl∈S
(∣∣∣φ̃l

∣∣∣γ1 Aγ2
l

))
= λT/aT

P
−→ 0 for l ∈ S

and λT√
T−h

wT,l =
λT√
T−h
|φ̃l|
−γ1 A−γ2

l ≥ λT/
(√

T −hmaxl<S
(∣∣∣φ̃l

∣∣∣γ1 Aγ2
l

))
= λT/bT

P
−→∞ for l < S. In

summary, we have

λT
√

T −h
ŵT,l =

λT
√

T −h
∣∣∣φ̃l

∣∣∣γ1 Aγ2
l

P
−→

0 if l ∈ S
∞ if l < S

.

Secondly, we have

√
T −h

(∣∣∣∣∣∣φ∗l +
ul
√

T −h

∣∣∣∣∣∣−φ∗l
)
→

ulsgn(φ∗l ) if l ∈ S (φ∗l = 0)
|ul| if l < S (φ∗l , 0)

.

By Slutsky’s theorem, we have the following limiting behaviour of the third term

λT
√

T −h
ŵT,l
√

T −h
(∣∣∣∣∣∣φ∗l +

ul
√

T −h

∣∣∣∣∣∣− ∣∣∣φ∗l ∣∣∣) P
−→


0 if ∀l ∈ S
0 if ul = 0, ∀l < S
∞ otherwise

.

Thus, we have VT (uuu)→ V(uuu) for every uuu, where

V(uuu) =
(
uuu′
S

uuu′
Sc

) ( (ΓΓΓ⊗ IK)SS (ΓΓΓ⊗ IK)SSc

(ΓΓΓ⊗ IK)ScS (ΓΓΓ⊗ IK)ScSc

)(
uuuS
uuuSc

)
−2

(
uuu′
S

uuu′
Sc

) (wwwS
wwwSc

)
+
∑
l∈Sc

λT
√

T −h
ŵT,l
√

T −h
(∣∣∣∣∣∣φ∗l +

ul
√

T −h

∣∣∣∣∣∣− ∣∣∣φ∗l ∣∣∣)

=

uuu′
S
(ΓΓΓSS⊗ IK)uuuS−2uuu′

S
wwwS if uuuSc = 000

∞ otherwise
.

VT (uuu) is convex with the unique minimum
(
((ΓΓΓSS)−1⊗ IK)wwwS, 000

)′
. Following the epi-convergence

results of Geyer (1994) and Knight and Fu (2000), argminuuu VT (uuu)
D
−→ argminuuu V(uuu), we haveûuuS

D
−→

(
(ΓΓΓSS)−1⊗ IK

)
wwwS

ûuuSC
D
−→ 000

,
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or 
√

T −h
(
φ̂φφ

daL
T,S −φφφ

∗
S

)
D
−→ N

(
000, (ΓΓΓSS)−1⊗Σε

)
√

T −h
(
φ̂φφ

daL
T,Sc −φφφ∗Sc

)
D
−→ 000

.

Corollary 4.4.5 Let aT =
√

T −hmin
l∈S

(
|φ̃l|

γ1 Aγ2
l

)
, and bT =

√
T −hmax

l∈Sc

(
|φ̃l|

γ1 Aγ2
l

)
, where

(
|φ̃l|

γ1 Aγ2
l

)
corresponds to

(
|φ̃(i j,k)|

γ1 Aγ2
k

)
by the bijective function (4.20). If λT = op(aT ) and λT/bT

P
−→∞,

then under A0 – A3, we have that

P
(
l ∈ ŜT

)
→ 1 if l ∈ S,

as T →∞.

Proof By Theorem A.5.1, the
√

T −h-normality of φ̂φφdaL
T,S in Proposition 4.4.4 implies that

‖φ̂φφ
daL
T,S −φφφ

∗
S‖= Op

(
1/
√

T −h
)
. Thus, φ̂φφdaL

T,S
P
−→ φφφ∗S, which implies that ∀l ∈ S, we have P

(
l ∈ ŜT

)
→

1, as T →∞.

Fan and Li (2001) specified the oracle properties of a sparse estimator in the language of

Donoho and Johnstone (1994). Heuristically, an oracle procedure can perform as well asymp-

totically as if the true submodel were known in advance. We extend the notion of the oracle

properties of an estimator to the context of VAR times series models.

Definition (Oracle properties) . The doubly adaptive positive LASSO estimator φ̂φφdaL
T for φφφ∗

is said to have the oracle properties if, with probability tending to 1, it could (i) identify the

true sparsity pattern, i.e. lim P(ŜT = S) = 1, (ii) identify the true lag order of the VAR process,

i,e, lim P( p̂daL
T = p) = 1, and (iii) have an optimal estimation rate of the coefficients as T →∞.

The following theorem says that the doubly adaptive LASSO procedure is an oracle proce-

dure.

Theorem 4.4.6 (Oracle properties of φ̂φφdaL
T ). Let aT =

√
T −hmin

l∈S

(
|φ̃l|

γ1 Aγ2
l

)
, and

bT =
√

T −hmax
l∈Sc

(
|φ̃l|

γ1 Aγ2
l

)
, where

(
|φ̃l|

γ1 Aγ2
l

)
corresponds to

(
|φ̃(i j,k)|

γ1 Aγ2
k

)
by the bijective

function (4.20) If λT = op(aT ) and λT/bT
P
−→∞, then under A0 – A3, φ̂φφdaL

T must satisfy:

(i) Selection Consistency: P
(
ŜT = S

)
−→ 1,



CHAPTER 4. THE DOUBLY ADAPTIVE LASSO FOR MULTIVARIATE AR(P) MODELS 102

(ii) Identification consistency: P
(
p̂daL

T = p
)
−→ 1, and

(iii) Asymptotic Normality:
√

T −h
(
φ̂φφ

daL
ŜT
−φφφ∗S

)
D
−→ N

(
000, (ΓΓΓSS)−1⊗Σε

)
,

as T →∞.

Proof (i) In view of Corollary 4.4.5, we know that ∀ j ∈ S, P( j ∈ ŜT )→ 1. So it suffices to

show that ∀m < S, P(m ∈ ŜT )→ 0. Now, we follow the methodology of Zou (2006).

Consider the event {m ∈ ŜT }. The KKT conditions entail that

2(XXX⊗ IK)(m,···)

(
yyy− (XXX′⊗ IK)φ̂φφdaL

T

)
= λT ŵT,msgn

(
φ̂daL

T,m

)
,

where the subscript (m, ···) denotes the m-th row of a matrix, so (XXX⊗ IK)(m,···) is the m-th row of

(T −h)K ×hK2 matrix (XXX⊗ IK). If λT/bT
P
−→ ∞, we have

λT
√

T
ŵT,m =

λT
√

T

1
|φ̃m|γ1 Aγ2

m
≥
λT

bT

P
−→∞,

whereas

(XXX⊗ IK)(m,···)

(
yyy− (XXX′⊗ IK)φ̂φφdaL

T

)
√

T
=

(
(XXX⊗ IK)(m,···)(XXX′⊗ IK)

T

)
√

T
(
φφφ∗− φ̂φφ

daL
T

)
+

(XXX⊗ IK)(m,···)eee
√

T
.

Note that (XXX ⊗ IK)(m,···)eee is the m-th element of the vector (XXX ⊗ IK)eee, denoted by ((XXX⊗ IK)eee)m.

By Lemma (4.4.2), we have

1
√

T
((XXX⊗ IK)eee)m

D
−→ N

(
0, (ΓΓΓ⊗Σε)(m,m)

)
,

where (ΓΓΓ⊗Σε)(m,m) is the m-th diagonal element of (ΓΓΓ⊗Σε). Note also that (XXX⊗ IK)(m,···)(XXX′⊗ IK)

is the m-th row of the matrix (XXXXXX′ ⊗ IK), denoted by (XXXXXX′ ⊗ IK)(m,···). By Lemma (4.4.2), we

have
1
T

(XXXXXX′⊗ IK)(m,···)
a.s.
−−−→ (ΓΓΓ⊗ IK)(m,···) .

By Slutsky’s theorem and the results of (i), we see that

1
T

(XXX⊗ IK)(m,···)(XXX′⊗ IK)
√

T
(
φφφ∗− φ̂φφ

daL
T

)
D
−→ (ΓΓΓ⊗ IK)(m,···)zzz ,

where zzz is a normally-distributed vector, and thus (ΓΓΓ⊗ IK)(m,···)zzz a normally-distributed scalar

variable. Therefore,

P(m ∈ ŜT ) ≤ P
(
2(XXX⊗ IK)(m,···)

(
yyy− (XXX′⊗ IK)φ̂φφdaL

T

)
= λT ŵmsgn

(
φ̂daL

T,m

))
→ 0.
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(ii) The VAR order estimated by the doubly adaptive LASSO is

p̂daL
T = min

{
s : φ̂daL

i j,k = 0,∀k = s + 1, s + 2, · · · , h, and i, j = 1, · · · , K
}
,

or equivalently, in light of the bijective function (4.20),

p̂daL
T = min

{
s : (k−1)K2 + (i−1)K + j ∈ Ŝc

T ,∀k = s + 1, s + 2, · · · , h, and i, j = 1, · · · , K
}
.

(4.25)

The true order p of the VAR model is

p = min
{
s : (k−1)K2 + (i−1)K + j ∈ Sc,∀k = s + 1, s + 2, · · · , h, and i, j = 1, · · · , K

}
. (4.26)

We have from (i) that Ŝc
T → S

c in probability, so the RHS of (4.25) and (4.26) are equal in

probability. Therefore, lim P( p̂daL
T = p) = 1.

(iii) From (i), we have that limP
(
φ̂φφ

daL
ŜT

= φ̂φφ
daL
T,S

)
→ 1. Then, from Proposition 4.4.4, the

asymptotic normality of φ̂φφdaL
ŜT

follows.

Remarks:

(1) Although the asymptotic distributions of φ̂φφdaL
T,S and φ̂φφdaL

ŜT
are identical, φ̂φφdaL

T,S and φ̂φφdaL
ŜT

repre-

sent different identities; φ̂φφdaL
T,S is the daLASSO estimator for the true non-zero parameter vector

unknown in advance whereas φ̂φφdaL
ŜT

is the vector for non-zeros estimated by the daLASSO.

(2) The oracle properties we discuss here concern φ̂φφdaL
ŜT

rather than φ̂φφdaL
T,S .

(3) Proposition 4.4.4 concerns φ̂φφdaL
T,S , the daLASSO estimators for the true non-zero parameters,

which are unknown in advance whereas Theorem 4.4.6 concerns φ̂φφdaL
ŜT

, the non-zeros estimated

by the doubly adaptive LASSO.

(4) Estimation consistency is necessary for oracle properties whereas oracle properties are

sufficient for the former.

(5) Under the same asymptotic condition for tuning parameter λT (and other regularity condi-

tions), the LASSO, the aLASSO and the daLASSO all have estimation consistency property.

(6) Under the same asymptotic condition for tuning parameter λT (and other regularity condi-

tions), the aLASSO and the daLASSO both have oracle properties.
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(7) The LASSO, the aLASSO and the daLASSO estimator might behaviour quite differently

when finite samples are used. We need to investigate and compare their finite sample properties.

4.5 Computation algorithm for the doubly adaptive LASSO

Given values of γ0, γ1, and γ2, the PLAC-weighted adaptive LASSO procedure is implemented

via the lars developed by Efron et al (2004). The lars algorithm is very efficient, requiring the

same order of computational cost as that of a single least squares fit. The LASSO methodology

yields a path of possible solutions defined by the continuum over tuning and weighting param-

eters. The choice of these parameters determines the tradeoff between model fit and model

sparsity. We use the BIC criteria to select the optimal value for Λ. The BIC is defined as

BIC = log(det Σ̂ε) + |ŜT | log(T −h), (4.27)

where

Σ̂ε =
1

T −h
(YYY − Φ̂ΦΦ

daL
YYY)(YYY − Φ̂ΦΦ

daL
XXX)′, (4.28)

|ŜT | is the cardinality of the set ŜT , Φ̂ΦΦ being the estimates for (4.11), YYY is (4.13), and XXX is

(4.14). Algorithm 7 is the detailed computational procedure for the doubly adaptive LASSO

given the value of the triple (γ0,γ1,γ2). Algorithm 8 shows the complete computation steps.

Algorithm 7: The lars algorithm for the doubly adaptive LASSO given (γ0,γ1,γ2).
Input: Data yyyt, t = 1, · · · ,T , and a specific value for (γ0,γ1,γ2).

Output: Φ̂ΦΦ
daL
T for specific (γ0,γ1,γ2).

1 START
2 Compute ŵi j,k defined by (4.23) and transform to ŵT,l according to (4.20).
3 Compute XXX∗ = XXXWWW−1, where WWW = diag[ŵ1, · · · , ŵhK2], i.e. xxx∗l = xxxl/ŵl, l = 1, · · · ,hK2.

4 Apply lars to obtain φ̂φφ(λT ) = argminφφφ
{
(yyy−XXX∗φφφ)T (yyy−XXX∗φφφ) +λT

∑hK2

j=1 |φ j|
}
.

5 Compute φ̂φφdaL
T (λT ) = WWW−1φ̂φφ.

6 Compute BIC(λT ) according to (4.27) for the whole path.

7 Output Φ̂ΦΦ
daL
T (λ∗T ) where λ∗T is such that BIC(λ∗T ) ≤ BIC(λT ).

8 END
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Algorithm 8: Complete algorithm for the doubly adaptive positive LASSO
Input: Data: yyyt, t = 1, · · · ,T

Output: The doubly adaptive positive LASSO estimator Φ̂ΦΦ
daL
T

1 Start: Set up a grid G = γ0×γ1×γ2 with G = |G|.
2 for g← 1 to G do
3 Apply Algorithm 7 to get Φ̂ΦΦT

(
γ

(g)
0 ,γ

(g)
1 ,γ

(g)
2

)
.

4 Calculate BIC(γ(g)
0 ,γ

(g)
1 ,γ

(g)
2 ).

5 Choose (γ∗0,γ
∗
1,γ
∗
2) such that BIC(γ∗0,γ

∗
1,γ
∗
2) = min{BIC(γ(g)

0 ,γ
(g)
1 ,γ

(g)
2 ) : ∀g = 1, · · · ,G}.

6 Output Φ̂ΦΦ
daL
T ← Φ̂ΦΦT (γ∗0,γ

∗
1,γ
∗
2).

7 End

4.6 Monte Carlo study

We use Monte Carlo to investigate the sampling properties of the PLAC-weighted adaptive

LASSO estimator for VAR models. Specifically, we would like to assess its performance

in terms of order identification, the parameter estimation, and subset selection. The empiri-

cal statistics such as minimum, maximum, mean, medium, mode (for VAR lag order only),

standard error, bias, MSE, MAD, and selection proportion were summarized based on 1000

replications. The definitions of empirical bias, MSE, and MAD are listed below for reference

(and the rest omitted):

B̂ias( p̂daL) = Ê[ p̂daL]− p =
1
M

M∑
m=1

(p̂daL)(m)− p

M̂S E( p̂daL) = Ê[p̂daL− p]2 =
1
M

M∑
m=1

(( p̂daL)(m)− p)2

M̂AD(p̂daL) = Ê| p̂daL− p| =
1
M

M∑
m=1

|(p̂daL)(m)− p|

B̂ias(φ̂daL
j ) = Ê[φ̂daL

j ]−φ∗j =
1
M

M∑
m=1

(φ̂daL
j )(m)−φ∗j

M̂S E(φ̂daL
j ) = Ê[φ̂daL

j −φ∗j]
2 =

1
M

M∑
m=1

(
(φ̂daL

j )(m)−φ∗j

)2

M̂AD(φ̂daL
j ) = Ê|φ̂daL

j −φ∗j | =
1
M

M∑
m=1

∣∣∣∣(φ̂daL
j )(m)−φ∗j

∣∣∣∣
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where M denotes the total number of MC runs.

4.6.1 A bivariate VAR(5) process

We use R function of mAr.sim implemented in the R package mAR (Barbosa, 2009) to generate

1,000 data sets, denoted as D (m),m = 1, · · · ,1000, of sample size T = 2000 from the following

stationary and stable bivariate VAR(5) process defined by (4.29) and (4.30).

yyyt = Φ1yyyt−1 +Φ2yyyt−2 +Φ4yyyt−4 +Φ5yyyt−5 + eeet, (4.29)

where

Φ1 =

(
0.4 1.2
0.3 0.0

)
,Φ2 =

(
0.35 −0.3
0.0 −0.5

)
,Φ4 =

(
0.0 −0.5
0.4 0.0

)
,Φ5 =

(
0.0 0.0
0.4 −0.3

)
, (4.30)

and eeet is a Gaussian white noise with positive definite covariance matrix

Σ =

(
1.0 −0.6
0.0 2.5

)
.

The PLAC-weighted adaptive LASSO procedure was applied to fit 1,000 bivariate VAR

models to D (m),m = 1, · · · ,1000. Pretending that we do not know the true lag order p, which

is 5 in this case, of the underlying bivariate VAR process , we set the maximum order h to be

10. For the sake of simplicity h = 10 for all 1000 models, which we believe to be large enough

in this example. To find an approximately optimal combination of γ0, γ1, and γ2, we use

grid-search method and the BIC criteria. Specifically, let G = γ0 × γ1 × γ2 = [2.0,4.0]∆=0.25 ×

[1.5,8.0]∆=0.25× [1.5,8.0]∆=0.25. 4 For the sake of simplicity, the same 3-dimensional grid G is

used for all 1000 models. Algorithm 9 describes the computational procedure for simulation

study.

4∆ in the subscript represents the increment of the sequence.
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Algorithm 9: Algorithm for Monte Carlo
Input: Data D (m),m = 1, · · · ,1,000 = M and Grid G.

Output: The LASSO estimate Φ̂ΦΦ
daL(m)

,m = 1, · · · ,M.
1 Start
2 for m← 1 to M do
3 Apply Algorithm 8 to get Φ̂ΦΦ

daL(m)
.

4 Compute empirical statistics.
5 End

Table 4.1 shows some empirical statistics such as Bias, MSE, and MAD of the VAR order

estimates. Table 4.2 shows the distribution of the VAR order estimates. Table 4.3 shows

empirical statistics for VAR coefficients. We summarize a few observations as follows:

(1) VAR lag order identification. Table 4.1 shows that the mode of 1,000 bivariate VAR order

estimates is 5, the true lag order. Table 4.2 shows that almost 86% the fitted models have

the order 5. The last column in Table 4.3 shows that autoregressors yyyt−k for k > 5 have

very slight chance to be included in models. Table 4.1 shows the mean and median of VAR

order estimates are 5.234 and 5, respectively, indicating that the distribution of VAR order

estimates is slight skewed to the right with a right tail in distribution as evident in Table

4.2. This example confirms that the doubly adaptive LASSO procedure is very excellent

in identifying the order of a vector AR process.

(2) VAR subset selection. The last column in Table 4.3 shows that the non-zero coefficients

were selected into the model 100% of time. On the other hand, some variables that are not

included in the true bivariate VAR(5) process are also selected with quite high false inclu-

sion rate. For example, Φ∗3 = 000, but 20%−47% of time it was falsely estimated as non-sero.

The variables corresponding to the coefficients φ22,1, φ21,2, and φ22,4 are falsely included

in the models 30%, 41%, and 40% of time, respectively. This confirms the suggestion that

the doubly adaptive LASSO procedure have large power and be conservative in terms of

subset selection.

(3) VAR coefficients estimation. The Mean, Median, SE, BIAS, and MSE columns in Table

4.3 suggests that the parameters are consistently estimated. In addition, the minimum and

maximum columns in Table 4.3 shows that the signs of parameters are identified correctly
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almost 100% of times: if the true value of a parameter is positive, the minimum of estimates

never falls below 0; if the true value of a parameter is negative, the maximum of estimates

never goes beyond 0. This example confirms the suggestion that doubly adaptive LASSO

procedure estimate the parameters consistently.

Table 4.1: Empirical statistics of the doubly adaptive LASSO estimates for the bivariate AR order based on
1,000 replications each of size T=2,000, generated from bivariate AR(5) model with coefficients defined in (4.30).
Set h=10. Use the BIC to choose λ, γ0, γ1, and γ2.

True Minimum Maximum Mean Median Mode SE Bias MSE MAD
5 5 10 5.234 5 5 0.682 0.234 0.52 0.234

Table 4.2: Empirical distribution of the doubly adaptive LASSO estimates for the bivariate AR order based on
1,000 replications each of size T=2,000, generated from the bivariate AR(5) model with coefficients defined in
(4.30). Set h=10. Use the BIC to choose λ, γ0, γ1, and γ2.

Lag Order 5 6 7 8 9 10
Percentage 86.7% 6.2% 5.0% 1.5% 0.3% 0.3%

4.6.2 A trivariate VAR(5) process

We also conduct another simulation study on a sparse trivariate VAR(5) process. We use R

function of mAr.sim implemented in the R package mAR (Barbosa, 2009) to generate 1,000

data sets of sample size T = 2000 from the stationary process defined by (4.31) and (4.32). The

doubly adaptive LASSO was applied to fit 1000 models. We use grid-search method and the

BIC criteria to find an approximately optimal combination of γ0, γ1, and γ2,. Specifically, let

G = γ0×γ1×γ2 = [2.0,4.0]∆=0.25× [1.5,8.0]∆=0.25× [1.5,8.0]∆=0.25. For the sake of simplicity,

the same 3-dimensional grid G is used for all 1000 models. Table 4.4 shows some empirical

statistics such as Bias, MSE, and MAD of the VAR order estimates.

Table 4.5 shows the distribution of the VAR order estimates. Table 4.6 and 4.7 show empir-

ical statistics for VAR coefficients. A few observations are summarized below, which confirm

what we got previously:
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Table 4.3: Empirical statistics of the doubly adaptive LASSO estimates for the bivariate AR coefficients ΦΦΦ111−ΦΦΦ555
based on 1,000 replications each of size T=2,000, generated from bivariate AR(5) model with coefficients defined
in (4.30). Set h=10. Use the BIC to choose λ, γ0, γ1, and γ2.

True Min Max Mean Median Mode SE Bias MSE MAD Prop
φ11,1 0.4 0.3350 0.4614 0.3995 0.3993 0.0166 -0.0005 0.0003 0.0132 1
φ21,1 0.3 0.1888 0.4163 0.2985 0.2986 0.0325 -0.0015 0.0011 0.0254 1
φ12,1 1.2 1.1569 1.2379 1.1994 1.1995 0.0110 -0.0006 0.0001 0.0087 1
φ22,1 0 -0.0621 0.0718 0.0002 0 0.0154 0.0002 0.0002 0.0075 0.304
φ11,2 0.35 0.3016 0.3985 0.3496 0.3495 0.0133 -0.0004 0.0002 0.0097 1
φ21,2 0 -0.1082 0.1059 0.0019 0 0.0284 0.0019 0.0008 0.0154 0.407
φ12,2 -0.3 -0.3734 -0.2041 -0.2999 -0.3006 0.0229 0.0001 0.0005 0.0181 1
φ22,2 -0.5 -0.6578 -0.3517 -0.4981 -0.4988 0.0433 0.0019 0.0019 0.0341 1
φ11,3 0 -0.0599 0.0550 0.0002 0 0.0102 0.0002 0.0001 0.0039 0.214
φ21,3 0 -0.1157 0.1357 0.0000 0 0.0254 0.0000 0.0006 0.0134 0.405
φ12,3 0 -0.0715 0.0709 -0.0003 0 0.0155 -0.0003 0.0002 0.0070 0.296
φ22,3 0 -0.1466 0.1469 -0.0018 0 0.0349 -0.0018 0.0012 0.0193 0.461
φ11,4 0 -0.0518 0.0485 -0.0002 0 0.0088 -0.0002 0.0001 0.0033 0.209
φ21,4 0.4 0.3100 0.4916 0.4002 0.4013 0.0275 0.0002 0.0008 0.0216 1
φ12,4 -0.5 -0.5807 -0.4372 -0.4995 -0.4996 0.0157 0.0005 0.0002 0.0117 1
φ22,4 0 -0.1210 0.1109 -0.0001 0 0.0285 -0.0001 0.0008 0.0148 0.403
φ11,5 0 -0.0305 0.0299 0.0001 0 0.0049 0.0001 0.0000 0.0014 0.123
φ21,5 0.4 0.3181 0.5042 0.3993 0.3993 0.0190 -0.0007 0.0004 0.0143 1
φ12,5 0 -0.0703 0.0672 0.0003 0 0.0119 0.0003 0.0001 0.0041 0.169
φ22,5 -0.3 -0.4167 -0.1504 -0.3006 -0.3011 0.0372 -0.0006 0.0014 0.0293 1
φ11,6 0 -0.0220 0.0393 0.0000 0 0.0016 0.0000 0.0000 0.0001 0.004
φ21,6 0 -0.0848 0.0812 -0.0002 0 0.0078 -0.0002 0.0001 0.0012 0.029
φ12,6 0 -0.0502 0.0423 0.0000 0 0.0030 0.0000 0.0000 0.0002 0.006
φ22,6 0 -0.1159 0.1270 -0.0001 0 0.0148 -0.0001 0.0002 0.0028 0.043
φ11,7 0 0 0 0 0 0 0 0 0 0
φ21,7 0 -0.0684 0.0743 0.0002 0 0.0054 0.0002 0.0000 0.0006 0.013
φ12,7 0 -0.0495 0.0236 0.0000 0 0.0021 0.0000 0.0000 0.0001 0.005
φ22,7 0 -0.0901 0.1083 0.0003 0 0.0109 0.0003 0.0001 0.0019 0.036
φ11,8 0 0 0 0 0 0 0 0 0 0
φ21,8 0 -0.0361 0 -0.0001 0 0.0015 -0.0001 0.0000 0.0001 0.002
φ12,8 0 0 0 0 0 0 0 0 0 0
φ22,8 0 -0.0953 0.0541 -0.0003 0 0.0055 -0.0003 0.0000 0.0005 0.013
φ11,9 0 0 0 0 0 0 0 0 0 0
φ21,9 0 0 0 0 0 0 0 0 0 0
φ12,9 0 0 0.0207 0.0000 0 0.0007 0.0000 0.0000 0.0000 0.001
φ22,9 0 -0.0366 0.0706 0.0000 0 0.0025 0.0000 0.0000 0.0001 0.002
φ11,10 0 0 0 0 0 0 0 0 0 0
φ21,10 0 0 0 0 0 0 0 0 0 0
φ12,10 0 0 0 0 0 0 0 0 0 0
φ22,10 0 -0.0431 0.0416 0.0000 0 0.0020 0.0000 0.0000 0.0001 0.003
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yt = Φ1yt−1 +Φ2yt−2 +Φ4yt−4 +Φ5yt−5 + et, (4.31)

where

Φ1 =

0.3 0.2 0.3
0.5 0.0 0.0
0.0 0.1 −0.5

 ,Φ2 =

−0.3 0.0 0.0
0.0 0.1, −0.5
0.7 0.2 0.0

 ,
Φ4 =

0.0 0.4 −0.2
0.6 0.0 0.0
0.0 −0.4, 0.0

 ,Φ5 =

0.2 0.0 0.0
0.0 0.0 0.4
0.0 0.3 0.3

 , (4.32)

and eeet is a Gaussian white noise with positive definite covariance matrix

Σ =

 1.0 −0.6 0.4
0.2 1.2 0.3
−0.5 0.1 1.1

 .
(1) VAR lag order identification. Table 4.4 shows that the mode of 1,000 trivariate VAR order

estimates is 5, the true lag order. Table 4.5 shows that almost 84% of 1000 models have

the order 5, the true lag order; only around 16% models have lag orders greater than 5. The

last column in Table 4.7 shows that autoregressors yyyt−k for k > 5 have very slight chance

to be included in models. Table 4.4 shows the mean and median of 1,000 VAR order esti-

mates are 5.234 and 5, respectively, indicating that the distribution of VAR order estimates

is slight skewed to the right with a right tail in distribution as evident in Table 4.5. This

example again suggests that the doubly adaptive LASSO procedure be very excellent in

identifying the order of a vector AR process.

(2) VAR subset selection. The last column in Table 4.6 shows that if the entries of a autoregres-

sor vector are significant, then they are selected into the model 100% of time except that

those corresponding to φ32,1 and φ22,2 have the inclusion rates being 99.9% and 99.6%,

respectively. On the other hand, some variables that are not included in the true trivari-

ate VAR(5) process are also falsely selected with quite high inclusion rate. For example,

Φ3 = 000 in the underlying process 4.31, but the false inclusion rate of yyyt−3 in the model

is somewhere between 19%− 37%. This example also suggests that the doubly adaptive

LASSO procedure have large power and be conservative in terms of subset selection.
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(3) VAR coefficients estimation. The Mean, Median, SE, BIAS, and MSE columns in Table

4.6 suggests that the parameters are consistently estimated. In addition, the Min and Max

columns in Table 4.6 shows that the signs of parameters are identified correctly 100% of

times: if the true value of a parameter is positive, the Min of its estimates is never falls

below 0; if the true value of a parameter is negative, the Max of its estimates is never

goes beyond 0. This example suggests that doubly adaptive LASSO procedure estimate

the parameters consistently.

Table 4.4: Empirical statistics of the doubly adaptive LASSO estimates for the trivariate AR order, based on
1,000 replications each of size T=2,000, generated from trivariate AR(5) model with coefficients defined in (4.32).
Set h=10. Use the BIC to choose λ, γ0, γ1, and γ2.

True Minimum Maximum Mean Median Mode SE Bias MSE MAD
5 5 10 5.286 5 5 0.748 0.286 0.64 0.286

Table 4.5: Empirical distribution of the doubly adaptive LASSO estimates for the bivariate AR order based on
1,000 replications each of size T=2,000, generated from bivariate AR(5) model with coefficients defined in (4.32).
Set h=10. Use the BIC to choose λ, γ0, γ1, and γ2.

Lag Order 5 6 7 8 9 10
Percentage 83.6% 8.6% 4.4% 2.5% 0.8% 0.1%

4.7 Real data analysis

Figure 4.1 and 4.2 shows the data of quarterly West German investment, income, and consump-

tion data (1960–1982) from Lütkepohl (2006, p. 77–79) and first differences of logarithms,

respectively. Using the software Stata function var we fit a VAR(2) model with estimated

coefficients shown in the following with the significant ones being bold-faced.

Φ̂1 =

−
−−000...222777333 000...333333777 0.652
0.043 −0.123 000...333000555
0.003 000...222888999 −−−000...222888555

 , Φ̂2 =

−0.134 0.183 0.598
000...000666222 0.021 0.049
000...000555000 000...333666666 −0.116

 .
We use the PLAC-weight adaptive LASSO to fit a sparse VAR model. We set h = 4 and

the grid G = γ0 × γ1 × γ2 = [1.0,4.0]∆=0.5 × [1.0,4.0]∆=0.25 × [1.0,5.0]∆=0.25. We use the BIC
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Table 4.6: Empirical statistics of the doubly adaptive LASSO estimates for the bivariate AR coefficients ΦΦΦ111−ΦΦΦ555
based on 1,000 replications each of size T=2,000, generated from bivariate AR(5) model with coefficients defined
in (4.32). Set h=10. Use the BIC to choose λ, γ0, γ1, and γ2 ). See Table 4.7 for ΦΦΦ666−ΦΦΦ10.

Coeff True Min Max Mean Median SE Bias MSE MAD Prop
φ11,1 0.3 0.198 0.367 0.3003 0.301 0.022 0.0003 0.0005 0.0176 1
φ21,1 0.5 0.433 0.580 0.4993 0.500 0.023 -0.0007 0.0005 0.0183 1
φ31,1 0 -0.091 0.093 0.0001 0 0.022 0.0001 0.0005 0.0121 0.355
φ12,1 0.2 0.130 0.259 0.2003 0.201 0.019 0.0003 0.0004 0.0146 1
φ22,1 0 -0.057 0.058 0.0008 0 0.015 0.0008 0.0002 0.0072 0.303
φ32,1 0.1 0 0.166 0.0996 0.100 0.019 -0.0004 0.0003 0.0146 0.999
φ13,1 0.3 0.237 0.352 0.2994 0.299 0.018 -0.0006 0.0003 0.0140 1
φ23,1 0 -0.065 0.063 -0.0007 0 0.015 -0.0007 0.0002 0.0076 0.356
φ33,1 -0.5 -0.568 -0.431 -0.5005 -0.500 0.019 -0.0005 0.0003 0.0142 1
φ11,2 -0.3 -0.390 -0.222 -0.3013 -0.301 0.023 -0.0013 0.0005 0.0183 1
φ21,2 0 -0.086 0.100 0.0000 0 0.021 0.0000 0.0004 0.0110 0.364
φ31,2 0.7 0.612 0.774 0.7007 0.701 0.025 0.0007 0.0006 0.0193 1
φ12,2 0 -0.058 0.079 -0.0004 0 0.012 -0.0004 0.0001 0.0045 0.221
φ22,2 0.1 0 0.160 0.0992 0.100 0.021 -0.0008 0.0004 0.0158 0.996
φ32,2 0.2 0.149 0.273 0.2012 0.201 0.018 0.0012 0.0003 0.0142 1
φ13,2 0 -0.073 0.070 -0.0004 0 0.015 -0.0004 0.0002 0.0065 0.3
φ23,2 -0.5 -0.572 -0.419 -0.5002 -0.500 0.019 -0.0002 0.0004 0.0147 1
φ33,2 0 -0.107 0.071 -0.0012 0 0.017 -0.0012 0.0003 0.0081 0.311
φ11,3 0 -0.077 0.090 0.0004 0 0.019 0.0004 0.0004 0.0092 0.331
φ21,3 0 -0.090 0.089 0.0009 0 0.023 0.0009 0.0005 0.0120 0.366
φ31,3 0 -0.083 0.097 -0.0007 0 0.023 -0.0007 0.0005 0.0113 0.335
φ12,3 0 -0.078 0.049 -0.0001 0 0.011 -0.0001 0.0001 0.0041 0.197
φ22,3 0 -0.061 0.061 0.0001 0 0.012 0.0001 0.0002 0.0052 0.236
φ32,3 0 -0.066 0.063 0.0002 0 0.013 0.0002 0.0002 0.0048 0.192
φ13,3 0 -0.076 0.089 0.0000 0 0.014 0.0000 0.0002 0.0062 0.29
φ23,3 0 -0.079 0.089 -0.0001 0 0.016 -0.0001 0.0003 0.0076 0.327
φ33,3 0 -0.077 0.108 -0.0015 0 0.015 -0.0015 0.0002 0.0071 0.324
φ11,4 0 -0.087 0.089 0.0003 0 0.019 0.0003 0.0003 0.0085 0.294
φ21,4 0.6 0.497 0.682 0.5998 0.5991 0.024 -0.0002 0.0006 0.0190 1
φ31,4 0 -0.089 0.089 0.0010 0 0.019 0.0010 0.0004 0.0097 0.338
φ12,4 0.4 0.342 0.457 0.3994 0.3996 0.016 -0.0006 0.0003 0.0127 1
φ22,4 0 -0.061 0.052 -0.0006 0 0.012 -0.0006 0.0001 0.0047 0.23
φ32,4 -0.4 -0.460 -0.322 -0.3993 -0.3990 0.016 0.0007 0.0003 0.0124 1
φ13,4 -0.2 -0.265 -0.144 -0.1995 -0.1999 0.017 0.0005 0.0003 0.0138 1
φ23,4 0 -0.068 0.066 -0.0001 0 0.013 -0.0001 0.0002 0.0056 0.294
φ33,4 0 -0.057 0.069 0.0001 0 0.013 0.0001 0.0002 0.0055 0.254
φ11,5 0.2 0.114 0.279 0.1985 0.1982 0.024 -0.0015 0.0006 0.0192 1
φ21,5 0 -0.084 0.089 -0.0005 0 0.019 -0.0005 0.0004 0.0085 0.272
φ31,5 0 -0.088 0.100 -0.0001 0 0.019 -0.0001 0.0004 0.0080 0.226
φ12,5 0 -0.060 0.070 0.0001 0 0.010 0.0001 0.0001 0.0030 0.13
φ22,5 0 -0.075 0.063 -0.0004 0 0.012 -0.0004 0.0001 0.0043 0.159
φ32,5 0.3 0.225 0.371 0.3006 0.3011 0.019 0.0006 0.0004 0.0152 1
φ13,5 0 -0.062 0.043 0.0003 0 0.008 0.0003 0.0001 0.0030 0.216
φ23,5 0.4 0.335 0.460 0.3996 0.3993 0.016 -0.0004 0.0003 0.0125 1
φ33,5 0.3 0.250 0.356 0.2983 0.2977 0.018 -0.0017 0.0003 0.0140 1
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Table 4.7: Empirical statistics of the doubly adaptive LASSO estimates for the VAR coefficients ΦΦΦ666−ΦΦΦ10 based
on 1,000 replications each of size T=2,000, generated from VAR(5) model with coefficients defined in (4.32). Set
h=10. Use the BIC to choose λ, γ0, γ1, and γ2 ). See Table 4.6 for ΦΦΦ111−ΦΦΦ5.

Coeff True Min Max Mean Median SE Bias MSE MAD Prop
φ11,6 0 -0.073 0.068 -0.0001 0 0.007 -0.0001 0.0000 0.0009 0.021
φ21,6 0 -0.074 0.101 0.0008 0 0.010 0.0008 0.0001 0.0016 0.03
φ31,6 0 -0.070 0.076 0.0000 0 0.008 0.0000 0.0001 0.0012 0.026
φ12,6 0 0 0.052 0.0001 0 0.002 0.0001 0.0000 0.0001 0.003
φ22,6 0 -0.084 0.080 0.0001 0 0.005 0.0001 0.0000 0.0005 0.008
φ32,6 0 -0.039 0.061 0.0001 0 0.003 0.0001 0.0000 0.0002 0.004
φ13,6 0 -0.020 0.027 0.0000 0 0.001 0.0000 0.0000 0.0001 0.005
φ23,6 0 -0.063 0.068 -0.0001 0 0.004 -0.0001 0.0000 0.0004 0.012
φ33,6 0 0 0.048 0.0001 0 0.002 0.0001 0.0000 0.0001 0.003
φ11,7 0 -0.078 0.053 -0.0002 0 0.004 -0.0002 0.0000 0.0003 0.007
φ21,7 0 -0.086 0.064 -0.0005 0 0.006 -0.0005 0.0000 0.0008 0.017
φ31,7 0 -0.069 0.087 0.0003 0 0.006 0.0003 0.0000 0.0006 0.011
φ12,7 0 0 0 0 0 0 0 0 0 0
φ22,7 0 -0.066 0.012 -0.0001 0 0.003 -0.0001 0.0000 0.0001 0.003
φ32,7 0 0 0.070 0.0001 0 0.002 0.0001 0.0000 0.0001 0.001
φ13,7 0 0 0.052 0.0001 0 0.002 0.0001 0.0000 0.0001 0.002
φ23,7 0 -0.036 0.073 0.0002 0 0.004 0.0002 0.0000 0.0003 0.006
φ33,7 0 -0.045 0.027 -0.0001 0 0.002 -0.0001 0.0000 0.0001 0.004
φ11,8 0 0 0.047 0.0001 0 0.002 0.0001 0.0000 0.0001 0.003
φ21,8 0 -0.033 0.054 0.0002 0 0.004 0.0002 0.0000 0.0004 0.013
φ31,8 0 -0.045 0.041 0.0000 0 0.002 0.0000 0.0000 0.0001 0.004
φ12,8 0 0 0 0 0 0 0 0 0 0
φ22,8 0 0 0.051 0.0001 0 0.002 0.0001 0.0000 0.0001 0.001
φ32,8 0 -0.068 0 -0.0001 0 0.002 -0.0001 0.0000 0.0001 0.001
φ13,8 0 0 0 0 0 0 0 0 0 0
φ23,8 0 -0.080 0.038 -0.0001 0 0.003 -0.0001 0.0000 0.0002 0.004
φ33,8 0 -0.019 0.025 0.0000 0 0.001 0.0000 0.0000 0.0001 0.003
φ11,9 0 -0.044 0.027 0.0000 0 0.002 0.0000 0.0000 0.0001 0.002
φ21,9 0 -0.042 0.071 0.0001 0 0.003 0.0001 0.0000 0.0002 0.003
φ31,9 0 -0.039 0.022 0.0000 0 0.001 0.0000 0.0000 0.0001 0.002
φ12,9 0 -0.047 0 0.0000 0 0.001 0.0000 0.0000 0.0000 0.001
φ22,9 0 0 0 0 0 0 0 0 0 0
φ32,9 0 0 0 0 0 0 0 0 0 0
φ13,9 0 0 0.036 0.0000 0 0.001 0.0000 0.0000 0.0000 0.001
φ23,9 0 0 0 0 0 0 0 0 0 0
φ33,9 0 0 0 0 0 0 0 0 0 0
φ11,10 0 0 0 0 0 0 0 0 0 0
φ21,10 0 0 0 0 0 0 0 0 0 0
φ31,10 0 -0.065 0 -0.0001 0 0.002 -0.0001 0.0000 0.0001 0.001
φ12,10 0 0 0 0 0 0 0 0 0 0
φ22,10 0 0 0 0 0 0 0 0 0 0
φ32,10 0 0 0 0 0 0 0 0 0 0
φ13,10 0 0 0 0 0 0 0 0 0 0
φ23,10 0 0 0 0 0 0 0 0 0 0
φ33,10 0 0 0 0 0 0 0 0 0 0
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to select the optimal value for tuning and weighting parameters. A VAR(4) sparse model with

estimated coefficients as follows.

Φ̂daL
1 =

−0.261 0.381 0.399
0.018 0 0.534

0 0.456 −0.139

 , Φ̂daL
2 =

 0.399 0.030 0.426
0.534 0 0.378
−0.139 0.536 0

 , Φ̂daL
3 = Φ̂daL

4 = 000.

We observe that (i) all coefficient matrices beyond the lag 2 were shrank to zero, (ii) all

significant coefficients were included in the model, (iii) all coefficients that were set to 0 are

insignificant, and (iv) some insignificant coefficients were included in the model by the doubly

adaptive LASSO procedure.

Figure 4.1: Quarterly West German investment, income, and consumption data (1960-1982) (Lütke-
pohl, 2006, p. 77 – 79)
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Figure 4.2: First differences of logarithms of quarterly West German investment, income, and con-
sumption data (1960-1982) (Lütkepohl, 2006, p. 77 – 79)



Chapter 5

The Doubly Adaptive LASSO for BEKK
Multivariate ARCH(q) models

5.1 Introduction

As we saw in Chapter 3, because it can capture some important stylized facts present in fi-

nancial time series data, the ARCH(q) model has been widely used to model volatilities of

financial assets. It is also of great practical importance to understand the comovements of sev-

eral financial times series. For instance, asset pricing depends on the covariance of financial

assets in a portfolio. Therefore, it is desirable to extend the univariate ARCH model to multi-

variate or vector ARCH (VARCH) model. A variety of multivariate models has been proposed

in the literature. The Baba-Engle-Kroner-Kraft (BEKK) model (Engle and Kroner, 1995) is a

well-known multivariate ARCH model. The BEKK model was constructed in such a way that

the covariance matrices are guaranteed to be positive definite. This is an attractive property of

the BEKK model.

Naturally, we desire sparse VARCH models since sparse ones may yield better forecasts

compared to full models. Due to the successful examples of the LASSO in model selection, it

is natural for us to consider the application of the LASSO methodology to VARCH modeling.

Unfortunately, in the literature we have not yet found any results that applied the LASSO to

modeling VARCH processes. The curse of dimensionality may be the major reason for the

scarcity of examples. The number of parameters increases very rapidly as the dimension of

vector process increases or as the lag order of the modes increases. This causes difficulties in

116
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model estimation because numerical optimization will be time consuming and numerically un-

stable. In this chapter, we propose the doubly adaptive LASSO, the partial lag autocorrelation

or PLAC-weighted adaptive LASSO, for modelling the sparse BEKK VARCH processes. By

applying the doubly adaptive LASSO procedure we get identification, selection and estimation

done all in one go.

We review the BEKK VARCH(q) models and standard modeling procedure in Section 5.2.

We formulate the doubly adaptive positive LASSO tailored to ARCH processes in Section 5.3.

Computation details are described in 5.4. Results from numerical experiments are contained in

Section 5.5.

5.2 The BEKK VARCH(q) model and standard modelling
procedure

In this section, we review the basic concepts of the BEKK VARCH(q) model and the standard

modeling methods including order identification and quasi maximum likelihood estimation.

The BEKK VARCH(q) process

Let {yyyt}, t = 0,±1,±2 · · · ,±∞ be a d-variate time series and Ft be the σ-field generated by past

{yyyt}’s, i.e. Ft = σ(yyyt,yyyt−1, · · · ). Suppose that yyyt is square-integrable and

yyyt = Ht
1/2ηt with ηηηt ∼ iid(0, IIId), (5.1)

where IIId is the d×d identity matrix. The time series {yyyt} is a martingale difference

E[yyyt|Ft−1] = 000 a.s., (5.2)

with time-varying conditional covariance matrix

E[yyytyyy
′
t |Ft−1] = HHHt. (5.3)

The BEKK(p, q, k) specification for HHHt, t = 0,±1,±2 · · · ,±∞ (Engle and Kroner, 1995) is

defined as

HHHt = CCCCCC′+
q∑

i=1

 k∑
j=1

AAAi jyyyt−iyyy
′
t−iAAA

′
i j

+

p∑
i=1

 k∑
j=1

BBBi jHHHt−iBBB′i j

 ,
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where CCC is d × d triangular matrix, AAAi j’s, and BBBi j’s are d × d matrices, and k < d(d + 1)/2

determines the generality of the process. The advantage of the BEKK specification is that it

guarantees the positive definiteness of HHHt.

We will consider a multivariate ARCH(q) volatility model, a special case of BEKK(p, q, k)

specification in which p = 0 and k = 1:

HHHt = CCCCCC′+
q∑

j=1

AAA jyyyt− jyyy
′
t− jAAA

′
j = CCCCCC′+ AAAYYY t−1AAA′, (5.4)

where

AAA =
[
AAA1 99

9AAA2 99
9 · · · 99
9AAAq

]
, (5.5)

and

YYY t−1 =


yyyt−1yyy′t−1 000 · · · 000

000 yyyt−2yyy′t−2 · · · 000
...

...
. . .

...
000 000 · · · yyyt−qyyy′t−q

 . (5.6)

Let hhht = vecHHHt, where the vec operator is defined in Appendix B. The model (5.4) can also

be expressed in vec format as

hhht = vec(CCCCCC′) +

q∑
j=1

vec(AAA jyyyt− jyyy
′
t− jAAA

′
j)

= (CCC⊗CCC)vecIIId +

q∑
j=1

(AAA j⊗AAA j)(yyyt− j⊗ yyyt− j). (5.7)

Identifiability of the BEKK VARCH Models

Identifiability of the BEKK vector ARCH(q) model (5.4) requires additional constraints. In-

deed, the equivalent representation holds if AAA j is replaced by −AAA j. For the identifiability of the

parameters of the model (5.4), the diagonal entries of the constant matrix CCC are restricted to be

positive, and the entries of the ARCH matrices AAA j’s nonnegative.

Identification of the BEKK VARCH Models

As in the case of univariate ARCH, the vech(yyytyyy
′
t), where the vech operator is defined in Ap-

pendix B, t = 0,±1,±2 · · · ,±∞ process is the solution of a VAR(q) model. Indeed, define the
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innovation process of vech(yyytyyy
′
t) as

νννt = vech(yyytyyy
′
t)− vech(HHHt),

and we have

vech(yyytyyy
′
t) = vech(CCCCCC′) +

q∑
j=1

LLLd(AAA j⊗AAA j)DDDdvech(yyyt− jyyy
′
t− j) + νννt,

where DDDd is the d2 × d(d + 1)/2 duplication matrix, and LLLd is the d(d + 1)/2× d2 elimination

matrix.

We then compute the partial lag autocorrelation matrix for the VAR process vech(yyytyyy
′
t), t =

1, · · · ,T , thereby determining the order of vech(yyytyyy
′
t), which is also the order of the vector

ARCH process yyyt defined by (5.4).

The quasi-maximum likelihood estimator

The classic approach to estimating the BEKK models is to minimize the negative quasi-maximum

likelihood function. An estimator from this approach is called quasi-maximum likelihood es-

timator (QMLE). Suppose we have on a realization of size T d-variate time series yyyt, t =

1, · · · , T . Using yyyq, · · · , yyy1 as initial values with effective sample size reduced to T − q, the

negative conditional quasi-likelihood function LT (θθθ) of the BEKK VARCH(q) model is defined

as

LT (θθθ) =

T∑
t=q+1

(−`t(θθθ))

=
1
2

dT log(2π) +
1
2

T∑
t=q+1

log |HHHt(θθθ)|+
1
2

T∑
t=q+1

yyyt
′HHHt(θθθ)−1yyyt, (5.8)

where parameter vector θθθ =
(
vech(CCC)′,vec(AAA1)′, · · · ,vec(AAAq)′

)′
.

The quasi-maximum likelihood estimator for θθθ∗ is defined as

θ̂θθ
qml
T = argmin

θθθ∈Θ
LT (θθθ).
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5.3 The adaptive and doubly adaptive LASSO

We know that the LASSO could identify a subset of predictors by directly shrinking the coeffi-

cients corresponding to insignificant predictors to exact 0, and simultaneously yield estimates

for non-zero coefficients. It is desirable to use the LASSO methodology for modelling BEKK

vector ARCH processes because we like to get selection and estimation in one goal.

5.3.1 The adaptive LASSO when q is known

If the order q of BEKK vector ARCH model is known or has been identified a priori, then we

apply the adaptive LASSO approach (Zou 2006) for a sparse estimator. The adaptive LASSO

estimator, θ̂θθ
aL
T , is the adaptive LASSO-regularized quasi-maximum likelihood estimators for

θθθ∗, which is defined as

θ̂θθ
aL
T = argmin

θθθ∈Θ

LT (θθθ) +λT

 d′∑
j=1

ŵT, j
∣∣∣θ j

∣∣∣+ q′∑
j=d′+1

ŵT, j
∣∣∣θ j

∣∣∣
 , (5.9)

where LT (θθθ) is defined by (5.8), d′ = d(d + 1)/2 the total number of parameters in the lower-

triangular intercept matrix CCC, q′ = d′+ qd2 the total number of parameters in the vector θθθ,

ŵT, j =

 1
|θ̃ j|

γ if intercepts to be penalized

0 if intercepts not to be penalized
(5.10)

for j = 1, · · · ,d′, and

ŵT, j =
1∣∣∣θ̃ j
∣∣∣γ (5.11)

for j = d′+ 1, · · · ,q′, where θ̃ j is any consistent estimate for θ j, for instance, θ̂qml
j

If the parameters in the coefficient matrices of the model are restricted to be nonnegative for

identifiability, then following Efron (2004), we call the restricted adaptive LASSO estimator

the adaptive positive LASSO estimator defined as

θ̂θθ
apL
T = argmin

θθθ∈Θ

LT (θθθ) +λT

 d′∑
j=1

ŵT, j
∣∣∣θ j

∣∣∣+ q′∑
j=d′+1

ŵT, jθ j


 , (5.12)

where θ j for j = d′+1, · · · ,q′ are restricted to be nonnegative and ŵT, j still defined by (5.10) or

(5.11).
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5.3.2 The doubly adaptive LASSO when q is unknown

Usually, the order q of the BEKK vector ARCH model is unknown or difficult to be identified

a priori. Let h 1 be our initial guess of the order. For this situation we propose the doubly

adaptive LASSO or PLAC-weighted adaptive LASSO approach for a sparse estimator. Using

yyyh, · · · , yyy1 as initial values with effective sample size reduced to T −h, the negative conditional

quasi-likelihood function LT (θθθ) of the BEKK VARCH(h) model is

LT (θθθ) =
1
2

dT log(2π) +
1
2

T∑
t=h+1

log |HHHt(θθθ)|+
1
2

T∑
t=h+1

yyyt
′HHHt(θθθ)−1yyyt, (5.13)

where

HHHt = CCCCCC′+
h∑

j=1

AAA jyyyt− jyyy
′
t− jAAA

′
j for t = h + 1, · · · ,T, (5.14)

AAA =
[
AAA1 99

9AAA2 99
9 · · · 99
9AAAh

]
,

and

θθθ =
(
θ1, · · · , θl, · · · , θd′+hd2

)′
=

(
vech(CCC)′,vec(AAA1)′, · · · ,vec(AAAh)′

)′
=

(
c11, · · · ,cd1,c22, · · · ,cd2, · · · ,cdd,a11,1, · · · ,add,1, · · · ,ai j,k, · · · ,a11,h, · · · , add,h

)′
with d′ = d(d + 1)/2. Note that the index l corresponds to the l-th element of the vector θθθ. The

relation between (i, j), the subscripts of ci j, and l is bijective and defined by

l = f (i, j) = ( j−1)d + i− ( j−1) j/2

for l = 1,2, · · · , d(d + 1)/2, and the relation between (i, j,k), the subscripts of ai j,k, and l is

bijective and defined by

l = f (i, j,k) = d′+ (k−1)d2 + ( j−1)d + i

where l = d′+ 1, · · · , d′+ hd2, i, j = 1,2, · · · , d, and k = 1,2, · · · , h.
1h is set to be quite large, for instance, h = κTα, 0 ≤ α ≤ 1 for some constant κ.
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The doubly adaptive LASSO or PLAC-weighted adaptive LASSO estimator for θθθ∗, denoted

by θ̂θθ
daL
T , is defined as

θ̂θθ
daL
T = argmin

θθθ∈Θ

LT (θθθ) +λT

 d∑
i=1

d∑
i≥ j=1

ŵi j,0
∣∣∣ci j

∣∣∣+ h∑
k=1

d∑
i=1

d∑
j=1

ŵi j,k
∣∣∣ai j,k

∣∣∣
 , (5.15)

where LT (θθθ) is defined by (5.13), ci j the (i, j)th entry (i > j) of the intercept matrix CCC, ai j,k the

(i, j)th entry of the coefficient matrix AAAk,

ŵi j,0 ==


1

|c̃i j|
γ1

(
h∑

s=0

∥∥∥∥P̂PP(s)
∥∥∥∥γ0
γ0

)γ2 if intercepts to be adaptively penalized

0 if intercepts not to be penalized
(5.16)

and

ŵi j,k =
1∣∣∣ãi j,k

∣∣∣γ1

(
h∑

s=k

∥∥∥∥P̂PP(s)
∥∥∥∥γ0

γ0

)γ2
, (5.17)

where c̃i j and ãi j,k are any consistent estimates for ci j and ai j,k, for instance, ĉqml
i j and âqml

i j,k

respectively, P̂PP(s) 2 is the sample partial lag autocorrelation matrix (d′ × d′) of the vech(yyytyyy
′
t)

process 3, ‖ · ‖γ0 is the entrywise γ0-norm so that∥∥∥∥P̂PP(s)
∥∥∥∥
γ0

=

(∑d′

i=1

∑d′

j=1
|P̂i j(s)|γ0

)1/γ0

is the entrywise γ0-norm of P̂PP(s) at lag s, γ0 > 0, γ1 ≥ 0, and γ2 ≥ 0 are some fixed constants.

First note that we suppress T from the subscripts of the weights for simplicity.

If the parameters in the coefficient matrices of the model are restricted to be nonnegative

for identifiability, then following Efron, et al. (2004), we call the restricted doubly adaptive

LASSO estimator the doubly adaptive positive LASSO estimator defined as

θ̂θθ
dapL
T = argmin

θθθ∈Θ

LT (θθθ) +λT

 d∑
i=1

d∑
i≥ j=1

ŵi j,0
∣∣∣ci j

∣∣∣+ h∑
k=1

d∑
i=1

d∑
j=1

ŵi j,kai j,k


 , (5.18)

where ai j,k for i, j = 1, · · · ,d,andk = 1, · · · ,h are restricted to be nonnegative and ŵi j,k still de-

fined by (5.16) or (5.17).
2See Appendix C for the definition and calculation of the the sample partial lag autocorrelation matrix.
3The VAR order of vech(yyytyyy

′
t ) suggests the VARCH order of yyyt. This is analogous to the univariate case where

the ARCH order may also be suggested by the order of the squared process.(Shin and Kang, 2001; and Francq
and Zakonïan, 2010, page 109.)
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Remark 1: Both the LASSO (Tibshirani, 1996) and the adaptive LASSO (Zou, 2006) are

the special cases of the doubly adaptive LASSO. In former case, γ1 = γ2 = 0, and in latter case,

γ2 = 0.

Remark 2: In the doubly adaptive LASSO procedure the partial lag autocorrelation infor-

mation and the quasi-maximum likelihood estimates of the BEKK vector ARCH model work

in tandem to perform subset selection and parameter estimation simultaneously. The basic idea

can be elucidated from the following points:

Firstly, let Bk =
h∑

s=k

∥∥∥∥P̂PP(s)
∥∥∥∥γ0

γ0
, which is the tailed cumulative sum of the γ0-norm of P̂PP(s)

raised to the power γ0 from kth-lag to the maximum hth lag, and note that B1 ≥ · · · ≥ Bq ≥ · · · ≥

Bh. Hence, wi j,k is decreasing with increasing k. Consequently, depending on the structure

of partial lag autocorrelation matrices, an ARCH term with smaller lag is more likely to be

included in the model.

Secondly, the big bump of {Bk}
h
k=1 at k = q relative to k > q provides the cutoff at the true

order of the vector ARCH process. This is because
∥∥∥∥P̂PP(s)

∥∥∥∥
γ0

= OP(1/
√

T ) for i = q + 1, · · · ,h,

hence the B j’s for j > q are relatively tiny. If j goes from h backwards to q, it is expected that

the {B j}
h
j=1 will exhibit a sharp jump at j = q. Consequently, the ARCH terms with lags greater

than q get much more penalties so that they are more likely to be excluded from the model, and

the true order of the ARCH process is thus identified.

Finally, |ãi j,k|
γ1 imposes larger penalty on ai j,k if the corresponding ARCH term is not

statistically significant. This is obvious because for an ARCH term is not important, the value

of ãi j,k is close to zero, |ãi j,k|
γ1 is close to∞. Consequently, the statistically insignificant ARCH

terms get more penalties so that they are more likely to be excluded from the model whereas

the statistically significant ARCH terms are more likely to be included in the model.

5.4 Computation algorithm for the doubly adaptive positive
LASSO

We will modify the shooting algorithm described in Section 1.2.2 for the doubly adaptive

LASSO for BEKK VARCH(q) model, as we did for univariate ARCH(q) model. We needs
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quadratic approximation to the negative log quasi likelihood. The idea of quadratic approx-

imation is not new, for theoretical analysis or for compuatation. Chernoff (1954), Tibshirani

(1996), Andrews (1999), Fan and Li (2001), Francq and Zakoïan (2007), and Wang and Leng

(2007) are examples to utilize quadratic approximation.

5.4.1 The quadratic approximation to the negative quasi-likelihood

Let yyy1, · · · , yyyT be a realization of d-variate time series generated by the BEKK VARCH model

defined by (5.4). We approximate the the negative likelihood by second-order Taylor polyno-

mial. This requires the derivation of the analytical score and analytical Hessian. The derivation

is complicated and demanding and we put all the details in Appendix D and record the final

result in the below. The quadratic approximation to the negative likelihood (5.13) is

LT (θθθ) ≈ LT
(
θθθ∗

)
+

(
θθθ− θθθ∗

)′ SSS T (θθθ∗)′+
1
2
(
θθθ− θθθ∗

)′ JJJT (θθθ∗)
(
θθθ− θθθ∗

)
=

1
2
θθθ′JJJT (θθθ∗)θθθ− θθθ′

(
JJJT (θθθ∗)θθθ∗−SSS T (θθθ∗)′

)
+ cT (θθθ∗), (5.19)

where θθθ∗ is the unknown true parameter vector,

JJJT (θθθ∗) =

T∑
t=1

{
∂vec(RRRt−1)′

∂θθθ
(IIIh′ ⊗NNNdQQQt(θθθ

∗)′) +
∂QQQt(θθθ

∗)
∂θθθ

NNNdRRRt−1(θθθ∗)
}
,

SSS T (θθθ∗) =

T∑
t=1

QQQt(θθθ
∗)NNNdRRRt−1(θθθ∗),

cT (θθθ∗) =
1
2
θθθ∗′JJJT (θθθ∗)θθθ∗− θθθ∗′SSS T (θθθ∗)′+ LT (θθθ∗),and

LT (θθθ∗) =
1
2

dT log(2π) +
1
2

T∑
t=1

log
∣∣∣HHHt(θθθ∗)

∣∣∣+ 1
2

T∑
t=1

yyyt
′HHH−1

t (θθθ∗)yyyt.

where RRRt−1, NNNd, and QQQt−1 are defined in Appendix D. Pay attention to the dimensions of matri-

ces. The order of BEKK VARCH in Appendix D is q but here is h. Here h′ = d(d + 1)/2 + hd2

and RRRt−1 is d2×h′ whereas in Appendix D q′ = d(d + 1)/2 + qd2 and RRRt−1 is d2×q′.

As discussed in Chapter 3, iterative least-squares methods can be applied to estimation of

BEKK VARCH models, which will involve the decomposition of the Hessian matrix JJJT (θθθ).

However, at each iteration step, say the r-th step, the matrix JJJT (θθθ[r]), the Hessian evaluated
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at the estimated value θθθ[r] may not be positive definite, in which case the Cholesky or LU

decomposition is not applicable. We may use the spectral decomposition instead. Since it is

symmetric, the matrix JJJT (θθθ[r]) has a spectral decomposition JJJT (θθθ[r]) = ΓΓΓ(θθθ[r])ΛΛΛ(θθθ[r])ΓΓΓ(θθθ[r])′,

where ΛΛΛ(θθθ[r]) is a diagonal matrix with its diagonal elements being the eigenvalues of JJJT (θθθ[r]),

and ΓΓΓ(θθθ[r]) some orthogonal matrix. In order to use least-squares method, square-rooting the

matrix JJJT (θθθ[r]) is required. Unfortunately, JJJT (θθθ[r]) may not be positive definite, in which case

we cannot calculate the square-root of diagonal matrix because some of the eigenvalues are

negative. To bypass this problem, we approximate the Hessian JJJT (θθθ[r]) by replacing ΛΛΛ(θθθ[r])

with its absolute value |ΛΛΛ(θθθ[r])|.

5.4.2 The surrogate of the quadratic approximation of likelihood

The surrogate for the Hessian matrix JJJT (θθθ), denoted by J̃JJT (θθθ), is defined as

J̃JJT (θθθ) = ΓΓΓ(θθθ) |ΛΛΛ(θθθ)|ΓΓΓ(θθθ)′,

where ΛΛΛ(θθθ) is a diagonal matrix with its diagonal elements being the eigenvalues of JJJT (θθθ), and

ΓΓΓ(θθθ) some orthogonal matrix. Accordingly, the surrogate for the quadratic approximation of

likelihood LT (θθθ) in (3.17), denoted by ST (θθθ), is defined as

ST (θθθ) =
1
2
θθθ′ΓΓΓ(θθθ∗)

∣∣∣ΛΛΛ(θθθ∗)
∣∣∣ΓΓΓ(θθθ∗)′θθθ− θθθ′

[
JJJT (θθθ∗)θθθ∗−SSS T (θθθ∗)

]
+ cT (θθθ∗).

Now, define and use the matrix

X̃XX(θθθ∗) = |ΛΛΛ(θθθ∗)|1/2ΓΓΓ(θθθ∗)′, (5.20)

and the vector

ỹ(θθθ∗) = |ΛΛΛ(θθθ∗)|−1/2ΓΓΓ(θθθ∗)′
(
JJJT (θθθ∗)θθθ∗−SSS T (θθθ∗)′

)
. (5.21)

A bit of manipulation yields the least squares form of the surrogate ST (θθθ) as follows

ST (θθθ) =
1
2

(̃
yyy(θθθ∗)− X̃XX(θθθ∗)θθθ

)′ (̃
yyy(θθθ∗)− X̃XX(θθθ∗)θθθ

)
+ dT (θθθ∗).
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5.4.3 The modified shooting algorithm

The least squares form of the surrogate ST (θθθ) allows us to estimate iteratively. Suppose we

get the estimates θ̂θθ
[r]

and θ̃θθ[r] after the r-th step, then at the (r+1)st step, we simply minimize

the following least squares objective function

(̃
yyy(θ̂θθ

[r]
)− X̃XX(θ̂θθ

[r]
)θθθ

)′ (̃
yyy(θ̂θθ

[r]
)− X̃XX(θ̂θθ

[r]
)θθθ

)
+λT

h∑
k=1

d∑
i=1

d∑
j=1

ŵi j,k(θ̃[r]
l )θl, (5.22)

where X̃XX and ỹ are defined as in (5.20) and (5.21), respectively, and ŵi j,k(θ̃[r]
l ) should be com-

puted accordingly using (5.16) and (5.17). In particular, the relationship between the subscripts

(i j,k) of ŵ and the subscript l of θ̃ are bijective. Now, with reference to Section 1.2.2 and Sec-

tion 3.5.3, we define

S [r]
0,l = S 0

(
0, θθθ(−l), X̃XX(θ̂θθ

[r]
), ỹyy(θ̂θθ

[r]
)
)

= 2
∑
i,l

(̃
xxx(θ̂θθ

[r]
)l
)′

x̃xx(θ̂θθ
[r]

)lθi−2
(̃
xxx(θ̂θθ

[r]
)l
)′

ỹyy(θ̂θθ
[r]

), (5.23)

S [r]
l = S l

(
θθθ, X̃XX(θ̂θθ

[r]
), ỹyy(θ̂θθ

[r]
)
)

= 2
(̃
xxx(θ̂θθ

[r]
)l
)′

x̃xx(θ̂θθ
[r]

)lθl + S [r]
0,l ,

and

λ[r]
l = λT ŵi j,k(θ̃[r]

l ),

where x̃xx(θ̂θθ
[r]

)l represents the lth column of X̃XX(θ̂θθ
[r]

), and ŵi j,k(θ̃[r]
l ) is defined by (5.16) and (5.17).

Now, with aid of Figure 1.2, the (r+1)st step estimates for θl can be obtained using

θ̂l
[r+1]

=



λ[r]
l −S [r]

0,l

2
(̃
xxx(θ̂θθ

[r]
)l
)′

x̃xx(θ̂θθ
[r]

)l
if S [r]

0,l > λ
[r]
l ,

0 if |S [r]
0,l | < λ

[r]
l ,

−λ[r]
l −S [r]

0,l

2
(̃
xxx(θ̂θθ

[r]
)l
)′

x̃xx(θ̂θθ
[r]

)l
if S [r]

0,l < −λ
[r]
l ,

Algorithm 10 shows the computation steps in detail.
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Algorithm 10: Modified shooting algorithm for the doubly adaptive positive LASSO
given a value for the quadruple (λT ,γ0,γ1,γ2)

Input: Data yyy1, · · · ,yyyT , given values of (λT ,γ0,γ1,γ2)
Output: The (d′+ hd2)-dimensional vector estimate θ̂θθ(λT ,γ0,γ1,γ2)

1 Start: k = 1, initialize, say θ̂θθ
[r]
← [0.0001, · · · ,0.0001]

2 Set stopping rule, ‖θ̂θθ
[r+1]
− θ̂θθ

[r]
‖∞ < ζ, where ζ is a tiny number, say 0.00005

3 Iteration: Compute X̃XX(θ̂θθ
[r]

) and ỹyy(θ̂θθ
[r]

)

4 Compute θ̃θθ[r]
←

(
X̃XX(θ̂θθ

[r]
)′X̃XX(θ̂θθ

[r]
)
)−1

ỹyy(θ̂θθ
[r]

)

5 for l← 1 to d′+ hd2 do
6 λ[r]

l ← λT ŵT,l(θ̃
[r]
l ) using (5.16) and (5.17)

7 Compute S [r]
0,l using (5.23)

8 if S [r]
0,l > λ

[r]
l then

9 θ̂[r+1]
l ←

(
λ[r]

l −S [r]
0,l

)
/
[
2
(̃
xxx(θ̂θθ

[r]
)l
)′

x̃xx(θ̂θθ
[r]

)l
]

10 if S [r]
0,l < −λ

[r]
l then

11 θ̂[r+1]
l ←

(
−λ[r]

l −S [r]
0,l

)
/
[
2
(̃
xxx(θ̂θθ

[r]
)l
)′

x̃xx(θ̂θθ
[r]

)l
]

12 else
13 θ̂[r+1]

l ← 0

14 if
∥∥∥∥θ̂θθ[r+1]

− θ̂θθ
[r]

∥∥∥∥
∞
< ζ then

15 θ̂θθ
[r]
← θ̂θθ

[r+1]

16 r← r + 1
17 return Iteration

18 else
19 Output: θ̂θθ← θ̂θθ

[r+1]

20 End

We may also restrict all the parameters to be nonnegative. In this case, we apply the doubly

adaptive positive LASSO as follow.

θ̂l
[r+1]

=


−λ[r]

l −S [r]
0,l

2
(̃
xxx(θ̂θθ

[r]
)l
)′

x̃xx(θ̂θθ
[r]

)l
if S [r]

0,l < −λ
[r]
l ,

0 otherwise.

The computational details are the same as Algorithm 10 except that the second if is removed

from the algorithm.



CHAPTER 5. THE DOUBLY ADAPTIVE LASSO FOR BEKK MULTIVARIATE ARCH(Q) MODELS 128

We use the BIC criteria to select the optimal value for Λ = (λT ,γ0,γ1,γ2). The BIC is

defined as

BIC = 2LT (θ̂θθ) + |ŜT | log(T −h),

where LT is the negative log quasi-likelihood function defined in (5.13), |ŜT | is the cardinality

of the set ŜT . Define a 4-dimensional grid G = λT ×γ0×γ1×γ2 with a total number of G grid

points. By using information criteria for LASSO, we have double penalization to be involved.

One is L1 penalization by the LASSO, which yields the path solution of the LASSO,

θ̂θθ(Λ) = argmin
θθθ

ST (θθθ) +λT

d′+hd2+1∑
l=1

ŵT,l(Λ)θl,

and the other is the L0 penalization by the BIC, which yields

Λ∗ = argmin
Λ∈G

BIC(Λ) = 2LT (θ̂θθ(Λ)) + |ŜT | log(T −h).

Then the solution θ̂θθ
daL

is read off from the path against Λ∗. Algorithm 11 shows the complete

computation steps.

Algorithm 11: Complete algorithm for the doubly adaptive LASSO
Input: Data: yyy1, · · · ,yyyT

Output: The doubly adaptive LASSO estimator θ̂θθ
daL
T

1 Start: Set up a grid G = λT ×γ0×γ1×γ2 with G = |G|

2 for g← 1 to G do
3 Apply Algorithm 10 to get θ̂θθ(Λ(g))
4 Calculate BIC(Λ(g)) = 2LT (θ̂θθ(Λ(g))) + |Ŝ

(g)
T | log(T −h)

5 Choose Λ∗ such that BIC(θ̂θθ(Λ∗)) = min{BIC(Λ(g)) : ∀g = 1, · · · ,G}

6 Output θ̂θθ
daL
T ← θ̂θθ(Λ∗)

7 End

5.5 Monte Carlo study

We use Monte Carlo to empirically the performance of the adaptive positive LASSO estimator.

The empirical minimum, maximum, mean, medium, mode (for ARCH lag order only), stan-

dard error, bias, MSE, MAD, and selection proportion were summarized. The definitions of

empirical bias, MSE, and MAD are listed below for reference:
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B̂ias(q̂dapL) = Ê[q̂dapL]−q =
1
M

M∑
m=1

(q̂dapL)(m)−q

M̂S E(q̂dapL) = Ê[q̂dapL−q]2 =
1
M

M∑
m=1

((q̂dapL)(m)−q)2

M̂AD(q̂dapL) = Ê|q̂dapL−q| =
1
M

M∑
m=1

|(q̂dapL)(m)−q|

B̂ias(θ̂dapL
j ) = Ê[θ̂dapL

j ]− θ∗j =
1
M

M∑
m=1

(θ̂dapL
j )(m)− θ∗j

M̂S E(θ̂dapL
j ) = Ê[θ̂dapL

j − θ∗j]
2 =

1
M

M∑
m=1

(
(θ̂dapL

j )(m)− θ∗j

)2

M̂AD(θ̂dapL
j ) = Ê|θ̂dapL

j − θ∗j | =
1
M

M∑
m=1

|(θ̂dapL
j )(m)− θ∗j |

where M denotes the total number of MC runs.

We use the function mvBEKK.sim in R package mgarch developed by Schmidbauer and

Tunalioglu to generate 44 data sets of sample size T = 1000 from the following sparse trivariate

BEKK VARCH(2) model.

HHHt = CCCCCC′+ AAA1yyyt−1yyy′t−1AAA′1 + AAA2yyyt−2yyy′t−2AAA′2, (5.24)

where

CCC =

0.75 0 0
0.16 0.68 0
0.34 0 0.47

 ,AAA1 =

0.32 0 0.35
0 0.27 0

0.18 0 0.45

 ,AAA2 =

0.23 0.25 0.46
0.14 0.31 0

0 0 0.35

 . (5.25)

Pretending that we did not know the true lag order q, which is 2 in this case, of the un-

derlying bivariate BEKK VARCH process, we set the maximum order h = 4. For the sake

of simplicity we used h = 4 for all 44 models. To find an approximately optimal combina-

tion of λT , γ0, γ1, and γ2, we used grid-search method and the BIC criteria. Specifically, let

G = λT ×γ0×γ1×γ2 = [0.25,1.7]∆=0.25×2× [1.0,2.0]∆=0.25× [1.0,2.0]∆=0.25. 4 For the sake of

simplicity, the same 4-dimensional grid G was used for all 1000 models.

4∆ in the subscript represents the increment of the sequence.
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We used R package Rmpi 5 (Yu, 2002) for parallel computing system to expedite the op-

timization process. For each data set generated from the model (5.24) of the size 1,000, we

parallelized the optimization tasks on 150 grid nodes of tuning and weighting parameters and

distributed 150 optimizations to 48 CPUs.

The optimization was very slow. For one data set, it would take about 24 hours for the

clustering computing system with 48 CPU to fit 150 models (150 grid nodes) via the doubly

adaptive LASSO procedure. The major reason for slow computation may be caused by the

fact that the conditional variance matrix involved in the likelihood function depends on time

index t, and often has to be inverted for all t in every iteration. Another reason might be that

our coding was in R language. It would have been better if we had used, say, C language. In

addition, the convergence is slow. We set maximum number of iteration steps to be 300. Quite

a few of 150 optimizations had not converged yet when the number of iterations reached 300.

And the BIC might choose non-convergent results.

Among 44 replications, 43% of times (19 runs) the BIC chose non-convergent results, 57%

of times the BIC chose convergent results. Table 5.1 and Table 5.2 summarize for lag order

estimates from these 25 convergent results. Table 5.3 summarizes the results for coefficients

estimates from these 25 convergent results. Because we have only 25 replications that were

convergent, we cannot reach a confirmatory results. But the tables do show some promising

prospect.

5R package Rmpi is an interface, or wrapper, to MPI. It provides an interface to low-level MPI functions from
R so that users do not have to know details of the MPI implementations (C or Fortran)
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Table 5.1: Empirical distribution of the doubly adaptive LASSO estimates for the trivariate BEKK ARCH(2)
order based on 25 convergent replications each of size T=1,000, generated from trivariate BEKK ARCH(2) model
with coefficients defined in (5.25). Set h=4. Use the BIC to choose λ, γ0, γ1, and γ2.

Lag Order 2 3 4
Percentage 72% 2% 24%

Table 5.2: Empirical statistics of the doubly adaptive LASSO estimates for the trivariate BEKK ARCH(2) order
based on 25 convergent replications each of size T=1,000, generated from trivariate BEKK ARCH(2) model with
coefficients defined in (5.25). Set h=4. Use the BIC to choose λ, γ0, γ1, and γ2.

True Minimum Maximum Mean Median Mode SE Bias MSE MAD
2 2 4 2.52 2 2 0.872 0.52 1 0.52
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Table 5.3: Empirical statistics of the doubly adaptive LASSO estimates for the trivariate ARCH coefficients CCC,
AAA111 and AAA222 based on 25 convergent replications each of size T=1,000, generated from trivariate ARCH(2) model
with coefficients defined in (5.25). Set h=4. Use the BIC to choose λ, γ0, γ1, and γ2.

Coeff True Min Max Mean Median SE Bias MSE MAD Prop
C11 0.75 0.6535 0.8052 0.7320 0.7296 0.0331 -0.0180 0.0014 0.0300 1
C21 0.16 0.1077 0.2342 0.1630 0.1615 0.0320 0.0030 0.0010 0.0267 1
C31 0.34 0.0891 0.7391 0.3094 0.3219 0.1150 -0.0306 0.0136 0.0738 1
C22 0.68 0.6568 0.7592 0.6928 0.6805 0.0273 0.0128 0.0009 0.0199 1
C32 0 0 0.0569 0.0082 0 0.0174 0.0082 0.0004 0.0082 0.24
C33 0.47 0 0.5355 0.3022 0.4579 0.2332 -0.1678 0.0804 0.1875 0.64

A11,1 0.32 0.2302 0.7653 0.3624 0.3561 0.0994 0.0424 0.0113 0.0651 1
A21,1 0 0 0.1654 0.0149 0 0.0379 0.0149 0.0016 0.0149 0.24
A31,1 0.18 0 0.8728 0.3782 0.3644 0.1419 0.1982 0.0586 0.2126 0.96
A12,1 0 0 0.4601 0.0327 0 0.0978 0.0327 0.0103 0.0327 0.28
A22,1 0.27 0.1341 0.3437 0.2588 0.2648 0.0561 -0.0112 0.0031 0.0443 1
A32,1 0 0 0.1282 0.0196 0 0.0368 0.0196 0.0017 0.0196 0.28
A13,1 0.35 0 0.2752 0.1753 0.1786 0.0554 -0.1747 0.0335 0.1747 0.96
A23,1 0 0 0.0836 0.0069 0 0.0190 0.0069 0.0004 0.0069 0.16
A33,1 0.45 0.0044 0.6044 0.4511 0.4736 0.1186 0.0011 0.0135 0.0826 1
A11,2 0.23 0.0571 0.3837 0.2311 0.2225 0.0701 0.0011 0.0047 0.0490 1
A21,2 0.14 0.1467 0.4123 0.2341 0.2265 0.0612 0.0941 0.0125 0.0941 1
A31,2 0 0.3435 1.1475 0.5281 0.4861 0.1662 0.5281 0.3054 0.5281 1
A12,2 0.25 0 0.2369 0.1215 0.1334 0.0642 -0.1285 0.0205 0.1285 0.88
A22,2 0.31 0.1809 0.3842 0.3117 0.3175 0.0507 0.0017 0.0025 0.0392 1
A32,2 0 0 0.0846 0.0068 0 0.0215 0.0068 0.0005 0.0068 0.16
A13,2 0.46 0 0.0887 0.0061 0 0.0213 -0.4539 0.2065 0.4539 0.08
A23,2 0 0 0.0343 0.0016 0 0.0069 0.0016 0.0000 0.0016 0.08
A33,2 0.35 0.0972 0.7577 0.3469 0.3404 0.1109 -0.0031 0.0118 0.0616 1
A11,3 0 0 0.2540 0.0153 0 0.0560 0.0153 0.0032 0.0153 0.08
A21,3 0 0 0.1281 0.0051 0 0.0256 0.0051 0.0007 0.0051 0.04
A31,3 0 0 0.4709 0.0414 0 0.1257 0.0414 0.0169 0.0414 0.12
A12,3 0 0 0.2586 0.0178 0 0.0625 0.0178 0.0041 0.0178 0.08
A22,3 0 0 0 0 0 0 0 0 0 0
A32,3 0 0 0.5368 0.0822 0 0.1770 0.0822 0.0368 0.0822 0.2
A13,3 0 0 0.0397 0.0016 0 0.0079 0.0016 0.0001 0.0016 0.04
A23,3 0 0 0.0716 0.0041 0 0.0153 0.0041 0.0002 0.0041 0.08
A33,3 0 0 0.2434 0.0097 0 0.0487 0.0097 0.0024 0.0097 0.04
A11,4 0 0 0.1280 0.0101 0 0.0350 0.0101 0.0013 0.0101 0.08
A21,4 0 0 0.0128 0.0005 0 0.0026 0.0005 0.0000 0.0005 0.04
A31,4 0 0 0.4414 0.0570 0 0.1384 0.0570 0.0216 0.0570 0.16
A12,4 0 0 0.1168 0.0047 0 0.0234 0.0047 0.0005 0.0047 0.04
A22,4 0 0 0 0 0 0 0 0 0 0
A32,4 0 0 0.4747 0.0441 0 0.1247 0.0441 0.0169 0.0441 0.12
A13,4 0 0 0 0 0 0 0 0 0 0
A23,4 0 0 0 0 0 0 0 0 0 0
A33,4 0 0 0 0 0 0 0 0 0 0



Chapter 6

Discussion and Future Work

In the previous chapters we proposed the doubly adaptive LASSO methodology tailored to

time series analysis, and we conducted asymptotic analysis and the simulation studies. The

methodology seems to have some nice properties such as consistency and normality. Now, we

are at the stage of discussion.

The adaptive LASSO and the doubly adaptive LASSO approaches are both computationally

intensive due to choosing hyper-parameters over a grid. The latter is even more computation-

ally costly than the former because two additional weighting parameters are involved in the

latter. Although it shows promising results in modeling time series data, the doubly adaptive

LASSO methodology has much higher computational costs compared to the cost incurred by

the adaptive LASSO.

It is also worth mentioning the fact that this thesis deals with those processes with fixed

parameters and fixed lag order only. Readers are also notified that asymptotic properties of the

doubly adaptive LASSO estimators in this thesis are not uniform but pointwise. This thesis did

not answer the criticism reviewed in Section 1.2.6.

We introduced the notion of the surrogate of approximated likelihood in order to implement

the algorithm for maximizing likelihood function. Although the algorithm may be relatively

robust, we do not have the mathematical justification for using the surrogate of second-order

likelihood approximation. We have not assessed the computational performance of the algo-

133



CHAPTER 6. DISCUSSION AND FUTURE WORK 134

rithm. In addition, the surrogate may be one reason for slow convergence of BEKK VARCH(q)

optimization. We need to develop robust, stable and efficient computational algorithms for op-

timization of likelihood function.

The doubly adaptive LASSO seems to excel in identifying the correct lag order of a time

series model. By construction, the doubly adaptive LASSO gives more favor to recent values,

which is natural and reasonable because more recent values are more relevant in prediction.

But it may give unduly favor to those autoregressors that are recent but irrelevant. As we have

seen in the simulation studies, the doubly adaptive LASSO tend to include more recent but

insignificant autoregressors in a model with a high probability. One solution for this problem

is to adopt two-step adaptive LASSO approach, namely, in the first step, one may identify lag

order, as in classical methodology, and in the second step, one may apply the adaptive LASSO

methods to get a sparse AR model.

The cross-validation seems to be not only computationally costly, but also difficult to imple-

ment for time series anlysis. The BIC criteria has been reported to perform variable selection

much better than other approaches and the BIC seem more appropriate and more feasible for

time series models, but we are not clear what the mathematical reasoning stands behind our

favour for it. How to select optimum tuning and weighting parameters is an open question.

The results on doubly adaptive LASSO estimator for BEKK VARCH(q) models are only

preliminary. We have not shown the oracle properties for the double adaptive LASSO estima-

tor for BEKK VARCH(q) models. The results from simulation study is very limited albeit they

do show promising prospect. In the future, we will investigate oracle properties.

In thesis, due to time constraint, we did not conduct empirical studies and comparative stud-

ies. For example, how to compare the forecast abilities between the doubly adaptive LASSO

estimators and other estimators such as the QML estimator, the SCAD estimator, the adaptive

LASSO estimator. In the future we will conduct empirical and comparative studies.
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In this thesis, we did not touch upon the inferential issues. To attach forecast intervals to

point estimators are common practice, which requires the computation of standard errors. We

did not investigate the issue of standard errors. We did not touch on important issues on statis-

tical tests, p-value, and so on.

R package is needed to facilitate applications of the doubly adaptive LASSO to practical

data analysis. We need to develop R package for this purpose in the future.

There are maby models for time series analysis. It is possible to extend the doubly adaptive

LASSO to other models such as ARMA(p,q), GARCH(p,q), VARMA(p,q), BEKK VGARCH(p,q,k),

and so on.



Appendix A

Some Definitions and Theorems in
Probability

A.1 Stationarity

Definition (Univariate strict stationarity). The time series yt, t ∈ Z = {0,±1,±2, · · · } is said

to be strictly stationary if the joint distribution of (yt1 , · · · ,ytk)
′

and (yt1+h, · · · ,ytk+h)
′

are the

same for all k ∈ Z+, and t1, · · · , tk,h ∈ Z.

Definition (Multivariate strict stationarity). The K-variate time series yyyt, t ∈Z= {0,±1,±2, · · · }

is said to be strictly stationary if the joint distribution of (yyyt1 , · · · ,yyytk)′ and (yyyt1+h, · · · ,yyytk+h)′ are

the same for all k ∈ Z+, and t1, · · · , tk,h ∈ Z.

Definition (Univariate second-order stationarity). The time series yt, t ∈ Z = {0,±1,±2, · · · }

is said to be covariance stationary if its first and second moments are time invariant, namely, (i)

E[yt] = µ for all t ∈ Z, with µ is a constant, (ii) Var[Xt] <∞, and (iii) the autocovariace function

Cov(yu,yv) = γ(v−u) where γ(v−u) is a function only of v−u.

Definition (Multivariate second-order stationarity). The K-variate time series yyyt = (y1t, · · · ,yKt)′,

t ∈ Z = {0,±1,±2, · · · } said to be covariance stationary if its first and second moments are time

invariant, namely, (i) E[yyyt] = (E[y1t], E[y2t], · · · , E[yKt])′ = µµµ = (µ1, µ2, · · · , µK)′ is a constant

vector, and (ii) the cross-covariance between yiu and y jv for all i, j = 1, · · · ,K are functions only

of (v−u), or Cov(yyyu,yyyv) = Γ(v−u), where Γ(s) is the lag-s corss-covariance matrix function for
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yyyt defined as

Γ(s) = Cov(yyyt,yyyt+s) = Cov(yyyt−s,yyyt) =


γ11(s) γ12(s) · · · γ1K(s)
γ21(s) γ22(s) · · · γ2K(s)
...

...
...

γK1(s) γK2(s) · · · γKK(s)

 , (A.1)

where

γi j(s) = E[(yit −µi)(y j,t+s−µ j)] = E[(yi,t−s−µi)(y jt −µ j)]

for s = 0,±1,±2, · · · , i = 1, · · · ,K and j = 1, · · · ,K.

Note that γii(s) is the autocovariance function for the ith component process yit, and γi j(s), i,

j is the cross-covariance function between the ith and jth component processes. Also note

that Γ(0) is the contemporaneous variance and covariance matrix of the vector process. The

lag-s autocorrelation matrix function ρρρ(s) for the vector process yyyt is accordingly defined

as ρρρ(s) = D−1/2Γ(s)D−1/2, where D = diag(γ11(0),γ22(0), · · · ,γKK(0)). The autocovariance

matrix function and the autocorrelation matrix function are positive semidefinite. Note that

Γ(s) = Γ′(−s), and ρρρ(s) = ρρρ′(−s).

Note that no moment conditions are required for the definition of strict stationarity. There-

fore, strict stationarity does not necessarily imply second-order stationarity. Note also that

second-order stationarity does not imply strict stationarity.

A.2 White Noise

Definition (Univariate white noise). The time series εt, t ∈ Z = {0,±1,±2, · · · } is said to be a

white noise process, written as

εt ∼WN
(
0, σ2

ε

)
, (A.2)

if E[εt] = 0, E
[
ε2

t

]
= σ2

ε , and E
[
εtεt− j

]
= 0,∀ j , 0.

Definition (Multivariate white noise). The K-variate time series εεεt, t ∈ Z = {0,±1,±2, · · · } is

said to be a vector white noise process, written as

εεεt ∼WNK (000, Σε) , (A.3)

if it satisfies E[εεεt] = 000, E
[
εεεtεεε
′
t
]
= Σε , which is positive definite, and E

[
εεεtεεε
′
t− j

]
= 000,∀ j , 0.
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A.3 Ergodicity

Definition (Ergodicity)1 A strictly stationary process {yt} is said to be ergodic if, for any two

bounded functions f : Rk+1 7→ R and f : Rl+1 7→ R,

lim
s→∞
|E[g(yt, · · · ,yt+k)g(yt+s, · · · ,yt+s+l)]| = |E[ f (yt, · · · ,yt+k)]| × |E[g(yt+s, · · · ,yt+s+l)]|.

A strictly stationary process that is ergodic is said to be ergodic stationary.

Note that the definition of ergodicity does not require the existence of moments of {yt}.

Theorem A.3.1 (Ergodicity of functions)2. Let fff be a F -measurable function into Rk and

define zzzt = f (· · · , yyyt, yyyt−1, · · · ), where yyyt is q× 1 vector. (i) If {yyyt} is stationary, then {zzzt} is

stationary. (ii) If {yt} be ergodic stationary, then {zt} is ergodic stationary.

See Stout (1974) p.182 for proof.

Theorem A.3.2 (Ergodic theorem). Let {yt} be ergodic stationary with E[yt] = µ <∞. Then

ȳT =
1
T

T∑
t=1

yt −→ µ a.s. as T →∞.

Let the K-variate vector process {yyyt} be ergodic stationary with E[yyyt] = µµµ where E[yi,t] = µi <∞

for all i = 1, · · · , K. Then

ȳyy
T

=
1
T

T∑
t=1

yyyt −→ µµµ a.s.

See Stout (1974) p.181 for proof. The ergodic theorem says that the time average of an

ergodic stationary process converges to the ensemble mean almost surely.

A.4 Martingale Difference

Definition (Martingale difference). {νννt} is said to be a sequence of vector martingale differ-

ences (MDS) if and only if

E[νννt+1|Ft] = 000.
1See Hayashi (2000) p.101.
2See White (1999) p.39-46.
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Theorem A.4.1 (The CLT for ergodic stationary MDS (Billingsley, 1961)). Let {νννt} be an er-

godic stationary sequence of square integrable martingale difference vectors such that Var[νννt]≡

Σ2
ν whose all entries exist and finite , Then

1
√

T

T∑
t=1

νννt
D
−→ N(000, Σ2

ν).

See Billingsley (1961) for proof.

A.5 Stochastic Boundedness

Definition (Stochastic Boundedness). A sequence of random variables {Xt} is said to be

stochastically bounded if ∀ε ∈ (0,1) ∃M ∈ (0,∞) such that inft≥1 P(|Xt| ≤ M) > 1− ε, denoted

by Xt = Op(1).

Note that Xt = Op(at) with at being a sequence of variables means that Xt/at is stochastically

bounded.

The necessity of stochastic boundedness for convergence in law follows from the following

theorem.

Theorem A.5.1 . Convergence in distribution implies stochastic boundedness.

See, for example, Bierens p.158 for proof.



Appendix B

Some Definitions and Formulae in Matrix
Calculus

(1) The Kronecker product

Let A = (ai j) and B = (bi j) be m×n and p×q matrices, respectively. The mp×nq matrix

A⊗B =


a11B · · · a1nB
...

...
am1B · · · amnB


is the Kronecker product of A and B.

(2) The vec and vech operators

The vec operator transforms an m× n matrix into an mn× 1 vector by stacking the columns.

The vech operator transforms an m×m square matrix into an m(m+1)/2×1 vector by stacking

the entries on and below the main diagonal. For example,

vec
(
a11 a12 a13
a21 a22 a23

)
= [a11 a21 a12 a22 a13 a23]′,

vech

b11 b12 b13
b21 b22 b23
b31 b32 b33

 = [b11 b21 b31 b22 b32 b33]′.

(3) Elimination matrix

For an m×m square matrix A, the elimination matrix Lm is an m(m + 1)/2×m2 matrix defined

such that

vech(A) = Lmvec(A).
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(3) Duplication matrix

For an m×m symmetric matrix B, the duplication matrix Dm is an m2 ×m(m + 1)/2 matrix

defined such that

vec(B) = Dmvech(B).

The rank of Dm is m(m + 1)/2. The matrix D′mDm is invertible. Let D+
m be the Moore-Penrose

inverse of Dm, namely,

D+
m = (D′mDm)−1D′m.

The vec and vech of the symmetric matrix B is also related by D+
m as follows

D+
mvec(B) = vech(B).

(3) Communication matrix

For an m×n matrix C, the communication matrix Kmn is an mn×mn matrix defined such that

vec(C′) = Kmnvec(C),

or, equivalently,

vec(C) = Knmvec(C′).

(4)

Kmm = 2DmD+
m− IIIm2

(5)
∂log|XXX|
∂vecXXX

= vec((XXX−1)′)

(6) Let XXX(m×m) be lower triangular.

∂vech(XXX′XXX)
∂vech(XXX)′

= 2D+
m(IIIm⊗XXX′)L′m

∂vech(XXXXXX′)
∂vech(XXX)′

= 2D+
m(XXX⊗ IIIm)L′m

(7) xxxm×1, YYYn×p = YYY(xxx), ZZZp×q = ZZZ(xxx).

∂vec(YYYZZZ)
∂xxx′

= (IIIq⊗YYY)
∂vecZZZ
∂xxx′

+ (ZZZ′⊗ IIIn)
∂vecYYY
∂xxx′
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(8) xxxm×1, AAAs×n, YYYn×p = YYY(xxx), BBBp×q, ZZZq×r = ZZZ(xxx), and CCCr×k.

∂vec(AAAYYYBBBZZZCCC)
∂xxx′

= (CCC⊗AAAYYYBBB)
∂vecZZZ
∂xxx′

+ (CCC′ZZZ′BBB′⊗AAA)
∂vecYYY
∂xxx′

(9)

∂vec(YYYBBBZZZ)
∂xxx′

=
∂vec(IIInYYYBBBZZZIIIr)

∂xxx′

= (IIIr ⊗ IIInYYYBBB)
∂vecZZZ
∂xxx′

+ (IIIrZZZ′BBB′⊗ IIIn)
∂vecYYY
∂xxx′

= (IIIr ⊗YYYBBB)
∂vecZZZ
∂xxx′

+ (ZZZ′BBB′⊗ IIIn)
∂vecYYY
∂xxx′

(10) xxxm×1, YYYn×p = YYY(xxx), ZZZp×r = ZZZ(xxx).

∂(vecYYY ⊗ vecZZZ)
∂xxx′

=
∂vecYYY
∂xxx′

⊗ vecZZZ + vecYYY ⊗
∂vecZZZ
∂xxx′

(11) AAAn×m, XXXm×m nonsingular, BBBm×p.

∂vec(AAAXXX−1BBB)
∂vecXXX′

= −BBB′XXX′−1
⊗AAAXXX−1

(12) BBBr×m, XXXm×n, CCCn×s, and AAAp×q.

∂vec(BBBXXXCCC⊗AAA)
∂vecXXX′

= (III s⊗KKKqr ⊗ IIIp)(CCC′⊗BBB⊗ vec(AAA))
∂vec(AAA)⊗BBBXXXCCC

∂vecXXX′

= (IIIq⊗KKK sp⊗ IIIr)(vec(AAA)⊗CCC′⊗BBB)

(13) XXXm×m lower triangular.

∂vec(XXX)
∂vech(XXX)′

= LLL′m



Appendix C

The Partial Lag Autocorrelation Matrix
Function

In his PhD dissertation, Partial Lag Autocorrelation and Partial Process Autocorrelation for

Vector Time Series, with applications, Heyse (1985) defined the notion of partial lag autocor-

relation (PLAC) matrix function, which serves as a diagnostic aid for determining the order of

a vector autoregressive model. Heyse (1985) also proposed an recursive algorithm for com-

puting the sample partial lag autocorrelation matrix. The PLAC function play an important

role in the doubly adaptive LASSO for vector AR(p) and BEKK VARCH(q) processes, so we

document the definition, derivation, estimation, programming of the partial lag autocorrelation

matrix function. For more details, please see Heyse (1985) or Wei (2006, p.408 - 414).

C.1 Autocorrelation Matrix Function

Let yyyt = (y1t, · · · ,yKt)
′

, t = 0,±1,±2, · · · be jointly stationary vector process such that E[yit] = µi,

and cross-covariance between yit and y jt for all i, j = 1, · · · ,K are functions only of (s− t). The

mean of the vector process yyyt is defined as

E[yyyt] = µµµ = (µ1,µ2, · · · ,µK)
′

.

The lag-s autocovariance matrix function Γ(s) for the vector process yyyt is defined as

Γ(s) = Cov(yyyt,yyyt+s) = Cov(yyyt−s,yyyt) =


γ11(s) γ12(s) · · · γ1K(s)
γ21(s) γ22(s) · · · γ2K(s)
...

...
...

γK1(s) γK2(s) · · · γKK(s)

 , (C.1)
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where

γi j(s) = E[(yit −µi)(y j,t+s−µ j)] = E[(yi,t−s−µi)(y jt −µ j)]

for s = 0,±1,±2, · · · , i = 1, · · · ,K and j = 1, · · · ,K. Note that γii(s) is the autocovariance function

for the ith component process yit, and γi j(s), i , j is the cross-covariance function between the

ith and jth component processes. Also note that Γ(0) is the contemporaneous variance and

covariance matrix of the vector process.

The lag-s autocorrelation matrix function ρρρ(s) for the vector process yyyt is defined as

ρρρ(s) = D−1/2Γ(s)D−1/2 =


ρ11(s) ρ12(s) · · · ρ1K(s)
ρ21(s) ρ22(s) · · · ρ2K(s)
...

...
...

ρK1(s) ρK2(s) · · · ρKK(s)

 , (C.2)

where

D = diag(γ11(0),γ22(0), · · · ,γKK(0))

ρi j(s) =
γi j(s)√

γii(0)γ j j(0)
for s = 0,±1,±2, · · · , i = 1, · · · ,K and j = 1, · · · ,K. Note that ρii(s) is the autocorrelation function

for the ith component process yit whereas ρi j(s), i , j is the cross-correlation function between

the ith and jth component processes.

The autocovariance matrix function and the autocorrelation matrix function are positive

semidefinite in the sense that
n∑

i=1

n∑
j=1

ααα
′

iΓ(ti− t j)ααα j ≥ 0,

n∑
i=1

n∑
j=1

ααα
′

iρρρ(ti− t j)ααα j ≥ 0,

for any set of time points t1, · · · , tn and any set of real vectors ααα1, · · · ,αααn. The results follows

immediately by evaluating the variance of
∑n

i=1ααα
′

iyyyti and its standardization.

Note that γi j(s) , γi j(−s) for i , j, and hence Γ(s) , Γ(−s). Instead, because γi j(s) =

E[(yit −µi)(y j,t+s−µ j)] = E[(y j,t+s−µ j)(yit −µi)] = γ ji(−k), we have

Γ(s) = Γ
′

(−s), (C.3)

ρρρ(s) = ρρρ
′

(−s). (C.4)
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C.2 Partial Lag Autocorrelation Matrix

In extending the partial autocorrelation concept to vector time series Heyse (1985) introduced

the notion of partial lag autocorrelation matrix function, which is the autocorrelation matrix

between the elements of yyyt and yyyt+s, after removing the linear dependence of each on the

intervening vectors yyyt+1, · · · ,yyyt+s−1 . This is defined as the ordinary correlation between the

elements of residuals,

uuus−1,t+s = yyyt+s−
(
Ψs−1,1yyyt+s−1 + · · ·+Ψs−1,s−1yyyt+1

)
, (C.5)

and

vvvs−1,t = yyyt −
(
Θs−1,1yyyt+1 + · · ·+Θs−1,s−1yyyt+s−1

)
. (C.6)

The partial lag partial lag autocorrelation matrix function is defined as

PPP(s) = Dvvv(s)−1/2VVVvvvuuu(s)Duuu(s)−1/2, (C.7)

where

VVVuuu(s) = Var[uuus−1,t+s],

VVVvvv(s) = Var[vvvs−1,t],

VVVvvvuuu(s) = Cov(vvvs−1,t,uuus−1,t+s),

and Dvvv(s) and Duuu(s) are the diagonal matrices of VVVvvv(s) and VVVuuu(s), respectively.

In the rest of this subsection that follows, we derive the expressions for VVVuuu(s), VVVvvv(s), and

VVVvvvuuu(s). First we re-express uuu(s) and vvv(s) as

uuus−1,t+s =

yyyt+s−
s−1∑
k=1

Ψs−1,kyyyt+s−k

yyyt+1

=

yyyt+s−ΨΨΨ(s)yyyt(s), s ≥ 2
yyyt+1, s = 1

(C.8)

vvvs−1,t =

yyyt −
s−1∑
k=1

Θs−1,kyyyt+k

yyyt

=

yyyt −ΘΘΘ(s)yyyt(s), s ≥ 2
yyyt, s = 1

(C.9)
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where the matrices ΨΨΨ(s) and ΘΘΘ(s), and the vector yyyt(s) for s ≥ 2 are defined as

ΨΨΨ
′

(s) =


Ψ
′

s−1,1
Ψ
′

s−1,2
...

Ψ
′

s−1,s−1

 , ΘΘΘ
′

(s) =


Θ
′

s−1,s−1
Θ
′

s−1,s−2
...

Θ
′

s−1,1

 , yyyt(s) =


yyyt+s−1
yyyt+s−2
...

yyyt+1

 .
Define the following matrices AAA(s), BBB(s), and CCC(s) for s ≥ 2 using lag-k covariance matrices

Γ(k),k = 0, · · · , s−1:

AAA(s) =


Γ(0) Γ

′

(1) · · · Γ
′

(s−2)
Γ(1) Γ(0) · · · Γ

′

(s−3)
...

...
...

Γ(s−2) Γ(s−3) · · · Γ(0)

 , BBB(s) =


Γ
′

(s−1)
Γ
′

(s−2)
...

Γ
′

(1)

 , CCC(s) =


Γ(1)
Γ(2)
...

Γ(s−1)

 .
We see that

Var[yyyt(s)] = E[yyyt(s)yyy
′

t(s)]

= E


yyyt+s−1yyy

′

t+s−1 yyyt+s−1yyy
′

t+s−2 · · · yyyt+s−1yyy
′

t+1
yyyt+s−2yyy

′

t+s−1 yyyt+s−2yyy
′

t+s−2 · · · yyyt+s−2yyy
′

t+1
...

...
...

yyyt+1yyy
′

t+s−1 yyyt+1yyy
′

t+s−2 · · · yyyt+1yyy
′

t+1


=


Γ(0) Γ(−1) · · · Γ(−(s−2))
Γ(1) Γ(0) · · · Γ(−(s−3))
...

...
...

Γ(s−2) Γ(s−3) · · · Γ(0)

 = AAA(s),

E[yyyt(s)yyy
′

t] = E


yyyt+s−1yyy

′

t
yyyt+s−2yyy

′

t
...

yyyt+1yyy
′

t

 =


Γ(−(s−1))
Γ(−(s−2))

...
Γ(−1)

 =


Γ
′

(s−1)
Γ
′

(s−2)
...

Γ
′

(1)

 = BBB(s),

E[yyyt(s)yyy
′

t+s] = E


yyyt+s−1yyy

′

t+s
yyyt+s−2yyy

′

t+s
...

yyyt+1yyy
′

t+s

 =


Γ(1)
Γ(2)
...

Γ(s−1)

 = CCC(s).

The coefficients matrices ΨΨΨs−1,k and ΘΘΘs−1,k are those that minimize E
[
|uuus−1,t+s|

2
]

and E
[
|vvvs−1,t|

2
]
,

respectively. Consider the minimization of

E
[
|uuus−1,t+s|

2
]

= E
[(

yyyt+s−ΨΨΨ(s)yyyt(s)
) (

yyyt+s−ΨΨΨ(s)yyyt(s)
)′]

= Γ(0)−ΨΨΨ(s)CCC(s)−CCC
′

(s)ΨΨΨ
′

(s) +ΨΨΨ(s)AAA(s)ΨΨΨ
′

(s),
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E
[
|vvvs−1,t+s|

2
]

= E
[(

yyyt −ΘΘΘ(s)yyyt(s)
) (

yyyt −ΘΘΘ(s)yyyt(s)
)′]

= Γ(0)−ΘΘΘ(s)BBB(s)−BBB
′

(s)ΘΘΘ
′

(s) +ΘΘΘ(s)AAA(s)ΘΘΘ
′

(s).

Taking the derivative with respect to the elements of ΨΨΨ(s) and ΘΘΘ(s) and setting the resulting

equations equal to 0 gives, [Graham (1981, p.54)],

AAA(s)ΨΨΨ
′

(s) = CCC(s), (C.10)

AAA(s)ΘΘΘ
′

(s) = BBB(s), (C.11)

which are the multivariate normal equations for the autoregression of yyyt+s and yyyt on yyyt+s−1, · · · ,yyyt+1,

respectively. Solving the system yields the multivariate linear regression coefficients

ΨΨΨ
′

(s) = AAA(s)−1CCC(s), (C.12)

ΘΘΘ
′

(s) = AAA(s)−1BBB(s). (C.13)

The linear combinations of ΨΨΨ(s)yyyt(s) and ΘΘΘ(s)yyyt(s) define the linear projections of yyyt+s and yyyt

onto the space spanned by yyyt+1, · · · ,yyyt+s−1, respectively. Since

E
[
yyyt(s)uuus−1,t+s

]
= E

[
yyyt(s)

(
yyyt+s−ΨΨΨ(s)yyyt(s)

)′]
= CCC(s)−AAA(s)ΨΨΨ

′

(s) = 000,

E
[
yyyt(s)vvvs−1,t

]
= E

[
yyyt(s)

(
yyyt −ΘΘΘ(s)yyyt(s)

)′]
= BBB(s)−AAA(s)ΘΘΘ

′

(s) = 000,

we have that yyyt(s) and uuus−1,t+s, and yyyt(s) and vvvs−1,t are both uncorrelated and

Var(yyyt+s) = Γ(0)

= Var[uuus−1,t+s] + Var[ΨΨΨ(s)yyyt(s)]

= VVVuuu(s) +ΨΨΨ(s)AAA(s)ΨΨΨ
′

(s)

= VVVuuu(s) +ΨΨΨ(s)CCC(s),

Var(yyyt) = Γ(0)

= Var[vvvs−1,t] + Var[ΘΘΘ(s)yyyt(s)]

= VVVvvv(s) +ΘΘΘ(s)AAA(s)ΘΘΘ
′

(s)

= VVVvvv(s) +ΘΘΘ(s)BBB(s),

Cov(vvvs−1,t,uuus−1,t+s) = E
[(

yyyt −ΘΘΘ(s)yyyt(s)
) (

yyyt+s−ΨΨΨ(s)yyyt(s)
)′]

= Γ(s)−ΘΘΘ(s)CCC(s)−BBB
′

(s)ΨΨΨ
′

(s) +ΘΘΘ(s)AAA(s)ΨΨΨ
′

(s)

= Γ(s)−BBB
′

(s)ΨΨΨ
′

(s),
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so that the formulae for VVVuuu(s), VVVvvv(s), and VVVvvvuuu(s) for s ≥ 2 are

VVVuuu(s) = Γ(0)−ΨΨΨ(s)CCC(s) = Γ(0)−
s−1∑
k=1

Ψs−1,kΓ(k), (C.14)

VVVvvv(s) = Γ(0)−ΘΘΘ(s)BBB(s) = Γ(0)−
s−1∑
k=1

Θs−1,kΓ
′

(k), (C.15)

VVVvvvuuu(s) = Γ(s)−BBB
′

(s)ΨΨΨ
′

(s) = Γ(s)−
s−1∑
k=1

Γ(s− k)Ψ
′

s−1,k. (C.16)

For the case s = 1 since there are no intervening vectors between yyyt and yyyt+s we have that

VVVuuu(1) = Var(yyyt+1) = Γ(0),

VVVvvv(1) = Var(yyyt) = Γ(0),

VVVvvvuuu(1) = Cov(yyyt,yyyt+1) = Γ(1),

and

PPP(1) = DDD−1/2Γ(1)DDD−1/2 = ρρρ(1),

where DDD is the diagonal matrix of Γ(0), and ρρρ(1) the regular autocorrelation matrix at lag 1.

We call the K ×K matrix PPP(s) the partial lag autocorrelation matrix at lag s, which is the

autocorrelation matrix between the elements of yyyt and yyyt+s after the their linear dependence on

the vectors at the intervening lags have been removed.

PPP(s), as a function of the lag s, is a vector extension of the partial autocorrelation function

in the same manner as the autocorrelation matrix function is a vector extension of the autocor-

relation function. In the case K = 1, the partial lag autocorrelation matrix function PPP(s) reduces

to the partial autocorrelation function P(s). To see this, notice that ,

AAA(s) =


γ(0) γ(1) · · · γ(s−2)
γ(1) γ(0) · · · γ(s−3)
...

...
...

γ(s−2) γ(s−3) · · · γ(0)

 , BBB(s) =


γ(s−1)
γ(s−2)

...

γ(1)

 , CCC(s) =


γ(1)
γ(2)
...

γ(s−1)

 ,

ΨΨΨ(s) =


ψ1
ψ2
...

ψs−1

 , ΘΘΘ(s) =


Θs−1
Θs−2
...

Θ1

 .
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So we have

Vu(s) = γ(0)−
s−1∑
k=1

ψkγ(k),

Vv(s) = γ(0)−
s−1∑
k=1

θkγ(k),

Vvu(s) = γ(s)−
s−1∑
k=1

ψkγ(s− k),

and therefore

P(s) =
Vvu(s)

√
Vu(s)

√
Vv(s)

=
γ(s)−

∑s−1
k=1ψkγ(s− k)

γ(0)−
∑s−1

k=1ψkγ(k)
=
ρ(s)−

∑s−1
k=1ψkρ(s− k)

1−
∑s−1

k=1ψkρ(k)
,

which is exactly the formula for the partial autocorrelation function at lag s.

Analogous to the partial autocorrelation function for the univariate case the partial lag au-

tocorrelation matrix, PPP(s) has the cut-off property for autoregressive processes. So if {yyyt} is a

vector autoregressive process of order p then PPP(s) will be nonzero for s = p and will equal 0

for s > p. This property makes PPP(s) a useful tool for identifying VAR processes.

Before we start discuss the computing algorithm, we take an excursion to partial autore-

gression matrix defined by Tiao and Box (1981).

C.3 Partial Autoregression Matrix Function

Tiao and Box (1981) define the partial autoregression matrix at lag s for a vector time series

{yyyt} to be the last matrix coefficient when the data is fitted to a VAR process of order s. This is

a direct extension of the Box and Jenkins (1976, p. 64) definition of the partial autocorrelation

function for univariate time series. It is equal to Ψs,s in the multivariate linear regression

yyyt+s = Ψs,1yyyt+s−1 + · · ·+Ψs,syyyt + eees,t+s,

where the K ×K matrix coefficients Ψs,k,k = 1,2, · · · , s are those that minimize

E
[∣∣∣yyyt+s−Ψs,1yyyt+s−1− · · ·−Ψs,syyyt

∣∣∣2] .
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Differentiating wrt Ψs,1 and then setting to 000 yields

000 = E
[
−yyyt+s−1

(
yyyt+s−Ψs,1yyyt+s−1− · · ·−Ψs,syyyt

)′]
= −Γ(1) +Γ(0)Ψ

′

s,1 + · · ·+Γ(−(s−1))Ψ
′

s,s,

or

Γ(0)Ψ
′

s,1 + · · ·+Γ
′

(s−1)Ψ
′

s,s = Γ(1).

So by differentiating wrt all Ψs,k matrix we get the Yule-Walker equations in unnormalized

form, 
Γ(0) Γ

′

(1) · · · Γ
′

(s−1)
Γ(1) Γ(0) · · · Γ

′

(s−2)
...

...
...

Γ(s−1) Γ(s−2) · · · Γ(0)



Ψ
′

s,1
Ψ
′

s,2
...

Ψ
′

s,s

 =


Γ(1)
Γ(2)
...

Γ(s)

 ,
or (

AAA(s) BBB(s)
BBB
′

(s) Γ(0)

)(
ΨΨΨ
′

s−1
Ψ
′

s,s

)
=

(
CCC(s)
Γ(s)

)
,

where

ΨΨΨ
′

s−1 =


Ψ
′

s,1
Ψ
′

s,2
...

Ψ
′

s,s−1

 .
Solving for Ψs,s gives

Ψ
′

s,s =
(
Γ(0)−BBB

′

(s)AAA(s)−1BBB(s)
)−1 (

Γ(s)−BBB
′

(s)AAA(s)−1BBB(s)
)

=
(
Γ(0)−BBB

′

(s)ΘΘΘ
′

(s)
)−1 (

Γ(s)−BBB
′

(s)ΨΨΨ
′

(s)
)
,

or

Ψs,s =
(
Γ(s)−BBB

′

(s)ΨΨΨ
′

(s)
)′

(Γ(0)−ΘΘΘ(s)BBB(s))−1 = VVV
′

vvvuuu(s)VVVvvv(s)−1. (C.17)

For s = 1, Ψs,s = Γ
′

(1)Γ(0)−1.

Similarly, we can also compute Θs,s in the multivariate linear regression

yyyt = Θs,1yyyt+1 + · · ·+Θs,syyyt+s + eees,t,
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where the K ×K matrix coefficients Θs,k,k = 1,2, · · · , s are those that minimize

E
[∣∣∣yyyt −Θs,1yyyt+1− · · ·−Θs,syyyt+s

∣∣∣2] .
Differentiating wrt Θs,1 and then setting to 000 yields

000 = E
[
−yyyt+1

(
yyyt −Θs,1yyyt+1− · · ·−Θs,syyyt+s

)′]
= −Γ(−1) +Γ(0)Θ

′

s,1 + · · ·+Γ(s−1)Θ
′

s,s,

or

Γ(0)Θ
′

s,1 + · · ·+Γ(s−1)Θ
′

s,s = Γ
′

(1).

So by differentiating wrt all Θs,k matrix we get the Yule-Walker equations in unnormalized

form, 
Γ(0) Γ

′

(1) · · · Γ
′

(s−1)
Γ(1) Γ(0) · · · Γ

′

(s−2)
...

...
...

Γ(s−1) Γ(s−2) · · · Γ(0)




Θ
′

s,s
Θ
′

s,s−1
...

Θ
′

s,1

 =


Γ
′

(s)
Γ
′

(s−1)
...

Γ
′

(1)

 ,
or (

Γ(0) CCC
′

(s)
CCC(s) AAA(s)

)(
Θ
′

s,s
ΘΘΘ
′

s−1

)
=

(
Γ
′

(s)
BBB(s)

)
,

where

ΘΘΘ
′

s−1 =


Θ
′

s,s−1
Θ
′

s,s−2
...

Θ
′

s,1

 .
Solving for Θs,s gives

Θ
′

s,s =
(
Γ(0)−CCC

′

(s)AAA(s)−1CCC(s)
)−1 (

Γ(s)−CCC
′

(s)AAA(s)−1BBB(s)
)

=
(
Γ(0)−CCC

′

(s)ΨΨΨ
′

(s)
)−1 (

Γ
′

(s)−ΨΨΨ(s)BBB(s)
)
,

or

Θs,s =
(
Γ(s)−BBB

′

(s)ΨΨΨ
′

(s)
)
(Γ(0)−ΨΨΨ(s)CCC(s))−1 = VVVvvvuuu(s)VVVuuu(s)−1 (C.18)

For s = 1, Θs,s = Γ(1)Γ(0)−1.
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C.4 Recursive Algorithm

The recursive procedure for computing partial lag autocorrelation matrices introduced by Heyse

(1985) is a vector generalization of Durbin’s (1960) recursive computational procedure for uni-

variate partial autocorrelations.

From the previous subsection we have that for s ≥ 2,

yyyt+s =

s−1∑
k=1

Ψs−1,kyyyt+s−k + uuus−1,t+s,

yyyt =

s−1∑
k=1

Θs−1,kyyyt+k + vvvs−1,t.

Consider the regressions

yyyt+s+1 =

s∑
k=1

Ψs,kyyyt+s+1−k + uuus,t+s+1,

yyyt =

s∑
k=1

Θs,kyyyt+k + vvvs,t.

Corresponding to the definition of the partial lag autocorrelation matrix, our interest is in

the autocorrelation between vvvs,t and uuus,t+s+1 and for this we need to compute the multivariate

linear regression coefficients Ψs,k and Ωs,k. Let

uuus−1,t+s = Ψ∗svvvs−1,t + uuu∗t+s (C.19)

vvvs−1,t = Θ∗suuus−1,t+s + vvv∗t (C.20)

where

Ψ∗s = Cov(uuus−1,t+s,vvvs−1,t)Var(vvvs−1,t)−1 = VVV
′

vvvuuu(s)VVVvvv(s)−1 (C.21)

Θ∗s = Cov(vvvs−1,t,uuus−1,t+s)Var(uuus−1,t)−1 = VVVvvvuuu(s)VVVuuu(s)−1 (C.22)

Note that

Ψ∗s = Ψs,s, Θ∗s = Θs,s (C.23)

uuu∗t+s = uuus,t+s+1, vvv∗t = vvvs,t+1. (C.24)



CHAPTER C. THE PARTIAL LAG AUTOCORRELATION MATRIX FUNCTION 153

So we have

uuus−1,t+s = Ψs,svvvs−1,t + uuus,t+s+1

vvvs−1,t = Θs,suuus−1,t+s + vvvs,t+1

Substituting the expressions for uuus−1,t+s and vvvs−1,t yields

yyyt+s−

s−1∑
k=1

Ψs−1,kyyyt+s−k = Ψs,s(yyyt −

s−1∑
k=1

Θs−1,kyyyt+k) + uuus,t+s+1

yyyt −

s−1∑
k=1

Θs−1,kyyyt+k = Θs,s(yyyt+s−

s−1∑
k=1

Ψs−1,kyyyt+s−k) + vvvs,t+1

Rearranging the equations yields

yyyt+s =

s−1∑
k=1

(Ψs−1,k −Ψs,sΘs−1,s−k)yyyt+s−k +Ψs,syyyt + uuus,t+s+1

yyyt =

s−1∑
k=1

(Θs−1,k −Θs,sΨs−1,s−k)yyyt+k +Θs,syyyt+s + vvvs,t+1

We thus have recursive formulae for Ψs,k and Θs,k:

Ψs,k = Ψs−1,k −Ψs,sΘs−1,s−k (C.25)

Θs,k = Θs−1,k −Θs,sΨs−1,s−k (C.26)
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Algorithm 12: Recursive algorithm for the partial lag autocorrelation matrix function

Input: Sample autocorrelation matrix function Γ̂(s), s = 1, · · · ,h
Output: Sample partial lag autocorrelation matrices P̂(s), s = 1, · · · ,h

1 Start
2

Vu(1) = Vv(1) = Γ(0)
Vvu(1) = Γ(1)
Du(1) = Dv(1) = Diag(γ11(0), · · · ,γKK(0)]

P(1) = Dv(1)−1/2Vvu(1)Du(1)−1/2

Ψ1,1 = Γ′(1)Γ(0)−1

Θ1,1 = Γ(1)Γ(0)−1

for s← 2 to h do
3

Vu(s) = Γ(0)−
∑s−1

k=1
Ψs−1,kΓ(k)

Vv(s) = Γ(0)−
∑s−1

k=1
Θs−1,kΓ

′(k)

Vvu(s) = Γ(s)−
∑s−1

k=1
Γ(s− k)Ψ′s−1,k

Du(s) = Diag([Vu(s)]ii, i = 1, · · · ,K)
Dv(s) = Diag([Vv(s)]ii, i = 1, · · · ,K)

P(s) = Dv(s)−1/2Vvu(s)Du(s)−1/2

Ψs,s = V′vu(s)Vv(s)−1

Ψs,k = Ψs−1,k −Ψs,sΘs−1,s−k, k = 1, · · · , s−1
Θs,s = Vvu(s)Vu(s)−1

Θs,k = Θs−1,k −Θs,sΨs−1,s−k, k = 1, · · · , s−1.

4 Output P̂(s), s = 1, · · · ,h
5 End
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For example,

s = 1 : VVVuuu(1) = Γ(0)

VVVvvv(1) = Γ(0)

VVVvvvuuu(1) = Γ(1)

Duuu(1) = Diag([VVVuuu(1)]ii) = Diag(γ11(0), · · · ,γKK(0))

Dvvv(1) = Diag([VVVvvv(1)]ii) = Diag(γ11(0), · · · ,γKK(0))

PPP(1) = Dvvv(1)−1/2VVVvvvuuu(1)Duuu(1)−1/2

Ψ1,1 = Γ
′

(1)Γ(0)−1

Θ1,1 = Γ(1)Γ(0)−1

s = 2 : VVVuuu(2) = Γ(0)−Ψ1,1Γ(1)

VVVvvv(2) = Γ(0)−Θ1,1Γ
′

(1)

VVVvvvuuu(2) = Γ(2)−Γ(1)Ψ
′

1,1

Duuu(2) = Diag([VVVuuu(2)]11, · · · , [VVVuuu(2)]KK)

Dvvv(2) = Diag([VVVvvv(2)]11, · · · , [VVVvvv(2)]KK)

PPP(2) = Dvvv(2)−1/2VVVvvvuuu(2)Duuu(2)−1/2

Ψ2,2 = VVV
′

vvvuuu(2)VVVvvv(2)−1

Ψ2,1 = Ψ1,1−Ψ2,2Θ1,1

Θ2,2 = VVVvvvuuu(2)VVVuuu(2)−1

Θ2,1 = Θ1,1−Θ2,2Ψ1,1
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s = 3 : VVVuuu(3) = Γ(0)−Ψ2,1Γ(1)−Ψ2,2Γ(2)

VVVvvv(3) = Γ(0)−Θ2,1Γ
′

(1)−Θ2,2Γ
′

(2)

VVVvvvuuu(3) = Γ(3)−Γ(2)Ψ
′

2,1−Γ(1)Ψ
′

2,2

Duuu(3) = Diag([VVVuuu(3)]11, · · · , [VVVuuu(3)]KK)

Dvvv(3) = Diag([VVVvvv(3)]11, · · · , [VVVvvv(3)]KK)

PPP(3) = Dvvv(3)−1/2VVVvvvuuu(3)Duuu(3)−1/2

Ψ3,3 = VVV
′

vvvuuu(3)VVVvvv(3)−1

Ψ3,1 = Ψ2,1−Ψ3,3Θ2,2

Ψ3,2 = Ψ2,2−Ψ3,3Θ2,1

Θ3,3 = VVVvvvuuu(3)VVVuuu(3)−1

Θ3,1 = Θ2,1−Θ3,3Ψ2,2

Θ3,2 = Θ2,2−Θ3,3Ψ2,1

C.5 Estimation and Inference

Sample Autocorrelation Matrix

Given a sample realization yyy1,yyy2, · · · ,yyyT of an K-dimensional vector time series the sample

autocovariance matrix at lag s is computed by

Γ̂(s) =
1
T

T−s∑
t=1

(yyyt − ȳyy)(yyyt − ȳyy)
′

,

where ȳyy is the vector of sample mean.

The sample autocorrelation matrix at lag s is computed by

ρ̂ρρ(s) = D̂−1/2Γ̂(s)D̂−1/2,

where D̂ is the diagonal matrix whose ith diagonal element is the ith diagonal element of Γ̂(0).
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Hannan (1970, p.228) showed that (i) ρ̂ρρ(s) is a consistent estimator for ρρρ(s), and (ii) ρ̂ρρ(s) is

asymptotically normally distributed. Bartlett (1966) gives the asymptotic covariance between

the estimates ρ̂i j(s) and ρ̂i j(s + 1). For the case in which {zzzt} consists of K independent white

noise series Bartlett’s approximation simplifies to

Cov
(̂
ρi j(s), ρ̂i j(s + 1)

)
≈ 1/(T − s),

which is of practical importance because at the identification stage of the model building pro-

cess one is often interested in comparing values of ρ̂i j(s) to benchmarks appropriate to the null

hypothesis of the ith and jth series being independent white noise. Tiao and Box (1981) rec-

ommend using "+++" to indicate that ρ̂i j(s) > 2/
√

T , "−−−" to indicate that ρ̂i j(s) < −2/
√

T , and "···"

to indicate that −2/
√

T ≤ ρ̂i j(s) ≤ 2/
√

T .

Sample Partial Lag Autocorrelation Matrix

The sample partial lag autocorrelation matrix, P̂PP(s), can be obtained by using Γ̂(r) of Γ(r) for

r = 0, · · · , s−1 in the recursive algorithm.

Under the null hypothesis that {yyyt} is a vector AR(s−1) process, the two series of residuals

{uuus−1,t+s} and {vvvs−1,t} are uncorrelated, and each consists of K independent white noise series.

Using Quenouille (1957, p.41) and Hannan(1970, p.400), the elements of P̂PP(s), denoted by

P̂i j(s), are asymptotically N(0,1/T ) distributed. Use Tiao and Box’s notations "+++" to indicate

that P̂i j(s) > 2/
√

T , "−−−" to indicate that P̂i j(s) < −2/
√

T , and "···" to indicate that −2/
√

T ≤

P̂i j(s) ≤ 2/
√

T .

In addition, T
(
P̂i j(s)

)2
∼ χ2(1) asymptotically, which implies that asymptotically

X(s) = T
K∑

i=1

K∑
i=1

(
P̂i j(s)

)2
∼ χ2(K2). (C.27)

X(s) provides a diagnostic aid for determining the order of a vector autoregressive model.



Appendix D

Analytical Score and Hessian for BEKK
VARCH(q) Model

In this appendix, we derive the analytical negative score gradient and analytical Hessian matrix

for the negative log quasi-likelihood function of the BEKK VARCH(q) model.

D.1 The Negative Log Quasi-likelihood of BEKK VARCH(q)
Models

Suppose we have on a sample of size T d-variate time series yyyt, t = 1, · · · , T . The negative log

quasi-likelihood function LT (θθθ) is defined as

LT (θθθ) =

T∑
t=1

(−`t(θθθ))

=
1
2

dT log(2π) +
1
2

T∑
t=1

log |HHHt|+
1
2

T∑
t=1

yyyt
′HHH−1

t yyyt, (D.1)

where parameter vector θθθ =
(
vech(CCC)′,vec(AAA1)′, · · · ,vec(AAAq)′

)′
= (ccc′,aaa′1, · · · ,aaa

′
q)′ = (ccc′,aaa′)′, and

ccc = vech(CCC), aaa j = vec(AAA j), and aaa = (aaa′1, · · · ,aaa
′
q)′.

D.2 The Negative Score Gradient

Lucchetti (2001) derived the analytical score for BEKK(1,1,1) model. In this section, we derive

analytical negative score gradient SSS T (θθθ) for BEKK(0, q, 1) model.

SSS T (θθθ) =

T∑
t=1

ssst(θθθ) =

T∑
t=1

(
−
∂`t(θθθ)
∂θθθ′

)
(D.2)
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ssst(θθθ) =
1
2
∂log|HHHt|

∂θθθ′
+

1
2
∂(yyyt

′HHH−1
t yyyt)

∂θθθ′

=
1
2
∂log|HHHt|

∂hhh′t

∂hhht

∂θθθ′
+

1
2
∂(yyyt

′HHH−1
t yyyt)

∂hhh′t

∂hhht

∂θθθ′

=
1
2

∂log|HHHt|

∂hhh′t
+
∂(yyyt

′HHH−1
t yyyt)

∂hhh′t

 ∂hhht

∂θθθ′
(D.3)

D.2.1 Derivation of ∂log|HHHt|/∂hhh′t and ∂(yyyt
′HHH−1

t yyyt)/∂hhh′t

Firstly,

∂log|HHHt|

∂hhh′t
= vec(HHH−1

t
′
)′ = vec(HHH−1

t )′. (D.4)

Secondly, note that

yyyt
′HHH−1

t yyyt = tr(yyyt
′HHH−1

t yyyt)

= tr(yyytyyyt
′HHH−1

t )

= vec(yyytyyyt
′)′vec(HHH−1

t )

= (yyyt ⊗ yyyt)
′vec(HHH−1

t ),

and

∂vec(HHH−1
t )

∂hhh′t
= −HHH−1

t
′
⊗HHH−1

t = −HHH−1
t ⊗HHH−1

t (D.5)

so that

∂(yyyt
′HHH−1

t yyyt)
∂hhh′t

= −(yyyt ⊗ yyyt)
′
(
HHH−1

t ⊗HHH−1
t

)
= −

(
yyyt
′HHH−1

t

)
⊗

(
yyyt
′HHH−1

t

)
. (D.6)

D.2.2 Derivation of ∂hhht/∂θθθ
′

∂hhht

∂θθθ′
=

∂

∂θθθ′

vec(CCCCCC′) +

q∑
j=1

vec(AAA jyyyt− jyyy
′
t− jAAA

′
j)

 . (D.7)

Note that

∂vec(CCCCCC′)
∂ccc′

=
∂
(
DDDdvech(CCCCCC′)

)
∂vech(CCC)′

= DDDd
∂vech(CCCCCC′)
∂vech(CCC)′

= 2DDDdDDD+
d (CCC⊗ IIId)LLL′d,
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where DDDd is the d2 × d(d + 1)/2 duplication matrix, DDD+
d is the Moore-Penrose inverse of the

duplication matrix DDDd, and LLLd is the d(d + 1)/2× d2 elimination matrix. Recall that KKKdd =

2DDDdDDD+
d − IIId2 , where KKKdd is the commutation matrix. Hence

∂vec(CCCCCC′)
∂ccc′

= (IIId2 + KKKdd)(CCC⊗ IIId)LLL′d. (D.8)

Note also that

∂vec(AAA jyyyt− jyyy
′
t− jAAA

′
j)

∂aaa′j
= (AAA jyyyt− jyyy

′
t− j⊗ IIId) + (IIId ⊗AAA jyyyt− jyyy

′
t− j)KKKdd

= (AAA jyyyt− jyyy
′
t− j⊗ IIId) + KKKdd(AAA jyyyt− jyyy

′
t− j⊗ IIId)

= (IIId2 + KKKdd)(AAA jyyyt− jyyy
′
t− j⊗ IIId) (D.9)

Substituting (D.8) and (D.9) into (D.7) yields

∂hhht

∂θθθ′
=

[
(IIId2 + KKKdd)(CCC⊗ IIId)LLL′d 99

9(IIId2 + KKKdd)(AAA1yyyt−1yyy′t−1⊗ IIId) 999 · · · 999(IIId2 + KKKdd)(AAAqyyyt−qyyy′t−q⊗ IIId)
]

= (IIId2 + KKKdd)
[
(CCC⊗ IIId)LLL′d 99

9(AAA1yyyt−1yyy′t−1⊗ IIId) 999 · · · 999(AAAqyyyt−qyyy′t−q⊗ IIId)
]

= (IIId2 + KKKdd)
[
(CCC⊗ IIId)LLL′d 99

9

[
AAA1yyyt−1yyy′t−1 99

9 · · · 99
9AAAqyyyt−qyyy′t−q

]
⊗ IIId

]
= (IIId2 + KKKdd)

[
(CCC⊗ IIId)LLL′d 99

9(AAAYYY t−1)⊗ IIId
]
. (D.10)

D.2.3 Derivation of ssst(θθθ)

Substituting (D.4), (D.6) and (D.10) into (D.3) yields the following negative score gradient for

one observation:

ssst(θθθ) =
[
vec(HHH−1

t )′−
(
yyyt
′HHH−1

t

)
⊗

(
yyyt
′HHH−1

t

)] (IIId2 + KKKdd)
2

[
(CCC⊗ IIId)LLL′d 99

9(AAAYYY t−1)⊗ IIId
]
, (D.11)

or

ssst(θθθ) =
[
vec(HHH−1

t )′−
(
yyyt
′HHH−1

t

)
⊗

(
yyyt
′HHH−1

t

)]
DDDdDDD+

d

[
(CCC⊗ IIId)LLL′d 99

9(AAAYYY t−1)⊗ IIId
]
. (D.12)

Denoting

QQQt(θθθ) = vec(HHH−1
t )′−

(
yyyt
′HHH−1

t

)
⊗

(
yyyt
′HHH−1

t

)
, (D.13)

NNNd = DDDdDDD+
d =

(IIId2 + KKKdd)
2

, (D.14)

RRRt−1(θθθ) =
[
(CCC⊗ IIId)LLL′d 99

9(AAAYYY t−1)⊗ IIId
]
, (D.15)
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we also express (D.12) as

ssst(θθθ) = QQQt(θθθ)NNNdRRRt−1(θθθ) (D.16)

for t = 1, · · · ,T , where QQQt is a 1× d2 matrix, NNNd is a d2 × d2 matrix, and RRRt−1 is a d2 × q′

matrix where q′ = (d(d + 1)/2 + qd2) represents the total number of parameters in the BEKK

multivariate ARCH(q) model.

D.3 The Analytical Hessian Matrix

Hafner and Herwartz (2008) studied analytical quasi maximum likelihood inference in some

multivariate volatility models such VEC(1, 1), BEKK(1, 1, 1) and CCC models. In this section,

we derive analytical Hessian Matrix JJJT (θθθ) for BEKK(0, q, 1) model.

JJJT (θθθ) =
∂SSS t(θθθ)
∂θθθ

=

T∑
t=1

∂ssst(θθθ)
∂θθθ

(D.17)

∂ssst(θθθ)
∂θθθ

=
∂(QQQtNNNdRRRt−1)

∂θθθ

=
∂vec(QQQtNNNdRRRt−1)′

∂θθθ

=
∂vec(RRRt−1)′

∂θθθ
(IIIq′ ⊗NNNdQQQ′t) +

∂vec(QQQt)′

∂θθθ
NNNdRRRt−1

=
∂vec(RRRt−1)′

∂θθθ
(IIIq′ ⊗NNNdQQQ′t) +

∂QQQt

∂θθθ
NNNdRRRt−1 (D.18)

where the subscript of the identity matrix q′ = d(d + 1)/2 + qd2, which represents the total

number of parameters in the BEKK(0, q, 1)model.

D.3.1 Derivation of ∂QQQ′t/∂θθθ
′

∂QQQ′t
∂θθθ′

=
∂

∂hhh′t

(
vec(HHH−1

t )− (HHH−1
t yyyt)⊗ (HHH−1

t yyyt)
) ∂hhht

∂θθθ′

=

∂vec(HHH−1
t )

∂hhh′t
−
∂
(
(HHH−1

t yyyt)⊗ (HHH−1
t yyyt)

)
∂hhh′t

 ∂hhht

∂θθθ′
(D.19)

Note that ∂vec(HHH−1
t )/∂hhh′t and ∂hhht/∂θθθ

′ were derived in the sections D.2.1 and D.2.2. In this

section we derive ∂(HHH−1
t yyyt)⊗ (HHH−1

t yyyt)/∂hhh′t .
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Because

∂
(
(HHH−1

t yyyt)⊗ (HHH−1
t yyyt)

)
∂hhh′t

=
∂(HHH−1

t yyyt)
∂hhh′t

⊗ (HHH−1
t yyyt) + (HHH−1

t yyyt)⊗
∂(HHH−1

t yyyt)
∂hhh′t

,

and

∂(HHH−1
t yyyt)
∂hhh′t

=
∂(IIIdHHH−1

t yyyt)
∂hhh′t

= −yyy
′

tHHH
′

t
−1
⊗ IIIdHHH−1

t = −yyy
′

tHHH
−1
t ⊗HHH−1

t ,

we have

∂
(
(HHH−1

t yyyt)⊗ (HHH−1
t yyyt)

)
∂hhh′t

= −yyy
′

tHHH
−1
t ⊗HHH−1

t ⊗HHH−1
t yyyt −HHH−1

t yyyt ⊗ yyy
′

tHHH
−1
t ⊗HHH−1

t . (D.20)

D.3.2 Derivation of ∂vecRRRt−1/∂θθθ
′

∂vecRRRt−1

∂θθθ′
=

∂

∂θθθ′
vec

([
(CCC⊗ IIId)LLL′d 99

9(AAAYYY t−1)⊗ IIId
])

(D.21)

Noticing that

vec
([

(CCC⊗ IIId)LLL′d 99
9(AAAYYY t−1)⊗ IIId

])
=

[
vec((CCC⊗ IIId)LLL′d)

vec([AAAYYY t−1⊗ IIId])

]
,

we express the (q′d2×q′) matrix ∂vecRRRt−1/∂θθθ
′ in the following block format,

=


∂vec((CCC⊗IIId)LLL′d)

∂ccc′ 000

000 ∂vec([AAAYYY t−1⊗IIId])
∂aaa′

 ,
or more compactly, in direct sum format,

∂vecRRRt−1

∂θθθ′
=
∂vec((CCC⊗ IIId)LLL′d)

∂ccc′
⊕
∂vec([AAAYYY t−1⊗ IIId])

∂aaa′
(D.22)

where ∂vec((CCC⊗ IIId)LLL′d)/∂ccc′ is a d3(d + 1)/2×d(d + 1)/2 matrix that is formulated as

∂vec((CCC⊗ IIId)LLL′d)
∂ccc′

= (LLLd ⊗ IIId2)
∂vec(CCC⊗ IIId)

∂ccc′

= (LLLd ⊗ IIId2)
∂vec(CCC⊗ IIId)
∂vec(CCC)′

∂vec(CCC)
∂ccc′

= (LLLd ⊗ IIId2)
∂vec(CCC⊗ IIId)
∂vec(CCC)′

LLL′d

= (LLLd ⊗ IIId2)(IIId ⊗KKKdd ⊗ IIId)(IIId2 ⊗ vec(IIId))LLL′d , (D.23)
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and ∂vec([AAAYYY t−1⊗ IIId])/∂aaa′ is a qd4×qd2 matrix that can be expressed as

∂vec([AAAYYY t−1⊗ IIId])
∂aaa′

=
∂vec([IIIdAAAYYY t−1⊗ IIId])

∂aaa′

= (IIIqd ⊗KKKdd ⊗ IIId)(YYY′t−1⊗ IIId ⊗ vec(IIId)). (D.24)

Therefore,

∂vec(RRRt−1)′

∂θθθ
=

[
LLLd(IIId2 ⊗ vec(IIId)′)(IIId ⊗KKKdd ⊗ IIId)(LLL′d ⊗ IIId2)

]
⊕
[
(YYY t−1⊗ IIId ⊗ vec(IIId)′)(IIIqd ⊗KKKdd ⊗ IIId)

]
(D.25)

The nicety of the matrix ∂vec(RRRt−1)′/∂θθθ is that it is not predicated on the parameters of the

model, and only the order of the ARCH model (q) and the dimension of the time series vector

(d) matter.
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