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Abstract 

Renal transplantation invariably results in tissue injury resulting from ischemia reperfusion 

injury (IRI), inflammation, drug toxicity, and rejection. Tubular epithelial cells (TEC) 

comprise the majority of renal parenchyma and are susceptible to cell death and injury during 

diverse forms of inflammation, which has direct and indirect effects on long term allograft 

function. Renal TEC have the unique ability to attenuate inflammation and alloimmune 

injury through the expression of various mediators of cell death and inflammatory molecules. 

Inhibition of cell death pathways in renal allografts may influence outcomes of alloimmune 

responses and graft survival. In this body of investigation, alteration of apoptosis and 

necroptosis forms of TEC death in vitro, were tested for their ability to extend allograft 

survival in vivo. Apoptotic death induced by cytotoxic cells during allograft rejection was 

inhibited by TEC expression of Granzyme B inhibiting serine protease inhibitor-6 (SPI-6) 

and prolonged graft survival and function. Apoptosis death of TEC can also be initiated 

during renal IRI and with rejection by pro-inflammatory cytokines through surface death 

receptors. However, inhibition of TNFα-induced apoptosis in TEC through caspase-8 

upregulated the receptor interacting protein kinase 1 and 3 (RIPK1/3)-mediated necroptosis 

pathway to limit graft survival. However, inhibition of RIPK1/3 necroptotic death during 

renal IRI and transplantation was able to preserve renal function and promote long term graft 

survival. Augmented pro-inflammatory effects following necrotic cell death were related to 

an increased release of high mobility group box 1 (HMGB1). Use of the HMGB1 inhibitor 

glycyrrhizic acid (GZA) inhibited inflammatory responses in vitro and was able to ameliorate 

renal IRI. Collectively these studies highlight the importance of endogenous donor kidney 

factors in regulating inflammatory cell death and subsequently the severity and outcomes of 

allograft rejection. Regulators of parenchymal cell death in kidney and other solid organs 

may provide entirely new therapeutic targets for transplantation which will promote long 

term allograft survival. 

 

  



iii 

 

 

Keywords 

Kidney transplantation, ischemia reperfusion injury (IRI), cell death, apoptosis, serine 

protease inhibitor-6 (SPI-6), necroptosis, receptor interacting protein kinase 1 (RIPK1), 

receptor interacting protein kinase 3 (RIPK3), high mobility group box-1 (HMGB1), 

glycyrrhizic acid (GZA) 

  



iv 

 

 

Co-Authorship Statement 

The following co-authors contributed to the publications listed in this thesis: 

 

SPI-6 (Serine Protease Inhibitor-6) inhibits granzyme B mediated injury of renal 

tubular cells and promotes renal allograft survival 

Karim Khan – research design 

Alex Pavlosky – image analysis 

Ziqin Yin – animal care 

Xuyan Huang – animal care 

Aaron Haig – histological analysis 

Weihua Liu – immunostaining 

Bhagi Singh – research design, contribution of reagents/equipment 

Zhu-Xu Zhang – research design, writing of manuscript, data analysis 

Anthony M. Jevnikar - research design, writing of manuscript, data analysis, contribution of 

reagents/equipment 

 

RIPK3 mediated necroptosis promotes donor kidney inflammatory injury and reduces 

allograft survival 

Shuang Wang – microsurgery
 

Jifu Jiang – microsurgery
 

Aaron Haig – histological analysis
 

Alexander Pavlosky – research design
 



v 

 

 

Andreas Linkermann – research design
 

Zhu-Xu Zhang - research design, writing of manuscript, data analysis, contribution of 

reagents/equipment 

Anthony M. Jevnikar - research design, writing of manuscript, data analysis, contribution of 

reagents/equipment 

 

Glycyrrhizic acid (GZA) ameliorates HMGB1-mediated cell death and inflammation 

after renal ischemia reperfusion injury 

Shuang Wang – microsurgery
 

Weihua Liu – immunostaining
 

Aaron Haig – histological analysis 

Zhu-Xu Zhang - research design, writing of manuscript, data analysis, contribution of 

reagents/equipment 

Anthony M. Jevnikar - research design, writing of manuscript, data analysis, contribution of 

reagents/equipment 

  



vi 

 

 

Acknowledgments 

I would like to thank my supervisors Dr. Zhuxu Zhang and Dr. Anthony M. Jevnikar for their 

mentorship and guidance throughout my Ph.D. candidacy. I would not have been able to 

complete this thesis nor publish my research projects without their significant support and 

patience. Their passion for transplantation research convinced me to join their laboratory as a 

graduate student and that same passion has motivated me to continue my journey to 

becoming a better researcher. I hope that I have met their expectations during the time that I 

have spent as their student and I will always grateful to them for the opportunities that they 

have provided for me.  

I would also like to thank Dr. James Koropatnick and Dr. Weiping Min for serving on my 

advisory committee throughout my thesis. Their insightful advice and assistance has 

improved the quality of my research for which I am very grateful. 

I would like to thank all past and present members of the Zhang/Jevnikar lab at the Matthew 

Mailing Centre including Kelvin Shek, Shuang Wang, Alex Pavlosky, Jifu Jiang, Winnie 

Liu, Xuyan Huang, Ziqin Yin, and Pamela Gardner. Any techniques that I have learned in the 

lab are a result of their patient guidance and support and I am greatly appreciative of the time 

and energy they have spent assisting me in my research endeavors. I also thank them for their 

kindness and friendship over the years that I have spent at Robarts/Matthew Mailing Centre 

as part of their ‘lab family’. 

I would like to thank the Department of Pathology including past and present graduate 

students, faculty, and staff. I believe that our graduate department excels at fostering an 

environment conducive to the development of young scientists and I consider myself lucky to 

have benefitted from that. The opportunities that have been provided by the department have 

been instrumental to the progression and completion of my degree for which I am grateful 

for. 

I am thankful for all the wonderful friendships that I have made with the people at Western 

University and in the community of London, Ontario. Their continued support and great 

company have made my time here an incredible and unforgettable experience. I will always 



vii 

 

 

cherish their kindness and generosity and thank them for making my experience at Western 

full of enjoyment and laughter. 

Finally I thank my family and girlfriend, Christina, for their love and support throughout my 

graduate school career. Without them, I would not have been able to make it through the 

difficult times in both school and in life. Most importantly, I thank them for reminding me to 

pursue the things in life that make me and the people I love happy with absolute dedication 

and passion. They have taught me the value of being a kind and loving person above all else 

and for that I will be forever grateful. 

 

 

 

  



viii 

 

 

Table of Contents 

Abstract ..................................................................................................................................... ii 

Keywords ................................................................................................................................. iii 

Co-Authorship Statement......................................................................................................... iv 

Acknowledgments.................................................................................................................... vi 

Table of Contents ................................................................................................................... viii 

List of Figures .......................................................................................................................... xi 

List of Appendices ................................................................................................................. xiii 

Chapter 1 ....................................................................................................................................1 

1 Introduction 

 1.1 Current challenges in kidney transplantation…………………..…………..….1 

 1.2 Renal ischemia reperfusion injury (IRI)………………………..……………..3 

 1.3 Allograft rejection……………………………………………………………..7 

 1.4 Cell death and kidney transplant injury………………………………..…….10 

1.5 Cell death results in the release of pro-inflammatory cellular death associated 

molecular patterns (CDAMPs)………………………………………………20 

 1.6 Aims and objectives………………………………………………………….23 

Chapter 2……………………………………………………………………………………..25 

2 SPI-6 (Serine Protease Inhibitor-6) inhibits granzyme B mediated injury of renal 

tubular cells and promotes renal allograft survival 

 2.1 Abstract………………………………………………………………………26 

 2.2 Introduction…………………………………………………………………..27 

 2.3 Materials and Methods ………………………………………………………29 

 2.4 Results………………………………………………………………………..31 

 2.5 Discussion……………………………………………………………………46 

 2.6 Acknowledgments……………………………………………………………49 

 2.7 Author Disclosure……………………………………………………………49 



ix 

 

 

 2.8 References……………………………………………………………………50 

Chapter 3……………………………………………………………………………………..56 

3 RIPK3 mediated necroptosis promotes donor kidney inflammatory injury and reduces 

allograft survival 

 3.1 Abstract………………………………………………………………………57 

 3.2 Introduction…………………………………………………………………..58 

 3.3 Materials and Methods……………………………………………………….60 

 3.4 Results………………………………………………………………………..63 

 3.5 Discussion……………………………………………………………………88 

 3.6 Acknowledgments……………………………………………………………92 

 3.7 Author Disclosure……………………………………………………………92 

3.8 References……………………………………………………………………93 

Chapter 4……………………………………………………………………………………103 

4 Glycyrrhizic acid (GZA) ameliorates HMGB1-mediated cell death and inflammation 

after renal ischemia reperfusion injury 

4.1 Abstract……………………………………………………………………..104 

 4.2 Introduction…………………………………………………………………105 

 4.3 Materials and Methods……………………………………………………...107 

 4.4 Results………………………………………………………………………110 

 4.5 Discussion…………………………………………………………………..130 

 4.6 Acknowledgments…………………………………………………………..134 

 4.7 Author Disclosure…………………………………………………………..134 

4.8 References…………………………………………………………………..135 

Chapter 5……………………………………………………………………………………140 

5 Discussion 

5.1 Kidney injury and rejection is promoted by the form of cell death and 

subsequent pro-inflammatory responses……………………………………140 



x 

 

 

5.2 Regulation of renal IRI and allograft injury by donor organ factors……….144 

5.3 Apoptosis and necroptosis are counterbalanced forms of cell death in renal IRI 

and allograft rejection………………………………………………………146 

5.4 HMGB1-mediated inflammatory injury in AKI and rejection……………..154 

5.5 Future directions……………………………………………………………158 

References…………………………………………………………………………………..164 

Appendix A – Copyright Release…………………………………………………………..178 

Appendix B – Animal Ethics Approval…………………………………………………….181 

Curriculum Vitae…………………………………………………………………………...182 

 

 

  



xi 

 

 

List of Figures 

1      Introduction 

Figure 1.1: Mechanisms of cell death in renal IRI and transplantation .............................. 15 

Figure 1.2: Overview of receptor-mediated apoptosis and necroptosis cell death pathways 

in TEC ................................................................................................................................. 18 

2 SPI-6 (Serine Protease Inhibitor-6) inhibits granzyme B mediated injury of renal 

tubular cells and promotes renal allograft survival 

Figure 1: SPI-6 is upregulated in renal TEC in response to pro-inflammatory cytokines .. 32 

Figure 2: SPI-6 inhibits CD8+ T cell Granzyme B mediated cytotoxicity in TEC. ........... 35 

Figure 3: Donor kidney SPI-6 is expressed in TEC after kidney transplantation. .............. 38 

Figure 4: SPI-6 in the renal allograft ameliorates injury after kidney transplantation ....... 41 

Figure 5: SPI-6 in donor kidneys increased allograft survival in allogeneic kidney 

transplant recipients ............................................................................................................ 43 

3 RIPK3 mediated necroptosis promotes donor kidney inflammatory injury and 

reduces allograft survival 

Figure 1: Caspase-8 silencing decreases renal allograft survival and increases tissue     

necrosis ............................................................................................................................... 65 

Figure 2: RIPK3 is regulated by pro-inflammatory cytokines in renal TEC ...................... 69 

Figure 3: RIPK1/3 is a regulator of TNFα mediated necroptosis in renal TEC ................. 72 

Figure 4: Absence of kidney RIPK3 improves renal function and ameliorates injury during 

renal IRI .............................................................................................................................. 76 

Figure 5: Absence of kidney RIPK3 reduces necrosis during renal IRI ............................. 79 

Figure 6: RIPK3
-/-

 kidney allografts have better function and decreased inflammation .... 82 



xii 

 

 

Figure 7: Inhibition of RIPK3 in
 
donor kidneys increased allograft survival in allogeneic 

kidney transplant recipients……………………………………………………………….86 

4 Glycyrrhizic acid (GZA) ameliorates HMGB1-mediated cell death and 

inflammation after renal ischemia reperfusion injury 

Figure 1: Characterization of HMGB1 expression in the kidney after renal IRI.............. 111 

Figure 2: GZA neutralization of HMGB1 released from hypoxic TEC can inhibit cell            

death..…… ........................................................................................................................ 115 

Figure 3: Increased TEC expression of pro-inflammatory cytokines and NK cell       

activation is inhibited by GZA .......................................................................................... 121 

Figure 4: GZA can improve renal function and prevent tissue necrosis during renal IRI.127 

5 Discussion 

Figure 5.1: Cell death regulates the severity of tissue injury and inflammation in renal IRI 

and transplantation ............................................................................................................ 142 

Figure 5.2: Apoptosis and necroptosis regulates outcomes of long term allograft function   

and survival ....................................................................................................................... 150 

 

 

  



xiii 

 

 

List of Appendices 

Appendix A: Copyright Release………………………………………………………........178 

Appendix B: Animal Ethics Approval…………………………………………..………….181 

  



1 

 

Chapter 1 

1 Introduction 

1.1 Current challenges in kidney transplantation 

End stage renal disease (ESRD) arising from a variety of chronic kidney diseases (CKD) 

such as diabetes, high blood pressure, glomerulonephritis, and polycystic kidney disease 

affects millions of people worldwide. CKD often results in irreversible kidney which requires 

dialysis or kidney transplantation for survival. While dialysis is a viable treatment for ESRD, 

long term survival rates (>5 years) in patients receiving dialysis can vary from 90% to as low 

as 25% depending on the age and primary cause of ESRD making this a temporary solution 

for many patients
1
. In addition, the prevalence of ESRD has been increasing annually which 

not only applies financial burden on patients but also to the healthcare system as lifelong 

dialysis is costly and not every patient can receive a kidney graft. In Canada, approximately 

55% of patients with ESRD are on some form of dialysis while the remainder are living with 

functioning kidney transplants
1
. Unfortunately as of 2013, approximately 3400 patients were 

still waiting for kidney transplants and only 1400 kidney transplants were performed that 

year
1
. As kidney transplantation is currently the preferred long term option for treatment of 

ESRD, it is crucial that the limited organs that are available for transplant are functional for 

as long as possible in transplant recipients. 

While the first successful kidney transplantation was performed in 1950, it was not until 

1953 when the first successful long term transplants were performed in Boston in identical 

twins. It has since become the most common form of solid organ transplantation. Due to 

differences in the genetic backgrounds of donors and recipients (with the exception of 

identical twins), all donor organs are allografts, and are thus recognized as foreign bodies by 

recipient immune systems. In the absence of clinical intervention, this results in immune-

mediated responses against the allograft, which result in transplant rejection and possibly 

leading to graft loss and failure. Through the development of donor-recipient matching to 

ensure greater histocompability as well as improvements in immunosuppression therapies, 

the incidence of acute transplant rejection has been significantly reduced over the last few 
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decades
1
. Currently, short term survival rates for adult kidney recipients are excellent with 1 

year survival rates at over 95% and 5 year survival rates at over 80%
2
. However, the ultimate 

goal of transplantation is to achieve long term graft survival with continuing good graft 

function. When kidney recipients are followed long term, graft survival rates are significantly 

reduced to as low as 20% with increased morbidity and early mortality
2
. Therefore, chronic 

loss of function from immune and non-immune mechanisms of injury remains a major 

challenge for kidney transplantation despite our advances in diagnostics and therapeutics. 

There are many factors that contribute to chronic kidney rejection. Inherent to the procedure 

is ischemia reperfusion injury (IRI) that occurs early during the transplantation following the 

removal of organ from the donor and the clamping of blood vessels in the recipient. 

Following vascular anastomoses, the allograft must then contend with constant attack from 

the recipient immune system initially triggered by differences in cell surface molecules 

collectively known as the major histocompatibility complex (MHC) which defines the 

recognition of all tissue as ‘self’ or foreign
3,4

. Use of potent immunosuppressive drugs can 

prevent or atteuate acute rejection but recipients risk becoming immunodeficient and then 

can have increased susceptibility to infectious diseases and cancer. The challenge is to 

balance anti-rejection therapy and the need of recipients to maintain immune responses 

against pathogens and other dangers in order to enhance long term kidney allograft survival. 

While there has been a major focus on attacking immune responses of the recipient, the graft 

itself through injury and death of cells may influence those immune responses. Modifying the 

graft rather than the recipient immune response represents a departure from the current 

paradigm of transplant therapy. In this thesis, new mechanisms of cell death, graft injury, and 

inflammation will be presented to provide a more contemporary understanding of chronic 

graft rejection with the potential to discover and apply new therapeutic strategies and targets.  
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1.2  Renal ischemia reperfusion injury (IRI) 

IRI invariably occurs as a result of organ transplantation and has effects on both acute kidney 

injury (AKI) as well as long term graft survival
5,6

. Ischemia occurs when blood supply is 

removed from tissue causing a hypoxic and nutrient deficient environment as well as the 

accumulation of metabolic byproducts. When blood is restored to the tissue, reperfusion 

injury occurs due to the reintroduction of oxygen and formation of reactive oxygen species 

(ROS), which causes oxidative stress. Collectively, IRI leads to the injury of tissue, 

recruitment of immune cells, and inflammation in the kidney, causing AKI and impaired 

kidney function. Renal parenchymal cells, particularly in the nephron, are particularly 

susceptible to damage by inflammation during IRI due to their high oxygen demands and 

important functional role. Tubular epithelial cells (TEC) comprise the majority of kidney 

cells and are sensitive to damage due to IRI, especially those located in the proximal tubules 

found in the cortical region
7–11

. Proximal TEC are specialized cells responsible for removing 

water and other solutes back into the blood. Therefore, their loss or dysfunction leads to 

organ dysfunction and with death that is not matched by replacement, there is fibrosis. TEC 

are thus critically involved in the progression of tubulointerstitial injury following IRI. 

Inflammation as a result of renal IRI is a complex interaction between cellular and molecular 

components of both the immune system as well as renal parenchyma. After IRI, an influx of 

various immune cells begins to infiltrate the kidney tissue and migrate to sites of 

inflammation
7,12–15

. TEC are capable of producing a variety of pro-inflammatory cytokines 

such as interferon gamma (IFNγ), interleukin-6 (IL-6), and monocyte chemotactic protein-1 

(MCP-1) that can both attract and activate immune cells
13,16–18

. Cells associated with the 

innate immune response such as neutrophils and macrophages are one of the earliest 

responders and are pathological hallmarks of IRI
13

. These cells can also release various 

inflammatory cytokines that in turn attrach more immune cells leading to the propagation of 

inflammation. Interestingly, traditional members of adaptive immune responses are also 

found prominently during IRI including T cells, B cells, and NK cells
7,13

.  

In addition to the production of pro-inflammatory cytokines, immune cells can also possess 

direct cytotoxic functions that if activated during inflammation, can kill TEC (Figure 1.1). 

Cytotoxic lymphocytes (CTL) can kill target cells directly via cell-to-cell interactions by 
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various mechanisms including Fas-Fas-ligand (FasL) and perforin/granzyme pathways
7,19,20

. 

Interestingly, TEC exposed to inflammatory cytokines can also participate in cell mediated 

death through fratricide by Fas-FasL interactions and TEC death can be independent of direct 

cytotoxic cell contact
8,21

. TEC can also be killed indirectly by other receptor mediated death 

pathways via tumor necrosis factor alpha (TNFα) or other death inducing molecules secreted 

by immune cells or neighbouring parenchymal cells
9,22–25

. Acute tubular necrosis (ATN) as a 

result of TEC destruction is a pathological hallmark of AKI and leads to the development of 

renal fibrosis which affects short term and long term kidney function
7,9,22,23,26,27

. 

The extent and severity of IRI is highly correlated with poor outcomes in renal 

transplantation in large due to its impact on TEC as well as endothelial cells. Currently, 

donor kidneys are divided into several categories based on the nature of the cause of death 

including following circulatory arrest or cessation of neurological activity or perfusion. As 

well, there are differences in donor grafts obtained from living or deceased patients which 

affects the outcome of transplantation
2,6,28

. Organs from living donors have better outcomes 

in recipients after kidney transplantation as surgeries can be planned to optimize the 

condition of the recipient and IRI can be limited by having much shorter storage times. In 

addition, the health status and pre-operative condition of the donor could also minimize the 

effects of IRI in live donations
29

. Ideally, all transplants would occur with grafts from living 

donors or from deceased donors in which IRI can be prevented. Donation after cardiac death 

(DCD) with the loss of heart function exposes kidneys to ischemic injury resulting in high 

delayed graft function rates. It is clear that the optimal storage of organs of deceased donors 

is crucial as the viability of the organ must be maintained before transplantation
30

. For this 

reason, the use of normothermic storage rather than hypothermic storage has recently been 

tested along with pulsatile perfusion rather than static perfusion. It has been well documented 

that IRI occurring during the preservation process affects graft function and survival and 

thus, further research into the prevention of IRI will allow for the use of deceased donor 

organs to greater beneficial effect in recipients
5,6,29,31,32

. 
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Figure 1.1 Mechanisms of cell death in renal IRI and transplantation. 

Cell death is activated via various pathways in TEC by pro-inflammatory cytokines and 

cytotoxic lymphocytes (CTL). A) When CTL become activated and reach the target TEC, 

surface expression of Fas-L interacts with Fas receptors on TEC. This activates both 

apoptotic and necroptotic pathways in the TEC depending on the status of caspase-8 within 

the cell. B) When soluble TNFα is released from activated CTL, it can activate tumor 

necrosis factor receptor-1 (TNFR1) on TEC. This initiates both apoptotic and necroptotic 

pathways as well, similar to Fas signaling. C) Activated CTL upregulate production of 

granzyme B within granules which complex with perforin. Upon interaction with the target 

TEC, perforin forms pores in the surface of the TEC allowing for internalization of granzyme 

B. Intracellular granzyme B then activates caspase-3 and induces apoptosis in the target cell. 



7 

 

 

1.3 Allograft rejection 

Allograft rejection occurs as a result of the recipient immune responses which arise from the 

recognition of the transplanted organ as a foreign body. This leads to an immune-mediated 

attack on the foreign tissue resulting in graft dysfunction or loss. Rejection is typically 

determined by clinical measures: 1) symptoms, 2) change in function as measured by serum 

creatinine and 3) histological analysis of biopsy tissue
32,33

. As the ability of the kidney to 

filter solutes, maintain acid-base pH, recover needed ions, minerals, and amino acids, and 

remove waste diminishes, the level of function decreases. Thus, the creatinine levels in the 

blood will accumulate and elevated levels of serum creatinine reflect a loss of renal function. 

Biopsies of recipients are routinely performed post-transplant to monitor any histological 

changes in the graft and are typically read by a transplant pathologist. The Banff score has 

been used to grade the level and type of rejection that is occurring and uses various 

pathological categories such as interstitial infiltration, fibrosis, tubular atrophy, and 

complement deposition
33

. Based on the results of these diagnostic tests, the clinician can then 

recommend an appropriate course of treatment depending on the type and severity of 

rejection. 

Hyperacute/Acute rejection 

Hyperacute rejection is defined by lack of function and loss of the allograft in a very short 

time span, usually hours to days after transplantation and can be life threatening. In the early 

days of transplantation, this was a common occurrence in solid organ transplantation as there 

were no methodologies to properly assess pre-existing antibodies to match donor organs with 

recipients and minimal immunosuppression therapies. As well, early transplants had the 

donor and recipient share little or any human leukocyte antigens (HLA), although this 

continues to be standard despite sophisticated methods of testing. HLA are the human 

version of genes which encode for MHC antigens presented on the surface of all cells. HLA 

mismatching between graft and recipient typically can increase cell mediated rejection and be 

the basis of antibody mediated rejection if alloantigen exposure in the past has resulted in 

pre-sensitization. Cellular mediated rejection can also be due to mismatched MHC class 1 

and class II antigens although current drugs have been very successful in preventing acute 

rejection. Current strategies in HLA compatibility involve the use of both serology and 
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molecular methods such as PCR to identify the HLA profiles of both donor and recipient by 

crossmatching as many HLA groups as possible, as well as testing for and avoiding pre-

existing allo-antibodies that could target the graft
34

. In the kidney, hyperacute rejection is 

antibody mediated as pre-existing antibodies against the donor antigen, potentially due to a 

prior blood transfusion, transplant, or pregnancy, will cause rapid loss of the graft unless 

antibodies are removed
35

. Current clinical practices involve use plasmapheresis, intravenous 

immunoglobulin (IVIG), as well as immunosuppressive drugs that target B cells such as anti-

CD20 depleting antibody (rituximab), cyclosporine, rapamycin, and anti-thymocyte globulin 

(ATG) to prevent hyperacute rejection. They are not always successful and graft loss can be 

rapid and devastating. 

Acute rejection can have a time course similar to hyperacute rejection (i.e. days) however the 

process may occur months to years after transplantation. Acute rejection can be suspected 

clinically and detected through the use of biopsies and functional assays such as serum 

creatinine. Episodes of acute rejection are treated with aggressive immunosuppressive 

therapies and are variably responsive
36

. The formation of acute rejection requires components 

of cellular-mediated rejection in which antigen presenting cells such as dendritic cells present 

donor antigen to T cells. This leads to effector immune responses that can result in CTL 

mediated or even antibody mediated destruction of the graft
35,37

. CTL recognize the foreign 

tissue via T cell receptor interaction with HLA and killing is through the use of various 

cytotoxic mechanisms, including perforin/granzyme and Fas-FasL. These cause death of 

target cells leading to graft dysfunction and loss
38

. In addition, infiltrating immune cells 

release pro-inflammatory cytokines which can either activate CTL or indirectly induce cell 

death through receptor mediated cell death in target cells. Current immunosuppression 

therapies are directed to deal with cellular-mediated and antibody-mediated rejection which 

has marginally increased 10 year survival rates of transplant recipients over the last decade
1,2

. 

However, repeated episodes of acute rejection may lead to the development of chronic 

rejection. 

Chronic rejection 

Chronic rejection occurs later, typically 5-10 years after transplantation and leads to slow 

loss of graft function. Loss of kidney graft function at 10 years post-transplant is invariably 
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associated with the development of fibrosis following rejection, drug toxicity, or recurrence 

of the original disease. Chronic rejection viewed as premature graft failure remains a 

challenge as up to 50% of kidney grafts are lost due to this
2
. Hallmarks of chronic rejection 

include tubular atrophy and fibrosis most prominent in the vascular and tubular 

compartments
32,34

. When fibrosis occurs in blood vessels, it is known as allograft 

vasculopathy, which appears as a narrowing of the blood vessels
32,34

. This can cause a 

decrease in blood flow leading to localized ischemic and inflammatory injury. As with acute 

rejection, both antibody and cellular mediated rejection can both contribute to chronic kidney 

rejection although their individual contributions are difficult to assess
35

. Due to the 

underlying inflammation that occurs throughout chronic rejection, various immune cells and 

damaged tissue upregulate transforming growth factor-beta (TGFβ) which stimulates the 

growth of fibroblasts and promotes fibrosis
35,39

. Fibroblasts secrete numerous extracellular 

matrix proteins including collagen which leads to formation of scarring in the tissue. The 

mechanism in which fibrosis occurs in the kidney during chronic rejection is not well 

understood however its effects are evident due to the eventual loss of graft function. 

Unfortunately, there are currently no strategies to prevent chronic injury or fibrosis and while 

the process can be slowed, generally it is irreversible. Following graft loss, patients must go 

back on dialysis or receive another transplant. 
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1.4 Cell death and kidney transplant injury 

During IRI and transplantation, tissue injury occurs resulting in the death of parenchymal 

cells in the kidney
7,8,10,11,22

. The proximal tubular epithelial cells are particularly sensitive to 

ischemic and inflammatory injury due to their high metabolic activity and cell surface 

membrane polarity. Typically, necrosis of TEC (ATN) is the histological hallmark associated 

with AKI and early transplant injury. Depending on the severity and extent of ATN, this can 

recover with the regeneration of TEC or lead to the progressive development of renal fibrosis 

and ultimately graft failure. Therefore, cell death in the kidney parenchyma has profound 

effects on the outcome of graft function and survival. TEC can undergo various forms of 

programmed and non-programmed cell death due to complex and variable number of factors 

that regulate injury and inflammation during renal transplantation.  

Classification of cell death and nomenclature 

Cell death can be categorized as either programmed or non-programmed. Programmed cell 

death (PCD) refers to a process in which a cell undergoes a stepwise regulated biochemical 

process in response to specific stimuli leading to the death of the cell.  Forms of classical 

PCD include apoptosis, a death pathway regulated by proteolytic activation of caspases, and 

autophagy, a form of cell death that occurs during nutrient deprivation. Conversely, non-

programmed cell death, referred to as necrosis, leads to cell swelling, nuclear dissolution, 

loss of plasma membrane integrity, and cell lysis. However, advancements in the definition 

of new cell death pathways have revealed that various forms of regulated necrosis can occur 

which are collectively referred to as programmed necrosis (PN)
40

. Different forms of 

programmed necrosis can be classified by either their regulators or triggers which can vary 

from pathogens, death inducing ligands, metabolic byproducts, or chemical stress. 

Pyroptosis, a pathogen induced necrosis, is regulated by caspase-1 and activated by the 

formation of the apoptosis-associated speck-like protein containing a caspase-recruitment 

domain (ASC) and NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) 

complex which induces a pro-inflammatory response towards the microbial infection
41

. 

Glutamate toxicity can lead to ferroptosis, an iron dependent form of necrosis, which results 

in lethal accumulation of ROS and activation of poly(ADP-ribose) polymerase 1 (PARP1) 

leading to necrosis
42,43

. Programmed necrosis represents a new direction in the field of cell 
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death research as previously unreported forms of programmed necrosis are being identified in 

diseases which may have effects on propagation of tissue injury and inflammation.  

Apoptosis, a form of physiological programmed cell death, occurs in the kidney as TEC 

renewal occurs frequently. During renal transplantation, the rate of renal parenchymal cell 

death, particularly in epithelial and endothelial cells, outpaces renewal due to AKI and 

inflammation leading to graft dysfunction and decreased survival. Study of cell death 

pathways in renal allografts may reveal a major regulator of transplant injury as parenchymal 

cell death occurs predominantly through via cytotoxic lymphocytes that use Fas-FasL and/or 

perforin/granzyme or death inducing cytokines such as TNFα. Previous studies in mouse 

renal IRI models have reported that inhibition of caspase dependent apoptosis via shRNA 

targeted towards Fas and caspase-8 effectively reduced kidney injury
9
. In addition, inhibition 

of TNFα and its receptor TNFR1 was able to attenuate kidney injury in a mouse model of 

renal IRI which suggests a role for receptor mediated cell death in kidney inflammatory 

injury
44

. Analysis of human renal allograft biopsies undergoing acute rejection confirm that 

TNFα, TNFR1, and TNFR2 are expressed on renal parenchymal cells
45

. Expression levels of 

perforin and granzyme B were also upregulated in renal allografts undergoing acute rejection 

compared to non-rejection controls
46

. Furthermore, a form of programmed necrosis, termed 

necroptosis, may also be a regulator of allograft injury as murine studies in renal IRI and 

nephrotoxicity have revealed that inhibition of necroptosis attenuated kidney injury
47,48

. 

Together these studies support the hypothesis that programmed cell death, particularly 

apoptosis and necroptosis, may propagate inflammatory mediated injury during renal 

transplantation.  

Cell death and induction by cytotoxic lymphocytes 

During renal IRI and transplantation, graft infiltrating immune cells mediate tissue injury and 

graft dysfunction through cytotoxic activity largely directed towards kidney parenchymal 

cells, and in particular TEC and endothelial cells. Cytotoxicity can be mediated by a variety 

of immune cells including CD4
+
 T cells, CD8

+ 
T cells, NK cells, and other mononuclear cells 

through cell-to-cell contact as well as by release of mediators such as TNFα that bind to cell 

death receptors
35,37

. Activated cytotoxic cells have been shown to upregulate the serine 

protease, granzyme B, which forms in granules and complexes with perforin
49,50

. Upon 
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contact with the target cell, activated CTL secrete perforin/granzyme B which can enter 

target cells through perforin formed pores to activate caspase-3, leading to apoptosis (Figure 

1.1). To prevent self-directed apoptosis, cytotoxic cells and other cells express the serpin 

protease inhibitor-9 (PI-9) to block granzyme B action
50–52

. PI-9, and its murine homolog 

serine protease inhibitor-6 (SPI-6), inhibits granzyme B activity by binding to it and through 

protease cleavage, causes irreversible binding between PI-9 and granzyme B
53

. Recent 

studies have identified the expression of PI-9 in renal allografts with subclinical rejection 

suggesting that the kidney may potentially be capable of self-regulating tissue injury by 

inhibiting cytotoxic attack from infiltrating cells
54,55

. Upregulation of PI-9/SPI-6 in TEC may 

thus represent a potential therapeutic strategy for limiting cytotoxicity in renal transplantation 

and may improve long term graft function and survival.  

Apoptosis 

Apoptosis is a form of programmed cell death occurring in almost all cell types. Cells 

undergoing apoptosis will express key morphological features including condensation and 

fragmentation of DNA, cell shrinkage, and membrane blebbing resulting ultimately in the 

death of the cell
56

. This phenotype of death is triggered by molecular events within the cell 

through the activation of a family of catalytic proteases known as caspases. Caspases can be 

either initiator caspases (e.g. caspase-8, caspase-9), which activate other caspases, or effector 

caspases (e.g. caspase-3, caspase-6), which cleave substrates that activate the apoptotic 

pathway. This series of protease activations is known as the caspase cascade
56

. Apoptotic 

cells typically undergo the following morphological changes: 

1) Cell shrinkage due to changes in cytoskeleton. 

2) Chromatin condenses in a process known as pyknosis 

3) Degradation of the nucleus resulting in DNA fragmentation known as 

karyorrhexis. 

4) Cell membrane blebbing leads to breakdown of the cell into vesicles known as 

apoptotic bodies. 

Induction of the apoptosis can occur through the intrinsic or extrinsic pathway as a result of 

cellular stress. The intrinisic apoptosis pathway is primarily controlled by mitochondrial 

membrane permeability through a family of apoptosis regulators known as Bcl-2. These 
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proteins control activation of mitochondrial permeability transition pores which allows for 

leakage of intra-mitochondrial proteins into the cytoplasm
48

. When mitochondria become 

dysfunctional and leak apoptosis inducing proteins such as cytochrome c and small 

mitochondria derived activator of caspases (SMAC), these proteins initiate apoptosis either 

by deactivating inhibitors of apoptosis proteins (IAP) allowing for caspase activation or they 

can directly induce apoptosis by binding to various such as apoptosis protease activating 

factor-1 (Apaf-1)
57

. Released cytochrome c complexes with Apaf-1 and ATP, resulting in the 

formation of the apoptosome, which in turn activates caspase-9 leading to apoptosis. 

In contrast, extrinsic apoptosis occurs when an extracellular signal activates the programmed 

death pathway through a variety of cell surface receptors linked to intracellular adaptor 

proteins (Figure 1.2). These receptors are collectively known as death receptors and include 

members of the tumor necrosis factor receptor (TNFR) superfamily including TNFR1 which 

binds to TNFα and Fas (CD95) which binds to Fas-ligand (Fas-L, CD95L). Upon activation 

of the death receptor, adaptor proteins with death domains (DD) such as Fas associated death 

domain (FADD) forms a complex with caspase-8 collectively known as the death inducing 

signal complex (DISC) to initiate the caspase cascade leading to apoptosis
58

. Another method 

of caspase activation occurs when cytotoxic cells attach to target cells and granzyme B is 

released into the target cell which then activates caspase-8 and 3 to initiate apoptosis
49

. 

Caspase-8 activity is tightly regulated as its importance to cellular function is highlighted by 

embryonic lethality seen in caspase-8
-/-

 mice
59

. One major regulator of apoptosis in TEC is 

cellular FADD-like IL-1β-converting enzyme (FLICE)-inhibitor protein (c-FLIP) which 

prevents catalytic activation of caspase-8 by binding to pro-caspase-8 and death domain 

complex
58

. 

Measurement of apoptotic death in vitro and in vivo has been well characterized with a 

variety of methodologies. Apoptotic cells in vitro or in vivo can be visually confirmed by 

microscopy using the aforementioned morphological features of apoptosis including cell 

shrinkage and DNA condensation. In addition, the inversion of the plasma membrane during 

apoptosis can also be detected via surface exposure of phosphatidylserine (PS) using 

Annexin-V labeling and analyses by flow cytometry
60

. Other molecular events such as the 

activation of caspases by protease activity can also be detected via immunoblotting to detect 

caspased related apoptotic death. However, as many modalities of cell death share similar 
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molecular characteristics, use of cell death inhibitors can be used for more definitive 

determinations of forms of cell death. Apoptosis can also be inhibited by genetic deletion 

embryonically or via caspase-targeted siRNA
9,61,62

 as well as by small molecule caspase 

inhibitors such as carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone 

(zVAD-fmk), a pan-caspase inhibitor
47,63

, and Z-Ile-Glu(OMe)-Thr-Asp(OMe)-

fluoromethylketone (zIETD-fmk), a caspase-8 inhibitor. In vivo studies of apoptosis in tissue 

and also in cells use terminal deoxynucletotidyl transferase dUTP nick end labeling 

(TUNEL) to detect DNA fragmentation. Immunostaining of tissue sections also allow for the 

detection of caspase activation in vivo to visualize apoptotic death. 

Previous studies have revealed the importance of apoptosis in both IRI and transplant injury 

in the kidney. In vitro studies using caspase inhibition have demonstrated that TEC can 

undergo receptor mediated apoptosis by various ligands including TNFα and Fas-L
9,22,47

. 

Apoptotic TEC by TUNEL can be observed in cortical regions of the kidney after IRI and 

transplantation along with acute tubular necrosis
10,38,64,65

. Studies using siRNA as well as 

small molecule inhibitors targeted against caspase-3 and 8 in the kidney have been shown to 

be protective in renal IRI but additional studies are required to determine their efficacy in a 

transplant setting
9,61,62

. Therefore, inhibition of apoptosis in the kidney appears to protect 

against AKI in animal models and thus could potentially represent a novel target for the 

prevention of transplant injury and rejection.  

Necroptosis 

Recent studies into new cell death pathways have revealed a form of programmed necrosis 

known as necroptosis (Figure 1.2). Initial studies observed that some cells exposed to TNFα 

treated cells in vitro underwent a form of programmed cell death similar to necrosis rather 

than apoptosis when in the presence of caspase-8 inhibition
58,66–68

. Although apoptosis was 

inhibited in these cells, necrotic type death was clearly detected by flow cytometry using PI 

labeling and electron microscopy. This form of necrosis appeared to be negatively regulated 

by caspase-8 activity. Further studies revealed that two key checkpoint molecules were 

involved in the activation of the necroptotic pathway, namely receptor interacting protein 

kinase-1 and 3 (RIPK1/3). Inhibition of either protein prevented necroptosis as it is now 

referred to
22,58,66,69–71

. During receptor mediated cell death, caspase-8 activity usually allows 
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for apoptosis to occur. However, in the absence of caspase-8 activity, RIPK1 and RIPK3 are 

able to form a complex through RIPK homotypic interaction motifs (RHIM) and these serine 

kinases activate each other by phosphorylation which leads to necroptosis. Phenotypically 

and biochemically, cells undergoing necroptosis are identical to those undergoing 

spontaneous necrosis characterized by loss of cell membrane integrity and release of 

intracellular contents
72

. Preliminary studies have shown that the phenotype of death observed 

in necroptotic cells is mediated by a downstream regulator activated by RIPK3, termed 

mixed lineage kinase domain-like (MLKL). MLKL has been shown to form trimeric 

structures on the inner plasma membrane to induce Ca
2+

 influx and death. However, more 

research must be done to fully elucidate the mechanism
73–75

. 

Physiologically, the role of necroptosis appears to have evolved as a ‘fail-safe’ response 

during infection and immunity
76,77

. Upon infection by micro-organisms that attempt to 

silence caspase-8 and apoptosis, mammalian cells have adapted the ability to trigger 

necroptosis in order to elicit an even greater immune response to the infectious agent. The 

release of intracellular contents such as cellular death associated molecular pattern (CDAMP) 

molecules elicits much greater inflammation as compared to apoptosis which does not release 

CDAMP and results in minimal inflammatory responses
78

. This is supported by the evolution 

of M45 peptide expression, an inhibitor of RIPK3 and necroptosis, by cytomegalovirus 

(CMV) which allows them to evade host immune responses more efficiently
70,79

. 

Interestingly and keeping with the primary role of caspase-8 as a suppressor of necroptosis, 

caspase-8
-/-

 mice, which are embryonic lethal, can be salvaged from lethality when crossed 

with RIPK3
-/-

 mice. The resulting double knockout progeny are viable indicating that loss of 

caspase-8 regulation of RIPK3 mediated necroptosis but can be rescued by RIPK3 deletion
66

. 

Necroptosis was also observed in vivo in various inflammatory disease models in which 

caspase-8 activity was inhibited through genetic manipulation or chemical inhibition
67,80–84

. 

In this thesis, the roles of caspase-8 and RIPK1/3 have in propagating injury and 

inflammation in renal IRI and kidney transplantation is clarified.  

Although necroptosis has only recently been characterized, several methods have been 

developed to distinguish this form of cell death in vitro and in vivo
72

. As necroptosis is a 

form of programmed necrosis, it shares a similar if not identical morphology to non-

programmed necrosis, which can be observed using electron microscopy. The necroptotic 
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phenotype thus includes nuclear shrinkage and cell swelling. The loss of cell membrane 

integrity features prominently in necroptosis and can be identified through the use of 

intracellular stains and flow cytometry including propidium iodide (PI), an intercalating 

fluorescent molecule which can bind with DNA following the loss of cell membrane 

integrity
85

. Intracellular contents can leak out of necroptotic cells into the extracellular space 

allowing for the detection of lactate dehydrogenase (LDH) and CDAMPs including high 

mobility group box-1 (HMGB1) and various heat shock proteins (HSP)
72,78,85,86

. As RIPK1/3 

are key regulators of necroptosis, detection of phophorylated RIPK1/3 by immunoblot also 

indicate activation of the necroptotic pathway. As often with the case with apoptosis, 

necroptosis can be most definitively identified through the use of specific inhibitors or by 

siRNA or genetic knockouts targeted towards RIPK1/3 or MLKL which have been shown to 

block necroptosis
66,73

. Necrostatins, a class of small molecule inhibitors targeted towards 

RIPK1, have also been effective in inhibiting necroptosis although this class of small 

molecules may bind to other targets and RIPK1 also has a role in apoptosis
82,87

. A novel in 

vivo technique for detection of necrosis in tissue which we have adapted to demonstrate 

necroptosis in this thesis
88

. Briefly, ethidium homodimer (ETH), a fluorescent intercalating 

agent, is perfused into the solid organ allowing for labeling of necrotic tissue in a similar 

fashion to PI labeling. This allows for the visualization and importantly for the quantification 

of tissue necrosis using fluorescent microscopy. 

It is currently unknown what effect, if any, apoptosis and necroptosis inhibition have on 

clinical renal transplantation outcomes as there is complex biology that is affected by 

immunosuppression that was not used in the animal studies in this thesis. However, key 

studies in various acute and severe injury models including pancreatitis and toxic shock 

syndrome have demonstrated that necroptosis has a powerful capacity to propagate 

inflammatory injury and that this can be targeted
81,83

. As well, necroptosis has been identified 

to play a role in renal IRI as necrostatin-1 (Nec-1) was able to inhibit AKI in murine 

studies
47

. In summary, necroptosis is highly correlated with inflammatory injury and is 

involved in the progression of transplant injury, which is a chronic inflammatory mediated 

process. The availability of new therapeutics offers great potential benefit to transplant 

patients but must be based on biological insight and mechanistic understanding as targeted 

inhibition of specific components of cell death pathways may have unintentional 
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consequences. It may be that targeting this newly recognized form of programmed cell 

necrosis may be important in regulating renal graft function and improving long term 

survival. 
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Figure 1.2 Overview of receptor mediated apoptosis and necroptosis cell death 

pathways in TEC. 

A) Extracellular death receptor ligands such as TNFα and Fas-L bind to their death receptors 

on the surface of TEC (TNFR1 and Fas resepectively) as a result of cytokine secretion or 

cell-to-cell activation. Activation of the death receptors results in recruitment of death 

domains (TRADD, FADD) allowing for the formation of death complexes. B) Formation of 

Complex I consisting of TRADD, TRAF2/5. cIAP, and ubiquitinated (Ub) RIPK1 results in 

activation of the NF-κB pathway and upregulation of pro-survival factors. Ubiquitination of 

RIPK1 is regulated by NF-κB essential modulator (NEMO) while de-ubiquitination is 

regulated by cylindromatosis (CYLD) and A20. When RIPK1 is de-ubiquitinated, it allows 

for the formation of Complex II and III, leading to cell death. C) RIPK1, FADD, and 

caspase-8 bind together upon TNFR1 signaling to form Complex II. This leads to activation 

of the caspase cascade leading to apoptosis. Caspase-8 activity can be inhibited by various 

regulators of cell death as well as small molecule inhibitors such as carbobenzoxy-valyl-

alanyl-aspartyl-[O-methyl]-fluoromethylketone (zVAD-fmk). When caspase-8 is inhibited, 

Complex III can form leading to necroptosis. D) Inhibition of caspase-8 allows for FADD, 

RIPK1, and RIPK3 to complex, leading to the activation of mixed lineage kinase domain-like 

(MLKL). This results in activation of the necroptosis pathway which is phenotypically 

similar to necrosis leading to loss of cell membrane integrity and release of intracellular 

contents to the extracellular space. Inhibition of RIPK1 by necrostatin-1 (Nec-1) or RIPK3 

prevents necroptosis.  
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1.5 Cell death results in the release of pro-inflammatory cellular 

death associated molecular patterns (CDAMPs) 

The current understanding of infection and immunity has adopted the model of ‘danger 

signaling’ as the framework for immune surveillance and activation
89

. During infection, 

microorganisms can activate immune responses due to antigens present on their cell surfaces 

known as pathogen associated molecular pattern (PAMP) molecules. PAMPs are detected by 

various extracellular and intracellular receptors including Toll-like receptors (TLR) which 

are found on a variety of cell types including immune cells. Activation of TLR signaling by 

PAMPs results in the upregulation of pro-inflammatory responses in the form of cytokines 

which induce inflammatory responses towards the infectious agent in order to eradicate the 

pathogen. The principle of danger signaling is similar to that of PAMP signaling except that 

during necrotic cell death as a result of infection or injury, cellular death associated 

molecular pattern (CDAMP) molecules are released from cells
90

. CDAMPs also signal 

primarily through TLRs and can also upregulate the pro-inflammatory response during non-

infectious injury leading to ‘sterile’ inflammation
17

. Necrosis thus acts as a ‘beacon’ for 

immune activation as unexpected or spontaneous death is typically due to infection or disease 

whereas apoptosis is a form of programmed death that is a part of normal physiological 

processes and therefore would not warrant an exaggerated immune response
91,92

. CDAMP 

molecules are typically proteins that reside ubiquitously in all cell types, where they carry out 

normal functions without immune responses, unless released into the extracellular space due 

to loss of plasma membrane integrity during necrotic cell death. Among the identified 

CDAMP molecules, high mobility group box-1 (HMGB1) and its role in immune activation 

and inflammation has been the most extensively studied. 

High mobility group box-1 (HMGB1) 

HMGB1 is a highly conserved protein found in all eukaryotic cells found primarily in the 

nucleus bound to chromatin and is involved in various DNA processes such as 

transcription
93

. The protein is comprised of Box A (amino acids (aa) 9-79), Box B (aa 88-

162), and an acidic tail. Typically, HMGB1 is non-acetylated in order to maintain its 

presence in the nucleus however when acetylation occurs on the lysine residues located on 

the two nuclear localization signal (NLS) regions (aa 28-44, 179-185), HMGB1 disassociates 
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from DNA and translocates into the cytoplasm
94

. This post-translational modification can 

occur under pro-inflammatory conditions and can result in either secretion of HMGB1 or 

passive release due to necrosis
86

. HMGB1 can be secreted by certain activated immune cells 

such as macrophages
95

 and dendritic cells
96

 to act as a pro-inflammatory mediator in its 

extracellular form, while all cells can release HMGB1 when undergoing necrosis/necroptosis. 

Additional post-translational modifications can occur during cell death which affects the 

immunogenicity of HMGB1. For example, recent studies have demonstrated that oxidation 

of HMGB1 at cysteine resides (aa 23, 45, 106) can occur during pro-inflammatory conditions 

leading to cell death, likely due to the accumulation of reactive oxygen species
92

. The 

oxidized form of HMGB1 loses its cytokine-like activity and is non-immunogenic and in 

some cases, even promotes tolerance. In contrast, HMGB1 in a reduced state can be pro-

inflammatory as either a chemoattractant or promoter of cytokine production
97

. 

HMGB1 is known to bind to various innate immune receptors including receptor for 

advanced glycosylation endproducts (AGE, RAGE), TLR2, and TLR4
98,99

. In some cases, 

HMGB1 in complexed with chromatin can also bind to TLR9 as well
100

. Specifically, the 

Box B region acts as the primary binding site for TLR4 and some studies have suggested that 

Cys-106 located in Box B may play a key role in HMGB1 and TLR4 interaction
97

. Many 

studies have highlighted the role of HMGB1 in various inflammatory diseases including 

renal IRI
101

. Neutralizing anti-HMGB1 antibodies during renal IRI in a murine model 

showed an inhibition of pro-inflammatory responses as well as improved kidney function 

although the amount of antibody needed and the degree of inhibition would suggest that this 

is not clinically feasible
101

. In addition, mouse chimera studies using TLR4
-/-

 bone marrow 

transplants were resistant to renal IRI, supporting the importance of HMGB1/TLR4 

interactions in AKI
16

. Interestingly, these studies showed that the greater benefit in IRI was 

with the loss of TLR4 in kidney cells rather than infiltrative cells. Thus, limiting extracellular 

HMGB1or limiting its interaction with kidney cells presents itself as an important target for 

the prevention of AKI and potentially renal transplant injury and rejection. 

Other CDAMP molecules and signaling pathways 

In addition to HMGB1, other CDAMP molecules have been associated with the innate 

immune response and inflammatory injury. Heat shock proteins (HSP) are protein folding 
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chaperones that are ubiquitously expressed and can be released upon necrotic cell death
102

. 

Of the HSP family of proteins, HSP60 and 70 are the best described as TLR signaling 

ligands, particularly TLR2 and TLR4
103,104

. In addition to its released pro-inflammatory 

stimulus form as a CDAMP, HSP70 can uniquely act as an antigen presenting molecule. 

Through interaction with antigen presenting cells (APC), HSP70 complexed with antigen 

through its chaperone function binds to CD91 resulting in immune activation
105

. Another 

potent CDAMP that is relevant to renal inflammatory injury is uric acid, a metabolic 

endproduct, due to the kidney’s primary function of filtering out metabolic waste (and when 

dysfunctional can lead to accumulation of uric acid leading to kidney stones)
106

. When uric 

acid interacts with TLR2 or TLR4 on the surface of TEC, upregulation of various pro-

inflammatory cytokines can be detected in TEC leading to inflammation
107

. In addition to 

released intracellular proteins, extracellular matrix proteins can also act as CDAMP 

molecules as well. During inflammatory injury, proteolytic damage to the extracellular 

matrix can occur caused by enzymes released by dying cells leading to the formation of 

protein fragments including hyaluronan, heparan sulfate, and biglycan
106

. These peptides can 

also bind to TLR2 and TLR4 leading to pro-inflammatory responses through Nfκb signaling. 

Emerging studies have suggested that other inflammatory pathways such as the NLRP3- 

mediated inflammasome pathway, which is typically activated when pathogens are detected, 

can be involved with CDAMP signaling when extracellular ATP released from necrotic is 

detected
108

. Further studies for delineating the mechanisms behind CDAMP-mediated 

inflammation are still required to identify the different biological functions of various 

CDAMP molecules and their contributions to inflammatory kidney injury. While the 

limitation of the effect of CDAMP within the kidneys seems attractive, there are currently no 

feasible therapeutic agents that are available that can do so effectively. It may be that the 

most effective approach in limiting inflammatory injury may include a combination of 

limiting apoptosis death significant enough to cause dysfunction, preventing necrotic cell 

death that release inflammatory CDAMP, and blocking the action of CDAMP that are 

released. 
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1.6 Aims and objectives 

The overall aim of our research is to determine the impact of altering renal cell death on graft 

inflammation and its effects on overall kidney allograft function and survival. We 

hypothesize that endogenous factors in the kidney can regulate inflammatory cell death that 

will affect long term outcomes on graft function and survival by altering immune responses. 

Aim 1 – Determine if renal allograft expression of SPI-6 can prolong graft function and 

survival. 

Objective 1.1 

Characterize the expression of SPI-6 in TEC in vitro under pro-inflammatory conditions and 

in vivo after renal transplantation. 

Objective 1.2 

Determine if SPI-6 expression in TEC provides resistance against cytotoxic lymphocytes. 

Objective 1.3 

Investigate the effects of SPI-6 expression in donor renal allograft on graft function and 

survival after kidney transplantation. 

  

Aim 2 – Determine if inhibition of necroptosis in the kidney during renal IRI and 

transplantation is beneficial to renal function and graft survival. 

Objective 2.1 

Characterize expression of RIPK3 in TEC in vitro and kidney tissue in vivo. 

Objective 2.2 

Induce and measure necroptosis in TEC in vitro using small molecule inhibitors and 

genetically modified knockouts. 
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Objective 2.3 

Determine if inhibition of necroptosis by loss of RIPK3 protects against renal IRI. 

Objective 2.4 

Determine if inhibition of necroptosis in the donor graft by loss of RIPK3 preserves graft 

function and prolongs survival after renal transplantation. 

 

Aim 3 – Investigate the therapeutic potential of glycyrrhizic acid (GZA) on HMGB1 

mediated inflammation and injury during renal IRI. 

Objective 3.1 

Characterize the release of HMGB1 after hypoxia induced TEC death. 

Objective 3.2 

Determine the effects of GZA on TEC death and production of pro-inflammatory molecules 

after hypoxia. 

Objective 3.3 

Investigate the effect of GZA therapy on renal function and tissue injury after renal IRI.  
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2.1 Abstract 

Background: Protease inhibitor 9 (PI-9) is an intracellular serpin that specifically inhibits 

granzyme B, a cytotoxic serine protease found in the cytosolic granules of cytotoxic T 

lymphocytes and natural killer cells. Enhanced cortical expression of PI-9 has been observed 

in kidney allografts with subclinical rejection, suggesting tubular epithelial cell (TEC) 

expression of this protein may have a protective role and attenuate overt allograft rejection.  

Methods and Results: We demonstrate TEC express SPI-6 protein, the murine homolog of 

PI-9, basally with a modest increase following cytokine exposure. TEC expression of SPI-6 

blocks granzyme B mediated death as TEC from SPI-6 null kidneys have increased 

susceptibility to cytotoxic CD8+ cells in vitro. The role of SPI-6 was tested in a mouse 

kidney transplant model using SPI-6 null or wild type donor kidneys (H-2
b
) into 

nephrectomized recipients (H-2
d
). SPI-6 null kidney recipients had reduced renal function at 

day 8 post-transplant compared to controls (creatinine: 113±23 vs. 28±3 µmol/L, n=5, 

P<0.01) consistent with observed tubular injury and extensive mononuclear cell infiltration. 

Loss of donor kidney SPI-6 shortened graft survival time (20±19 vs. 66±33 days, n= 8-10, 

p<0.001).  

Conclusions: Our data shows for the first time that resistance of kidney TEC to cytotoxic T 

cell granzyme B induced death in vitro and in vivo is mediated by the expression of SPI-6. 

We suggest SPI-6 is an important endogenous mechanism to prevent rejection injury from 

perforin/granzyme B effectors and enhanced PI-9/SPI-6 expression by TEC may provide 

protection from diverse forms of inflammatory kidney injury and promote long term allograft 

survival. 
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2.2 Introduction 

Protease inhibitor 9 (PI-9) is an intracellular serpin that specifically binds and inhibits 

granzyme B, a 29-kDa aspartic acid–directed protease,
 

that is contained within the 

specialized secretory granules
 
of cytotoxic T lymphocytes (CTLs) and natural killer (NK) 

cells (1). PI-9 is expressed by CTL CD8+ T, CD4+ T, NK, Langerhan and dendritic cells 

(DC), as well as other mononuclear cells (2-6). Upon activation, CTL and NK cells 

synthesize granzyme B within granules which can “leak out” into cytoplasm, thus threatening 

‘self’ viability through cleavage of caspases and initiation of apoptosis (2, 4-6). Activated 

effector cells proceed to induce apoptosis in target cells through release of perforin/granzyme 

B via surface pores allowing internalized granzyme B cleavage of intracellular caspases. As a 

mechanism of self-preservation, expression of PI-9 concurrently increases with granzyme B 

synthesis but is located prominently near granules where it can bind irreversibly to “leaked” 

granzyme B to protect cells from “misdirected” lethal granzyme B effects (2).  

The role of PI-9 in renal transplantation has not been clearly defined. Kidney rejection is 

characterized histologically by CD4+ and CD8+ T, NK, B, and other mononuclear cell 

infiltrates. The invasion of these effectors into the tubular epithelium compartment (tubulitis) 

remains a central feature of cellular rejection (7), and intuitively contributes to progressive 

tubular injury and death. However, the relationship of infiltrate and severity of rejection is 

not entirely predictable due to the participation of multiple effector mechanisms utilized by 

different cell types (granzyme B, FasL, cytokines) as well as the expression of endogenous 

mechanisms of protection within TEC and other target cells. Thus, the presence of infiltrate 

in kidney allografts may not always represent clinically apparent rejection. Indeed, kidney 

allografts classified as having "subclinical rejection" have interstitial infiltration but lack a 

clinically apparent change in renal function (8). Interestingly in this regard, PI-9 has been 

observed to be more highly expressed in renal allografts undergoing subclinical rejection 

than those acutely rejecting grafts (8). As well, PI-9 mRNA expression in urinary cells of 

kidney transplant recipients undergoing acute rejection was higher compared to non-rejection 

controls (9). Therefore, kidney cells appear to have a capacity to express and regulate PI-9, 

which might afford protection against cytotoxic cell attack. Intriguingly, the progression 

from subclinical to clinically apparent rejection may be influenced both by the ability of 
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kidney cells to express PI-9 and the aggressiveness of infiltrating cytotoxic effector cells. 

This concept may provide insight into allograft rejection injury as there have been disparate 

results regarding the role of effector T cell expression of perforin/granzyme in mediating 

kidney allograft rejection. In previous studies, the absence of perforin/granzyme in recipient 

effector cells did not prevent tubular injury or rejection but these studies utilized ‘non-life-

supporting’ murine renal transplant models and multiple effector mechanisms apart from 

perforin/granzyme provide redundant pathways of rejection in vivo (10, 11). Moreover, 

transcript levels of perforin and granzyme B were upregulated in grafts after transplantation 

which supports a potential role for perforin/granzyme mediated cytotoxicity (10). 

Kidney tubular epithelial cells (TEC) represent the predominant parenchymal cell type within 

the renal cortex and as noted, are a primary target for cell mediated rejection. It has been 

previously observed that TEC exhibit resistance to effector cell mediated death, likely related 

to endogenous mechanisms of protection including regulated expression of mitochondrial 

proteins, c-FLIPs, IAPs, and TGF-β (12-16). As well the expression of members of the serpin 

family with TLR-4 and cytokine activation (17-22) suggests that the serpin PI-9 might 

similarly have a protective role during diverse forms of inflammatory renal injury, including 

ischemia reperfusion injury (IRI) and rejection (23-26). Although enhanced PI-9 expression 

has been observed in cortical areas of infiltrates in human kidney transplants undergoing 

rejection, it has not been unequivocally demonstrated that expression of PI-9 is restricted to 

infiltrating cells or to the TEC under effector attack. In this study, we demonstrate that renal 

TEC can express and upregulate SPI-6 in response to inflammation. Furthermore, the loss of 

SPI-6 in TEC increased susceptibility to granzyme B mediated death by cytotoxic cells in 

vitro. Most importantly the protective role of SPI-6 in the donor organ was clearly 

demonstrated during kidney transplantation with loss of SPI-6 resulting in increased tubular 

injury, reduced graft function, and shorter survival. These results may be of importance in 

considering therapeutic strategies in clinical renal transplantation. 
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2.3 Materials and Methods 

Animals 

B6, Balb/c, GranzymeA/B
-/-

 (Grz
-/-

) mice, and SPI-6
-/-

 mice were obtained from Jackson 

Laboratories (Bar Harbor, ME, USA) and maintained in the animal facility at Western 

University. Animal experiments were conducted in accordance with the Canadian Council on 

Animal Care guidelines under protocols approved by Western University. 

Tubular epithelial cell (TEC) culture  

TEC were derived from B6 and SPI-6
-/-

 mouse kidney cortex and characterized by typical 

cobblestone appearance of renal epithelial cells and expression of TEC markers (cytokeratin, 

CD13, CD26, and E-cadherin). 

Real time PCR  

cDNA was generated from isolated RNA from TEC and quantitative PCR was performed 

using the Brilliant SYBR Green QPCR Master Mix kit (Bio-Rad) and detected using the 

Mx4000 system (Stratagene). Primers for SPI-6: 5’-CCTCAGCAAGGTGGAAAACAATC-

3’ and 5’-TGAAGAAA AGG AAGGGGTGG TC-3’. -actin was used as the endogenous 

control. The normalized delta threshold cycle value and relative
 
expression levels (2

∆∆Ct
) 

were calculated according to the manufacturer’s protocol.  

Immunoblotting  

Total protein isolated from TEC or kidney tissue was probed with anti-SPI-6 (Abcam) or 

anti-β-actin (Sigma). Immunoblots were scanned and analyzed using GS 700 Imaging 

densitometry scanner (Bio-Rad).  

Cytotoxicity assay 

CD8+ T cells were isolated from wild type or Grz
-/-

 mice. TEC (H-2
b
) and CD8

+
 T cells (H-

2
d
) were activated overnight with IFNγ and IL-2 respectively. TEC were incubated with 

chromium
51

 (Perkin Elmer) and co-cultured with CD8
+
 T cells for 4 hours. Supernatant was 

collected and analyzed for gamma radiation by Wallac Wizard 1470 Automatic Gamma 
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Counter (GMI). Maximal TEC death was determined by the addition of 5% Triton X-100 to 

TEC and percentage of cell lysis was calculated as sample cpm / maximal death cpm. 

Allogeneic (H-2
b
 to H-2

d
) kidney transplantation  

Male Balb/c recipient mice were bilaterally nephrectomized and transplanted with kidneys 

from male B6 or SPI-6
-/-

 mice in a single procedure (13). Rejection was determined by 

clinical deterioration as defined by standard protocols in our institute including altered 

behavior, failure to feed, and weight loss of >15%. Mice were euthanized according to pre-

defined animal care protocols. Serum creatinine was determined at time of sacrifice to 

establish graft dysfunction. 

Histology and immunohistochemistry 

Kidney sections were stained with H&E and scored in a double-blinded fashion by 

pathologist. Criteria for kidney injury included tubular necrosis, mononuclear cell 

infiltration, tubular casts, and glomerular necrosis. Kidney sections were labeled with either 

anti-SPI-6 (Abcam), anti-CD3 (Dako), or anti-Granzyme B antibody (Abcam) using a 

standard protocol. Quantification of positively labeled cells was scored in a blinded fashion 

by point-counting of five random fields. Results are presented as mean ± SEM. Cell death 

was determined by TUNEL assay (Calbiochem).  

Statistical analysis 

Data is presented as mean ± standard error of the mean (SEM). One-way ANOVA testing 

was used to compare between multiple groups of data and unpaired t-tests were used to test 

two group data. A Log rank test was used to test significant differences in recipient survival 

after kidney transplantation. Statistical significance was set at p< 0.05. 
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2.4 Results 

SPI-6 expression in TEC is upregulated by pro-inflammatory cytokines  

The expression of SPI-6 by TEC in response to pro-inflammatory cytokines was tested in 

vitro using TNFα and IFNγ. These cytokines are detected in renal IRI and may also play a 

role allograft injury (17-19). SPI-6 mRNA and protein levels in TECs were analyzed after 24 

hours of treatment. While there was an increase in mRNA with TNFα and IFNγ (Figure 1A), 

SPI-6 protein was present in media controls and expression was modestly increased (Figure 

1B, 1C). The concentrations of cytokines used were selected to augment expression of 

proteins but minimize TEC death as we have previously reported. However incubation of 

TEC with increasing concentrations of IFNγ (10-250 ng/ml) induced greater expression of 

SPI-6 (Figure 1D). These data demonstrate for the first time that murine TEC express SPI-6 

and are consistent with previous reports that demonstrated expression of PI-9 in the tubular 

cell compartment of human kidney transplant sections in vivo (8). Importantly, these data 

suggest that while TEC can upregulate SPI-6 under pro-inflammatory conditions, constitutive 

expression of SPI-6 suggests an important rapid function in the overall protection of TEC.   
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Figure 1. SPI-6 is upregulated in renal TEC in response to pro-inflammatory cytokines.  

SPI-6 expression in renal TEC was analyzed 24 hours after treatment with IFN-γ (10ng/mL), 

TNF-α (10ng/mL), and LPS (1µg/ml). A) Total RNA was isolated from renal TEC after 

treatment and expression of SPI-6 mRNA was analyzed by Q-PCR. β-actin was used as an 

internal control. (*:p<0.05, n=3) B,C,D) Total cell lysate was isolated from renal TEC after 

treatment and expression of SPI-6 protein was detected by immunoblot. Bands were 

quantified by densitometry with β-actin as an internal control and compared to non- treated 

groups (NT). (*:p<0.05, n=3) 
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SPI-6 is an important mechanism to limit granzyme B mediated death 

Previous studies have suggested that SPI-6 expression can protect CTL, NK cells, and DC 

from granzyme B mediated cell death during effector cell activation (2, 4-6). Therefore, we 

investigated whether SPI-6 expression by TEC can inhibit granzyme B mediated death. 

Balb/c CD8+ T cells were allo-activated by exposure to B6 splenocytes in IL-2 containing 

media and then co-cultured with either wild type or SPI-6
-/-

 TEC. TEC were treated by IFN-γ 

(10ng/mL) to increase expression of SPI-6 and MHC without direct toxic effect on TEC. 

TEC death was measured used a chromium (Cr
51

) release assay. Triton X-100 was added to 

TEC as a positive control for complete counts. CD8+ T cells were able to induce dose 

dependent (E:T) cell death in both wild type and SPI-6
-/-

 TEC at 3:1 and 9:1 ratios of  CD8
+
 

T cell: TEC (Figure 2). However, wild type TEC clearly showed greater resistant to CD8+ T 

cell mediated cytotoxicity compared to SPI6
-/-

 TEC. This suggests that expression of SPI-6 is 

an important mechanism to limit granzyme B mediated death. However, loss of SPI-6 in TEC 

alone was not sufficient to provide complete protection from CD8+ mediated cytotoxicity as 

there are alternative mechanisms of cell death including granzyme A and Fas-FasL. Indeed 

the greatest reduction of TEC cytotoxicity was noted with loss of effector cell 

perforin/granzyme. 

To confirm granzyme mediated cell death was a primary mechanism of TEC death in this 

assay, we utilized granzymeA/B
-/-

 (Grz
-/-

) CD8+ T cells with TEC in co-culture. Grz
-/-

 CD8+ 

T cells had decreased cytotoxicity as compared to wild type CD8+ T cells supporting that 

‘granzyme’ mediated cytotoxicity is a primary mechanism by which CD8+ T cells can kill 

TEC, at least in vitro (Figure 2). Collectively, these data demonstrate that expression of SPI-

6 by TEC represents a potent protective response that allows TEC to resist granzyme B 

killing. Enhanced expression of SPI-6 by kidney parenchymal cells beyond its constitutive 

levels may be beneficial during inflammation to minimize injury and maintain kidney 

function. 
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Figure 2. SPI-6 inhibits CD8+ T cell Granzyme B mediated cytotoxicity in TEC. 

CD8+ T cells were isolated from Balb/c wild type (WT) and granzymeA/B
-/-

 (Grz
-/-

) mice 

and allogeneically primed with B6 splenocytes and IL-2 before TEC killing assay. TEC were 

isolated from B6 wild type and SPI6
-/-

 mouse kidneys and activated with IFN-γ (10ng/mL) 

overnight before TEC killing assay. CD8+ T cells and TEC were co-cultured for 4 hours at 

various ratios and TEC death was measured using a chromium release assay. Cell death is 

shown as a percentage of total cell lysis (100%) as determined by the addition of Triton X-

100 to TEC (**:p<0.01, n=3). 
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SPI-6 is expressed within the graft following renal transplantation  

Our in vitro results demonstrate that SPI-6 is constitutively expressed by TEC and modestly 

upregulated under pro-inflammatory conditions. However, the expression and potential 

protective role of SPI-6 in renal allografts has to date not been tested. To determine the role 

of renal expression of SPI-6 in transplant injury, we used a B6 to Balb/c kidney 

transplantation model. Kidney grafts were assessed on day 0, 2, 8, 100 or on the day of 

rejection (clinically defined as in methods, prior to day 100 study end) and analyzed for SPI-

6 expression. Immunoblot results of whole kidney lysates indicated that SPI-6 is 

constitutively expressed within kidneys and maintained over the course of transplantation 

from day 2 to day 100 (Figure 3A, 3B). While total allograft levels of SPI-6 appear to 

unchanged over the course of transplantation using whole tissue lysates, but this may not be 

representative of TEC expression of SPI-6 related to focal areas of inflammation. 

Immunohistochemistry analyses indicate that SPI-6 is upregulated post-transplantation, and 

persists to day 100 (Figure 3C). In addition, SPI-6 expression is not uniformly expressed 

within the cortex of kidney allografts and while not quantified appears to be predominantly 

expressed by TEC at day 8 in areas of inflammation and in infiltrating cells (Figure 3C). 

Expression was noted as well in day 100 post-transplantation (indicated by arrows) of long 

term survivors. 
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Figure 3. Donor kidney SPI-6 is expressed in TEC after kidney transplantation.  

Single kidneys from B6 mice were transplanted into fully nephrectomised Balb/c recipients 

and followed for 100 days. Naïve kidneys and kidney allografts were analyzed at various 

time points post-transplantation for expression of SPI-6. A,B) Total protein was isolated from 

kidney allografts and analyzed for expression of SPI-6 by immunoblot at various time points. 

Bands were quantified by densitometry with β-actin as an internal control. (n=3) C) Naïve 

kidneys and day 8 and 100 post-transplantation allografts were analyzed by 

immunohistochemistry for expression of SPI-6. Tubules positive for SPI-6 labeling are 

indicated by arrows. Images were taken at 200X magnification. 
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SPI-6 deficiency enhances early tubular injury and accelerates rejection of kidney 

allografts 

Kidney allografts persistently express SPI-6 after transplantation which suggests a potentially 

important homeostatic role for SPI-6 for kidney protection, particularly during inflammation. 

To test this hypothesis, we studied SPI-6 deficient mice in a ‘survival model’ using fully 

allogeneic mismatched B6 wild type or B6 SPI-6
-/-

 to Balb/c kidney transplants. Kidney 

grafts and serum samples were collected by protocol on day 8 to assess tubular injury and 

graft function. As shown in Figure 4A, serum creatinine levels were higher in SPI-6
-/-

 kidney 

recipients as compared to wild type recipients (113±23 vs. 28±3 µmol/L, n=5, p<0.01) 

consistent with greater graft dysfunction in SPI-6
-/-

 kidneys. This was supported by 

histological analyses which demonstrated that SPI-6
-/-

 grafts have greater tubular injury 

compared to wild type grafts (Figure 4B, 4C) (injury score: 8.8±2.2 vs 4.3±2.1, n=5/group, 

p<0.01). Further evidence in support of an important role for SPI-6 in inhibiting cell death 

was demonstrated by TUNEL staining. SPI-6
-/-

 kidneys displayed much higher TUNEL 

positive (apoptotic) cell counts than wild type kidneys as shown in Figure 4B and 4D 

(17.2+6.4 vs 52.8+10.4, n=5, p<0.001). Collectively these data show that SPI-6 deficiency 

results in greater severity of early stage kidney injury and dysfunction. 
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Figure 4. SPI-6 in the renal allograft ameliorates injury after kidney transplantation.  

Single kidneys from B6 wild type (WT) and SPI-6
-/-

 mice were transplanted into fully 

nephrectomised Balb/c recipients. A) Kidney function of recipients was measured by serum 

creatinine at day 8 post-transplantation. (**:p<0.01, n=5/group) B) Sections from day 8 renal 

allografts were stained with hematoxylin and eosin (H&E) or TUNEL and images were taken 

at 200X magnification. C) H&E sections were scored by blinded pathological analysis as 

described in Methods. (*:p<0.05, n=5/group) D) Cell death was measured by TUNEL 

staining and quantified by microscopy as described in Methods. TUNEL positive cells are 

indicated by brown color. (***:p<0.001, n=5/group)  
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We investigated the role of SPI-6 deficiency in renal allograft survival using B6 wild type or 

B6 SPI-6
-/-

 to Balb/c kidney transplantation. As noted, kidney grafts were collected on day 8 

by protocol for functional analyses and also analyzed for CD3+ T cell graft infiltration and 

granzyme B expression. As shown in Figure 5A, cell infiltrates are present in both wild type 

and SPI-6
-/-

 renal allografts at day 8 post-transplantation. Quantification of CD3+ and 

granzyme B+ cells revealed prominent but equivalent numbers of infiltrating cells in both 

grafts (Figure 5B). Kidney graft recipient survival was monitored over 100 days (end point) 

and earlier clinical rejection was scored based on clinical deterioration as in Methods. As 

shown in Figure 5C, approximately 35% of wild type kidney recipients survived to day 100 

while none of the recipients receiving SPI-6
-/-

 kidney grafts survived to endpoint (Figure 5, 

p<0.001, n=8-10/group). SPI-6
-/-

 kidney grafts were rejected more rapidly than wild type 

kidney grafts in Balb/c mice (20±19 vs 66±33 days, n=8-10/group, P<0.001). Importantly 

these data suggest that SPI-6 expression within the donor kidney contributes to allograft 

survival despite the presence of extensive infiltrating cytotoxic lymphocytes. 
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Figure 5. SPI-6 in donor kidneys increased allograft survival in allogeneic kidney 

transplant recipients. 

Bilaterally nephrectomized Balb/c recipients received a donor kidney from either B6 wild 

type (WT) or SPI-6
-/-

 mice. Recipients were monitored as described in Methods. A, B) Naïve 

kidney and day 8 renal allograft sections were labelled with anti-CD3 and anti-granzyme B 

antibodies to identify infiltrating cytotoxic cells indicated by brown color. Positive cells were 

quantified as described in Methods. Images were taken at 200X magnification. (n=3) C) 

Kidney allograft receipients were followed for 100 days for survival. Recipients of wild type 

kidneys are denoted by black squares and recipients of SPI-6
-/-

 kidneys are denoted by white 

squares. (***:p<0.001, n=8-10/group). 
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2.5 Discussion 

With declining acute rejection rates, long term graft survival has become a major challenge 

in kidney transplantation. Although current strategies involving immunosuppression has 

improved incidences of acute rejection, there has been a disappointing lack in novel therapies 

that can prolong long term outcomes. As well, there has been a paucity of identified donor 

organ factors that might be targeted to improve long term graft survival. A pathological 

hallmark of cellular rejection is the presence of graft infiltrating immune cells which promote 

pro-inflammatory responses that can damage parenchymal cells within the graft. Cytotoxic 

effector cells that mediate rejection induce cell death through various mechanisms including 

Fas-FasL interaction, pro-inflammatory cytokines, and perforin/granzyme release by effector 

cells. Studies have shown that renal allograft recipients undergoing acute rejection have 

increased levels of urinary perforin and granzyme B mRNA (9). A potentially important role 

for perforin/granzyme in promoting kidney transplant rejection injury may be obscured by 

regulation of endogenous pathways of resistance to death in target cells. TEC can produce a 

variety of molecules that are capable of regulating inflammation such as IL-10, TNFα, Fas, 

Fas-L, TGF-β, IDO, and other cytokines as well as resistance to death including cFLIP and 

IAPs (12-14, 16, 17, 27, 28). To date, the expression and role of the serpin family member 

SPI-6 (PI-9) in attenuating TEC death by granzymes has not been studied.  

Previous studies have demonstrated that viral infection in hepatocytes can induce expression 

of SPI-6 which increases resistance against CTL killing in vivo (29-31). This suggests that 

TEC expression of SPI-6/PI-9 may be a generalized pathway for epithelial cells to resist 

inflammatory cell death and may be a mechanism that regulates the aggressiveness of cell 

mediated rejection (32-35). In the current study, we found that SPI-6 was expressed in TEC 

and increased in response to pro-inflammatory stimuli (Figure 1), consistent with results in 

other cell types (29, 36). While SPI-6 protein increased modestly with cytokines, the high 

basal level in TEC is consistent with an important role in protecting these essential 

parenchymal cells from acute inflammatory injury. Also and consistent with our in vitro 

results and previous studies, SPI-6 expression in kidney grafts was prominently upregulated 

in TEC after allogeneic transplantation and persisted to day 100 (Figure 3). Interestingly, 

although some graft infiltrating lymphocytes were observed to express SPI-6, the 
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predominant expression appeared to be on surrounding TEC with unequal distribution in 

vivo. This likely reflected the patchy distribution of infiltrating cells during rejection. It may 

be that different phenotypes of TEC (i.e. proximal vs. distal) have differential capacity to 

express SPI-6. In contrast, increases in SPI-6 in vitro using cultures of primarily proximal 

TEC may have reflected more uniform and higher concentration exposure to cytokines than 

what occurs in vivo during rejection resulting in greater upregulation of SPI-6. Nonetheless, 

as several agents have been reported to augment SPI-6 expression (37), our results might 

provide a potential therapeutic strategy to limit the injurious effect of infiltrating cytotoxic 

cells during kidney inflammation and allograft rejection. 

As noted, there are variable reports on the importance of granzyme B in inducing kidney 

injury (8, 9, 33-35). Clearly in our hands, Grz
-/-

 CD8+ T cells were unable to induce cell 

death in TEC as effectively as wild type CD8+ T cells (Figure 2) and TEC death could be 

induced by CD8+ T cells despite the presence of SPI-6 in TEC. It is likely that other 

mechanisms of targeted cytotoxicity such as granzyme A in particular, and differences in 

models accounts for differences in previous studies (10, 11). Immunohistochemical studies of 

granzyme B in patients with acute renal graft rejection demonstrate that levels of granzyme B 

are higher (32) similar to that observed in a non-life supporting murine model of kidney 

transplantation (10). The effect of perforin and granzyme B deficiency in a non-life 

supporting kidney transplant model on tubular transcripts and histology rather than function 

and recipient survival in a life supporting models used here, may have additionally accounted 

for differences from results in our study.  It is clear from the present data that a role for 

perforin/granzyme B exists in murine kidney rejection injury, and is consistent with clinical 

observations in human transplantation. The presence of tubular injury despite a loss of 

perforin/granzyme in recipient effector cells suggests that overt rejection leading to a loss of 

function and histological markers of injury are imprecisely correlated and might not be fully 

appreciated in a non-survival model of transplantation. The complexity of immune effector 

responses during rejection, our lack of detailed understanding of the various cytotoxic 

effectors, and the presence of endogenous mechanisms of ‘self-protection’ may collectively 

obscure the importance of granzyme B in kidney transplantation injury. As these pathways 

might be exploited to promote graft survival, a greater understanding of the regulation of the 
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granzyme B mediated injury pathway in TEC may generate new therapeutic strategies to 

protect grafts.  

In this study, we have demonstrated that constitutive expression of SPI-6 in the donor kidney 

is associated with prolonged graft function and survival as compared to recipients receiving 

SPI-6 deficient kidneys (Figure 5). As this study has focused on TEC as functional 

parenchymal cells that are targeted during cellular rejection, we have not excluded the 

potential effect of SPI-6 on other donor kidney cells. Indeed the loss of SPI-6 in donor 

kidneys might promote the elimination of renal resident dendritic cells capable of either 

enhancing rejection (thus resulting in less rejection) or promoting tolerance through 

regulatory cell expansion (i.e. thus more rejection). As there were no significant differences 

in numbers of infiltrating CD3+ and granzyme B+ cells (Figure 5), it appears that the 

primary effect of loss of SPI-6 in donor kidney is on increased susceptibility to effector cell 

cytotoxicity. Future studies will be needed to clarify the effect on dendritic cell targeting. It 

was interesting to note that although allograft levels of SPI-6 protein was not globally 

increased within transplanted kidneys and was patchy, 35% of recipients still achieved long 

term survival (Figure 5) suggesting that basal expression of renal SPI-6 is sufficient to 

partially protect the graft from CTL mediated rejection. This may account for a high level of 

spontaneous acceptance of kidney allografts that has been noted in many previous studies in 

mice. While conventional therapeutics block immune pathways, augmentation of SPI-6/PI-9 

above basal levels may provide a novel therapeutic target to limit rejection. Previous studies 

have demonstrated PI-9 upregulation induced by a constituent of soy (genistein) may be 

clinically relevant as this promoted the resistance of breast cancer cells to NK cell mediated 

killing (37) in vitro. Induction and maintenance of high levels of SPI-6 in the donor organ 

through perfusion solutions might be feasible to attenuate cytotoxicity by graft infiltrating 

cells, and thereby improving graft function and survival. 

In conclusion, we show for the first time that kidney TEC express the granzyme B specific 

inhibitor SPI-6 in vitro and in vivo and it alters the resistance of these parenchymal cells to 

rejection injury by cytotoxic effector cells. These data suggest that the expression of SPI-6 

may be renal protective during transplantation rejection and provide insights to generate new 

strategies that can prolong renal allograft survival. 
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3.1 Abstract 

Kidney transplant injury occurs with ischemia and alloimmunity. Members of the receptor 

interacting protein kinase family (RIPK1,3) are key regulators of ‘necroptosis’, a newly 

recognized, regulated form of necrosis. Necroptosis and apoptosis death appear to be 

counterbalanced as caspase-8 inhibition can divert death from apoptosis to necrosis. 

Inhibition of necroptosis in donor organs to limit injury has not been studied in transplant 

models. In this study, necroptosis was triggered in caspase inhibited tubular cells (TEC) 

exposed to TNF in vitro, while RIPK1 inhibition with Nec-1 or use of RIPK3
-/-

 TEC, 

prevented necroptosis.  In vivo, shRNA silencing of caspase-8 in donor B6 mouse kidneys 

increased necroptosis, enhanced HMGB1 release, reduced renal function and accelerated 

rejection when transplanted into BALB/c recipients. Using ethidium homodimer (EHD) 

perfusion to assess necrosis in vivo, necrosis was abrogated in RIPK3
-/-

 kidneys post-

ischemia. Following transplantation, recipients receiving RIPK3
-/-

 kidneys had longer 

survival (p=0.002) and improved renal function, (p=0.03) when compared to controls. In 

summary, we show for the first time that RIPK3 mediated necroptosis in donor kidneys can 

promote inflammatory injury, and has a major impact on renal IRI and transplant survival. 

We suggest inhibition of necroptosis in donor organs may similarly provide a major clinical 

benefit.   
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3.2 Introduction 

Kidney dysfunction following transplantation has multiple etiologies. Tubular epithelial cells 

(TEC) comprise more than 75% of renal parenchymal cells and are highly susceptible to 

death from ischemia-reperfusion injury (IRI), reactive oxidative species (ROS), nitric oxide 

(NO), pro-inflammatory cytokines, antibodies, and cytotoxic T and NK cells. Their viability, 

as well as other renal parenchymal cells, directs both short and long term kidney allograft 

survival (1-5). IRI enhances adaptive immune responses and pro-inflammatory cytokine 

expression that promote rejection (6-8) and the recruitment of T, NK and other cell effectors 

(9, 10). Collectively these mechanisms affect organ function and homeostasis by the 

elimination of parenchymal cells as well as promoting further inflammatory organ injury. It 

follows that prevention of TEC and inflammatory forms of parenchymal cell death would be 

expected to reduce delayed graft function and attenuate rejection responses in transplanted 

kidneys. 

While targeting cell death might be useful as a therapeutic strategy in transplantation, a 

greater understanding of complex intra-cellular interactions that lead to various forms of cell 

death will be required for such strategies to be applied effectively. Caspase-dependent 

apoptosis or “programmed cell death” (PCD) has been regarded as the prototypic form of 

regulated cell death. While apoptosis induces minimal inflammation and may contribute to 

immune tolerance (12, 13), necrosis and caspase-independent cell death (CICD) are regarded 

as unregulated forms of cell death induced by severe nonspecific and non-physiological 

stress (14). Necrosis promotes inflammatory injury in kidneys (15, 16) as membrane rupture 

results in the release of pro-inflammatory endogenous molecules including heat-shock 

proteins (HSP), unprocessed high-mobility group box 1 (HMGB1), uric acid, fibronectin, IL-

33, and others (17, 18). These cellular death associated molecular patterns (CCDAMPs) 

participate in IRI and allograft rejection through interaction with Toll Like Receptors (TLR) 

and other innate receptors (16, 19-21). Ligation of surface death receptors (TNFR1, 

Fas/CD95 and TRAIL-R) recruits adapter proteins, such as Fas-associated death domain 

(FADD), TNFR-associated factor with death domain (TRADD), RIPK1, and other proteins 

which allow formation of a complex which triggers the autocatalytic activation of caspase-8 

homodimers and apoptosis. However recent studies have indicated that a primary function of 
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caspase-8/FLIP-long heterodimers is to prevent a ‘regulated’ form of necrosis (RN) termed 

necroptosis, which is mediated by RIPK1 and 3 proteins (22, 23). Necroptosis is 

morphologically and biochemically indistinguishable from most other forms of necrosis (23-

31). RIPK1 and RIPK3 are serine/threonine kinase family members which interact through 

RIPK homotypic interaction motifs (RHIM) to permit necroptosis to take place (24, 32) in 

addition to mixed lineage kinase domain-like protein (MLKL). As necroptosis is a 'failsafe' 

mechanism to eliminate caspase-8 inhibiting virus infections (32, 33), inhibition of caspase-8 

may be detrimental by triggering necroptosis. A recent study showing benefit in renal IRI by 

blocking necroptosis though RIPK1 (34) suggested necroptosis may play a role in the 

pathogenesis of diverse kidney injury including allograft rejection. 

Our previous studies have demonstrated that tumor necrosis factor alpha (TNFα) can induce 

apoptosis in renal TEC and that TEC participate in cytokine enabled, Fas-FasL mediated 

fratricide (3). This has been recently confirmed in cisplatinum activated TEC (35). We and 

others have also shown that inhibition of caspase-8 (4), interleukin-2 (36, 37), and 

indolamine 2,3 dioxygenase (IDO) (38, 39) can attenuate various forms of TEC death and 

improve renal injury in short term IRI models. In the present study, we demonstrate the 

differential effects of inhibiting caspase-8 mediated apoptosis and necroptosis following IRI 

or kidney transplantation. While caspase-8 inhibition can improve IRI, in the present study 

we show that inhibition can augment necroptosis mediated kidney allograft injury. 

Importantly, loss of donor kidney RIPK3 promoted allograft survival in an allogeneic mouse 

kidney transplant model. 
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3.3 Materials and Methods 

Animals 

B6 (H-2
b
), Balb/c (H-2

d
) (Jackson Laboratories, Bar Harbor, ME), and B6-RIPK3

-/- 
 (H-2

b
, 

generously provided by Genentech Inc (40)) were maintained in the animal facility at the 

University of Western Ontario using approved protocols and procedures. RIPK3
-/-

 mice are 

phenotypically unremarkable, and have normal kidney function and breeding (40). All 

experimental procedures were approved by the University of Western Ontario Animal Care 

Committee. 

Tubular epithelial cell (TEC) culture 

Primary cultures were derived from B6 and B6-RIPK3
-/-

 mouse kidney cortex and grown in 

sterile full media at 37°C in 5% CO2. Primary culture TEC were trypsinized to release from 

plates and were used for up to 2 passages. Typical cobblestone appearance of renal epithelial 

cells was confirmed by visual analysis and expression of TEC markers (cytokeratin, CD13, 

CD26, and E-cadherin) was confirmed. 

Stable expression and delivery of shRNA 

Generation of shRNA targeting caspase-8 was as described (4). The expression vector, 

pHEX6300, was ligated to the oligonucleotide sequence for caspase-8 mRNA (5`-AAC CTC 

GGG GAT ACT GTC TGA) to generate caspase-8 shRNA. Empty vector or caspase-8 

targeting vector (150µg of DNA) was delivered to the kidney in donor B6 via IVC injection 

as described (41) 48 hours prior to kidney transplantation. 

Kidney ischemia reperfusion injury 

A renal clamp was applied to the right kidney pedicle and removed after 45 minutes at 34°C 

and the left kidney was removed (4, 9, 39). Kidneys were collected at 24h, 48h, and 72h post-

IRI after being flushed with normal saline until clear. Serum was tested for creatinine using 

an automated CX5 clinic analyzer (Beckman, Fullteron, CA). 

Allogeneic (H-2
b
 to H-2

d
) kidney transplantation 
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Male Balb/c recipient mice were bilaterally nephrectomized and transplanted with kidneys 

from male B6, caspase-8 shRNA treated B6, or RIPK3
-/-

 mice in a single procedure (42). 

Total ischemic time was limited to 35–40 minutes. Mice with weight loss of 15% or clinical 

deterioration were euthanized according to animal care protocols. In addition, all recipients 

terminated prior to 100 days were assessed for rejection by elevation of serum creatinine (> 

50 µmol/l) and histology. Serum and kidneys for histology were collected at time of sacrifice 

for all euthanized mice to establish rejection. 

Western blot 

Protein was isolated from tissue and cells using cytoplasmic lysis or nuclear lysis buffer 

respectively. Blots were incubated with polyclonal rabbit anti-RIPK3 (Abcam), rabbit anti-

HMGB1 (Abcam), or mouse anti-β-actin (Sigma) and quantified by densitometry 

(Alphaview, ProteinSimple) using β-actin. 

RNA isolation and real-time PCR  

Total RNA was extracted from tissue and cells by Trizol (Invitrogen). cDNA was generated 

using Superscript II (Invitrogen) and quantified by real time PCR MX3005 (Stratagene) 

using SybrGreen (Bio-Rad). Primers (Invitrogen) used for Q-PCR include: RIPK3: 5’-

GGGACCTCAAGCCCTCTAAC-3’ and 5’-GATCCCTGATCCTGACCCTGA-3’. β-actin 

was used as the endogenous control. The normalized delta threshold cycle value and relative 

expression levels (2
∆∆Ct

) were calculated according to the manufacturer’s protocol. 

Cell death assays  

Primary renal TEC from B6 or RIPK3
-/-

 mice were grown to confluent monolayers and 

treated with recombinant human TNFα (Peprotech), cycloheximide (Sigma), Z-VAD-fmk 

(BD Bioscience), and necrostatin-1 (Calbiochem) in serum-free media.  Cell viability and 

necrosis death were assessed using propidium iodide (PI) (BD Bioscience) labeling and were 

analyzed by flow cytometry (Beckman Coulter). Assessment of apoptosis utilized Annexin-V 

(BD Bioscience) along with PI by flow cytometry. 

Histology and immunohistochemistry 
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Tissue sections were stained with hematoxylin and eosin (H&E) and scored by a renal 

pathologist blinded to groups using a semi quantitative method as described (42). Scoring 

included tubular cell and glomerular necrosis, mononuclear cell infiltration, tubulitis, 

fibrosis, and vascular injury. To quantify necrosis in sections, ethidium homodimer 

(Invitrogen) was perfused into kidneys and areas of necrosis were assessed in frozen tissue 

sections (43). Briefly, 5µM ethidium homodimer was injected at 1mL/min. for 10 min. into 

the renal artery via the aorta and then flushed with perfusion buffer at 1mL/min for 5 min. 

Total nuclei were labeled by 4,6 diamidino-2 phenylindole (DAPI) in kidney sections. 

Sections were quantified using a fluorescent microscope and an automated analysis program 

(Nikon) that measures the area and fluorescent intensity of 5 random fields of the outer renal 

cortex per slide. Immunohistochemistry was performed using polyclonal rabbit anti-RIPK3 

(Abcam) and anti-CD3 (DAKO) and standardized immunoperoxidase methods. Allograft 

fibrosis was assessed using Mason trichrome staining.  

Statistical analysis 

Shapiro-Wilk testing was used to assess data sets for normality. Parametric data was 

compared using Student’s t-test for unpaired values and ANOVA for multiple groups while 

non-parametric data was compared using a Mann-Whitney test. Graft survival was analyzed 

by log-rank testing (Mantel-Cox) using GraphPad Prism software (GraphPad Software Inc., 

CA). Data is presented as mean ± SEM using p < 0.05 for significance. 
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3.4 Results 

Inhibition of apoptosis by caspase-8 silencing reduced renal allograft survival 

Apoptosis can be inhibited by c-FLIP or caspase-8 shRNA in TEC and treatment of kidneys 

in vivo by Fas or caspase-8 shRNA can attenuate kidney IRI (3, 4). However the potential 

benefit of caspase-8 inhibition has not been tested in an allogeneic renal transplantation 

model. Donor kidneys were treated with caspase-8 shRNA or empty vector shRNA via direct 

IVC injection 48 hours prior to being used for transplantation using a previously described 

method (4). While the duration of shRNA effect was not tested, the differential effect of 

caspase-8 shRNA in treated kidneys was clear compared to controls. Recipients of caspase-8 

silenced donor kidneys had reduced survival compared to those that received B6 wild type 

donor kidneys (mean of 33.3±8.7 days, n=8 vs 68.3±10.9 days, n=17, p=0.01) (Figure 1A). 

Recipients treated with vector shRNA control kidneys had similar survival rates as 

unmanipulated B6 kidneys. One third of the recipients that received naïve donor kidneys 

demonstrated acceptance, consistent with previous reports of spontaneous acceptance (44). In 

marked contrast, none of the caspase-8 silenced allograft recipients here survived to day 100 

post-transplant (p=0.01). Consistent with this shortened survival, increased mononuclear 

graft infiltration was evident in caspase-8 silenced grafts (Figure 1B).  

Previous studies have demonstrated that TNFα triggers necroptosis rather than apoptosis 

when caspase-8 is inhibited and unable to block the RIPK1/3 complex, (22, 23, 30, 31, 45-

47). Therefore we tested the possibility that caspase-8 shRNA inhibition augmented donor 

kidney necrosis to shorten survival. EHD, which labels necrotic cells with loss of cell 

membrane integrity, was used to quantitatively assess necrosis in kidneys (43, 48). There was 

increased tissue necrosis in caspase-8 silenced kidney allografts on day 4 post-transplant 

compared to shRNA controls as indicated by red fluorescence after EHD perfusion. 

Accordingly, increased release of non-nuclear HMGB1 was detected in caspase-8 shRNA 

treated kidneys compared to shRNA controls or naïve donor kidneys (Figure 1B).  EHD 

fluorescence was also increased in day 8 caspase-8 shRNA treated allografts compared to 

controls (caspase-8 shRNA: 10±2 vs control shRNA: 1±0, p=0.04, n=3/group) (Figure 1C). 

Inhibition of caspase-8 in the donor renal allograft appears therefore to increase tissue 

necrosis and subsequent release of HMGB1. As increased mononuclear infiltrate in caspase 
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8-shRNA treated kidneys were observed, it is possible that reduced survival was related to 

augmented rejection due to increased necrosis and HMGB1. 
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Figure 1. Caspase-8 silencing decreases renal allograft survival and increases tissue 

necrosis.  

Bilaterally nephrectomised Balb/c (H-2
d
) received a donor kidney from B6 (H-2

b
) mice with 

or without shRNA caspase-8 silencing. Recipients were monitored as per methods. A) Renal 

allograft recipients were followed for survival. Recipients with wild type (B6) donor kidneys 

are denoted by triangles (▲) and recipients receiving caspase-8 shRNA silenced
 
donor 

kidneys are denoted by squares (■).(p=0.01, log rank, n=8-17/group). Recipients receiving 

kidneys treated with control vector shRNA (n=3) are denoted by (○). B) Kidneys were 

perfused with ethidium homodimer (EHD) at 4 days post-transplant to visualize tissue 

necrosis (red fluorescence). Sections were stained with DAPI to identify nuclei. Sections 

were also stained with H&E to identify areas of graft infiltration (arrows). Images were taken 

at 100X magnification. Non-nuclear HMGB1 was analyzed in naïve kidney and renal 

allografts at 4 days post-transplant by immunoblot and semi-quantitated by densitometry 

(representative of 3 mice) C) EHD staining was quantified by fluorescent microscopy and 

analysis software in control vector and caspase-8 shRNA treated allografts at day4 post-

transplant. (*: p<0.05, n=3/group)  
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RIPK3 is regulated by pro-inflammatory cytokines in renal TEC 

TNFα is expressed by infiltrating cells as well as kidney parenchymal cells during acute 

kidney injury (50, 51). Soluble TNFα engagement with surface TNFR1 can therefore induce 

caspase-8 mediated apoptosis or necroptosis via RIPK1/3 if caspase-8 is inhibited (23, 24, 

45, 47, 52-54).  Expression of RIPK3 was confirmed in untreated primary culture TEC 

(Figure 2A) and following exposure to TNFα and IFNγ, which upregulated RIPK3 mRNA 

(1±0 vs TNFα: 1.5±0.2, p=0.007, n=3) and was maximal upon combined application of both. 

Similarly, RIPK3 protein was constitutively expressed in resting TEC but only modestly 

increased in cytokine exposed cells (Figure 2B). Therefore RIPK3 is basally expressed in 

renal TEC as in most cells, and expression is required for necroptosis (29, 32).  
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Figure 2. RIPK3 is regulated by pro-inflammatory cytokines in renal TEC. 

Renal TEC were isolated from B6 and RIPK3
-/-

 mice as previously described. TEC were 

grown to confluent monolayers and treated in serum free media. A) Wild type TEC were 

treated for 48 hours with 30ng/mL of TNFα and IFNγ and RIPK3 mRNA levels were 

quantified by Q-PCR. (**: p<0.01, n=4) B) Protein expression of RIPK3 was confirmed in 

wild type TEC from total cell lysate by immunoblotting using β-actin as a loading control 

(representative of 3 experiments)  
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RIPK1/3 mediated necroptosis regulates HMGB1 release in TEC  

RIPK3
-/-

 and wild type TEC express both TNFR1 and TNFR2 surface receptors (not shown). 

To bias towards TNFR1 related death rather than enhanced survival via TNFR2 (55), we 

exposed TEC to human TNFα (hTNFα) which has a greater affinity for TNFR1 than TNFR2 

in murine cells (40) as well as cycloheximide (CHX) to enhance CICD (34, 56). We also 

tested the RIPK1 inhibitor Nec-1 as well as RIPK3
-/-

 TEC for survival and release of 

HMGB1 following TNFα with caspase inhibition (49, 57, 58). Wild type TEC increased PI 

positivity (8.3±0.7% vs. 25.4±3.2%, p=0.01, n=3) with CHX and hTNFα at 24h. z-VAD-fmk 

(zVAD) increased the number of PI positive cells (25.4±3.2% vs. 40.2±1.6%, p=0.01, n=3) 

(Figure 3A) consistent with caspase independent regulated necrosis (RN). Nec-1, which 

blocks necroptosis via RIPK1 (34, 59), modestly reduced PI positivity (40.2±1.6% vs. 

32.9±2.2%, p=0.03, n=3). Addition of Nec-1 alone did not have an effect on TEC apoptosis 

in our hands (not shown), as shown in previous studies (34). In contrast, RIPK3
-/-

 TEC were 

completely resistant to CHX and hTNFα induced necrosis compared to wild type TEC 

(10.8±2.3% vs. 40.2±1.6%, p=0.0005, n=3) and did not change with zVAD. Interestingly, 

death induced without caspase-inhibition, using only CHX and TNF treatment was also 

abolished in RIPK3
-/-

 TEC. This latter finding is in line with in vivo reports of observed 

protective effects with Nec-1 without caspase-inhibition, as reviewed in Linkermann et al 

(60). Consistent with PI results and a necroptosis mechanism, HMGB1 release into 

supernatant was greater with zVAD treated TEC compared to hTNFα/CHX treated TEC and 

could not be detected in the supernatant from RIPK3
-/-

 TEC. Importantly HMGB1 release 

from necrotic cells (58) was nearly completely absent in Nec-1 treated TEC (Figure 3B) and 

intracellular HMGB1 from cell lysates remained unchanged in all treatment groups. 

Exposure of RIPK3
-/-

 tubular cells to extremely high concentrations of hTNF (300ng/mL) 

can induce apoptosis as detected by Annexin-V (Figure 3C), yet no detectable PI positivity 

was induced nor was HMGB1 was found in the supernatant (Figure 3D). This suggests that 

in the absence of necroptosis as a death pathway, apoptosis can occur in RIPK3 
-/- 

TEC but 

without the release of HMGB1 or PI positivity. These data demonstrate that caspase 

inhibition in TEC results in necroptosis which could account for shRNA transplant results. 
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Figure 3. RIPK1/3 is a regulator of TNFα mediated necroptosis in renal TEC. 

Renal TEC were isolated from B6 and RIPK3
-/-

 mice as previously described. TEC were 

grown to confluent monlayers and treated in serum free media. A) Wild type and RIPK3
-/- 

TEC were treated with CHX (1ug/mL), hTNFα (100ng/mL), Z-VAD-fmk (50µM), or Nec-1 

(10µM) for 24h. Necroptosis was analyzed by PI labeling and flow cytometry. (*: p<0.05, 

**: p<0.01, ***: p<0.001, n=3/group) B) Supernatants and total intracellular protein from 

cell lyastes collected from wild type and RIPK3
-/-

 TEC treated with CHX (1ug/mL), TNFα 

(100ng/mL), Z-VAD-fmk (50µM), or Nec-1 (10µM) for 24h were analyzed for HMGB1 by 

immunoblotting (representative of 3 experiments). C) Wild type and RIPK3
-/-

 TEC were 

treated with CHX (1ug/mL) and hTNFα (300ng/mL) for 24h and cell death was analyzed by 

Annexin-V and PI labeling and flow cytometry (representative of 3 experiments). D) 

Supernatants and total intracellular protein from cell lysates collected from TEC were 

analyzed for HMGB1 by immunoblotting (representative of 3 experiments). 

  



75 

 

 

RIPK3
-/-

 mice are resistant to kidney injury after renal IRI 

The RIPK1 inhibitor Nec-1 can ameliorate kidney injury in a mouse model (34). We 

therefore extended those studies to include the participation of RIPK3 in kidney injury. 

RIPK3 expression was detected at low levels in naive murine kidney sections but was 

expressed at higher levels at 4 hours and persisted as long as 48 hours post IRI (Figure 4A). 

RIPK3 expression was ubiquitously expressed in both proximal and distal tubules (indicated 

by arrows), which is consistent with our results using primary culture TEC. Kidney function 

post IRI was assessed by serum creatinine measurements at 24h, 48h, and 72h in both wild 

type (B6) and RIPK3 mice and compared to naïve mice. Interestingly, both were equivalently 

elevated at 24hours post IRI. However, a clear benefit of RIPK3 absence in renal IRI was 

observed at 48h (61 ± 24 vs 137 ± 26 µmol/L, p=0.03, n=7/group) (Figure 4B). In our model, 

48 hours post IRI consistently represents a maximum injury time point, as mice have 

recovered sufficiently post procedure to exclude hydration as a variable. Wild type mice had 

increased acute tubular necrosis and a greater injury score as compared to RIPK3
-/-

 after 48h 

of renal IRI (2.5 ± 0 vs. 1.5 ± 0.2, p=0.02, n=4-7/group) (Figure 4C). Our data demonstrates 

that inhibition of RIPK3 can ameliorate acute kidney injury similar to that observed with 

RIPK1 inhibition (34). 
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Figure 4. Absence of kidney RIPK3 improves renal function and ameliorates injury 

during renal IRI. 

B6 controls and RIPK3
-/-

 mice were subjected to acute ischemia for 45 min. using a renal 

clamp at 32° Celsius. Reperfusion injury occurred over a 48 hour period during which mice 

were sacrificed at various time points. A) Kidney sections were analyzed for RIPK3 by 

immunohistochemistry. Tubules positive for the presence of RIPK3 are indicated by arrows. 

Images were taken at 100X magnification. B) Renal function was determined by serum 

creatinine in naïve and at 24h, 48h, and 72h post-IRI. (*: p<0.05, n=7/group) C) Kidney 

sections were stained with H&E and scored by a pathologist blinded to groups. Areas of 

injury (arrows) are more evident in B6 kidneys compared to RIPK3
-/-

 at 48h post-IRI. Slides 

were scored on a scale from 0-4 where 0=no injury and 4=area of injury >75% of kidney. 

(**: p<0.01, n=4-7/group).  
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Using EHD, tissue necrosis was easily detected in wild type kidneys 48h after renal IRI but 

was nearly undetectable in RIPK3
-/-

 kidneys (Figure 5A). Kidney sections also showed more 

areas of tubular injury and necrosis (arrows) in wild type as compared to RIPK3
-/-

. EHD was 

quantitated in Figure 5B and confirmed markedly decreased levels of necrosis in RIPK3
-/- 

kidneys 48h after renal IRI (1±0 vs. 18±2, p<0.0001, n=4/group). HMGB1 increased in wild 

type kidneys at 48h post-IRI (0.1±0.01 vs. 0.3±0.04, p=0.02, n=3) (Figure 5C) but did not 

increase in RIPK3
-/- 

kidneys.  
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Figure 5. Absence of kidney RIPK3 reduces necrosis during renal IRI.  

A) Kidneys were perfused with ethidium homodimer (EHD) after 48h of IRI and stained with 

DAPI to visualize nuclei. Images were taken at 40 X (DAPI, EHD) and 100 X (H&E) 

magnification (representative of 4 mice). B) EHD stained sections were quantified by 

fluorescent microscopy and scored by automated software analysis. (****: p<0.0001, 

n=4/group) C) Total non-nuclear protein was isolated from kidney tissue samples in wild 

type and RIPK3
-/-

 48h post-IRI.  HMGB1 protein expression was analyzed by immunoblot 

using β-actin as a loading control. (*: p<0.05, n=3/group) 
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RIPK3
-/- 

donor kidneys are resistant to allograft dysfunction and inflammation 

Chronic allograft injury is a major complication associated with kidney transplantation (61) 

and previous studies have suggested that fibrosis with persistent inflammation is important 

(2, 62, 63). We therefore tested whether the absence of RIPK3 and its resultant effect on 

necroptosis in a donor kidney could improve function or long term survival following allo-

transplantation. Serum creatinine levels of RIPK3
-/-

 grafts were lower than wild type at study 

end (31 ± 0.6 vs 86 ± 24 µmol/L, p=0.03, n=8-9/group) (Figure 6A) and had reduced 

inflammation and histological injury (21.4±1.2 vs 11.2±0.2, p=0.006, n=4-5/group) (Figure 

6B, 6C). Wild type grafts also had greater neutrophil infiltration, fibrosis, tubilitis, and 

vascular injury (Figure 6D). Sections from long term (>100 days) grafts were found to have 

equivalent expression of CD3 positive infiltrates in both wild type and RIPK3
-/-

 kidneys 

(Figure 6C).  Kidney HMGB1 was less in RIPK3
-/-

 kidneys at both day 8 and d100 post-

transplant (p=0.04, n=3/group) (Figure 7A).  
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Figure 6. RIPK3
-/-

 kidney allografts have better function and decreased inflammation. 

Bilaterally nephrectomised Balb/c (H-2
d
) received a donor kidney from B6 or RIPK3

-/- 
(H-2

b
) 

mice. Recipients were monitored as per methods. A) Renal function was determined by 

serum creatinine at the time of sacrifice (*: p<0.05, n=8-9/group). B, C, D) Kidney tissue 

was formalin fixed at time of sacrifice. Kidney sections were stained with H&E, Mason 

trichrome, and CD3 and were scored by a pathologist blinded to group. More infiltrating cells 

(CD3
+
) are evident in wild type (B6) grafts than in RIPK3

-/-
. Images were taken at 100 X 

(Trichrome) and 200 X (H&E, CD3) magnification and arrows (H&E) indicate representative 

areas of injury. Slides were scored on a scale from 0-4 where 0=no change and 4=changes in 

+75% of kidney for various pathological criteria and compiled to generate an overall injury 

score. (*: p<0.05, **: p<0.01, ***: p<0.001, n=4-5/group).  
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Inhibition of RIPK3 in kidney allografts prolongs long term survival 

RIPK3
-/- 

kidney graft recipients achieved greater rejection free survival to day 100 (90 vs 

23%, p=0.002, n=10-17/group) (Figure 7B) and survived longer than those that received wild 

type (B6) kidneys (56.7±9.4 vs 94.1±2.1 days, p=0.0006, n=10-17/group). Body weight loss 

was maintained in both groups of mice at day 100. Wild type mice terminated prior to day 

100 however had weight loss from baseline that was greater than RIPK3
-/-

 recipients 

(7.8±4.5% vs.1.2±1.2%, n=4-5/group) which was consistent with rejection, as terminated 

wild type kidney recipients had histological rejection and higher serum creatinine levels than 

RIPK3
-/-

 kidney recipients (148 ± 51 vs. 29 ± 6 µmol/L, p=0.03, n=5-7/group). Mice that 

survived to day 100 had similar kidney function in each group (wild type: 53.2±17.7 vs. 

RIPK3
-/-

: 27.2±6.6 µmol/L, n=5/group, p=ns). As CD3+ mononuclear cell infiltration and 

tubulitis was observed in RIPK3
-/-

 kidneys, rejection was clearly not prevented. However 

there was a marked absence of fibrosis and reduction in vascular injury in RIPK3
-/-

 kidneys 

(Figure 6C, 6D). 
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Figure 7. Inhibition of RIPK3 in
 
donor kidneys increased allograft survival in 

allogeneic kidney transplant recipients. 

Bilaterally nephrectomised Balb/c (H-2
d
) received a donor kidney from B6 or RIPK3

-/- 
(H-2

b
) 

mice. Recipients were monitored as in methods. A) Total non-nuclear protein was isolated 

from kidney tissue samples in wild type and RIPK3
-/-

 kidneys and allografts. HMGB1 protein 

expression was detected by immunoblot using β-actin as a loading control. (*: p<0.05, 

n=3/group) Note the change in scale in the d100 allografts. B) Recipients with wild type (B6) 

donor kidneys are denoted by triangles (▲) and recipients with RIPK3
-/- 

donor kidneys are 

denoted by squares (■). (p=0.002, log rank, n=10-17/group) 
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3.5 Discussion 

Although acute rejection rates and one year graft survivals have improved in kidney 

transplantation, long-term survival has not substantially changed or is improving very slowly 

(64-66). Although reasons are most certainly multifactorial and biologically complex, there 

has been little attention directed to donor organ factors that might contribute to long-term 

graft loss. Kidney transplantation is invariably associated with organ damage, which includes 

IRI. IRI triggers a cascade of linked innate and adaptive immune responses that propagate 

injury, kill parenchymal cells, and promote antibody and cell mediated rejection (9, 63, 67, 

68). The form of cell death may be an early variable that directs the outcome of immune 

responses. The current understanding of cell death mechanisms has greatly expanded beyond 

apoptosis to regulated necrosis, a broad category that includes necroptosis, pyroptosis, and 

others. As a result, various assays have been used to differentiate between cell death 

subroutines including cell viability, morphology, quality of DNA fragmentation, loss of 

membrane integrity assays, TUNEL-positivity, PARP1 cleavage, caspase activation, labeling 

with Annexin or PI (57, 69) and many others (70). A powerful approach in labeling the type 

of cell death utilizes pharmacologic inhibitors that target specific pathways, RNA 

knockdown strategies, and animal models with genetic deletions (57).  

Apoptosis is a classic form of programmed cell death (12, 13). In previous studies we have 

shown that caspase inhibition using shRNA to silence caspase-8 or transgenic overexpression 

of the endogenous caspase-8 inhibitor c-FLIP can protect renal TEC against TNF induced 

apoptosis in vitro or ischemic kidney injury in vivo (4, 36). Pan-caspase inhibition of both 

initiator and effector caspases can reduce cold preservation injury due to apoptosis in liver 

endothelial cells and transplanted islet cells (71, 72). However, reports in other models and in 

particular renal IRI, has not confirmed a benefit using caspase inhibition (34) perhaps as 

variability exists in the specificity of caspase inhibitors (73). Long term studies to evaluate 

the effect of donor organ apoptosis inhibition in kidney transplants have been hampered as 

the embryonic lethality of caspase-8 deficiency precludes the use of animal models (74) and 

the duration of gene silencing with siRNA is limited. Results in the present study in which 

donor caspase-8 RNA silencing worsened kidney transplants are consistent with recent 

insights into new forms of regulated cell death in which caspase 8 silencing triggers pro-
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inflammatory necroptosis (47, 49, 75). These results support that short term outcomes in an 

IRI model can differ from long term outcomes in a transplant model, depending on targets of 

cell death.  

While apoptosis generates membrane bound apoptotic bodies that sequester cellular contents 

(73, 76), necrosis results in loss of membrane integrity and the release of HMGB1 and other 

CCDAMP which promote inflammatory responses (49, 69) through interaction with TLR, as 

well as other innate receptors which are ubiquitously expressed within the kidney (77-79) 

and on a wide variety of immune cells including dendritic cells. Maximal protection in IRI 

has been observed when HMGB1 was not able to engage kidney TLR4 (80, 81). Thus, 

HMGB1 release may contribute to the propagation of kidney injury.  

Ligand engagement of death receptor (DR) family members (CD95/Fas, TNFR1 and TRAIL) 

normally results in apoptosis and inhibition of caspase-8 might be expected to be of benefit 

in IRI in which acute loss of cells reduces organ function (4). However, recent studies using 

TNFα indicate that a primary function of caspase-8 may be also to block necroptosis (22, 23, 

30). Genetic deletion of caspase-8 is embryonically lethal due to unrestricted necroptosis in 

the developing yolk sack (22). Similarly, caspase-8 inhibition could be detrimental in adult 

tissue if DR mediated apoptosis was ‘replaced’ by necroptosis (32,82). Necroptosis may be 

particularly relevant to kidney injury in that TEC produce TNF as well as respond to TNFα 

(83). 

In this paper, we found pan-caspase inhibition resulted in necrosis of cytokine exposed TEC 

in vitro. As the presence of PI positive labeling by flow cytometry alone may not exclusively 

define necrotic cells as opposed to cells undergoing late apoptosis, we also measured 

HMGB1 release to confirm necrosis in TEC and grafts (57, 58). Loss of plasma membrane 

integrity during necrosis results in nuclear HMGB1 moving to the extracellular space. As 

HMGB1 is not actively synthesized during this process, the resulting HMGB1 found in 

supernatant is presumed to be due to release of HMGB1 from nuclei. In the present paper we 

confirm that TEC undergo necroptosis which can be abrogated by Nec-1. We also show that 

TEC express abundant levels of RIPK3 protein which increased within hours of ischemic 

injury. RIPK3
-/-

 TEC exposed to extremely high concentrations of hTNFα to TEC can 

undergo Annexin-V positive apoptosis without PI positive necrosis or the release of 
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HMGB1. Our data suggests that in the absence of the necroptosis pathway, apoptosis can still 

occur in TEC. 

Consistent with our in vitro results, the worsening of graft survival following caspase 

inhibition likely represents enhanced alloimmune responses following necroptosis and the 

release of CCDAMP from kidney cells (17, 84). In testing kidney samples, protein was 

isolated using a lysis buffer that excludes nuclear protein including HMGB1. Therefore, the 

HMGB1 we detected in whole kidney lysates was released either from kidney parenchymal 

cells or infiltrating cells. We utilized EHD to measure tissue necrosis which is reproducible 

and quantifiable but is limited by a lack of specific cellular detail. Increased HMGB1 and 

EHD positivity in shRNA caspase-8 silenced kidneys was consistent with necroptosis and 

observed worsened kidney function. While not tested here, the release of CCDAMP such as 

HMGB1 likely promoted alloimmune responses that reduced survival. In marked contrast, 

HMGB1 was lower, EHD was absent, and kidney function was better using RIPK3
-/-

 mice in 

our IRI model. Unlike RIPK1, RIPK3 cannot participate in NFkB-signaling and kidney 

function and development are normal in RIPK3
-/-

 mice. Protection in RIPK3
-/-

 mice was very 

similar to IRI studies in which both kidney and infiltrating cells were exposed to Nec-1 (34) 

suggesting that the beneficial effect of RIPK1 and RIPK3 inhibition was due to elimination 

of kidney necroptosis. 

These data provide the first unequivocal demonstration of RIPK3 mediated necroptosis in 

both renal IRI and transplantation. While both apoptosis and necrosis appear to contribute to 

kidney dysfunction in short term IRI models, our results suggest that there may be a 

transitional phase following IRI in which alloimmune activation can be promoted by 

necroptosis as well as loss of anti-inflammatory responses generated by apoptosis (12, 13, 76, 

85, 86). HMGB1 and TLR4 expression peaks with 5-10 days in renal IRI (80, 81). In 

blocking caspase-8 and augmenting necroptosis, prolonged HMGB1 and CCDAMP release 

may have increased the participation of IRI relevant infiltrating T cells (87), NK cells (9), 

and other effectors. Additional studies will be required to delineate the immune effector cells 

involved. Furthermore, the relative impact of various forms of cell death may vary in 

different solid organs, generating organ-specific apoptosis-necroptosis ‘equilibriums’ and 

both may need to be targeted for maximal protection (88). 
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This paper provides the first report of the benefit of kidney RIPK3
 
deletion and necroptosis 

elimination on long term allograft survival. Despite preserved function reflected by serum 

creatinine and prolonged survival of RIPK3
-/-

 kidney recipients, tissue injury with HMGB1 

release and CD3
+
 cellular infiltration were observed in the grafts of long term survivors. 

Clearly the elimination of necroptosis and reduced CCDAMP release early post-transplant 

did not result in tolerance per se. It therefore may be speculated that the benefit of RIPK3 

deletion is related to an attenuation but not elimination of alloimmune responses. While 

HMGB1 levels were consistently less than wild type controls at every time point, significant 

levels of HMGB1 were detected in late day 100 RIPK3
-/- 

allografts which may have been 

derived from parenchymal cells undergoing non-necroptosis death or secretion from viable 

infiltrating cells (89, 90). Notably however, the near complete absence of fibrosis in RIPK3
-/-

 

kidneys suggests that necroptosis may play a critical role in long-term allograft injury that 

results in scarring.  

In summary, we show for the first time that RIPK3 regulates necroptosis in the kidney and 

that this has a major impact on renal IRI and kidney transplant survival. As well we have 

demonstrated that inhibition of caspase-8 within TEC eliminates a key regulatory role for this 

enzyme in controlling RIPK1/3 mediated necroptosis, and therapeutic strategies may require 

control of multiple pathways. We suggest that reduction of necroptosis in donor organs will 

have a profound benefit in graft function and survival. More efficacious forms of Nec-1 (91) 

and the possibility of targeting RIPK3 (25) will greatly advance such strategies and may 

represent a paradigm shift in modifying organ injury to dampen alloimmune responses.  
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4.1 Abstract 

Background: Renal ischemia reperfusion injury (IRI) leads to acute kidney injury (AKI) and 

the death of tubular epithelial cells (TEC). The release of High Mobility Group Box-1 

(HMGB1) and other damage associated molecular pattern moieties from dying cells may 

promote organ dysfunction and inflammation by effects on TEC. Glycyrrhizic acid (GZA) is 

a functional inhibitor of HMGB1 but its ability to attenuate HMGB1 mediated injury of TEC 

has not been tested.   

Methods/Results: In vitro, hypoxia and cytokine treatment killed TEC and resulted in 

progressive release of HMGB1 into the supernatant. GZA reduced hypoxia induced TEC 

death as measured by Annexin-V/PI. Hypoxia increased expression of MCP-1 and CXCL1 in 

TEC which was reduced by GZA in a dose dependent manner. Similarly, HMGB1 activation 

of effector NK cells was inhibited by GZA. To test the effect of HMGB1 neutralization by 

GZA in vivo, mice were subjected to renal IRI. HMGB1 protein expression increased 

progressively in kidneys from 4 to 24 hours post ischemia and was detected in tubular cells 

by 4 hours using immunohistochemistry. GZA preserved renal function after IRI and reduced 

tubular necrosis and neutrophil infiltration by histological analyses and ethidium homodimer 

staining. 

Conclusions: Importantly, these data demonstrate for the first time that AKI following 

hypoxia and renal IRI may be promoted by HMGB1 release which can reduce survival of 

TEC and augment inflammation. Inhibition of HMGB1 interaction with TEC by GZA may 

represent a therapeutic strategy for attenuation of renal injury following IRI and 

transplantation.  
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4.2 Introduction 

Ischemia reperfusion injury (IRI) occurs invariably in kidney transplantation and contributes 

to graft dysfunction and rejection in recipients [1–3]. The initial ischemic insult induces 

widespread death of kidney parenchymal cells and in particular tubular epithelial cells (TEC) 

[4–8], which results in organ dysfunction and the release of damage associated molecular 

pattern (CDAMP) proteins into the extracellular space [10-13]. High Mobility Group Box-1 

(HMGB1) and other CDAMP moieties may further contribute to pro-inflammatory injury 

[13–16]. However, their effects on the survival or pro-inflammatory functions of TEC remain 

unknown and could alter allograft survival.  

HMGB1 is a ubiquitous nuclear protein that is highly conserved throughout many species. 

Physiologically, it binds to DNA within the nucleus and is involved in essential processes 

such as DNA replication and transcription [17]. HMGB1 has been previously identified as a 

CDAMP molecule in different injury models in the liver [18], lungs [19], and heart [20]. 

Furthermore, previous studies in acute injury models have suggested that HMGB1 is not only 

released passively following cell death [21-23] but may be actively secreted [24,25] by some 

cell types even while viable. The pro-inflammatory nature of HMGB1 is related to increased 

expression of chemokines and cytokines that attract and activate diverse immune cells. This 

inflammatory response is typically mediated through Toll-like receptors (TLR) which has 

been implicated in having a major role in propagating tissue injury and inflammation [26-30]. 

TLR signalling following the binding of CDAMP ligands such as HMGB1 [31] results in the 

recruitment of various adapter proteins (MyD88) leading to the activation of pro-

inflammatory mediators such as TNFα, IL-6, CCL2, CXCL8, and CX3CL1 [32,33]. 

Although targeting of HMGB1 has been suggested to limit acute renal injury, studies have 

been limited by clear understanding of effects on renal parenchymal cells as well as clinically 

feasible reagents other than neutralizing antibodies [34,35]. Glycyrrhizic acid (GZA), a 

functional inhibitor of HMGB1, has been tested clinically in patients with Hepatitis C 

[36]and appears to ameliorate both liver and kidney injury [37-40]. It is plausible that GZA 

may have the potential to reduce organ storage injury and IRI following kidney 

transplantation as well as diminishing inflammation with immune rejection.  
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In the present study, we tested the effect of HMGB1 released from injured cells on TEC 

survival and function and whether GZA altered the effects of HMGB1 on kidney cells in 

vitro and in vivo with IRI. We have demonstrated that GZA can inhibit TEC death by 

blocking HMGB1 which may directly contribute to kidney injury in vivo as well as indirectly 

by the production of pro-inflammatory molecules such as monocyte chemotactic protein-1 

(MCP-1) and CXCL1, and IL-6. Importantly, GZA neutralization blocks deleterious effects 

of HMGB1 on kidney cells, suggesting it may be useful to attenuate IRI and other forms of 

inflammatory kidney injury. 
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4.3 Materials and Methods 

Animals 

C57BL/6J mice were purchased from Jackson Laboratories (Bar Harbor, ME) and 

maintained in the animal facility at Western University using approved protocols and 

procedures.   

Cell Cultures 

The TEC line NG1.1 was developed from proximal tubular epithelial cells from C57BL/6J 

mice by SV40 transformation as previously described [4]. NK cells were purified from 

C57BL/6J mice spleen using anti-CD49a MACS beads selection (MiltenyiBiotec) and were 

grown in the presence of IL-2 (1000IU/mL) in RPMI-1640. Purity of NK cells was 

confirmed by flow cytometry and >90% of cells were CD3-CD49b+ for each experiment. 

NK cells were treated with endotoxin free recombinant HMGB1 (R&D Systems). 

Kidney IRI 

Renal IRI was performed as previously described [8]. Briefly, a renal clamp was applied to 

the right kidney pedicle and removed after 45 minutes while the left kidney was 

nephrectomised. Serum was collected at 48h post IRI for creatinine detection by Jaffe 

reaction method using an automated CX5 clinic analyzer (Beckman). 

GZA (Sigma) was reconstituted in a minimum volume of DMSO and diluted with saline and 

injected 2h pre-operatively and post-operatively at 8h and 24h in mice undergoing IRI (1mg 

GZA, <1% DMSO). Control mice were subjected to IRI and equivalent doses of DMSO as 

vehicle control. 

Hypoxia Treatment 

TEC were made hypoxic with deoxygenated serum and glucose free media in a hypoxia 

chamber for 20 minutes. Oxygen in the chamber was displaced by a gas mixture of 3% H2, 

5% CO2, and a balance of N2 (Praxair) at a rate of 0.1L/min. Cells were collected at various 
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time points for FACS analysis of apoptosis and necrosis by Annexin-V and propidium iodide 

(PI) (BD Bioscience) respectively. 

Immunoblotting and Real-time PCR 

Protein was isolated from tissue and cells using a non-nuclear protein lysis buffer that 

excluded nuclear proteins. Protein from supernatant was concentrated by centrifugation 

(Millipore). Membranes were probed with anti-HMGB1 (Abcam) or mouse anti-β-actin 

(Sigma).   

Total RNA was extracted from tissue and cells by Trizol (Invitrogen) as described by the 

manufacturer. cDNA was generated from RNA using Superscript II (Invitrogen) as described 

by the manufacturer. cDNA was quantified by real time PCR using SybrGreen (Bio-Rad) as 

described by the manufacturer.  Primers (Invitrogen) used for Q-PCR include: HMGB1: 5`-

TAAAAAGCCGAGAGGCAAAA-3`, 5`-GCAGACATGGTCTTCCACGT-3`; MCP-1: 5`- 

AGCACCAGCCAACTCTCACT-3`, 5`- CGTTAACTGCATCTGGCTGA-3`; RANTES: 5`-

ATATGGCTCGGACACCACTC-3`, 5`-TCCTTCGAGTGACAAACACG-3`; CXCL1: 5’ –

AGACTGCTCTGATGGCACCT-3’, 5’-TGCACTTCTTTTCGCACAAC-3’; IL-6: 5′-

GAGGATACCACTCCCAACAGACC-3′, 5′-AAGTGCATCATCGTTGTTCATACA-3′; 

IFN-γ: 5′-CAT TGAAAGCCTAGAAAGTCTGA-3′, 5′-

TAGCGATGCAAATGCTTGATATC-3′; Perforin: 5’-

GAAGACCTATCAGGACCAGTACAACTT-3’, 5’-CAAGGTGGAGTGGAGGTTTTTG-

3’; Granzyme B: 5’-CGATCAAGGATCAGCAGCC-3’, 5’-CTGGGTCTTCTCCTGTTCT-

3’. β-actin was used as the endogenous control. The normalized delta threshold cycle value 

and relative expression levels (2∆∆Ct) were calculated according to the manufacturer’s 

protocol. 

Histology and Immunohistochemistry 

Tissue sections were H&E stained and scored by a pathologist in a blinded fashion using an 

injury scoring method as described [7]. Criteria for kidney injury include tubular necrosis, 

immune cell infiltration, lumen casts, and glomerular cell necrosis. Immunohistochemistry 

was performed using anti-HMGB1 (Abcam). To visualize and quantify kidney tissue necrosis 

in vivo, frozen tissue sections were scored from mice having renal artery infusion of 
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ethidium homodimer (Invitrogen) as previously described [41]. Briefly, 5µM ethidium 

homodimer was injected at 1mL/min. for 10 min. into the renal artery through the aorta and 

then flushed with perfusion buffer at 1mL/min for 5 min. Sections were analyzed and 

quantified score using a fluorescent microscope and an automated image analysis program 

(Nikon) measuring area and fluorescent intensity. 

Statistical Analysis 

Data was compared using Student’s t-test for unpaired values and one way ANOVA for 

multiple comparisons. Data was presented as mean ± SEM and p< 0.05 was considered to be 

significantly different. 
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4.4 Results 

HMGB1 protein expression is upregulated during renal IRI 

Renal ischemia reperfusion injury causes severe tissue injury and various forms of cell death 

[4–8] including apoptosis, necrosis, autophagy, and other non-classical forms of cell death 

[42]. During necrotic cell death, cells invariably lose membrane integrity and eventual lyse, 

resulting in the release of intracellular contents and various CDAMPs such as HMGB1. 

To first demonstrate the kinetics of HMGB1 release in renal IRI, we tested mRNA and non-

nuclear protein levels in kidneys for up to 24 hours following IRI. As shown in Figure 1A 

and 1B, non-nuclear HMGB1 protein increased in the kidney progressively for up to 24 

hours of reperfusion after ischemia (control density ratio: 0.953±0.707 vs. 24h post IRI 

5.368±0.239). In contrast, mRNA expression of HMGB1 was decreased after ischemia as 

compared to controls (sham: 1±0 vs. 0h post-ischemia: 0.17±0.04) and remained at low 

levels for up to 24 hours of reperfusion as shown in Figure 1C. Together, these results 

indicate that the presence of HMGB1 protein outside the nucleus increased over the course of 

renal IRI but was not due to increased transcription.  

As expected, mice undergoing IRI demonstrated decreased kidney function as indicated by 

an increase in serum creatinine 24 hours following reperfusion (Figure 1D). HMGB1 

expression analyses by immunohistochemistry showed that HMGB1 expression was detected 

in tubules as early as 4 hours after IRI (Fig. 1E). While TEC expressing HMGB1 appear to 

be located in cortical areas, these data do not distinguish their identity as proximal or distal 

tubules. However in vitro results using previously characterized NG TEC, suggest that 

proximal tubular cells are likely to be a prominent source of HMGB1 in vivo. 
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Figure 1. Characterization of HMGB1 expression in the kidney after renal IRI.   

C57BL/6 mice were subjected to acute ischemia for 45 min. using a renal clamp at 32° 

Celsius.  Sham mice did not have a renal clamp applied. Reperfusion injury occurred over a 

24 hour period during which mice were sacrificed at various time points. A, B) Non-nuclear 

kidney protein was isolated and analyzed by immunoblot using anti-HMGB1 (representative 

of 3 independent experiments). Relative protein concentration was determined by semi-

quantitative densitometry and normalized by β-actin (*: p < 0.01, n=3/group) C) mRNA 

expression of HMGB1 after renal IRI was measured by real time PCR. Fold change mRNA 

expression was normalized by β-actin. (n=3/group) D) Kidney function was determined by 

serum creatinine in naïve and IRI treated mice at 24 hours. (***: p<0.001, n=4-5/group) E) 

Kidney sections were analyzed for HMGB1 by immunohistochemistry. Arrows indicate 

tubules positive for HMGB1. Images were taken at 200X magnification. (n=3/group)  
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GZA neutralization of HMGB1 released from hypoxic TEC can inhibit cell death 

It has been previously reported that cells release HMGB1 during necrotic cell death [13,22]. 

As hypoxia similarly results in TEC death, we tested their capacity to release HMGB1 after 

hypoxia. As shown in Figure 2A, TEC cultures underwent increasingly higher levels of cell 

death and were primarily and maximally Annexin-V/PI positive at 24 hours post hypoxia 

(7.5% vs. 30.6%). In addition, the percentage of viable cells (Annexin-V/PI negative) 

decreased 24 hours post hypoxia (75.7% vs. 29.7%).  

Next, we tested whether HMGB1 was released from TEC after hypoxic cell death.  Analysis 

of supernatant from TEC following hypoxia over a 24 hour period (Figure 2B, 2C) clearly 

demonstrated that HMGB1 was released from killed and remaining TEC with detectable 

levels immediately after hypoxia treatment (0.574 with no treatment vs. 8.876 24 hours post 

hypoxia). In addition, it was also observed that the lysate fraction containing protein from 

both the nuclear and cytoplasmic compartments from remaining adherent TEC did not 

similarly show increased levels of HMGB1.   

As supernatant from hypoxia treated cells contains a complex number of mediators that could 

affect cell death or viability, we attempted to clarify the role of HMGB1 by the addition of 

GZA which specifically inhibits HMGB1 [40]. As shown in Figure 2D and 2E, viability of 

TEC was reduced from 81.00±1.87% (Annexin-V/PI negative) to 41.73±7.26% with hypoxia 

(p=0.003). The addition of 1000ng/mL of GZA to TEC during hypoxia modestly increased 

cell viability from 41.73±7.26% to 58.03±7.39% (p=0.05). Although many TEC expressed 

mediators in the conditioned media have an effect on cell viability, this data suggests 

HMGB1 has a role in cell death that might be inhibited by GZA in vivo. 
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Figure 2. GZA neutralization of HMGB1 released from hypoxic TEC can inhibit cell 

death.  

A) TEC were subjected to hypoxia and cell death was measured by Annexin-V/PI for 

apoptosis and necrosis respectively at various time points. (representative of 3 independent 

experiments) B, C) Total cell lysate and supernatants were collected from TEC and HMGB1 

was detected by immunoblot. Relative protein concentrations were determined by semi-

quantitative densitometry and normalized by β-actin. (n=3/group) D, E) TEC were treated 

with hypoxia and various concentrations of GZA and cell death was measured at 24 hours 

using Annexin-V/PI. Viable TEC were negative for Annexin-V/PI labeling. (*: p<0.05, **: 

p<0.01, n=4/group) 
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Increased TEC expression of pro-inflammatory cytokines and NK cell activation is 

inhibited by GZA  

Renal IRI is associated with upregulation of local pro-inflammatory mediators within the 

kidney which promotes further injury from the influx of effector cells including neutrophils, 

T cells and NK cells [43]. The release of HMGB1 into the micro-environment with 

subsequent activation of several key TLR pathways likely accounts for much of the 

upregulation of pro-inflammatory molecules. It has been demonstrated that GZA can induce 

an anti-inflammatory effect in an ischemic spinal cord injury model with downregulation of 

cytokines and chemokines [44]. Therefore, we tested whether inflammation could similarly 

be ameliorated by neutralizing HMGB1 through the use of GZA.  

We first confirmed that inflammatory chemokine mRNA expression increased in the total 

kidney after IRI. As shown in Figure 3A and 3B, there was upregulation of MCP-1 (naive: 

1±0 vs. 48h IRI: 5.13±1.39, p=0.03, n=3) and CXCL1 (naive: 1±0 vs. 48 IRI: 5.22±1.03, 

p=0.04, n=3) peaking by 8 hours but persisting for up to 48 hours after reperfusion. In 

addition, the pro-inflammatory cytokine IL-6 was upregulated in kidney after renal IRI 

(naïve: 1±0 vs. 48h IRI: 20.17±5.48, p=0.04, n=3) as shown in Figure 3F. In contrast, 

RANTES mRNA expression (Figure 3C) peaked by 24 hours but was downregulated by 48h 

after IRI (naive: 1±0 vs. 48h IRI: 0.30±0.05, p=0004, n=3). Other chemokines tested 

included MIP-1α and CX3CL1but did not demonstrate increased expression after renal IRI 

(data not shown). This data confirmed that there is an increase in the production of pro-

inflammatory molecules during IRI. 

To determine whether the observed increased chemokine expression during renal IRI might 

involve TEC, total mRNA from 24h post hypoxia TEC were tested for MCP-1, CXCL1, and 

IL-6 mRNA expression. As shown in Figure 3D and 3E, there was an increase in both MCP-

1 (no treatment: 1±0 vs. 24h post hypoxia: 9.32±2.85) and CXCL1 (no treatment: 1±0 vs. 

24h post hypoxia: 10.22±0.52) 24 hours after hypoxia. RANTES mRNA expression was 

unchanged after hypoxia treatment (not shown). However, when GZA was added to TEC 

cultures during hypoxia, it had a dose dependent inhibitory effect as determined by one-way 

ANOVA on MCP-1 (F(5,11)=4.13, p=0.02) and CXCL1 (F(4,10)=12.83, p=0.001) 

expression which resulted in a return to untreated control levels. TEC expression of pro-
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inflammatory IL-6 mRNA was clearly inhibited by the addition of GZA following hypoxia 

(12.61±2.7 vs 0.71±0.22, (F(2,6)=18.88, p=0.002) as shown in Figure 3G. Given that 

HMGB1 neutralization by GZA reduces pro-inflammatory chemokine and cytokine 

expression in TEC, GZA may potentially ameliorate inflammation during renal IRI.  

We have recently demonstrated the significance of NK cell contribution towards TEC injury 

as a result of inflammation during renal IRI [8]. As NK cells can be activated HMGB1, we 

attempted to elucidate the effects of HMGB1 inhibition by GZA on NK cell activation. As 

shown in Figure 3H, addition of HMGB1 activated NK cells and resulted in upregulation of 

IFNγ, perforin, and granzyme B mRNA. In the presence of GZA, HMGB1 activation was 

inhibited and led to the downregulation of IFNγ (2.9±0.5 vs. 0.8±0.1, p=0.03), perforin 

(2.2±0.4 vs. 0.3±0.1, p=0.02), and granzyme B (2.1±0.6 vs. 0.5±0.4, p=0.04) mRNA. This 

data suggests that GZA may prevent HMGB1 mediated activation of NK cells and thereby 

reduce TEC injury during renal IRI. 



 

 

 

 

121 

 

 

 



 

 

 

 

 

 

 

 

122 



 

 

 

 

 

  

123 

 



 

 

 

 

 

 

 

 

 

  

124 

 



125 

 

 

Figure 3. Increased TEC expression of pro-inflammatory cytokines and NK cell 

activation is inhibited by GZA.  

A, B, C) C57BL/6 mice were subjected to renal IRI. Total renal mRNA was analyzed for 

MCP-1, CXCL1, and RANTES expression by real time PCR. (*: p<0.05, ***: p<0.001, 

n=3/group) D, E) TEC were subjected to hypoxia and were treated with various 

concentrations of GZA. Total mRNA was analyzed at 24 hours for MCP-1 and CXCL1 

expression by real time PCR. (*: p<0.05, **: p<0.01, ***: p<0.01, n=3-4/group) F, G) Total 

mRNA expression of IL-6 was analyzed in C57BL/6 mice kidneys subjected to renal IRI or 

24h post-hypoxia treated TEC with 800ng/mL GZA (**: p<0.01, n=3/group). H) NK cells 

were treated with 1000ng/mL rHMGB1 and 1000ng/mL GZA for 24 hours. Total mRNA 

from NK cells were analyzed for IFNγ, perforin, and granzyme B by real-time PCR. (*: 

p<0.05, n=3/group) 
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HMGB1 inhibition by GZA improves renal function after kidney IRI 

Based on the anti-inflammatory and pro-survival effects of GZA on TEC in vitro, we tested 

the capacity of GZA to inhibit HMGB1 in vivo and its potential to attenuate renal 

dysfunction after IRI. Mice were subjected to IRI with or without GZA pre-treatment and 

renal function was assessed at 48h. As shown in Figure 4A, mice with renal IRI had 

markedly elevated serum creatinine levels as compared to the renal IRI and GZA treated 

mice (48h IRI:  120±35µmol/L vs. 48h IRI with GZA: 31.4±5 µmol/L, p=0.03). Consistent 

with renal function, (Figure 4C) blinded injury scores were higher in renal IRI treated mice 

compared to GZA treated mice (48h IRI: 2.8±0.45 vs. 48h IRI with GZA: 1±0, p=0.0004). In 

particular, more neutrophil infiltration was observed (indicated by arrows) in control mice as 

compared to the GZA treated mice (Figure 4B). Unlike apoptosis which can be quantified in 

tissues by TUNEL and other methods, quantitative assessment of necrosis in tissue to date 

has been difficult to quantitate, relying on histological patterns and electron micrographs. To 

address this, we have modified a method that quantifies the release of an easily measured 

fluorochrome (ethidium homodimer) from intact cells following organ perfusion to measure 

tissue necrosis [41]. Consistent with histology and functional data, we observed greater 

necrosis in renal IRI treated mice compared to the GZA treated mice as shown in Figure 4D 

and 4E (necrosis score at 48h IRI: 27.54±5.94 vs. 48h IRI with GZA: 12.04±5.21, p=0.04). 

Collectively these in vitro and in vivo data demonstrates that GZA treatment can improve cell 

viability and reduce renal IRI. These data suggest that the deleterious effects of IRI can be 

mediated by HMGB1 released from dying cells, and that GZA may neutralize HMGB1 

therapeutically.  
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Figure 4. GZA can improve renal function and prevent tissue necrosis during renal IRI. 

C57BL/6 mice were subjected to renal IRI. GZA was injected intraperitoneally pre and post 

ischemia. Control mice were injected with only DMSO vehicle. A) Renal function was 

determined by serum creatinine at 48h (*: p<0.05, n=5/group). B, C) Kidney tissue was 

collected at 48h post ischemia and stained by H&E. Arrows indicate areas of neutrophil 

infiltration. Images were taken at 100X magnification. Sections were scored for injury by an 

unbiased blinded pathologist. (***: p<0.001, n=5/group) D, E) Kidneys were perfused with 

ethidium homodimer after 48h of IRI. Sections were analyzed by fluoresecent microscopy 

and scored by automated software analysis. Images were taken at 40x magnification. (*: 

p<0.05, n=5/group). 
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4.5 Discussion 

Despite our considerable knowledge of the adaptive immune system and the effectiveness of 

current immunosuppressive therapies (directed against namely T and B cells), kidney 

allografts have a limited survival. It has been suggested that innate immunity by its ability to 

promote inflammation through CDAMPs during IRI may have a large but perhaps 

underappreciated role in limiting allograft survival. In particular, TEC which represent the 

majority cell type of the renal parenchyma are particularly sensitive to ischemia, 

inflammation and AKI. During renal IRI, cells undergo prominent forms of cell death, 

namely apoptosis and necrosis. As a result of cell death, CDAMPs are released to the 

extracellular compartment allowing for interaction with TLR which can be found on a variety 

of cell types including renal parenchyma. Recognition of CDAMP by TLR results in 

downstream activation of various adaptor molecules which mediates pro-inflammatory 

responses. The release of CDAMPs during renal IRI and their interaction with TLRs on the 

kidney may play a role in propagating pro-inflammatory responses and result in acute and 

chronic renal allograft rejection. 

Kidney cell death results in the release of endogenous CDAMPs including HMGB1, heat 

shock proteins, hyaluronic acid, and others. HMGB1 can be released through necrotic cells or 

actively secreted by activated immune cells such as dendritic cells and macrophages. We 

have demonstrated that renal tubular epithelial cells (TEC) can release HMGB1 into the 

extracellular space after hypoxic injury (Figure 2). This supports previous studies that have 

suggested that HMGB1 is expressed in renal TEC by immunohistochemistry [35]. 

Previously, our studies have demonstrated that death receptor mediated TEC death can not 

only result in apoptosis but also a form of programmed necrosis known as necroptosis 

resulting in HMGB1 release from TEC [45,46]. This is consistent with the pro-inflammatory 

damage seen in kidney IRI in the form of acute tubular necrosis. Although our results of 

HMGB1 release from hypoxic TEC are consistent with previous reports of release from 

necrotic cells, it is possible that some HMGB1 was partially released from apoptotic TEC or 

viable activated TEC. However, this seems unlikely as we did not detect HMGB1 in the 

supernatant in viable cell cultures or those that were subjected to sub-lethal treatments (data 
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not shown). Our characterization of HMGB1 release from necrotic TEC after hypoxia 

highlights the importance of HMGB1 signalling within the kidney after IRI.   

HMGB1 is known to upregulate various pro-inflammatory molecules such as TNFα, 

interleukin-1β, interleukin-6, and CXCL12. There is currently no therapeutic that targets 

HMGB1 mediated inflammation. We used GZA, a specific functional inhibitor of HMGB1, 

to block the production of pro-inflammatory molecules in hypoxic TEC (Figure 3) which was 

consistent with previous reports [44]. In addition, NK cell activation by HMGB1 was 

inhibited by the addition of GZA indicating an additional role in preventing inflammation 

(Figure 3). GZA was able to reduce cell death following hypoxia suggesting that HMGB1 

could have a direct effect in vivo on propagating injury, although this has not been shown. 

The addition of recombinant HMGB1 (1-2µg/mL) was unable to induce cell death as 

measured by Annexin-V/PI  labeling (not shown). Recent studies have shown that HMGB1 is 

post-translationally modified through oxidation during cell death, which can result in greater 

activation of pro-inflammatory pathways [47]. Furthermore, hyper-acetylation of HMGB1 

allows for translocation from the nucleus to the cytosol and is therefore likely to be the form 

released during cell death [13]. Oxidation and acetylation of HMGB1 via cell death may thus 

account for discrepancy of results using recombinant HMGB1 as compared to native 

HMGB1. Consistent with a role of modified HMGB1 in injury in vivo, anti-HMGB1 

antibody in previous studies [34] and GZA in the present study can attenuate IRI. Our in 

vitro results showing the protective effect of GZA was extended to in vivo and demonstrated 

that GZA treatment can also block IRI induced tissue necrosis through a novel quantifiable 

method using ethidium homodimer perfusion (Figure 4). The inhibition of HMGB1 mediated 

inflammation and necrosis during renal IRI was also reflected in significantly improved renal 

function. Based upon our findings, GZA may act as a viable therapeutic for acute kidney 

injury (AKI) after IRI due to its nephro-protective effects through the inhibition of HMGB1-

mediated injury.  

From a practical and therapeutic standpoint, GZA appears to be a promising candidate for 

targeting HMGB1 as loss of function is related to neutralization rather than blocking the 

candidate receptors including TLR and RAGE. Studies in other models of organ injury have 

demonstrated GZA can downregulate a panel of pro-inflammatory mediators which suggests 

it might be an effective broad anti-inflammatory agent in a variety of acute injury and 
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inflammatory disease models [48,49]. Currently, its clinical uses have been primarily for the 

treatment of hepatitis B and C at high doses [36]. GZA binds stably to both boxes of HMGB1 

without interfering with its physiological DNA-binding functions or causing release of 

HMGB1 from chromatin thereby causing very little to no cytotoxic effects [40]. In addition, 

the ability of GZA to be efficiently perfused into the donor organ is also greater than anti-

HMGB1 antibodies due to its smaller molecular weight. Due to the protein based nature of 

antibodies, their affinity towards their target molecules would be ineffective in the low 

temperature perfusion solution. Therefore, our work demonstrates the significance of 

inhibiting HMGB1 mediated injury to ameliorate renal IRI through novel therapeutics such 

as GZA. 

Acute kidney injury resulting from IRI is presumed to be temporary and self-limiting. 

However, our results show that HMGB1 can directly injury TEC which suggests that 

progressive AKI may result from HMGB1 and perhaps other CDAMPs. The application of 

our HMGB1 inhibitor, GZA, had a beneficial effect on the kidney after IRI indicating that 

HMGB1 alone does have a large role in the pro-inflammatory response. Studies have 

demonstrated that HMGB1-like effects can also be generated by endotoxin contamination 

which could also generate the type of inflammation seen by TLR signalling [50]. In our case, 

this is unlikely since the anti-HMGB1 effects of GZA are not specific towards LPS and thus 

would only ameliorate injury due to HMGB1 signalling. Further characterization of other 

CDAMP molecules in AKI are required to thoroughly understand the complex mechanisms 

of CDAMP release and signaling and will provide greater insight into the role of innate 

immunity during IRI. 

In summary, we have identified that HMGB1 released from dying TEC can mediate pro-

inflammatory responses and cell death in TEC and can also impair renal function in kidney 

IRI. We have also demonstrated the therapeutic potential of GZA as a functional inhibitor of 

HMGB1 mediated injury during renal IRI through the inhibition of tissue necrosis and the 

downregulation of pro-inflammatory molecules. Inhibition of HMGB1 reduced cell death 

both in vitro and in vivo and may lead to a greater understanding of the mechanisms behind 

the propagation of injury during AKI. Inclusion of the role of HMGB1 in both inflammation 

and cell death during renal IRI may further our current understanding of transplant rejection 
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elicited by these pathways. Importantly GZA regulation of parenchymal cell death may also 

be useful in solid organ transplantation. 
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Chapter 5 

5 Discussion 

5.1 Kidney injury and rejection is promoted by the form of cell 

death and subsequent pro-inflammatory responses 

These studies have demonstrated the importance of cell death and highlighted that the role of 

death regulates immune responses during renal IRI and transplantation (Figure 5.1). The 

kidney possesses a somewhat unique ability to resist inflammatory forms of tissue injury 

through the expression of various anti-apoptosis molecules, including SPI-6, which inhibits 

granzyme B-mediated cell death
8,109,110

 and pro-survival molecules such as c-FLIP and 

erythropoietin (EPO), TGFβ, and others. During renal IRI as well as in transplantation, 

cytotoxic infiltrating immune cells play a large role in determining outcomes in kidney 

function and survival via effects on target parenchymal cells such as TEC. Cytotoxicity is 

mediated through several pathways including perforin/granzyme B which has been 

demonstrated to effectively induce cell death in TEC in vitro
49,50

. Under pro-inflammatory 

conditions, TEC can upregulate expression of SPI-6 and effectively resist granzyme mediated 

cytotoxicity. Loss of SPI-6 in the kidney graft clearly results in greater cell death and graft 

dysfunction as well as decreased allograft survival. This also supports a role for apoptotic 

cell death in promoting allograft dysfunction and reduced survival as SPI-6 inhibition of 

granzyme B normally prevents caspase-3 activation and subsequent apoptosis. Although 

apoptosis is not associated with augmenting inflammation such as with necrosis, sufficient 

loss of parenchymal cells without regeneration will inevitably result in loss of organ function. 

Therefore, limiting apoptosis remains an attractive therapeutic target, provided other forms of 

cell death remain in balance and are not affected. 

Thus, previous studies in renal IRI using mouse models have demonstrated a benefit to 

inhibiting apoptosis with siRNA directed towards caspase-3 and 8
61

. However, in our model 

of kidney transplantation, inhibition of caspase-8 in the donor graft led to increased tissue 

injury and decreased allograft survival and disruption of this particular caspase had 

unintended consequences. This observation was confirmed in vitro in TEC as necrosis was 
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induced by TNFα with caspase-8 inhibition. As either Nec-1 or RIPK3 deletion recovered 

cell viability, this form of necrosis was by definition necroptosis. Release of HMGB1 was 

also demonstrated in TEC undergoing necroptosis, suggesting that this form of programmed 

necrosis had the potential to be pro-inflammatory by the release of CDAMP. Necroptosis was 

linked to AKI as kidney function was preserved and tissue injury was consistently reduced in 

RIPK3
-/-

 mice with conditions that induced renal IRI in wild type mice. This benefit was 

extended tokidney transplantation as mouse recipients receiving RIPK3
-/-

 allografts had 

preserved kidney function and prolonged graft survival.  

The role of CDAMPs in inflammatory diseases has been well described in various models of 

acute injury including renal IRI
101

. Among those that are studied, HMGB1 has been the most 

extensively characterized as a regulator of the pro-inflammatory response. In our mouse 

model of renal IRI, HMGB1 is released from TEC undergoing necrotic cell death in vitro. 

Extended to in vivo, it is likely that extracellular HMGB1 can signal through TLRs on 

adjacent TEC to induce expression of pro-inflammatory cytokines that can promote further 

injury through greater chemoattraction and activation of immune cells at the site of injury. 

Consistent with this, use of the small molecule inhibitor GZA allows for functional inhibition 

of extracellular HMGB1
111

 and provided protection from renal IRI in vivo. Without 

inhibition, HMGB1 that can bind to TLR can propagate inflammatory injury as activated 

infiltrating immune cells can cause further injury through the aforementioned death receptor 

pathways.  
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Figure 5.1 Cell death regulates severity of tissue injury and inflammation in renal 

IRI and transplantation. 

During renal IRI and transplant rejection, pro-inflammatory responses activate various CTL 

which infiltrate the kidney and induce cell death in TEC. A) Activated CTL upregulate 

perforin/granzyme B complexes and TNFα and secrete them into the extracellular space. 

Perforin forms pores on the surface of TEC allowing for granzyme B to enter the target cell 

and cleave caspase-3, inducing apoptosis. However, TEC can limit the extent of granzyme B 

mediated cytotoxicity through expression of SPI-6, an inhibitor of granzyme B. B) Soluble 

TNFα binds to TNFR1 expressed on the surface of TEC and activates formation of cell death 

complexes. If caspase-8 activity is inhibited, the necrosome complex consisting of FADD, 

RIPK1, and RIPK3 is formed and induces necroptosis in the TEC. The resulting necroptotic 

death releases HMGB1 into the extracellular space. However, if RIPK1/3 activity is blocked 

by Nec-1 or RIPK3 deletion, necroptosis is inhibited. C) Extracellular HMGB1 can bind to 

TLR2 or TLR4 found on the surface of TEC and immune cells. Activation of TLR signaling 

by HMGB1 in TEC leads to upregulation of pro-inflammatory responses and cell death. This 

response can perpetuate immune mediated cytotoxicity in the kidney due to further activation 

of naïve CTL. Intervention of HMGB1 mediated inflammation by GZA can protect TEC and 

prevent further tissue injury during renal IRI. 
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5.2 Regulation of renal IRI and allograft injury by donor organ 

factors 

Current clinical practices for controlling rejection in kidney transplantation is primarily 

focused on limiting the aggressiveness of adaptive immune responses specifically in the form 

of T and B cells. These strategies have shown to be effective in preventing and even treating 

acute rejection episodes. However, chronic rejection appears to be unaffected by current 

immunosuppression as long term survival has not changed nearly as dramatically as short 

term survivals
35,36

. Previous studies have characterized the expression of various cell survival 

and anti-inflammatory factors in renal tissue. In particular, PI-9/SPI-6 has been identified in 

renal allografts and is highly expressed during episodes of subclinical rejection suggesting 

TEC expression of this molecule may be the major determinant that controls progression to 

overt clinically detectable rejection
54

. This study has clarified the role of TEC expressed SPI-

6 during allograft transplantation, particularly demonstrating the importance of this molecule 

in regulating granzyme B-mediated cytotoxicity during rejection resulting in increased graft 

survival
64

. Interestingly, other studies using non-life supporting murine kidney 

transplantation models have shown that the loss of perforin/granzyme in the recipient does 

not significantly improve transplant injury, suggesting alternative mechanisms of cytotoxicity 

including Fas-FasL interactions may play a more important role
112

. However, our study has 

clearly shown that altering susceptibility to granzyme cytotoxicity on the target/donor cell 

side via SPI-6 can alter injury and thus this may be a strategy for greater protection against 

transplant injury. 

Along with our study, others have provided evidence that the kidney can attenuate injury 

through the production of additional cell survival and anti-inflammatory factors. TEC can 

also express c-FLIP, an anti-apoptotic molecule that is similar to caspase-8 but lacks the 

catalytic enzyme site and prevents the downstream catalytic function of the death inducing 

signaling complex (DISC)
110

. Furthermore, recent studies have shown that not only can c-

FLIP prevent apoptotic death but complexed with caspease-8 can regulate necroptosis
66

. In 

contrast, TEC can also directly promote cell death through surface expression of both Fas 

and Fas-L during inflammation
8
. The increased expression of these surface molecules not 

only allows for death receptor mediated cell death of TEC by immune cells but also between 
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activated TEC in a process referred to as fratricide. As specialized cells of the nephron, TEC 

are highly metabolically active and under pro-inflammatory stress, are capable of 

upregulating and secreting cytokines. This was supported in vitro and in vivo in our renal IRI 

studies that demonstrated upregulation of a number of key pro-inflammatory cytokines 

within the kidney. However, the kidney is also capable of producing anti-inflammatory 

cytokines such as interleukin-10 (IL-10) and TGFβ
113,114

 which promotes proliferation of 

CD4
+
FoxP3

+
 T-regulatory cells (Tregs) that can suppress CD4

+
 and CD8

+
 T cell populations. 

Interestingly despite alteration of donor SPI-6 or RIPK3 expression, infiltrating cytotoxic 

cells were still able to infiltrate the graft indicating that recipient immune function per se was 

not impaired. This provides supportive evidence that the modification of donor factors can 

play an important role in regulating the severity of rejection without comprising the systemic 

immune function in contrast to immunosuppressive therapies that have a generalized effect 

on immune response.  

Currently, SPI-6 has been identified in various tissue and cell types and is particularly highly 

expressed in cytotoxic cells as they require protection from self-directed granzyme B 

mediated apoptosis
52

. This must be taken into consideration if expression of SPI-6 is 

upregulated systemically in the recipient for the purposes of protecting the graft from 

cytotoxic attack as increased SPI-6 in immune cells would also make them more resistant to 

cell death. Activation induced cell death following T cell activation leads to cell-to-cell 

fratricide by apoptosis as a mechanism to limit expansion. Perturbing immune cell death 

pathways could result in the increased activity of cytotoxic immune cells. As well, CTL 

forms of Tregs that would not be able to suppress their function through granzyme B 

mediated cytotoxicity, potentially leading to more severe rejection. Thus far, the only 

compound that has been identified to upregulate PI-9, or the mouse homolog SPI-6, is 

genistein, a naturally occurring component of soybean. In studies using cancer cell lines, 

genistein induced expression of PI-9 induced resistance against cytotoxic NK cells
115

. 

Nonetheless, upregulation of donor PI-9 could be adapted to transplantation therapy through 

the use of donor organ perfusion solutions containing genistein that can upregulate PI-9 in 

TEC as well as other kidney parenchyma, without affecting recipient immune cells. 
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5.3 Apoptosis and necroptosis are counterbalanced forms of cell 

death in renal IRI and allograft rejection 

Kidney transplantation injury is triggered by a cascade of linked innate and adaptive immune 

responses that propagate injury, kill parenchymal cells, and promote antibody and cell 

mediated rejection. The form of cell death may be an early variable that directs the outcome 

of alloimmune responses and graft survival (Figure 5.2). The current understanding of cell 

death mechanisms has greatly expanded beyond apoptosis to include forms of regulated 

necrosis. This study has revealed a newly recognized form of programmed necrosis in both 

TEC and renal tissue and can affect AKI and allograft transplant survival
22

. Necroptosis, as a 

result of pro-inflammatory stimuli, is negatively regulated by active caspase-8 and is 

mediated by RIPK1/3. During AKI such as IRI and allograft rejection, acute tubular necrosis 

is a histological hallmark of renal injury which in its severest form results in the progression 

of fibrosis leading to kidney dysfunction and potentially graft loss
37

. Necroptotic death 

appears to contribute to overall necrosis during kidney injury as demonstrated by ethidium 

homodimer perfusion which visualizes and quantifies tissue necrosis in vivo. Importantly, 

prevention of necroptosis by genetic RIPK3 deletion in the donor graft prolongs allograft 

survival and preserves kidney function. Other studies have also observed necroptotic cell 

death in diverse forms of inflammatory disease including IRI in various organs, toxic injury,  

infectious disease, and autoimmune disorders
70,81,83,84

. In concordance with our observations 

in kidney transplantation, inhibition of necroptosis in these studies was also able to 

ameliorate inflammatory injury and reduce pathogenicity of the disease.   

Blockade of multiple cell death pathways such as necroptosis and apoptosis may collectively 

represent a viable and novel strategy for the prevention of kidney injury. Previous reports 

have also demonstrated a benefit to the kidney after inhibition of apoptosis through caspase-3 

and 8 by siRNA in AKI
9
. Surprisingly, our preliminary in vivo studies using combined 

caspase-8
-/-

/RIPK3
-/-

 mice
66

 have demonstrated that the absence of caspase-8 along with loss 

of RIPK3 counteracts the benefit of RIPK3 deletion during renal IRI (not shown). Indeed, 

serum creatinine and histological analyses indicate that there was no difference in renal 

function and injury after renal IRI between wild type and caspase-8
-/-

/RIPK3
-/-

. In addition, 

when kidney allografts from caspase-8
-/-

/RIPK3
-/- 

mice are transplanted, a similar blunting of 
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benefit was seen as grafts did not survive longer than wild type allografts. Further elucidation 

of the mechanism behind this observation will be required in order to understand the complex 

interplay between caspase-8 and RIPK3 and their effects on other pathways. One possibility 

includes that lack of apoptosis, due to lost effect on tolerance induction, in the allograft may 

actually be deleterious to graft survival, although this does entirely explain the IRI results. 

Apoptosis inhibition has been demonstrated to be protective in a short term AKI model. 

Permanent apoptosis inhibition by genetic deletion in any model followed for longer times 

may have different effects. Studies support that apoptosis may have a role in stimulating an 

anti-inflammatory and pro-survival responses which may impact beneficially on the 

progression of rejection in the allograft
92,116,117

. Endothelial cells undergoing apoptosis can 

program anti-inflammatory macrophages
118

 or proteolytically remodel surrounding 

extracellular matrix (ECM) to release anti-apoptotic molecules such as C-terminal fragment 

of perlecan (LG3)
119

. A more likely possibility may be that caspase-8 and RIPK3 may also 

regulate other cell death pathways such as intrinsic apoptosis and autophagy. The combined 

loss of these important molecules may have caused dysregulation of these pathways leading 

to greater kidney injury
120,121

. Nonetheless, as new cell death pathways and their regulators 

are defined, it will be crucial to consider effects on other pathways as cell death regulation 

involves high levels of crosstalk and overlap in function and outcome. 

The benefits of necroptosis inhibition appear to be two-fold: prevention of loss of TEC and 

other renal parenchyma that are essential to kidney function, which was reflected by low 

levels of serum creatinine and secondly, a reduction in inflammation and subsequent immune 

response as noted by decreased neutrophil infiltration and less tubilitis. As expected, RIPK3 

inhibition prevented necrosis in the graft as it is essential for this form of necrosis. It also 

appeared to induce resistance to apoptosis as well, which has been observed other studies, 

albeit with no clear mechanism
122

. Dampening of immune responses may be due to decreased 

CDAMP release as was seen in both in vitro and in vivo when necroptosis was inhibited. As 

lack of HMGB1 release from necroptotic cells is unable to trigger innate immune responses, 

this may in turn dampen the adaptive immune responses which in turn leads to less cell death 

and inflammation overall. This was well demonstrated in our preliminary studies on TEC 

production of pro-inflammatory cytokines using supernatants obtained from wild type and 

RIPK3
-/-

 TEC undergoing hypoxic death. As expected, supernatants from wild type TEC 
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undergoing cell death were able to upregulate pro-inflammatory responses in TEC whereas 

supernatant from RIPK3 TEC undergoing cell death did not (data not shown). The presence 

of HMGB1 can thus enhance pro-inflammatory responses in TEC as well as immune cells. 

However, necroptosis inhibition does not completely eliminate the occurrence of rejection as 

noted by obvious CD3+ infiltrates in both wild type and RIPK3
-/-

 grafts. The model we used 

does not add immunosuppression and so perhaps this was expected as there would be no 

agents to suppress the proliferation of T cells. However, the presence of infiltrating cells 

suggests that even in RIPK3
-/-

 allografts there is ongoing injury sufficient to induce 

chemotactic signals. While these results provide important insights into the potential for 

necroptosis inhibitors to protect allografts from rejection without adversely affecting 

recipient immune responses, it is clear that additional therapy will be required, as loss of 

necroptosis does not generate tolerance per se. 

Genetic deletion of RIPK3-mediated necroptosis in the donor graft prevented allograft loss 

but this is not generally feasible in clinical scenarios.Thus consideration of the effects of 

small molecule inhibitors to regulate this pathway is attractive if this is to be translated into a 

therapeutic. Nec-1, a RIPK1 inhibitor, has been demonstrated as an efficient in vitro inhibitor 

of necroptosis in TEC in our study, while others have demonstrated its effectiveness during 

AKI in vivo
47

.Importantly, RIPK3 deletion in our in vitro and in vivo models had greater 

inhibition of necroptosis than Nec-1, suggesting targeting of RIPK3 directly may be of larger 

clinical benefit. While more complete inhibition may be accomplished with genetic deletion 

and RIPK3 inhibitors remain to be created, the regulation of necroptosis via Nec-1may not be 

straightforward in patients. For example, stimulation of the necroptotic pathway can occur in 

the absence of RIPK1 when signaled through either IFN receptors or TLRs
69,123

. It would 

follow that the use of RIPK3 inhibitors may be a more suitable necroptosis inhibitor in the 

future. Currently, the only known inhibitor of RIPK3 is the M45 viral peptide produced by 

cytomegalovirus (CMV), used by this pathogen to evade immune surveillance by preventing 

pro-inflammatory necroptosis in infected cells
120

. Alternatively targeting of MLKL, a 

molecule downstream of RIPK3 may be the most efficient approach to block necroptosis. 

Necrosulfonamide, a small molecule inhibitor of MLKL, has been shown to effectively block 

necroptosis as MLKL is required for the initiation of the final pathway of necroptosis
75

. 

Further studies are required to determine the effective dose and length of treatment with 
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either RIPK3 or MLKL inhibitors in preventing inflammation and promotion of rejection 

responses. Again, it is important to consider in translation strategies using these agents, that 

although inhibition of necroptosis in the donor graft appears to be beneficial to allograft 

survival, when given to the recipient in the form of a systemic therapeutic, it may have 

unintended adverse effects on allograft survival through effects on immune cell proliferation 

and possibly cause more severe rejection
124

. Treatment of the donor graft alone and for short 

duration should not experience this concern. 
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Figure 5.2 Apoptosis and necroptosis regulates outcomes of long term allograft 

function and survival. 

During kidney transplantation, renal tubular epithelial cell (TEC) death and intra-graft 

inflammation occurs resulting in acute and chronic rejection. Renal TEC undergo various 

forms of cell death including apoptosis and necroptosis, each with contrasting immunological 

consequences. Under apoptotic conditions, TEC form apoptotic bodies which prevent the 

release of high mobility group box-1 (HMGB1) and other cellular death associated molecular 

patterns (CDAMPs), thus promoting an anti-inflammatory response. However, when 

caspase-8 is inhibited, receptor interacting protein kinase 1 and 3 (RIPK1/3) mediated 

necroptosis is upregulated and results in release of HMGB1 and other CDAMPs. Unless the 

pro-inflammatory function of HMGB1 is inhibited (i.e. glycyrrhizic acid (GZA)), a pro-

inflammatory response is initiated involving the recruitment and activation of infiltrating 

immune cells, some of which have cytotoxic ability. Cytotoxic lymphocytes (CTL) can then 

induce apoptosis in target TEC through the perforin/granzyme B unless inhibited by TEC 

expression of serine protease inhibitor-6 (SPI-6). If renal TEC death and inflammation persist 

within the allograft, this leads to graft dysfunction and eventually graft rejection/loss. 

  



152 

 

 

Other cell death modalities in AKI and renal transplantation 

Although apoptosis and necroptosis appear to be major cell death pathways that can regulate 

kidney injury and inflammation, numerous studies have also revealed other forms of cell 

death that can affect kidney function and survival. Studies in AKI have revealed that renal 

cells undergo autophagy which has also been observed during cold preservation injury, 

which is very relevant to current organ storage
125

. In addition, rapamycin, a commonly used 

immunosuppressant in transplant recipients, can promote autophagy due to its effects on the 

mammalian target of rapamycin (mTOR) pathway which may account for its adverse effects 

on podocyte injury, proteinuria, and glomerulonephritis
126

. Autophagy is typically initiated 

when a cell undergoes metabolic stress caused by nutrient deprivation or oxidative stress. 

This process will induce intracellular formation of autophagosomes which begin to break 

down components of the cell and reuse them in order to maintain cellular energy and prolong 

cell survival. However, in some cases, autophagy may promote cell death rather than survival 

and thus may contribute to promoting immune responses similar to apoptosis and necrosis 

although the manner in which it does this is currently unclear
121

. Interestingly, autophagy 

also appears to be linked with apoptosis as active caspase-8 inhibits autophagy related 

proteins (ATG) thereby promoting apoptosis over autophagy
127

. In contrast, when RIPK1 is 

silenced, necroptosis decreased but autophagy was upregulated. The diverse regulatory 

functions of caspase-8 and RIPK1 may allow for known crosstalk between apoptosis, 

necrosis, and autophagy and this ultimately will have effects on inflammation and organ 

injury. 

Another form of programmed necrosis is known as pyroptosis which occurs in response to 

the presence of pathogens and PAMPs by TLR and nucleotide-binding oligomerization 

domain receptors (NLR) signaling leading to the activation of the inflammasome. When the 

inflammasome is activated by caspase-1, upregulation of IL-1β and IL-18 occurs as well as 

HMGB1 release. Collectively, this results in a pro-inflammatory response as seen in other 

form of necrosis, including necroptosis
128

. Formation of pores on the cell surface can also 

occur resulting in cell lysis and pyroptosis. This pathway has been identified in a chronic 

inflammatory kidney model where inhibition of inflammasome was able to protect against 

renal injury and decrease inflammation
129

. In human renal allografts, TLR expression on 

TEC is increased in grafts undergoing acute rejection, suggesting a role for necrosis, 
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HMGB1, and inflammasome-mediated injury
130

. As previously mentioned, TLRs can also be 

activated by CDAMP ligands which we and others have demonstrated to be present during 

AKI and renal allograft injury. Furthermore, our studies have suggested that CDAMPs may 

directly induce cell death, as inhibition of HMGB1 function by GZA was able to inhibit TEC 

death which suggests pyroptosis may be another mechanism of TEC death in our studies. 

Emerging studies have indicated that in the absence of caspase-8, RIPK1/3 may be involved 

in inflammasome signaling as inhibition of these molecules by Nec-1 or genetic knockout 

results in reduced active IL-1β production
128

. In addition, it has been shown that the RHIM 

binding site located on RIPK3 is also found on TIR-domain-containing adaptor-inducing 

interferon-β (TRIF), an adaptor protein that complexes with TLRs when activated
131

. 

Therefore, CDAMP activation of TLRs could allow for TRIF and RIPK3 to complex through 

RHIM interactions leading to necroptosis in addition to pro-inflammatory Nfκb and 

inflammasome signaling. It remains unclear as to the role of caspase-8, RIPK1, and RIPK3 in 

inflammasome activation however, one possibility is that necroptosis induces inflammasome 

activation through the release of HMGB1 and other CDAMPs. 
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5.4 HMGB1-mediated inflammatory injury in AKI and rejection 

Emerging studies in the roles for innate immunity in AKI have demonstrated the importance 

of immune surveillance by TLRs for the presence injured tissue through CDAMP signaling. 

In particular, TLR2 and TLR4 have been the most well described of the TLR family in 

regards to its involvement in propagating renal IRI
16,132

. It has been observed that TLR4 on 

both renal parenchyma as well as immune cells are crucial to activating the pro-inflammatory 

response during renal IRI and that inhibition of these receptors on either side are capable of 

reducing kidney injury. However, the greater benefit was associated with loss of TLR4 on 

TEC
16

. In keeping with this, human studies in TLR expression on tubular cells from renal 

allograft biopsies have shown that not only is TLR4 expressed on these cells but increased 

expression was correlated with woresened graft function
133

. This provides insights into the 

importance of TLR expression in the kidney in regards to its ability to regulate inflammatory 

injury during AKI and potentially during renal transplantation. 

Although many studies on renal inflammatory injury have focused on the importance of the 

expression of TLRs and other innate receptors, the ligands for these receptors have also been 

an area of interest. In a practical sense, it may be more feasible to target circulating ligands 

rather than TLR clinically. A variety of CDAMPs have been characterized as stimulators of 

pro-inflammmatory responses including HMGB1, heat shock proteins, uric acid, and other 

proteins. Our studies have demonstrated that HMGB1 release as a result of necrotic cell 

death can lead to upregulation of pro-inflammatory molecules in TEC as well as activation of 

immune cells. Interestingly, HMGB1 was capable of directly inducing cell death in vitro, as 

well as tissue necrosis in vivo as supported by the protective effects of GZA, a functional 

inhibitor of HMGB1 effect. There is growing evidence for the possibility TLR-mediated 

death generally as adaptors of the TLR family of receptors are able to interact with and 

activate cell death regulators such as RIPK3, resulting in necroptotic death
131

. Conceptually 

this would potentially allow for a continuous cycle of HMGB1 induced necroptosis leading 

to HMGB1 release and further activation of necroptosis in surrounding cells. In addition, 

with the activation of cytotoxic cells by HMGB1 and other upregulated pro-inflammatory 

cytokines, this would result in additional receptor mediated necroptosis (by TNFα or Fas-L) 

and apoptosis, further propagating inflammatory injury and loss of functional parenchymal 

cells. Our study highlights the feasibility and impact of HMGB1 blockade in vivo as its 
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multifaceted effects on kidney injury during AKI and renal transplantation may play a crucial 

role in regulating the severity and extent of inflammation. 

Although HMGB1 is ubiquitously expressed in all eukaryotic cells and can be released 

through necrotic cell death, differences in the status of post-translational modifications can 

alter its immunogenicity. Early studies identified HMGB1 as an ‘immunogenic’ molecule 

when it was observed to be secreted from various mononuclear immune cells during 

inflammation, similar to the role of pro-inflammatory cytokines
95

. As previously noted, 

HMGB1 modifications can occur via acetylation
94

 and oxidation
92

 primarily, which are 

involved in translocation and immunogenicity respectively. In this study, we did not 

characterize isoforms and modifications of HMGB1 after release from necrotic TEC and 

kidney tissue. However GZA was capable of globally inhibiting the pro-inflammatory effects 

of extracellular HMGB1. Again, the complexity of these pathways is reflected in that it has 

been noted in other studies that the presence of extracellular oxidized HMGB1 may promote 

a tolerogenic effect
92

. It has been proposed that apoptotic death resulting in production of 

ROS was potentially responsible for this modification of the HMGB1 molecule. We 

extended our findings of pro-inflammatory HMGB1 from TEC death in preliminary studies 

using in vitro modification of the oxidative status of recombinant HMGB1 through the 

addition of hydrogen peroxide (H2O2) and dithiothreitol (DTT) to produce oxidative and 

reducing conditions respectively. When added to NK cells, IFNγ was more highly 

upregulated in NK cells exposed to reduced HMGB1 compared to oxidized HMGB1 (data 

not shown). When viable TEC were exposed to HMGB1 containing ‘oxidized’ and ‘reduced’ 

supernatant from hypoxia treated TEC, there was greater TEC death in those treated with 

‘reduced’ supernatant compared to controls (data not shown). These findings highlight the 

complex biology of HMGB1 and that the neutralization of HMGB1 for the prevention of 

renal inflammatory may require consideration of altered forms of this molecule. 

Other immunogenic molecules released during tissue injury and cell death 

Modulation of the innate immune system may provide us with new strategies for 

ameliorating inflammation and injury during renal IRI and alloimmune rejection
12,134

.  It has 

only been recently that reagents with effects on innate responses have been created or defined 

for this role. Although HMGB1 is the most well characterized CDAMP molecule, other 
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CDAMP molecules may also equally contribute to propagating the inflammatory response in 

the kidney. Our preliminary studies have revealed that although HMGB1 release is increased 

during renal IRI from TEC and other parenchyma, increased levels of HSP60 and HSP70 can 

also be detected. This is in agreement with previous studies that have demonstrated HSPs, 

along with HMGB1, are stimulators of pro-inflammatory responses through TLR signaling in 

various immune cells
102

. In addition, extracellular matrix (ECM) proteins from tissue injury 

can act as CDAMPs due to inflammation leading to enzymatic breakdown of these proteins 

which include fibronectin, hyaluronan, and heparin sulfate
135

. Renal injury studies have 

demonstrated that ECM generated CDAMP accumulation is observed during AKI and 

allograft rejection. Inflammation can then be triggered by these pro-inflammatory peptides 

when bound to their respective TLR or other receptors. As research progresses to define the 

roles of CDAMP molecules in regulating inflammation relevant to alloimmune responses, 

consideration of the entire spectrum of CDAMPs released from necrotic cells and the 

surrounding microenvironment will likely need to be considered when applying therapeutic 

strategies to transplant rejection.  

Cellular death can result in the release of various immunogenic molecules including 

CDAMPs either freely to the microenvironment as well as being contained in membrane 

vesicles (MV). Our current understanding is that MV are primarily generated by cells 

undergoing apoptosis and that these vesicles which are composed of plasma membrane that 

encapsulate intracellular ‘cargo’ also expresses surface adhesion molecules that allow for 

receptor specific binding
136

. MV currently are classified by their diameter which can range 

from 50nm-1000nm in size, as well as by morphology. Functionally, MV can have effects on 

inflammation and immune responses depending on the contents contained within as well as 

their ability to bind to specific receptors on specific target cells
136

. Thus the effects of MV 

can range from induction of cell death by expression of Fas-L, activation of immune cells by 

antigen presentation, or inhibition of apoptosis along with smooth muscle cell proliferation 

by the C-terminal fragment of perlecan (LG3)
117

. Recent research has also suggested that MV 

may be useful biomarkers as well as potentially therapeutic targets in transplantation. Indeed, 

MV have been used therapeutically in rat bone marrow and heart transplants and a 

tolerogenic effect improved allograft function and survival
137

. These studies support the 

hypothesis while the loss of caspase-8 induces necroptosis, there may be reduced generation 
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of tolerogenic MV. Collectively, these and our studies provide greater insights into the 

variable immunogenicity of cell death and their effects on alloimmune responses during 

transplantation. 
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5.5 Future directions 

Therapeutic applications 

Our studies have highlighted the importance of donor graft factors in the regulation of tissue 

injury and alloimmunity during renal transplantation. In particular, cell death pathways in the 

allograft regulate not only the viability of parenchymal cells critical to renal function but also 

affects the severity of  inflammatory responses that is reflected in allograft function and 

survival
22,64

. As we have demonstrated, inhibition of granzyme-mediated apoptosis by SPI-6 

or necroptosis by RIPK3 genetic deletion in the donor allograft effectively prolonged 

allograft survival. As systemic anti-rejection therapeutics will have outcomes on the recipient 

immune system, further research is required to determine what effect inhibition of cell death 

pathways would have on components of innate and adaptive immunity. Our murine studies 

on renal transplantation have allowed us to alter donor specific graft factors in the absence of 

immunosuppression. This allowed us to more clearly isolate the role of each graft factor 

(SPI-6, RIPK3) on allograft function and survival. However, without further research into the 

effects of SPI-6 and RIPK1/3 manipulation on recipient immunity, it would be more prudent 

to apply inhibitors of cell death (i.e. genistein or solubilized Nec-1) to the donor graft only. 

Previous studies have demonstrated that application of small molecules to perfusion solution 

can effectively target donor graft factors specifically which was demonstrated using siRNA 

delivery into murine cardiac allografts via UW solution
138

. Translational studies in murine 

kidney transplantation demonstrating the application of these small molecules to renal 

allografts during cold preservation prior to transplantation as a method for inhibiting 

granzyme-mediated apoptosis or necroptosis would provide great insight into the feasibility 

of these compounds as a clinical therapeutic. While effects of cell death inhibitors are likely 

to be temporary, use of perfusion solution as a delivery system allows for donor graft specific 

treatment and would also be easier to manage than the typical systemic immunosuppression 

regimen that must be constantly monitored in recipients. In addition, the benefits of cell death 

inhibition through this method may allow for reduced immunosuppression post-

transplantation as they may work synergistically with one another as shown in our heart 

transplant studies
139

. 

Enhancing cytotoxicity resistance in the renal allograft 
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Our study has demonstrated that donor SPI-6 regulates transplant injury by resisting 

granzyme-mediated cytotoxic attacks from infiltrating immune cells during renal allograft 

rejection
64

. In our murine model of kidney transplantation, recipients receiving donor grafts 

with SPI-6 deletion had reduced allograft survival as compared to those receiving wild type 

grafts. While our studies have also shown that caspase-8 inhibition is detrimental to long 

term graft survival, apoptosis inhibition by SPI-6 expression can still be a viable therapeutic 

option through prevention of granzyme-mediated apoptosis in renal parenchymal cells. In our 

next study, we will upregulate SPI-6 expression in the donor allograft to enhance long term 

allograft survival. Although wild type grafts survived significantly longer than SPI-6
-/- 

grafts, 

only 35% achieved long term survival. While SPI-6 is highly expressed in renal TEC, our 

study has demonstrated that it can be further upregulated as seen with high doses of IFNγ. 

We hypothesize that enhancing renal specific expression of SPI-6 can be accomplished 

through the use of genistein in perfusion solution pre-transplant which will promote long 

term allograft survival. In addition, further studies will be conducted to determine the effects 

of SPI-6 resistance towards other cytotoxic cells relevant to transplant rejection such as NK 

cells and CD4
+
 T cells. Our SPI-6 study has also indicated that although expression of SPI-6 

can protect against CD8
+ 

cytotoxicity, TEC death can still occur through other mechanisms. 

Parallel studies involving cytotoxicity assay and mouse transplants involving inhibitors of 

other cytotoxicity pathways including Fas-Fas-L interactions in combination with SPI-6 

upregulation will also be conducted. Lastly, even in with expression of SPI-6, as our model 

of transplantation does not involve the use of immunosuppression, we were unable to prevent 

the infiltration of immune cells into the graft which may have effects on allograft survival. 

Future studies will examine the effects of immunosuppression in combination with enhanced 

resistance to cytotoxicity on graft function and survival. By preventing both the proliferation 

and function of CTL in the renal allograft, it may have a synergistic effect on enhancing long 

term allograft survival. 

Alternative inhibition of necroptosis during renal allograft injury 

Emerging research on new programmed cell death pathways and their regulators has led to 

the characterization of these pathways in different disease models including transplantation 

rejection. Our studies have demonstrated that necroptosis plays an important role in 

promoting kidney injury and decreasing allograft survival however the mechanism and 
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regulation of this pathway may require greater elucidation
22

. In particular, the roles of 

caspase-8 and RIPK1 in regulating different programmed cell death pathways are still not 

clear cut as their complex interactions with many death pathway molecules and complexes 

can result in opposing outcomes depending on which pathways are activated. Many studies, 

including our own, have demonstrated that RIPK1 inhibition leads to inhibition of TNFα-

mediated necroptosis. Conversely, if necroptosis is activated by IFNγ signaling, RIPK1 

inhibition promotes necroptosis which makes RIPK1 a difficult target for blocking 

necroptosis due to complex TNFα and IFNγ signaling during inflammation
123,140

. In addition, 

caspase-8 is not only responsible for regulation of the ‘necrosome’ but has been found to 

regulate pathways involved in other forms of programmed necrosis such as pyroptosis
141

 and 

other programmed cell death pathways including autophagy
121

. Therefore, despite inhibition 

of necroptosis, blocking caspase-8 and RIPK3 activity may enhance alternate forms of 

programmed cell death and still inevitably lead to graft dysfunction and loss. It will be 

crucial to achieve a greater understanding of these key molecules in cell death and their roles 

in the complex signaling pathways occurring during inflammatory injury and rejection in 

order to more specifically promote allograft survival. 

As the role of RIPK1 regulation of different necroptosis pathways remains to be clarified, 

future studies will focus on the inhibition of downstream molecules, RIPK3 and MLKL, to 

more specifically block necroptotic death in renal allografts. Although there are no RIPK3 

inhibitors currently available commercially, the viral peptide M45 produced by 

cytomegalovirus (CMV) is known to inhibit RIPK3 and necroptosis
70

 and could potentially 

be used as a basis for development of a small molecule inhibitor similar to Nec-1. Our future 

studies will also focus on the use of MLKL inhibition as a method of blocking necroptosis in 

kidney inflammatory injury. MLKL is a target of RIPK3 phosphorylation and is necessary 

for receptor mediated necroptosis
75

. It is currently unclear how MLKL induces a necrotic 

phenotype but it has been suggested that MLKL moves to the plasma membrane of cells and 

forms pores resulting in the influx of Ca
2+

 leading to cell lysis
73

. Necrosulfonamide, an 

inhibitor of human MLKL
75

, will be used for in vitro experiments to determine its efficacy in 

blocking receptor-mediated necroptosis in human renal TEC. These studies will be mirrored 

in vivo using our murine renal transplantation model through the use of MLKL
-/-

 donor grafts 

to determine effects on long term allograft survival. As previously mentioned, our 
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preliminary studies in blocking both apoptosis and necroptosis through the use caspase-8
-/-

/RIPK3
-/-

 mice have shown that the benefit of RIPK3 inhibition is lost during renal IRI and 

kidney transplantation. Through the characterization of other programmed cell death 

pathways such as pyroptosis and autophagy in vitro via phenotypic changes and use of 

inhibitors, we will determine whether they are being non-specifically activated due to loss of 

caspase-8 and/or RIPK3 under pro-inflammatory conditions. It will be important to identify 

any potential non-specific activation of other death pathways as any translational studies 

involving regulation of cell death pathways must take into account unintended programmed 

cell death that may lead to graft dysfunction. Our observations in these experiments will not 

only expand our knowledge of the mechanisms that regulate necroptotic death but can 

potentially provide more targets for therapeutics against the mosaic of cell death that occurs 

during transplant injury. 

Although we have demonstrated that renal TEC and other parenchyma are sensitive to 

necroptosis, other studies have also demonstrated that T cells can also undergo necroptosis 

under caspase-8 inhibition
124

. Further studies will be required to clarify how blocking 

necroptosis affects the adaptive immune system as systemic inhibition of necroptosis in the 

recipient would have effects on B and T cells as well any resident immune cells in the donor 

graft. Studies in T cell death pathways have revealed that loss of both caspase-8 and RIPK3 

leads to progression of lymphoproliferative disease and accumulation of CD3
+
CD4

-
CD8

-
 T 

cells
66

. In addition, RIPK1 inhibition by Nec-1 in T cells has been found to not only prevent 

necroptosis but also interferes with TCR signal transduction pathways preventing 

proliferation
63

. Our future studies will characterize isolated lymphocytes, including B, T, and 

NK cells, from both RIPK3
-/-

 and caspase-8
-/-

/RIPK3
-/-

 mice to determine if inhibition of 

apoptosis and/or necroptosis results in activation or proliferation under pro-inflammatory 

conditions in vitro. Their cytotoxic function will also be tested against allogeneic 

lymphocytes and renal TEC to determine if blocking cell death pathways affects their ability 

to kill targeted cells in vitro. Additionally, to test effects of cell death inhibition on recipient 

alloimmune responses that  propagate inflammatory injury in vivo, murine renal transplants 

using wild type allografts into RIPK3
-/-

 or caspase-8
-/-

/RIPK3
-/-

 recipients will be assessed for 

graft function and survival. These studies will provide greater insight into the effects of 



162 

 

 

necroptosis inhibition on adaptive immunity before being applied to a clinical transplantation 

setting.  

Post-translational modifications of HMGB1 and its effects on alloimmune responses 

Our study on the propagation of inflammation during renal IRI by HMGB1 released from 

necrotic parenchymal cells, including TEC, suggests that HMGB1 could also have a similar 

effect in transplant injury. The use of GZA as a small molecule inhibitor of extracellular 

HMGB1 both in vitro and in vivo was effective in the reduction of inflammation and injury 

after renal IRI. Future studies would include the use of GZA as a therapeutic during murine 

renal transplantation either as a component of perfusion solution during cold preservation 

and/or as a form of immunosuppression in the recipient post-transplant. We expect that the 

benefits that were observed in our model of AKI to translate into renal transplantation as we 

have demonstrated that HMGB1 is upregulated in renal allografts post-transplantation and 

may contribute to chronic inflammation and rejection. Inhibition of HMGB1 may aid with 

ameliorating rejection and tissue injury as infiltrating immune cells were prominent in the 

allograft. In addition, use of GZA may provide a more feasible translational application of 

HMGB1 inhibition as use of anti-HMGB1 antibodies is not readily available commercially 

and as an antibody, is inherently difficult to use therapeutically as they may not specifically 

localize in the target tissue. Further investigation will also be conducted on the effects of 

HMGB1 inhibition on other immune cell types relevant to transplantation including B and T 

cells as they also express TLR2/4 and thus may be susceptible to HMGB1 activation. This 

would also include functional assays that will determine the effects of HMGB1 inhibition on 

their ability to recognize allo-antigen, induce cytotoxicity, and/or induce pro-inflammatory 

responses. Further understanding of the role of HMGB1 in a transplant setting may lead to 

the development of a new class of therapeutics that target DAMPs as well as reveal 

connections between innate and adaptive immune pathways during rejection. As HMGB1 is 

consistently present during IRI and persists in the allograft, HMGB1 along with other 

DAMPs may have a role in the development of chronic rejection due to their ability to 

perpetuate inflammation. 

We have observed that the inhibition of extracellular HMGB1 after release from necrosis by 

GZA attenuated cell death in the surrounding TEC in vitro and in vivo. HMGB1 and TLR 
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mediated death has also been observed in other studies
142

 and it has also been demonstrated 

that TRIF, an adaptor molecule of TLR, contains a RHIM motif that would allow for 

interaction with RIPK3, potentially allowing for TLR-induced necroptosis
131

. Future studies 

would elucidate any potential mechanisms behind HMGB1-mediated necroptosis in TEC and 

determine if blocking by GZA, TLR inhibitors, or necroptosis inhibitors can block this 

pathway. As we have shown that extracellular HMGB1 persists in the renal allograft and may 

be responsible for driving prolonged intra-graft inflammation leading to decreased allograft 

survival, inhibition of HMGB1-mediated cell death may provide a way to break the cycle of 

cell death derived inflammatory injury. Interestingly, studies in the effects of cell death on 

post-translational modification of HMGB1 have indicated that HMGB1 resulting from ROS 

produced during apoptosis death were unable to activate dendritic cells suggesting an anti-

inflammatory effect
92

. Further studies are required to delineate the forms of HMGB1 that are 

present during allograft rejection to determine whether a greater proportion of 

immunostimulatory HMGB1 is present in grafts undergoing rejection and whether blocking 

necroptosis can modify the HMGB1 profile to reduce inflammation. Elucidation of 

differential effects of reduced and oxidized forms of HMGB1 on renal TEC in vitro would 

provide insight into how tissue injury may regulate inflammation through innate immunity. 

Additionally, as oxidation of extracellular HMGB1 reduces its immunostimulatory function, 

translational studies using oxidized HMGB1 or anti-HMGB1 antibodies targeted against its 

reduced form specifically as a form of immunosuppression would be instructive on its 

potential as a therapeutic. Greater understanding of HMGB1 participation in the context of 

cell death and inflammation during renal transplantation could provide insights into the 

mechanisms of chronic rejection and transplant injury.   
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