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ABSTRACT 

 

Numerical schemes that are suitable for predicting response statistics of mass-spring and ring 

gyroscopes are developed when this class of vibratory gyroscopes are subjected to certain system 

parameters as well as environment uncertainties.  The emphasis is placed on the steady-state part 

of the response since it is more critical to the operation of a gyroscope.  A peak-picking approach 

which simulates the demodulation process which is used in practice is employed first before 

applying the Monte Carlo simulation method to predict the response statistics.  A number of 

simulation trials to predict response statistics have been performed for mass-spring and ring-type 

gyroscopes in an effort to ascertain the optimal temporal points as well as sample paths for the 

impending uncertainty quantification study.  Based on the optimal temporal and sample paths, 

uncertainties in input angular rate, mass/frequency mismatch and damping have been quantified.    

Keywords: MEMS based gyroscope, General coordinate, Uncertainty quantification, Monte 

Carlo method, Numerical prediction, Ensemble mean, Mass mismatch, Frequency mismatch, 

Quality factor, Dynamic response. 
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Chapter 1 
 

1. Introduction and literature review 

 

1.1. Introduction  
 

MEMS (Micro-Electro-Mechanical Systems) based inertial sensors, namely the accelerometer  

and  the gyroscope,  have  gained  much  attention  in  the  past  few  years.  These devices have 

found several useful engineering applications that include spacecraft orientation, vehicle stability 

control, navigation assist, vehicle roll over detection, image stabilization and cellular phones.  

Current MEMS gyroscopes are lighter and compact.  They utilize less power and therefore, are 

considered to provide a cost-effective solution when compared to the moderately priced 

spinning-disk mechanical gyroscopes and the expensive Fiber-optic as well as Ring Laser 

gyroscopes.  

The design methodologies for MEMS devices are based on deterministic approaches, where the 

input parameters, for example geometrical and physical properties are assumed to be known 

precisely.  However, in practice, due to the batch-production processes used in MEMS 

fabrication as well as the micron-scale dimensions of the structural elements, consideration of 

uncertainties in system parameters and an understanding of their effects are warranted. Hence, 

the primary purpose of the present thesis is to develop a systematic process for uncertainty 

quantification based on the dynamic response.     

All MEMS based gyroscopes that have been developed thus far are based on internal vibratory 

motion of structural elements housed within a gyroscope.  In order to characterize uncertainties, 
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two types vibratory MEMS gyroscopes are considered in the present thesis, namely the mass-

spring type vibratory gyroscope and the ring-type gyroscope.  In order to predict response 

statistics, for both MEMS gyroscopes, in time as well as in the frequency domain, numerical 

schemes are developed from suitable mathematical models.  In the interest of examining the 

effect of randomness on output responses, random inputs are introduced in the numerical 

schemes in the form of noise and drift terms.  Monte Carlo method is employed in the 

simulations for predicting the response statistics.  Based on these numerical schemes uncertainty 

quantification is performed via quantifying standard deviations of output responses, when both 

mass-spring and ring gyroscopes are subjected to parameter uncertainties.  It is envisaged that 

this quantitative understanding will lead to improved performance of this class of gyroscopes. 

 

1.2. Literature review 

 

MEMS gyroscopes include the micromechanical and electronic parts which have been fabricated 

on a single chip (see, e.g., Geen at el., 2002 and Lai at el., 2009).  For this class of gyroscopes, 

the batch production with low cost and high precision is a target in the future.  The 

implementation used thus far for the MEMS gyroscopes utilize a vibratory configuration where 

the Coriolis effect is exploited for the precise sensing of angular rotation rates.  Different types 

of micromachined structures can be used as the vibratory elements in the design of angular rate 

sensors, including prismatic beams, tuning forks, single or dual masses, disks, and rings (see e.g., 

Maluf, 2000). 
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Mechanical coupling between the drive and detection modes of a single mass-spring micro-

machined-vibrating gyroscope was studied by Mochida, Tamura and Ohwada (2000) giving 

importance to the mechanical coupling.  A suitable mathematical model for a dual axis 

gyroscope was proposed by Davis (2001).  Davis represented an accurate model for the single 

mass-spring gyroscope by considering the coupling effect for both the driving and sensing axes.   

Figure 1-1 shows a typical configuration for mass-spring gyroscope where the effective spring 

supports have been represented by the thin beams, and the mass situated in the middle is referred 

to as the proof mass which is capable of vibrating in the plane of the structure.  This proof mass 

is subjected to oscillation in a plane along one axis (driving axis), and if the device is subjected 

to a rotational motion about an axis orthogonal to this plane, as a result of the Coriolis effect, the 

proof mass will tend to oscillate in the same plane along an axis referred to as the sensing axis 

which is orthogonal to the driving axis.  The input angular rate can be determined by measuring 

the motion along the sensing axis. 

 

Figure 1- 1. Analog MEMS Vibratory Gyroscope (reproduced from Giunta at el., 2006) 

Bifurcation behaviour of a single-axis mass-spring MEMS gyroscope has been studied by Wang 

(2009) considering nonlinear stiffness elements when the input angular rate of this system is 

subjected to a periodic angular speed fluctuation. Closed-form predictions of the bifurcation 
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paths for both sub-harmonic and combination resonance cases have been formulated and 

examined by employing the method of averaging as well as a numerical approach.   

In the case of ring-type gyroscopes, models to study in-plane vibrations of a rotating ring has 

been developed and represented by Bickford and Reddy (1985). The effects due to shear 

deformation and rotary inertia for higher rotational speeds and for higher bending modes were 

demonstrated.  Huang and Soedel (1987) also investigated the in-plane vibrations of rotating 

rings.  In particular, variations of natural frequencies and mode shapes influenced by rotational 

speed and elastic supports were examined.  The research presented by Putty and Najafi (1994) 

provided information of a vibrating ring gyroscope in which the ring structure is driven into 

resonance in the plane of the chip and provided suitable design details.  Delphi reported about a 

vibratory ring gyroscope using electroplated metal to form a ring  structure  on top of 

complementary metal-oxide semiconductor (CMOS) chips (see, Sparks et al. 1999).  A scanning 

electro-micrograph (SEM) of the device is shown in Figure 1-2.  Semicircular springs support 

the ring and stored the vibration energy.  The spring design has greater effect of packaging 

stresses on the sensor.   

 

Figure 1-2. Delphi‘s metal ring gyroscope (reproduced from the website of Silicon Sensing 

Systems Japan Ltd.) 
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Ring gyroscope has balanced symmetrical structure which is less sensitive to environmental 

vibrations.  Since two identical flexural modes of the structure are used to sense rotation, the 

sensitivity of the sensor is amplified by the quality factor of the structure.  Ring gyroscope is less 

temperature sensitive while two flexural vibration modes are equally affected by temperature 

(see, e.g., Putty, 1995).  However, the ring structure is known to be more resistive to ambient 

vibrations (see, e.g., Lee, et al, 2011).   

A suitable mathematical model for examining the stability and response of a rotating ring 

perturbed by periodic fluctuations were developed by Cho (2004).  For the purpose of 

investigating the dynamic behaviour of a ring gyroscope, the reduction of the equations of 

motion to a suitable discrete linear form is performed first.  Under external excitation and body 

rotation, time and frequency responses for varying parameter values of damping and input 

angular rate with the effects due to ring asymmetry were quantified.  The ring gyroscope model 

used in the present thesis is based on the above research. 

The practical application of the Monte Carlo Simulation (MCS) method is based on the fact the 

next best situation to having the probability distribution of a certain random quantity is to have a 

corresponding large population. The execution process of the method consists of numerically 

simulating a population corresponding to the random quantities in the physical problem, solving 

the deterministic problem associated with each member of that population, and obtaining a 

population corresponding to the random response quantities. This population can then be used to 

get statistics of the response variables (see e.g., Ghanem and Spanos, 2012). 

The Monte Carlo method is a quite versatile mathematical tool having the ability of handling 

situations where all other methods fail. The method has been known and used extensively in 
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various fields such as health care, agriculture, and econometrics.  However, in engineering 

mechanics it has attracted intense attention only recently following the universal availability of 

low-cost computational systems. The computational availability has caused an interest in 

developing sophisticated and efficient simulation algorithms. Shinozuka and Jan (1972) have had 

a pioneering role in introducing the method to the field of engineering mechanics. Most of the 

applications of the MCS have been in the study of random variation of deterministic media (see 

e.g., Ghanem and Spanos, 2012).  Generating samples to create the response surface is a very 

important part of the uncertainty quantification process and there are a number of ways to do it.  

Though one can again use the Monte Carlo approach, significant gains are to be had by sampling 

more intelligently (see e.g., Snow and Bajaj, 2010).  In their study, MCS has also been 

successfully employed in understanding the uncertainty quantification in  a MEMS switch.   An 

efficient stochastic framework for  quantifying  the  effect  of  stochastic  variations  in  various  

design parameters on  the  performance  of  MEMS devices has been performed by Agarwal and 

Aluru (2009).  The above two studies limit their analysis to static behavior as well as spatial co-

ordinates.  

Following the above research on the use of Monte Carlo Simulation to MEMS devices for 

uncertainty quantification, the research performed in the present thesis, unlike the previous 

studies focuses on the prediction of response statistics of MEMS gyroscopes based on the 

dynamic behavior.  
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1.3. Motivation 
 

The application of MEMS vibratory gyroscopes are expanding from consumer electronics to 

aerospace and are  now one of the most common MEMS products.  In many applications, 

consumers demand MEMS gyroscopes that are reliable even in rough environments.  Some of 

these harsh environments  include high temperature, high humidity, high-G mechanical 

shock/drop, high mechanical  vibration, high frequency acoustic noise, high radiation, high 

magnetic and electric field.  In many applications like navigation and tracking, deep water 

energy exploration, down-hole drilling and high-temperature industrial applications, the MEMS 

gyroscope sensor experiences temperatures that are beyond the manufacturer‘s recommended 

temperature range.  In this type of environment, the device is likely to be subjected to 

environmental uncertainties that may adversely affect the performance, reliability as well as 

durability.  To investigate the performance characteristics of MEMS gyroscopes by using 

laboratory experiments to simulate the above environmental conditions usually expensive and 

time-consuming. Thus, a simulation approach is preferred. 

A sensor such as a rate gyroscope can directly measure the angular velocity of a rotating body 

without a need for processes such as integration (of angular acceleration) or differentiation (of 

angular displacement).  In general, the performance level of gyroscopes can be classified into 

three different categories: rate-grade, tactical-grade and inertial-grade. The inertial grade can be 

considered as the most accurate and sensitive while the other two classes are listed in the order of 

lower accuracy and sensitivity.  Until now, although many types of micro-machined vibratory 

gyroscope have been proposed and developed as inertial sensors, to date the performance level of 

these sensors barely achieved the rate-grade.  MEMS gyros are generally not considered 
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appropriate for long-term operations or for a signal integration process since they possess 

significantly high drift error as well as noise.  Thus, it is clear that many challenges are ahead for 

the design of MEMS gyros in order that their performance levels can be increased to those 

offered by conventional rate-grade gyros, and to achieve tactical and inertial-grade performance 

level (see e.g., Cho, 2004).  Drift and noise are random in nature and to predict the effects of drift 

on MEMS gyroscope one of the appropriate ways is to employ the Monte Carlo method to 

numerically simulate the response of MEMS gyroscopes using suitable mathematical models.   

The manufacturing tolerances in MEMS are notoriously poor and additionally the effects that 

parameters variations have on device behaviour are poorly understand.  The result is that 

gyroscope performance and life time are difficult to control or predict.  Understanding the effects 

of these deviations is important for predicting the ranges of performance exhibited by a 

manufactured product can vary significantly from that of the nominal design. Uncertainty 

Quantification also permits prediction of device yield and is a first step towards predicting 

gyroscope lifetime. 

In order to address some of the limitations proposed above, an uncertainty quantification study is 

proposed. Extensive studies on the dynamics and uncertainty quantification of different system 

as well as environmental parameters associated with MEMS inertial sensors, it is envisaged that 

the design process and performance of these devices can be improved further. 
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1.4. Aims of the thesis 
 

The primary intent of the present thesis is to predict dynamic response behaviour of mass-spring 

as well as ring gyroscopes when subjected to an angular motion and perform an uncertainty 

quantification study for quantifying the effect of parameter uncertainties. To this end, Monte 

Carlo simulation is used to compute the response statistics as well as for determining a suitable 

measure.  To date, a systematic procedure for performing this analysis is not available, hence the 

results and the procedures to be developed is envisaged to pave the way towards future research 

in this area.  To achieve this objective, the following steps are considered: 

 Develop a numerical scheme based on a suitable mathematical model for systematic 

characterization of mass-spring gyroscopes giving emphasis to uncertainty quantification. 

 Develop a numerical scheme based on a suitable mathematical model for systematic 

characterization of ring gyroscopes giving emphasis to uncertainty quantification. 

 Develop a systematic process to illustrate the optimal temporal as well as sample paths 

for predicting output statistics in time domain as well as frequency domain via Monte 

Carlo method for both types of gyroscopes. 

 Perform uncertainty quantification analysis for mass-spring gyroscope based on output 

response statistics in time domain as well as in the frequency domain when the system is 

subjected to uncertainties in angular rate, quality factor and frequency mismatch.  A 

suitable measure for characterizing this uncertainty is also expected. 

 Perform uncertainty quantification analysis for ring gyroscope based on output response 

statistics in time domain as well as in the frequency domain for varying parameter values 
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of input angular rate, damping ratio and mass mismatch.  A suitable measure for 

characterizing this uncertainty is also proposed. 

 

1.5. Thesis Outline 

 

This thesis mainly focuses on two types of gyroscopes namely, the mass-spring gyroscope and 

the ring-type gyroscope.  It may be noted that the methodology applied for both types of 

gyroscopes are the same and for this reason readers will find similarities in paragraphs, sentences 

and phrases in Chapters 2 and 4, and also in Chapters 3 and 5. 

In Chapter 2, a mathematical model for the mass-spring gyroscope for the purposes of dynamic 

response predictions are introduced and discussed.  When the gyroscope is subjected input 

angular rotation, dynamic response analysis is performed to characterize the dynamic behavior of 

mass-spring system in time domain via suitable numerical schemes.  Time response analyses are 

preformed, and are examined for cases without and with drift.  Monte Carlo simulation method is 

applied to achieve optimal characteristics for the output response statistics which are suitable for 

further analyses.  

Chapter 3 discusses briefly the results obtained via the numerical simulations performed in the 

previous chapter for the mass-spring gyroscope.  The effect of varying input angular rate, 

frequency/stiffness mismatch and quality factor for the mass-spring gyroscope due to presence of 

noise and drift in the system are obtained and discussed.  This analysis forms the basis for the 

uncertainty quantification study based on the response statistics and are expressed in terms of the 

input and the output standard deviation.  Uncertainty quantification in the frequency domain is 
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examined next and the results are discussed in terms of the peak magnitude statistics associated 

with amplitude ratio as well as the forced response.  

In Chapter 4, a mathematical model for the ring-type gyroscope for the purposes of dynamic 

response predictions are introduced and discussed.  When the gyroscope is subjected input 

angular rotation, dynamic response analysis is performed to characterize the dynamic behavior of 

mass-spring system in time domain via suitable numerical schemes.  Time response analyses are 

preformed, and are examined for cases without and with drift.  Monte Carlo simulation method is 

applied to achieve optimal characteristics for the output response statistics which are suitable for 

further analyses.  

Chapter 5 discusses briefly the results obtained via the numerical simulations performed in the 

previous chapter for the mass-spring gyroscope.  The effect of varying input angular rate, mass  

mismatch and quality factor for the ring gyroscope due to presence of noise and drift in the 

system are obtained and discussed.  This analysis forms the basis for the uncertainty 

quantification study based on the response statistics and are expressed in terms of the input and 

the output standard deviation.  Uncertainty quantification in the frequency domain is examined 

next and the results are discussed in terms of the peak magnitude statistics associated with 

amplitude ratio as well as the forced response.  

Chapter 6 presents the conclusions based on the response and uncertainty quantification results 

for the mass-spring and ring-based vibratory angular rate sensors, along with contributions, and 

recommendations for further research.  
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Chapter 2 
 

2. Dynamic  Response Analysis for Mass-Spring Gyroscopes 

 

2.1. Introduction 
 

In this chapter, numerical schemes that are suitable for simulating the time-domain dynamic 

behavior of mass-spring type vibratory gyroscopes are developed.  These schemes are intended 

for the purpose of uncertainty quantification and, in particular, for the purpose of predicting the 

dynamic behavior of this class of devices under uncertain environment as well as system 

parameters.  To this end, a mathematical model is used to represent the dynamic behavior of a 

translation-based single-axis mass-spring gyroscope and in particular a model presented by 

Davis (2001) is adopted.  For the purposes of characterizing the behavior due to uncertain system 

as well as environmental parameters of mass-spring type gyroscopes, steady state portion of 

transient responses are employed.  In order to  examine the effects of randomness on the MEMS 

gyroscope response,  Monte Carlo simulation method is used for estimating the ensemble mean 

as well as the standard deviation (measure of variance) of response samples.  The propagation of 

mean and standard deviation are  investigated so that optimal as well as robust sampling 

strategies can be developed based on the simulated dynamic responses.  These strategies as well 

as suitable sample selections form the basis of further uncertainty quantification to be performed 

in chapter 3 for the mass-spring type gyroscopes. 
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2.2. Model description 
 

Mass-spring gyroscope model used in the present thesis is based on the equations developed by 

Davis (2001) and later presented in the work by Tianfu Wang (2004) and Ye Tian (2005).  The 

gyroscope configuration consists of a lumped point mass (proof mass) at the center and four 

springs that support the mass as shown in Figure 2-1.  It may be noted that the proof mass type 

general configuration can represent several practical vibrating gyroscope designs that have been 

used in MEMS fabrications.  In order to achieve maximum sensitivity, this gyroscope is excited 

at a resonant drive frequency, along the x-axis in steady-state (driving direction), while the input 

angular rate 𝛺 is introduced along the z-axis (input axis) which is orthogonal to the driving axis.  

Owing to the Coriolis effect that result from velocity along the x-axis and frame rotation rate 𝛺 

along the z-axis, the lumped proof mass oscillates along the direction of y-axis which is referred 

to as the sensing axis.  It may be noted that the mass is confined to oscillate in the x-y plane at all 

times and the  steady oscillatory motion along the sensing axis is used as a basis for the 

measurement of the angular rate ' 𝛺 '. 

 

Figure 2-1. Translation-based single-axis vibratory gyroscope 
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2.3. Equations of Motion 
 

It is known that Coriolis acceleration plays a significant role in governing the dynamics of this 

class of gyroscopes that are of interest to the present thesis.  A rigid body is considered to be 

subjected to Coriolis acceleration when it moves with a velocity with respect to a rotating frame 

of reference.  If a body of mass m is considered to move along the x-axis with a velocity 𝑣,  this 

acceleration component is represented as 2𝛺 ×  𝑣, where the body fixed-frame x-y-z rotates at an 

angular velocity 𝛺 about a fixed frame of reference (inertial frame) X-Y-Z as shown in Figure 2-

2. 

 

 

 

 

 

 

 

Figure 2-2. Motion of a particle in body-fixed frame that rotates relative to an inertial frame 

 

Equations that govern the motion of this body when subjected to forces 𝐹𝑟  and 𝐹𝜃  in the 

directions shown in Figure 2-2 can be derived as: 𝑚 𝑟 − 𝑟𝛺2 = 𝐹𝑟 , 𝑚 𝑟𝛺 + 2𝑟 𝛺 = 𝐹𝜃 .  The 

𝑟𝛺2 term represents the centripetal acceleration, while the 2𝑟 𝛺  term represents the Coriolis 

acceleration in accordance with the vector product 2𝛺 × 𝑣 described earlier.  The terms 𝑟  and 𝛺 , 

respectively, are the radial and tangential acceleration.   
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Based on a linear model that represents a harmonically excited gyroscopic system by Wang and 

Asokanthan (2009), the homogenous system of equations that represent the free motion is 

formulated as follows 

 

𝑚𝑥 + 𝐶𝑥𝑥 + 𝑘𝑥𝑥 − 𝑚𝛺2𝑥 − 2𝑚𝛺𝑦 − 𝑚𝛺 𝑦 = 0,                                       (2.1) 

𝑚𝑦 + 𝐶𝑦𝑦 + 𝑘𝑦𝑦 − 𝑚𝛺2𝑦 + 2𝑚𝛺𝑥 + 𝑚𝛺 𝑥 = 0,                                       (2.2) 

 

where 𝑥, 𝑦 represent the system generalized coordinates, while 𝑚 represents the proof mass.  

𝑘𝑥  and 𝑘𝑦  denote the linear spring constants while 𝐶𝑥  and 𝐶𝑦  are the viscous damping constants.  

Here, the gyroscope is considered to be subjected to an  input angular rate 𝛺 about the Z-

direction.  It may be noted that the motion along the z-axis is decoupled from the motion along x 

and y axes and hence are not considered to be important for the present analysis. 

When the gyroscope is subjected to a harmonic force 𝐹 = 𝐹0 𝑠𝑖𝑛𝜔𝑥𝑡 along the driving direction 

(i.e., x-axis), the equations of motion for this gyroscopic configuration can be obtained as 

 

𝑥 +
𝜔𝑥

𝑄𝑥
𝑥 − 2𝛺𝑦 +  𝜔𝑥

2 − 𝛺2 𝑥 − 𝛺 𝑦 =
𝐹0

𝑚𝑝
𝑠𝑖𝑛𝜔𝑥𝑡,                                 (2.3) 

𝑦 + 2𝛺𝑥 +
𝜔𝑦

𝑄𝑦
𝑦 + 𝛺 𝑥 +  𝜔𝑦

2 − 𝛺2 𝑦 = 0,                                                (2.4) 

 

where 𝐹0  represents the excitation force magnitude, 𝑚𝑝  the mass of the gyroscope proof-mass 

while 𝜔𝑥  and 𝜔𝑦  represent, respectively, the undamped natural frequencies associated with the x 

and y directions.  The quality factors representing damping in the x and y directions are denoted 
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by 𝑄𝑥  and 𝑄𝑦  while 𝛺 represents the angular rate of the rotating frame of reference, which is 

essentially the angular rate signal to be sensed by the gyroscope. 

The governing equations (2.3)  and (2.4) can then be written in matrix form as follows: 

 

                                 𝑀𝒒 + (𝐺 + 𝐷)𝒒 + 𝐾𝒒 = 𝐹                                                                      (2.5) 

 

where, 𝒒 = [𝑥 𝑦]𝑇 = [𝑞1 𝑞2]𝑇   represents generalized coordinate vector, and the system matrices 

are defined as 

 

𝑀 =  
1 0
0 1

 , 𝐺 =  
0 −2𝛺

2𝛺 0
 , 𝐾 =  

𝜔𝑥
2 − 𝛺2 0

0 𝜔𝑦
2 − 𝛺2 ,                     (2.6) 

𝐷 =  

𝜔𝑥

𝑄𝑥
0

0
𝜔𝑦

𝑄𝑦

 , 𝐹 =  
𝐹0

𝑚𝑝
𝑠𝑖𝑛 𝜔𝑥𝑡

0
 ,                                                      (2.7) 

with 

                                  𝜔𝑥
2 =

𝑘𝑥

𝑚
,  𝜔𝑦

2 =
𝑘𝑦

𝑚
, 𝑄𝑥 =

𝑚𝜔 𝑥

𝑐𝑥
,  𝑄𝑦 =

𝑚𝜔 𝑦

𝑐𝑦
. 

Equations (2.5) are employed for the purposes simulating the time response analysis for fixed 

system parameter values which is described in the following section.  In addition these equations 

are also suitably modified to accommodate uncertainties via random variation of parameters to 

aid uncertainty quantification.   The uncertainty results are presented partly in this chapter and in 

detail in Chapter 3.    
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2.4. Simulation of Deterministic Time Response 

 

2.4.1. Introduction 

 

In the present chapter, in order to investigate the dynamic characteristics of mass-spring 

gyroscope  time response analysis is performed considering the mathematical model derived in 

the previous section.  The time response analysis is then performed assuming that the mass is 

excited with a periodic external force in which the excitation frequency is set to be the same as 

the natural frequency associated with a non-rotating system so that the system gain can be 

maximized.  It may be noted that the natural frequency variation with the input angular rate has 

been marginal and hence this choice for the excitation frequency is considered to have minimal 

influence on resonance.  The dynamic effects due to variation of typical parameters of a MEMS 

mass-spring gyroscope are examined via numerical simulations and are depicted via suitable 

transient response plots.  Results for the varying system parameters such as the input angular 

rate, damping and frequency/stiffness mismatch are then presented. 

 

2.4.2. Numerical Simulations 

 

In a mass-spring gyroscope, it is assumed that the mass-spring element is excited by a harmonic 

external force while the gyroscope as a whole is subjected to an angular rate that is measured.  

When the system is under the influence of typical input signals it is useful to perform a dynamic 

response analysis for the mass-spring system.  For this purpose, a numerical simulation 

procedure is developed.  This procedure forms the basis of Uncertainty Quantification to be 
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performed later in Chapter 3.  The simulation is performed via the fourth-order Runge-Kutta 

scheme available within the MATLAB computing environment.  

Typical parameters associated with a MEMS-based mass-spring type gyroscope are considered 

as shown in Table 2-1, for the purpose of numerical simulations. 

Table 2-1. Parameters of Mass-spring Gyroscope for the Numerical Simulations 

Proof mass 𝑚𝑝 = 3.6 × 10−10  (𝑘𝑔)  

x-axis natural frequency 𝜔𝑥 = 164536  𝑟𝑎𝑑/𝑠𝑒𝑐 ≈ 26.2 (𝑘𝐻𝑧)  

y-axis natural frequency 𝜔𝑦 = 164536  𝑟𝑎𝑑/𝑠𝑒𝑐 ≈ 26.2 (𝑘𝐻𝑧) 

x-axis quality factor 𝑄𝑥 = 1000 (non-dimensional) 

y-axis quality factor 𝑄𝑦 = 1000 (non-dimensional) 

 

The equations of motion (2.3) and (2.4) are written in the first order form that is suitable for 

numerical integration of the ODE‘s as follows: 

𝑞 1 = 𝑞3,                                                                                                                                    (2.8a)   

𝑞 2 = 𝑞4,                                                                                                                                    (2.8b) 

 𝑞 3 = − 𝜔𝑥
2 − 𝛺2 𝑞1 + 𝛺 𝑞2 −

𝜔𝑥

𝑄𝑥
𝑞3 + 2𝛺𝑞4 +

𝐹0

𝑚𝑝
𝑠𝑖𝑛 𝜔𝑥𝑡,                                                  (2.8c)  

𝑞 4 = −𝛺 𝑞1 −  𝜔𝑦
2 − 𝛺2 𝑞2 − 2𝛺𝑞3 −

𝜔𝑦

𝑄𝑦
𝑞4,                                                                         (2.8d)                                                       
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Equations (2.8) are implemented in MATLAB and fourth order Runge-Kutta scheme is 

employed for integrating the set of ODE‘s.  System parameter listed in Table 2-1 has been used 

in the simulations while the two natural frequencies 𝜔𝑥  and 𝜔𝑦  along the x-axis and y-axis 

respectively are considered to be identical first to examine the behavior in the absence of  

frequency/stiffness mismatch. The ODE45 integration routine has been found to be suitable for 

the numerical simulations, with initial conditions set to be zero and the value of time step is set 

to be 0.00001 seconds.  

 

2.4.2.1. Time response without input angular motion 

 

When the mass-spring system is subjected to harmonic excitation without any input angular 

motion (𝛺=0 rad/sec), the response of the mass-spring gyroscope along the driving direction is 

achieved numerically and the results are illustrated in Figure 2-3 (a).  It can be seen that the 

vibration amplitude of the proof mass reaches a steady-state after about 0.04 seconds from the 

commencement of the excitation.  On the other hand, the response of the mass-spring gyroscope 

along the sensing direction is zero as shown in Figure 2-3 (b) as there is no input angular motion. 
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(a) 

 

(b) 

Figure 2-3. Radial displacement in the (a) driving direction and (b) sensing direction without 

input angular rate 
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2.4.2.2. Time response with input angular motion 

 

It has been shown that the variations of natural frequencies with the input angular rates are 

significantly small in the low speed range (i.e., less than 2π rad/sec) for which typical mass-

spring gyroscopes are designed (Cho, 2004).  Hence, the excitation frequency 𝜔 can be assumed 

to be constant and to coincide with one of the two non-rotating natural frequencies (say 𝜔𝑥  

associated with the generalized coordinate x). 

In order to examine the response of the mass-spring gyroscope associated with the generalized 

coordinate 𝑞2 (sensing direction), a suitable profile for the input angular rate must be applied.  In 

the present analysis, this profile is assumed to start from a zero value and reach a steady-state 

angular speed 𝛺 via a smooth increase in speed as depicted in Figure 2-4.  The equation used to 

represent an input angular rate profile that represents a smooth increase in the angular rate has 

been chosen to be 

𝛺 =
𝑛𝜋

2
 sin(

𝜋𝑡

0.005
−

𝜋

2
) +

𝑛𝜋

2
                for 𝑡 < 0.005                                        (2.9) 

At time 𝑡 = 0.005 seconds the input angular rate time-profile is set to reach the steady-state.  

Different steady-state angular speeds can be used to investigate the dynamic response for mass-

spring gyroscopes, such as 𝛺 = 𝜋, 2𝜋, 5𝜋, 8𝜋, 10𝜋 etc.  
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Figure 2- 4. Input angular rate time-profile 

 

In this chapter, a steady-state angular speed of  𝛺 = 2𝜋 has been chosen for the purpose of 

illustrating typical dynamic responses.  When both the input angular motion and the harmonic 

excitation are introduced simultaneously, the time responses of the system in the driving and the 

sensing directions, respectively, are shown in Figures 2-5 (a) and (b).  
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(a) 

 

(b) 

Figure 2-5. Radial displacement in the (a) driving direction and (b) sensing direction with 

𝛺 = 2𝜋 rad/sec input angular rate  
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2.4.2.3. Frequency mismatch 

 

Owing to the uncertainties present in the MEMS fabrication process, it is impossible to obtain 

equal stiffness for the suspension elements in the x-y direction. This will manifest in the system 

as a frequency mismatch for the driving and sensing motion.  Hence, this form of 

frequency/mass mismatch is considered as one of the important parameters that affect the system 

dynamics significantly.  Hence, the effects of frequency mismatch on the time response of the 

mass-spring gyroscope are examined in this section.  Figures 2-6 (a) and (b) show the response 

amplitudes for the mass-spring system in the driving and sensing directions until t=0.1 seconds.  

It may be noted that although the simulation was performed for 0.2 seconds, for the purpose of 

clear demonstration of the transient part of the response, only the response until 0.1 seconds has 

depicted in the figures.  As illustrated in Figure 2-6 (b), a reduction in the response in the sensing 

direction is evident when the frequency mismatch of the vibratory system is increased.  It may be 

noted that this reduction can be detrimental to the achievable performance of this forms of 

gyroscopes, e.g., it can lead to lower sensitivity for the angular rate sensor.  Comparison of the 

corresponding steady state responses in the driving and sensing directions indicate that this 

mismatch causes relatively larger reductions in the response in the sensing direction.  Further, 

uncertainty propagation of the parameter can be considered to be important and forms a basis for 

one of the uncertainty quantification study which is presented in Chapter 3.   
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(a) 

 

(b) 

Figure 2-6. Variation of radial displacement in the (a) driving direction and (b) sensing direction 

when frequency mismatch values change from 0 to 0.03% while one frequency is fixed another 

is changing for 𝛺 = 2π rad/sec input angular rate 
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2.5. Simulation of Random Time Response  

 

2.5.1. Introduction 

 

In the present study, to see the effect of randomness and drift due to input angular rate and 

certain important parameters of MEMS mass-spring gyroscope model, a drift noise model is 

assumed in the form of an equation as 

𝑑𝑑 = 𝜍1 𝑒
𝑎𝑑 𝑡 − 1 + 𝜍2𝜁(𝑡)                           (2.10) 

This model consists of two parts.  The first part represents the drift, which is an exponential term, 

while the second part denotes the uncertainty, which is a random component.   In order to obtain 

the typical drift rate from equation (2.10), the drift exponential coefficient 𝑎𝑑  is set at a value 1.0 

and the drift coefficient 𝜍1 is set at a value 0.0245.  Uncertainty coefficient 𝜍2 is chosen to be 

0.001.   

For the present study, the model presented via Equation (2.10) is to represent additive noise and 

drift to the nominal input angular rate  𝛺.  Hence, the input angular rate takes the form: 

𝛀 = 𝛺 + 𝑑𝑑                                                                           (2.11)  

The drift/noise model presented in equation (2.10) is also employed for representing 

uncertainties in other system parameters such as mass/frequency mismatch, and quality 

factor/damping ratio. 
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2.5.2. Monte Carlo Simulation 
 

As MEMS gyroscopes are developed using micro manufacturing technologies, micro scale 

products usually have a relatively large manufacturing uncertainties compared to normal macro 

scale products.  Reduction of the variance of material properties as well as the geometric 

properties of a micro scale product is quite expensive.  The geometric and materials  

uncertainties caused by a micro manufacturing process inevitably lead to the uncertainty of the 

product performance.  Therefore, to achieve a reliable design of a product, the performance 

uncertainty of the product, which is often expressed by the variance or standard deviation, needs 

to be estimated in a reliable way.  Estimated standard deviation may prove to be useful in 

quantifying the quality of the manufacturing product prior to determining the quality via testing 

of product samples.  Here, Monte Carlo simulation is used to aid prediction of the effects of 

uncertainties so that metrics for the response standard deviation can be quantified. 

Monte Carlo methods may vary from system to system but it has obviously followed a particular 

pattern, such as, determination of a input domain, generation of  random inputs with a probability 

distribution, calculation of the results for many samples of the inputs and prediction of a suitable 

measure of  response statistics.  Monte Carlo simulation relies on the process of precisely 

representing uncertainties by specifying inputs as probability distributions.  If some of the inputs 

to a system are uncertain, the future performance must also be uncertain. That is, the result of 

any analysis based on inputs represented by probability distributions is itself a probability 

distribution. 

Every Monte Carlo simulation starts off with developing a deterministic model which closely  

resembles  the  real  scenario.  In this deterministic model, performance is predicted when 

http://www.goldsim.com/Web/Introduction/Glossary/#ProbDist
http://www.goldsim.com/Web/Introduction/Probabilistic/MonteCarlo/
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nominal values (or the base case) of the input parameters are used.  Mathematical relationships 

are applied using the nominal values of the input variables, and transformed into  the  desired  

output.  After adequate performance from the deterministic models is predicted, the risk 

components are added to the model.  As mentioned before, since the risks originate from the 

stochastic nature of the input variables, these variables are generated from suitable distributions.   

A set of random numbers (also called random variates or random samples) are generated from 

these distributions after identifying the underlying distributions.  One set  of  random  numbers,  

consisting  of  one  value  for  each of  the  input  variables, will be used in the deterministic 

model, to provide one set of output values.  Then this process needs to be repeated to generate 

more sets of random numbers, one for each input distribution, different sets of possible output 

values must be collected.  This part is the core of Monte Carlo simulation (see e.g., 

Raychaudhuri, 2008). 

In this case input angular rate 𝛀  has been considered as a sample which contains the random 

component ζ 𝑡   is presented in Figure 2-7.  Monte Carlo method has been applied for many 

samples of input angular rate  𝛀.  Owing to the presence of randomness, the simulations are run 

repeatedly for randomly generated values for 𝛀.  As a result, many several samples of output 

responses are obtained for further analysis and the examination of useful measures of response 

statistics forms the basis of the uncertainty quantification. 

When the mass-spring system is subjected to uncertainties in input angular rate (𝛺), frequency 

(𝜔𝑦 ) and quality factor (𝑄𝑦 ), randomness is usually incorporated in those parameters and Monte 

Carlo simulation is used to generate many output samples that correspond to uncertain input 

parameters. 
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2.5.3. Robustness of simulation 

 

2.5.3.1. Stochastic response simulation after peak-picking 

 

As demonstrated in section 2.4.2.2, the output time response in the sensing direction contains 

two parts, namely transient and steady-state.  The transient part of the time response changes 

with time until it reaches the steady state.  Since the steady-state part of the response is more 

critical to the operation of a gyroscope, this part has been chosen for applying the Monte Carlo 

method.  Further, the high frequency oscillatory motion has been removed via a suitable peak-

picking method.  Peak-picking method is employed to find peak values of an oscillating 

response.  There are several processes to do peak-picking and in the present thesis, MATLAB 

command 'findpeaks' is used to get peak values of the responses.  The purpose of going through 

this step is to simulate the demodulation process that is used in practice as part of MEMS-

gyroscope signal processing elements.  This approach aids in quantifying the variation of the 

mean values and the standard deviation of the steady state of time response along the sensing 

direction.  After peak-picking and the removal of the transient part, the resulting response is used 

to characterize and predict response statistics via Monte Carlo method.  The plot that represents 

this response is illustrated in Figure 2-7 where the last sample point which is approximately 

13,000 coincides with 0.5 seconds.  In the next sections, an attempt will be made to justify the 

prediction of responses via selection of suitable time/ensemble response statistics.  
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Figure 2-7. Time response after peak-picking for mass-spring gyroscope (𝛺=2𝜋 rad/sec) 

 

 

 

2.5.3.2. Optimal number of points along time response 

 

Before performing the uncertainty quantification, it is important to come up with a suitable set of 

data that exhibits consistence and convergence for the response statistics.  For this purpose, 

number of samples along the time axis as well number samples along the sample paths have been 

considered.  In this chapter, various time data sets as well as ensemble data sets have been 

considered to establish a robust scheme for predicting useful response statistics.  This has been 

achieved primarily via examining the temporal mean, temporal standard deviation, ensemble 

mean and ensemble standard deviation. 
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The ensemble average of a repetitive response is defined by defining a time for each path, 

creating the ensemble of time varying signals referenced to that time and then averaging across 

this ensemble at this time instant. 

An attempt is made to define the number of points along the time axis which can be used for the 

application of Monte Carlo method based on the numerical simulation.  After peak-picking and 

the removal of the transient, the first 100 points along the remaining steady state response shown 

in Figure 2-7 has been considered first.  These 100 points have been used to determine the 

temporal mean and standard deviation.  This process is considered with increments of 100 points 

up to 6000 points.  This process is performed for cases without and with the drift, keeping the 

noise component  the same. 

Figures 2-8 and 2-9, respectively, illustrate the results for the temporal mean and the standard 

deviation.  These figures also illustrate that, reasonable convergence will be achieved after 2000 

points which are considered for further analysis in predicting mass-spring gyroscope response 

statistics.  Figures 2-8 and 2-9 also illustrate the effect of increasing drift on the response 

statistics.  Hence, an alternate approach is warranted for predicting the response statistics for 

highlighting the noise term. 

 

 



32 
 

 

(a) 

 

(b) 

Figure 2-8. Number of points (time) vs. Mean along the time response for mass-spring gyroscope 

(a) without drift (b) with drift (𝛺=2𝜋 rad/sec) 
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(a) 

 

(b) 

Figure 2-9. Number of points vs. standard deviation along the time response for mass-spring 

gyroscope (a) without drift (b) with drift (𝛺=2𝜋 rad/sec) 
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The statistical response predictions performed in the previous section confirms the significance 

of considering time sample points past the 2000 points based on both the mean and standard 

deviation. In order to ascertain the predictions via the sample paths, 100 random samples have 

been employed.  The sample paths are depicted in Figure 2-10.  

Employing the 100 samples, the ensemble mean as well as the standard deviations are computed.  

Figures 2-11 (a) and (b), show the ensemble mean without and with drift.  Figures 2-11 (a) and 

(b) show that reasonable consistency for ensemble mean without drift is obtained for any points 

after 3600 points and ensemble mean with drift shows no consistency.  This may be attributed to 

the effect of increasing drift on the response.  However, the predictions made for the standard 

deviations for the response are illustrated in Figures 2-12 (a) and (b).  These figures demonstrate 

that after 3900 points in cases without and with drift standard deviation values show a 

converging trend and points past the 3900 mark may be considered suitable for further analysis 

in predicting response statistics. 

 

Figure 2-10. Radial displacement in the sensing direction with input angular rate (100 samples) 
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(a) 

 

(b) 

Figure 2-11. Number of samples vs. Ensemble Mean (a) without drift and (b) with drift (100 

samples along path axis and 𝛺=2𝜋 rad/sec) 
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(a) 

 

(b) 

Figure 2-12. Number of points vs. Standard deviation (a) without drift and (b) with drift (100 

samples along path axis and 𝛺=2𝜋 rad/sec) 
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2.5.3.3. Discrete time steps 

 

It is known that time step size plays a significant role in the numerical simulation process. 

Obviously, smaller time steps results in more accurate predictions of the response along with 

increased computations costs.  In order to find the optimal time step to achieve reasonably 

accurate results in moderate time, a suitable fixed step size is selected by running several 

simulations via the ODE45 integration routine within MATLAB.  Based on the simulation trials 

the time step size has been chosen to be 0.000001 seconds.  Further reduction in step size has 

been found to be unnecessary.    

 

2.6. Closure 
 

A suitable numerical model is developed for investigating the dynamic response characteristics 

of a mass-spring element when the mass-spring gyroscope is subjected to an input angular rate. 

The natural frequency variations caused by gyroscopic coupling in the system matrix are 

investigated.  Time and frequency responses of the mass-spring gyroscope are examined when it 

is excited by a harmonic external force while the sensor is subjected to an angular rate.  

Response amplitudes are obtained when parameters frequency mismatch are varied.  It is found 

that the presence of noise and drift terms have effects on the mass-spring system.  However, 

randomness is introduced in numerical model to get the stochastic response.  Different methods 

are performed to achieve a robust scheme for predicting useful response statistics via Monte 

Carlo simulation.  These optimized response statistics are used in uncertainty quantification of 

different parameters of mass-spring gyroscope in the next chapter. 
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Chapter 3 
 

3. Uncertainty Quantification for Mass-spring Gyroscope 

 

3.1. Introduction 
 

In the previous chapter, a systematic numerical simulation procedure has been developed based 

on a mathematical model that represents the dynamical behavior of mass-spring type vibratory 

gyroscopes.  In addition to determining the response due to changes in system parameters via a 

deterministic response analysis, predictions of response statistics due to random inputs have also 

been demonstrated.  Suitable number of temporal points as well as sample paths have been 

selected and optimized for further analysis while a fixed optimal time step size has also been 

ascertained. In this chapter, attention is focused on examining the optimal number of sample 

paths for characterizing the response statistics via ensemble mean and standard deviations.  

Employing the optimal sample number, uncertainty quantification is performed for parameter 

uncertainties in input angular rate, frequency mismatch, and the quality factor.  In addition, 

uncertainty quantification in the frequency domain has also been performed considering 

uncertainties in frequency mismatch.       

 

3.2. Optimal number of Samples 
 

When the system is subjected to harmonic excitation with input angular motion which contains 

noise and drift, the response along the sensing direction is achieved numerically and the results 

have been presented in Chapter 2.  Optimal as well as robust sampling strategies have been 
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developed for mass-spring gyroscopes based on the simulated dynamic responses via peak-

picking as illustrated in Figure 2-7.  After eliminating the transient oscillatory motion, the Monte 

Carlo method is applied on the steady state part of the time response.  Results for 50 samples, are 

depicted in Figure 3-2.  

 

Figure 3-1. Time response after peak-picking for mass-spring gyroscope (𝛺=2𝜋 rad/sec)  

 

Figure 3-2. Radial displacement in the sensing direction after peak-picking (50 samples) 
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Optimization of the number of samples is an essential part for Monte Carlo method since use of 

larger number of samples increases the computational effort significantly. Following the 

pervious analysis, it has been determined that any point after 3900 points along the steady part of 

Figure 3-1 can be chosen for further analysis.  In the present analysis five temporal points at 

4501, 4502, 4503, 4504, 4505 have been considered for the application of Monte Carlo 

simulation.  At these points, ensemble mean as well as standard deviation have been computed 

for varying sample numbers starting from 5 to 100 with an increment of 5 samples.   

The computed ensemble mean for the cases of without and with consideration of drift, 

respectively, are illustrated in Figures 3-3 (a) and (b).  The influence of drift is evident from the 

Figure 3-3 (b).   The corresponding figures for the standard deviation as shown in Figures 3-4 

demonstrate reasonable convergence after 30 samples. These figures also demonstrate the 

significance of drift that is evident from the order of magnitude of the standard deviation.  

Further these ensemble standard deviation predictions seem to be consistent at the 5 temporal 

points considered.  Hence, it can be concluded that any of the 5 temporal points can be 

considered for the ensemble mean and standard deviation computations.  For the present 

analysis, the point 4501 has been chosen while performing the computations employing 50 

samples.  
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(a) 

 

(b) 

Figure 3-3.Number of samples along path axis vs. Ensemble mean (a) without drift and (b) with 

drift (𝛺=2𝜋 rad/sec) 
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(a) 

 

(b) 

Figure 3-4. Number of samples along path axis vs. Standard deviation (a) without drift and (b) 

with drift (𝛺=2𝜋 rad/sec) 
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The point 4501 has been singled out from Figure 3-2 and 50 samples are shown via the 3D plot 

for illustrative purposes. These 50 samples, when subjected to uncertainties in various system 

parameters are useful in estimating the response statistics via the uncertainty quantification 

process.     

 

Figure 3-5. Radial displacement in the sensing direction with input angular rate at point 4501 (50 

samples) 

 

3.3. Uncertainty quantification 
 

Uncertainty quantification (UQ) can be defined as it is the science of quantitative 

characterization and reduction of uncertainties in applications.  It tries to determine how likely 

certain outcomes are if some aspects of the system are not exactly known.   

http://en.wikipedia.org/wiki/Uncertainty
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In general, there are two distinct types of uncertainties present in physical models.  One type is 

model uncertainty, also known as ‗epistemic‘ uncertainty.  This is the error that exists in the 

model, i.e., how close or far the model is from reality.  The other is parameter uncertainty, also 

known as the ‗aleatoric‘ uncertainty.  This is associated with the lack of complete knowledge of 

input parameters, i.e., how far they are from nominal and what is the nature of their variability or 

uncertainty.  This work is concerned only with the latter.  Given some uncertainty in the model 

parameters, one needs to understand their effect on the predictions based on the model, and this 

is accomplished by propagating uncertainty through the model, i.e., developing the variability in 

the prediction (See e.g., Agarwal and Aluru, 2009). 

The design methodologies for MEMS are based on deterministic approaches, where the input 

parameters as example geometrical and physical properties are assumed to be known precisely.  

For the given values of the input parameters, one can simply solve the coupled system for the 

field variables such as displacement and evaluate relevant quantities of interest such as input 

angular rate, resonant frequency, quality factor, frequency mismatch etc.  Uncertainties can be 

described using stochastic quantities and uncertain parameters can be modeled using random 

variables, and uncertain spatial or temporal functions are represented as random fields or 

processes. 

In order to correctly characterize the uncertain input parameters in terms of random variables 

with appropriate distribution, it is important to have convenient experimental data set regarding 

these parameters. Unfortunately, for most of the MEMS devices detailed experimental data are 

not available.  Experiments do not provide sufficient information about the variation of certain 

parameters and in such a situation, the most straightforward way is to model the uncertain 
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parameter as normally distributed random variable over the given range and quantify the 

response statistics via numerical simulations based on the model. 

Two major categories are available for computational methods to illustrate uncertainty 

propagation.  One of the methods is based on a statistical approach and another is based on a 

non-statistical approach.  The statistical approach includes methods such as Monte Carlo 

simulations and various sampling schemes.  These can be computationally expensive, as their 

accuracy depends on the sample size.  However, as demonstrated earlier, suitable procedures for 

optimizing the number of samples as well as the optimal temporal region can overcome the 

computational limitations.  In the following sections, the effects on the response statistics due to 

uncertainties in the input angular rate as well as the frequency mismatch are examined.  

    

3.4. Uncertainty Quantification Results and Discussion 
 

Uncertainties in input angular speed are introduced in the mathematical model considering drift 

and noise terms and the resulting dynamic response simulations are used to obtain optimal 

number of points along time axis and optimal number of samples along path axis.  This optimal 

configuration is also used for examining uncertainties in frequency mismatch.  For the purposes 

of uncertainty quantification, the noise term in the model is introduced as a random variable with 

Normal (Gaussian) distribution.  At a certain temporal point which lies after 3900 points along 

time sample, 50 samples are taken along sample path axis for the application of Monte Carlo 

simulation based on the dynamic response.  This enables prediction of response statistics in the 

form of standard deviation of output response for different cases. 
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3.4.1. Uncertainty in Input Angular Rate 
 

For this case the system is subjected to fixed frequency mismatch of 0.01%.  In order to generate 

random input angular rate (𝛺) within the MATLAB environment, mean of input angular rate is 

fixed at 2π rad/sec and the standard deviations are varied from 1% to 10% of fixed mean.  By 

using mean and standard deviations different random samples are generated and these normally 

distributed random values are added to the nominal input angular rate to achieve a total angular 

rate.  This total input angular rates are used in the simulation and the resulting responses are 

employed in the quantification of ensemble standard deviations.  For each standard deviation of 

input angular rate, 50 random input samples are employed.  In order to map curve, 10 different 

inputs standard deviation values are used to get 10 ensemble standard deviations of output 

responses.  These curves are also investigated for varying fixed values of quality factors Q from 

500 to 2500 with an increment of 500 as shown in Figure 3-6.  It may be recalled that the 

nominal Q is 1000 and hence the choice of  Q‘s represent above and below this nominal value.   

It is evident from Figure 3-6 that the variation of input angular rate standard deviation does not 

have a significant effect on the output response standard deviation.  It may attributed to the 

negligible effects that the input angular rate has on the natural frequencies.  The increase in 

response standard deviation with increasing Q is also evident and justifiable since damping is 

inversely proportional to Q. 
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Figure 3- 6. Standard deviation of input angular rate vs. standard deviation of output response, 

(frequency mismatch is 0.01%) 

 

3.4.2. Uncertainty in Frequency Mismatch 
 

For the purposes of introducing frequency mismatch, Equation (2.5) given in chapter 2 is 

rewritten as 

 
1 0
0 1

 𝒒 +  

𝜔𝑥

𝑄𝑥
−2𝛺

2𝛺
𝜔𝑦

𝑄𝑦

 𝒒 +  
𝜔𝑥

2 − 𝛺2 0

0 𝜔𝑦
2 − 𝛺2 𝒒 =  

𝐹0

𝑚𝑝
𝑠𝑖𝑛 𝜔𝑥 𝑡

0
 ,                                  (3.1) 

where 𝒒 = [𝑞1 𝑞2]𝑇 represents a vector that contains the generalized coordinates and the 

elements of the system matrices are given in section 2.1.2 of chapter 2.  In order to introduce 

frequency mismatch  𝜗, the natural frequencies of the stationary gyroscope, namely  𝜔𝑥  and  𝜔𝑦 , 

are considered unequal and these frequencies are related via: 
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𝜔𝑦 = 𝜔𝑥 1 + 𝜗 ,                                                                             (3.2) 

In this case, the system has a fixed input angular rate (𝛺) of 2π rad/sec.  In order to produce 

Gaussian distributed random number for frequency mismatch (𝜗), mean is fixed at 0.00001 and 

standard deviations are varied from 0.00001 with an increment of 0.00001 up to 0.0001.  The 

above mean and standard deviation have been used for generating random numbers via 

MATLAB.  For each input standard deviation 50 random samples of frequency mismatch are 

employed to get corresponding output response standard deviation and this procedure is repeated 

for 9 remaining input standard deviations to obtain corresponding output response standard 

deviations and is used in the plot 3-7.  These predictions are also performed for varying fixed 

values of the quality factor Q and the results are presented in Figure 3-7.  Standard deviations of 

the output response increases in a nonlinear fashion with the frequency mismatch and the 

magnitude of the output response standard deviation shows a diverging trend when the quality 

factor increases (i.e. damping ratio decreases).    

 

Figure 3-7. Standard deviation of frequency mismatch vs. standard deviation of output response, 

(𝛺 = 2𝜋 rad/sec) 
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In order to quantify the influence of uncertainty in frequency mismatch on the output response 

statistics considering a fixed quality factor of 1000, Least-square approach is employed on the 

resultant data to obtain a parametric relationship between the two relevant standard deviations.  

MATLAB command ‗polyfit‘ with degree 2 is employed for this purpose as expressed below. 

𝜍𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 3.2 × 10−3𝜍𝑓.𝑚𝑖𝑠𝑚𝑎𝑡𝑐 𝑕
2 + 1.2339 × 10−6𝜍𝑓.𝑚𝑖𝑠𝑚𝑎𝑡𝑐 𝑕 + 8.8620 × 10−12,           (3.3) 

where 𝜍𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒  and 𝜍𝑓.𝑚𝑖𝑠𝑚𝑎𝑡𝑐 𝑕  denote as standard deviations of the output response and 

frequency mismatch respectively.  This process is illustrated in Figure 3-8. 

 

Figure 3- 8. Standard deviation of frequency mismatch vs. standard deviation of output response, 

(𝛺 = 2𝜋 rad/ sec and 𝑄 = 1000) 

 

3.4.3. Uncertainty in Quality Factor 
 

When the system is subjected to uncertainties in quality factor, input angular rate is fixed at 2𝜋 

rad/sec and for random number generation mean of quality factor is fixed at 1000 and standard 
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deviations are varied from 50 with an increment of 50 up to 500 and employing 50 random 

samples to obtain corresponding ensemble output standard deviation for each input standard 

deviation and illustrated in Figure 3-9 for different frequency mismatch values.  It is evident 

from Figure 3-9 that, for 0.01% and 0.02% frequency mismatch, output response statistics show 

a significantly different trend when compared with higher mismatch values.  It may be attributed 

to the fact that for lower frequency mismatch the two natural frequencies are likely to be close to 

each other.  The response statistics may take large values as a result of internal resonance. For 

the lower values of frequency mismatch, when the quality factor increases, the output standard 

deviations increase and seem to have a converging trend.  Further, in order to illustrate the effect 

of large frequency mismatch on the performance of mass-spring gyroscope, 10% and 20% 

frequency mismatch are used in the numerical simulation.  Figure 3-9 shows that, for large 

frequency mismatch, magnitudes of output standard deviations do not have notable variation as 

internal resonance may not play a significant role. 

 

Figure 3-9. Standard deviation of quality factor mismatch vs. standard deviation of output 

response for different frequency mismatch (𝛺 = 2𝜋 rad/sec) 
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Least-square method is applied on resultant data to quantify the influence of uncertainty in 

quality factor mismatch on the output response statistics. For this purpose, the plot that 

correspond to 0.01% mismatch in Figure 3-9 is considered and redrawn in Figure 3-10.  From the 

data set, a parametric relationship between the two relevant standard deviations can be extracted: 

𝜍𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 4.0960 × 10−14𝜍𝑞.𝑚𝑖𝑠𝑚𝑎𝑡𝑐 𝑕
2 − 1.4621 × 10−11𝜍𝑞.𝑚𝑖𝑠𝑚𝑎𝑡𝑐 𝑕 + 4.190 × 10−9,     (3.4) 

where 𝜍𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒  and 𝜍𝑞.𝑚𝑖𝑠𝑚𝑎𝑡𝑐 𝑕 , respectively, indicate as standard deviation of output response 

and standard deviation of quality factor mismatch. 

 

Figure 3-10. Standard deviation of quality factor (non-dimensional) vs. standard deviation of 

output response for fixed frequency mismatch (𝜗 = 0.01%, 𝛺 = 2𝜋 rad/sec) 

 

3.5. Frequency response 
 

In order to develop a stabilization system for MEMS gyroscope, it is important to understand the 

frequency response in the early stages of system design, since the frequency response for MEMS 
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gyroscope is likely to have a direct impact on the controller design and can help identify 

potential stability issues—especially when considering wider-bandwidth solutions for next 

generation designs.   This information is also useful for predicting the gyroscopes‘ response to 

vibration (See e.g., Looney, July 2012). 

Taking Laplace transformation of system equations (2.3) and (2.4) presented in Chapter 2, the 

equations in the s domain can be expressed as  

𝑠2𝑄1(𝑠) +
𝜔𝑥

𝑄𝑥
𝑠𝑄1(𝑠) − 2𝛺𝑠𝑄2(𝑠) +  𝜔𝑥

2 − 𝛺2 𝑄1(𝑠) = 𝐹1(𝑠)                         (3.5) 

𝑠2𝑄2(𝑠) + 2𝛺𝑠𝑄1(𝑠) +
𝜔𝑦

𝑄𝑦
𝑠𝑄2(𝑠) +  𝜔𝑦

2 − 𝛺2 𝑄2(𝑠) = 0                               (3.6) 

where 𝐹1 𝑠 , 𝑄1(𝑠) and 𝑄2(𝑠) represent, respectively, the Laplace transform of 𝑓1 𝑡 , 𝑞1(𝑡) and 

𝑞2 𝑡 . 

From Equations (3.5) and (3.6), the amplitude ratio of the displacement in the sensing direction 

to the displacement in the driving direction (i.e., 𝑄2/𝑄1 ) is evaluated considering frequency 

mismatch.  Similarly, the forced frequency response magnitude  𝑄2/𝐹1  is also evaluated.  For 

this purpose, the magnitudes of  

 

𝑄2(𝑠)

𝑄1(𝑠)
= −

2𝛺𝑠

𝑠2+
𝜔𝑦

𝑄𝑦
𝑠+(𝜔𝑦

2−𝛺2)
       ,      and                                        (3.7) 

𝑄2(𝑠)

𝐹1(𝑠)
= −

2𝛺𝑠

𝐴𝑠4+𝐵𝑠3+𝐶𝑠2+𝐷𝑠+ 𝜔𝑥
2−𝛺2 (𝜔𝑦

2−𝛺2)
    ,                          (3.8) 
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are used, where 

 

 𝐴 = 1,                                                                                                      (3.9a) 

𝐵 =
𝜔𝑥

𝑄𝑥
+

𝜔𝑦

𝑄𝑦
    ,                                                                                                  (3.9b) 

𝐶 =
𝜔𝑥

𝑄𝑥

𝜔𝑦

𝑄𝑦
+ 𝜔𝑥

2 − 𝛺2 + 𝜔𝑦
2 − 𝛺2 + 4𝛺2 ,                                          (3.9c) 

𝐷 =
𝜔𝑥

𝑄𝑥
 𝜔𝑦

2 − 𝛺2 +
𝜔𝑦

𝑄𝑦
(𝜔𝑥

2 − 𝛺2) ,                                                    (3.9d) 

 

The parameters given in Table 2-1 are used for the numerical calculations of the amplitude ratio 

as well as forced frequency responses.  From Equation (3.6), the amplitude ratio of the 

displacement in the sensing direction to the displacement in the driving direction (i.e.,  𝑄2/𝑄1 ) 

is evaluated and depicted for quality factors 1 × 108 and 1000 in Figures 3-11 and Figure 3-12, 

respectively.  The figures show that the amplitude ratio has the maximum value near the non-

rotating mass-spring natural frequency ωy  and that the magnitude of the amplitude ratio 

increases with an increase in the input angular rate. 

Similarly, the frequency response magnitude  𝑄2/𝐹1 , evaluated from Equation (3.7), is 

illustrated for quality factor 1 × 108 and 1000, respectively, are in Figures 3-13 and 3-14.  In 

addition, the magnitude of frequency response is shown to increase as the input angular rate 

increases. 
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Figure 3-11. Variation of amplitude ratio for different input angular rates (frequency mismatch 

with 0.01%, Quality factor, 𝑄𝑥 = 𝑄𝑦 = 1 × 108) 

 

Figure 3-12. Variation of amplitude ratio for different input angular rates (frequency mismatch 

with 0.01% mismatch, Quality factor, 𝑄𝑥 = 𝑄𝑦 = 1000) 
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Figure 3-13. Variation of frequency response for different input angular rates (frequency 

mismatch with 0.01% mean, Quality factor, 𝑄𝑥 = 𝑄𝑦 = 1 × 108) 

 

Figure 3-14. Variation of frequency response for different input angular rates (frequency 

mismatch with 0.01% mean, Quality factor, 𝑄𝑥 = 𝑄𝑦 = 1000) 
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In order to analyze the uncertainty quantification in the frequency domain with frequency 

mismatch, 50 random samples are employed in the numerical simulation and the resulting 

responses are demonstrated in Figure 3-15 where the input angular rate and quality factor are 

fixed at 2π rad/sec and 1000, respectively. 

 

Figure 3-15. Variation of amplitude ratio for different samples (frequency mismatch with 0.01%, 

Quality factor, 𝑄𝑥 = 𝑄𝑦 = 1000, 𝛺 = 2𝜋 rad/sec) 

 

For the purposes of quantifying the effect of the uncertainty frequency mismatch, magnitudes of 

the amplitude ratio peaks are computed considering uncertainties in frequency mismatch. Figure 

3-16 illustrates the gradually increasing nonlinear relationship between the standard deviation of 

frequency mismatch and standard deviation of magnitude of amplitude ratio  𝑄2/𝑄1 .  
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Figure 3-16. Standard deviation of frequency mismatch vs. standard deviation of magnitude of 

amplitude ratio  𝑄2/𝑄1   (𝛺 = 2𝜋 rad/sec, Quality factor, 𝑄𝑥 = 𝑄𝑦 = 1000) 

 

Least-square method is used to get a parametric relationship between two standard deviations 

using the MATLAB command ‗polyfit‘ (degree 2) :   

𝜍 𝑄2/𝑄1 = −0.0030𝜍𝑓.𝑚𝑖𝑠𝑚𝑎𝑡𝑐 𝑕
2 + 1.1185 × 10−6𝜍𝑓.𝑚𝑖𝑠𝑚𝑎𝑡𝑐 𝑕 − 1.2234 × 10−12 ,               (3.10) 

where 𝜍 𝑄2/𝑄1  and 𝜍𝑓.𝑚𝑖𝑠𝑚𝑎𝑡𝑐 𝑕  , respectively, symbolize the standard deviation of magnitude of 

amplitude ratio  𝑄2/𝑄1  and standard deviation of frequency mismatch.  This process is 

illustrated in Figure 3-17. 
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Figure 3-17. Standard deviation of frequency mismatch vs. standard deviation of magnitude of 

amplitude ratio  𝑄2/𝑄1   (𝛺 = 2𝜋 rad/sec, Quality factor, 𝑄𝑥 = 𝑄𝑦 = 1000) 

 

The standard deviation of frequency corresponding to the peak amplitude ratio is also evaluated 

for varying standard deviations of frequency mismatch and depicted in Figure 3-18 to illustrate 

that the frequency mismatch uncertainty has negligible influence.    
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Figure 3-18. Standard deviation of frequency mismatch vs. standard deviation of frequency of 

peak amplitude ratio  𝑄2/𝑄1   (𝛺 = 2𝜋 rad/sec, Quality factor, 𝑄𝑥 = 𝑄𝑦 = 1000) 

 

With the intention of quantifying the effect of the uncertainty of peak frequency, magnitudes of 

the frequency response peaks are computed considering uncertainties in frequency mismatch. 

Figure 3-19 illustrates the gradually increasing nonlinear relationship between the Standard 

deviations of frequency mismatch and magnitude of frequency response  𝑄2/𝐹1 .   It is 

interesting to note that this variation has a similar pattern to that exhibited previously in Figure 3-

17 for the case of peak amplitude ratio.  
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Figure 3-19. Standard deviation of input frequency mismatch vs. standard deviation of 

magnitude of frequency response  𝑄2/𝐹1   (𝛺 = 2𝜋 rad/sec, Quality factor, 𝑄𝑥 = 𝑄𝑦 = 1000) 

 

Least-square method is used to get a parametric relationship between two standard deviations 

using the MATLAB command ‗polyfit‘ (degree 2) :   

𝜍 𝑄2/𝐹1 = −1.2121 × 10−15𝜍𝑓.𝑚𝑖𝑠𝑚𝑎𝑡𝑐 𝑕
2 + 4.4624 × 10−19𝜍𝑓.𝑚𝑖𝑠𝑚𝑎𝑡𝑐 𝑕 − 4.8745 × 10−25, 

(3.11) 

where 𝜍 𝑄2/𝐹1  and 𝜍𝑓.𝑚𝑖𝑠𝑚𝑎𝑡𝑐 𝑕 , respectively, denote as standard deviation of magnitude of 

frequency response  𝑄2/𝐹1  and standard deviation of frequency mismatch.  This process is 

depicted in Figure 3-20. 
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Figure 3-20. Standard deviation of frequency mismatch vs. standard deviation of magnitude of 

frequency response  𝑄2/𝐹1   (𝛺 = 2𝜋 rad/sec, Quality factor, 𝑄𝑥 = 𝑄𝑦 = 1000) 

 

The standard deviation of frequency that corresponds to the magnitude of peak of frequency 

response is also evaluated for varying frequency mismatch standard deviation and depicted in 

Figure 3-21, which illustrates that the mismatch uncertainty has negligible influence as exhibited 

in the previous case.    
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Figure 3-21. Standard deviation of frequency mismatch (rad/sec) vs. standard deviation of 

frequency of frequency response  𝑄2/𝐹1  (non-dimensional) (𝛺 = 2𝜋 rad/sec, Quality factor, 

𝑄𝑥 = 𝑄𝑦 = 1000) 

 

3.6. Closure  
 

In this chapter, optimal temporal sample paths determined in Chapter 2 have been employed for 

uncertainty quantification for mass-spring gyroscope.  In order to predict response statistics, 

dynamic response simulations  have been used for quantifying standard deviation of output 

response when parameters such as input angular rate, frequency mismatch and quality factor are 

subjected to uncertainty.  Uncertainty quantification in the frequency domain has also been 

demonstrated in terms of the standard deviations of the peak amplitude ratios and peak forced 
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response magnitudes.  Least-square algorithm is used in both time and frequency domain in an 

effort to obtain a parametric relationship between the input and output parameter uncertainties.  
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Chapter 4 

4. Dynamic Response Analysis for Ring-based Gyroscopes 

 

4.1. Introduction  
 

In this chapter, numerical schemes that are suitable for simulating the dynamic behavior of ring-

based vibratory gyroscopes are developed.  As discussed in Chapter 2, these schemes are 

intended for the purpose of uncertainty quantification and predicting the dynamic behavior of 

this class of devices under uncertain environment as well as system parameter uncertainties.  

Similar procedures have been followed for the purpose of characterizing the response to 

variation in system as well as environmental parameters.  The dynamic behavior of ring-type 

vibratory angular rate sensors is presented via a mathematical model that has been derived by 

previous researchers.  Further analysis associated with uncertainty quantification for this class of 

gyroscopes is presented in chapter 5. 

 

4.2. Model description 
 

In this chapter, ring gyroscope model is adopted from previous research performed by Cho 

(2004) who primarily employed this model for performing stability analysis of this class of 

vibratory gyroscopes.  A body-fixed frame x-y-z has been used for representing the angular 

motion of the ring with respect to the inertial reference frame R.  In Figure 4-1, r represents the 

mean radius of the ring, and 𝑢𝑟  and 𝑢𝜃  represent, respectively, the radial and circumferential 

displacements.  In addition, for the purposes supporting the ring, eight internal springs are 

employed, and it is assumed that the equivalent stiffness of these springs is low compared to that 
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of the ring.  Hence, it can be assumed that the presence of these springs do not to have a 

significant effect on the ring dynamics. 

 

Figure 4-1. Schematic of a rotating ring with support springs 

 

4.3. Equation of  motion 
 

For the purposes of deriving the governing equation different types of energy terms, namely  

kinetic energy, strain energy, potential energy, energy from external loads etc. are developed 

from deformation, internal and external loads and the vibratory and the rigid body motion of the 

ring.  Hamilton's principle is then used to derive the governing equation of motion. 

 

 

x 

y 

z 

Y 

Z 
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Natural Frequencies and Mode Shapes 

When the ring is assumed to be symmetric, two identical modes having equal natural frequencies 

are found to exist.  One of them is called the primary mode while other is referred to as the 

secondary mode.  This set of modes are also known as degenerate modes (see e.g., Maluf, 2000).  

The mutual angle between the two degenerate modal configurations is 𝜃 =
𝜋

2𝑛
 due to ring 

symmetry, where n is the mode number.  This set of modes for different mode numbers are 

illustrated in Figure 4-2. 

 

Figure 4-2. Stationary flexural modes of a rotating ring with n=2, 3, 4 nodal diameters 
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Normal Mode Equations of Motion 

The vibratory ring-type gyroscope exploits the presence of these degenerate modes and, in 

particular, employs the second flexural mode.  This mode is often popularly referred to as the 

―wine-glass‖ mode since one can easily shatter a wine glass, with relatively low amplitude sound 

signal that corresponds to this frequency.  This feature demonstrates that this mode is easily 

excitable and hence employed in the gyroscope construction.  When the ring is subjected to input 

angular rate 𝛺 while the second flexural mode is excited, this mode attempts to move from one 

degenerate mode to another due to the Coriolis effect as shown in the Figure 4-3.  The largest 

angular shift is achieved from secondary flexural modes when 𝑛 = 2 due to external rate input 

which in turn provides the measurement signals that correspond to the input angular velocity.  In 

accordance with the formula, 𝜃 =
𝜋

2𝑛
 the angular separation between these modes become 

𝜋

4
 as 

seen from Figure 4-3. 

 

Figure 4-3. Second flexural modes used in the normal mode equations 

A combination of excitation of the primary mode and an input angular rate results in Coriolis 

effect which trends to rotate the primary mode towards the secondary mode and hence the 
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resultant response consists of a combination of primary as well as the secondary modes.  Hence, 

the radial and circumferential displacement can be written as a linear combination of the 

associated mode shapes: 

𝑢𝑟 𝜃, 𝑡 =  [𝑞1 𝑡 𝑐𝑜𝑠 𝑛𝜃 + 𝑞2(𝑡) 𝑠𝑖𝑛(𝑛𝜃)]∞
𝑛 ,                                   (4.1a)  

𝑢𝜃 𝜃, 𝑡 =  [𝑞3 𝑡 𝑐𝑜𝑠(𝑛𝜃) + 𝑞4(𝑡) 𝑠𝑖𝑛(𝑛𝜃)]∞
𝑛=0 ,                               (4.1b) 

where the generalized coordinates 𝑞1(𝑡) and 𝑞2(𝑡) correspond to the flexural mode while 𝑞3(𝑡) 

and 𝑞4(𝑡) correspond to the circumferential mode as displayed in Figure 4-3.  Employing 

equation (4.1) in the system of equations described in the continuous form (See, Cho, 2004) the 

second order linear gyroscopic equations in discretized form can be derieved in terms of the 

generalized coordinate vector 𝒒 and expressed as 

𝒒 + 𝐺𝒒 + 𝐾𝒒 = 𝐹    ,                                                                               (4.2) 

where  𝒒 = [𝑞1 𝑞2 𝑞3 𝑞4]𝑇 . 

 

Equations of Motion  

In the present thesis, it is assumed that the ring is symmetric.  However, in practice, presence of 

geometric as well as structural imperfections are unavoidable due to the manufacturing process 

used in fabricating this class of devices (see, e.g., Eley et al., 2000).  Hence, in the design of this 

class of devices, it is customary to incorporate this imperfection via a mass mismatch parameter.  

The equations of motion considering this imperfection as well as a relationship between the 

radial and the flexural modes (see, e.g., Cho, 2004) take the form:  

𝑀𝒒 +  𝐺 + 𝐷 𝒒 + 𝐾𝒒 = 𝐹            ,                                      (4.3) 

where 𝒒 = [𝑞1 𝑞2 ]𝑇 represents generalized coordinate vector that consists of the radial 

components of the second flexural mode, and the system matrices are obtained as 
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𝑀 =  
1 0
0 1 + 𝛿𝑚

 , 𝐺 =  
0 −2𝛺𝛾

2𝛺𝛾 0
 , 𝐷 =  

2𝜉𝜔01 0
0 2𝜉𝜔02

 ,                

𝐾 =  
𝜅1 + 𝜅2𝛺

2 −𝛺 𝛾

𝛺 𝛾 𝜅1 + 𝜅2𝛺
2
 , 𝐹 =  

𝐹1𝑏 
 −𝑛𝑎  𝐹4

𝑎  +𝑏  

𝐹2𝑏 
 +𝑛𝑎  𝐹3

𝑎  +𝑏  

 ,                                          (4.4 a) 

where, 

         𝛾 =
𝑏  +𝑛2𝑎  

𝑛 𝑎  +𝑏   
, 𝜅1 =

𝑏  𝑐  −𝑛2𝑎  2

𝜌𝐴 𝑎  +𝑏   
, 𝜅2 =  

𝑛2 𝑏  +𝑐  −4𝑎   

𝑎  +𝑏  
−

 2+𝑛2  𝑏  𝑐  −𝑛2𝑎   

(𝑎  +𝑏  )2
 , 

         𝑎  = 𝑛2 𝐸𝐼

𝑟4
+

𝐸𝐴

𝑟2
, 𝑏  = 𝑛2  

𝐸𝐼

𝑟4
+

𝐸𝐴

𝑟2 , 𝑐  = 𝑛4 𝐸𝐼

𝑟4
+

𝐸𝐴

𝑟2
                        (4.4 b) 

Here, M is the mass matrix which also include the mass mismatch term 𝛿𝑚, G represents the 

skew-symmetric gyroscopic matrix which results from the Coriolis acceleration while D 

represents the damping matrix, and K denotes the stiffness matrix.  The matrices M, D, and K are 

symmetric.  The approximated parameters 𝛾, 𝜅1 and 𝜅2  take constant values that depend on the 

mode number n and the physical properties of a ring while vector F represents the generalized 

excitation force.  In the damping matrix D, 𝜉 is the damping ratio, and 𝜔01  and 𝜔02 , 

respectively, represent non-rotating ring natural frequencies that are associated with the flexural 

generalized coordinates 𝑞1 and 𝑞2. 

Equations (4.2) are employed for the purposes simulating the time response of the ring-type 

gyroscope for fixed system parameter values which is described in the following section.  In 

addition, these equations are also suitably modified to accommodate uncertainties via random 

variation of parameters to aid uncertainty quantification.   The uncertainty results are presented 

partly in the present chapter and in detail in Chapter 5. 
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4.4. Simulation of Deterministic Time Response 

  

4.4.1. Introduction 

 

In the present chapter, for the purposes of investigating the dynamic characteristics of ring-based 

gyroscopes, time response analysis is performed considering the mathematical model derived in 

the previous section.  The time response analysis is then performed assuming that the mass is 

excited with a periodic external force in which the excitation frequency is set to be same as the 

natural frequency associated with a non-rotating system so that the system gain can be 

maximized.  It may be noted that the natural frequency variation with the input angular rate has 

been marginal and hence this choice for the excitation frequency is considered to have minimal 

influence on reduction of the resonant characteristics.  The dynamic effects due to variation of 

typical parameters of a MEMS mass-spring gyroscope are examined via numerical simulations 

and are depicted via suitable transient response plots.  The results for varying system parameters 

such as the input angular rate, damping and mass/stiffness mismatch are then presented. 

 

4.4.2. Natural frequency variation 

 

Typical parameters for a micromachined ring-type angular sensor is considered as shown in 

Table 4-1.  In this thesis, ring is assumed to be fabricated from nickel which is known to have 

isotropic material properties.  It is known that bifurcations of natural frequencies can take place 

because of the speed-dependent gyroscopic coupling and system stiffness (see e.g., Cho, 2004).    
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When there is no input angular motion of the ring, as expected, the two natural frequencies of the 

ring are identical as shown in the previous research by Cho (2004). 

Table 4- 1. Ring Parameters for the Numerical Calculations 

Density (Nickel) 𝜌 = 8800 (𝑘𝑔/𝑚3) 

Young's Modulus (Nickel) 𝐸 = 210 × 109(𝑁/𝑚2) 

Mean Radius r = 500 (𝜇𝑚) 

Radial Thickness 𝑕 = 12.5 (𝜇𝑚) 

Axial Thickness 𝑏 = 30 (𝜇𝑚) 

 

It was demonstrated that the lower natural frequency decreases while the higher natural 

frequency increases with the input angular rate (Cho, 2004).  It may be noted that for practical 

range of input angular speeds i.e., 0~2π (rad/sec) the difference between the two natural 

frequencies are negligible.  However, when the mass mismatch is non-zero, the mismatch term 

δm contributes to the non-rotating ring natural frequencies as well as to the variation of the two 

natural frequencies as the input angular rate increases.  Further, for the system parameters used 

in the present thesis,  a mass mismatch of 0.01% , results in non-identical natural frequencies of  

𝜔01 = 1.89187 × 105(𝑟𝑎𝑑/𝑠𝑒𝑐) and 𝜔02 = 1.89178 × 105(𝑟𝑎𝑑/𝑠𝑒𝑐)  for the stationary ring. 
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4.4.3. Numerical simulation 
 

In a ring gyroscope, it is assumed that the ring element is excited by a harmonic external force 

while the gyroscope as a whole is subjected to an angular rate.  When the system is under the 

influence of typical input signals it is useful to perform a dynamic response analysis for the ring 

system.  For this purpose, a numerical simulation procedure is developed.  This procedure forms 

the basis of Uncertainty Quantification to be performed later in Chapter 5.  The simulation is 

performed via the fourth-order Runge-Kutta scheme available within the MATLAB computing 

environment. 

As discussed in section 4.1.2, considering the degenerate pair of modes associated with the 

second flexural mode, if  a radial external excitation force of 𝑓𝑟 = cos𝜔01𝑡 is used to excite the 

primary mode associated with the generalized coordinate 𝑞1, the force vector in Equation 4.4a 

takes the form 

𝐹 =  
𝑓1 cos 𝜔01𝑡

0
 ,    𝑓1 =

2𝑓𝑟𝑏 
 

𝜌𝐴(𝑎  +𝑏  )
,                                                   (4.5) 

It may be noted that the sinusoidal external force attempts to excite the primary mode at 

resonance with a frequency close to  𝜔01 , which coincides with the non-rotating ring natural 

frequency associated with the generalized coordinate 𝑞1.  

The equations of motion (4.4) are then written in the first order form that is suitable for 

numerical integration of the ODE‘s as follows: 

 



73 
 

𝑞 1 = 𝑞3,                                                                                                                                    (4.6a)   

𝑞 2 = 𝑞4,                                                                                                                                    (4.6b) 

 𝑞 3 = − 𝜅1 + 𝜅2𝛺
2 𝑞1 + 𝛺 𝛾𝑞2 − 2𝜉𝜔01𝑞3 + 2𝛺𝛾𝑞4 + 𝑓1 𝑐𝑜𝑠 𝜔01𝑡,                                    (4.6c) 

𝑞 4 = −𝛺 𝛾𝑞1 −  𝜅1 + 𝜅2𝛺
2 𝑞2 − 2𝛺𝛾𝑞3 − 2𝜉𝜔01𝑞4,                                                           (4.6d) 

Equations (4.6) are implemented in MATLAB and fourth order Runge-Kutta scheme is 

employed for integrating the set of ODE‘s.  System parameters listed in Table 4-1 have been 

used in the simulations while the two natural frequencies 𝜔01  and 𝜔02  are considered to be 

identical first to examine the behavior in the absence mass mismatch. The ODE45 integration 

routine has been found to be suitable for the numerical simulations, with initial conditions set to 

be zero and the value of time step set to 0.000001 seconds.  

 

4.4.3.1. Time response without input angular motion 

 

When the ring gyroscope system is subjected to harmonic excitation without any input angular 

motion (𝛺=0 rad/sec), the response of the ring gyroscope along the driving direction is obtained 

numerically and illustrated in Figure 4-4 (a).  It can be seen that the  time response of the ring 

gyroscope reaches a state of steady-state after about 0.002 seconds from the commencement of 

the excitation.  On the other hand, the response of the ring gyroscope along the sensing direction 

is zero as there is no input angular motion. 

It may be noted that the gyroscopic coupling present in the system is the main reason for the 

transfer of energy between the modes when the sensor is subjected to an input angular rate.  By 
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increasing excitation force magnitude, an increase in the sensitivity can be obtained while the 

larger deflection of the ring in the sensing direction indicates higher sensitivity for the sensors.  

However, larger deflection may cause fatigue in the ring and as a result can lead to reduction in 

life for the sensor. 

 

(a) 

 

(b) 

Figure 4-4. Radial displacement in the (a) driving direction and (b) sensing direction without 

input angular rate 
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4.4.3.2. Time response with input angular motion 

 

The variations of the natural frequencies are significantly small in the low speed range (i.e., less 

than 2π rad/sec) for which typical MEMS ring gyroscopes are designed, the excitation frequency 

can be assumed to be constant and made to coincide with the non-rotating natural frequency, 

𝜔01 , associated with the generalized coordinate 𝑞1. In order to compensate for the increase in the 

first natural frequency with the angular speed, an excitation frequency of 1.89189 × 105 rad/sec 

which is slightly higher than the first natural frequency has been used for the simulations. 

In order to examine the response of the ring gyroscope associated with the generalized 

coordinate 𝑞2 (sensing direction), a suitable profile for the input angular rate must be applied.  In 

the present analysis, this profile is assumed to start from a zero value and to reach a steady-state 

angular speed 𝛺 via a smooth increase in speed as depicted in Figure 4-5.  The equation used to 

represent an angular rate profile that represents a smooth increase in the angular rate has been 

chosen to be 

𝛺 =
𝑛𝜋

2
 sin(

𝜋𝑡

0.005
−

𝜋

2
) +

𝑛𝜋

2
  (rad/s)               for 𝑡 < 0.005                                       (4.7) 

At time 𝑡 = 0.005 seconds the input angular rate time-profile is set to reach the steady-state of 

nπ rad/s.  Different steady-state angular speeds such as 𝛺 = 𝜋, 2𝜋, 5𝜋, 8𝜋, 10𝜋 as depicted in 

Figure 4-5 have been used to investigate the dynamic response. 
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Figure 4-5. Input angular rate time-profile 

 

In this chapter, a steady-state angular speed of 𝛺 = 2𝜋 rad/sec is considered for the purposes of 

characterizing typical dynamic responses.  When both the input angular motion and the harmonic 

excitation are introduced simultaneously, the time responses of the system in the driving and the 

sensing directions, respectively, are shown in Figures 4-6 (a) and (b).  
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(a) 

 

(b) 

Figure 4-6. Radial displacement in the (a) driving direction and (b) sensing direction with input 

angular rate for 𝛺 = 2𝜋  rad/sec input angular rate 
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4.4.3.3. Mass mismatch 

 

It is known that due to uncertainties present in the MEMS fabrication process, it is impossible to 

obtain equal distribution of ring mass and uniformity of the suspension elements. This will 

manifest in the system as a frequency mismatch for the driving and the sensing motions.  Hence, 

this form of mismatch is considered as one of the important parameters that affect the system 

dynamics.  Hence, the effects of mass mismatch on the time response of the ring gyroscope are 

examined in this section. Figures 4-7 (a) and (b) show the response amplitudes for the ring 

system in the driving and sensing directions for time duration of 0.01 seconds.  As illustrated in 

Figure 4-7 (b), a reduction in the response in the sensing direction is evident when the frequency 

mismatch of the vibratory system is increased.  It may be noted that this reduction can be 

detrimental to the achievable performance of this forms of gyroscopes, for example, it can lead 

to lower sensitivity for the angular rate sensor.  Further, uncertainty propagation due to this 

parameter can be considered important and forms a basis for one of the uncertainty quantification 

study presented in Chapter 5.   
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(a) 

 

(b) 

Figure 4-7. Variation of radial displacement in the driving (a) and sensing (b) directions for 

different mass mismatch values 
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4.5. Simulation of Random Time Response  

 

4.5.1. Introduction 

 

In present thesis, to see the effect of randomness and drift in MEMS mass-spring gyroscope 

model, a drift noise model is assumed in the following form:  

𝑑𝑑 = 𝜍1 𝑒
𝑎𝑑 𝑡 − 1 + 𝜍2𝜁(𝑡) .                          (4.8) 

This model consists of two parts.  The first part represents the drift which is an exponential term, 

while the second part denotes the uncertainty which is introduced in the form of a random 

component.   In order to obtain the typical drift rate from Equation (4.8), the drift exponential 

coefficient 𝑎𝑑  is set at a value 1.0 and the drift coefficient 𝜍1 is set at a value 0.0245.  

Uncertainty coefficient 𝜍2 is chosen to be 0.0001.   

For the present study, the model presented via Equation (4.8) is to represent additive noise and 

drift to the nominal input angular rate 𝛺.  Hence, the input angular rate takes the form: 

𝛺 = 𝛺 + 𝑑𝑑                                                                            (4.9)  

The drift/noise presented in Equation (4.8) is also used for representing uncertainties in other 

system parameters such as mass mismatch and damping ratio.  As described the section 2.5.2 of 

Chapter 2 for the case of mass-spring gyroscope, Monte Carlo simulation method is used to 

predict the response statistics and uncertainty quantification.  When the ring is subjected to 

uncertainties in input angular rate (𝛺), mass (𝛿𝑚 ) and damping ratio (ξ), randomness is 

incorporated in the corresponding parameters and Monte Carlo simulation is used to generate 

multiple output samples. 
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4.5.2. Robustness of simulation 

 

4.5.2.1. Stochastic response simulation after peak-picking 

 

As shown in section 4.4.3.2, the output time response in the sensing direction contains two parts, 

known as transient and steady-state parts.  The approach discussed in chapter 2 in the section 

2.5.3.1 used in quantifying the variation of the mean values and the standard deviation of the 

steady state of time response along the sensing direction are employed here.  After peak-picking 

and removal of the transient part, the resulting response is used to characterize and predict 

response statistics via Monte Carlo method.  The plot that represents this response is illustrated 

in Figure 4-8 where the last sample point of approximately 7,500 coincides with 0.25 seconds.  

In the next sections, an attempt will be made to justify the prediction of responses via selection 

of suitable time/ensemble response statistics.  

 

Figure 4-8. Time response after peaks-picking for ring gyroscope (𝛺=2𝜋 rad/sec) 
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4.5.2.2. Optimal number of points along time response 

 

Before performing the uncertainty quantification, it is important to come up with a suitable set of 

data that exhibit consistence and convergence for the response statistics.  For this purpose, 

number of samples along the time axis as well number of samples along the sample paths has 

been considered.  This approach has been discussed in section 2.2.3.2 of chapter 2 and hence not 

presented in detail here. 

An attempt is made to define the number of points along the time axis which can be used in the 

application of Monte Carlo method based on the numerical simulation.  After peak-picking and 

the removal of the transient, the first 100 points along the remaining steady state response shown 

in Figure 4-10 have been considered first.  These 100 points have been used to determine the 

temporal mean and standard deviation.  This process is considered with increments of 100 points 

up to 6000 points and performed for cases without and with the drift, keeping the noise 

component  the same. 
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(a) 

 

(b) 

Figure 4-9. Number of points vs. Mean along the time response for ring gyroscope (a) without 

drift (b) with drift (𝛺=2𝜋 rad/sec) 



84 
 

 

(a) 

 

(b) 

Figure 4-10. Number of points vs. standard deviation along the time response for ring gyroscope 

(a) without drift (b) with drift (𝛺=2𝜋 rad/sec) 
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Figures 4-9 and 4-10, respectively, illustrate the results for the temporal mean and the standard 

deviation.  These figures also illustrate that reasonable convergence will be achieved any point 

after 1000 points which are considered for further analysis in predicting ring gyroscope response 

statistics.  Figures 4-9 and 4-10 also illustrate the effect of increasing drift on the response 

statistics.  Hence, an alternate approach is warranted for predicting the response statistics for 

highlighting the noise term. 

The statistical response predictions performed in the previous section confirms the significance 

of considering time sample points past the 1000 points based on both the mean and standard 

deviation. In order to ascertain the predictions via the sample paths, 100 random samples have 

been employed.  The sample paths are depicted in Figure 4-11. 

 

Figure 4-11. Radial displacement in the sensing direction with input angular rate (100 samples) 
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(a) 

 

(b) 

Figure 4-12. Number of points vs. Ensemble Mean (a) without drift and (b) with drift (100 

samples along path axis and 𝛺=2𝜋 rad/sec) 
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(a) 

 

(b) 

Figure 4- 13. Number of points vs. Standard deviation (a) without drift and (b) with drift (100 

samples along path axis and 𝛺=2𝜋 rad/sec) 
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Employing the 100 samples, the ensemble mean as well as the standard deviations are computed.  

Figures 4-12 (a) and (b) show that reasonable consistency for ensemble mean without and with 

drift is obtained for any points after 5800 points.  However, the predictions made for the standard 

deviations for the response are illustrated in Figures 4-13 (a) and (b).  These figures demonstrate 

that after 5800 points in cases without and with drift, the standard deviation values show a 

converging trend and points past the 5800 mark may be considered suitable for further analysis 

in predicting response statistics. 

 

4.5.2.3. Discrete time steps 

 

It is known that time step size plays a significant role in the numerical simulation process. 

Obviously, smaller time steps results in more accurate predictions of the response along with 

increased computations costs.  In order to find the optimal time step to achieve reasonably 

accurate results in moderate computational costs, a suitable fixed step size is selected by running 

several simulations via the ODE45 integration routine within MATLAB.  Based on the 

simulation trials, a time step size of 0.000001 seconds has been chosen to be adequate.  Further 

reduction in step size has been found to be unnecessary.    

 

4.6. Closure 
 

A numerical simulation scheme has been developed for characterizing the dynamic response of 

ring-based gyroscopes.  This scheme is based on a two-mode discredited mathematical model 
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and has been used for investigating the dynamic response characteristics of a ring element when 

the ring gyroscope is subjected to an input angular rate.  Response amplitudes are obtained when 

parameters mass mismatch are varied.  Both noise and drift terms have been incorporated in the 

model for the purposes predicting the response under system parameter uncertainties.  Both time 

based and sample based data analysis has been formed to achieve a robust scheme for predicting 

useful response statistics via Monte Carlo simulation.  This robust scheme forms the basis of a 

detailed uncertainty quantification study to be performed for ring-based gyroscopes. 
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Chapter 5 
 

5. Uncertainty Quantification for Ring-based Gyroscopes 

 

5.1. Introduction 
 

In the previous chapter, a systematic numerical simulation procedure has been developed based 

on a mathematical model that represents the dynamical behavior of ring type vibratory 

gyroscopes.  In addition to determining the response due to changes in system parameters via a 

deterministic response analysis, predictions of response statistics due to random inputs have also 

been illustrated.   Suitable number of temporal points as well as sample paths have been selected 

and optimized for further analysis while a fixed optimal time step size has also been ascertained. 

In this chapter, attention is focused on examining the optimal number of sample paths for 

characterizing the response statistics via ensemble mean and standard deviations.  Employing the 

optimal sample number, uncertainty quantification is performed for parameter uncertainties in 

input angular rate, mass mismatch, and the quality factor.  In addition, uncertainty quantification 

in the frequency domain has also been performed considering uncertainties in mass mismatch. 

 

5.2. Optimal number of Samples 

 

When the system is subjected to harmonic excitation with input angular motion which contains 

noise and drift, the response along the sensing direction is achieved numerically and the results 

have been presented in Chapter 4.  Optimal as well as robust sampling strategies are developed 

for ring gyroscopes based on the simulated dynamic responses via peak-picking as illustrated in 
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Figure 5-1.  After eliminating the transient oscillatory motion, the Monte Carlo method is applied 

on the steady state part of the time response.  Results for 70 samples, are depicted in Figure 5-2 

and it may be noted that a suitable y-axis scale has been chosen for clarity.  

 

Figure 5-1. Time response after peak-picking for ring gyroscope (Ω=2π rad/sec) 

 

Figure 5-2. Radial displacement in the sensing direction after peak-picking (70 samples) 
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Optimization of the number of samples is an essential part for Monte Carlo method since use of 

larger number of samples increases the computational effort significantly. Following the  

analysis presented in the Chapter 4, it has been determined that any point after 5800 points along 

the steady part of Figure 5-1 can be chosen for further analysis.  In the present analysis five 

temporal points at 6201, 6202, 6203, 6204, 6205 have been considered for the application of 

Monte Carlo simulation.  At these points, ensemble mean as well as standard deviation have 

been computed for varying sample numbers starting from 5 to 100 with an increment of 5 

samples.   

The computed ensemble mean for the cases of without consideration of drift and with drift, 

respectively, are illustrated in Figures 5-3 (a) and (b).  The corresponding figures for the standard 

deviation as shown in Figures 5-4 demonstrate reasonable convergence after 30 samples. Further, 

these ensemble standard deviation predictions seem to be consistent at the 5 temporal points 

considered.  Hence, it can be concluded that any of the 5 temporal points can be considered for 

the ensemble mean and standard deviation computations.  For the present analysis, the point 

6201 has been chosen with computations employing 70 samples.  
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(a) 

 

(b) 

Figure 5-3. Number of samples along path axis vs. Ensemble mean (a) without drift and (b) with 

drift (𝛺=2𝜋 rad/sec) 
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(a) 

 

(b) 

Figure 5-4. Number of samples along path axis vs. Standard deviation (a) without drift and (b) 

with drift (𝛺=2𝜋 rad/sec) 
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The point 6201 has been singled out from Figure 5-2 and 70 samples are shown via the 3D plot 

for illustrative purposes. These 70 samples, when subjected to uncertainties in various system 

parameters are useful in estimating the response statistics via the uncertainty quantification 

process.     

 

Figure 5-5. Radial displacement in the sensing direction with input angular rate at point 6201 (70 

samples) 

 

5.3. Uncertainty Quantification Results and Discussion 
 

Uncertainties in input angular speed are introduced in the mathematical model considering drift 

and noise terms and the resulting dynamic response simulations are used to obtain optimal 

number of points along time axis and optimal number of samples along path axis.  This optimal 

configuration is also used for examining uncertainties in mass mismatch.  For the purposes of 

uncertainty quantification, the noise term in the model is introduced as a random variable with 
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Normal (Gaussian) distribution.  At a certain temporal point 6201 which lies after 5800 points 

along time sample, 70 samples are taken along sample path axis for the application of Monte 

Carlo simulation based on the dynamic response.  This enables prediction of response statistics 

in the form of standard deviation of output response for different cases. 

 

5.3.1. Uncertainty in Input Angular Rate 

 

For this case, when the mass mismatch for ring is fixed at 0.01% and for the purpose of 

generating random numbers having Gaussian distribution, mean input angular rate (𝛺) is fixed at 

2π rad/sec and standard deviations are varied from 1% to 10% of 2π rad/sec.  Employing this 

mean and standard deviations random numbers are generated within the MATLAB environment 

and these random inputs are considered in the simulation process and corresponding output 

standard deviations are obtained.  70 random samples are taken for each input standard deviation 

in order to achieve corresponding ensemble output standard deviation.  To demonstrate the 

relation between input and output standard deviation via continuous curve 10 input standard 

deviations are considered.  These curves are also investigated for varying fixed values of 

damping ratio 𝜉 values from 0.01 to 0.05 with an increment of 0.01 as shown in Figure 5-5.  It 

may be recalled that the nominal 𝜉 is 0.01 and hence the choice of  𝜉‘s represent above and 

below this nominal value.   

Curves shown in Figure 5-6 reveal that variation of input angular rate standard deviation does 

not have a significant effect on the output response standard deviation.  It may be attributed to 

the negligible effects that the input angular rate has on the natural frequencies.  The increase in 
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response standard deviation with increasing 𝜉 values up to 0.03 also evident in the Figure 5-6.  

When the damping ratio 𝜉 is further increased the response standard deviations decrease and then 

again tends to increase.  It may be noted that a damping ratio of 0.03 appears to form a threshold 

value in the case of a ring gyroscope.  This prediction suggests careful consideration of damping 

ratios in the design of this form of gyroscopes when uncertainties in angular rate are dominant.  

 

Figure 5-6. Standard deviation of input angular rate vs. standard deviation of output response, 

(mass mismatch is 0.01%) 

 

5.3.2. Uncertainty in Mass Mismatch 

 

For the purposes of introducing mass mismatch, Equation (4.2) which is given in chapter 4 can 

be rewritten as 

 
1 0
0 1 + 𝛿𝑚

 𝒒 +  
2𝜉𝜔01 −2𝛺𝛾
2𝛺𝛾 2𝜉𝜔02

 𝒒 +  
𝜅1 + 𝜅2𝛺

2 −𝛺 𝛾

𝛺 𝛾 𝜅1 + 𝜅2𝛺
2
 𝒒 =  

𝑓1 cos 𝜔01𝑡
0

 ,         (5.1) 
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where 𝒒 = [𝑞1 𝑞2]𝑇 represents a vector that contains the generalized coordinates, 𝛿𝑚  is the mass 

mismatch and the elements of the system matrices are given in section 4.1.2 of chapter 4. 

In this case, for a fixed input angular rate (𝛺) of 2π rad/sec, standard deviations of mass 

mismatch are varied from 0.00001 with an increment of 0.00001 up to 0.0001 while the mean  is 

fixed at 0.0001. The above mean and standard deviation values are employed for generating 

normally distributed random numbers via MATLAB and for each input standard deviation 70 

samples are employed within the simulation in order to get corresponding ensemble standard 

deviation of output response.  10 different standard deviations for mass mismatch and 

corresponding output standard deviations are generated and illustrated in Figure 5-7.  In this 

Figure, this predictions are also performed for different fixed values of damping ratio 𝜉.  It is 

interesting to note that, as in the case of uncertainty in input angular rate, a threshold value of 

0.03 for the damping ratio exists in this case. 

 

Figure 5-7. Standard deviation of mass mismatch vs. standard deviation of output response, 

(𝛺 = 2𝜋 𝑟𝑎𝑑/𝑠𝑒𝑐) 



99 
 

In order to quantify the influence of uncertainty in mass mismatch on the output response 

statistics, Least-square approach is employed on the resultant data to obtain a parametric 

relationship between the two relevant standard deviations.  MATLAB command ‗polyfit‘ with 

degree 2 is employed for this purpose to obtain this parametric relationship:  

𝜍𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = −1.8379 × 10−13𝜍𝑚.𝑚𝑖𝑠𝑚𝑎𝑡𝑐 𝑕
2 + 3.4748 × 10−17𝜍𝑚.𝑚𝑖𝑠𝑚𝑎𝑡𝑐 𝑕 + 1.1503 × 10−20 , 

(5.2) 

where 𝜍𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒  and 𝜍𝑚.𝑚𝑖𝑠𝑚𝑎𝑡𝑐 𝑕  denote  standard deviations of output response and mass 

mismatch respectively.  This process is illustrated in Figure 5-8. 

 

Figure 5-8. Standard deviation of mass mismatch vs. standard deviation of output response, 

(𝛺 = 2𝜋 𝑟𝑎𝑑/𝑠𝑒𝑐) 
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5.3.3. Uncertainty in Damping Ratio 
 

In this case, for fixed value of input angular rate (2𝜋 𝑟𝑎𝑑/𝑠𝑒𝑐) when normally distributed 

random numbers are generated with mean damping ratio value of 0.0001 and the standard 

deviations are varied from 0.00001 with an increment of 0.00001 up to 0.0001.  For each 

standard deviation of damping ratio uncertainty, 70 random samples are utilized to acquire 

corresponding ensemble standard deviation of output response.  10 standard deviation values of 

damping ratio uncertainty are chosen to generate curves which represent a relationship between 

input and output standard deviations.  These curves are also generated for different fixed mass 

mismatch values. It is evident from Figure 5-9, that for 0.01% and 0.02% mass mismatch the 

standard deviations of output response have significantly different trend when compared with 

those obtained for higher mismatch values.  It may be attributed to the fact that for lower mass 

mismatch the two natural frequencies are likely to be close to each other.  The response statistics 

may take large values as a result of internal resonance.  For the lower values of mass mismatch, 

when the damping ratio increases, the output standard deviations increase and seems to 

converge.  Further, in order to illustrate the effect of large mass mismatch on the performance of 

ring gyroscope, 10% and 20% mass mismatch are used in the numerical simulation.  Figure 5-9 

shows that, for large mass mismatch, magnitudes of output standard deviations do not have 

notable variation as internal resonance may not play a significant role. 
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Figure 5-9. Standard deviation of damping ratio mismatch vs. standard deviation of output 

response for different mass mismatch (𝛺 = 2𝜋 𝑟𝑎𝑑/𝑠𝑒𝑐, 𝜉 = 0.01) 

 

Least-square method is applied on resultant data to quantify the influence of uncertainty in 

damping ratio mismatch on the output response statistics. For this purpose, the plot that 

correspond to 0.01% mismatch in Figure 5-9 is considered and redrawn in Figure 5-10.  From the 

data set, a parametric relationship between the two relevant standard deviations can be extracted: 

𝜍𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = −6.0530 × 10−13𝜍𝑑.𝑚𝑖𝑠𝑚𝑎𝑡𝑐 𝑕
2 + 7.0788 × 10−17𝜍𝑑.𝑚𝑖𝑠𝑚𝑎𝑡𝑐 𝑕 + 1.0078 × 10−20, 

(5.3) 

where 𝜍𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒  and 𝜍𝑑.𝑚𝑖𝑠𝑚𝑎𝑡𝑐 𝑕  indicate as standard deviations of output response and damping 

ratio mismatch respectively. 
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Figure 5-10. Standard deviation of damping ratio vs. standard deviation of output response for 

different mass mismatch (𝛺 = 2𝜋 𝑟𝑎𝑑/𝑠𝑒𝑐, 𝜉 = 0.01) 

 

5.4. Frequency response 
 

In this section an attempt is made for formulating a systematic procedure for performing 

uncertainty quantification in the frequency domain.  On order to illustrate this procedure, 

uncertainty in mass mismatch has been chosen.   

Taking Laplace transformation of system equations (5.1), the equations in the s domain can be 

expressed as  

𝑠2𝑄1(𝑠) + 2𝜉𝜔01𝑠𝑄1(𝑠) − 2𝛾𝛺𝑠𝑄2(𝑠) +  𝜅1 + 𝜅2𝛺
2 𝑄1(𝑠) = 𝐹1(𝑠) ,                  (5.4) 

 1 + 𝛿𝑚 𝑠2𝑄2(𝑠) + 2𝜉𝜔02𝑠𝑄2 𝑠 + 2𝛾𝛺𝑠𝑄1(𝑠) +  𝜅1 + 𝜅2𝛺
2 𝑄2(𝑠) = 0 ,          (5.5) 



103 
 

where 𝐹1 𝑠 , 𝑄1(𝑠) and 𝑄2(𝑠) represent, respectively, the Laplace transform of 𝑓1 𝑡 , 𝑞1(𝑡) and 

𝑞2 𝑡 . 

From Equations (5.4) and (5.5), the amplitude ratio of the displacement in the sensing direction 

to the displacement in the driving direction (i.e., 𝑄2/𝑄1 ) is evaluated considering mass 

mismatch.  Similarly, the forced frequency response magnitude  𝑄2/𝐹1  is also evaluated.  For 

this purpose, the magnitudes of   

𝑄2(𝑠)

𝑄1(𝑠)
= −

2𝛾𝛺𝑠

 1+𝛿𝑚 𝑠2+2𝜉𝜔02𝑠+ 𝜅1+𝜅2𝛺
2 

   ,                                            (5.6) 

𝑄2(𝑠)

𝐹1(𝑠)
= −

2𝛾𝛺𝑠

𝐴𝑠4+𝐵𝑠3+𝐶𝑠2+𝐷𝑠+(𝜅1+𝜅2𝛺
2)2   ,                                            (5.7) 

where 

𝐴 = 1 + 𝛿𝑚 ,                                                                                                  (5.8a) 

𝐵 = 2{𝜉𝜔02 +  1 + 𝛿𝑚 𝜉𝜔01} ,                                                                    (5.8b) 

𝐶 =  1 + 𝛿𝑚  2 𝜅1 + 𝜅2𝛺
2 + 4𝜉2𝜔01𝜔02 + 4𝛾2𝛺2  ,                                   (5.8c) 

𝐷 = 2(𝜉𝜔01 + 𝜉𝜔02) 𝜅1 + 𝜅2𝛺
2  ,                                                                (5.8d) 

The parameters given in Table 4-1 are used for the numerical calculations that are used in the 

evaluation of the amplitude ratio and the forced frequency response.  From Equation (5.6), the 

amplitude ratio of the displacement in the sensing direction to the displacement in the driving 

direction (i.e.,  Q2/Q1 ) is evaluated and depicted for damping ratio 1 × 10−9 and 1000 in 

Figures 5-11 and 5-12, respectively.  The figures show that the amplitude ratio has the maximum 
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value near the non-rotating ring natural frequency ω02  and that the magnitude of the amplitude 

ratio  increases with an increase in the input angular rate. 

Similarly, the frequency response magnitude  𝑄2/𝐹1 , evaluated from Equation (5.7), is 

illustrated for damping ratio 1 × 10−9 and 1000, respectively,  in Figures 5-13 and 5-14.  In 

addition, the magnitude of frequency response is shown to increase as the input angular rate 

increases. 

 

Figure 5-11. Variation of amplitude ratio for different input angular rates (mass mismatch with 

0.01%, damping ratio, 𝜉=1× 10−9) 
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Figure 5-12. Variation of amplitude ratio for different input angular rates (mass mismatch with 

0.01% mismatch, damping ratio, 𝜉=0.01) 

 

Figure 5-13. Variation of frequency response for different input angular rates (mass mismatch 

with 0.01% mean, damping ratio, 𝜉=1× 10−9) 
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Figure 5-14. Variation of frequency response for different input angular rates (mass mismatch 

with 0.01% mean, damping ratio, 𝜉=0.01) 

 

In order to analyze the uncertainty quantification in the frequency domain with frequency 

mismatch, 70 random samples are employed in the numerical simulation which is demonstrated 

in Figure 5-15 while the input angular rate and damping ratio are,  respectively, fixed at 2𝜋 

rad/sec and 0.01. 
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Figure 5-15. Variation of amplitude ratio for different samples (frequency mismatch with 0.01%, 

damping ratio, 𝜉=0.01, 𝛺 = 2𝜋 𝑟𝑎𝑑/𝑠𝑒𝑐) 

 

For the purposes of quantifying the effect of the uncertainty mass mismatch, magnitudes of the 

amplitude ratio peaks are computed considering uncertainties in frequency mismatch. Figure 5-

16 illustrates the gradually increasing nonlinear relationship between the Standard deviation of 

mass mismatch and standard deviation of magnitude of amplitude ratio  𝑄2/𝑄1 .  
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Figure 5-16. Standard deviation of mass mismatch vs. standard deviation of magnitude of 

amplitude ratio  𝑄2/𝑄1  (𝛺 = 2𝜋 𝑟𝑎𝑑/𝑠𝑒𝑐, damping ratio, 𝜉=0.01) 

 

Least-square method is used to get a parametric relationship between two standard deviations 

using the MATLAB command ‗polyfit‘ (degree 2) :   

𝜍 𝑄2/𝑄1 = 7.6506 × 10−6𝜍𝑚.𝑚𝑖𝑠𝑚𝑎𝑡𝑐 𝑕
2 + 5.5835 × 10−9𝜍𝑚.𝑚𝑖𝑠𝑚𝑎𝑡𝑐 𝑕 + 3.1808 × 10−14 ,    (5.9) 

where 𝜍 𝑄2/𝑄1  and 𝜍𝑚.𝑚𝑖𝑠𝑚𝑎𝑡𝑐 𝑕  , respectively, symbolize as standard deviation of magnitude of 

amplitude ratio  𝑄2/𝑄1  and standard deviation of mass mismatch.  This process is illustrated in 

Figure 5-17. 
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Figure 5-17. Standard deviation of mass mismatch (non-dimensional) vs. standard deviation of 

magnitude of amplitude ratio  𝑄2/𝑄1  (𝛺 = 2𝜋 𝑟𝑎𝑑/𝑠𝑒𝑐, damping ratio, 𝜉=0.01) 

 

The standard deviation of frequency that corresponds to the peak of amplitude ratio is also 

evaluated for varying mass mismatch standard deviation and depicted in Figure 5-18 which 

illustrates that the mismatch uncertainty has negligible influence.    
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Figure 5-18. Standard deviation of mass mismatch vs. standard deviation of frequency of 

amplitude ratio  𝑄2/𝑄1  (𝛺 = 2𝜋 𝑟𝑎𝑑/𝑠𝑒𝑐, damping ratio, 𝜉=0.01) 

 

With the intention of quantifying the effect of the uncertainty mass mismatch, magnitudes of the 

frequency response peaks are computed considering uncertainties in mass mismatch. Figure 5-19 

illustrates the gradually increasing nonlinear relationship between the Standard deviation of mass 

mismatch and standard deviation of magnitude of frequency response   𝑄2/𝐹1 .  
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Figure 5-19. Standard deviation of input mass mismatch vs. standard deviation of magnitude of 

frequency response  𝑄2/𝐹1  (𝛺 = 2𝜋 𝑟𝑎𝑑/𝑠𝑒𝑐, damping ratio, 𝜉=0.01) 

 

Least-square method is used to get a parametric relationship between two standard deviations 

using the MATLAB command ‗polyfit‘ (degree 2) :   

𝜍 𝑄2/𝐹1 = 2.1099 × 10−9𝜍𝑚.𝑚𝑖𝑠𝑚𝑎𝑡𝑐 𝑕
2 − 4.2494 × 10−14𝜍𝑚.𝑚𝑖𝑠𝑚𝑎𝑡𝑐 𝑕 + 6.3565 × 10−19,   

(5.10) 

where 𝜍 𝑄2/𝐹1  and 𝜍𝑚.𝑚𝑖𝑠𝑚𝑎𝑡𝑐 𝑕 , respectively, denote as standard deviation of magnitude of 

frequency response  𝑄2/𝐹1  and standard deviation of mass mismatch.  This process is 

illustrated in Figure 5-20. 
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Figure 5-20. Standard deviation of input mass mismatch vs. standard deviation of magnitude of 

frequency response  𝑄2/𝐹1  (𝛺 = 2𝜋 𝑟𝑎𝑑/𝑠𝑒𝑐, damping ratio, 𝜉=0.01) 

 

The standard deviation of frequency that corresponds to the magnitude of peak of frequency 

response is also evaluated for varying mass mismatch standard deviation and depicted in Figure 

5-21 which illustrates that the mismatch uncertainty has negligible influence, as in the previous 

case.    
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Figure 5-21. Standard deviation of mass mismatch vs. standard deviation of frequency of 

frequency response  𝑄2/𝐹1  (𝛺 = 2𝜋 𝑟𝑎𝑑/𝑠𝑒𝑐, damping ratio, 𝜉=0.01) 

 

5.5. Closure  
 

In this chapter, for a ring-based gyroscope, optimal temporal sample paths have been determined 

via Monte Carlo simulation method.  In order to predict response statistics, dynamic response 

simulations have been used for quantifying standard deviation of output response when the 

parameters such as input angular rate, mass mismatch and damping ratio are subjected to 

uncertainty.  Uncertainty quantification in the frequency domain has also been demonstrated in 

terms of the standard deviations of the peak amplitude ratios and peak forced response 
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magnitudes.  Least-square algorithm is used in both time and frequency domain in an effort to 

obtain a parametric relationship between the input and output parameter uncertainties.  
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Chapter 6 

6. Conclusions 

 

6.1. Summary of the thesis 
 

Numerical schemes that are suitable for predicting response statistics of mass-spring and ring 

gyroscopes are developed when this class of vibratory gyroscopes are subjected to parameter as 

well as environment uncertainties.  In particular, emphasis is placed on examining uncertainties 

in input angular rate, mass/frequency mismatch and quality factor (measure of damping).   

Responses have been computed in the time domain as well as in the frequency domain while the 

system is subjected external excitation and body rotation.   

Appropriate mathematical models suitable for the proposed simulation study are chosen first.  

Equations that govern the motion of a linear gyroscopic system with a suitable external harmonic 

excitation are employed for this purpose.  In both cases, in an effort to maximize the gyroscope 

gain and hence the sensitivity, external excitation frequency was chosen to be close to one of the 

natural frequencies.  Responses of input angular rates of varying magnitudes were simulated first 

for both types of gyroscopes.  Responses under frequency mismatch of different percentages 

have been considered for mass-spring gyroscope while mass mismatch of various percentages 

have been considered for ring gyroscope.  In order to examine the effect of randomness on 

output responses, random inputs have been introduced in the numerical schemes in the form of 

noise and drift terms.  The emphasis is placed on the steady-state part of the response since it is 

more critical to the operation of a gyroscope.  A peak-picking approach which simulates the 

demodulation process which is used in practice is employed first before applying the Monte 
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Carlo simulation method to predict the response statistics.  A number of simulation trials to 

predict response statistics have been performed for both types of gyroscopes in an effort to 

ascertain the optimal temporal points as well as sample paths for the impending uncertainty 

quantification study. 

In the interest of quantifying parameter uncertainties in gyroscopes, various system as well as 

environmental parameters have been chosen.  The statistical analyses that have been performed 

to predict response statistics, helped to quantify standard deviation of output response when   

input angular rate, frequency/mass mismatch have been taken as parameter uncertainties.  

Further, the uncertainty quantification is also performed in the frequency domain to the effects of 

the above parameters on the peak response magnitude ratio as well as the forced frequency 

response.  The predictions are quantified in the form of the standard deviation of the peak ratios 

and response magnitudes.  In order to quantify the statistical predictions using the time as well as 

the frequency domain simulations, an attempt is also made to obtain relations that map the input 

and the output uncertainties via a least-square algorithm.   

To the best of author‘s knowledge, this systematic approach for predicting the dynamic response 

statistics have not been performed for this class of gyroscopes and it is hoped that this approach 

paves the way for performing uncertainty quantification when these system are subjected to 

various other uncertainties that may be present in practice.     

It is envisaged that the predictions made from the output response statistics and uncertainty 

quantification analyses of the present study can lead to significant performance improvements in 

the design of this class of micro-machined mass-spring and ring type vibrating angular rate 

sensors. 
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6.2. Thesis contributions 
 

The original contributions arising from the present study may be summarized as follows: 

 Suitable numerical schemes have been developed for systematic characterization of a 

class of vibratory gyroscopes giving emphasis to uncertainty quantification.  Application 

of these schemes to both mass-spring type as well as ring-type gyroscopes has been 

demonstrated. 

 For the predictions using the Monte Carlo simulations in the time-domain, a systematic 

process for determining the optimal temporal as well as sample paths has been developed 

so that the computational effort can be minimized.   

 The applicability of the Uncertainty quantification analysis has been demonstrated via 

examining response statistics when the gyroscopes are subjected to uncertainties in input 

angular rate, frequency/mass mismatch and quality factor.   

 An uncertainty quantification process in the frequency domain is developed to 

systematically examine the above uncertainties and suitable measures for quantifying the 

response uncertainties have been identified.  

 

6.3. Recommendations for future research 
 

This thesis attempted to present a systematic approach for the uncertainty quantification of a 

class of vibratory gyroscopes for the first time based on the dynamic response via the Monte 

Carlo Approach.  The analysis presented in this thesis provides confidence in applying these 
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schemes in practice.  However, before this method can be applied for the design of gyroscopes, 

further research is warranted in the following areas:     

 The present study employed linear models in general and in the case of the ring-type 

gyroscope employed a discretized model for predicting the response statistics via 

numerical simulations. More accurate predictions considering multi mode as well as non-

linear models could be used to improve the quantification. 

  Present study focussed primarily on quantifying the effects of input angular rate, 

frequency/stiffness mismatch and quality factor.  Other important parameters such as 

temperature could be studied using the approach developed in the present thesis by 

suitably modifying the mathematical model to incorporate thermal effects.   

 Also, experimental response of commercial gyroscopes could be used to validate the 

theoretical predictions. However, exact parameters of commercial products are often not 

revealed by the manufactures and hence could only be performed by the respective 

manufacturers.  Results from this thesis could provide a basis for the experimental 

quantification and could lead to validation of the predictions made in the present thesis.   
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Appendices 

 
Appendix A1: MATLAB Routine for Mass-spring Gyroscope 

 

This programme build for obtaining input angular rate time profile. This same profile has been 

used in ring gyroscope simulations. 
 

% Capital omega(OMEGA)(Angular rate, rad/sec) 
clear all; 
clc; clf; 
n=[1 2 5 8 10]; 
t1=0.0; t2=0.005; % Time for the transient part of the angular speed 
for i=1:5 
    y1= n(i)*pi; % Steady state part of the angular speed 
    i=0.0; 
    t=0.0; 
    while t<0.1 

         
        if t<t1 
            y=0.0; 
        elseif t<t2 
            y = y1/2*sin(3.14159*(t-t1)/(t2-t1)-0.5*3.14159)+y1/2; %Transient 

part of the angular speed 
        else 
            y = y1; % Steady state of the angular speed 
        end 

         
        i=i+1; 
        time(i)=t; 
        OMEGA(i)=y; 
        t=t+0.0001; 
    end 
    plot(time,OMEGA,'-'); 
    hold on; grid on; 
end 
xlabel('Time(sec)'); 
ylabel('Input angular rate (rad/sec)'); 

 

MATLAB Routine for output time response (Radial displacement in the driving and sensing 

direction) 

 

Driving Direction 

clc; clf; clear all; 

[T,Q]=ode45(@(t,q) mass_s(t,q),0.0:0.00001:0.1,[0.0;0.0;0.0;0.0]);% ordinary 

differential equation solver(initial value problem)(calling function, range, 

initial value q1,q2,q1_dot,q2_dot) 

plot(T,Q(:,1),'-'); % displacement at driving direction vs time curve 

grid on; hold on; 

xlabel('time,(sec)'); 

ylabel('Radial displacement in the driving direction,(m)'); 
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function [Q_dot] = mass_s(t,q) 

  

Q_dot=(zeros(size(q))); 

omega=164536; 

m_p = 0.00000000036;      %kg Gyroscope proof mass 

omega_x = 164536;     %rad/sec Nominal X-Axis natural frequency 

omega_y = 164536;     %rad/sec Nominal Y-Axis natural frequency 

q_x = 1000;     % X-Axis quality factor 

q_y = 1000;     % Y-Axis quality factor 

f = 0.00000001;    %N amplitude of X-Axis drive force 

 

% Capital omega(OMEGA)(Angular rate, rad/sec) 

t1=0.0; t2=0.005; % Time for the transient part of the angular speed 

y1=2*pi; % Steady state part of the angular speed 

if t==t1 

    y=0.0; 

elseif t<t2 

    y=y1/2*sin(3.14159*(t-t1)/(t2-t1)-0.5*3.14159)+y1/2; % Transient part of 

the angular speed 

else 

    y=y1; % Steady state of the angular speed 

end 

OMEGA=y; % Input angular rate (rad/sec) 

%----------------------------------------------------------------------------

----------------------------------------- 

% Derivative of Capital omega(OMEGA_dot) 

if t==t1 

    y_dot=0.0; 

elseif t<t2 

    y_dot=y1/2*cos(3.14159*(t-t1)/(t2-t1)-0.5*3.14159)*(3.14159/(t2-t1)); % 

Transiant part of the angular speed 

else 

    y_dot=0.0; % Steady state of the angular speed 

end 

OMEGA_dot=y_dot; 

  

Q_dot(1)=q(3); 

Q_dot(2)=q(4); 

Q_dot(3)=((OMEGA).^2-(omega_x)^2)*q(1)+(OMEGA_dot)*q(2)+(-

(omega_x)/(q_x))*q(3)+(2.*OMEGA)*q(4)+(f/m_p)*sin(omega*t); 

Q_dot(4)=-(OMEGA_dot)*q(1)+((OMEGA).^2-(omega_x)^2)*q(2)+(-2.*OMEGA)*q(3)+(-

(omega_x)/(q_x))*q(4); 

  

end 

 

Sensing Direction 

clc; clf; clear all; 

[T,Q]=ode45(@(t,q) mass_s(t,q),0.0:0.00001:0.1,[0.0;0.0;0.0;0.0]);% ordinary 

differential equation solver(initial value problem)(calling function, range, 

initial value q1,q2,q1_dot,q2_dot) 

plot(T,Q(:,2),'-'); % displacement at sensing direction vs time curve 

grid on; hold on; 

xlabel('time,(sec)'); 
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ylabel('Radial displacement in the sensing direction,(m)'); 

 

function [Q_dot] = mass_s(t,q) 

  

Q_dot=(zeros(size(q))); 

omega=164536; 

m_p = 0.00000000036;      %kg Gyroscope proof mass 

omega_x = 164536;     %rad/sec Nominal X-Axis natural frequency 

omega_y = 164536;     %rad/sec Nominal Y-Axis natural frequency 

q_x = 1000;     % X-Axis quality factor 

q_y = 1000;     % Y-Axis quality factor 

f = 0.00000001;    %N amplitude of X-Axis drive force 

 

% Capital omega(OMEGA)(Angular rate, rad/sec) 

t1=0.0; t2=0.005; % Time for the transient part of the angular speed 

y1=2*pi; % Steady state part of the angular speed 

if t==t1 

    y=0.0; 

elseif t<t2 

    y=y1/2*sin(3.14159*(t-t1)/(t2-t1)-0.5*3.14159)+y1/2; % Transient part of 

the angular speed 

else 

    y=y1; % Steady state of the angular speed 

end 

OMEGA=y; % Input angular rate (rad/sec) 

%----------------------------------------------------------------------------

----------------------------------------- 

% Derivative of Capital omega(OMEGA_dot) 

if t==t1 

    y_dot=0.0; 

elseif t<t2 

    y_dot=y1/2*cos(3.14159*(t-t1)/(t2-t1)-0.5*3.14159)*(3.14159/(t2-t1)); % 

Transiant part of the angular speed 

else 

    y_dot=0.0; % Steady state of the angular speed 

end 

OMEGA_dot=y_dot; 

  

Q_dot(1)=q(3); 

Q_dot(2)=q(4); 

Q_dot(3)=((OMEGA).^2-(omega_x)^2)*q(1)+(OMEGA_dot)*q(2)+(-

(omega_x)/(q_x))*q(3)+(2.*OMEGA)*q(4)+(f/m_p)*sin(omega*t); 

Q_dot(4)=-(OMEGA_dot)*q(1)+((OMEGA).^2-(omega_x)^2)*q(2)+(-2.*OMEGA)*q(3)+(-

(omega_x)/(q_x))*q(4); 

  

end 

 

A Sample of MATLAB Routine for output time response with frequency mismatch 

clc; clf; clear all; 

N=[0.0 1.0 3.0]; 

col_or=['k' 'b' 'r']; 

for i=1.0:1.0:3.0 

    n=N(i); 



125 
 

    [T,Q]=ode45(@(t,q) mass_s(t,q,n),0.0:0.00001:0.1,[0.0;0.0;0.0;0.0]);% 

ordinary differential equation solver(initial value problem)(calling 

function, range, initial value q1,q2,q1_dot,q2_dot) 

    plot(T,Q(:,2),col_or(i)); % displacement at sensing direction vs time 

curve 

    grid on; hold on; 

end 

xlabel('time,(sec)'); 

ylabel('Radial displacement in the sensing direction,(m)'); 

 

 

function [Q_dot] = mass_s(t,q,n) 

  

Q_dot=(zeros(size(q))); 

omega=164536; 

m_p = 0.00000000036;      %kg Gyroscope proof mass 

omega_x = 164536*(1+n*0.0001);     %rad/sec Nominal X-Axis natural frequency 

omega_y = 164536;     %rad/sec Nominal Y-Axis natural frequency 

q_x = 1000;     % X-Axis quality factor 

q_y = 1000;     % Y-Axis quality factor 

f = 0.00000001;    %N amplitude of X-Axis drive force 

 

% Capital omega(OMEGA)(Angular rate, rad/sec) 

t1=0.0; t2=0.005; % Time for the transient part of the angular speed 

y1=2*pi; % Steady state part of the angular speed 

if t==t1 

    y=0.0; 

elseif t<t2 

    y=y1/2*sin(3.14159*(t-t1)/(t2-t1)-0.5*3.14159)+y1/2; % Transient part of 

the angular speed 

else 

    y=y1; % Steady state of the angular speed 

end 

OMEGA=y; % Input angular rate (rad/sec) 

%----------------------------------------------------------------------------

----------------------------------------- 

% Derivative of Capital omega(OMEGA_dot) 

if t==t1 

    y_dot=0.0; 

elseif t<t2 

    y_dot=y1/2*cos(3.14159*(t-t1)/(t2-t1)-0.5*3.14159)*(3.14159/(t2-t1)); % 

Transiant part of the angular speed 

else 

    y_dot=0.0; % Steady state of the angular speed 

end 

OMEGA_dot=y_dot; 

  

Q_dot(1)=q(3); 

Q_dot(2)=q(4); 

Q_dot(3)=((OMEGA).^2-(omega_x)^2)*q(1)+(OMEGA_dot)*q(2)+(-

(omega_x)/(q_x))*q(3)+(2.*OMEGA)*q(4)+(f/m_p)*sin(omega*t); 

Q_dot(4)=-(OMEGA_dot)*q(1)+((OMEGA).^2-(omega_x)^2)*q(2)+(-2.*OMEGA)*q(3)+(-

(omega_x)/(q_x))*q(4); 

  

end 
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A Sample of MATLAB Routine for output time response without and with randomness (Radial 

displacement in the driving and sensing direction).  In order to achieve the responses without 

drift, drift term  sigma1*(exp(a_d*t)) is considered to be zero. 

 

clc; clear all; 

for i=1:1 

    N1=1.0:1.0:5.0; 

    n=N1(i); 

    for i1=1:5 

        [T,Q]=ode45(@(t,q) 

mass_s2(t,q,n),0.0:0.00001:0.2,[0.0;0.0;0.0;0.0]);% ordinary differential 

equation solver(initial value problem)(calling function, range, initial value 

q1,q2,q1_dot,q2_dot) 

        P=findpeaks(Q(:,2)); 

        for i2=1:length(P) 

            A(i2)=P(i2); 

        end 

        nc=1.0; 

        for j=4501:4505 

            B(nc)=A(j); 

            nc=nc+1; 

        end 

        a=T; 

        X(:,:,i1)=a'; 

        Y(:,:,i1)=B; 

        meanY(i1)=mean(Y(:,:,i1)); 

        stdY(i1)=std(Y(:,:,i1)); 

    end 

    X1(:,:,i)=X; 

    X2(:,:,i)=(X1(:,:,i))'; 

    Y1(:,:,i)=Y; 

    Y2(:,:,i)=(Y1(:,:,i))'; 

    meanX2(:,:,i)=mean(X2(:,:,i)); % Ensemble mean 

    meanY2(:,:,i)=mean(Y2(:,:,i)); % Ensemble mean 

    stdY2(:,:,i)=std(Y2(:,:,i)); % Ensemble standard deviation 

    ensemble_mean=mean(meanY2(:,:,i)); % Mean of ensemble mean 

    mean_stdY2(i)=mean(stdY2(:,:,i)); % Mean of ensemble standard deviation 

end 

 

 

function [Q_dot] = mass_s2(t,q,n) 

  
Q_dot=(zeros(size(q))); 
omega=164536; 
m_p = 0.00000000036;      %kg Gyroscope proof mass 
omega_x = 164536;     %rad/sec Nominal X-Axis natural frequency 
omega_y = 164536;     %rad/sec Nominal Y-Axis natural frequency 
q_x = 1000;     % X-Axis quality factor 
q_y = 1000;     % Y-Axis quality factor 
f = 0.00000001;    %N amplitude of X-Axis drive force 
% Capital omega(OMEGA)(Angular rate, rad/sec) 
t1=0.0; t2=0.005; % Time for the transient part of the angular speed 
y1=2*pi; % Steady state part of the angular speed 
if t==t1 
    y=0.0; 
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elseif t<t2 
    y=y1/2*sin(3.14159*(t-t1)/(t2-t1)-0.5*3.14159)+y1/2; % Transient part of 

the angular speed 
else 
    y=y1; % Steady state of the angular speed 
end 
Omega=y; 
%----------------------------------------------------------------------------

----------------------------------------- 
% Noise and Drift 
sigma1=0.0245; sigma2=0.001; 
a_d=1.0; 
std_dev=(n/100)*Omega; 
xi=normrnd(Omega,std_dev); 
d_d=sigma1*(exp(a_d*t))+sigma2*xi; % equation for noise and drift 
OMEGA=Omega+d_d; % Capital OMEGA with noise and drift 
%----------------------------------------------------------------------------

----------------------------------------- 
% Derivative of Capital omega(OMEGA_dot) 
if t==t1 
    y_dot=0.0; 
elseif t<t2 
    y_dot=y1/2*cos(3.14159*(t-t1)/(t2-t1)-0.5*3.14159)*(3.14159/(t2-t1)); % 

Transient part of the angular speed 
else 
    y_dot=0.0; % Steady state of the angular speed 
end 
OMEGA_dot=y_dot; 

  
Q_dot(1)=q(3); 
Q_dot(2)=q(4); 
Q_dot(3)=((OMEGA).^2-(omega_x)^2)*q(1)+(OMEGA_dot)*q(2)+(-

(omega_x)/(q_x))*q(3)+(2.*OMEGA)*q(4)+(f/m_p)*sin(omega*t); 
Q_dot(4)=-(OMEGA_dot)*q(1)+((OMEGA).^2-(omega_x)^2)*q(2)+(-2.*OMEGA)*q(3)+(-

(omega_x)/(q_x))*q(4); 

  
end 
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A Sample of MATLAB Routine for output time response for 100 samples (3D plot) 
 

clc; clear all; 

for i=1:1 

    N1=1.0:1.0:50.0; 

    n=N1(i); 

    for i1=1:100 

        [T,Q]=ode45(@(t,q) 

mass_s2(t,q,n),0.0:0.00001:0.2,[0.0;0.0;0.0;0.0]);% ordinary differential 

equation solver(initial value problem)(calling function, range, initial value 

q1,q2,q1_dot,q2_dot) 

        a=T; 

        B=Q(:,2); 

        X(:,:,i1)=a'; 

        Y(:,:,i1)=B; 

        d=1:100; 

        c(i1)=d(i1)-1; 

        e=(ones(size(a)))*c(i1); 

        Z(:,:,i1)=e'; 

    end 

    plot3(X(:,:,1),Z(:,:,1),Y(:,:,1),'-',X(:,:,2),Z(:,:,2),Y(:,:,2),'-

',X(:,:,3),Z(:,:,3),Y(:,:,3),'-',X(:,:,4),Z(:,:,4),Y(:,:,4),'-

',X(:,:,5),Z(:,:,5),Y(:,:,5),'-',X(:,:,6),Z(:,:,6),Y(:,:,6),'-

',X(:,:,7),Z(:,:,7),Y(:,:,7),'-',X(:,:,8),Z(:,:,8),Y(:,:,8),'-

',X(:,:,9),Z(:,:,9),Y(:,:,9),'-',X(:,:,10),Z(:,:,10),Y(:,:,10),'-

',X(:,:,11),Z(:,:,11),Y(:,:,11),'-',X(:,:,12),Z(:,:,12),Y(:,:,12),'-

',X(:,:,13),Z(:,:,13),Y(:,:,13),'-',X(:,:,14),Z(:,:,14),Y(:,:,14),'-

',X(:,:,15),Z(:,:,15),Y(:,:,15),'-',X(:,:,16),Z(:,:,16),Y(:,:,16),'-

',X(:,:,17),Z(:,:,17),Y(:,:,17),'-',X(:,:,18),Z(:,:,18),Y(:,:,18),'-

',X(:,:,19),Z(:,:,19),Y(:,:,19),'-',X(:,:,20),Z(:,:,20),Y(:,:,20),'-

',X(:,:,21),Z(:,:,21),Y(:,:,21),'-',X(:,:,22),Z(:,:,22),Y(:,:,22),'-

',X(:,:,23),Z(:,:,23),Y(:,:,23),'-',X(:,:,24),Z(:,:,24),Y(:,:,24),'-

',X(:,:,25),Z(:,:,25),Y(:,:,25),'-',X(:,:,26),Z(:,:,26),Y(:,:,26),'-

',X(:,:,27),Z(:,:,27),Y(:,:,27),'-',X(:,:,28),Z(:,:,28),Y(:,:,28),'-

',X(:,:,29),Z(:,:,29),Y(:,:,29),'-',X(:,:,30),Z(:,:,30),Y(:,:,30),'-

',X(:,:,31),Z(:,:,31),Y(:,:,31),'-',X(:,:,32),Z(:,:,32),Y(:,:,32),'-

',X(:,:,33),Z(:,:,33),Y(:,:,33),'-',X(:,:,34),Z(:,:,34),Y(:,:,34),'-

',X(:,:,35),Z(:,:,35),Y(:,:,35),'-',X(:,:,36),Z(:,:,36),Y(:,:,36),'-

',X(:,:,37),Z(:,:,37),Y(:,:,37),'-',X(:,:,38),Z(:,:,38),Y(:,:,38),'-

',X(:,:,39),Z(:,:,39),Y(:,:,39),'-',X(:,:,40),Z(:,:,40),Y(:,:,40),'-

',X(:,:,41),Z(:,:,41),Y(:,:,41),'-',X(:,:,42),Z(:,:,42),Y(:,:,42),'-

',X(:,:,43),Z(:,:,43),Y(:,:,43),'-',X(:,:,44),Z(:,:,44),Y(:,:,44),'-

',X(:,:,45),Z(:,:,45),Y(:,:,45),'-',X(:,:,46),Z(:,:,46),Y(:,:,46),'-

',X(:,:,47),Z(:,:,47),Y(:,:,47),'-',X(:,:,48),Z(:,:,48),Y(:,:,48),'-

',X(:,:,49),Z(:,:,49),Y(:,:,49),'-',X(:,:,50),Z(:,:,50),Y(:,:,50),'-

',X(:,:,51),Z(:,:,51),Y(:,:,51),'-',X(:,:,52),Z(:,:,52),Y(:,:,52),'-

',X(:,:,53),Z(:,:,53),Y(:,:,53),'-',X(:,:,54),Z(:,:,54),Y(:,:,54),'-

',X(:,:,55),Z(:,:,55),Y(:,:,55),'-',X(:,:,56),Z(:,:,56),Y(:,:,56),'-

',X(:,:,57),Z(:,:,57),Y(:,:,57),'-',X(:,:,58),Z(:,:,58),Y(:,:,58),'-

',X(:,:,59),Z(:,:,59),Y(:,:,59),'-',X(:,:,60),Z(:,:,60),Y(:,:,60),'-

',X(:,:,61),Z(:,:,61),Y(:,:,61),'-',X(:,:,62),Z(:,:,62),Y(:,:,62),'-

',X(:,:,63),Z(:,:,63),Y(:,:,63),'-',X(:,:,64),Z(:,:,64),Y(:,:,64),'-

',X(:,:,65),Z(:,:,65),Y(:,:,65),'-',X(:,:,66),Z(:,:,66),Y(:,:,66),'-

',X(:,:,67),Z(:,:,67),Y(:,:,67),'-',X(:,:,68),Z(:,:,68),Y(:,:,68),'-

',X(:,:,69),Z(:,:,69),Y(:,:,69),'-',X(:,:,70),Z(:,:,70),Y(:,:,70),'-

',X(:,:,71),Z(:,:,71),Y(:,:,71),'-',X(:,:,72),Z(:,:,72),Y(:,:,72),'-
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',X(:,:,73),Z(:,:,73),Y(:,:,73),'-',X(:,:,74),Z(:,:,74),Y(:,:,74),'-

',X(:,:,75),Z(:,:,75),Y(:,:,75),'-',X(:,:,76),Z(:,:,76),Y(:,:,76),'-

',X(:,:,77),Z(:,:,77),Y(:,:,77),'-',X(:,:,78),Z(:,:,78),Y(:,:,78),'-

',X(:,:,79),Z(:,:,79),Y(:,:,79),'-',X(:,:,80),Z(:,:,80),Y(:,:,80),'-

',X(:,:,81),Z(:,:,81),Y(:,:,81),'-',X(:,:,82),Z(:,:,82),Y(:,:,82),'-

',X(:,:,83),Z(:,:,83),Y(:,:,83),'-',X(:,:,84),Z(:,:,84),Y(:,:,84),'-

',X(:,:,85),Z(:,:,85),Y(:,:,85),'-',X(:,:,86),Z(:,:,86),Y(:,:,86),'-

',X(:,:,87),Z(:,:,87),Y(:,:,87),'-',X(:,:,88),Z(:,:,88),Y(:,:,88),'-

',X(:,:,89),Z(:,:,89),Y(:,:,89),'-',X(:,:,90),Z(:,:,90),Y(:,:,90),'-

',X(:,:,91),Z(:,:,91),Y(:,:,91),'-',X(:,:,92),Z(:,:,92),Y(:,:,92),'-

',X(:,:,93),Z(:,:,93),Y(:,:,93),'-',X(:,:,94),Z(:,:,94),Y(:,:,94),'-

',X(:,:,95),Z(:,:,95),Y(:,:,95),'-',X(:,:,96),Z(:,:,96),Y(:,:,96),'-

',X(:,:,97),Z(:,:,97),Y(:,:,97),'-',X(:,:,98),Z(:,:,98),Y(:,:,98),'-

',X(:,:,99),Z(:,:,99),Y(:,:,99),'-',X(:,:,100),Z(:,:,100),Y(:,:,100),'-'); 

    xlabel('Time (sec)'); 

    zlabel('Radial displacement along sensing direction (m)'); 

    ylabel('Number of sample'); 

    grid on; hold on; 

end 

 

function [Q_dot] = mass_s2(t,q,n) 

  
Q_dot=(zeros(size(q))); 
omega=164536; 
m_p = 0.00000000036;      %kg Gyroscope proof mass 
omega_x = 164536;     %rad/sec Nominal X-Axis natural frequency 
omega_y = 164536;     %rad/sec Nominal Y-Axis natural frequency 
q_x = 1000;     % X-Axis quality factor 
q_y = 1000;     % Y-Axis quality factor 
f = 0.00000001;    %N amplitude of X-Axis drive force 
% Capital omega(OMEGA)(Angular rate, rad/sec) 
t1=0.0; t2=0.005; % Time for the transient part of the angular speed 
y1=2*pi; % Steady state part of the angular speed 
if t==t1 
    y=0.0; 
elseif t<t2 
    y=y1/2*sin(3.14159*(t-t1)/(t2-t1)-0.5*3.14159)+y1/2; % Transient part of 

the angular speed 
else 
    y=y1; % Steady state of the angular speed 
end 
Omega=y; 
%----------------------------------------------------------------------------

----------------------------------------- 
% Noise and Drift 
sigma1=0.0245; sigma2=0.001; 
a_d=1.0; 
std_dev=(n/100)*Omega; 
xi=normrnd(Omega,std_dev); 
d_d=sigma1*(exp(a_d*t))+sigma2*xi; % equation for noise and drift 
OMEGA=Omega+d_d; % Capital OMEGA with noise and drift 
%----------------------------------------------------------------------------

----------------------------------------- 
% Derivative of Capital omega(OMEGA_dot) 
if t==t1 
    y_dot=0.0; 
elseif t<t2 



130 
 

    y_dot=y1/2*cos(3.14159*(t-t1)/(t2-t1)-0.5*3.14159)*(3.14159/(t2-t1)); % 

Transient part of the angular speed 
else 
    y_dot=0.0; % Steady state of the angular speed 
end 
OMEGA_dot=y_dot; 

  
Q_dot(1)=q(3); 
Q_dot(2)=q(4); 
Q_dot(3)=((OMEGA).^2-(omega_x)^2)*q(1)+(OMEGA_dot)*q(2)+(-

(omega_x)/(q_x))*q(3)+(2.*OMEGA)*q(4)+(f/m_p)*sin(omega*t); 
Q_dot(4)=-(OMEGA_dot)*q(1)+((OMEGA).^2-(omega_x)^2)*q(2)+(-2.*OMEGA)*q(3)+(-

(omega_x)/(q_x))*q(4); 

  
end 
 

 

A Sample of MATLAB Routine for uncertainty quantification of output time response for 50 

samples with mismatch 
 

clc; clear all; 

for i=1:10 

    N1=1.0:1.0:50.0; 

    n=N1(i); 

    for i1=1:50 

        [T,Q]=ode45(@(t,q) 

mass_s3(t,q,n),0.0:0.00001:0.2,[0.0;0.0;0.0;0.0]);% ordinary differential 

equation solver(initial value problem)(calling function, range, initial value 

q1,q2,q1_dot,q2_dot) 

        P=findpeaks(Q(:,2)); 

        for i2=1:length(P) 

            A(i2)=P(i2); 

        end 

        nc=1.0; 

        for j=4501:4501 

            B(nc)=A(j); 

            nc=nc+1; 

        end 

        a=T; 

        X(:,:,i1)=a'; 

        Y(:,:,i1)=B; 

        meanY(i1)=mean(Y(:,:,i1)); 

        stdY(i1)=std(Y(:,:,i1)); 

    end 

    X1(:,:,i)=X; 

    X2(:,:,i)=(X1(:,:,i))'; 

    Y1(:,:,i)=Y; 

    Y2(:,:,i)=(Y1(:,:,i))'; 

    meanX2(:,:,i)=mean(X2(:,:,i)); % Ensemble mean 

    meanY2(:,:,i)=mean(Y2(:,:,i)); % Ensemble mean 

    stdY2(:,:,i)=std(Y2(:,:,i)); % Ensemble standard deviation 

    ensemble_mean=mean(meanY2(:,:,i)); % Mean of ensemble mean 

    mean_stdY2(i)=mean(stdY2(:,:,i)); % Mean of ensemble standard deviation 

end 

 

function [Q_dot] = mass_s3(t,q,n) 
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Q_dot=(zeros(size(q))); 

omega=164536; 

m_p = 0.00000000036;      %kg Gyroscope proof mass 

[std_dev,nu]=i_nput(n); 

omega_x = 164536*(1.0+nu);     %rad/sec Nominal X-Axis natural frequency 

omega_y = 164536;     %rad/sec Nominal Y-Axis natural frequency 

q_x = 1000;     % X-Axis quality factor 

q_y = q_x;     % Y-Axis quality factor 

f = 0.00000001;    %N amplitude of X-Axis drive force 

% Capital omega(OMEGA)(Angular rate, rad/sec) 

t1=0.0; t2=0.005; % Time for the transiant part of the angular speed 

y1=2*pi; % Steady state part of the angular speed 

if t==t1 

    y=0.0; 

elseif t<t2 

    y=y1/2*sin(3.14159*(t-t1)/(t2-t1)-0.5*3.14159)+y1/2; % Transiant part of 

the angular speed 

else 

    y=y1; % Steady state of the angular speed 

end 

Omega=y; 

%----------------------------------------------------------------------------

----------------------------------------- 

% Noise and Drift 

sigma1=0.0245; sigma2=0.001; 

a_d=1.0; 

std_dev=(n/100)*Omega; 

xi=normrnd(Omega,std_dev); 

d_d=sigma1*(exp(a_d*t))+sigma2*xi; % equation for noise and drift 

OMEGA=Omega+d_d; % Capital OMEGA with noise and drift 

%----------------------------------------------------------------------------

----------------------------------------- 

% Derivative of Capital omega(OMEGA_dot) 

if t==t1 

    y_dot=0.0; 

elseif t<t2 

    y_dot=y1/2*cos(3.14159*(t-t1)/(t2-t1)-0.5*3.14159)*(3.14159/(t2-t1)); % 

Transiant part of the angular speed 

else 

    y_dot=0.0; % Steady state of the angular speed 

end 

OMEGA_dot=y_dot; 

  

Q_dot(1)=q(3); 

Q_dot(2)=q(4); 

Q_dot(3)=((OMEGA).^2-(omega_x)^2)*q(1)+(OMEGA_dot)*q(2)+(-

(omega_x)/(q_x))*q(3)+(2.*OMEGA)*q(4)+(f/m_p)*sin(omega*t); 

Q_dot(4)=-(OMEGA_dot)*q(1)+((OMEGA).^2-(omega_x)^2)*q(2)+(-2.*OMEGA)*q(3)+(-

(omega_x)/(q_x))*q(4); 

  

end 

 

function [std_dev,nu]=i_nput(n) 

std_dev=(n/100)*0.01; 

nu=normrnd(0.0,std_dev); 

end 
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A Sample of MATLAB Routine for output frequency response for amplitude ratio  𝑄2/𝑄1    
 

clc; clf; clear all; 

omega=164536; 

m_p = 0.00000000036;      %kg Gyroscope proof mass 

q_x = 1000;     % X-Axis quality factor 

q_y = 1000;     % Y-Axis quality factor 

f = 0.00000001; 

n=[1 2 5 10 20]; 

for i1=1:5 

    for i=1:1 

        std_dev=n(i1)*0.00001; 

        nu=normrnd(0.0001,std_dev); % frequency mismatch 

        omega_x = 164536;     %rad/sec Nominal X-Axis natural frequency 

        omega_y = 164536*(1+nu);     %rad/sec Nominal Y-Axis natural 

frequency 

        Omega=n(i1)*pi; 

        H=tf([2.*Omega],[1.0 omega_y/q_y ((omega_y).^2-(Omega).^2)]); % 

Transfer function for bode plot 

        w=linspace(1.6452E5,1.6459E5,10000); 

        [mag,phase,wout] = bode(H,w); 

        P = bodeoptions; 

        P.MagUnits='abs'; 

        P.FreqScale='linear'; 

        P.MagVisible='on'; 

        bodemag(H,w); 

        hold on; grid on; 

        xlabel('Frequency'); 

        ylabel('Magnitude of amplitude ratio'); 

        mag1(:,:,i)=mag; 

        mag2(:,:,i)=mag1(:,:,i)'; 

        c1(:,:,i)=max(mag2(:,:,i)); 

        wout1(:,:,i)=wout; 

        wout2(:,:,i)=wout1(:,:,i)'; 

        for j=1:length(mag2) 

            if mag2(j)==c1; 

                f(j)=wout2(j); 

            end 

        end 

        d1(:,:,i)=max(f); 

    end 

    c2(:,:,i1)=c1; 

    c(:,:,i1)=(c2(:,:,i1))'; 

    mean_c(:,:,i1)=mean(c(:,:,i1)); % Mean of magnitude of peaks 

    std_c(:,:,i1)=std(c(:,:,i1)); % Standard deviation of peak magnitude 

    d2(:,:,i1)=d1; 

    d(:,:,i1)=(d2(:,:,i1))'; 

    mean_d(:,:,i1)=mean(d(:,:,i1)); % Mean of corresponding peak frequency 

    std_d(:,:,i1)=std(d(:,:,i1)); % Standard deviation of corresponding peak 

frequency 

end 
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A Sample of MATLAB Routine for uncertainty quantification of output frequency response 

amplitude ratio  𝑄2/𝑄1    
 

clc; clf; clear all; 

omega=164536; 

m_p = 0.00000000036;      %kg Gyroscope proof mass 

q_x = 1000;     % X-Axis quality factor 

q_y = 1000;     % Y-Axis quality factor 

f = 0.00000001; 

n=1.0:1.0:10; 
for i1=1:10 

    for i=1:50 

        std_dev=n(i1)*0.00001; 

        nu=normrnd(0.0001,std_dev); % frequency mismatch 

        omega_x = 164536;     %rad/sec Nominal X-Axis natural frequency 

        omega_y = 164536*(1+nu);     %rad/sec Nominal Y-Axis natural 

frequency 

        Omega=n(i1)*pi; 

        H=tf([2.*Omega],[1.0 omega_y/q_y ((omega_y).^2-(Omega).^2)]); % 

Transfer function for bode plot 

        w=linspace(1.6452E5,1.6459E5,10000); 

        [mag,phase,wout] = bode(H,w); 

        P = bodeoptions; 

        P.MagUnits='abs'; 

        P.FreqScale='linear'; 

        P.MagVisible='on'; 

        bodemag(H,w); 

        hold on; grid on; 

        xlabel('Frequency'); 

        ylabel('Magnitude of amplitude ratio'); 

        mag1(:,:,i)=mag; 

        mag2(:,:,i)=mag1(:,:,i)'; 

        c1(:,:,i)=max(mag2(:,:,i)); 

        wout1(:,:,i)=wout; 

        wout2(:,:,i)=wout1(:,:,i)'; 

        for j=1:length(mag2) 

            if mag2(j)==c1; 

                f(j)=wout2(j); 

            end 

        end 

        d1(:,:,i)=max(f); 

    end 

    c2(:,:,i1)=c1; 

    c(:,:,i1)=(c2(:,:,i1))'; 

    mean_c(:,:,i1)=mean(c(:,:,i1)); % Mean of magnitude of peaks 

    std_c(:,:,i1)=std(c(:,:,i1)); % Standard deviation of peak magnitude 

    d2(:,:,i1)=d1; 

    d(:,:,i1)=(d2(:,:,i1))'; 

    mean_d(:,:,i1)=mean(d(:,:,i1)); % Mean of corresponding peak frequency 

    std_d(:,:,i1)=std(d(:,:,i1)); % Standard deviation of corresponding peak 

frequency 

end 
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A Sample of MATLAB Routine of output forced frequency response  𝑄2/𝐹1  
 

clc; clf; clear all; 

omega=164536; 

m_p = 0.00000000036;      %kg Gyroscope proof mass 

q_x = 1000;     % X-Axis quality factor 

q_y = 1000;     % Y-Axis quality factor 

f = 0.00000001; 

n=[1 2 5 10 20]; 

for i1=1:5 

    for i=1:1 

        std_dev=n(i1)*0.00001; 

        nu=normrnd(0.0001,std_dev); % frequency mismatch 

        omega_x = 164536;     %rad/sec Nominal X-Axis natural frequency 

        omega_y = 164536*(1+nu);     %rad/sec Nominal Y-Axis natural 

frequency 

        Omega=n(i1)*pi; 

        H=tf([2*Omega],[1+nu ((omega_x/q_x)*(1+nu)*(omega_y/q_y)) 

(((1+nu)*(omega_x).^2-(Omega).^2)+((omega_y).^2-

(Omega).^2)+(omega_x*omega_y)/(q_x*q_y)+4*((Omega).^2)) (((omega_x).^2-

(Omega).^2)*(omega_y/q_y)+((omega_y).^2-(Omega).^2)*(omega_x/q_x)) 

(((omega_x).^2-(Omega).^2)*((omega_y).^2-(Omega).^2))]); 

        w=linspace(1.6452E5,1.6456E5,100000); 

        [mag,phase,wout] = bode(H,w); 

        P = bodeoptions; 

        P.MagUnits='abs'; 

        P.FreqScale='linear'; 

        P.MagVisible='on'; 

        bodemag(H,w); 

        hold on; grid on; 

        xlabel('Frequency'); 

        ylabel('Frequency response magnitude'); 

        mag1(:,:,i)=mag; 

        mag2(:,:,i)=mag1(:,:,i)'; 

        c1(:,:,i)=max(mag2(:,:,i)); 

        wout1(:,:,i)=wout; 

        wout2(:,:,i)=wout1(:,:,i)'; 

        for j=1:length(mag2) 

            if mag2(j)==c1; 

                f(j)=wout2(j); 

            end 

        end 

        d1(:,:,i)=max(f); 

    end 

    c2(:,:,i1)=c1; 

    c(:,:,i1)=(c2(:,:,i1))'; 

    mean_c(:,:,i1)=mean(c(:,:,i1)); % Mean of magnitude of peaks 

    std_c(:,:,i1)=std(c(:,:,i1)); % Standard deviation of peak magnitude 

    d2(:,:,i1)=d1; 

    d(:,:,i1)=(d2(:,:,i1))'; 

    mean_d(:,:,i1)=mean(d(:,:,i1)); % Mean of corresponding peak frequency 

    std_d(:,:,i1)=std(d(:,:,i1)); % Standard deviation of corresponding peak 

frequency 

end 
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A Sample of MATLAB Routine for uncertainty quantification of output forced frequency 

response  𝑄2/𝐹1  
 

clc; clf; clear all; 

omega=164536; 

m_p = 0.00000000036;      %kg Gyroscope proof mass 

q_x = 1000;     % X-Axis quality factor 

q_y = 1000;     % Y-Axis quality factor 

f = 0.00000001; 

n=1.0:1.0:10; 
for i1=1:10 

    for i=1:50 

        std_dev=n(i1)*0.00001; 

        nu=normrnd(0.0001,std_dev); % frequency mismatch 

        omega_x = 164536;     %rad/sec Nominal X-Axis natural frequency 

        omega_y = 164536*(1+nu);     %rad/sec Nominal Y-Axis natural 

frequency 

        Omega=n(i1)*pi; 

        H=tf([2*Omega],[1+nu ((omega_x/q_x)*(1+nu)*(omega_y/q_y)) 

(((1+nu)*(omega_x).^2-(Omega).^2)+((omega_y).^2-

(Omega).^2)+(omega_x*omega_y)/(q_x*q_y)+4*((Omega).^2)) (((omega_x).^2-

(Omega).^2)*(omega_y/q_y)+((omega_y).^2-(Omega).^2)*(omega_x/q_x)) 

(((omega_x).^2-(Omega).^2)*((omega_y).^2-(Omega).^2))]); 

        w=linspace(1.6452E5,1.6456E5,100000); 

        [mag,phase,wout] = bode(H,w); 

        P = bodeoptions; 

        P.MagUnits='abs'; 

        P.FreqScale='linear'; 

        P.MagVisible='on'; 

        bodemag(H,w); 

        hold on; grid on; 

        xlabel('Frequency'); 

        ylabel('Frequency response magnitude'); 

        mag1(:,:,i)=mag; 

        mag2(:,:,i)=mag1(:,:,i)'; 

        c1(:,:,i)=max(mag2(:,:,i)); 

        wout1(:,:,i)=wout; 

        wout2(:,:,i)=wout1(:,:,i)'; 

        for j=1:length(mag2) 

            if mag2(j)==c1; 

                f(j)=wout2(j); 

            end 

        end 

        d1(:,:,i)=max(f); 

    end 

    c2(:,:,i1)=c1; 

    c(:,:,i1)=(c2(:,:,i1))'; 

    mean_c(:,:,i1)=mean(c(:,:,i1)); % Mean of magnitude of peaks 

    std_c(:,:,i1)=std(c(:,:,i1)); % Standard deviation of peak magnitude 

    d2(:,:,i1)=d1; 

    d(:,:,i1)=(d2(:,:,i1))'; 

    mean_d(:,:,i1)=mean(d(:,:,i1)); % Mean of corresponding peak frequency 

    std_d(:,:,i1)=std(d(:,:,i1)); % Standard deviation of corresponding peak 

frequency 

end 
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Appendix A2: MATLAB Routine for Ring Gyroscope 

 

Driving Direction 

clc; clf; clear all; 

[T,Q]=ode45(@(t,q) Ring_3(t,q),0.0:0.00001:0.01,[0.0;0.0;0.0;0.0]);% ordinary 

differential equation solver(initial value problem)(calling function, range, 

initial value q1,q2,q1_dot,q2_dot) 

plot(T,Q(:,1),'-'); % displacement at driving direction vs time curve 

grid on; hold on; 

xlabel('time,(sec)'); 

ylabel('Radial displacement in the driving direction,(m)'); 

 

 

function [Q_dot] = Ring_3(t,q,n) 

  

Q_dot=(zeros(size(q))); 

p=8800;  

E=210E9;  

r=500E-6;  

h=12.5E-6;  

b=30E-6; 

omega01=1.89189E5; % Natural Frequency OMEGA 01 

omega02=1.89189E5;% Natural Frequency OMEGA 02 

A=3.7500E-010; % Cross sectional area of the ring 

I=4.8828E-021; % moment of inertia 

n=2.0; % number of mode 

a=3.1507E8; 

b=1.2601E9; 

c=3.1526E8; 

k1=3.5792E10; 

k2=-0.1606; 

f1=4.8483e-15; 

gamma=0.8; 

[std_dev,nu]=i_nput(n); 

zeta=0.01*(1+nu); 

 

% Capital omega(OMEGA)(Angular rate, rad/sec) 

t1=0.0; t2=0.005; % Time for the transient part of the angular speed 

y1=2*pi; % Steady state part of the angular speed 

if t==t1 

    y=0.0; 

elseif t<t2 

    y=y1/2*sin(3.14159*(t-t1)/(t2-t1)-0.5*3.14159)+y1/2; % Transient part of 

the angular speed 

else 

    y=y1; % Steady state of the angular speed 

end 

OMEGA=y; % Input angular rate (rad/sec) 

%----------------------------------------------------------------------------

----------------------------------------- 

% Derivative of Capital omega(OMEGA_dot) 

if t==t1 

    y_dot=0.0; 

elseif t<t2 
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    y_dot=y1/2*cos(3.14159*(t-t1)/(t2-t1)-0.5*3.14159)*(3.14159/(t2-t1)); % 

Transiant part of the angular speed 

else 

    y_dot=0.0; % Steady state of the angular speed 

end 

OMEGA_dot=y_dot; 

  

Q_dot(1)=q(3); 

Q_dot(2)=q(4); 

Q_dot(3)=-(k1+k2*(OMEGA)^2)*q(1)+((OMEGA_dot)*gamma)*q(2)-

(2*zeta*omega01)*q(3)+(2*OMEGA*gamma)*q(4)+f1*cos((omega01*t)); % add shift 

Q_dot(4)=((-((OMEGA_dot)*gamma)*q(1)-(k1+k2*(OMEGA)^2)*q(2)-

2*(OMEGA)*gamma)*q(3)-(2*zeta*omega02)*q(4))/(1); 

  

end 

 

Sensing Direction 

clc; clf; clear all; 

[T,Q]=ode45(@(t,q) Ring_3(t,q),0.0:0.00001:0.01,[0.0;0.0;0.0;0.0]);% ordinary 

differential equation solver(initial value problem)(calling function, range, 

initial value q1,q2,q1_dot,q2_dot) 

plot(T,Q(:,2),'-'); % displacement at sensing direction vs time curve 

grid on; hold on; 

xlabel('time,(sec)'); 

 

function [Q_dot] = Ring_3(t,q,n) 

  

Q_dot=(zeros(size(q))); 

p=8800;  

E=210E9;  

r=500E-6;  

h=12.5E-6;  

b=30E-6; 

omega01=1.89189E5; % Natural Frequency OMEGA 01 

omega02=1.89189E5;% Natural Frequency OMEGA 02 

A=3.7500E-010; % Cross sectional area of the ring 

I=4.8828E-021; % moment of inertia 

n=2.0; % number of mode 

a=3.1507E8; 

b=1.2601E9; 

c=3.1526E8; 

k1=3.5792E10; 

k2=-0.1606; 

f1=4.8483e-15; 

gamma=0.8; 

[std_dev,nu]=i_nput(n); 

zeta=0.01*(1+nu); 

 

% Capital omega(OMEGA)(Angular rate, rad/sec) 

t1=0.0; t2=0.005; % Time for the transient part of the angular speed 

y1=2*pi; % Steady state part of the angular speed 

if t==t1 

    y=0.0; 

elseif t<t2 

    y=y1/2*sin(3.14159*(t-t1)/(t2-t1)-0.5*3.14159)+y1/2; % Transient part of 

the angular speed 

else 
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    y=y1; % Steady state of the angular speed 

end 

OMEGA=y; % Input angular rate (rad/sec) 

%----------------------------------------------------------------------------

----------------------------------------- 

% Derivative of Capital omega(OMEGA_dot) 

if t==t1 

    y_dot=0.0; 

elseif t<t2 

    y_dot=y1/2*cos(3.14159*(t-t1)/(t2-t1)-0.5*3.14159)*(3.14159/(t2-t1)); % 

Transiant part of the angular speed 

else 

    y_dot=0.0; % Steady state of the angular speed 

end 

OMEGA_dot=y_dot; 

  

Q_dot(1)=q(3); 

Q_dot(2)=q(4); 

Q_dot(3)=-(k1+k2*(OMEGA)^2)*q(1)+((OMEGA_dot)*gamma)*q(2)-

(2*zeta*omega01)*q(3)+(2*OMEGA*gamma)*q(4)+f1*cos((omega01*t)); % add shift 

Q_dot(4)=((-((OMEGA_dot)*gamma)*q(1)-(k1+k2*(OMEGA)^2)*q(2)-

2*(OMEGA)*gamma)*q(3)-(2*zeta*omega02)*q(4))/(1); 

  

end 

 

A Sample of MATLAB Routine for output time response with mass mismatch 

clc; clf; clear all; 

N=[0.0 1.0 3.0]; 

col_or=['k' 'b' 'r']; 

for i=1.0:1.0:3.0 

    n=N(i); 

    [T,Q]=ode45(@(t,q) Ring_3(t,q,n),0.0:0.00001:0.1,[0.0;0.0;0.0;0.0]);% 

ordinary differential equation solver(initial value problem)(calling 

function, range, initial value q1,q2,q1_dot,q2_dot) 

    plot(T,Q(:,2),col_or(i)); % displacement at sensing direction vs time 

curve 

    grid on; hold on; 

end 

xlabel('time,(sec)'); 

ylabel('Radial displacement in the sensing direction,(m)'); 

 

function [Q_dot] = Ring_3(t,q,n) 

  

Q_dot=(zeros(size(q))); 

p=8800;  

E=210E9;  

r=500E-6;  

h=12.5E-6;  

b=30E-6; 

omega01=1.89189E5; % Natural Frequency OMEGA 01 

omega02=1.89189E5;% Natural Frequency OMEGA 02 

A=3.7500E-010; % Cross sectional area of the ring 

I=4.8828E-021; % moment of inertia 
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n=2.0; % number of mode 

a=3.1507E8; 

b=1.2601E9; 

c=3.1526E8; 

k1=3.5792E10; 

k2=-0.1606; 

f1=4.8483e-15; 

gamma=0.8; 

[std_dev,nu]=i_nput(n); 

zeta=0.01*(1+nu); 

 

% Capital omega(OMEGA)(Angular rate, rad/sec) 

t1=0.0; t2=0.005; % Time for the transient part of the angular speed 

y1=2*pi; % Steady state part of the angular speed 

if t==t1 

    y=0.0; 

elseif t<t2 

    y=y1/2*sin(3.14159*(t-t1)/(t2-t1)-0.5*3.14159)+y1/2; % Transient part of 

the angular speed 

else 

    y=y1; % Steady state of the angular speed 

end 

OMEGA=y; % Input angular rate (rad/sec) 

%----------------------------------------------------------------------------

----------------------------------------- 

% Derivative of Capital omega(OMEGA_dot) 

if t==t1 

    y_dot=0.0; 

elseif t<t2 

    y_dot=y1/2*cos(3.14159*(t-t1)/(t2-t1)-0.5*3.14159)*(3.14159/(t2-t1)); % 

Transiant part of the angular speed 

else 

    y_dot=0.0; % Steady state of the angular speed 

end 

OMEGA_dot=y_dot; 

  

Q_dot(1)=q(3); 

Q_dot(2)=q(4); 

Q_dot(3)=-(k1+k2*(OMEGA)^2)*q(1)+((OMEGA_dot)*gamma)*q(2)-

(2*zeta*omega01)*q(3)+(2*OMEGA*gamma)*q(4)+f1*cos((omega01*t)); % add shift 

Q_dot(4)=((-((OMEGA_dot)*gamma)*q(1)-(k1+k2*(OMEGA)^2)*q(2)-

2*(OMEGA)*gamma)*q(3)-(2*zeta*omega02)*q(4))/(1); 

  

end 
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A Sample of MATLAB Routine for output time response without and with randomness (Radial 

displacement in the driving and sensing direction).  In order to achieve the responses without 

drift, drift term  sigma1*(exp(a_d*t)) is considered to be zero. 
 

clc; clear all; 

for i=1:1 

    N1=1.0:1.0:5.0; 

    n=N1(i); 

    for i1=1:5 

        options = odeset('RelTol',1e-10,'AbsTol',1e-10); 

        [T,Q]=ode45(@(t,q) 

Ring_1(t,q,n),0.0:0.000001:0.25,[0.0;0.0;0.0;0.0],options);% ordinary 

differential equation solver(initial value problem)(calling function, range, 

initial value q1,q2,q1_dot,q2_dot) 

        plot(T,Q(:,2),'m'); % displacement at sensing direction vs time curve 

        grid on; hold on; 

        P=findpeaks(Q(:,2)); 

        for i2=1:length(P) 

            A(i2)=P(i2); 

        end 

        nc=1.0; 

        for j=6201:6205 

            B(nc)=A(j); 

            nc=nc+1; 

        end 

        a=T; 

        X(:,:,i1)=a'; 

        Y(:,:,i1)=B; 

        meanY(i1)=mean(Y(:,:,i1)); 

        stdY(i1)=std(Y(:,:,i1)); 

    end 

    X1(:,:,i)=X; 

    X2(:,:,i)=(X1(:,:,i))'; 

    Y1(:,:,i)=Y; 

    Y2(:,:,i)=(Y1(:,:,i))'; 

    meanX2(:,:,i)=mean(X2(:,:,i)); % Ensemble mean 

    meanY2(:,:,i)=mean(Y2(:,:,i)); % Ensemble mean 

    stdY2(:,:,i)=std(Y2(:,:,i)); % Ensemble standard deviation 

    ensemble_mean=mean(meanY2); % Mean of ensemble mean 

    mean_stdY2(i)=mean(stdY2(:,:,i)); % Mean of ensemble standard deviation 

end 

 

 

function [Q_dot] = Ring_1(t,q,n) 

  

Q_dot=(zeros(size(q))); 

p=8800;  

E=210E9;  

r=500E-6;  

h=12.5E-6;  

b=30E-6; 

omega01=1.89189E5;% Natural Frequency OMEGA 01 

omega02=omega01;% Natural Frequency OMEGA 02 

A=3.7500E-010; % Cross sectional area of the ring 

I=4.8828E-021; % moment of inertia 

n=2.0; % number of mode 
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a=3.1507E8; 

b=1.2601E9; 

c=3.1526E8; 

k1=3.5792E10; 

k2=-0.1606; 

f1=4.8483e-15; 

gamma=0.8; 

zeta=0.01; 

% Capital omega(OMEGA)(Angular rate, rad/sec) 

t1=0.0; t2=0.005; % Time for the transiant part of the angular speed 

y1=2*pi; % Steady state part of the angular speed 

if t<t1 

    y=0.0; 

elseif t<t2 

    y=y1/2*sin(3.14159*(t-t1)/(t2-t1)-0.5*3.14159)+y1/2; % Transiant part of 

the angular speed 

else 

    y=y1; % Steady state of the angular speed 

end 

Omega=y; 

%----------------------------------------------------------------------------

----------------------------------------- 

% Noise and Drift 

sigma1=0.0245; sigma2=0.0001; 

a_d=1.0; 

std_dev=(n/100)*Omega; 

xi=normrnd(Omega,std_dev);  

d_d=sigma1*(exp(a_d*t))+sigma2*xi; % equation for noise and drift 

OMEGA=Omega+d_d; % Capital OMEGA with noise and drift 

%----------------------------------------------------------------------------

----------------------------------------- 

% Derivative of Capital omega(OMEGA_dot) 

if t<t1 

    y_dot=0.0; 

elseif t<t2 

    y_dot=y1/2*cos(3.14159*(t-t1)/(t2-t1)-0.5*3.14159)*(3.14159/(t2-t1)); % 

Transiant part of the angular speed 

else 

    y_dot=0.0; % Steady state of the angular speed 

end 

OMEGA_dot=y_dot; 

  

Q_dot(1)=q(3); 

Q_dot(2)=q(4); 

Q_dot(3)=-(k1+k2*(OMEGA)^2)*q(1)+((OMEGA_dot)*gamma)*q(2)-

(2*zeta*omega01)*q(3)+(2*OMEGA*gamma)*q(4)+f1*cos((omega01*t)); % add shift 

Q_dot(4)=((-((OMEGA_dot)*gamma)*q(1)-(k1+k2*(OMEGA)^2)*q(2)-

2*(OMEGA)*gamma)*q(3)-(2*zeta*omega02)*q(4))/(1); 

  

end 
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A Sample of MATLAB Routine for output time response for 100 samples (3D plot) 
 

clc; clear all; 

for i=1:1 

    N1=1.0:1.0:50.0; 

    n=N1(i); 

    for i1=1:100 

        [T,Q]=ode45(@(t,q) 

Ring_1(t,q,n),0.0:0.00001:0.25,[0.0;0.0;0.0;0.0]);% ordinary differential 

equation solver(initial value problem)(calling function, range, initial value 

q1,q2,q1_dot,q2_dot) 

        a=T; 

        B=Q(:,2); 

        X(:,:,i1)=a'; 

        Y(:,:,i1)=B; 

        d=1:100; 

        c(i1)=d(i1)-1; 

        e=(ones(size(a)))*c(i1); 

        Z(:,:,i1)=e'; 

    end 

    plot3(X(:,:,1),Z(:,:,1),Y(:,:,1),'-',X(:,:,2),Z(:,:,2),Y(:,:,2),'-

',X(:,:,3),Z(:,:,3),Y(:,:,3),'-',X(:,:,4),Z(:,:,4),Y(:,:,4),'-

',X(:,:,5),Z(:,:,5),Y(:,:,5),'-',X(:,:,6),Z(:,:,6),Y(:,:,6),'-

',X(:,:,7),Z(:,:,7),Y(:,:,7),'-',X(:,:,8),Z(:,:,8),Y(:,:,8),'-

',X(:,:,9),Z(:,:,9),Y(:,:,9),'-',X(:,:,10),Z(:,:,10),Y(:,:,10),'-

',X(:,:,11),Z(:,:,11),Y(:,:,11),'-',X(:,:,12),Z(:,:,12),Y(:,:,12),'-

',X(:,:,13),Z(:,:,13),Y(:,:,13),'-',X(:,:,14),Z(:,:,14),Y(:,:,14),'-

',X(:,:,15),Z(:,:,15),Y(:,:,15),'-',X(:,:,16),Z(:,:,16),Y(:,:,16),'-

',X(:,:,17),Z(:,:,17),Y(:,:,17),'-',X(:,:,18),Z(:,:,18),Y(:,:,18),'-

',X(:,:,19),Z(:,:,19),Y(:,:,19),'-',X(:,:,20),Z(:,:,20),Y(:,:,20),'-

',X(:,:,21),Z(:,:,21),Y(:,:,21),'-',X(:,:,22),Z(:,:,22),Y(:,:,22),'-

',X(:,:,23),Z(:,:,23),Y(:,:,23),'-',X(:,:,24),Z(:,:,24),Y(:,:,24),'-

',X(:,:,25),Z(:,:,25),Y(:,:,25),'-',X(:,:,26),Z(:,:,26),Y(:,:,26),'-

',X(:,:,27),Z(:,:,27),Y(:,:,27),'-',X(:,:,28),Z(:,:,28),Y(:,:,28),'-

',X(:,:,29),Z(:,:,29),Y(:,:,29),'-',X(:,:,30),Z(:,:,30),Y(:,:,30),'-

',X(:,:,31),Z(:,:,31),Y(:,:,31),'-',X(:,:,32),Z(:,:,32),Y(:,:,32),'-

',X(:,:,33),Z(:,:,33),Y(:,:,33),'-',X(:,:,34),Z(:,:,34),Y(:,:,34),'-

',X(:,:,35),Z(:,:,35),Y(:,:,35),'-',X(:,:,36),Z(:,:,36),Y(:,:,36),'-

',X(:,:,37),Z(:,:,37),Y(:,:,37),'-',X(:,:,38),Z(:,:,38),Y(:,:,38),'-

',X(:,:,39),Z(:,:,39),Y(:,:,39),'-',X(:,:,40),Z(:,:,40),Y(:,:,40),'-

',X(:,:,41),Z(:,:,41),Y(:,:,41),'-',X(:,:,42),Z(:,:,42),Y(:,:,42),'-

',X(:,:,43),Z(:,:,43),Y(:,:,43),'-',X(:,:,44),Z(:,:,44),Y(:,:,44),'-

',X(:,:,45),Z(:,:,45),Y(:,:,45),'-',X(:,:,46),Z(:,:,46),Y(:,:,46),'-

',X(:,:,47),Z(:,:,47),Y(:,:,47),'-',X(:,:,48),Z(:,:,48),Y(:,:,48),'-

',X(:,:,49),Z(:,:,49),Y(:,:,49),'-',X(:,:,50),Z(:,:,50),Y(:,:,50),'-

',X(:,:,51),Z(:,:,51),Y(:,:,51),'-',X(:,:,52),Z(:,:,52),Y(:,:,52),'-

',X(:,:,53),Z(:,:,53),Y(:,:,53),'-',X(:,:,54),Z(:,:,54),Y(:,:,54),'-

',X(:,:,55),Z(:,:,55),Y(:,:,55),'-',X(:,:,56),Z(:,:,56),Y(:,:,56),'-

',X(:,:,57),Z(:,:,57),Y(:,:,57),'-',X(:,:,58),Z(:,:,58),Y(:,:,58),'-

',X(:,:,59),Z(:,:,59),Y(:,:,59),'-',X(:,:,60),Z(:,:,60),Y(:,:,60),'-

',X(:,:,61),Z(:,:,61),Y(:,:,61),'-',X(:,:,62),Z(:,:,62),Y(:,:,62),'-

',X(:,:,63),Z(:,:,63),Y(:,:,63),'-',X(:,:,64),Z(:,:,64),Y(:,:,64),'-

',X(:,:,65),Z(:,:,65),Y(:,:,65),'-',X(:,:,66),Z(:,:,66),Y(:,:,66),'-

',X(:,:,67),Z(:,:,67),Y(:,:,67),'-',X(:,:,68),Z(:,:,68),Y(:,:,68),'-

',X(:,:,69),Z(:,:,69),Y(:,:,69),'-',X(:,:,70),Z(:,:,70),Y(:,:,70),'-

',X(:,:,71),Z(:,:,71),Y(:,:,71),'-',X(:,:,72),Z(:,:,72),Y(:,:,72),'-
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',X(:,:,73),Z(:,:,73),Y(:,:,73),'-',X(:,:,74),Z(:,:,74),Y(:,:,74),'-

',X(:,:,75),Z(:,:,75),Y(:,:,75),'-',X(:,:,76),Z(:,:,76),Y(:,:,76),'-

',X(:,:,77),Z(:,:,77),Y(:,:,77),'-',X(:,:,78),Z(:,:,78),Y(:,:,78),'-

',X(:,:,79),Z(:,:,79),Y(:,:,79),'-',X(:,:,80),Z(:,:,80),Y(:,:,80),'-

',X(:,:,81),Z(:,:,81),Y(:,:,81),'-',X(:,:,82),Z(:,:,82),Y(:,:,82),'-

',X(:,:,83),Z(:,:,83),Y(:,:,83),'-',X(:,:,84),Z(:,:,84),Y(:,:,84),'-

',X(:,:,85),Z(:,:,85),Y(:,:,85),'-',X(:,:,86),Z(:,:,86),Y(:,:,86),'-

',X(:,:,87),Z(:,:,87),Y(:,:,87),'-',X(:,:,88),Z(:,:,88),Y(:,:,88),'-

',X(:,:,89),Z(:,:,89),Y(:,:,89),'-',X(:,:,90),Z(:,:,90),Y(:,:,90),'-

',X(:,:,91),Z(:,:,91),Y(:,:,91),'-',X(:,:,92),Z(:,:,92),Y(:,:,92),'-

',X(:,:,93),Z(:,:,93),Y(:,:,93),'-',X(:,:,94),Z(:,:,94),Y(:,:,94),'-

',X(:,:,95),Z(:,:,95),Y(:,:,95),'-',X(:,:,96),Z(:,:,96),Y(:,:,96),'-

',X(:,:,97),Z(:,:,97),Y(:,:,97),'-',X(:,:,98),Z(:,:,98),Y(:,:,98),'-

',X(:,:,99),Z(:,:,99),Y(:,:,99),'-',X(:,:,100),Z(:,:,100),Y(:,:,100),'-'); 

    xlabel('Time (sec)'); 

    zlabel('Radial displacement along sensing direction (m)'); 

    ylabel('Number of sample'); 

    grid on; hold on; 

end 

 

function [Q_dot] = Ring_1(t,q,n) 

  

Q_dot=(zeros(size(q))); 

p=8800;  

E=210E9;  

r=500E-6;  

h=12.5E-6;  

b=30E-6; 

omega01=1.89189E5;% Natural Frequency OMEGA 01 

omega02=omega01;% Natural Frequency OMEGA 02 

A=3.7500E-010; % Cross sectional area of the ring 

I=4.8828E-021; % moment of inertia 

n=2.0; % number of mode 

a=3.1507E8; 

b=1.2601E9; 

c=3.1526E8; 

k1=3.5792E10; 

k2=-0.1606; 

f1=4.8483e-15; 

gamma=0.8; 

zeta=0.01; 

% Capital omega(OMEGA)(Angular rate, rad/sec) 

t1=0.0; t2=0.005; % Time for the transiant part of the angular speed 

y1=2*pi; % Steady state part of the angular speed 

if t<t1 

    y=0.0; 

elseif t<t2 

    y=y1/2*sin(3.14159*(t-t1)/(t2-t1)-0.5*3.14159)+y1/2; % Transiant part of 

the angular speed 

else 

    y=y1; % Steady state of the angular speed 

end 

Omega=y; 

%----------------------------------------------------------------------------

----------------------------------------- 

% Noise and Drift 

sigma1=0.0245; sigma2=0.0001; 
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a_d=1.0; 

std_dev=(n/100)*Omega; 

xi=normrnd(Omega,std_dev);  

d_d=sigma1*(exp(a_d*t))+sigma2*xi; % equation for noise and drift 

OMEGA=Omega+d_d; % Capital OMEGA with noise and drift 

%----------------------------------------------------------------------------

----------------------------------------- 

% Derivative of Capital omega(OMEGA_dot) 

if t<t1 

    y_dot=0.0; 

elseif t<t2 

    y_dot=y1/2*cos(3.14159*(t-t1)/(t2-t1)-0.5*3.14159)*(3.14159/(t2-t1)); % 

Transiant part of the angular speed 

else 

    y_dot=0.0; % Steady state of the angular speed 

end 

OMEGA_dot=y_dot; 

  

Q_dot(1)=q(3); 

Q_dot(2)=q(4); 

Q_dot(3)=-(k1+k2*(OMEGA)^2)*q(1)+((OMEGA_dot)*gamma)*q(2)-

(2*zeta*omega01)*q(3)+(2*OMEGA*gamma)*q(4)+f1*cos((omega01*t)); % add shift 

Q_dot(4)=((-((OMEGA_dot)*gamma)*q(1)-(k1+k2*(OMEGA)^2)*q(2)-

2*(OMEGA)*gamma)*q(3)-(2*zeta*omega02)*q(4))/(1); 

  

end 

 

 

A Sample of MATLAB Routine for uncertainty quantification of output time response for 70 

samples with mismatch 
 

clc; clear all; 

for i=1:10 

    N1=1.0:1.0:70.0; 

    n=N1(i); 

    for i1=1:70 

        options = odeset('RelTol',1e-10,'AbsTol',1e-10); 

        [T,Q]=ode45(@(t,q) 

Ring_2(t,q,n),0.0:0.000001:0.25,[0.0;0.0;0.0;0.0],options);% ordinary 

differential equation solver(initial value problem)(calling function, range, 

initial value q1,q2,q1_dot,q2_dot) 

        plot(T,Q(:,2),'m'); % displacement at sensing direction vs time curve 

        grid on; hold on; 

        P=findpeaks(Q(:,2)); 

        for i2=1:length(P) 

            A(i2)=P(i2); 

        end 

        nc=1.0; 

        for j=6205:6205 

            B(nc)=A(j); 

            nc=nc+1; 

        end 

        a=T; 

        X(:,:,i1)=a'; 

        Y(:,:,i1)=B; 

        meanY(i1)=mean(Y(:,:,i1)); 
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        stdY(i1)=std(Y(:,:,i1)); 

    end 

    X1(:,:,i)=X; 

    X2(:,:,i)=(X1(:,:,i))'; 

    Y1(:,:,i)=Y; 

    Y2(:,:,i)=(Y1(:,:,i))'; 

    meanX2(:,:,i)=mean(X2(:,:,i)); % Ensemble mean 

    meanY2(:,:,i)=mean(Y2(:,:,i)); % Ensemble mean 

    stdY2(:,:,i)=std(Y2(:,:,i)); % Ensemble standard deviation 

    ensemble_mean=mean(meanY2); % Mean of ensemble mean 

    mean_stdY2(i)=mean(stdY2(:,:,i)); % Mean of ensemble standard deviation 

end 

 

function [Q_dot] = Ring_3(t,q,n) 

  

Q_dot=(zeros(size(q))); 

p=8800;  

E=210E9;  

r=500E-6;  

h=12.5E-6;  

b=30E-6; 

[std_dev,nu]=i_nput(n); 

omega01=1.89189E5;% Natural Frequency OMEGA 01 

omega02=1.89189E5;% Natural Frequency OMEGA 02  

A=3.7500E-010; % Cross sectional area of the ring 

I=4.8828E-021; % moment of inertia 

n=2.0; % number of mode 

a=3.1507E8; 

b=1.2601E9; 

c=3.1526E8; 

k1=3.5792E10; 

k2=-0.1606; 

f1=4.8483e-15; 

gamma=0.8; 

zeta=0.01*(1+nu); 

% Capital omega(OMEGA)(Angular rate, rad/sec) 

t1=0.0; t2=0.005; % Time for the transiant part of the angular speed 

y1=2*pi; % Steady state part of the angular speed 

if t<t1 

    y=0.0; 

elseif t<t2 

    y=y1/2*sin(3.14159*(t-t1)/(t2-t1)-0.5*3.14159)+y1/2; % Transiant part of 

the angular speed 

else 

    y=y1; % Steady state of the angular speed 

end 

Omega=y; 

%----------------------------------------------------------------------------

----------------------------------------- 

% Noise and Drift 

sigma1=0.0245; sigma2=0.0001; 

a_d=1.0; 

std_dev=(n/100)*Omega; 

xi=normrnd(Omega,std_dev);  

d_d=sigma1*(exp(a_d*t))+sigma2*xi; % equation for noise and drift 

OMEGA=Omega+d_d; % Capital OMEGA with noise and drift 
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%----------------------------------------------------------------------------

----------------------------------------- 

% Derivative of Capital omega(OMEGA_dot) 

if t<t1 

    y_dot=0.0; 

elseif t<t2 

    y_dot=y1/2*cos(3.14159*(t-t1)/(t2-t1)-0.5*3.14159)*(3.14159/(t2-t1)); % 

Transiant part of the angular speed 

else 

    y_dot=0.0; % Steady state of the angular speed 

end 

OMEGA_dot=y_dot; 

  

Q_dot(1)=q(3); 

Q_dot(2)=q(4); 

Q_dot(3)=-(k1+k2*(OMEGA)^2)*q(1)+((OMEGA_dot)*gamma)*q(2)-

(2*zeta*omega01)*q(3)+(2*OMEGA*gamma)*q(4)+f1*cos((omega01*t)); % add shift 

Q_dot(4)=((-((OMEGA_dot)*gamma)*q(1)-(k1+k2*(OMEGA)^2)*q(2)-

2*(OMEGA)*gamma)*q(3)-(2*zeta*omega02)*q(4))/(1); 

  

end 

 

 

A Sample of MATLAB Routine for output frequency response for amplitude ratio  𝑄2/𝑄1    
 

 

clc; clf; clear all; 

p=8800;  

E=210E9;  

r=500E-6;  

h=12.5E-6;  

b1=30E-6; 

omega01=1.89189E5;% Natural Frequency OMEGA 01 

omega02=omega01;% Natural Frequency OMEGA 02 

A=b1*h; % Cross sectional area of the ring 

I=(b1*(h^3))/12; % moment of inertia 

n=2.0; % number of mode 

fr=1E-15; 

a=((n^2)*(E*I)/(r^4))+((E*A)/(r^2)); 

b=(n^2)*(((E*I)/(r^4))+((E*A)/(r^2))); 

c=((n^4)*((E*I)/(r^4)))+(E*A)/r^2; 

k1=((b*c)-((n^2)*(a^2)))/(p*A*(a+b)); 

k2=((n^2)*(b+c-4*a))/(a+b)-((2+n^2)*(b*c-(n^2)*a))/((a+b)^2); 

f1=(2*fr*b)/(p*A*(a+b)); 

gamma=(b+(n^2)*a)/(n*(a+b)); 

zeta=0.01; 

n=[1 2 5 10 20]; 

for i1=1:5 

    for i=1:1 

        std_dev=n(i1)*0.00001; 

        nu=normrnd(0.0001,std_dev); 

        Omega=n(i1)*pi; 

        H=tf([2*gamma*Omega],[1.0+nu 2*zeta*omega02 k1+k2*Omega.^2]); 

        w=linspace(1.891E5,1.8925E5,100000); 

        [mag,phase,wout] = bode(H,w); 

        P = bodeoptions; 
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        P.MagUnits='abs'; 

        P.FreqScale='linear'; 

        P.MagVisible='on'; 

        bodemag(H,w); 

        hold on; grid on; 

        xlabel('Frequency'); 

        ylabel('Magnitude of amplitude ratio (Q2/Q1)'); 

        mag1(:,:,i)=mag; 

        mag2(:,:,i)=mag1(:,:,i)'; 

        c1(:,:,i)=max(mag2(:,:,i)); 

        wout1(:,:,i)=wout; 

        wout2(:,:,i)=wout1(:,:,i)'; 

        for j=1:length(mag2) 

            if mag2(j)==c1; 

                f(j)=wout2(j); 

            end 

        end 

        d1(:,:,i)=max(f); 

    end 

    c2(:,:,i1)=c1; 

    c3(:,:,i1)=(c2(:,:,i1))'; 

    mean_c3(:,:,i1)=mean(c3(:,:,i1)); % Mean of magnitude of peaks 

    std_c3(:,:,i1)=std(c3(:,:,i1)); % Standard deviation of peak magnitude 

    d2(:,:,i1)=d1; 

    d(:,:,i1)=(d2(:,:,i1))'; 

    mean_d(:,:,i1)=mean(d(:,:,i1)); % Mean of corresponding peak frequency 

    std_d(:,:,i1)=std(d(:,:,i1)); % Standard deviation of corresponding peak 

frequency 

 

end 

 

A Sample of MATLAB Routine for uncertainty quantification of output frequency response 

amplitude ratio  𝑄2/𝑄1    
 

clc; clf; clear all; 

p=8800;  

E=210E9;  

r=500E-6;  

h=12.5E-6;  

b1=30E-6; 

omega01=1.89189E5;% Natural Frequency OMEGA 01 

omega02=omega01;% Natural Frequency OMEGA 02 

A=b1*h; % Cross sectional area of the ring 

I=(b1*(h^3))/12; % moment of inertia 

n=2.0; % number of mode 

fr=1E-15; 

a=((n^2)*(E*I)/(r^4))+((E*A)/(r^2)); 

b=(n^2)*(((E*I)/(r^4))+((E*A)/(r^2))); 

c=((n^4)*((E*I)/(r^4)))+(E*A)/r^2; 

k1=((b*c)-((n^2)*(a^2)))/(p*A*(a+b)); 

k2=((n^2)*(b+c-4*a))/(a+b)-((2+n^2)*(b*c-(n^2)*a))/((a+b)^2); 

f1=(2*fr*b)/(p*A*(a+b)); 

gamma=(b+(n^2)*a)/(n*(a+b)); 

zeta=0.01; 

n=1:1:30; 
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for i1=1:5 

    for i=1:1 

        std_dev=n(i1)*0.00001; 

        nu=normrnd(0.0001,std_dev); 

        Omega=n(i1)*pi; 

        H=tf([2*gamma*Omega],[1.0+nu 2*zeta*omega02 k1+k2*Omega.^2]); 

        w=linspace(1.891E5,1.8925E5,100000); 

        [mag,phase,wout] = bode(H,w); 

        P = bodeoptions; 

        P.MagUnits='abs'; 

        P.FreqScale='linear'; 

        P.MagVisible='on'; 

        bodemag(H,w); 

        hold on; grid on; 

        xlabel('Frequency'); 

        ylabel('Magnitude of amplitude ratio (Q2/Q1)'); 

        mag1(:,:,i)=mag; 

        mag2(:,:,i)=mag1(:,:,i)'; 

        c1(:,:,i)=max(mag2(:,:,i)); 

        wout1(:,:,i)=wout; 

        wout2(:,:,i)=wout1(:,:,i)'; 

        for j=1:length(mag2) 

            if mag2(j)==c1; 

                f(j)=wout2(j); 

            end 

        end 

        d1(:,:,i)=max(f); 

    end 

    c2(:,:,i1)=c1; 

    c3(:,:,i1)=(c2(:,:,i1))'; 

    mean_c3(:,:,i1)=mean(c3(:,:,i1)); % Mean of magnitude of peaks 

    std_c3(:,:,i1)=std(c3(:,:,i1)); % Standard deviation of peak magnitude 

    d2(:,:,i1)=d1; 

    d(:,:,i1)=(d2(:,:,i1))'; 

    mean_d(:,:,i1)=mean(d(:,:,i1)); % Mean of corresponding peak frequency 

    std_d(:,:,i1)=std(d(:,:,i1)); % Standard deviation of corresponding peak 

frequency 

 

end 

 

 

A Sample of MATLAB Routine of output forced frequency response  𝑄2/𝐹1  
 

clc; clf; clear all; 

p=8800;  

E=210E9;  

r=500E-6;  

h=12.5E-6;  

b1=30E-6; 

omega01=1.89189E5;% Natural Frequency OMEGA 01 

omega02=omega01;% Natural Frequency OMEGA 02 

A=b1*h; % Cross sectional area of the ring 

I=(b1*(h^3))/12; % moment of inertia 

n=2.0; % number of mode 

fr=1E-15; 

a=((n^2)*(E*I)/(r^4))+((E*A)/(r^2)); 



149 
 

b=(n^2)*(((E*I)/(r^4))+((E*A)/(r^2))); 

c=((n^4)*((E*I)/(r^4)))+(E*A)/r^2; 

k1=((b*c)-((n^2)*(a^2)))/(p*A*(a+b)); 

k2=((n^2)*(b+c-4*a))/(a+b)-((2+n^2)*(b*c-(n^2)*a))/((a+b)^2); 

f1=(2*fr*b)/(p*A*(a+b)); 

gamma=(b+(n^2)*a)/(n*(a+b)); 

zeta=0.01; 

n=[1 2 5 10 20]; 

for i1=1:5 

    for i=1:1 

        std_dev=n(i1)*0.00001; 

        nu=normrnd(0.0001,std_dev); 

        Omega=2*pi; 

        w=linspace(1.85E5,1.95E5,10000); 

        H=tf([2*Omega*gamma],[1.0+nu (2*zeta*omega02+(1+nu)*2*zeta*omega01) 

(1+nu)*((k1+k2*Omega.^2)+4*zeta^2*omega01*omega02+4*gamma^2*Omega.^2+(k1+k2*O

mega.^2)) (2*zeta*omega01+2*zeta*omega02)*(k1+k2*Omega.^2) 

(k1+k2*Omega.^2).^2]); 

        [mag,phase,wout] = bode(H,w); 

        P = bodeoptions; 

        P.MagUnits='abs'; 

        P.FreqScale='linear'; 

        P.MagVisible='on'; 

        bodemag(H,w); 

        hold on; grid on; 

        xlabel('Frequency'); 

        ylabel('Magnitude of frequency response (Q2/F1)'); 

        mag1(:,:,i)=mag; 

        mag2(:,:,i)=mag1(:,:,i)'; 

        c1(:,:,i)=max(mag2(:,:,i)); 

        wout1(:,:,i)=wout; 

        wout2(:,:,i)=wout1(:,:,i)'; 

        for j=1:length(mag2) 

            if mag2(j)==c1; 

                f(j)=wout2(j); 

            end 

        end 

        d1(:,:,i)=max(f); 

    end 

    c2(:,:,i1)=c1; 

    c3(:,:,i1)=(c2(:,:,i1))'; 

    mean_c3(:,:,i1)=mean(c3(:,:,i1)); % Mean of magnitude of peaks 

    std_c3(:,:,i1)=std(c3(:,:,i1)); % Standard deviation of peak magnitude 

    d2(:,:,i1)=d1; 

    d(:,:,i1)=(d2(:,:,i1))'; 

    mean_d(:,:,i1)=mean(d(:,:,i1)); % Mean of corresponding peak frequency 

    std_d(:,:,i1)=std(d(:,:,i1)); % Standard deviation of corresponding peak 

frequency 

     

end 
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A Sample of MATLAB Routine for uncertainty quantification of output forced frequency 

response  𝑄2/𝐹1  
 

clc; clf; clear all; 

p=8800;  

E=210E9;  

r=500E-6;  

h=12.5E-6;  

b1=30E-6; 

omega01=1.89189E5;% Natural Frequency OMEGA 01 

omega02=omega01;% Natural Frequency OMEGA 02 

A=b1*h; % Cross sectional area of the ring 

I=(b1*(h^3))/12; % moment of inertia 

n=2.0; % number of mode 

fr=1E-15; 

a=((n^2)*(E*I)/(r^4))+((E*A)/(r^2)); 

b=(n^2)*(((E*I)/(r^4))+((E*A)/(r^2))); 

c=((n^4)*((E*I)/(r^4)))+(E*A)/r^2; 

k1=((b*c)-((n^2)*(a^2)))/(p*A*(a+b)); 

k2=((n^2)*(b+c-4*a))/(a+b)-((2+n^2)*(b*c-(n^2)*a))/((a+b)^2); 

f1=(2*fr*b)/(p*A*(a+b)); 

gamma=(b+(n^2)*a)/(n*(a+b)); 

zeta=0.01; 

n=1:1:10; 

for i1=1:10 

    for i=1:70 

        std_dev=n(i1)*0.00001; 

        nu=normrnd(0.0001,std_dev); 

        Omega=2*pi; 

        w=linspace(1.85E5,1.95E5,10000); 

        H=tf([2*Omega*gamma],[1.0+nu (2*zeta*omega02+(1+nu)*2*zeta*omega01) 

(1+nu)*((k1+k2*Omega.^2)+4*zeta^2*omega01*omega02+4*gamma^2*Omega.^2+(k1+k2*O

mega.^2)) (2*zeta*omega01+2*zeta*omega02)*(k1+k2*Omega.^2) 

(k1+k2*Omega.^2).^2]); 

        [mag,phase,wout] = bode(H,w); 

        P = bodeoptions; 

        P.MagUnits='abs'; 

        P.FreqScale='linear'; 

        P.MagVisible='on'; 

        bodemag(H,w); 

        hold on; grid on; 

        xlabel('Frequency'); 

        ylabel('Magnitude of frequency response (Q2/F1)'); 

        mag1(:,:,i)=mag; 

        mag2(:,:,i)=mag1(:,:,i)'; 

        c1(:,:,i)=max(mag2(:,:,i)); 

        wout1(:,:,i)=wout; 

        wout2(:,:,i)=wout1(:,:,i)'; 

        for j=1:length(mag2) 

            if mag2(j)==c1; 

                f(j)=wout2(j); 

            end 

        end 

        d1(:,:,i)=max(f); 

    end 

    c2(:,:,i1)=c1; 
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    c3(:,:,i1)=(c2(:,:,i1))'; 

    mean_c3(:,:,i1)=mean(c3(:,:,i1)); % Mean of magnitude of peaks 

    std_c3(:,:,i1)=std(c3(:,:,i1)); % Standard deviation of peak magnitude 

    d2(:,:,i1)=d1; 

    d(:,:,i1)=(d2(:,:,i1))'; 

    mean_d(:,:,i1)=mean(d(:,:,i1)); % Mean of corresponding peak frequency 

    std_d(:,:,i1)=std(d(:,:,i1)); % Standard deviation of corresponding peak 

frequency 

     

end 
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