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Abstract 

High titers of anti-citrullinated protein antibodies have been detected in sera of rheumatoid 

arthritis (RA) patients, implicating citrullinating enzymes in the pathogenesis of RA. 

Peptidylarginine deiminase type IV (PAD4) is a member of the PAD family of enzymes that 

catalyze the post- translational modification of arginine to citrulline and has been linked with 

RA. However, little is known about its transcriptional regulation. Therefore, our aim was to 

determine how transcription of PAD4 is activated in the myeloid lineage. Using 

bioinformatics, a potential nuclear factor kappa B (NF-kB) binding site was identified on the 

PAD4 promoter. Luciferase assays were used to test promoter activity in human and murine 

myeloid cells. Interestingly, mutation of the NF-κB binding site significantly lowered 

promoter activity in WEHI-3B cells, but significantly increased it in both HL-60 and THP-1 

cell lines. In addition, PAD4 mRNA was significantly lowered in response to TNF-α 

treatment in HL-60 cells, but increased in WEHI-3B cells. Finally, chromatin 

immunoprecipitation (ChIP) using anti-p50 and anti-p65 antibodies revealed that there was a 

significant increase in p50 enrichment at the PAD4 promoter, but not p65 in cells treated 

with TNF-α. Our results suggest that NF-κB may play an important role in the transcriptional 

regulation of PAD4 in human and murine immune systems. 
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Chapter 1: Introduction 

1.1 Inflammation 

The human body is protected from pathogens and other harmful substances by an arsenal 

of effector cells and molecules that together make up the immune system. In general, the 

immune system carries out four chief tasks in order to protect the individual against 

disease: recognition, effector functions, immune regulation, and immunological memory 

(1). For the most part, the physical and chemical barriers erected by the body against 

pathogens are sufficient to prevent infection. These include antimicrobial proteins 

secreted at mucosal surfaces, as well as innate defenses such as the complement system 

(1, 2). In the event that these barriers are overcome, other components of the innate 

immune system come into action to firstly recognize the foreign agent via detection of 

pathogen associated molecular patterns (PAMPs) and secondly to eliminate the pathogen, 

which occurs via the inflammatory response (3). Inflammation is the process by which 

proteins and cells from the blood are recruited into infected tissues in order to facilitate 

the killing of pathogen. More specifically, inflammation is traditionally described by the 

latin words calor, dolor, rubor, and tumor, meaning heat, pain, redness, and swelling. 

Each of these features reflects an effect of cytokines or other inflammatory mediators on 

local blood vessels. Heat, redness, and swelling result from the dilation and increased 

permeability of blood vessels during inflammation, leading to increased local blood flow 

and leakage of fluid and blood proteins into tissues, whereas pain is accounted for by the 

migration of cells into the tissue and their local actions (Fig. 1.1) (3). The main cell types 

seen in the initial stages of inflammation are macrophages and neutrophils, with  
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Figure 1.1 The acute and resolution phases of inflammation. (A) Illustration of the acute 

phase of inflammation. Polymorphonouclear cells (PMNs) are recruited (among other 

cell types) to the site of infection and extravasate from blood vessels into affected tissue 

(resulting in edema) where they mediate inflammation. (B) Resolution phase. PMN 

infiltration ceases and those PMNs still present in the tissue undergo apoptosis. Adapted 

from Isobe Y et al. (4).  
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neutrophils forming the larger component of the two. Both cell types are the principal 

cells that engulf and destroy the invading microorganisms. Once the pathogen is 

eliminated, the resolution phase of inflammation follows in which various mechanisms 

are enabled to terminate inflammation and prevent damage to healthy tissue surrounding 

the point of infection. Some mechanisms include apoptosis of inflammatory cells (5), 

production and release of interleukin 10 (IL-10) (6), as well as the production of anti-

inflammatory lipoxins (7). If the resolution of inflammation is not achieved correctly, this 

may result in chronic inflammation and continued damage to otherwise healthy tissues of 

the body.  
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1.2 Neutrophils in inflammation 

Neutrophils are important components of innate immunity vital to the maintenance of 

homeostasis of the organism. They are short-lived polymorphonuclear granulocytes 

(PMNs) that form the primary defense against microbial infections. During acute 

inflammation, neutrophils circulating within the bloodstream are rapidly recruited to the 

site of infection (Fig. 1.1) in response to chemotactic factors released by pathogens or 

host cells. After attachment to the endothelium, neutrophils migrate from blood vessels 

and move in line with the chemotactic gradient toward the site of infection. At the site of 

inflammation, activated immune cells acquire the ability to kill pathogens. To carry out 

the killing of bacteria, fungi, and protozoa, neutrophils use a number of strategies such as 

phagocytosis and the recently discovered formation of neutrophil extracellular traps 

(NETs). During phagocytosis, internalized pathogens are translocated to phagosomes 

where the antimicrobial factors derived from granules and reactive oxygen species (ROS) 

create a killing environment for pathogens. However, while the cytotoxic factors 

produced by neutrophils are effective in combating pathogens, they can also be extremely 

damaging to surrounding host tissue if they are not neutralized effectively. The 

engulfment of pathogens by neutrophils is followed by apoptosis, which is a form of 

programmed cell death that ultimately promotes the resolution of inflammation (Fig. 

1.2A). Neutrophils may also combat pathogens by the formation of NETs. During NET 

formation and action (a process termed NETosis), neutrophils extrude networks of 

decondensed chromatin decorated with citrullinated histones and granular antimicrobial 

proteins such as proteinase 3 (PR3), myeloperoxidase (MPO), and α-defensins, among 

others (8).  



5 

 

Figure 1.2 Overview of phagocytosis and NETosis. (A) Phagocytosis involves the 

recognition and internalization of pathogens by neutrophils. Following degradation in 

phagosome, neutrophils undergo apoptosis, which promotes resolution of inflammation. 

(B) Upon recognition of some pathogens neutrophils are triggered to release NETs that 

ensnare and kill the pathogen. However, this is accompanied with lysis of the neutrophil 

and release of cyototoxic molecules that may or may not be cleared by the host. Adapted 

from Lu, T et al. (9).  
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NETs act as a mesh that traps microorganisms and facilitates their interaction with 

neutrophil-derived effector molecules, limiting the spread of rapidly disseminating 

pathogens (10). NET formation can be induced by phorbol 12-myristate 13-acetate 

(PMA), lipopolysaccharide (LPS), and bacteria (10). In particular, NETs have been 

shown to trap and kill pathogenic bacteria such as Shigella flexneri (10) and 

Streptococcus pyogenes (11). Moreover, NETs can induce the production of 

antimicrobial cytokines such as interferon-α (IFN-α) (12-14), a relevant cytokine in the 

control of viral, bacterial, and protozoal infections (15).  

Since NETosis fundamentally involves the extracellular exposure of intracellular 

components (Fig. 1.2B), the discovery of NETs has sparked renewed interest in potential 

links between neutrophils and autoimmune disease. For example, the neutrophils of 

systemic lupus erythematosus (SLE) patients have been demonstrated to be more likely to 

form NETs (16), a finding that correlates with increased levels of circulating DNA in the 

plasma of SLE patients as well as the presence of antibodies towards other proteins 

released in NETs (17). Indeed, 74% of NET proteins have been reported to autoantigens 

in several systemic autoimmune diseases, notable among which are SLE, rheumatoid 

arthritis, and vasculitis (18). Thus, while NET formation has been revealed to be a unique 

effector mechanism of neutrophils against pathogens, it raises new questions and opens 

new doors into the study of the origin and pathogenesis of systemic autoimmune diseases. 
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1.3 Autoimmune disease 

Although the main function of the immune system is to protect the human host from 

pathogenic agents, autoimmune diseases result when immune responses are directed at 

self antigens in the absence of any pathogen (19). These immune responses resemble 

normal immune responses in that they are specifically directed towards antigens, in this 

case self antigens or autoantigens, and give rise to autoreactive effector cells and to 

antibodies called autoantibodies against self antigens. Autoimmune diseases can broadly 

be categorized as organ specific (ex. diabetes and multiple sclerosis) in which cases the 

immune system targets autoantigens specific to particular organs, or systemic (ex. 

rheumatoid arthritis) in which cases the inflammation ensues in multiple tissues because 

the autoantigens causing the response are found in several (if not all) tissues of the body. 

In turn, a hallmark feature of systemic autoimmune diseases is the circulation of 

autoantibodies that recognize intracellular antigens thought to be expressed by all cells, 

yet are associated with specific disease phenotypes and outcomes. Since fundamentally 

autoimmune diseases occur because of a failure of the immune system to distinguish self 

from non-self correctly, several factors – both genetic and environmental – are implicated 

in their development. Genetic factors include genes important in the recognition of 

antigen such as those coding for immunoglobulins, T-cell receptors, as well as the major 

histocompatibility complex (MHC) (1). In particular, various MHC II allotypes have 

been associated with specific diseases; for instance, HLA DR2 is associated mostly with 

multiple sclerosis (20) whereas HLA DR4 shows high association with rheumatoid 

arthritis (21).  
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1.4 Rheumatoid arthritis 

Rheumatoid Arthritis (RA) is a chronic, systemic autoimmune disease characterized by 

inflammation and progressive destruction of synovial joints (22). The most common form 

of inflammatory arthritis, RA affects nearly 1% of the world’s population (23). Patients 

suffering from RA will present with a variety of symptoms ranging from mild pain and 

swelling in peripheral joints to widespread inflammation and joint destruction caused by 

a “runaway” immune response involving the development of autoantibodies and resulting 

in significant morbidity and mortality (23, 24).  

Although RA etiology remains unclear, several factors – both genetic and environmental 

– have been associated with disease incidence, and it is thought that genetic 

predisposition to immune system dysregulation, coupled with an infectious event or the 

development of autoantibodies, may be at the center of the autoimmune responses (24). 

Genetic predisposition to RA is supported by twin studies in which higher concordance 

rates of disease were observed among monozygotic twins than dizygotic twins, as well as 

by sibling studies that show a 2-17% increase in the risk of RA contraction among 

siblings than the general population (25). The gene considered to be the major 

determinant of RA susceptibility (accounting for up to 30% of disease susceptibility) is 

human leukocyte antigen (HLA), HLA-DRB1 (25, 26). One of the most polymorphic 

genes in the human genome, HLA-DRB1 encodes the β-chain of the MHC class II 

protein. Several subtypes of the gene (termed shared epitopes) have been associated with 

RA in different populations around the world (25). However, while HLA-DRB1 was 

thought to be the only RA susceptibility gene for nearly three decades, the last ten years 
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have seen the discovery of nearly 30 new RA susceptibility genes (22). Other genetic risk 

factors that have since been identified include the genes coding peptidylarginine 

deiminase type IV (PAD4), protein tyrosine phosphatase non-receptor type 22 (PTPN22), 

signal transducer and activator of transcription (STAT4) as well as several others (22).  

Several environmental factors have been proposed as “triggers” for genetically 

susceptible individuals to develop RA. Among the most well known of these is smoking. 

Beginning in the 1980s, studies emerged demonstrating a higher incidence of RA in 

smokers (27). Furthermore, a positive correlation was found between smoking and 

seropositivity for rheumatoid factor (RF), the previous gold standard for rheumatoid 

arthritis (28, 29). More recently, it was demonstrated that smoking enhances the risk of 

RA in patients expressing anti-citrullinated protein antibodies (ACPAs) – the newly 

established gold standard for detecting and diagnosing RA (see below; (21)). Indeed, 

smoking was shown to enhance the risk of RA only in those individuals expressing 

ACPAs, and had no effect on individuals not expressing ACPAs (21) – an effect that has 

since been demonstrated in European as well as South American populations (30-32). 

Although the exact mechanism of how cigarette smoking contributes to RA, inhaled 

particulate matter (such as that from cigarette smoking) has been shown to trigger 

translocation of the transcription factor NF-κB (33) and may thus initiate pro-

inflammatory cytokine expression contributing to RA.  

Another environmental factor linked to the pathogenesis of RA is exposure to the 

bacterium Porphyromonas gingivalis and its associated infection periodontitis. 

Periodontitis has been demonstrated to increase the risk of RA in non-smokers and is also 

associated with ACPA production (34). Intriguingly, the bacterium is proposed to be able 
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to do this because it expresses a peptidylarginine deiminase (PAD) gene, and it has been 

demonstrated that its ability to express a fully functioning PAD protein – which produces 

citrullinated proteins – is responsible for its facilitation of ACPA driven RA development 

(35). P. gingivalis is the only bacterium known to express PAD, and its own enzyme is 

able to citrullinate both host and bacterial peptides (34). Indeed, ACPAs to the protein 

CEP-1 have been shown to bind the corresponding region of P. gingivalis enolase, 

indicating that microbial mimicry may play a role in the etiopathology of RA (34).  

1.5 Transcriptional regulation 

The proteins a cell produces are a result of each protein’s mRNA levels, the frequency at 

which the mRNA is translated, as well as the stability of the protein itself. The start point, 

however, is the first process of the Central Dogma: the transcription of DNA into RNA – 

the first step towards gene expression. Although there are several steps at which the 

process of gene expression can be regulated to give rise to differential gene expression 

(and the resultant differences in cell properties and functions), it is the first step – 

transcription – which is the most important mechanism in for determining whether or not 

most genes are expressed and how much of the encoded mRNAs are produced (36, 37). 

The proteomic character of a cell is thus determined by which genes are transcribed and 

their rate of transcription in the given cell type. Therefore, it is the differential 

transcription of different genes that largely determines the actions and properties of cells.  

Regulation of gene expression via transcriptional regulation is of paramount importance 

because it affects the execution of precise biological processes such as development, 

proliferation, inflammation, apoptosis, aging, and differentiation. Transcriptional 
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regulation of genes is achieved through the collective action of various cis-regulatory 

elements that are located proximally to genes. These elements include core promoters and 

promoter-proximal elements – located close to the transcription start site (TSS) – as well 

as other elements that are located distantly from the TSS including enhancers, silencers, 

insulators, and tethering elements (Fig. 1.3; (36, 38)). Gene promoters are particularly 

important since they are immediately adjacent to TSSs and are the sites that position the 

transcription initiation complex (PIC) consisting of RNA polymerase and other proteins 

(38). In eukaryotes, RNA polymerase II (RNAPII) is responsible for transcribing all 

protein coding genes – that is, it is responsible for the production of mRNA (38). Since 

this responsibility includes such a hugely diverse array of genes, RNAPII is itself 

controlled in many different ways, with one of these being differing classes of RNAPII 

promoters (38).  
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Figure 1.3 A typical gene regulatory region. The promoter spans an area typically less 

than 1 kb pairs and is composed of a core promoter and proximal promoter elements. 

Distal (upstream) regulatory elements can be located up to 1 Mb pairs from the promoter 

and may include enhancers, silencers, and insulators. Adapted from Maston et al. (37).  
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Another important aspect of the process of transcriptional regulation is the integration of 

several protein signals that culminates in the recruitment of RNAPII and the initiation of 

transcription. Chief among these protein signals is the binding of sequence-specific 

transcription factors (TFs) at their respective transcription factor binding sites (TFBS) 

either within the proximal promoter region or else at enhancers, which functions to 

recruit and stabilize the PIC and drive transcription forward (37, 38). Indeed, the 

sequence variability of TFBS forms another layer of transcriptional regulation in 

themselves. For instance, many transcription factors form heterodimers and/or 

homodimers, with the precise combination of subunits a key factor in the TF’s binding 

specificity and regulatory output (37, 39). Furthermore, variations in the sequence may 

result in stronger or weaker interactions with TF’s, and may also direct a preference for 

particular dimerization partners over others (37, 39). One example of this is the NF-κB 

family of TFs. 

1.5 The NF-κB family 

The NF-κB family is a key player in controlling both innate and adaptive immune 

responses and NF-κB activity is required for lymphocyte survival and activation, as well 

as for mounting normal immune responses (40, 41). NF-κB proteins are constitutively 

present in the cytoplasm in association with proteins that are known as inhibitors of NF-

κB (IκBs). After activation by one of a variety of signals, the IκB proteins become 

phosphorylated, ubiquitinylated and degraded by the proteasome. Freed from their 

association with IκB, NF-κB proteins are able to translocate to the nucleus and bind their 

respective DNA binding sites to activate or repress the transcription of a vast array of 
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inflammatory genes, including cytokines, chemokines and a variety of antimicrobial 

peptides (42, 43). The constitutive activation of NF-κB pathways is often associated with 

inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease, 

multiple sclerosis (MS) and asthma.  

Together, the NF-κB family of proteins consists of five members: NF-κB1 (p50), NF-

κB2 (p52), RelA (p65), RelB and cRel; each member may form a homodimer or a 

heterodimer with any other member, and these dimers in turn have differential abilities to 

regulate gene transcription (44). These proteins have a structurally conserved amino-

terminal 300-amino-acid region, which contains the dimerization, nuclear-localization 

and DNA-binding domains (Fig.1.3). The c-REL, RELB and p65 proteins also have a 

carboxy-terminal non-homologous transactivation domain, which strongly activates 

transcription from NF-κB-binding sites in target genes (41, 43).  The main activated form 

of NF-κB is a heterodimer of the p65 subunit associated with either a p50 or p52 subunit. 

The p50 and p52 proteins are generated by proteolytic cleavage of precursor p105 and 

p100 proteins, respectively. Converse to the main dimers containing p65, p50 and p52 

homodimers lack the transactivation domain, but still bind to NF-κB consensus sites in 

DNA and have been documented as repressing the transcription of some genes linked 

with inflammation (44-46). This function has been ascribed to the resolution phase of 

inflammation, in which it is important to suppress potentially toxic inflammatory factors 

(such as those released by neutrophils and eosinophils) in order to minimize damage to 

surrounding tissues (45). The precursor protein to the p50 subunit, p105, is especially 

interesting because it serves as both a NF-κB subunit precursor and an IκB protein (43).  
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With respect to the transcriptional functionality of NF-κB, The activation and nuclear 

translocation of classical NF-kB dimers (mostly p50-p65) is associated with increased 

transcription of genes encoding chemokines, cytokines, adhesion molecules [intercellular 

adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and 

endothelial – leukocyte adhesion molecule 1 (ELAM)], enzymes that produce secondary 

inflammatory mediators and inhibitors of apoptosis (42, 44). These molecules are 

important components of the innate immune response to invading microorganisms and 

are required for migration of inflammatory and phagocytic cells such as macrophages and 

nuetrophils to tissues where NF-kB has been activated in response to infection or injury. 

1.6 The peptidylarginine deiminase family 

Peptidylarginine deiminase (PAD) enzymes catalyze the conversion of arginine residues 

to citrulline residues in proteins (Fig. 1.4). Citrulline is a nonstandard amino acid, as it is 

not incorporated into proteins during translation and published reports that citrulline 

residues occur in proteins date as far back as 1939 (47).  To date, five family members of 

PAD have been identified in humans. These are: PAD1, PAD2, PAD3, PAD4 and PAD6 

(PAD6 does not appear to be active; (48, 49)). All these enzymes rely strongly on the 

presence of calcium ions for activity (Fig. 1.4) and are unable to convert free L-arginine 

into L-citrulline (a process catalyzed by nitric oxide synthase).  
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Figure 1.4 Citrullination of peptidylarginine by PAD. Schematic representation of the 

citrullination (deimination) reaction catalyzed by the PAD enzyme resulting in the net 

loss of positive charge. Adapted from Vossenaar et al. (49). 
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Although not much is known about the specificity of PAD towards protein substrates, 

studies with peptides indicate that certain amino acids flanking the arginine residue 

influence its susceptibility to citrullination by PAD. For instance, Arg flanked by two Pro 

residues is not citrullinated at all (50). The most noticeable difference between the 

isotypes is their tissue-specific expression. For example, PAD1 is expressed in epidermis 

and uterus, and has been shown to play a role in keratinocyte differentiation (49).  During 

terminal differentiation of keratinocytes, keratins (K1 and K10) and the keratin-

associated protein filaggrin are citrullinated and it is believed that the flexibility of the 

keratin cytoskeleton is reduced upon citrullination, stimulating the cornification of the 

epidermis (49, 51). Similar to PAD1, PAD3 is found mainly associated with the 

epidermis and in particular is localized in the inner root sheath cells of hair follicles (49). 

PAD2 is the most widely expressed of the family and while it can mainly be found in 

skeletal muscle, it is also expressed in brain (in particular the hypothalamus), spleen, and 

secretory glands as well as in macrophages (49).  

1.7 Biological function of PAD4 

PAD4 is the only member of the family that is located within the nucleus as it uniquely 

carries a nuclear localization sequence (NLS). Although PAD4 can be found broadly in 

white blood cells, it is mainly expressed in neutrophils where it has been shown to be 

essential to chromatin remodeling processes during neutrophil extracellular trap (NET) 

formation (49, 52, 53). More broadly however, PAD4 has gained increasing attention 

because of the unique role it plays in regulating immune function, gene transcription, as 

well as in maintaining the pluripotency of stem cells.  
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Within the inflammatory process, PAD4 plays an important role regulating the function 

of neutrophils. In response to a stimulus (e.g. lipopolysaccharide or LPS), a subset of 

neutrophils will undergo NET formation via the genome-wide citrullination of histones 

H1 and H3 (54, 55). Histone citrullination in cells undergoing NETosis leads to large-

scale chromatin decondensation, which initiates the expulsion of DNA from the cell to 

form net-like structures that can “trap” invading bacteria. However, while NETosis is a 

defense mechanism against invading organisms, its pro-inflammatory nature often links it 

to a variety of inflammatory disorders. For instance, in chronic autoimmune diseases, this 

process is aberrantly upregulated and likely plays an important role in the etiology of RA, 

systemic lupus erythematosus, ulcerative colitis, atherosclerosis, and even cancer (56-58). 

In cancer, recent data indicate that aberrant NET formation promotes vascular 

inflammation, leading to thrombosis (58).  

Histone citrullination by PAD4 has also been demonstrated to regulate gene transcription. 

In particular, citrullination of histones H3 and H4 has been demonstrated to be associated 

with decreased expression of genes under the control of the estrogen and thyroid 

receptors (53, 59, 60). Moreover, it was shown that treatment of U2OS cells, an 

osteosarcoma cell line, with the pan-PAD inhibitor Cl-amidine leads to decreased PAD4 

activity that was associated with the increased expression of p53 as well as several p53-

dependent genes, including p21, PUMA, and OKL38 as well as induction of apoptosis 

(61, 62).  

More recently, an intriguing role for PAD4 as a mediator of pluripotency in stem cells 

has been under investigation. Whereas it was previously thought that PAD4 was only 

expressed in mature neutrophils and other myeloid cells, it has now been demonstrated 
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that PAD4 is expressed in mouse embryonic stem cells (ES), induced pluripotent stem 

cells (iPS), as well as the LSK (Lineage-, Sca-1+, c-kit+) hematopoietic stem cells (63, 

64). Christophorou et al. (63) showed that increased levels of citrullinated H3 are 

correlative with higher levels of the pluripotency genes Klf2, Tcl1, Tcfap2c, and Kit. To 

further demonstrate that PAD4 activity is required to generate pluripotent stem cells, the 

authors treated mouse ES cells with the PAD inhibitor Cl-amidine and showed that 

decreased histone H3 citrullination was correlated with decreased expression of Nanog, 

Tcl1, and Klf5. Further verifying the importance of PAD4 in maintaining pluripotency, 

Cl-amidine treatment also increased the expression of several differentiation genes, 

including Epha1, Prickle1, and Wnt8a. These data are in agreement with findings 

published by Nakashima et al. (64) which showed that PAD4 regulates multipotency by 

controlling expression of c-kit. In total, these data suggest an exciting new avenue in the 

study of PAD4 and its function outside the immune response. 

1.9 PAD4, citrullination, and rheumatoid arthritis 

PAD4 has for some time been investigated for a role in RA pathogenesis (65). PAD4 is 

located on chromosome 1p36, and has been shown to be essential for NET formation 

(66). However, a serological examination of RA patients quickly reveals why PAD4 is 

being widely targeted as a factor in disease pathogenesis. As discussed above, a family of 

autoantibodies directed against proteins containing citrulline – termed anti-citrullinated 

protein antibodies (ACPAs) – can be found in high titers and with high specificity in the 

synovia of RA patients (67, 68). Some of these include anti-filaggrin autoantibody 

(AFA), anti-keratin antibody (AKA), anti-pernicular factor (APF), and anti-cyclic 
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citrullinated peptide antibody (anti-CCP) (68, 69). Indeed, diagnostic tests for ACPA’s 

show >97% specificity and sensitivity of at least 82% (19, 67), and have even been 

shown to be predictive of disease onset and severity (70). These characteristics of ACPAs 

have led to their wide use in diagnostic laboratories in testing for RA (19).  

The association between citrullinated proteins and onset of RA has stimulated great 

interest in the PAD enzymes, particularly PAD4. Studies in recent years have established 

that PAD4 is present in high levels in RA synovia and is itself a target of autoantibodies 

(69, 71). Furthermore, a meta-analysis of RA patients in Japan, North America, and 

Europe has established a positive correlation between polymorphisms in the PAD4 gene 

and RA incidence (72). Intriguingly, a recently published pan-PAD inhibitor, Cl-amidine, 

was used to treat mice with collagen-induced arthritis, inducing a ~50% reduction in 

disease activity (73).  

1.10 Hypothesis 

While much work has focused on PAD4 and its role in RA pathogenesis, little has been 

done to find out how PAD4 is transcriptionally regulated. The purpose of this study was 

therefore to determine how transcription of the PAD4 gene is regulated in the human 

myeloid lineage. Since it has been demonstrated to be a central mediator of the immune 

innate and adaptive immune responses, and since PAD4 has been shown to be essential to 

the functionality of neutrophils in the context of acute inflammation, it was hypothesized 

that NF-κB is an activator of PAD4 transcription during inflammation in RA 

pathogenesis. 
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Chapter 2: Materials and Methods 

2.1 Cell culture 

The human HL-60 cell line (American Type Culture Collection [ATCC], Manassas, VA) 

was cultured in media consisting of Iscove’s Modified Dulbecco’s Medium (IMDM) with 

4.5g/L glucose, HEPES buffer, and L-glutamine (Lonza, Shawinigan, QC) supplemented 

with 10% charcoal stripped fetal bovine serum (Wisent, St. Bruno, QC), penicillin (100 

U/mL)/ streptomycin (100 µg/mL)/ L-glutamine (.292 mg/mL) stock combination 

(Mediatech, Manassas, VA), and 5x10-5 M β-2-mercaptoethanol (Sigma-Aldrich, St. 

Louis, MO). The murine WEHI-3B and human THP1 cell lines (ATCC) were cultured in 

media consisting of RPMI-1640 medium with L-glutamine (Lonza) supplemented with 

10% fetal bovine serum (Wisent), penicillin (100 U/mL)/ streptomycin (100 µg/mL)/ L-

glutamine (.292 mg/mL) combination (Mediatech), and 5x10-5 M β-2-mercaptoethanol 

(Sigma-Aldrich).  

2.2 LPS stimulation 

Cultured human HL-60 cells were harvested and plated at 500,000 cells/well and 

incubated at 37°C for 24 h. The cells were then stimulated with LPS (Invitrogen) at a 

concentration of 1 µg/mL then incubated for 48h. Cultured murine WEHI-3B cells were 

harvested and plated at 500,000 cells/well in a 6-well plate and incubated at 37°C for 24 

h. The cells were then stimulated with LPS (Invitrogen) at a concentration of 400 ng/mL 
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and incubated for 72h. Total RNA was isolated and real time RT-qPCR was used to 

measure levels of PAD4 mRNA.  
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Table 2.1: PCR and RT-qPCR primer sequences 

Primer Name Sequence 
1 Murine PADI4 Real-Time PCR 5ʼ 

Primer 
5ʼ-TCTTTGTGGGTCACGTGGATGAGT-3ʼ 

2 Murine PADI4 Real-Time PCR 3ʼ 
Primer 

5ʼ-AGCTCCTGGAACAGCTGATAGCAA-3ʼ 

3 Murine GAPDH Real-Time PCR 5ʼ 
Primer 

5ʼ-GAACATCATCCCTGCATCCA-3ʼ 

4 Murine GAPDH Real-Time PCR 3ʼ 
Primer 

5ʼ-CCAGTGAGCTTCCCGTTCA-3ʼ 

5 TNF-α Real-Time PCR 5ʼ Primer 5ʼ-ATGAGCGAAAGCATGATCCGC-3ʼ 
6 TNF-α Real-Time PCR 3ʼ Primer 5ʼ-GTCTGGGCCATAGAACTGATGAGA-3ʼ 
7 Murine PADI4 Conserved Region 5ʼ 

Primer 
5ʼ-CTTTGATGTGGAGCCAAAGGAGACCC-3ʼ 

8 Murine PADI4 Conserved Region 3ʼ 
Primer 

5ʼ-GCTTATCTCTCTAGCAGATCTCTTGC-3ʼ 

9 PADI4 Promoter 5ʼ Primer 5ʼ-TAAGTGTGCTTGGGCAAGATGTGC-3ʼ 
10 PADI4 Promoter 3ʼ Primer with 

HindIII 
5ʼ-GAAGCTTCCTTGCTCGCTCGGTCAGC-3ʼ 

11 Murine PADI4 NFκB Mutation 5ʼ 
Primer 

5ʼ-GGAACCAGCCCAGCCGCTTCCTGCTGCC-3ʼ 

12 Murine PADI4 NFκB Mutation 3ʼ 
Primer 

5ʼ-GGCAGCAGGAAGCGGCTGGGCTGGTTCC-3ʼ 

13 Human PAD4 Promoter 5ʼ 5ʼ-ACTGTGGGCATGAGGACCAGGACC-3ʼ 
14 Human PAD4 Promoter 3ʼ 5ʼ-AAAGCTTCGTCGGGCTAGCTCGTCCC-3ʼ 
15 Human PAD4 NFκB Mutation 5ʼ  5ʼ-GATATAAAGGAACCAGCCCAGCCGCTTCCTACAGCCAGAGGGAC-3ʼ 
16 Human PAD4 NFκB Mutation 3ʼ 5ʼ-GTCCCTCTGGCTGTAGGAAGCGGCTGGGCTGGTTCCTTTATATC-3ʼ 
17 Human PAD4 Real-Time PCR 5ʼ 5ʼ-AGGAGGTGTACGCGTGCAGTATTT-3ʼ 
18 Human PAD4 Real-Time PCR 3ʼ 5ʼ-ATCCTGCATCCACTGGTCATCCAT-3ʼ 
19 Human GAPDH Real-Time PCR 5ʼ 5ʼ-CATGTTCGTCATGGGTGTGAACCA-3ʼ 
20 Human GAPDH Real-Time PCR 3ʼ 5ʼ-AGTGATGGCATGGACTGTGGTCAT-3ʼ 
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2.3 TNF-α stimulation 

Cultured cells were passaged into flasks containing 10 mL of pre-warmed medium two 

days before the treatment. The cells were passaged again into two flasks prior to 

treatment to a final concentration of 1 x 106 cells/mL. TNF-α (eBioscience, San Diego, 

CA) was then added for a final concentration of 1.7 x 10-4 µg/mL to one flask and both 

flasks were incubated for 1 h at 37°C. Total RNA was isolated and real time qPCR was 

used to measure the levels of PAD4 mRNA. 

2.4 Retinoic acid stimulation 

Cultured cells were passaged into flasks containing 10 mL of pre-warmed medium two 

days before the treatment. The cells were passaged again into two flasks prior to 

treatment to a final concentration of 3 x 106 cells/mL. The cells were then stimulated with 

retinoic acid (Sigma-Aldrich) dissolved in 95% ethanol. 10 µL of 3 µg/µL retinoic acid 

were added to one flask and 10 µL of 95% ethanol were added to the second. Both flasks 

were incubated at 37°C for 72 h. Total RNA was isolated and real time Q-PCR was used 

to measure the levels of PAD4 mRNA 

2.5 Bioinformatic analysis 

The sequence of the upstream region of the human PAD4 gene was obtained from the 

Ensembl database. Potential transcription factor binding sites were determined using the 

position-weight-matrices present in MatInspector (Genomatix, Munich, Germany).  

 



25 

 

2.6 RNA analysis 

Total RNA was isolated from cells using the RNA-Bee Isolation Kit (Tel-Test, 

Friendswood, TX). The iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA) was used to 

synthesize cDNA from 1µg of the extracted RNA. Real time PCR was performed using 

the iQ SYBR Green Supermix Kit (Bio-Rad) and analyses were done using a Rotor-Gene 

6000 (Corbett Life Science, San Fransisco, CA). Murine PAD4 transcript levels were 

measured and normalized in real time PCR analyses to murine GAPDH.  Human PAD4 

transcript levels were measured and normalized in q-PCR analyses to human GAPDH. 

Gene expression analysis was done using REST 2009 Software via the comparative 

threshold cycle method (Technical University of Munich, Munich, Germany).  

2.7 Plasmid construction 

In total, two sets of three reporter plasmids were constructed: pGL3+NF-κB FWD, 

pGL3-Basic+NF-κB REV, and pGL3+NF-κB MUT. The first two constructs contained 

the predicted PAD4 promoter in the forward and reverse directions, respectively.  To 

obtain these first two constructs, the conserved region of the PAD4 promoter was PCR 

amplified from C57BL/6 mouse DNA or from human HL-60 DNA. The PCR product 

was cloned using the StrataClone PCR Cloning Kit and cloned (Agilent Technologies, La 

Jolla, CA). Clones containing the target insert in the forward and reverse orientations 

were isolated to obtain the pGL3+NF-κB FWD and pGL3+NF-κB REV constructs, 

respectively. To obtain the pGL3+NF-κB MUT construct, the pGL3+NF-κB FWD 

construct was mutated using the QuikChange XL Site-Directed Mutagenesis Kit (Agilent 

Technologies). Before use, all three plasmid constructs were transformed into DH5α cells 
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and transfection-quality DNA was made using the QIAGEN Plasmid MAXI Kit 

(QIAGEN). 

2.8 Transient transfection analysis  

For each transfection, 5 x 106 cells were transfected with 10 µg of luciferase reporter 

plasmid and 0.5 µg of pRL-TK (Promega, Madison, WI). After a 10 minute incubation, 

the cells were electroporated at 220 V and 950 µF using a GenePulser II with Capacitance 

Extender Plus (Bio-Rad). The cells were incubated for 24 h at 37°C following another 10 

minute incubation at room temperature. Luciferase assays were performed using the 

Dual-Luciferase Reporter Assay System (Promega). The production of light was 

measured with a Lumat LB 9507 luminometer (Berthold Technologies, Oak Ridge, TN).  

2.9 Chromatin ImmunoPrecipitation (ChIP) 

HL-60 cells treated (or not) with TNF-α at 1.7 x 10-4 µg/mL were treated with 1% 

formaldehyde for 10 min at room temperature. Cross-linking was terminated with 125 

mM glycine. The cells were lysed in lysis buffer (50 mM Tris-HCl [pH 8.1], 10 mM 

EDTA, 1% SDS) containing Halt™ protease inhibitor mixture (Thermo Scientific). 

Chromatin solutions were sonicated to yield DNA fragments in the range 300–700 bp 

using a Bioruptor 300 waterbath sonicator (Diagenode, Sparta, NJ). Sonicated chromatin 

was incubated with rabbit polyclonal anti-human p50 or anti-human p65 antibodies 

(Abcam, Cambridge, MA) conjugated to protein G DynaBeads (Invitrogen, Burlington, 

Ontario, Canada) overnight at 4°C. As a control, sonicated chromatin was incubated with 

rabbit polyclonal IgG (Abcam) conjugated to protein G DynaBeads. Magnetic bead-
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bound complexes were enriched using a Dynal magnetic particle concentrator 

(Invitrogen). Bound beads were washed once with low-salt wash buffer (0.1% SDS, 1% 

Triton X-100, 2 mM EDTA, 20 mM Tris-HCl [pH 8.0], 150 mM NaCl), once with high-

salt buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl [pH 8.0], 500 

mM NaCl), once with LiCl buffer (0.25 M LiCl, 1% Nonidet P-40, 1% Na-deoxycholate, 

1 mM EDTA, 10 mM Tris-HCl [pH 8.0]), and twice with Tris-EDTA buffer at pH 8. 

Immunocomplexes were eluted with elution buffer (1% SDS, 0.1 M NaHCO3). Cross-

links were reversed in a final volume of 300 µl, containing 200 mM NaCl, overnight at 

65°C. DNA was purified using a Wizard SV Gel and PCR purification Kit (Promega). 

Enrichment was measured using qPCR of DNA immunoprecipitated with anti-FLAG or 

mouse IgG, using primers indicated in Table 2.1. Fold enrichment was calculated using 

the comparative threshold cycle method. 

2.10 Statistical Analysis 

All data are reported as mean ± SD of the mean. Statistical significance of luciferase 

assay and ChIP results was determined using students t test. Statistical analysis of RT-

qPCR results was done using REST 2009 software (Technical University of Munich). 
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Chapter 3: Results 

3.1 Identification of the PAD4 promoter 

Previous work in our laboratory was done to determine transcription start sites of the 

murine PAD4 gene (74). Analyses done using RNA obtained from murine WEHI-3B 

cells revealed possible transcription starts sites at -52 and -55 relative to the translation 

start site (74). Furthermore, previous work done in our lab showed evidence that the 

transcription start sites identified in the PAD4 gene were downstream of an active 

promoter (74). To test this region in human cells, the putative PAD4 promoter was 

analyzed for conserved regions by comparing the DNA sequences of the PAD4 locus 

from humans and six other species (Fig. 3.1). Regions that were highly conserved 

between species suggested that those regions represent functionally important regulatory 

elements (75, 76). A ClustalW alignment revealed several regions within 200 bp of the 

translation site that shared a high degree of sequence identity (Fig. 3.1), suggesting that 

this region may function as the PAD4 promoter.  Using the weight matrices available in 

MatInspector (Genomatix) which identify potential transcription factor binding sites 

based on known DNA binding patterns as well as biological function, four potential 

transcription factor binding sites in the PAD4 promoter were located: Kruppel like 

transcription factor, vertebrate TATA binding protein, NF-κB and ETS1 (Fig. 3.1).  
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Figure 3.1 Potential transcription factor binding sites identified within the conserved 

region of the PAD4 promoter. A region approximately 400 bp upstream of the PAD4 

ATG start codon contains two major conserved sequences and 150 conserved 

nucleotides.  A ClustalW alignment of the PAD4 promoter sequences from H. sapiens 

(human), M. musculus (mouse), R. norvegicus (rat), E. ferus (horse), L. africana 

(elephant), C. familiaris (dog), and S. scrofa (pig) is shown with the conserved sequences 

boxed. Bioinformatic analysis predicted binding sites for the transcription factors NF-κB, 

TATA-ETS-like, AP-1, KLF-6 as well as SP1. 
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3.2 PAD4 is inducible in human HL-60 cells 

Before performing experiments based on PAD4 expression, it was necessary to identify a 

human cell line that could express PAD4. It was previously reported that HL-60 cells can 

be induced with retinoic acid to express PAD4 (77), and we elected to repeat this. To that 

end, we stimulated cultured HL-60 cells with 3 µg/µL retinoic acid then extracted total 

RNA. Afterwards, cDNA was synthesized and real time qPCR was performed to analyze 

differences in PAD4 expression between retinoic acid-treated cells and control cells. This 

experiment was repeated three times and there was an average 2.3 fold increase of PAD4 

transcripts in HL-60 cells treated with retinoic acid relative to untreated cells (Fig. 3.2). 

These results demonstrate that HL-60 express PAD4 that is further inducible with retinoic 

acid. 
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Figure 3.2  PAD4 is inducible in HL-60 cells treated with retinoic acid. HL-60 cells in 

two culture flasks were treated with retinoic acid or an equal volume of 95% ethanol. 

Shown are the mean transcript levels ± S.D. from three independent triplicate 

experiments. There was a 2.3-fold increase in PAD4 transcript levels in treated cells. 

Asterisk indicates significant difference (p < 0.05) as measured by a  paired one-tailed 

students t-test. 
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3.3 The PAD4 promoter contains a potential NF-κB binding 

site 

NF-κB is a multifunctional transcription factor that participates in the regulation of the 

immune response and inflammation that has also been implicated in the development of 

autoimmune diseases. Since our bioinformatics analysis predicted the presence of a NF-

κB binding site in the PAD4 promoter, we elected to test whether NF-κB could be 

important in the regulation of PAD4 – itself an important mediator of innate immunity 

(40, 42, 52, 78).  

NF-κB family members have been shown to interact with a DNA core motif containing 

the consensus RGGRNNHHYYB (79-81). To test the activity of the predicted NF-κB site 

in the PAD4 promoter dual luciferase assays were carried out with various constructs. In 

brief, three reporter vectors were constructed (See 2.7-2.8). The first construct encoded 

the predicted NF-κB site in the forward orientation (FWD) directly upstream of the 

firefly luciferace gene, the second contained the predicted NF-κB site in the reverse 

orientation (REV) directly upstream of the firefly luciferace gene, and for the third 

construct site directed mutagenesis was used to convert the second and third guanosine 

residues into cytosines – a change expected to prevent NF- κB binding (Fig. 3.3B). 

Constructs containing the PAD4 wildtype or mutated human NF-κB site were transfected 

into human and murine cells. The human PAD4 promoter with a mutated NF-κB site 

displayed significantly lower biological activity (P <0.05) than the wild-type when 

transfected into murine WEHI-3B cells (Fig. 3.4). Interestingly however, reporter vectors 

containing the human PAD4 promoter with mutated NF-κB binding site transfected into 
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human HL-60 and THP-1 cells showed significantly greater activity than the wild-type 

(Fig. 3.5A and B; P <0.05). To test whether mutating the murine PAD4 promoter would 

have the same effect, constructs containing the murine PAD4 promoter were transfected 

into human HL-60 cells (Fig. 3.6). Mutation of the potential NF-κB binding site in the 

murine promoter did not cause a significant change in luciferase activity relative to wild-

type (Fig. 3.6). 

To further test the importance of the NF-κB binding site in the the human promoter 

relative to other upstream TFBS, we elected to conduct a deletion analysis in which 

promoter vectors containing varying lengths of the PAD4 promoter were transfected into 

human HL-60 cells. HL-60 cells transfected with constructs containing only the NF-κB 

binding site as well as the transcription start site (TSS) showed a modest but significant 

increase in luciferase activity relative to cells transfected with constructs containing only 

the TSS (Fig. 3.7).  These results suggest that the NF-κB site in the human PAD4 

promoter is functional and may act as an activating or a repressive element in murine and 

human cells, respectively.   
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Figure 3.3 Overview of the pGL3-basic luciferase reporter plasmids. (A) The PAD4 

promoter region inserted into the vector contains the potential NF-κB binding site. Three 

constructs were made to test the site. One containing the PAD4 promoter region in the 

forward orientation, another in the reverse, and the third with the PAD4 promoter region 

in the forward orientation with a mutation in the putative NF-κB binding site. (B) 

Alignment depicting the mutation of the NF-κB binding site, with the second and third 

guanosines mutated to cytosines. 

BA
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Figure 3.4 A predicted NF-κB site regulates PAD4 transcription in murine WEHI-3B 

cells. Three constructs were made to test the site; one containing the murine PAD4 

promoter region in the forward orientation (FWD), another in the reverse (REV), and the 

third with the PAD4 promoter region in the forward orientation with a mutation in the 

putative NF-κB binding site (MUT). The positive control (+) was a construct containing 

the viral SV40 promoter upstream of the luciferase gene. The negative control (-) was a 

promoter-less construct. Mutation of the human NF-κB results in decreased human 

promoter activity in murine WEHI-3B cells. Results shown are from three biological 

experiments performed in technical duplicate. Paired, one-tailed student’s t test was used 

to compare luciferase activity from the FWD construct to that of the MUT construct. 
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Figure 3.5 A predicted NF-κB site regulates PAD4 transcription in human myeloid cells. 

Three constructs were made to test the site; one containing the human PAD4 promoter 

region in the forward orientation (FWD), another in the reverse (REV), and the third with 

the PAD4 promoter region in the forward orientation with a mutation in the putative NF-

κB binding site (MUT). The positive control (+) was a construct containing the viral 

SV40 promoter upstream of the luciferase gene. The negative control (-) was a promoter-

less construct (A) Mutation of the NF-κB binding site in the human PAD4 promoter 

significantly increases promoter activity in human HL-60 cells. Shown is the relative fold 

difference in biological activity of each reporter normalized to the pGL3-basic promoter-

less plasmid. Results are an average of three biological experiments performed in 

duplicate. (B) Mutation of the NF-κB binding site significantly increased human PAD4 

promoter activity in human THP-1 cells. Shown are the results of three biological 

replicates performed in duplicate. Paired, one-tailed student’s t test was used to compare 

luciferase activity from the FWD construct to that of the MUT construct. 
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Figure 3.6 A predicted NF-κB site in the murine PAD4 promoter does not affect 

transcription in human cells. Three constructs were made to test the site; one containing 

the murine PAD4 promoter region in the forward orientation (FWD), another in the 

reverse (REV), and the third with the PAD4 promoter region in the forward orientation 

with a mutation in the putative NF-κB binding site (MUT). The positive control (+) was a 

construct containing the viral SV40 promoter upstream of the luciferase gene. The 

negative control (-) was a promoter-less construct Mutation of the murine NF-κB binding 

site has no effect on promoter activity in human HL-60 cells. Shown is the relative fold 

difference in biological activity of each reporter normalized to the pGL3-basic promoter-

less plasmid. A paired, one-tailed student’s t test was used to compare luciferase activity 

from the FWD construct to that of the MUT construct and there was not a significant 

difference between the two. Results are an average of three biological replicates 

performed in duplicate.  
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Figure 3.7 The predicted NF-κB site in the human PAD4 promoter increases luciferase 

activity. Inclusion of the NF-κB binding site into the luciferase construct containing the 

PAD4 TSS (TSS+NF-κB) causes a significant increase in luciferase activity. Shown is 

the relative fold difference in biological activity of each reporter normalized to the pGL3-

basic promoter-less plasmid. Results are an average of three biological replicates 

performed in duplicate. A paired, one-tailed student’s t test was used to compare 

luciferase activity from the TSS construct to that of the TSS+NFkB construct. 
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3.4 Inflammatory stimuli regulate PAD4 expression 

Since the luciferase results suggested the presence of a functional NF-κB binding site in 

the human and murine PAD4 promoters (Fig. 3.4-3.7), we elected to test the effect of NF-

κB activation on endogenous PAD4 transcript levels. TNF-α or LPS – known activators 

of the NF-κB pathway – were used to stimulate human HL-60 and WEHI-3B cells (82, 

83). Since both TNF-α and IL8 are markers of NF-κB activation, they were used as 

positive controls in these experiments (84). WEHI-3B cells treated with TNF-α displayed 

a 5.9-fold increase in TNF-α transcript levels and a 3-fold increase in PAD4 transcript 

levels (Fig. 3.8). Human HL-60 cells treated with LPS did not show a significant change 

in PAD4 or IL8 transcript levels (Fig. 3.9A). Gene expression analysis was done using 

REST 2009 Software via the comparative threshold cycle method (Technical University 

of Munich,). This result suggests that human HL-60 cells grown in culture are not 

responsive to LPS treatment. Finally, HL-60 cells treated with TNF-α showed a 

significant 2.7-fold increase in IL8 transcript levels –– along with a significant 1.3 fold 

decrease in PAD4 transcript levels (Fig. 3.9B; P <0.05). These results were consistent 

with our previous findings and suggest that NF-κB may function as a transcriptional 

repressor of PAD4 in humans while acting as an activator in murine cells.  
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Figure 3.8 Induction of NF-κB upregulates PAD4 in mouse WEHI-3B cells. Fold 

induction of GAPDH, PAD4 and TNF-α transcript levels in murine WEHI-3B cells 

treated with 1.7 x 10-4 µg/mL TNF-α. TNF-α transcript levels increased 5.88 fold while 

PAD4 transcript levels increased 3.2 fold in treated cells. Gene expression analysis was 

done using REST 2009 Software via the comparative threshold cycle method (Technical 

University of Munich, Munich, Germany). 
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Figure 3.9 Induction of NF-κB downregulates PAD4 in human myeloid cells (A) Fold 

induction of GAPDH, PAD4 and TNF-α transcript levels in human HL-60 cells treated 

with LPS. Cells were treated with 400 ng/ml LPS and incubated for 72 hours. There was 

not a significant change in PAD4 or IL8 transcript levels. (B) Fold induction of GAPDH, 

PAD4 and TNF-α transcript levels in human HL-60 cells treated or not with TNF-α. 

Shown are the mean transcript levels ± S.D. from three experiments performed in 

triplicate. IL8 transcript levels increased 2.67 fold whereas PAD4 transcript levels were 

reduced 0.71 fold in treated cells. * p<0.05 
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3.5 P50 binds to the PAD4 promoter  

Finally, we investigated the potential role of NF-κB family members p50 and p65 in 

binding directly to the PAD4 promoter. P50-p65 heterodimers form the “classical” NF-

κB transcriptional activator responsible for most canonical NF-κB-mediated expression 

of inflammatory response genes (45, 85, 86). Conversely, p50 homodimers have been 

demonstrated to repress several different inflammatory genes controlled by NF-κB in a 

manner consistent with the resolution phase of inflammation (45, 46). Both p65-p50 

heterodimers and p50 homodimers can be activated via the canonical pathway involving 

activation of the TNF receptor (TNFR) by TNF- α (44, 45). Therefore, we hypothesized 

that inducing the NF-κB pathway via TNFR stimulation would lead to production of the 

active forms of both p65-p50 heterodimers (the activating heterodimer) as well as 

repressive p50 homodimers. To determine if these NF-κB subunits bind the PAD4 

promoter, we performed chromatin immunoprecipitation (ChIP) analysis. Chromatin 

prepared from HL-60 cells treated or not with TNF-α was immunoprecipitated with either 

rabbit polyclonal anti-human p50 or anti-human p65 antibodies and rabbit polyclonal IgG 

to control for non-specific binding. qPCR was used to determine the relative amount of 

immunoprecipitated DNA from the PAD4 promoter region, the IL8 promoter region with 

which p50 and p65 is known to interact with as a positive control, and the negative 

control C4ORF11, a gene expressed at low levels and with no known binding to NF-κB  

(Fig. 3.11; (84, 87)).  ChIP analysis confirmed that p65 was highly enriched at the IL8 

promoter, but not significantly enriched at the PAD4 promoter upon TNF-α stimulation 

(Fig. 3.10A; B). However, p50 enrichment at the PAD4 promoter was significantly 

greater in treated cells than untreated (Fig. 3.11A, B; p=0.017). Taken together, these 
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data are consistent with the possibility that p50 homodimers of NF-κB directly interact 

with the human PAD4 promoter and act to functionally repress PAD4 during 

inflammation. 
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Figure 3.10 The p65 subunit of NF-κB does not interact directly with the human PAD4 

promoter upon TNF-α stimulation. Human HL-60 cells were treated or not with TNF-α 

for one hour before chromatin immunoprecipitation (ChIP) analysis to examine p65 

binding to the NF-κB site in the PAD4 promoter. Real time quantitative PCR (RT-qPCR) 

was used to quantify fragments of DNA immunoprecipitated with rabbit polyclonal anti-

human p65 and rabbit polyclonal IgG (control). (A) Representative figure from three 

anti-p65 ChIP experiments. Results are expressed as levels of DNA immunoprecipitated 

with anti-p65 IgG i.e. as a percentage of input DNA. Levels of p65 enrichment at the IL8 

promoter (positive control) were higher in treated cells than untreated. There was no 

change in levels of p65 enrichment at the C4ORF11 promoter in treated and untreated 

cells. + and - refer to TNF-α treatment. (B) Results of all p65 (n=3) ChIP experiments. 

Data is expressed as fold enrichment of DNA immunoprecipitated with anti-p65 IgG 

normalized to DNA immunoprecipitated with IgG. There was not a siginificant change in 

p65 enrichment at the PAD4 promoter in treated cells relative to untreated. Significance 

was measured using student’s t test.  
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Figure 3.11 The p50 subunit of NF-κB interacts directly with the human PAD4 promoter 

upon TNF-α stimulation. Human HL-60 cells were treated or not with TNF-α for one 

hour before chromatin immunoprecipitation (ChIP) analysis to examine p50 binding to 

the NF-κB site in the PAD4 promoter. Real time quantitative PCR (RT-qPCR) was used 

to quantify fragments of DNA immunoprecipitated with rabbit polyclonal anti-human 

p50 and rabbit polyclonal IgG (control). (A) Representative figure from seven anti-p50 

ChIP experiments. Results are expressed as levels of DNA immunoprecipitated with anti-

p50 IgG i.e. as a percentage of input DNA. Levels of p50 enrichment at the IL8 promoter 

(pos. control) were higher in treated cells than untreated. There was no change in levels 

of p50 enrichment at the C4ORF11 promoter in treated and untreated cells. + and - refer 

to TNF-α treatment. (B) Results of all p50 (n=7) ChIP experiments. Data is expressed as 

fold enrichment of DNA immunoprecipitated with anti-p50 IgG normalized to DNA 

immunoprecipitated with IgG. There was a siginificant increase in p50 enrichment at the 

PAD4 promoter in treated cells relative to untreated. Significance was measured using 

student’s t test.  
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Chapter 4: Discussion 

4.1 Overview 

Rheumatoid arthritis is an autoimmune disease whose etiology remains elusive because 

of the myriad environmental and genetic factors that have potential roles in its 

pathogenesis (22, 24). One of the potential genetic factors being considered for a role in 

RA is the gene encoding PAD4, an enzyme that catalyzes the post-translational 

modification of citrullination. PAD4 is particularly interesting because it is found in the 

rheumatoid synovial membrane, synovial fluid cells (for example, neutrophils), and 

extracellular synovial fluid (19, 88). Meta-analyses of Japanese, European and North 

American populations have established a correlation between polymorphisms in the 

PAD4 gene and RA incidence (72). A family of autoantibodies directed against proteins 

containing citrulline – termed anti-citrullinated protein antibodies (ACPAs) – can be 

found in high titers and with high specificity in the synovia of RA patients (67, 68). 

Finally, PAD4 has itself been found to be a target of antibodies in RA (71). The goal of 

this study was to determine how transcription of PAD4 gene is directed in the human 

myeloid lineage, and whether NFκB is an activator of PAD4 transcription. Over the 

course of my thesis, I characterized the human PAD4 promoter and demonstrated its 

activity. In turn, I analyzed both the human and murine PAD4 promoters for possible 

transcription factor binding sites, located a possible NF-κB site, and determined that the 

site was active.  I hypothesized that this NF-κB binding site could play a role in 

regulating PAD4 transcription. I tested this idea by using inflammatory stimuli to activate 

the NF-κB pathway in cultured cells, showing that inflammatory stimuli caused changes 
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in PAD4 transcription. Finally, I demonstrated that the NF-κB subunit p50 directly 

interacts with the PAD4 promoter independently of p65, suggesting that p50 homodimers 

act to suppress PAD4 transcription in the context of human inflammation. 

4.2 NF-κB may be important for transcriptional regulation of 

PAD4 

NF-κB is a particularly interesting candidate vis-a-vis rheumatoid arthritis because of the 

essential role it plays in human immunity. Indeed, several inflammatory diseases are 

characterized partly by activation of NF-κB including asthma, inflammatory bowel 

syndrome, atherosclerosis, and rheumatoid arthritis (89). Together, the NF-κB family of 

proteins consists of five members: NF-κB1 (p50), NF-κB2 (p52), RelA (p65), RelB and 

cRel; each member may form a homodimer or a heterodimer with any other member, and 

these dimers in turn have differential abilities to regulate gene transcription (44). In 

unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB proteins. In turn, the 

IκB protein family consists of three functional groups: the typical IκB proteins IκBα, 

IκBβ and IκBε, all three of which are present in the cytoplasm of unstimulated cells and 

are degraded as a consequence of stimulation; the precursor proteins p100 and p105, 

which can be processed to form the NF-κB family members p52 and p50, respectively; 

and finally the atypical IκB proteins including IκBζ, BCL-3 (B-cell lymphoma 3) and 

IκBN, all of which are not normally expressed in the cytoplasm, but are expressed in 

response to activation and act to modulate transcription thereafter.  

In response to activation, IκBα undergoes ubiquitin-mediated proteasomal degradation 

that results in the release of the bound NF-κB dimers. The cytoplasmic NF-κB (most 
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often in the form of p65-p50 heterodimers) then translocates to the nucleus and drives 

gene expression. NF-κB dimers are involved in both the activation and repression of a 

host of different genes involved in the immune response. The regulatory mechanisms 

regulating the activating or repressive function of NF-κB are complex and often involve 

substantial crosstalk between different pathways in context and cell-specific ways (90, 

91). For instance, p50 and p52 homodimers have for some time been known to repress 

the transcription of some genes linked with inflammation (44, 45). However, this 

repression is often augmented by the presence of BCL-3, an atypical IκB family member, 

which is present in the nucleus and can either stabilize the repressive function of p50 

homodimers already bound to DNA or else it may bind the homodimer and confer 

transcriptional activation ability (92, 93). Furthermore, the inflammatory context in 

which the cell is present has been advanced as another factor in the nature of NF-κB 

function. For example, the repressive function of p50 and p52 homodimers has been 

ascribed to the resolution phase of inflammation, in which it is important to suppress 

potentially toxic inflammatory factors (such as those released by neutrophils and 

eosinophils) in order to minimize damage to surrounding tissues (45). Thus the activation 

or repressive function of NF-κB dimers can be ascribed not only to the particular 

combination of subunits, but also to the stage of inflammation the cell is in. 

Another factor in the function NF-κB is the physical sequence to which the transcription 

factor binds. While it was previously hypothesized that all NF-κB dimers bind a single 

consensus sequence, more recent data has emerged demonstrating that different dimers 

have slightly different sequence preferences (79, 94, 95). In particular, the GGAA motif 

has been shown to be most highly associated with p65 binding whereas p50 and p52 
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homodimers have less affinity for that motif and a higher preference for the motif 

GGGRY (R= purine, Y= pyrimidine) (79) – the motif present in the NF-κB site in the 

PAD4 promoter (Fig. 3.1). This observation is consistent with the results of our 

experiments that suggest that p50 preferentially binds the PAD4 promoter compared with 

p65 and that it may do so in the form of the repressive p50 homodimer (Fig. 3.9-3.11). 

The importance of the DNA sequence to which NF-κB is made even more clear by 

results in murine cells which indicate that, converse to the situation in the human cell 

lines, NF-κB may activate PAD4 transcription in murine WEHI-3B cells (Figs. 3.4 and 

3.8). This discrepancy may be explained by an insertion in the murine promoter that is 

not present in the human promoter approximately 300 bp upstream of the TSS (Fig. 3.1). 

In the murine promoter, this insertion is part of a larger sequence that includes the 

nucleotides GGGGGGTCCTG which falls within the consensus binding site for NF-κB 

(79-81, 96). Since this insertion is not present in the human promoter, no such binding 

site exists for the human PAD4 promoter. Thus it may be NF-κB plays a differential role 

in regulating the transcription of PAD4 in murine and human myeloid cells. 

The results of our study are consistent with the previously established role of PAD4 in 

the inflammatory response. We demonstrated that NF-κB (in the form of p50) binds the 

PAD4 promoter in human neutrophils, and correlates with repression of gene 

transcription thus providing a potential link between inflammation and the regulation of 

the PAD4 gene.  
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4.3 The potential role of PAD4 during chronic inflammation in 

rheumatoid arthritis 

The PAD4 enzyme has emerged as a potentially key participant in the pathogenesis of 

rheumatoid arthritis because of its importance to neutrophil function in innate immunity 

as well as its putative role in other autoimmune diseases. The PAD4 gene is located on 

chromosome 1p36, and genome wide associate studies as well as a subsequent meta-

analysis of these studies have demonstrated an association between polymorphisms in the 

PAD4 gene and RA (72, 97-99). Interestingly, a genome wide screen of multiplex RA 

families found that genetic regions contributing to RA risk overlapped with those 

contributing to other autoimmune diseases such as multiple sclerosis and systemic lupus 

erythematosus – a finding reflective of PAD4’s implicated role in those diseases because 

of its role in inflammation (52, 100).  

The PAD4 enzyme is located in the nuclei of neutrophils and has been shown to mediate 

citrullination of histones, a process that induces chromatin decondensation and, 

ultimately, NET formation (53, 101). NETosis is an effector mechanism of neutrophils 

unique from phagocytosis or apoptosis and involves the ejection of nuclear DNA 

decorated with a variety of modified nuclear and granular proteins that in turn ensnare 

extracellular bacteria and induce their death (10). NETs act as a mesh that traps 

microorganisms and facilitates their interaction with neutrophil-derived effector 

molecules, limiting the spread of pathogens (10). A number of studies have implicated 

NETs in the etiology of autoimmune conditions such as preeclampsia, Felty syndrome, 

SLE, multiple sclerosis, as well as RA (12, 13, 56, 102-105). In the context of RA, it has 
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been hypothesized that because of their ejection of intracellular (and citrullinated) 

contents to the extracellular space, NETs contribute to the generation of anti-citrullinated 

protein antibodies (ACPA), and may themselves also be targets of autoantibodies (56, 

106). Furthermore, neutrophils isolated from RA patients have been shown to display a 

heightened propensity towards spontaneous and LPS-induced NETosis, which was in part 

mediated by TNF and IL-17 and could be inhibited by blocking NADPH oxidase or 

PAD4 (56, 106). Indeed, chemical inhibition of PAD4 significantly reduces histone 

citrullination and NET formation, and neutrophils of mice lacking PAD4 are unable to 

decondense chromatin and produce NETs leading to increased susceptibility to bacterial 

infections (66, 101, 107). Intriguingly, inhibition of NF-κB has recently been documented 

to reduce NET formation, compatible with a role for NF-κB in the regulation of PAD4 

expression (108). 

4.4 Future directions 

Future directions of this work include further elucidation of the role NF-κB has in 

regulating PAD4 expression over the course of inflammation. Moreover, the 

identification of other regulatory sites within the PAD4 gene, such as other transcription 

factor binding sites, is an important objective. Finally, although in vitro models of cell 

manipulation can be useful, it would be advantageous to test the connection between 

inflammation and PAD4 expression in vivo using mice. More specifically, although our 

results indicate a differing role for NF-κB in the regulation of PAD4 in mouse and human 

cells, it would be useful to investigate the role of PAD4 in inflammation and NETosis in 

a mouse model of rheumatoid arthritis.  
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With respect to the role of NF-κB, one experiment that may be done to further clarify 

whether NF-κB regulates PAD4 expression is to activate HL-60 cells with TNF-α (as 

done previously) and treat immediately with the NF-κB inhibitor JSH-23 (109). 

Additionally, to test the relative importance of the NF-κB binding site in the PAD4 

promoter, it is important to construct luciferase reporter plasmids containing the 

identified potential binding sites for AP-1 and SP1 and compare to data for NF-κB. 

Finally, to test the ability of PAD4 to citrullinate targets in the extracellular environment, 

an experiment that can be done is to induce primary human neutrophils to undergo 

NETosis using PMA and measuring PAD4 activity in the extracellular environment.  

Our long-term goal is to understand the role played by PAD4 in rheumatoid arthritis in 

order to establish novel therapies and treatments for RA. While current treatments of RA 

aim to minimize the pain and inflammation caused by the disease, we have yet to develop 

measures that are adequate to the underlying auto-immunological cause. To that end, 

PAD4 has so far proven to be a plausible target for treatment; PAD inhibitors such as Cl-

amidine have been used to treat mice with collagen-induced arthritis with notable success 

and continue to be studied as possible therapeutic agents (73). 

4.5 Summary and conclusions 

We speculate that repression of PAD4 by NF-κB might be useful in the context of the 

resolution phase of inflammation, in which the activity of NETs must be checked in order 

to prevent chronic inflammation. Moreover, the negative regulation of PAD4 might serve 

to limit NET formation during the acute phase of inflammation, thus reducing “collateral 

damage” caused by excessive NET formation as well as limiting the release of 
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autoantigens including citrullinated proteins into the extracellular space. However, in 

patients with RA, it is conceivable that mutations in the PAD4 promoter results in 

lowered p50 binding and continued, unattenuated expression of PAD4 (Fig. 4.1). This is 

turn may contribute to hypercitrullination of histones in the nuclei of neutrophils, leading 

to excessive NET formation and finally resulting in a “runaway” immune response 

involving accumulation of citrullinated products in the synovium and the breaking of 

immune tolerance. 
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Figure 4.1 A possible mechanism for dysregulation of PAD4 expression. In unaffected 

persons, p50 homodimers may bind the PAD4 promoter during the resolution of 

inflammation, suppressing the formation of NETs. Persons susceptible to RA may have a 

mutation that prevents p50 binding and results in overexpression of PAD4. 
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If, as our results suggest, NFκB functions as a repressor of PAD4 expression in human 

immune cells, it is possible that in individuals unaffected by RA, an infection would 

begin in the inflammatory phase with the general activation of neutrophils and the release 

of NETs regulated by PAD4 (66). As inflammation moves into the resolution phase, NF-

κB dimers involved in immunosuppression predominate, and this would involve 

formation of p50 homodimers. Since the PAD4 promoter contains the NF-κB motif that 

is most preferred by p50 subunits (79), it might be preferentially bound by p50 

homodimers and its expression repressed, resulting in less NET formation and inhibition 

of neutrophil function in maintaining inflammation (Fi.g 4.1). In patients with RA, it is 

possible that a lack of p50 binding to the PAD4 promoter causes continued, unattenuated 

expression of PAD4, resulting in a “runaway” immune response involving accumulation 

of PAD4 in the synovium and breaking of immune tolerance (Fig.4.2). 
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Figure 4.2 Interplay between inflammation, NF-kB, and PAD4 expression (A) During 

the resolution phase of inflammation we hypothesize that NF-κB represses PAD4 

expression to reduce NET formation and thus “dial down” the inflammatory response, 

itself an activator of NF-κB. (B) Without the repression of PAD4, an uncontrolled 

positive loop would occur, leading to chronic inflammation. 
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