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Abstract 

Semantic neighborhood density’s effects on the processing of ambiguous words were examined 

in three lexical decision experiments. Semantic neighborhoods were defined in terms of semantic 

set size and connectivity in Experiment 1, and in terms of semantic set size in Experiments 2 and 

3. In Experiment 1, set size, connectivity, and ambiguity were crossed. An ambiguity 

disadvantage was observed for large set, high connectivity words, and there was some suggestion 

of an ambiguity advantage for small set, high connectivity words. Experiments 2 and 3 held 

connectivity constant at a high level, and set size and ambiguity were crossed, with Experiment 3 

using pseudohomophone nonwords. Neither experiment produced an ambiguity advantage. 

Participants responded faster to unambiguous words relative to ambiguous words, particularly 

for large set size words, essentially supporting Experiment 1’s results. These results are 

discussed within a framework in which meaning-level competition can affect the recognition of 

semantically ambiguous words. 
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Introduction 

There has been growing interest in the last few decades in how orthographic, 

phonological, and semantic information are stored and activated during word reading. One 

particular focus of this research has been examining how “neighborhood effects” influence the 

process of visual word recognition. For example, extensive work has been done on the effects of 

orthographic neighborhood size – defined as the set of words of the same length that differ from 

that word by only one letter, (e.g., car and cot are neighbors of cat) – on visual word recognition 

processes (e.g., Andrews, 1989, 1992; Coltheart, Davelaar, Jonasson, & Besner, 1977; Grainger, 

1990; Grainger & Jacobs, 1996; Sears, Hino, & Lupker, 1995; Siakaluk, Sears, & Lupker, 2002). 

Likewise, phonological neighborhoods – words that differ by a single phoneme from a specific 

word – have also been extensively researched in an attempt to determine their role in word 

recognition (e.g., Vitevitch, 2007; Yates, 2005, 2009; Ziegler, Muneaux, & Grainger, 2003). 

In contrast, relatively little research has been done on semantic neighborhood effects. As 

Buchanan, Westbury, and Burgess (2001) note, this dearth of research has stemmed in part from 

several challenges in defining what constitutes a semantic neighbor. Whereas researchers have 

reached some general consensus on reasonable definitions for what constitutes an orthographic 

or phonological neighbor, there is no obvious way to define a semantic neighbor, because words 

have many ways of being semantically related to each other. For example, an object-based view 

of semantics defines semantic similarity in terms of the similarity of the objects themselves, be it 

in terms of the amount of featural overlap shared by concepts (e.g., cat and dog are close 

semantic neighbors because they share many semantic features, such as having four legs, fur, and 

a tail), and/or in terms of being members of the same category of objects (e.g., McRae, Cree, 

Seidenberg, & McNorgan, 2005). In contrast, a language-based view of semantics classifies 
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concepts as being semantically related on the basis of the statistical co-occurrence of the two 

concepts regardless of the properties shared by the two objects. According to such a view, cat 

and dog are near neighbors because they appear in similar contexts when large samples of 

language are analyzed (e.g., global co-occurrence; Burgess & Lund, 2000; Landauer & Dumais, 

1997; Lund & Burgess, 1996), or because the words are commonly used adjacent to each other in 

everyday language (e.g., local co-occurrence; Nelson, McEvoy, & Schreiber, 1998), and 

concepts can be semantically similar regardless of any similarity the objects themselves share. 

Certainly, it may be the case that the space of semantic neighborhoods incorporates 

properties of both object- and language-based semantics. As a result, semantic space would be 

both very large and highly variable in structure. At worst, this would mean that the semantic 

space can only be defined for any individual. More likely, however, while possessing a very 

large and variable structure, such a semantic space may share characteristics across individuals. 

For the purpose of the present thesis, it is assumed that while individual differences in semantics 

do exist, the structure of this space is guided by general principles that influence how the space is 

organized. 

A central issue that the present research focuses on is the impact of a word’s semantic 

neighborhood on the effects of semantic ambiguity. Semantically ambiguous words are those 

having more than one meaning. In languages such as English, ambiguity is a highly prominent 

feature of a person’s everyday linguistic environment in that a large majority of words in the 

English language mean different things in different contexts. As such, ambiguity has been the 

subject of much research and debate within the psycholinguistic literature over the last several 

decades. Intuitively speaking, since ambiguity is such a ubiquitous feature of English, it would 

follow that such ambiguity would have an influence on the organization of a word’s semantic 
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space and, hence, on the process of visual word recognition. This idea is one that will be 

developed in greater detail below. First, however, I will begin by discussing research that has 

been done on both the effects of semantic neighborhood size and semantic ambiguity, as well as 

some of the theoretical explanations of both of these effects. Finally, the main focus of this thesis, 

the relationship between semantic ambiguity effects and semantic neighborhoods, will be 

discussed. 

Previous Research on Semantic Neighborhood Effects 

 Early research on semantic neighborhood effects has shown that the size and density of 

semantic neighborhoods predict response times (RTs) in word recognition tasks. In the earliest 

study of semantic neighborhood effects in visual word recognition, Buchanan et al. (2001) 

quantified semantic space on the basis of Lund and Burgess’s (1996) hyperspace analogue to 

language (HAL) model, a co-occurrence model of semantic memory. The HAL model constructs 

a high-dimensional semantic space from a co-occurrence matrix, created by analyzing a massive 

corpus of text. The model then encodes the contexts of word usage, as reflected in weighted co-

occurrences. The semantic neighborhood of a word corresponds to a group of words that are 

close to it. A word’s neighborhood size is quantified either as how many words are within a 

certain distance of the target word, or as the distance from the target word to a criterion number 

of words, such as the 20
th

 furthest word. The distance of neighbors around any particular word 

varies, and this variance reflects the variance in the word’s “semantic density”. Using this metric, 

Buchanan et al. found that words with denser neighborhoods produced faster response times in 

both lexical decision and word naming tasks. A subsequent study by Siakaluk, Buchanan, and 

Westbury (2003) replicated Buchanan et al.’s findings in a go/no-go semantic categorization task. 
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Buchanan et al. (2001) offered a feedback activation account for these types of effects 

based on the proposals of Balota, Ferraro, and Connor (1991). This account assumes that there 

are distinct sets of reciprocally connected units dedicated to processing phonological, 

orthographic, and semantic information. Activation of one of these sets of units subsequently 

influences processing in the other sets of units through feedback, and the nature of this activation 

determines the ease or difficulty of processing. A final assumption is that decisions in different 

tasks will be based on the processing of different sets of units. The orthographic units would be 

the locus of lexical decision making, the semantic units would be the locus of semantic 

categorizations, and the phonological units would be the locus in naming tasks. In lexical 

decision tasks, Buchanan et al. suggested that words with denser semantic neighborhoods are 

processed faster as a result of enhanced feedback activation from the semantic units to the 

orthographic units, causing the orthographic units to increase their activation more quickly. 

Opposite Effects of Near and Distant Neighbors 

Whereas earlier research on semantic neighborhood effects point to facilitative effects of 

semantic neighbors, more recent research offers a finer grained analysis of the effects of 

semantic neighbors on visual word recognition. Mirman and Magnuson (2008) suggested that 

neighbors can simultaneously have both facilitative and inhibitory effects, rather than having 

only one type of effect. They examined the independent effects of near and distant neighbors on 

semantic access using a concreteness judgment task. Near neighbors are words having high 

similarity, whereas distant neighbors have more moderate similarity. Their data showed opposite 

effects for near and distant neighbors: words with many near neighbors were recognized more 

slowly than words with few near neighbors, and words with many distant neighbors were 

recognized more quickly than words with few distant neighbors. Mirman (2011) has reported 
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similar findings in word production tasks, finding higher semantic error rates for words with 

many near semantic neighbors, and fewer semantic errors for words with many distant semantic 

neighbors with aphasic patients, as well as with controls in a speeded picture-naming task. 

Mirman and colleagues (Mirman, 2011; Mirman & Magnuson, 2008) argued that their 

opposite effects are explainable within an attractor dynamics framework. In attractor models of 

semantics (e.g., Cree, McRae, & McNorgan, 1999), attractors refer to stable states that 

correspond to a concept’s combination of features. In such models, processing gravitates towards 

the closest stable state or states, and is pulled more rapidly into a stable state as processing gets 

closer to an attractor. Since near semantic neighbors are close to the target attractor, their 

representations exert a pull just as processing is about to settle on the correct representation, 

slowing the approach towards the target attractor. Because distant neighbors are farther from the 

target, it is assumed that they would not induce such a high degree of competition. Further, 

because the distant neighbors outnumber near neighbors, Mirman and Magnuson suggested that 

the combination of small pulling effects from distant neighbors, pulling towards the vicinity of 

the target, facilitates movement towards the attractor, overwhelming any impact of near 

neighbors. 

To test this account, Mirman and Magnuson (2008) analyzed simulations of another 

attractor dynamics model of semantic processing (O’Connor, Cree, & McRae, 2009). Consistent 

with the behavioral data that Mirman and Magnuson presented, they found that the attractor 

model demonstrated detrimental effects of near neighbors and facilitative effects of distant 

neighbors. 

 While the opposite effects of near and distant semantic neighbors have not been 

investigated as thoroughly as other neighborhood effects, the results of Mirman and colleagues 
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(Mirman, 2011; Mirman & Magnuson, 2008) provide important insights into the dynamics of 

semantic neighborhood effects. Recent research by Chen and Mirman (2012) has used a simple 

interactive activation and competition (IAC) framework to simulate facilitative-inhibitive effect 

reversals, and attempted to develop a unified account of the computational principles that govern 

whether neighbor effects will be facilitative or inhibitory. Their model exhibited opposite effects 

of near and distant semantic neighbors on word recognition and word production. In the word 

recognition task, the model was slower to settle when the target word had many near semantic 

neighbors, and was faster when the target had many distant semantic neighbors. Likewise, in 

their word production simulations, word activation was slower for words with many near 

semantic neighbors, and faster for words with many distant semantic neighbors. Overall, there 

was a general trend that determined whether neighbor effects were facilitative or inhibitory: 

strongly activated neighbors have a net inhibitory effect, while weakly active neighbors have a 

net facilitative effect. 

 The present experiments attempted to extend the investigation of how neighbors exert 

their effects in different circumstances. Of particular interest is examining whether semantic 

neighborhood dynamics exert an influence on the strength and direction of another semantic 

effect, specifically, semantic ambiguity, a semantic effect that has garnered much research 

interest over the past several decades. 

Previous Research on Semantic Ambiguity 

 The first studies to examine the effects of semantic ambiguity on visual word recognition 

were conducted by Rubenstein and colleagues (Rubenstein, Garfield, & Millikan, 1970; 

Rubenstein, Lewis, & Rubenstein, 1971), who found that homographs (i.e., words with the same 

spelling but different meanings – ambiguous words) yielded faster RTs than nonhomographs in 
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lexical decision tasks, which was later replicated by Jastrzembski (1981). However, these 

findings were criticized by Gernsbacher (1984), who argued that ambiguous words are typically 

more familiar than unambiguous words, and the faster response times for ambiguous words is 

merely caused by a confound with familiarity. Once word familiarity was taken into account, she 

found no effect of ambiguity. Since then, however, a number of studies have found a significant 

facilitative effect for ambiguous words (i.e., an ambiguity advantage) in lexical decision tasks 

(e.g., Hino & Lupker, 1996; Kellas, Ferraro, & Simpson, 1988; Millis & Button, 1989; Pexman 

& Lupker, 1999), and naming tasks (e.g., Lichacz, Herdman, LeFevre, & Baird, 1999; Hino, 

Lupker, & Pexman, 2002; Hino, Lupker, Sears, & Ogawa, 1998; Rodd, 2004; although see 

Borowsky & Masson, 1996, for contradictory results) after controlling for familiarity. In contrast, 

some studies have reported an ambiguity disadvantage when certain types of semantic 

categorization tasks are used (Hino et al., 2002), or in an auditory lexical decision task when the 

ambiguous stimuli used had multiple unrelated meanings (Rodd, Gaskell, & Marslen-Wilson, 

2002, 2004). Given such inconsistencies, it is clear that understanding how readers deal with 

semantic ambiguity presents a special challenge in psycholinguistic research. 

 Hino and Lupker (1996) and Pexman and Lupker (1999) argued that the ambiguity 

advantage seen in lexical decision tasks can be explained in terms of the semantic feedback 

account that was discussed above (Balota et al., 1991). As with having large, dense semantic 

neighborhoods, words with multiple meanings are assumed to possess a more enriched semantic 

representation, and should thus produce enriched semantic feedback from the semantic level to 

the orthographic level.  

To test this idea, Pexman and Lupker (1999) conducted two lexical decision experiments 

examining the effects of semantic ambiguity, homophony, and nonword foil type (pronounceable 
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pseudowords vs. pseudohomophones). Pexman and Lupker argued that the homophony effect – 

the finding that homophones (e.g., maid) are responded to slower than nonhomophones – is also 

quite consistent with a feedback model’s predictions. Homophones have one phonological code 

that would feed back activation to multiple orthographic codes (e.g., for made and maid), which 

would create competition at the orthographic level, ultimately slowing processing. Further, 

Pexman and Lupker predicted: a) that if a feedback mechanism can account for the effects of 

ambiguity and homophony, then the effects should co-occur in a lexical decision task; and b) 

they should both increase in size when pseudohomophones are used because using 

pseudohomophones should increase the activation necessary for a lexical representation to 

trigger a “word” response. The results of their experiments supported their predictions. These 

results provide support for a feedback account of the ambiguity advantage as well as the 

homophone disadvantage in lexical decision. 

Parallel Distributed Processing (PDP) Approaches to Explaining Semantic Ambiguity 

 Other research has directly examined the ability of parallel distributed processing (PDP) 

models to account for the ambiguity advantage in lexical decision tasks, under the assumption 

that performance is based on the nature of semantic coding. In such models (e.g., Borowsky & 

Masson, 1996; Kawamoto, Farrar, & Kello, 1994; Plaut & McClelland, 1993; Plaut, McClelland, 

Seidenberg, & Patterson, 1996; Rodd et al., 2004; Seidenberg & McClelland, 1989; Van Orden, 

Pennington, & Stone, 1990), it is assumed that orthographic, phonological, and semantic 

information for a word are not captured by individual processing units, but by unique patterns of 

activation across sets of processing units representing these different domains. These units are 

assumed to share interconnections with each other, and as the learning process occurs, the sets of 

weights on these connections are adjusted in order to gradually produce an output (i.e., 



SEMANTIC NEIGHBORHOOD DENSITY AND THE AMBIGUITY ADVANTAGE 16 

 

phonology or meaning) that is correctly associated with the orthographic input. Finally, it is 

assumed that the consistency of this input-output relationship determines the strength of 

association, which determines how quickly the model can settle on a correct output, and, as such, 

predict that the speed and efficiency of phonological and semantic coding depends on the nature 

of the orthographic-phonological and orthographic-semantic relationships of the words.  

PDP models attempting to explain the ambiguity advantage in terms of semantic 

activation would seem to face some difficulty because ambiguous words must, by definition, 

have multiple different patterns of activation amongst the semantic units. Therefore, one would 

expect competition, which would prolong settling time. In fact, as Joordens and Besner (1994) 

have pointed out, such models do typically predict a processing time disadvantage for ambiguous 

words due to the settling process being more difficult for words with these one-to-many 

orthographic-semantic relationships; a prediction that is, of course, is inconsistent with the body 

of empirical research showing an ambiguity advantage.  

Nevertheless, models have emerged that attempt to explain the ambiguity advantage 

specifically using PDP principles in constructing semantic representations. For example, 

Joordens and Besner (1994) found that learning ambiguous words led their model to fail to settle 

into one of the meaning patterns, and instead settled into a blend state in which there was a 

mixture of the two learned meaning patterns. However, by using the number of processing cycles 

to settle on any pattern in their simulations as a metric of lexical decision response latencies, they 

found an ambiguity advantage. 

An alternative way to explain the ambiguity advantage within a distributed 

representational framework has been to assume that actual performance in lexical decision tasks 

is based mainly on orthographic processing, rather than semantic coding. For example, 
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Kawamoto et al. (1994) assumed that simulating a lexical decision task required the orthographic 

units, rather than the meaning units, to settle on a stable pattern of activation. They simulated the 

ambiguity advantage in lexical decision tasks using a recurrent PDP network that used a least 

mean square learning algorithm. When presented with ambiguous words, instead of modifying 

the weights between orthographic and meaning units, their model strengthened the connection 

weights between orthographic units. Using the number of cycles required for settling in the 

orthographic module as a metric for performance in lexical decision, Kawamoto et al. found that 

orthographic units settled more quickly for ambiguous words because the connection weights 

between orthographic units had been strengthened in compensation for the weaker associations 

between orthographic and semantic units. 

The Issue of the Relatedness of the Multiple Meanings 

An additional issue that researchers have investigated concerning the ambiguity effect 

has been the relatedness of the meanings of ambiguous words (Azuma & Van Orden, 1997; 

Rodd et al., 2002, 2004). Azuma and Van Orden factorially manipulated the relatedness of 

meanings (ROM) and the number of meanings (NOM) possessed by their ambiguous words in 

lexical decision tasks. Their results indicated that, while NOM was not a reliable predictor of 

latencies, a significant main effect of ROM was found when pseudohomophone nonwords were 

used. Given these findings, Azuma and Van Orden argued that the relatedness among meanings 

can influence lexical decision times. 

 This approach was extended by Rodd et al. (2002). The large majority of studies 

examining semantic ambiguity have not distinguished between what are regarded as the two 

types of ambiguous words, referred to as homonyms and polysemes. Rodd et al. suggested that 

such distinctions are crucial. Homonyms refer to words with multiple unrelated meanings, as in 
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bark, or bank, whereas polysemes refer to words with a variety of different senses, such as twist. 

The crux of their argument was that, while having multiple word senses would produce an 

ambiguity advantage, having multiple unrelated meanings would induce meaning-level 

competition that would delay word recognition, consistent with what a PDP model might predict. 

To test this prediction, Rodd et al. manipulated the type of ambiguity by referring to the 

dictionary entries of words to classify words as having either multiple meanings or multiple 

senses. Consistent with this idea, Rodd et al. reported an ambiguity advantage for words with 

multiple senses when pseudohomophones were used in a visual lexical decision task and an 

ambiguity disadvantage for words with unrelated meanings in an auditory lexical decision task. 

Subsequently, Rodd et al. (2004) implemented a connectionist model to simulate these 

findings. The simulations that they reported showed that words with multiple, unrelated 

meanings such as bark demonstrated an ambiguity disadvantage, while words with multiple 

senses demonstrated an ambiguity advantage. They explained these effects in terms of the 

principles of attractor dynamics. They suggested that the ambiguity disadvantage occurs in 

words with multiple meanings because these separate meanings correspond to separate attractor 

basins in different regions of semantic space, resulting in a blend state during early activation 

that the system must move away from before it can properly settle into one of the different 

meanings. In contrast, the semantic representations of words with multiple senses correspond to 

highly overlapping regions of semantic space. As a result, there is a larger area of semantic space 

that corresponds to the meaning of these words, and this broader attractor basin aids the system 

in settling, at least initially. 

Support for Rodd et al.’s (2002, 2004) argument has been mixed. Some studies have 

successfully replicated the polysemy advantage/homonymy disadvantage (e.g., Beretta, 
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Fiorentino, & Poeppel, 2005; Klepousniotou & Baum, 2007) using Rodd et al.’s (2002) stimuli, 

while others have found equivalent ambiguity advantages for both polysemes and homonyms in 

lexical decision tasks (e.g., Hino, Pexman, & Lupker, 2006; Hino, Kusunose, & Lupker, 2010; 

Klein & Murphy, 2001, 2002). For example, Hino et al. (2006) examined the relatedness of 

meaning effect using lexical decision and semantic categorization tasks with Katakana-written 

ambiguous words. Hino et al. obtained relatedness of meaning ratings of ambiguous words to 

find words that could be classified as homonyms (i.e., essentially unrelated meanings) or 

polysemous (generally related meanings). The result of their lexical decision experiment was that 

there was no difference between homonyms and polysemes in their lexical decision latencies, 

finding an equivalent ambiguity advantage for the two types of ambiguous words. These results 

were replicated by Hino et al. (2010), who found equivalent ambiguity advantages for polysemes 

and homonyms using both Katakana and Kanji words and nonwords. 

Semantic Neighborhoods and Ambiguity 

Given the abundance of evidence contrary to the claims of any PDP models that try to 

explain ambiguity effects in terms of settling at the semantic level, semantic ambiguity continues 

to present a major challenge for any PDP account of semantics. At the same time, however, the 

results from ambiguity experiments have not been entirely consistent with other models either. 

One possible explanation is that there has been little consideration of how ambiguous words 

interact within the constraints of their semantic space. Indeed, as noted before, some theorists 

(e.g., Buchanan et al., 2001) have suggested that semantic neighborhood effects are highly 

similar to ambiguity effects, in that both concepts involve multiple items being simultaneously 

activated at the semantic level. Further, it is likely that semantic ambiguity is represented in 

some way within semantic neighborhoods. For example, consider words with two very distinct 
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meanings, such as bark. Bark occurs in some contexts when referring to the outer layer of a tree, 

and in other contexts when referring to the sound that a dog makes. Such words will likely have 

semantic neighbors related to both of these senses. At present, there appears to be only one study 

that has examined semantic neighborhood effects on the processing of ambiguous words, Locker, 

Simpson, and Yates (2003). 

Locker et al. (2003) argued that it should be possible to induce semantic-level 

competition between the multiple meanings of an ambiguous word if the magnitude of activation 

of the different meanings is increased. Words with more meanings, they surmised, would have 

richer representations in semantic memory, and would be more strongly activated. Such strong 

activation, they argued, may also cause the multiple meanings to interfere with each other. Such 

competition would reduce the strength of semantic feedback, or cause the feedback to be 

inconsistent. As such, Locker et al. predicted that an ambiguity advantage would more likely be 

observed when the meaning-level activation for secondary meanings is weak. 

Locker et al. (2003) tested this idea by using two semantic neighborhood metrics to 

estimate of the strength of activation of the meanings of an ambiguous word. Specifically, they 

used semantic set size and network connectivity, derived from Nelson et al.’s (1998) free 

association norms, as their measure of semantic neighborhood density/meaning activation. The 

semantic set size in Nelson et al.’s norms is derived from presenting participants a list of words 

and recording a single response that is meaningfully related to each target. The number of 

responses across participants comprises the word’s set. For example, according to these norms, 

the word dog has a set containing the words cat, animal, puppy, friend, and house, and thus has a 

set size of five. At the same time, there are two associative connections among dog’s neighbors 

(the word animal is related to both cat and house). Connectivity is defined as the number of 
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associative connections within the neighborhood divided by the total neighborhood size. Since 

dog has a set size of five, and there are two associative connections within dog’s neighborhood, 

dog would have a connectivity of .40. 

In their most relevant experiment, Locker et al. (2003) manipulated ambiguity 

(ambiguous or unambiguous), semantic set size (large or small), and neighborhood connectivity 

(high or low). Since Locker et al. predicted that the ambiguity advantage would only arise when 

meaning-level activation is relatively weak, they predicted that an ambiguity advantage would be 

most likely to arise when the semantic set size was small and neighborhood connectivity was low. 

These predictions were borne out, as an ambiguity advantage only arose for words with low 

connectivity and small set sizes. Locker et al.’s results can be found in Table 1. 

Locker et al.’s (2003) results suggest that semantic neighbors may have some influence 

over the strength and direction of other semantic effects. However, although Locker et al.’s 

results suggest that semantic neighbors influence the strength and direction of the ambiguity 

effect, they also raise a number of questions about the nature of ambiguity effects. Thus, the 

main purpose of the present investigation was to expand on previous work done by Locker et al. 

and Mirman and colleagues (Chen & Mirman, 2012; Mirman, 2011; Mirman & Magnuson, 

2008). The studies reported below were designed to investigate how the organization of semantic 

neighborhoods influences the strength and direction of the ambiguity effect, and whether the 

inconsistencies in the literature on the ambiguity advantage can be accounted for in light of 

semantic neighborhood dynamics. 

Experiment 1 

Experiment 1 was an attempt to replicate the results of Locker et al.’s (2003) Experiment 

1 using both their stimuli (10 in each cell of their design) and an equal number of new stimuli in 
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each cell of the design. The essential purpose of Experiment 1 was to evaluate Locker et al.’s 

claim that the ambiguity advantage was restricted to small set size, low connectivity words (i.e., 

it was an attempt to replicate their three-way interaction). Their argument, again, is that if 

increasing the scope of activation by manipulating connectivity reflects an increase in 

competition, an ambiguity advantage should be observed when the scope of activation is 

particularly low, specifically when the neighborhood set size is small and connectivity is 

relatively low. Conversely, in cases where the scope of activation is extremely high, as when the 

neighborhood size is large and the semantic connectivity is high, the greater scope of semantic 

activation could be detrimental to the processing efficiency of semantically ambiguous words. If 

increasing the scope of activation of the multiple meanings of an ambiguous word results in 

greater semantic-level competition, one possibility is that there would be an inhibitory effect for 

those ambiguous words. Locker et al. did not find this result, instead finding a small (~11 ms) 

ambiguity advantage, yet the English Lexicon Project (ELP; Balota, Yap, Cortese, et al., 2007) 

produced a sizable (~26 ms) inhibitory effect for ambiguous words with large set sizes and high 

connectivity for Locker et al.’s stimuli. The ELP database results for Locker et al.’s stimuli are 

shown in Table 2. Given the results from the ELP database, one might even expect that 

ambiguous words with large, highly interconnected semantic neighborhoods will produce an 

inhibitory effect. 

Beyond the results in that cell, however, there are also other reasons to wonder about the 

stability of Locker et al.’s (2003) results. First, the results produced by the ELP database (Balota 

et al., 2007) for Locker et al.’s Experiment 1 stimuli failed to replicate Locker et al.’s pattern 

concerning the ambiguity advantage. Although there was evidence in the ELP database 

suggesting an ambiguity advantage for small set, low connectivity words, the largest ambiguity 
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advantage was for words with small set sizes and high connectivity. In addition, there is the 

simple fact that the ambiguity advantage has been replicated many times over the past several 

decades (e.g., Hino & Lupker, 1996; Kellas et al., 1988; Millis & Button, 1989; Pexman & 

Lupker, 1999), and it seems unlikely that those researchers would have, just by chance, selected 

only ambiguous words with small semantic set sizes and low connectivity. Therefore, it is far 

from clear that Locker et al.’s findings will successfully replicate, and that it may be the case that 

the advantage for ambiguous words may be more widespread than their results suggest. 

Method 

 Participants. Participants were 52 undergraduate psychology students at the University 

of Western Ontario, who participated in this study for course credit, or were compensated  

monetarily. The data from 10 participants were excluded from the experiment on the basis of 

excessive error rates (>15% for word stimuli, or >20% for nonword stimuli). Thus, the analyses 

reported are based on the data from 42 participants. All participants had normal or corrected-to-

normal vision, and all were native English speakers. 

Stimuli. For the word trials, a 160-word list formed by crossing semantic ambiguity 

(ambiguous or unambiguous), set size (large or small) and connectivity (high or low) was used. 

All of the words included in this study can be found in the University of South Florida Word 

Association, Rhyme, and Word Fragment Norms (Nelson et al., 1998). Half of the word stimuli 

used in this study were used in Locker et al.’s (2003) Experiment 1, and the other half were 

selected from previous studies based on normative data (e.g., Twilley, Dixon, Taylor, & Clark, 

1994). Consistent with Locker et al., words with a number of associates greater than 15 were 

classified as large set (M = 19.26), whereas words with associates numbering 14 or fewer were 

classified as small set (M = 9.31). Similarly, high-connectivity words had 1.5 connections or 
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greater (M = 2.20), whereas low-connectivity words all had fewer than 1.5 connections (M = 

0.85). All word types were equated in terms of length, CELEX frequency, and orthographic 

neighborhood size using N-watch (Davis, 2005), and concreteness using the MRC 

psycholinguistic database (Coltheart, 1981). Additionally, data on the age of acquisition (AoA) 

of all the word stimuli using norms developed by Kuperman, Stadtagen-Gonzalez, and Brysbaert 

(2012) were collected. AoA is known to be a strong predictor of performance on a variety of 

linguistic tasks (e.g., Catling, Dent, & Williamson, 2008; Catling & Johnston, 2005, 2006; 

Coltheart, Laxon, & Keating, 1988; Cortese & Schock, 2013; Johnston & Barry, 2005) and it had 

not been equated by Locker et al. As a result, it was not possible to equate the words fully on 

AoA in our set of stimuli as well, a problem that was addressed by doing an analysis of 

covariance (ANCOVA). The stimulus characteristics for each condition are shown in Table 3. 

The stimuli are shown in Appendix A. In addition, 160 orthographically legal nonwords were 

used, which were equated with the word stimuli in terms of length and orthographic 

neighborhood size. An additional 5 words and 5 nonwords that did not appear in the 

experimental trials were presented as practice trials for each participant. 

Procedure. Stimuli were presented on a LG Flatron W2242TQ-BF LCD monitor. 

Recording of response latencies and accuracy was controlled using DMDX software (Forster & 

Forster, 2003). At the beginning of each trial, a fixation stimulus (#####) appeared in the middle 

of the screen for 750 ms. The stimulus was then removed, and a word or nonword was presented 

in uppercase letters. The target remained on the screen until the participant responded. Lexical 

decisions were made by pressing the / key for words and the z key for nonwords. Presentation of 

trials was randomized for each participant. 
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Results and Discussion 

 Mean lexical decision latencies and error rates for both participants and items were 

submitted to a 2 (semantic ambiguity: ambiguous vs. unambiguous) x 2 (semantic set size: large 

vs. small) x 2 (connectivity: high vs. low) repeated-measures analysis of variance (ANOVA) 

based on subjects, and a between-word ANOVA based on items. Outliers were defined as 

latencies shorter than 250 ms or longer than 1,500 ms and were removed from all analyses. Five 

word stimuli and 5 nonword stimuli were also excluded from the analyses due to excessive error 

rates (>15% for word stimuli, or >20% for nonword stimuli). For the item analysis, AoA was 

treated as a covariate. Mean response latencies and error percentages for each word condition in 

the subject analysis are reported in Table 4 (without AoA as a covariate), and Table 5 contains 

the means from the item analysis with the covariate. As can be seen, the impact of treating AoA 

as a covariate on the pattern of results was minimal. Additionally, we calculated mean RTs for 

all of the word stimuli using the English Lexicon Project database (ELP; Balota et al., 2007). 

Table 6 provides the mean response latencies and error percentages based on those data. 

 There were no significant main effects in the latency analyses. The interaction between 

ambiguity and semantic set size approached significance in the subject analysis, but was not 

significant in the item analysis, F1(1, 41) = 3.62, p < .10, F(1, 145) = 1.55, p < .30. The 

interaction between set size and connectivity was highly significant in the subject analysis, but 

not in the item analysis, F1(1, 41) = 10.79, p < .005, F2(1, 145) = 1.05, p < .50. Finally, a 

significant three-way interaction was found between ambiguity, semantic set size, and 

connectivity in both analyses, F1(1, 41) = 15.83, p < .001, F2(1, 145) = 5.28, p < .05.  

Simple main effects analyses were undertaken to determine which cells show a 

significant ambiguity effect. It was found that that unambiguous words with large set sizes and 
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high connectivity (M = 611) were processed significantly faster than their ambiguous 

counterparts (M = 639) in both the subjects and item analyses, F1(1, 41) = 18.65, p < .001, F2(1, 

145) = 6.46, p < .05. No other differences reached significance (all Fs < 2.7). 

 In the error analyses, the main effect of connectivity approached significance in the 

subject analysis, F1(1, 41) = 3.18, p < .10, but not in the item analysis F2(1, 145) = 2.62, p = .11, 

as high connectivity words had slightly lower error rates overall. A two-way interaction between 

ambiguity and semantic set size was found in both analyses, F1(1, 41) = 8.10, p < .01, F2(1, 145) 

= 4.22, p < .05. A two-way interaction was also found between ambiguity and connectivity, F1(1, 

41) = 5.69, p < .05, F2(1, 145) = 9.54, p < .005. Finally, the three-way interaction between 

ambiguity, semantic set size, and connectivity approached significance in the subject analysis, 

but did not in the item analysis, F1(1, 41) = 3.72, p < .10, F2(1, 145) = 1.65, p = .20. 

 Simple main effects analyses showed that ambiguous words with small set sizes and high 

connectivity (M = 1.63%) produced significantly fewer errors than unambiguous words with 

small set sizes and high connectivity (M = 5.24%) in both analyses, F1(1, 41) = 15.55, p < .001, 

F(1, 145) = 14.72, p < .001. No other differences reached significance (all Fs < 2.5). 

 The results from Experiment 1 failed to produce an overall advantage for ambiguous 

words over their unambiguous counterparts, although, as in the Locker et al. (2003) experiment, 

it did produce a three-way interaction between ambiguity, set size, and connectivity. This 

interaction, however, was not the same interaction Locker et al. reported. Locker et al. found an 

ambiguity advantage for words with small semantic set sizes and low connectivity. Such was not 

the case in the present experiment, in which the ambiguous words in this condition were 

processed about 9 ms slower than the unambiguous words. Instead, in the present experiment, no 

cell showed a significant ambiguity advantage in the RT analysis, while the large set size, high 
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connectivity condition produced an ambiguity disadvantage. What should be noted, of course, is 

that, according to Locker et al.’s analysis, this condition is the most likely to produce an 

ambiguity disadvantage due to the strong activation of neighbors that should arise for those 

words. That is, in cases when the scope of semantic activation is very high, as in when words 

have large, highly interconnected neighborhoods, there would be greater competition at the 

semantic level, which would potentially result in inhibition. The results of Experiment 1 are, 

therefore, at least somewhat consistent with Locker et al.’s notions. 

 What, of course, is somewhat surprising is that there was no ambiguity advantage in any 

condition, a result that appears to contradict a long line of research (e.g., Hino & Lupker, 1996; 

Kellas et al., 1988; Millis & Button, 1989; Pexman, Hino, & Lupker, 2004; Pexman & Lupker, 

1999) and a result that is also inconsistent with the means for all the stimuli used here based on 

the ELP database. Specifically, there were large ambiguity advantages in the small set size, high 

connectivity (42 ms) and small set size, low connectivity (24 ms) conditions (with the latter one 

being the one in which Locker et al. found an ambiguity advantage). The former of these 

conditions did show some evidence of an ambiguity advantage in the RT (10 ms) and in the error 

(1.63%) analyses, while the latter, as noted, did not. Equally importantly, the one cell with a 

significant ambiguity effect in the present experiment, the large set size, high connectivity 

condition, showed only a small (8 ms) ambiguity disadvantage in the ELP database, in contrast 

to the 28 ms difference reported here. 

In an effort to examine the data patterns more fully, separate analyses were done of the 

stimuli Locker et al. (2003) used and the ones added for Experiment 1. For the stimuli derived 

from Locker et al., mean RTs and error percentages can be found in Table 7. As noted, mean 

RTs and error rates from the ELP database for Locker’s stimuli can be found in Table 2. For the 
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new stimuli, mean RTs and error rates can be found in Table 8. For reference, Table 9 contains 

the means from the ELP database for the new stimuli. 

Analysis of Locker et al.’s (2003) Stimuli 

 For data from the stimuli used by Locker et al. (2003), the main effect of set size was 

significant in the subject analysis, F1(1, 41) = 7.12, p < .05, but not in the item analysis, F2(1, 67) 

= 2.59, p < .15, as words with large set sizes had faster latencies than words with small set sizes. 

None of the other main effects were significant. A two-way interaction between set size and 

connectivity was significant in the subject analysis, F1(1, 41) = 9.53, p < .004, but was not in the 

item analysis, F2(1, 67) < 1, p > .30. Most importantly, the three-way interaction between 

ambiguity, set size, and connectivity was significant in both analyses, F1(1, 41) = 12.67, p = .001, 

F2(1, 67) = 4.93, p < .05. 

 A simple main effects analysis found that ambiguous words with small set sizes and low 

connectivity (M = 637) were processed more slowly than their unambiguous counterparts (M = 

614) in the subject analysis, F1(1, 41) = 7.13, p < .05, and this difference was marginally 

significant in the item analysis, F2(1, 67) = 2.75, p = .10. This contrast is, of course, the one 

contrast in which Locker et al. (2003) found a significant ambiguity advantage. Finally, the 

contrast between ambiguous words with small set sizes and high connectivity (M = 628) and 

their unambiguous counterparts (M = 650) was significant in the subject analysis, F1(1, 41) = 

4.18, p < .05, but not in item analysis, F(1, 67) = 1.97, p < .20. As in the overall data set, there 

was an ambiguity disadvantage in the large semantic set size, high connectivity condition, 

however, this 14 ms effect was not significant in either analysis, F1(1, 41) = 2.43, p < .15 , F2 < 1. 

The error analysis produced no significant effect of set size in the subject analysis, F1(1, 

41) = 1.90, p < .20, but the set size effect was marginally significant in the item analysis, F2(1, 
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67) = 2.91, p < .10, with large set size words producing marginally fewer errors than small set 

size words. A two-way interaction between ambiguity and set size was significant in the subject 

analysis, F1(1, 41) = 4.33, p < .05, but not in the item analysis, F2(1, 67) = 1.46, p < .30. A two-

way interaction between ambiguity and connectivity was marginally significant in the subject 

analysis, F1(1, 41) = 3.08, p < .10, and was statistically significant in the item analysis, F(1, 67) 

= 6.25, p < .05. 

 A simple main effects analysis showed that ambiguous words with small set sizes and 

high connectivity (M = 1.85%) produced significantly fewer errors than unambiguous words 

with small set sizes and high connectivity (M = 5.00%) in both analyses F1(1, 41) = 4.90, p < .05, 

F2(1, 67) = 5.87, p < .05. No other differences reached significance (all FS < 2.5). 

Analysis of the Added Stimuli 

 For data from the new stimuli, the main effect of ambiguity was significant in the subject 

analysis, F1(1, 41) = 4.07, p = .05, but not in the item analysis F2(1, 69) = 1.07, p > .30, as 

unambiguous words were responded to slightly faster than ambiguous words. No other main 

effect approached significance. A two-way interaction between ambiguity and set size was 

significant in the subject analysis, F1(1, 41) = 4.37, p < .05, and approached significance in the 

item analysis F2(1, 69) = 3.05, p < .10. A two-way interaction between ambiguity and 

connectivity was also found to be significant in the subject analysis, F1(1, 41) = 10.32, p < .005, 

and approached significance in the item analysis F2(1, 69) = 3.29, p < .10. Finally, the three-way 

interaction between ambiguity, connectivity, and semantic set size was significant in the subject 

analysis, but was not in the item analysis, F1(1, 41) = 4.14, p < .05, F2(1, 69) = 1.04, p > .15. 

 A simple main effects analysis showed that ambiguous words with large semantic set 

sizes and high connectivity (M = 656) were processed significantly more slowly than their 
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unambiguous counterparts (M = 613) in both analyses, F1(1, 41) = 15.87, p < .001, F2(1, 69) = 

7.78, p < .01. No other differences reached significance (all Fs < 1.0).  

In the error analysis, the main effect of ambiguity was significant in the subject analysis, 

F1(1, 41) = 5.35, p < .05, and approached significance in the item analysis, F2(1, 69) = 3.31, p 

< .10, as ambiguous words produced fewer errors than unambiguous words. The main effect of 

connectivity was significant in both analyses, F1(1, 41) = 5.77, p < .05, F2(1, 69) = 5.20, p < .05, 

as words with low connectivity produced fewer errors than words with high connectivity. The 

two-way interaction between ambiguity and set size approached significance in the subject 

analysis, F1(1, 41) = 3.09, p < .10, but not in the item analysis, F2(1, 69) = 2.44, p < .15. The 

two-way interaction between ambiguity and connectivity was significant in the subject analysis, 

F1(1, 41) = 4.59, p < .05, and approached significance in the item analysis, F2(1, 69) = 3.74, p 

< .10. 

A simple main effects analysis showed that with small set sizes and high connectivity, 

ambiguous words (M = 1.43%) produced significantly fewer errors than unambiguous words (M 

= 5.48%) in both analyses, F1(1, 41) = 15.57, p < .001, F2(1, 69) = 8.80, p < .005. No other 

differences reached significance (all Fs < 1.5). 

Experiment 1: Overall 

 From this examination of this data, several notable patterns emerge. First, the results from 

this experiment consistently showed that ambiguous words in the large set size, high connectivity 

condition were responded to more slowly than their unambiguous counterparts. Virtually all of 

the analyses showed this pattern to some degree. Second, whereas Locker et al. (2003) reported 

that the ambiguity advantage only manifested itself in the small set size, low connectivity 

condition, the results of Experiment 1, as well as the ELP database, do not support this empirical 
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conclusion. Instead, the one condition that most consistently produced at least some hint of an 

ambiguity advantage both in the experimental data and in the ELP database (in terms of both 

latency and error rates) was the small set size, high connectivity condition. 

 These results suggest that although the explanation put forth by Locker et al. (2003) may 

have some grain of truth to it, it is far from accurate. Locker et al. argued that the processing of 

ambiguous words would benefit the most when the scope of activation of the word’s meanings is 

minimized. That is, facilitation of processing is optimized when the scope of activation of a 

word’s disparate meanings is low. As a result, they argued that the ambiguity advantage would 

be observed for words with weak meaning-level activation, and therefore, the ambiguity 

advantage should occur in the small set, low connectivity condition. However, Experiment 1 

found an ambiguity disadvantage in this condition, and the effect was, in fact, strongest with 

Locker’s own stimuli. Second, as was stated previously, the ELP database consistently showed 

the strongest ambiguity advantage in the small set size, high connectivity condition, rather than 

the small set size, low connectivity condition. 

Where Locker et al.’s (2003) analysis was somewhat successful was in the large set size, 

high connectivity condition data. This analysis suggested that stronger semantic activation may 

result in more competition during processing. Because this condition showed clear evidence of 

an ambiguity disadvantage, that result from Experiment 1 provides at least some support for 

Locker et al.’s position. That is, the strong inhibitory effect in the large semantic set size, high 

connectivity condition is what one could predict if we assumed that the semantic-level 

competition was strong enough to nullify any beneficial effect of ambiguity. This result also 

bears some similarities to the results of Mirman and colleagues’ (Chen & Mirman, 2012; 

Mirman, 2011; Mirman & Magnuson, 2008), who found an inhibitory effect of having many 
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near neighbors, and a facilitory effect of having many distant neighbors. While the methods of 

defining and measuring semantic neighbors differ between this study and theirs, it is not 

impossible that Mirman and colleagues’ findings reflect a principle that applies essentially 

independently of how semantic neighborhood density is measured. 

Number of Meanings and Number of Senses Analysis 

Before proceeding, one issue that should be addressed is whether the effects observed in 

Experiment 1 can be explained in terms of differences in the number of meanings or number of 

senses of the ambiguous words that we used. Paralleling what was done by Locker et al. (2003) 

in selecting their stimuli, we did not attempt to determine whether the numbers of polysemes and 

homonyms were equated across conditions. Thus, it is possible that there were differences along 

these lines. To address this issue, data on the number of meanings (NOM) and number of senses 

(NOS) of each word used in this experiment were acquired using entries in the Online 

Wordsmyth English Dictionary-Thesaurus (Parks, Ray, & Bland, 1998), just as Rodd et al. did. 

The overall NOM and NOS characteristics for all words in Experiment 1 can be found in Table 3. 

For reference, the NOM and NOS characteristics for the words that Locker used can be found in 

Table 10, and the NOM and NOS characteristics for the new word stimuli can be found in Table 

11. 

 When we compared the number of Wordsmyth entries for ambiguous and unambiguous 

words, ambiguous words (M = 1.62) had a significantly greater number of Wordsmyth entries 

than unambiguous words (M = 1.08), F(1, 147) = 26.44, p < .001. The only condition in which 

ambiguous and unambiguous words did not differ significantly in number of Wordsmyth entries 

was the large set size, low connectivity condition, F(1,147) = 2.35, p > .10. Despite not 

controlling for Wordsmyth entries, ambiguous words were well-differentiated from unambiguous 
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words in their number of entries. Furthermore, the number of Wordsmyth entries differed very 

little across conditions. The only notable difference was between ambiguous words with low 

connectivity, and small versus large sets. Ambiguous words with small set sizes and low 

connectivity (M = 1.83) had the highest number of entries of all the conditions. 

Ambiguous and unambiguous words also differed significantly in the number of 

Wordsmyth senses as well. Ambiguous words (M = 9.89) had a significantly greater number of 

Wordsmyth senses than unambiguous words (M = 5.13), F(1, 147) = 38.20, p < .001. There was 

also a main effect of semantic set size, F(1, 147) = 5.95, p < .018, as words with large semantic 

set sizes (M = 8.44) had significantly more Wordsmyth senses than words with small semantic 

set sizes (M = 6.48). Finally, there was a significant main effect of connectivity, F(1, 147) = 5.95, 

p < .05, as words with low connectivity (M = 8.36) had a significantly greater number of 

Wordsmyth senses than words with high connectivity (M = 6.58).  

Although there were differences between the number of senses for large set size words 

versus small set size words, and high and low connectivity words, these differences could not 

explain the present results, as they went in the wrong direction. It is very apparent that having a 

greater number of senses did not produce any significant benefit for the ambiguous words in the 

large set size, low connectivity condition, or the small set size, low connectivity condition 

(which had the greatest number of senses of any condition in this experiment). This analysis 

suggests that there are other factors at work that led to the ambiguity disadvantage in the large 

set, high connectivity condition than differences in number of meanings and number of senses. 

Experiment 2 

From the first experiment and the ELP database, it appears that, if there is an ambiguity 

advantage it is most likely to be found in cases where the semantic set size of the word is small 
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and the interconnectivity of its neighbors is high. Conversely, the condition in which the target 

has a large semantic neighborhood and high connectivity, a situation in which representations 

would be most likely to compete with one another, we find the best evidence of an ambiguity 

disadvantage. These results do, however, raise a couple of questions. First, why was there so 

little evidence of any ambiguity advantage? That is, while the ELP database showed a sizable 

ambiguity advantage in the small set size condition with the stimuli used in Experiment 1, 

Experiment 1 still did not produce any noticeable differences between ambiguous and 

unambiguous words in these conditions. Before investing too much in a theoretical interpretation 

of the present data, it would seem to be a good idea to search again for the condition(s) 

producing the classic ambiguity advantage. A second question is why there was a clear 

ambiguity disadvantage in one condition when there is virtually no evidence of such an effect in 

the literature? It would, therefore, be important to attempt to replicate the ambiguity 

disadvantage that was found in the large set size, high connectivity condition.  

One clear weakness of Experiment 1 was that, following Locker et al. (2003), the 

maximum cutoff criterion for small set words (14) was very close to the minimum cutoff 

criterion for the large set size words (15). Likewise, the distinction between high and low 

connectivity words was also somewhat minimal, meaning that neither manipulation was as 

strong as it could have been. That is, the problem is that both groups would then contain words 

with semantic neighborhood characteristics similar to words in the other group. For example, the 

minimum cutoff point for high connectivity was 1.5, whereas low connectivity words had a 

maximum cutoff of 1.5. As a result, under these criteria, a word with a set size of 14 and a 

connectivity of 1.49 could be included as a small set size, low connectivity word, whereas a 

word with a set size of 15 and a connectivity of 1.50 would be included in the large semantic set 
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size, high connectivity condition. While most words in the two groups were not this close to each 

other, it is still clear that both manipulations could have been stronger. Thus, Experiment 2 was 

an attempt to re-examine the central issues here with new participants, items, and a stronger 

manipulation of set size. 

 Whereas Experiment 1 included semantic ambiguity, semantic set size, and connectivity 

as independent variables, the results of Experiment 1, as well as the results from the ELP 

database, suggest that the facilitation and inhibition based on ambiguous words is likely to be 

strongest in the high connectivity condition, contrary to the previous findings reported by Locker 

et al. (2003). The primary focus of this experiment was, therefore, high connectivity words. As a 

result, connectivity was discarded as an independent variable, and was instead held constant, so 

that all stimuli in Experiment 2 had high connectivity. If large, highly interconnected 

neighborhoods are more detrimental to the processing of ambiguous words, there should be an 

ambiguity disadvantage in the large set size condition. Further, if an ambiguity advantage were 

to arise, the results of Experiment 1 suggest that it should be in the condition with small set sizes. 

Method 

 Participants. Participants were 95 undergraduate psychology students at the University 

of Western Ontario, who participated in the study for course credit. The data from 25 participants 

were excluded from the experiment on the basis of excessive error rates (>15% for word stimuli, 

or >20% for nonword stimuli). Thus, the analyses reported are based on the data from 70 

participants. All participants had normal or corrected-to-normal vision, and all were native 

English speakers. 

 Stimuli. The stimuli were four sets of 25 words formed by crossing ambiguity 

(ambiguous or unambiguous) with semantic set size (large or small). As in Experiment 1, all of 
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the stimuli can be found in the University of South Florida Word Association, Rhyme, and Word 

Fragment Norms (Nelson et al., 1998). Words with a number of associates greater than 15 were 

classified as having large set sizes (M = 20.46), and words with a number of associates less than 

12 were classified as having small set sizes (M = 9.52). All stimuli had a connectivity of at least 

1.30 (M = 2.05). All word types were equated in terms of length, CELEX frequency (Baayen, 

Piepenbrock, & Gulikers, 1995), orthographic neighborhood size, and concreteness using the 

MRC psycholinguistic database (Coltheart, 2007). As in Experiment 1, AoAs of all the word 

stimuli were collected using the Kuperman et al. (2012) norms. The stimulus characteristics are 

shown in Table 12. The stimuli are shown in Appendix B. In addition, 100 orthographically legal 

nonwords were used, which were equated with the target words in terms of length and 

orthographic neighborhood size. An additional 5 words and 5 nonwords that did not appear in the 

experimental trials were presented as practice trials for each participant. 

 Procedure. The procedure was identical to that used in Experiment 1. Stimulus 

presentation and recording of response latencies and accuracy were controlled by an LG Flatron 

W2242TQ-BF LCD monitor using DMDX software (Forster & Forster, 2003). At the beginning 

of each trial, a fixation stimulus (#####) appeared in the middle of the screen for 750 ms. The 

fixation stimulus was then removed, and a word or nonword was presented in uppercase letters. 

The target remained on the screen until the participant responded. Lexical decisions were made 

by pressing the / key for words and the z key for nonwords. Presentation of trials was 

randomized for each participant. 

Results and Discussion 

 Mean lexical decision latencies and error rates for both participants and items were 

submitted to a 2 (semantic ambiguity: ambiguous vs. unambiguous) x 2 (semantic set size: large 
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vs. small) repeated-measures ANOVA for subjects, and a between-word ANOVA for items. 

Outliers were defined as latencies shorter than 250 ms or longer than 1,500 ms. Four word 

stimuli and six nonword stimuli were excluded from the analysis due to excessive error rates 

(>15% for word stimuli, or >20% for nonword stimuli). As in Experiment 1, AoA was treated as 

a covariate in the item analysis. Mean response latencies and error percentages for each word 

condition from the subject analysis are reported in Table 13 (without AoA as a covariate), and 

from the item analysis in Table 14 with AoA as a covariate. As with Experiment 1, however, 

treating AoA as a covariate did not impact the results. As in Experiment 1, we also calculated 

mean RTs for all of the conditions using the ELP database (Balota et al., 2007). Results from the 

ELP database can be found in Table 15. 

 Analysis of the response latencies produced a significant effect for ambiguity in the 

subject analysis, although this effect was not significant in the item analysis, F1(1, 69) = 8.74, p 

< .005, F2(1, 91) = 2.34, p < .15. Overall, ambiguous words were processed more slowly than 

unambiguous words. The two-way interaction between ambiguity and semantic set size 

approached significance in the subject analysis, F1(1, 69) = 3.32, p = .07, but not in the item 

analysis, F2(1, 91) = 1.00, p > .30. A simple main effects analysis found that unambiguous words 

with large set sizes (M = 647) had faster latencies than ambiguous words with large set sizes (M 

= 661), which was significant in the subject analysis, F1(1, 69) = 9.48, p < .005, but not in the 

item analysis, F2(1, 91) = 1.02, p > .30. The difference for small set words was not significant, 

F1(1, 69) = 2.62, p = .11, F2 < 1. 

 Once again, the results of Experiment 2 failed to produce any significant advantage for 

ambiguous words over unambiguous words. Across both experiments, however, the one 

observation that has remained constant is an ambiguity disadvantage when the word has many 
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semantic neighbors. This effect bears a strong similarity to the inhibitory effect of having many 

near neighbors, as found in studies by Mirman and colleagues (Chen & Mirman, 2012; Mirman, 

2011; Mirman & Magnuson, 2008), as well the findings of Nelson, Bennett, Gee, Schreiber, & 

McKinney (1993) and Storkel and Adlof (2009). According to Mirman’s attractor-based account, 

near semantic neighbors exert an inhibitory effect because they act as competing attractors that 

the model must successfully move through in order to reach the target attractor. Despite 

differences in how near semantic neighbors were defined here as opposed by Mirman and 

colleagues, the results of Experiments 1 and 2 do appear to be consistent with an explanation in 

which one assumes that large, highly interconnected sets of semantic neighbors behave in the 

same manner as near semantic neighbors function in Mirman’s analyses. That is, it is possible 

that large, highly interconnected sets of semantic neighbors act as competing attractors that slow 

the process of settling on a target attractor. 

 However, once again, the question emerges as to why there was absolutely no evidence 

of any ambiguity advantage in the small set size condition. As was mentioned previously, 

Experiment 1 used a more lenient cutoff for set size and connectivity, which may have 

compromised the results. However, the results of Experiment 2 showed that making the criteria 

more conservative made little difference in the outcome. Thus, the previous concerns about the 

results of Experiment 1 being influenced by the cutoffs used for our semantic measures would 

appear to be irrelevant. 

Before drawing any further conclusions, we made one last attempt to find a condition that 

would produce an ambiguity advantage. One possible reason why we failed to find an ambiguity 

advantage was that the nonwords used here did not make the task sufficiently difficult. A number 

of studies have suggested that using more word-like nonwords, in particular, pseudohomophones, 
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leads to larger semantic effects in lexical decision tasks (e.g., Azuma & Van Orden, 1997; 

Peman & Lupker, 1999; Locker et al., 2003; Rodd et al., 2002; Van Orden & Goldinger, 1994). 

As noted, pseudohomophones are nonwords that are pronounced the same as actual words (e.g., 

brane, kat). Indeed, Rodd et al. only found a significant effect for their number of senses 

manipulation when they used pseudohomophones as nonwords. As Pexman and Lupker (1999) 

argued, pseudohomophones make lexical decisions more difficult, forcing participants to set a 

higher threshold for activation when making those decisions. As a result, Pexman and Lupker 

predicted and found that the effects of ambiguity would be of greater magnitude when 

pseudohomophones are used. This possibility was explored in Experiment 3. 

Experiment 3 

 Experiment 3 was a replication of Experiment 2 with pseudohomophone nonwords. That 

is, as in Experiment 2, only words with high connectivity were used, and semantic set size and 

ambiguity were manipulated. The stimuli were basically the same as in Experiment 2; however, 

the word stimuli that were problematic for participants, as well as a few others in order to 

balance the conditions, were removed. If sparser semantic neighborhoods aid the semantic 

processing of ambiguous words, then an ambiguity advantage should emerge in the small set size 

condition. With respect to the large set size condition, if dense, highly interconnected semantic 

neighborhoods have an inhibitory effect on semantic processing, then ambiguous words with 

large set sizes should still be more difficult than unambiguous words. 

Method 

 Participants. Participants were 69 undergraduate psychology students at the University 

of Western Ontario, who participated in this study either for course credit, or were compensated 

for monetarily. The data from 15 participants were excluded from the experiment on the basis of 
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excessive error rates (>15% for word stimuli, >30% for pseudohomophone stimuli). Since 

pseudohomophones are assumed to make the task more difficult, the error rate cutoff point was 

higher than in previous experiments. Thus, the analyses reported are based on the data from 54 

participants. All participants had normal or corrected-to-normal vision, and all were native 

English speakers. 

 Stimuli. The word stimuli consisted of four sets of 20 words formed by crossing 

ambiguity (ambiguous or unambiguous) with semantic set size (large or small). As with the 

previous experiments, all of the stimuli can be found in the University of South Florida Word 

Association, Rhyme, and Word Fragment Norms (Nelson et al., 1998). Words with a number of 

associates greater than 15 were classified as having large set sizes (M = 20.42), while words with 

a number of associates less than or equal to 14 were classified as having small sets (M = 9.78). A 

one-way ANOVA found that this difference was statistically significant, F(1, 76) = 305.06, p 

= .001. However, there was a small but statistically significant difference in the set sizes of 

ambiguous versus unambiguous words with small set sizes. Ambiguous words (M = 10.6) had 

significantly larger set sizes than unambiguous words (M = 8.95), F(1, 38) = 4.62, p < .05. 

Controlling for many different variables resulted in not being able to balance all of the conditions 

on semantic set size, which will have to be considered a limitation of this experiment. Finally, 

ambiguous words with large set sizes (M = 20.3) did not differ significantly from unambiguous 

words with large set sizes (M = 20.35) in terms set size, F(1, 36) < 1.0. 

 Words with a connectivity above 1.3 were used in this experiment (M = 2.04). There was 

no significant difference between the connectivity of ambiguous words (M = 2.04) and 

unambiguous words (M = 2.05), F(1, 77) < 1, p > .90. All word types were equated in terms of 

length, CELEX frequency, orthographic neighborhood size, and concreteness. As in Experiments 
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1 and 2, data on the AoA of all word stimuli were collected using the Kuperman et al. (2012) 

norms. The stimulus characteristics are shown in Table 16. The stimuli are shown in Appendix B. 

In addition, 80 pseudohomophones were used, which were equated with the target words in 

terms of length. 

 Procedure. The procedure was identical to the one used in Experiments 1 and 2. 

Stimulus presentation and recording of response latencies and accuracy were controlled by an 

LG Flatron W2242TQ-BF LCD monitor using DMDX software. At the beginning of each trial, a 

fixation stimulus (#####) appeared in the middle of the screen for 750 ms. The fixation stimulus 

was then removed, and a word or nonword was presented in uppercase letters. The target 

remained on the screen until the participant responded. Lexical decisions were made by pressing 

the / key for words and the z key for nonwords. Presentation of trials was randomized for each 

participant. 

Results and Discussion 

 Mean lexical decision latencies and error rates were submitted to a 2 (semantic 

ambiguity: ambiguous vs. unambiguous) x 2 (semantic set size: large vs. small) repeated-

measures ANOVA based on subjects, and a between-word ANOVA based on items. Outliers 

were defined as latencies shorter than 250 ms or larger than 1500 ms. Two word stimuli and four 

pseudohomophones were excluded from the analysis due to having excessive error rates (>15% 

for word stimuli, or >30% for pseudohomophones). As with previous experiments, AoA was 

treated as a covariate in the item analysis. Mean response latencies and error percentages for the 

subject analysis can be found in Table 17 (without AoA as a covariate), and for the item analysis 

in Table 18 with AoA as a covariate. Once again, using AoA as a covariate made little difference 

in the pattern of means. For reference, means from the ELP database are contained in Table 19, 
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however, it should be noted that the comparison to these data is severely compromised because 

the ELP data are not collected when using pseudohomophones as nonwords. 

 Analysis of the response latencies showed that the main effect of set size was significant 

in the subject analysis, F1(1, 53) = 7.50, p < .01, and approached significance in the item analysis 

F2(1, 73) = 3.66, p = .06, as words with small semantic set sizes (M = 644) were processed 

significantly faster than words with large semantic set sizes (M = 656). The main effect of 

ambiguity was statistically significant in the subject analysis, but not in the item analysis when 

AoA was treated as a covariate, F1(1, 53) = 4.51, p < .05, F2 < 1. Overall, ambiguous words were 

responded to more slowly than unambiguous words. No significant interaction was found (all Fs 

< 1.0). 

 Like Experiments 1 and 2, Experiment 3 failed to produce any significant advantage for 

ambiguous words over unambiguous words in the small set size condition. However, despite this 

experiment’s failure to produce any ambiguity advantage, once again, the pattern of the data 

showed an ambiguity disadvantage which was slightly larger when words have large set sizes 

than when they have small set sizes. The overall results across these three experiments, therefore, 

suggest one main conclusion, that the processing of ambiguous words is less efficient when they 

possess large, highly interconnected networks of semantic neighbors. 

GENERAL DISCUSSION 

 The focus of the present research was the influences of semantic neighborhoods on the 

processing of ambiguous words. Locker et al. (2003) reported that the ambiguity advantage that 

has typically appeared in the literature (e.g., Hino & Lupker, 1996; Kellas et al., 1988; Millis & 

Button, 1989; Pexman & Lupker, 1999) was confined to situations where the ambiguous words 

had small, sparsely connected semantic neighborhoods.  Locker et al. argued that the ambiguity 
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advantage in small, sparsely connected neighborhoods was the result of minimizing semantic-

level competition. When ambiguous words reside in large, dense neighborhoods, the large 

amount of semantic activation from having many highly interconnected neighbors would 

produce a higher degree of competition at the semantic level, causing semantic feedback to the 

orthographic level to become weakened or inconsistent. Experiment 1 was an attempt to replicate 

Locker et al.’s findings in a lexical decision task using a larger number of stimuli. Ambiguity, 

semantic set size, and network connectivity were manipulated in the same manner as done by 

Locker et al. This manipulation produced a sizable (~28 ms) ambiguity disadvantage when the 

words had large, densely interconnected neighborhoods. Unlike the findings reported by Locker 

et al., there was no ambiguity advantage in the small set size, low connectivity condition.  

To examine the data in a more complete manner, the stimuli that Locker et al. (2003) 

used, and the stimuli that were added for Experiment 1 were analyzed separately. With Locker et 

al.’s stimuli, it was found that ambiguous words with small set sizes and low connectivity, which 

was the condition in which Locker et al. found an ambiguity advantage, produced a sizable (~23 

ms) ambiguity disadvantage, contrary to Locker et al.’s findings. Instead, the largest ambiguity 

advantage found was for words with small set sizes and high connectivity, which were faster 

(~22 ms), and produced significantly fewer errors than unambiguous words in this condition. 

These latter results were also consistent with the data from the English Lexicon Project, which 

produced a large (~38 ms) ambiguity advantage for words with small, highly interconnected 

semantic neighborhoods. Although the ELP database did show a 20 ms advantage for Locker et 

al.’s ambiguous words in the small set size low connectivity condition, the fact that the results of 

Experiment 1 did not do so, and that both Experiment 1 and the ELP produced ambiguity 

advantages for Locker et al.’s words in cells other than the small set size, low connectivity 
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condition with Locker et al.’s own stimuli gives us strong reason to doubt the stability of their 

original results. 

In the stimuli that this experiment introduced, ambiguous words with large set sizes and 

high connectivity produced a very large (~43 ms) ambiguity disadvantage. It should be noted 

that this effect was not found in the ELP database. However, for these new stimuli, once again, 

the ELP data produced a very large (~46 ms) ambiguity advantage in the small set size, high 

connectivity condition.  

Overall, the aggregate results of Experiment 1 and the ELP database suggest that the 

processing of ambiguous words is facilitated by having smaller semantic neighborhoods. 

However, contrary to the results of Locker et al. (2003), Experiment 1 showed that ambiguous 

words are easier to respond to when the neighborhoods in which they reside are highly 

interconnected, rather than when the neighborhoods are sparsely interconnected, which Locker et 

al. suggested should reduce semantic-level competition and aid in the speed of processing of 

words with multiple meanings. Such a finding may indicate that the conditions that help give rise 

to the ambiguity advantage may not be as restrictive as Locker et al. suggested. Furthermore, 

while Locker et al. never showed an ambiguity advantage, they argued that increasing the scope 

of activation of the multiple meanings of an ambiguous word may cause the multiple meanings 

to interfere with each other as a result of weakened or inconsistent feedback. If increasing the 

scope of activation of the multiple meanings of an ambiguous word does, in fact, result in the 

multiple meanings interfering with each other, as Locker et al. suggest, then one prediction that 

can be made from this position is that large semantic neighborhoods, and high connectivity 

words may produce an ambiguity disadvantage. This type of prediction would seem to be 

supported by both the results of Experiment 1 and the results from the ELP database. 
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Experiment 2 was an attempt to replicate the findings of Experiment 1 using stricter 

cutoff criteria for set size and connectivity. Since the best evidence for an ambiguity effect was 

produced by high connectivity words, only high connectivity words were used, and the only 

factors were ambiguity and the set sizes of the words. Paralleling Experiment 1’s results, 

Experiment 2 did not produce a significant advantage for ambiguous words over unambiguous 

words. Both small set size and large set size ambiguous words were processed more slowly than 

unambiguous words, although this difference was not significant in the item analysis. There was 

also a hint of an interaction between ambiguity and set size as large set size ambiguous words 

produced slightly stronger inhibition (~19 ms) than ambiguous words with small set sizes (~7 

ms), however, this interaction was only marginally significant in the subject analysis, and was 

nonsignificant in the item analysis. 

In a final attempt to find optimal conditions for demonstrating the classical ambiguity 

advantage, Experiment 3 used pseudohomophones as nonwords in order to increase the difficulty 

of the task. Since a number of studies have found that using pseudohomophones produces larger 

semantic effects in lexical decision tasks (e.g., Azuma & Van Orden, 1997; Pexman & Lupker, 

1999; Locker et al., 2003; Rodd et al., 2002; Van Orden & Goldinger, 1994), it was predicted 

that using pseudohomophones would give us the best chance to produce an ambiguity advantage. 

This expectation was not borne out, however. Paralleling the findings of Experiment 2, 

ambiguous words were processed slower than unambiguous words.  

Clearly, the results of three experiments leave a number of questions unanswered. The 

most central one would seem to be why wasn’t there any evidence of an ambiguity advantage in 

any of the experiments, when clear ambiguity advantages have been reported in so many other 

experiments (e.g., Hino & Lupker, 1996; Kellas et al., 1988; Millis & Button, 1989; Pexman & 
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Lupker, 1999). In the remainder of this thesis, possible reasons why this effect did not appear 

will be discussed. 

Potential Interactions between Ambiguity and Age of Acquisition 

One possible reason for the lack of an ambiguity advantage may have been that the words 

were not properly balanced for Age of Acquisition (AoA). As mentioned previously, AoA is 

known to be a strong predictor of response times, as early-acquired words are generally 

recognized faster (e.g., Catling et al., 2008; Catling & Johnston, 2005, 2006; Coltheart et al., 

1988; Cortese & Schock, 2013; Johnston & Barry, 2005). Therefore, one possibility mentioned 

earlier was that, because the words were not selected in a way that allowed AoA to be equated, 

AoA could have been confounded with one of the relevant factors. This type of explanation is, 

however, ruled out by the fact that the item ANCOVA, in which AoA was the covariate, 

produced results that were virtually equivalent to those in the subject ANOVA, in which AoA 

was not a covariate in all experiments. Nonetheless, when considering the overall issue of the 

general pattern of data, the specific AoAs used in the present experiments may have had some 

effect on our ability to observe ambiguity effects. 

More concretely, it is entirely possible that the multiple meanings of early-acquired 

ambiguous words are represented differently in semantic memory than those for late-acquired 

ambiguous words, and this difference in representation may result in different performances for 

early- and late-acquired ambiguous words in word recognition tasks. For early AoA words like 

duck, mad, and plate, for example, it may be the case that one of the meanings of the word was 

acquired at a very early age, while other meanings of the word were gradually acquired over the 

process of aging. On the other hand, late AoA words such as fuse, grave, and temple would 

presumably acquire all their meanings much later and, presumably, at about the same time. Early 
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acquisition of a word’s first meaning may result in a more ingrained representation of that 

meaning in semantic memory, providing a more stable basis upon which new meanings can be 

gradually added without inducing semantic competition. Acquiring the first meaning of a word at 

a later age, on the other hand, may result in a less stable representation in semantic memory upon 

which to add other meanings, which may eliminate any benefit of having multiple meanings, as 

semantic-level competition between the multiple meanings of these words may be greater. 

To test these ideas, results for early AoA and late AoA stimuli were separately analyzed 

for all of the experiments based on a median split of the AoA values for all the words in that 

experiment (using the AoA values as reported by Kuperman et al., 2012). The median AoA was 

5.84 in Experiment 1, 5.62 in Experiment 2, and 5.44 in Experiment 3. The mean RTs and error 

rates for the early AoA words from Experiment 1 can be found in Table 20. The mean RTs and 

error rates for the late AoA words from Experiment 1 can be found in Table 21. For Experiment 

2, the mean RTs and error rates for early AoA words can be found in Table 22, and the RTs and 

error rates for late AoA words can be found in Table 23. Finally, for Experiment 3, the RTs and 

error rates for early AoA words can be found in Table 24, and the late AoA RTs and error rates 

can be found in Table 25. 

 Although the ambiguity effects are reported for all conditions in Experiment 1, to allow a 

direct comparison to the effects in the other two experiments, the focus in Experiment 1 will only 

be on the high-connectivity conditions. Interestingly, for late AoA words, there was evidence of 

an overall disadvantage, with the effect being stronger for words with large semantic sets (31 ms). 

That result is consistent with the hypothesis advanced above. For early AoA words, there was no 

evidence of an overall advantage, although there was evidence of an interaction with semantic 

set size. Specifically, there was a 26 ms advantage for ambiguous words in the small set size 
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(high connectivity) condition, and a 25 ms ambiguity disadvantage in the large set size, high 

connectivity condition. One could also argue that this pattern is generally consistent with the 

above hypothesis. 

 Unfortunately, the pattern from Experiment 2 was even less clear. For late AoA words, 

there was, again, some evidence of an ambiguity disadvantage. However, for early AoA words 

there was no evidence of an ambiguity advantage for either large or small semantic set words. 

 In Experiment 3, the pattern was also not particularly supportive of the hypothesis. For 

late AoA words, the overall ambiguity disadvantage was quite small, although it was again 

stronger for the large set words (in fact, there was a small advantage for the small set words). For 

the early AoA words, there was an overall null effect. Further, although there was some evidence 

of an interaction, the interaction pattern was exactly the opposite of that observed in Experiment 

1. That is, it was the large set words that showed some evidence of an ambiguity advantage. 

 Overall, therefore, while it does seem to be the case that late AoA words, particularly 

those with large semantic sets, are more likely to show an ambiguity disadvantage, there does not 

seem to be a set of words that generally produced an ambiguity advantage. The results of 

Experiment 1 seemed to suggest that an ambiguity advantage would most likely be obtained 

when the words have an early AoA and a small semantic set; Experiment 2 showed very little 

evidence of an ambiguity advantage at all. Experiment 3 showed some evidence of an ambiguity 

advantage for the early AoA words, but the words showing that advantage were those in the 

large set size condition. At best, the results are inconsistent. If the ambiguity advantage is most 

likely to be produced by early-acquired ambiguous words, then why was there no hint of an 

ambiguity advantage in Experiment 2, and why did Experiment 3 produce an ambiguity 

advantage for early AoA words only in the large set condition? 
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The contrast between Experiments 2 and 3 is especially puzzling. Essentially the same 

words were used in the two experiments. Therefore, one would have imagined that the results 

would have been more similar than they were. The only possible explanation at this point would 

seem to be based on the fact that the nonwords in Experiment 3 were pseudohomophones, 

although there is no obvious mechanism why pseudohomophones would have had the effect that 

was observed here. 

There has been research that has shown that pseudohomophones typically magnify the 

effects of both ambiguity (Pexman & Lupker, 1999) and semantic set size (e.g., Yates et al., 

2003).The data on this topic are, however, not extensive. One way to investigate the impact of 

pseudohomophones would be to run a series of experiments in which ambiguity, semantic set 

size, and nonword type (e.g., orthographically legal nonwords vs. pseudohomophones) are 

manipulated. The first experiment could use only words with early AoAs, and the second 

experiment could use only words with late AoAs. If this argument were correct, such an 

experiment would find an ambiguity advantage for small set size words with early AoAs when 

orthographically legal pseudowords are used, and an ambiguity advantage for large set size 

words at with early AoAs when pseudohomophones are used. For late AoA words, this argument 

would predict that no ambiguity advantage should be observed when orthographically legal 

pseudowords are used. Instead, there should be an ambiguity disadvantage in the large set size 

condition. However, such an experiment has not yet been carried out, and until such an 

experiment is done, the impact of pseudohomophones and how it might interact with AoA 

remains unclear. 



SEMANTIC NEIGHBORHOOD DENSITY AND THE AMBIGUITY ADVANTAGE 50 

 

Number of Meanings and Number of Senses Revisited 

 Another possible explanation for the lack of an ambiguity advantage across the three 

experiments is that the ambiguous words were simply not ambiguous enough to produce an 

ambiguity advantage. That is, perhaps Rodd et al. (2002) are correct, and it is ambiguity in terms 

of the number of senses rather than the number of meanings that matters and these ambiguous 

words do not have enough senses (or had too many meanings, which can, according to Rodd et 

al., lead to inhibition). To examine the ambiguous words used in Experiments 2 and 3, the 

number of meanings (NOM) and number of senses (NOS) for each word were calculated from 

the Online Wordsmyth English Dictionary-Thesaurus (Parks et al., 1998). (A similar analysis 

based on the words from Experiment 1 was reported earlier). The mean NOM and NOS for 

words from Experiment 2 can be found in Table 12. The mean NOM and NOS for words from 

Experiment 3 can be found in Table 16. 

 As can be seen in Table 12, ambiguous words with small set sizes did not differ from 

unambiguous words by much in terms of the number of Wordsmyth entries (i.e., NOMs), but had 

a greater number of Wordsmyth senses (i.e., NOSs). On the other hand, ambiguous words with 

large set sizes had a larger number of Wordsmyth entries and senses, although unambiguous 

words with large set sizes still had quite a few senses (~6) on average. As noted, the stimuli used 

in Experiment 3 did not differ that much from those in Experiment 2 since Experiment 3 used 

very much the same set of words that were used in Experiment 2. Once again, ambiguous words 

with small set sizes did not differ from unambiguous words with small set sizes in terms of 

number of Wordsmyth entries, but differed in terms of number of Wordsmyth senses. Once again, 

ambiguous words with large set sizes had a larger number of Wordsmyth entries and senses, 

although unambiguous words still had quite a few senses (~6) on average. 
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 Paralleling Experiment 1, it does appear that Experiments 2 and 3 used ambiguous 

stimuli that were differentiated from unambiguous stimuli in terms of number of Wordsmyth 

senses. As Rodd et al., (2002) argued, words with many senses should be faster to process than 

words with fewer senses, because such words should aid in the process of settling at the semantic 

level, and produce enriched feedback to the orthographic level. Words with many different 

meanings, however, should be processed more slowly, as the multiple meanings compete, and 

slow down settling. However, if having many senses benefits ambiguous words, and having 

many meanings inhibits processing, one would have expected a clear ambiguity advantage, at 

least in the small set size condition in Experiments 2 and 3. Ambiguous words in this condition 

did not differ significantly from unambiguous words in number of Wordsmyth meanings (hence, 

inhibition from multiple meanings would have played essentially no role in the ambiguous-

unambiguous contrast), and they clearly had a greater number of Wordsmyth senses than their 

unambiguous counterparts. If there truly is a benefit for having many senses, and a detriment for 

having many meanings, then the small set size condition in Experiments 2 and 3 would have 

been the optimal condition to produce the ambiguity advantage. However, no such benefit was 

found in this condition. In contrast, the large set ambiguous words did differ somewhat from 

their unambiguous counterparts in terms of number of meanings, which could at least partly 

explain their inability to produce an ambiguity advantage. Therefore, if one wished to maintain 

Rodd et al.’s (2002) position, the only claim one could still make is that, even though these 

ambiguous words did differ from their unambiguous counterparts in terms of number of senses, 

the average NOS for ambiguous words used in these experiments was still simply not large 

enough (compared to other experiments that found a benefit for words with many senses, e.g., 

Rodd et al., 2002) to produce an effect. 
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Along those lines, one thing to note, however, is that there are a number of problems with 

using the number of dictionary senses as a measure of the number of senses. For one, it is often 

unclear what the criteria are for what constitutes a separate sense and a separate meaning, and the 

differentiation is often highly arbitrary. For example, the word coast has once sense that refers to 

“the land or area next to the ocean; seashore”, and another sense that refers to “the region of a 

country or continent that lies along an ocean”. Are these truly different senses? Often, there are 

very few differences between the definition of one sense and another. Second, if having many 

senses is a form of semantic ambiguity, why have studies such as Rodd et al.’s used words that 

they classify as unambiguous when the words have many senses? For example, Locker et al. 

(2003) classified the word grind as an ambiguous word when it has one Wordsmyth meaning, 

and 12 Wordsmyth senses, but classified the word burn as unambiguous, when the word has one 

Wordsmyth meaning, and 14 Wordsmyth senses. If anything, burn is more ambiguous than grind 

if dictionary senses are to be trusted, but one was arbitrarily classified as ambiguous, and the 

other unambiguous. Thus, using dictionary senses can often blur the line between what is an 

ambiguous word and what is an unambiguous word. If the experiments reported in this thesis had 

used the number of senses as a criterion for what constitutes an ambiguous word versus an 

unambiguous word, then unambiguous words would be words with only one Wordsmyth entry, 

and one or only a few Wordsmyth senses, a kind of word that is very few in number. The 

important point is just that it could be the case that a simple difference in the way that ambiguity 

was operationally defined and manipulated could have, in fact, had a large impact on the results 

of experiments looking for an ambiguity effect, a point that will need to be kept in mind when 

selecting both ambiguous and unambiguous words in future research. 
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Recent work in computational modelling may offer a potential solution to this problem. 

Recently, Hoffman, Ralph, and Rogers (2013) have developed a computational approach to 

measuring semantic ambiguity, called semantic diversity (SD), which uses lexical co-occurrence 

data. Their measure considers all of the contexts that a word can appear in, and the similarity 

between these contexts is computed. Words that appear in very diverse linguistic contexts (e.g., 

part) are what would be considered high-SD, and would be considered highly ambiguous. Words 

that occur in only a restricted range of contexts (e.g., coronary) are considered low-SD, and 

would be considered less ambiguous. This measure correlates moderately with number of senses 

(r = 0.41), yet words with few senses can vary in their SD values significantly. Potentially, 

therefore, this measure might be an appropriately sensitive measure of the relatedness of a 

word’s meanings. In future research, such a measure could be effectively used to study the 

ambiguity advantage, and may eventually help research move beyond using dictionary meanings 

and senses as a measure of ambiguity. 

The Inhibition of Ambiguous Words: Are Neighbors to Blame? 

While none of the experiments in this thesis successfully produced the classic ambiguity 

advantage, one result that was consistently found was an ambiguity disadvantage, particularly 

when the words had large, highly interconnected semantic neighborhoods. While other studies 

have demonstrated an ambiguity disadvantage (e.g., Rodd et al., 2002), these studies never 

examined how semantic neighborhoods affect the processing of ambiguous words. Therefore, the 

present experiments appear to be the first to find an ambiguity disadvantage when words with 

large, highly interconnected semantic neighborhoods are used. The question becomes, why did 

this disadvantage occur? As Locker et al. (2003) argued, increasing the scope of activation of the 

multiple meanings of an ambiguous word may increase the effects of competition by inducing 
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greater interference between the multiple meanings of ambiguous words. While Locker et al. 

never reported, nor predicted, an ambiguity disadvantage for their large set, high connectivity 

words, their argument does suggest that increasing the scope of activation of the multiple 

meanings of an ambiguous word would increase the amount of semantic-level competition, 

resulting in an ambiguity disadvantage. The results reported in this thesis, particularly in 

Experiment 1, do appear to support this idea. 

 This type of pattern is, of course, also consistent with Mirman and colleagues’ (e.g., Chen 

& Mirman, 2012; Mirman, 2011; Mirman & Magnuson, 2008) results showing that words with 

many near semantic neighbors were processed more slowly, and words with many distant 

semantic neighbors are processed more quickly. These types of results do imply that there is 

processing inhibition for ambiguous words when they have many, highly interconnected 

semantic neighbors due to the representations for those highly interconnected semantic neighbors 

competing with each other during word recognition. If a word has more than one meaning (i.e., 

ambiguous words), then this problem may become more complicated because ambiguous words 

will have neighbors that reflect the multiple different uses of the word. For example, the word 

bat would have neighbors that are related to the furry winged mammal (e.g., wings, vampire, 

Dracula), as well as neighbors related to baseball (e.g., ball, pitcher, helmet). Ambiguous words 

with large, dense semantic neighborhoods would therefore have many neighbors for both 

meanings of the word, producing a discordant neighborhood in which the neighbors are not even 

related to the same concept.  

This conclusion has, of course, taken us a considerable distance from our original 

question, which was, what are the circumstances that produce an ambiguity advantage? 

Nonetheless, they do at least indicate that there may be specific types of ambiguous words which 
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clearly will not produce an ambiguity advantage, as they are, in fact, processed more slowly than 

unambiguous words. Therefore, those types of words should certainly be avoided if one wishes 

to study the ambiguity advantage. As a number of studies have unsuccessfully attempted to 

reproduce the ambiguity advantage in lexical decision (e.g., Borowsky & Masson, 1996), it is 

possible that the results of such studies were influenced by having too many ambiguous words 

with large, highly interconnected semantic neighborhoods. Of course, numerous studies have 

successfully produced an ambiguity advantage without controlling for set size and connectivity 

(e.g., Hino & Lupker, 1996; Kellas et al., 1988; Millis & Button, 1989; Rubenstein et al,. 1970; 

Pexman & Lupker, 1999), so a confound with set size and connectivity seems unlikely to be the 

sole cause of not being able to produce an ambiguity advantage. Clearly, the question of how 

ambiguous words are represented and processed is one that remains to be fully answered. 

How Much Do Semantics Matter in Lexical Decision Tasks? 

 While the present experiments have produced evidence that there are circumstances 

which will produce an ambiguity disadvantage, as discussed, evidence for a facilitative effect of 

ambiguity and set sizes was scarce. Given that so many other studies have reported an ambiguity 

advantage (e.g., Beretta et al., 2005; Klepousnioutou & Baum, 2007; Hino & Lupker, 1996; 

Kellas et al., 1988; Locker et al., 2003; Millis & Button, 1989; Pexman & Lupker, 1999), and a 

number of other studies have found that semantic richness facilitates lexical decision (e.g., 

Buchanan et al., 2001; Duñabeitia, Avilés, & Carreiras, 2008; Hargreaves & Pexman, 2014; 

Pexman, Hargreaves, Edwards, Henry, & Goodyear, 2007; Pexman, Hargreaves, Siakaluk, 

Bodner, & Pope, 2008; Pexman, Holyk, & Monfils, 2003), it does appear that semantics has a 

clear impact on lexical decision making. However, one might question whether the extant 

literature is actually overstating that case. 
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 How does one make a lexical decision? A number of researchers (e.g., Kawamoto et al., 

1994; Pexman & Hargreaves, 2014; Pexman, Lupker, & Hino, 2002) have assumed that 

responses in lexical decision tasks are not primarily based on access to meaning. For example, 

the model that Kawamoto et al. proposed assumed that lexical decision performance is primarily 

based on the activation of orthographic units, an assumption shared by other models (e.g., Balota 

et al., 1991; Hino & Lupker, 1996) of lexical decision making. These models all assume that 

semantics influences lexical decision times only via top-down feedback from the semantic level 

to the orthographic level, where the decision-making process is thought to take place. Essentially, 

semantic contributions to lexical decision have typically been thought to be indirect due to the 

fact that the task demands do not require access to meaning. Thus, from a theoretical perspective, 

it’s perhaps surprising that semantics would play much of a role in making a lexical decision. 

 A second point to consider is that although some studies looking directly at the impact of 

certain semantic variables, while showing effects of those variables, have also found that certain 

effects are limited in scope, and are selectively modulated by task-specific demands. For 

example, Pexman et al. (2008) compared three measures of semantic richness – number of 

semantic neighbors, number of features, and contextual dispersion (i.e., a measure of the 

distribution of a word’s occurrence across different content areas) – on their ability to predict 

response times and error variance in lexical decision and semantic categorization tasks, and 

found that while number of features and contextual dispersion accounted for unique variance in 

both tasks, the number of semantic neighbors of a word only accounted for unique variance in 

their lexical decision task. In a follow-up study, Yap, Tan, Pexman, and Hargreaves (2011) 

examined the effects of number of senses and number of associates on lexical decision, speeded 

pronunciation, and semantic classification performance. Paralleling Pexman et al.’s results, Yap 
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et al. found that while number of features and contexts consistently facilitated word recognition, 

the effects of semantic neighborhood density, number of associates, and number of senses were 

not as robust. In fact, the effect of number of senses was only marginal in the lexical decision 

task in their experiment. In yet another study on semantic richness, Yap, Pexman, Wellsby, 

Hargreaves, and Huff (2012) examined the impact of number of features, number of senses, 

semantic neighborhood density, imageability, and body-object interaction using five visual word 

recognition tasks: standard lexical decision, go/no-go lexical decision, speeded pronunciation, 

progressive demasking, and semantic classification. Once again, although semantic richness 

effects were observed in all tasks, there was also evidence of task-specificity. Most relevant to 

this discussion, the effect of number of senses was not significant in the standard lexical decision 

task. In fact, the number of senses was only found to be significant in their go/no-go lexical 

decision task. 

More recent data on this topic comes from Hargreaves and Pexman (2014), who 

examined the time course of various semantic richness effects (specifically, number of senses, 

the average radius of co-occurrence (ARC), imageability, number of features, and body-object 

interaction ratings) in visual word recognition using a signal-to-respond (STR) paradigm with a 

lexical decision and a semantic categorization task. Their results showed that while none of the 

semantic richness effects were significant overall, certain measures of semantic richness were 

found to be more significant at specific STR durations. For example, when the STR duration 

increased from 200 to 400 ms in their study, there was an increase in the size of imageability 

effects in lexical decision. Most importantly, the results showed an early influence of number of 

senses in the semantic categorization task, but failed to produce any evidence that number of 

senses had any impact on lexical decision performance at any STR duration. For that matter, this 
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study failed to show any early effect of semantic richness in lexical decision. The lack of early 

semantic richness effects in lexical decision may suggest that semantic effects emerge at a later 

stage.  

A recent study by Yap and Seow (2013) has also come to a similar conclusion. Yap and 

Seow conducted an ex-Gaussian analysis of the effects of emotional valence in a lexical decision 

task, and they observed that valence effects were caused by both distributional shifting and an 

impact on the slow tail of the distribution. These findings suggest that the valence effects, and 

perhaps other semantic richness effects in lexical decision, may be produced, at least to some 

extent, by a later, post-lexical phase in which semantic activation can more directly affect 

decision making. 

 Overall, while previous research has shown that semantics certainly can exert a small 

influence on lexical decision tasks (e.g., Pexman et al., 2008; Yap et al., 2011, 2012), the point of 

this literature review is to note these effects are not always obtained in lexical decision tasks, 

with some semantic variables (e.g., number of features, imageability) being more robust than 

others (e.g., number of associates, number of senses). Further, even large-scale studies that have 

reported significant effects of semantic variables in lexical decision (e.g., Balota, Cortese, 

Sergent-Marshall, Spieler, & Yap, 2004) showed only a modest correlation between semantic 

variables and response times in lexical decision tasks. The evidence for semantic effects in 

lexical decision tasks is, perhaps, less convincing than one might imagine. Therefore, it may not 

be overly surprising that the present experiments were unable to produce a clear ambiguity 

advantage or a clear advantage for words with large set sizes. 
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Conclusions 

 The present experiments were an attempt to examine the conclusions of Locker et al. 

(2003), who showed that the ambiguity advantage that has frequently been reported in the 

literature (e.g., Hino & Lupker, 1996; Kellas et al., 1988; Millis & Button, 1989; Pexman & 

Lupker, 1999; Rubenstein et al., 1970) was restricted to words with small, sparsely connected 

semantic neighborhoods. The present experiments showed no evidence of an ambiguity 

advantage for words with small, sparsely connected neighborhoods. The only evidence of an 

ambiguity advantage was found for words with small set sizes and high connectivity in 

Experiment 1; a result which was also found in the English Lexicon Project database (Balota et 

al., 2007). These findings were not successfully replicated in the subsequent experiments, 

however, suggesting that at least part of Locker et al.’s conclusions was incorrect. 

 What these experiments have also shown that there may be specific circumstances in 

which ambiguous words are processed more slowly than unambiguous words. Namely, when 

ambiguous words have large, highly interconnected neighborhoods, those words seem to be 

responded to more slowly than their unambiguous counterparts. These findings parallel the 

findings of other studies that suggest that near semantic neighbors act as competitors, and having 

a large number of near neighbors produces an inhibitory effect on visual word recognition (e.g., 

Chen & Mirman, 2012; Mirman, 2011; Mirman & Magnuson, 2008), with these types of results 

further suggesting that the characteristics of an ambiguous word’s semantic neighborhood may 

act as a constraining factor on their processing. These types of results can be considered to be at 

least somewhat supportive of Locker et al.’s (2003) basic argument. 

Even these inhibition effects were small and inconsistent, however. Given that other 

studies have found only a modest effect of ambiguity and semantic set size in lexical decision 
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tasks (e.g., Hargreaves & Pexman, 2014; Pexman et al., 2008; Yap et al., 2011, 2012), and large-

scale studies have found only modest correlations between semantic variables and response times 

in lexical decision (Balota et al., 2004), an additional conclusion that the present data suggest is 

that the role that semantics plays in lexical decision may be smaller than one may have come to 

believe. It may, therefore, be beneficial in future research examining ambiguous words to use 

tasks that are more inherently semantic (e.g., semantic categorization). Such tasks would likely 

provide a more effective tool for understanding the issues surrounding the processing and 

representation of multiple meaning words in semantic memory. 

  

 

 

 

 

 

 

 

 

 

 

 



SEMANTIC NEIGHBORHOOD DENSITY AND THE AMBIGUITY ADVANTAGE 61 

 

References 

Andrews, S. (1989). Frequency and neighborhood effects on lexical access: Activation or 

search? Journal of Experimental Psychology: Learning, Memory, & Cognition, 15(5), 

802-814. doi:10.1037/0278-7393.15.5.802 

Andrews, S. (1992). Frequency and neighborhood effects on lexical access: Lexical similarity or 

orthographic redundancy? Journal of Experimental Psychology: Learning, Memory, and 

Cognition, 18(2), 234-254. doi:10.1037/0278-7393.18.2.234 

Azuma, T., & Van Orden, G.C. (1997). Why safe is better than fast: The relatedness of a word’s 

meaning affects lexical decision times. Journal of Memory and Language, 36(4), 484-504. 

doi:10.1006/jmla.1997.2502 

Balota, D.A., Cortese, M.J., Sergent-Marshall, S.D., Spieler, D.H., & Yap, M.J. (2004). Visual 

word recognition of single-syllable words. Journal of Experimental Psychology: General, 

133(2), 283-316. doi:10.1037/0096-3445.133.2.283 

Balota, D.A., Ferraro, F.R., & Connor, L.T. (1991). On the early influence of meaning in word 

recognition: A review of the literature. In D.A. Balota, F.R. Ferraro, & L.T. Connor 

(Eds.), The psychology of word meanings (pp. 187-222). Hillsdale, NJ: Erlbaum. 

Balota, D.A., Yap, M.J., Cortese, M.J., Hutchinson, K.A., Kessler, B., Loftis, B.,…&Treiman, R. 

(2007). The English Lexicon Project. Behavior Research Methods, 39, 445-459. 

Beretta, A., Fiorentino, R., & Poeppel, D. (2005). The effects of homonymy and polysemy on 

lexical access: An MEG study. Cognitive Brain Research, 24(1), 57-65. 

doi:10.1016/j.cogbrainres.2004.12.006 



SEMANTIC NEIGHBORHOOD DENSITY AND THE AMBIGUITY ADVANTAGE 62 

 

Borowsky, R., & Masson, M.E.J. (1996). Semantic ambiguity effects in word identification. 

Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(1), 63-85. 

doi:10.1037/0278-7393.22.1.63 

Buchanan, L., Westbury, C., & Burgess, C. (2001). Characterizing semantic space: 

Neighborhood effects in word recognition. Psychonomic Bulletin & Review, 8(3), 531-

544. doi:10.3758/BF03196189 

Burgess, C., & Lund, K. (2000). The dynamics of meaning in memory. In E. Dietrich & A.B. 

Markman (Eds.), Cognitive dynamics: Conceptual and representational change in 

humans and machines (pp. 117-156). Mahwah, NJ: Erlbaum. 

Catling, J.C., Dent, K., & Williamson, S. (2008). Age of acquisition, not word frequency affects 

object recognition: Evidence from the effects of visual degradation. Acta Psychologica, 

129(1), 130-137. doi:10.1016/j.actpsy.2008.05.005 

Catling, J.C., & Johnston, R.A. (2005). Age of acquisition effects on word generation. European 

Journal of Cognitive Psychology, 17(2), 161-177. doi:10.1080/09541440440000078 

Catling, J.C., & Johnston, R.A. (2006). Effects of age of acquisition on priming and picture 

naming. The Quarterly Journal of Experimental Psychology, 59(8), 1443-1453. 

doi:10.1080/17470210500214291 

Chen, Q., & Mirman, D. (2012). Competition and cooperation among similar representations: 

Toward a unified account of facilitative and inhibitory effects of lexical neighbors. 

Psychological Review, 119(2), 417-430. doi:10.1037/a0027175 

Coltheart, M. (1981). The MRC psycholinguistic database. The Quarterly Journal of 

Experimental Psychology A: Human Experimental Psychology, 33(4), 497-505. 

Doi:10.1080/15640748108400805 



SEMANTIC NEIGHBORHOOD DENSITY AND THE AMBIGUITY ADVANTAGE 63 

 

Coltheart, M., Davelaar, E., Jonasson, J.F., & Besner, D. (1977). Access to the internal lexicon. 

In S. Dornic (Ed.), Attention & Performance VI (pp. 535-555). Hillsdale, NJ: Erlbaum. 

Coltheart, V., Laxon, V.J., & Keating, C. (1988). Effects of word imageability and age of 

acquisition on children’s reading. British Journal of Psychology, 79(1), 1-12. 

doi:10.1111/j/2044-8295.1988.tb02270.x 

Cortese, M.J., & Schock, J. (2013). Imageability and age of acquisition effects in disyllabic word 

recognition. The Quarterly Journal of Experimental Psychology, 66(5), 946-972. 

Cree, G.S., McRae, K., & McNorgan, C. (1999). An attractor model of lexical conceptual 

processing: Simulating semantic priming. Cognitive Science, 23(3), 371-414. 

doi:10.1016/S0364-0213(99)00005-1 

Davis, C.J. (2005). N-Watch: A program for deriving neighborhood size and other 

psycholinguistic statistics. Behavior Research Methods, 37(1), 65-70. 

doi:10.3758/BF03206399 

Duñabeitia, J.A., Avilés, A., & Carreiras, M. (2008). NoA’s ark: Influence of the number of 

associates on visual word recognition. Psychonomic Bulletin & Review, 15, 1072-1077. 

doi:10.3758/PBR.15.6.1072 

Forster, K.I., & Forster, J.C. (2003). DMDX: A windows display program with millisecond 

accuracy. Behavior Researh Methods, Instruments & Computers, 35, 116-124. 

Gernsbacher, M.A. (1984). Resolving 20 years of inconsistent interactions between lexical 

familiarity and orthography, concreteness, and polysemy. Journal of Experimental 

Psychology: General, 113(2), 256-281. doi:10.1037/0096-3445.113.2.256 



SEMANTIC NEIGHBORHOOD DENSITY AND THE AMBIGUITY ADVANTAGE 64 

 

Grainger, J. (1990). Word frequency and neighborhood frequency effects in lexical decision and 

naming. Journal of Memory and Language, 29(2), 228-244. doi:10.1016/0749-

596X(90)90074-A 

Grainger, J., & Jacobs, A.M. (1996). Orthographic processing in visual word recognition: A 

multiple readout model. Psychological Review, 103, 518-565. 

Hargreaves, I.S., & Pexman, P.M. (2014). Get rich quick: The signal to respond procedure 

reveals the time course of semantic richness effects during visual word recognition. 

Cognition, 131(2), 216-242. doi:10.1016/j.cognition/2014.01.001 

Hino, Y., Kusunose, Y., & Lupker, S.J. (2010). The relatedness-of-meaning effect for ambiguous 

words in lexical-decision tasks: When does relatedness matter? Canadian Journal of 

Experimental Psychology, 64(3), 180-196. doi:10.1037/a0020475 

Hino, Y., & Lupker, S.J. (1996). Effects of polysemy in lexical decision and naming: An 

alternative to lexical access accounts. Journal of Experimental Psychology: Human 

Perception and Performance, 22(6), 1331-1356. 

Hino, Y., Lupker, S.J., & Pexman, P.M. (2002). Ambiguity and synonymy effects in lexical 

decision, naming, and semantic categorization tasks: Interactions between orthography, 

phonology, and semantics. Journal of Experimental Psychology: Learning, Memory, and 

Cognition, 28(4), 686-713. doi:10.1037/0278-7393.28.4.686 

Hino, Y., Lupker, S.J., Sears, C.R., & Ogawa, T. (1998). The effects of polysemy for Japanese 

katakana words. Reading and Writing: An Interdisciplinary Journal, 10, 395-424. 

doi:10.1023/A:1008060924384 



SEMANTIC NEIGHBORHOOD DENSITY AND THE AMBIGUITY ADVANTAGE 65 

 

Hino, Y., Pexman, P.M., & Lupker, S.J. (2006). Ambiguity and relatedness effects in semantic 

tasks: Are they due to semantic coding? Journal of Memory and Language, 55, 247-273. 

doi:10.1016/j.jml.2006.04.001 

Hoffman, P., Ralph, M.A.L., & Rogers, T.T. (2013). Semantic diversity: A measure of semantic 

ambiguity based on variability in the contextual usage of words. Behavior Research 

Methods, 45(3), 718-730. doi:10.3758/s13428-012-0278-x 

Jastrzembski, J.E., (1981). Multiple meanings, number of related meanings, frequency of 

occurrence, and the lexicon. Cognitive Psychology, 13(2), 278-305. doi:10.1016/0010-

0285(91)90011-6 

Johnston, R.A., & Barry, C. (2005). Age of acquisition effects in the semantic processing of 

pictures. Memory & Cognition, 33(5), 905-912. doi:10.3758/BF03193084 

Joordens, S., & Besner, D. (1994). When banking on meaning is not (yet) money in the bank: 

Explorations in connectionist modeling. Journal of Experimental Psychology: Learning, 

Memory, and Cognition, 20, 1051-1062. doi:10.1037/0278-7393.20.5.1051 

Kawamoto, A.H., Farrar, W.T., & Kello, C.T. (1994). When two meanings are better than one: 

Modeling the ambiguity advantage using a recurrent distributed network. Journal of 

Experimental Psychology: Human Perception and Performance, 20(6), 1233-1247. 

doi:10.1037/0096-1523.20.6.1233 

Kellas, G., Ferraro, F.R., & Simpson, G.B. (1988). Lexical ambiguity and the timecourse of 

attentional allocation in word recognition. Journal of Experimental Psychology: Human 

Perception and Performance, 14(4), 601-609. 

Klein, D.E., & Murphy, G.L. (2001). The representation of polysemous words. Journal of 

Memory and Language, 45(2), 259-282. doi:10.1006/jmla.2001.2779 



SEMANTIC NEIGHBORHOOD DENSITY AND THE AMBIGUITY ADVANTAGE 66 

 

Klein, D.E., & Murphy, G.L. (2002). Paper has been my ruin: Conceptual relations of 

polysemous senses. Journal of Memory and Language, 47(4), 548-570. 

doi:10.1016/S0749-596X(02)00020-7 

Klepousniotou, E., & Baum, S.R. (2007). Disambiguating the ambiguity advantage effect in 

word recognition: An advantage for polysemous but not homonymous words. Journal of 

Neurolinguistics, 20(1), 1-24. doi:10.1016/j.jneuroling.2006.02.001 

Kuperman, V., Stadthagen-Gonzalez, H., & Brysbaert, M. (2012). Age-of-acquisition ratings for 

30,000 English words. Behavior Research Methods, 44(4), 978-990. doi:10.3758/s13428-

012-0210-4 

Landauer, T.K., & Dumais, S.T. (1997). A solution to Plato’s problem: The latent semantic 

analysis theory of acquisition, induction, and representation of knowledge. Psychological 

Review, 104(2), 211-240. doi:10.1037/0033-295X.104.2.211 

Lichacz, F.M., Herdman, C.M., LeFevre, J., & Baird, B. (1999). Polysemy effects in word 

naming. Canadian Journal of Experimental Psychology, 53, 189-193. 

doi:10.1037/h0087309 

Locker, L., Simpson, G.B., & Yates, M. (2003). Semantic neighborhood effects on the 

recognition of ambiguous words. Memory & Cognition, 31(4), 505-515. 

doi:10.3758/BF03196092 

Lund, K., & Burgess, C. (1996). Producing high-dimensional semantic spaces from lexical co-

occurrence. Behavior Research Methods, Instruments & Computers, 28(2), 203-208. 

doi:10.3758/BF03204766 



SEMANTIC NEIGHBORHOOD DENSITY AND THE AMBIGUITY ADVANTAGE 67 

 

McRae, K., Cree, G.S., Seidenberg, M.S., & McNorgan, C. (2005). Semantic feature production 

norms for a large set of living and nonliving things. Behavior Research Methods, 37(4), 

547-559. doi:10.3758/BF03192726 

Millis, M.L., & Button, S.B. (1989). The effect of polysemy on lexical decision time: Now you 

see it, now you don’t. Memory & Cognition, 17(2), 141-147. 

Mirman, D. (2011). Effects of near and distant semantic neighbors on word production. 

Cognitive, Affective & Behavioral Neuroscience, 11(1), 32-43. doi:10.3758/s13415-010-

0009-7 

Mirman, D., & Magnuson, J.S. (2008). Attractor dynamics and semantic neighborhood density: 

Processing is slowed by near neighbors and speeded by distant neighbors. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 34(1), 65-79. 

doi:10.1037/0278-7393.34.1.65 

Nelson, D.L., Bennett, D.J., Gee, N.R., Schreiber, T.A., & McKinney, V.M. (1993). Implicit 

memory: Effects of network size and interconnectivity on cued recall. Journal of 

Experimental Psychology: Learning, Memory, & Cognition, 19, 747-764. 

Nelson, D.L., McEvoy, C.L., & Schreiber, T.A. (1998). The University of South Florida word 

association, rhyme and word fragment norms. http://w3.usf.edu/FreeAssociation/ 

O’Connor, C.M., Cree, G.S., & McRae, K. (2009). Conceptual hierarchies in a flat attractor 

network: Dynamics of learning and computations. Cognitive Science, 33(4), 665-708. 

doi:10.1111/j.1551-6079.2009.01024.x 

Parks, R., Ray, J., & Bland, S. (1998). Wordsmyth English dictionary-thesaurus. University of 

Chicago. http://www.wordsmyth.net 



SEMANTIC NEIGHBORHOOD DENSITY AND THE AMBIGUITY ADVANTAGE 68 

 

Pexman, P.M., Hargreaves, I.S., Edwards, J.D., Henry, L.C., & Goodyear, B.G. (2007). The 

neural consequences of semantic richness: When more comes to mind, less activation is 

observed. Psychological Science, 18(5), 401-406. doi:10.1111/j.1467-9280.2007.01913.x 

Pexman, P.M., Hargreaves, I.S., Siakaluk, P.D., Bodner, G.E., & Pope, J. (2008). There are 

many ways to be rich: Effects of three measures of semantic richness on visual word 

recognition. Psychonomic Bulletin & Review, 15(1), 161-167. doi:10.3758/PBR.15.1.161 

Pexman, P.M., Hino, Y., & Lupker, S.J. (2004). Semantic ambiguity and the process of 

generating meaning from print. Journal of Experimental Psychology: Learning, Memory, 

and Cognition, 30(6), 1252-1270. doi:10.1037/0278-7393.30.6.1252 

Pexman, P.M., Holyk, G.G., & Monfils, M.-H. (2003). Number-of-features effects and semantic 

processing. Memory & Cognition, 31(6), 842-855. doi:10.3758/BF03196439 

Pexman, P.M., & Lupker, S.J. (1999). Ambiguity and visual word recognition: Can feedback 

explain both homophone and polysemy effects? Canadian Journal of Experimental 

Psychology, 53, 323-334. doi:10.1037/h0087320 

Pexman, P.M., Lupker, S.J., & Hino, Y. (2002). The impact of feedback semantics in visual 

word recognition: Number-of-feature effects in lexical decision and naming tasks. 

Psychonomic Bulletin & Review, 9(3), 542-549. doi:10.3758/BF03196311 

Plaut, D.C., & McClelland, J.L. (1993). Generalization with componential attractors: Word and 

nonword reading in an attractor network. Proceedings of the 15
th

 Annual Conference of 

the Cognitive Science Society (pp. 824-829). Hillsdale, NJ: Erlbaum. 

Plaut, D.C., McClelland, J.L., Seidenberg, M.S., & Patterson, K. (1996). Understanding normal 

and impaired word reading: Computational principles in quasi-regular domains. 

Psychological Review, 103(1), 56-115. doi:10.1037/0033-295X.103.1.56 



SEMANTIC NEIGHBORHOOD DENSITY AND THE AMBIGUITY ADVANTAGE 69 

 

Rodd, J.M. (2004). The effect of semantic ambiguity on reading aloud: A twist in the tale. 

Psychonomic Bulletin & Review, 11(3), 440-445. 

Rodd, J.M., Gaskell, M.G., & Marslen-Wilson, W.D. (2002). Making sense of semantic 

ambiguity: Semantic competition in lexical access. Journal of Memory and Language, 46, 

245-266. doi:10.1006/jmla.2001.2810 

Rodd, J.M., Gaskell, M.G., & Marslen-Wilson, W.D. (2004). Modelling the effects of semantic 

ambiguity in word recognition. Cognitive Science, 28(1), 89-104. 

doi:10.1016/j.cogsci.2003.08.002 

Rubenstein, H., Garfield, L., & Millikan, J.A. (1970). Homographic entries in the internal 

lexicon. Journal of Verbal Learning and Verbal Behavior, 9, 487-494. 

Rubenstein, H., Lewis, S.S., & Rubenstein, M.A. (1971). Homographic entries in the internal 

lexicon: Effects of systematicity and relative frequency of meanings. Journal of Verbal 

Learning and Verbal Behavior, 10(1), 57-62. doi:10.1016/S0022-5371(71)80094-4 

Sears, C.R., Hino, Y., & Lupker, S.J. (1995). Neighborhood size and neighborhood frequency 

effects in word recognition. Journal of Experimental Psychology: Human Perception and 

Performance, 21, 876-900. doi:10.1037/0096-1523.21.4.876 

Seidenberg, M.S., & McClelland, J.L. (1989). A distributed, developmental model of word 

recognition and naming. Psychological Review, 96(4), 523-568. doi:10.1037/0033-

295X.96.4.523 

Siakaluk, P.D., Buchanan, L., & Westbury, C. (2003). The effect of semantic distance in yes/no 

and go/no-go semantic categorization tasks. Memory and Cognition, 31(1), 100-113. 

doi:10.3758/BF03196086 



SEMANTIC NEIGHBORHOOD DENSITY AND THE AMBIGUITY ADVANTAGE 70 

 

Siakaluk, P.D., Sears, C.R., & Lupker, S.J. (2002). Orthographic neighborhood effects in lexical 

decision: The effects of nonword orthographic neighborhood size. Journal of 

Experimental Psychology: Human Perception and Performance, 28, 661-681. 

doi:10.1037/0096-1523.28.3.661 

Van Orden, G.C., Pennington, B.F., & Stone, G.O. (1990). Word identification in reading and 

the promise of subsymbolic psycholinguistics. Psychological Review, 97(4), 488-522. 

doi:10.1037/0033-295X.97.4.488 

Vitevitch, M.S. (2007). The spread of phonological neighborhood influences spoken word 

recognition. Memory & Cognition, 35(1), 166-175. doi:10.3758/BF03195952 

Yap, M.J., Pexman, P.M., Wellsby, M., Hargreaves, I.S., & Huff, M.J. (2012). An abundance of 

riches: Cross-task comparisons of semantic richness effects in visual word recognition. 

Frontiers in Human Neuroscience, 6, 1-10. doi:10.3399/fnhum.2012.00072 

Yap, M.J., & Seow, C.S. (2014). The influence of emotion on lexical processing: Insights from 

RT distributional analysis. Psychonomic Bulletin & Review, 21(2), 526-533. 

Doi:10.3758/s13423-013-0525-x 

Yap, M.J., Tan, S.E., Pexman, P.M., & Hargreaves, I.S. (2011). Is more always better? Effects of 

semantic richness on lexical decision, speeded pronunciation, and semantic classification. 

Psychonomic Bulletin & Review, 18(4), 742-750. doi:10.3758/s13423-011-0092-y 

Yates, M. (2005). Phonological neighbors speed visual word processing: Evidence from multiple 

tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(6), 

1385-1397. doi:10.1037/0278-7393.31.6.1385 



SEMANTIC NEIGHBORHOOD DENSITY AND THE AMBIGUITY ADVANTAGE 71 

 

Yates, M. (2009). Phonological neighbourhood spread facilitates lexical decisions. The Quarterly 

Journal of Experimental Psychology, 62(7), 1304-1314. 

doi:10.1080/17470210902725746 

Ziegler, J.C., Muneaux, M., & Grainger, J. (2003). Neighborhood effects in auditory word 

recognition: Phonological competition and orthographic facilitation. Journal of Memory 

and Language, 48, 779-793. doi:10.1016/S0749-596X(03)00006-8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SEMANTIC NEIGHBORHOOD DENSITY AND THE AMBIGUITY ADVANTAGE 72 

 

Table 1 - Mean Response Times (RTs) and Error Rates from Locker, Simpson, & Yates (2003), 

Experiment 1 

 

 

 

Semantic Set 

 

High Connectivity 

  

Low Connectivity 

           

RT  SD  Error  RT  SD  Error 

 

Large 

           

   Ambiguous 576  74  4  585  70  4 

  Unambiguous 587  45  2  577  69  4 

Ambiguity Effect +11    -2%  +8    +0% 

  

Small   

   Ambiguous 611  88  7  604  72  6 

 Unambiguous 609  70  10  627  75  12 

 

Ambiguity Effect 

 

-2 

 

+3% 

 

+23
**‡ 

 

+6% 

Note: † p < .10; * p < .05; ** p < .01; *** p < .001; ‡ significant by subjects only. 
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Table 2 - Mean Response Times (RTs) and Error Rates from Experiment 1 – Locker et al.’s 

(2003) stimuli – English Lexicon Project Database 

 

 

 

Semantic Set 

 

High Connectivity 

  

Low Connectivity 

          

RT  SD  Error  RT  SD  Error 

 

Large 

           

   Ambiguous 621  33  4.50  591  35  1.50 

  Unambiguous 595  29  2.10  602  34  2.10 

Ambiguity Effect -26    -2.40%  +11    +0.60% 

  

Small   

   Ambiguous 600  44  2.00  604  43  1.50 

 Unambiguous 638  43  3.30  624  44  2.10 

 

Ambiguity Effect 

 

+38 

 

+1.30% 

 

+20 

 

+1.60% 
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Table 3 - Stimulus Characteristics from Experiment 1 

 Ambiguous Unambiguous 

Semantic Set  Small Large Small Large 

Connectivity Low High Low High Low High Low High 

CELEX 39.40 39.00 38.33 36.96 24.23 39.16 24.77 31.82 

Set Size 8.22 9.84 19.95 19.75 7.90 8.75 19.70 18.84 

Connectivity 0.61 2.09 0.85 2.27 0.70 2.41 0.95 2.25 

Concreteness 524.50 524.21 496.26 560.40 525.37 557.75 521.39 492.07 

N 7.50 6.37 7.63 7.10 7.40 6.00 7.15 5.47 

Length 4.67 4.63 4.58 4.85 4.50 4.35 4.75 4.47 

NOM 1.83 1.58 1.47 1.60 1.00 1.05 1.30 1.10 

NOS 10.17 7.63 12.16 9.65 4.60 3.95 7.20 5.05 

AoA 5.84 6.40 5.82 5.86 5.67 6.12 6.37 6.12 

Note: N = orthographic neighborhood size; NOM = number of meanings; NOS = Number of 

senses; AoA = Age of Acquisition. 

 

 

 

 

 

 

 

 

 

 



SEMANTIC NEIGHBORHOOD DENSITY AND THE AMBIGUITY ADVANTAGE 75 

 

Table 4 - Mean Response Times (RTs) and Error Rates for Experiment 1 – Subject Analysis 

 

 

 

Semantic Set 

 

High Connectivity 

  

Low Connectivity 

          

RT  SD  Error  RT  SD  Error 

 

Large 

           

   Ambiguous 639  94  3.38  627  82  2.88 

  Unambiguous 611  91  3.10  636  84  1.67 

Ambiguity Effect -28
*** 

   +0.28%  +9    -1.21% 

  

Small   

   Ambiguous 632  82  1.63  630  93  3.18 

 Unambiguous 642  90  5.24  621  79  2.62 

 

Ambiguity Effect 

 

+10 

 

+3.61%
*** 

 

-9 

 

-0.56% 

Note: † p < .10; * p < .05; ** p < .01; *** p < .001. 
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Table 5 - Mean Response Times (RTs) and Error Rates for Experiment 1 – With Covariate 

 

 

 

Semantic Set 

 

High Connectivity 

  

Low Connectivity 

          

RT  SD  Error  RT  SD  Error 

 

Large 

           

   Ambiguous 639  43  3.10  626  35  2.88 

Unambiguous 611  29  3.57  633  29  1.67 

Ambiguity Effect -28
* 

   +0.47%  +7    -1.21% 

  

Small   

   Ambiguous 632  45  1.63  630  31  3.18 

Unambiguous 642  36  5.24  621  45  2.62 

 

Ambiguity Effect 

 

+10 

 

+3.61%
*** 

 

-9 

 

-0.56% 

Note: † p < .10; * p < .05; ** p < .01; *** p < .001. 
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Table 6 - Mean Response Times (RTs) and Error Rates for Experiment 1 – English Lexicon 

Project 

 

 

 

Semantic Set 

 

High Connectivity 

  

Low Connectivity 

          

RT  SD  Error  RT  SD  Error 

 

Large 

           

   Ambiguous 617  45  3.15  599  40  1.80 

  Unambiguous 609  46  2.85  608  29  2.40 

Ambiguity Effect -8    -0.30%  +9    -0.60% 

  

Small   

   Ambiguous 605  41  2.25  602  40  2.25 

 Unambiguous 647  40  2.10  626  42  3.00 

 

Ambiguity Effect 

 

+42 

 

-0.15% 

 

+24 

 

+0.75% 
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Table 7 - Mean Response Times (RTs) and Error Rates from Experiment 1 – Locker et al.’s 

(2003) stimuli 

 

 

 

Semantic Set 

 

High Connectivity 

  

Low Connectivity 

          

RT  SD  Error  RT  SD  Error 

 

Large 

           

   Ambiguous 622  44  2.62  617  39  3.33 

  Unambiguous 607  37  2.38  627  29  1.67 

Ambiguity Effect -15    -0.53%  +10    -1.66% 

  

Small   

   Ambiguous 628  48  1.85  637  39  4.76 

 Unambiguous 650  34  5.00  614  35  2.86 

 

Ambiguity Effect 

 

+22
*‡ 

 

+3.15%
* 

 

-23
*‡ 

 

-1.90% 

Note: † p < .10; * p < .05; ** p < .01; *** p < .001; ‡ significant by subjects only. 
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Table 8 - Mean Response Times (RTs) and Error Rates from Experiment 1 – New Stimuli 

 

 

 

Semantic Set 

 

High Connectivity 

  

Low Connectivity 

          

RT  SD  Error  RT  SD  Error 

 

Large 

           

   Ambiguous 656  37  3.57  635  31  2.38 

  Unambiguous 613  16  4.76  640  29  1.67 

Ambiguity Effect -43
*** 

   +1.19%  +5    -0.71% 

  

Small   

   Ambiguous 635  44  1.43  624  23  1.90 

 Unambiguous 633  37  5.48  628  53  2.38 

 

Ambiguity Effect 

 

-2 

 

+4.05%
*** 

 

+4 

 

+0.48% 

Note: † p < .10; * p < .05; ** p < .01; *** p < .001; ‡ significant by subjects only. 
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Table 9 - Mean Response Times (RTs) and Error Rates from Experiment 1 – New Stimuli – 

English Lexicon Project Database 

 

 

 

Semantic Set 

 

High Connectivity 

  

Low Connectivity 

          

RT  SD  Error  RT  SD  Error 

 

Large 

           

   Ambiguous 613  57  1.80  607  46  1.67 

  Unambiguous 624  58  3.33  615  23  2.70 

Ambiguity Effect +11    +1.53%  +8    +1.03% 

  

Small   

   Ambiguous 609  41  2.10  600  39  2.40 

 Unambiguous 655  38  0.90  629  40  3.90 

 

Ambiguity Effect 

 

+46 

 

-1.20% 

 

+29 

 

+1.50% 
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Table 10 - Number of Meanings (NOM) and Number of Senses (NOS) from Experiment 1- 

Locker et al. (2003) stimuli 

 

 

 

Semantic Set 

 

High Connectivity 

  

Low Connectivity 

      

NOM  NOS  NOM  NOS 

 

Large 

       

   Ambiguous 1.20  9.10  1.70  13.70 

  Unambiguous 1.20  4.80  1.20  7.20 

Small        

   Ambiguous 1.22  6.44  1.88  10.62 

 Unambiguous 1.00  4.30  1.00  4.80 
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Table 11 - Number of Meanings (NOM) and Number of Senses from Experiment 1- New Stimuli 

 

 

 

Semantic Set 

 

High Connectivity 

  

Low Connectivity 

      

NOM  NOS  NOM  NOS 

 

Large 

       

   Ambiguous 2.00  10.20  1.22  10.44 

  Unambiguous 1.00  5.33  1.10  6.60 

Small        

   Ambiguous 1.90  8.70  1.80  9.80 

 Unambiguous 1.10  3.60  1.00  4.40 
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Table 12 - Stimulus Characteristics from Experiment 2 

 Ambiguous Unambiguous 

Semantic Set Small Large Small Large 

CELEX 25.26 23.50 21.96 20.27 

Set Size 10.21 20.68 9.13 20.21 

Connectivity 2.02 2.00 2.07 2.08 

Concreteness 533.25 536.92 538.70 545.83 

N 7.17 7.52 7.56 5.88 

Length 4.67 4.60 4.35 4.50 

NOM 1.38 1.84 1.22 1.21 

NOS 6.62 8.60 3.48 6.04 

AoA 6.38 6.35 5.78 5.22 

Note: N = orthographic neighborhood size; NOM = number of meanings; NOS = Number of 

senses; AoA = Age of Acquisition. 
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Table 13 - Mean Response Times (RTs) and Error Rates from Experiment 2 – Subject Analysis 

  

Small 

  

Large 

 

Stimuli 

 

RT 

  

SD 

  

Error 

  

RT 

  

SD 

  

Error 

 

Ambiguous 

 

663 

  

93 

  

2.98 

  

667 

  

100 

  

2.86 

 

Unambiguous 

 

656 

  

90 

  

3.35 

  

649 

  

88 

  

2.32 

 

Ambiguity Effect 

 

-7 

    

+0.37% 

  

-18
** 

    

-0.54% 

Note: † p < .10; * p < .05; ** p < .01; *** p < .001. 
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Table 14 - Mean Response Times (RTs) and Error Rates from Experiment 2 – Item Analysis 

  

Small 

  

Large 

 

Stimuli 

 

RT 

  

SD 

  

Error 

  

RT 

  

SD 

  

Error 

 

Ambiguous 

 

661 

  

48 

  

2.98 

  

666 

  

47 

  

2.86 

 

Unambiguous 

 

654 

  

39 

  

3.35 

  

647 

  

35 

  

2.32 

 

Ambiguity Effect 

 

-7 

    

+0.37% 

  

-19 

    

-0.54% 

Note: † p < .10; * p < .05; ** p < .01; *** p < .001. 
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Table 15 - Mean Response Times (RTs) and Error Rates from Experiment 2 – English Lexicon 

Project Database 

    

Small 

      

Large 

  

 

Stimuli 

 

RT 

  

SD 

  

Error 

  

RT 

  

SD 

  

Error 

 

Ambiguous 

 

625 

  

48 

  

3.12 

  

621 

  

51 

  

3.12 

 

Unambiguous 

 

611 

  

33 

  

2.87 

  

608 

  

27 

  

2.38 

 

Ambiguity Effect 

 

-14 

    

+0.37% 

  

-13 

    

-0.54% 
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Table 16 - Stimulus Characteristics from Experiment 3 

 Ambiguous Unambiguous 

Semantic Set Small Large Small Large 

CELEX 28.70 25.60 23.77 19.60 

Set Size 10.60 20.50 8.95 20.35 

Connectivity 2.08 2.00 2.04 2.06 

Concreteness 527.40 538.61 538.35 562.05 

N 7.85 9.33 7.75 6.45 

Word Length 4.45 4.22 4.30 4.35 

NOM 1.35 2.00 1.20 1.25 

NOS 7.20 9.17 3.40 6.05 

AoA 6.04 6.20 5.69 4.90 

Note: N = orthographic neighborhood size; NOM = number of meanings; NOS = Number of 

senses; AoA = Age of Acquisition. 
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Table 17 - Mean Response Times (RTs) and Error Rates from Experiment 3- Subject Analysis 

    

Large 

      

Small 

  

 

Stimuli 

 

RT 

  

SD 

  

Error 

  

RT 

  

SD 

  

Error 

 

Ambiguous 

 

668 

  

98 

  

2.59 

  

650 

  

81 

  

2.06 

 

Unambiguous 

 

655 

  

89 

  

2.59 

  

646 

  

80 

  

2.22 

 

Ambiguity Effect 

 

-13 

    

+0.0% 

  

-4 

    

+0.16% 

Note: † p < .10; * p < .05; ** p < .01; *** p < .001. 
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Table 18 - Mean Response Times (RTs) and Error Rates from Experiment 3- With Covariate 

    

Large 

      

Small 

  

 

Stimuli 

 

RT 

  

SD 

  

Error 

  

RT 

  

SD 

  

Error 

 

Ambiguous 

 

667 

  

50 

  

2.10 

  

649 

  

35 

  

2.64 

 

Unambiguous 

 

654 

  

47 

  

2.26 

  

645 

  

42 

  

2.64 

 

Ambiguity Effect 

 

-13 

    

+0.37% 

  

-4 

    

+0.0% 

Note: † p < .10; * p < .05; ** p < .01; *** p < .001. 
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Table 19 - Mean Response Times (RTs) and Error Rates from Experiment 3- English Lexicon 

Project Database 

  

Small 

  

Large 

 

Stimuli 

 

RT 

  

SD 

  

Error 

  

RT 

  

SD 

  

Error 

 

Ambiguous 

 

618 

  

40 

  

2.85 

  

608 

  

45 

  

3.00 

 

Unambiguous 

 

609 

  

30 

  

2.70 

  

607 

  

29 

  

2.25 

 

Ambiguity Effect 

 

-9 

    

-0.15% 

  

-1 

    

-0.75% 
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Table 20 - Experiment 1 Results – Early AoA words (AoA < 5.84) 

 

 

 

Semantic Set 

 

High Connectivity 

  

Low Connectivity 

          

RT  SD  Error  RT  SD  Error 

 

Large 

           

   Ambiguous 628  43  2.62  613  30  2.86 

  Unambiguous 603  32  3.97  636  32  1.43 

Ambiguity Effect -25    +1.35%  +23    -1.43% 

  

Small   

   Ambiguous 602  20  1.59  622  40  3.44 

 Unambiguous 628  18  3.27  620  44  2.78 

 

Ambiguity Effect 

 

+26 

 

+1.68% 

 

-2 

 

-0.66% 
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Table 21 - Experiment 1 Results – Late AoA words (AoA > 5.84) 

 

 

 

Semantic Set 

 

High Connectivity 

  

Low Connectivity 

          

RT  SD  Error  RT  SD  Error 

 

Large 

           

   Ambiguous 650  42  3.57  636  35  3.74 

  Unambiguous 619  23  3.17  631  27  1.90 

Ambiguity Effect -31    -0.40%  -5    -1.84% 

  

Small   

   Ambiguous 662  47  1.59  637  18  2.91 

 Unambiguous 650  36  6.55  624  48  2.38 

 

Ambiguity Effect 

 

-12 

 

+4.96% 

 

-13 

 

-0.53% 
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Table 22 - Experiment 2 Results- Early AoA Words (AoA < 5.62) 

  

Small 

  

Large 

 

Stimuli 

 

RT 

  

SD 

  

Error 

  

RT 

  

SD 

  

Error 

 

Ambiguous 

 

634 

  

30 

  

2.14 

  

648 

  

29 

  

2.14 

 

Unambiguous 

 

638 

  

35 

  

3.25 

  

638 

  

32 

  

1.43 

 

Ambiguity Effect 

 

+4 

    

+1.11% 

  

-10 

    

-0.71% 
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Table 23 - Experiment 2 Results - Late AoA Words (AoA > 5.62) 

  

Small 

  

Large 

 

Stimuli 

 

RT 

  

SD 

  

Error 

  

RT 

  

SD 

  

Error 

 

Ambiguous 

 

680 

  

51 

  

3.57 

  

682 

  

56 

  

3.52 

 

Unambiguous 

 

668 

  

38 

  

3.45 

  

662 

  

38 

  

3.81 

 

Ambiguity Effect 

 

-12 

    

-0.12% 

  

-20 

    

+0.29% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SEMANTIC NEIGHBORHOOD DENSITY AND THE AMBIGUITY ADVANTAGE 95 

 

Table 24 - Experiment 3 Results- Early AoA Words (AoA < 5.44) 

  

Small 

  

Large 

 

Stimuli 

 

RT 

  

SD 

  

Error 

  

RT 

  

SD 

  

Error 

 

Ambiguous 

 

635 

  

42 

  

3.14 

  

636 

  

45 

  

1.62 

 

Unambiguous 

 

614 

  

21 

  

2.08 

  

651 

  

51 

  

2.18 

 

Ambiguity Effect 

 

-21 

    

-1.06% 

  

+15 

    

-0.56% 
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Table 25 - Experiment 3 Results- Late AoA Words (AoA > 5.44) 

    

Small 

      

Large 

  

 

Stimuli 

 

RT 

  

SD 

  

Error 

  

RT 

  

SD 

  

Error 

 

Ambiguous 

 

660 

  

28 

  

2.23 

  

686 

  

48 

  

2.40 

 

Unambiguous 

 

676 

  

22 

  

3.21 

  

659 

  

31 

  

2.42 

 

Ambiguity Effect 

 

+16 

    

-0.98% 

  

-27 

    

+0.02% 
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APPENDIX A 

Materials used in Experiment 1 
Large Semantic Set    Small Semantic Set 

High 

Connectivity 

 Low 

Connectivity 

   High 

Connectivity 

 Low 

Connectivity 

    Ambiguous     

Coast  Roll    Pen  Racket 

Axe  Base    Meal  Bark 

Drink  Pit    Sketch  Brush 

Suit  Ticket    Ship  Cap 

Toy  Grind    Sight  Calf* 

Yellow  Blow    Bitter  Bank 

Brass  Plain    Odd  Slip 

Mate  Booth    Leaf  Cloud 

Train  Tip    Suds*  Hound 

Seal  Match    Stew  Perch 

Sink  Pass    Pupil  Beam* 

Swallow  Date    Purse  Draft 

Grave  Tie    Shot  Switch 

Diamond  Park    Temple  Rose 

Iron  Card*    Coach  Rock 

Cross  Trace    Spring  Count 

Port  Chest    Shop  Bridge 

Uniform  Craft    Article  Root 

Speaker  Sentence    Kid  Palm 

Bat  Fence    Stem  Novel 

    Unambiguous     

Burn  Vanity    Slim  Alter 

Movie  Wire    Gem  Lamp 

Pie  Zone    Youth  Profit 

Vote  Maid    Pond  Dune 

Pants  Rack    Vest  Pail 

Farmer  Hole    Cab  Cone 

Pink  Tube    Dinner  Link 

Lab  Dragon    Shout  Itch 

Damp  Dare    Huge  Win 

Myth  Tree    Chill  Dog 

Herb  Hay    Couch  Pencil 

Cheat  String    Cent  Shoe 

Potato  Drill    Task  Oak 

Grow  Tiger    Bacon  Hat 

Destroy  Clay    Goose  Mustard 

Travel  Goat    Cattle  Jump 

Poet  Gang    Ape  Beard 

Bus  Launch    Dusk  Trout 

Wool  Leather    Cab  Cattle 

Pig*  Machine    Bloom  Scared 
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APPENDIX B 

Materials used in Experiment 2 

Large Semantic Set  Small Semantic Set 

Ambiguous  Unambiguous  Ambiguous  Unambiguous 

Agency  Accident  Bitter  Bath 

Bat  Boss  Cardinal  Brook 

Block  Burn  Coin  Cash 

Chicken  Carpet  Cool  Cow 

Coast  Clam  Dough  Cube 

Crab  Cloth  Film  Devil 

Drug  Cookie  Foil  Dinner 

Duck  Dirt  Fork  Jelly 

Fan  Flute  Hearing  Lens 

Fuse  Fog  Hog  Lung 

Grave  Grape  Incense  Mall 

Mark  Ham  Jam  Mist 

Mate  Pie  Mad  Moss 

Mole  Rain  Mug  Mule 

Pig  Reward  Nickel  Navy 

Rash  Scar  Organ  Oven 

Rim  Shark  Pen  Planet 

Seal  Soap  Plate  Pork 

Speaker  Soul  Pupil  Salary 

Suit  Stain  Ship  Shout 

Swallow  Vote  Temple  Stove 

Tense  Wolf  Text  Vest 

Treat  Worm  Trip  Zoo 

Tube  Bury*  Wound  Meal* 

Uniform  Frog*  Suds*  Surf* 
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APPENDIX C 
Materials used in Experiment 3 

Large Semantic Set  Small Semantic Set 

Ambiguous  Unambiguous  Ambiguous  Unambiguous 

Bat  Boss  Bitter  Bath 

Block  Burn  Coin  Brook 

Coast  Carpet  Cool  Cash 

Crab  Cloth  Dough  Cow 

Drug  Cookie  Film  Cube 

Duck  Dirt  Foil  Devil 

Fan  Fog  Fork  Dinner 

Grave  Frog  Hearing  Jelly 

Mark  Grape  Jam  Lens 

Mate  Ham  Mad  Lung 

Mole  Pie  Mug  Mall 

Pig  Rain  Nickel  Mist 

Rim  Reward  Organ  Moss 

Seal  Scar  Pen  Navy 

Suit  Shark  Plate  Oven 

Tense  Soap  Ship  Planet 

Treat  Stain  Temple  Pork 

Uniform  Vote  Text  Shout 

Fuse*  Wolf  Trip  Stove 

Rash*  Worm  Wound  Zoo 
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