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Abstract 

 

The interface of the first transmembrane domain and the first extracellular loop 

(TM1/E1 border) in several gap junction (GJ) channels is known to line a portion of 

the pore and plays an important role in determining GJ channel properties. By 

introduction of a charged residue into this domain of Cx50, the resultant mutant 

channels showed drastically altered unitary conductance (γj) and transjunctional 

voltage-dependent gating (Vj-gating). Specifically G46D and G46E increased the 

Cx50 γj from 201 to 256 and 293 pS, respectively and G46K channel showed a 

decreased γj of only 20 pS. Moreover, in single channel recordings of homotypic 

G46K and heterotypic Cx50/G46K channels, only loop gating transitions were 

observed, indicating an apparent loss of fast Vj-dependent gating transitions. The 

homology structural models indicate that the pore surface electrostatic potential at the 

TM1/E1 border is a dictating factor in determining efficiency of ion permeation and 

Vj-gating of Cx50 GJ channels. 

 

Keywords: gap junction channel, single channel conductance, connexin50, 

voltage-dependent gating, patch clamp 
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Chapter 1: Introduction 

1.1 Gap junction channels 

Connexin (Cx) proteins are the subunits that form gap junction (GJ) channels. 

To date, 21 connexin isoforms have been identified in humans and 20 in mice. All of 

them share the same topology with four transmembrane domains (TM1~TM4), two 

extracellular loops (E1 & E2), one cytoplasmic loop (CL), and both amino-terminus 

(NT) and carboxyl-terminus (CT) on the cytoplasmic side (Milks, Kumar et al. 1988). 

Six identical/different connexins are oligomerized into a homomeric/heteromeric 

hemichannel, respectively. After trafficking to the plasma membrane, the 

hemichannel can dock to an opposed identical/different hemichannel from a 

neighboring cell to form a homotypic/heterotypic GJ channel, respectively (Fig. 1.1). 

The flexibility to organize different connexins into one GJ channel substantially 

increases functional diversity to meet specific physiological requirements in different 

cells.  

The basic function of GJ channels is to allow direct intercellular communication 

between two coupled cells. Ions, metabolites (e.g. ATP, glucose), second messengers 

(e.g. IP3, cGMP) and small interference RNA up to a molecular mass around 1 kDa 

can pass through the channel with a relatively low selectivity (Loewenstein 1981; 

Harris 2001). In different tissues and organs, GJ channels serve different purposes. In 

electrically excitable cells, like cardiomyocytes, smooth muscles and neurons, GJ 

channels are essential for the instantaneous propagation of electrical impulses and the 

coordinated responses of effective cell groups in order to generate electrical or 

mechanical output. In addition to these functions, the substance exchange through GJ 

channels plays an important role in maintaining cell homeostasis, controlling cell 
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development, differentiation and apoptosis in a variety of tissues (Goodenough and 

Paul 2009; Herve and Derangeon 2013). 

The factors that are effective in modulating GJ channel functions can be divided 

into two categories, chemical and electrical. The chemical category mainly includes 

cytoplasmic pH level, intracellular calcium concentration ([Ca
2+

]i) and 

phosphorylation status of connexin proteins, which influence the channel functions 

directly and/or indirectly. For instance, low intracellular pH is suggested to trigger the 

pH gating of GJ channels directly by protonation of connexins (Trexler, Bukauskas et 

al. 1999), or indirectly by protonation of aminosulfonates (Bevans and Harris 1999) 

and increased [Ca
2+

]i (Lazrak and Peracchia 1993), which could subsequently induce 

the interactions between calmodulins and intracellular domains of connexins 

(Peracchia, Bernardini et al. 1983; Zhou, Yang et al. 2007; Dodd, Peracchia et al. 

2008; Sun, Hills et al. 2014). Connexin phosphorylation is a factor that not only 

regulates the trafficking, assembling, internalization and degradation of GJ channels, 

but also has direct effects on the existing GJ channels in the plasma membrane. For 

example, enhancing the phosphorylation status of Cx43 led to substantially reduced 

unitary conductance (γj) of the Cx43 GJ channel (Moreno, Saez et al. 1994; Kwak, 

Saez et al. 1995).   

In addition to these chemical factors, the electrical potential differences across 

the cytosols of two coupled cells (the transjunctional voltage, known as Vj) and across 

the plasma membrane (the transmembrane voltage, known as Vm) are also able to 

modulate the functions of GJ channels. It is noted that only a few GJ channels (e.g. 

Cx26 and Cx43) are sensitive to Vm (Barrio, Revilla et al. 2000; Revilla, Bennett et al. 

2000), while all presently identified GJ channels are gated by Vj. Although Vj-gating 

kinetics and Vj-sensitivities are widely disparate among different GJ channels, a 
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common feature is that with the application of a continuous Vj pulse, the conductance 

of most GJ channels is maximum at the initial point of Vj and then gradually 

decreased to a steady state with residual conductance (termed „subconductance state‟). 

In the macroscopic records of homotypic GJ channels, positive and negative Vjs 

would generate symmetric current reduction traces due to the identical channel 

characteristics of two coupled hemichannels. The dependence of junctional 

conductance (Gj) on positive or negative Vjs can be described by a two state 

Boltzmann function independently, in which the ratio of steady state conductance (Gss) 

to initial conductance (Gini) is plotted to the corresponding Vj, yielding three 

parameters to describe the Vj-gating properties of the GJ channel. 
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Figure 1.1  Various compositions of GJ channels and the topology of a single 

connexin subunit. Six identical connexin subunits are oligomerized into a homomeric 

hemichannel, while differing connexin subunits form a heteromeric hemichannel. 

Two identical or different hemichannels are docked head-to-head to construct a 

homotypic or heterotypic GJ channel, respectively. Of these four configurations, there 

is no solid evidence for the existence of heteromeric homotypic GJ channels in vivo. 

All connexin isoforms are transmembrane proteins with the same topology.   
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1.2 Vj-dependent gating mechanisms 

With the application of sufficient Vj across two coupled cells, single channel 

records of various GJ channels showed the existence of a main open state, one or 

multiple subconductance states and a fully closed state, as well as two types of gating 

transitions between these states: fast gating and loop gating (also named slow gating), 

which were primarily distinguished by their transition times (Bukauskas, Elfgang et al. 

1995; Trexler, Bennett et al. 1996; Valiunas, Manthey et al. 1999). Fast gating is 

characterized by the fast gating transition (the transition time is generally < 2 ms) 

between the main open state and a subconductance state whose conductance is 5 ~ 40% 

of the maximum conductance (Trexler, Bennett et al. 1996; Bukauskas and Verselis 

2004). The slow or loop gating is characterized by the slow entry (usually takes 

several to tens of milliseconds) of the channel into the fully closed state.  

These two gating components exist simultaneously in a hemichannel with 

distinct sensitivities to Vj. In a typical GJ channel, two hemichannels are docked 

head-to-head, aligning two fast gates and two loop gates in series. Their responses to 

Vj follow the contingent gating model in which the state of one gate largely depends 

on the states of other gates (Moreno, Laing et al. 1995; Bukauskas, Angele et al. 2002; 

Paulauskas, Pranevicius et al. 2009). When applying sufficient Vj, the closure of one 

fast gate cuts off the Vj gradient across the entire channel drastically, resulting in the 

lasting opening of the opposed fast gate. The Vj-sensitivity of loop gating is much 

lower than that of fast gating; thus in most GJ channels, including Cx50, the loop 

gating activity is very scarce.  

A prominent property of the fast gate is its Vj-gating polarity, which describes 

the closure of the gate on the cytoplasmic side with either relatively positive or 

negative potential, depending on the connexin type that forms the GJ channels. For 
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instance, of two mirrored fast gates in a Cx50 GJ channel, only the fast gate on the 

cytoplasmic side with relative positive Vj is closed; therefore, its gating polarity is 

positive (Fig. 1.2). In contrast to Cx50, fast gating in Cx32 and Cx43 GJ channels 

exhibited negative gating polarity (Chen-Izu, Moreno et al. 2001; Abrams, Freidin et 

al. 2006). Loop gating also has polarity, but in all currently studied connexin members, 

loop gating only occurrs at the inside negative potential, which means that its gating 

polarity is always negative (Oh, Abrams et al. 2000; Verselis, Trexler et al. 2000; 

Bukauskas, Angele et al. 2002). 

The facts that fast and loop gatings are different in their gating transition times 

and have different polarities in some GJ channels imply the existence of distinct 

voltage sensors/gates for these two gating mechanisms. So far, evidence is not solid to 

interpret the relationship between Vj sensors and gates, as well as their locations in GJ 

channels, yet a widely accepted opinion is that sensors of these two gatings all reside 

in the channel lumen in order to sense Vj efficiently. A crystal structure of an open 

state of Cx26 GJ channels was resolved at 3.5 Å resolution in 2009, showing that the 

inner wall of the channel was composed of NT, the first half of E1 and the second half 

of TM1 domains of each connexin (Maeda, Nakagawa et al. 2009; Nakagawa, Maeda 

et al. 2010). These pore-lining domains are critical in determining γj and Vj-gating 

properties of GJ channels because they not only shape the pore, but are also capable 

of sensing the changes of Vj field directly.  

 

 

 

 



7 

 

 

Figure 1.2  Fast and loop gating polarities in Cx50 GJ channels and a 

representative single channel recording. A) A cartoon representation of a side view 

of a functional GJ channel spanning two neighboring cells. Each hemichannel 

possesses one fast gate (yellow arrow) on the cytoplasmic side likely formed by NT, 

and one loop gate (blue arrow) on the extracellular side possibly involving the 

TM1/E1 border. While two cells have an equal intracellular potential (Vj = 0), all fast 

and slow gates continue to remain open. B) When the cytoplasmic potential on the top 

side becomes relatively positive compared to the bottom side, fast gate on the positive 

side (positive polarity) closes the channel to a subconductance state. Loop gate on the 

negative side (negative polarity) is able to close the channel completely albeit with a 

much lower Vj sensitivity. C) In a typical voltage-clamp record of Cx50 GJ channel, 

fast gate closes the channel from a main open state to a subconductance state with a 

rapid single-step transition, while loop gate normally fully closes the channel in a 

multi-step process. O: open state; S: subconductance state; C: fully closed state. 
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1.2.1  Structural basis for fast gating 

In most GJ channels, fast gating is the dominant component in response to Vj 

because of its higher Vj sensitivity than that of loop gating. A number of 

structure-function studies using site-directed mutagenesis or domain swapping 

method identified the NT domain as a possible voltage sensor and gate in fast gating. 

In 1994, Bargiello and colleagues reported that the fast gating polarities of Cx26 and 

Cx32 channels were reversed simply by changing the charge status of the 2
nd 

amino 

acid residue in the NT of these two connexins (Verselis, Ginter et al. 1994). A further 

study on Cx32 using the same methods extended the effective residues to the 5
th

, 8
th

 

and 10
th

 amino acids, giving a conclusion that the first 10 residues of NT reside inside 

the pore, which allow the exclusive sensitivity to Vj field and not Vm (Oh, Rivkin et al. 

2004). Similar results were observed in both Cx46 and Cx50, as mutating the 

negatively charged residue Asp3 to neutral Asn (D3N) reversed their gating polarity 

from positive to negative (Peracchia and Peracchia 2005; Srinivas, Kronengold et al. 

2005).  

The high resolution (3.5 Å) crystal structure of Cx26 GJ published later on 

provides a structural basis for these earlier findings (Maeda, Nakagawa et al. 2009). In 

this structure, the NTs of six Cx26 monomers in a hemichannel are folding back into 

the channel, forming a constricted pore entrance with their NT helices. At open state, 

their positions are stabilized by intra-subunit hydrophobic bonds between Trp3 and 

Met 34 as well as inter-subunit hydrogen bonds between Asp2 and Thr5. However, 

they are still relatively flexible compared to other components in the channel and 

possibly driven by Vj to move towards the cytoplasm which would consequently close 

the channel to a subconductance state. A study in a heteromeric channel by Oh S. and 

colleagues suggested that the movement of a single NT subunit rather than the 
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concerted action of 6 subunits is sufficient to clog the channel (Oh, Abrams et al. 

2000). Due to the absence of high-resolution crystal structure for the closed state of 

any GJ channel, how exactly the conformation changes are triggered by the fast gating 

is still an open question. Electrophysiology data provide conjectures but are far from 

being conclusive. 

1.2.2 Structural basis for loop gating 

The slow/loop gating observed in both GJ channels and undocked hemichannels 

is possibly responsible for the opening of newly docked GJ channels and the securing 

closure of undocked hemichannels in the plasma membrane to prevent leakage and 

dilution of cytoplasmic contents (Trexler, Bennett et al. 1996; Bukauskas, Angele et 

al. 2002; Bukauskas and Verselis 2004; Rackauskas, Kreuzberg et al. 2007). The 

gating transition features a stepwise conductance reduction, usually taking tens of 

milliseconds to achieve, and can fully close the channel from the main open state or a 

subconductance state (Bukauskas, Bukauskiene et al. 2001; Oh, Rivkin et al. 2004). 

Unlike fast gating, loop gating of all characterized GJ channels displays negative 

gating polarity and less sensitivity to Vj. Currently, most studies of loop gating are 

conducted on undocked hemichannels rather than GJ channels most likely for the 

reason that a hemichannel normally only possesses two gating components (one fast 

gate and one loop gate) instead of four symmetric gating components in a GJ channel 

(two fast gates and two loop gates). However, whether the properties of loop gating in 

a hemichannel are the same as those in a GJ channel is still an unsolved question.  

The boundary sequence between the first transmembrane domain and the first 

extracelluar loop (TM1/E1 border) is believed to be a possible voltage sensor and gate, 

or at least an energy barrier for the loop gating (Kronengold, Trexler et al. 2003; 
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Verselis, Trelles et al. 2009). Earlier studies also identified that residue substitutions 

at the TM1/E1 border were capable of altering GJ channel properties, including γj, 

charge permeability and gating polarity (Verselis, Ginter et al. 1994; Hu and Dahl 

1999; Trexler, Bukauskas et al. 2000; Hu, Ma et al. 2006). In the crystal structure of 

Cx26 GJ channels, a parahelix structure (ranging from residue 42 to 51) at the 

TM1/E1 border functionally exposes a few acidic residues toward the pore surface 

and constructs a negatively charged pathway (Maeda, Nakagawa et al. 2009). 

Sequence alignment reveals that these negatively charged residues at the TM1/E1 

border of Cx26 are well conserved in most other connexins (Maeda and Tsukihara 

2011), indicating the existence of a similar negatively charged pathway in most GJ 

channels which would serve similar functions, including a voltage sensor for the loop 

gating, or to influence gating polarity and ion preference with the prominent local 

negative surface electrostatic potential. 

At the resting membrane potential, loop gating is responsible for closing 

unopposed hemichannels in the plasma membrane to preserve intracellular 

homeostasis. The closing process driven by Vm in undocked Cx50 and Cx32*Cx43E1 

hemichannels showed multiple (4~6) steps, which was interpreted as the involvement 

of up to 6 connexin subunits one-by-one at their TM1/E1 borders (Tang, Dowd et al. 

2009; Verselis, Trelles et al. 2009). It is suggested that the parahelix structure at the 

TM1/E1 border would experience rotation and/or tilt toward the pore center during 

the loop gating process, which would occlude the channel completely if all 6 connexin 

subunits are enrolled. Moreover, the closely-located residues in the parahelices could 

form low-affinity metal chelating sites for divalent cations (e.g. Ca
2+

, Cd
2+

, Mg
2+

) to 

further stabilize the fully closed state. On the contrary, removing the extracellular 

Ca
2+

 resulted in an increased opening of hemichannels in the plasma membrane, 



11 

 

showing increased hemichannel current in electrophysiological recording and 

up-regulated dye-uptake (Trexler, Bennett et al. 1996; Srinivas, Calderon et al. 2006; 

Verselis, Trelles et al. 2009). 

1.2.3 Other conformation changes related to Vj-dependent gating 

Most studies indicate that in a GJ channel, NT serves a dual purpose as both the 

Vj sensor and gate for fast gating, and the TM1/E1 border domain is a possible sensor 

and gate for loop gating. However, there are also other conformation changes closely 

associated with the Vj-dependent gating. A highly conserved proline (P87) residue 

was identified in the middle of an α-helix structure in TM2 domain across members of 

connexin family, which is well known for its function to form a kink in a 

transmembrane helix (Sankararamakrishnan and Vishveshwara 1992). Several 

mutations at P87 in Cx26 and T86 in Cx32, purposely modifying the flexibility and 

bending angle of TM2 helices to various degrees, showed altered Vj gating properties 

and gating polarities, suggesting that the conformation changes of TM2 are also 

related to the Vj-dependent gating (Suchyna, Xu et al. 1993; Ri, Ballesteros et al. 

1999). Another theory proposed in Cx40 and Cx43 GJ channels is similar to the “ball 

and chain” model of voltage-dependent ion channels, e.g. voltage-dependent sodium 

channel and shaker potassium channel (Armstrong and Bezanilla 1977; Hoshi, 

Zagotta et al. 1990), based on the observation that removing the CT of Cx40 and 

Cx43 eliminated the fast gating and subconductance states in their GJ channels, while 

co-expressing an independent CT peptide could restore these properties (Revilla, 

Castro et al. 1999; Anumonwo, Taffet et al. 2001; Moreno, Chanson et al. 2002). 

Further research suggested that the CT of Cx43 possibly binds its CL and forms a 

particle-receptor structure to clog the channel (Shibayama, Gutierrez et al. 2006). This 
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is inconsistent with recently postulated conformational changes of fast gating in other 

connexins, like Cx26, Cx32 and Cx50, all of which suggest the involvement of NT as 

both the sensor and fast gate simultaneously. However, it is also possible that this 

“ball and chain” theory is unique to Cx40 and Cx43 GJ channels. 

1.3 Heterotypic GJ channels 

A heterotypic GJ channel is formed by the head-to-head docking of two 

hemichannels with different connexin compositions. Compared to homotypic GJ 

channels, many questions pertaining heterotypic GJ channels remain unsolved. The 

co-localization of various connexins in the same tissue or organ makes it possible for 

different types of connexins to oligomerize and form heteromeric hemichannels and  

heterotypic GJ channels. The unique properties of heterotypic channels compared to 

homotypic channels are crucial to meet special physiological requirements. One of 

their prominent features is to mediate asymmetric chemical and/or electrical signaling 

between two cells, which is largely determined by the properties of each hemichannel. 

For example, in a homomeric heterotypic Cx32/Cx26 GJ channel, two fast gates were 

closed simultaneously when a relatively positive Vj was applied to the Cx26 side, but 

neither of them reacted to a relatively positive potential on the Cx32 side, owing to 

the opposite fast gating polarities between Cx32 (negative) and Cx26 (positive) 

hemichannels (Verselis, Ginter et al. 1994). In addition to this, the Cx26/Cx32 

channel showed a strong rectified γj. The application of positive Vj on the Cx26 side 

clearly produced a much higher current amplitude than negative Vj, indicating that the 

current flows more readily from the Cx26 hemichannel to the Cx32 hemichannel than 

in the opposite direction (Oh, Rubin et al. 1999; Suchyna, Nitsche et al. 1999). A 

possible explanation for this phenomenon is the asymmetric structures of two coupled 
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hemichannels, especially their distinct distributions of charged residues in the pore 

surface, which may substantially result in an unequal ability to conduct ions. In our 

study, in order to investigate the properties of G46K mutant, we constructed 

heterotypic Cx50/G46K GJ channels. In this channel, because the Vj-gating properties 

of Cx50 GJ channels and hemichannels have been well documented, the appearance 

of new features can be ascribed to the opposed G46K hemichannel. The heterotypic 

Cx50/G46K channel exhibited asymmetric Vj-dependent gating and significant 

instantaneous rectification. By using the homology structure models of Cx50 GJ 

channel and mutants G46D/E/K, we were able to compare their channel structures, 

especially the surface electrostatic fields at the TM1/E1 border to identify the possible 

structural basis for their specific features.  

1.4 Connexin 50 

1.4.1  Localization and physiological functions  

Cx50 is one of the best studied connexin members. It is exclusively expressed in 

vertebrate lens together with two other connexins, Cx43 and Cx46, in a partially 

overlapping manner (Beyer, Kistler et al. 1989; Paul, Ebihara et al. 1991; White, 

Bruzzone et al. 1992). The lens is an avascular organ constituted by multiple cell 

layers; therefore, high-density GJ channels are vital to provide low-resistance 

pathways for the entry and exit of water, ions, nutrients, metabolites and other 

physiological substances between cells. The expression of Cx43 is restricted in 

epithelial cells (the outmost layers), while Cx46 is in the core of the lens, which is 

constructed by differentiating and mature fiber cells. Cx50 is expressed in the whole 

lens, but with different forms. During the maturation of human and mouse fiber cells, 

CT of Cx50 was naturally truncated at position 290 or 294, but the truncated form was 
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still able to compose functional GJ channels (DeRosa, Mui et al. 2006). The 

physiological differences between these two forms of Cx50 are unclear.  

Notably, Cx50 knock-out mice had not only small eyes and lenses, termed 

microphthalmia, but they also developed cataract at an early age (White, Goodenough 

et al. 1998; Rong, Wang et al. 2002; Sellitto, Li et al. 2004). Therefore, Cx50 is 

crucial in promoting cell proliferation and differentiation, as well as maintaining lens 

homeostasis and transparency. Its functions cannot be fully compensated by an over 

expression of Cx46, as Cx46 knock-in mice (replace Cx50 gene locus with Cx46) still 

had undersized lenses despite being transparent (Mathias, White et al. 2010). Up to 

date, dozens of missense and frame shift mutations of the Cx50 gene have been 

identified as one of the underlying causes for inherited cataracts in both human 

families and mouse models (Chang, Wang et al. 2002; Sun, Xiao et al. 2011; Beyer, 

Ebihara et al. 2013). Most of these mutants exhibited a loss of GJ channel functions 

mainly due to failed trafficking to the plasma membrane, unsuccessful docking or 

channel opening issues (Arora, Minogue et al. 2008; Berthoud, Minogue et al. 2013; 

Sun, Hills et al. 2014). The residue localizations of these human mutations are 

depicted in a schematic diagram of Cx50 in Fig. 1.3, which was summarized from 

Beyer‟s review and Zhang‟s paper (Beyer, Ebihara et al. 2013; Ge, Zhang et al. 2014). 

1.4.2  Structure-function studies of Cx50 

The Cx50 GJ channel is highly sensitive to Vj and intracellular pH (Lin, Eckert 

et al. 1998; Srinivas, Costa et al. 1999). Its γj is around 200 pS, one of the largest 

among connexin isoforms. Extensive studies have been carried out on its NT domain 

and identified its role as one of the principal domains to determine the Vj-gating 

properties and γj (Tong, Liu et al. 2004; Peracchia and Peracchia 2005; Xin, Gong et 
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al. 2010). Replacing the 3
rd

 residue in NT, a negatively charged Asp (D) with a 

neutral Asn (N) reversed its fast gating polarity from positive to negative (Peracchia 

and Peracchia 2005). Moreover, mutant Cx50-D3E, which preserved the negative 

charge at this position but with a slightly prolonged side chain, dramatically reduced 

its γj and changed its open-closed stability, suggesting a pivotal role of this residue 

position in determining channel properties (Xin, Nakagawa et al. 2012). 

Cx50 has a huge CT domain with more than 200 residues, yet CT-cleaved Cx50 

showed similar Vj-dependent gating as wild type, but with lower γj (DeRosa, Mui et al. 

2006). Controversial results were obtained in terms of the impact of CT truncation on 

pH gating. Some reports found that even without CT, the Cx50 GJ channel preserved 

high sensitivity to cytoplasmic pH (Lin, Eckert et al. 1998; Xu, Berthoud et al. 2002), 

whereas another paper found that its pH gating was damaged after the removal of CT 

(DeRosa, Mui et al. 2006).  

In addition to NT and CT, TM1/E1 border is another key functional domain in 

Cx50 GJ channels. A careful inspection of the distribution of cataract-related mutants 

in Cx50 found that the TM1/E1 border demonstrated the highest incidence of point 

mutations and most of them are fatal to channel operation (Fig. 1.3). This implies that 

the structure and function of this domain are strictly defined and have little tolerance 

to residue alteration. In the crystal structure of Cx26 GJ, the TM1/E1 border domain 

has following features: 1) It is pore-lining and constructs the second narrowest part in 

an open GJ channel, slightly wider than the NT funnel; 2) The pore surface of this part 

is enriched by circles of negatively charged residues; 3) A parahelix structure (from 

residue 42 to 51) is likely involved in loop gating. Even though the Cx50 crystal 

structure is currently not available, hemichannel studies of Cx50 identified that every 

3-5 residues at the TM1/E1 border are pore-lining (including F43, G46 and D51) in a 
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pattern similar to Cx26, suggesting the existence of a parahelix structure as Cx26 

(Verselis, Trelles et al. 2009). Meanwhile, Cx50 contains more negatively charged 

residues in this domain than Cx26 and most of them are located at the equivalent 

positions as those of Cx26. In this study, in order to examine the role of TM1/E1 

border in determining Cx50 GJ properties, we replaced the neutral G46 with charged 

residues to modify the local electrostatic field to more negative or less negative. 

Compared to other residues at the TM1/E1 border, G46 is one of the residues 

predicted to face the pore directly (Verselis, Trelles et al. 2009), therefore its 

mutations would modify the local electrostatic potential easily. Moreover, it is not a 

critical structural residue because mutants on this site are more likely to form 

functional GJ channels, which would make our further structure-function studies 

possible (Mese, Sellitto et al. 2011; Tong, Minogue et al. 2011). Homology structural 

models of the Cx50 GJ channel and its mutants G46D/E/K were generated based on 

the crystal structure of Cx26 GJ channel for possible interpretations of our 

electrophysiological data with structural mechanisms. 
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Figure 1.3  A schematic diagram summarizes currently identified 

cataract-linked Cx50 mutations. Red: missense mutants; Blue: a single base 

insertion leading to frame shift.  
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1.5 Hypothesis  

By mutating a pore lining residue G46 at the TM1/E1 border into a negatively 

charged residue aspartic acid (D) or glutamate acid (E), or a positively charged 

residue lysine (K), the Cx50 GJ channel would show altered γj, Vj-gating properties 

and cation/anion preference.  

1.6   Objectives 

1) To explore the role of surface charges at the TM1/E1 border in determining the γj 

of Cx50 GJ channel by replacing uncharged G46 with charged residues D, E or K. 

2) To identify the role of surface charges at the TM1/E1 border in determining the 

Vj-gating behavior of Cx50 GJ channel.  

3) To investigate whether the cation-favoring property of Cx50 GJ channel is related 

to the high-density negative surface charges at the TM1/E1 border. 
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2.1  Chapter summary 

Gap junction (GJ) channels are twice the length of most membrane channels, yet 

they often have large unitary conductance (γj). What factors make this possibly the 

longest channel so efficient in passing ions are not fully clear. Here we studied the 

lens Cx50 GJ channels, which display one of the largest γj and the most sensitive 

transjunctional voltage-dependent gating (Vj-gating) among all GJ channels. 

Introduction of charged residues into a putative pore lining domain ‘TM1/E1 border’ 

(the border of the first transmembrane domain and the first extracellular loop) 

drastically altered the γj . Specifically G46D and G46E increased the Cx50 γj from 201 

to 256 and 293 pS, respectively, and the G46K channel showed an γj of only 20 pS. 

G46K also drastically altered Vj-gating properties in homotypic G46K and heterotypic 

Cx50/G46K channels, causing a loss of fast Vj-dependent gating transitions and 

leaving only loop gating transitions in the single channel current recordings. In 

addition, both macroscopic and single channel currents of heterotypic Cx50/G46K 

channels showed a prominent rectification. The homology structural models of Cx50 

GJ channel and its mutants indicate that the pore surface electrostatic potential at the 

TM1/E1 border is a dictating factor in determining γj and Vj-gating probably by 

regulating the efficiency of ion permeation through this particular section.  
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2.2  Introduction 

Gap junction (GJ) channels allow direct intercellular exchange of ions and small 

signaling/metabolic molecules between neighboring cells and play a key role in many 

physiological processes (Saez et al., 2003; Goodenough & Paul, 2009). GJ channels 

are oligomeric connexins of 21 different members (Sohl & Willecke, 2004; 

Goodenough & Paul, 2009), all of which with similar structural topology, including 

four transmembrane domains (TM1 to TM4), two extracellular loops (E1 and E2), one 

cytoplasmic loop (CL), with the placement of both amino terminus (NT) and carboxyl 

terminus (CT) in the cytosol (Simon & Goodenough, 1998; Saez et al., 2003; Sohl & 

Willecke, 2004). Six connexin molecules oligomerize to form a hemichannel and two 

hemichannels dock together at their extracellular domains to construct a whole GJ 

channel (a dodecamer of connexins). This unique structural arrangement of GJ 

channels makes them twice as long as most of the membrane channels and has 

probably the longest permeation passage for any membrane channels, yet the single 

channel conductance (γj) of a GJ channel can be as high as hundreds of picoSiemens 

(pS) in several homotypic GJs (Reed et al., 1993; Veenstra et al., 1994; Bukauskas et 

al., 1995; Srinivas et al., 1999). What makes the GJ channel so efficient in passing 

ions is not fully clear. One classical hypothesis believes that the pore diameter of a GJ 

channel docked by two hexameric hemichannels is much larger than those tetrameric 

or pentameric membrane channels, which facilitates rapid ion permeation through the 

GJ channel (Hille, 2001). It is true that most GJ channels have a larger pore, allowing 

not only ions, but also other signaling/metabolic molecules up to 1 kDa to pass 
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through. However, this model is unable to explain the well-documented experimental 

data that several GJ channels with large γjs showed a much lower cut off size on 

permeable molecules than those GJ channels with much lower γjs (Veenstra et al., 

1995; Gong & Nicholson, 2001; Weber et al., 2004; Ek-Vitorin & Burt, 2005; Dong et 

al., 2006), indicating that other pore properties also play an important role in 

facilitating ion permeation. Experimental evidence is accumulated largely from 

hemichannel studies that the TM1/E1 border likely forms part of the channel inner 

surface and plays a key role in determining the channel conductance of several 

connexins (Kronengold et al., 2003; Tang et al., 2009; Verselis et al., 2009), including 

Cx26 (Verselis et al., 1994; Sanchez et al., 2010; Sanchez et al., 2013). This structural 

prediction was confirmed by the high resolution (at 3.5 Å) crystal structure of Cx26 

GJ channel (Maeda et al., 2009). The amino acid residues at the TM1/E1 border form 

a narrow passage of the pore with a specialized helical structure [called 3(10) or 

parahelix for the residues of 42 - 51], which exposes several acidic residues toward 

the pore lumen to form a negatively charged pathway. Two such negatively 

charge-enriched pathways in each Cx26 GJ channel are believed to increase local 

cation concentration and facilitate the rate of cation permeation (Maeda et al., 2009). 

Several connexins, including Cx50, show high sequence identity and homology with 

Cx26, especially at the TM1/E1 border domain, arguing that their GJ channels might 

have a similar overall structure, as well as the negatively charged pathway, which 

could be associated with the experimentally observed cation preference (Srinivas et al., 

1999).  
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To study the function of TM1/E1 border domain in Cx50 channel γj and 

Vj-gating properties, we generated mutants with an additional negatively or positively 

charged residue in this domain (G46D/E and G46K). These mutations are predicted to 

decrease the pore size and alter the surface electrostatic potentials in the negatively 

charged pathway because of the pore-lining position of G46. Both G46D and G46E 

channels showed significantly increased γj, while G46K channels substantially 

reduced the apparent γj. No fast gating and only loop gating was observed in G46K GJ 

channels. Our homology models indicate that the surface electrostatic property at the 

TM1/E1 border of Cx50 GJ channel rather than the local pore size is more important 

in determining the rate of ion permeation, which would further influence γj and 

Vj-gating properties of GJ channels.  
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2.3  Materials and methods 

2.3.1  Construction of Cx50 mutants  

Mouse Cx50 cDNA was carried in the pIRES2-EGFP vector and this construct 

was used as the template for the point mutants, G46D, G46E and G46K. The 

Quick-Change site directed mutagenesis kit (Stratagene, La Jolla, CA) was used to 

generate the mutants with following primers:  

G46D Forward: 5' GGAGTTTGTGTGGGACGATGAGCAATC 3' 

 Reverse: 5' GATTGCTCATCGTCCCACACAAACTCC 3' 

G46E  Forward: 5' GCGGAGTTTGTGTGGGAGGATGAGCAATCTG 3' 

 Reverse: 5' CAGATTGCTCATCCTCCCACACAAACTCCGC 3' 

G46K Forward: 5' GCGGAGTTTGTGTGGAAGGATGAGCAATCTG 3' 

 Reverse: 5' CAGATTGCTCATCCTTCCACACAAACTCCGC 3' 

2.3.2  Cell culture and transient transfection 

Mouse neuroblastoma (N2A) cells were purchased from American Type Culture 

Collection (ATCC, Manassas, VA) and cultured with Dulbecco’s modified Eagle’s 

medium containing 10% fetal bovine serum (FBS). Before transfection, cells were 

plated in 35 mm dishes and the confluence was around 50% after overnight culture. 

1.5 μg Cx50 construct or mutant vector was transfected with 2 µl X-tremeGENE HP 

DNA Transfection Reagent (Roche Applied Sciences, Indianapolis, IN). Cells were 

cultured for 24 hours after transfection and replated on to glass coverslips ~1-3 hours 

prior patch clamping recording. 
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When studying heterotypic Cx50/G46K GJs, Cx50 cDNA was carried in 

pcDNA3.1(-) expression vector and cotransfected with DsRed cDNA at a ratio of 4:1. 

G46K-IRES-GFP vector was transfected separately and the transfected cells were 

mixed with Cx50 and DsRed expressing cells to obtain heterotypic cell pairs. Only 

red/green cell pairs were chosen for patch clamp recording. 

2.3.3  Electrophysiological recording 

The Vj-gating property of cell pairs expressing either Cx50 or its mutants was 

measured by dual whole-cell voltage-clamp technique as described earlier (Bai et al., 

2006; Xin et al., 2010). Transfected cells were replated on glass coverslips with 

appropriate cell density for ~1-3 hours, and then transferred to a recording chamber on 

an inverted microscope (Leica DM IRB), bathed in extracellular fluid (ECF) at room 

temperature. The composition of ECF is (in mM): 140 NaCl, 2 CsCl, 2 CaCl2, 1 

MgCl2, 5 Hepes, 4 KCl, 5 D-glucose, 2 Pyruvate, pH 7.2. Paired GFP-positive cells 

were patched by two glass micropipettes (pipette resistance 2 - 5 MΏ) which were 

filled with intracellular fluid (ICF) containing (in mM): 130 CsCl, 10 EGTA, 0.5 

CaCl2, 3 MgATP, 2 Na2ATP, 10 Hepes, pH 7.2. Isolated cell pairs were selected and 

both of them were voltage clamped at 0 mV. The common protocol was that one cell 

of the pair was clamped at 0 mV while the apposed cell was administrated with a 

series of voltage pulses from ± 20 mV to ± 100 mV in 20 mV increments with 7 

seconds duration. The junctional currents (Ijs) were amplified with two Axopatch 

200B amplifiers with a low-pass filter (cut-off frequency 1 kHz) and digitalized at 10 

kHz sampling rate via an ADDA converter (Digidata 1322A, Molecular devices, 

Sunnyvale, CA). 

For the ion preference experiment, the principal electrolyte in the ICF, CsCl, was 

http://www.exceltip.net/thread-2587-1-1.html
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replaced by equimolar concentration of tetraethylammonium chloride (TEACl) to 

eliminate/reduce the cation current (due to a much bulkier size of TEA
+
 than Cs

+
), or 

cesium glutamate (CsGlu) to diminish/reduce anion current (as Glu
-
 is much larger 

than Cl
-
). CsGlu solution was prepared by mixing the same molar CsOH with 

glutamic acid solution.  

2.3.4  Homology structure modeling 

The sequence of mouse Cx50 was aligned with that of Cx26 for the homology 

structure model. High sequence identity is observed in these two proteins (overall 49% 

and on the structure resolved part 57%). Cx26 crystal structure (2WZ3) (Maeda et al., 

2009) was used as a template to replace residue by residue for the Cx50 structure. 

When a Cx50 residue replacement in the structure caused an abnormal inter-atomic 

contact, this was adjusted by hand initially in COOT and then revised by CNS energy 

refinement. After the energy refinement, structural validity of the model was inspected 

manually as described earlier (Nakagawa et al., 2011; Gong et al., 2013). Adaptive 

Poisson-Boltzman Solver (APBS) (Baker et al., 2001) and PDB2PQR server 

(http://nbcr-222.ucsd.edu/pdb2pqr_1.8/) were used to calculate the electron potentials 

of all atoms in the protein. The APBS parameters were set as described previously 

(Maeda et al., 2009). PyMOL program was used for the diameter measurements and 

the structure presentations (DeLano, 2006).  

2.3.5  Data analysis 

To minimize the influence of series resistance on Vj-gating properties, only 

those cell pairs with ≤ 5 nS junctional conductance (Gj) were selected for Boltzmann 

fitting analysis (Wilders & Jongsma, 1992). For each current trace, the normalized 

http://nbcr-222.ucsd.edu/pdb2pqr_1.8/
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steady-state conductance (Gj,ss) was obtained by normalizing the steady state current 

to the peak current. The dependence of Gj,ss on positive and negative Vj was plotted 

and fitted with a two-state Boltzmann equation independently:  

Gj,ss = (Gmax- Gmin)/ {1+ exp[A(Vj-V0)]}+ Gmin 

V0 is the voltage at which the conductance is reduced by half [(Gmax - Gmin)/2]; 

Gmax is the maximum normalized conductance; Gmin is the normalized 

voltage-insensitive residual conductance, and parameter A, which describes the slope 

of the fitted curve, reflects the Vj sensitivity of the GJ channels. 

To record single channel current, cell pairs with one or two operational channels 

were obtained by shortening the expression time after transfection. The amplitudes of 

ijs were measured directly using Clampfit9 after digital filtering and plotted to 

corresponding Vjs. The ij-Vj plot was fitted by linear regression through the origin of 

the coordinates. The slope of the linear regression line is defined as the slope unitary 

conductance (γj). 

The open (Po), subconductance (Ps) or close (Pc) probability represents the 

fraction of time that the channel resides in open, subconductance or close state, 

respectively. To quantitatively measure the Po, Ps and Pc in Cx50 and G46D channels, 

the amplitudes of single channel currents during each Vj pulse were binned into 

all-point histograms to obtain the number of data points for each category (including 

open / subconductance / close state) separately, which was then divided by the total 

number of points.  

To analyze single channel open dwell time, the single channel current records 

were digitally filtered at 500 Hz (Gaussian) and any events reaching half amplitude 

height and lasting >2 ms were considered as open events. The open events at the 
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beginning and end of Vj pulse were discarded as the duration of these events were 

likely to be cut short by the Vj pulse. The dwell times of analyzed events were binned 

into histograms and were fitted with two exponentials with time constants, τ1 and τ2, 

as described previously (Xin et al., 2010). τmean was calculated from the sum of 

individual time constant with its weight.  
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2.4  Results 

2.4.1  G46D formed functional GJ channels with similar Vj-gating properties as 

those of Cx50 

G46D was generated to increase the negative electrostatic surface potential in 

the middle of the TM1/E1 border of the GJ channel. Macroscopic transjunctional 

currents (Ijs) in cell pairs expressing either Cx50 or G46D were obtained in response 

to the Vj pulses shown in Fig. 2.1A. The Ij of G46D-expressing cell pairs showed 

symmetrical Vj-dependent inactivation when the absolute value of Vj was ≥ 40 mV. 

Normalized steady state junctional conductance (Gj,ss) values from 6 cell pairs 

expressing either Cx50 or G46D were plotted against corresponding Vjs and their 

Boltzmann fitted curves are almost identical to each other (Fig. 2.1B and Table 2.1), 

indicating that G46D has little changes in the macroscopic Vj-gating properties. 
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Fig 2.1  Macroscopic Vj-gating properties of Cx50 and G46D GJ channels. A) Vj 

pulses from ± 20 mV to ± 100 mV in 20 mV increments were applied to one cell of 

the cell pair expressing Cx50 or G46D and macroscopic transjunctional currents (Ijs) 

recorded from the other cell are presented. B) Normalized Gj,ss of Cx50 (solid circles) 

and G46D (open circles) were plotted against different Vjs. The smooth dash and solid 

lines represent the best fitting curves of the averaged data from Cx50 (n = 6) and 

G46D (n = 6) channels to a two-state Boltzmann function. 
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Table 2.1  Boltzmann fitting parameters for Cx50 and its mutants 

 

 Vj polarity Gmin V0 A 

Cx50 

+ 0.13 ± 0.01 29.8 ± 0.8 0.18 ± 0.01 

‒ 0.14 ± 0.01 33.6 ± 1.0 0.16 ± 0.02 

G46D 

+ 0.13 ± 0.02 31.1 ± 1.5  0.15 ± 0.02
**

 

‒ 0.12 ± 0.02 30.0 ± 1.2
***

 0.15 ± 0.02 

G46E 

+ 0.11 ± 0.01
**

 28.1 ± 0.8
**

 0.17 ± 0.01 

‒  0.11 ± 0.01
***

 28.8 ± 0.8
***

 0.19 ± 0.02
*
 

G46K 

+ 0.55 ± 0.09
***

 50.7 ± 10.4
***

   0.05 ± 0.04
***

 

‒  0.60 ± 0.06
***

 53.4 ± 6.9
***

   0.05 ± 0.02
***

 

Cx50/G46K 

+ 0.07 ± 0.14 28.1 ± 17.5   0.04 ± 0.02
***

 

‒ — — — 

 

Data are presented as mean ± SEM and V0 are absolute values. Student’s t-test was 

used to compare the Boltzmann fitting parameters of the mutants against those of 

the wild-type Cx50 with the same Vj polarity. Asterisks indicate the statistical 

difference (* p < 0.05, ** p < 0.01, *** p < 0.001). 
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2.4.2  G46D increased γj and the probability of fully closed state, but decreased 

open dwell time 

The single channel current (ij) records of Cx50 and G46D GJs were obtained 

from cell pairs coupled with only one operational channel (Fig. 2.2A right panel). The 

G46D channel properties are different from those of Cx50 channels. First, the γj of 

G46D channel, estimated from a linear regression of ij-Vj plots (Fig. 2.2A, B), was 

significantly increased to 256 ± 5 pS (n = 8) comparing to Cx50 γj (201 ± 2 pS, n = 8, 

p < 0.001). Second, at the Vjs of ± 60 to ± 80 mV, Cx50 channels usually showed few 

open events at the initial Vj pulses (Fig. 2.2A). Then, the channel dwelled almost 

exclusively at a subconductance state (Fig. 2.2A left panel) and occasionally showed 

brief entries into the fully closed state (Fig. 2.2A left panel arrow). Similar to Cx50, 

the main open events of G46D channel usually clustered in the initial part of ij 

recording. The subconductance states were also observed, but often with intermittent 

long-lived fully closed states (Fig. 2.2A, right panel arrows). To quantify this 

observation, the probability of open (Po), closed (Pc) and subconductance (Ps) states 

were measured and plotted to Vjs of ± 60 and ± 80 mV (Fig. 2.2C). The most 

significant changes of G46D channel were the elevation of Pc, with a concurrent 

decrease in Ps (Vj ± 80 mV) or an apparent decrease of both Po and Ps (Vj ± 60 mV). 

The significant increase in the Pc in G46D channels is probably due to an increased 

occurrence of loop gating, an increased stability of fully closed state or the 

combinations of both factors. Finally, as shown in Fig. 2.2A, the open dwell time for 

G46D channel appeared to be shorter than that of Cx50. This was measured 

http://www.exceltip.net/thread-2587-1-1.html
http://www.exceltip.net/thread-2587-1-1.html
http://www.exceltip.net/thread-2587-1-1.html


38 

 

systematically at several Vjs (Fig. 2.2D). At these Vjs for both G46D and Cx50, the 

open dwell times displayed two time constants (τ1 and τ2) with various distributions. 

The weighted average open dwell time (τmean) for G46D was getting shorter with the 

increase in Vj values from ± 40 mV (77 ms), ± 60 mV (44 ms) to ± 80 mV (19 ms). At 

all Vjs, the τmeans of G46D channel were shorter than those corresponding ones of 

Cx50 (Fig. 2.2D), indicating that the open state of G46D channel is less stable and 

easier to transfer to a subconductance or fully closed state at these Vjs. 
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Fig. 2.2  G46D alters single channel properties. A) Representative single channel 

current records of Cx50 channel (left) and G46D channel (right) are illustrated in 

response to different Vjs as indicated. Single channel currents of G46D displayed a 

shortened dwell time of most open events at different Vjs and long-lived fully closed 

state (pointed by arrows on the right panel) in response to ± 60 mV and + 80 mV 

pulses. A brief transition to fully closed state is indicated in Cx50 channel (arrow on 

the left panel). The dotted lines indicate the fully closed current level. B) Average 

single channel slope conductance (γj) of G46D channel (n = 8) was much higher than 

that of Cx50 (n = 8, p < 0.001). C) Po, Ps and Pc represent the probabilities of the 

channel in open, subconductance and fully closed state, respectively. Bar graph 

illustrates the average data from 4 different cell pairs. Asterisks above the bar 

indicates statistical difference (* p < 0.05, ** p < 0.01). G46D channel demonstrated a 

markedly increased Pc at these Vjs. D) The open dwell time of G46D channel is 

shorter than that of Cx50. The dotted lines are the Gaussian fit of a two-term 

exponential function to the histograms. The time constants τ1 and τ2 with their relative 

weight are shown. τmean is the mean open dwell time obtained from the sum of the 

product of each τ and its relative weight. τ1, τ2 and τmean are all reduced in G46D 

channel. 
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2.4.3  G46E channel showed higher γj than that of G46D 

Increased γj of G46D channel is surprising because the side chain of Asp (D) is 

much larger than that of Gly (G). G46D mutation is predicted to decrease physical 

pore size at the 46
th

 position. However, introduction of a negatively charged residue 

might alter the local pore surface electrostatic properties, which could facilitate the ion 

permeation through this cation-preferring channel (Srinivas et al., 1999). To further 

test this hypothesis, we generated another mutant, G46E, in which Gly (G) was 

replaced by another negatively charged residue Glu (E) with a longer side chain than 

Asp (D). As shown in Fig. 2.3A, macroscopic Ijs in response to the same Vj pulses 

were similar to those observed in Cx50 channels. Gj,ss-Vj plots of G46E channel were 

well fitted by the Boltzmann equation at both Vj polarities and the fitted curves are 

virtually identical to those of Cx50 (Table 2.1). 

At single channel level, the γj of G46E channel, generated by ij-Vj plot, was 293 

± 4 pS (n = 4), nearly 50% larger than that of Cx50 (Fig. 2.3B). It is also significantly 

larger than that of G46D (p < 0.001). The ijs showed long-lived fully closed state at 

the tested Vjs (Fig. 2.3C, arrows), similar to those observed in G46D channels. A 

temporal expansion of a cluster of open events at 80 mV Vj indicates that G46E 

channel also showed a shorter open dwell time (all of the open events are shorter than 

40 ms) than that of Cx50 channel (with a τmean = 68 ms at this Vj). In summary, the 

characteristics of G46E channel seem to resemble those of G46D at both macroscopic 

and single channel levels. The only exception is that G46E produced an even larger γj 

than G46D. 

http://www.exceltip.net/thread-2587-1-1.html
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Fig. 2.3  Macroscopic and single channel properties of G46E GJs. A) 

Macroscopic junctional currents (Ijs) of homotypic G46E channels are shown in 

response to the same Vjs as shown in Fig. 2.1A. Gj,ss-Vj relationships of G46D were 

constructed (n = 6) and were fitted to Boltzmann functions. The fitting curves of Cx50 

(grey dashed lines) are obtained from Fig. 2.1B for comparison. B) Linear regression 

of ij-Vj plots showed an increased γj of G46E channel (n = 4, p < 0.001 vs Cx50 [same 

as shown in Fig. 2.2B]). C) Single channel current traces of G46E channel under the 

indicated Vjs showed the existence of main open state, subconductance state and fully 

closed state. Arrows point to the long-lived fully closed state. Temporal expanded 

trace (inset) with multiple openings indicates the open dwell times in these open 

events were short.  
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2.4.4  G46K channels showed much lower γj and an altered Vj-gating  

Introduction of a negatively charged residue at the TM1/E1 border (mutants 

G46D/E) drastically increased γj. To explore the effects of introducing a positively 

charged residue into this domain, G46K was generated. Different from those of Cx50, 

the Ijs of G46K channel showed little Vj-dependent inactivation in the range of ± 40 

mV, while larger Vj pulses (± 60 to ± 100 mV) only produced a moderate level of 

inactivation (Fig. 2.4A). The Gj,ss-Vj plot and the associated Boltzmann fitting curves 

of G46K channels were drastically different from those of Cx50 (Fig. 2.4B). Multiple 

Boltzmann fitting parameters of G46K channel were different from Cx50 channel, 

including larger Gmins and decreased Vj-gating sensitivities (Table 2.1). 

The unitary channel currents (ijs) were only discernible at large Vjs (± 80 mV or 

larger) owing to the low γj of G46K. All-point histograms were generated from a 

portion of ij at the 80 mV Vj and was fitted by two Gaussian functions to obtain the γj 

(Fig. 2.4C). The average γj of G46K channel was 20 ± 1 pS (n = 3), which was only 

about 10% of the Cx50 γj. A representative ij record at Vj of 80 mV depicted a 

prolonged open dwell time for each event with occasional transitions to a 

closed/subconductance state (Fig. 2.4C). Open probability (Po) at this Vj was higher 

than that of Cx50 channel (Po = 0.03, see Fig. 2.2C). Even at a much higher Vj (120 

mV), the G46K channel resided mostly in an open state initially and then the channel 

was fully closed (Fig. 2.4D). The gating transitions were very slow, usually taking 

tens of milliseconds or longer (Fig. 2.4D), indicating that the transitions are most 

likely to be loop gating. 

http://www.exceltip.net/thread-2587-1-1.html
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Fig. 2.4  G46K displays drastically altered Vj-gating and single channel 

properties. A) A set of macroscopic Ijs of G46K GJs in response to Vjs of ± 20 ~ ± 

100 mV. B) Boltzmann fitting curves of G46K GJs (solid lines) generated from 

Gj,ss-Vj plots (n = 6) exhibited lower Vj sensitivities than those of Cx50 GJs (grey 

dashed lines, same as in Fig. 2.1B). C) Single channel current (ij) of a G46K channel 

at an 80 mV Vj showed a very low γj (21 pS), which was obtained from the all point 

histogram analysis of the current trace within the grey box. The closing and opening 

current levels were indicated by the dotted lines. Despite the frequent transitions to 

closed state, the dominant state of G46K channel is open state at this Vj. D) The ij of a 

G46K channel at 120 mV Vj showed slow transitions between open and closed states. 

A portion of the trace is expanded temporally. 
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2.4.5  Heterotypic Cx50/G46K channels displayed asymmetric Vj-gating and 

current rectification 

The G46K Vj-gating properties are drastically different from those of Cx50 and 

could be interpreted as a result of the impairment of the fast gating. To test this further, 

we studied the Vj-gating of heterotypic Cx50/G46K channels, in which the docked 

Cx50 hemichannel is known to have a fast gate (with a positive gating polarity) and a 

loop gate (with a negative gating polarity) (White et al., 1994; Hopperstad et al., 

2000). When applying the Cx50-expressing cell with +Vjs (or the G46K cell with 

‒Vjs), the recorded Ijs showed apparent Vj-dependent inactivation (Fig. 2.5A). 

Conversely, applying ‒Vjs on the Cx50-expressing cells (or +Vjs to the 

G46K-expressing cell) did not cause any perceptible current inactivation (Fig. 2.5A). 

The Vj-gating process during the +Vjs on Cx50 side was well fitted by the Boltzmann 

equation (Fig. 2.5B). A significantly reduced gating sensitivity (A) is observed, while 

other Boltzmann parameters are similar to those of Cx50 channels (Table 2.1).  

It is noted that when applying biphasic Vjs on the Cx50-expressing cell, the 

initial amplitudes of the Ijs at +Vjs was larger than those of corresponding Ijs at ‒Vjs 

(Fig. 2.5A), indicating that the heterotypic Cx50/G46K channels possess a rectifying 

property. To quantify this, the initial conductance (Gj,ini) at each +Vj and ‒Vj were 

measured, and then the ratio of Gj,ini (+) / Gj,ini (-) were calculated and plotted to 

corresponding Vj (Fig. 2.5C). Interestingly, the rectification of heterotypic 

Cx50/G46K channel is Vj-dependent, as the ratio was getting bigger with the increase 

of Vjs (Fig. 2.5C). In contrast, no rectification was observed in the homotypic Cx50 
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GJs, as the ratios of Gj,ini (+) / Gj,ini (-) were close to one at different Vjs. (Fig. 2.5C).  
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Fig. 2.5  Heterotypic Cx50/G46K channels show asymmetrical Vj-gating and 

rectification. A) Two sets of representative Ijs of heterotypic Cx50/G46K GJs in 

response to the Vj protocol (± 20 mV ~ ± 100 mV) applied to Cx50 expressing cell 

(top set) or to the G46K expressing cell (bottom set). Ij inactivation was present only 

when the Cx50 cell with +Vjs (or the G46K cell with –Vjs). The initial amplitudes of 

Ijs were also different between the corresponding +Vjs and –Vjs. B) The Gj,ss-Vj plot 

of heterotypic Cx50/G46K GJs from 6 cell pairs. The smooth line on the +Vjs is the 

Boltzmann fitting curve. At the –Vjs, no Vj-gating (Ij inactivation) was evident. The 

Boltzmann fittings of Cx50 channels (grey dashed lines) are shown for comparison. C) 

The initial conductance of +Vjs [Gj,ini (+)] and –Vjs [Gj,ini (-)] were calculated and the 

ratio is plotted to Vj. The Cx50/G46K GJs showed a strong Vj-dependent rectification. 

D) Heterotypic Cx50/G46K channel showed rectification. The ijs were recorded from 

the G46K cell in response to ± 80 mV and ± 100 mV Vj pulses (on Cx50-expressing 

cell). As indicated in the enlarged box below the current, the gating closure reaches 

fully closed state (pointed by arrow) and the gating transitions typically take tens of 

ms. E) When the Cx50 cell was applied with +Vj, the γj (+) was 54 pS (from an ij 

portion at 100 mV indicated by an asterisk). The γj (-) with –Vj was 22 pS.  
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2.4.6  Single heterotypic Cx50/G46K channel showed asymmetric γj and only 

slow gating transitions 

Fig. 2.5D illustrates ijs of a heterotypic Cx50/G46K channel in response to Vjs. 

When the holding potential of Cx50-expressing cell was relatively negative to the 

G46K cell (‒Vjs), stable ijs were recorded with minimum transitions to any other 

states. However, when the Cx50-expressing cell was applied with +Vjs, the channel 

was initially open and then became flickering with frequent transitions between the 

closed/subconductance states and multiple levels of open states, later the channel 

settled at either a subconductance or the closed state (Fig. 2.5D). A temporal 

expansion of a portion of ij revealed that the transition time typically required tens of 

milliseconds or longer (Fig. 2.5D), indicating that these transitions are likely to be 

loop gatings. Surprisingly, after carefully going through all the recorded ij traces at 

+Vjs on the Cx50 side, we found that all discernable gating transitions are very slow 

and no fast gating transition was spotted. A simple interpretation of these data is that 

in the heterotypic Cx50/G46K channel, the TM1/E1 border of G46K hemichannel 

dramatically increased the local resistance for ion permeation, which could 

consequently cause the Vj redistribution (more on the G46K hemichannel side) and 

eventually lead to an increase activity of loop gating in the G46K hemichannel. 

Parallel to the finding on the Gj,ini (+) / Gj,ini (-) ratio at the macroscopic level 

(Fig. 2.5C), the γj also showed strong rectification on this heterotypic channel at single 

channel level. The γj (+), defined as the γj when Cx50 cell was applied with +Vjs, was 

measured to be 54 pS (Fig. 2.5E). Meanwhile, the γj (-) (when Cx50 cell was applied 
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with ‒Vjs) was only 22 pS (Fig. 2.5E). The average data from 4 different heterotypic 

cell pairs yielded γj (+) of 50 ± 4 pS and γj (-) of 24 ± 5 pS (n = 4, p < 0.001). 

Apparently, these γj values of Cx50/G46K channels are much lower than the γj of 

homotypic Cx50 channel (201 ± 2 pS), but closer to the γj of homotypic G46K 

channel (20 ± 1 pS), implying that the G46K hemichannel is likely to be the dominant 

rate limiting part of this heterotypic channel.  

2.4.7  G46D failed to alter the ion preference of Cx50 channel  

A previous study indicates that Cx50 channels preferentially permeate cations 

over anions (Srinivas et al., 1999). Introduction of an extra negatively charged residue 

in the pore lining domain (TM1/E1 border) of each subunit in the channel, such as 

G46D, would be predicted to have an increase in negative surface charges (6 for each 

hemichannel and 12 for each GJ channel). This substantial increase in the surface 

negative charge is predicted to have electrostatic effects on the ions passing through 

the channel, leading to a possibly higher local cation concentration and a lower anion 

concentration. To test this hypothesis, we studied the γjs of G46D channel with altered 

ICFs, which were prepared by replacing the major conducting ions in ICF (Cs
+
 or Cl

-
) 

with much larger sized cations (TEA
+
) or anions (Glu

-
), respectively.  

As predicted, Cx50 channel showed only a minor reduction (9%) in the γj when 

the major electrolyte CsCl was changed to CsGlu (Fig. 2.6A, B; 183 ± 2 pS, n = 4, p < 

0.001) and a major reduction (80%) in the γj when the CsCl was changed to TEACl 

(41 ± 2 pS, n = 4, p < 0.001), demonstrating indeed that the Cx50 channel has a strong 

http://www.exceltip.net/thread-2587-1-1.html
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cation preference. However, G46D channel showed a nearly identical proportional 

increase (about a quarter) in the γjs using each of the salt solutions comparing to those 

of Cx50 (Fig. 2.6A and 2.6B), CsCl (256 ± 5 pS, n = 8), CsGlu (228 ±5, n = 4, p < 

0.001) and TEACl (57 ± 1 pS, n = 4, p < 0.001), while maintaining the same 

percentage decrease in the γjs (11% in CsGlu and 78% in TEACl), indicating that 

G46D increased ion permeation without a substantial change in the channel preference 

on cations.  

Same ion preferential experiments were also used to test if G46K GJ channel 

displays a reduced cation preference. Using CsGlu-based pipette solution, we were 

able to identify ijs in two cell pairs with γjs of 5 and 8 pS out of more than 40 cell 

pairs (data not shown). The γj (with CsGlu) is much lower than that in CsCl (20 ± 1 pS, 

n = 4), indicating that G46K channel did indeed show a decrease in the cation 

preference. However, as it is very difficult to obtain enough data for quantitative 

comparisons, this observation should be regarded as preliminary. None of the G46K 

cell pairs showed distinguishable unitary channel currents with TEACl pipette 

solution, suggesting that either the γj is too small to be resolved under the 

experimental conditions or the channel does not have a stable open state. 
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Fig. 2.6  G46D channel shows a similar ion preference as Cx50. A) With the 

substitution of the major salt (either from CsCl to CsGlu or to TEACl) in the pipette 

solution, single channel recordings of Cx50 and G46D GJ displayed distinctive γjs. 

The ijs in response to Vj of -80 mV were shown for each type of pipette solution. B) 

The bar graph shows the mean γjs of Cx50 and G46D when using different pipette 

solutions and their ratios to the control γjs (using CsCl-based pipette solution). All the 

γj values were obtained by linear regression of ij-Vj plots.  
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2.4.8  Homology models of Cx50, G46D, G46E and G46K channels 

Most connexins have a very high sequence homology with human Cx26, 

including mouse Cx50 used in the present study. The sequence identity on the crystal 

structure resolved domains of Cx26 and Cx50 proteins is high (57%), which is 

sufficient for generating a homology structural model. The initial model of the Cx50 

homomeric homotypic channel was generated by using the coordinates of the 

crystallized Cx26 channel (Maeda et al., 2009). The homology model was then 

adjusted to eliminate contacts and minimized in energy terms similar to our previous 

studies (Nakagawa et al., 2011; Gong et al., 2013). The homology models were 

developed without the knowledge of the experimental results. 

The homology model of Cx50 displayed many similar structural properties with 

that of the crystal structure of Cx26, including the TM1/E1 border domains forming a 

narrow part of the pore. The homology structures for G46D, G46E and G46K mutants 

of Cx50 revealed two important structural changes. 1) The channel pore diameter at 

this position was estimated to be decreased from 20.6 Å for Cx50 to 17.1 Å for G46D, 

12.6 Å for G46E and 11.4 Å for G46K on each of the docked hemichannels (Fig. 

2.7A). A reduction in the pore diameter could constrict the total number of ions to 

pass through this pore section and also lead to much closer interactions between the 

passing ions and the inner surface residues. 2) These mutants displayed a drastic 

change in the electrostatic potentials at the TM1/E1 border of the channel. As shown 

in Fig. 2.7B, both G46D and G46E substantially increased the local negativity of 

electrostatic potential, while G46K created a local narrow ring of positive electrostatic 
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potential at this domain (Fig. 2.7B). Both the reduced diameter and the ring of positive 

electrostatic potential in G46K channel could increase the resistance of the channel to 

ions and electrostatically reduce the local cation concentration. The later effect is 

predicted to also increase the resistance of this cation-preferring channel. Our 

experimental data on the γj changes of these mutants indicate that the inner surface 

charge property of GJ channel is a dominant factor in determining the γj of Cx50 

channel. 

Increased local positive electrostatic potential might create a local electrostatic 

barrier for permeating cations and substantially decrease the γj of G46K channel. In 

heterotypic Cx50/G46K channel, the asymmetrical electrostatic potentials in the two 

docked hemichannels are predicted to contribute to the observed channel rectification. 

To explore the possible factors leading to the Vj-dependent rectification of heterotypic 

Cx50/G46K channel (Fig. 2.5), we inspected the homology structure model of G46K. 

The Lys46 (K46) residue contains a long and flexible side chain with a positively 

charged amino group at the end. These properties of Lys enable multiple orientations 

in response to Vj polarity and intensity. As shown in two possible models with either 

+Vj or –Vj on G46K side (Fig. 2.7C), the pore sizes at the Lys46 (K46) position are 

different, which could play a role in the observed current rectification of heterotypic 

Cx50/G46K channels. At present we could not rule out that other structural changes 

might also occur in these mutants, which could provide alternative interpretations to 

our experimental data.  
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Fig. 2.7  Homology models of Cx50 and its mutants. A) Stick view in PyMOL of a 

portion of the mutant or wild-type Cx50 channels near the 46
th

 residue (top view). The 

estimated diameters of G46D, G46E and G46K were predicted to decrease as 

indicated. B) A side view of a cut open Cx50 channel is illustrated to show the pore 

surface electrostatic potentials (calculated with APBS) using dielectric constants of 2 

(protein) and 80 (solutions) (Baker et al., 2001). A portion of the Cx50 channel pore 

surface containing TM1/E1 domains are enlarged as indicated. The electrostatic 

potentials of the mutant channels at the same position are illustrated. Drastic 

differences in electrostatic potentials are observed near the mutant residue (dotted 

horizontal line). The displayed surface electrostatic potentials range from -40 (red) to 

+40 (blue) kTe-1. C) When the G46K-expressing cell was held with different polarity 

of Vjs, two different orientations of Lys46 could be observed and are superimposed in 

stick view in PyMOL. G46K channel with –Vj (or Cx50 side with +Vj in the 

heterotypic channel) showed a larger diameter than the G46K channel with +Vj, which 

could play a role in the channel rectification. 
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2.5  Discussion 

The present study describes the effects of introducing a negatively/positively 

charged residue (D, E or K) into the TM1/E1 border domain on the macroscopic and 

unitary channel properties of the Cx50 GJ channels. G46D/E channel showed little 

change in the macroscopic Vj-gating properties, but significantly increased the γj and 

the probability of the channel residing in the fully closed state, while G46K channel 

displayed drastic changes in both the Vj-gating properties and the apparent γj. 

Heterotypic Cx50/G46K channels showed a strong rectification in both macroscopic 

and single channel currents. Our homology models indicate that these mutations could 

change the pore electrostatic properties of the GJ channel, leading to a changed local 

resistance for the major permeating ions (cations) and a shifted Vj distribution across 

the whole length of the channel. Altered Vj distribution in the channel in turn could 

cause apparent changes in fast gating and loop gating properties in these mutants. The 

charge substitutions in the TM1/E1 border domain were shown to drastically change 

the γj from nearly 300 pS (G46E) to an apparent 20 pS (G46K), demonstrating the 

crucial roles of this domain in determining γj and Vj-gating properties of Cx50 GJ 

channel. 

2.5.1  Factors determining the γj in the mutants 

Crucial factors for the efficiency of ion permeation (the γj) through GJ channels 

are not fully resolved. Here we studied the Cx50 GJ channel with a γj (200 pS), one of 

the largest among all characterized GJs (Srinivas et al., 1999; Bai et al., 2006; 
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Gonzalez et al., 2007; Xin & Bai, 2013). Mutations on the Gly46 to long-side-chained 

and charged residues (G46D, G46E and G46K) are all likely to decrease the pore size 

and also alter the electrostatic properties. However, the γjs were actually substantially 

increased for both G46D (more than a quarter higher) and G46E (almost 50% higher) 

compared to the Cx50 channel. This result has several implications.  

First, the pore size variations of these mutant channels are unlikely to reach any 

substantial steric hindrance to ion permeation, while the pore surface electrostatic 

properties could substantially facilitate ion permeation, similar to those described in 

BK channels (Brelidze et al., 2003; Geng et al., 2011). Considering that the Cx50 

channel is a cation-preferring channel, adding 6 x 2 = 12 additional negatively charged 

residues (D or E) in the permeation pathway would be expected to increase the 

negativity of the electrostatic potential as shown in Fig. 2.7, perhaps to further 

facilitate accumulation of local cations and reduction of anions for permeation. 

However, our data of the γj reduction with an enlarged cation (TEA
+
) or anion (Glu

-
) 

failed to demonstrate a change in the estimated relative permeability for cations over 

anions, at least for G46D channel. We also do not know the mechanism for an even 

higher γj on G46E channel than that of G46D. Perhaps the longer side chain of Glu46 

in the pore is more flexible, which could favor ion permeation.  

Second, native Cx50 GJ channel is not fully optimized in its ability to pass ions. 

A single mutation, G46E, produced an even larger γj, which is almost equal to the γj of 

Cx37 channel, the largest among all GJ channels, (Reed et al., 1993; Veenstra et al., 

1994; Traub et al., 1998). Detailed comparison of the pore lining residues and their 
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properties between large γj channels and low γj channels may help us to understand 

more about the ion permeation of these important channels. Understanding the factors 

controlling ion permeation can offer new avenues for engineering GJs to get enhanced 

channel function, which can be useful in improving/reestablishing GJ function in 

many disease-linked connexin mutants (Lee & White, 2009; Beyer et al., 2013; Bai, 

2014).  

Third, the positively charged residue at the same position, G46K, substantially 

reduced the apparent γj to 1/10 of the Cx50. We believe that this again was mainly due 

to the change of surface electrostatic potentials in the pore. A narrow positively 

charged ring in the G46K channel is predicted to repel cations and reduce the local 

cation concentration, which can reduce the γj of this cation-preferring channel. In 

addition to this, a substantial reduction in the pore size might also contribute to the 

reduced γj. Another possible explanation for the low apparent γj of G46K could be that 

what we recorded is the subconductance state of the mutant GJ channel rather than the 

main open state. However, the apparent γj of G46K was much lower than the 

conductance of the main subconductance state in Cx50 channel and we never 

observed a higher γj level that is comparable to the γj of Cx50 channel in any of our 

unitary channel records of homotypic G46K channels and heterotypic Cx50/G46K 

channels.  

Finally, the heterotypic Cx50/G46K channel showed a strong rectification in the 

γj. This prompted us to look into the potential structural basis. Lys (K) has a positively 

charged amino group (-NH3
+
) at the end of the long flexible side chain. Vj changes 



60 

 

could provide sufficient energy to drive the positively charged amino group to 

different orientations. Our homology modeling showed that when at different Vjs, the 

side chain of Lys could move to different positions in the pore, causing a 

reduction/enlargement of the diameter and possibly also the pore surface electrostatic 

potential. This could be a simple explanation of the observed rectification of the 

heterotypic Cx50/G46K channel. Obviously, it is too early to rule out the possibility 

that other structural changes could also play a role in the observed rectification.  

2.5.2  Vj-dependent loop gating was increased in G46D and virtually exclusive in 

G46K GJs 

Previous studies showed that the Cx50 displayed little loop gating in both 

hemichannel and GJ channel records (Srinivas et al., 1999; Srinivas et al., 2005). 

Consistent with these early findings, our data on the Cx50 single channel currents 

rarely display loop gating transition to the fully closed state. When these rare gating 

events did happen, the channel only showed very brief dwelling at the fully closed 

state, usually less than a fraction of a second. But G46D (and G46E) channels showed 

an increased incidence of loop gating and substantially prolonged dwell time in the 

fully closed state, which significantly increased the probability of the channel in the 

closed state. The increased stability of closed state was accompanied by a reduced 

probability of the open state and subconductance state, especially during the high Vjs. 

When the Vjs were at ±100 mV, a portion of G46D (and G46E) channels were 

dwelled in the fully closed state at the end of Vj pulse, making the data of macroscopic 
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Gj,ss-Vj plot consistently below the fitting curves.  

Different from what observed in G46D/E, G46K channels drastically changed 

macroscopic Vj-gating properties. The Vj-gating was virtually eliminated, this was 

well-described by the changes in Boltzmann parameters: Gmins were more than 4 fold 

higher and A values were reduced to ~1/3 of those of Cx50 channels. Studies on the 

single G46K channel revealed a substantially reduced γj, which is likely due to the 

mutation-created electrical barrier for permeating ions at the TM1/E1 border of the 

pore. Such electrical barrier is expected to increase the Vj drop across this region of 

the GJ pore and cause a Vj-redistribution at the other pore sections, which could 

increase the sensitivity of the loop gating sensor and decrease the sensitivity of the fast 

gating sensor. Such a model can also be used to explain our data on heterotypic 

Cx50/G46K channels, where K46 position on the mutant hemichannel would have the 

highest resistance of the entire GJ channel, which would not only dictate the γj, but 

also receive the majority of the Vj. In addition, this Vj redistribution would reduce the 

Vj drop on the fast gate sensors of both Cx50 and G46K hemichannels, causing an 

apparent loss of fast gating in this heterotypic GJ channel. This model is a simple 

plausible interpretation of our experimental data. 

2.5.3  TM1/E1 border domain is a hotspot for human disease-linked mutations 

Mutations in several connexin genes are linked to inherited human diseases, 

including cataract (Cx50 and Cx46) (Beyer et al., 2013) and non-syndromic and 

syndromic deafness (Cx26) (Lee & White, 2009). Many of these mutants are clustered 
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around the TM1/E1 border (Lee & White, 2009; Beyer et al., 2013), indicating that 

the residues at this domain are important for normal GJ function in these connexins. 

Several mutations happened directly on the G46 (or equivalent) residue. G46R and 

G46V of the Cx50 were found to be linked to cataract (Minogue et al., 2009; Sun et 

al., 2011). In vitro expression study on G46V revealed that this mutant caused cell 

death possibly due to increased hemichannel activities (Minogue et al., 2009). In 

Cx26, G45E mutant (equivalent to G46 in Cx50) was found to be linked to 

keratitis-ichthyosis-deafness syndrome (KIDS) (Janecke et al., 2005; Griffith et al., 

2006). In an in-vitro expression system, G45E was found to be expressed at a similar 

level as wild-type Cx26 and formed a similar level of GJ coupling (Gerido et al., 

2007), while the Vj-gating properties of its GJ channels were changed (a decrease in 

the V0) (Gerido et al., 2007; Sanchez et al., 2010) and the single hemichannel 

conductance was increased by ~25% (Sanchez et al., 2010). The increase in the single 

hemichannel conductance of G45E is consistent with our finding. However, we did 

not observe any obvious change of the Vj-gating properties in either Cx50-G46E or 

G46D, indicating that the Vj-gating sensor and/or the Vj-distribution of the Cx50 

channel are likely to be different from those of Cx26. Whether the biophysical 

changes in Cx26-G45E GJ channel contribute to the disease burden are not fully 

resolved, but could be an additive factor to the proposed key disease-causing 

mechanism, the increased hemichannel function (Stong et al., 2006; Gerido et al., 

2007; Sanchez et al., 2010; Mese et al., 2011).  
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2.5.4  Structure-function study of Cx50-G46 equivalent residues in other 

connexins 

Early studies identified that the pore-lining TM1/E1 border domain plays 

important roles in normal physiological functions, such as gating and Ca
2+

-sensing, 

and mutations at this domain are associated with serious diseases (Verselis et al., 1994; 

Oh et al., 1999; Trexler et al., 2000; Gomez-Hernandez et al., 2003; Janecke et al., 

2005; Griffith et al., 2006; Minogue et al., 2009). A detailed systematical mapping of 

all the residues within this domain was carried out on Cx46 hemichannel and found 

that the Gly46 is one of the crucial residues in determining the single hemichannel 

conductance of Cx46. Similar to our findings on the Cx50 GJ channels, introducing a 

positively charged residue (such as Lys, Arg, or Cys which is then modified by 

positively charged methanethiosulfonate [MTS] reagents) at the Gly46 position 

substantially reduced the single hemichannel conductance (Kronengold et al., 2003). 

However, the introduction of a negatively charged residue in Cx46 hemichannel, 

which was realized by modifying G46C mutation with negatively charged 

methanethiosulfonate (MTS-ES
-
), did not increase the single hemichannel 

conductance (Kronengold et al., 2003), possibly due to the reason that the MTS-ES
-
 

on Cys is much larger than the side chain of Glu
-
 or Asp

-
 (making the channel smaller) 

or Cx46 could be a much less cation-preferring channel compared to Cx50. Consistent 

with our findings on the altered γjs of Cx50 mutants, Cx26 G45C showed qualitatively 

similar hemichannel conductance changes after reacting to positively or negatively 

charged MTS reagents (Sanchez et al., 2010). Hemichannel studies on Cx26-G45E or 
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equivalent mutants in Cx30, Cx32 and Cx43 have shown the importance of this 

position in stabilizing the fully closed state of their hemichannels with the assistance 

of extracellular Ca
2+

 or other divalent cations (Sanchez et al., 2010; Zhang & Hao, 

2013). These studies and our results argue a significant role for the TM1/E1 border 

domain in the biophysical properties of GJ channels.  
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Chapter 3: Discussion 

3.1  Overall study 

This study investigated the effects of introducing a negatively (D or E) or 

positively (K) charged residue into the G46 position of Cx50, in order to explore the 

role of the TM1/E1 border domain in determining γj, Vj-dependent gating and 

cation/anion preference of Cx50 GJ channels. Specifically, the G46D/E mutants 

showed significantly increased γj, while the G46K mutant showed startlingly reduced 

γj. Moreover, the noteworthy changes of Vj-gating in the single channel records of 

G46D/E GJ channel are shortened dwell time in the main open state and prolonged 

dwell time in the fully closed state. In the G46K GJ channels, it is likely that the fast 

gating is abolished and the loop gating activity becomes more prominent. By 

comparing the homology models of Cx50 GJ channel and its mutants, it is predicted 

that these changes are closely related to the surface electrostatic potential of the 

TM1/E1 border in these channels.  

The TM1/E1 border is a newly described domain which may be a loop gating 

sensor and/or gate in both hemichannels and GJ channels (Kronengold, Trexler et al. 

2003; Tang, Dowd et al. 2009; Verselis, Trelles et al. 2009; Lopez, Liu et al. 2014). 

In the Cx26 GJ channel, negatively charged residues in this domain are lining the pore 

surface, which construct a special section with a highly negative electrostatic potential 

(Maeda, Nakagawa et al. 2009). Sequence alignment revealed that negatively charged 

residues in this domain are highly conserved in other connexins. However, the role of 
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this domain in determining GJ properties has not been fully addressed. Our study will 

help illustrate the contribution of the TM1/E1 border to the Cx50 GJ properties.  

3.2  Preliminary experiments on E1 domain of Cx50 

A chimeric construct Cx50Cx36E1, which was generated by replacing the entire 

E1 domain of Cx50 with that of Cx36, was studied in our preliminary experiments 

(data not shown). The purpose of studying this chimera is to explore the role of E1 

domain in determining the properties of Cx50 and Cx36 GJ channels. Cx50 and Cx36 

GJ channels showed remarkable discrepancies in their Vj gating properties and γjs. 

Cx50 GJ channels are highly sensitive to Vj and their γj is around 200 pS (Srinivas, 

Costa et al. 1999), whereas Cx36 channels show little Vj-dependence and their γj is 

only ~6-15 pS (Srinivas, Rozental et al. 1999; Moreno, Berthoud et al. 2005). 

Therefore, they are two perfect candidates to study the structure-function relationship 

of GJ channels. Previous studies in our lab, using domain swapping and single-point 

substitutions between Cx50 and Cx36, found that the NT domain of Cx50 (especially 

its two residues D3 and N9) is critical in determining γj and Vj gating properties of 

Cx50 GJ channel (Xin, Gong et al. 2010; Xin, Nakagawa et al. 2012).   

In addition to NT, E1 domain is also suggested as a component of the interior 

channel wall. Surprisingly, Cx50Cx36E1 GJ channels showed almost the same 

Vj-gating properties as Cx50, and their mean γj was only reduced by around 20% 

compared to that of Cx50 (data not shown). Since the replacement of the whole E1 

domain has the potential to cause global changes to the structure of Cx50 GJ channel, 

it is hard to interpret the results without a specific crystal structure for the chimera.  
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3.3  Surface charges at the TM1/E1 border impact single channel 

conductance  

In this thesis, GJ channels of G46D and G46E exhibited considerably increased 

γj by nearly 25% and 50%, while G46K GJ channels showed a 90% drop in γj. The 

homology models of Cx50 GJ channel and its mutants depicted the differences in both 

the pore size of the G46 position and the surface electrostatic field of the TM1/E1 

border, which provide possible structural interpretations for our data.  

Firstly, it is noticed that γjs of Cx50, G46D and G46E GJ channels are not 

proportional to the predicted pore diameters at the TM1/E1 border in their homology 

models. The local pore diameters of these three channels are predicted to be gradually 

reduced, yet their γjs are increased progressively. A message we draw from this 

observation is that a larger pore size at the TM1/E1 border may not guarantee a higher 

γj at least in Cx50 GJ channels. Moreover, it provides a new clue to explain previous 

observations that some GJ channels (e.g. Cx50, Cx37 and Cx40) with big γjs exhibited 

low permeability to fluorescent dyes (Veenstra, Wang et al. 1994; Veenstra, Wang et 

al. 1995; Veenstra 1996). For instance, the γj of Cx37 GJ channels is around 300 pS, 

the largest among all tested connexin subunits, yet the ability of this channel to pass 

fluorescence dyes is much lower than that of other GJ channels (e.g. Cx43 and Cx45) 

whose γjs are around 100 pS and 30 pS, respectively (Veenstra, Wang et al. 1995). A 

simple explanation is that a relatively smaller pore size at the TM1/E1 border may 

facilitate the interaction between passing ions and fixed pore surface charges, which 

would subsequently facilitate ion flow and yield high γj. But on the other hand, the 
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channel becomes less permeable to various fluorescent dyes whose molecular weights, 

usually above 300 Da, are much bigger in size than those of ions.  

Secondly, according to the homology models, the negative electrostatic field at 

the TM1/E1 border was strengthened in G46D/E channels compared to that of Cx50, 

but was much weakened in G46K channels. Matching these properties to their γjs, it is 

likely to suggest that a pure and strong negative electrostatic field at the TM1/E1 

border would optimize ion permeability through the long GJ channel, which is 

probably also associated with the cation-preferring property of Cx50 channels. 

Previous studies in different GJ channels observed similar effects on γj when altering 

the surface residues at the TM1/E1 border (Kronengold, Trexler et al. 2003; Tong and 

Ebihara 2006). A representative example is the Cx26-G45E hemichannel ( a mutant at 

the G45 position of Cx26), which showed 25% increase in its hemichannel γj 

compared to wild-type Cx26 hemichannel, whereas another mutant Cx26-D50N 

exhibited 50% lower γj (Sanchez, Mese et al. 2010; Sanchez, Villone et al. 2013). 

Considering that Cx26 channels favor cations to pass through just like Cx50 (Suchyna, 

Nitsche et al. 1999) and both G45 and D50 are pore-lining residues at the TM1/E1 

border, the opposite effects between G45E and D50N are in agreement with the 

conjecture that adding a negative surface charge into the TM1/E1 border (Cx26-G45E) 

increased the γj of Cx26 GJ channels, while removing one (Cx26-D50N) from the 

inner pore surface decreased the γj as a consequence.  
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3.4  Do surface charges at the TM1/E1 border play a role in 

determining cation/anion preference? 

Of all documented GJ channels to date, almost all prefer the passage of cations 

rather than anions, except Cx32 GJ channels, which have a slight anion preference 

(Suchyna, Nitsche et al. 1999; Gonzalez, Gomez-Hernandez et al. 2007). The key role 

of E1 domain in determining cation/anion preference of a connexin channel has been 

identified in a few connexins, such as Cx46, whose cation-preferring property was 

reversed by replacing its E1 domain with that of Cx32 (Trexler, Bukauskas et al. 

2000). Moreover, studies on Cx32 channels revealed the contribution of both E1 and 

NT domains to its anion-preferring property, especially their pore-lining charged 

residues (Oh, Verselis et al. 2008). Therefore, unlike potassium and sodium channels, 

GJ channels do not seem to have a particular selective filter and its ion preference is 

largely determined by surface charges in the current pathway. In our study (chapter 2, 

Fig. 2.6), despite that G46D GJ channel is predicted to have a much stronger negative 

electrostatic field at the TM1/E1 border than Cx50, its γj tested with TEACl or 

CsGlu-based ICF showed a similar reduction ratio as those of Cx50. It is likely to 

suggest that a stronger negative electrostatic potential at the TM1/E1 border of G46D 

channels facilitate the cationic and anionic flows simultaneously rather than the 

cationic flow alone. It is difficult to provide a satisfactory explanation based on our 

current knowledge of GJ channels. A possible reason is that the TM1/E1 border of 

Cx50 channels already contains abundant negative surface charges as indicated in the 

homology model, thus the addition of an extra negative charge (G46D) may only exert 
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limited effects.  

3.5  A possible explanation for instantaneous current rectification in 

heterotypic Cx50/G46K channels.  

Previous studies have observed pronounced rectification mostly in heterotypic 

GJ channels, such as Cx32/Cx26, Cx31/Cx26, Cx31/Cx30 and Cx43/Cx45 (Verselis, 

Ginter et al. 1994; Bukauskas, Angele et al. 2002; Abrams, Freidin et al. 2006). The 

rectification of Cx32/Cx26 heterotypic channel was ascribed to the asymmetric ion 

permselectivities and conductances of its two opposed hemichannels (Suchyna, 

Nitsche et al. 1999). Structural studies on Cx32 and Cx26 identified the NT and E1 

domains, especially the asymmetric distribution of charged residues in these two 

domains, as the major determinants of channel rectification (Rubin, Verselis et al. 

1992; Oh, Rubin et al. 1999). Since these two domains construct the intracellular 

entrance and the extracellular exit of a hemichannel respectively, it is reasonable that 

their abilities to accumulate and deplete ions are critical for the channel conductance.  

In our study, very strong instantaneous current rectification was observed in both 

macroscopic and single channel records of heterotypic Cx50/G46K channels (Chapter 

2, Fig. 2.5). With the application of a positive Vj (+Vj) on the Cx50 side, the channel 

γj is about twice as much as the value when applying a negative Vj (-Vj) on the Cx50 

side, indicative of an unequal ability of the channel to conduct ions in opposite 

directions. As discussed in Chapter 2, the homology model of G46K demonstrated 

two different orientations of Lys (K) side chain driven by the bipolar Vjs, which 
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would result in different local pore diameters and distorted electrostatic potentials 

within the pore. Both these two factors would eventually lead to different γjs in 

opposite Vj polarities. This mechanism could be one of multiple causes of the channel 

rectification.  

Another feature of the Cx50/G46K channel is that the rectification is 

Vj-dependent. At ± 20 mV and ± 40 mV pulses, the initial conductance at positive Vj 

[Gj,ini (+) ] was almost identical to the initial conductance at negative Vj [Gj,ini(-)], but 

their difference increases with increasing Vj (Chapter 2, Fig. 2.5A&C), indicating that 

the conducting ability of the hetrotypic channel was enhanced when applying higher 

+Vj on the Cx50 side, and weakened when applying higher –Vj on the Cx50 side. This 

phenomenon was only described once in an early study on Cx26/Cx32 heterotypic 

channel without pointing out the underlying mechanism (Bukauskas, Elfgang et al. 

1995). In the homology model of G46K (Chapter 2, Fig. 2.7C), although merely two 

orientations of Lys (K) side chain at positive and negative Vjs were posited, we should 

bear in mind that not only the Lys (K) side chain would adopt multiple orientations at 

different Vjs, but also the structure of the whole channel may be dynamic rather than 

static when permeating ions and other substances. 

3.6  Surface charges at the TM1/E1 border influence loop gating 

behavior 

Very limited evidence has been accumulated regarding the determinants for loop 

gating behavior. Kronengold and colleagues reported that replacing the whole 
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NT-TM1-E1 domain of Cx50 with that of Cx46 evidently enhanced the occurrence of 

loop gating in Cx50 hemichannels, a feature resembling Cx46 hemichannels 

(Kronengold, Srinivas et al. 2012). In our studies, the sole replacement of G46 with a 

positively charged Lys (K) in Cx50 made loop gating surpass fast gating to become a 

dominant gating in response to Vj pulses. One possibility for this observation is that 

the fast gate of G46K channel is always closed, which would reduce the channel 

conductance to a subconductance level and eradicate the fast gating activities during 

the Vj application. However, up-to-date knowledge convinces that the fast gating of 

most studied GJ channels (except Cx40 and Cx43) is governed by NT domain 

(Verselis, Ginter et al. 1994; Purnick, Oh et al. 2000; Oh, Rivkin et al. 2004; Oh, 

Verselis et al. 2008) and little evidence shows the structural interaction between NT 

and TM1/E1 border. Thereby, it seems unlikely that a mutant at the TM1/E1 border 

would damage the open state of NT and put it into a closed state. Further tests on the 

heterotypic coupling of Cx50 and G46K hemichannels provide extra support to rule 

out this possibility. Fig. 3.1 illustrates the possible positions of two fast gates and two 

loop gates in a Cx50/G46K GJ channel under different Vj conditions in accordance 

with the single channel records of the heterotypic Cx50/G46K channel in Chapter 2 

(Fig. 2.5D). In our opinion, only the loop gate of G46K hemichannel responds to the 

negative Vj on the G46K side, while the fast gate in neither Cx50 nor G46K 

hemichannel can be triggered by biphasic Vjs. It implies that the G46K hemichannel is 

capable of abolishing the fast gating not only on its own side but also in the opposed 

Cx50 hemichannel. As the Vj sensors for fast and loop gatings are proposed to lie in 
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the pore for the purpose of sensing Vj directly, their activities should be governed by 

the voltage drop across the sensors. In this case, it is reasonable to assume that the 

disappearance of fast gating in both homotypic G46K/G46K and heterotypic 

Cx50/G46K channels is more likely to be the consequence of Vj redistribution rather 

than a direct damage to the fast gate structure in each hemichannel. In a G46K GJ 

channel, the coexistence of negative and positive surface charges at the TM1/E1 

border increases the local electrostatic resistance to both cations and anions, which 

would substantially raise the voltage drop at this position and make the loop gating 

sensor more readily to respond. In short, introducing a positively charged residue to 

G46 makes the TM1/E1 border a much more sensitive voltage sensor for the loop 

gating and is unlikely to change the conformation of fast gate sensor/gate in the NT 

domain.  
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Figure 3.1  A possible mechanism for the abolished fast gating in Cx50/G46K 

heterotypic GJ channel. A) A cartoon diagram showing the profile of a heterotypic 

GJ channel docked by Cx50 (grey) and G46K (orange) hemichannels. Note that the 

TM1/E1 border is narrower in the G46K hemichannel than in the Cx50 hemichannel, 

indicating a physical and electrical barrier to ion flow. The channel keeps opening 

without Vj administration. B) Imposing positive Vj on the G46K side fails to close any 

gates because most Vj drop is imposed at the TM1/E1 border of the G46K 

hemichannel, but the loop gate at this location only responds to the intracellular 

negative potential. C) When applying sufficient negative Vj on the G46K side, loop 

gate of the G46K hemichannel is closed but fast gate of the Cx50 hemichannel cannot 

be shut down due to the low Vj drop on it. D) When the same Vj condition as in C) is 

applied on a homotypic Cx50 GJ channel, both fast gate of the top Cx50 hemichannel 

and loop gate of the bottom Cx50 hemichannel have a chance to be closed, but the fast 

gate is much more sensitive than the loop gate.  
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3.7  The role of G45/46 position in hemichannel function  

For Cx26, as well as Cx30, Cx32 and Cx43, its mutant G45E (equivalent to 

G46E in Cx50) demonstrated increased hemichannel current compared to wild type at 

depolarizing voltage and this leaky current through hemichannels was restored by 

increasing extracellular Ca
2+

 concentration (Gerido, DeRosa et al. 2007; Mese, Sellitto 

et al. 2011; Zhang and Hao 2013). Studies suggested that a stable closure of the loop 

gating in an undocked hemichannel includes two essential steps. Firstly, an inside 

negative potential (Vm in this case) would drive the conformation reorganization at the 

TM1/E1 border and result in the approaching of 6 parahelix structures to the pore 

center to close the hemichannel. Secondly, the closed state of the hemichannel is 

stabilized by high-concentration extracellular Ca
2+

, which is possibly achieved by the 

interactions between Ca
2+

 and the proximate metal binding residues in the parahelices 

(Gomez-Hernandez, de Miguel et al. 2003; Verselis and Srinivas 2008; Tang, Dowd et 

al. 2009; Zhang and Hao 2013). Furthermore, Lopez and colleagues reported that other 

than acting as a stabilizer, extracellular Ca
2+

 also aimed to break a salt bridge between 

residues D50 and K61 in the Cx26 hemichannel and collapse the channel at the 

extracellular end (Lopez, Gonzalez et al. 2013). Although there is no direct evidence 

showing that the loop gating behavior in a hemichannel is different from that after 

docking to the other hemichannel, here we raise a concern over the conformations of 

the closed state in a hemichannel and a GJ channel. In our study, GJ channels of 

G46D and G46E exhibit increased stability at fully closed state compared to wild-type 

Cx50 as long-lived dwelling at the fully closed sate was frequently recorded (Chapter 
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2, Fig 2.2). So what decides the stability of the fully closed state in a GJ channel? 

Given that in a GJ channel, the TM1/E1 border is buried deeply in the middle and the 

docking interface of two hemichannels is likely to be tightly sealed (Foote, Zhou et al. 

1998; Maeda and Tsukihara 2011), it seems unlikely that the TM1/E1 border would 

have access to abundant extracellular Ca
2+

. Therefore, we doubt whether the fully 

closed state in a GJ channel would adopt the same mechanism as that of a 

hemichannel, using extracellular Ca
2+

 to assist the break-down of the open state of 

loop gate and the stabilization of fully closed state. Certainly, more research is needed 

to clarify this question.  

3.8  Limitations and future plans 

This study yields several novel views in terms of the role of TM1/E1 border in 

determining γj and Vj-gating properties of Cx50 GJ channels. However, the limitations 

on current knowledge of GJ channels and techniques we used make it hard to fully 

interpret our results. Firstly, the shortage of high-resolution crystal structures for the 

Cx50 GJ channel in any states (open, subconductance or closed) makes it difficult to 

correlate our observations to corresponding conformational changes. Up to date, the 

only available high resolution crystal structure is a 3.5 Å human Cx26 GJ channel at 

its open state. As GJ channels demonstrated a lot of common features, such as their 

sensitivities to Vj and intracellular pH, their two Vj-gating components (fast gating 

and loop gating), the same pore-lining domains (NT-TM1-E1 domain) proved in 

various connexins and the ability of NT residues to determine Vj gating properties, it 
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seems more likely that their overall structures would be similar to each other. We 

carefully compared the sequence identity and homology of the crystal structure 

resolved domains between Cx26 and Cx50 before generating a homology model for 

Cx50 GJ channel. Even so, without an experimentally determined high resolution 

structure for Cx50 GJ channel, it is not clear if a residue alteration at the G46 position 

would result in an overall structural change of the whole channel since the newly 

added amino acid D/E or K at this position may establish extra non-covalent 

interactions with neighboring residues. Therefore, a high resolution structure of the 

Cx50 GJ channel would increase the understanding of our functional data. 

Another concern is the method we used in the study. Site-directed mutagenesis 

and domain exchange between connexins are two routine approaches to explore the 

structure-function relationship of GJ channels and are productive in revealing putative 

pore-lining residues/domains, as well as a few inter-subunit and intra-subunit 

interactions. Most of these results are highly consistent with the crystal structure of 

Cx26 GJ channel. Nonetheless, the prerequisite for these methods to generate useful 

information is that modified connexins are still capable of forming functional GJ 

channels. A counter example is the Cx50-D51M mutant we tested in a preliminary 

study. D51 is also suggested as a pore lining residue at the TM1/E1 border of Cx50 GJ 

channel (Verselis, Trelles et al. 2009), but its mutant D51M doesn’t seem to form 

functional GJ channels (data not shown). Several possible reasons arose: 1) low level 

expression of D51M mutant in transfected N2A cells; 2) inefficient oligomerization in 

ER or Golgi; 3) failed trafficking to the plasma membrane; 4) unsuccessful docking to 
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an opposed hemichannel; 5) successful docking but failed opening. Further 

immunostaining tests with Cx50 antibodies would help eliminate some of these 

possibilities, but little useful information regarding its structure-function correlations 

can be attained from this Cx50-D51M mutant via patch-clamp approach.   

This study suggests that surface charges at the TM1/E1 border of Cx50 GJ 

channels contribute to its Vj-gating characteristics and γj. Due to the highly conserved 

sequence identity of this domain among different connexins, our future plan is to 

validate this theory on other connexins. We are also interested in exploring the 

abnormal functions of two cataract-linked mutants Cx50-G46V and G46R in two 

aspects: Vj-gating and permeability of their GJ channels (Minogue, Tong et al. 2009; 

Sun, Xiao et al. 2011). Valine (V) is a non-charged hydrophobic amino acid with an 

alkyl side chain and arginine (R) possesses an extremely bulky side chain. If one of 

them is placed in the channel pore, the mutated channel may exhibit significantly 

altered γj and Vj gating. Meanwhile, G46R/V theoretically could form heteromeric and 

heterotypic GJ channels with wild-type Cx50 and/or Cx46 due to the physiologically 

co-localization of these connexins in lens, thus a mutation in Cx50 could have 

dominant negative effects on wild-type Cx50 and/or transdominant negative effects on 

co-expressed Cx46 to change the intracellular communications in lens, which might 

eventually lead to cataract.  
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3.9   Summary 

By mutating G46 to charged residues, we revealed essential roles of charges on 

the pore lining residues at the TM1/E1 border in determining γj and Vj-gating 

properties of Cx50 GJ channels, probably by modifying the efficiency of ion flow 

through the pore and properly allocating the Vj along different parts of the whole 

channel. Clearly, the high density negative surface charges at the TM1/E1 border of 

Cx50 GJ channel could reduce the local resistance, most likely by facilitating cation 

flow, as cations are the major components of passing ions via this channel.  

Interestingly, in physiological conditions, most second messengers (e.g. cAMP, 

cGMP and IP3) and metabolites (e.g. ATP, ADP and glutamate) are anionic and their 

molecular weights are as big as hundreds of Daltons. The cation-preferring property of 

almost all GJ channels may finely regulate passage of these anionic molecules, which 

are responsible for many physiological functions in the cells. Despite the overall 

similarity in cation/anion preference, each type of GJ channel has distinct permeability 

to intracellular substances, which is largely determined by the structure and the 

electrostatic properties of the pore surface. The TM1/E1 border appears to be an 

important site to determine the channel permeability to ions and other charged 

molecules and also to fully close the channel via the loop gating mechanism in Cx50 

and possibly other GJ channels.  
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