
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

9-18-2014 12:00 AM

A Multiple Bit Parity Fault Detection Scheme for The Advanced A Multiple Bit Parity Fault Detection Scheme for The Advanced

Encryption Standard Galois/Counter Mode Encryption Standard Galois/Counter Mode

Amir Hossein Ali Kouzeh Geran, The University of Western Ontario

Supervisor: Dr. Arash Reyhani Masoleh, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Engineering

Science degree in Electrical and Computer Engineering

© Amir Hossein Ali Kouzeh Geran 2014

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Ali Kouzeh Geran, Amir Hossein, "A Multiple Bit Parity Fault Detection Scheme for The Advanced
Encryption Standard Galois/Counter Mode" (2014). Electronic Thesis and Dissertation Repository. 2498.
https://ir.lib.uwo.ca/etd/2498

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F2498&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=ir.lib.uwo.ca%2Fetd%2F2498&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/2498?utm_source=ir.lib.uwo.ca%2Fetd%2F2498&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

A MULTIPLE BIT PARITY FAULT DETECTION SCHEME FOR THE
ADVANCED ENCRYPTION STANDARD GALOIS/COUNTER MODE

by

Amir Hossein Ali Kouzeh Geran

Graduate Program in Electrical and Computer Engineering

A thesis submitted in partial fulfillment
of the requirements for the degree of

Masters of Science

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

c© Amir Hossein Ali Kouzeh Geran 2014

Abstract

The Advanced Encryption Standard (AES) is a symmetric-key block cipher

for electronic data announced by the U.S. National Institute of Standards and

Technology (NIS T) in 2001. The encryption process is based on symmetric

key (using the same key for both encryption and decryption) for block encryp-

tion of 128, 192, and 256 bits in size. AES and its standardized authentication

Galois/Counter Mode (GCM) have been adopted in numerous security-based

applications. GCM is a mode of operation for AES symmetric key crypto-

graphic block ciphers, which has been selected for its high throughput rates in

high speed communication channels.

The GCM is an algorithm for authenticated encryption to provide both data

authenticity and confidentiality that can be achieved with reasonable hardware

resources. The hardware implementation of the AES-GCM demands tremen-

dous amount of logic blocks and gates. Due to natural faults or intrusion at-

tacks, faulty outputs in different logic blocks of the AES-GCM module results

in erroneous output. There exist plenty of specific literature on methods of fault

detection in the AES section of the AES-GCM.

In this thesis, we consider a novel fault detection of the GCM section using

parity prediction. For the purpose of fault detection in GCM, two independent

methods are proposed. First, a new technique of fault detection using parity

prediction for the entire GCM loop is presented. Then, matrix based CRC

multiple-bit parity prediction schemes are developed and implemented. As a

ii

result, we achieve the fault coverage of about 99% with the longest path delay

and area overhead of 23% and 10.9% respectively. The false alarm is 0.12%

which can be ignored based on the number of injected faults.

Keywords: Fault Detection, Parity Prediction, AES-GCM, Matrix Based CRC

iii

Acknowledements

I would like to express my sincere appreciation to Prof. Arash Reyhani-

Masoleh for his extra care, great supervision and guidance during my studies

and preparation of this thesis.

Amir Ali Kouzeh Geran

London, ON

2014

iv

Contents

Abstract ii

Acknowlegements iv

List of Figures viii

List of Tables ix

List of Appendices x

1 Thesis Contributions and Outline 1

1.1 Introduction . 1

1.1.1 Advanced Encryption Standard(AES) 1

1.1.2 Galois/counter Mode(GCM) . 1

1.2 Motivation and Scope of Thesis . 2

1.3 Contributions . 4

1.4 Thesis Outline . 5

2 Priliminaries and Literature Review 7

2.1 Finite Field . 7

2.1.1 Principles of Galois Field . 8

2.1.2 Finite Field Arithmetic . 8

2.1.3 Example GF(23) . 10

2.2 The GCM Operation . 11

v

2.2.1 Encryption/Decryption in GCM . 12

Encryption Process . 13

2.2.2 The GCM Block Diagram . 15

2.2.3 Review on GHASH . 16

Software Implementation of High Performance GHASH Algorithms . . 16

High Performance GHASH Function for Long Messages 16

An Architecture for the AES-GCM Security Standard 17

2.3 The AES Operation . 17

2.3.1 Fault Attacks and Detection in AES 19

Fault Attacks . 19

Fault Detection . 20

2.4 Finite Field Multipliers In AES-GCM . 22

2.4.1 Low Complexity Multiplier in GF(2m) 23

2.5 Fault Detection In Multiplier . 27

3 Single bit fault detection in GCM 31

3.1 Fault Detection Scheme . 31

3.1.1 Parity for the powers of the Hash Key(H) 33

3.1.2 Parity Prediction for the Multiplier in the GCM 35

3.1.3 Fault Detection in the GCM Loop . 36

4 Multiple Parity Bit Fault Detection Architecture 39

4.1 Introduction . 39

4.2 Matrix-Based Parity Prediction Scheme in GCM Loop 40

4.2.1 Matrix-Based Single Parity Bit Scheme 40

4.2.2 Matrix-Based Random Parity Bit Scheme 42

4.3 Matrix-based CRC for Multi-Bit Parity Fault Detection 44

4.3.1 Brief review on CRC . 44

vi

4.3.2 Matrix-Based Double Bit Parity CRC 45

4.3.3 Matrix-Based Double Bit Parity Prediction CRC 48

4.3.4 Matrix-based k Bit Parity Fault Detection (k > 2) 50

4.3.5 Fault Detection Architecture . 51

5 Testing and Simulation 54

5.1 Introduction . 54

5.2 VHDL Implementation of Fault Model . 55

5.3 Fault Injection in the GCM loop . 58

5.4 Simulation Results . 58

5.5 Fault Detection Overhead and Delay Analysis 61

5.6 Future Work . 63

Bibliography 71

A VHDL Implementation 74

B Fault Injection TLC 86

vii

List of Figures

2.1 Block Diagram of AES-GCM . 18

2.2 Block Diagram of Multipliers a. Parallel b. Bit-level c. Digit-level 23

2.3 Demonstration of L, U, and b in Matrix Presentation. 24

2.4 Demonstration of Q in matrix presentation . 27

2.5 QT demonstration 128 × 127 . 28

3.1 Parity prediction scheme . 36

3.2 AES-GCM loop parity prediction scheme . 38

3.3 Output error indicator . 38

4.1 Implementation of Matrix(Register) oE . 43

4.2 Block Diagram of Double Bit Parity. 44

4.3 Hardware implementation of Double Bit Parity Generator on multiplier output. 48

4.4 Error signal generator. 50

4.5 Block diagram of k−bit parity fault detection in GCM loop. 53

5.1 Demonstation of Matrix QT U . 65

5.2 The flow chart of fault injection. 66

5.3 Gate level fault injection for matrix element QT U(1, 123) 67

5.4 The GCM loop and related components . 67

5.5 The simulation results. 68

5.6 The simulation results graph: (a) fault coverage, (b) critical path delay, (c) area over-

head, and (d) false alarm versus the number of parity bits. 69

viii

List of Tables

2.1 αis in GF(8) based on x3 + x2 + 1. 11

4.1 Irreducible Polynomials to the degree 5. 51

4.2 pCRC Matrix pattern for selected polynomials. 51

5.1 Fault coverage in the GCM loop versus selected parity bits. 61

5.2 Area overhead and delay versus selected parity bits. 61

5.3 Gate level area overhead and delay versus selected parity bits, where TX , TA, and TO

are the propagation delays of XOR, AND, and OR Gate respectively. 62

5.4 False Alarm in the GCM loop versus selected parity bits. 63

ix

List of Appendices

Appendix A VHDL Implementation . 74

Appendix B Fault Injection TLC . 86

x

Chapter 1

Thesis Contributions and Outline

1.1 Introduction

1.1.1 Advanced Encryption Standard(AES)

The Advanced Encryption Standard (AES) has been widely used in cryptosys-

tems after it was introduced by NIS T [14] in 2001. It was a replacement for

Data Encryption Standard (DES) [6]. Since then, many different hardware and

software projects have been developed and implemented to obtain more effi-

cient area and timing results.

1.1.2 Galois/counter Mode(GCM)

The Galois Counter Mode of operation (GCM) [1] is a combined encryption

and authentication process introduced by David Mcgrew and John Viega [22].

The mode is defined in NIST SP 800-38D [35]. The GCM is a mode of op-

eration that uses a universal hash function over a binary Galois field to pro-

vide assurance of the authenticity and the confidentiality of data in its encryp-

tion/decryption. The GCM can also provide authentication assurance for addi-

1

2 Chapter 1. Thesis Contributions and Outline

tional data that is not encrypted. In particular, GCM can detect both accidental

modifications of the data, or unauthorized alterations to ensure proper authen-

tication while protects confidentiality to make the data readable by intended

receiver. It could be implemented into the hardware to achieve high speed op-

eration with low cost and low latency.

The AES-GCM has been widely used in networking communications. In

general, fault detection techniques can be very useful towards the protection of

encryption and malicious attack prevention. The GCM is designed to support

very high data rates due to pipelining and parallel processing techniques as well

as high degree of authenticity and confidentiality. This will result in authenti-

cated encryption at data rates of many tens of Gbps, permitting high grade

encryption and authentication on communication systems. Recently, the GCM

is being used in lower data rate applications. Therefore, much more reliable

fault detection techniques are needed in industry level.

1.2 Motivation and Scope of Thesis

There are two sources of faults in cryptography systems, natural faults and fault

attacks. The natural faults are caused by physical defects in the ASIC or the

electrical circuit malfunction. Four common types of defects occur in logic

gates during the fabrication or due to physical failure i.e., the bridging or short

circuit between adjacent lines, breaks or open circuits, or permanently adopting

1.2. Motivation and Scope of Thesis 3

logic 0 or logic 1 which is modeled by stuck-at-0 and stuck-at-1 respectively

(in general stuck-at-fault). The stuck-at-fault model assumes that only one in-

put or output on each gate will be faulty at a time. Assuming that if more than

one are faulty, a test that can detect any single fault, should easily find multiple

faults.

The intruder attack consists of a series of fault injection into the system to ob-

tain any leakage of secret information, this type of transient fault should also be

detected to prevent such attacks. Therefore, the need for a robust fault detection

method is highly demanded to have much more protection for the integrity and

authenticity of data over the communication channels. As soon as the attacker

inject the fault into the system, the fault detection module generates an error

signal to prevent the system to proceed to the next level. Thus, the attacker

won’t be able to complete the attack sequence. This thesis aims to create a

reliable GCM module which is capable of detecting permanent and transient

faults. To make a system more reliable against faults, there have been three dif-

ferent approaches towards the fault detection [5]. These methods are hardware,

time, and information redundancy. In hardware redundancy technique, one can

duplicate hardware to the system for fault detection which causes 100% fault

detection versus 100% area overhead. In time redundancy approach, the func-

tion of hardware is evaluated in different time slices to detect transient faults.

Again, one can obtain 100 percent fault coverage versus 100% delay increase.

The information redundancy deals with additional extra added information like

4 Chapter 1. Thesis Contributions and Outline

parity bits to the system to locate the faults.

The goal of this thesis is to introduce a novel method of fault detection in

the GCM module using the information redundancy technique by adding parity

bits to the Circuit Under Test (CUT).

1.3 Contributions

In this thesis, we have introduced a novel matrix based CRC fault detection ar-

chitecture using multiple bit parity prediction method for entire the GCM loop

with high rate of fault coverage which is about 99%. The proposed scheme is

generic and the number of parity bits can be adjusted based on the available re-

sources and needed fault coverage. The proposed fault detection schemes can

be applied as an universal method of fault detection because of its unique pro-

cessing of CRC pattern generation. The proposed fault injection using VHDL

and Tcl programming makes the design verification and testing easier, faster,

and more reliable. The contributions of the thesis are summarized as follows:

• A new fault detection scheme for the entire GCM module using the GCM

charactristics defined by NIST [35] and Galois field principles including

the formulations and block diagram.

• New approach in using CRC method to generate fault detection patterns

based on the number of the used parity bits. All formulation, CRC patterns

and implementation are covered.

1.4. Thesis Outline 5

• A new method of fault injection in the GCM module using the VHDL is

proposed. Both the GCM and fault injection are implemented in VHDL.

• Tcl stimulus script is used to activate the fault injection for simulation of

proposed fault detection to investigate the fault coverage.

• Implementation of the fault detection scheme is performed on FPGA for

area overhead and timing analysis. This thesis outlines an accurate and

reliable GCM module which detects all types of faults in each clock cycle

to prevent sending false information through the communication channels.

1.4 Thesis Outline

We have developed a formal model in hardware that allows us to formulate the

fault detection problem for arbitrary permanent and transient faults in the entire

GCM loop. In Chapter 2, we explain the Authenticated encryption/decryption

in GCM, inputs and outputs of GCM, and the GCM block diagram. We also

outline the principles of Galois field and previous work has been done on AES

and multipliers fault detection. In Chapter 3, we have introduced a novel parity

prediction scheme for entire GCM module using the properties of GCM and ap-

plication of Galois field principles. In Chapter 4, we have established a reliable

matrix based CRC (Cyclic Redundancy Check) multi- bit parity prediction.

The proposed scheme is generic in terms of the number of used parity bits. If

we increase the number of parity bits, we can achieve close to 100% accuracy

6 Chapter 1. Thesis Contributions and Outline

in detecting permanent and transient faults. Chapter 5 depicts the simulation

results and implementation in FPGA as well as timing and overhead analysis.

A new method of fault injection in the GCM module using VHDL language

and stimulus script programming called Tcl are given in Appendix A&B.

Chapter 2

Priliminaries and Literature Review

In this chapter, we have an overview on the Galois field principles, GCM char-

acteristics and operation, AES operation and related fault detection, and the

multiplier module used in GCM block. The bit-parallel multiplier and the fault

detection in the multiplier module will be discussed. The multiplier consists

of tremendous amount of gates which could generate the faulty output due to

natural or transient faults in any part of its structure. The area overhead of the

multiplier in the GCM is up to 30% of the total space [38]. Therefore, the se-

lection of low complexity multiplier contributes towards the final cost and the

operating frequency.

2.1 Finite Field

Finite field arithmetic [20], [19] has become prominent solution in different ap-

plications like cryptography and digital communication systems. In the GCM

implementation, each ciphertext is treated as an element of a finite field. During

the Tag generation process, each ciphertext or element of the field is multiplied

7

8 Chapter 2. Priliminaries and Literature Review

by Hash Key H, or added to another field element. The element H is consid-

ered constant field element which does not change until the next encryption.

2.1.1 Principles of Galois Field

Only binary field is used in the GCM. Therefore, we explain the Galois Field

GF(2m) which is extensively employed in the GCM implementation. Thus,

we mainly focus on binary extension fields in thesis. The number of elements

in the field is equal to 2m. The elements of the field are represented by poly-

nomials with coefficients belonging to GF(2). The elements of the field are

generated by selecting irreducible polynomial F(x) which cannot be factored

into any polynomials in GF(2m) [23]. All the elements in GF(2m) are repre-

sented by polynomials modulo F(x). The multiplication is done modulo the

selected irreducible polynomial.

2.1.2 Finite Field Arithmetic

Addition In Galois Field

Let A and B represent two elements in GF(2m). Then, one can write each

element according to its polynomial representation:

A =

m−1∑
i=0

aixi = am−1xm−1 + · · · + a0

B =

m−1∑
i=0

bixi = bm−1xm−1 + · · · + b0

ai ∈ {0, 1}

bi ∈ {0, 1}
(2.1)

2.1. Finite Field 9

The addition is componentwise sum of each element in GF(2m) over GF(2)

which can be written as follows

A + B =

m−1∑
i=0

(ai + bi)xi (2.2)

Therefore, addition is performed by bitwise exclusive-or (XOR) of the ele-

ments of the field. Thus, we represent all addition with + sign hereafter which

denotes XOR operation on coordinates of field elements.

Multiplication In Galois Field

The result of multiplication of A and B defined in (2.1) and denoted by S is a

polynomial with order of 2m − 2 shown as

S = AB = s2m−2x2m−2 + · · · + s1x1 + s0 (2.3)

It is reduced to the order of m − 1 after modular reduction, if x is the root

of irreducible polynomial generating the field elements, then the final result of

multiplication depends solely on the chosen irreducible polynomial.

C = AB mod F(x) ∈ GF(2m)

C = cm−1xm−1 + · · · + c0

(2.4)

For the purpose of this thesis, we use the recommended irreducible polynomial

[35] for the GCM in GF(2128) by the following pentonomial

10 Chapter 2. Priliminaries and Literature Review

f (x) = x128 + x7 + x2 + x + 1 (2.5)

2.1.3 Example GF(23)

In order to clarify the concept of irreducible polynomial and the polynomial

basis, an example is given in GF(23) for simplicity. One can extend the con-

cept to GF(2128) which is discussed in the following Chapters.

To define the field structure and elements, we need to define the monic irre-

ducible polynomial f (x) in GF(23) over GF(2). The irreducible polynomial

f (x) is shown in [19] as

f (x) = x3 +

2∑
i=0

fixi fi ∈ {0, 1} (2.6)

It is clear that f0 must be 1, otherwise f (x) is not irreducible and could be

divided by x. The sum of coefficients must be 1, otherwise x+1 will be a factor

and f (x) becomes reducible. Thus, 1 + f2 + f1 + 1 must be 1. Therefore, f1 or f2

must be 0. As result, we outline the following monic polynomials in GF(23).

x3 + x2 + 1 and x3 + x + 1 (2.7)

Either polynomials can be used to define the the elements of the field. If α

is the root of the polynomial f (x), then f (α) = 0 and α3 = α2 + 1. Now, we

2.2. The GCM Operation 11

calculate αis shown in Table 2.1.

i αi Binary αi mod f (α)
0 1 001 1
1 2 010 α
2 4 100 α2

3 5 101 α2 + 1
4 7 111 α2 + α + 1
5 3 011 α + 1
6 6 110 α2 + α
7 1 001 1

Table 2.1: αis in GF(8) based on x3 + x2 + 1.

We can easily show that every nonzero element of GF(23) is a power of

α and also the linear combination of the polynomial basis {1, α, α2}. Here, α

is called primitive element. The selection of irreducible polynomial leads to

the maximum number of distinguished elements in the related field. Therefore,

one can process eight different field elements out of 3 bit length in the above

example of GF(23).

As an example multiplication of two field elements 010 and 100 is α3 which

results another field element 101.

2.2 The GCM Operation

The GCM performs authentication and encryption of data at high speeds for

both software and hardware implementations. Data integrity is achieved by

Galois Field (GF) multiplication operations while a symmetric key block ci-

12 Chapter 2. Priliminaries and Literature Review

pher named Advanced Encryption Standard (AES) is used for the purpose

of confidentiality. The GCM uses block cipher for authenticity. A block ci-

pher is a symmetric key cipher operating on fixed-length groups of bits, called

blocks [27]. The mode of operation defines how to repeatedly apply a cipher’s

block operation to transform amounts of whole plaintext which has been di-

vided into fix-sized blocks. The GCM requires a unique IV for each encryp-

tion operation. The IV must be random and should not repeat for other encryp-

tion. This leads to generation of different ciphertexts even the same plaintext

is encrypted multiple times with the same key. The security of AES-GCM de-

pends on the freshness of the nonce/key combination. Thus, we cannot use

statically configured keys. Instead, an automated key management system is

implemented. Authors in [4] have discussed four general key management

techniques i.e., Key Transport, Key Agreement, Key-Encryption Keys, and

Passwords. The GCM could be implemented in pipeline form, which results

in throughput of more than 10 Gbps. While in Tag generation process of the

GCM, a chained Galois multiplication is used, the sequential data (Ciphertext)

can be fed in through the pipeline form.

2.2.1 Encryption/Decryption in GCM

There are four inputs for the authenticated encryption, a secret key K with the

length based on the block cipher. An initialization vector IV , that can be any

2.2. The GCM Operation 13

number between 1 and 264 that is unique for each application. A plaintext P,

that can have any number of bits between 0 and 239 − 256. Additional authen-

ticated data (AAD) denoted by A which is authenticated by the GCM module,

but not encrypted. AAD includes version numbers, port, address or other field

information can be a number between 0 and 264. There are two outputs: A

ciphertext C with the same length as the plain text P. An authentication tag T ,

whose length can be any value between 0 and 128.

The authenticated decryption operation has five inputs: K, IV, C, A, and T .

It either generates the plaintext P, or a FAIL signal once the inputs are not

authentic for the shared key.

Encryption Process

The plaintext P is divided into the blocks of 128 bit long. Let n and u be two

positive integers, then the total number of bits in P can be written as (n−1)128+

u where 1 ≤ u ≤ 128. As a result, P can be shown as P1, P2, . . . , Pn−1, P∗n,

which are called data blocks with the length of 128 bits except for the last block

that could be less than 128 bits.

Similarly, the ciphertext C is represented as C1, C2, . . . , Cn−1, C∗n. The

additional authenticated data A is also represented as A1, A2, . . . , Am−1, A∗m.

The total number of bits required for A can be written as (m− 1)128 + v, m and

v are two positive integers where 1 ≤ v ≤ 128.

The inputs A and C are formatted as above and the function GHAS H is

14 Chapter 2. Priliminaries and Literature Review

defined by Xm+n+1 = GHAS H(H, A,C) as

Xi =



0 f or i = 0
(Xi−1 ⊕ Ai) · H f or i = 1, . . . ,m − 1
(Xm−1 ⊕ (A?

m ‖ 0128−v)) · H f or i = m

(Xi−1 ⊕Ci−m) · H f or i = m + 1, . . . ,m + n − 1
(Xm+n−1 ⊕ (C?

n ‖ 0128−u)) · H f or i = m + n

(Xm+n ⊕ (len(A)‖len(C)) · H f or i = m + n + 1

(2.8)

Two operations are used in (2.8) denoted by “ ⊕ ” for XOR and “ · ” for the

finite field multiplication over GF(2128) which is explained in previous section.

The len() function is used for generating the length block, its function is to

compute the total number of bits in the operand and returns a 64 bit value. AAD

and the ciphertext are applied to the len function, then the result is concatenated

to create the length block.

The sets of equation to define the authenticated encryption operation are

defined in [35] as follows

H = E(K, 0128)

U0 =

IV ‖ 0311 i f len(IV) = 96
GHAS H(H, {}, IV) otherwise

Ui = incr(Ui−1) f or i = 1, . . . , n
Ci = Pi ⊕ E(K,Ui) f or i = 1, . . . , n
T = MS Bt(GHAS H(H, A,C) ⊕ E(K,U0)

(2.9)

In (2.9), “Hash Key” H is generated by the AES encryption of a 128 bit

2.2. The GCM Operation 15

block of all zero. the incr() function increments the value of the the counter

U by one in each clock cycle. This value will be XORed with E(K,U0) which

is the AES encryption of shared key (K) and the initial counter value U0. At

the final stage, the Authentication Tag T is generated by choosing the t most

significant bits of the result. The initial value of the counter is U0 = (IV ‖

0311) if len(IV) = 96, otherwise GHAS H(H, {}, IV). The counter will be

incremented by one at each clock cycle using the incr() function. Then, the

AES encrypted value of the counter will be added to the plaintext Pi to generate

the ciphertext Ci which will be applied to the GHAS H calculator in (2.8).

2.2.2 The GCM Block Diagram

As stated in previous section, the main part of the GHAS H function in the

GCM is multiplication of (Xi−1 ⊕ Ci) by H in GF(2128). Figure 2.1 illus-

trates the block diagram for GCM. In this scheme, we consider sequential

structure for the multiplier and apply Ai or Ci and H in block-length of 128

in serial to GHAS H calculator in (2.8). In this figure, the 128-bit register

Y = (y127, ..., y2, y1, y0) will be initialized by all zeros at the beginning of

the clock cycle. Let Y (n) denote the contents of Y at the nth clock cycle. Let

Xi be the multiplier output at ith clock cycle. Furthermore, the initial value

of register X0 = Y (0) = (0, . . . , 0). Thus, the content of Y after the first clock

cycle shows as X1 = Y (1) = C1 · H, in the second clock cycle we obtain

X2 = Y (2) = (C1 · H + C2) · H, and the loop continues until we extract Xm+n+1

16 Chapter 2. Priliminaries and Literature Review

in the (m + n + 1)th clock cycle as defined in (2.8).

Ai or encrypted Pi can be selected through the multiplexer based on the values

of m and n .

2.2.3 Review on GHASH

Software Implementation of High Performance GHASH Algorithms

Authors in [34] provide an efficient way of software implementation of high

performance GHASH function and also on the implementation of GHASH

using a carry-less multiplication instruction supplied by Intel. The work in-

cludes implementation of the high performance GHASH and its comparison

to the standard implementation of GHASH function. It also includes compar-

ison of the two implementations using Intels carry-less multiplication instruc-

tion. The proposed software implementations suggest that the new GHASH

algorithm can’t take advantage of the Intel carry-less multiplication instruc-

tion PCLMULQDQ. The work shows that the implementations done without

using the PCLMULQDQ instruction performs better. This suggest that the

new algorithm will perform better on embedded systems that do not support

PCLMULQDQ.

High Performance GHASH Function for Long Messages

Authors in [27] present a new method to compute the GHASH function. AS

the GHASH calculations consist of n successive multiply and addition over

2.3. The AES Operation 17

GF(2128) for a bit string made of n blocks of 128 bits each. In this work, they

propose a method to replace all but a fixed number of those multiplications by

additions on the field. This is achieved by using the characteristic polynomial of

H. They present how to use this polynomial to speed up the GHASH function

and how to efficiently compute it for each session that uses a new H.

An Architecture for the AES-GCM Security Standard

Authors in [37] present a fully pipelined and parallelized hardware architecture

for AES-GCM. The results from this thesis show that the round transforma-

tions of confidentiality and hash operations of authentication in AES-GCM

can cooperate very efficiently within this pipelined architecture. Furthermore,

this AES-GCM hardware architecture never unnecessarily stalls data pipelines.

This thesis provides a complete FPGA-based high speed architecture for the

AES-GCM standard, suitable for high speed embedded applications.

2.3 The AES Operation

AES [33], [13] is a symmetric block cipher with block-length of 128 bits. The

size of Key can be chosen from 128 bits, 192 bits, or 256 bits. Thus, the AES-

128 uses 10 rounds of operations, the AES-192 with 12 rounds of operations,

and AES-256 with 14 rounds of operations. The AES divides the plaintext into

16 bytes (128 bits). Thus, each block of 128 bits form an State array of 4 × 4.

The AES round functions perform the collection of GF operations:

18 Chapter 2. Priliminaries and Literature Review

Figure 2.1: Block Diagram of AES-GCM

• SubBytes(GF inverse): The processing is done on each byte through an S-
Box which is a substitution table, where one byte is replaced with another
byte, based on a substitution algorithm. The SubBytes process scrambles
each byte.

• ShiftRows: The process is mixing data within rows. Row zero of the State
is not shifted, row 1 is shifted 1 byte, row 2 is shifted 2 bytes, and row 3
is shifted 3 bytes. The ShiftRows process scrambles each row.

• MixColumns(GF matrix multiplication): The process is mixing data within
columns. The 4 bytes of each column in the State are exchanged with an-
other 4-byte number through the finite field arithmetic. The MixColumns
process scrambles each column.

• AddRoundKey(GF addition): The encryption process is performed in this
part, when each byte in the current State is XORed with the subkey. The
subkey is formed based on specification of FIPS [13].

2.3. The AES Operation 19

Therefore, one round of AES on 128 bit plaintext consists of performing Sub-

Bytes, ShiftRows, MixColumns, AddRoundKey. Then, the ciphertext with the

length of 128 bit is obtained.

Decryption is done through inverse AES functions. Thus, we perform the

followings for decryption: AddRoundKey, inverseMixColumn, inverseShiftRows,

inverseSubByte.

2.3.1 Fault Attacks and Detection in AES

Fault Attacks

As an example the authors in [15] show the fault attacks in the form of transient

fault on symmetric cryptosystems like AES have the following outcome:

• Modification of 1 byte of the Mix Columns input has an impact on 4 bytes.

• Modification of 1 byte between the Mix Columns of the 7th round and the
Mix Columns of the 8th round.

• The secret key can be recovered by using 2 faulty ciphertexts.

Therefore, the need for a robust fault detection method is highly demanded

to have much more protection for the integrity and authenticity of data over

the communication channels. As soon as the attacker can inject the fault into

the system, the fault detection module generates an error signal to prevent the

system to proceed to the next level. Thus, the attacker won’t be able to complete

the attack sequence. This thesis aims to create a reliable GCM module which

is capable of detecting permanent and transient faults.

20 Chapter 2. Priliminaries and Literature Review

Fault Detection

There exists a large number of papers which offer different methods of fault

detection in the AES [24], [29], [39], [5]. The authors in [26] proposed a

lightweight concurrent parity-based fault detection scheme for the S-Box using

normal basis. This scheme can also be applied to the inverse S-Box. They in-

troduced the least area and delay overhead S-Box and its fault detection scheme

for the optimum composite field.

In this regard, high error coverage was achieved. The S-Box is a nonlinear op-

eration which takes an 8-bit input and generates an 8-bit output. In the S-Box,

the irreducible polynomial of f (x) = x8 + x4 + x3 + x + 1 is used to construct

the binary field GF(28). Let X ∈ GF(28) and Y ∈ GF(28) be the input and the

output of the S-box respectively. Then, the S-Box consists of the multiplicative

inversion, i.e., X−1 ∈ GF(28), followed by an affine transformation. The affine

transformation consists of the matrix A and the vector b to generate the output

as y = Ax−1 +b where, y and x−1 are vectors corresponding to the field elements

Y and X−1 respectively.

In another section of the paper, the explanation of the composite field realiza-

tion of the multiplicative inversion using normal basis is discussed.

In the following sections of the referenced paper, the parity-based fault detec-

tion scheme of the S-Box using this realization is investigated. For the purpose

of fault coverage, the authors use multiple stuck-at fault model at the logic

level. This type of fault, which forces multiple nodes to be stuck at logic one

2.3. The AES Operation 21

(for stuck-at one) or zero (for stuck-at zero) independent of the fault-free logic

values, has been frequently used in the literature. It is noted that the presented

scheme is independent of the life time of the faults. Thus, both permanent and

transient stuck-at faults lead to the same fault coverage.

In the parity-based fault detection scheme of a block of logic gates, the parity

of the block is predicted and it is compared to the actual parity. The result of

this comparison is the error indication flag of the corresponding block. This

method is utilized in the literature to develop a fault detection scheme for dif-

ferent applications. The authors have divided the S-box into 5 blocks. This

results in low overhead parity predictions while maintaining the fault detection

required for the security-constrained environments.

Another fault detection scheme has been discussed in [16]. In SubBytes,

using the technique of parity to make the prediction parity for the SubBytes is

complex due to nonlinearity of this transformation. To protect the SubBytes,

the authors use the hardware redundancy method. They implement two Sub-

Bytes transformations in parallel. At the end of the SubBytes computation, the

results are compared and every discrepancy is considered as a fault.

The same method can be applied in the decryption process by using two In-

vSubBytes transformation in parallel. In ShiftRows, the output of the Sub-

Bytes transformation acts as the input to ShiftRows. Therefore, the output state

of ShiftRows is obtained by shifting the matrix state. To secure the ShiftRows

transformation, They used the scrambling method. This method consists of

22 Chapter 2. Priliminaries and Literature Review

scrambling the output of ShiftRows. In MixColums and AddRoundKey, the

authors used cyclic redundancy check (CRC) for fault detection. The compar-

ison of CRC is made before and after each operation to detect the faults. They

showed more than 99% fault coverage with the area overhead of 22.51% and

frequency degradation of 13.86%.

2.4 Finite Field Multipliers In AES-GCM

In this section, we investigate the different types of multipliers and related area

and time complexity. The choice of the multiplier type in the AES-GCM de-

pends solely on the speed and area constrains of the application. There are

three different types of multipliers that can be used in the AES-GCM. These

are explained below. It is noted that in this thesis we have used the bit-parallel

one.

Bit-parallel Multipliers:

In this multiplier the inputs are being applied in word format with length of m

and the output will be the same word length. The modular reduction is applied

at the same time to obtain the field element as output. The area complexity in

this multiplier is O(m2) and requires 1 clock cycles to accomplish the result.

Block diagram of bit-parallel multiplier is shown in Figure 2.2.a.

2.4. Finite FieldMultipliers In AES-GCM 23

Bit-Level Multipliers:

Both multiplicand and multiplier are fed bit by bit through the shift register to

the multiplier input. There are two methods of applying the digits, MSB-first

and LBS-first. The area complexity is O(m) and requires m clock cycles for

completion. Block diagram of bit-level multiplier is shown in Figure 2.2.b.

Digit-Level Multiplier:

In this method, the operands are divided into k digit length to be applied to the

multiplier input . The area complexity is O(km) and required time for com-

pletion is m
k clock cycles. Block diagram of digit-level multiplier is shown in

Figure 2.2.c.

Figure 2.2: Block Diagram of Multipliers a. Parallel b. Bit-level c. Digit-level

2.4.1 Low Complexity Multiplier in GF(2m)

In this section, we have an overview on a low complexity bit-parallel multiplier.

As mentioned, the multiplier plays an important role in AES-GCM module.

24 Chapter 2. Priliminaries and Literature Review

Therefore, the type of the chosen multiplier contributes towards the area and

operating frequency of the said module. The authors in [31] have shown an

approach towards low complexity bit parallel multiplier which will be used in

the following sections for the purpose of fault analysis.

They have shown that C = AB ∈ GF(2128) can be written as

c = (L + QT U)b (2.10)

Where b = [b0, b1, · · · , bm−1]T and T denotes transposition of vector. L and

U are two Toeplitz matrices whose elements consist of ais which are the coor-

dinates of A. L is m × m lower triangular matrix and U is (m − 1) × m upper

triangular matrix shown in Figure 2.3.

Figure 2.3: Demonstration of L, U, and b in Matrix Presentation.

Q is called the reduction matrix which is (m−1)×m and could be found through

the following relationship

α ↑= Qα mod F(α), (2.11)

where α ↑= [αm, αm+1, · · · , α2m−2]T and α = [1, α, α2, · · · , αm−1]T .

2.4. Finite FieldMultipliers In AES-GCM 25

Using (2.11), one can obtain the reduction matrix Q for the GCM in order

to figure out the single and multi-bit parity-based fault detection scheme. As-

suming α is the root of irreducible polynomial, then f (α) = 0 and we could

rewrite (2.5) as follows

α128 + α7 + α2 + α + 1 = 0. (2.12)

As in the finite field, −1 = +1 then one can derive the following equation

α128 = 1 + α + α2 + α7. (2.13)

Then, the first row of the reduction matrix Q is obtained as follows

α128 =

[
1 1 1 0 0 0 0 1 0 · · · 0

]
︸ ︷︷ ︸

1×128



1

α

α2

...

α127


(2.14)

Next, we calculate the consecutive powers of α as

26 Chapter 2. Priliminaries and Literature Review

αi+128 = αi + αi+1 + αi+3 + αi+8 f or 1 ≤ i ≤ 120

α129 = α + α2 + α3 + α8

...

α248 = α120 + α121 + α122 + α127

(2.15)

We can outline α249 as follows

α249 = α121 + α122 + α123 + α128. (2.16)

Substituting α128 from (2.16), one can find

α249 = 1 + α + α2 + α7 + α121 +122 +α123

...

α253 = α4 + α5 + α6 + α11 + α125 + α126 + α127

(2.17)

As the final term is 2m − 2 = 254, then for α254 by using (2.13) we obtain

α254 = 1 + α + α2 + α5 + α6 + α12 + α126 + α127 (2.18)

Therefore, the Q matrix could be written using (2.13) as shown in Figure 2.4,

where R1 to R127 and C1 to C128 denote the row and column numbers respec-

tively.

From completed Q matrix, the QT could be written as shown in Figure 2.5.

Now, we rewrite (2.10) in matrix presentation as

2.5. Fault Detection InMultiplier 27

Figure 2.4: Demonstration of Q in matrix presentation



c0

c1

...

cm−1


= (L + QT U)



b0

b1

...

bm−1


(2.19)

Hereafter, we name matrix E as E = L + QT U. As in the GCM module,

one of the multiplicands is always power of the Hash Key H, then L = z(H)

and U = g(H); Therefore, E is a function of H e.g. F = w(H). In the equation

c = Eb, we realize that the output of multiplier will be the function of H and

b. Thus, we use this characteristic to outline parity prediction module in terms

of the GCM elements and then define the single or multi-bit parity prediction

scheme in the entire GCM module in Chapter 4.

2.5 Fault Detection In Multiplier

There exists a large number of articles on fault detection in finite field multipli-

28 Chapter 2. Priliminaries and Literature Review

Figure 2.5: QT demonstration 128 × 127

ers i.e., [7] [21] [9] [16] [3] [30] which demonstrate different methods of fault

detections. In this section we review briefly the related ones.

In [30], the authors propose fault detection architectures for GF(2m) multi-

pliers of both bit-parallel and bit-serial types. The polynomial basis is used to

represent the field elements. They develop parity prediction schemes for detect-

ing errors due to single and certain multiple faults during the multiplication op-

eration in the field. Fault detection architectures for traditional and bit-parallel

multipliers are presented. Explicit formulations for parity predictions of three

irreducible polynomials, namely, equally spaced polynomials, trinomials, and

pentanomials, are also investigated. Then, the authors have used similar tech-

2.5. Fault Detection InMultiplier 29

niques to develop fault detection architectures for both MSB-first and LSB-first

bit-serial multipliers. The actual parity of the multiplier output is computed by

the Binary Tree of XOR (BTX) gates. The predicted parity is calculated based

on the coordinates of the input and characteristics of finite field addition and

multiplication. Then, the outputs of these two parities are compared to detect

the faults. The double parity prediction method is also discussed given the par-

ity of the both inputs to the multiplier is known. The parity prediction block

uses both parities and the coordinates of the input to generate the double parity

prediction bits that will be compared with the actual parity bits of the multiplier

output to indicate Pass or Fail signal.

In [9], the paper provides the concurrent error detection scheme for all-

one polynomial to protect the encryption and decryption process against both

faults and attacks. To accomplish, The concept of REcomputing with Shifted

Operands (RESO) is selected.The RESO scheme employs time redundancy.

Assuming function F(x) to be a function unit and the function G(x) are related

by be G−1(F(G(x))) = F(x) for all input x. The results of two computations

are compared to indicate existence of error. The proposed method needs two

additional clock cycles.

In [3], the selected approach is based on the multiple parity bits and its

effect on area overhead and error detection probability. The paper discusses

the multiple bit errors in bit parallel and bit serial polynomial basis multipliers

with respect to selected number of parity bits in error detection scheme. In this

30 Chapter 2. Priliminaries and Literature Review

approach, the m bit input is divided into k parts with one parity bit for each,

then the multiple parity prediction scheme is used to conduct the comparison

of predicted and actual blocks to detect any errors. The author demonstrates

that in the bit-serial implementation of GF(2163) PB multiplier using 8 parity

bits, the area overhead of 10.29% and probability of 0.996 are obtained. This

is achieved without increase in the computation time in multiplier.

Chapter 3

Single bit fault detection in GCM

3.1 Fault Detection Scheme

In this chapter, we introduce a novel single-bit parity prediction method in the

GCM loop. The parity prediction scheme is outlined and extended to include

the coordinates of the Ciphertext rather than the coordinates of the input to

the multiplier. The parity prediction scheme is derived using the properties of

GF(2128) with f (x) = x128 + x7 + x2 + x + 1 as irreducible polynomial. Then,

we compare the predicted and actual parities in order to detect the faults in the

GCM loop. For the purpose of fault detection in the GCM module, we assume

that the AES encryption part of the module is fault free or its fault could be

verified by known methods discussed in Chapter 2. Thus, our main concern

will be the fault detection in the GHAS H function of the GCM module.

As shown in Figure 2.1, the output of the GHAS H function is Xi whose par-

ity can be calculated using Binary Tree of XOR (BT X) gates or Linear Feed-

31

32 Chapter 3. Single bit fault detection in GCM

back Shift Register (LFS R) to generate pXi. We need to predict the parity of

multiplier output Xi depicted as p̂Xi to compare with the actual parity pXi in

order to generate PASS or FAIL signal as error indication output.

Let’s start with the sum module of Figure 2.1. The sum module denoted by

⊕ adds two elements in GF(2128) which is 128 2-input XOR gates to perform

additions over GF(2). The sum result is the bitwise XOR of Xi−1 and Ci shown

as

Di = Xi−1 + Ci = (x0 + c0, . . . , x127 + c127) ∈ GF(2128). (3.1)

Let pXi−1 and pCi denote the parity bit of Xi−1 = Yi and Ci respectively. To obtain

the parity of the result pD over GF(2128) one can write:

pDi =

127∑
i=0

(yi + ci) =

127∑
i=0

yi +

127∑
i=0

ci =pXi−1 + pCi. (3.2)

Equation (3.2) shows that the parity will be saved in the sum module and

remains intact during the operation. The output of sum module denoted by

Xi−1 +Ci is applied to the multiply module depicted as ⊗ to perform multiplica-

tion by Hash Key H over GF(2128) mod F(α) where α is the root of irreducible

polynomial f (x). Next, we figure out the parity prediction method in the mul-

tiply module in terms of the GCM elements e.g., Ci and H. The parity of the

multiplier output denoted by Xi will be a function of its input operands Di and

H or a function of parity for each operand.

3.1. Fault Detection Scheme 33

pXi = f (Di, H) = f (pDi, pH). (3.3)

This formulation shows that the parity of the output is a function of the

parity of input Ciphertext Ci and the parity of Hash Key H.

3.1.1 Parity for the powers of the Hash Key(H)

In this section, we focus on multiplication in GF(2128) to implement the parity

prediction scheme for the multiplier in the GCM. Authors in [30] have shown

the following characteristics of GF(2m) which we use to outline our fault de-

tection strategy over AES-GCM module.

Let A ∈ GF(2128) and α be a root of irreducible polynomial f (x), then each

element of the field could be written in terms of α as

A =

127∑
i=0

aiα
i ai ∈ {0, 1} (3.4)

Where ais are the coordinates of A with respect to polynomial basis.

The finite field multiplication of two elements A and B in GF(2128) could be

represented as

A mod F(α) = A ·
127∑
i=0

bi · ((Aαi) mod F(α)) =

127∑
i=0

bi · Z(i) (3.5)

Where

34 Chapter 3. Single bit fault detection in GCM

Z(i) = α · Z(i−1) mod F(α) f or 1 ≤ i ≤ 127, Z(0) = A. (3.6)

In the AES-GCM module shown in Figure 2.1, the Hash Key H is encrypted

initially and remains constant throughout the Tag generation process. Using

this feature, we propose a parity prediction method in the GCM loop in terms

of the parity of H(j)s and parity of Ciphertext Ci in order to have low complexity

and space overhead. To Calculate the parity prediction of the multiplier output,

we need to compute the parity of H(j)s by using (3.6) as

H(j) = α.H(j−1)mod F(α) (3.7)

H and H · α could be written in terms of the its coordinate as follows

H = h0 + h1α + · · · + h127α
127

H · α = h0α + h1α
2 + · · · + h126α

127 + h127α
128

(3.8)

Since α is a root of irreducible polynomial and F(α) = 0, then α128=α7 +

α2 + α + 1. Therefore, substitution of α128 with its equivalent in (3.8) obtains

H · αmod F(α) as

H(1) = h0α + h1α
2 + · · · + h126α

127 + h127(α7 + α2 + α + 1) (3.9)

Thus, we can write the vector notation of H · αmod F(α) as

3.1. Fault Detection Scheme 35

h(1) = [h127, h0+h127, h1+h127, h2, h3, h4, h5, h6+h127, h7, . . . , h126]T . (3.10)

From (3.10) we conclude the important parity relationship between powers of

H as

pH(1) =pH(0) + h127

pH(2) =pH(1) + h126

...
...

pH(127) =pH(126) + h1.

(3.11)

3.1.2 Parity Prediction for the Multiplier in the GCM

The authors of [30] have derived the parity prediction formula for the multi-

plication of two arbitrary field elements which can be applied to the multiplier

inputs Di and H in the AES-GCM module as follows

p̂Xi =

127∑
i=0

di pX(i) =

127∑
i=0

di pH(i). (3.12)

The formulation of (3.12) constructs the foundation in parity prediction of

the AES-GCM module in this thesis. As the Hash Key H does not change

during the encryption process, the values of pH(i) could be precomputed and

stored in register PH at the beginning of each encryption. Then, we obtain

bitwise AND of PH register with Di.

36 Chapter 3. Single bit fault detection in GCM

Next, we calculate the predicted parity by performing XOR operation on

outputs as shown in Figure 3.1. The predicted parity can be compared with the

actual parity of the output to verify any odd numbers of stuck at-0 or stuck at-1

fault happened in the circuit under test (CUT).

Figure 3.1: Parity prediction scheme

3.1.3 Fault Detection in the GCM Loop

We need to extend fault detection to include the parity of the actual Ciphertext.

Therefore, we rewrite Di in terms of the inputs of sum module. Thus, we can

rewrite (3.12) at the ith clock cycle as follows:

Xi = (Xi−1 + Ci) � pH = (Yi−1 � pH) + (Ci � pH). (3.13)

where operator � denotes bitwise AND operation. Let Yi−1 and Ci represent

3.1. Fault Detection Scheme 37

the contents of Y register and Ciphertext Ci at the ith clock cycle respectively.

Therefore, the parity prediction of the GHAS H function at the ith clock cycle

in the AES-GCM loop can be found using (3.14) as follows

p̂Xi =

127∑
j=0

y j pH(j) +

127∑
j=0

c j pH(j). (3.14)

where Yi−1 = (y0, . . . , y127) and Ci = (c0, . . . , c127). Figure 3.2 shows the

AES-GCM parity prediction scheme which is a realization of the key formula-

tion presented in (3.14).

The error indicator eout is generated using one XOR gate as shown in Fig-

ure 3.3. At every clock cycle the existence of error will be verified by detecting

logic 1 at eout. All needed at the output of the multiplier is to compute its parity

pXi using the BT X.

38 Chapter 3. Single bit fault detection in GCM

Figure 3.2: AES-GCM loop parity prediction scheme

Figure 3.3: Output error indicator

Chapter 4

Multiple Parity Bit Fault Detection

Architecture

4.1 Introduction

In this chapter we introduce a novel matrix-based multiple parity bit fault de-

tection method in the AES-GCM loop. As shown in [31] and discussed in

Section 2.4.1, the multiplier output Xi in Figure 2.1 can be represented as

Ed = (L + QT U)d, where E and d represent the H and Di inputs to the multi-

plier respectively.

First, we define the matrix E in terms of H and outline single and multiple bit

parity fault detection. Next, matrix-based CRC is introduced and related fault

detection scheme is investigated.

39

40 Chapter 4. Multiple Parity Bit Fault Detection Architecture

4.2 Matrix-Based Parity Prediction Scheme in GCM Loop

4.2.1 Matrix-Based Single Parity Bit Scheme

In this section, we define the matrix- based parity prediction scheme for the

multiplier output. As the parity of the multiplier output Xi = C is defined by

pC =
∑127

i=0 ci, we show the matrix presentation of the output parity as

pC = oc, (4.1)

where c = [c0 c1 . . . c127]T and o = [1 1 · · · 1] is a 1 × 128 all one row

vector. For the purpose of output parity prediction, we need to use the

coordinates of the inputs to the multiplier which can be obtained from matrix

E as follows

p̂C = (oE)d, (4.2)

where d = [d0 d1 · · · d127]T , oE is a function of H which is denoted as

[1 1 · · · 1][f (H)]128×128. Thus, the parity prediction of the output will be

function of H and Di, i.e,

p̂C = f (H,Di), (4.3)

To outline the parity prediction architecture, we focus on computing the

outcome of oE instead of finding matrix E. Therefore, our new approach is to

obtain the parity of each column of oE instead of computing the actual multi-

4.2. Matrix-Based Parity Prediction Scheme in GCM Loop 41

plication.

The Matrix QT shown in Figure 2.4 is multiplied by U in order to obtain QT U.

Let the number of 1s in the jth column of QT be r j. Then each element of U

in the jth row repeats r j times in each column of QT U. For example, the first

column of QT contains 4 Ones(1s) which causes each element of U in the first

row to appear 4 times in each column of QT U. The first column of U is all 0s

which does not have any effect once added to the first column of L. Thus, the

content of the first element of oE denoted by oE(1,1) is the parity of the first

column of L that is pH.

The second column of U has h127 in the first row and all 0s for the rest of

the column. Therefore, h127 appears four times in the second column of QT U

which has no effect on the parity of the second column of QT U because of the

even numbers of the repeats of h127 that cancels off the effect. The value of the

second element of the oE denoted by oE(1,2) is the parity of the second column

of L which is pH + h127. This pattern continues up to the element 122 with the

corresponding oE(1,122) =oE(1,121) + h7.

The pattern changes from the element 123 shown as

42 Chapter 4. Multiple Parity Bit Fault Detection Architecture

oE(1,1) = pH

oE(1,j) = oE(1,j−1) + hm−(j−1) f or 2 ≤ j ≤ 122

oE(1,123) = h0 + h1 + h2 + h3 + h4 + h5 + h127

oE(1,124) = h0 + h1 + h2 + h3 + h4 + h126 + h127

oE(1,125) = h0 + h1 + h2 + h3 + h125 + h126 + h127

oE(1,126) = h0 + h1 + h2 + h124 + h125 + h126 + h127

oE(1,127) = h0 + h1 + h123 + h124 + h125 + h126 + h127

oE(1,128) = h0 + h122 + h123 + h124 + h125 + h126,

(4.4)

where oE(1,k) contains the pH(k). Figure 4.1 shows the logic implementation of

the matrix oE which is stored into the register oE.

The register oE can be used for single parity prediction and fault detection

in the AES-GCM loop using the same architecture shown in Figure 3.2. Thus,

the register oE replaces register pH while the rest of the scheme remains the

same for the purpose of fault detection.

4.2.2 Matrix-Based Random Parity Bit Scheme

In this section, we extend the parity prediction of (4.2) to double and then to

multiple parity bit scheme for the purpose of fault detection. Therefore, we

change the matrix o from 1 × 128 to O′

with a new dimension of k × 128 to

4.2. Matrix-Based Parity Prediction Scheme in GCM Loop 43

Figure 4.1: Implementation of Matrix(Register) oE

obtain k parity bits in our scheme as follows



p̂C1

p̂C2

...

p̂Ck


=



1 · · · 0

1 · · · 0

... · · ·
...

0 · · · 1

︸ ︷︷ ︸
O′ (k×128)

(E.d) (4.5)

44 Chapter 4. Multiple Parity Bit Fault Detection Architecture

where O′

can be a random matrix. The selected pattern of O′

depends on com-

plexity and fault coverage in the fault detection module. Double parity predic-

tion block diagram is shown in Figure 4.2.

Figure 4.2: Block Diagram of Double Bit Parity.

4.3 Matrix-based CRC for Multi-Bit Parity Fault Detection

4.3.1 Brief review on CRC

CRC (Cyclic Redundancy Check) [8] [32], is a code for detecting errors in dig-

ital networks, data transmission, and storage devices. CRC has been adopted to

detect changes to data, but no error correction is made through it. In the CRC,

certain number of bits will be added to the message that is called checksum to

be transmitted together with the message. Then, the checksum of the received

message is computed and compared with the sent one to detect possible errors

occurred during the transmission.

4.3. Matrix-based CRC forMulti-Bit Parity Fault Detection 45

CRC treats the message as a polynomial in GF(2m). It is obtained by com-

puting the remainder of dividing the message polynomial into the divisor (gen-

erator) polynomial. For k−bit CRC, the generator polynomial must be of degree

k. Let denote the message as m(x) = mm−1xn−1 + · · · + m1x + m0, the generator

polynomial as G = g(x) = gkxk + · · · + g1x + 1; Then, we outline the CRC of

m(x) as follows:

m(x) mod g(x) = CRC(m). (4.6)

For k−bit CRC, the check value is k bits and the generator polynomial has

(k + 1) terms. A k−bit CRC is capable of detecting all errors of length ≤ k. If

G is x + 1, then the CRC denoted as CRC − 1 is called the parity bit to detect

single bit or odd number of errors. Most commonly used CRCs are CRC-12,

CRC-16, and CRC-32.

4.3.2 Matrix-Based Double Bit Parity CRC

In this section, we define the matrix-based CRC fault detection scheme using

the multiple parity bits for the multiplier module. Then, we extend the pro-

posed fault detection to the entire GCM loop. The multiplier output c(x) is a

46 Chapter 4. Multiple Parity Bit Fault Detection Architecture

polynomial of degree 127 as shown below:

cT x = c(x)

[
c0 c1 . . . c127

]T



1

x

...

x127


= c(x),

(4.7)

where c(x) = c0+c1x+. . .+c127x127. For the purpose of double parity prediction

scheme, the generator polynomial is g(x) = x2 + x + 1. As the degree of

the generator polynomial is 2, the resulting remainder would be ax + b which

creates two bit parity for the purpose of fault detection. From (4.7), we realize

that the coordinates of the multiplier output c(x) can affect the output parities

after calculation of x mod g(x) which is independent of the output coordinates

and can be used as constant pattern for parity generation and prediction. Thus,

we conclude the following equation

c(x) mod g(x) = cT .(x mod g(x)) (4.8)

Now, we compute the x mod g(x) and establish the related matrix as

4.3. Matrix-based CRC forMulti-Bit Parity Fault Detection 47



1
x
x2

x3

x4

...


mod g(x) =



1
x

x + 1
1
x
...


=



1 0
0 1
1 1
1 0
0 1
...
...


[
1
x

]
= pCRC

[
1
x

]
(4.9)

Using (4.9), we realize a very important approach towards the proposed fault

detection by introducing the CRC of double bit parity matrix as pCRC−2 . Thus,

form (4.9) and (4.8) the double bit parity of the output is computed as follows

cT .pCRC−2

[
1
x

]
= [b ax] = [pC1 pC2]

[
1
x

]
a, b ∈ {0, 1} (4.10)

To calculate the [pC1 pC2], one should multiply cT by each column of

pCRC−2 separately. The hardware realization of this operation is bitwise AND of

multiplier output cT with column 1 and 2 of pCRC−2 . Then, we compute each

individual parity by performing XOR operations on the output bits to obtain

pC1 and pC2 respectively as shown in Figure 4.3.

48 Chapter 4. Multiple Parity Bit Fault Detection Architecture

Figure 4.3: Hardware implementation of Double Bit Parity Generator on multiplier output.

4.3.3 Matrix-Based Double Bit Parity Prediction CRC

In this section, we outline the parity prediction scheme using the matrix-based

CRC. Figure 4.1 demonstrates the content of matrix OE which is absolutely a

function of H. Therefore, matrix O′E is a function of H as well.

4.3. Matrix-based CRC forMulti-Bit Parity Fault Detection 49

As shown in Figure 4.5, the inputs to the GCM multiplier are H and Di. Thus,

matrix O′

kE represents k bit parity prediction with regards to the multiplier in-

puts H and Di which is denoted by d(x) in polynomial basis. Using (4.9), we

define the output parity prediction as follows

(O
′

kE)d = p̂(CRC−k)d

d =



d0

d1

...

d127


, (4.11)

where p̂(CRC−k)d = [p̂0 p̂1 · · · p̂k]
T . As we are investigating double parity

bit fault detection, we replace the O′

k with pT
(CRC−2). Thus, we use (4.11) to

obtain the double bit parity prediction as follows

(pT
(CRC−2)E)d = [p̂C1 p̂C2]. (4.12)

The computation of pT
(CRC−2)E is given in appendix A which could be easily

implemented in hardware. In order to detect faults, we need to compare the

actual and the predicted parities to generate PASS or FAIL signal which is

called eout. If the compared parity pairs are the same, there is no error and eout =

0, otherwise an error signal is generated and eout = 1 as shown in Figure 4.4

50 Chapter 4. Multiple Parity Bit Fault Detection Architecture

which is the ”k − bit XOR Comparator” block depicted in Figure 4.5.

Figure 4.4: Error signal generator.

4.3.4 Matrix-based k Bit Parity Fault Detection (k > 2)

For the k bit matrix-based fault detection scheme, one needs to define the gen-

erator polynomial which is degree of k. The generator polynomial can be irre-

ducible which gives the maximum number of checksums or remainders. There-

fore, we have the maximum code length of 2k − 1 and the code can detect all

one bit and double bit errors [18]. To improve the error detection capability,

we choose the generator polynomial to be g(x) = (x + 1)g
′

(x) where g
′

(x) is

primitive polynomial. The order of g
′

(x) is k − 1 and total code length will

be 2k−1 − 1, in this case all single, double, triple, and all odd number of errors

could be detected [36]. Table 4.1 illustrates the irreducible polynomials for the

CRC up to the degree 5. Higher degree polynomials can be found in [18].

After selection of the generator polynomial, we need to determine the pat-

tern of matrix pCRC−k with regards to chosen polynomial. To accomplish, we

calculate the set {1, x, x2, . . . , x127} mod g(x) which is called r js defined as

4.3. Matrix-based CRC forMulti-Bit Parity Fault Detection 51

k Irreducible Polynomial

1 x + 1, x

2 x2 + x + 1

3 x3 + x2 + 1, x3 + x + 1

4 x4 + x3 + x2 + x + 1, x4 + x3 + 1, x4 + x + 1

5 x5 + x4 + x3 + x2 + 1, x5 + x4 + x3 + x + 1, x5 + x3 + x2 + x + 1, x5 + x4 + x2 + x + 1, x5 + x3 + 1, x5 + x2 + 1

Table 4.1: Irreducible Polynomials to the degree 5.

r j = x j mod g(x) for 0 ≤ j ≤ 127. Then, the remainder set {r1, r2, . . . , r128}

constructs the rows 1 to 128 of the parity matrix pCRC respectively. Table 4.2

shows the pattern for selected polynomials.

Polynomial x2 + x + 1 x3 + x + 1 x4 + x + 1

pCRC


0 1
1 0
1 1
...

...





0 0 1
0 1 0
1 0 0
0 1 1
1 1 0
1 1 1
1 0 1
...

...
...





0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
0 0 1 1
0 1 1 0
1 1 0 0
1 0 1 1
0 1 0 1
1 0 1 0
1 1 1 0
1 1 1 1
1 1 0 1
1 0 0 1
...

...
...

...


Table 4.2: pCRC Matrix pattern for selected polynomials.

4.3.5 Fault Detection Architecture

At this stage, we load each column of pCRC−k matrix into k separate registers

called p(j)CRC−k where j indicates the jth column and 1 ≤ j ≤ k. pCRC−k does

not change in GCM encryption process which can be computed and stored

52 Chapter 4. Multiple Parity Bit Fault Detection Architecture

permanently in the GCM module. Then, by implementing (4.10) and (4.8),

we figure out the actual parities and predicted k- bit parities to compare and

generate eout signal.

To extend the fault detection to the entire GCM loop, we outline the block

diagram of the model using k−bit parity prediction scheme in Figure 4.5. In

this scheme, we take into account the coordinates of the Ciphertext which is the

main element of the GCM module in the GHAS H function. As illustrated in

Figure 4.5, register Ci represents the coordinates of the ith Ciphertext, register

Xi is the current multiplier output, register Yi−1 is the content of Xi−1 + Ci. The

signal eout indicates presence of fault in each clock cycle.

4.3. Matrix-based CRC forMulti-Bit Parity Fault Detection 53

Figure 4.5: Block diagram of k−bit parity fault detection in GCM loop.

Chapter 5

Testing and Simulation

5.1 Introduction

Since we have used the information redundancy technique in our fault detec-

tion scheme, a parity based Concurrent Fault Detection (CFD) has been inves-

tigated. In this chapter, we introduce the simulation testbench for the proposed

matrix-based multiple bit parity prediction CRC discussed in Chapter 4. First,

we implement the GCM scheme using VHDL language. Then, Modelsim SE

10.3 is applied to simulate the design. The fault injection is implemented in the

body of the main program using the VHDL language. TCL stimulus package

is employed to inject the faults and monitor the outputs. The different instances

of single, multiple bit, transient, and permanent stuck-at faults are injected into

the scheme and the results are investigated and further elaborated in the follow-

ing sections.

54

5.2. VHDL Implementation of FaultModel 55

5.2 VHDL Implementation of Fault Model

The main part of the GCM is multiplier module which is implemented through

equation C = (QT U + L) [31]. We can write the multiplier output of the GCM

module shown in Figure 4.5 as

xi = (L + QT U)di (5.1)

All elements of QT U and L are calculated and constructed in terms of the

coefficients of H. Matrix QT U is depicted in Figure 5.1. Matrix E represents

(L + QT U) which generates the multiplier output by performing multiplication

E.di over GF(2128) where di = (ci + xi−1) which are discussed in Chapter 2.

Therefore, we need to define all the matrices in terms of the VHDL language

which is demonstrated in appendix A.

For the purpose of fault injection and fault detection, the implementation

of all matrices and vectors must be done individually in VHDL to give us the

gate level access for the GCM module. Otherwise, we will not be able to cover

entire hardware to inject the faults. To accomplish this approach, we introduce

and add Element−S tuck−at− f ault to all elements of each matrix and vector

separately as follows

(Element(m, n) AND Element−S tuck−at−0(m, n)) OR Element−S tuck−at−1(m, n), (5.2)

56 Chapter 5. Testing and Simulation

where Element(m, n) represents each vector or matrix defined in (5.1). As-

sociated Stuck-at-0 and Stuck-at-1 matrices are defined through the other in-

troduced matrices Element−S tuck−at−0 and Element−S tuck−at−1 respectively.

Element−S tuck−at−0 and Element−S tuck−at−1 are initialized to all 1s and all

0s subsequently. To switch on the fault injection in the Element(m, n), we need

to change Element−S tuck−at−0(m, n) to logic 0 or Element−S tuck−at−1 to logic

1 for the period of multiplication operation.

To continue to the next fault evaluation, we need to restore the injected fault into

the Element−S tuck−at− f ault to the initial no fault values in order to suppress

the effect of other faults on the current one. The flowchart of fault injection

method used in the proposed scheme is shown in Figure 5.2.

The first step is to initialize all the Element−S tuck−at− f ault matrices to proper

logic 1 and 0 which do not perform any fault injection to the any Element

matrix. Then, for each element of this matrix, one can inject Stuck-at-0 by set-

ting Element−S tuck−at−0(m, n) to logic 0. Next, the output of the GCM loop is

checked to detect the effect of the fault. We repeat the fault injection process for

Element−S tuck−at−1(m, n) respectively. All the elements of matrices are tested

against different faults and the results are captured for coverage calculations.

As an example, we show how to inject the fault in element(1, 2) = h127 of the

QT U matrix illustrated in Figure 5.1. We have specified the corresponding fault

injection stuck at 0 and stuck at 1 matrices in the VHDL implementation as

US A−0 and US A−1 respectively, Thus, the presentation of the fault at element

5.2. VHDL Implementation of FaultModel 57

QT U(1, 2) is as follows

QT U(1, 2) = (h127 AND US A−0(1, 2)) OR US A−1(1, 2) (5.3)

To inject stuck at 0 respectively stuck at 1 for this element, we need to force

US A−0 to logic 0 respectively US A−1 to logic 1. This is done through the

scripting language explained in following sections. We repeat the process for

other matrices e.g., L, and E. For each element of QT U matrix which contains

more than one coordinates, we introduce two vectors named UUS A−0(l) and

UUS A−1(l) . UUS A−0(0) and UUS A−1(0) are inserted at QT U(1, 123) which

has two coordinates of H. From Figure 5.1, we illustrate the fault injection at

gate level of QT U(1, 123) = h6 + h127 as follws

QT U(1, 123) = (((h6 AND UUS A−0(0)) OR UUS A−1(0))
+ ((h127 AND UUS A−0(1)) OR UUS A−1(1)))

AND US A−0(1, 123)) OR US A−1(1, 123), (5.4)

The gate level illustration of (5.4) is shown in Figure 5.3.

After injection of faults for all matrices forming E in (5.2), the next step is to

inject fault for the other multiplier input di in E.di which leads to multiplication

result Xi. As E is 128 by 128 matrix, all coordinates of d appear in all coordi-

nates of output C = Xi. Thus, we need to define two matrices DS A−0(128, 128)

and DS A−1(128, 128) to calculate the effect of fault injection into each coordi-

nates of d. DS A−0(1, 1) to DS A−0(1, 128) inject stuck at 0 fault for d0 when

58 Chapter 5. Testing and Simulation

calculating c0 to c127. Respectively, DS A−0(2, 1) to DS A−0(2, 128) inject faults

for d1 and so on. For multiplier output C = Xi, we appoint CS A−0(128) and

CS A−1(128) to activate the fault injection .

5.3 Fault Injection in the GCM loop

As shown in Figure 5.4, the output of the multiplier is stored in register Yi−1.

Therefore, in the ith clock cycle we add the Ciphertext Ci with Yi−1. Then,

we apply (Ci + Yi−1) to the multiplier input to calculate (Ci + Yi−1).H. Thus,

we need to take into account the faults in register Y , Ci, and addition (XOR)

operation of these two. We need to define related fault injection vectors in the

VHDL program which are YS A−0, YS A−1, CS A−0, and CS A−1. To simulate

the fault injection, we define two registers to replace register Y as Y1 which is

applied to the main GCM loop calculations and Y2 which takes part in parity

prediction calculations. Therefore, one can inject the faults into the Y1 through

Tcl commands while the parity prediction part Y2 remains intact. The same

model is applied to Ci for the purpose of fault injection into the coordinates

of Ciphertext. The effect of fault injection on the fault coverage of the entire

GCM loop is discussed in the following sections.

5.4 Simulation Results

To evaluate the error detection capability of the proposed matrix-based parity

prediction scheme, the simulation is performed using ModelSim S E 10.3. The

5.4. Simulation Results 59

different cases of single and multiple bit faults are injected into the multiplier

module, Ciphertext coordinates, register, and adder in the scheme. The fault

injection is performed in different sections of the GCM loop using Tcl (Tool

Command Language) [2] which is programming/scripting language based on

concepts of Lisp, C, and Unix shells. Tcl can be used interactively, or by

running package based scripts to get the maximum performance with small

number of instructions. In Tcl we can change the value of the signals de-

fined in the main VHDL program. An example is given in (5.5) to change

US A−0(128, 128) to logic 0.

The command that injects S tuck−at−0 fault to QT U(128, 128) is as follows

Tcl command to set signal to 0 = f orce − f reeze US A−0(128, 128) 0 (5.5)

Enforcing the changes will take place by run command for specified time.

Then, we are able to monitor the waves (signals) already added to program

using −add wave command. After running the simulation and examining the

waves, we can set back the injected fault to initial no f ault value and continue

to the next fault injection as depicted in Figure 5.2. For investigating the fault

coverage with regards to the selected parity bits, we first add the signals needed

to be monitored, then single or multiple S tuck−at− f aults are injected into the

design entity for run time period. Finally, the error indicator signal is tested to

verify the fault coverage.

To switch from interactive to automated testing, we use f or loop command

in Tcl to inject and repeat all types of faults, all the results will be recorded in a

60 Chapter 5. Testing and Simulation

file for further calculations. For the purpose of transient or permanent fault in-

jection, we can control the duration of the injected fault. For permanent faults,

the injected fault is not set back to original no f ault state during the entire test-

ing period. To control the duration of the faults in Tcl, we run the program for

specified period of time and examine the output waves or other signals using

the RUN [time ns]. The sample of Tcl-based fault injection is given in Ap-

pendix B. Another method of fault injection and testing is shown in Figure 5.5

which illustrates the simulation result to check the S tuck−at−0 for Hash Key H

input. In the VHDL program We have separated the H input to the multiplier

module and the parity prediction module in two different vectors called h, h1.

The vectors h and h1 are applied to multiplier input and the parity prediction

input separately. In the Tcl language we force the signals to the desired values,

run the simulation for 500 and check the error indicator output. For the first

period of 250 ns and the Clock rate of 50, we set h = h1 = ”0X...11” which

is 128 bit stream formatted in hexadecimal, and examine the error indicator

(EOUT) which is 0 that means no error signal. Whereas, for the second period

of 250 ns, with assumption of h = ”0X...01” and h1 = ”0X...11”, the EOUT

will change to logic 1 indicating that the fault is detected.

The experimental results for different parity bit implementation and percent-

age of fault coverage are shown in Table 5.1. Selecting more than 4 parity bits

on fault detection will result more than 92% in fault coverage. By choosing 6

parity bits, we achieve 98% in fault coverage.

5.5. Fault Detection Overhead and Delay Analysis 61

CRC Parity Bits Number of fault injections Fault Coverage
Single bit Parity 300000 48%
Double bit Parity 300000 74%

3 Bit Parity 300000 87%
4 Bit Parity 300000 92.5%
5 Bit Parity 300000 96%
6 Bit Parity 300000 98%

Table 5.1: Fault coverage in the GCM loop versus selected parity bits.

5.5 Fault Detection Overhead and Delay Analysis

For the purpose of evaluating overhead and delay analysis, we selected Altera’s

Arria V GZ device which offers lower power and higher bandwidth compared

to other 28 nm FPGA devices for running applications upto 10Gbps. Therefore,

the overhead and timing analysis was performed by Quartus ‖ −64 Bit [10] .

Table 5.2 shows the effect of adding multiple bit parity fault detection scheme

into the CUT versus operating frequency and overhead of the fault free module.

GCM implementation Overhead in ALMs Longest Delay Path ns
Original :No fault Detection 3445(0%) 2.856

Single Parity 3466(2.8%) 3.387(18.5%)
Double Bit Parity 3665(6.3%) 3.472(21.5%)

3 Bit Parity 3672(6.6%) 3.482(21.9%)
4 Bit Parity 3805(10%) 3.493(22.3%)
5 Bit Parity 3814(10.7%) 3.506(22.7%)
6 Bit Parity 3823(10.9%) 3.515(23%)

Table 5.2: Area overhead and delay versus selected parity bits.

Probability of Fault Coverage for k-bit Parity

The authors in [17] show that the probability of fault coverage using k-bit parity

is calculated as 1 − 2−k. Therefore, the corresponding theoretical outcome for

62 Chapter 5. Testing and Simulation

k = 1 to K = 6 are 50%, 75%, 87.5%, 93.7%, 96.8%, and 98.4% respectively.

Thus, the simulation results depicted in Table 5.1 with a good approximation,

supports the theoretical result discussed in this section. The proposed parity-

based fault detection scheme is capable of detecting almost all the injected

random faults.

Gate Level Complexity Analysis

Table 5.3 shows the area and critical path delay of the GCM fault detection

scheme versus the number of parity bits at gate level count. In order to obtain

the overhead percentage in the ASIC design, this analysis helps to provide exact

area and the cost of the parity prediction scheme. To obtain the chip area, we

take into account that the 2-input AND and 2-input XOR can be built using 6

and 10 transistors respectively.

CRC Parity Bits Area Complexity Critical Path Delay
Single bit Parity 399X + 128A 11TX + TA

Double bit Parity 780X + 512A 14TX + TA + TO

3 Bit Parity 1382X + 768A 19TX + TA + 2TO

4 Bit Parity 2237X + 1024A 27TX + TA + 2TO

5 Bit Parity 4156X + 1280A 30TX + TA + 3TO

6 Bit Parity 8097X + 1536A 39TX + TA + 3TO

Table 5.3: Gate level area overhead and delay versus selected parity bits, where TX , TA, and TO are the
propagation delays of XOR, AND, and OR Gate respectively.

False Alarms

The false alarms are the faults that do not cause any change in output or the

parity bits but are alarmed erroneous by the fault detection scheme. The false

5.6. FutureWork 63

alarms is at most 0.12%, which can be ignored with respect to the total number

of fault injection that is 300000. Table 5.4 depicts the percentage of false alarm

obtained from simulation.

CRC Parity Bits Number of fault injections False Alarm
Single bit Parity 300000 270(0.09%)
Double bit Parity 300000 298(0.1%)

3 Bit Parity 300000 300(0.1%)
4 Bit Parity 300000 328(0.11%)
5 Bit Parity 300000 330(0.11%)
6 Bit Parity 300000 360(0.12%)

Table 5.4: False Alarm in the GCM loop versus selected parity bits.

Figure 5.6 shows the the graph of the simulation results.

5.6 Future Work

A future research can be based on obtaining the best CRC generator polyno-

mials in terms of area and timing overhead. Since the power consumption is

one of the main factors in each design, implementation of the fault detection

scheme into other FPGA devices or ASIC can also be investigated to achieve

lower area complexity, minimum critical path delay, and lower power optimiza-

tion.

As the GCM module takes advantage of the AES encryption in different parts,

a future research on combination of fault detection in the AES part and the

GCM loop can be very useful in order to reduce the area overhead and delay

of overall fault detection unit. The future research is to extend the concept of

single bit fault detection which is proposed in Chapter 3 to a multiple-bit fault

64 Chapter 5. Testing and Simulation

detection scheme which is independent of the multiplier type used in the GCM

loop.

We need to investigate the concept of fault detection for other types of multi-

pliers discussed in Section 2.4. In this approach multiple bit parities are added

to the GCM loop and the propagation of faults with respect to the parity bits

are investigated to make the fault detection technique suitable for high perfor-

mance and low complexity applications.

5.6. FutureWork 65

Figure 5.1: Demonstation of Matrix QT U .

66 Chapter 5. Testing and Simulation

Figure 5.2: The flow chart of fault injection.

5.6. FutureWork 67

Figure 5.3: Gate level fault injection for matrix element QT U(1, 123) .

Figure 5.4: The GCM loop and related components

68 Chapter 5. Testing and Simulation

Figure 5.5: The simulation results.

5.6. FutureWork 69

Figure 5.6: The simulation results graph: (a) fault coverage, (b) critical path delay, (c) area overhead,
and (d) false alarm versus the number of parity bits.

Bibliography

[1] NIST Computer Security Division’s (CSD) Security Technology Group (STG) (2013).
“Proposed modes. Cryptographic Toolkit. NIST., 2013.

[2] Welch Brent B. and Jones Ken Chr. “Practical programming in Tcl and Tk 1 (4th ed.)”.
Prentice Hall PTR. p. 291. ISBN 0-13-038560-3., 2003.

[3] Siavash Bayat-Sarmadi and M. Anwar Hasan. “On Concurrent Detection of Errors in
Polynomial Basis Multiplication”. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions, pp. 413-426, vol.15, 2007.

[4] S. Bellovin and R. Housley. “Guidelines for Cryptographic Key Management”. BCP 107,
RFC 4107, 2005.

[5] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri. “Error analysis and detection
procedures for a hardware implementation of the advanced encryption standard”. IEEE
Transcations on Computers, pp. 492-505, vol. 52, no. 4, 2003.

[6] E. Biham and A Shamir. “Differential Cryptanalysis of the Data Encryption Standard -
Advances in Cryptology - CRYPTO ’92”. 12th Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, Proceedings. pp. 487-496, 1992.

[7] M. Poolakkaparambil C. T. Veedon and J. Mathew A.M. Jabir. “On the design of Trojan
tolerant finite field multipliers”. Computing, Communication, Control and Compressed
Sensing (iMac4s), 2013 International Multi-Conference , pp. 450-454, 2013.

[8] S. Castagnoli, G. ; Braeuer and M. Herrman. “Optimization of Cyclic Redundancy-Check
Codes with 24 and 32 parity bits”. IEEE Trans. on Communications, pp. 88-92, vol. 41,
no. 6, 1993.

[9] Jim-Min Lin Chiou-Hiou-Yng Lee, Che Wun Chiou. “Concurrent Error Detection in a
Polynomial Basis Multiplier over GF(2m)”. JOURNAL OF ELECTRONIC TESTING:
Theory and Applications, pp. 143-150, vol. 22, 2006.

[10] ALTERA Corporation. URL: http://www.altera.com/products/software/products/quartus2/qts-
index.html.

[11] Joan Daemen and Vincent Rijiman. “AES Proposal: Rijndael”. National Institute of
Standards and Technology, pp. 1-26, 2013.

70

BIBLIOGRAPHY 71

[12] Lombadrdi Fabrizio and Muzio Jon C. “Concurrent error detection and fault location in
an FFT architecture”. IEEE Journal , pp. 728-736, vol. 27, Issue: 5,, 1992.

[13] FIPS Federal Information Processing. URL: http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf.

[14] Specication for the Advanced Encryption Standard (AES). Technical Report FIP-
SPUB197, 2001.

[15] Christophe Giraud and Hugues Thiebeauld. “Basics of Fault Attacks”. Oberthur Card
Systems and Thales Microelectronics, 2004.

[16] Mohsen Machhout Hassan Mestiri, Noura Benhadjyousef and Rached Tourki. “A Robust
Fault Detection Scheme for the Advanced Encryption Standard”. International Journal
of Computer Network and Information Security, pp. 49-55, 2013.

[17] M. Karpovsky, K. J. Kulikowski, and A. Taubin. “Differential Fault Analysis Attack
Resistant Architectures for the Advanced Encryption Standard”. CARDIS 04: Sixth smart
Card Research and Advanced Application IFIP Conference, Toulouse, France, pp. 177-
192, vol. 153, 2004.

[18] Philip Koopman and Tridib Chakravarty. “Cyclic Redundancy Code (CRC) Polynomial
Selection For Embedded Networks”. The International Conference on Dependable Sys-
tems and Networks, 2004.

[19] R. Lidl and H. Niederreiter. “Introduction to Finite Fields and Their Applications”. Cam-
bridge University Press, 1994.

[20] S. Lin and D. J. Costello. “Error Control Coding, Prentice Hall, second edition, Upper
Saddle River, NJ, USA.

[21] D. Taylor M. Gossel, S. Fenn. “On-line Error Detection for Finite Field Multipliers”. De-
fect and Fault Tolerance in VLSI Systems. Proceedings of IEEE International Symposium,
pp. 307-311, 1997.

[22] D. McGrew and J. Viega. “The Galois/Counter Mode of Opera-
tion (GCM), National Institude of Standard and Technology”. URL:
http://www.csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-
revised-spec.pdf, 2005.

[23] D. A. McGrew and J. Viega. “The Security and Performance of the Galois/Counter
Mode(GCM) of Operation (Full Version)”. URL: http://csrc.nist.gov/CryptoToolkit/modes/
proposedmodes/gcmgcm-ad.pdf, 2008.

[24] H. Mestiri, N. Benhadjyoussef, M. Machhout, and R. Tourki. “An FPGA implementation
of the AES with fault detection countermeasure”. IEEE International Conference on
Control, Decision and Information Technologies (CoDIT), pp. 264-270, 2013.

72 BIBLIOGRAPHY

[25] Mehran Mozaffari-Kermani and Arash Reyhani-Masoleh. “Efficient and High-
Performance Parallel Hardware Architectures for the AES-GCM”. IEEE Transactions.
on Computers, pp. 1089-1103, vol. 55, no. 8, 2006.

[26] Mehran Mozaffari-Kermani and Arash Reyhani-Masoleh. “A Lightweight High-
Performance Fault Detection Scheme for the Advanced Encryption Standard Using Com-
posite Fields”. IEEE Transaction on Computers, pp. 85-91, vol. 9, 2009.

[27] C. Negre N. Meloni and M. A. Hassan. “High Performance GHASH Function for Long
Messages”. In Proc. of ACNS 2010, pp. 154-167, 2010.

[28] J. H. Patel and L.Y. Fung. “Concurrent Error Detection in ALUs by Recomputing with
Shifted Operands”. IEEE Trans. Computers, pp. 589-595, vol. C-31, no. 7, 1982.

[29] S. A. Reddy and M. A. Kumar. Efficient fault detection scheme for reliable AES architec-
ture”. IEEE International Conference on Emerging Trends in Electrical and Computer
Technology (ICETECT), pp. 1004-1009, 2011.

[30] A. Reyhani-Masoleh and M. A Hasan. “Fault Detection Architectures for Field Multi-
plication Using Polynomial Bases”. IEEE Trans. on Computers, pp. 1089-1103, vol. 55,
no.9, 2006.

[31] Arash Reyhani-Masoleh and M.Anwar Hasan. “Low Complexity Bit Parallel Architec-
tures for Polynomial Bases Multiplication over GF(2m)”. IEEE Trans. on Computers, pp.
945-958, vol. 53, no.8, 2004.

[32] Terry Ritter. “The Great CRC Mystery”. Dr. Dobb’s Journal 11 (2): pp. 26-34, pp, 76-83,
2009.

[33] NIST AES Fact Sheet. URL: http://csrc.nist.gov/CryptoToolkit/aes/aesfact.html.

[34] Iqbal Muhammad Umair. “On Software Implementation of High Performance GHASH
Algorithms”. University of Waterloo, Electronic Thesis Dessertations, 2012.

[35] NIST Special Publication 800-38A, Version 1. “Recommendation for Block Cipher
Modes of Operation Methods and Technique, 2001.

[36] W. T. Vetterling W. H. Press, S. A. Teukolsky and BP. Flannery. The Art of Scientific
Computing (3rd ed.), New York: Cambridge University Press. ISBN 978-0-521-88068-8.

[37] Sheng Wang. “An Architecture for the AES-GCM Security Standard”. University of
Waterloo, Electronic Thesis Dessertations, 2006.

[38] H. Wu. “Bit-Parallel Finite Field Multiplier and Squarer Using Polynomial Basis”. IEEE
Trans. Computers, pp. 750-758, vol. 51, no. 7, 2002.

[39] Chih-Hsu Yen and Bing-Fei Wu. “Simple error detection methods for hardware imple-
mentation of Advanced Encryption Standard”. IEEE Transcations on Computers, pp.
720-731, vol. 55, no. 6, 2006.

Appendix A

VHDL Implementation

--==

-- Multiplier, Pentanomial (GCM_pentanomial_multiplier.vhd)

--

-- Computes the multiplication in GF(2ˆ128) for GCM Loop

--

-- The irreducible polynomial : f(x)= xˆ128 + xˆ7 + xˆ2 + x + 1

--==

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity GCM_pentanomial_multiplication is

generic (M: natural := 128);

--"h" stands for Hask Key "H" of the GCM module

port (

h1,h,b: in std_logic_vector(M-1 downto 0);

c: out std_logic_vector(M-1 downto 0);

signal P: out std_logic_vector (3 downto 0);

-- Output Parity Prediction:PP(0) to PP(2);

signal PP: out std_logic_vector (3 downto 0)

);

end GCM_pentanomial_multiplication;

architecture structure of GCM_pentanomial_multiplication is

type Umatrix is array (M downto 1,M downto 1) of std_logic;

type Lmatrix is array (M downto 1,M downto 1) of std_logic;

type USAmatrix is array (M downto 1,M downto 1) of std_logic;

signal D: std_logic_vector (M-1 downto 0);

signal E: std_logic_vector (M-2 downto 0);

-- Output Parity :P(0) to P(2);

73

74 Chapter A. VHDL Implementation

signal pp_temp : std_logic_vector(3 downto 0);

signal p_temp : std_logic_vector(3 downto 0);

-- Copy of Multiplier output for parity calculation purpose;

signal CO: std_logic_vector (M-1 downto 0)

:= x"00000000000000000000000000000000";

-- The OE matrix for parity prediction purpose

signal OE: std_logic_vector (M-1 downto 0)

:= x"00000000000000000000000000000000";

signal EOUT: std_logic_vector (1 downto 0) :="00";

-- CRC Pattern for f(x)=xˆ2+x+1 : 2 bit parity construct

constant CRC1: std_logic_vector(M-1 downto 0)

:= x"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF";

constant CRC2: std_logic_vector(M-1 downto 0)

:= x"B6DB6DB6DB6DB6DB6DB6DB6DB6DB6DB6";

constant CRC3: std_logic_vector(M-1 downto 0)

:= x"55555555555555555555555555555555";

-- CRC pattern for f(x)=xˆ3+x+1 : 3 bit parity construct

--constant CRC1: std_logic_vector(M-1 downto 0)

:= x"74E9D3A74E9D3A74E9D3A74E9D3A74E9";

-- constant CRC2: std_logic_vector(M-1 downto 0)

:= x"3A74E9D3A74E9D3A74E9D3A74E9D3A74";

--constant CRC3: std_logic_vector(M-1 downto 0)

:= x"BAEBAEBAEBAEBAEBAEBAEBAEBAEBAEBA";

signal U : USAmatrix;

signal USA_0: USAmatrix;

signal USA_1: USAmatrix;

signal LSA_0 :USAmatrix;

signal LSA_1 :USAmatrix;

signal EMSA_0 :USAmatrix;

signal EMSA_1 :USAmatrix;

signal U_temp :USAmatrix;

signal L ,EM: Lmatrix;

begin

-- Q ’Transpose’ multiply by U

Initialization_of_QTU_matrix: process(U,USA_0,USA_1,LSA_0,LSA_1,U_temp)

begin

for j in 1 to 128 loop

for i in 1 to 128 loop

U(j,i)<=’0’;

end loop;

end loop;

---1 st Row

U(1,1)<=’0’;

for i in 2 to 122 loop

U(1,i)<=h(127-(i-2));

75

end loop ;

for i in 123 to 127 loop

U(1,i)<= h(127-(i-2))xor h(127-(i-123));

end loop;

U(1,128)<= h(1)xor h(122) xor h(127);

---2nd Row

U(2,1)<=’0’;U(2,2)<=h(127);

for i in 3 to 122 loop

U(2,i)<=h(127-(i-2))xor h(127-(i-3));

end loop ;

U(2,123)<=h(6)xor h(7)xor h(127);

for i in 124 to 127 loop

U(2,i)<=h(127-(i-2))xor h(127-(i-3))xor h(127-(i-124)) xor h(127-(i-123));

end loop;

U(2,128)<=h(1) xor h(2) xor h(122) xor h(123) xor h(127);

---3rd Row

U(3,1)<=’0’;U(3,2)<=h(127);U(3,3)<=h(127) xor h(126);

for i in 4 to 122 loop

U(3,i)<=h(127-(i-2))xor h(127-(i-3))xor h(127-(i-4));

end loop ;

U(3,123)<=h(6)xor h(7)xor h(8)xor h(127);

U(3,124)<=h(5) xor h(6)xor h(7)xor h(127) xor h(126);

for i in 125 to 127 loop

U(3,i)<=h(127-(i-2))xor h(127-(i-3))xor h(127-(i-4))xor(

h(127-(i-125))xor h(127-(i-124)) xor h(127-(i-123)));

end loop;

U(3,128)<=h(1) xor h(2) xor h(3) xor h(122) xor h(123)xor h(124) xor h(127);

---4th Row

U(4,1)<=’0’;U(4,2)<=’0’;U(4,3)<=h(127);U(4,4)<=h(127) xor h(126);

for i in 5 to 123 loop

U(4,i)<=h(127-(i-3))xor h(127-(i-4))xor h(127-(i-5));

end loop ;

U(4,124)<=h(6)xor h(7)xor h(8) xor h(127);

U(4,125)<=h(5)xor h(6)xor h(7) xor h(126) xor h(127);

for i in 126 to 128 loop

U(4,i)<=h(127-(i-3))xor h(127-(i-4))xor h(127-(i-5))xor(

h(127-(i-126))xor h(127-(i-125)) xor h(127-(i-124)));

end loop;

---5th Row

U(5,1)<=’0’;U(5,2)<=’0’;U(5,3)<=’0’;U(5,4)<=h(127);

for i in 5 to 124 loop

U(5,i)<=h(127-(i-5))xor h(127-(i-4));

end loop ;

U(5,125)<= h(6)xor h(7) xor h(127);

U(5,126)<=h(5)xor h(6)xor h(126) xor h(127);

U(5,127)<= h(4)xor h(5) xor h1(125)xor h(126)xor h(127);

U(5,128)<=h(3) xor h(4) xor h(124)xor h(125) xor h(126);

76 Chapter A. VHDL Implementation

---6th Row

U(6,1)<=’0’;U(6,2)<=’0’;U(6,3)<=’0’;U(6,4)<=’0’;

for i in 5 to 125 loop

U(6,i)<=h(127-(i-5));

end loop ;

U(6,126)<= h(6)xor h(127);

U(6,127)<=h(5)xor h(126) xor h(127);

U(6,128)<=h(4)xor h(125)xor h(126) xor h(127);

---7th Row

for i in 1 to 126 loop

U(7,i)<=’0’;

end loop ;

U(7,127)<= h(127);

U(7,128)<=h(126) xor h(127);

---8th Row

U(8,1)<=’0’;

for i in 2 to 122 loop

U(8,i)<=h(127-(i-2));

end loop ;

for i in 123 to 128 loop

U(8,i)<=h(127-(i-2))xor h(127-(i-123));

end loop ;

--9th Row

U(9,1)<=’0’;U(9,2)<=’0’;

for i in 3 to 123 loop

U(9,i)<=h(127-(i-3));

end loop ;

for i in 124 to 128 loop

U(9,i)<=h(127-(i-3))xor h(127-(i-124));

end loop ;

--10th Row

U(10,1)<=’0’;U(10,2)<=’0’;U(10,3)<=’0’;

for i in 4 to 124 loop

U(10,i)<=h(127-(i-4));

end loop ;

for i in 125 to 128 loop

U(10,i)<=h(127-(i-4))xor h(127-(i-125));

end loop ;

--11th Row

for i in 1 to 4 loop

U(11,i)<=’0’;

end loop;

for i in 5 to 125 loop

U(11,i)<= h(127-(i-5));

end loop ;

77

for i in 126 to 128 loop

U(11,i)<=h(127-(i-5))xor h(127-(i-126));

end loop ;

---12th Row

for i in 1 to 126 loop

U(12,i)<=’0’;

end loop ;

U(12,127)<= h(127);

U(12,128)<=h(126);

---13th Row

for i in 1 to 127 loop

U(13,i)<=’0’;

end loop ;

U(13,128)<= h(127);

---14th to 120th Row

for j in 14 to 120 loop

for i in 1 to 128 loop

U(j,i)<=’0’;

end loop;

end loop;

---121st Row

for i in 1 to 121 loop

U(121,i)<=’0’;

end loop ;

for i in 122 to 128 loop

U(121,i)<= h(127-(i-122));

end loop ;

---122nd Row

for i in 1 to 121 loop

U(122,i)<=’0’;

end loop ;

U(122,122)<= h(127);

for i in 123 to 128 loop

U(122,i)<=h(127-(i-122))xor h(127-(i-123));

end loop ;

---123rd Row

for i in 1 to 121 loop

U(123,i)<=’0’;

end loop ;

U(123,122)<=h(127);

U(123,123)<= h(127)xor h(126);

for i in 124 to 128 loop

78 Chapter A. VHDL Implementation

U(123,i)<=h(127-(i-122))xor h(127-(i-123))xor h(127-(i-124));

end loop ;

---124th Row

for i in 1 to 122 loop

U(124,i)<=’0’;

end loop ;

U(124,123)<= h(127);

U(124,124)<= h(127)xor h(126);

for i in 125 to 128 loop

U(124,i)<=h(127-(i-123))xor h(127-(i-124))xor h(127-(i-125));

end loop ;

---125th Row

for i in 1 to 123 loop

U(125,i)<=’0’;

end loop ;

U(125,124)<= h(127);

U(125,125)<= h(127) xor h(126);

for i in 126 to 128 loop

U(125,i)<= h(127-(i-124))xor h(127-(i-125)) xor h(127-(i-126));

end loop ;

---126th Row

for i in 1 to 124 loop

U(126,i)<=’0’;

end loop ;

U(126,125)<= h(127);

U(126,126)<= h(127) xor h(126);

U(126,127)<= h(127)xor h(126)xor h(125);

U(126,128)<= h(124)xor h(125)xor h(126);

--127th Row

for i in 1 to 125 loop

U(127,i)<=’0’;

end loop ;

U(127,126)<= h(127);

U(127,127)<= h(127)xor h(126);

U(127,128)<= h(125)xor h(126)xor h(127);

---128th Row

for i in 1 to 121 loop

U(128,i)<=’0’;

end loop ;

U(128,122)<= h(127);

79

for i in 123 to 127 loop

U(128,i)<= h(127-(i-122));

end loop ;

U(128,127)<= h(122)xor h(127);

--U(128,127)<=U(128,127)xor h(127);

U(128,128) <=h(121)xor h(126)xor h(127);

end process Initialization_of_QTU_matrix;

Initialization_of_L_matrix:process(L,h)

variable t,s: integer ;

begin

t:=1;

for j in 1 to 128 loop

for i in 1 to t loop

L(j,i)<= h(t-i);

end loop;

s:=t+1;

for i in s to 128 loop

L(j,i)<=’0’;

end loop;

t:=t+1;

end loop;

end process Initialization_of_L_matrix;

Initialization_of_E_matrix: process(L,U)

begin

for j in 1 to 128 loop

for i in 1 to 128 loop

EM(j,i)<= L(j,i) xor U(j,i);

end loop;

end loop;

end process Initialization_of_E_matrix;

Multiplication_output:process(EM,b)

variable c_temp : std_logic_vector(M-1 downto 0);

variable cc_temp: std_logic;

begin

cc_temp :=’0’;

for j in 1 to 128 loop

for i in 1 to 128 loop

cc_temp:= (EM(j,i) and b(i-1))xor cc_temp;

end loop;

80 Chapter A. VHDL Implementation

c(j-1)<= cc_temp;

c_temp(j-1):=cc_temp;

cc_temp:=’0’;

end loop;

CO <= c_temp;

end process Multiplication_output;

Parity: process(CO)

variable pt : std_logic_vector(3 downto 0);

variable crc_temp1 : std_logic_vector(M-1 downto 0);

variable crc_temp2 : std_logic_vector(M-1 downto 0);

variable crc_temp3 : std_logic_vector(M-1 downto 0);

variable k :integer;

begin

for i in 0 to 3 loop

pt(i):=’0’;

end loop ;

for i in 0 to M-1 loop -- Parity of Multiplier output

pt(0):= CO(i) xor pt(0);

end loop;

-- Parity of Multiplier output with CRC pattern # 1 applied.

crc_temp1:= CO and CRC1;

for i in 0 to M-1 loop

pt(1):= crc_temp1(i) xor pt(1);

end loop;

pt(2):=’0’;

-- Parity of Multiplier output with CRC2 pattern # 2 applied.

crc_temp2:= CO and CRC2;

for i in 0 to M-1 loop

pt(2):= crc_temp2(i) xor pt(2);

end loop;

-- Parity of Multiplier output with CRC pattern # 3 applied.

pt(3):=’0’;

crc_temp3:= CO and CRC3;

for i in 0 to M-1 loop

pt(3):= crc_temp3(i) xor pt(3);

end loop;

--pt(2):=’0’;-- should be removed for CRC checking

--pt(3):=’0’;

P <= pt;

81

p_temp <=pt;

end process Parity;

Parity_Prediction: process(h,b)

variable pH : std_logic_vector(1 downto 0):="00";

variable pt : std_logic_vector(3 downto 0);

variable crc_temp1 : std_logic_vector(M-1 downto 0);

variable crc_temp2 : std_logic_vector(M-1 downto 0);

variable crc_temp3 : std_logic_vector(M-1 downto 0);

variable OEB : std_logic_vector(M-1 downto 0);

variable OEB_temp : std_logic_vector(M-1 downto 0);

variable OEB_temp1 : std_logic_vector(M-1 downto 0);

variable OEB_temp2 : std_logic_vector(M-1 downto 0);

variable OEB_temp3 : std_logic_vector(M-1 downto 0);

variable OEB_temp4 : std_logic_vector(M-1 downto 0);

variable k,k1,s1,k2,s2: integer;

begin

-- initialization of parity variable

for i in 0 to 3 loop

pt(i):=’0’;

end loop ;

for i in 0 to 1 loop

pH(i):=’0’;

end loop ;

--pH:="00"; -- OE construction

OEB_temp := h1;

for i in 0 to M-1 loop

-- Calculating the Parity of H :pH(0)

pH(0):= OEB_temp(i) xor pH(0);

end loop;

OEB_temp1:=h1;

OEB_temp1(0):=pH(0);

for i in 1 to 121 loop

OEB_temp1(i):=OEB_temp1(i-1) xor h1(M-i);

end loop;

OEB_temp1(122):= h1(0) xor h1(1) xor h1(2) xor h1(3)

xor h1(4) xor h1(5) xor h1(127);

OEB_temp1(123):= h1(0) xor h1(1) xor h1(2) xor h1(3)

xor h1(4) xor h1(126) xor h1(127);

OEB_temp1(124):= h1(0) xor h1(1) xor h1(2) xor h1(3)

xor h1(125) xor h1(126) xor h1(127);

OEB_temp1(125):= h1(0) xor h1(1) xor h1(2) xor h1(124)

82 Chapter A. VHDL Implementation

xor h1(125) xor h1(126) xor h1(127);

OEB_temp1(126):= h1(0) xor h1(1) xor h1(123) xor h1(124)

xor h1(125) xor h1(126) xor h1(127);

OEB_temp1(127):= h1(0) xor h1(122) xor h1(123) xor h1(124)

xor h1(125) xor h1(126) ;

OE <= OEB_temp1;

-- End of OE Construction

-- bitwise AND of Register OE & input b

OEB_temp2:= OEB_temp1 and b;

-- Prediction Parity of Multiplier output

for i in 0 to M-1 loop

pt(0):= OEB_temp2(i) xor pt(0);

end loop;

-- Prediction Parity of Multiplier output with1 CRC pattern # 1 applied.

crc_temp1:= OEB_temp2 and CRC1;

for i in 0 to M-1 loop

pt(1):= crc_temp1(i) xor pt(1);

end loop;

OEB_temp3 := OEB_temp1;

--Added

for i in 0 to 42 loop

OEB_temp3(0) := OEB_temp3(0) xor h1(i*3);

end loop;

OEB_temp3(1):= OEB_temp1(1) xor h1(127);

--Added

for i in 1 to 42 loop

OEB_temp3(1) := OEB_temp3(1) xor h1(i*3-1);

end loop;

OEB_temp3(2):= OEB_temp1(2) xor h1(127) xor h1(126);

--Added

for i in 1 to 42 loop

OEB_temp3(2) := OEB_temp3(2) xor h1(i*3-2);

end loop;

OEB_temp3(3):= OEB_temp1(3) xor h1(126) xor h1(125);--changed from (127)

--Added

for i in 1 to 42 loop

OEB_temp3(3) := OEB_temp3(3) xor h1(i*3-3);

end loop;

83

k:=1;

for j in 4 to 120 loop

OEB_temp3(j) := OEB_temp1(j)xor h1(127-(j-1))xor h1(127-(j-2))xor h1(127-(j-4)) ;

--Added

for i in 1+k to 42 loop

OEB_temp3(j) := OEB_temp3(j) xor h1(i*3-j);

end loop;

k:=j/3;

end loop;

OEB_temp3(121):= h1(127) xor h1(7)xor h1(8)xor h1(10)xor h1(1)

xor h1(3)xor h1(4)xor h1(6)xor h1(0);-- h2,h5

OEB_temp3(122):= h1(126) xor h1(127)xor h1(6)xor h1(7)xor h1(9)

xor h1(0)xor h1(2)xor h1(3)xor h1(5);--h1,h4

OEB_temp3(123):= h1(125) xor h1(126) xor h1(127)xor h1(5)xor h1(6)

xor h1(8)xor h1(1)xor h1(2)xor h1(4);--h0,h3

OEB_temp3(124):= h1(124) xor h1(125)xor h1(126) xor h1(4)xor h1(5)

xor h1(7)xor h1(0)xor h1(1)xor h1(3); --h2

OEB_temp3(125):= h1(123)xor h1(124) xor h1(125)xor h1(127)xor h1(3)

xor h1(4)xor h1(6)xor h1(0)xor h1(2); --h1

OEB_temp3(126):= h1(122) xor h1(123)xor h1(124) xor h1(126) xor h1(127)

xor h1(2)xor h1(3)xor h1(5)xor h1(1);--h0

OEB_temp3(127):= h1(121) xor h1(122) xor h1(123) xor h1(125)xor h1(126)

xor h1(1)xor h1(2)xor h1(4)xor h1(0);

-- Prediction Parity of Multiplier output with CRC pattern # 2 applied.

crc_temp2:= OEB_temp3 and b;

for i in 0 to M-1 loop

pt(2):= crc_temp2(i) xor pt(2);

end loop;

-- Prediction Parity of Multiplier output with CRC pattern # 3 applied.

for i in 0 to 127 loop

OEB_temp4(i) := ’0’;

end loop;

--Added

k1:=0;

s1:=0;

for j in 0 to 120 loop

for i in 0 to 63-s1 loop

OEB_temp4(2*j) := OEB_temp4(2*j) xor h1(i*2);

end loop;

s1:=s1+1;

end loop;

s2:=0;

for j in 1 to 120 loop

for i in 0 to 62-s2 loop

84 Chapter A. VHDL Implementation

OEB_temp4(2*j-1) := OEB_temp4(2*j-1) xor h1(i*2+1);

end loop;

s2:=s2+1;

end loop;

OEB_temp4(122):= h1(127) xor h1(0)xor h1(2)xor h1(4);

OEB_temp4(123):= h1(126) xor h1(1)xor h1(3);

OEB_temp4(124):= h1(125)xor h1(127)xor h1(0)xor h1(2);

OEB_temp4(125):= h1(124) xor h1(126) xor h1(1);

OEB_temp4(126):= h1(123)xor h1(125)xor h1(127)xor h1(0);

OEB_temp4(127):= h1(122) xor h1(124) xor h1(126) xor h1(127);

pt(3):=’0’;

crc_temp3:= OEB_temp4 and b;

for i in 0 to M-1 loop

pt(3):= crc_temp3(i) xor pt(3);

end loop;

PP <= pt;

pp_temp <=pt;

end process Parity_Prediction;

Error: process(pp_temp)

variable E_state : std_logic_vector(1 downto 0);

begin

if (pp_temp = p_temp)

then

E_state := E_state and "00";

EOUT <= E_state ;

else

E_state := E_state or "11";

EOUT <= E_state;

end if;

end process Error;

end structure;

Appendix B

Fault Injection TLC

set the simulation step size as a global variable

step is used by both runSim and verifySim listed below

set step 10

set Error_Detected 0

set j 0

set runtime 5

a count of the elapsed runtime

set runtime 0

import the global variable step

global step

#set array m(128)

#set m1 0x000000000000000056700000000000001

set m1 0x76543210

set m2 0xFECBA987

set m1 0x000000100110000000FECBA9876543210

#0x000000100000000000FECBA9876543210

set m 0x000000000000000000000000010000000

restart -force -nowave

add wave -logic h

add wave -logic h1

add wave -logic b

add wave -logic c

add wave -logic P

add wave -logic PP

add wave -logic EOUT

#m($0)=1

set filename "Multiplier_Error.txt"

open the filename for writing

set fileId [open $filename "w"]

apply all 64 (2ˆ6) possible inputs to the design

for {set i 0} {$i < 1000} {incr i} {

force signals based on a mask of the integer i

#force -freeze h [expr $m1 || $m]

85

86 Chapter B. Fault Injection TLC

#${m2}= ${m1} & ${m}

#force -freeze h [format "%0x" [expr {$m >> $i | $m1}]]

#main force -freeze h [expr $m >> 1 | $m1]

incr j

if { $j < 390} {

force -freeze h [expr $m >> $i | $m1]

}

if { $j >= 390 } {

set m1 0x000000000000000056700000000000001

force -freeze h [expr $m1]

}

#force -freeze h [format "%0x" [expr $m1]]+[format "%0x" [expr $m2]]

force -freeze h $($m >> $i | $m1)

force -freeze h1 128’h00000000000000056700000000000001

force -freeze b 128’h00004400000020000009000000000012

run 250

set simOut [examine -binary /EOUT]

if { $simOut != "2’b00"} {

incr Error_Detected

puts -nonewline $fileId $Error_Detected

puts -nonewline $fileId $simOut

}

}

Create Error lof file when performing exhaustive test

set filename "Multiplier_Error.txt"

open the filename for writing

set fileId [open $filename "w"]

write the number of error occurance " the data to the file -

puts -nonewline $fileId $Error_Detected

puts -nonewline $fileId $simOut

close the file, ensuring the data is written out before you continue

87

with processing.

close $fileId

after the simulation is complete, view the results

view wave

88 Chapter B. Fault Injection TLC

	A Multiple Bit Parity Fault Detection Scheme for The Advanced Encryption Standard Galois/Counter Mode
	Recommended Citation

	tmp.1414536932.pdf.72BL4

