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Abstract 

Tripartite motif protein 22 (TRIM22) is an evolutionarily ancient interferon-induced 

protein that been shown to potently inhibit human immunodeficiency virus (HIV), 

hepatitis B virus (HBV), and influenza A virus (IAV) replication. Altered TRIM22 

expression levels have also been linked to autoimmune disease, cancer, and cellular 

proliferation. Despite its important role in a number of biological processes, the factors 

that influence TRIM22 expression and/or antiviral activity remain largely unknown. To 

identify key functional sites in TRIM22, we performed extensive evolutionary and in 

silico analyses on the TRIM22 coding region. These tools allowed us to pinpoint multiple 

sites in TRIM22 that have evolved under positive selection during mammalian evolution, 

including one site that coincides with the location of a common non-synonymous SNP 

(nsSNP) in the human TRIM22 gene (TRIM22 rs1063303:G>C). We found that the 

frequency of TRIM22 rs1063303:G>C varied considerably among different ethnic 

populations and African (AFR), American (AMR), and European (EUR) populations 

contained an excess of intermediate frequency TRIM22 rs1063303:G>C alleles when 

compared to a neutral model of evolution. The latter is typically indicative of balancing 

selection, a non-neutral selective process that maintains polymorphism in a population. 

Interestingly, we also found that the TRIM22 nsSNP rs1063303:G>C had an inverse 

impact on TRIM22 function. TRIM22 rs1063303:G>C increased TRIM22 expression 

levels, but decreased its anti-HIV activity and altered its subcellular localization pattern. 

In addition to these studies, we used a variety of in silico methods to prioritize and 

delineate other functional sites in TRIM22. We showed that the majority of positively 

selected sites in the C-terminal B30.2 domain of TRIM22 are located in one of four 

surface-exposed variable loops that are critical for the anti-HIV effects of the closely-

related TRIM5α protein. Moreover, we used six different in silico nsSNP prediction 

programs to screen all of the nsSNPs in the TRIM22 gene and identified 14 high-risk 

nsSNPs that are predicted to be highly deleterious to TRIM22 function. Finally, to 

examine the TRIM22 nsSNP rs1063303:G>C in a more isolated population, we 

genotyped this nsSNP in two Inuit populations (Canadian and Greenlandic Inuit). We 

found that the TRIM22 rs1063303:C allele is inordinately prevalent in the Inuit compared 

to non-Inuit populations and that these two populations do not contain an excess of 
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intermediate frequency TRIM22 rs1063303:G>C alleles compared to a neutral model of 

evolution, indicating that site TRIM22 rs1063303:G>C has not evolved under balancing 

selection in the Inuit. Lastly, we found an interesting association between the TRIM22 

rs1063303:C allele and serum levels of triglycerides (TG) and high-density lipoprotein 

(HDL). Taken together, the results presented here identify a number of pertinent sites in 

the TRIM22 protein that likely influence its biological and/or antiviral functions.  
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Chapter 1 

 

1 Introduction 

The immune system has evolved over millennia to provide effective defense measures 

against invading pathogens and promote host survival. The vertebrate immune system 

can be divided into innate and adaptive arms, which together comprise both germline-

encoded and acquired immune responses. The innate immune system is evolutionarily 

more ancient than the adaptive immune system and constitutes the first line of defense 

against infectious agents. It is also essential for initiating subsequent adaptive immune 

responses, which unlike innate immune responses, are characterized by specificity and 

the generation of immunological memory 1. Innate immunity is activated upon pathogen 

recognition by a limited repertoire of germline-encoded pattern recognition receptors 

(PRR). PRRs can be grouped into several distinct families: 1) the membrane bound toll-

like receptors (TLR), 2) the cytosolic retinoic acid inducible gene (RIG-I)-like receptors 

(RLR), 3) the nucleotide binding oligomerization domain (NOD)-like receptors (NLR), 

and 4) DNA sensors 2,3. PRRs recognize conserved products of microbial metabolism 

called pathogen-associated molecular patterns (PAMP). PAMPs, which are not usually 

present in host cells, bind to specific PRRs to activate innate immunity. For example, 

specific TLR family members recognize genomic material or replication intermediates 

from viruses (i.e. TLRs 3, 7, 8, and 9), while other TLRs recognize diverse microbial 

products from parasites, fungi, and/or bacteria 4–8.  

PRR-PAMP binding triggers a complex downstream signaling cascade that induces the 

activation of multiple cytosolic transcription factors, including nuclear factor-kappa B 

(NF-κB), activator protein 1 (AP-1), and interferon regulatory factors 3 (IRF-3) and 7 

(IRF-7). Activation of NF-κB and AP-1 results in the upregulation of proinflammatory 

cytokines [e.g. interleukin 1 (IL-1) and tumor necrosis factor alpha (TNF-α)], whereas 

activation of IRF-3 and/or IRF-7 leads to the production of type I interferons (IFN) 9. 

Type I IFNs are one of the three major classes of the IFN family, which is a group of 
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secreted cytokines that are essential for host antiviral defense and immune activation. 

Type I IFNs are produced in direct response to viral infection and comprise multiple 

subtypes of IFN-α plus IFN-β and several additional IFNs (δ, ε, κ, τ, ω) with less-

definitive roles in antiviral immunity. The other two major classes of IFNs, type II and 

type III, each contain only one subtype. IFN-γ (type II IFN) is generally produced by 

activated T lymphocytes or natural killer cells in response to cytokine secretion from 

infected cells or macrophages. Similar to type I IFNs, IFN-λ (type III IFN) is typically 

produced in direct response to viruses; however type III IFN binds to different cognate 

receptors than type I IFNs. Type III IFN receptors are found mainly on epithelial cells, 

whereas type I IFN receptors are present on all cell types 10–13. 

Canonical type I IFN production is essential for the host antiviral response to infection 

and critical for host survival. Following synthesis and secretion, type I IFNs (IFN-α/β) 

bind to the IFN-α/β receptor (IFNAR) complex on the cell surface in an autocrine and 

paracrine manner, which induces signal transduction through the janus kinases/signal 

transducers and activators of transcription (JAK/STAT) pathway. Specifically, IFN-α/β 

binding to the IFNAR complex leads to the phosphorylation of receptor-bound tyrosine 

kinases janus kinase 1 (JAK1) and tyrosine kinase 2 (TYK2), which in turn leads to the 

phosphorylation of signal transducers and activators of transcription 1 (STAT1) and 2 

(STAT2). STAT1/STAT2 phosphorylation results in STAT1/STAT2 dimerization and 

recruitment of interferon regulatory factor 9 (IRF-9) to form the IFN-stimulated gene 

factor 3 (ISGF3) complex. The ISGF3 complex, which acts as a transcription factor, 

translocates to the nucleus where it upregulates a large number of IFN-stimulated genes 

(ISG) (Fig 1.1). Many ISGs have antiviral properties, especially host restriction factors, 

which directly interfere with specific stages of viral replication. Collectively, ISGs 

establish a powerful cell-intrinsic antiviral state that is essential for withstanding and 

controlling many pathogens 14,15.    
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Figure 1.1: ISG induction by type I IFN signaling.  

Type I IFNs bind to the IFNAR1/2 heterodimer complex on the surface of the cell and 

activate the JAK/STAT signaling pathway. IFN-IFNAR1/2 binding triggers JAK1 and 

TYK2 phosphorylation, which leads to the recruitment and phosphorylation of STAT1 

and STAT2. Phosphorylated STAT1 and STAT2 form a heterodimer and bind to IRF-9, 

creating the ISGF3 complex. ISGF3 translocates to the nucleus where it binds to IFN-

stimulated response elements (ISRE) in the promoters of multiple ISGs. This induces a 

powerful antiviral state in the cell that inhibits many pathogens.  
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Figure 1.1 
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1.1 Host restriction factors 

Host restriction factors are IFN-induced proteins that inhibit specific steps in the viral 

replication lifecycle. Researchers first coined the term ‘restriction factor’ in the 1970’s 

following the characterization of the mouse friend virus susceptibility 1 (Fv1) locus, 

which conferred resistance to murine retroviruses 16. Since this discovery, restriction 

factors have been identified in many vertebrate species, and today the term is used to 

describe host proteins that inhibit the replication of any animal virus 17,18. Several major 

characteristics distinguish restriction factors from other host proteins. Typically, host 

restriction factors: 1) have antiviral activity as their main biological function, 2) are 

induced by IFN signaling and/or viral infection, 3) contain evolutionary signatures of 

positive selection, and 4) are antagonized by a viral protein 18,19. Characteristics for a 

number of well-known host restriction factors, including the apolipoprotein B mRNA-

editing enzyme catalytic polypeptide 3G (APOBEC3G), tripartite motif protein 5 alpha 

(TRIM5α), bone marrow stromal antigen 2 (BST-2 or tetherin), and sterile alpha motif 

and histidine/aspartic acid domain-containing protein (SAMHD1), are summarized in 

Table 1.1. at the end of this section. 

Type I IFNs have long been recognized as potent inhibitors of human immunodeficiency 

virus (HIV) replication 20. As such, HIV has been used for many years as a system to 

identify and characterize the IFN-induced host restriction factors responsible for this 

inhibition. Type I IFNs block both early and late stages of the HIV lifecycle 21–25. Early 

stages of HIV replication include HIV binding and fusion to the host cell via its CD4 

receptor, uncoating of the viral core in the cell cytoplasm, reverse transcription of the 

single-stranded RNA viral genome, and integration of the viral cDNA into the host cell 

genome. Late stages include transcription of the integrated HIV provirus from the 5’ 

long-terminal repeat (LTR) promoter, viral RNA export, translation of viral proteins, 

trafficking/assembly of new virions, virion budding/release, and maturation of virions 

into fully infectious HIV particles (Fig 1.2). Host restriction factors, which form the 

effector arm of the IFN response, target specific stages (both early and late) in the HIV 

replication life cycle. However, HIV also encodes viral antagonists to counteract host 

restriction factors. These antagonists are typically HIV accessory proteins, namely Vif, 
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Nef, Vpu, and Vpr, which are only required for viral replication in the presence of host 

restriction factors 26. Whereas HIV type 1 (HIV-1) encodes only the latter accessory 

proteins, a number of strains of simian immunodeficiency virus (SIV) and HIV type 2 

(HIV-2) also encode an additional accessory protein called Vpx 27. Stages of HIV-1 

replication (and/or SIV or HIV-2 replication) targeted by the APOBEC3G, TRIM5α, 

BST-2/tetherin, and SAMHD1 host restriction factors plus their viral antagonists (if 

known) are shown in Fig 1.2 and outlined in further detail in the text below.  

 

1.1.1 Inhibition of HIV replication by host restriction factors 

Multiple host restriction factors that inhibit HIV replication have been identified within 

the last decade, some of which have been studied extensively. One such protein is the 

host restriction factor APOBEC3G, which was first identified as a HIV-1 restriction 

factor in 2002 28. APOBEC3G is targeted by the HIV-1 Vif accessory protein; however 

when Vif is not present, APOBEC3G is packaged into assembling HIV-1 virions and 

released into the cytoplasm of newly infected target cells. APOBEC3G is a cytidine 

deaminase enzyme or an enzyme that converts deoxycytidine into deoxyuridine in a 

nucleic acid sequence. When APOBEC3G is present in newly infected target cells, it 

converts deoxycytidine to deoxyuridine in the nascent viral single-stranded negative-

sense cDNA. This results in deoxyguanine to deoxyadenine hypermutation and loss of 

genetic integrity in the HIV-1 plus-strand sequence and inhibits HIV-1 replication at the 

level of reverse transcription (Fig 1.2) 29–32. When Vif is present in cells, APOBEC3G 

becomes polyubiquitylated and is targeted for proteasomal degradation. Vif facilitates 

this process by binding directly to both APOBEC3G and the Cul5 E3 ligase ubiquitin 

complex. Interestingly, Vif antagonism is not always fully efficient and hypermutated 

HIV-1 sequences are readily recovered from HIV-1 infected individuals. Moreover, 

hypermutation frequency has been shown to correlate inversely with plasma viremia in 

several sizable HIV-1 cohorts 33–37.  

Another well-studied HIV-1 restriction factor is the TRIM5α protein. Unlike other host 

restriction factors, TRIM5α typically only restricts retroviruses that have been isolated  
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Figure 1.2: Stages of HIV replication targeted by host restriction factors. 

Host restriction factors, such as APOBEC3G, TRIM5α, BST-2/tetherin, and SAMHD1, 

target multiple stages of HIV-1 (or SIV/HIV-2) replication. Post-entry, TRIM5α targets 

the assembled HIV-1 capsid protein on the viral core and facilitates its disassembly. In 

the absence of Vif, the APOBEC3G protein creates deoxycytidine to deoxyuridine 

mutations in the nascent viral cDNA, which inhibits HIV-1 replication at the level of 

reverse transcription. SAMHD1, which is countered by Vpx (SIV/HIV-2), also inhibits 

reverse transcription; however, it does so by decreasing the cellular pool of dNTPs 

required for viral cDNA synthesis. BST-2/tetherin inhibits HIV-1 replication at the 

budding/release stage by ‘tethering’ HIV-1 virions to the cell membrane. BST-2/tetherin 

is antagonized by the HIV-1 Vpu protein.  
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Figure 1.2 
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from a host species other than its own. For example, the human TRIM5α (huTRIM5α) 

protein strongly inhibits N-tropic murine leukemia virus (N-MLV), but has very weak 

activity against HIV-1. Similarly, rhesus monkey TRIM5α (rhTRIM5α) does not inhibit 

SIVmac (SIV strain isolated from rhesus macaques that were experimentally inoculated 

with SIV from asymptomatic sooty mangabey monkeys [SIVsmm]38). The majority of 

studies have shown that rhTRIM5α inhibits HIV-1 by targeting the assembled HIV-1 

capsid protein found on the mature viral core. Capsid is the main structural protein of 

HIV-1 and forms the inner viral protein shell that surrounds the HIV-1 genome and its 

core proteins in mature virions 39. To inhibit HIV-1 replication, rhTRIM5α binds to the 

incoming mature viral core and facilitates its premature disassembly. This leads to the 

inhibition of reverse transcription and subsequent HIV-1 replication (Fig 1.2) 40–42. Of 

interest, rhTRIM5α, which localizes in subcellular structures called cytoplasmic bodies, 

has been shown to mediate its own polyubiquitylation and proteasomal degradation 

during the HIV-1 restriction process. Self-ubiquitylation of rhTRIM5α may destabilize 

the HIV-1 capsid lattice and induce its disassembly. Notably, other studies have shown 

that proteasome inhibitors do prevent inhibition of reverse transcription by rhTRIM5α, 

but do not disrupt overall rhTRIM5α-mediated HIV-1 restriction 43–46. Thus, it has also 

been proposed that rhTRIM5α may inhibit HIV-1 replication in two or more redundant 

ways, such as by blocking the nuclear translocation of the viral preintegration complex 

(PIC). The viral PIC includes the viral cDNA plus both viral and host proteins and its 

nuclear translocation is required for proper integration of HIV-1 into the host genome 47. 

To date, there have been no HIV-1 antagonists to rhTRIM5α identified.  

Tetherin or BST-2 was only recently identified as a HIV-1 restriction factor, but since 

this time has been studied in great detail. BST-2/tetherin is antagonized by the HIV-1 

Vpu protein and targets a later stage of viral replication than APOBEC3G or TRIM5α. 

When Vpu is absent, BST-2/tetherin ‘tethers’ fully formed HIV-1 virions to the plasma 

membrane of infected cells (Fig 1.2). Captured HIV-1 virions are later internalized by 

endocytosis and accumulate in CD63+ endosomes, where they are likely degraded 48–53. 

BST-2/tetherin contains two membrane anchors, the N-terminal transmembrane domain 

and the C-terminal glycosylphosphatidylinositol domain, which are both essential for 

BST-2/tetherin-mediated virion retention and endocytosis 54–56. Although several models 
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for BST-2/tetherin configuration have been proposed, experimental evidence strongly 

supports a parallel-membrane-spanning model. This models postulates that one end of 

two BST-2/tetherin monomers (either the N-terminus or C-terminus) is anchored to the 

cell membrane and the other end of both monomers is anchored to the viral membrane. 

BST-2/tetherin is downregulated from the cell surface when Vpu is present and likely 

degraded via the proteasomal and/or lysosomal pathway. However, some studies have 

shown that Vpu may simply sequester BST-2/tetherin in the cytoplasm. These methods 

are unlikely to be mutually exclusive and may work together to counteract the BST-

2/tetherin protein. The mechanism of Vpu antagonism may also depend on the cellular 

context of HIV-1 restriction 19,57.  

SAMHD1, the most recently identified host restriction factor, restricts SIV/HIV-2 viral 

replication in non-dividing cell types, including CD4+ T cells, dendritic cells, and 

macrophages. Vpx, an accessory protein encoded by HIV-2 and certain strains of SIV, 

targets SAMHD1 and induces its proteasomal degradation. In the absence of Vpx, 

SAMHD1 inhibits SIV/HIV-2 replication by decreasing the intracellular pool of dNTPs 

to below the level required for viral cDNA synthesis. This results in early post-entry 

restriction at the level of reverse transcription (Fig 1.2) 58–61. While HIV-1 is unable to 

neutralize SAMHD1, one recent study demonstrated that a subset of Vpr proteins from 

ancestral lentiviruses without Vpx are able to disrupt SAMHD1-mediated restriction. 

Since Vpr is hypothesized to have originally given rise to Vpx via a gene duplication 

event, the ability of Vpx to antagonize SAMHD1 may have originated in Vpr before it 

was lost following Vpx acquisition. Interestingly, distinct orthologues of Vpx and Vpr 

have evolved multiple ways to recognize SAMHD1. For example, certain orthologues 

interact with the N-terminus of SAMHD1, while others interact with the C-terminus; 

however, they all target SAMHD1 for proteasomal degradation. Thus, even though the 

method of Vpx/Vpr antagonism toward SAMHD1 has remained the same, the site of 

antagonism has changed back and forth throughout viral evolution 62,63.  
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1.1.2 Innate immune regulation by host restriction factors 

In addition to their direct antiviral effects, a growing number of host restriction factors 

indirectly influence the antiviral response by regulating important innate immune 

signaling pathways. For example, TRIM5α was recently shown to function as a PRR for 

the HIV-1 capsid lattice. Upon capsid recognition, TRIM5α activates the transforming 

growth factor beta-activated kinase 1 (TAK1), AP-1 and NF-κB signaling, and the 

transcription of proinflammatory cytokines 64. This signaling is required for TRIM5α-

mediated retroviral restriction. Thus, in addition to its direct antiviral effects, TRIM5α 

also inhibits HIV-1 replication by activating innate immune signaling pathways. BST-

2/tetherin and SAMHD1 have also recently been implicated in the activation of innate 

immune and proinflammatory signaling pathways  65,66. 

 

1.2 The TRIM family 

The tripartite motif or TRIM family is a large group of evolutionarily ancient proteins 

that are involved in multiple biological processes and have been linked to a number of 

different human diseases. Many TRIM proteins are upregulated by type I and type II 

IFNs and some, such as the host restriction factor TRIM5α, have antiviral properties. 

TRIM proteins are particularly adept at targeting retroviruses and to date, ~20 TRIM 

proteins have been shown to inhibit retrovirus replication 67–70. Recent studies have also 

identified several TRIM proteins that regulate key proteins involved in innate immune 

signaling, including IRF-3, IRF-8, RIG-I, and NF-κB 71,72. In addition to their role in 

antiviral immunity, TRIM proteins have also been implicated in numerous Mendelian 

inherited disorders and autoimmune diseases, cell cycle progression, development, and 

several types of cancer 73–76.  

 

1.2.1 Evolution and classification 

TRIM proteins are conserved throughout the metazoan kingdom; however, the TRIM 

family has expanded rapidly during vertebrate evolution. For example, the invertebrate 
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Table 1.1 

Table 1.1: Characteristics of well-studied host restriction factors. 

 

Restriction factor IFN 
induced? 

Viral target Stage of life cycle inhibited Viral antagonists 1 Positive 
selection? 

Fv1 (mouse)  No Retroviruses Capsid uncoating 77 None known Yes 78 
MxA  Yes Orthomyxoviruses 

Paramyxoviruses 
Hepadnaviruses 
Rhabdoviruses 
Alphaviruses 
Bunyaviruses 
Togaviruses 
Picornaviruses 

Nucleocapsid transport or another early life cycle 
step 79 

None known Yes 80 

MxB  Yes Retroviruses Nuclear import or integration 81 None known ND 
IFITM1, IFITM2, 
IFITM3 

Yes Orthomyxoviruses 
Flaviviruses 
Coronavirus 
Rhabdoviruses 
Alphaviruses 
Bunyaviruses 
Filoviruses 

Endosomal fusion or uncoating 82,83 None known ND 

TRIM5α Yes Retroviruses 
Hepadnaviruses 

Capsid uncoating 84 None known Yes 85 

APOBEC3G No Retroviruses 
Hepadnaviruses 
Adenoviruses  
Paramyxoviruses 
Retrotransposons 

Reverse transcription 31,33,35,77,86–90 Vif (HIV-1) 
Bet (PFV) 
glycol-Gag (MLV) 
 

Yes 91 

SAMHD1 Yes Retroviruses 
Herpesviruses 

Reverse transcription 58,60,92,93 Vpx (HIV-2) 
Vpr (SIV) 

Yes 94 
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Poxviruses  
BST-2/Tetherin Yes Retroviruses 

Flaviviruses 
Herpesviruses 
Rhabdoviruses 
Paramyxoviruses 
Arenaviruses 
Filoviruses 

Budding 48,51,53,54,95–98 Vpu (HIV-1) 
Nef (SIV) 
Env (HIV-2) 
VP40 (Ebola) 
K5 (KSHV) 
NA (IAV) 
gM (Herpes) 

Yes 99 

PKR  Yes  Retroviruses 
Orthomyxoviruses 
Filoviruses 
Paramyxoviruses 
Bunyaviruses 
Herpesviruses 
Poxviruses 

Viral protein translation 100–102 NS1 (IAV, IBV) 
NSs (RVFV)  
VP35 (Ebola)  
 
 

Yes 103 

HERC5 Yes  Retroviruses 
Orthomyxoviruses 

Nuclear export, assembly 104–106  None known Yes 106 

1 Viral antagonists: this is not an exhaustive list, particularly for PKR. Please refer to 107 for a more comprehensive list of PKR antagonists.  

Abbreviations: Myxovirus resistance (Mx) proteins A and B, Interferon induced transmembrane (IFITM) proteins 1, 2, and 3, Prototype foamy virus (PFV), 
Glycosylated (glyco) Gag, Murine leukemia virus (MLV), Kaposi's sarcoma-associated herpesvirus (KSHV), Influenza A/B virus (IAV, IBV), Rift valley fever 
virus (RVFV), HECT domain and RCC1-like domain-containing protein 5 (HERC5). ND: not determined.  
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Drosophila melanogaster and Caenorhabditis elegans genomes contain 7 and 18 TRIM 

genes, respectively. In stark contrast, the vertebrate Mus musculus genome contains 64 

TRIM genes and 100 TRIM genes have now been identified in the human genome. 

Notably, the TRIM family may still be expanding in humans. One study recently 

identified 11 TRIM genes that are specific to humans and African apes and another 7 

TRIM genes that are found only in humans. According to this study, the novel TRIM 

genes were acquired through multiple segmental duplication events, the majority of 

which originated from a single chromosomal locus. One Han Chinese woman with 12 

extra copies of these TRIM genes was also identified, documenting TRIM copy number 

variation in humans for the first time 108. 

Several classification systems have been proposed for organizing the TRIM family of 

proteins in humans. Initially, the TRIM family was divided into 9 distinct subgroups 

according to their C-terminal domains 109. This classification system was subsequently 

modified to include 2 new subgroups of TRIMs with previously mischaracterized C-

terminal domains (C-I to C-XI) 68. Another study divided the TRIM family into two 

major groups based on genomic organization, evolutionary properties, and domain 

structure. This study determined that ‘Group 1’ TRIM proteins contained two B-box 

(BB) domains, a variable C-terminal domain, and were found in both vertebrates and 

invertebrates. In contrast, ‘Group 2’ TRIM proteins had only one BB domain, a C-

terminal splA/ryanodine receptor (SPRY) domain or PRY/SPRY (B30.2) domain, and 

were found only in vertebrates 110. The most recent report, which performed a more 

stringent phylogenetic analysis of the TRIM family, divided TRIM proteins into 9 

distinct subgroups (A-I). ‘Group 2’ TRIM proteins were placed in one subgroup (G); 

however, ‘Group 1’ TRIMs were further subdivided into 8 different phylogenetic 

subgroups (A-F, H, I). Importantly, this study consolidated data from previous reports 

and compared the phylogenetic and domain-based classification systems for the TRIM 

family (Fig 1.3) 111.  

 

 



 

 

15 

Figure 1.3: Subgroup classification of the TRIM family.   

Subgroup classifications (A-I) are based on the most recent phylogenetic analysis of the 

TRIM family 111. Previous C-terminal domain-based TRIM classifications (C-I to C-XI) 

are shown in parentheses 68. TRIM proteins contain an N-terminal RING domain (blue 

square), one or two BB domains (dark/light pink circles), and a CC domain (orange 

rectangle). In addition, TRIM proteins contain one or more of 10 different C-terminal 

motifs (MATH, COS, FN3, PRY/SPRY, FIL [filamin], NHL, ARF, PHD, BR, and/or 

TM). Group 2 TRIM proteins (subgroup G) are labeled and encased in a red box. Other 

subgroups (A-E, H, I) are considered Group 1 TRIMs 110. 
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Figure 1.3 
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1.2.2 The RBCC motif  

Members of the TRIM family are defined by their N-terminal TRIM or RBCC motif, 

which is comprised of a ‘Really Interesting New Gene’ (RING) domain, one or two BB 

domains, and a predicted coiled-coil (CC) region. The entire RBCC motif is present in 

most TRIM proteins; however, in TRIM proteins that lack one of these domains, the 

other domains are conserved in both order and spacing 68,112. The C-terminal domain of 

TRIM family members is variable and contains any of 10 distinct motifs alone or in 

combination. The majority of TRIM proteins have a C-terminal SPRY or PRY/SPRY 

domain (also called a B30.2 domain). Other possible C-terminal domains include ARF 

(ADP ribosylation factor-like), the COS (C-terminal subgroup one signature) box, PHD 

(plant homeodomain), MATH (merpin and tumor-necrosis factor receptor-associated 

factor homology), FN3 (fibronectin type 3), and/or FIL (filamin-type immunoglobulin) 

(Fig 1.3) 112,113.  

The first domain in the RBCC motif, the RING domain, is characterized by a canonical 

sequence that consists of a number of conserved cysteine and histidine residues. These 

residues form a specialized zinc finger and coordinate two zinc atoms in a cross-braced 

arrangement 114,115. Studies have shown that RING finger proteins interact directly with 

ubiquitylation enzymes and often function as E3 ubiquitin ligases 116–119. Consistent with 

these studies, many RING-containing TRIM proteins have been shown to possess E3 

ubiquitin ligase activity 113,120,121. In many (but not all) cases, this E3 ubiquitin ligase 

activity is required for TRIM-mediated antiviral activity. Previous studies have also 

shown that RING-mediated E3 ligase activity is necessary for activation of antiviral 

signaling by TRIMs 1, TRIM5, TRIM13, TRIM25, TRIM32, and TRIM62 64,122–124. 

Ubiquitylation is a three-step process that involves ubiquitin-activating (E1), ubiquitin-

conjugating (E2), and ubiquitin-ligating (E3) enzymes. Ubiquitylation begins when the 

E1-activating enzyme activates ubiquitin and transfers it to an E2-conjugating enzyme. 

Following transfer, an E3 ligating enzyme facilitates ubiquitin attachment to the target 

substrate protein, which occurs via the formation of an isopeptide bond between the C-

terminal glycine residue of ubiquitin and an internal lysine (Lys) residue of the target 

protein (Fig 1.4). There are two main families of E3 ubiquitin ligases: RING and HECT 
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(homologous to the E6-AP carboxyl terminus). Unlike HECT-containing E3 ligase 

proteins, RING E3 ligases bind directly to both the E2 conjugating enzyme and the target 

protein and this increased proximity facilitates the direct transfer of ubiquitin from the E2 

enzyme to the target protein 23,29. TRIM proteins represent the largest group of RING-

containing E3 ubiquitin ligases and multiple TRIM family members were recently shown 

to interact with the UBE2D and UBE2E (ubiquitin conjugating enzymes 2/E2 class D and 

class E) classes of E2 conjugating enzymes; however, other combinations of TRIM-E2 

proteins have also been identified 64,113,120,121,126.  

Substrate proteins can be modified by a single ubiquitin moiety (monoubiquitylation) or 

can be tagged with a chain of ubiquitin (polyubiquitylation). Ubiquitin chains are linked 

together via the formation of an isopeptide bond between the C-terminal glycine residue 

of one ubiquitin and one of seven internal lysine residues of a second ubiquitin moiety. 

Notably, ubiquitin chains linked through distinct Lys residues have different cellular 

functions. Lys48 ubiquitin chains mark proteins for degradation by the 26S proteasome, 

whereas Lys63, other Lys-based ubiquitin chains, and monoubiquitylation often serve 

non-proteolytic functions. Depending on the substrate proteins and enzymes involved, 

these modifications can serve as signals for diverse cellular processes, including DNA 

repair, transcription, signal transduction, and/or intracellular trafficking 127. Thus far, 

most well-characterized TRIM proteins have been shown to facilitate either Lys48 or 

Lys63 polyubiquitylation. Many TRIM proteins can also undergo self-ubiquitylation, 

including TRIM5α (both huTRIM5α and rhTRIM5α proteins), which induces its own 

proteasomal degradation and rapid turnover. Several groups have proposed that self-

ubiquitylation of rhTRIM5α indirectly leads to the proteasomal degradation of HIV-1 

virions. While the precise mechanism of TRIM5α-mediated restriction is still not fully 

understood, some studies have shown that HIV-1 restriction is dependent on TRIM5α’s 

E3 ubiquitin ligase activity 43,45,46,128–131. 

In addition to their function as E3 ubiquitin ligases, several TRIM proteins have been 

shown to function as E3 ligases for other ubiquitin-like proteins, such as SUMO (small 

ubiquitin-like modifier) and ISG15 (interferon stimulated gene 3) 132–134. Ubiquitin-like 
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Figure 1.4: The RING E3 ligase-mediated ubiquitylation pathway.   

Ubiquitin is activated by the E1 activating enzyme to form a thioester linkage with the 

active-site cysteine of E1. Activated E1-bound ubiquitin is transferred to the active-site 

cysteine of the E2 conjugating enzyme. E2 transfer also requires the formation of a 

thioester linkage. E2-bound ubiquitin then interacts with a RING E3 ligase enzyme, but 

does not directly transfer ubiquitin to the E3. Instead, the RING E3 ligase binds to both 

the appropriate protein substrate and the E2. The increased proximity between the E2-

bound ubiquitin and the protein substrate facilitates the transfer of ubiquitin to a Lys 

residue on the substrate. The substrate can undergo monoubiquitylation (addition of one 

ubiquitin moiety) at one or more Lys residues or polyubiquitylation (addition of a chain 

of ubiquitin moieties linked together via internal Lys residues). Chains that are linked 

together by the Lys48 residue of ubiquitin typically target substrates for 26S proteasomal 

degradation.  
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Figure 1.4 
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Figure 1.4: The RING E3 ligase-mediated ubiquitylation pathway. 
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proteins are activated and conjugated to target proteins using a distinct set of enzymes; 

however, the overall process is analogous to ubiquitylation 135. Notably, unlike other 

SUMO E3 ligase proteins, the SUMO E3 ligase activity of TRIM proteins is dependent 

on both RING and BB domains 132. Some TRIM family members have been shown to 

undergo SUMO modification themselves (self-sumoylation) and several TRIM proteins 

contain SUMO-interacting motifs (SIMs). SIMs bind to other proteins that have been 

modified with SUMO. Interestingly, two SIMs in huTRIM5α and rhTRIM5α play an 

important role in N-MLV and HIV-1 restriction 136–139.  

Following the RING finger domain, TRIM proteins contain one or two BB domains. 

Similar to the RING domain, BB domains are zinc binding motifs with a number of 

conserved cysteine and histidine residues; however, unlike the RING domain, BBs are 

found exclusively in the TRIM family. There are two types of BBs, BB1 and BB2, that 

share similar but distinct consensus motifs. When both BB are present in TRIMs, BB1 

always precedes BB2. If only one BB is present it is always BB2 68,113,120. Structural 

studies of several human TRIM proteins have revealed that TRIM BBs have a similar 

ternary structure as the RING finger domain 140–142. Studies on the BB2 domains of 

human TRIM63 (MuRF1) and TRIM5α identified two unusual conserved clusters of 

hydrophobic residues on the surface of the domain. Two hydrophobic clusters that are 

flanked by a number of charged residues were identified on the surface of the BB2 

domain of TRIM5α. A number of these residues (e.g. W115, L116, and R119) were 

required for major TRIM5α functions, including TRIM5α turnover, higher order self-

association, formation of cytoplasmic bodies, HIV-1 capsid binding, and/or HIV-1 

restriction 143. TRIM63 had a similar cluster of solvent-exposed hydrophobic residues 

located at the surface of its BB2 domain, which form a dimer interface and mediate 

TRIM63 self-association 142.  

The final component of the RBCC motif is the predicted CC region. The CC domain 

contains many predicted hyper-secondary structures and intertwined α-helices, which 

mediate homomeric and heteromeric interactions among TRIM proteins and other 

binding partners. A large number of TRIM proteins have been shown to self-associate 

through the CC domain 112. The CC domain also promotes the formation of higher-
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molecular-weight complexes that among other functions, define specific subcellular 

structures. For example, the CC domain of TRIM19 (also referred to as promyelocytic 

leukemia protein [PML]) is essential for the proper assembly and maintenance of 

macromolecular called nuclear bodies (NB). Moreover, the CC domain of TRIM5α 

facilitates TRIM5α trimerization. Mutations in CC that disrupt TRIM5α trimerization 

impair TRIM5α-mediated HIV-1 restriction 144–147. Interestingly, it has been proposed 

that the pleiotropic effects of TRIM proteins may be due to the ability of the CC to 

facilitate diverse homomeric and heteromeric interactions 120,148. 

 

1.2.3 The SPRY and PRY/SPRY (B30.2) domains 

The SPRY and PRY/SPRY (B30.2) domains are the most common C-termini found in 

TRIM family proteins. The evolutionarily ancient SPRY domain (~140 amino acids) is 

present alone or fused to a related domain called the PRY domain (~60 amino acids), 

which always precedes the SPRY domain. Unlike the SPRY-only domain, the fused 

PRY/SPRY domain is only found in vertebrates and PRY/SPRY-containing proteins 

(including TRIMs) have expanded rapidly during vertebrate evolution. The reasons for 

this expansion are still unclear; however, it has been proposed that the PRY/SPRY 

domain has been selected and maintained in vertebrates as a component of immune 

defense 68,149. Indeed, the PRY/SPRY domain in TRIM proteins is often critical for 

TRIM-mediated virus inhibition. For example, rhTRIM5α interacts with the HIV-1 

capsid protein via its PRY/SPRY domain and both PRY and SPRY portions of the 

domain are necessary for this interaction. Furthermore, the PRY/SPRY domain in the 

TRIM25 protein, which activates the RIG-I signaling cascade, is both necessary and 

sufficient for its interaction with RIG-I. These PRY/SPRY-mediated protein-protein 

interactions are required for both rhTRIM5α and TRIM25 to execute their antiviral 

functions 40,122,150–153. 

The SPRY and PRY/SPRY domain superfamily is among one of the largest families of 

protein interaction modules in humans. In addition to the TRIM family, the SPRY and 

PRY/SPRY domains are found in several other protein families, including a number of 
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families that contain proteins involved in ubiquitylation processes. As mentioned in the 

previous section, the TRIM family also contains a sizeable number of proteins that are 

involved in ubiquitylation. Thus, although SPRY and PRY/SPRY-containing proteins 

have diverse biological functions, it has been proposed in the literature that they may 

function primarily as target substrate recognition modules for E3 ubiquitin ligases 154,155. 

This is consistent with experimental evidence for some members of the TRIM family, 

such as TRIM27, which interacts with the NOD2 (nucleotide-binding oligomerization 

domain-containing protein 2) protein through its PRY/SPRY domain and subsequently 

facilitates NOD2 polyubiquitylation and degradation using its RING domain 156. 

However, in the majority of cases, the mechanistic details and/or interacting substrate 

proteins required for TRIM-mediated biological activities are unknown. 

Several SPRY and PRY/SPRY domain structures have now been resolved, including a 

limited number of structures in complex with their binding partners. These studies have 

revealed that the SPRY and PRY/SPRY domain structures are extremely versatile and 

can interact with diverse ligands 157,158. The core fold of the PRY/SPRY domain is a bent 

β-sandwich comprised of two antiparallel β sheets. The majority of conserved residues 

are located in the hydrophobic core between the antiparallel β sheets, whereas loops of 

variable length and sequence protrude from the core β-sandwich. In many PRY/SPRY-

containing proteins, these variable loops form protein binding surfaces that determine 

substrate binding specificity 154,155,159–162. For example, four variable (v) loops in the 

recently solved structure of the rhTRIM5α PRY/SPRY domain comprise the HIV-1 

capsid binding site. The binding surface is dominated by one variable loop (v1) that is 

highly flexible and interacts weakly with multiple capsid epitopes. Interestingly, the 

authors of this study suggests that capsid recognition by rhTRIM5α may function in a 

similar manner as IgM-mediated antigen recognition 163. 

 

1.1.3 Antiviral activity 

Most TRIM proteins are upregulated by type I IFNs and multiple TRIMs have been 

shown to possess antiviral activity. As mentioned previously, TRIM5α restricts the 
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replication of diverse retroviruses, including HIV-1 and N-MLV. A comprehensive 

screen for antiretroviral activity of 55 human and mouse TRIMs revealed that 19 

additional TRIM proteins inhibit the entry or release of HIV-1, MLV, and/or avian 

leucosis virus. Interestingly, unlike TRIM5α, most of the additional TRIM proteins 

inhibited late stages of the viral life cycle 69. Multiple TRIM proteins have also been 

shown to have antiviral activity against hepatitis B virus (HBV). These TRIM proteins 

have been shown to significantly reduce the HBV transcription in HepG2 cells 164,165. 

Some TRIM proteins, such as TRIM19/PML, have been implicated in the inhibition of 

additional viruses, including herpes simplex virus, human cytomegalovirus, vesicular 

stomatitis virus, and influenza A virus (IAV) 166. Recently, TRIM56 was shown to inhibit 

the replication of bovine viral diarrhea virus in vitro and mouse-specific TRIM79α was 

identified as a potent inhibitor of tick-borne encephalitis virus 167,168. In addition, 

TRIM21 was previously shown to act as an intracellular IgG receptor that neutralizes 

antibody-coated virus in the cytoplasm by targeting it for degradation by the 26S 

proteasome 169. These studies suggest that TRIM family proteins restrict evolutionarily 

diverse viruses and target a variety of stages in the viral replication life cycle.  

 

1.2 The TRIM22 protein 

TRIM22 is an evolutionarily ancient IFN-induced antiviral protein that inhibits HIV-1, 

HBV, IAV, and encephalomyocarditis virus (EMCV) replication. Similar to other host 

restriction factors, the major biological activity of TRIM22 is its antiviral activity; 

However, altered TRIM22 expression levels have also been associated with multiple 

sclerosis, several cancers, and a number of autoimmune diseases. While TRIM22 is 

clearly an important and dynamic protein, the key factors that influence its expression 

and antiviral activity remain largely unknown 170. An overview of what is currently 

known about TRIM22 evolution, structure, and function is provided below.  

 



 

 

25 

1.2.1 Origins and evolution 

Human TRIM22 is located on chromosome 11 within a cluster of closely-related TRIM 

genes that also includes TRIM5, TRIM6, and TRIM34 171,172. The origins of the entire 

TRIM5/6/22/34 gene cluster can be traced back to the Cretaceous period, or more 

specifically, to approximately 90-180 million years ago (Fig 1.5). Studies have shown 

that TRIM5/6/22/34 is absent in Metatherian (marsupial) mammals (e.g. opossum and 

chicken), but present in all major Eutherian (placental) groups (e.g. cow, dog, and 

human) 172. As such, the TRIM5/6/22/34 gene cluster must have emerged after the 

divergence of Metatherian and Eutherian mammals, but before the separation of major 

Eutherian groups. Of interest, several groups have proposed that TRIM5/6/22/34 likely 

arose through tandem gene duplication, as TRIM5, TRIM6, TRIM22, and TRIM34 are 

close human paralogs, and because major gene re-arrangements have been observed in 

this chromosomal region 108,172,173. Gene duplication plays an important role in evolution 

and a number of TRIM genes have been shown to undergo gene duplication in both 

primates and teleost fish 108,174. 

Within the TRIM5/6/22/34 gene cluster, TRIM22 and TRIM5 have an interesting and 

dynamic evolutionary relationship. In some Eutherian groups, such as cow, there are 

multiple copies of the TRIM5 gene but no TRIM22 gene. However, in other Eutherian 

groups, such as dog, the TRIM22 gene is present but the TRIM5 gene is not 172. In 

addition, TRIM22 and TRIM5 have evolved in a mutually exclusive manner, whereby 

positive selection has acted on either TRIM22 or TRIM5 (but not both) in different 

primate lineages. This striking anti-correlative pattern of evolution is thought to occur 

due to tight genetic linkage between the two genes 172. Both TRIM22 and TRIM5 are 

classified as Subgroup G (also Group 2) TRIM genes according to the most recent 

phylogenetic-based classification system (TRIM6 and TRIM34 are also Subgroup G, 

Group 2 TRIM genes) (Fig 1.3) 110,111.  
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Figure 1.5: TRIM22 evolution, genomic organization, and protein structure.  

An approximate timeline of Metatherian and Eutherian mammalian evolution is shown 

on the top panel. The estimated time (~90-180 million years ago) that TRIM22 (and the 

rest of the TRIM5/6/22/34 gene cluster) emerged in Eutherian mammals is indicated by 

two arrows. The middle panel shows the genomic organization of the TRIM5/6/22/34 

gene cluster on human chromosome 11. The bottom panel illustrates the TRIM22 protein 

domains (RING, BB2, CC, and PRY/SPRY or B30.2) and the approximate location of its 

E3 ligase activity and nuclear localization signal (NLS). 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

27 

Figure 1.5 
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Figure 1.5: TRIM22 evolution, genomic organization, and protein structure. 
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1.2.2 Protein structure 

Similar to other Subgroup G (and Group 2) members, the TRIM22 protein is comprised 

of an N-terminal RBCC motif that includes RING, BB2, and CC domains and a C-

terminal B30.2 domain (Figs. 1.3 and 1.5). The RING domain of TRIM22 has been 

shown to possess both E3 ubiquitin and E3 SUMO ligase activity 132,175. TRIM22’s E3 

ubiquitin ligase activity is dependent on two catalytic cysteine (Cys) residues (i.e. Cys15 

and Cys18) in its RING domain. These Cys residues help stabilize the zinc finger motif 

and facilitate the transfer of ubiquitin to the appropriate substrate protein 113,117. TRIM22 

also mediates its own ubiquitylation and 26S proteasomal degradation when combined 

with the E2 conjugating enzyme UbcH5B (also referred to as UBC2D2) 175. TRIM22 

inhibits viral replication by both E3 ubiquitin ligase dependent and independent 

mechanisms. For example, TRIM22’s E3 ubiquitin ligase activity is required for 

TRIM22-mediated inhibition of HBV, IAV, and EMCV 164,176,177. However, HIV-1 

inhibition occurs in both the presence and absence of TRIM22’s E3 ubiquitin ligase 

activity 178,179. 

The second domain in the TRIM22 protein is the BB2 domain. Similar to the RING 

domain, the BB2 domain contains a zinc finger motif; however, the BB2 domain only 

coordinates one zinc ion (the RING domain coordinates two zinc ions) 180. While the 

function of TRIM22’s BB2 domain is still unclear, BB2 mutations in other TRIM 

proteins have been shown to affect viral recognition or inhibition. For example, in the 

TRIM5α protein, the RING and BB2 domains work together to promote TRIM5α 

dimerization, which is important for higher-order self-association of rhTRIM5α on the 

HIV-1 capsid lattice and subsequent HIV-1 restriction 181. It is unknown whether the 

TRIM22 BB2 domain is required for higher-order self-association; however, the BB2 

does play a role in TRIM22’s nuclear localization 182. The BB2 domain of TRIM22 is 

followed by the predicted CC region, which contains many putative hyper-secondary 

structures and α-helices 183. In TRIM5α, the CC region promotes TRIM5α trimerization 

and may be involved in TRIM5α cytoplasmic body formation. Similar to dimerization, 

TRIM5α trimerization drives its interaction with the HIV-1 capsid lattice 146,181. The CC 

region also promotes higher-order self-association in a number of additional TRIM 
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proteins. While TRIM22 has been shown to undergo trimerization, the biological and 

antiviral significance of TRIM22 trimerization is unknown 112.  

The TRIM22 protein contains a C-terminal B30.2 (PRY/SPRY) domain. Although the 

structure of this domain has not been resolved for TRIM22, several domain-deletion 

studies have shown that it is integral for many TRIM22 functions. For example, one 

study showed that B30.2 mutants of TRIM22 were no longer able to inhibit HBV 

replication and localized exclusively to the cytoplasm in HepG2 cells 164. Several 

additional studies have also reported the TRIM22’s B30.2 domain is necessary for its 

nuclear localization and the formation of nuclear bodies (NB), including a study that 

showed that amino acids 491-494 are critical for nuclear localization and amino acids 

493-494 are critical for NB formation 184,185. TRIM22’s B30.2 domain may also be 

required for EMCV restriction, self-ubiquitylation, and/or the ubiquitylation of other 

substrate proteins. One study that investigated TRIM22-mediated EMCV restriction 

showed that a C-terminal TRIM22 mutant lacking both CC and B30.2 domains was 

unable to inhibit EMCV replication or facilitate ubiquitylation of target proteins even 

though its RING domain was still intact and bound to the ubiquitylated E2 enzyme 176. 

An N-terminal TRIM22 mutant lacking both RING and BB2 domains lost the ability to 

undergo self-ubiquitylation, suggesting that the B30.2 domain of TRIM22 may be 

ubiquitylated by its own RING finger domain 176. While the role of TRIM22’s B30.2 

domain in HIV-1 restriction is still unclear, rhTRIM5α’s B30.2 domain is required for 

HIV-1 restriction 146. Moreover, several hyper-variable regions (v1-v4) in the B30.2 

domain of rhTRIM5α form the binding surface for HIV-1 capsid and confer virus 

specificity for TRIM5α-mediated restriction of retroviruses 186. The B30.2 domain of 

TRIM22 also contains these hyper-variable regions (v1-v4); however, it is unknown 

whether they play a role in its antiviral activity or specificity.  

 

1.2.3 Induction and expression 

Several reports have demonstrated that TRIM22 is basally expressed in multiple human 

tissues and is highly upregulated in response to type I and type II IFN (Table 1.2)  
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Table 1.2 

Table 1.2: Factors that alter TRIM22 protein expression levels. 

 

 Change Cell type and/or Tissue 1 

Cytokines 

IFN-α  Increase Primary MDM; CEM, Jurkat, THP-1, H9, HepG2, U937 U-937-4, Daudi, 
and HeLa cells 

IFN-β  Increase HOS, Daudi, and HeLa cells 
IFN-�  Increase HeLa, HepG2, and MCF7 cells 
IL-1-β  Increase Coronary artery endothelium  
IL-2  Increase CD4+, CD8+, NK cells  
IL-15  Increase CD4+, CD8+, NK cells  
Progesterone  Increase ABC28 and T47D cells  
TNF-α  Increase Coronary artery endothelium  
   
Antigens/Infection   
EBV infection Increase BL41-EBV cells 
EBV LMP-1  Increase DG75 cells 
HBV infection  Increase Liver tissue 
HCV infection Increase Liver tissue 
HIV-1 infection  Increase Immature DCs, Primary MDMs 
HIV-1 Tat  Increase Immature DCs 
HPV infection  Decrease Human keratinocytes   
KSHV infection Increase KSHV lesion   
KSHV LANA Increase BJAB cells 
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LPS Increase Primary MDMs 
Rubella infection Increase ECV304 cells   
   
Activation/Differentiation/Cell 
cycle  

  

1α,25-dihydroxyvitamine D33 Increase Primary MDMs 
Anti-CD2  Increase Primary T cells 
Anti-CD2/CD28  Decrease Primary T cells 
Anti-CD2/CD28/CD3  Decrease CD4+, CD8+, NK cells 
All-trans retinoic acid  Increase Primary MDMs; HL60 and NB4 cells   
p53  Increase K562 and U-937-4 cells 
p73 Increase U-937-4 cells   
Pioglitazone  Increase Primary MDMs 
UV-irradiation Increase MCF-7 cells 
   
Disease   
Systemic Lupus Erythematosus  Increase CD4+ T cells from SLE patient  
Wilms Tumor Decrease   Primary Wilms Tumor  
Neuroblastoma Decrease Primary Neuroblastoma  
Breast Cancer  Decrease  Primary Breast cancer and 10 Breast cancer cell lines  
 
1 Please refer to 170 for comprehensive list of all references 
 
Abbreviations: Monocyte-derived macrophages (MDM), Dendritic cells (DC), Epstein-Barr virus (EBV), Human papillomavirus (HPV), Kaposi’s sarcoma-
associated herpesvirus (KSHV) 
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164,172,178,179,187–193. TRIM22 expression is also induced by several viral antigens (e.g. 

Epstein-Barr virus [EBV], HIV-1, HBV, Kaposi’s sarcoma-associated herpes virus 

[KSHV], and Rubella), cytokines, and hormones. Studies have shown that TRIM22 

contains two IFN-stimulated response elements (ISRE-1, ISRE-2) and one IFN-γ 

activation site (GAS) in its 5’ promoter region. Notably, ISRE-1 and GAS are not 

required for IFN-γ induction of TRIM22. Instead, induction of TRIM22 by IFN-γ 

requires ISRE-2 plus six upstream nucleotides (referred to as the 5’ extended ISRE or 

eISRE) 190. This induction is dependent on the chromatin remodeling enzyme brahma-

related gene 1, which recruits IFN regulatory factor 1 (IRF-1) to the eISRE, and histone 

deacetylase activity, which prevents the proteasomal degradation of IRF-1 192,194. JAK, 

phosphatidylcholine-phospholipase C, and protein kinase C are also required for 

induction of TRIM22 by IFN-γ. p300 enhances IFN-γ induced expression of TRIM22 

and is also required for the recruitment of RNA polymerase II to the 5’ TRIM22 

promoter. IRF-1 binding to eISRE appears to also be required for IFN-α induced and 

basal TRIM22 expression 195. 

 

1.2.4 Sub-cellular localization 

Conflicting reports have been published on the sub-cellular localization of TRIM22. 

Some reports show that TRIM22 localizes predominantly in the cytoplasm or in the 

nucleus, whereas others show that TRIM22 localizes in both the cytoplasm and the 

nucleus 112,164,175,182,184,196–198. These studies also report different TRIM22 localization 

patterns (i.e. diffuse, speckled, and/or aggregated). Although the reasons for these 

inconsistencies are unclear, several possible explanations have been given in the 

literature. These include whether TRIM22 was expressed endogenously (e.g. IFN 

treatment of cells) or exogenously (e.g. overexpression of TRIM22), the method of 

fixation, and the epitope tag. Other potential explanations include cell-type specific 

factors or induction by different cellular signals. Consistent with the latter, TRIM22 

localizes in NBs in progesterone-treated, but not IFN-γ-treated, MCF7 and HeLa cell 

lines 197.  
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Several determinants of TRIM22 sub-cellular localization have been identified. The 

TRIM22 protein contains a bipartite nuclear localization signal (NLS) in the Spacer 2 

domain (SP2), which was previously shown to be necessary, but not sufficient, for 

nuclear localization 197. Although the B30.2 domain does not contain a known NLS, 

multiple groups have shown that it is required for nuclear localization 164,184,196,197. One 

group in particular showed that the amino acids 491-494 are essential for TRIM22 

nuclear localization and that the amino acids 493-494 are critical for the formation of 

TRIM22 NBs in MCF7 cells 197. Another group reported that the amino acids 395, 396, 

and 400 are required for the cytoplasmic localization of TRIM22 in COS-7 (African 

green monkey) cells 196. However, this group did not investigate how these amino acids 

influence TRIM22 localization in human cells. Notably, some studies that observed 

cytoplasmic TRIM22 localization used a shorter form of TRIM22 (442 instead of 498 

amino acids) that is translated from a 1329 mRNA coding sequence. As such, in these 

studies the lack of amino acids 491-494 likely contribute to the cytoplasmic localization 

of TRIM22. 

In many cell types, TRIM22 localizes in punctate NBs, which have been shown to 

partially co-localize with Cajal bodies (CB) 197. CBs are distinct nuclear organelles that 

are involved in RNA processing and modification, assembly/modification of splicing 

machinery, and cell cycle progression 199. TRIM22 interacts with p80-coilin, which is a 

major component of CBs, in stably-transfected MCF7 cells and progesterone-treated 

ABC28 cells 197. Similar to CBs, TRIM22 localization may change throughout the cell 

cycle. One report showed that during G0/G1 TRIM22 localizes in NBs, in S-phase it 

localizes diffusely in the nucleus, and in mitosis it assumes a diffuse pattern in the 

nucleus and cytoplasm (exogenous TRIM22 expression in HeLa cells) 197. However, a 

second study reported that TRIM22 co-localizes with the centrosome independently of 

the cell cycle (exogenous TRIM22 expression in U2OS cells as well as endogenous 

TRIM22 expression in peripheral blood mononuclear cells) 198. Notably, these two 

localization patterns may not be mutually exclusive because TRIM22 did not localize 

exclusively to centrosomes. These data suggest that multiple factors influence the sub-

cellular localization of TRIM22, indicating that TRIM22 may have several biological 

roles.   
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1.2.5 Antiviral function 

Human TRIM22 was first identified in 1995 during a search for IFN-induced genes in 

Daudi cells. Following sequence analysis, which revealed that TRIM22 was highly 

homologous to the mouse Rpt-1 gene, exogenous TRIM22 expression was shown to 

downregulate transcription from the HIV-1 LTR 187,200. Although this experiment was 

performed using a luciferase reporter gene instead of the entire HIV-1 genome, it was 

first to report an antiviral (and anti-HIV-1) function for TRIM22. In 2006, another 

independent study showed that TRIM22 was highly up-regulated in primary monocyte-

derived macrophages (MDM) in response to HIV-1 infection, IFN-α treatment, or 

stimulation with lipopolysaccharide (LPS). In addition, they showed that exogenous 

TRIM22 expression inhibited HIV-1 infection by 50-90% in 293T cells and primary 

MDMs 189. In 2008, Barr and colleagues showed that TRIM22 was a key mediator of 

type I IFN-induced inhibition of HIV-1 replication 178. Two different methods of HIV-1 

inhibition were observed. In HOS and HeLa cell lines, TRIM22 expression inhibited 

HIV-1 particle production by preventing the trafficking of the Gag polyprotein to the 

plasma membrane. This effect was dependent on the E3 ligase activity of TRIM22. 

Because TRIM22 was also shown to interact with Gag it was thought that TRIM22-

mediated post-translational modification of Gag may be responsible for altered Gag 

trafficking. However, to date, TRIM22 has never been shown to modify Gag post-

translationally. Unlike in HOS and HeLa cells, in U2OS and 143B cells, TRIM22 

inhibited the accumulation of intracellular Gag protein. Although the mechanism of 

restriction was not identified in these cell lines, several potential explanations were 

suggested, including inhibition of LTR-driven transcription or degradation of the Gag 

RNA and/or polyprotein 178. Notably, these experiments provided the first mechanistic 

data for restriction of HIV-1 replication by TRIM22.  

It has since been confirmed that TRIM22 can restrict HIV-1 transcription 179. In 2011, 

TRIM22 was identified as the sole factor expressed in clones of U937 cells that were 

non-permissive to HIV-1 replication, but absent in permissive U937 clones. Using a 

luciferase reporter plasmid, the authors tested LTR-driven transcription in the non-
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permissive and permissive clones. LTR transcription levels in non-permissive clones 

were decreased 7-10 fold compared to permissive clones; however, non-permissive 

transcription levels were increased when shRNA was used to knockdown TRIM22. 

Moreover, when TRIM22 was expressed in permissive clones transcription levels 

decreased to those observed in non-permissive clones. Further examination of these 

clones revealed that TRIM22 inhibited basal LTR-driven HIV-1 transcription and that 

these effects were independent of NF-κB binding sites in the LTR, Tat-mediated LTR 

transactivation, and TRIM22 E3 ligase activity 179.  

In addition to these in vitro studies, there is also in vivo evidence to support a role for 

TRIM22 as an anti-HIV-1 effector. A 2011 study demonstrated that increased TRIM22 

expression was associated with significantly lower viral loads and significantly higher 

CD4+ T-cell counts in HIV-1 positive individuals in the primary phase of infection 201. 

Recently, a follow-up study showed that TRIM22 expression was also associated with 

significantly lower viral loads in HIV-1 positive individuals in the chronic phase of 

infection 202. These data suggest that TRIM22 expression contributes to HIV-1 disease 

progression in infected individuals.  

TRIM22’s antiviral activity is not limited to HIV-1. Exogenous expression of TRIM22 

has also been shown to inhibit the replication of EMCV, IAV, and HBV. For EMCV 

restriction, TRIM22 was shown to interact with the 3C viral protease and mediate its 

ubiquitylation and subsequent degradation 176. The 3C protease has a number of 

important roles, including processing the viral polyprotein, and is essential for successful 

EMCV replication176. A similar mechanism of restriction was reported for IAV 

inhibition. Specifically, TRIM22 was shown to interact with IAV’s viral nucleoprotein 

(NP), which plays a critical structural function and is required for IAV replication. 

Following TRIM22-NP interaction, TRIM22’s E3 ubiquitin ligase activity facilitates 

ubiquitylation and subsequent proteasomal degradation of NP 177. Several studies have 

recently shown that TRIM22 may be an important antiviral factor in the liver. In 2009, 

one study demonstrated that TRIM22 expression inhibited HBV gene expression and 

replication in cultured cells and mice 164. Further experiments revealed that TRIM22 

inhibited the activity of the HBV core promoter (CP), which plays a key role in HBV 
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replication. HBV CP inhibition was dependent on TRIM22’s B30.2 domain and its E3 

ligase activity, even though a ubiquitylation target was not identified 164. Interestingly, 

TRIM22 expression is also significantly upregulated during clearance of HBV and 

hepatitis C virus (HCV) in chimpanzees 203,204. In human HCV infection, TRIM22 is 

significantly upregulated in the cirrhotic liver of HCV positive individuals and 

individuals with mild chronic HCV with no fibrosis 205.  

 

1.2.6 Other functions 

Several reports have implicated TRIM22 in other biological processes, including cell 

cycle regulation and cell proliferation/differentiation. One study identified a functional 

p53 response element in intron 1 of the TRIM22 gene and demonstrated that upon p53 

binding this element activates TRIM22 expression. Moreover, the same study showed 

that overexpression of TRIM22 in U937 cells led to decreased clonogenic growth and 

that endogenous TRIM22 was upregulated during induced differentiation in NB4 cells 
188. A later study investigating TRIM22 expression during hematopoietic differentiation 

showed that TRIM22 is highly expressed in CD34+ bone marrow progenitor cells, but 

declines in mature populations. Notably, although TRIM22 expression was inversely 

correlated with differentiation in both lineages, its expression pattern differed during 

erythroid versus granulocytic differentiation. Decreased TRIM22 expression was more 

pronounced and lasting during erythroid differentiation and undetectable in nucleated 

erythroid populations 193.  

TRIM22 has also been linked to other human diseases, including certain cancers and 

autoimmune diseases. Two studies have shown that decreased TRIM22 expression is 

associated with increased progression, relapse, and mortality in cases of Wilms tumor 
206,207. In addition, a recent study reported that TRIM22 expression is significantly 

decreased in both a panel of 10 breast cancer cell lines and breast tumors compared to 

three non-malignant cell lines and normal breast tissue. Interestingly, TRIM22 protein 

levels correlated with p53 protein levels in the normal breast tissue, but not in breast 

cancer tissue. Additional experiments showed that TRIM22 expression was no longer 
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p53-inducible in breast cancer cells, suggesting that a defect in p53-mediated TRIM22 

regulation was responsible for TRIM22 downregulation in breast cancer 208. Two gene 

profiling studies have also implicated TRIM22 in the pathogenesis of systemic lupus 

erythematosus (SLE). The first study showed that TRIM22 was overexpressed in the 

CD4+ T cells of individuals with active SLE compared to individuals with non-active 

SLE. The second study also reported that TRIM22 was upregulated in SLE-positive 

CD4+ T cells and that, along with a number of other IFN-induced genes, TRIM22 was 

significantly hypomethylated in SLE cells compared to healthy controls 209,210. 

 

1.3 Rationale and Experimental Approach 

Genetic variation in immune genes plays an integral role in host susceptibility to and 

progression of infection and disease. Much of this variation is due to single nucleotide 

polymorphisms (SNPs), which are defined as single base changes in a DNA sequence. 

While many SNPs are phenotypically neutral, non-synonymous or amino acid altering 

SNPs (nsSNP) often have deleterious effects on protein structure and/or function 211–218. 

Previous studies have shown that nsSNPs do not appear randomly in the genome, but 

emerge based on genomic location and selective pressures. Since innate immune genes 

are located at the interface of the microbial environment, they tend to be exposed to a 

wide range of selective pressures. As such, innate immune genes often contain genetic 

signatures of positive (directional) and/or balancing selection, whereas most other host 

genes are dominated by negative (purifying) selection 219–221.  

Multiple host restriction factors, including APOBEC3G, TRIM5α, BST-2/tetherin, and 

SAMHD1, have evolved under positive and/or balancing selection 18. Host restriction 

factors often interact directly with viral antagonists and/or other viral proteins and as a 

result, they tend to be subjected to intense pathogenic pressures. In order to effectively 

adapt to an ever-changing pathogenic environment, host restriction factors must evolve 

new advantageous mutations and/or maintain genetic flexibility to counteract emerging 

pathogenic threats. Since new beneficial mutations and/or sites of genetic diversity are 

typically located at critical functional sites, performing evolutionary analyses on host 

restriction factors can be a powerful way to delineate integral sites in these proteins. It 
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follows that a number of studies on host restriction factors have used an evolutionary 

approach to identify essential residues in these proteins 62,85,91,99,106,222. In addition, other 

studies have used in silico nsSNP prediction programs to identify functionally and/or 

clinically relevant polymorphisms in innate immune genes 19–24. Further, in silico 

methods have also been used to identify important functional regions in these genes (e.g. 

post-translational modifications) and support evolutionary analyses 229–232. One of the 

major advantages of performing in silico analyses is that it allows for the systematic 

analysis and prioritization of specific functional sites. This is becoming increasingly 

important given the tremendous number of SNPs in the human genome and the vast 

amount of genetic data that is generated on a daily basis. Collectively, evolutionary and 

in silico analyses provide valuable insight into protein function and are powerful tools 

that can help identify key structural and/or functional sites in a protein.  

Given the important role played by TRIM22 in multiple biological processes, including 

the host antiviral response, and the paucity of information about key functional sites in 

the TRIM22 protein, we conducted an extensive evolutionary and in silico analysis to 

identify critical amino acid residues that mediate TRIM22 function. This approach has 

previously been used to pinpoint specific amino acid residues that are essential for the 

activities of other host restriction factors, including the APOBEC3G, TRIM5α, BST-

2/tetherin, and SAMHD1 proteins. We hypothesized that evolutionary forces have been 

acting on TRIM22 and have selected for specific amino acids that impact TRIM22 

function. To address this hypothesis, we characterized the evolutionary forces acting on 

TRIM22 and used a number of in silico methods to delineate and prioritize potential 

functional sites in human TRIM22 that may be relevant to its overall antiviral and/or 

biological functions. We then investigated how various TRIM22 nsSNPs may affect 

human infection and disease and identified a functional nsSNP (rs1063303:G>C) that 

influences two diverse TRIM22-mediated biological activities.  
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Chapter 2 

 

2 Ancient and recent adaptive evolution in the antiviral 
TRIM22 gene: identification of a single nucleotide 
polymorphism that impacts TRIM22 function 1 

TRIM22 is a novel IFN-induced protein that potently inhibits the replication of 

evolutionarily diverse viruses, including HIV-1, HBV, and IAV. Altered TRIM22 

expression is also associated with diseases such as multiple sclerosis, cancer, and 

autoimmunity. To date, the factors that influence TRIM22 expression and antiviral 

activity are largely unknown. Here, we used an evolutionary approach to identify 

potential genetic determinants of TRIM22 function. Evolutionary analysis using 29 

mammalian TRIM22 sequences revealed that TRIM22 evolution has been shaped by 

ancient and variable selective forces. Positive selection has operated on a number of 

TRIM22 sites, many of which cluster together in putative protein-protein interaction 

motifs. Interestingly, we found that the second most prevalent nsSNP in the human 

TRIM22 gene (rs1063303:G>C) is located at one of these positively selected sites. In 

addition, the frequency of this nsSNP varied up to 10-fold between different ethnic 

populations. We found that nsSNP rs1063303:G>C had an inverse functional impact, 

whereby it increased TRIM22 expression and decreased TRIM22 antiviral activity. 

Taken together, our data describes the extensive genetic variation in TRIM22 and 

identifies nsSNP rs1063303:G>C as a highly prevalent nsSNP that impacts TRIM22 

function.  

 

 

                                                 
1
 The material contained in this chapter was published in: Kelly, J.N., Woods, M.W., Xhiku, S., and Barr, 

S.D. Ancient and recent adaptive evolution in the antiviral TRIM22 gene: identification of a single 
nucleotide polymorphism that impacts TRIM22 function. Hum Mutat. (2014). 

Copyright 2014.  
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2.1 Introduction 

The TRIM family is a large group of proteins involved in diverse cellular processes. 

TRIM proteins are increasingly becoming recognized as key regulators of the innate 

immune response and a number of TRIM proteins have been shown to possess antiviral 

activity 1–6. According to a recent evolutionary study, TRIM proteins can be divided into 

two main groups based on genomic organization, evolutionary properties, and domain 

structure. Group 1 TRIM proteins (G1) are present in both invertebrate and vertebrate 

species and have variable C-terminal domains, while Group 2 TRIM proteins (G2) are 

only found in vertebrates and have a C-terminal B30.2 domain 7. All TRIM proteins (G1 

and G2) have a conserved N-terminal RBCC motif, which consists of a RING domain, 

one or two BB domains, and a predicted CC region. The RING domain often has E3 

ligase activity, allowing some TRIMs to modify other proteins (including viral proteins) 

with ubiquitin or ubiquitin-like molecules 8–10.  

In the human genome, four G2 TRIM genes cluster together on chromosome 11: TRIM6, 

TRIM34, TRIM5, and TRIM22 (Online Mendelian Inheritance in Man #606559). 

Evolutionary analysis of this gene cluster has shown that TRIM6 and TRIM34 have 

evolved under purifying selection in primates, and that TRIM5 and TRIM22 have a 

dynamic evolutionary relationship in primates that includes episodes of gene expansion 

and gene loss 11,12. It was previously shown that TRIM5 and TRIM22 sequences have 

undergone positive selection in primates, with primate lineages showing positive 

selection in either TRIM5 or TRIM22, but not both 12–15. Moreover, the TRIM5 and 

TRIM22 genes of Haplorhini primates have evolved species-specific differences in 

transcriptional regulation, mediated by transposable element sequences in their non-

coding regions 16. Both TRIM5 and TRIM22 encode proteins with antiviral activity 

against retroviruses. TRIM5α inhibits HIV-1 replication in non-human primate cells; 

however, this activity is weak to absent in human cells 17–19. Conversely, TRIM22 

inhibits HIV-1 replication in several human cell lines and primary MDMs 20–23. The 

TRIM22 protein also inhibits the replication of EMCV, HBV, and IAV 24–26.  

Genetic conflict between host and viral genomes can lead to the rapid accumulation of 

amino acid replacement changes (dN) relative to synonymous changes (dS). This 
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phenomenon of positive selection (i.e. dN/dS >1) is one hallmark of the evolutionary 

‘battle’ that occurs between host antiviral factors and their pathogen antagonists 27,28. 

Although positive selection is not typically observed in other host genes, multiple 

antiviral factors contain genetic signatures of positive selection 29,30. For example, well-

known host restriction factors, including APOBEC3G, BST2/tetherin, and TRIM5α all 

contain positively selected sites that play key roles in their antiviral activities 13–15. 

A previous evolutionary study of TRIM22 in primates spanning ~33 million years of 

primate divergence identified a strong signature of positive selection for TRIM22 in 

hominoids and old world monkeys (OWM) 12. The positions of amino acid residues 

found to be under positive selection were located predominantly in the β2-β3 surface 

loop of B30.2 domain. In the present study, we analyzed TRIM22 sequences from 

evolutionarily diverse mammals spanning ~100 million years and used an evolution-

guided functional approach to identify residues that may dictate TRIM22-mediated 

antiviral activity. Using three paired evolutionary models, we identified residues in 

several TRIM22 domains that are predicted to be under strong positive selection in 

mammals. We demonstrated that the human TRIM22 gene exhibits remarkable genetic 

diversity and characterized one highly prevalent nsSNP (rs1063303:G>C) that is located 

at a site evolving under strong positive selection. Notably, we showed that nsSNP 

rs1063303:G>C has an inverse functional impact on TRIM22, whereby it increased 

TRIM22 expression levels and decreased TRIM22 antiviral activity. Our findings in this 

study indicate that genetic variation in the TRIM22 gene is both prevalent and ancient, 

and that positively selected sites in TRIM22 may influence its antiviral activity.  

 

2.2 Materials and methods 

2.2.1 Sequence analysis 

TRIM22 sequences were aligned in COBALT and a phylogenetic tree was generated 

using EvolView software 31,32. Positive selection was evaluated using the Selecton 

program, as previously described 33,34. Briefly, sequences were analyzed using three 

paired models, two nested (M8a and M8; M7 and M8) and one non-nested (M8a and 
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MEC). The models that allowed positive selection to occur (M8 and MEC) fit the data 

better than models that did not allow positive selection to occur (M8a and M7). The non-

synonymous (Ka) to synonymous (Ks) ratio (i.e. Ka/Ks) was also calculated for each 

codon using Selection. Codons with a Ka/Ks ratio >1.5 exhibited high probabilities of 

having evolved under positive selection and were highlighted in Fig 2.1b. Primate 

TRIM22 sequences in Fig 2.2c were also aligned in COBALT. Frequency data for the 

rs1063303:G>C nsSNP was extracted from the 1000 Genomes database and includes 

individuals from the following regions: African (AFN) population includes Nigeria, 

Kenya, The Gambia, Sierra Leone, Americans of African ancestry in southwestern 

United States, African Caribbean in Barbados; American (AMR) population includes 

Puerto Rico, Colombia, Peru, Mexican ancestry from Los Angeles, United States; 

European (EUR) population includes Italy, United Kingdom, Finland, Spain, Northern 

and Western European ancestry from Utah, United States; Asian (ASN) population 

includes China, Vietnam, and Japan 35.  

2.2.2 Cells, plasmids, and transfections 

Cells were maintained at 37°C with 5% CO2 in standard DMEM growth medium 

(Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% FBS, 100 

U/ml penicillin, and 100 µg/ml streptomycin). 293T and HeLa cell lines were obtained 

from the ATCC. HOS-CD4+ cell line was obtained from NIH AIDS Reagents. The 

empty vector plasmid (pGL3) was purchased from Promega and the pR9 plasmid 

encoding replication-competent HIV-1 was kindly provided by Dr. F. Bushman 

(University of Pennsylvania, USA). The coding region of the wild type TRIM22 gene 

(GenBank Accession NM_006074.4) was subcloned into p3xFLAG-CMV-10 (Sigma) 

using HindIII and XbaI restriction sites to generate pWT-T22. The flag-tagged nsSNP 

rs1063303:G>C plasmid (pSNP-T22) was created using PCR mutagenesis. pSNP-T22 

contains C in place of the ancestral allele G at nucleotide position 725 of the TRIM22 

coding region (GenBank Accession NM_006074). The following primers were used to 

amplify pWT-T22 and generate PCR fragment 1: “Forward WT” (5’ ACG TAA GCT 

TAT GGA TTT CTC AGT AAA GG 3’) and “Reverse SNP” (5’ GAC GAT CCC GTC 

AAC CTC CGC TGG AGA 3’). Similarly, PCR fragment 2 was generated using the 



 

 

61 

primers: “Forward SNP” (5’ TCT CCA GCG GAG GTT GAC GGG ATC GTC 3’) and 

“Reverse WT” (5’ ACG TTC TAG ATC AGG AGC TCG GTG GGC ACA CAG 3’). 

Following amplification, a 1:25 dilution of PCR fragment 1 and PCR fragment 2 was 

added with “Forward WT” and “Reverse WT” primers together in a PCR reaction. The 

amplified TRIM22 coding region containing the nsSNP was subcloned into p3xFLAG-

CMV-10 (Sigma) using HindIII and XbaI to generate pSNP-T22. The entire coding 

region of pSNP-T22 was sequenced and no other PCR-introduced variations were 

detected. 293T and HeLa cells were seeded in 12-well or 6-well plates and transfected 

using Lipofectamine 2000 (Invitrogen) with 2 µg or 5 µg of plasmid DNA (pEV, pWT-

T22, or pSNP-T22), respectively. As a control for transfection efficiency, a plasmid 

encoding enhanced green fluorescent protein (peGFP) (Clontech) was included in the 

transfections at a concentration of one tenth the total amount of transfected DNA. The 

percent GFP+ cells were measured using standard flow cytometry. Unless otherwise 

stated, all co-transfections of pR9 with pEV, pWT-T22, and pSNP-T22 were performed 

at a ratio of 10:1. 

2.2.3 RNA isolation and real-time PCR 

Total RNA was extracted from cells using the R&A-BLUE Total RNA Extraction kit 

(Frogga Bio). To ensure that no detectable genomic or plasmid DNA was carried over 

during the RNA purification, 0.1µg of each RNA sample was subjected to PCR (35 

cycles) and real-time PCR using primers within the TRIM22 coding region or primers 

specific to the TRIM22 3’ untranslated region. 1µg of DNase-treated RNA was then 

reverse transcribed to cDNA using the M-MLV reverse transcriptase and Oligo(dT) 

primers (Invitrogen). Prior to real-time PCR, cDNA samples were diluted 1:10 with 

water. Each PCR reaction consisted of 10µl of SYBR Green Master Mix, 2µl of the 

appropriate primers (1µl of 10µM forward primer (5’ CAT CTG CCT GGA GCT CCT 

GAC 3’) and 1µl of 10µM reverse primer (5’ AGA TGA TCA CTG ACT CCT TGA 

TCT TTG C 3’), 1µl of diluted cDNA, and water to a total volume of 20µl. Real-time 

PCR was run on the Rotor-Gene 6000 real-time PCR machine (Corbett Life Science) 

under the following cycling conditions: 10 min at 95°C and 40 cycles of 10 sec at 95°C, 

15 sec at 60°C, and 20 sec at 72°C. The Rotor-Gene 6000 series software (version 1.7) 
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was used to determine the CT for each PCR reaction. All samples were amplified in 

triplicate with no template controls and the mean was used for further analysis. 

2.2.4 Western Blotting 

Cells were pelleted by centrifugation (350 x g for 10 minutes), washed twice with PBS, 

and lysed in 1X RIPA buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1x 

Complete Protease Inhibitor (Roche), 1% Triton X-100, 0.1% SDS). Virus released into 

the supernatant was clarified by centrifugation, pelleted by centrifugation (21,000 x g for 

2 hours) over a cushion of 20% sucrose and lysed with 1X RIPA buffer. Protein was 

separated on a 12% SDS-PAGE gel and then transferred to a FluorTransW membrane 

(Pall) by semi-dry transfer. Following transfer, the membrane was blocked for 1 hour in 

LI-COR Blocking Buffer (LI-COR Biosciences) and incubated overnight with primary 

antibody at 4°C (1:1000 dilution with LI-COR Blocking Buffer). Detection was carried 

out using an IRDye-labeled secondary antibody (1:20,000 dilution with LI-COR 

Blocking Buffer for 30 minutes) and the LI-COR Odyssey Detection System (LI-COR 

Biosciences).    

2.2.5 Confocal immunofluorescence microscopy 

Cells were seeded in 12-well plates on 18mm coverslips. 24 hours post-transfection, cells 

were washed with PF buffer (1x PBS + 1% FBS), fixed (1x PBS + 5% formaldehyde + 

2% sucrose for 10 minutes), and permeabilized (1x PBS, 5% NP-40, 10% sucrose for 10 

minutes). Cells were incubated with primary antibodies for 1 hour (1:1000 dilution of 

mouse anti-Flag antibody in PF buffer), washed thoroughly with PF buffer, and then 

incubated with secondary antibodies for 1 hour (1:1000 dilution of AlexaFluor 546 anti-

mouse antibody in PF buffer). Coverslips containing the cells were mounted on glass 

slides with Vectashield mounting media (Vector laboratories) and slides were examined 

using a Zeiss LSM 510 confocal fluorescence microscope. DAPI staining was used to 

visualize the nuclei (blue). Images shown represent optical slices taken through the center 

of cells from a series of z-stack images with a 63x Plan-Apochromat oil immersion 

objective lens (Numerical Aperture = 1.4).  
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2.2.6 Neutrality tests 

Tajima’s D and Fu’s FS neutrality tests were performed to distinguish between neutrally 

evolving sequences under mutation-drift equilibrium and sequences evolving under non-

neutral processes such as balancing selection 36–38. These two tests are based on the 

principle that a recent population expansion associated with a non-neutral process will 

detect a shift in the allele frequency spectrum compared to a neutral Wright-Fisher 

model. A negative Tajima’s D signifies an excess of low frequency variants relative to 

expectation, indicating population size expansion (e.g. after a bottleneck or selective 

sweep) and/or purifying selection. A positive Tajima’s D signifies low levels of both low 

and high frequency (i.e. an excess of intermediate frequency) variants, indicating a 

decrease in population size and/or balancing selection. A negative value of Fu’s FS is 

evidence for an excess number of rare alleles, as would be expected from a recent 

population expansion or from genetic hitchhiking. A positive value of FS is evidence for a 

deficiency of alleles, as would be expected from a recent population bottleneck or from 

overdominant selection. The FS statistic was considered significant at the 5% level if its P 

value was below 0.02 38. The analyses were performed using the software Arlequin 

3.5.1.3 39. Simulated P values were generated using 10,000 simulations under a model of 

selective neutrality.  

2.2.7 Statistical analysis 

Unless stated otherwise, statistical analyses were performed using GraphPad Prism 

(Version 6.0). P values of less than 0.05 were considered statistically significant. 

 

2.3 Results  

2.3.1 Positive selection in multiple TRIM22 domains among 
mammals 

To better understand the evolution of TRIM22, and to examine how selective pressures 

have shaped its antiviral properties, we obtained the TRIM22 coding sequence from 29 

evolutionarily diverse mammalian species (Table 2.1). We aligned these sequences and 
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Table 2.1 

Table 2.1: Mammalian TRIM22 coding sequences used for Selecton analysis. 

 

Common name Scientific name Type 1 NCBI Reference  Verified 2 

Human Homo sapiens HOM NP_006065.2  Yes  
Chimpanzee Pan troglodytes HOM NP_001106867.1 Yes  
Bonobo Pan paniscus HOM XP_003819095.1  Yes  
Gorilla Gorilla gorilla HOM XP_004050610.1   Yes  
Sumatran Orangutan Pongo abelii HOM NP_001153280.1   No 
Bornean Orangutan Pongo pygmaeus HOM EU124707 Yes  
Island Siamang Hylobates syndactylus HOM EU124708 Yes  
White-Cheeked Gibbon Nomascus leucogenys  HOM NP_001267028.1  Yes  
African Green  Cercopithecus aethiops OWM EU124709 Yes  
Patas  Erythrocebus patas OWM EU124696 Yes  
Sooty Mangabey Cercocebus atys OWM EU124695 Yes  
Baboon Papio anubis OWM NP_001162333.1  No 
Rhesus Macaque Macaca mulatta OWM NP_001106830.1  Yes  
Kikuyu Colobus Colobus guereza kikuyuensis OWM EU124712 Yes  
Red-Shanked Douc Pygathrix nemaeus OWM EU124710 Yes  
Bolivian Squirrel  Saimiri boliviensis NWM XM_003923356.1 No 
Common Squirrel  Saimiri sciureus sciureus NWM EU124716 Yes  
White-Faced Saki Pithecia pithecia pithecia NWM EU124715 Yes  
Dusky Titi Callicebus moloch NWM EU124692 Yes  
Common Marmoset Callithrix jacchus NWM XM_002754905.2 No 
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Pygmy Marmoset Callithrix pygmaea NWM EU124714 Yes 
Bolivian Red Howler Alouatta sara NWM EU124713  Yes  
Southern White Rhinoceros  Ceratotherium simum simum OM XM_004418316.1 No 
Cat Felis catus OM XM_003992898.1  No 
Pacific Walrus Odobenus rosmarus divergens OM XM_004407583.1 No 
Giant Panda Ailuropoda melanoleuca OM XM_002926071.1 No 
Dog Canis lupus familiaris OM XM_542402.4 No 
Florida Manatee Trichechus manatus latirostris OM XM_004389072.1 No 
African Elephant Loxodonta Africana OM NW_003573536.1 No 

1 Mammals are classified as hominoids (HOM), old world monkeys (OWM), new world monkeys (NWM) or other mammals (OM).  
2 Sequences were independently verified in 12 
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generated a phylogenetic tree, representing ~100 million years of evolution (Fig 2.1a). 

Our primate phylogeny was consistent with previously published studies and only 

orthologous non-primate sequences were included in our analysis (Table 2.1) 12. Using 

this dataset, we employed the software program Selecton to evaluate TRIM22 evolution 

among mammals. Selecton uses several standard evolutionary models, including two 

nested paired models (M8a and M8; M7 and M8) and one non-nested paired model (M8a 

and MEC) 33,34. We compared the nested pairs using the likelihood ratio test and found 

that in both cases, the model that allowed sites to evolve under positive selection (M8) fit 

the data significantly better than the models that did not (M8a and M7) (Table 2.2). The 

non-nested MEC model differs from the nested model in that it accounts for differences 

in amino acid replacement rates. A position with radical amino acid replacements will 

obtain a higher Ka value than a position with more moderate replacements. Akaike 

Information Content (AICc) scores are compared between the MEC and the M8a models. 

The lower the AICc score, the better the fit of the model to the data, and hence the model 

is considered more justified 33. Comparison of the AICc scores of the MEC and M8a 

models were indicative of positive selection (M8a: 25211.8, MEC: 25079.2) and that the 

data was more congruent with the model that allowed for positive selection (MEC) than 

the one that did not (M8a) (Table 2.2).  

The Selecton analysis identified several codons with high probabilities of having evolved 

under positive selection (Fig 2.2). Eleven of the 28 codons predicted to be evolving under 

positive selection were located in the B30.2 domain (Fig 2.1b Table 2.3). Six of these 

eleven codons (K324, R327, T330, K332, S334, C337) clustered together in the one 

region, whereas the other five (S377, S395, G471, L488, V489) were more dispersed. 

The codon numbering uses the translation initiation codon as codon 1. Interestingly, 

many of the positively selected codons corresponded in location and spacing to 

previously identified positively selected codons in the TRIM5α protein (K324, P325, 

G330, R332, R335, Q337, F339, V340, K389, Q471, G483) (Fig 2.1c) 15. In TRIM5α, 

most positively selected codons are located in one of four variable regions (v1-v4) in the 

B30.2 domain. These variable regions are also found in a number of other TRIM 

proteins, including TRIM22 15,19. The v1 region of TRIM5α (or the ‘antiviral patch’
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Figure 2.1: Mapping positively selected sites in the TRIM22 protein. 

(a) Phylogenetic tree showing the evolutionary relationship among 29 mammalian 

species for the TRIM22 protein. Tree was created using COBALT and EvolView 

software. Numbers shown represent arbitrary distances from each branch point on the 

tree. Hominoids (HOM) are highlighted in red, old world monkeys (OWM) in purple, 

new world monkeys (NWM) in blue, and additional mammals in green. (b) Bayesian 

analysis of mammalian TRIM22 coding sequences. Ka/Ks values for each codon are 

plotted on y-axis. Ka/Ks ratio >1 indicates positive selection, Ka/Ks ratio <1 indicates 

purifying selection, and Ka/Ks ratio of 1 indicates neutral selection. Asterisks show 

approximate location of codons under strong positive selection. TRIM22 domains are 

shown above the graph, along with the approximate location of functional motifs 

(C15/18: two cysteine residues required for E3 ligase activity; C97, H100: zinc finger 

motif in the BB2 domain; predicted CC region; NLS). The ‘antiviral patch’ refers to 

several residues previously shown to be a major specificity determinant for TRIM5α-

mediated anti-HIV activity. (c) Comparative model showing the putative B30.2 3D 

structures for both TRIM5α and TRIM22. The blue and red colored regions represent 

structurally conserved regions (blue) or regions with no correspondence in structural 

proximities (red) after structural alignment. The QH value is a metric for structural 

homology (an adaptation of the Q value that measures structural conservation). Q=1 

implies that two structures are identical. When Q has a low score (0.1-0.3), structures are 

not aligned well (i.e. only a small fraction of the Cα atoms superimpose). Colored balls 

correspond to residues (van der Waals radii) predicted to evolve under strong positive 

selection (colored yellow for TRIM5α and green for TRIM22). (d) Molecular model of 

TRIM22’s B30.2 domain. The colored regions in the image on the left show the four 

variable regions (v1: red, v2: blue, v3: magenta, and v4: green). The image on the right 

shows only the variable regions (v1-v4) plus the location of sites predicted to evolve 

under strong positive selection (yellow). Molecular models were created with Visual 

Molecular Dynamics (VMD) software (v1.9.1) support. VMD is developed with NIH 

support by the Theoretical and Computational Biophysics group at the Beckman Institute, 

University of Illinois at Urbana-Champaign. 
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Figure 2.1 

 

Figure 2.1: Mapping positively selected sites in the TRIM22 protein. 
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Table 2.2 

Table 2.2: Models of evolution applied to TRIM22 coding sequences. 

 

Nested Log-likelihood 2(Ln1-Ln0) Degrees of Freedom Χ
2 

M8a, M8 -12601.9, -12599.1 5.6 1 <0.001 
M7, M8 -12608.1, -12599.1 18 2 <0.001 
Non-nested  Log-likelihood AICc Score∆ 1 Parameters 
M8a, MEC -12601.9, -12534.6 25211.8, 25079.2 4, 5 

1 AICc Score∆ = -2*logL+2p*(N/N-p-1), where L is the likelihood of the model given the data, p is the 
number of free parameters, and N is the sequence length. The lower the AICC score, the better the fit of the 
model to the data, and hence the model is considered more justified.  
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Figure 2.2: Selecton analysis of mammalian TRIM22 coding sequences. 

Selecton results for 29 mammalian TRIM22 coding sequences using the MEC model. 

Positively selected sites are colored orange or yellow (Ka/Ks > 1), whereas sites 

undergoing purifying selection are colored shades of purple (Ka/Ks <1). Sites colored 

white have a Ka/Ks ratio = 1.  
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Figure 2.2 

 
 

Figure 2.2: Selecton analysis of mammalian TRIM22 coding sequences. 
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Table 2.3 

Table 2.3: Positive selection in TRIM22 protein domains. 

 

Domain (AA 1) Percent PS 2 Ka/Ks 3 Positively selected codons 

RING (1-59) 1.00 1.86 D2, F3, S4, S50, S54 
SP1 (60-96) 0.60 1.97 T61, N76, V96 
BB2 (97-129) 0.40 2.30 Q105, I106 
CC (130-233) 0.60 1.83 A171, V192, T220 
SP2 (234-296) 0.80 1.90 L241, R242, K257, R279 
B30.2 (297-498) 2.21 1.90 K324, R327, T330, K332, S334, 

C337, S377, S395, G471, L488, V489 

1 AA: Amino acids included in each domain 
2 Percent PS: Percent of positively selected sites in each domain compared to the total number of sites 
3 Ka/Ks: Number of non-synonymous substitutions per non-synonymous site (Ka) to the number  
of synonymous substitutions per synonymous site (Ks) 
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region) was previously shown to be a major determinant for species-specific HIV-1 

restriction in primates 18. Mutations in other variable regions (v2-v4) of TRIM5α have 

also been shown to alter HIV-1, SIV, and N-MLV restriction 40–44. Remarkably, all of the 

positively selected codons in TRIM22’s B30.2 domain (except G471) were located in one 

of its v1-v4 regions. Six positively selected codons were found in the v1 region, two in 

the v2 region, and two in the v4 region. Unlike TRIM5α, there were no positively 

selected codons in TRIM22’s v3 region (Fig 2.1d).  

Outside of the B30.2 domain, we also found evidence for positively selected codons in 

each of TRIM22’s other domains (Table 2.3). Many of these codons clustered together 

around putative functional motifs in the TRIM22 protein. For example, three positively 

selected codons (V96, Q105, I106) surrounded a zinc finger motif in the BB2 domain 

(Fig 2.1b, Table 2.3). Zinc finger motifs are critical for proper domain folding and often 

contribute to protein-protein interactions 45. We also identified four positively selected 

codons (L241, R242, K257, R279) that flanked the nuclear localization signal (NLS) in 

TRIM22’s SP2 domain (Fig 2.1b, Table 2.3). Along with amino acids 491-494 in the 

B30.2 domain, TRIM22’s NLS was previously shown to be required for its nuclear 

localization 46,47. Notably, we also identified two positively selected codons (L488, V489) 

in the B30.2 domain that are located directly upstream of amino acids 491-494 (Fig 2.1b 

Table 2.3).  

 

2.3.2 Genetic Variation in the Human TRIM22 Gene 

Since TRIM22 is an integral component of the host antiviral response, and since it has 

been linked to a number of diseases, we also had an interest in its evolutionary pattern 

among humans. To examine genetic variation in the human TRIM22 gene, we compiled a 

list of known nsSNPs in the TRIM22 coding region using the National Center for 

Biotechnology Information (NCBI) dbSNP database. To date, 64 nsSNPs and 2 indels 

have been identified in the exons of human TRIM22, most of which are found in its 

B30.2 domain. The majority of these nsSNPs result in missense variations; however, 

several generate truncated versions of the TRIM22 protein (nonsense and frameshift 
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variations). To identify nsSNPs that may play important roles in the activity of human 

TRIM22, we used a program called Sorting Intolerant From Tolerant (SIFT) to predict 

their functional effects 48. SIFT analysis predicted that 23 nsSNPs were deleterious to 

TRIM22 function and 33 nsSNPs were tolerated. Paradoxically, two of the potentially 

deleterious nsSNPs (rs192306924:C>A, rs1063303:G>C) were located at amino acid 

sites evolving under strong positive selection in mammals (Table 2.2). Due to its high 

prevalence in the human population, we selected nsSNP rs1063303:G>C for further 

analysis and characterization.     

The guanine (G) to cytosine (C) nucleotide change in nsSNP rs1063303:G>C results in 

an arginine (R) to threonine (T) amino acid change at position 242 in the TRIM22 protein 

(Fig 2.3a). To determine its prevalence in the human population, we obtained frequency 

data from four different ethnic populations using the 1000 Genomes database 35. 

Interestingly, we observed large differences in the frequency of nsSNP rs1063303:G>C 

among various ethnic groups. For example, 31% of European (EUR) individuals were 

homozygous for the nsSNP (C/C) genotype; however, only 3% of Asian (ASN) 

individuals were homozygous for C/C. African (AFN) and American (AMR) populations 

had intermediate nsSNP frequencies, with 15% and 19% of individuals who were 

homozygous for the C/C genotype, respectively (Fig 2.3b). An alignment of amino acid 

site 242 in mammals revealed that the ancestral allele (G) was highly conserved in 

hominoids (HOM) and Old World monkeys (OWM), but variable in New World 

monkeys (NWM) and other mammals (Fig 2.3c). The reason for these frequency 

differences among humans for nsSNP rs1063303:G>C is unknown.  

Tests for Selective Neutrality 

A recent genome-wide scan of two ethnic populations identified TRIM22 as one of 60 

‘extreme’ genes undergoing balancing selection in humans 49. To distinguish between a 

neutrally evolving site under mutation-drift equilibrium and a site evolving under non-

neutral processes such as balancing selection, we performed both the Tajima’s D and 

Fu’s FS tests for neutrality on the TRIM22 rs1063303 variant. These two tests are based 

on the principle that a recent population expansion associated with a non-neutral process  
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Figure 2.3: Genetic variation at amino acid site 242 in the TRIM22 protein.  

(a) Schematic showing the approximate location of nsSNP rs1063303:G>C in the human 

TRIM22 protein. Inset shows the nucleotide (red) and amino acid changes for nsSNP 

rs1063303:G>C. C15/18: two cysteine residues required for E3 ligase activity; C97, 

H100: zinc finger motif in the BB2 domain; predicted CC region; NLS. The ‘antiviral 

patch’ refers to several residues previously shown to be a major specificity determinant 

for TRIM5α-mediated anti-HIV activity 18. (b) Genotype frequency data for nsSNP 

rs1063303:G>C in African (AFR) (n= 246), American (AMR) (n= 181), Asian (ASN) 

(n= 286), and European (EUR) (n= 379) 1000 Genomes populations 35. For each 

population, the percentage of wild type homozygotes (GG), heterozygotes (GC), and 

nsSNP homozygotes (CC) are colored green, red, or blue, respectively. (c) Sequence 

alignment of nsSNP rs1063303:G>C in HOM and OWM (left) as well as NWM and 

additional mammals (right). Amino acid changes at site 242 (location of nsSNP 

rs1063303:G>C in human TRIM22) are denoted by an asterisk and highlighted in bold.  
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Figure 2.3 

 

Figure 2.3: Genetic variation at amino acid site 242 in the TRIM22 protein. 
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will detect a shift in the allele frequency spectrum compared to a neutral Wright-Fisher 

model. As shown in Table 2.4, Tajima’s D values were positive for all populations, 

indicating an excess of intermediate frequency nucleotide site variants compared to the 

expectation under a neutral model of evolution. These deviations from neutrality were 

significant (P <0.05) for the AFR, AMR and EUR populations, but not for the ASN 

population. Similarly, the results of Fu’s FS test also showed largely positive values for 

AFR, AMR and EUR populations, indicating an excess of intermediate haplotypes over 

that expected under neutrality. None of the FS coefficients were considered significant at 

the 5% level (P <0.02); however, the FS coefficients for AFR, AMR and EUR 

populations approached significance.  

 

2.3.3 Functional Analysis of the rs1063303:G>C Polymorphism 

To investigate whether nsSNP rs1063303:G>C was deleterious to TRIM22 function, we 

transfected human cells with an empty vector control plasmid (pEV), a plasmid encoding 

flag-tagged wild type TRIM22 (pWT-T22), or a plasmid encoding flag-tagged TRIM22 

with the R242T variation (pSNP-T22). Total RNA was isolated 24 hours post-

transfection, reverse-transcribed into cDNA and subjected to quantitative polymerase 

chain reaction (qPCR). Surprisingly, cells transfected with pSNP-T22 exhibited an 

average 40-fold increase in TRIM22 mRNA compared to cells transfected with pWT-T22 

(p= 0.0001, unpaired Student’s t test) (Fig 2.4a). Whole cell lysates from similarly 

transfected cells were subjected to Western blot analysis using anti-flag to analyze 

TRIM22 levels. Densitometric analysis of Western blots after normalization to β-actin 

levels and transfection efficiency revealed that TRIM22 protein levels were 10.3 fold 

higher in cells transfected with pSNP-T22 compared to cells transfected with pWT-T22 

(Fig 2.4b). We also examined the effect of nsSNP rs1063303:G>C on the sub-cellular 

localization of TRIM22 using confocal microscopy. Consistent with previous reports, 

WT-T22 protein localized predominantly in the nucleus and formed punctate bodies 
25,50,51 (Fig 2.4c). In contrast, SNP-T22 protein localized diffusely in both the cytoplasm 

and the nucleus.  
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Table 2.4 

Table 2.4: Results of Tajima’s D and Fu’s FS neutrality tests. 

 

Population Tajima’s D p-value Fu’s FS p-value 
African (AFR) 2.56 0.028 2.06 0.050 
Asian (ASN) 0.82 0.251 0.29 0.439 
American (AMR) 2.49 0.031 1.83 0.065 
European (EUR) 2.79 0.017 2.51 0.028 
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Figure 2.4: nsSNP rs1063303:G>C alters TRIM22 expression and antiviral activity.  

(a) Total RNA was harvested from HeLa cells transfected with empty vector control 

plasmid (pEV), plasmid expressing wild type TRIM22 (pWT-T22) (rs1063303:G), or 

TRIM22 plasmid containing nsSNP rs1063303:G>C (pSNP-T22). RNA was reverse 

transcribed into cDNA and quantified using qPCR. Data shown as the fold change 

relative to wild type TRIM22 mRNA levels after normalization to β-actin levels. P= 

0.0001 unpaired Student’s t test. (b) HeLa or HOS cells were transfected with equivalent 

amounts of one of the following plasmids: pEV, flag-tagged pWT-T22, or flag-tagged 

pSNP-T22. TRIM22 protein was detected via Western blotting using an anti-flag 

antibody. β-actin was used as a loading control. (c) Confocal immunofluorescence 

microscopy of HeLa cells transiently transfected with pEV, pWT-T22 or pSNP-T22. 

HeLa cells were fixed 24 hours post-transfection and TRIM22 localization was detected 

using an anti-flag antibody (green). Images shown represent optical slices taken through 

the center of cells from a series of z-stack images with a 63x Plan-Apochromat oil 

immersion objective lens (Numerical Aperture = 1.4). DAPI staining was used to 

visualize the nuclei (blue). Scale bars = 10 µm. (d) Lysates from HeLa cells co-

expressing the full-length replication-competent HIV-1 plasmid (pR9) and increasing 

concentrations of either pWT-T22 or pSNP-T22 were resolved by SDS-PAGE and 

subjected to Western blotting using anti-p24CA or anti-β-actin (β-actin was used as a 

loading control. Data shown are representative of at least three independent experiments.  
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Figure 2.4 
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Figure 2.4: nsSNP rs1063303:G>C alters TRIM22 expression and antiviral activity. 

 

 



 

 

81 

Previous studies have demonstrated that TRIM22 can inhibit HIV-1 particle production 

in human cells 20–23. To assess the impact of nsSNP rs1063303:G>C on TRIM22’s 

antiviral activity, human osteosarcoma (HOS) cells or HeLa cells were co-transfected 

with a plasmid encoding replication-competent proviral HIV-1 (pR9) and either pWT-

T22 or pSNP-T22. HIV-1 Gag is expressed as the Pr55Gag polyprotein, which includes 

the matrix (p17MA), capsid (p24CA) and nucleocapsid (p7NC) proteins. Pr55Gag is 

proteolytically cleaved into MA, CA and NC proteins during the assembly/budding 

process. Intracellular Gag protein levels were measured by quantitative Western blotting 

using anti-p24CA. Cells expressing increasing concentrations of WT-T22 exhibited 

decreasing levels of intracellular HIV-1 Gag protein expression. Cells expressing 

increasing concentrations of SNP-T22 did not exhibit a substantial reduction in 

intracellular Gag protein production (Fig 2.4d). Collectively, these data show that the 

rs1063303:G>C variant had an inverse functional impact where it increased TRIM22 

expression and decreased the antiviral activity of TRIM22. 

 

2.4 Discussion 

Recent studies on host restriction factors have used an evolutionary approach to identify 

amino acid residues that are required for their antiviral activity. These studies exploit the 

evolutionary ‘arms race’ that occurs between host restriction factors and viruses as they 

compete to gain an evolutionary advantage over each other. As a result of this 

evolutionary ‘battle’, many host restriction factors contain genetic signatures of positive 

selection, particularly at amino acid sites that interact with viral antagonists 13–15. Here, 

we used a similar evolutionary approach to analyze TRIM22 sequences spanning >100 

million years of evolution. In addition to the positively selected residues previously 

identified in the coiled-coil and B30.2 domains 12, we identified positively selected 

residues in several other domains of TRIM22. We also showed that the human TRIM22 

gene contains multiple nsSNPs with the potential to alter TRIM22 function and identified 

a highly prevalent nsSNP in TRIM22 that alters its expression and antiviral activity 

against HIV-1 replication.  
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Positively selected residues are often located near protein binding sites and tend to be 

solvent-exposed. In addition, these residues typically occur in clusters with other 

positively selected residues 52. Although the tertiary structure of TRIM22 has not yet 

been resolved, its primary amino acid sequence contains a number of putative protein 

binding motifs. For example, RING domains with E3 ligase activity bind E2 conjugating 

enzymes via their zinc finger motifs to mediate ubiquitin transfer to a substrate protein 45. 

TRIM22 contains a zinc finger motif in its RING domain that facilitates E3 ligase activity 

in combination with the E2 enzyme UbcH5b 9. TRIM22 also contains a second zinc 

finger motif in its BB2 domain, a bipartite nuclear localization signal in its Spacer 2 

domain, and a short sequence in its B30.2 domain that is required for its nuclear 

localization (amino acids 491-494) 46,47. Remarkably, 13 of the 28 positively selected 

residues that we identified in TRIM22 are located within 15 amino acids of one of these 

motifs (Figure 2.1c). Most are not located directly within the motifs, but instead cluster 

around them in groups of three or four. Although in TRIM22 none of these motifs have 

been explicitly shown to interact with other proteins, this type of evolutionary pattern 

suggests that they may indeed function as protein binding sites.  

We identified a number of positively selected residues in the B30.2 domain of TRIM22 

that correspond in location and spacing to positively selected residues in TRIM5α. In 

addition, similar to TRIM5α, we showed that the majority of these residues are located in 

one of four variable regions (v1-v4). In rhesus monkey TRIM5α, v1-v4 form flexible 

loops that map to the structurally divergent face of the protein 53. Multiple residues within 

TRIM5α v1-v4 regions are critical for virus restriction, including several positively 

selected sites. For example, residues 324 and 332 in the v1 region and residues 385 and 

389 in the v2 region are required for TRIM5α-mediated inhibition of HIV-1 and/or SIV 

in hominoids 18,41,42. Moreover, in the v3 region, residues 409 and 410 are required for N-

MLV restriction by human TRIM5α 43. Unlike TRIM5α, there are no residues evolving 

under positive selection in the v3 region of TRIM22. Thus, it is possible that this region 

of TRIM22 is not subject to strong evolutionary pressures (e.g. from viral antagonists). 

Consistent with this, TRIM22 does not inhibit N-MLV replication in human cells 23. 

Similar to TRIM5α, TRIM22 has been shown to interact with the HIV-1 Gag and/or 

capsid protein 23,54,55. Because the v1-v4 regions of rhesus monkey TRIM5α form an 
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extensive HIV-1 capsid binding interface, it is possible that these regions are also 

important for TRIM22 and HIV-1 Gag/capsid binding. It will be interesting to learn 

whether the v1, v2, and v4 regions of TRIM22 are targeted by an HIV-1 antagonist, 

thereby placing evolutionary pressure on TRIM22 to, for example, maintain its 

interaction with the HIV-1 Gag protein.  

Genes that evolve under positive selection during interspecies evolution also tend to be 

highly polymorphic in humans 56. We demonstrate here that the human TRIM22 gene 

contains multiple nsSNPs and that many of these nsSNPs are predicted to be deleterious 

to protein function. We characterized one potentially deleterious nsSNP 

(rs1063303:G>C) that is highly prevalent in the human population and show that it is 

located at an amino acid site in TRIM22 that has undergone strong positive selection in 

mammals. Of interest, the frequency of nsSNP rs1063303:G>C varies considerably 

among different ethnic populations. Ethnic differences in nsSNP frequencies have been 

reported for many genes, including several nsSNPs in toll-like receptor genes and a 

number nsSNPs associated with autoimmune disease 57,58. It is possible that the 

differences in nsSNP rs1063303:G>C frequency are due to differential prevalence of 

certain diseases in different geographic locations. For example, one nsSNP in the β-

globin gene is highly prevalent in regions that are endemic for malaria, but not in non-

endemic regions. This nsSNP produces an abnormal version of the β-globin protein 

called hemoglobin S (HbS), which causes sickle-cell disease in homozygotes (HbSS), but 

affords protection from malaria in heterozygotes (HbAS) 59. As such, the ‘deleterious’ 

HbS allele is maintained at higher than expected frequencies in certain populations. This 

type of evolution, whereby polymorphism is maintained in a population because it 

confers a selective advantage, is referred to as balancing selection 30.  

Several host restriction factors have been shown to undergo balancing selection in 

primates, including human TRIM5α and primate OAS1 60–62. Moreover, a recent genome-

wide scan of two ethnic populations identified TRIM22 as one of 60 ‘extreme’ genes 

undergoing balancing selection in humans 49. Given its high frequency in certain human 

populations and history of positive selection in mammals, it is possible that nsSNP 

rs1063303 confers some selective advantage in heterozygotes and is maintained by 
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balancing selection in these populations. For example, the nsSNP allele may be more 

advantageous against a virus other than HIV-1 that is particularly prevalent in certain 

geographic locations. The overall positive values resulting from the Tajima’s D and Fu’s 

FS tests suggest that there is an excess of intermediate frequency of the TRIM22 

rs1063303 alleles, which can imply a decrease in population size and/or balancing 

selection. Together, our analyses reveal a complex and multifaceted scenario for the 

evolution of nsSNP rs1063303 and the TRIM22 gene.   

Other retroviral restriction factors, such as APOBEC3G and TRIM5α, contain nsSNPs 

that alter their antiviral activity against HIV-1. For example, the H186R variant in 

APOBEC3G is strongly associated with CD4+ T-cell decline and accelerated disease 

progression in African Americans. Interestingly, this association is not present in 

Caucasian individuals or Europeans 63–65. A number of TRIM5α nsSNPs, including 

H43Y, R136Q, and G249D, also correlate with notable differences in HIV-1 acquisition 

and disease progression 66,67. We showed here that a TRIM22 clone containing the 

ancestral allele rs1063303:G potently inhibited particle production of full-length 

replication-competent HIV-1; whereas a TRIM22 clone containing the derived allele 

rs1063303:C drastically increased the amount of TRIM22 mRNA and protein in human 

cells, altered its sub-cellular localization, and failed to inhibit HIV-1 particle production. 

This finding contrasts a previous study by Ghezzi and colleagues 68 who showed that a 

TRIM22 clone containing the derived allele rs1063303:C inhibited expression of 

luciferase from a reporter construct containing luciferase under control from the HIV-1 

long terminal repeat (LTR) promoter. A likely reason for this difference could be 

attributed to differences between the two systems where we used full-length HIV-1 and 

they used only the HIV-1 LTR, implying that other HIV-1 proteins (e.g. antagonists) may 

affect the antiviral activity of TRIM22. In addition, Ghezzi and colleagues 68 showed that 

SNP rs1063303 alone was not associated with disease progression, however a TRIM22 

haplotype involving specific SNP alleles of rs1063303 and rs7935564 was found more 

frequently in advanced progressors than in long-term non-progressors. Together, these 

findings highlight the importance of function-altering TRIM22 SNPs and haplotypes, 

warranting further investigation into their clinical significance. 
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It remains unclear how TRIM22 rs1063303:G>C increases TRIM22 mRNA and protein 

levels. Non-synonymous SNPs in the gene coding region are typically expected to alter 

protein function, expression, conformation or stability. It is possible that the amino acid 

change associated with rs1063303 may affect TRIM22 protein stability or its ability to 

undergo self-ubiquitination and proteasomal degradation. TRIM22 has been shown to 

inhibit expression from the promoters of HIV-1 and hepatitis B virus 20,22,25. The different 

TRIM22 SNP rs1063303 variants may exhibit reduced or enhanced TRIM22 activity, 

thereby affecting gene expression from TRIM22 target promoters such as the HIV-1 LTR 

and/or the promoter controlling expression of TRIM22 itself. Other explanations for the 

observed difference in TRIM22 RNA and protein levels include, among others, structural 

changes in the RNA transcript that can in turn influence splicing, stability or translational 

regulation. Further studies are required to determine precisely how TRIM22 

rs1063303:G>C affects TRIM22 mRNA and protein levels.   

Interestingly, TRIM22 mRNA expression levels have previously been shown to influence 

HIV infection in vivo. In the Centre for the AIDS Programme of Research in South 

Africa (CAPRISA) study cohort, expression of TRIM22 mRNA was positively correlated 

with CD4+ T-cell count and negatively correlated with viral load 69. Conversely, a study 

in the Swiss HIV study cohort found that expression of TRIM22 mRNA was positively 

correlated with HIV-1 RNA levels at the viral set point 70. Given the differences in 

nsSNP rs1063303 frequency among different ethnic populations, it is interesting to note 

that the CAPRISA cohort is comprised entirely of black African females, whereas the 

Swiss cohort is comprised entirely of Caucasian individuals. It is tempting to speculate 

that the high prevalence of nsSNP rs1063303:G>C in Caucasians is at least partially 

responsible for the increased viral load in these individuals. Further studies that include 

populations from different geographic regions are needed to determine if and how nsSNP 

rs1063303 influences HIV-1 infection in these different groups and if other SNPs are 

involved.  

Previous studies on host restriction factors have shown that they are rapidly evolving 

genes that must remain genetically ‘flexible’ to adapt to changing pathogenic landscapes. 

Although their flexibility is integral to host survival, it can also be detrimental to protein 
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function. Our study characterizes the effects of nsSNP rs1063303:G>C on TRIM22 

protein function and provides insight into the ancient and extensive genetic variation 

within the TRIM22 gene.  
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Chapter 3 

 

3 In silico analysis of functional single nucleotide 
polymorphisms in the human TRIM22 gene 2 

TRIM22 is an evolutionarily ancient protein that plays an integral role in the host innate 

immune response to viruses. The antiviral TRIM22 protein has been shown to inhibit the 

replication of a number of viruses, including HIV-1, HBV and IAV. TRIM22 expression 

has also been associated with multiple sclerosis, cancer, and autoimmune disease. In this 

study, multiple in silico computational methods were used to identify nsSNPs that are 

deleterious to TRIM22 structure and/or function. A sequence homology-based approach 

was adopted for screening nsSNPs in TRIM22, including six different in silico prediction 

algorithms and evolutionary conservation data from the ConSurf web server. In total, 14 

high-risk deleterious nsSNPs were identified in TRIM22, most of which are located in a 

protein-protein interaction module called the B30.2 domain. Additionally, 9 of the top 

high-risk deleterious nsSNPs altered the putative structure of TRIM22’s B30.2 domain, 

particularly in the surface-exposed v2 and v3 regions. These same regions are critical for 

retroviral restriction by the closely-related TRIM5α protein. A number of putative 

structural and functional residues, including several sites that undergo post-translational 

modification (PTM), were also identified in TRIM22. This study is the first extensive in 

silico analysis of the highly polymorphic TRIM22 gene and will be a valuable resource 

for future targeted mechanistic and population-based studies.  

 

                                                 
2
 The material contained in this chapter was published in: Kelly, JN and Barr, SD. In silico analysis of 

functional single nucleotide polymorphisms in the human TRIM22 gene. PLoS One. 9 (7): e101436 (2014). 

Copyright 2014. Open-Access License  
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3.1 Introduction 

SNPs, defined as single base changes in a DNA sequence, are responsible for the 

majority of genetic variation in the human population. Although many SNPs are 

phenotypically neutral, nsSNPs often have deleterious effects on protein structure or 

function. nsSNPs are located in protein coding regions and generate an amino acid 

substitution in their corresponding protein product. As such, nsSNPs can alter the 

structure, stability, and/or function of proteins, and are often associated with human 

disease. Indeed, previous studies have shown that approximately 50% of the mutations 

involved in inherited genetic disorders are due to nsSNPs 1–3. Recently, a number of 

genetic studies have focused on nsSNPs in innate immune genes. These studies have 

identified multiple nsSNPs that influence susceptibility to infection, as well as the 

development of inflammatory disorders and autoimmune diseases 4–9. Nonetheless, 

because innate immune genes are often highly polymorphic, many nsSNPs in these genes 

remain uncharacterized.  

Members of the TRIM protein family are involved in a wide range of biological 

processes related to innate immunity 10–12. TRIM proteins are defined by their RBCC 

motif, which consists of a RING domain, one or two BB domains, and a predicted CC 

region. Most TRIM proteins also contain a protein-protein interaction module called a 

B30.2 domain at their C-terminus 13–15. Many TRIM proteins are induced by IFN 

signaling and several possess antiviral activity, in particular against the Retroviridae 

family of viruses. Recent studies have implicated TRIM proteins in the regulation of 

pathogen-recognition and important immune signaling pathways, a finding that has 

sparked considerable interest in understanding how TRIM family proteins contribute to 

the innate immune response 16–21.  

One well-studied member of the TRIM family, TRIM5α, is required for the species-

specific block against HIV-1 replication in primate cells 22–24. Recently, TRIM5α was 

also shown to promote innate immune signaling and to function as an innate immune 

sensor for the retrovirus capsid lattice in vitro. Previous studies have established that 

TRIM5α binds to the HIV-1 capsid protein in the mature viral core via four variable 

regions (v1-v4) in its B30.2 domain 25,26. The v1 or ‘antiviral patch’ region was 
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previously shown to be the major determinant for species-specific HIV-1 restriction by 

TRIM5α. Mutations in the other variable regions (v2-v4) have also been shown to 

interfere with TRIM5α-mediated restriction of HIV-1, SIV, and/or N-MLV 22,26–29. 

Notably, analogous variable regions are found in several other B30.2-containing TRIM 

proteins 30–32.  

Human TRIM5 is located on chromosome 11 within a cluster of four closely-related 

TRIM genes that also includes TRIM6, TRIM22, and TRIM34. TRIM5 and TRIM22 have 

an ancient and dynamic evolutionary relationship, whereby both genes have evolved 

under positive selection for millions of years in a mutually exclusive manner 33. Similar 

to TRIM5α, TRIM22 has also been shown to inhibit HIV-1 replication in a number of 

human cell lines and primary monocyte-derived macrophages 34–37. TRIM22 expression 

levels have also been shown to influence HIV-1 infection in vivo 38–40. Interestingly, 

nsSNPs in TRIM5α, including H43Y, R136Q, and G249D, significantly alter HIV-1 

acquisition and disease progression in humans 41–44. Despite TRIM22’s highly 

polymorphic nature, it is unknown how nsSNPs affect its biological and/or antiviral 

functions. Here, multiple in silico computational methods were used to identify nsSNPs 

in the TRIM22 gene that are predicted to be highly deleterious to TRIM22 structure 

and/or function. A total of 14 high-risk deleterious nsSNPs were identified, including 9 

that altered the putative structure of TRIM22’s B30.2 domain. A number of sites 

predicted to undergo PTM (ubiquitylation, sumoylation, phosphorylation) were also 

identified. This is the first extensive in silico analysis of the TRIM22 gene and will 

establish a strong foundation for future structure-function and population-based studies.  

 

3.2 Materials and methods 

3.2.1 Retrieval of nsSNP data 

Polymorphism data for the TRIM22 gene was retrieved from the following databases: 

UniProt (http://www.uniprot.org), NCBI dbSNP (https://www.ncbi.nlm.nih.gov/SNP/), 

1000 Genomes (http://www.1000genomes.org/), and the Ensembl genome browser 

(http://www.ensembl.org/index.html) 45–47.  



 

 

98 

3.2.2 In silico nsSNP analysis 

Functional effects of nsSNPs were predicted using the following in silico algorithms: 

Polymorphism Phenotyping v 2 (PolyPhen-2) (http://genetics.bwh.harvard.edu/pp2) 48, 

Sorting Intolerant From Tolerant (SIFT) (http://sift.jcvi.org/) 49, nsSNP Analyzer 

(http://snpanalyzer.uthsc.edu/) 50, Predictor of Human Deleterious Single Nucleotide 

Polymorphisms (PhD-SNP) (http://snps.biofold.org/phd-snp/phd-snp.html) 51, SNPs and 

Gene Ontology v 3 (SNPs&GO) (http://snps-and-go.biocomp.unibo.it/snps-and-go/) 52, 

and PMut (mmb2.pcb.ub.es:8080/PMut ) 53. nsSNPs predicted to be deleterious by at least 

4 in silico algorithms were categorized as high-risk nsSNPs and were selected for further 

analysis.  

3.2.3 Phylogenetic analysis  

Evolutionary conservation of amino acid residues in TRIM22 was determined using the 

ConSurf web server (consurf.tau.ac.il/) 54. In ConSurf, 14 TRIM22 homologues were 

aligned and position-specific conservation scores were calculated using an empirical 

Bayesian algorithm (Conservation Scores: 1-4 Variable, 5-6 Intermediate, and 7-9 

Conserved). Putative functional and structural residues were also predicted using 

ConSurf by combining evolutionary conservation scores with solvent accessibility 

predictions (Fig 3.1). Highly conserved amino acids that were located at high-risk nsSNP 

sites were selected for further analysis.   

3.2.4 Comparative molecular modeling  

3D-Jigsaw (v 2.0) was used to generate 3D structural models for the B30.2 domain of 

wild type TRIM22 (UniProtKB Q8IYM9) and the 9 high-risk nsSNPs. For each model, 

only the B30.2 domain sequence was submitted. 3D-Jigsaw searches multiple sequence 

databases (e.g. PFAM and PDB) and builds structures based on homologues of known 

structure 55. Models were viewed using the Swiss-PdbViewer (v 4.1) 56. Tm-Align was 

used to calculate Tm-scores and root mean square deviation (RMSD) 57. The total energy 

after minimization (TEM) was calculated via the L-BFGF method using the NOMAD-

Ref Gromacs server (http://lorentz.immstr.pasteur.fr/nomad-ref.php) 58. 
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3.2.5 Prediction of post-translational modification sites 

Putative ubiquitylation sites were predicted using the UbPred (www.ubpred.org) and 

BDM-PUB (bdmpub.biocuckoo.org) programs 2. For UbPred, lysine residues with a 

score of ≥ 0.62 were considered ubiquitylated. For BDM-PUB, the balanced cut-off 

option was selected. Putative sumoylation sites were predicted using the SUMOplot 

(http://www.abgent.com/sumoplot) and SUMOsp v 2.0 (http://sumosp.biocuckoo.org/) 

programs 59. For SUMOplot, only high probability motifs with a score > 0.5 were 

considered sumoylated. Medium level threshold with a 2.64 cut-off value was selected 

for SUMOsp 2.0 analysis. Putative phosphorylation sites were predicted using GPS 2.1 

(http://gps.biocuckoo.org/) and NetPhos 2.0 (http://www.cbs.dtu.dk/services/NetPhos/) 
60,61. For GPS 2.1 analysis, high level threshold with cut-off values ranging from 0.776-

11 were selected. For NetPhos 2.0, serine, threonine, and tyrosine residues with a score of 

> 0.5 were considered phosphorylated. Sumo-interacting motifs (SIM) were identified 

manually and compared to experimentally verified SIMs in the scientific literature 62,63.  

3.2.6 Protein stability analysis 

I-Mutant version 2.0, an online support vector machine tool based on the ProTherm 

database, was used to evaluate nsSNP-induced changes in protein stability 64. nsSNP 

protein-coding sequences were submitted to I-Mutant 2.0 for 2 high-risk nsSNPs that 

coincide with putative PTM sites, 5 low-risk nsSNPs that coincide with putative PTM 

sites, and 12 additional high-risk nsSNPs that do not coincide with predicted PTM sites. 

I-Mutant 2.0 estimates the free energy change value (DDG) by calculating the unfolding 

Gibbs free energy value (∆G) for the wild type protein and subtracting it from that of the 

mutant protein (DDG or ∆∆G = ∆G mutant – ∆G wild type). It also predicts the sign 

(increase or decrease) of the free energy change value (DDG), along with a reliability 

index for the results (RI: 0-10, where 0 is the lowest reliability and 10 is the highest 

reliability). A DDG < 0 corresponds to a decrease in protein stability, whereas a DDG > 0 

corresponds to an increase in protein stability. However, according to the ternary 

classification system (SVM3), a large decrease in protein stability corresponds to a DDG 

< -0.5 and a large increase in protein stability corresponds to a DDG > 0.5. In contrast, 

DDG values that fall between -0.5 and 0.5 correspond to relatively neutral protein 
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stability 64,65. The pH was set to 7 and the temperature was set to 25°C for all 

submissions.   

 

3.3 Results and Discussion 

3.3.1 SNP dataset 

SNP data for the TRIM22 gene was retrieved from the NCBI dbSNP database, the 

Ensembl genome browser, and the UniProt database 45–47. According to these databases, 

the TRIM22 gene contains a total of 64 nsSNPs plus 8 SNPs in its 5’ UTR and 32 SNPs 

in its 3’ UTR. Of the 64 nsSNPs, 10 generate truncated versions of the TRIM22 protein 

(nonsense and frameshift mutations), whereas 54 introduce single amino acid changes 

(missense mutations) into TRIM22 (Table 3.1). To determine whether a given missense 

mutation affected TRIM22 function, we subjected the latter 54 nsSNPs to multiple in 

silico SNP prediction algorithms. The results, which are summarized in Table 3.2, 

identified a number of nsSNPs with a high probability of being deleterious to TRIM22 

structure and/or function.   

3.3.2 In silico nsSNP analysis 

Our analyses included the following six in silico SNP prediction algorithms: Polyphen-2, 

SIFT, nsSNP Analyzer, PhD-SNP, PMUT, and SNPs&GO 48–52,66. According to our 

Polyphen-2 results, 13 nsSNPs (23%) are damaging to TRIM22 function, whereas 33 

nsSNPs (59%) are benign. An additional 10 nsSNPs (18%) are predicted to be ‘possibly 

damaging’ by Polyphen-2 (Table 3.2). Our SIFT analysis predicted that 19 nsSNPs (34%) 

are deleterious to TRIM22 function and 37 nsSNPs (66%) are tolerated. On the contrary, 

the nsSNP Analyzer predicted that 21 nsSNPs (38%) cause disease and 35 nsSNPs (62%) 

are neutral (Table 3.2). Both PhD-SNP and PMUT predicted that 25 (45%) nsSNPs are 

pathological and 31 (55%) nsSNPs are neutral (Table 3.2). SNPs&GO analysis, which  
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Table 3.1 

Table 3.1 In silico prediction results for nsSNPs in TRIM22. 

 

nsSNP ID Mutation 1 Polyphen-2 SIFT nsSNP Analyzer PhD-SNP PMUT SNPs&Go # Del 2 

rs368531868 D2E Benign  Tolerated  Neutral Neutral Neutral Neutral  0 
rs200816458 V7A Benign  Tolerated  Neutral Neutral Neutral Neutral  0 
rs372487646 E10D Benign  Deleterious  Neutral Neutral Neutral Neutral  1 
rs375540431 I43M Benign  Tolerated  Neutral Neutral Neutral Neutral  0 
rs11541920 V47E Benign  Tolerated  Neutral Neutral Neutral Neutral  0 
rs192306924 T61N Benign  Deleterious  Neutral Neutral Neutral Neutral  1 
rs201847190 L68R Probably damaging  Deleterious  Disease Disease Neutral Disease  5 
rs182619286 R69Q Possibly damaging  Tolerated  Neutral Disease Pathological Neutral  2.5 
rs199625192 H73R Probably damaging  Deleterious  Disease Disease Pathological Neutral  5 
rs200668710 E83K Benign  Tolerated  Neutral Neutral Neutral Neutral  0 
rs141180305 E90K Benign  Tolerated  Neutral Neutral Pathological Neutral  1 
rs370446835 D95A Possibly damaging  Tolerated  Neutral Neutral Pathological Neutral  1.5 
rs373103298 H99Y Benign  Tolerated  Neutral Neutral Neutral Neutral  0 
rs371543745 L104F Probably damaging  Deleterious  Disease Neutral Neutral Neutral  3 
rs187628129 Q105K Benign  Tolerated  Neutral Neutral Pathological  Neutral  1 
rs368058642 E135K Possibly damaging  Tolerated  Disease Disease Pathological  Disease  4.5 
rs200924168 R150K Benign  Tolerated  Neutral Neutral Neutral Neutral  0 
rs375795798 I152K Benign  Tolerated  Neutral Disease Pathological  Neutral  2 
rs7935564 D155N Benign  Deleterious  Disease Neutral Neutral Neutral  2 
rs201531661 K185Q Benign  Tolerated  Neutral Neutral  Pathological  Neutral  1 
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rs368924880 N196S Benign  Tolerated  Neutral Neutral Neutral Neutral  0 
rs2291843 T232A Benign  Tolerated  Neutral Neutral Neutral Neutral  0 
rs374292901 I234N Probably damaging  Deleterious  Disease Disease Pathological Neutral  5 
rs201523218 R239Q Benign  Tolerated  Neutral Disease Pathological Neutral  2 
rs1063303 R242T Benign  Tolerated  Disease Neutral  Pathological Neutral  2 
rs61735273 S244L Probably damaging  Deleterious  Disease Disease Neutral Disease  5 
rs370736499 I253T Benign  Tolerated  Neutral Neutral Neutral Neutral  0 
rs143605305 V255I Benign  Tolerated  Neutral Neutral Neutral Neutral  0 
rs112606816 L264M Possibly damaging  Tolerated  Neutral Neutral Neutral Neutral  0.5 
rs181298463 R279Q Benign  Tolerated  Neutral Neutral Pathological Neutral  1 
rs73404240 T294K Benign  Tolerated  Disease Neutral Pathological Neutral  2 
rs368682946 A315V Benign  Tolerated  Neutral Neutral Neutral Neutral  0 
rs12364019 R321K Possibly damaging  Deleterious  Neutral Neutral Neutral Neutral  1.5 
rs372042006 R327C Benign  Tolerated  Neutral Disease Pathological Neutral  2 
rs75023388 R327H Benign  Tolerated  Neutral Neutral Pathological Neutral  1 
rs201494620 T330I Benign  Tolerated  Neutral Disease Neutral Neutral  1 
rs368220166 K332N Benign  Tolerated  Neutral Disease Neutral Neutral  1 
rs199987600 A341T Benign  Tolerated  Neutral Neutral Neutral Neutral  0 
rs371728648 G346S Probably damaging  Deleterious  Disease Disease Pathological Neutral  5 
rs200243523 V359I Possibly damaging  Tolerated  Disease Disease Neutral Disease  3.5 
rs191847788 K364N Possibly damaging  Deleterious  Disease Disease Neutral Disease  4.5 
rs375595000 P403T Probably damaging  Deleterious  Disease Disease Pathological Disease  6 
rs369734227 I410V Possibly damaging  Tolerated  Disease Neutral Neutral Neutral  1.5 
rs150095329 T415I Benign  Tolerated  Disease Neutral Neutral Neutral  1 
rs370495523 L432W Probably damaging  Deleterious  Disease Neutral Pathological Neutral  4 
rs200915295 F435C Benign  Deleterious  Neutral Disease Neutral Neutral  2 
rs187416296 R442C Probably damaging  Tolerated  Disease Disease Pathological Disease  5 
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rs370420711 A451V Possibly damaging  Deleterious  Neutral Disease Pathological Neutral  3.5 
rs377529439 F456I Probably damaging  Deleterious  Disease Disease Neutral Disease  5 
rs371028900 T460I Probably damaging  Deleterious  Disease Disease Pathological Disease  6 
rs371139090 G471E Benign  Tolerated  Neutral Disease Neutral Neutral  1 
rs138529937 C472S Probably damaging  Tolerated  Neutral Neutral Pathological Neutral  2 
rs368256788 R473H Benign  Tolerated  Neutral Disease Neutral Neutral  1 
rs267603016 P480S Probably damaging  Deleterious  Disease Disease Pathological Disease  6 
rs200638791 P484S Possibly damaging  Deleterious  Neutral Disease Pathological Disease  4.5 
rs61735327 M491I Benign  Tolerated  Disease Disease Pathological Neutral  3 
rs200148337 C494F Probably damaging  Deleterious  Disease Disease Pathological Disease  6 

1 Mutation: Wild type residue/amino acid position/nsSNP residue. 
2 # Del: Total number of deleterious predictions; A score of 0.5 was assigned to amino acids that were predicted to be ‘possibly damaging’ by Polyphen-2. 
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Table 3.2 

Table 3.2 Summary of in silico prediction results for all nsSNPs in TRIM22. 

 

Prediction Total number of nsSNPs (%) 1 

 Polyphen-2 SIFT nsSNP 
Analyzer 

PhD-SNP PMUT SNPs&GO 

Deleterious 13 (23) 19 (34) - - - - 
PD 2 10 (18) - - - - - 
Benign 33 (59) 37 (66) - - - - 
Disease - - 21 (38) 25 (45) 25 (45) 11 (20) 
Neutral - - 35 (62) 31 (55) 31 (55) 45 (80) 

1 Percentage of total nsSNPs (56) are shown in parentheses for each prediction program.  
2 PD: nsSNPs predicted to be ‘possibly deleterious’ by Polyphen-2 
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includes information from the Gene Ontology annotation, predicted that 11 nsSNPs 

(20%) cause disease and 45 nsSNPs (80%) are neutral (Table 3.2). Interestingly, we 

found that the majority of potentially deleterious nsSNPs were located in the B30.2 

domain, including 3 nsSNPs that were predicted to be damaging by all six SNP 

prediction algorithms (P403T, T460I, and C494F). Because each algorithm uses different 

parameters to evaluate the nsSNPs, nsSNPs with more positive results are more likely to 

be truly deleterious. Here, we classified nsSNPs as high-risk if they were predicted to be 

deleterious by four or more SNP prediction algorithms. 14 nsSNPs met this criteria and 

were selected for further analysis (Table 3.3).   

3.3.3 Conservation Profile of High-Risk nsSNPs 

Amino acids that are involved in important biological processes, such as those located in 

enzymatic sites or required for protein-protein interactions, tend to be more conserved 

than other residues. As such, nsSNPs that are located at highly conserved amino acid 

positions tend to be more deleterious than nsSNPs that are located at non-conversed sites 
3,67. To further investigate the potential effects of the 14 high-risk nsSNPs in Table 3.3, 

we calculated the degree of evolutionary conservation at all amino acid sites in the 

TRIM22 protein using the ConSurf web server. ConSurf employs an empirical Bayesian 

method to determine evolutionary conservation and identify putative structural and 

functional residues 54. For the purpose of this study, we focused on amino acid sites that 

coincide in location with the 14 high-risk nsSNPs; however, ConSurf also identified a 

number of other residues that may be functionally relevant (Fig 3.1).   

ConSurf analysis revealed that residues L68, H73, E135, I234, S244, G346, K364, P403, 

L432, R442, F456, T460, and C494 are highly conserved (Conservation Score of 7-9). In 

addition, ConSurf predicted that T460 was an important structural residue (highly 

conserved and buried) and that L68, K364, and P403 were important functional residues 

(highly conserved and exposed) (Table 3.4). To identify putative structural and functional 

sites, ConSurf combines evolutionary conservation data with solvent accessibility 

predictions. Highly conserved residues are predicted to be either structural or functional 

based on their location relative to the protein surface or protein core 68. Remarkably, two 

of the three high-risk nsSNPs that were predicted to be deleterious by all six SNP  
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Table 3.3 

Table 3.3: TRIM22 nsSNPs predicted to be functionally significant by four or more 

SNP prediction algorithms. 

 

nsSNP ID Mutation Domain MAF # Del 1 

rs201847190 L68R Spacer 1 N/A 5 
rs199625192 H73R Spacer 1 0.0005 5 
rs368058642 E135K Coiled-coil 0.0001 4.5 
rs374292901 I234N Spacer 2 0.0001 5 
rs61735273 S244L Spacer 2 0.0354 5 
rs371728648 G346S B30.2  0.0001 5 
rs191847788 K364N B30.2 0.0005 4.5 
rs375595000 P403T B30.2 0.0001 6 
rs370495523 L432W B30.2 0.0001 4 
rs187416296 R442C B30.2 0.0041 5 
rs377529439 F456I B30.2 0.0001 5 
rs371028900 T460I B30.2 0.0003 6 
rs200638791 P484S B30.2 0.0008 4.5 
rs200148337 C494F B30.2 N/A 6 

1 # Del: number of deleterious predictions. 
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Figure 3.1: ConSurf analysis of amino acid residues in the TRIM22 protein.  

Schematic showing ConSurf results for the human TRIM22 protein. Amino acids were 

ranked on a conservation scale of 1-9 and are highlighted as follows: blue residues (1-4) 

are variable, white residues (5) are average, and purple residues (6-9) are conserved. 

Residues predicted to be exposed to the surface of the protein are indicated via an orange 

letter ‘e’, while residues predicted to be buried are indicated via a green letter ‘b’. 

Putative structural residues are demarcated with a blue letter ‘s’ (highly conserved and 

buried), whereas putative functional residues are demarcated with a red letter ‘f’ (highly 

conserved and exposed).  
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Figure 3.1 
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Figure 3.1: ConSurf analysis of amino acid residues in the TRIM22 protein. 
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Table 3.4 

Table 3.4 Conservation profile of amino acids in TRIM22 that coincide with the 

location of high-risk nsSNPs. 

 

nsSNP ID Amino Acid CS 1 ConSurf prediction 
rs201847190 L68 8 Highly conserved and exposed (f 2) 
rs199625192 H73 7 Exposed 
rs368058642 E135 7 Exposed 
rs374292901 I234 7 Buried 
rs61735273 S244 8 Buried 
rs371728648 G346 8 Buried 
rs191847788 K364 9 Highly conserved and exposed (f 2) 
rs375595000 P403 8 Highly conserved and exposed (f 2) 
rs370495523 L432 8 Buried 
rs187416296 R442 7 Exposed 
rs377529439 F456 8 Buried 
rs371028900 T460 9 Highly conserved and buried (s 3) 
rs200638791 P484 6 Exposed 
rs200148337 C494 8 Buried 

1 CS: Conservation score (1-4= variable, 5-6= intermediate, 7-9= conserved). 
2 f: predicted functional residue 
3 s: predicted structural residue 
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prediction algorithms (P403T and T460I) were also identified as important structural or 

functional residues by ConSurf (Table 3.1, Table 3.3). Taken together, our data strongly 

suggest that the nsSNPs P403T and T460I are deleterious to TRIM22 structure and/or 

function.   

3.3.4 Comparative Modeling of High-Risk nsSNPs 

To examine whether P403T and T460I altered the 3D structure of TRIM22’s B30.2 

domain, we individually substituted each nsSNP into the wild type TRIM22 sequence 

and submitted the sequences to 3D-Jigsaw for structural analysis. We also submitted 

sequences for the remaining 7 high-risk nsSNPs in the B30.2 domain (i.e. G346S, 

K364N, L432W, R442C, F456I, P484S, and C494F) since our in silico and ConSurf 

results indicated that these nsSNPs were also highly likely to be deleterious. Theoretical 

structural models were generated for each nsSNP using the 3D-Jigsaw program, which 

constructs 3D models for proteins based on homologues of known structure 55. We then 

used Swiss-PdbViewer to compare each nsSNP model to the predicted 3D-Jigsaw model 

of wild type TRIM22 56. All of the nsSNPs altered the putative 3D structure of wild type 

TRIM22’s B30.2 domain. G346S, P403T, L432W, F456I, and C494F introduced an 

alpha helix into the v2 region, whereas the other 4 nsSNPs introduced beta strands into 

the v2 region (Fig 3.2). With the exception of P484S, which introduced an alpha helix 

into the v3 region, all of the nsSNP models contained elongated and/or additional beta 

strands in the v3 region. Only G346S and F456I altered the v1 region (both introduced an 

alpha helix); however, all 9 nsSNPs altered the length and/or number of beta strands in 

non-variable regions of the B30.2 domain. Notably, P484S was the only nsSNP model 

that contained fewer beta strands than wild type TRIM22 in certain regions (Fig 3.2). The 

majority of nsSNP models contained a greater number of beta strands than wild type 

TRIM22, resulting in overall net increase in beta strand formation. 

To extend our structural analysis, we used Tm-Align to calculate the Tm-score and root 

mean square deviation (RMSD) for each nsSNP model. Tm-score is used to assess 

topological similarity between wild type and mutant models, whereas RMSD is used to 

measure average distance between the α-carbon backbones of wild type and mutant  
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Figure 3.2: Structural models for wild type TRIM22 and high-risk nsSNPs in the 

B30.2 domain.  

Putative structural models for the B30.2 domains of wild type TRIM22 and the 9 high-

risk nsSNPs located in the B30.2 domain. Variable regions (v1-v4) are highlighted as 

follows: v1 blue, v2 orange, v3 magenta, and v4 green. Non-variable regions are shown 

in white and mutated amino acids are shown in yellow. Left image: Enlarged reference 

image that illustrates the color and location of each variable region and the color of 

mutated amino acids (image shown is the v1-v4 regions of wild type TRIM22 and the 

P403 amino acid). Each of the 9 nsSNP images (small images on the right) show the 

putative 3D structure of wild type TRIM22’s B30.2 domain on the left and the putative 

3D structure of TRIM22’s B30.2 domain with the mutated amino acid (nsSNP) on the 

right. The location of the amino acid in question is shown (yellow) on both wild type and 

nsSNP structures. All models were generated using the 3D-JigSaw protein comparative 

modeling server and SPDBV (v4.1).  
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Figure 3.2 

 

 

Figure 3.2: Structural models for wild type TRIM22 and high-risk nsSNPs in the B30.2 domain.
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models 57,69. A higher RMSD typically indicates greater deviation between wild type and 

mutant structures. The Tm-score and RMSD for each nsSNP model is listed in Table 3.4. 

The maximum RMSD was 3.04 (R442C), followed by 3.03 (F456I), 3.00 (L432W), 2.96 

(G346S), and 2.80 (P484S). RMSD for nsSNPs K364N, P403T, T460I, and C494F 

ranged from 1.58 to 1.99 Å. These results indicate that 9 high-risk nsSNPs markedly alter 

the putative structure of TRIM22’s B30.2 domain, in particular the surface-exposed v2 

and v3 regions, and that they likely induce severe structural changes in the TRIM22 

protein.  

Importantly, these nsSNPs may decrease flexibility in the v2 and v3 regions of TRIM22. 

The v2/v3 regions of wild type TRIM22 are predicted to form relaxed loop segments, 

similar to the loops in the recently solved 3D structure of rhesus monkey TRIM5α’s 

B30.2 domain 26. In contrast, the v2 and v3 regions of the nsSNP models contain more 

rigid secondary structures, such as alpha helices or beta strands (Fig 3.2). Since loop 

flexibility in rhesus monkey TRIM5α is thought to facilitate restriction of divergent 

retroviruses and to increase resistance to mutations in the HIV-1 capsid protein, it is 

possible that these nsSNPs may impair the antiviral activity and/or breadth of TRIM22. 

Further experiments, such as the resolution of wild type TRIM22’s tertiary structure, are 

required to address these possibilities.   

3.3.5 Prediction of Post-Translational Modification Sites in TRIM22    

To investigate how nsSNPs may influence the post-translational modification (PTM) of 

TRIM22, we used a variety of in silico prediction tools to identify putative PTM sites in 

the TRIM22 protein. PTMs are involved in many biological processes, including a 

number of canonical innate immune pathways, and are essential for the regulation of 

protein structure and function 59,70–72. To analyze residues in TRIM22 that may undergo 

ubiquitylation or sumoylation, we used the UbPred, BDM-PUB, SUMO-plot, and 

SUMOsp 2.0 programs. The GPS 2.1 and NetPhos 2.0 servers were used to predict 

serine, threonine, and tyrosine phosphorylation sites in the TRIM22 protein 2,60,61,73.  
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Table 3.5 

Table 3.5: RMSD (Å) and TM-score for the 9 high-risk nsSNPs in the B30.2 domain 

of TRIM22. 

 

nsSNP ID Mutation RMSD (Å) TM-Score 
rs371728648 G346S 2.96 0.75184 
rs191847788 K364N 1.72 0.93911 
rs375595000 P403T  1.99 0.85389 
rs370495523 L432W 3.00 0.70821 
rs187416296 R442C 3.04 0.68305 
rs377529439 F456I 3.03 0.73743 
rs371028900 T460I  1.76 0.94873 
rs200638791 P484S 2.80 0.75981 
rs200148337 C494F  1.58 0.95645 

RMSD and Tm-scores were calculated using Tm-Align. 
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UbPred predicted that 6 lysine residues in TRIM22 undergo ubiquitylation. In contrast, 

BDM-PUB predicted that 19 lysine residues undergo ubiquitylation. Both UbPred and 

BDM-PUB predicted that residues K63, K160, and K173 undergo ubiquitylation (Table 

3.5). According to ConSurf, these 3 lysine residues are highly conserved and exposed to 

the protein surface. ConSurf also predicted that K173 was a functional residue (Fig 3.1). 

SUMOplot predicted that 4 lysine residues in TRIM22 undergo sumoylation, whereas 

SUMOsp 2.0 predicted that 2 lysine residues undergo sumoylation. Both programs 

predicted that K153 undergoes sumoylation (Table 3.5). Similar to K173, ConSurf 

showed that K153 is highly conserved and exposed to the protein surface. ConSurf also 

predicted that K153 was a functional residue (Fig 3.1). 

In addition to putative sumoylation sites, we also identified 7 potential sumo-interacting 

motifs (SIM) (Fig 3.3a). SIMs are short hydrophobic motifs that interact non-covalently 

with other sumoylated proteins. The best characterized SIMs have the consensus 

sequence V/I/L-x-V/I/L-V/I/L or V/I/L-V/I/L-x-V/I/L 63. Notably, 5 of the putative SIMs 

are highly conserved in multiple TRIM22 orthologues and 3 are also present in the 

human and rhesus monkey TRIM5α proteins (Fig 3.3b). In addition, 2 TRIM5α SIMs 

(ILGV and VIGL) were previously shown to be required for TRIM5α-mediated antiviral 

activity. SIM mutations in the rhesus monkey TRIM5α protein abolished HIV-1 

restriction and disrupted TRIM5α trafficking to SUMO-1 nuclear bodies. Moreover, SIM 

mutations in the human TRIM5α protein abrogated N-MLV restriction by preventing 

TRIM5α binding to the sumoylated N-MLV capsid protein 62,74. More studies are needed 

to determine the role that SIMs play in TRIM22-mediated antiviral activity.   

To identify putative phosphorylation sites in TRIM22, we used GPS 2.1 and NetPhos 2.0 

servers. The GPS 2.1 server predicted that there were 31 serine-specific phosphorylation 

sites, 13 threonine-specific sites, and 11 tyrosine-specific sites in the TRIM22 protein. 

Conversely, NetPhos 2.0 predicted that there were 19 serine-specific phosphorylation 

sites, 4 threonine-specific sites, and 2 tyrosine-specific sites (Table 3.6). 16 serine 

residues, 3 threonine residues, and 2 tyrosine residues were predicted to be 

phosphorylated by both GPS 2.1 and NetPhos 2.0 servers. Many of these putative 

phosphorylation sites are highly conserved among multiple TRIM22 orthologues and  
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Table 3.6 

Table 3.6 Putative ubiquitylation and sumoylation sites in the TRIM22 protein. 

 

Ubiquitylation Sumoylation 
UbPred BDM-PUB SUMOplot SUMOsp 2.0 
93 (7e)* 6 (3e) 6 (3e) 85 (2e) 
160 (7e)* 44 (1e) 153 (9e)* 153 (9e)* 
173 (9e)* 85 (2e) 185 (4e)  
204 (6e) 93 (7e)* 265 (6e)  
257 (1e) 103 (6e)   
430 (6e) 109 (9e)   
 160 (7e)*   
 173 (9e)*   
 265 (6e)   
 266 (9e)   
 268 (2e)   
 272 (6e)   
 273 (9e)   
 275 (7e)   
 324 (1e)   
 332 (2e)#   
 374 (1e)   
 380 (3e)   
 382 (1e)   

Conservation scores are shown in parentheses following amino acid site; Putative functional residues are 
indicated with bold text, whereas putative structural residues are indicated with italicized text (ConSurf 
results Fig 3.1); Residues predicted to undergo ubiquitylation or sumoylation by both programs are 
indicated with an asterisk; Residues predicted to undergo ubiquitylation or sumoylation that also coincide 
with the location of nsSNPs are indicated with a hashtag.  

 

 
 
 
 
 
 
 
 
 
 
 



 

 

117

 
Figure 3.3: Putative sumo-interacting motifs (SIM) in TRIM22.  

(a) List of putative SIMs in the TRIM22 protein, including the sequence and domain 

location for each SIM (amino acids are indicated in parentheses); Red and blue amino 

acids are predicted functional and structural residues, respectively (ConSurf analysis Fig 

3.1); Asterisk: SIMs that are conserved in all mammalian TRIM22 orthologues except 

elephant; Double asterisk: SIMs that are not found in TRIM5α, but are replaced by a 

different SIM (e.g. VLTL, IVPL). (b) Alignment of mammalian TRIM22, human 

TRIM5α, and rhesus monkey TRIM5α amino acid sequences (amino acids 350-444 of 

the B30.2 domain are shown). Conserved SIMs are highlighted in magenta and other 

SIMs are highlighted in light blue. Conserved amino acids are indicated with an asterisk. 
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Figure 3.3 

 

Figure 3.3: Putative sumo-interacting motifs (SIM) in TRIM22. 
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Table 3.7 

Table 3.7 Putative phosphorylation sites in the TRIM22 protein. 

 

GPS 2.1 NetPhos 2.0 
Serine Threonine Tyrosine Serine Threonine Tyrosine 
4 (1e) 23 (7e) 175 (1b) 46 (7e)* 130 (7b) 356 (8b)* 
27 (9e) 61 (1b)# 298 (1e) 50 (1e) 263 (3e)* 479 (5b)* 
46 (7e)* 170 (1e) 299 (6b) 54 (3e)* 325 (1e)*  
54 (3e)* 220 (1e) 355 (5b) 87 (4e)* 330 (1e)*#  
87 (4e)* 232 (1e)# 356 (8b)* 244 (8b)*#   
122 (9e) 263 (3e)* 394 (1b) 245 (8b)*   
231 (4e) 294 (7e)# 398 (7b) 259 (9e)*   
235 (9e) 311 (2b) 418 (8b) 261 (2e)*   
244 (8b)*# 325 (1e)* 467 (8b) 269 (1e)*   
245 (8b)* 330 (1e)*# 479 (5b)* 271 (8e)*   
259 (9e)* 433 (7b) 481 (8e) 276 (5e)*   
261 (2e)* 460 (9b)#  284 (5e)*   
269 (1e)* 492 (6e)  373 (8b)*   
271 (8e)*   383 (3e)*   
276 (5e)*   384 (9e)*   
284 (5e)*   399 (7b)   
309 (8e)   425 (6e)*   
312 (6e)   426 (4e)*   
317 (9b)   475 (8e)   
373 (8b)*      
376 (2e)*      
377 (1e)      
383 (3e)*      
384 (9e)*      
391 (3e)      
424 (7e)      
425 (6e)*      
426 (4e)*      
455 (9b)      
497 (9e)      
498 (7e)      

Conservation scores are shown in parentheses following amino acid site; Putative functional residues are 
indicated with bold text, whereas putative structural residues are indicated with italicized text (ConSurf 
results Fig 3.1); Residues predicted to undergo phosphorylation by both programs are indicated with an 
asterisk; Residues predicted to undergo phosphorylation that also coincide with the location of nsSNPs are 
indicated with a hashtag.  



 

 

120

several were predicted to be important structural or functional residues by ConSurf 

(Table 3.6, Fig 3.1). Although TRIM22 phosphorylation has never been demonstrated 

experimentally, our results suggest that it may undergo phosphorylation at a number of 

sites. Of interest, other TRIM proteins have been shown to undergo phosphorylation, 

including the antiviral TRIM19 and TRIM21 proteins 75–79.  

Several putative PTMs coincide in location with nsSNPs in the TRIM22 gene (T61, T232, 

S244, T294, T330, K332, and T460). S244 and T460 are particularly interesting because 

both sites are highly conserved among TRIM22 orthologues and S244L and T460I were 

predicted to be deleterious by 5 and 6 in silico algorithms, respectively (Table 3.2, Table 

3.3). In addition, T460 was predicted to be a critical structural residue by ConSurf. 

Although the consequences of TRIM22 phosphorylation are currently unknown, the 

mutation of phosphorylation sites in other proteins has been shown to profoundly alter 

protein function by, for example, altering protein stability, localization, or protein-protein 

interactions. To this end, we used I-Mutant to predict whether S244L and T460I altered 

the stability of the TRIM22 protein. I-Mutant is a support vector machine-based tool that 

predicts changes in protein stability following single site mutations by estimating free 

energy changes as well as the direction of the change (increase or decrease) 64. Both 

S244L and T460I were predicted to be less stable than the wild type protein, with free 

energy change values of -0.83 and -1.38, respectively (Table 3.7). The I-Mutant results 

for the 12 high-risk nsSNPs that do not coincide with putative PTM sites, plus the results 

for the 5 low-risk nsSNPs that do coincide with putative PTM sites, are also shown in 

Table 3.7.   

It is possible that the phosphorylation of TRIM22 at sites S244 and/or T460 is required 

for some integral TRIM22 function and that the nsSNPs S244L and T460I impair this 

function; however, these nsSNPs may also impair protein stability, which would likely 

amplify any detrimental of PTM impairment. Many additional high-risk nsSNPs, plus 

several low-risk nsSNPs located at putative PTM sites, also decreased TRIM22 protein 

stability (Table 3.7). A number of studies have shown that decreased protein stability 

leads to increased protein misfolding, aggregation, and degradation. Accordingly, 

decreased stability typically results in decreased net function 80–83. Future in-depth studies 
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are required to investigate the effects of these nsSNPs on the structure and function of 

TRIM22’s B30.2 domain. Pertinent TRIM22 sites that are predicted to be highly 

deleterious and/or undergo PTMs are depicted in Figure 3.4. 

 

3.4 Conclusions 

Our results demonstrate that multiple nsSNPs in the antiviral TRIM22 gene may be 

deleterious to TRIM22 structure and/or function. Most of these high-risk nsSNPs are 

located at highly conserved amino acid sites in a protein-protein interaction module 

called the B30.2 domain. In this study, we show that 9 of the top high-risk nsSNPs 

disrupt the putative structure of TRIM22’s B30.2 domain, particularly the surface-

exposed v2 and v3 regions. In the closely-related TRIM5α protein, these same regions 

were previously shown to play a key role in retroviral restriction. In addition to these 

findings, we also identify several TRIM22 sites that may undergo post-translational 

modification, including sites that coincide with the location of high-risk nsSNPs. This 

study is the first systematic and extensive in silico analysis of functional SNPs in the 

TRIM22 gene.  
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Table 3.8 

Table 3.8: I-Mutant results for selected nsSNPs in the TRIM22 protein. 

 

nsSNP ID Mutation # Del. Pred. DDG Sign of DDG PTM ConSurf 
rs192306924 T61N 1 0.56 Decrease (1) Yes 1b 
rs201847190 L68R 5 -1.02 Decrease (7)* No 8e 
rs199625192 H73R 5 0.23 Decrease (3) No 7e 
rs368058642 E135K 4.5 -1.00 Decrease (9)* No 7e (9b) 
rs2291843 T232A 0 -0.53 Decrease (5) Yes 1e 
rs374292901 I234N 5 -0.80 Decrease (1) No 7b (9e) 
rs61735273 S244L 5 -0.83 Decrease (2) Yes 8b 
rs73404240 T294K 2 -0.63 Decrease (5) Yes 7e 
rs201494620 T330I 1 -2.14 Decrease (7)* Yes 1e 
rs368220166 K332N 1 -0.42 Decrease (2) Yes 2e 
rs371728648 G346S 5 -0.27 Decrease (7) No 8b 
rs191847788 K364N 4.5 -1.09 Decrease (4) No 9e 
rs375595000 P403T 6 -2.64 Decrease (8) No 8e 
rs370495523 L432W 4 0.08 Decrease (6) No 8b 
rs187416296 R442C 5 -1.23 Decrease (6)* No 7e 
rs377529439 F456I 5 -1.59 Decrease (8)* No 8b (9b) 
rs371028900 T460I 6 -1.38 Decrease (5)* Yes 9b 

rs200638791 P484S 4.5 -2.97 Decrease (9)* No 6e (9b) 
rs200148337 C494F 6 -0.21 Decrease (4) No 8b 
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Figure 3.4: Putative functional sites in the TRIM22 protein.  

Schematic depicting the approximate location of the top predicted PTM sites 

(ubiquitylation, sumoylation, and phosphorylation), the 14 high-risk nsSNPs in TRIM22, 

the 3 sumo-interacting motifs (SIMs), and the 2 high-risk nsSNP sites (S244L and T460I) 

predicted to undergo phosphorylation in the wild type TRIM22 protein. Several sites of 

known functional importance are marked on the TRIM22 protein (top image), including 

the C15/C18 residues (required for TRIM22 E3 ligase activity), the C97/H100 residues 

(part of the zinc-binding motif in BB2), and the nuclear localization signal (NLS) 84–86. 

The ‘antiviral patch’ region, which was previously shown to be integral for the antiviral 

activity of TRIM5α, is shown in the B30.2 domain, as well as the approximate location of 

each variable region (v1-v4, bright blue areas) 29,33. Amino acids 491-494 were 

previously shown to be required for the nuclear localization of TRIM22 87. RING, B-box 

2 (BB2), coiled-coil (CC), and B30.2 (PRY/SPRY) domains are listed. 

 



 

 

124

Figure 3.4 

 

Figure 3.4 Putative functional sites in the TRIM22 protein.
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Chapter 4 

 

4 The TRIM22 nsSNP rs1063303:G>C is not evolving 
under balancing selection in the Inuit and is associated 
with low serum TG and high serum HDL levels in the 
Canadian Inuit 

TRIM22 is an IFN-induced antiviral protein that plays a key role in the host antiviral 

response and inhibits the replication of diverse viruses, such as HIV-1, HBV, and IAV. 

Altered TRIM22 expression has also been linked to cancer, autoimmune disease, and 

cellular proliferation/differentiation. We previously identified a nsSNP in the TRIM22 

gene (rs1063303:G>C) that had an inverse impact on TRIM22 function. The TRIM22 

rs1063303:C allele increased TRIM22 expression, but decreased its anti-HIV activity. 

Interestingly, we found that the frequency of rs1063303:G>C varied markedly among 

ethnic populations and that the AFR, AMR, and EUR cohorts from the 1000 Genomes 

project contained an excess of intermediate frequency TRIM22 rs1063303:G>C alleles. 

The latter is typically indicative of balancing selection, a non-neutral selective force that 

maintains polymorphism in a population. In this study, we determined the frequency of 

the TRIM22 nsSNP rs1063303:G>C in two different Inuit populations and one non-Inuit 

population and calculated the selective forces acting on this site. Interestingly, we found 

that the TRIM22 rs1063303:C allele is significantly more prevalent in Inuit compared to 

non-Inuit populations and that unlike AFR, AMR, and EUR cohorts, the Inuit do not 

contain an excess of intermediate frequency TRIM22 rs1063303:G>C alleles, indicating 

that TRIM22 rs1063303:G>C has not evolved under balancing selection in these Inuit 

populations. Surprisingly, we also found that TRIM22 rs1063303:G>C was associated 

with significantly lower serum triglycerides (TG) levels and significantly higher high-

density lipoprotein (HDL) levels in the Canadian Inuit population. TRIM22’s effect on 

TG and HDL is unprecedented in the TRIM protein family and may represent an exciting 

new research avenue for TRIM22 and other TRIM proteins.  
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4.1 Introduction 

Infection and inflammation induce the acute-phase response (APR), an early, complex 

host reaction to injurious stimuli, that leads to specific changes in lipid and lipoprotein 

metabolism 1. During the APR in humans and other primates, serum triglyceride (TG) 

levels are markedly increased, a phenomenon that is largely due to increased levels of 

circulating very-low-density lipoprotein (VLDL). Conversely, both serum low-density 

lipoprotein (LDL) and serum high-density lipoprotein (HDL) levels, along with serum 

total cholesterol levels, are decreased (Appendix A). These changes are mediated by a 

number of proinflammatory cytokines, including TNF, IL-1, IL-2, IL-6, and IFN 2–8. 

Accordingly, SNPs in these cytokines and the genes they induce have been associated 

with altered levels of serum lipoproteins, a modified APR to infection, and multiple 

inflammatory and metabolic disorders 9–15.  

Interestingly, in addition to their well-documented role in lipid transport, an increasing 

body of evidence suggests that lipoproteins participate in host defense as agents of the 

innate immune response. For example, lipoproteins bind to and neutralize a variety of 

DNA and RNA viruses, such as Vesicular stomatitis virus (VSV), Rubella virus, HIV, 

SIV, Herpes simplex virus, Vaccinia virus, Japanese encephalitis virus, Poliovirus, and 

Epstein-Barr virus 16–21. Moreover, during the IFN response to viral infection a soluble 

antiviral form of the LDL receptor is produced that inhibits the replication of VSV and 

rhinovirus 22–24. Multiple lipoproteins also bind to and neutralize the bacterial cell wall 

components lipopolysaccharide (LPS) and lipoteichoic acid (LTA) 25–29. Thus, the APR 

and its cytokine-induced lipoprotein changes are initially beneficial to the host because 

they help resolve infection and inflammation; however, they can also promote disease 

pathogenesis if they are prolonged (e.g. during chronic infection, metabolic syndrome, 

inflammatory disorders, diabetes, obesity, or heart failure) 11–13,30–38. 

TRIM family proteins have been implicated in a wide range of biological processes, 

including the innate immune response to viral infection. Multiple TRIM proteins are 

upregulated by type I and type II IFNs and recent studies have identified a number of 

TRIMs that can: 1) restrict viral replication directly by targeting specific viral proteins 

(e.g. TRIM5α inhibits HIV replication by targeting the HIV capsid protein), and/or 2) 
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restrict viral replication indirectly by augmenting innate immune signaling pathways (e.g. 

TRIM5α activates the TAK1 kinase complex, which induces downstream NF-κB and 

AP-1 signaling and the transcription of inflammatory cytokines) 39–44. TRIM proteins 

contain a conserved N-terminal RBCC motif, which consists of RING, BB, and CC 

domains, and a variable C-terminal domain 45. The RING domain typically confers E3 

ligase activity and this activity is often critical for TRIM protein function. Multiple 

TRIMs have been shown to function as E3 ubiquitin and/or E3 sumo ligases and can 

post-translationally modify specific host/viral proteins with ubiquitin and/or sumo 

moieties 46,47. Most TRIM proteins contain a C-terminal B30.2 domain, which is a 

flexible, highly plastic structure that typically functions as a protein-protein interaction 

module 48,49.  

The TRIM22 protein is a B30.2-containing member of the TRIM family that plays an 

integral role in the host antiviral response. TRIM22 is upregulated by type I and type II 

IFNs, several proinflammatory cytokines, and a number of different viral infections 50. 

Studies have shown that TRIM22 inhibits the replication of multiple viruses, including 

HIV-1, HBV, and IAV 51–54. TRIM22 has also been linked to cancer, autoimmune 

disease, and cellular proliferation/differentiation 55–63. We previously identified a 

common nsSNP in the TRIM22 gene (rs1063303:G>C) that had an inverse impact on 

TRIM22 function 64. rs1063303:G>C increased TRIM22 expression, but decreased its 

anti-HIV activity and altered its sub-cellular localization pattern. Interestingly, the 

frequency of rs1063303:G>C varied markedly among different ethnic groups (1000 

Genomes AFN, AMR, ASN, and EUR populations) and we found an excess of 

intermediate frequency rs1063303:G>C alleles in AFN, AMR, and EUR cohorts. An 

excess of intermediate frequency alleles is often indicative of balancing selection, an 

evolutionary process whereby polymorphism is maintained in a population because it 

confers some selective advantage 65.  

Although it is rare in other host genes, balancing selection has been described in many 

immune genes and may be beneficial when, for example, different alleles are effective 

against distinct pathogens 66. Selecting for multiple alleles at a single site (maintaining 

heterozygosity) may also make it more difficult for pathogens to evolve suitable escape 
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mutants against immune genes 67. Here, we genotyped TRIM22 nsSNP rs1063303:G>C 

in two distinct Inuit populations (Canadian and Greenlandic Inuit) as well as one non-

Inuit population (Canadian population of European descent). In contrast to some ethnic 

groups (including the AFR, AMR, and EUR cohorts mentioned above), the Inuit have 

been geographically isolated for many years. As such, they have likely evolved against 

unique selective pressures and distinct pathogenic landscapes 68,69. We determined the 

frequency of a functionally important TRIM22 nsSNP (rs1063303:G>C) in these Inuit 

populations and examined the selective forces acting on this site. Of interest, we found 

that rs1063303:G>C is significantly more prevalent in the Inuit compared to non-Inuit 

populations, and that unlike AFR, AMR, and EUR cohorts, there is not an excess of 

intermediate frequency rs1063303:G>C alleles in the two Inuit populations, suggesting 

that this site has not evolved under balancing selection in these groups. We also found an 

unexpected, but striking, association between the TRIM22 nsSNP rs1063303:G>C and 

serum levels of TG and HDL. The TRIM22 rs1063303:C allele was associated with 

significantly lower serum TG levels and significantly higher serum HDL levels in the 

Canadian Inuit population. The effect of TRIM22 on serum TG and HDL levels is 

unprecedented in the TRIM family.  

 

4.2 Materials and methods 

4.2.1 Study subjects 

Study subjects included Inuit individuals from Canada (Kivalliq region, Nunavut) and 

Greenland (Nuuk, Sisimiut, Qasigiannguit, and four villages in Uummannaq region), as 

well as Canadians of European descent (European Caucasian population). 42 subjects in 

the Canadian Inuit population self-reported as being of European background and were 

included in the analysis as a regional Caucasian control group 70. All study subjects had 

previously been participants in one of the following population studies: 1) the Keewatin 

Health Assessment Study 71; 2) the Greenland Population Study 72; and 3) the Study of 

Health Assessment and Risk in Ethnic Groups 73. The details of these studies have been 

described previously 71–73. Signed informed consent was obtained from all participants 
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and the studies were approved by the Universities of Manitoba and Toronto, and from 

Western University.  

4.2.2 Clinical characteristics and biochemical analyses 

Body weight, height, and plasma lipoprotein analyses [fasting plasma concentrations of 

total cholesterol (TChol), TG, HDL-cholesterol, LDL-cholesterol, and apolipoproteins 

(Apo) A-I and B] were determined as previously described 71–73.  

4.2.3 Genotype analyses 

Detection of nsSNP rs1063303:G>C was carried out using a custom designed TaqMan 

genotyping assay (Applied Biosystems, Foster City, CA). The nsSNP genotyping was 

performed using an allelic discrimination assay with the 7900HT Fast Real-time PCR 

system and read using automated software (SDS 2.3 Applied Biosystems, Foster City, 

CA). PCR reactions were run in 5 µL volumes using an amplification protocol of 95°C 

for 10 minutes, followed by 50 cycles of 95°C for 15 sec, then 60°C for 1.3 minutes. 

4.2.4 Neutrality tests 

Tajima’s D and Fu’s FS neutrality tests were performed to detect signals of selection at 

site rs1063303:G>C in the Canadian Inuit, Greenlandic Inuit, and European Caucasian 

populations. These tests differentiate between neutrally evolving sites under mutation-

drift equilibrium and sites evolving under non-neutral processes such as balancing 

selection. Negative Tajima’s D and/or Fu’s FS values are evidence of an excess of low 

frequency variants relative to expectation, whereas positive Tajima’s D and/or Fu’s FS 

values are indicative of an excess of intermediate frequency variants. A P value of less 

than 0.02 was considered significant for the FS statistic 74–76. Statistical significance was 

assessed by coalescent simulations using Arlequin software (v 3.5.1.3) with 10,000 

iterations 77. 

4.2.5 Statistical analyses 

Statistical analyses were performed using the SAS version 9.2 software (SAS Institute, 

Cary, NC). A χ
2 test was used to examine deviation in genotype frequency from the 
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Hardy-Weinberg equilibrium. ANOVA was used to determine sources of variation for 

study subjects’ levels of TChol, TG, HDL-cholesterol, LDL-cholesterol, Apo-AI, and 

Apo-B. TRIM22 rs1063303:G>C was used as the independent class variable, while sex 

and body mass index (BMI) were entered as covariates. P values less than 0.05 were 

considered statistically significant.  

 

4.3 Results 

4.3.1 Baseline phenotypic characteristics of study subjects 

Baseline phenotypic characteristics for the Canadian Inuit, Greenlandic Inuit, and 

European Caucasian populations whose TRIM22 rs1063303:G>C genotype and serum 

lipoprotein levels were determined are summarized in Table 4.1, including the baseline 

levels of total cholesterol (TChol), TG, HDL-cholesterol, LDL-cholesterol, Apo-AI, and 

Apo-B. Mean age, body mass index (BMI), and percentage of female study subjects are 

also shown in Table 4.1.  

 

4.3.2 TRIM22 rs1063303:G>C genotype and allele frequencies 

TRIM22 rs1063303:G>C genotype and allele frequencies were calculated for the three 

populations (Canadian Inuit, Greenlandic Inuit, and European Caucasian) and are shown 

in Table 4.2. There were 21 G/G homozygotes (0.091), 62 heterozygotes (0.267), and 147 

C/C homozygotes (0.634) in the Canadian Inuit population. Similarly, there were 20 G/G 

homozygotes (0.078), 104 heterozygotes (0.408), and 131 C/C homozygotes (0.514) in 

the Greenlandic Inuit population. Thus, rs1063303:C was the major allele in both the 

Canadian and Greenlandic Inuit populations, which had allele frequencies of 0.84 and 

0.72, respectively. In contrast, the rs1063303:C allele was much less prevalent in the 

European Caucasian population as well as in a small subset of European Caucasian 

individuals within the Canadian Inuit (Table 4.2). Similar low rs1063303:C allele 

frequencies were reported previously for the European Caucasian population from the 

1000 Genomes project (EUR) 64. Moreover, rs1063303:C was even less prevalent in  
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Table 4.1 

Table 4.1 Baseline phenotypic characteristics (mean ± SD) of Canadian Inuit, 

Greenland Inuit, and European Caucasian populations. 

 

 Canadian Inuit Greenland Inuit European Caucasian  

Number 232 254 67 
Percent female (%) 50.4 62.9 59.7 
Age (years) 38.1 ± 14.8 48.6 ± 13.3 57.7 ± 18.1 
BMI (kg/m2) 26.9 ± 4.84 27.1 ± 5.18 27.6 ± 5.26 
Total cholesterol (mmol/L) 5.06 ± 1.01 6.35 ± 1.03 5.29 ± 0.86 
Triglycerides (mmol/L) 1.17 ± 0.77 1.14 ± 0.68 1.20 ± 0.40 
HDL cholesterol (mmol/L) 1.37 ± 0.39 1.67 ± 0.47 1.21 ± 0.33 
LDL cholesterol (mmol/L) 3.16 ± 0.92 4.15 ± 1.04 3.73 ± 0.79 
Apo-AI (g/L) N/A 1.81 ± 0.30 1.41 ± 0.25 
Apo-B (g/L) N/A 0.99 ± 0.24 1.07 ± 0.21 
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Table 4.2 

Table 4.2 Genotype frequencies for TRIM22 rs1063303:G>C in the Canadian Inuit, 

Greenlandic Inuit, and European Caucasian populations. 

 

Population n G/G G/C C/C 
Canadian Inuit 232 0.091 0.267 0.634 
     Inuit 188 0.053 0.208 0.734 
     Caucasian  44 0.273 0.523 0.205 
Greenland Inuit 255 0.078 0.408 0.514 
European Caucasian  67 0.397 0.397 0.206 
European (1000 Genomes*)  193 0.228 0.507 0.265 
African (1000 Genomes*) 133 0.329 0.541 0.130 
American (1000 Genomes*) 84 0.365 0.464 0.171 
Asian (1000 Genomes*) 66 0.745 0.231 0.024 

* 1000 Genomes populations: European (EUR) cohort includes British individuals from Scotland and 
England, Iberian individuals from Spain, Finnish individuals and Italian individuals; African (AFR) cohort 
includes Yoruba individuals from Nigeria, Luhya individuals from Kenya, and African Americans from the 
southwestern United States; American (AMR) cohort includes Colombian individuals, Puerto Rican 
individuals, and Mexican Americans from Los Angeles, United States; Asian (ASN) cohort includes 
Japanese individuals, Han Chinese individuals from Beijing, and Southern Han Chinese.  
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AFR, AMR, and ASN populations from the 1000 Genomes project 64. Genotype 

frequencies determined for the Canadian Inuit, Greenlandic Inuit, and European 

Caucasian populations did not show significant deviation from expectations based on 

Hardy-Weinberg equilibrium (P > 0.05). 

 

4.3.3 TRIM22 rs1063303:G>C is not evolving under balancing 
selection in the Canadian or Greenlandic Inuit 

Since the Inuit have lived in isolation for many years, we hypothesized that within the 

Inuit, TRIM22 rs1063303 may contain a unique evolutionary signature. We previously 

identified an excess of intermediate frequency rs1063303:C alleles in the AFR, AMR, 

and EUR, but not ASN, cohorts from the 1000 Genomes project. This excess differed 

significantly from what was expected under a neutral model of evolution (P < 0.05) 64. 

We performed the Tajima’s D and Fu’s FS neutrality tests to establish whether TRIM22 

rs1063303:G>C has evolved under neutral or non-neutral processes in the Inuit. As 

shown in Table 4.3, the Tajima’s D values for both the Canadian and Greenlandic Inuit 

populations did not differ significantly (P > 0.05) from what was expected under a 

neutral model of evolution, suggesting that rs1063303:G>C has not evolved under 

balancing selection in these populations. While the Tajima’s D value was higher in the 

European Caucasian population (1.61) compared to the Canadian and Greenlandic Inuit 

populations (1.20 and 1.29), it did not reach statistical significance. Within the Canadian 

Inuit, a smaller Tajima’s D value (0.60) was achieved when the small subset of European 

Caucasian individuals was removed from the population. Similarly, the results of Fu’s FS 

test also showed non-significant values for the Canadian Inuit, Greenlandic Inuit, and 

European Caucasian populations (Table 4.3).  

 

4.3.4 Association between TRIM22 rs1063303:G>C and plasma 
lipoproteins in the Canadian Inuit 

We previously demonstrated that the TRIM22 rs1063303:C allele is associated with a 

significant increase in TRIM22 expression levels and a significant reduction in antiviral  
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Table 4.3 

Table 4.3: Results of Tajima’s D and Fu’s Fs neutrality tests. 

 

Population Tajima’s D p-value Fu’s Fs p-value 
Canadian Inuit 1.20 0.179 1.83 0.126 
     Inuit 0.60 0.272 1.05 0.294 
     Caucasian  1.11 0.19 1.17 0.167 
Greenland Inuit 1.29 0.150 1.96 0.111 
European Caucasian  1.61 0.114 1.78 0.092 
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activity 64. Since TRIM22 has been implicated in a plethora of diverse biological roles, 

we hypothesized that a significant increase in TRIM22 expression due to the TRIM22 

rs1063303:C allele may contribute to other biological functions. We took advantage of 

the extensive clinical data associated with the Canadian and Greenlandic Inuit 

populations used in this study to determine if the TRIM22 rs1063303:C allele was 

associated with a particular clinical phenotype. ANOVA was used to determine sources 

of variation for various serum lipoproteins, including TChol, TG, HDL, LDL, Apo-AI, 

and Apo-B, in Canadian Inuit, Greenlandic Inuit, and European Caucasian populations. 

The ANOVA results for the three populations are summarized in Table 4.4. Significant 

associations were found in the Canadian Inuit population between the TRIM22 

rs1063303:C allele and serum levels of both TG (P < 0.0008) and HDL (P < 0.05). TG 

and HDL associations were not found in the Greenlandic Inuit or the European Caucasian 

populations. Sex was found to significantly associate with HDL in all populations (P < 

0.005), while BMI was significantly associated with most lipoproteins in all three 

populations. Sex was also significantly associated with Apo-AI (P < 0.05) and LDL (P < 

0.05) in the Greenlandic Inuit population (Table 4.4).  

TRIM22 rs1063303:G>C genotypes and their corresponding TG and HDL levels are 

shown in Table 4.5 for the Canadian Inuit population. A significant association between 

the presence of the rs1063303:C allele and decreased serum TG levels was detected, with 

C/C homozygotes having lower serum TG levels than heterozygotes and heterozygotes 

having lower serum TG levels than G/G homozygotes. This pattern suggests that the 

rs1063303:C allele shows incomplete dominance. A similar significant association was 

found between the rs1063303:C allele and elevated levels of plasma HDL (Table 4.5).  

 

4.4 Discussion 

Here, we showed that the TRIM22 nsSNP rs1063303:G>C is inordinately prevalent in 

two Inuit populations (Canadian and Greenlandic) and that the rs1063303:C allele is 
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Table 4.4 

Table 4.4: ANOVA results  

 

Table 4.4: Summary of ANOVA results showing determinants of serum lipoproteins in the Canadian Inuit, Greenlandic Inuit, 

and European Caucasian populations. 

 TChol TG HDL LDL Apo-A1 Apo-B 
Source of Variation df F P F P F P F P F P F P 

Canadian Inuit              
Sex 1 0.76 n.s. 0.51 n.s. 23.42 <0.0001 0.07 n.s. 1.19 n.s. 0.16 n.s. 
BMI 1 3.89 0.0454 26.48 <0.0001 8.34 0.0043 0.75 n.s. 19.29 <0.0001 6.78 0.0031 
TRIM22 rs1063303:C  2 2.21 n.s. 7.31 0.0008 3.49 0.0323 1.43 n.s. 0.67 n.s. 0.33 n.s. 
Greenlandic Inuit              
Sex 1 0.07 n.s. 0.04 n.s. 36.37 <0.0001 11.93 0.0006 4.96 0.0268 0.44 n.s. 
BMI 1 4.95 0.0271 51.94 <0.0001 2.97 n.s. 0.08 n.s. 10.42 0.0014 9.26 0.0026 
TRIM22 rs1063303:C  2 0.65 n.s. 0.07 n.s. 0.18 n.s. 0.69 n.s. 0.24 n.s. 0.13 n.s. 
European Caucasian               
Sex 1 0.47 n.s. 0.27 n.s. 8.76 0.0043 0.95 n.s. 0.17 n.s. 1.09 n.s. 
BMI 1 5.11 0.0112 71.42 <0.0001 6.54 0.0012 1.22 n.s. 10.21 0.0005 2.32 n.s. 
TRIM22 rs1063303:C  2 0.89 n.s. 0.54 n.s. 2.90 n.s. 1.79 n.s. 0.34 n.s. 0.71 n.s. 

P value indicates probability of a greater between-group F value using ANOVA; n.s. indicates not significant (i.e. P > 0.05)
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Table 4.5 

Table 4.5: Significant associations between the TRIM22 rs1063303:G>C genotype 

and plasma lipoproteins in the Canadian Inuit. 

 

Genotype TG (LSM ± SEM) (mmol/L) HDL (LSM ± SEM) (mmol/L) 
G/G 1.72 ± 0.09 1.18 ± 0.08 
G/C 1.15 ± 0.08 1.34 ± 0.05 
C/C 1.07 ± 0.06 1.41 ± 0.03 

* LSM:  least squares means, SEM: standard error of the mean 
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associated with significantly lower levels of serum TG and significantly higher levels of 

serum HDL in the Canadian Inuit. Unlike in several non-Inuit populations (i.e. AFR, 

AMR, and EUR cohorts from the 1000 Genomes project 64), the two Inuit populations 

(Canadian and Greenlandic Inuit) did not contain a significant excess of intermediate 

frequency TRIM22 rs1063303:G>C alleles when compared to a neutral evolutionary 

model. The latter, which is not indicative of balancing selection, suggests that this site 

(TRIM22 rs1063303:G>C) has evolved in response to distinct evolutionary pressures in 

the Canadian and Greenlandic Inuit.   

One possible explanation for this disparate evolutionary footprint in the Inuit is lack of 

exposure to certain pathogens. We previously showed that TRIM22 rs1063303:G>C is 

located at site in TRIM22 that has been subject to strong positive selection during the 

evolution of mammals. Moreover, certain human populations (AFR, AMR, and EUR) 

contained an excess of intermediate frequency TRIM22 rs1063303:G>C alleles, which 

indicates a decrease in population size and/or balancing selection 64. In innate immune 

genes, amino acid sites that are subject to positive and/or balancing selection are often 

functionally relevant, typically because they are located at the host-pathogen interface 

where they are exposed to diverse pathogenic pressures 66. Indeed, we demonstrated in 

our previous study that TRIM22 rs1063303:G>C increased the expression of TRIM22, 

but disrupted its ability to restrict HIV-1 replication 64. While the reason for this effect is 

currently unclear, these results combined with the fact that this site has evolved under 

multiple non-neutral evolutionary forces, strongly suggests that its evolution has been 

driven by HIV-1 and/or other pathogens. Canadian and Greenlandic Inuit populations, 

who have lived in isolation for many years with little exposure to ‘modern’ infectious 

diseases, may not have been subjected to the same pathogenic pressures at this site as 

other populations.  

Despite advances in other non-Inuit populations, relatively few innate immune nsSNPs 

have been documented in the Inuit. Notably, there is evidence that the Inuit (and other 

indigenous populations) suffer disproportionately from infectious diseases and have a 

much higher rate of infection when compared to their non-indigenous counterparts 68. 

While several socio-economic factors certainly contribute to this increased prevalence, 
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differences in their immune response may also play a role. Interestingly, the Inuit have 

been shown to possess a unique distribution of human leukocyte antigen (HLA) alleles 

when compared to non-Inuit populations 78–81. Because specific HLA alleles have been 

linked with susceptibility to a number of viral infections, it has been suggested that the 

Inuit’s unique distribution of HLA alleles may make them more vulnerable to certain 

infections 82–85. Since TRIM22 and other important antiviral genes, such as TRIM5α, 

APOBEC3G, BST-2/tetherin, and SAMHD1, are located at the host-pathogen interface 

where they often interact directly with viral pathogens, it is possible that the Inuit also 

contain a unique distribution of alleles in these genes and that this affects their antiviral 

response. It would be interesting to clone several of these antiviral genes from the Inuit 

population and test their antiviral activity against the spectrum of viruses known to be 

inhibited by these proteins. One could also compare various innate immune responses 

among the Inuit and other non-Inuit populations.  

Surprisingly, we found an association between TRIM22 rs1063303:G>C and the serum 

levels of specific lipoproteins. In the Canadian Inuit population, the rs1063303:C allele 

was associated with significantly lower serum TG levels and significantly higher serum 

HDL levels. These TG and HDL associations were not found in the Greenlandic Inuit or 

the European Caucasian populations. The effect of TRIM22 on serum lipoprotein levels 

is unprecedented in the TRIM protein family. The molecular details underlying this effect 

are currently unexplored and may be explained by a number of diverse factors given the 

wide ranging functions of TRIM22. It is possible, for example, that TRIM22 modulates 

serum lipoprotein levels indirectly by influencing innate immune and/or inflammatory 

signaling pathways. Recent studies have implicated multiple TRIM proteins in the 

regulation of key innate signaling pathways, particularly pathways that control NF-κB 

signaling, the IFN response, and cytokine production following PRR activation 40,42,44. 

PRRs, which include the membrane-bound TLRs and cytoplasmic receptors such as 

RLRs, are activated by diverse microbial products termed PAMPs. TRIM proteins have 

been shown to regulate NF-κB activation, either positively or negatively, by targeting 

various stages of the NF-κB signaling pathway. For example, TRIM19/PML sequesters 

NF-κB in PML nuclear bodies to prevent it from activating downstream transcription, 

whereas TRIM30α and TRIM27 repress NF-κB signaling by targeting TAB2/TAB3 or 
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IKK family members, respectively 86–88. TRIM23, which is essential for viral-induced 

NF-κB activation, enhances downstream antiviral signaling by modifying NEMO with 

ubiquitin 89. Although it remains unclear whether endogenous levels of TRIM22 can 

regulate NF-κB signaling, one recent study demonstrated that TRIM22 overexpression 

inhibited the TRAF6-stimulated NF-κB pathway by facilitating TAB2 degradation 69. 

However, TRIM22 overexpression has also been shown to activate NF-κB signaling 70.  

Since NF-κB activates the transcription of proinflammatory cytokines, and because the 

APR is induced by proinflammatory cytokines, TRIM22 expression may inadvertently 

alter the APR by regulating NF-κB signaling. In this scenario, nsSNP rs1063303:G>C 

would either: 1) disrupt TRIM22-mediated NF-κB activation, or 2) amplify TRIM22-

mediated NF-κB inhibition. Both possibilities would theoretically lead to a decrease in 

proinflammatory cytokine production and a less potent APR. Given the integral role 

played by TRIM proteins in the antiviral response, and the link between the immune 

system and the APR, other TRIM family members may have a similar effect on serum 

lipoproteins. Future studies are needed to address these possibilities and others and to 

determine the molecular details underlying TRIM22-mediated effects on serum TG and 

HDL levels.  
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Chapter 5 

5 Discussion 

 

5.1 Summary of results  

5.1.1 Ancient and recent adaptive evolution in the antiviral TRIM22 
gene: identification of a single nucleotide polymorphism that 
impacts TRIM22 function 

The evolution of TRIM22 in mammals was examined using 29 evolutionarily diverse 

mammalian TRIM22 sequences. These sequences were aligned using COBALT and a 

phylogenetic tree was generated using EvolView software. Site-specific evolutionary 

analysis of TRIM22 with the Selecton program identified multiple amino acid sites in 

TRIM22 that have evolved under strong positive selection. The majority of these sites 

were located in the PRY/SPRY (B30.2) domain; however, there was also evidence for 

positive selection in other TRIM22 domains. Many positively selected sites clustered 

around putative functional motifs in TRIM22, such as the zinc-finger motif in the BB2 

domain and the NLS in the SP2 domain. Moreover, a number of sites corresponded in 

location and spacing to sites that have evolved under positive selection in the closely-

related TRIM5α protein. For example, in both TRIM22 and TRIM5α, many positively 

selected sites are located in one of four variable regions (v1-v4) in the B30.2 domain.  

In addition to sites undergoing positive selection among mammals, nsSNPs in human 

TRIM22 were investigated. A total of 64 nsSNPs and 2 indels were obtained from the 

NCBI dbSNP database for the human TRIM22 gene, including 56 missense mutation-

inducing nsSNPs and 8 frameshift mutation-inducing nsSNPs. To identify nsSNPs in 

TRIM22 that may be functionally relevant, an in silico prediction program (SIFT) was 

used to analyze the 56 missense mutation-inducing nsSNPs. SIFT predicted that 23 of 

these nsSNPs were deleterious to TRIM22 function and 33 were tolerated. Notably, 2 

potentially deleterious nsSNPs were located at sites that evolved under strong positive 
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selection in mammals. One of these nsSNPs, rs1063303:G>C, was selected for further 

analysis because of its high prevalence in the human population.  

Large frequency differences were observed for nsSNP rs1063303:G>C among distinct 

ethnic populations, including AFR, AMR, ASN, and EUR 1000 Genomes cohorts. Of 

interest, an excess of intermediate frequency rs1063303 alleles was identified in AFR, 

AMR, and EUR populations, indicating a decrease in population size and/or balancing 

selection. To assess potential functional consequences of nsSNP rs1063303:G>C, its 

RNA and protein expression, sub-cellular localization pattern, and anti-HIV-1 activity 

were determined and compared to the wild type TRIM22 protein. Surprisingly, nsSNP 

rs1063303:G>C significantly increased both RNA and protein expression of TRIM22, 

but disrupted its anti-HIV-1 activity. nsSNP rs1063303:G>C also obstructed TRIM22 

sub-cellular localization (localized diffusely in both the cytoplasm and nucleus, not in 

punctate NBs). Taken together, these results describe multiple sites that have evolved 

under positive selection in TRIM22 and identify a highly prevalent functional nsSNP 

(rs1063303:G>C) with a complex evolutionary history.   

 

5.1.2 In silico analysis of functional single nucleotide 
polymorphisms in the human TRIM22 gene 

To identify additional nsSNPs that may alter TRIM22 function, and to examine amino 

acid sites in TRIM22 that may be subject to post-translational modification (PTM), an 

extensive in silico analysis was performed on the protein coding region of the TRIM22 

gene. All missense mutation-inducing nsSNPs (56) in TRIM22 were analyzed using 6 

different nsSNP prediction algorithms, including Polyphen-2, PhD-SNP, SIFT, nsSNP 

Analyzer, PMUT, and SNPs&GO. Since these algorithms use different parameters to 

evaluate and rank nsSNPs, multiple algorithms were used to increase the accuracy and 

power of prediction. A total of 14 nsSNPs were predicted to be deleterious to TRIM22 

function by ≥ 4 nsSNP prediction algorithms. These 14 nsSNPs (L68R, H73R, E135K, 

I234K, S244L, G346S, K364N, P403T, L432W, R442C, F456I, T460I, C494F) were 

classified as high-risk deleterious and selected for further in silico analysis.   
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Highly conserved amino acids tend to be required for important protein functions. As 

such, nsSNPs that are located at highly conserved sites are often deleterious to protein 

function 1. ConSurf analysis revealed that 13 of the 14 sites occupied by the high-risk 

nsSNPs were highly conserved (conservation score of 7-9). In addition, by combining 

evolutionary conservation data and solvent accessibility predictions, the ConSurf web 

server predicted that T460 was a key structural residue and that L68, K364, and P403 

were key functional residues. Structural analysis of the 9 high-risk deleterious nsSNPs 

located in the B30.2 domain, including K364N, P403T, and T460I, showed that all of 

these nsSNPs markedly altered the putative 3D structure of TRIM22’s B30.2 domain, 

particularly the surface-exposed v2 and v3 regions. These same regions are critical for 

HIV-1 restriction in the closely-related TRIM5α protein 2,3.  

A number of putative PTM sites were also identified in the TRIM22 protein, including 

multiple ubiquitylation (3), sumoylation (1), and phosphorylation (21) sites that were 

predicted to undergo PTM by two or more in silico programs. Moreover, 7 SIMs were 

identified in TRIM22, 2 of which are also present in TRIM5α (ILGV and VIGL) and 

were previously shown to be required for its antiviral activity 4,5. These 2 SIMs, plus 3 

additional SIMs (5/7), are highly conserved among TRIM22 orthologues. Of interest, 

several PTM sites coincide with the location of nsSNPs, including 2 high-risk nsSNPs 

(S244L and T460I, which are both predicted to undergo phosphorylation). This study 

comprises the first systematic in silico analysis of functional sites in the TRIM22 gene 

and will be a valuable resource for future studies.  

 

5.1.3 The TRIM22 nsSNP rs1063303:G>C is not evolving under 
balancing selection in the Inuit and is associated with low 
serum TG and high serum HDL levels in the Canadian Inuit 

To determine the frequency of TRIM22 nsSNP rs1063303:G>C in the Inuit and examine 

the selective forces acting on this site, we genotyped TRIM22 rs1063303:G>C in two 

different Inuit populations and one non-Inuit population (Canadian Inuit, Greenlandic 

Inuit, and Canadian population of European Caucasian descent). Interestingly, we found 

that the TRIM22 rs1063303:C allele is inordinately prevalent in both Inuit populations 
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and that unlike in the AFR, AMR, and EUR cohorts from the 1000 Genomes project, the 

Canadian and Greenlandic Inuit populations do not contain an excess of intermediate 

frequency TRIM22 rs1063303:G>C alleles. The latter indicates that in these two Inuit 

populations TRIM22 nsSNP rs1063303:G>C is not evolving under balancing selection. 

We also found an unexpected, but interesting association between the TRIM22 nsSNP 

rs1063303:G>C and serum lipoprotein levels. Specifically, the TRIM22 rs1063303:C 

allele was associated with significantly lower serum TG levels and significantly higher 

serum HDL levels in the Canadian Inuit population. The effect on TRIM22 on TG and 

HDL levels is unprecedented in the TRIM family and may represent an exiting new 

avenue of research for TRIM22 and other TRIM family members.  

 

5.2 Multiple sites in TRIM22 have evolved under positive 
and/or balancing selection  

5.2.1 Positive selection  

Genetic conflict between host and viral genomes often results in the accumulation of a 

large number of non-synonymous (dN) relative to synonymous (dS) mutations in host 

and/or viral genes. While the majority of host genes evolve under negative (purifying) 

selection, which removes deleterious nsSNPs from genes to preserve protein function, 

host restriction factors tend to evolve under positive (directional) selection (defined as 

dN/dS > 1) 6–8. This is largely due to the evolutionary ‘arms race’ that occurs between 

host restriction factors and viruses as they attempt to gain evolutionary superiority over 

each other. Host restriction factors, for example, are often targeted by viral antagonists 

and/or interact directly with viral proteins as part of their antiviral mechanism. For this 

reason, they tend to select for novel nsSNPs that allow them to evade viral antagonists 

and/or enhance their antiviral capacity (e.g. nsSNPs that increase viral protein binding 

affinity). However, since viruses mutate frequently and select for their own beneficial 

nsSNPs (e.g. nsSNPs that help circumvent the immune response and/or augment viral 

replication), both host restriction factors and viruses are under tremendous pressure to 

evolve new, more effective ways to counteract each other 9. As a result, multiple host 
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restriction factors contain genetic signatures of positive selection, particularly at amino 

acid sites that interact with viral antagonists. It follows that a number of recent studies 

have conducted evolutionary analyses on host restriction factors to pinpoint amino acid 

sites that are important for their antiviral activity 10–12.    

In this work, we used a similar approach to examine 29 evolutionarily diverse TRIM22 

sequences spanning >100 million years of evolution in mammals. While we identified 

codons evolving under positive selection in all TRIM22 protein domains, 11 of the 28 

codons were located in the B30.2 domain (Table 2.3). Moreover, 10 of these 11 codons 

were located within one of four variable loops (v1-v4) in the B30.2 (Fig 2.1d). v1-v4, 

which are also found in the closely-related TRIM5α protein, are required for TRIM5α-

mediated retroviral restriction 2,13. In the rhTRIM5α protein, v1-v4 form an extensive, 

highly flexible, HIV-1 capsid binding interface 3. The v1-v4 interface, which includes 

several positively selected codons in the v1 and v2 loops (324, 332, 385, and 389), are 

critical TRIM5α-mediated inhibition of HIV and/or SIV in hominoids 2,14–16. There are 

also two positively selected codons in the v3 loop of huTRIM5α (409 and 410) that are 

required for N-MLV restriction 17. We identified 6 positively selected codons (K324, 

R327, T330, K332, S334, and C337) in the v1 loop of TRIM22, 2 in the v2 loop (S377 

and S395), and 2 in the v4 loop (i.e. L488 and V489). Many of these codons mirrored 

both the location and spacing of positively selected codons in the TRIM5α protein (Fig 

2.1c). Similar to TRIM5α, TRIM22 has been shown to interact with the HIV-1 Gag or 

capsid protein; however, the binding site for capsid is unknown 18–20. It is possible that 

the v1-v4 loops also comprise an HIV-1 capsid binding interface in TRIM22 and that 

some of the positively selected codons in v1, v2, and/or v4 are important for TRIM22-

mediated HIV-1 restriction. Codons K324 and K332 are particularly interesting given 

their importance in TRIM5α-mediated retroviral restriction and because both sites have 

also evolved under positive selection in TRIM5α. Some of the codons evolving under 

positive selection in TRIM22’s v1-v4 loops may alternatively be required for TRIM22-

mediated inhibition of other viruses, such as HBV and/or IAV, or help form a binding 

site for interacting with viral proteins other than Gag. Previous studies have shown that 

TRIM22 interacts with the EMCV 3C protease and the IAV NP; however, the binding 

sites for these viral proteins are unknown 21,22. One interesting difference between the 
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TRIM22 and TRIM5α proteins is not there are no positively selected codons in the v3 

loop of TRIM22 (Fig 2.1d). In contrast, there are several positively selected codons in 

TRIM5α’s v3 loop, some of which are required for inhibition of N-MLV 17. Thus, it is 

possible that TRIM22, which does not inhibit N-MLV replication, does not contain any 

positively selected codons in its v3 loop because it has not been subject to evolutionary 

pressure from N-MLV 18. Future studies are needed to address these possibilities and to 

establish the functional implications of the positively selected sites found in TRIM22’s 

B30.2 domain.     

Outside of the B30.2 domain, we identified 5 positively selected codons in the RING 

domain (D2, F3, S4, S50, and S54), 3 in the SP1 domain (T61, N76, and V96), 2 in the 

BB2 domain (Q105, I106), 3 in the CC domain (A171, V192, and T220), and 4 in the 

SP2 domain (L241, R242, K257, R279) (Table 2.3). Of interest, many of these codons 

are located close to putative protein binding sites in the TRIM22 protein. For example, 

codons V96, Q105, and I106 cluster around the zinc finger motif in the BB2 domain. 

Codons L241, R242, K257, and R279 flank the bipartite NLS in the SP2 domain (Fig 

2.1b, Fig 2.2). Consistent with this, previous studies have shown that codons evolving 

under positive selection tend to be located near protein binding sites and are typically 

solvent-exposed 23. Although the zinc finger motif and bipartite NLS in TRIM22 have 

never explicitly been shown to function as protein binding sites, these motifs are often 

involved in protein-protein interactions in other proteins 24,25. Further, the presence of 

positively selected codons near these motifs suggests that they may indeed function as 

protein binding sites in TRIM22. Interestingly, our ConSurf results (Chapter 3) showed 

that 24 of the 28 positively selected codons are solvent-exposed (codons I106, V192, 

L241, and S395 are predicted to be buried) (Fig 3.1). 

Future studies should focus on determining the functional significance of the positively 

selected codons that we identified in TRIM22. For example, it will be important to test 

whether these codons are involved in TRIM22’s antiviral activity against HIV-1, HBV, 

IAV, and/or EMCV. In addition, examining whether specific codons affect TRIM22’s 

ability to interact with viral proteins, such as the HIV-1 Gag and/or capsid protein, the 

IAV NP, and the EMCV 3C protease, will be of great interest and may provide further 
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insight into TRIM22’s antiviral mechanism. Several codons within the B30.2 domain, 

such as K324 and K332, may be particularly relevant in this regard. Other codons may 

also be interesting to examine, including two codons (T61 and R242) that coincide in 

location with the TRIM22 nsSNPs rs192306924:C>A and rs1063303:G>C. Curiously, 

these nsSNPs were predicted to be deleterious by some of the prediction programs in 

Chapter 3; however, they are located at amino acid sites that have evolved under strong 

positive selection in mammals (Tables 2.3, 3.1). Due to its high prevalence in humans, 

we examined the TRIM22 nsSNP rs1063303:G>C in more detail in Chapters 2 and 4 

(discussed in sections below). Finally, some codons may be involved in protein-protein 

interactions. For example, codons V96, Q105, and I106 surround a zinc finger motif in 

the BB2 domain and are also located amongst 2 putative hydrophobic surface patches 

(also in the BB2). Zinc finger motifs are often involved in protein-protein interactions 

and the zinc finger motifs found in the BB2 domains of other TRIM proteins have been 

shown to facilitate homo- and/or heterodimerization 24,26–28. Notably, V96, Q105, and 

I106 are located amongst 2 putative hydrophobic surface patches in TRIM22. Similar 

patches were previously identified in the BB2 of TRIM5α and are required for proper 

TRIM5α self-association, capsid binding, and HIV-1 restriction 29. While TRIM22 has 

been shown to undergo trimerization, the residues responsible for self-association are 

unknown and it is unclear whether self-association is required for TRIM22 function or 

antiviral activity 30. For these reasons, it will be interesting to examine if V96, Q105, 

and/or I106 are involved in TRIM22 self-association and if self-association influences 

TRIM22 function and/or antiviral activity.  

 

5.2.2 Balancing selection 

In contrast to positive selection, which involves transient genetic diversity and drives 

advantageous alleles to fixation in a population, balancing selection actively maintains 

polymorphism (multiple alleles) at selected loci in a population 31,32. While it is rare in 

other host genes, balancing selection has been identified in a number of immune genes 

and may be beneficial in specific pathogenic environments 33. For example, one well-

known nsSNP in the β-globin gene induces sickle-cell disease in homozygotes (sickle-
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cell mutation), but affords protection from malaria in heterozygotes. Even though this 

mutation is deleterious in homozygous individuals, it is inordinately prevalent in high-

malaria environments because it lowers mortality in the overall population 34. In other 

words, balancing selection selects for heterozygosity in the population because in this 

environment it leads to fewer deaths. Heterozygosity may also be beneficial when, for 

example, different alleles are effective against different pathogens. In addition, having 

multiple alleles at specific loci in immune genes may make it harder for pathogens to 

evolve suitable escape mutants and evade immune surveillance 6. 

Several host restriction factors, including huTRIM5α and OAS1, have been shown to 

undergo balancing selection in primates 35–37. In Chapters 2 and 4, we found that there 

was an excess of intermediate frequency TRIM22 rs1063303:G>C alleles in the AFN, 

AMR, and EUR cohorts from the 1000 Genomes project, but not in the ASN cohort or 

two different Inuit populations (Tables 2.4, 4.3). An excess of intermediate frequency 

alleles is typically indicative of balancing selection. Interestingly, the frequency of the 

TRIM22 nsSNP rs1063303:G>C varied markedly among different ethnic groups. The 

Canadian and Greenlandic Inuit populations had the highest rs1063303:C frequencies, 

whereas the ASN population had the lowest (Fig 2.3, Table 4.2). While the reasons for 

these differences in frequency are currently unknown, it is possible that they are due to 

differential prevalence of specific diseases in distinct geographic locations. Indeed, we 

have shown in this work that the TRIM22 nsSNP rs1063303:G>C influences both the 

antiviral activity of TRIM22 and its novel effects on serum TG and HDL levels in the 

Canadian Inuit. Given the excess of intermediate frequency TRIM22 rs1063303:G>C 

alleles in AFR, AMR, and EUR cohorts, and its disease-related functional effects, it is 

possible that TRIM22 rs1063303:C confers some selective advantage in heterozygotes 

and that the nsSNP is being maintained by balancing selection in these populations. In 

contrast, the lack of balancing selection at the TRIM22 rs1063303:G>C site in the two 

Inuit populations (Canadian and Greenlandic Inuit), may be due to lack of exposure to 

certain pathogens. These populations have lived in isolation for many years with little 

exposure to modern infectious diseases 38. 
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In the future, it will be important to establish which pathogens (if any) are targeting the 

TRIM22 rs1063303:G>C site in AFN, AMR, and EUR populations and to investigate 

why these pathogenic pressures are not present in ASN and Inuit populations. This will 

likely provide insight into the antiviral mechanism of TRIM22 and help elucidate why 

the TRIM22 rs1063303:G>C site has been targeted by multiple evolutionary forces. Of 

interest, a recent genome-wide scan of two ethnic populations (African Americans and 

European Americans) identified TRIM22 as one of 60 ‘extreme’ genes evolving under 

balancing selection in humans 39. While we have identified one site in TRIM22 that is 

likely targeted by balancing selection, additional sites may also be targeted. As such, it 

would be interesting to perform a more thorough analysis of the entire TRIM22 gene 

(coding and non-coding regions) to search for additional sites that may be undergoing 

balancing selection.  

 

5.3 TRIM22 contains 14 high-risk deleterious nsSNPs and 
numerous putative PTM sites 

5.3.1 High-risk deleterious nsSNPs 

Studies have shown that genes that evolve under positive selection during interspecies 

evolution also tend to be highly polymorphic in humans 40. In Chapter 3, we found that 

the human TRIM22 gene is highly polymorphic and contains multiple nsSNPs that are 

likely deleterious to TRIM22 structure and/or function (Table 3.1). Using 6 different in 

silico prediction programs, we analyzed all of the missense mutation-inducing nsSNPs 

(56) in TRIM22 and identified 14 high-risk deleterious nsSNPs (L68R, H73R, E135K, 

I234K, S244L, G346S, K364N, P403T, L432W, R442C, F456I, T460I, C494F) (Table 

3.3). These nsSNPs were predicted to be deleterious by ≥ 4 of the prediction programs 

and were located at highly conserved amino acid sites (Fig 3.1). Conserved sites are often 

involved in important biological processes and thus, nsSNPs located at these sites are 

often deleterious 1,41.  

Of interest, our ConSurf analysis, which combines evolutionary conservation data with 

solvent accessibility predictions, identified codon T460 as a critical structural site and 
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codons L68, K364, and P403 as critical functional sites in the TRIM22 protein (Table 

4.3). These sites coincide in location with 4 high-risk deleterious nsSNPs (i.e. L68R, 

K364N, P403T, and T460I). While it is currently unknown why these sites are critical, 

one possibility is that they are involved in key protein-protein interactions. Sites K364 

and P403, for example, are located in the B30.2 domain just upstream of the v2 and v3 

loops, respectively. These loops are essential for the antiviral activity of the rhTRIM5α 

protein and help form an extensive HIV-1 capsid binding interface that is required for 

HIV-1 restriction 3,20. Since TRIM22 also interacts with the HIV-1 Gag and/or capsid 

protein, its v2 and v3 loops may help form a similar interface in the B30.2 domain for 

binding to capsid or other host and/or viral proteins 18. K364N and P403T may disrupt 

this interface and impair these interactions. Indeed, our molecular modeling results in 

Chapter 3 showed that K364N and P403T significantly altered the putative structure of 

the v1-v4 loops (Fig 3.2). Molecular modeling of the 7 additional high-risk deleterious 

nsSNPs located in the B30.2 domain also altered the putative structure of these loops, 

particularly within the v2 and v3 loops. Importantly, these 9 nsSNPs may decrease the 

flexibility of v2 and v3 (and/or v1 and v4 for some nsSNPs) by introducing more rigid 

secondary structures, such as alpha helices and/or beta strands, into these regions (Fig 

3.2). In rhTRIM5α, v1-v4 flexibility is thought to facilitate the restriction of divergent 

retroviruses and increase resistance to mutations in the HIV-1 capsid protein 3. nsSNPs 

that interfere with v1-v4 flexibility in TRIM22 may be equally important to restriction 

and may impair the antiviral activity and/or breath of TRIM22. Further studies, such as 

the resolution of TRIM22’s tertiary structure, will be critical for addressing these and 

other possibilities.   

In Chapter 3, we analyzed and prioritized all 56 missense mutation-inducing nsSNPs in 

TRIM22 and identified 14 high-risk deleterious nsSNPs that likely disrupt its structure 

and/or function. Future in-depth studies on these 14 nsSNPs are required to establish if 

they alter, for example, TRIM22 stability, localization, and/or antiviral activity. It will 

also be important to investigate the clinical implications (if any) of these nsSNPs. This 

will be essential for further prioritizing the 14 nsSNPs and elucidating their functional 

consequences.  
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5.3.2 Putative PTM sites 

Although TRIM22 is involved in a variety of important biological processes, very few 

studies have investigated the molecular determinants of its function. In Chapter 3, we 

performed an extensive in silico analysis of TRIM22 and identified numerous putative 

PTM sites (sites predicted to undergo ubiquitylation, sumoylation, or phosphorylation, 

and several SIMs) that likely influence its function. PTMs are involved in a number of 

biological processes, including many immune pathways, and are often essential for the 

regulation of protein structure and function 42–45. 

Previous studies have shown that TRIM22 can mediate both its own polyubiquitylation 

and monoubiquitylation. These modifications are dependent on its RING-mediated E3 

ligase activity; however, the specific sites within TRIM22 that undergo ubiquitylation 

have not been identified 21,46. One study demonstrated that a TRIM22 mutant lacking 

residues 201-498 (comprises approximately one-third of the CC domain and the entire 

B30.2 domain), but not a TRIM22 mutant lacking residues 1-200 (entire RING domain 

and BB2 domain plus approximately two-thirds of the CC domain), was susceptible to 

self-mediated TRIM22 polyubiquitylation 21. Our results in Chapter 3, which revealed 

that K93, K160, and K173 were the only TRIM22 lysine residues predicted to undergo 

ubiquitylation by both UbPred and BDM-PUB, are consistent with this finding (Table 

3.5). In addition, K173 was predicted to be an important functional residue by ConSurf 

(Fig 3.1). Further studies on K93, K160, and K173 are required to establish how they 

may influence TRIM22 turnover and/or function. 

Our work also identified a number of putative sumoylation sites in TRIM22, as well as 

several highly conserved SIM domains. K153 was the only lysine residue predicted to 

undergo sumoylation by both SUMOplot and SUMOsp 2.0 (Table 3.6). While TRIM22 

has been shown to function as a E3 sumo ligase for Mdm2, it has never been shown to 

undergo sumoylation itself 47. Notably, sumoylation is often associated with nuclear or 

sub-nuclear targeting. For example, TRIM19/PML contains 8 sumoylation sites plus 1 

SIM domain that are required for proper formation, maintenance, and function of sub-
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nuclear structures called PML nuclear bodies (NB). PML NBs recruit diverse proteins 

involved in many cellular processes, including transcriptional regulation, DNA damage 

repair, cell cycle control, apoptosis, and the host antiviral response. Thus, it is perhaps 

not surprising that these sumoylation and SIM sites are also required for TRIM19/PML 

stability and protein-protein interactions 48,49. Of interest, the number and size of PML 

NBs increases in response to IFN treatment and PML NBs contribute to innate defense 

against a number of viruses. It follows that following entry into host cells many viruses 

induce the modification and/or disassembly of PML NBs 50–52. 

Although TRIM22 does not co-localize with TRIM19/PML in PML NBs, it does form 

NBs and partially co-localizes with p80-coilin in Cajal bodies (CB) 53,54. Interestingly, 

several recent studies have implicated sumoylation in CB biogenesis and function. For 

example, survival motor neuron protein (SMN), one of the major components found in 

CBs, is targeted by sumoylation and contains a SIM-like domain that is integral to CB 

assembly and SMN’s interaction with p80-coilin 55. In addition, the sumo isopeptidase 

UPL1 co-localizes with p80-coilin in CBs and its depletion leads to striking p80-coilin 

mislocalization and defects in cell proliferation 56. Given these studies, and the critical 

role of sumoylation in PML NB assembly and function, it would be interesting to test 

whether K153 and the SIMs in TRIM22 are necessary for its co-localization with p80-

coilin in CBs. Indeed, previous studies have shown that the B30.2 domain of TRIM22, 

which contains 3 of the putative SIMs we identified in Chapter 3, is required for proper 

TRIM22 localization in NBs 53. Finally, because K153 is located in the CC domain of 

TRIM22, which is typically required for self-association, it is possible that SIMs in one 

TRIM22 monomer interact with sumoylated K153 in another TRIM22 monomer 57,58. 

This may help facilitate TRIM22 trimerization and/or its localization in CBs. It will be 

interesting to investigate these possibilities in future studies.   

Interestingly, 3 of the SIMs we identified in TRIM22 are also present in TRIM5α (Fig 

3.3). Previous studies have demonstrated that 2 of these 3 SIMs (i.e. ILGV and VIGL) 

are required TRIM5α-mediated antiviral activity. Mutating these SIMs in huTRIM5α 

abolished its ability to interact with the sumoylated N-MLV capsid protein. As a result, 

SIM mutation prevented N-MLV restriction 4. Similarly, SIM mutation in rhTRIM5α 
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abrogated its ability to inhibit HIV-1 replication 5. Although the role of these SIMs in 

TRIM22 is currently unknown, it is tempting to speculate that they are involved in its 

antiviral activities. Further studies are necessary to determine whether these 2 SIMs (or 

any of the other SIMs in TRIM22) are important for its antiviral activity against HIV-1 

and/or other viruses.  

Our in silico analyses in Chapter 3 also identified multiple phosphorylation sites in the 

TRIM22 protein (Table 3.6). A total of 21 sites were predicted to undergo serine (16), 

threonine (3), or tyrosine (2) phosphorylation by both GPS 2.1 and NetPhos 2.0. Many 

sites were also predicted to be important structural or functional residues by ConSurf 

(Table 3.6, Fig 3.1). TRIM22 phosphorylation has never been demonstrated; however, 

several other TRIM proteins have been shown to undergo phosphorylation, including 

TRIM19/PML and TRIM21 59–63. A few particularly interesting sites exist in TRIM22, 

such as S244, S259, S271, and T460. S259 and S271, both of which were identified as 

key functional sites by ConSurf, are located within the NLS in TRIM22’s SP2 domain 

(Table 3.6, Fig 3.1). Importantly, phosphorylation sites within or adjacent to NLSs are 

often found in key regulatory proteins (e.g. transcription factors) and typically regulate 

nuclear import, which directly affects gene expression 64,65. Sites S244 and T460 both 

coincide with the location of high-risk deleterious nsSNPs (S244L and T460I) (Tables 

3.2, 3.3). In the future, it will be important to determine whether S259 and/or S271 are 

required for the nuclear localization of TRIM22 and if the nsSNPs S244L and/or T460I 

disrupt functionally relevant phosphorylation sites.  

Collectively, this work comprises the first systematic in silico analysis of the TRIM22 

gene and will be a valuable resource for many future studies. Although we identified a 

number of putative PTM sites in TRIM22, these PTMs must be verified experimentally 

and it remains unknown how specific PTMs influence TRIM22 function. Future work 

using a panel of PTM mutants (clones of wild-type TRIM22 mutated at specific PTM 

sites) could be used to confirm our in silico results and to establish how (or if) verified 

PTMs affect TRIM22 stability, localization, and/or antiviral activity. Moreover, it may 

also be interesting to investigate if certain PTM sites in TRIM22 are required for the 

recruitment of specific E3 ligase target proteins. For example, sumo-targeted ubiquitin 
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ligases (STUb), a novel class of E3 ubiquitin ligases, only recognize sumoylated target 

proteins. STUbs that have been identified thus far are characterized by the presence of 

multiple SIMs (facilitate the recruitment of the sumoylated target protein) and a RING 

domain (mediates ubiquitylation of the sumoylated target protein) 66.  

 

5.4 The TRIM22 nsSNP rs1063303:G>C influences diverse 
TRIM22-mediated biological functions 

5.4.1 The TRIM22 nsSNP rs1063303:G>C increases TRIM22 
expression levels   

Several interesting functional consequences of the TRIM22 nsSNP rs1063303:C were 

identified in this work. In Chapter 2, we found that exogenous expression of TRIM22 

rs1063303:C significantly increased TRIM22 mRNA and protein levels in human cells 

(Fig 2.4a,b). nsSNPs often alter protein function, expression, conformation, or stability 

and there are multiple examples of this in the literature 67–71. Fewer studies have reported 

nsSNP-induced changes in mRNA expression; however, there are a number of notable 

examples 72–75. In these studies, the nsSNPs altered the secondary structure of the RNA 

transcript, which led to changes in mRNA expression. Changes in RNA structure have 

been shown to alter mRNA stability, splicing and/or the rate of translation 76,77. While 

TRIM22 rs1063303:C may alter the secondary structure of the RNA transcript, further 

studies are needed to determine whether this is the case. Since TRIM22 has previously 

been shown to inhibit gene expression from the HIV-1 and HBV promoters, it is also 

possible that TRIM22 targets the promoter controlling its own expression 78–80. In this 

scenario, the resultant TRIM22 rs1063303:C protein may exhibit reduced or enhanced 

activity, thereby increasing its own mRNA expression. It will be important to address 

these possibilities in future research.   

Given its effect on TRIM22 mRNA expression, it is likely that TRIM22 rs1063303:C 

increases TRIM22 protein expression by increasing TRIM22 mRNA levels. However, 

other possibilities for increased TRIM22 protein levels also exist. For example, since 

TRIM22 undergoes self-ubiquitylation and proteasomal degradation, it is possible that 
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TRIM22 rs1063303:C impairs TRIM22’s ability to regulate its own turnover 46. Other 

possible explanations include changes in TRIM22 protein stability and/or structure. Of 

interest, one recent study demonstrated that α-helices in the SP2 domain of rhTRIM5α 

govern cytoplasmic body formation and HIV-1 restriction. Specific residues in the SP2 

domain, including residues 240-242 (RLQ), were critical for the formation of these α-

helices 81. Notably, the study showed that rhTRIM5α forms antiparallel dimers that are 

stabilized by interactions between three α-helices (H1, H2, H3) found in the CC/SP2 

domains of each monomer. H1, which contains the CC domain and the N-terminus of 

SP2, makes contacts with H2 and together they form a hairpin structure that allows the 

monomer to double back along the dimer. Residues surrounding the hairpin structure, 

including residues 240-242, interact with each other and with other residues in the N-

terminus of H1' in the second monomer 81. Because TRIM22 and TRIM5α are closely-

related, it is tempting to speculate that TRIM22 also forms antiparallel dimers that are 

linked via the CC and SP2 domains. Since TRIM22 rs1063303:C induces a ‘R’ to ‘T’ 

amino acid change at site 242 in the TRIM22 protein, it is also possible that this nsSNP 

disrupts critical intra- and/or intermolecular interactions that are needed for antiparallel 

dimer formation. While the tertiary structure of TRIM22 has not been resolved, other 

TRIM proteins (e.g. TRIM25) have been shown to form antiparallel dimers and studies 

have noted that this structure may be a common feature among all TRIM proteins 82.  

 

5.3.2 The TRIM22 nsSNP rs1063303:G>C decreases TRIM22-
mediated antiviral activity against HIV-1 

In addition to its effects on mRNA and protein expression, TRIM22 rs1063303:C also 

altered the sub-cellular localization of TRIM22 and abrogated its anti-HIV-1 activity in 

human cells. Other host restriction factors, such as APOBEC3G and TRIM5α, contain 

nsSNPs that have been shown to decrease their ability to inhibit HIV-1. For example, 

several nsSNPs in TRIM5α, including H43Y, R136Q, and G249D are associated with 

marked changes in HIV-1 acquisition and disease progression in vivo 83,84. In addition, 

nsSNP H186R in APOBEC3G is strongly associated with reduced CD4+ T-cell counts 

and accelerated disease progression in African American individuals. Interestingly, this 
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effect is not present in European Caucasian individuals 85–87. In Chapter 2, we showed 

that a TRIM22 clone containing the ancestral allele rs1063303:G (wild-type TRIM22) 

potently inhibited HIV-1 replication, whereas a TRIM22 clone containing the derived 

allele rs1063303:C (nsSNP TRIM22) failed to restrict HIV-1 replication (Fig 2.4d). In 

contrast, a previous report by Ghezzi and colleagues 88 showed that a TRIM22 clone 

containing the derived allele rs1063303:C inhibited HIV-1 LTR-driven expression of a 

luciferase reporter gene. This discrepancy is likely due to differences between the two 

systems where we used full-length HIV-1 and they used a reporter construct controlled 

by the HIV-1 LTR. Of interest, these differences imply that other HIV-1 proteins (e.g. 

antagonists) may influence TRIM22’s antiviral activity. Ghezzi and colleagues 88 also 

found that TRIM22 rs1063303:C alone was not associated with disease progression in 

HIV-1 infected individuals; however, a TRIM22 haplotype including nsSNP alleles of 

rs1063303 and rs7935564 was found more often in advanced progressors compared to 

long-term non-progressors.  

It is interesting to note that two previous studies have shown that TRIM22 expression 

levels influence HIV-1 infection in vivo. One study examined the Centre for the AIDS 

Programme of Research in South Africa (CAPRISA) study cohort and found that the 

expression of TRIM22 mRNA was positively correlated with CD4+ T-cell counts and 

negatively correlated with viral load 89. In contrast, the other study examined the Swiss 

HIV study cohort and found that TRIM22 mRNA expression was positively correlated 

with HIV-1 RNA levels at the viral set point 90. In Chapters 2 and 4, we found striking 

differences in TRIM22 rs1063303:G>C allele frequency among different ethnic groups 

(Fig 2.3b, Table 4.2). Along these lines, it is worth noting that the CAPRISA cohort is 

comprised entirely of African females, while the Swiss cohort is comprised entirely of 

Caucasian individuals. It is possible that the high prevalence of TRIM22 rs1063303:C 

found in Caucasian individuals is at least partially responsible for the increased HIV-1 

RNA levels in the Swiss cohort. More studies that include populations from different 

geographic regions are required to establish how TRIM22 rs1063303:C impacts HIV-1 

infection and if other nsSNPs are involved.  
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5.3.3 The TRIM22 nsSNP rs1063303:G>C is associated with low 
serum TG and high serum HDL levels in the Canadian Inuit 

In Chapter 4, we demonstrated that the TRIM22 rs1063303:C allele is associated with 

significantly lower serum TG levels and significantly higher serum HDL levels in the 

Canadian Inuit. Notably, these associations were not found in the Greenlandic Inuit or 

European Caucasian populations (Table 4.4). Our results showed that homozygotes for 

the TRIM22 rs1063303:C allele (Canadian Inuit population) had lower levels of serum 

TG and higher levels of serum HDL than heterozygotes, while the TRIM22 rs1063303:G 

allele homozygotes had higher serum TG levels and lower serum HDL levels (Table 4.5). 

It remains unclear how the TRIM22 nsSNP rs1063303:C alters serum lipoprotein levels; 

however, one possible explanation is that it alters them indirectly by regulating innate 

immune signaling pathways. Recent studies have identified many TRIM proteins that 

modulate key innate immune pathways, including NF-κB signaling, the IFN response, 

and cytokine production following PRR activation 91–93. Although TRIM22 has never 

been explicitly shown to regulate these pathways, there is some evidence that it affects 

NF-κB signaling. For example, one study showed that exogenous TRIM22 expression 

inhibited the TRAF6-stimulated NF-κB pathway by degrading TAB2 94. However, a 

serparte study showed that TRIM22 activated NF-κB signaling 70. Because activation of 

the NF-κB signaling pathway leads to proinflammatory cytokine production, and since 

proinflammatory cytokines induce the APR, it is possible that TRIM22 influences TG 

and HDL levels by modulating  NF-κB signaling. Future studies are needed to address 

these possibilities and others.  

 

5.5 Concluding remarks 

In this body of work, we have identified a number of pertinent sites in the TRIM22 

protein the likely contribute to its overall biological and/or antiviral functions. Further, 

we have shown that specific amino acid sites in TRIM22 have been subjected to strong 

positive and/or balancing selection. One particular site, which coincides in location with 

the TRIM22 nsSNP rs1063303:G>C, has evolved under positive selection during the 
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evolution of mammals and has a disparate evolutionary footprint among distinct ethnic 

populations. Moreover, TRIM22 nsSNP rs1063303:G>C increased TRIM22 expression 

levels, altered its subcellular localization, decreased its antiviral activity against HIV, and 

was associated with significantly lower serum TG levels and significantly higher serum 

HDL levels in the Canadian Inuit population. Collectively, this research has paved the 

way for multiple follow-up studies to further characterize highly relevant sites in the 

TRIM22 protein and help identify novel factors that may regulate TRIM22 expression, 

subcellular localization, and antiviral activity.  
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Appendix A 

 

A.1 Overview of serum lipoproteins 

A.1.1  Introduction to serum lipoproteins   

Serum lipoproteins are complex aggregates of lipids and proteins that are formed in the 

liver and intestine, secreted into the circulation, and then taken up by peripheral tissues 

for energy and storage 1. The formation of lipoproteins is necessary because it enables 

lipid transport in the aqueous plasma environment. There are 4 major groups of serum 

lipoproteins: 1) chylomicrons (CM), 2) very-low-density lipoproteins (VLDL), 3) low-

density lipoproteins (LDL), and 4) high-density lipoproteins (HDL). These groups each 

contain different ratios of specific lipid constituents, namely triacylglycerols (TG), free 

cholesterol, cholesterol esters, and phospholipids (Table A.1). The groups also contain 

several lipid-binding proteins called apolipoproteins that surround the lipids and create 

soluble lipoprotein particles (Fig A.1). All lipoproteins are involved in lipid transport; 

however, CM and VLDL function primarily to transport TG, whereas LDL and HDL 

function primarily to transport cholesterol 2.   

 

A.1.2  Triacylglycerol transport 

Serum TG levels are often measured clinically, in which case they are defined as all of 

the TGs present in one deciliter of plasma (mg/dL). This definition includes both CMs 

and VLDLs; however, because CMs are very short-lived (half-life of ~1 hour) most of 

the TGs transported in plasma are associated with VLDLs. CMs are synthesized in the 

small intestine after meals and function primarily to transport dietary (exogenous) TGs 

from the intestine to other tissues in the periphery 3. VLDLs, which are synthesized by 

the liver, transport endogenous TGs to peripheral tissues following their excretion into 

the bloodstream. VLDLs are carried into tissue capillaries via the bloodstream, where 

they encounter an enzyme called lipoprotein lipase (LpL). LpL hydrolyzes some of the  
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Table A.1 

Table A.1: Physical properties and lipid composition of serum lipoproteins 

 

 CM VLDL LDL HDL 
Density (g/ml) < 0.94 0.94-1.006 1.006-1.063 1.063-1.210 
Total lipids (wt. %) * 99 91 80 44 
Triacylglycerols  85 55 10 6 
Cholesterol esters 3 18 50 40 
Cholesterol  2 7 11 7 
Phospholipids  8 20 29 46 

* The remaining material is mainly composed of apolipoproteins  
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Figure A.1: General structure of serum lipoprotein. 

Schematic showing the general structure of serum lipoproteins (CM, VLDL, LDL, and 

HDL). Lipoproteins are spherical in shape with a hydrophobic core comprised of both 

triacylglycerols (TG) and cholesterol esters. This core is surrounded by a monolayer of 

phospholipids, free cholesterol, and apolipoproteins.  
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Figure A.1 

 

 

Figure A.1 General structure of serum lipoprotein. 
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TGs from VLDL into their core components (TGs consist of 1 glycerol molecule and 3 

fatty acid molecules) so that they can be taken up by adjacent cells. For example, they 

may be taken up by muscle cells for energy or fat cells for storage. VLDLs continue to 

lose TGs as they travel through the blood and decrease in size, eventually turning into 

intermediate density lipoproteins (IDL). Some IDLs are subjected to further lipolysis to 

become LDL particles; however, most are reabsorbed by the liver (Fig A.2) 4. 

 

A.1.3  Cholesterol transport 

As mentioned above, LDLs are formed from VLDLs as they lose TGs to surrounding 

tissues. As such, LDLs contain very few TGs compared to VLDLs, but have the same 

protein shell and amount of cholesterol (Table A.1). Cells internalize LDL particles via 

receptor-mediated endocytosis and hydrolyze LDL-bound cholesterol esters to release 

free cholesterol. Cholesterol can be used for a variety of cellular functions, such as in 

cellular membranes or for the synthesis of steroid hormones. Although LDL is integral 

for cholesterol transport and cholesterol is necessary for proper cellular functions, too 

much LDL can be harmful. Multiple studies have shown that higher levels of LDL are 

associated with an increased risk of cardiovascular disease 5,6.  

In contrast to LDLs, nascent HDL particles are formed in the liver and small intestine. 

HDLs interact with multiple apolipoproteins (Apo) to facilitate cholesterol efflux from 

cells; however, ApoA1 is particularly important in the initial stages of HDL assembly. 

ApoA1 forms the scaffold for HDL assembly and is also required for activation of the 

lecithin:cholesterol acyltransferase (LCAT) enzyme. LCAT, which is essential for the 

formation of cholesterol esters, allows HDL to extract free cholesterol from LDLs and 

IDLs. Cholesterol is also removed by HDL from cell surface membranes via a specific 

transporter molecule (ABCG1) and delivered back to the liver for excretion (Fig A.2). 

This process, whereby HDL extracts excess cellular cholesterol and transports it to the 

liver, is called reverse cholesterol transport 7.  A large number of epidemiological and 

clinical studies have demonstrated that low HDL levels are a major risk factor for the 

development of cardiovascular disease 8.  
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Figure A.2: Serum lipoprotein synthesis and transport.   

CMs are synthesized in the small intestine and enter the bloodstream to deliver dietary 

(exogenous) TGs to various peripheral tissues. VLDLs are synthesized in the liver and 

deliver endogenous TGs to the periphery. LpL hydrolyzes TGs from both VLDLs and 

CMs so they can be taken up by cells. IDLs are formed from VLDLs as they lose TGs. 

IDLs continue to lose TGs to peripheral tissues and are eventually either reabsorbed by 

the liver or turned into LDL particles. LDLs transport cholesterol to cells in peripheral 

tissues. In contrast, HDL, which is synthesized in the liver, removes excess cholesterol 

from cells in the periphery. This excess cholesterol is transported back to the liver to be 

excreted in a process called reverse cholesterol transport. The path for CM, VLDL, and 

IDL transport is outlined in red, LDL in blue, and HDL in green.   
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Figure A.2 

 

 

Figure A.2 Serum lipoprotein synthesis and transport.   
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A.2 Serum lipoproteins during the APR 

A.2.1 Overview of the APR  

The acute phase response (APR) is an early, complex host reaction that is generated by 

infection and inflammation. The APR in animals leads to significant changes in serum 

lipoprotein metabolism. For example, in primates, serum TG levels increase and serum 

HDL levels decrease during the APR 9. The increase in serum TGs is largely due to a 

concomitant increase in serum VLDL levels. Multiple proinflammatory cytokines (e.g. 

TNF, IL-1, IL-2, IL-6, and IFN) induce this increase in serum VLDL levels via one or 

more of the following metabolic changes: 1) increase in hepatic fatty acid synthesis, 2) 

decrease in hepatic fatty acid oxidation, 3) induction of adipose tissue lipolysis, and 4) 

decrease in hepatic VLDL clearance. Changes 1-3 increase the overall production and 

secretion of VLDL into the circulation by increasing the amount of fatty acid substrate 

available for TG re-esterification. Change 4, which often only occurs at higher doses of 

LPS, decreases TG catabolism by reducing the activity of the LpL enzyme.  
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