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1 Abstract 

Urinary calculi is a common problem worldwide and is associated with substantial patient 

morbidity and healthcare costs.  The choice of treatment is dependent on the composition of 

the stone.  Currently that can only be determined once it has been removed which is too late 

to impact treatment decisions.  Considerable investigation into the use of dual-energy CT 

(DECT) for determining stone composition has lead to mixed results. The varied results may 

be due to inherent sources of error and it is unclear whether the mixed results with DECT are 

due to CT artifacts or insufficient fundamental difference in the linear attenuation coefficient 

between stones of various compositions.  This work will develop a fundamental model for 

dual-energy CT to determine the ability to differentiate between stones of uniform and mixed 

composition.  The model will be tested experimentally to optimize the parameters and 

determine the appropriate clinical measurement to reflect the results. 

 

Keywords: Dual-energy, urinary calculi, CT, composition 

 

 



 

iii 

 

2 Acknowledgments 

I would like to thank Ian Cunningham for his unending patience and guidance. 



 

iv 

 

Table of Contents 

Abstract ............................................................................................................................... ii!

Acknowledgments .............................................................................................................. iii!

List of Tables ..................................................................................................................... vi!

List of Figures ................................................................................................................... vii!

List of Appendices ............................................................................................................. ix!

Chapter 1 – Introduction and Review of the Literature ...................................................... 1!

1.1! Introduction ............................................................................................................. 1!

1.2! Urolithiasis .............................................................................................................. 2!

1.2.1! Diagnosis of urolithiasis ............................................................................. 3!

1.2.2! Composition of calculi ................................................................................ 4!

1.2.3! Treatment options for urolithiasis ............................................................... 7!

1.2.4! Ex vivo methods of stone analysis .............................................................. 9!

1.3! Dual energy imaging ............................................................................................. 12!

1.3.1! Principles of dual energy CT .................................................................... 12!

1.3.2! Methods used in dual energy imaging ...................................................... 16!

1.3.3! Controversy regarding ability of dual energy CT to determine stone 
composition ............................................................................................... 18!

1.3.4! Potential errors in dual energy CT ............................................................ 19!

1.4! Research Goal ....................................................................................................... 20!

1.5! Research Objectives .............................................................................................. 21!

1.6! Thesis outline ........................................................................................................ 22!

Chapter 2 – Dual energy CT to predict urinary calculi composition: A theoretical model
 30!

2.1! Introduction ........................................................................................................... 30!

2.2! Theory ................................................................................................................... 31!



 

v 

 

2.3! Materials and Methods .......................................................................................... 38!

2.3.1! Stone Density ............................................................................................ 39!

2.3.2! Optimal high and low energy kV and mAs ratio ...................................... 40!

2.3.3! Optimal beam-filter material ..................................................................... 40!

2.4! Results ................................................................................................................... 40!

2.4.1! Optimal high and low energy kV .............................................................. 40!

2.4.2! Stone Density ............................................................................................ 42!

2.4.3! Optimal mAs Ratio ................................................................................... 42!

2.4.4! Optimal beam filtration ............................................................................. 43!

2.4.5! Theoretical stone analysis ......................................................................... 48!

2.5! Discussion ............................................................................................................. 53!

2.6! Conclusions ........................................................................................................... 55!

Chapter 3 - Dual energy computed tomography of canine urinary calculi ....................... 60!

3.1! Materials and Methods .......................................................................................... 62!

3.2! Results ................................................................................................................... 63!

3.3! Discussion ............................................................................................................. 66!

3.4! Conclusions ........................................................................................................... 70!

Chapter 4 - Conclusions .................................................................................................... 75!

Appendices ........................................................................................................................ 79!

Curriculum Vitae .............................................................................................................. 91!

3 



 

vi 

 

List of Tables  

Table 1-1 Chemical composition of common stones (28) ........................................................ 5!

Table 1-2 Characteristics of common calculi (1, 18, 33, 39) .................................................... 6!

Table 1-3 k-edge of common elements in the body and contrast agents (70) ........................ 14!

Table 2-1 Stone material specifications (33) .......................................................................... 38!

Table 2-2 Stone Density as calculated based on average CT number from previous studies 

using equation (2.14). The statistical variance in the density measurement represents the 

variability noted in the previous studies.  The effective energy of the 80 kV and 140 kV 

spectra are 56 keV and 76 keV respectively ........................................................................... 42!

Table 2-3 Pure stones ranked from lowest to highest dual energy ratio and number (* 

indicates stones not amenable to shock wave lithotripsy). ..................................................... 48!

Table 2-4 Signal difference to noise ratio per unit dose (FN
2

 and FR
2) for the stone pair 

calcium oxalate monohydrate/brushite with a 3 mm3 voxel using optimal low/high filter 

combinations and energy settings (200 mAs 80 kV, 100 mAs 140 kV). ................................ 49!

Table 3-1 Dual energy ratio, dual energy number and high and low energy CT numbers for 

stone types (mean +/- standard error) using the manual region of interest ............................. 65!

Table 3-2 Significant differences in the pair wise comparisons dual energy ratio (♦), dual 

energy number (X) and low energy CT number (*). Cystine and brushite stones are not 

amenable to shockwave lithotripsy. ........................................................................................ 66!

4 



 

vii 

 

List of Figures 

Figure 1-1: Overview of treatment options for urinary calculi based on location and stone 

composition (ESWL – extracorporeal shockwave lithotripsy, PCNL – percutaneous 

nephrolithotomy) ....................................................................................................................... 7!

Figure 1-2: Linear attenuation coefficients of water and calcium from 10 to 120 kV ........... 15!

Figure 2-1 Schematic of a fan beam geometry CT scanner where L = phantom diameter, w = 

the detector width [cm], s = slice thickness [cm], and Nd = number of detectors. ................. 33!

Figure 2-2 Plot of best fit linear model of RK to half value layer (line) based on measured 

values from Huda et al. and Matheiu et al. (dots). The arrows indicate the half value layer of 

the low and high energy beams used in this study. ................................................................. 37!

Figure 2-3 Impact of the x-ray energy on the figure of merit for spectra with variable kV of 

70 to 100 and 100 to 180 for the low and high energy spectra respectively. For the lowest 

practical kV of 80 the optimal energy of the high energy spectrum is in the range of 130 to 

180 kV but there is minimal increase in the figure of merit above at kV of 140 (stone 

combination: calcium oxalate monohydrate/brushite). ........................................................... 41!

Figure 2-4 Impact of mAs ratio on the square root of the figure of merit (kV 80/140, stone 

combination: calcium oxalate monohydrate/brushite). ........................................................... 43!

Figure 2-5 Impact of filter high and low energy filter materials on the figure of merit (mAs 

200/100, kV 80/140, stone combination: calcium oxalate monohydrate/brushite, filter 

thickness to attenuate 50% of the primary beam). For both FR
2 and FN

2 the maximum 

separation of the stones occurred with a low energy filter of Z = 66 to 70 and a high energy 

filter of Z = 44 to 60. Z=0 corresponds to no filter material. .................................................. 44!

Figure 2-6 Impact filtration of the high energy spectrum only on the figure of merit (mAs 

200/100, kV 80/140, stone combination: calcium oxalate monohydrate/brushite) ................ 45!

Figure 2-7  Impact of percent beam attenuation (A) and thickness (B) for tin high and erbium 

low energy filters on the figure of merit (mAs 200/100, kV 80/140, stone combination: 

calcium oxalate monohydrate/brushite). ................................................................................. 46!



 

viii 

 

Figure 2-8 Impact of tin high energy filter attenuation (A) and thickness (B) on the figure of 

merit.  Filter thickness is expressed as attenuation of exposure (mAs 200/100, kV 80/140, 

stone combination: calcium oxalate monohydrate/brushite). ................................................. 47!

Figure 2-9 Comparison of the unfiltered and filtered spectra demonstrated good spectral 

separation with filter combination (low energy filter 0.1 cm erbium, high energy filter 0.4 cm 

tin). .......................................................................................................................................... 50!

Figure 2-10 Gaussian curves generated from the mean and standard deviation of the dual 

energy number for pure stone materials. Brushite and cystine are the stone materials that are 

not amenable to lithotripsy. ..................................................................................................... 51!

Figure 2-11 Gaussian curves generated from the mean and standard deviation of the dual 

energy ratio for pure stone materials. Brushite and cystine are the stone materials that are not 

amenable to lithotripsy. Calcium oxalate stones (monohydrate and dihydrate) have the same 

distribution. ............................................................................................................................. 52!

Figure 3-1 Linear attenuation coefficients of water and calcium from 10 to 120 kV.  At a 

given energy the relative difference in linear attenuation coefficients is different. This 

difference is exploited in dual energy measurements to determine material composition ..... 61!

Figure 3-2 Schematic of the CT phantom.  Stones were suspended in the centre of the agar 

phantom. .................................................................................................................................. 62!

Figure 3-3 Agreement between the manual drawn region of interest and the threshold region 

of interest for the dual energy number .................................................................................... 64!

Figure 3-4 CT image of a struvite stone at 80 kV(A) and 140 kV (B) ................................... 64!

 

 



 

ix 

 

List of Appendices 

Appendix A: Imaging parameters used in previously reported dual energy computed 

tomography evaluations .......................................................................................................... 80!

Appendix B: Reported CT attenuation values of stones after exposure using a high energy 

(120-140kV) setting ................................................................................................................ 81!

Appendix C: Reported CT acquired dual energy ratio values of stones (HU high energy 

beam/HU low energy beam) ................................................................................................... 82!

Appendix D: Reported CT acquired dual energy attenuation values of stones (HU low energy 

beam – HU high energy beam) ............................................................................................... 83!

Appendix E: Estimation of average linear attenuation coefficient of stone material ............. 84!

Appendix F: Theoretical derivation of noise in the CT image ............................................... 85!

Appendix G: Table of variables .............................................................................................. 89!

 

1  



1 

 

Chapter 1 – Introduction and Review of the Literature  

 

1.1 Introduction 

 Urolithiasis is a common disease that is associated with significant morbidity and a 

prevalence of 3-20% worldwide.(1, 2) Stones can either form in the bladder or the 

kidneys. Kidney stones can subsequently move into the ureters where, depending on the 

size, they will either continue to pass into the urinary bladder or cause obstruction of the 

ureter causing substantial pain and potential renal dysfunction.  Management of urinary 

stones involves initial diagnosis, removal and prevention of recurrence. Stones can be 

made of various different mineral compositions and can either relatively hard or soft. 

Additionally they are of variable densities and may be unapparent on radiographs. CT has 

become the standard of care in the identification of renal and ureteral stones in people 

because of the improved sensitivity and specificity compared to plain radiographs (3, 4) 

but has had variable results in the ability to determine the composition of the stones.(4-

17) Once diagnosed, stones in the kidney and proximal ureter can be treated with 

ureteroscopy, surgery, percutaneous nephrolithotomy or extracorporeal shock wave 

lithotripsy (ESWL).(18) Extracorporeal shock wave lithotripsy is a preferred treatment 

because it is minimally invasive but it is not effective for all compositions of stones. 

Although not specifically contraindicated in hard stones ESWL can result in renal and 

systemic side effects and incompletely fragment a stone into multiple large pieces that 

still cannot pass and are more difficult to retrieve with more invasive methods resulting in 

increased patient morbidity.(19, 20) Therefore, determining stone composition in vivo 

would be beneficial to treatment planning to reduce patient morbidity.  

Plain CT and dual energy CT have been used to determine stone composition with varied 

results. Inconsistency in the results may be due to the varied study design, including 

varied imaging parameters and criteria for a pure stone composition, differences in 

system calibration, scanner specific proprietary filters, beam hardening and partial 

volume averaging artifact.  An example that some studies may be imaging artifact is seen 
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in Graser et al. in 2008 where a image of a stone composed of two materials is 

provided.(21) This image illustrates a linear band of material traversing the entire 

diameter of the stone.  Formation of stones typically occurs by deposition of concentric 

rings around a central nidus. This linear deposition has never been reported and therefore 

this image may represent detection of an artifact rather than a true difference in stone 

material. The question remains whether it is fundamentally possible to determine stone 

composition with dual energy CT.   

To address the varying published results on dual energy CT for determining stone 

composition the fundamental question of whether there is sufficient difference in the dual 

energy measurement between stones must be evaluated. If there is insufficient difference 

in the measurement between pure stones then detecting differences in stones of mixed 

composition with systems that have inherent sources of error will never be effective.  

This work will evaluate the fundamental signal to noise ratio for common stone materials 

to determine whether there is sufficient difference to differentiate stone materials. In 

addition it will assess the utility of task specific beam filtration in improving the 

difference in signal to noise ratio between stone materials to determine there is improved 

differentiation.  Finally, dual energy CT will be evaluated in an experimental model to 

determine if it can differentiate common canine stone materials in a phantom. 

 

1.2 Urolithiasis 

There is a geographic predisposition to urolithiasis with the highest prevalence’s noted in 

North America, Japan, and Scandinavia.(2) In the past decades there has been a decrease 

in the prevalence of bladder stones with a concurrent increase in the prevalence of renal 

stones that is thought to be due to changes in eating habits and a trend to large amount of 

high protein foods.(2) In addition to this shift in stone origin the overall incidence and 

prevalence of this disease is increasing worldwide having only peaked in North America 

in the 1980’s and in European and Asian countries in the 1990’s and 2000’s.(2, 22) 

Urolithiasis is also a common problem in dogs and cats with an reported incidence of 
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2.8% of all dogs and 1-10% of all cats.(23) In spite of advances in the understanding of 

the pathogenesis, urolithiasis remains a common disorder.   

An understanding of stone composition and how it influences treatment options is 

required to appreciate the challenges and importance of in vivo diagnosis. 

1.2.1 Diagnosis of urolithiasis 

The goals of initial imaging tests in the diagnosis of urolithiasis are (1) accurately 

determine the presence of stones, (2) determine the size of the stone, and (3) determine 

the composition of the stone.  Size and composition are important factors in deciding on 

the appropriate treatment for uroliths.  For example, uric acid stones are amenable to 

medical management (by alkalization of the urine) and ESWL while calcium oxalate 

stones cannot be treated medically and are less likely to be completely fragmented by 

ESWL so percutaneous nephrolithotomy may required for definitive treatment.(8) Stones 

of greater than 2 cm in diameter are typically not treated with ESWL as they are difficult 

to fragment sufficiently to pass through the ureter without causing obstruction.(14) 

Plain radiographs have been evaluated for their ability to predict the composition of renal 

stones. Evaluation can be subjective by assessing shape, architecture, and comparing 

stone density to a rib or vertebrae or objective through grey scale analysis.(24, 25) The 

disadvantage of plain radiographs is that stones must be of a minimum size and calcium 

content to be detected due to the superimposition of soft tissue structures and bowel gas. 

Urate and cystine stones typically have insufficient density to be detected on plain 

radiographs. Levine et. al showed that 41-55% of ureteral stones evident on CT  were not 

evident on plain radiographs regardless of composition.(3) Although subjective 

assessment of stone composition is highly inaccurate, Oehlschlager et. al. showed that 

grey scale analysis of scanned films differentiated between calcium oxalate stones and 

magnesium ammonium phosphate (MAP)/calcium phosphate stones in 100% of cases but 

could not differentiate between MAP and calcium phosphate stones.(24, 25) Stone 

radiodensity has also been compared to the 12th rib but could not predict the stone 

composition or the efficacy of ESWL.(26) 
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As previously discussed, CT has become the standard of care in the identification of renal 

and ureteral stones in people because of the improved sensitivity and specificity 

compared to plain radiographs.(3, 4) An additional advantage is the ability to detect extra 

urinary causes of flank pain that can mimic ureteral colic. Because CT is often already 

being performed in this patient population and it has the ability to quantitate the density 

of materials there has been considerable interest in the use of single and dual energy CT 

for determining stone composition in vitro to facilitate treatment decisions.   

 

1.2.2 Composition of calculi 

Calculi are described in terms of their mineral composition (Table 1-1). Formation of 

calculi occurs when there is deposition of material in circumferential layers around a 

central nidus.(27) The nucleus of the stone may form from precipitation of supersaturated 

urine, precipitation of crystal on microscopic debris in the urine, or in the renal papilla 

which subsequently becomes exposed to urine through mucosal erosion and becomes a 

free calculus.(28) The central nucleus of the stone may differ in composition that the 

outer shell as factors that cause the formation of the nucleus of the stone may differ from 

the factors that cause stone growth.(28) The type of material deposited around the nidus 

varies with numerous factors, including urine pH and diet, which may change over time 

so the percentage of truly “pure” stones is reported to be 30-34%.(29, 30)  Current 

methods typically classify a stone as a single substance if that substance comprises more 

than 60 - 75% of the total stone.(8, 14, 31) Therefore knowledge of the entire 

composition of the stone is essential to determine the etiological process and address 

preventing recurrence.(32) 
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Table 1-1 Chemical composition of common stones (28) 

Full Name Abbreviation Chemical Composition 

Calcium oxalate 
monohydrate (whewellite) 

COM CaC2O4.H2O 

Calcium oxalate dihydrate 
(weddellite) 

COD CaC2O4.2H2O 

Magnesium ammonium 
phosphate hexahydrate  

MAP MgNH4PO4.6H2O 

Carbonate – apatite CAP Ca10(PO4,CO3OH)6(OH2) 

Hydroxyl – apatite HAP Ca10(PO4)6(OH2) 

Calcium hydrogen 
phosphate dihydrate 
(brushite)  

BRU CaHPO4.2H2O 

Uric acid UA C5H4N4O3 

Cystine  CYS [-SCH2CH(NH2)-COOH]2 

  

The prevalence of the various stone types is somewhat region dependent but the 

following trends are noted.  Calcium oxalate monohydrate and calcium oxalate dihydrate 

are two of the most common compounds found in human calculi representing more than 

80% of all stones.(22, 28) Calcium hydrogen phosphate dihydrate (brushite) stones are 

uncommon occurring in less than 2% of stones.(28) Uric acid is found in 8-10% of 

stones. Cystine is uncommon occurring in 1-2% of stones.(28) Magnesium ammonium 

phosphate stones are typically associated with alkaline urine and urease splitting bacterial 

infections in people.(28) The imaging characteristics, fragility, and causative factors of 

common stones is given in Table 1-2. 
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Table 1-2 Characteristics of common calculi (1, 18, 33, 39) 

Composition Radiographic 
Opacity 

Attenuation 
(HU) 

Fragility Medically 
dissolvable 

Etiological 
Factors 

Calcium 
monohydrate/ 
Calcium 
dehydrate 
 

Moderate to 
markedly 
opaque 

1700-2800 Moderate 
to very 
hard 

No Underlying 
metabolic 
disorder 

Magnesium 
ammonium 
phosphate 
 

Moderate to 
markedly 
opaque 

1200-1600 Moderate Yes Renal 
infection 

Urate No to minimal 
radiopacity 
 

200-450 Soft Yes Hyperuricemia 

Cystine Faint to 
moderate 
opacity 
 

600-1100 Very 
hard 

No Renal tubular 
defect 

Calcium 
Phosphate 

Moderately to 
markedly 
opaque 
 

Not reported Moderate No None known 

Silica Moderate 
 

 unknown No  

Brushite Radiopaque 1700-2800 Very 
hard 

No Unknown 

 

In dogs and cats magnesium ammonium phosphate and calcium oxalate stones are the 

most common stone type with an incidence of 39-53% and 35-45% respectively.(31, 33, 

34) Urate stones are also common accounting for approximately 24% of stones submitted 

for analysis.(34) Although in veterinary medicine the overall incidence of urolithiasis has 

not changed over the past several decades there has been a dramatic shift in the type of 

stones identified with a decrease in magnesium ammonium phosphate stones and an 

increase in calcium oxalate stones.  This is thought to be due to improvements in the 

dietary management of MAP stones.  It is also theorized that diets that manage 

magnesium ammonium phosphate stones increase the risk of developing calcium oxalate 

stones.(31, 33, 34)   
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Because treatment of non obstructive stones varies with stone composition it is important 

to determine the composition in vivo. 

 

1.2.3 Treatment options for urolithiasis 

Treatment decisions for urinary calculi vary with the location, size, and composition of 

the stone (Figure 1-1). Stones located in the distal ureter and urinary bladder are most 

often removed via urethroscopy and cystoscopy.  Large stones can be fragmented with 

concurrent use of laser lithotripsy to facilitate removal.  Stones in the kidney and 

proximal ureter can be treated with ureteroscopy, surgery, percutaneous nephrolithotomy 

or extracorporeal shock wave lithotripsy. (18) 

 

 

Figure 1-1: Overview of treatment options for urinary calculi based on location and stone 

composition (ESWL – extracorporeal shockwave lithotripsy, PCNL – percutaneous 

nephrolithotomy) 
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In recent years there have been considerable advances in the treatment of urolithiasis 

including intracorporal and extracorporeal shock wave lithotripsy.  These techniques are 

advantageous in that they are minimally or non-invasive but not all stones are amenable 

to shock wave therapy.  ESWL is unsuccessful in 9.4-26.3% of cases (35, 36) and is not 

without side effects including hypertension, renal function loss and an increase in stone 

recurrence rates, so it is important patients selected for this procedure have stones that are 

amenable to this treatment.(19) There can also be substantial cost associated with repeat 

treatment and alternative procedures when ESWL fails so it is important patients selected 

for this procedure have stones that are amenable to this treatment.(37, 38) As a result 

there has been considerable interest in developing in vivo assessments of stone 

composition and correlating stone composition with fragility and to allow for appropriate 

treatment decisions.  

Uric acid stones are known for being soft and easily fragmented with shock wave therapy 

while brushite and cystine stones are harder and as a result are resistant to ESWL.(1, 39, 

40) Struvite, uric acid and calcium oxalate dihydrate (COD) stones tend to fragment into 

small pieces while calcium oxalate monohydrate (COM) tends to fragment into larger 

pieces that are less likely to pass.(41) It has also been shown that within a specific 

chemical composition (particularly COM stones) there is great variability in stone 

fragility (co-efficient of variability 60%).(39) The reason for this variability is poorly 

understood but parameters that may influence stone fragility include composition, 

uniformity of composition, density, maximal diameter, total stone volume, and location 

in the urinary tract.(42-45) Within COM stones the concentration of magnesium, 

manganese and zinc were significantly lower in stones that were successfully fragmented 

with ESWL versus those that failed treatment.(41) Adams et.al. compared the fragility of 

calcium monohydrate stones from dogs and cats and found that feline stones were harder 

to break than canine stones in spite of the same chemical composition.(46) This may be 

due to varying amounts of organic material or a mix of minerals being present.(39) 

Mandhani et. al. used dual x-ray absorptiometry (DXA) to assess stone fragility and 

determined that fragility was correlated to stone mineral content and not mineral density. 

They hypothesized that a classification scheme that is independent of composition and 

based on stone mineral content would answer the clinically relevant question of whether 
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stones can be fragmented with ESWL or not.(38) In vivo work using single energy 

multidetector CT to evaluate the density of uroliths to classify according to this scheme 

was successful in classifying the stones in 66% of cases.(47, 48) Stones of greater than 

1000 HU are significantly more likely to fail treatment by ESWL.(49) The majority of 

studies evaluate the stone on a single maximal diameter slice. Yoshida et. al. evaluated 

the entire stone volume and showed that although mean attenuation of the stone was 

significant in predicting successful ESWL the presence of a hump of high attenuation in 

the stone volume was the most accurate single predictive factor (positive predictive value 

92.5%, negative predictive value 87.4%).(43) COM stones with a homogeneous internal 

architecture are significantly harder than those with a heterogeneous architecture 

requiring almost twice the number of shockwaves to fragment.(50) 

Stone composition is important in treatment planning but stone site, stone size, stone 

number, history of urolithiasis, hydronephrosis, renal colic, and ureteral stents also affect 

the success rate of ESWL.(44, 45) If dual energy projection imaging can provide accurate 

information on the stone mineral content, regardless of the stone composition, then it may 

be a simple test to predict the effectiveness of ESWL. 

 

1.2.4 Ex vivo methods of stone analysis 

Ex vivo methods of stone analysis provide information that can be used for prevention of 

stone recurrence but not on treatment options and these tests are the standard to which all 

in vivo testing is compared.(51) However, currently there is no universally accepted 

standard for stone analysis.(51) Chemical analysis, polarized light microscopy, infrared 

spectroscopy and x-ray diffraction techniques are all used to analyze stones. These 

methods all require small powdered samples to analyze and that can limit the ability to 

differentiate the individual layers of the stone. Careful splitting the stone and analysis of 

samples from the different layers minimizes this limitation.(52) More recently coherent 

scatter CT and micro CT have been used to evaluate stones. These methods are non-

destructive allowing for the identification of the layered composition in situ. 
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Chemical analysis can be performed to provide both a qualitative and quantitative 

assessment of stones.(53, 54) This provides a rough estimate of the constituents of a stone 

but there is some error as compounds may be present in several stone types (e.g. calcium 

and phosphate are present in brushite, whitelockite and octacalcium phosphate 

stones).(54)  

All calculi are crystalline meaning there is an internal three-dimensional ordered structure 

of atoms.  Polarized light microscopy can be used to identify the composition of stones 

because the transmission of light through a crystalline structure results in a unique 

pattern.  The pattern from an unknown substance can be compared to patterns of known 

substances to determine its composition.(52) This method is cost effective, quick, and 

able to detect small components of mixed stones but is highly subjective and quantitative 

analysis is not possible.(29)  

Infrared spectroscopy uses light to stimulate atomic vibration resulting in energy 

absorption.  This is depicted as absorption bands in the infrared spectrum.  The pattern of 

absorption bands can be compared to standards of pure samples to determine the 

composition.  Mixed samples can also be evaluated, as the mixed spectrums are a simple 

overlay of the individual pure spectrums.(55, 56) This analysis can examine small 

samples, can detect the non crystalline components (fat or protein) and can be semi-

automated.(29) Currently Fourier transform infrared spectroscopy (FTIR) and attenuated 

total internal reflection Fourier transform infrared spectroscopy (ATR-FTIR) are used for 

stone analysis.  ATR-FTIR has the advantage of requiring less sample preparation. 

Measurements are independent of sample thickness so less grinding is required and ATR 

does not require mixing the sample with an infrared inactive material.(29, 57) 

X-ray diffraction methods involve radiating a powdered sample with a monoenergetic 

beam. The x-rays are diffracted by the sample in a characteristic pattern.  This provides a 

very robust method of accurately identifying the composition of stones and quantitate the 

components and is considered to be the gold standard in clinical stone analysis but is 

limited by the sample size.(58, 59)  It was shown than in mixed stones if less than 5-15% 

of a compound was present it would not be detected with x-ray diffraction.(29, 52, 55) 
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An extension of the x-ray diffraction technique is coherent scatter computed tomography 

(CS-CT).  Coherent scatter occurs when the x-ray photon interacts with the bound 

electrons causing them to vibrate resulting in the deflection the incident photon in a 

different direction. In the diagnostic energy range the photons scattered between 0-10° 

produce a material specific diffraction pattern.(60) X-ray diffraction cannot be used on 

thick samples because the randomly oriented crystallites result in complex scatter 

patterns. By using conventional filtered back projection techniques used in CT the 

average diffraction provides an average of diffraction spots over azimuthal angles that is 

equivalent to the analysis of powered samples.(58, 61, 62) Non destructive simultaneous 

evaluation of the stone composition and component distribution is the primary advantage 

of this method of analysis but it is currently only available at one institution.(63) 

Micro CT provides excellent spatial resolution (to the micrometer) allowing for the 

determination of the internal architecture of stones including layers of components, 

irregularities in shape, and internal fissures.  Because of its ability to differentiate the 

layers of the stone and rapidly scan numerous small fragments this method can be used to 

more accurately select samples for further analysis with FTIR or x-ray diffraction. 

Numerous small fragments can be assessed for their uniformity to determine how many 

and which fragments should undergo further analysis (64) Zarse et. al. showed that the 

components of common stones had differing attenuations that did not overlap.(65) This 

method is not being used commercially due to the high cost of the equipment but has 

numerous applications in the research of urolithiasis and the principles of micro-CT may 

eventually be able to be translated to clinical CT scanners for in vivo use.(64) 

To aid in stone prevention accurate determination of all materials within a stone is 

important and although ex vivo methods of stone analysis will likely be more accurate 

than in vivo methods an in vivo test is still required to guide treatment decisions.  
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1.3 Dual energy imaging 

To address the problem of in vivo determination of stone composition many have turned 

to dual energy CT. To date dual energy CT (DECT) has also shown inconsistent 

results.(Appendix A) Mostafavi et al. showed the dual energy ratio can be used to 

differentiate all stone types while several other authors could not reproduce these finding 

showing that calcium oxalate cannot be differentiated from brushite and MAP cannot be 

differentiated from silca.(4-8, 11-13, 15-17, 66) The trend in the literature is that dual 

energy CT can accurately differentiate between calcium containing, cystine, and urate 

stones but cannot differentiate MAP stones from other types and cannot differentiate 

between the types of calcium containing stones. To address these inconsistencies it is 

necessary to understand the principles of dual energy CT. 

 

1.3.1 Principles of dual energy CT 

Dual energy CT was first reported in the late 1970’s but has not seen widespread use until 

recently due to limitations in CT technology.(67) This technique exploits the differences 

in the probability of the photoelectric and Compton interactions and the variability of K-

edges between soft tissue, bone, and contrast medium when images are obtained at 

different energies.(21, 68-70) The CT number (H) [Hounsfield units] is a dimensionless 

quantity defined as  

        (1.1)  

where µ is the average linear attenuation coefficient [cm-1] of the patient tissue and µw  is 

the linear attenuation coefficient for water. The linear attenuation coefficient is the 

probability per cm of an x-ray photon interaction in a small thickness of tissue, which 

depends on the x-ray energy and average atomic number of patient tissue.  A CT image 

therefore illustrates the relative difference of the linear attenuation coefficient of the 

patient tissue with respect to water. Imaging at different energies results in unique linear 

attenuation coefficients and therefore unique CT numbers.(67) The typical energy range 

 
H ≡ 1000 i

µ − µw

µw
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for diagnostic imaging is 60 to 140 kV.  In this energy range there are two predominant 

interactions between the incident photon and the atom: the photoelectric effect and 

Compton scatter.   

At the low energy range (<50 keV) the predominant interaction between the x-rays and 

the body is the photoelectric effect.  The probability of the photoelectric effect occurring 

is proportional to Z3/E3 (Z = atomic number, E = energy of incident photon).  The 

photoelectric effect predominates when low energy photons interact with high Z 

materials and, therefore, is a major contributor to the attenuation of high atomic number 

materials such as calcium, barium and iodine.(69, 71) A focal increase in attenuation due 

to photoelectric effect occurs just above the k-shell binding energy that is referred to as 

the k-edge.  Above the k-edge energy the probability of the photoelectric effect is greater 

than just below the k-edge.(71) The k-edge energy is specific to each element and 

increases as the atomic number increases (Table 1-3). Because the k-edge is material 

specific, the photoelectric coefficient can provide information on the composition of the 

object.(70, 72)  
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Table 1-3 k-edge of common elements in the body and contrast agents (70) 

Substance Atomic Number (Z) k-edge (keV) 

Hydrogen 1 0.01 

Carbon 6 0.28 

Nitrogen 7 0.40 

Oxygen 8 0.53 

Calcium 20 4.00 

Iodine 53 33.20 

Barium 56 37.45 

Gadolinium 64 50.20 

 

Compton scatter predominates at energies >26 keV as the probability of a Compton 

interaction increases with the increasing energy of the incident photon. This interaction is 

also proportional to the electron density of the material and independent of Z making it 

the dominant interaction in soft tissue. In Compton scatter the incident photon interacts 

with and ejects an outer shell electron and the incident photon is scattered.  The higher 

the energy of the incident photon the more likely the scattered photon will be in a forward 

direction and go on to interact with the detector.  These scattered photons result in 

exposure of the image detector but do not reflect patient anatomy causing blurring in the 

image that decreases the contrast resolution.(71, 73)  

Di Chiro et al. described the method for identifying tissue signatures with dual energy CT 

using the Compton and photoelectric components of the CT number as: 

H = (HC + βHP ) / (1+ β )        (1.2) 

where H is the CT number, HC the Compton number, HP the photoelectric number, and β 

a quality or spectral factor obtained by calibration of the scanner.(74)  
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The composition of materials can be determined by dual energy imaging because there is 

a non linear relationship between effective linear attenuation coefficient for different 

materials at different energies. Figure 1-2 shows the linear attenuation curves of calcium 

and water.  At energies used in diagnostic imaging (50 – 120 kV) these curves converge.  

The ratio of the attenuation coefficients obtained at two energies will be unique 

improving the delineation of materials with similar linear attenuation coefficients.  

 

 

Figure 1-2: Linear attenuation coefficients of water and calcium from 10 to 120 kV  

 

The most common dual energy measurements are the dual energy number (high energy 

CT number - the low energy CT number) or dual energy ratio (low energy CT number ÷ 

high energy CT number) with the latter being the most common method for classifying 

stone composition.(8, 49, 66) Figure 1-2 illustrates the effective linear attenuations 

coefficients of two materials at specific energies, but in conventional CT imaging, the 

beam is a spectrum and not monoenergetic so the degree of separation of these curves 

will be reduced which will have a negative impact on the ability to discriminate 

materials.  
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1.3.2 Methods used in dual energy imaging 

Dual energy projection imaging can be performed by multiple methods: acquiring two 

consecutive scans with different energies, acquiring two images in rapid succession with 

differing kV, using a single shot technique with a dual peak x-ray spectrum, using a 

single shot technique using a dual energy detector that differentially absorbs the high and 

low energy spectrum, and simultaneous acquisition of dual energy scans with specialized 

CT scanners.(75-79) 

The advantage of the dual exposure technique is the flexibility to optimize the energy 

separation between the images. Until recently the dual shot x-ray approach has only been 

used with a line scan technique with modified CT scanners or with consecutive 

acquisition of two series.(79-82) These techniques can result in inaccurate image 

registration and subsequent errors in the dual energy values. Recently the technology has 

developed that allows the acquisition of two images in rapid succession with an x-ray 

generator that can rapidly switch between two kV’s. Regardless of acquisition method the 

potential downside to a dual exposure technique is an increase in patient dose.  However, 

recent work has shown that high quality dual energy images can be produced using the 

same dose as a single DR image and the patient dose can still be less than or equivalent to 

conventional CT.(83, 84) 

A method has been described to create a dual peak x-ray by using a 300 mg/cm2 

gadolinium filter at the tube output.  Gadolinium has a favourable location of the K-edge 

making it an effective filter to create a dual peaked energy spectrum. However, in order 

to compensate for the beam filtration the current exposure product (mAs) needed to be 

increased ten-fold resulting in excessive patient dose.(75) An alternative method of 

obtaining a dual energy image is to use a single shot polyenergetic x-ray beam and two 

detectors that are separated by a filter.  The first detector absorbs the low energy photons, 

the filter stops the remaining low energy photons, and the second detector absorbs the 

high energy photons.(75, 77) The advantage of these single shot techniques is that there is 

no possibility of patient movement between the two images, which had been the limiting 
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factor in dual shot techniques. Any patient movement will cause misregistration of the 

two images resulting in increased image error.(78) The disadvantage of these single shot 

techniques is in creating adequate energy separation between the two detectors to obtain 

high quality images. Greater energy separation between the images results in improved 

quality subtracted images. Initially images generated with this technique had poor quality 

but that was overcome by others that subsequently showed this technique can be used to 

generate images of sufficient diagnostic quality for clinical application. Even with the 

decreased signal to noise ratio (SNR), the subtracted images were superior to plain 

images in the detection of pulmonary nodules, pulmonary calcification, and rib 

lesions.(75, 77, 85)  

One of the most important factors in determining image quality for dual energy 

subtracted images is the separation in the energy spectrum, particularly with K-edge 

techniques.(86) Having minimal energy overlap between the spectra is important to 

optimize bone or contrast cancellation.(84) Additionally, increasing the energy separation 

results in improved signal to noise ratio.(83) Obtaining adequate separation has been one 

of the challenges with a single shot technique. Using the gadolinium pre filter and 

sandwiched detectors the energy separation was approximately 23 keV while using the 

dual energy detectors it was 15 -23.6 keV.(75, 77, 78) Dual shot techniques allow for 

greater control over the separation in the energy spectrum and therefore improved 

decomposition analysis.  

The cost of dual energy projection imaging is increased quantum noise.(76, 87, 88)  In 

the diagnostic energy range only 1-10% of the total attenuation is due to the photoelectric 

effect.(89) In order to maximize the photoelectric effect lower energies are required and 

the lower energy photons cannot penetrate the tissues to expose the detector resulting in a 

decreased signal to noise ratio. At an equivalent x-ray dose the SNR is significantly 

lower.(87) Additionally the scatter patterns at high and low energies do not match.  When 

creating a weighted subtracted image these mismatched scatter patterns will not cancel to 

zero resulting in increased error.(90) However it has been shown that in thoracic imaging 

anatomical noise, which is cancelled out in dual energy imaging, may be far greater than 

electronic noise and is a more important factor in limiting lesion detection.(91) The 



18 

 

reduction in anatomical noise likely more than compensates for the concurrent increase in 

quantum noise in dual energy images. However the question remains whether there is 

sufficient difference in the signal to noise ratio to accurately differentiate between 

different stone materials. 

 

1.3.3 Controversy regarding ability of dual energy CT to determine 
stone composition 

Numerous authors have evaluated the use of dual energy ratio and dual energy value as 

well as other CT parameters to determine stone composition with varied results. 

Mostafavi et al. and Saw et al. evaluated the density of stones with the high energy 

settings and showed that calcium containing stones could be differentiated from all other 

stones except brushite, and that magnesium ammonium phosphate stones could be 

differentiated from cystine stones.(5, 14) Other reports show dual energy ratio could 

differentiate all stones (12) or calcium containing stones from other stones (11, 66) while 

dual energy number could either differentiate all stones (5) or only uric acid from calcium 

oxalate and brushite (92).   As discussed previously this may be due to a variety of factors 

including varied imaging parameters and criteria for a pure stone composition, 

differences in system calibration, scanner specific proprietary filters, beam hardening and 

partial volume averaging artifact.  For example in a study by Graser et al. in 2008 an 

image of a stone composed of two materials is provided.(21) This image illustrates a 

linear band of material traversing the entire diameter of the stone.  Formation of stones 

typically occurs by deposition of concentric rings around a central nidus. This linear 

deposition has never been reported and therefore this image may represent detection of an 

imaging artifact rather than a true difference in stone material. To address the differences 

noted in the literature it is necessary to determine the optimal imaging parameters for 

dual energy imaging and whether there is a fundamental difference in the signal to noise 

ratio between pure stone materials.  If there is insufficient difference in the signal to noise 

ratio between pure stone materials in an ideal setting this technique will not be successful 

in a clinical setting. 
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1.3.4 Potential errors in dual energy CT 

Potential reasons for the marked variability in the DECT results include errors in the CT 

measurements due to partial volume averaging, misregistration of the dual energy images 

(due to patient motion between images), CT scanner calibration errors, and beam 

hardening artifact.   

Slice thickness and stone volume may be important factors in the ability of CT to 

accurately determine stone composition due to partial volume averaging.(49) Partial 

volume averaging occurs when materials of two or more different linear attenuation 

coefficients are included in the same voxel resulting in due to averaging. Partial volume 

averaging should not affect dual energy calculations as both the high and low energy 

measurements will be affected in a similar manner(13) with precise co-registration of the 

two x-ray beams. However, in small stones partial volume averaging may result in 

incorrect material characterization even with dual energy imaging because of inaccurate 

measurement of stone density.  

Misregistration of the images was a potential source of error in the early work because 

the technology did not exist to acquire the images nearly simultaneously.  Images were 

either acquired in two consecutive scans at different energies or alternating slices were 

acquired at different energies so the images were offset by the slice thickness.  Dual 

energy CT scanners that can acquire images nearly simultaneously are now available so 

this is less likely to be a source of error in more recent studies.  

CT scanners are calibrated to water and air and, therefore, should provide very consistent 

results for CT number determination. However, each scan protocol (i.e. each combination 

of mAs, kV, slice thickness, field of view, phantom diameter) is calibrated separately so 

if the calibration of the high and low energy scans is not consistent there may be 

variations in the CT number that artificially influence the dual energy values.   

Beam hardening is an increase in the average energy of the incident beam due to the 

preferential attenuation of low energy photons. The degree of beam hardening will be 
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different for a high and low energy spectrum. Therefore, alternations in the linear 

attenuation coefficient between spectra of two energies may be due to artifact rather than 

differences in the material composition.  

Monoenergetic beams do not suffer from beam hardening artifact and are better for 

performing material decomposition analysis.  Monoenergetic beams are not possible in 

conventional CT scanners but beam filtration can be used to increase the spectral 

separation in dual energy scanning.(86) The only study of beam filtration for stone 

material discrimination is by Qu et al. where tin was used to filter the high energy beam 

and demonstrated improved discrimination of non-uric acid stones. (16) This work will 

determine the optimal task specific beam filtration for dual energy CT of urinary stones 

and determine whether there is a significant improvement in material discrimination with 

added filtration. 

 

1.4 Research Goal 

Our goal is to determine why there is a controversy in the previously reported dual 

energy result and to answer the question of whether there is sufficient difference in the 

signal to noise ratio of theoretical pure composition stone materials to discriminate 

between all stone materials that are amenable to ESWL and those that require surgical 

intervention in order to determine optimal treatment and reduce patient morbidity.  

Considerable effort has been spent on evaluating DECT for determining stone 

composition but published results show contradicting conclusions and a controversy 

remains as to whether this is even possible, and what stone materials can be identified.  

The goal of this research is to investigate the fundamental signals that DECT requires and 

make conclusions on how the DECT signal can be optimized.  For example, the 

fundamental question of whether there is sufficient difference in the dual energy signal 

between stone materials has not been evaluated.  If there is insufficient difference in the 

signal between pure stones then detecting differences in stones of mixed composition 

with systems that have inherent sources of error will never be effective.  Task specific 

beam filtration to shape the spectra should also be evaluated to determine whether the use 
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of filtration can improve material discrimination. If there is sufficient difference in the 

dual energy signal to detect, this information can be used to optimize both DECT and 

determine the most effective method of using this information to determine stone 

composition. 

 

1.5 Research Objectives 

The hypothesis being tested is that there is adequate signal to noise difference in dual 

energy CT scans to distinguish between stone materials. The hypothesis will be tested 

with the following objectives: 

1. Determine the fundamental dual energy signal to noise difference between 

different stone materials and determine whether there is sufficient difference 

between the signal to noise ratio to differentiate between the common stone 

materials. 

2. Determine the optimal task specific beam filtration to increase the difference of 

the signal to noise ratio. 

3. Perform a theoretical calculation of signal and noise for pure stone materials and 

make a conclusion about which materials can be separated with dual energy CT. 

4. Determine the dual energy values for canine stones in a phantom and whether 

these values can be used to differentiate between various stone materials 
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1.6 Thesis outline 

The goals of this thesis are addressed in two papers (chapters 2 and 3) that are in 

preparation for publication. The papers address the thesis objectives as described in the 

following section. 

 

Chapter 2: Dual energy CT to predict urinary calculi composition: A theoretical 

model 

To date there are variable and conflicting results with DECT for the prediction of urinary 

stone composition. To determine whether this is due to variations in study design a true in 

ability of DECT to answer the question of stone composition. 

Chapter 2 describes a theoretical model to determine dual energy signal to noise ratio for 

pure stone materials using optimized spectra. Task specific beam filtration can be used to 

increase separation in beam spectra and therefore improve material discrimination. Using 

the theoretical model for dual energy SNR optimal beam filtration was determined and 

compared to unfiltered spectra for the discrimination of stone composition. 

 

Chapter 3:  Dual energy computed tomography of canine urinary calculi 

Dual energy CT has not previously been used in veterinary medicine. Chapter 3 evaluated 

the use of dual energy CT in canine urinary calculi in a phantom.  Dual energy values 

were compared to stone composition to determine whether dual energy values could be 

used to predict stone composition.   
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2 Chapter 2 – Dual energy CT to predict urinary calculi 
composition: A theoretical model 

 

This chapter is will be submitted to Radiology. 

 

2.1 Introduction 

 Urolithiasis is a common problem in people with a prevalence of 3-20% worldwide.(1) 

Selection of the ideal treatment is dependent on the composition of the stone; therefore, it 

would be extremely helpful to have an in vivo method of determining stone composition. 

Considerable effort has been spent on evaluating dual energy CT for determining stone 

composition with inconsistent results.(2-15) These studies evaluated one or more of the 

following measures: the CT number of the stone with the high energy beam, the dual 

energy number (low energy CT number – high energy CT number, or the dual energy 

ratio (low energy CT number ÷ high energy CT number. The results of these studies are 

varied with the only consistent finding from these studies is that uric acid stones can be 

differentiated from other stones. Mostafavi et al. and Saw et al. evaluated the density of 

stones with the high energy settings and showed that calcium containing stones could be 

differentiated from all other stones except brushite, and that magnesium ammonium 

phosphate stones could be differentiated from cystine stones.(3, 12) Dual energy ratio 

could differentiate all stones (10) and calcium containing stones from other stones (9, 

16), while dual energy number could either differentiate all stones (3) or only uric acid 

from calcium oxalate and brushite (17).   Inconsistency in these results may be due to 

variability in study design. Energy settings ranged from 77 to 140 kV and mAs settings 

ranged from 23 to 747 with ratios of the high and low mAs from 1:1 to 1:4.6.  Stone 

analysis methodology and purity of the stone varied among the studies ranging from 60% 

to 90% pure and stones were of various sizes.  System calibration, scanner specific 
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proprietary filters, beam hardening and partial volume averaging artifact may also 

influence reported measurements.  Therefore, the question remains whether it is 

fundamentally possible to determine stone composition with dual energy CT.   

Task specific optimization of the beam filtration for dual energy imaging has been done 

for chest radiographs and mammography and general CT.(18-20) The only study of beam 

filtration for stone material discrimination is by Qu et al. where tin was used to filter the 

high energy beam. This study demonstrated improved discrimination of non-uric acid 

stones but did not facilitate discrimination of calcium oxalate monohydrate, calcium 

oxalate dihydrate and brushite stones.(14) To our knowledge task specific optimization of 

CT for determining stone composition has not been done previously. Added filtration 

changes the shape of the spectrum and increases the spectral separation between the low 

and high energy beams which should increase the accuracy of the dual energy values and 

improve the ability to differentiate between stones of differing compositions. (20, 21) 

The hypothesis is that there is adequate signal to noise difference in a 3x3x1 mm voxel to 

distinguish between pure stone materials of a 1 cm volume and that the addition of task 

specific beam filtration will improve the ability to distinguish between different stone 

materials. This hypothesis was tested by: determining the optimal energy settings and 

beam filtration to maximize the difference in the dual energy measurement of urinary 

calculi for computed tomography, and determining whether there is adequate difference 

between the dual energy measurements to differentiate between pure composition stones 

in a pure stone theoretical model. Specifically it will be determined whether there is 

adequate difference in the dual energy number and dual energy ratio between stones that 

are amenable by shock wave lithotripsy and those that typically require nephrolithotomy. 

 

2.2 Theory 

Differentiating between stones of different composition requires maximizing the signal to 

noise ratio in the difference of the dual energy measurement between stones. The best 

results may require optimizing the user-controlled variables including energy of the 

spectra, mAs ratio, and beam filtration (material and thickness) for an acceptable patient 
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dose.  For comparison the difference in the dual energy signal to noise ratio was 

standardized to the square root of the mean total entrance exposure providing a measure 

that was independent of patient dose. This calculation was developed for single slice axial 

scanners with filtered back projection but it is reasonable to assume that conditions that 

optimize this signal to noise ratio will also apply to a helical multi slice scanner and 

iterative reconstruction technologies.(22) Also, axial scans generally have superior slice 

separation to helical scans improving detection of subtle lesions.(22)  

For a monoenergetic x-ray beam the CT number (H) [Hounsfield units] is a 

dimensionless quantity defined as  

 
H ≡ 1000 i

µ − µw

µw

        (2.1)  

where µ is the average linear attenuation coefficient [cm-1] of the patient tissue and µw  is 

the linear attenuation coefficient for water. The linear attenuation coefficient is the 

probability per cm of an x-ray photon interaction in a small thickness of tissue, which 

depends on the x-ray energy and average atomic number of patient tissue.  A CT image 

therefore illustrates the relative difference of the linear attenuation coefficient of the 

patient tissue with respect to water.  

The statistical variance in H, !!!, is obtained by differentiating equation (2.1): 

 

 

σ H
2 = d

dµ
H

2

σ µ
2 + d

dµw

H σ
µw

2

= 10
3

µw

2

σ µ
2

      (2.2) 

where !!!!  is assumed negligible since CT scanners use multiple scans to perform an 

accurate determinant of µw during regular system calibrations. Figure 2-1 illustrates the 

geometry of a fan beam third generation CT scanner. 
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Figure 2-1 Schematic of a fan beam geometry CT scanner where L = phantom diameter, 

w = the detector width [cm], s = slice thickness [cm], and Nd = number of detectors. 

 



34 

 

Faulkner and Moores described the noise in the CT number for this geometry as 

calculated in Appendix F giving [cm-2] (23, 24): 

  σ µ
2 = π
12w2e−µL[Q0Iws]ε  

      (2.3) 

where Q0  [cm-2  mAs-1 ] is the normalized density of photons incident on the detector 

along the central ray of each projection measurement when no phantom is present, I  

[mAs] is the product of tube current and exposure time for one 360° rotation of the  x-ray 

tube, w [cm] the width of the detector, s [cm] is the slice thickness, and ε is the detector 

quantum efficiency.  The statistical variance in the CT number is therefore given by (23, 

25) [unitless]: 

σ H
2 = 10

6π
12w3s

1
Q0Iµw

2e−µLε
.       (2.4) 

This calculation considers only x-ray quantum noise as it is propagated to the CT images 

for a circular phantom of uniform material and density, which is a good approximation 

for normally exposed soft tissue images with a monoenergetic x-ray source, but does not 

include noise from scatter radiation.   

This simple model has been effective is developing an understanding of noise in CT 

images for filtered back projection reconstruction using a ramp filter (Shepp-Logan) for 

ideal detector elements.(23) However, it is not sufficient to assume a monoenergetic 

spectrum for dual-energy imaging, particularly when considering special filtration to 

increase the energy separation of high and low energy spectra to maximize dual energy 

values for particular applications.  Following the approach of Faulkner and Kelcz, we 

developed an expression for the CT variance in equation (2.4) generalized for an arbitrary 

x-ray spectrum Q0(E), and detector quantum efficiency ε(E) giving 

σ H
2 = 106π 2

12w2wsµw
2

Q0 (E)IE
2ε(E)dE

0

kV

∫
Q(E)IE ε(E)dE

0

kV

∫⎡⎣⎢
⎤
⎦⎥
2

.    

 (2.5) 
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Dual energy signals can be calculated multiple ways but dual energy number (SN) and 

dual energy ratio (SR) are the most common and they are easy to calculate: (10, 17, 26-

28)  

 SN = HL −HH        (2.6) 

SR =
HL

HH . 
       (2.7) 

To compare optimal energy and filter settings, we use a figure of merit that expresses the 

signal to noise ratio (SNR) for dual energy number and ratio for two selected stone 

materials assuming the same dose (D) at the isocentre of a circular phantom. 

Measurements of the CT number for the high and low energy spectra are obtained from 

different scans and hence are statistically uncorrelated, giving the figure of merit for the 

dual energy number (FN
2) and dual energy ratio (FR

2) as [mGy]: 

 FN
2 =

SNa − SNb
2

σ SNa
2 +σ SNb

2( )
D                            (2.8) 

and 

 FR
2 =

SRa − SRb
2

σ SRa
2 +σ SRb

2( )
D  

                (2.9) 

where the subscripts a and b represent different materials. Propagation of error through 

Eq. (2.6) and (2.7) gives the uncertainties in SN and SR as [unitless]: 

σ SN
2 =σ HH

2 +σ HL

2
       (2.10) 

and 



36 

 

σ SR
2 = 1

HH
2 σ HL

2 + SR
2σ HH

2( ) .      (2.11) 

The isocentre dose D in the phantom is estimated for each spectrum using a CT KERMA-

ratio method described by Huda.(29) Using air KERMA values measured at selected 

locations in a Rando phantom (K) and at isocentre with the phantom removed (KCT), he 

determined the ratio RK ≡ K/KCT  for selected techniques on a GE Lightspeed Ultra. (30, 

31) The abdominal dose is therefore given by D [mGy]: 

D = K i

µab

ρ
⎛
⎝⎜

⎞
⎠⎟ med

µab

ρ
⎛
⎝⎜

⎞
⎠⎟ air

= KCT iRK i

µab

ρ
⎛
⎝⎜

⎞
⎠⎟ med

µab

ρ
⎛
⎝⎜

⎞
⎠⎟ air

 .     (2.12) 

where µab
ρ  is the mass energy absorption in the patient and air. Using RK values 

determined by Huda et al. at 80, 120, and 140 kV, and the half value layer of these 

spectra measured by Mathieu et al., (32) a least squares linear regression was generated to 

calculate RK as a function of half value layer showing a linear relationship between RK 

and HVL. The HVL of spectra used in this study are determined from this relationship as 

illustrated in (Figure 2-2). 

.  
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Figure 2-2 Plot of best fit linear model of RK to half value layer (line) based on measured 

values from Huda et al. and Matheiu et al. (dots). The arrows indicate the half value layer 

of the low and high energy beams used in this study.  
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The chemical composition of the stone materials used in the analysis are provided in 

Table 2-1. 

 

Table 2-1 Stone material specifications (33) 

Full Name Abbreviation Chemical Composition 

Calcium oxalate monohydrate 
(whewellite) 

COM CaC2O4.H2O 

Calcium oxalate dihydrate (weddellite) COD CaC2O4.2H2O 

Magnesium ammonium phosphate 
hexahydrate 

MAP MgNH4PO4.6H2O 

Hydroxyapatite HAP Ca10(PO4)6(OH2) 

Calcium hydrogen phosphate dihydrate 
(brushite) 

BRU CaHPO4.2H2O 

Uric acid US C5H4N4O3 

Cystine CYS [-SCH2CH(NH2)-COOH]2 

 

2.3 Materials and Methods 

Determination of optimal energy settings and whether added filtration can improve 

discrimination of stone composition with dual energy CT requires determination of the 

optimal filter material, based on theoretical modeling with the figure of merit. The ability 

to separate two materials based on dual-energy information is optimized by maximizing 

the figure of merit values. The stone materials that are most difficult to separate are 

calcium oxalate and brushite.  The fragility of these materials and ability to fragment 

them with lithotripsy differs so differentiating these materials is clinically relevant. 

Therefore for this work the material uses for the figure of merit were calcium oxalate 
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monohydrate and brushite. CT specifications vary with the manufacturer and model. For 

the purpose of optimization, the following values were used for all calculations:  0.3 cm 

slice thickness (s), 0.1 cm detector physical width (w), 1000 detector elements (m), 1000 

projections (n), 1 second exposure (1 rotation), and unity detector efficiency (ε). Phantom 

and stone diameter were set to 20 cm and 1 cm respectively.  Inherent CT beam filtration 

information are normally proprietary, however, conversation with a CT engineer suggests 

typical values are 1 cm of aluminum and 0.1 cm of titanium so this was used in all 

calculations. Matlab® (version 2009a, Math-Works, Natick, MA, USA) was used to 

perform all calculations. 

 

2.3.1 Stone Density 

The calculation of FR
2 and FN

2 in equation (2.8) and (2.9) can be determined for any 

spectra and material pair of known composition and density.  Measured densities for 

stone materials were not available so an estimate was calculated based on previous 

reported CT numbers (10, 17, 27, 28) using: 

µs =
µ
ρ

⎛
⎝⎜

⎞
⎠⎟ s
.ρs = µw

CT #
1000

+1⎛
⎝⎜

⎞
⎠⎟       (2.13) 

where µs and µw are the linear attenuation coefficients of the stone and water respectively, 

(µ/ρ)s is the mass attenuation coefficient of the stone, and ρs is the density of the stone. 

This equation solves to 

 ρs = ρw i

µ
ρ( )

w

µ
ρ( )

s

i
CT #
1000

+1⎛
⎝⎜

⎞
⎠⎟

   .    (2.14) 

For broad spectra, the effective µ/ρ value is used, equal to an average value weighted by 

the detected x-ray spectral intensity. 
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2.3.2 Optimal high and low energy kV and mAs ratio 

The figure of merit was calculated for a low energy spectrum ranging from 70 to 100  

kVp and a high energy spectrum ranging from 100 to 180. These limits were selected 

based on the practical lower and upper limit of conventional CT and is consistent with 

many previous investigations. (7, 9-11, 16, 17, 27, 34) Using the optimal energy 

combination the figure of merit was calculated using a high-energy mAs of 100, 200 and 

300 and an mAs ratio (low energy mAs/ high energy mAs) of 1 to 5 to determine the 

optimal low and high energy mAs ratio.  

 

2.3.3 Optimal beam-filter material 

All possible elements from Z=1 to Z=100, including no filter, were evaluated as possible 

filter materials.  For each, a filter thickness was selected so the incident beam was 

attenuated by 50%.  Additional filtration may have the advantage of further shaping the 

spectra but also contributes to increased tube loading.  A 50% attenuation was selected to 

explore the benefits of filtration for a modest amount of beam attenuation.  It was found 

that the use of 80% attenuation did not change the selection of the optimal filter 

materials. The theoretical FN
2  and FR

2 was calculated for the stone pair calcium oxalate 

monohydrate and brushite in a 20 cm water phantom and plotted as a contour plot. Ideal 

filter selection was made based on filter combinations providing the greatest FN
2  and FR

2.  

 

2.4 Results 

2.4.1 Optimal high and low energy kV 

Figure 2-3 gives the figure of merit over varying energies of the low and high energy 

spectra assuming a ratio of the low:high energy mAs of 2. Although the value of the 

figure of merit changes with different mAs ratios the shape of the plot and optimal energy 

combinations do not differ.  For FN
2 the optimal energy combination is 70 to 73 kVp for 

the low energy spectrum and 125 to 160 kVp for the high energy spectrum. For FR
2 70 
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kVp and 160 to 180 kVp for the low and high energy spectra respectively optimized the 

figure of merit. These findings support that greater difference in the energies of the dual 

energy spectra will result in improved results. Until recently the practical lower limit a 

CT scan is 80 kVp although there are now scanners available that can image at 70kVp. At 

this value there is minimal additional increase in the figure of merit for energies above 

140 kVp for the high energy spectrum therefore this is the energy combination that was 

evaluated further.  

 

 

Figure 2-3 Impact of the x-ray energy on the figure of merit for spectra with variable kV 

of 70 to 100 and 100 to 180 for the low and high energy spectra respectively. For the 

lowest practical kV of 80 the optimal energy of the high energy spectrum is in the range 

of 130 to 180 kV but there is minimal increase in the figure of merit above at kV of 140 

(stone combination: calcium oxalate monohydrate/brushite). 
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2.4.2 Stone Density 

Average stone density, as estimated from previously published experimental CT 

numbers, is presented in Table 2-2.(10, 17, 27, 28)  

 

Table 2-2 Stone Density as calculated based on average CT number from previous 

studies using equation (2.14). The statistical variance in the density measurement 

represents the variability noted in the previous studies.  The effective energy of the 80 kV 

and 140 kV spectra are 56 keV and 76 keV respectively 

Stone 
HU  

(80 kV) 

HU  

(140 kV) 

µ
ρ( )   

(80 kV) 

µ
ρ( )  

(140 kV) 

Density 
g/cm2 

Calcium oxalate 

monohydrate 
1244 ± 270 767 ± 120 0.21 0.15 2.26 ± 0.31 

Calcium oxalate dihydrate 1346 ± 378 856 ± 210 0.22 0.15 2.21 ± 0.32 

Magnesium ammonium 

phosphate 
883 ± 385 637 ± 283 0.25 0.19 1.60 ± 0.30 

Hydroxyl apatite 1033 ± 209 670 ± 92 0.57 0.42 0.95 ± 0.03 

Brushite 1611 ± 397 1138 ± 319 0.38 0.27 1.47 ± 0.30 

Uric acid 377 ± 154 378 ± 140 0.18 0.16 1.60 ± 0.10 

Cystine 706 ± 76 549 ± 90 0.26 0.21 1.38 ± 0.09 

 

2.4.3 Optimal mAs Ratio 

The optimal mAs ratio was insensitive to beam energy (Figure 2-14) and the maximum 

improvement in the figure of merit occurred with a mAs ratio of 5 and 3 for FN
2 and  FR

2 

respectively for all energy combinations. However, the broad shape of the mAs ratio 

curve shows there is latitude in selecting optimal mAs ratio. Therefore a ratio of 2 was 

used for all subsequent calculations because of the minimal additional impact on the 

figure of merit and the practicality of clinical use.  The figure of merit is independent of 
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the actual mAs values and dependent only on the mAs ratio. When this calculation was 

repeated with optimal additional filtration materials the results were unchanged. 

 

 

Figure 2-4 Impact of mAs ratio on the square root of the figure of merit (kV 80/140, 

stone combination: calcium oxalate monohydrate/brushite).  

 

2.4.4 Optimal beam filtration 

Optimal beam filtration was selected to give highest FN
2 and FR

2. Increasing the mAs of 

the low energy beam increased the FN
2 and FR

2 but the optimal filter materials were the 

same for all mAs ratios. For both FN
2 and FR

2 the maximum separation of the stones 

occurred with a low energy filter of Z = 66 to 70 and a high energy filter of Z = 44 to 60 

(Figure 2-5). 
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Figure 2-5 Impact of filter high and low energy filter materials on the figure of merit 

(mAs 200/100, kV 80/140, stone combination: calcium oxalate monohydrate/brushite, 

filter thickness to attenuate 50% of the primary beam). For both FR
2 and FN

2 the 

maximum separation of the stones occurred with a low energy filter of Z = 66 to 70 and a 

high energy filter of Z = 44 to 60. Z=0 corresponds to no filter material.   

 

Figure 2-5 shows that applying additional filtration to only the high energy beam also has 

an impact on the figure of merit. When adding filtration to the high energy there is broad 

range of materials (Z = 30 to 50) that optimize the figure of merit (Figure 2-5). 
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Figure 2-6 Impact filtration of the high energy spectrum only on the figure of merit (mAs 

200/100, kV 80/140, stone combination: calcium oxalate monohydrate/brushite) 

 

Based on availability and ease of use a combination of erbium (Z 68) and tin (Z 50) were 

selected for further evaluation of low and high energy beams respectively as well as 

filtration of the high energy beam only with tin. Tin (Z 50) was chosen to evaluate further 

as it is readily available, practical and has been previously noted to improve stone 

discrimination.(14) 
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Figure 2-7  Impact of percent beam attenuation (A) and thickness (B) for tin high and 

erbium low energy filters on the figure of merit (mAs 200/100, kV 80/140, stone 

combination: calcium oxalate monohydrate/brushite).  

Figure 2-7A shows that with an erbium/tin filter combination the optimal FN
2 and FR

2 

occurred when the attenuation of the low and high energy spectra were 45 and 70%, 
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respectively.  This corresponds to filter thickness of 0.1 cm for erbium and 0.4 cm for tin. 

Higher levels of attenuation increased the figure of merit but were not considered because 

of the negative impact of the increasing load on the tube.   

 

A 

 

 

 

 

B 

 

 

 

 

 

Figure 2-8 Impact of tin high energy filter attenuation (A) and thickness (B) on the figure 

of merit.  Filter thickness is expressed as attenuation of exposure (mAs 200/100, kV 

80/140, stone combination: calcium oxalate monohydrate/brushite). 
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When using a tin high energy filter alone the optimal attenuation was 25% for FN
2 and 

15% FR
2 for and which corresponds to a 0.06 and 0.03 cm filter thickness 

respectively.(Figure 2-8)  Added filtration has less impact on FR
2 so a filter thickness of 

0.03 to maximize this variable with minimal impact on optimizing FN
2. 

 

2.4.5 Theoretical stone analysis 

For any given measure (dual energy number, dual energy ratio, low energy CT number, 

high energy CT number) the stones always rank in the same order regardless of the added 

filtration (Table 2-3).  

 

Table 2-3 Pure stones ranked from lowest to highest dual energy ratio and number (* 

indicates stones not amenable to shock wave lithotripsy). 

Dual energy ratio 
 

140 kV CT number 
 

Dual energy number 
80 kV CT number 

Uric acid Hydroxapatite Uric acid 

Magnesium ammonium 
phosphate 

Uric acid Cystine* 

Cystine* Cystine* 
Magnesium ammonium 

phosphate 

Calcium oxalate 
Magnesium ammonium 

phosphate 
Hydroxyapatite 

Brushite* Brushite* Brushite* 

Hydroxyapatite Calcium oxalate Calcium oxalate 
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Table 2-4 shows the figure of merit for the stone combination of calcium oxalate 

monohydrate/brushite. Both the tin high energy filter and the erbium/tin low/high energy 

filter combination improved the figure of merit with the combination of an erbium filter 

of the low energy spectra and tin filter of the high energy spectra resulting in the greatest 

improvement of the figure of merit.  This combination of filter materials resulted in good 

separation of the energy spectra (Figure 2-9). 

 

Table 2-4 Signal difference to noise ratio per unit dose (FN
2

 and FR
2) for the stone pair 

calcium oxalate monohydrate/brushite with a 3 mm3 voxel using optimal low/high filter 

combinations and energy settings (200 mAs 80 kV, 100 mAs 140 kV). 

Low /High Filter Combination 
(filter thickness) 

FN
2

 
FR

2
 

None / None 911.9 488.3 

None / Tin (0.1 cm) 1726.1 723.9 

Erbium (0.1 cm) / Tin (0.4 cm) 3858.4 904.9 
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Figure 2-9 Comparison of the unfiltered and filtered spectra demonstrated good spectral 

separation with filter combination (low energy filter 0.1 cm erbium, high energy filter 0.4 

cm tin). 
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Figure 2-10 and 2-11 shows the Gaussian curves generated from the mean and standard 

deviation of the dual energy number and dual energy ratio respectively with no task 

specific filtration. The noise in the dual energy measurement indicates the variance in this 

theoretical value.  The theoretical value +/- 2 standard deviations of the noise will 

provide a 95% confidence interval in distinguishing between to materials therefore stones 

that have minimal to no overlap in the noise distribution will be able to be differentiated 

using the dual energy value. Using this criterion dual energy number is able to 

differentiate between all stone combinations tested as illustrated by the non-overlapping 

Gaussian curves in Figure 2-10.  

 

 

Figure 2-10 Gaussian curves generated from the mean and standard deviation of the dual 

energy number for pure stone materials. Brushite and cystine are the stone materials that 

are not amenable to lithotripsy. 
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Dual energy ratio was slightly less able to differentiate between stone combinations than 

dual energy number and could not differentiate between calcium oxalate monohydrate 

and calcium oxalate dihydrate or between cystine and magnesium ammonium phosphate 

stones (Figure 2-11). We believe the difference between number and ratio is due to the 

non-linear definition of these values. It is likely they are approximately equal in the limit 

of small linear attenuation coefficient differences. 

 

 

Figure 2-11 Gaussian curves generated from the mean and standard deviation of the dual 

energy ratio for pure stone materials. Brushite and cystine are the stone materials that are 

not amenable to lithotripsy. Calcium oxalate stones (monohydrate and dihydrate) have 

the same distribution. 
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2.5 Discussion 

A figure of merit expressing the difference between the signal to noise ratio of the dual 

energy number or ratio between two stone materials, normalized to the square-root of the 

patient average dose, was used to optimized the scan and filter settings for dual energy 

evaluation of stones. Although this is not a measure that would be used clinically it 

facilitates a dose-independent comparison of CT settings, filter materials and filter 

thickness to determine the optimal imaging parameters and determination of whether 

there is sufficient signal to noise difference to differentiate between two stones.  

A single combination of stone materials (brushite/calcium oxalate monohydrate) was 

used to perform the energy and filter optimization. This combination was selected 

because differentiating between these stone materials is clinically relevant. An alternative 

would have been to test the stone pair with the greatest difference in figure of merit 

values (hydroxyapatite/uric acid).  Although the absolute CT numbers, and subsequently 

the SN and SR, are dependent on filter material, beam energy combination and mAs ratio, 

the rank order of CT number, SN, and SR for pure composition stones is independent of 

these parameters.  Therefore, by increasing the spread of the dual energy values the 

probability that stones can be distinguished from each other is increased regardless of the 

stone combination. 

Using the figure of merit the optimal CT parameters were determined to be 80 and 140 

kVp for the low and high energy spectra which is consistent with parameters used in 

previous studies.(2-15) To compensate for loss of signal with the low energy spectra due 

to greater attenuation the mAs of the scan would need to be increased to ensure an 

acceptable noise in the image. The optimal ratio of the mAs of the low and high energy 

beams was 5 and 3 for FN
2 and FR

2 but there was only a small increase in the figure of 

merit with a ratio of greater than 2 in both cases.  Therefore, given the importance of 

minimizing patient dose, a ratio of greater than 2 is not recommended. 

The most accurate method for material discrimination with dual energy imaging is using 

two monoenergetic beams.(20, 21)  In the case of a spectrum there is a broad distribution 

of energies in the beam, which results in overlap of energies between spectra of two 
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different energies. The addition of filter materials in the path of the beam will change the 

shape of the spectrum and result in less overlap of energies between the two beams.  This 

results in a closer approximation of the monoenergetic case and improves the ability to 

discriminate between materials. The second objective of this study was to determine 

whether the addition of filtration to the low and high energy spectra would result in 

improvement in the figure of merit. Although the figure of merit was evaluated over all 

materials and thicknesses the ultimate choice of filter must also consider practicality of 

use and availability.  Given these constraints the filter combination that optimized the 

figure of merit was a 0.1 cm erbium filter and a 0.4 cm tin filter for the low and high 

spectra respectively.  When comparing the unfiltered spectrum the spectrum filtered with 

this combination of materials it is evident that there is clear separation of the dual energy 

spectra in the filtered case and that explains the approximately two to four-fold 

improvement in the figure of merit for FR
2 and FN

2 respectively.  

Numerous authors have presented varied results on dual energy CT and the ability to 

discriminate stone types with both dual energy number and dual energy ratio.(3, 10, 17, 

35, 36)  One possibility for these varied results is that there is insufficient signal 

difference to noise to discriminate between the stone materials. However, this work has 

shown that in a theoretical model there is sufficient signal difference to noise for the dual 

energy number.  This work was done using a pure composition stone.  Pure stones are 

uncommon in clinical practice and previous studies have had varied criteria for defining a 

pure stone and most range from 70-80% of a single stone material.  This variation in 

purity is likely a major contributing factor to the varied results in the in vivo clinical 

determination of stone material.  Most stones have a central nidus and circumferential 

layers of various stone materials which can be readily demonstrated with coherent scatter 

CT and on visual inspection.(37) A previous study indicated that various materials could 

be differentiated within a single stone however the distribution of the material was linear 

across the entire diameter of the stone.(35) This distribution of material has not been 

reported previously therefore this may represent an imaging artifact rather than true 

differentiation of layering of stone materials.  It is possible that even though dual energy 

number can theoretically discriminate between pure stone materials the inherent variation 

in stone purity noted clinically cannot be overcome with dual energy imaging.   
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Although additional beam filtration can improve material discrimination has historically 

been difficult to add to the CT scanners; however, newer dual source CT scanners do 

permit the addition of filtration to one or both x-ray sources so it is important to 

determine if there is sufficient signal difference to noise with the unfiltered spectra and 

whether the addition of beam filtration results in the ability to discriminate between 

clinically important stone materials that could not be differentiated with the unfiltered 

spectra. The dual energy number had a greater ability to differentiate between stone pairs 

than the dual energy ratio and could differentiate between all stone combinations even in 

the absence of additional beam filtration. Both dual energy number and dual energy ratio 

have been evaluated for determination of stone composition.  In one study dual energy 

ratio was reported as able to differentiate between all stone types (10) while in another 

could only differentiate calcium containing from other stones.(35, 36) Dual energy 

number has had similar mixed results from being able to differentiate all stones (3) and to 

only differentiating select combinations (17). From this theoretical model it can be 

concluded that the dual energy number is more likely to be able to discriminate between 

stone materials without the need for task specific filtration but task specific filtration may 

be advantageous in overcoming challenges with mixed composition stones and should be 

further evaluated in that scenario. 

 

2.6  Conclusions 

There is fundamentally sufficient signal to noise difference between clinically relevant 

stone materials to allow for differentiation using dual energy number for an acceptable 

voxel size and patient dose using the dual energy number but not the dual energy ratio.  

Because all pure stone materials can be differentiated with the dual energy number t is 

difficult to justify the engineering and implementation costs to add task specific filtration 

to a CT scanner. However, given there is sufficient signal to noise difference to 

differentiate pure stones and yet clinically the results are highly varied, the added ability 

to discriminate stones provided by the use of added filtration may be important in the 

clinical scenario of mixed composition stones. Given the mixed purity noted in clinical 

stones perhaps the clinically relevant question is not the stone composition but rather 
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whether a stone is amenable to shockwave lithotripsy or not.  Dual energy CT may 

provide more consistent results in evaluating this question than that of stone material. 
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3 Chapter 3 - Dual energy computed tomography of 
canine urinary calculi 

 

This chapter will be submitted to Veterinary Radiology and Ultrasound 

 

Urolithiasis is a common problem in veterinary medicine. In dogs and cats magnesium 

ammonium phosphate (struvite) and calcium oxalate stones are the most common stone 

type with an incidence of 39-53% and 35-45% respectively.(1-3) Urate stones are also 

common accounting for approximately 24% of stones submitted for analysis.(2) 

Although the overall incidence of urolithiasis has not changed dramatically over the past 

several decades there has been a dramatic shift in the type of stones identified with a 

decrease in struvite stones and an increase in calcium oxalate stones.  This is thought to 

be due to improvements in the dietary management of struvite stones.  It is also theorized 

that diets that manage struvite stones increase the risk of developing calcium oxalate 

stones.(1-3)   

Cystic calculi are easily treated with surgery but there are higher complication rates with 

surgical treatment of renal and ureteral calculi. Both extracorporeal and intracorporeal 

shock wave lithotripsy are being used with increasing frequency for the treatment of 

cystic and renal or ureteral calculi respectively.  However, extracorporal shock wave 

lithotripsy (ESWL) is not without side effects including hypertension, loss of renal 

function, and an increase in stone recurrence.(4)  Not all stones are amenable to 

fragmentation with ESWL, with failure rates of 9.4 to 26.3% reported in people and the 

probability of success of shock wave lithotripsy is dependent on the stone composition.(5, 

6) It is generally considered that calcium oxalate, struvite and hydroxyapatite stones are 

amenable to ESWL while brushite and cystine stones are not.(7-9) Uric acid stones are 

also amenable to ESWL but are also amenable to medical management and can be 

dissolved with dietary management if they are non obstructive. Considering both the 
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potential risks and the costs it is clear that an in vivo method (currently unavailable) to 

determine stone composition would be advantageous to facilitate optimal treatment 

selection. 

Dual energy imaging exploits the differences in the differences in the probability of the 

photoelectric and Compton interactions and the variability of k-edges between various 

tissues.(10-12) This results in the relative linear attenuation coefficients being different at 

different energies (Figure 3-1). Images are acquired at both a high and low kV and the 

image data is combined into a dual energy measurement. Although dual energy CT 

scanners that can acquire this data in a single scan are available they are not required to 

perform this test and measurements from two consecutively acquired scans can be used to 

calculate the dual energy value.  The most common dual energy measurements are the 

dual energy number (low energy CT# - high energy CT#) and the dual energy ratio (low 

energy CT# ÷ high energy CT#).  

  

 

Figure 3-1 Linear attenuation coefficients of water and calcium from 10 to 120 kV.  At a 

given energy the relative difference in linear attenuation coefficients is different. This 

difference is exploited in dual energy measurements to determine material composition 
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Dual energy measurements to determine stone composition in vivo have been evaluated 

in people with varied success.(13-23) This variability may be due to different imaging 

parameters, variability in the purity of the stones, and measurement of artifact.  Previous 

work by our group has established the optimal imaging parameters for dual energy 

scanning of urinary calculi.   

The objective of this study is to determine whether the dual energy number and ratio of 

canine stones in a phantom model is able to differentiate stone materials. 

 

3.1 Materials and Methods 

Thirty bladder stones from the canine urolithiasis bank previously determined to be 

greater than 70% pure composition were evaluated with dual energy CT.  Stones were 

suspended in the centre of a 16 cm diameter phantom made of agar.(Figure 3-2) A GE 64 

slice dual energy CT scanner was used for all studies.  Two scans were acquired using 

140 kV and 100 mAs and 80 kV and 100 mAs with a 50 cm scan field of view. All series 

used an axial scan with a slice thickness of 0.625 mm and an abdomen (soft tissue) 

reprocessing algorithm.  

 

 

Figure 3-2 Schematic of the CT phantom.  Stones were suspended in the centre of the 

agar phantom. 
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A manual region of interest was drawn around the stone excluding the visible partial 

volume artifact along the periphery to obtain the average CT number.  This was 

performed a total of three times.  A computer generated ROI was drawn for each stone 

using a threshold value that included the entire stone. The dual energy number (low 

energy CT # – high energy CT #) and dual energy ratio (low energy CT #  ÷ high energy 

CT #) was calculated for each stone. High and low energy CT numbers were also 

recorded. Agreement between the manual regions of interest and threshold region of 

interest was determined by linear regression and concordance correlation.  A Bland-

Altman test with a student t-test on the differences was used to assess the variability in 

the measures. The gold standard for stone composition was determined with standard 

laboratory analysis performed by the Urolithiasis center in Guelph, Ontario. Data from 

one manual region of interest and the computer generated threshold region of interest 

were assessed for normality and compared using an ANOVA with significance set at 

0.05. A Tukey-Kramer adjustment was made to reduce type one error.  

 

3.2 Results 

The thirty stones were comprised of brushite (3), calcium oxalate (4), cystine (5), struvite 

(10), and urate (8).  A bias existed to struvite and urate stones because of an attempt to 

select near pure composition stones.  In dogs urate stones form due to metabolic changes 

and are most likely to be of pure composition. Struvite stones form secondary to infection 

increasing the incidence of occurrence.  Stones ranged in size from 1 to 40 mm in 

diameter. 

For all four measures agreement between the 3 manually drawn and the threshold region 

of interest was excellent with a correlation of r >0.95 for all comparisons (Figure 3-3). 

No significant bias was detected. 
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Figure 3-3 Agreement between the manual drawn region of interest and the threshold 

region of interest for the dual energy number 

 

Figure 3-4 shows CT images of a struvite stone obtained at 80 and 140 kV. At  80 kV the 

inhomogeneity of the stone material is more evident.  

 

  

     

 

 

Figure 3-4 CT image of a struvite stone at 80 kV(A) and 140 kV (B) 

A B 
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The dual energy ratio and number and high and low energy CT values for the various 

stones is given in Table 3-1. All data sets were normally distributed. Manual and 

threshold regions of interest showed the same significant differences.  

 

Table 3-1 Dual energy ratio, dual energy number and high and low energy CT numbers 

for stone types (mean +/- standard error) using the manual region of interest 

Stone High CT# Low CT# Dual 
Energy 
Ratio 

Dual Energy 
Number 

Struvite 797 ± 62 1050 ± 87 1.31 ± 0.02 253 ± 29 

Calcium Oxalate 1093± 98 1584 ± 138 1.45 ± 0.04 491 ± 46 

Cystine 506 ± 88 668 ± 124 1.33 ± 0.03 162 ± 41 

Urate 496 ± 69 550 ± 98 1.09 ± 0.03 54 ± 33 

Brushite 1403 ± 98 2012± 160 1.43 ± 0.04 609 ± 53 

 

Significant differences in the pairwise comparisons for dual energy number and dual 

energy ratio are given in Table 3-2. No single measure differentiated between all stone 

types. Dual energy ratio is only able to differentiate urate stones from the other types and 

calcium oxalate from struvite. Dual energy number can differentiate struvite from 

calcium oxalate, urate from calcium oxalate, and urate and struvite; calcium oxalate from 

cysteine, cystine and brushite; and urate from brushite. The low energy CT number was 

able to differentiate struvite from calcium oxalate, urate and struvite, struvite and 

brushite, calcium oxalate from cysteine, urate and calcium oxalate, urate and brushite; 

and cysteine from brushite. If all three measures (dual energy ratio, dual energy number 

and low CT number) are used then all stones can be differentiated except for struvite and 

cysteine. 
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Table 3-2 Significant differences in the pair wise comparisons dual energy ratio (♦), dual 

energy number (X) and low energy CT number (*). Cystine and brushite stones are not 

amenable to shockwave lithotripsy. 

STONE Struvite Calcium 
Oxalate Urate Cystine Brushite 

Struvite   ♦ X * ♦ X * 
$

X * 
Calcium 
Oxalate     ♦ X * X *   

Urate       ♦ ♦X * 

Cystine          X * 
Brushite           

 

Based on reported fragility of stones cystine and brushite are not amenable to shock wave 

lithotripsy so differentiating these from the other stone materials in vivo would enable 

appropriate treatment selection.(7, 8, 24, 25) Cystine can only be differentiated from 

calcium oxalate with the dual energy number and low energy CT number, and from urate 

with the dual energy ratio.  Cystine could not be differentiated from struvite.  Brushite 

could be differentiated from all materials except calcium oxalate using both dual energy 

number and low energy CT number. 

 

3.3 Discussion 

With the increasing availability of both intracorporeal and extracorporeal shock wave 

lithotripsy and the variable effectiveness of these techniques in fragmenting stones 

depending on the stone composition an in vitro method of determining stone composition 

would be advantageous to guide appropriate treatment selection and decrease patient 

morbidity.   

CT attenuation values are related to the density of the material in a non-linear manner. A 

single energy technique to obtain CT attenuation values for stones initially showed 
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promise in vivo but subsequent in vitro work showed poor reproducibility and too much 

overlap between stone types to be useful.(14, 18, 25-27) Partial volume averaging with 

the surrounding soft tissues confound in vitro use of simple linear attenuation values 

making them less accurate. With wider collimation and higher pitch the density of the 

stone may be artificially reduced by the inclusion of the surrounding soft tissue in the 

measurement.(28) This may explain differences noted between in vivo and in vitro 

studies as in the in vivo studies tend to have thinner collimation.(13) Saw et. al showed 

that this effect can be corrected for using a mathematical model described by Hu and Fox 

but is now less of a problem with the increasing use of multi-slice scanners capable of 

sub millimeter collimation.(28) Currently most physicians accept that single energy CT 

measurements can only differentiate uric acid stones from others.(29) 

In this experimental model dual energy ratio, dual energy number, or the CT number 

from the low energy scan were insufficient as single measurements to differentiate 

between the different stone types.  However, when using all three measures together all 

stones can be differentiated with the exception of struvite and cystine. The differentiation 

of struvite and cystine stones can be made based on other diagnostic testing so the 

inability of dual energy CT to differentiate these stones is not clinically relevant. 

Dual energy CT has been used to determine urinary stone composition in humans with 

varying success.  Potential reasons for the marked variability in the DECT results could 

include errors in the CT measurements due to beam hardening artifact, partial volume 

averaging, misregistration of the dual energy images (due to patient motion between 

images), and CT scanner calibration errors.  Partial volume averaging should not affect 

dual energy calculations as both the high and low energy measurements will be affected 

in a similar manner.(22) However, in small stones partial volume averaging may result in 

incorrect material characterization even with dual energy imaging because of inaccurate 

measurement of stone density. Misregistration of the images was a potential source of 

error in the early work because the technology did not exist to acquire the images nearly 

simultaneously.  Images were either acquired in two consecutive scans at different 

energies or alternating slices were acquired at different energies so the images were offset 

by the slice thickness.  Dual energy CT scanners that can acquire images nearly 
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simultaneously are now available so this is less likely to be a source of error in more 

recent studies.   

Another possible explanation for the inability to differentiate stone materials is the linear 

attenuation coefficient is dependent on the density of the material and the density of 

stones may be independent of the stone composition so variations in density may be 

sufficiently great that there is overlap between stones of varied composition. The dual 

energy ratio should be independent of the density because the numerator and denominator 

are equally affected by the density of the material but the energy of the beam affects the 

degree of beam hardening so a higher density material may have more beam hardening 

with the low energy scan than the high energy scan resulting in an unequal effect on 

values in the ratio.  

An additional consideration is that many stones are not purely composed of one material. 

Testing of stones can be done using polarized light microscopy, infrared spectroscopy 

and x-ray diffraction techniques.  All of these methods are destructive and test only 

portions of the stone.  When distinct layering is noted in a stone all layers are evaluated 

but if no clear layering is present only a single representative sample may be tested. 

Infrared spectroscopy uses light to stimulate atomic vibration resulting in energy 

absorption. The pattern of absorption bands can be compared to standards of pure 

samples to determine the composition.  Mixed samples can also be evaluated, as the 

mixed spectrums are a simple overlay of the individual pure spectrums.(30, 31) This 

analysis can examine small samples, can detect the non crystalline components (fat or 

protein) and can be semi-automated.(32) Currently Fourier transform infrared 

spectroscopy (FTIR) and attenuated total internal reflection Fourier transform infrared 

spectroscopy (ATR-FTIR) are used for stone analysis.  ATR-FTIR has the advantage of 

requiring less sample preparation. Measurements are independent of sample thickness so 

less grinding is required and ATR does not require mixing the sample with an infrared 

inactive material.(32, 33) X-ray diffraction methods involve radiating a powdered sample 

with a monoenergetic beam. The x-rays are diffracted by the sample in a characteristic 

pattern.  This provides a very robust method of accurately identifying the composition of 

stones and quantitate the components and is considered to be the gold standard in clinical 



69 

 

stone analysis but is limited by the sample size.(34, 35)  It was shown than in mixed 

stones if less than 5-15% of a compound was present it would not be detected with x-ray 

diffraction.(30, 32, 36) As a result stones that are reported as pure composition may have 

5 to 10% of another material present that would alter the CT values. These sources of 

variability may contribute the failure of dual energy CT to provide adequate material 

discrimination.  

The primary reason for an in vivo test for stone composition is to predict whether a stone 

can be broken with shock wave lithotripsy. As a result there has been considerable 

interest in developing in vivo assessments of stone composition and correlating stone 

composition with fragility and to allow for appropriate treatment decisions. Numerous 

authors have reported experiences with shockwave lithotripsy and stone fragility. Uric 

acid stones are known for being soft and easily fragmented with shock wave therapy 

while brushite and cystine stones are harder and as a result are resistant to ESWL.(7, 9, 

37) Struvite, uric acid and calcium oxalate dihydrate stones tend to fragment into small 

pieces while calcium oxalate monohydrate tends to fragment into larger pieces that are 

less likely to pass.(38) It has also been shown that within a specific chemical composition 

(particularly calcium oxalate monohydrate stones) there is great variability in stone 

fragility (co-efficient of variability 60%).(37) The reason for this variability is poorly 

understood but may be related to variations in minor chemical elements or the presence 

of a central core of a different composition.(29) Within calcium oxalate monohydrate 

stones the concentration of magnesium, manganese and zinc were significantly lower in 

stones that were successfully fragmented with ESWL versus those that failed 

treatment.(38) Adams et. al. compared the fragility of calcium monohydrate stones from 

dogs and cats and found that feline stones were harder to break than canine stones in spite 

of the same chemical composition.(39) This may be due to varying amounts of organic 

material or a mix of minerals being present.(37) Mandhani et. al. used dual x-ray 

absorptiometry (DXA) to assess stone fragility and determined that fragility was 

correlated to stone mineral content and not mineral density. They hypothesized that a 

classification scheme that is independent of composition and based on stone mineral 

content would answer the clinically relevant question of whether stones can be 

fragmented with ESWL or not.(40) This has also been demonstrated with CT attenuation 
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where the higher the attenuation, regardless of the composition, the less likely the stone 

can be fragmented with ESWL.(25) Stone composition is important in treatment planning 

but stone site, stone size, stone number, history of urolithiasis, hydronephrosis, renal 

colic, and ureteral stents also affect the success rate of ESWL.(24, 41) 

 

3.4 Conclusions 

There is no single CT measurement that can be used to differentiate between struvite, 

calcium oxalate, cystine, urate and brushite stones.  Given the lack of discrimination of 

stone type with dual energy CT, and that the primary reason for determining stone 

composition in vivo is to predict response to shock wave lithotripsy, it would be 

beneficial for future work to correlate dual energy values to stone fragility rather than 

stone type. 
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4 Chapter 4 - Conclusions 

 

The first objective of this work was to address the controversy in the published literature 

and determine whether there is good reason to expect sufficient signal difference in the 

dual energy measurements to differentiate between all stone materials with dual energy 

CT.  The figure of merit for dual energy number showed greater ability to differentiate 

between stone materials than dual energy ratio at an acceptable voxel size and patient 

dose. Dual energy number was able to differentiate between all clinically relevant stone 

materials. Dual energy ratio was less effective at differentiating stone materials as it 

could not differentiate between magnesium ammonia phosphate and cystine, or calcium 

oxalate monohydrate and calcium oxalate dihydrate.  The need to discriminate stone 

materials in vivo is to guide selection of the most appropriate treatment options and 

reduce patient morbidity.  Based on the reported fragility of stones cystine and brushite 

are not amenable to shock wave lithotripsy so differentiating these from the other stone 

materials in vivo would enable appropriate treatment selection.(1-4) Additionally, 

struvite, uric acid and calcium oxalate dihydrate stones tend to fragment into small pieces 

while calcium oxalate monohydrate tends to fragment into larger pieces that are less 

likely to pass through the ureter or urethra.(5) Dual energy ratio does not have sufficient  

signal to noise ratio to provide clinically important information and discriminate calcium 

oxalate monohydrate, calcium oxalate dihydrate and cystine from other materials in a 

theoretical pure composition model. Therefore, is unlikely to be a useful measure in a 

clinically setting. However, dual energy number can differentiate all stone materials in a 

theoretical pure stone model.   

Based on the theoretical model dual energy number should be able to differentiate 

between all stone materials in the Chapter 3 experiment but this did not hold true.  The 

mean dual energy values for uric acid and cystine stones were comparable to the 

theoretical values from Chapter 2 but there was greater variability in the experimental 

and theoretical values for magnesium ammonium phosphate, calcium oxalate, and 
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brushite stones.  The most likely explanation for the greater agreement in uric acid and 

cystine stones is that they were closer to a pure composition.  Pure stones are uncommon 

in clinical practice and previous studies have had varied criteria for defining a pure stone 

and most range from 70-80% of a single stone material.  This variation in purity is likely 

a major contributing factor to the varied results in the in vivo clinical determination of 

stone material. It is possible that even though dual energy number can theoretically 

discriminate between pure stone materials the inherent variation in stone purity noted 

clinically cannot be overcome with dual energy imaging.  Other potential reasons for the 

variability in the DECT results could include errors in the CT measurements due to beam 

hardening artifact, partial volume averaging, misregistration of the dual energy images 

(due to patient motion between images), and CT scanner calibration errors.  Partial 

volume averaging should not affect dual energy calculations as both the high and low 

energy measurements will be affected in a similar manner.(6) However, in small stones 

partial volume averaging may result in incorrect material characterization even with dual 

energy imaging because of inaccurate measurement of stone density.  

Task specific beam filtration has been shown to improve material discrimination but only 

two previous studies evaluated the use of beam filtration for discrimination of urinary 

stones.(7, 8) The next objective of this work was to determine the optimal task specific 

beam filtration for differentiation of stone materials and whether the use of optimized 

task specific filter materials would substantially improve the differentiation of stone 

materials.  Although range of materials and thicknesses were considered optimal a tin 

high energy filter and an erbium/tin low/high energy filter combination were evaluated 

further as they fell in the optimal parameters and were practical filter materials for 

clinical application.  The optimal filter combination did result in an approximately four-

fold increase in the figure of merit.  Although this improvement was not needed to 

discriminate stones in the theoretical model this improvement could prove valuable in the 

clinical situation where stone purity and partial volume averaging may confound stone 

material discrimination.  

It is important to remember the reason for requiring an in vivo determination of stone 

material is to determine the best treatment option for the patient to increase treatment 
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success and decrease patient morbidity.  This means identifying stones that are likely to 

be successfully fragmented with ESWL versus those that are unlikely to be fragmented 

and will require surgical intervention. Determining stone composition is not the only 

factor in the assessment of stone fragility for ESWL as it has also been shown that within 

a specific chemical composition (particularly calcium oxalate stones) there is great 

variability in stone fragility (co-efficient of variability 60%).(9) Within calcium oxalate 

stones the concentration of magnesium, manganese and zinc were significantly lower in 

stones that were successfully fragmented with ESWL versus those that failed 

treatment.(5) Adams et. al. compared the fragility of calcium monohydrate stones from 

dogs and cats and found that feline stones were harder to break than canine stones in spite 

of the same chemical composition.(10) This may be due to varying amounts of organic 

material or a mix of minerals being present.(9) Mandhani et. al. used dual x-ray 

absorptiometry (DXA) to assess stone fragility and determined that fragility was 

correlated to stone mineral content and not mineral density. They hypothesized that a 

classification scheme that is independent of composition and based on stone mineral 

content would answer the clinically relevant question of whether stones can be 

fragmented with ESWL or not.(11) Therefore, given all the challenges with using dual 

energy CT to determine the composition of urinary stones, including the difficultly in 

adding task specific beam filtration to the CT scanner, future studies should focus on the 

more clinically relevant question of whether dual energy CT can adequately differentiate 

between fragile and non-fragile stones.   
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Appendix A: Imaging parameters used in previously reported dual energy computed tomography evaluations  

Parameters 

CT 

scanner 

Energy 

setting - 

high 

Energy 

setting - 

low 

mAs high 

: mAs low Collimation 

(mm) Method Medium Stone analysis 

Mitcheson et al. Siemens 
Somaton-2 

125kV 
460mA 

77 kV 
747 mA 

1.6 2 in vitro water - 

Mostafavi et al. GE Hi-
Speed 

120 kV 
240 mA 

80 kV 
240 mA 

1 1 in vitro air X-ray crystallography 
polarized microscopy 

100% pure 

Bellin et al. Siemens 
Somatom 

Plus 4 

140 kV 
200 mAs 

80 kV 
200 mAs 

1 3 in vitro pig kidney Crystallography 
stereomicroscopy 

classified by 
predominant 
component 

Thomas et al. 
(Radiographics) 

Seimans 
DE CT 

140 kV 
23 maS 

80 kV 
105 mAs 

4.6 5 in vitro - IR spectroscopy 

Thomas et al. 
(Eur Radiol) 

Siemens 
Somotron 
Definition 

140 kV 
46 mAs 

80 kV 
210 mAs 

4.6 1 in vitro - IR spectroscopy 

Graser et al. Siemens 
Care dose 

4D 

140 kV 
76 mAs 

80 kV 
342 mAs 

4.5 2 in vivo 50 x 20 cm 
water 

- 

Graser et al. Siemens 
Care dose 

4D 

140 kV 
76 mAs 

80 kV 
342 mAs 

4.5 2 in vitro - chemical analysis 

Boll et al. Siemens 
Somatom 
Definition 

140 kV 
118 mAs 

80 kV 
499 mAs 

1 1 in vivo water 
15 cm 

IR spectroscopy 
>97% pure 

Matlaga et al. Siemens 
Somatom 
Definition 

140 kV 
110 mAs 

80 kV 
486 mAs 

1.5 1.5 in vivo water 
21 cm 

chemical reaction 
IR microscopy 
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Appendix B: Reported CT attenuation values of stones after exposure using a high energy (120-140kV) setting 

 

Calcium 

oxalate COM COD Struvite Cystine Uric Acid Brushite Apatite 

Calcium 

containing 

Mitcheson et al. >1023     651 +/- 
108 

703 +/- 
69 

540 +/- 
107 

>1023     

Mostafavi et al. 1620 +/- 
232 

1645 +/- 
238 

1417 +/- 
234 

666 +/- 
87 

711 +/228 409 +/- 
118 * 

1703 +/- 
161 

    

Bellin et al.   1203 +/-
195 

631 +/-
113 

510 +/- 
135 

482 +/- 
97 

377 +/- 
142 

  703 +/- 
183 

  

Thomas et al. 
(Eur Radiol) 

  795 +/-
180 

844 +/- 
173 

    439 +/- 
70 

      

Graser et al.         797 +/- 
50 

371 +/- 
25  

    1322 +/- 
206 

Graser et al.         805 415 +/- 
159 

    1122 +/- 
429 

Boll et al.       1077-1100 513-747 443-615     346-1939 

Matlaga et al. 1091.6 

+/- 364.8 

        347.0 +/- 

56.4 

722.2 +/- 

248.5 

    

* indicates significant differences were noted between these stones 
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Appendix C: Reported CT acquired dual energy ratio values of stones (HU high energy beam/HU low energy beam) 

 

Calcium 

oxalate 

COM COD Struvite Cystine Uric Acid Brushite Apatite 

Thomas et al. 

(Radiographics) 

  1.5 (1.42-

1.77) 

1.5 1.34 1.36 (1.27-

1.39)* 

1.06 (0.88-

1.18)* 

1.53 (1.46-

1.57) 

1.49 (1.44-

1.53) 

Thomas et al. 

(Eur Radiol) 

  1.19 +/- 

0.05 

1.21 +/-

0.03 

    1.0.1 +/- 

0.04 

    

Matlaga et al. 

1.44*         1.04* 1.51*   

* indicates significant differences were noted between these stones 
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Appendix D: Reported CT acquired dual energy attenuation values of stones (HU low energy beam – HU high energy beam) 

 

Calcium 

oxalate COM COD Struvite Cystine Uric Acid Brushite 

Mostafavi et al. - 

691 +/- 

109* 

412 +/- 

86* 131 +/- 65* 332 +/- 65* 0 +/- 41* 602 +/- 50* 

Matlaga et al. 270.7 

        11.45* 369.5 

* indicates significant differences were noted between these stone  
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Appendix E: Estimation of average linear attenuation coefficient of stone material 

 

The average linear attenuation coefficient of a material determines the attenuation of an x-ray 

beam and can be calculated using 

N = N0e
− µ

ρ
⎛
⎝⎜

⎞
⎠⎟
ρx

         (E.1) 

where N is the number of photons incident on the detector with the stone in the path, N0 is 

the number of photons without the stone material, µ [cm-1]  is the average linear attenuation 

coefficient of the material, ρ [g/cm3], is the density of the material and x [cm] is the thickness 

of the material. Therefore 

 
ln N

N0

⎛
⎝⎜

⎞
⎠⎟
= − µ

p
px

µ = 1
x
ln N0

N
⎛
⎝⎜

⎞
⎠⎟

 .       (E.2) 
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Appendix F: Theoretical derivation of noise in the CT image 

With reference to Figure 2-1 Faulkner and Moores (1) have shown that noise in linear 

attenuation coefficient (µ) for each pixel obtained using filtered back-projection 

reconstruction assuming a mono-energetic x-ray beam is given by [cm-1]: 

σ µ
2 = π 2

12Nθw
2 σ p

2          (F.1) 

where Nθ  is the number of angular increments, w is the width of the detector [cm], and σ p
2   

is the variance in log-projection values p as determined from a single detector element from 

one projection along the central ray. 

Monoenergetic model 

If the number of photons interacting with the detector without a phantom present is 

d0 = kN0Eε   and the number of photons interacting with the detector with a phantom present 

is d = kNEε  where k is a constant of proportionality relating detector signal to absorbed 

energy and it is assumed all x-ray energy is absorbed in each x-ray interaction, E is the 

energy of the interacting photon, and ε is the detector quantum efficiency. 

Therefore, the projection measurement for a monoenergetic beam of x-rays is given by  

 p = ln d0
d

= ln kN0Eε
kNEε

⎛
⎝⎜

⎞
⎠⎟  .       (F.2) 

The log-projection variance is given by 

 

σ p
2 = 1

d 2
σ d
2

= 1
k2N 2E2ε 2

⋅ 1
Nε

= 1
Nε

         (F.3) 
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where N is the number of x-ray photons incident on one detector element in one projection 
and is given by 

 N = Q0IwsNde
−µL

NθNp

         (F.4) 

and where Q0 is the number of photons per cm2 per mAs incident on the detector without the 

phantom [cm-2mAs-1], I is the mAs value for the slice, w the detector width [cm], s the slice 

thickness [cm], Nd the number of detector elements irradiated by the beam, Nθ  the number 

of angular increments, Np the number of projections, and ε is the detector quantum 

efficiency. In our work the number of projections is equal to the number of detector elements 

irradiated by the beam. Therefore, 

 σ µ
2 = π
12w2e−µL[Q0Iws]ε

        (F.5) 

where the term in square brackets gives the average number of quanta incident on one 

detector element along the central ray without the phantom for the entire slice scan (L is the 

phantom diameter).Noise in a CT image is therefore given by σ H
2  from equation (2.2) giving 

  
σ H
2 = 10

3

µw

2

σ µ
2

= 10
6π 2

12w3s
1

Q0Iµw
2e−µLε

 .      (F.6) 

        

This simple model has been effective is developing an understanding of noise in CT images 

for filtered back projection reconstruction using a ramp filter (Shepp-Logan) for ideal 

detector elements. (1) 

Polyenergetic Model 

We extend the monoenergetic model to include a broad spectrum of x-ray energies for dual 

energy imaging. The log-projection is then given by the ratio of two measurements: 
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 p =
kws Q0 (E)Eε(E)dE∫
kws Q(E)Eε(E)∫ dE

        (F.7) 

where Q(E) and Q0(E) [cm-2 keV-1 mAs-1] describe the spectra incident on a single detector 

element with and without a phantom. The variance in p is addressed by noting that each 

energy in a discrete spectral representation is independent. Thus if d = d1+d2+… then    

σ p
2 = dp

dd

2

σ d
2

= dp
dd1

2

σ d1
2 + dp

dd2

2

σ d2
2 + ...

= 1
d 2

dd
dd1

2

σ d1
2 + dd

dd2

2

σ d2
2 + ...

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 1
d 2

σ d1
2 +σ d2

2 + ...⎡⎣ ⎤⎦

 .      (F.8) 

Where the detector signal and variance in the ith energy bin is given by:  

di =
kwsQ(Ei )IEiε(Ei )ΔE

NθNp

        (F.9) 

    

and  

 σ di
2 = k

2wsQ(Ei )Ei
2ε(Ei )ΔE

NθNp        (F.10)
 

Generalizing to the limit of infinitesimal energy bins gives 

d =
kws Q(E)IEε(E)dE∫

NθNp        (F.11) 

and  
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σ d
2 =

k2ws Q(E)IE2ε(E)dE∫
NθNp

 .      (F.12) 

Substituting (F.11) and (F.12) into equation (F.8) gives 

 σ p
2 =

Nθ Q0 (E)IE
2ε(E)dE∫

ws Q(E)IEε(E)dE∫
2  .       (F.13) 

Therefore from equation (F.1) 

 σ µ
2 = π 2

12w2ws
Q0 (E)Iε(E)E

2 dE∫
Q(E)Iε(E)EdE∫⎡⎣ ⎤

⎦
2  .      (F.14) 

and from equation (F.6) 

 σ H
2 = 106π 2

12w2wsµw
2

Q0 (E)IE
2ε(E)dE

0

kV

∫
Q(E)IE ε(E)dE

0

kV

∫⎡⎣⎢
⎤
⎦⎥
2      (F.15) 

which can be compared with equation (F.6) to show the impact of the spectral shape on CT 

image noise.
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Appendix G: Table of variables 

Variable Definition Unit 

Q0 Normalized density of photons incident on the detector along the 

central ray of each CT projection measurement when no phantom 

is present 

cm-2mAs-1 

µ Linear attenuation coefficient cm-1 

I Product of the tube current and exposure time for a 360° rotation mAs 

Np Number of projections or ray sums in the set of projections at 

one angular position 

 

Nd Number of detector elements subtended by the phantom  

Nθ Number of angular increments  

s Slice thickness cm 

w Detector width cm 

L Phantom diameter cm 

ε Detector quantum efficiency  

Tf Transmission of a filter added to the beam near the source   

KCT Air KERMA at isocenter in the absence of a phantom mGy 

RK Ratio of air KERMA at a given location in a phantom to air KCT  
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Appendix H: List of abbreviations 

COM  Calcium oxalate monohydrate 

COD  Calcium oxalate dihydrate 

MAP  Magnesium ammonium phosphate 

CAP  Carbonate apatite 

HAP  Hydroxyl apatite 

BRU  Brushite (calcium hydrogen phosphate dihydrate) 

UA  Uric acid 

CYS  Cystine 

ESWL  Extracorporeal shock wave lithotripsy 

PCNL  Percutaneous nephrolithotomy 

FTIR  Fourier transform infrared spectroscopy 

ATR-FTIR Attenuated total internal reflection Fourier transform infrared spectroscopy 

CSCT  Coherent scatter computed tomography 

DECT  Dual energy computed tomography 

 



91 

 

6 Curriculum Vitae 

 
Name:&& & Stephanie)Nykamp)
)
Post+secondary&& University)of)Guelph)
Education&and&& Guelph,)Ontario,)Canada)
Degrees:&& & 1993>1997)DVM)
)

)
Honours&and&& K.M. Bhatnager Memorial Humanitarian Award (2014) 
Awards:   Carl J. Norden Distinguished Teaching Award (2011))
)
&
Related&Work&& Associate)Dean)Clinical)Program)&
Experience&& & University)of)Guelph)

2013>present)
)
Associate)Professor)(tenured))
University)of)Guelph)
2010>present)
)
Assistant)Professor)
University)of)Guelph)
2003>2010)

)
Selected&Publications:&

1. Bourzac CA, Koenig JB, Link KA, Nykamp SG, Koch TG. Comparative labeling of 
equine umbilical cord blood-derivced and bone marrow-derived mesenchymal 
stromal cells and Molday ION Rhodamine B for ex vivo cell tracking with MRI. Am J 
Vet Res. Accepted June 2014. 

2. Huska J, Gaitero L, Brisson B, Nykamp S, Thomason J, Sears W.  Comparison of the 
access window created by hemilaminectomy and mini-hemilaminectomy in the 
thoracolumbar spinal canal using computed tomography. Can Vet J. 2014;55(5):499-
455. 

3. Oblak M, Boston S, Woods J, Nykamp S. Comparison of concurrent imaging 
modalities in staging of dogs with appendicular osteosarcoma. Vet Comparative 
Onco. 2013 ePub 

4. Gaitero L, Nykamp S,  Daniel G, Monteith G. Comparison between cranial thoracic 
intervertebral disc herniations in German Shepherd Dogs and other large breed dogs.  
Vet Radiol Ultrasound. 2013 54(2) 113-138. 

5. Mitchell CW, Nykamp SG*, Foster R, Cruz R, Monteith G.  The use of magnetic 
resonance imaging in evaluating horses with spinal ataxia.  Vet Radiol Ultrasound. 
2012 53(6) 613-620. 



92 

 

6. Webb JA, Nykamp SG, Gauthier MJ, Kirby GM.  Ultrasonographic  and laboratory 
screening in healthy mature golden retriever dogs. Canadian Veterinary Journal. 
2012 52(6) 626-630. 

7. Chalmers HJ, Nykamp SG, Lerer A. The Ontario Veterinary College hip and elbow 
certification program – assessing inter and intra-observer repeatability and 
comparison of findings to the Orthopedic Foundation for Animals. Can Vet J. 2013 
54 42-46 

8. Bergeron LH, Nykamp SG, Brisson BA, Madan P, Gartley CJ. An evaluation of the 
efficacy of B-mode and color Doppler ultrasonography of canine ovaries for detecting 
the preovulatory LH peak. Theriogenology. 2012 epub. 

9. Reynolds D, Brisson BA, Nykamp SG. Agreement between magnetic resonance 
imaging, myelography and surgery for detecting recurrent naturally occurring Type I 
thoracolumbar intervertebral disc disease in dogs. VCOT. 2012 epub. 

10. Black B, Cribb CN, Nykamp S, Thomason JJ, Trout DR. Effect of local anesthetic 
deposition into structures of the equine foot on subsequent magnetic resonance 
imaging. Eq Vet J. 2012 epub. 

11. Squires Bos A, Brisson BA, Nykamp SG, Poma R, Foster RA.  Accuracy, 
intermethod agreement and inter-reviewer agreement for use of magnetic resonance 
imaging and myelography in small-breed dogs with naturally-occurring first time 
intervertebral disk extrusion.  J Am Vet Med Assoc. 2012 240(8):969-977. 

12. Singh AM, Brisson B, O’Sullivan L, Solomon J, Nykamp SG, Thomason J.  
Percutaneous catheterization an embolization of the thoracic duct in dogs: A 
feasibility study.  Am J Vet Research.  2011 72(11):1527-1534. 

13. Singh A, Brisson BB, Nykamp S, O’Sullivan ML.  Comparison of computed 
tomographic and radiographic popliteal lymphadenography in normal dogs.  Vet 
Surg. 2011 40(6) 762-767.  

14. Hayes G, Mathews K, Doig, Kruth S, Boston S, Nykamp S, Poljak Z Dewey C.  The 
feline acute patient physiologic and laboratory evaluation (feline APPLE) score: A 
severity illness stratification system for hospitalized cats.  J Vet Intern Med. 2011 
25(1) 26-28. 

 


	Dual energy imaging for determining urinary calculi composition: A theoretical and experimental study with computed tomography
	Recommended Citation

	Dual energy imaging for determining urinary calculi composition: A theoretical and experimental study with computed tomography

