Western University

Scholarship@Western

Western® Graduate& PostdoctoralStudies

Electronic Thesis and Dissertation Repository

9-12-2014 12:00 AM

A Software Design Pattern Based Approach to Auto Dynamic
Difficulty in Video Games

Muhammad Iftekher Chowdhury, The University of Western Ontario

Supervisor: Dr. Michael Katchabaw, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree
in Computer Science

© Muhammad Iftekher Chowdhury 2014

Follow this and additional works at: https://ir.lib.uwo.ca/etd

b Part of the Graphics and Human Computer Interfaces Commons, and the Software Engineering

Commons

Recommended Citation

Chowdhury, Muhammad Iftekher, "A Software Design Pattern Based Approach to Auto Dynamic Difficulty
in Video Games" (2014). Electronic Thesis and Dissertation Repository. 2522.
https://ir.lib.uwo.ca/etd/2522

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wiswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F2522&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ir.lib.uwo.ca%2Fetd%2F2522&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F2522&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F2522&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/2522?utm_source=ir.lib.uwo.ca%2Fetd%2F2522&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

A SOFTWARE DESIGN PATTERN BASED APPROACH TO AUTO DYNAMIC DIFFICULTY
IN VIDEO GAMES

(Thesis format: Monograph)

Muhammad Iftekher Chowdhury

Graduate Program in Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy

The School of Graduate and Postdoctoral Studies
The University of Western Ontario
London, Ontario, Canada

© Muhammad Iftekher Chowdhury 2014

Abstract

From the point of view of skill levels, reflex speeds, hand-eye coordination, tolerance for
frustration, and motivations, video game players may vary drastically. Auto dynamic
difficulty (ADD) in video games refers to the technique of automatically adjusting
different aspects of a video game in real time, based on the player’s ability and
emergence factors in order to provide the optimal experience to users from such a large
demography and increase replay value. In this thesis, we describe a collection of
software design patterns for enabling auto dynamic difficulty in video games. We also
discuss the benefits of a design pattern based approach in terms of software quality
factors and process improvements based on our experience of applying it in three
different video games. Additionally, we present a semi-automatic framework to assist in
applying our design pattern based approach in video games. Finally, we conducted a
preliminary user study where a Post-Degree Diploma student at the University of
Western Ontario applied the design pattern based approach to create ADD in two

arcade style games.

Keywords

Video game, software design pattern, reusability, case study, empirical studies, auto
dynamic difficulty, adaptive games

il

Dedication

To my beautiful daughter Raaha. She has nothing to do with this thesis; but everything

to do with everything else in my life.

il

Acknowledgments

First and foremost, | want to thank Almighty Allah for His blessings and mercy upon me.
He gave me the strength, knowledge, enthusiasm, determination, persistence, and

patience to finish this work.

[would like to thank my supervisor, Dr. Michael Katchabaw, for his guiding support in
the carrying out of this research. It has been an honor to work under his supervision,

and [am truly indebted for his encouragement during this time.

[am particularly thankful to James Anderson for voluntarily participating in the study
related to my research. In the study, he applied the design pattern based approach to
two different video games and kept track of the effort spent and provided a useful
thorough critical analysis of the design patterns. I greatly appreciate his participation

and feedback, and hope that the experience will be helpful for him as well.

To my parents, brother, mother and father in law, brother in laws, sister in law and
other family members, I appreciate the support and encouragement you have given to

me. [would like to thank our friends who have always been there for encouragement.

Last but not the least; [would like to thank my wife, Sharmin, and my daughter, Raaha,

for all their support and sacrifices.

Table of Contents

ADSETACE ...t ii
D@AICATION ... iii
ACKNOWIEAZIMENLS ...ttt sss e see s b s s s nnaes iv
Table 0f CONTENLS ... s \4
LISt Of TADIES ... viii
LIST Of FIGUI@S ...ttt e s s e ix
LISt Of APPEIAICES........cooceeeeeereeeeeeeee et s e s e s s X
(08 1B Y 010 s OO 1
INEFOAUCTION.......ce b 1
1.1 MORIVATION ...t 3
1.2 Type Of RESEATCI ...ttt 4
1.3 Organization Of TRESIS ... ssraes 4
(08 1B Y 010 OO OO 6
Related WOTK........sss s s 6
2.1 Auto Dynamic DiffiCulty ...t 6
2.2 Software Design Patterns in Video Games..............cooeoneneenneenseneeseessesssesseens 17
A B T YT) (o o - | o O OSSR 18
(08 1B Y 010 i oSO O SO STST 20
Research OrganizZation ...t s s 20
3.1 ReSearch GOAlS ... 20
3.2 ReSearch StUies...........ss s ssssenas 21
CRAPLEE 4.ttt s s e s bR AR 24

DESIZN PAEEINIS ... b bbb 24

4.1 MONItOring PAtLEIT.........o.ooieeeecereeeeeeseeeessessesses s ss s s s sssssasans 25
4.2 Decision MaKing PAtterns...........eeesseessessssssssssssssssssssssssssssssssssssssans 28
4.3 Reconfiguration Pattern.......... s s sssssssnans 31
4.4 Integration Of PAttEINS. ...ttt ess e s s sssssesans 34
(08 1B Y 01 - OO 36
GAMES STUAIC ... 36
TR T o Lo 1 N 37
5.2 THEGAIMIE ...t 39
5.3 MINECTAT ... 40
5.4 SPACE INVAUET'S ... ceeeeeeeseeeeseese s es s bbb ees 41
5.5 TOLTIS ..o 42
5.6 Adaptations Implemented ... 44
5.7 Reusable Solution across Multiple Games............ccocoonreneenneneeneenseeseeseenees 45
CRAPLET B.......coeeeceee ettt s s bR AR 47
Source Code and Process Reusability...........nnceseeseeseeseese e 47
6.1 PIOCESS ...t 48
6.2 SOUICE COAE ...t 53
OIS I 11010 10 B) oy 20 OO 57
(08 1B Y 010 OSSR 58
Automation FrameworK........... s ssssssssenns 58
7.1 Automation FrameworK............ s 59
7.2 Proof-of-concept Prototype........ o ncnceeeeseseesessssssessesssssssssesssessssssens 63
7.3 Prototype USQEE ... ssss st st ssssssssssens 71
Q% T Y 1100 10 B) o 2T 74
CRAPLET 8.ttt s bR RS e R 75

Preliminary USEI STUAY ... eeecseesesseessssesssesssssesssessesans 75

8.1 StUAY ATTIfACES ...ttt 75
8.2 PartiCIPANL..........oe s 77
8.3 Adaptations Implemented ... 77
8.4 ANalySis CONAUCEEM ...t sss e s s s s neas 80
8.5 Results and INterpretations ... ssesssens 81
RSN 10 110 11 E: 1 o) PP 88
CRAPTET 9.ttt R AR 89
L0001 T L3 1) 1 P 89
9.1 Key CONEIIDULIONS ..ottt sns s neas 89
0.2 IMPLICATIONS ...ttt s st 90
9.3 Future DireCtions ... 93
9.4 Concluding REMATKS..........oieieeseeseesecseesss e ssessssssssssssss s ssssssssssssssssssssens 96
APPEIUAICES ...ttt s s 103

vii

List

of Tables

Table 1: Decomposed executable studies from research goalscoouereneerreneeneenreeneesneenees 21
Table 2: Creating sensors using Java refleCtion ... seesesseessessesseesseeees 27
Table 3: Bypassing access modifier using Java reflectionencenencenseenseeneesseenees 27
Table 4: Summary of ADD deSigNn PatternsS.....oeeucereereesreeeesseesessesssesseessssssessesssessssssssssssssssessees 34
Table 5: Examples of adaptation implementedoeenenneeneeneensesseesesseessesseessessesssesseeees 44
Table 6: Example of artifacts produced through the ADD process activities.........cceueenee. 52
Table 7: Source code analysis of ADD design pattern implementationcccoueeeeereenneenes 56
Table 8: Categorization of the ADD SOUICE COAEcuuruemrrenrerreererreesseeseesseesesseessesseessesssessesssesees 59
Table 9 : Interaction between each tables and other framework components................... 64
Table 10 : Pseudo code for generating Sensor class in Javaoeeneeneensesseessessseesseseenees 69
Table 11: Custom source coded to integrate the framework generated source code to an
L2 R0 DYoo= 1 4 T 73
Table 12: Demography of the preliminary user study participantcooeeeomeenseeseesneenees 77
Table 13 : Average clearance rate based scenario in the Tetris game........ccccoeonnreoneerneenes 78
Table 14 : Stack height based scenario in the Tetris Game........oeneenreeneesneeneessesnseeseeseenees 79
Table 15 : Combination of scenarios in the Space Invaders gameccooeeneneereenneereesneenes 80
Table 16 : Ease of usage of each of the design patterns on the Tetris Gamecccovuureeneee 81
Table 17 : Ease of usage of each of the design patterns on the Space Invaders game.......82
Table 18 : Effort spent of implementing ADD in the Tetris and the Space Invaders games

viii

List of Figures

Figure 1: Sensor factory deSign PAtterN......o o ceneeneeneeeessessesseessesseessesssesssssssssssssssssessesssessssssesans 26
Figure 2: Adaptation Detector deSigN PAtteINoereereeureeresseesseeseessessesseessessessssssssssssssesssssesans 28
Figure 3: Case based reasoning design PAtLEIToeeeneesseesesseessesssssssssessesssssssssssssesssssesans 30
Figure 4: Game reconfiguration desSign Pattern ... eereereereeseessessessesssessessssssessssssessssssesnns 32
Figure 5: ADD design patterns working together....... o neneenseseeseeseeseesesseesesseesseenns 34
Figure 6: Screen captured from the Pac-Man game.......oonenneenseneenseeseeseeseesseesesseesseenne 38
Figure 7: Screen captured from the TileGame Game.......coerreneereenreeneesseeseesseeseesseesesseesseenns 38
Figure 8: Screen captured from the Minecraft game........coeoreneeneenreeneenseeseeseessesseesesseesseenns 41
Figure 9: Screen captured from the Space Invaders ame..........oenenneeseeseensesseesesseesseenns 42
Figure 10: 7 Tetriminos (top) and Screen captured from the Tetris game (bottom)......43
Figure 11: Components of the semi-automatic frameworkoorneenneenseneesneeseenenne. 60
Figure 12: Schema of the MySQL database for the relational modelccoornnceereneeneenn. 64
Figure 13 : Number of attributes at different depths on the Tetris game.......cccccoeererreeneene. 67
Figure 14 : Screenshot of attribute tree visualization for the Tetris game.........cccouereereene. 68
Figure 15 : Screenshot of a sample session timeline visualizationeeneeneenneene. 68

Figure 16 : Summary of participant’s feedback about the design patterns and base level
10000] (5300 T=) 0 L= 1 0) o 1P OO 85

Figure 17: Concept of multi-dimensional adaptive gameplaycerreenneneensesseesseenee 94

X

List of Appendices

Appendix A: Programmer’s Manual for the Usage of the Base Level Implementations of

10 0T D TE] Foa o L =) g OO OSSO 103
Appendix B: User’s Manual for the Proof-of-concept Automation Toolccccoreeereereeneene. 112
Appendix C: PHP Source Code for the Translator Component.........ooneneeneeseensesseesseenee 126
Appendix D: Example Source Code from the Base Level Implementation of the Design

PattOINIS oot s 132
Appendix E: Source Code Generated by the Proof-of-concept Automation Tool............. 154

Chapter 1

Introduction

Building dynamic video games is surprisingly complex; so much of the existing
research and development in this area has led to the creation of games that are
largely deterministic in nature. What occurs in the virtual game worlds and how
this is presented to the player is for the most part fixed, and quite unable to
adequately react to the interactions of the player [1]. While interesting in their own
ways, these games are often too inflexible and rigid to be able to effectively meet the
needs and expectations of a large and diverse player population [1], especially as
these needs and expectations change as players mature, refine their skills, and form
new experiences [2]. In the end, this leads to a loss of engagement, a break of

immersion, and an overall disappointing player experience [3][4].

It has been recently reported [5] that 90% of game players never finish a game. One
of the key engagement factors for a video game is an appropriate level of difficulty,
as players become frustrated when the games are too hard and bored when they are
too easy [6]. From the point of view of skill levels, reflex speeds, hand-eye

coordination, tolerance for frustration, and motivations, video game players may

vary drastically [7]. These factors together make it very challenging for video game
designers to set an appropriate level of difficulty in a video game. Traditional static
difficulty levels (e.g., easy, medium, hard) often fail in this context as they expect the
players to judge their ability themselves appropriately before playing the game and
also try to classify them in broad clusters (e.g., what if easy is too easy and medium

is too difficult for a particular player?).

Auto dynamic difficulty (ADD), also known as dynamic difficulty adjustment (DDA)
or dynamic game balancing (DGB), refers to the technique of automatically changing
the level of difficulty of a video game in real time, based on the player’s ability (or,
the effort s/he is currently spending) in order to provide them with an “optimal
experience”, also sometimes referred to as “flow”. If the dynamically adjusted
difficulty level of a video game appropriately matches the expertise of the current
player, then it will not only attract players of varying demographics but also likely to
enable the same player to play the game repeatedly without being bored. Popular
games such as “Max Payne”, “Half-Life 2” and “God Hand” use the concept of auto
dynamic difficulty [7][8]. How ADD is delivered in these games from a gameplay
perspective can only be discerned through reviewing these games or from official
strategy guides (or, occasionally in presentations such as [9]). Unfortunately, given
the highly competitive nature of the games industry, no information is publicly
available about how ADD is implemented in these games from a software design
perspective. While others have studied ADD in games, this has been done in an ad-
hoc fashion in terms of software design and is therefore not reusable or applicable

to other games. Recreating an ADD system on a game-by-game basis is both

expensive and time consuming, ultimately limiting its usefulness. For this reason,
we were motivated to leverage the benefits of software design patterns1 [10][11] to

construct an ADD framework and system [12] that is reusable, portable, flexible, and

maintainable.

1.1 Motivation

The concept of auto dynamic difficulty is used in variety of games from
commercially successful third person shooter games (i.e., “Max Payne”) to research
based therapeutic games [13]. In terms of genre, their applicability is shown in prey
and predator (e.g., Pac-Man) [6], cognitive (e.g., Pong) [14], first-person shooter
(e.g., Half-life) [15], and platform (e.g., Super Mario Bros) [16] games. Also, the
nearly universal presence of different difficulty levels in video games suggests the
broader applicability of auto dynamic difficulty research. As we have mentioned
earlier, unfortunately, from a software design perspective, there is no information
publicly available about how ADD is implemented in commercial games.
Furthermore, research in this area has largely been done in an ad-hoc fashion and is
therefore not reusable or applicable to other games. As we have prior expertise in
empirical software engineering research, we quickly identified our opportunity to

contribute in this broader area by bringing knowledge from similar adjacent domain

" In software engineering, a design pattern is a general reusable solution to a
commonly occurring problem within a given context in software design. It is a
template for how to solve a problem that can be used in many different situations.
They are formalized best practices that the programmer can use to solve common
problems when designing an application or system.

such as self-adaptive systems (please see Chapter 4 for details), and applying it in

video games, and gaining further knowledge through empirical study.

1.2 Type of Research

Our research has both knowledge seeking and solution building components.
Examples of our solution building research include deriving software design
patterns from other domains in the context of video games, applying those design
patterns in different games, implementing a source code generation based proof-of-
concept tool to assist in applying those design patterns, and so on. Examples of
knowledge seeking research include collecting metrics through source code analysis
of our implementation, textual content analysis of feedback from a preliminary user
study, and so on. In Chapter 3, we will provide a more detailed overview of the

organization of our research.

1.3 Organization of Thesis

The rest of this thesis is organized as follows. In Chapter 2, we discuss the state of
the art of auto dynamic difficulty. In Chapter 3, we discuss the organization of our
research in terms of research goals and studies. In Chapter 4 and Chapter 5, we
describe the design patterns and the games that we used in our studies respectively.
In Chapter 6, we present a step-by-step process for applying our design pattern
based approach in a video game. In this chapter, we also present results from our
empirical studies regarding the source code reusability achieved through our
approach. In Chapter 7, we present a semi-automatic framework based on our

design pattern based approach and a proof-of-concept prototype realizing that

framework. In Chapter 8, we discuss a preliminary user study and the feedback from
the participant. Finally, in Chapter 9, we discuss future directions and conclude the

thesis.

Chapter 2

Related Work

Considering the variety of contexts and the focus of related research, we divide our
related work discussion into three sub-sections. First we highlight the research that
explores the use of ADD in video games. Afterwards, we discuss the literature on
using software design patterns in video games. Finally, we discuss the research gap

and put our work in the context of this other work.

2.1 Auto Dynamic Difficulty

In recent years, ADD has received notable attention from numerous researchers.
Some of this research is primarily focused on knowledge seeking, whereas other
works present solutions such as frameworks and algorithms. Additionally, in some
research, new solutions are presented together with empirical validations. Here, we

review some of these works.

In [17], Demasi and Cruz explored the potential of co-evolutionary algorithms2 to
create a user-driven evolution of agents in an ANSI C based online action game. Here
user-driven evolution means the enemies evolve and get smarter by the same
proportion as the player gets better by playing the game. The game scenario is a
square room (480 x 480 pixels) where the player character needs to survive against
some 16 little monsters (a touch from any monster Kkills the player character). The
player character has a gun to fight the monsters. When the player character Kkills a
monster, another one enters the room, so that there are always 16 enemies alive.
The player character starts with 20 shots in the gun and every 15 seconds a new
cartridge with 20 shots appears in a random location in the game. The player
character can teleport once in every 30 seconds from its local position to a random
location. The player character and the enemies have the same speed. The enemies
can move only in four directions (up, down, left, right), but the player character can
walk or shoot in any one of the eight directions including diagonals. The player
character has three lives; once all lives are lost the game is over. The final score is
the number of enemies killed. These 16 non-player characters (NPC) are monitored
and evolved when they die or reach their “time to live”. The authors proposed four
different methods for the online evolution of the agents: (i) using game specific

information; (ii) online evolution using offline-evolved data; (iii) using online data

2 Co-evolutionary algorithms (CEAs) are defined by their interaction-driven fitness,
which means an individual fitness is determined based upon the interaction with
other individuals in the population. That interaction can be cooperative, which
means that individuals are evolving towards a common goal, or it can be
competitive, which means that individuals are competing among themselves to win
some sort of resource.

only; and (iv) using method-iii after method-i or ii. The authors used a heuristic
fitness function for agent evolution and analyzed different game based values. The
results indicated that method-iii (i.e., using online data only) can yield good results
for online games which require real-time interaction and are unpredictable to some

degree.

In [6], Hao et al. proposed the use of Monte-Carlo Tree Search (MCTS) algorithms to
generate the intelligence of NPCs. The performance of the NPCs controlled by MCTS
is adjusted by modulating the simulation time of MCTS. The authors use a slightly
modified version of the popular prey and predator game genre of Pac-Man as the
test bed. The specific modifications were: (i) the original maze is replaced by a
simplified 16 x 16 maze and power ups are removed; (ii) two ghosts instead of four
are designed and they move at the same speed as Pac-Man so that it is impossible
for a single ghost to finish the task of eating Pac-Man (cooperation is required); (iii)
ghosts win when they catch Pac-Man and Pac-Man must eat 45 pellets to win; if 55
steps have been finished and still neither Pac-Man nor ghosts have won, the result is
considered as a draw. In the experiment, the authors controlled the ghosts with
different simulation times and then collected the win rates of the ghosts. Based on
the results, the authors proposed a precise regression function that could be used to
dynamically match the game challenge with the ability of different types of players.
However, because of the great computational intensiveness and consumption of
system resources, such an ADD approach is only applicable to standalone games. An
alternative approach, involving adjustments based on Artificial Neural Network

(ANN) from MCTS, is proposed to realize ADD for online games [6]. The feasibility of

such an ADD approach is validated trough a study where the movements of the
NPCs were monitored based on data from the simulation of the MCTS. Attributes
that indicate the states of Pan-Man and the two ghosts, as well as the environment in
each move are selected as inputs of the ANN for the two ghosts. Similar inputs are
selected for the two ghosts except one more input (i.e., the first ghost’s direction) for
the second ghost so as to control cooperative behavior. The direction of each ghost

is the output of the ANN.

In [13], Hocine and Gouaich described a generic ADD approach for pointing tasks in
therapeutic games. They have explained how this approach can meet therapeutic

requirements such as:

(i) The ability assessment: by proposing an in-game kinematic evaluation

mechanism taken from traditional rehabilitation practices,

(ii) The variability: by introducing a game abstract level which provides
various ambiances and task themes with the same therapeutic

objective behind,

(iii) The difficulty adjustment and continuity: by introducing a dynamic
difficulty adaptation technique founded on a motivation model and
the assessment of player’s capabilities, which aims to overcome the

playability challenge.

A Wii board based balance game is used for the proposed approach. A pilot study

was conducted on healthy patients with one group using the proposed ADD

10

technique and the other using a random task difficulty. For the ADD approach, the
player’s profile containing his/her ability data as well as general information about
the player such as age, gender, and whether he/she is right or left handed, is used to
choose the appropriate adaptation strategy according to the proposed game goal
associated with the therapeutic objective. The difficulty of a task is considered to be
related with its probability of success. According to the player’s profile and
motivation, the difficulty adaptation module makes one of the following decisions:
increase, decrease, or maintain the current difficulty level of the training session.
Three criteria are taken into account when adjusting the difficulty level: the first two
criteria S +local (n), S -local (n) measure the local instability of the motivation in
both increase and decrease directions respectively. The third criterion measures
the overall trend of motivation, T global. A least squares method is used to calculate
this trend on the cumulative motivation. With these elements, the algorithm makes

the following decisions:

(i) S-local (n)A =T global (n): decrease the difficulty. This is interpreted as a

local decrease in motivation and a global trend indicating demotivation.

(ii) S +local (n)A T global (n): increase the difficulty. This is interpreted as a
local and global increase in motivation: the patient is succeeding too

easily. The difficulty is increased to keep an acceptable level of challenge.

(iii) In other cases, do not change the difficulty.

11

Results from statistical analysis such as the Chi-square goodness of fit test and a t-
test indicate that ADD influences the player’s motivation not only by challenging
him/her but also by maintaining his/her success rate and influencing his/her

perceived difficulty.

In [18], Hunicke and Chapman explored the computational and design requirements
for an ADD system. They named the system “Hamlet” which was developed using
Valve’s Half Life game engine. Using techniques drawn from Inventory Theory and
Operations Research, it analyzes and adjusts the supply and demand of game
inventory in order to control the overall game difficulty. As the player moves
throughout the game world, the system uses statistical metrics to monitor incoming
game data. Over time, it estimates the player’s future state from this data. When an
undesirable but avoidable state is predicted, the system intervenes and adjusts the
game settings as necessary. The system is designed to keep the player in the flow
channel by encouraging certain states, and discouraging others. The authors

proposed two types of adjustment actions:

(i) Reactive actions will adjust elements that are “in play” or “on stage” (i.e.
entities that have noticed the player and are attacking). This includes
directly manipulating the accuracy or damage of attacks, strength of

weapons, and level of health, amongst others.

(i) Proactive actions will adjust “off stage” elements (i.e. entities that are

spawned but inactive or waiting to spawn). This includes changes to the

12

type, spawning order, health, accuracy, damage and packing properties of

entities that have not yet appeared on screen.

In [15], Hunicke described how the “Hamlet” ADD system from [18] is used in a Half
Life game engine based custom game called “Case Closed”. The author experimented
with how ADD can affect player progress by manipulating the supply and demand of
various items, and established a probability distribution of damage done to the
player by his/her enemies during combat. Using this, the likelihood of player death
is predicted in a given encounter - this helps to decide when to intervene.
Intervention is conducted by a control policy, which is designed to affect the
underlying game economy based on estimated player performance. Each control
policy consists of an estimation algorithm, an adjustment goal, and a set of
intervention strategies. A simple “comfort zone” policy is implemented, which
works to keep players a relatively safe distance from death. During combat, if the
estimator determines that the player’s probability of death is greater than 40%, it
begins to intervene. The goal of the example policy is to keep the player’s mean
health at 60, with a standard deviation of 15 points. During combat, the policy will
add health in 15 point segments, at 100 clock intervals. The target is actively helping
struggling players, without making the game too easy. Threshold values for
adjustment, intervention increment, and lag were all set based on user testing and
observation with respect to this goal. A preliminary study was conducted on an
exploratory sample of 20 subjects of mixed skill (novice to expert). The results

indicated that experts familiar with Half-Life and novices who rarely play shooters

13

both rated the game as somewhat to extremely difficult (3-5 on a scale of 1-5),

however, trends indicate that expert players report elevated levels of enjoyment.

In [19], Qin et al. investigated the impacts of difficulty in video games on player
immersion based on an experiment conducted with 48 participants, each playing
the same experimental games with different difficulty settings. Warriors of Fate, the
game used as a test bed is an English adaptation of the Japanese arcade action game
Tenchi wo Kurau II. This game is a horizontal-scrolling game where common
enemies keep popping up from everywhere. In each round there are 3-7 scenes. The
task of each participant in the experiment was to overcome all enemies in each
round. Key factors in this study were direction of difficulty changes, including three
directions (up and down, down and up, and continuously increasing) and difficulty
of rate changes, with three rates (slow, medium, and fast). The dependent variables
were player immersion, playing time, and hit points. The player immersion was
obtained through an instrument where the player scored his/her immersion in the
computer game narrative on a scale of 1-7. The playing time was the total time
required to overcome enemies in a round. The hit points were measured by the
amount of life spent by the player-character in the experimental games to overcome
all enemies in one round. The difficulty of each scene in each round of the original
game is determined by the number of enemies and the length of their life bar. Then,
according to the difficulty of the scenes in the original game and the requirement of
the change directions and change rate of a round in the experimental games, scenes
in the WOF were recomposed for the experiment. There were three experimental

games each having six rounds. Each game represented a different change rate. The

14

six rounds in a game represented three types of change directions under an easy or
hard level of game difficulty. Every participant played one experimental game. The
results indicate that the players have better immersion when the difficulty changes

up and down and the changes happen at a medium rate.

In [20], Missura formalized the problem of an adaptive agent in the context of the
popular strategy game Connect Four. Connect Four is a game for two players each
having 21 identical stones. One set of stones is white and the other is black. The
game is played on a rectangular board consisting of 7 vertical columns of 6 squares
each. If a stone is “dropped"” in one of the columns, it will “fall down" to the lowest
unoccupied square. The players make their moves in turn consisting of placing one
stone in one of the columns. The goal of the game for each player is to get four of her
own stones connected either vertically, or horizontally, or diagonally. If all 42 stones
are placed on the board and no such group was created, the game is a draw. Missura
described four Connect Four playing agents: Naive, Simple, Mini-Max, and Optimal.
Then, in [21], Missura and Gartner presented “Adaptive Mini-Max” (AMM), an
adaptive agent for playing Connect Four. AMM is a modified version of a pre-
existent algorithm known as Mini-Max’. Instead of always taking the optimal move

based on its investigation of the game tree, AMM first evaluates the moves that were

3 Mini-Max uses a game-tree to decide which move to make on any given turn. This
means that a directed tree of available actions is calculated, where the nodes are
possible game states and the edges are possible moves, and the tree is investigated
to determine which available move is optimal. For efficiency, Mini-Max only
investigates a sub-tree of the available game tree, and then decides which move to
make based on a ranking of the available moves.

15

available to its opponent. AMM does this by investigating a sub-tree of the game tree
of choices that their opponent could have made, just as it would do for itself on its
turn. The actions available to the opponent are ranked in terms of optimality, and
the actual move that they made is noted. AMM does this throughout the game, and,
at each turn, calculates an average of the ranking of all of the moves made by their
opponent. This ranking enables AMM to determine the ability of their opponent.
Then, at each of AMM'’s turns, AMM will choose to make not the optimal move, but
rather the available move whose ranking is closest to the average ranking of the

opposition’s moves.

In order to evaluate AMM'’s adaptive mechanism, AMM was used to play against all
the other Connect Four playing agents. AMM won approximately 50 percent of the
time when playing against all but the optimal agent. The reason that AMM was not
able to adapt to the ability of the optimal agent is that AMM is fundamentally based
on Mini-Max, and so cannot perform any better than Mini-Max, which is a weaker
agent than optimal. Finally, an evaluation of AMM'’s “fun-factor” and ability to adapt
against human players was performed. The study found that users preferred playing
against AMM over the non-adaptive agents. Additionally, no significant correlation
between the players' skill levels calculated and their winning rate against AMM was

found which means AMM successfully adapted to the players’ skill levels.

Bailey and Katchabaw [7] developed an experimental test-bed based on Epic’s
Unreal engine that can be used to implement and study ADD in games. The core

components of the test-bed is discussed below.

A)

B)

Q)

16

Game Engine Core: The game engine core is used to provide all of the
fundamental technologies including graphics, audio, animation, artificial
intelligence, networking, and physics required to drive a game or
gameplay scenario. It allows developers to create new gameplay logic and
content on top of this engine to have a complete game, without

developing all of the underlying technologies.

Monitoring, Analysis, and Control: Monitoring, analysis, and control
services are used in the test bed to support both ADD experimentation
and software developed to implement new ADD algorithms and
methodologies. These services are used by gameplay scenarios, and
directly make use of the game engine core. To conduct experimentation
within a particular gameplay scenario, the experimental environment
must monitor and collect the appropriate player and progression data.
The analysis service is used to provide support in the aggregation and
correlation of data collected through monitoring. The control service is
used to manipulate the experiment in the gameplay scenario, including

starting, suspending, resuming, and halting a particular experiment.

Gameplay Scenarios: Gameplay scenarios are used to contain playable
elements of games and game content. These can range in scale from mini-
games depicting as few as one game activity for the player, all the way up

to entire games.

17

They have also implemented a variety of mini-game gameplay scenarios using
UnrealScript and UnrealEd for preliminary validation of the test bed. These include
two jumping mini-games, a timed maze navigation mini-game, a turret mini-game
requiring the player to navigate a short hallway lined with automated,
indestructible gun turrets, and a fighting mini-game requiring the player to make

their way through a room full of heavily armed enemy non-player characters.

Rani et al. [14] suggested a method to use real-time feedback, by measuring the
anxiety level of the player using wearable biofeedback sensors, to modify game
difficulty. They conducted an experiment on a Pong-like game to show that
physiological feedback based difficulty levels were more effective than performance
feedback to provide an appropriate level of challenge. Physiological signal data was
collected from 15 participants each spending six hours in cognitive tasks (i.e.,

anagram and Pong tasks) and these were analyzed offline to train the system.

Orvis et al. [22], from an experiment involving 26 participants, found that across all
difficulty levels, completion of the game resulted in an improvement in performance
and motivation. Prior gaming experience was found to be an important influence
factor. Their findings suggested that for inexperienced gamers, the method of

manipulating difficulty level would influence performance.

2.2 Software Design Patterns in Video Games
In a number of works, video games have been proposed as a tool to teach software
engineering in general and design patterns in particular. On the other hand,

unfortunately, work focusing on how game developers can benefit from the usage of

18

software design patterns is relatively rare. Here we discuss examples of both types

of research.

Gestwicki and Sun [23] presented a video game based approach to teach software
design patterns to computer science students. They developed an arcade style game,
EEClone, which consists of six key design patterns and then used these patterns in
their case study. Student participants analyzed the game to learn the usage of those

patterns.

Antonio et al. [24] described their experience in teaching software design patterns
using a number of incremental abstract strategy game design assignments. In their
approach, each assignment was completed by refactoring and using design patterns

on previous assignments.

Narsoo et al. [25] described the usage of software design patterns to implement a
single player Sudoku game for the J2ME platform. They found that through the use
of design patterns, new requirements could be accommodated by making changes to

fewer classes than otherwise possible.

2.3 Research Gap

As we can see from the above discussion, the work on ADD in video games focuses
on tool building (e.g., framework (Bailey and Katchabaw [7]), algorithms (Hunicke
[15]; Hao et al. [6]) etc.) and empirical studies (e.g., Rani et al. [14]; Orvis et al. [22]
etc.), but they all use an ad-hoc approach from a software design point view. On the

other hand, research on using software design patterns in video games is mostly

19

limited to using video games as a means for teaching design patterns in
undergraduate computer science courses (e.g., Gestwicki and Sun [23]; Antonio et al.
[24]). In contrast, much work has been done towards game design patterns, such as
the foundational work of (Bjork and Holopainen [26]) and many others, but the
focus there is game design and not software design, which is a subtle, yet important
distinction. Thus, motivated by this research gap, in this thesis, based on empirical
studies, we explore a software design pattern based approach to enable auto

dynamic difficulty in video games.

20

Chapter 3

Research Organization

In this chapter, we discuss the overall research goals and how these goals are
devised into a number of incremental studies, and provide a brief description of

each study.

3.1 Research Goals

Our primary research goal is:

Research goal, G: To develop a set of software design patterns, a process for
applying those design patterns, a tool for using these design patterns effectively, for
implementing auto dynamic difficulty in video games, and to empirically validate the

overall approach.
We decompose this high level overall research goal to following atomic sub-goals:
G1: To develop a set of software design patterns for implementing ADD in video games.

G2: To validate that the proposed design patterns provide a reusable solution for

implementing ADD in video games.

21

G3: To analyze the source code reusability achieved through the usage of these design

patterns to implement ADD in video games.

G4: To define a concrete set of activities (possibly step-by-step) needed for applying

our design pattern based approach in video games.

G5: To develop a source code generation based semi-automatic framework that will

assist in applying the ADD approach in video games.

3.2 Research Studies

We have organized four different studies to achieve the above research goal. Our
intention for each study is to address one or more sub-goals discussed in Section
3.1. Each study involves some development and empirical study around a specific

game. Here, in Table 1, we briefly describe each of these studies:

Table 1: Decomposed executable studies from research goals

Associated goals: G1, G2
Activities:
* Derive a set of design patterns to implement auto dynamic difficulty in video
games.
* Apply those design patterns in a proof-of-concept prototype Java game.
Game studied: Pac-Man
Achievements:
* We have a set of design patterns for implementing auto dynamic difficulty in video
games.
* We have a Java implementation of those design patterns for a prototype game.

* We have a preliminary validation of design patterns based approach for auto

Study-1:

dynamic difficulty.

22

Associated goals: G2, G3
Activities:

* Generalize the implementation from Study-1, so that it can be applied to other
games.

* Apply the generalized implementation to a third party game developed in Java
with minimal modifications.

* Based on the implementations from Study-1 and Study-2, measure and discuss
how different software qualities (e.g., reusability, maintainability etc.) are
impacted by the design pattern approach.

Game Studied: TileGame
Achievement:

* We have a more generic Java implementation of the design patterns.

* We have validated that the design patterns based approach for auto dynamic
difficulty can easily be applied to games that were not implemented with any such

prior motivation.

;',:\ * We, based on empirical grounds, have discussed how different software qualities
5 are positively impacted by the usage of the proposed approach.

Associated goals: G2, G3, G4

Activities:

* Based on the experience from Study-1 and Study-2, describe a step-by-step
process to use the design patterns in a game.

* Follow the described process to apply the generalized implementation to a
commercial Java game with minimal modifications.

* Based on the implementations from Study-1, Study-2 and Study-3, measure and
discuss to what extend the implemented source code are reusable.

Game Studied: Minecraft
Achievement:

* We have described a step-by-step process to apply the design patterns.

* We have validated that on following the process, the design patterns based
approach for auto dynamic difficulty can easily be applied to large-scale
commercial game such as Minecraft.

& * We have further analyzed the effectiveness of the design pattern based approach
.;: by empirically investigating the reusability of the source code and the process
b across multiple games.

23

Associated goal: G5
Activities:

* Analyze the instantiation and specialization related artifacts (i.e., source code) that
were identified as not reusable in prior studies.

* Define a relational model to represent the dynamic information necessary to
implement those artifacts.

* Develop a framework, which will allow collecting required information from a game,
create instance of the model based on that information, and provide an effective way
for managing and fine tuning the model and finally generating source code based on
the model.

Game Studied: TileGame

B Achievement:
E\ * We have a semi-automatic tool, which with the help of code generation allows us to
5 implement the design pattern based approach on a video game with minimum effort.
Associated goal: G2
Activities:

* Conduct a case study where an external developer uses our design pattern based
approach to implement ADD.

* Analyze the data collected from this case study to understand the ease of usage and
effort associated in applying our design pattern based approach.

* Identify potential issues from the critical feedback from the developer about the
design patterns and/or the base level implementations provided to the developer and
plan to address the issues.

Games Studied: Tetris and Space Invaders

Achievement:
. * From a preliminary user study, we have verified that a developer with no prior
:: knowledge of our research can learn and apply our design pattern based approach to
b develop ADD in games with minimal effort.

Please note that the organization described in the above table is for execution

purposes only and, while we discuss the results from these studies in upcoming

chapters, we will not always follow this organization, and findings from different

studies will be discussed together in certain chapters.

24

Chapter 4

Design Patterns

As we discussed earlier in Chapter 2, related work on ADD in video games has
focused on tool building (e.g., framework (Bailey and Katchabaw [7]), algorithms
(Hunicke [15]; Hao et al. [6]) etc.) and empirical studies (e.g., Rani et al. [14]; Orvis
et al. [22] etc.), but they all use an ad-hoc approach from a software design point of
view. On the other hand, research on using software design patterns in video games
is mostly limited to using video games as a means for teaching design patterns in
undergraduate computer science courses (e.g., Gestwicki and Sun [23]; Antonio et al.
[24]). In contrast, much work has been done towards game design patterns, such as
the foundational work of (Bjork and Holopainen [26]) and many others, but the
focus has generally been on game design and not software design, which is a subtle,
yet important distinction. Relying on the success of software design patterns in
different software domains, we can say that game developers could benefit from

both game design patterns and software patterns for games.

Ramirez and Cheng [11] presented 12 design patterns that could assist in enabling

adaptability in a software system. These design patterns were developed through

25

the generalization of design solutions found in the self-adaptive system literature.
We found four of these 12 design patterns to be necessary for enabling ADD in video
games. In this chapter, we derive these design patterns in the context of ADD in
video games to achieve our first sub-goal “G1: To develop a set of software design
patterns for implementing ADD in video games”. We used the same classification
scheme of adaptive design patterns as Ramirez and Cheng (i.e., monitoring, decision
making, and reconfiguration patterns). Bailey and Katchabaw also used synonymous
component names for their framework [7]. In Sections 4.1, 4.2, and 4.3, we discuss
monitoring, decision making, and reconfiguration patterns respectively. In Section
4.4, we discuss how these design patterns work together to enable the

implementation of ADD in a game.

4.1 Monitoring Pattern

The key purpose of ADD is to provide more enjoyment to a broader demography of
players. Even though it seems that there should be a direct mapping from a player’s
achievements to their enjoyment, the actual relationship is far more complicated.
For example, high achievement with minimum effort can be boring for a hardcore
player whereas low achievement with high effort can be frustrating for a novice
player. Thus, before we dynamically adjust the difficulty level of a game, we need to
know the player’s perceived level of difficulty which requires collecting data from
the game at runtime. The monitoring pattern is used to provide a systematic way of
collecting data while satisfying resource constraints, and provide those data to the

rest of the ADD system. Examples of data to be collected include the player’s score,

26

player’s life level, time spent on activities, inventory, number of enemies killed,

amongst others.

ResourceManager Registry |

1 1 1 1

’u‘ e m
SensorFactory I :
1

Game

Figure 1: Sensor factory design pattern

Sensor factory: Sensors are objects that periodically read data from the game* and
notify the rest of the ADD system. Sensor (please see Figure 1) is an abstract class
which encapsulates the periodical collection and notification mechanism. It has the
abstract method refreshValue() which child classes need to define. A concrete sensor
realizes the Sensor and defines data collection and calculation inside the
refreshValue() method. A concrete sensor may also override other attributes of the
Sensor class. An example of a concrete sensor can be AverageScorePerLifeSensor,
which reads score and number of life attributes from the game and divides the score
by the number of lives. An example of overriding an attribute from the base Sensor

class can be redefining the default monitoring interval. The SensorFactory class uses

4 Please note that, with the advancements of HCI in games, the scope of sensors are
no longer limited to the game world. Real world data collected from input devices
such as Xbox’s Kinect, Wii’s controller, Playstation’s Move, etc. might be useful to
monitor for ADD. Research (e.g., [10]) also suggests biological feedback can be
included in this context.

27

the “factory method” pattern to provide a unified way of creating any sensors. It
takes the sensorName and the object to be monitored as input and creates the
sensor. If the object is not specified, then it uses the default game object. In Table 2,
we provide a code snippet that demonstrates how Java reflection can be used to
create a sensor without using the constructor directly. As we can see, unlike
traditional implementations of the factory method pattern, this implementation

does not require modification when new ConcreteSensor classes are created.

Table 2: Creating sensors using Java reflection

Class sensorClass = Class.forName(sensorName);
Constructor sensorConstructor = sensorClass.getConstructor(new Class[]{ Object.class });

Sensor sensor = (Sensor)sensorConstructor.newlnstance(new Object[]{ object });

[t is good practice that the object will provide an appropriate interface so that it can
be queried by the ConcreteSensor for the required attribute. If for some reason the
object does not provide the required interface, then reflection can be used to bypass

the access modifier (please see Table 3).

Table 3: Bypassing access modifier using Java reflection

Class objectClass = object.getClass();
Field field = objectClass.getDeclaredField(“fieldName”);
field.setaccessible(true);

Object fieldValue = field.get(object);

Before creating a sensor, the SensorFactory checks in the Registry data structure to
see whether the sensor has already been created. If created, the SensorFactory just
returns that sensor instead of creating a new one. Otherwise, it verifies with a

ResourceManager whether a new sensor can be created without violating any

28

resource constraints. Usually, the underlying platform and/or development
environment provides wrappers for resource monitoring. For example, the
javalang.Runtime class and javalang.management package provide such

functionality.

4.2 Decision Making Patterns

After collecting raw data using the monitoring pattern (i.e., sensor factory), the ADD
system must interpret what that information means in the context of a particular
game and which game elements need to be adjusted to what degree to provide the
player with an appropriate level of difficulty. Two decision making patterns:
adaptation detector and case based reasoning are discussed below, encapsulating
the tasks of “when to adjust the game” and “what to adjust in the game and how to

adjust?” respectively.

|ThreshoIdAnaIyzerl~ —————— >| Threshold

1 *
ﬁ 1 ﬁ
|AdaptationDetector|

T
O
S
* |

Figure 2: Adaptation Detector design pattern

Adaptation detector: With the help of the sensor factory pattern, the

AdaptationDetector (please see Figure 2) deploys a number of sensors in the game

29

and attaches observers® to each sensor. Observer encapsulates the data collected
from sensors, the unit of data, and whether the data is up-to-date or not. The unit of
data represents the degree of precision necessary for each particular type of sensor
data. For example, in a particular game, every tenth change in the player’s inventory
might be worth noticing, compared to changes in the player’s remaining number of
lives, which should be noted on each change. AdaptationDetector periodically
compares the updated values found from Observers with specific Threshold values
with the help of the ThresholdAnalyzer. Each Threshold contains one or more
boundary values as well as the type of the boundary (e.g., less than, greater than, not
equal to, etc.). Once the ThresholdAnalyzer indicates a situation when adaptation
might be needed, the AdaptationDetector creates a Trigger with the information the
rest of the ADD process might need. Trigger also holds book-keeping attributes such
as the trigger creation time and so on. For example, if the average score per life is
less than a particular threshold, then it might indicate that an adaptation is
necessary. Now to give a bigger picture, the Trigger may include contextual
information, such as the number of enemies left, their average speed, etc.
AdaptationDetector needs to make sure that it does not repeatedly create the same

Trigger.

5 In an observer design pattern, the subject (i.e., sensors in this case) maintains a list
of observers and notifies them of changes. Many programming languages provide a
built in observer implementation mechanism.

30

[
|
[
|
|
|
|
|
|
[
|
|
|

S TriggerPool | | FixedRules | :
[
|
|
|
|
[
[
|
|
|
!

InferenceEngine
I

Figure 3: Case based reasoning design pattern

Case based reasoning: While the adaptation detector determines the situation
when a difficulty-adjustment is required by creating a Trigger, case based reasoning
(please see Figure 3) formulates the Decision that contains the adjustment plan. As
the name of the pattern suggests, this pattern is best suited to games where the

difficulty adjustment logic can be defined as a finite number of cases.

The InferenceEngine has two data structures: the TriggerPool and the FixedRules.

FixedRules contains a number of Rules®. Each Rule is a combination of a Trigger and
a Decision. The Triggers created by the adaptation detector will be stored in the
TriggerPool. To address the Triggers in the sequence they were raised in, the
TriggerPool should be a FIFO data structure. The FixedRules data structure should
support search functionality so that when the InferenceEngine takes a Trigger from

the TriggerPool, it can scan through the Rules held by FixedRules and find a Decision

6 Please note that, the Rules are very much specific to the game and the success of
the ADD system highly depends on determining and using appropriate Rules.

31

that appropriately responds to the Trigger. Note that all the attributes of two
Triggers need not be the same for them to match. For example, depending on the
game, a “player’s life value is below 20%” trigger created at two different time
points might be considered the same trigger. Thus, a Trigger should provide the
method (e.g., overriding the equalsTo() method in Java) to compare it with another
one so that the InferenceEngine can find and take the appropriate Decision. Another
optional component (not shown in Figure 3) for the case based reasoning pattern is
a learner attached to the inference engine, which can learn new rules based on

monitoring the sequence and effectiveness of different rule executions on the game.

4.3 Reconfiguration Pattern

Once the ADD system detects that a difficulty-adjustment is necessary, and decides
what and how to adjust the various game components, it is the task of the
reconfiguration pattern to facilitate smooth execution of the decision. This task is
non-trivial because the game is a runtime entity. The ADD system needs to adjust
the game difficulty while the player is progressing through the game. If the
adjustment is drastic, it can disturb the player’s immersion. Also, there is the risk of
leaving the game in an inconsistent state. Below we discuss the game
reconfiguration pattern, which provides a systematic approach to reconfigure the
game. Traditionally the pattern was designed for a client-server model. The reason
we choose this pattern is because typically a video game is very analogous to a
client-server model. In a client-server model, the server continuously checks in a

loop for requests from clients and responds to the requests when they arrive.

32

Similarly, in a video game, the game logic continuously checks in a loop (i.e., the
game loop) for inputs from input devices (such as the keyboard, mouse, gamepad,

sensors, etc.) and behaves according to those inputs.

Game reconfiguration: This pattern is based on the server reconfiguration pattern
described in [11]. The server reconfiguration pattern assumes that the object that
needs to be configured will implement a specific interface. With the help of the
adapter design pattern, this assumption can be eliminated (as we show in Figure 4
and discuss hereafter). The AdaptationDriver receives a Decision selected by the
InferenceEngine (please see case based reasoning in Section 4.2) and executes it
with the help of the Driver. Driver implements the algorithm to make any attribute
change in an object that implements the State interface (i.e., that the object can be in
active or inactive states, and outside objects can request state changes). As the name
suggests, in the active state, the object shows its usual behavior whereas in the

inactive state, the object stops its regular tasks and is open to changes.

1

Game

GameState }(——————— ~| Driver
|

|
[1

| PSS
]
AdaptationDriverf-————-——

Figure 4: Game reconfiguration design pattern

«interface»
State

A

33

The Driver takes the object to be reconfigured (default object used if not specified),

the attribute path (i.e., the attribute that needs to be changed, specified according to

a predefined protocol”’) and the changed attribute value as inputs. The Driver
requests the object that needs to be reconfigured to be inactive and waits for the
inactivation. When the object becomes inactive, it reconfigures the object as
specified. After that, it requests the object to be active and informs the
AdaptationDriver when the object becomes active. When the game is in an inactive
state, it will not be able to respond to the inputs it receives from the player through
the input devices, but it should not discard those requests either because that might
expose an unexpected behavior to the player. The GameState maintains a
RequestBuffer data structure to temporarily store the inputs received during the
inactive state of the game. The GameState overrides Game’s event handling methods
and game-loop to implement the State interface. When the GameState is requested
to be INACTIVE, it is transferred to BEING _INACTIVE. While in the BEING INACTIVE
state, the game-loop finishes its current execution and then goes to the INACTIVE
state. In the INACTIVE state, the game-loop does not get executed. If the game is not
in the ACTIVE state, inputs are stored in the RequestBuffer instead of being
processed. When the game is requested to be ACTIVE, it is transferred to the
BEING_ACTIVE state first. In the BEING_ACTIVE state, the inputs stored in the
RequestBuffer are retrieved and processed. The game goes to the ACTIVE state from

the BEING_ACTIVE state only after the RequestBuffer becomes empty. The game can

7 Example can be: object oriented dot notation like,
attributel.sub_attribute2[sub_attribute_index].sub_sub_attribute5.

34

be requested to go to the INACTIVE state only at a time when it is in the ACTIVE
state, and vice versa. It is important to note that in a reasonable implementation, all
these changes can be done in less time than the game loop’s sleeping period after

each execution and, consequently, these changes are not noticeable to the player.

4.4 Integration of Patterns
In this Section, we briefly re-discuss how the four design patterns discussed in
Sections 4.1, 4.2, and 4.3 work together to create a complete ADD system (please see

Figure 5 and Table 4).

adaptation case based
(" detector Y {* reasoning)
Observer % ‘

~sensor factory ——

game

‘ Sensor ’ \ P,
\. \\ / reconfiguration
Game ’

Figure 5: ADD design patterns working together

Table 4: Summary of ADD design patterns

Design Pattern Role Interacts With
Sensor factory Collecting data from the game Game, Adaptation detector
Adaptation detector Deciding when to adjust the game Sensor factory, Case based

reasoning
Case based reasoning Deciding what to adjust in the game and | Adaptation detector, Game
how to adjust reconfiguration
Game reconfiguration Implementing the adjustment Case based reasoning, Game

35

The sensor factory pattern uses Sensors to collect data from the game so that the
player’s perceived level of difficulty can be measured. The adaptation detector
pattern observes Sensor data using Observers. When the adaptation detector finds
situations where difficulty needs to be adjusted, it creates Triggers with appropriate
additional information. Case based reasoning gets notified about required
adjustments by means of Triggers. It finds appropriate Decisions associated with the
Triggers and passes them to the adaptation driver. The adaptation driver applies the
changes specified by each Decision to the game, to adjust the difficulty of the game
appropriately, with the help of the Driver. The adaptation driver also makes sure
that the change process is transparent to the player. In this way, all four design

patterns work together to create a complete ADD system for a particular game.

36

Chapter 5

Games Studied

To date, we have used five games developed in Java for studying the design patterns
described in Chapter 4. In our early work (please see studies 1 and 2; also reported
in[12] and[27]), two casual prototypical games were used. The first game is a
variant of Pac-Man and was developed specifically for the purposes of our research.
The second game, TileGame, is a slightly modified version of a platform game
described in [28]. Even though we were successful in using the design pattern based
approach in these two games, the code for these games was either written by
ourselves or well documented and simple enough to be easily understood and
reshaped accordingly. Thus, in a later study (please see Study 3; also reported
in[29]) we have selected a commercially successful sandbox game - Minecraft® [30]
to extend our study. Also, we designed a class project, where a student used our
designed pattern based approach to implement ADD in open source variants of two

popular arcade games: Space Invaders and Tetris. In sections 5.1 to 5.6 below we

® Minecraft is commercially available for several platforms, but we focus on the
desktop version developed in Java.

37

briefly describe each of the games and examples of adaptations that were
implemented. In sub-section 5.7, we discuss the second sub-goal “G2: To validate
that the proposed design patterns provides a reusable solution for implementing

ADD in video games”.

5.1 Pac-Man

In this game, the player controls Pac-Man in a maze (please see Figure 6). There are
pellets, power pellets, and 4 ghosts in the maze. Pac-Man has 6 lives. Usually, ghosts
are in a predator mode and touching them will cause the loss of one of Pac-Man’s
lives. When Pac-Man eats a power-pellet, it becomes the predator for a certain
amount of time. When Pac-Man is in this predator mode and eats a ghost, the ghost
will go back to the center of the maze and will stay there for a certain amount of
time. Eating pellets gives points to Pac-Man. The player tries to eat all the pellets in
the maze without losing all of Pac-Man’s lives. The player is motivated to chase the
ghosts while in predator mode, as that will benefit them by keeping the ghosts away
from the maze for a time, allowing Pac-Man to eat pellets more freely. Ghosts only
change direction when they reach intersections in the maze, while Pac-Man can
change direction at any time. A ghost’s vision is limited to a certain number of cells
in the maze. Ghosts chase the player if they can see them. If the ghosts do not see
Pac-Man, they try to roam the cells with pellets, as Pac-Man needs to eventually visit
those areas to collect the pellets. If the ghosts do not see either Pac-Man or pellets,

they move in a random fashion.

Figure 6: Screen captured from the Pac-Man game

Figure 7: Screen captured from the TileGame game

38

39

5.2 TileGame

The level structure and game-play of this game is similar to the popular Super Mario
game series. In this game, the player controls the player character in a platform
world (please see Figure 7). There are three levels, each having different tile based
maps. Each level is more difficult and lengthier than the previous level, but has more
points to give the player a sense of progress and accomplishment. There are power
ups and non-player characters (i.e., enemies) in each level. There are three different
types of power ups: basic power ups, bonus power ups, and a goal power up. Basic
power ups and bonus power ups give certain points to the player. In each level
there is one goal power up that can be found at the end of the level. The goal power
up takes the player from one level to another. There are two different types of non-
player characters: ants and flies. Ants and flies move in one direction and change
direction when blocked by the platforms. The player character can run on and jump
from platforms. When the player character jumps on (i.e., collides from above) non-
player characters, the non-player character dies. If the player character collides
with non-player character in any other direction, then the player character dies
instead. The player character has six lives. When the player character dies, it loses
one life and the game restarts from the beginning of that level. The player character
and ants are affected by gravity; flies are only affected by gravity when they die. In
this game, three map variants were created for each level. For a particular level, the
same objects were placed in the map but positioned slightly differently. One map
variant was the default version and other two were easier and harder versions of

the default map.

40

5.3 Minecraft

Minecraft [30] is an exceptionally popular sandbox game that allows players to
explore, gather resources, combat, craft and build constructions out of textured
cubes in a procedurally generated 3D world. The terrain of the game world,
consisting of plains, mountains, forests, caves, and waterways, are composed of
rough 3D objects (primarily cubes) representing different materials (e.g., dirt, stone,
tree trunks, water, etc.) and arranged in a fixed grid pattern. Players can break
(please see Figure 8) and collect these material blocks and craft these blocks to form
other blocks (e.g., furnaces, bricks, stairs, etc.) and items (e.g., sticks, axes, buckets,
etc.). Players can place collected or crafted blocks and items elsewhere to build
structures. The world is divided into biomes (e.g., deserts, jungles, snow fields, etc.).
The time in the game goes through a day-night cycle every 20 real time minutes.
There are various NPCs known as mobs (e.g., animals, villagers, hostile creatures,
etc.). Non hostile animals (e.g., cows, pigs, chickens, etc.) spawn during the daytime
and can be hunted for food and crafting materials. Hostile mobs (e.g., spiders,
zombies, creepers (a Minecraft-unique creature), etc.) spawn during nighttime and
in dark areas. There are two primary game modes: creative and survival. In creative
mode, players have access to unlimited resources, and are not affected by hunger or
environmental or mob damage. On the other hand, in survival mode, players need to
collect resources (and craft them) and have both a health bar and a hunger bar that
must be managed to stay alive and continue playing. The game also features single
player and multiplayer options. For this research, we focused on the single player

option (please see Figure 8) played in the survival mode of the game.

41

Figure 8: Screen captured from the Minecraft game

While Minecraft is not open-source, its source code can be readily obtained through
the use of a toolchain [31] provided by an active and extensive developer
community that decompiles the game back to its source code. This practice is
accepted by the creators of Minecraft while an official modding interface is under

development.

5.4 Space Invaders

Space Invaders is a two dimensional fixed shooter game9. In this game, the player
controls a canon by moving it horizontally across the bottom of the screen and firing
at invader alien ships descending from top of the screen. In the used variant, there

are 24 alien ships organized in 4 rows (please see Figure 9). The player can shoot

9 In fixed shooter games, (i) the level fits within a single screen, (ii) the protagonist’s
movement is fixed to a single axis of motion, and (iii) enemies attack in a single
direction (such as descending from the top of the screen).

42

one missile at a time and he can only shoot the next one when the previous one hits
an alien ship or the top of the screen. Each alien ship can randomly drop one bomb
at a time until it is destroyed. It can only drop the next bomb when the previous
bomb hits the player’s canon or the ground. The player starts with 5 lives and each
time a bomb touches the player’s canon, one life gets decreased. To win the game,
the player needs to destroy all the alien ships before losing all of his/her lives and

the alien ships reach the ground.

Space Invaders =%

Figure 9: Screen captured from the Space Invaders game

5.5 Tetris

Tetris is a falling block puzzle game in which there are 7 different shapes (i.e., I,], L,
O, S, T and Z shapes - please see in Figure 10) called Tetriminos. Tetriminos are
game pieces shaped like tetrominoes, geometric shapes composed of four square

blocks each. A random sequence of Tetriminos fall down the playing field from the

43

top of the screen. A player can control these shapes by moving them sideways or
rotating them at 90 degree units, with the intention of creating horizontal lines of
blocks without any gaps. Such lines disappear immediately as they form and all the
blocks above that line fall by one line and the player earns points. The game
continues until the stack of block reaches the top of the screen such that no new

Tetriminos can enter.

T

o o 2
4 [-
P I |)]
& Tetris - 0 X

paused

Figure 10: 7 Tetriminos (top) and Screen captured from the Tetris game

(bottom)

44

5.6 Adaptations Implemented

In Table 5, we give examples10 of different adaptations that were implemented in
these games. The first column shows the name of the game. The next three columns
show the details of the adaptations implemented. Please note that these columns:
metrics for sensors, attributes for modification and adaptation scenarios also
represent the questions: when to adapt, what to adapt and how to adapt
respectively, which is part of a possible way of eliciting essential requirements for

an adaptive software [32].

Table 5: Examples of adaptation implemented

2] -

E Metrics for Attributes for Modification Adaptation Scenarios

S Sensors

£ Total score, Ghost’s speed, the ghost’s Modify ghost’s speed, duration of

s | Number of vision length, duration of Pac-Man’s predator mode etc. based

‘;é times player Pac-Man’s predator mode on how the average score per life

A | dies etc. compares to specific thresholds
Current level Load different versions of Load different versions of the map

when the player character goes to the

o |number, Total | the map where default ’ .

g . . next level or in the next loading of the

S | score, Number | objects and enemies are .

O | of times player | placed in slightly different same level (i.e, when the player

2 . g character dies) based on scores and

= | dies positions. i .

= life lost in last level.
Which day in Display hints about If th.e player. is co.ntlnuo.usly dying
game, number . during the first night, give the player

: collecting resources and .

of times e some hints to progress through the

- . building shelters . .

& | player dies game to make it easier.

5§ | Number of Modify the hardness of a particular

9 |. .

£ |itemsof resource in the game world as the

= | particular Hardness of those particular player’s inventory of that particular
materials in items item changes, making it easier or
players harder to collect the resource.
inventory

10 Here, we discuss one or more non-trivial examples from each of the games. Few
more scenarios will be discussed in Chapter 6. Other trivial ones were intentionally
left out, as they do not provide any additional value to this discussion.

45

2] -
E Metrics for Attributes for Modification Adaptation Scenarios
S Sensors
Average Give undesirable (please see section
number of Relative frequency ratio 8.3 for details of the classification of
shapes falling q y the shapes) shapes to the player
between desirable and . . .
«» | between two . when he/she is clearing rows quickly
= . undesirable shapes . .
& | rows being and give desirable shapes for the
& | cleared opposite.
' Descend the shapes faster if the stack
Height of the Speed of the shapes is not very high and decrease the
stack speed if the stack is high.
Gradually increase or decrease the
2 | Alien ships’ Alien ships’ speed towards alien ships’ speed and player’s
3 height from the ground missile’s speed based on the
g ground remaining size of the alien force and
S | number of their distance from the ground.
5]
@ . .
8 alien .Sh.lpS Speed of player’s missile
& | remaining

5.7 Reusable Solution across Multiple Games

Design patterns are a general reusable solution for commonly occurring problems.
Typically, design patterns are elicited by analyzing implemented solutions across
multiple systems rather than being designed and thus their reusability as a solution
does not need to be demonstrated. However, this general approach of eliciting
design pattern is not applicable for our specific problem. Popular games such as
“Max Payne”, “Half-Life 2” and “God Hand” use the concept of auto dynamic
difficulty. How ADD is delivered in these games from a gameplay perspective can
only be discerned through reviewing these games or from official strategy guides
(or, occasionally in presentations such as [9]). Unfortunately, given the highly

competitive nature of the games industry, no information is publicly available about

46

how ADD is implemented in these games from a software design perspective. There
are no adequate open source examples of auto dynamic difficulty implementations
to be analyzed. Thus, we have derived the necessary design patterns from the self-
adaptive system literature in the context of ADD in video games (please see Chapter
4). In this chapter, we discussed five different games where the design pattern based
approach was used to implement ADD. One of the games (i.e., Minecraft) among
them is a highly successful sandbox game. Most adaptations that were implemented
primarily focus on modifying attributes of the game (please see Pac-Man and
Minecraft examples in Table 5) whereas others focus on content modifications
(please see TileGame example of usage of different version of maps in Table 5).
Thus, in this chapter, through empirical evidence (i.e., the usage of the design
patterns to implement ADD in 5 different games), we have addressed our second
sub-goal “G2: To validate that the proposed design patterns provides a reusable

solution for implementing ADD in video games”.

47

Chapter 6

Source Code and Process Reusability

In [27], we examined, based on a case study involving Pac-Man and TileGame, how
the use of our design patterns as discussed in Chapter 4 impacted different software
qualities of a game. One of the findings of that study was that, for small games such
as Pac-Man and TileGame, using these design patterns to develop ADD may result in
more than 75% source code reusability. In this chapter, we want to examine
whether our design pattern approach can be applied to a large commercial game
such as Minecraft and to what extent the reusability quality of these patterns remain
valid (i.e., our third sub-goal “G3: To analyze the source code reusability achieved

through the usage of these design patterns to implement ADD in video games”).

In Section 6.1 below, we describe the process of using our design patterns approach
to develop an ADD system including examples from our work and existing literature
(i.e., our fourth sub-goal “G4: To define a concrete set of activities (possibly step-by-
step) needed for applying our design pattern based approach in video games”). The
process was developed to formalize our experiences from [27] to assist in the ADD-

enablement of larger games like Minecraft. By taking a step-by-step methodological

48

approach, a seemingly monumental task was accomplished without difficulty. A
well-defined process such as this is also important for industrial adoption for

several reasons such as measuring progress, planning, and automation.

Following this process, we then carried out a source code reusability analysis on
these games using four metrics: Number Of Methods (NOM [33]), Weighted Methods
per Class (WMC [34]), Coupling Between Objects (CBO [34]) and amount of reuse
[35]. These metrics are taken from the software metrics literature (e.g., [33], [34])
and are frequently used to analyze the reusability of source code. The first three
metrics can be applied to an individual piece of software and were applied to the
source code of the Minecraft ADD implementation constructed here. The amount of
reuse metric requires comparing multiple pieces of software to each other and, in
this case, the Minecraft ADD implementation was compared to the ADD
implementations of Pac-Man and TileGame. Logical Source Lines of Code (SLOC) was
used for this measurement. We used three different tools for collecting these
metrics. The Eclipse plugin Metrics [36] was used for calculating NOM and WMC.
The Understand [37] and Unified Code Count (UCC [35]) tools were used for
calculating CBO and amount of reuse respectively. In Section 6.2, we discuss the

results from this analysis.

6.1 Process
With our design pattern based architecture in hand, we can essentially follow a step-
by-step process to develop the rest of the system. In this section, we describe that

process.

49

1) Define Sensors: Identify metrics to assess the skill of the player and the
perceived level of difficulty based on failure and success rates. Examples of data to
be collected for this purpose may include the player’s score, player’s life level, time
spent on activities, inventory, number of enemies killed, and so on. There can be
reactive and proactive metrics. Reactive metrics measure a player's performance
based on success or failure on a particular activity. For example, for the Pac-Man
game, we used an average-score-per-life sensor. On the other hand, for Minecraft,
we have created sensors to monitor a player's inventory and current time of the
world, which can be proactively used to predict whether the player will have
enough resources to build a shelter before nightfall. These metrics can be identified
intuitively (e.g., level completion time), as a design artifact of game play (e.g.,
amount of life remaining), or as described in specific algorithm or technique (e.g.,
average win rate of ghosts in Pac-Man [6]). Furthermore, any analysis method such
as plotting various attributes over time, using a debug mode, or analyzing log files

can be helpful for identifying these metrics.

2) Identify attributes to modify game difficulty: Identify attributes of the game
that can be adjusted to modify the level of difficulty of the game. Here we provide

examples of such attributes:

a) Player character attributes: For example, the durability of items and the
amount of damage the player experiences from hostile mobs’ attacks in Minecraft,
or the duration that Pac-Man’s predator mode can be increased or decreased to

modify the level of difficulty.

50

b) Non-Player character attributes: For example, in the Pac-Man game, the
attributes of ghost speed, ghost vision length, and the amount of time that a ghost
stays in the centre of the maze after being eaten by Pac-Man in predator mode can

be increased or decreased to change the game difficulty.

c) Game world and level attributes: For example, in the TileGame game, loading
different versions of the map can be used to modify game difficulty. For
procedurally generated levels, either unexplored parts of the world can be
generated to match player expertise (e.g., [38]) or attributes of already generated
game world objects can be adjusted. For example, in Minecraft, the hardness of a
particular type of block can be modified within a believable range to modify the

difficulty of gathering that particular resource.

d) Puzzle attributes: For example, in Minecraft, if the player fails to build a
shelter in the first few nights, hints can be provided when daytime is drawing to a

close.

The techniques described in Step 1 can be used to identify these attributes as well.

3) Identify adaptation scenarios: Identify game adaptation scenarios involving
metrics and attributes identified from Step 1 and Step 2. Please note that this is
more of a game design activity than a software design activity, as the focus is on
adjusting elements of gameplay to optimize player experience. Thus, existing

literature on game design (e.g., [8]) can provide great insight for this step.

51

4) Define observers and thresholds: Define thresholds based on the scenarios
identified in Step 3 for the sensors defined in Step 1, resolve any boundary value
problems raised by the threshold definitions, and define observers to relate
thresholds to sensors. Analysis techniques described in Step 1 can be used to find

appropriate threshold values. Also, user trials can be useful here.

5) Define triggers and adaptation detectors: Define triggers to represent each
scenario, including any necessary contextual information with the trigger (for
example, in the TileGame game, a trigger representing game-world-too-easy may
include map difficulty and speed of NPCs), and develop the adaptation detector logic

based on the scenarios.

6) Define decisions: Use attributes identified in Step 2 to create decisions to
modify game difficulty according to the scenarios identified in Step 3. Please note
that, existing literature on game difficulty can useful here. For example, Bostan and
Ogiit [39], based on lessons learned from a number of role playing games, suggested
using a convex-shaped difficulty curve. Similarly, Qin et al. [19], suggested up and
down directions and a medium rate of difficulty change based on an experiment

involving 48 participants using Warriors of Fate, an action game.

7) Define rules: Define rules to relate triggers to decisions based on the
adaptation scenarios. It is important to analyze any dependency between rules and
take actions if there are any contradictions. For example, two rules should not be
each other's preconditions. Techniques for analyzing correlations between two

software artifacts, such as a traceability matrix, can be useful here.

52

In Table 6, we show examples of artifacts produced during the first three steps of
the process described above, when applied to Minecraft. Other artifacts from the

process are very much code specific and are difficult to describe here. We present a

source code analysis of all the artifacts in the next section.

Table 6: Example of artifacts produced through the ADD process activities

Metrics for Sensors (Step 1)

Attributes for Modification
(Step 2)

Adaptation Scenario

(Step 3)

Player’s experience points (i.e.,

EntityPlayer.experienceTotal)

Built in game difficulty settings
(i.e., GameSettings.difficulty)

Modify the built in game
difficulty settings as the player
earns or loses experience points
to make the game easier or

harder.

Number of items of particular
materials in player’s inventory
(ie.,

InventoryPlayer.mainlnventory)

Hardness of those particular

items (i.e., Block.blockHardness)

Modify the hardness of a
particular resource in the game
world as the player’s inventory
of that particular item changes,
making it easier or harder to

collect the resource.

Number of items in player’s
inventory, which day in game,
time of the day (i.e., WorldInfo.

worldTime)

Pace of time in the game (i.e,,

Timer.timerSpeed)

Slightly modify the passage of
time during the afternoon of the
first day based on whether
players have collected enough
resources to build a shelter for
the night. Players are given
more time to make the game
easier and less to make it

harder.

Number of times player dies
(ie., EntityLiving.deathTime),

which day in game

Display hints about collecting

resources and building shelters

If the player is continuously
dying during the first night, give
the player some hints to
progress through the game to

make it easier.

53

Player’s food level (i.e., Maximum health of animals If they player is facing
FoodStats.foodLevel) (e.g. continuous low food level, food
EntityChicken.getMaxHealth()), |collection can be made easier by
fleeing attribute of animals (i.e., | modifying number of attacks
EntityAnimal. fleeingTick) when |required to kill an animal or
attacked (i.e., EntityAnimal. modifying flee behavior of an
attackEntityFrom()), number of |animal when attacked or the

items dropped when dies (e.g., |number of items dropped when

EntityCow.dropFewltems()) killed.

6.2 Source Code

In Table 7, we show a reusability analysis of the source code of the ADD system that
we have developed for Minecraft. In the first column, we show the class name or
pattern name. In the second column we show the number of classes in each
category (i.e., specified in column 1). In the next three columns we show the
corresponding NOM, WMC and CBO values. In the sixth column we show the total
logical SLOC in the ADD system for Minecraft. In the seventh column we show the
reused Logical SLOC (i.e., those lines that remained unchanged from the Pac-Man
and TileGame games) and the associated percentage. In the last column we show
the game-specific Logical SLOC (i.e., specific to ADD system for Minecraft and cannot
be directly reused) and the associated percentage. For clarity, we combined certain
rows of 100% reused classes within a particular pattern. In those cases, the
maximum values of NOM, WMC and CBO were reported because the thresholds for
these metrics are defined as upper bounds (please see the discussion below). After
all of the rows of a particular class or pattern, we present a summary. The last row

of the table is a summary across all the classes and patterns.

54

1) Number of Methods (NOM): NOM is simply a count of the number of methods in a
class, with 20 and 40 being the preferred and acceptable thresholds respectively

[33]. We can see from the third column in

Table 7, that the maximum number of methods in a class from our implementation

is 10.

2) Weighted Methods per Class (WMC): WMC [34] is a weighted sum based on
complexity11 of each of the methods in a class and is defined as:

n

WMC = Y.Ci

i=1
Where n is the number of methods and Ci is the complexity of method i. The
preferred and acceptable thresholds for these metrics are defined as 25 and 40
respectively [33]. We can see from fourth column in Table 7 that all the classes are

within the acceptable thresholds and only two classes (i.e., Registry and Game State)

are above the preferred threshold.

3) Coupling between Objects (CBO): CBO [34] is the measure of number of classes to
which a class is coupled. Two classes are coupled when methods declared in one
class use methods or instance variables defined by the other class. We can see from
fifth column in Table 7 that CBO of only two classes (i.e., Adaptation Detector and

Inference Engine) are above the preferred threshold of 5 [33].

H Cyclomatic complexity is a software metrics used to indicate the complexity of a
program. It is a quantitative measure of the number of linearly independent path
through a program’s source code.

55

4) Amount of Reuse: We can see from Table 7 that SensorFactory, Sensor, Registry
and ResourceManager classes in the sensor factory design pattern were completely
reused across all three games. Similarly, classes for the Observer, Trigger,
Threshold and ThresholdAnalyzer in the adaptation detector pattern were
completely reused. Three classes (i.e.,, Rule, FixedRules and Decision) in the case
based reasoning pattern, and three classes (i.e., Driver, AdaptationDriver and State)
in the game reconfiguration pattern were also completely reused. Furthermore, the
classes required to implement AdaptationDetector, InferenceEngine and GameState
were partially reused. Only the concrete sensors (seven classes) and the concrete

decisions (2 classes) were very specific to the game and could not be reused.

As we discussed earlier, only two classes have WMC values above the preferred
threshold and only two classes have CBO values above the preferred threshold. This
is indicative of high source code reusability potential. For amount of reuse, we can
see from the last row in Table 7, the ADD system for Minecraft contains 28 classes
comprised of 808 logical SLOC. Among these 808 logical SLOC, 600 logical SLOC

)12

(74.26%) ~ are exactly the same as Pac-Man and TileGame and thus are considered

reusable. Only 208 (25.74%) logical SLOC are specific to the game.

"2 These 600 lines were separated as a base level implementation and were given to
a voluntary participant for a preliminary user study. The participant acknowledged
that he managed to use this source code for creating ADD in two other video games
with very minimal changes. A detailed source code analysis was out of the scope of
that study. Please see Chapter 8 for more details about the study.

56

Table 7: Source code analysis of ADD design pattern implementation

Class/ Pattern # of Logical SLOC

Name ClassesNOM WMC CBO Total Reusable (%)|Specific (%)
SensorFactory,

Sensor, Resource

Manager 3 9 15 3 145 145(100) 0(0)
Registry 1 10 27 2 73 73(100) 0(0)
ConcreteSensors 7 4 10 1 64 0(0) 64(100)
Sensor Factory 11 282 218(77.3) 64(22.7)
Observer, Trigger,

Threshold,

Threshold Analyzer 5 8 10 2 97 97(100) 0(0)
lAdaptationDetector 1 4 20 8 91 21(23.08) 70(76.92)
/Adaptation

Detector 6 188 118(62.8) [70(37.23)

Rule, Fixed Rules,

Decisions 3 10 10 3 75 75(100) 0(0)
InferenceEngine 2 4 7 7 57 46(80.7) 11(19.3)
ConcreteDecisions 2 2 2 0 22 0(0) 22(100)
Case-based

Reasoning 7 154 121(78.57) [33(21.43)
Driver, Adaptation

Driver, State 3 4 22 3 99 99(100) 0(0)
GameState 1 10 27 1 85 44(51.8) 41(48.2)
Game

Reconfiguration ¢4 184 143(77.7) 41(22.3)
Grand Total 28 808 600(74.26) [208(25.74)

Overall, more than 70% of the logical SLOC required to implement the ADD systems

are considered reusable. Previously, in the Pac-Man and TileGame games we

experienced 77.52% and 79.68% code reusability [27], and so our findings with

Minecraft are reasonably consistent with our prior experience. Considering that

Minecraft is significantly larger and more complex than either Pac-Man or TileGame,

this further strengthens our confidence in the reusability benefits of our approach to

ADD, and demonstrates significant potential for commercial applications.

57

6.3 Summary

In this chapter, we described a step-by-step process for using our design pattern
based approach to develop an ADD system including examples from our work and
existing literature. Following the process, we then carried out a source code
reusability analysis using four metrics taken from the software metrics literature
that are frequently used to analyze the reusability of source code. The results
indicated that using these design patterns to develop ADD should result in a high
degree of source code reusability. A repeatable process and source code reusability
provide clear motivation for adopting our design pattern based approach to creating

ADD in video games.

58

Chapter 7

Automation Framework

We have enjoyed success in our initial works (i.e., Pac-Man [12] and Tilegame [27])
in enabling ADD in simple, small, proof-of-concept casual games. In these cases,
however, the code was either originally written by us or well documented and
simple enough to be easily understood and reshaped accordingly. Applying our
software design pattern based framework for ADD to a large commercial-scale game
such as Minecraft [30], on the other hand, seemed to be a daunting task, at least on
the surface. Thus, the process described in Chapter 6 was developed to formalize
our experiences from using them in Pac-Man and TileGame to assist in the ADD-
enablement of larger games such as Minecraft. In practice, we found that applying
such a methodical process enabled ADD in Minecraft quite readily, and that our
framework was easily adapted for use in this rather foreign environment with no
more significant changes than we found in our earlier work with much simpler
games. This is a key motivation for our current work as concrete activities (such as

the ones in section 6.1) are easier to build a tool upon.

59

We have also carried out a source code analysis of these games. In Section 6.2 (also
reported in [29]), the Minecraft ADD implementation was compared to the ADD
implementations of Pac-Man and TileGame. During this analysis, we have noticed
that a large fraction of the resultant code is generalization and instantiation of other
high level classes (e.g., Sensors, Triggers, Thresholds, and Decisions etc.). The
following table is a summary of the analysis derived from the results presented in
section 6.2. Here, we can see that 74.26% source code remained the same from
earlier projects. Also, 10.64% source code is specializations and 10.02% code is for
instantiation. Only 5.07% source code is other specific game logic. The specialization
and instantiation (20.66%) related source codes of the ADD system are similar
looking classes and statements. This result motivates us to create a tool which will
allow us to develop and maintain these artifacts in a semi-automatic manner (i.e.,
our fifth sub-goal “G5: To develop a source code generation based semi-automatic

framework that will assist in applying the ADD approach in video games”).

Table 8: Categorization of the ADD source code

Category of source code SLOC %
Completely reusable 600 74.26
Specialization (Concrete Sensors (64) 86 10.64
and Concrete Decisions (22))

Instantiation (Adaptation Detector (70) 81 10.02

and Inference Engine (11))

Other logic 41 5.07
Total 808

7.1 Automation Framework
Figure 11 depicts a high level decomposition of our semi-automatic system. The key

idea is to represent part of the ADD logic as a relational model which is mutable. The

60

core software elements are divided into four components: (i) Collector and
Executor, (ii) Enhancer, (iii) Manager, and (iv) Translator. The collector and executor
component interfaces the relational model with the game in question. It collects
meta-information from the game’s source code as well as runtime logging
information and passes that to the model. It can also execute modification
instructions presented in the model. The manager component provides graphical
user interfaces to easily manipulate the model. The enhancer component facilitates
the decision making process (i.e., when, how and to what degree to modify the
game). The purpose of the translator component is translating the relational model,
when finalized, to executable software artifacts (i.e., source code). In the following

subsections, we discuss each of these components in further detail.

Y

‘*ﬁr o

Collector & Executor,

4 |

Enhancer

™

Generated
Translator Artifacts

it #

Manager

Figure 11: Components of the semi-automatic framework

61

Relational Model: Central to the framework is a relational model, as all the other
components use it as a repository for all of their information. This is essentially a
storage for a set of objects and relations which represent much of the dynamic
information (e.g., Sensor’s name, relations between sensors and attributes, etc.) for
an intended ADD system as well as some meta-information (e.g., attributes, logging
information, etc.). The structure of the model is derived from the design patterns
described earlier and is not dependent on the platform or genre of the video game.
There should be appropriate APIs for other components to collect information from
the model. Implementation choices for the relational model include databases, XML

storage, file based data structures, amongst others.

Collector and Executor: The collector and executor component interfaces the
relational model with the game and thus should depend on the platform of the game.
The collector needs to be configured with some base level objects (e.g., game world,
player, enemies, inventory etc.). For the rest of the system to work, the collector
needs to conduct a Breadth-First Search (BFS) starting from those base level objects
and populate the model with a list of attributes and related data types using a
hierarchical storage method such as recursive relations. Many languages provide
programmatic ways (e.g., Java reflection) to collect such information with ease. We
have identified some key challenges regarding the implementation of the executor

and the relational model:

- Identifying the depth of the object hierarchy to search,

62

- Representing relationships other than hierarchical ones and representing shared

objects,

- Representing any run time changes on the hierarchy.

The executor can execute modification instructions presented as decisions in the

model and the collector can collect more information based on those modifications.

Manager: The manager is another generic component that does not need to be
aware of the details of the rest of the system and the platform other than the
relational model. It is a collection of graphical user interfaces and business logic to

easily manage the relational model.

Enhancer: The enhancer is also a generic component and only needs to interact
with the model and thus can be implemented in any language and need not be
aware of the game’s platform. It is a collection of tools that helps the game designer
or developer to make decisions about which attributes to monitor, threshold values,
which attributes to modify and to what degree, amongst others. It usually works on

data collected by the collector. Here we give examples of such tools:

¢ Statistical analysis: Such as factor and co-relation analysis.

* Graphical analysis: Such as curve fitting.

* Machine learning: For example, in [40], Southey et al. described an active
learning based semi-automatic gameplay analysis tool. The tool is highly

platform and game independent and interacts with game-engine or frameworks

63

like this one through an abstraction layer and mainly consists of a sampler, a
learner and a visualizer component. The usage of the tool is demonstrated in

commercial context (i.e., Electronic Art’s FIFA’99).

Translator: The translator component needs to be aware of the platform of the
video game and needs to generate the artifacts accordingly. It can either directly
translate to source code or generate an intermediate marked up description suitable

for other code generation tools.

7.2 Proof-of-concept Prototype
We have developed a web-based proof-of-concept prototype as an instance of the
semi-automatic framework described in Section 7.1. In this section, we briefly

describe how each component of the framework was instantiated in the prototype.

Relational Model: The relational model was realized using a MySQL[41] relational
database. We have also created a REST API using PHP[42] to read and write on this
database. All of the other components in the prototype interact with the database
through this API. In Figure 12 we show the schema of the database. In Table 9, we
show how different components of the framework interact with each table. As we
can see, the sessions and session_attributes tables are for recording log information.
Information in these tables are written by the Collector and read by Enhancer
module for analyzing data. Information from all the other tables get translated to
source code in some form. We will discuss these interactions in more details in the

sections below.

64

Table 9 : Interaction between each tables and other framework components

Tables Written By Read By
attributes Collector, Enhancer, Manager,
Manager Translator
sessions_attributes Collector Enhancer
Sessions Collector Enhancer
sensors, sensors_attributes, observers, | Manager Manager,
observers_sensors, thresholds, Translator
observers_thresholds, triggers, rules,
decisions, decisions_attributes
- Vers ' - * _] sensors_attributes ¥
observer_id INT(11) _] observers_sensors ¥ sensor_id INT(11)
sensors_attribute_id INT(11)
name VARCHAR(255) observers_sensor_id INT(11) name VARCHAR(255)
¥ sensor_id INT(11)
description VARCHAR(255) +H— — —j<g @ observer_id INT(11) —— description VARCHAR(255) Hi— —}
 attribute_id INT(11)
is_generic TINYINT(1) @ sensor_id INT(11) % vaue VARCHAR(255)

observer_precision INT(...

>——I+

_] observers_thresholds ¥
observers_threshdd_id INT(11)

¥ observer_id INT(11)

@ threshold_id INT(11)

sensor_interval INT(11)

_] thresholds v
threshold_id INT(11)
name VARCHAR(255)
description VARCHAR(255)
type VARCHAR(255)
vauelVARCHAR(255)
vaue2 VARCHAR(255)

function VARCHAR(255)

H——————

_] attributes v
attribute_id INT(11)
parent_id INT(11)
name VARCHAR(255)

@ trigger_id INT(11)
N4
|
|
|
+
_| triggers v _| decisions_attributes ¥
trigger_id INT(11) decisons_attribute_id INT(11)
name VARCHAR (255) @ dedision_id INT(11)
description VARCHAR(255) ¥ attibute idINT(11)
vaue INT(11)
+
' v
' I
' |
' |
' |
4 |
A [
] rules v |
) +
rule_id INT(11)
_ decisions v
name VARCHAR(255)
- decison_id INT(11)
description VARCHAR(255)
— — —1+ ¥ name VARCHAR(255)

 trigger_id INT(11)

description VARCHAR (255
@ decison_id INT(11) escription (255)

_] sessions v
session_id INT(11)
name VARCHAR(45)

description VARCHAR(255) 4~ —}

start_time DATETIME
end_time DATETIME

object_path TEXT
data_type VARCHAR(255)
observe TINYINT (1)

P ———— 1

_] sessions_attributes ¥
sessions_attribute_id INT(11)

¥ session_id INT(11)

@ attribute_id INT(11)
time_stamp DATETIME
vaue VARCHAR(256)

Figure 12: Schema of the MySQL database for the relational model

65

Collector: We have created a collector in Java for interacting with games
implemented in Java. It has two sub components named ObjectinformationCollector
and RunTimelnformationCollector. Given a base level object and a maximum depth,
the ObjectIinformationCollector recursively inspects all of the attributes of that object
until it reaches to the maximum depth or finds primitive attributes (e.g., Integer,
Boolean, etc.). While traversing, it records each attribute’s name, parent, data type,
and object path (i.e., a dotted notation to reach from the base level object) in the
attributes table. Given a set of attributes to monitor and frequency of monitoring,
the RunTimelnformationCollector creates a session (i.e., an entry in the sessions table
with a start time), monitors the change of values of those attributes, records them
with time stamps, and associates them to the session (in the sessions_attributes
table) while the game is being played. At the end of the session, the end time is also
recorded. Please note that in our current implementation of the prototype there is
no Executor component. The task of Executor is achieved through repeated

deployment of the generated source code and further monitoring.

Manager: We have created the manager component using the ajaxCRUD [43] library
which allows faster user interface creation using PHP [42] and Javascript [44] for
CRUD (i.e., Create, Read, Update, and Delete) operations on a MySQL [41] database.
Once the attributes are recorded by the Collector component, we can mark them to
be monitored using the observe flag on the attributes table using this component. It
also allows all the required use cases for manipulating the relational model. Below
we discuss one example. For an extensive list of use cases, please see the user

manual in Appendix B.

66

The Manager facilitates creating a sensor, defining the frequency of monitoring (i.e.,
sensor_interval) for that sensor, and defining the function for calculating the value of
the sensor (i.e., value). It also allows associating multiple attributes to a sensor.
There are some built in functions that can be applied to these associations. For
example, in the Pac-Man game, there is an array ghost speed[] and a variable
pacman_speed to hold the ghosts’ and pac-man’s speed respectively. If we are
creating a sensor PacManSufficientSpeed to know whether the pac-man’s speed is
more than all the ghosts’ speed or not, we will associate the ghost_speed[] and
pacman_speed to the sensor using a MAX function (i.e., to calculate the maximum of
a Collection) and no function respectively. In doing so, the value in the sensor should

be pacman_speed > max_ghost_speed.

Enhancer: For Enhancer, we have created two visualizations for visualizing the data
collected by the Collector component. We used the Data Driven Documents [45]
visualization library also known as d3js [46] created by the Stanford Visualization

Group. We briefly discuss each of the visualizations below.

1. Attribute Tree Visualization: In Figure 13, we show the number of attributes
at different depths13 of the Tetris game collected by the Collector component. As
we can see from the figure, the number grows very quickly, which makes it very

difficult to locate an attribute from the list of all attributes to mark it for

B Depth refers to the distance of an attribute from the root level object (i.e., the
object from which we start the attribute discovery). So, the root level object will be
considered at depth zero, any attributes of the root level object will be considered at
depth one and their attributes will be considered at depth two and so on.

67

observing or association to other entities such as sensors or decisions. Thus, we
have created this visualization where the attribute hierarchy is represented in a
tree structure where nodes with children attributes can be expanded or

collapsed.

5000 4608
4500
4000
3500
3000
2500

2000

NUMBER OF ATTRIBUTES

1500

1000
576

500 72
1 15 17 9

DEPTH FROM THE ROOT LEVEL OBJECT

Figure 13 : Number of attributes at different depths on the Tetris game

In Figure 14, we show screenshot of the attribute tree visualization where all the

attributes up to depth four are expanded for the Tetris game.

2. Session Timeline Visualization: After we collect a list of attributes from the
game using the Collector, we intuitively select some attributes for monitoring.
Our intention is to use some of these attributes as sensors (to understand the
level of difficulty that the player is facing), and then use the Collector again to
monitor their value changes during a session. Now, from the raw collection of
data, it is very difficult to understand whether our selection is useful or not.
Thus, we have created another visualization (please see Figure 15) where value
changes for multiple attributes in one session, or one attribute in multiple

sessions, can be seen as line charts in a time line.

Figure 14 : Screenshot of attribute tree visualization for the Tetris game

51
n
Valies

Nasazpe O TSna0e

ENUMSVALUES

ENUMSVALUES

serialversinUID

Scargwion NoSnzoe

Soaromeian Z3na0e

%a_'nesafrme S5n308
et _

e uiCizssiD Ssnepe O

nuTL e RemIEd emonkc

curX [ENUMSVALUE

. B con ENUMSVALUES

came O S gisaoiedioon

Game sz i

i
2
gs
bt
1

venicarTenstion S
norzoreaTeoston LeSHa02 O Souanseass

e L3302
&’.Sxa."s'o_sv_ﬂo:saw MarrocedL Shape

S ENUMSVALUES
olecesnage
curPlece 8 § coors, Nossape
ooarg coorasTaoke s
Tsnae O TSnzoe
Soumredaae

WMirrorsaLSnaoe ENUMSVALLES

3
SquareSnape O TSna:
3’

ENUMSVALUES

Lsnae O TShaoe

ENUMSVALUES

MirroredLS? TSnaape
e 8 ENUMSVALUES — SquareSaape

ENUMSVALUES

[Session-71jourY

\/ [Session-T1jourX

[Session-70jourX

Figure 15 : Screenshot of a sample session timeline visualization

68

69

Translator: We have created the Translator component using PHP. It interacts with
the REST API to fetch the required data from the MySQL database and then
generates corresponding Java source code. The code generation logic is often quite
simple. For each Java class, we predefine the static parts of the code and the
Translator injects the dynamic parts as necessary. In Table 10, we show the pseudo
code for generating a sensor class in Java. In lines 1 to 9, we print the Java class and
constructor definition. In lines 8 and 9, we print the override for the refreshValue
method (the parent Sensor class periodically calls this method to get the updated
value) and the exception-handling block for accessing different attribute values. If
there are some attributes attached to the sensor (line 10), in lines 11 to 13, we print
the declaration for accessing those attributes. In lines 14 to 31, we print the logic for
calculating any functions attached to the attribute such as MAX, MIN, AVG and so on.
In lines 32 and 33, we print the overall value calculation for the sensor. The rest of

the lines are for ending the exception-handing block, and method and class
declaration. Please see Appendix C for the actual PHP code of all the sub

components of Translator.

Table 10 : Pseudo code for generating sensor class in Java

Executed PHP Code Printed Java Code Injected Data Value

1. public class <sensor_name> extends Sensor{

public <sensor[name]>(Object object){
this.object = object;
this.fieldName = "<sensor[name]>";
this.setInterval(<sensor[interval]>);
this.setValue(0);

Ntk wN

}

8. public void refreshValue(){//Java method declaration starts

70

9. try{ //Java try block starts

10. if(sensor[attributes]!=""){ // PHP external if block starts

11. foreach(sensor[attributes] as attribute){ // PHP foreach block-1 starts
12. <attribute[data_type]> <attribute[name]> = <attribute[attribute_path]>;

13. } // PHP foreach block-1 ends

14. foreach(sensor[attributes] as attribute){ // PHP foreach block-2 starts

15. if(attribute[function]!="NONE"){ //PHP internal if block starts

16. <attribute[element_data_type]> <attribute[name]><attribute[function]> = 0;
17. for(inti= 0; i < <attribute[name]>.length; i++){ // Java for loop starts

18. if(attribute[function]=="SUM" || attribute[function]=="AVG"){

19. <attribute[name]><attribute[function]> = <attribute[name]><attribute[function]> +
<attribute[name]>[i];

20.

21. elseif(attribute[function]=="MAX"){

22. <attribute[name]><attribute[function]> =
Math.max(<attribute[name]><attribute[function]>, <attribute[name]>[i]);

23.

24. elseif(attribute[function]=="MIN"){

25. <attribute[name]><attribute[function]> =
Math.min(<attribute[name]><attribute[function]>, <attribute[name]>[i]);

26.

27. if(attribute[function]=="AVG"){

28. <attribute[name]><attribute[function] = <attribute[name]><attribute[function]> /
<attribute['name']>.length;

29. }

30. }// Java for loop ends

31. } // PHP internal if block ends

32. double value = <sensor[value]>;

33. this.setValue(value);

34. }//PHP for each block-2 ends
35. }//Java try block ends

36. catch(Exception ex){ // Java catch block starts
37. System.out.print("Exception in Sensor: <sensor[name] >:"+ex.getMessage());
38. this.setValue(0);

39. }//Java catch block ends

40. }//PHP external if block ends
41. }//Java method declaration ends

42.}//Java class declaration ends

Please note that the prototype described in this section is just a proof of concept

and does not define the limits of the actual framework described in Section 7.1.

71

7.3 Prototype Usage

Here we discuss how the prototype can be used to create ADD logic for a game:

1. Configure the Collector component so that it can collect information from the
game. In our experience, it was only a few lines of code changes to pass the game

object as a parameter to the Collector.

2. Run the ObjectinformationCollector to obtain all the attributes up to a certain
depth inthe game (please see Figure 13 and related discussion in Section 7.2 on

growth of number of attributes with the depth).

3. Intuitively select attributes for monitoring and mark them to be observed using
the observe flag from the Manager (using the Attribute Tree Visualization to help
locate the intended attributes). In doing so, we can attempt to select two types of

attributes:

a. Potential attributes for sensors: These are the attributes that shows how
much difficulty the player is facing but cannot be easily modified
(modification of these attributes usually seems unfair to the player). For

example, the score of the player, number of lives remaining, and so on.

b. Potential attributes for decisions: These are the attributes that can be
modified to make the game more difficult or easier to the player. For

example, the map of the game, speed of the enemies, and so on.

72

4. Run the RunTimelnformationCollector and let different players play the game
multiple times and record those sessions. Another option is to create different
botsl4, each representative of different class of players such as beginner,

intermediate, expert, and so on, and let the bots play the game.

5. Use the Session Timeline Visualization to narrow down the number of attributes
for the sensors. Use the Manager to define sensors. Associate each sensor to one

or more attributes.

6. Use the Manager to define observers and mark them either as generic or not
generic using the is_generic flag. Generic observers can be only associated with
one sensor and its corresponding source will be generated by the tool, whereas
the custom observers (those marked as is_generic=false) can be associated to
multiple sensors, but the developer will have to code the observer definition
later with the same name as used in the Manager. Use the Session Timeline
Visualization to identify the boundary values of when the adaption should take

place. Define Thresholds based on the boundary values.

7. Define Triggers and associate them to observer-threshold combinations using

the Manager.

14 In a video game, a bot is a type of weak Al (i.e., a non-sentient computer
intelligence, typically focused on a narrow task) software to control a player
character.

8.

10.

73

Define decisions and associate one or more attributes to each decision using the
Manager. In each association, define the modified attribute values (using the

Session Timeline Visualization to identify what modification should take place).

Define rules as associations between triggers and decisions using the Manager.

Generate source codes for Sensors, Adaptation Detector, Inference Engine, and
Decisions using the Translator. Place the generated code with the game’s original
source code and make any additional modifications. Configure the game to use

this adaptation logic.

We used our framework to recreate the ADD scenario we have implemented
earlier for the TileGame. We generated source code for one sensor class, three
decisions class, the AdaptationDetector class and the InferenceEngine class
(please Appendix E for the generated source code). We used the GameState class
that we have implemented during our initial work on the TileGame. We only
needed few lines of code (please see Table 11) to integrate the generated source

code with the game.

Table 11: Custom source coded to integrate the framework generated source

code to an existing game

TileGameState tileGame = new TileGameState();
AdaptationDriver adaptationDriver = new AdaptationDriver(tileGame);
GamelnferenceEngine inferenceEngine = new GamelnferenceEngine(adaptationDriver);
inferenceEngine.start();
SensorFactory sensorFactory=

new SensorFactory(tileGame, new ResourceManager(), new Registry());
AdaptationDetector adaptationDetector =

new AdaptationDetector(inferenceEngine, sensorFactory);
adaptationDetector.start();
tileGame.run();

74

11.Build the game and resolve any build errors. Once the game is built, run the

RunTimelnformationCollector and let different players or bots play the game.

12. Repeat step-3 to step-11 above until satisfied with the result of the adaptations.

7.4 Summary

In this chapter, we presented a semi-automatic framework that would assist in
applying our design pattern based approach. It also reduces developer effort by
generating source code for some of the artifacts. We discussed different components
of the framework and corresponding implementation choices. Additionally, we
discussed a proof-of-concept prototype that we have implemented to realize the

framework.

75

Chapter 8

Preliminary User Study

In our initial work, we used our design pattern based approach to implement auto
dynamic difficulty in three different games; two of them are prototypical in nature
and one of them is a commercial game. Regardless, in all of these studies, the
primary researcher played the role of the game developer. This raises the concerns
of whether these design patterns are useful for a developer without prior
knowledge of them and how much effort it would take for a developer to gain
sufficient familiarity to make effective and efficient use of them. Thus, we conducted
a preliminary user study where a Post-Degree Diploma student at the University of
Western Ontario voluntarily participated. This study was a course project for the
student and he was not involved with this particular research prior to the study. In

this chapter, we will discuss this study in detail.

8.1 Study Artifacts
In this section, we briefly discuss each of the input and output artifacts. The

following artifacts were provided to the student at the beginning of the study:

76

* Open Source Games: Two open source games (i.e., Tetris and Space Invaders)
from[47] were provided to the student. The task was to introduce auto dynamic
difficulty to those games. We did not provide any restrictions on the kinds of
modifications that could be done to the game. The adaptation scenarios to be

implemented were also left open ended and unspecified.

* Base Level Implementation: The base level implementation that we have found
to be reusable across different games (please see section 6.2) was provided to

the student. In Appendix D, we include examples from this implementation.

* Programmer’s Manual: A programmer’s manual showing example usage of the
design patterns was provided to the student. In Appendix A, we include the

complete programmer’s manual.

* Research Papers: To make the participant familiar with the design patterns, one

of our published research paper (i.e., [29]) was provided to the student.

* Survey Questionnaire: A survey questionnaire comprising 10 questions was
provided to the participant. The questionnaire had three different types of
questions related to the developer, the games, and the experience of using the

design patterns.

At the end of the study, the following artifacts were collected from the participant:

* Completed Implementations: The completed ADD implementations on top of the

originally provided open source games were collected.

77

* Completed Survey Questionnaire: Two copies of the completed survey

questionnaire, each based on one of the games, were collected.

* Critical Review: The participant was asked to provide a critical review of the

design patterns and the base level implementation based on his experience.

* Developer Log: A brief description of the activities and associated effort to

implement the adaptations scenarios on top of the games.

8.2 Participant
In Table 12, we show the demography of the participant. These information were
collected from the developer section of the survey questionnaire.

Table 12: Demography of the preliminary user study participant

Department Computer Science
Program Post-Degree Diploma'”
Experience of working with Object 1 year or more but less than 2 years

Oriented programming and design

Experience of working with Less than 1 year
software design patterns

8.3 Adaptations Implemented
We have already discussed the games used for this study in Chapter 5 (please see
Sections 5.4 and 5.5). Thus, in this section, we will only discuss the adaptation

scenarios that were implemented. The participant implemented two scenarios in

' The student had a prior university degree in a field other than Computer Science
and was completing a one-year diploma to provide background and obtain a
credential in Computer Science.

78

each of the games. We did not recommend any specific order, but we found from the
critical review document that the student worked on the Space Invaders game after
finishing his work on the Tetris game. In the Tetris game, both scenarios use
mutually exclusive sensors and decisions. In the first scenario, the participant
categorizes some of the tetriminos'® into two classes. The straight-line and T-
shaped tetriminos are considered desirable while the S-shaped and Z-shaped
tetriminos are considered undesirable. For the sensor, average clearance rate, a
measure of the number of tetriminos dropped between one line being cleared and
the next line to be cleared, is used. In Table 13, we show how the ratio of desirable
and undesirable tetriminos changes based on the values observed from the average
clearance rate sensor. Please note that a high clearance rate indicates that the player
is performing quite well, and so the player is given fewer desirable tetriminos and
more undesirable tetriminos so as to make the game more challenging.

Table 13 : Average clearance rate based scenario in the Tetris game

Average clearance rate Ratio of desirable and undesirable tetriminos
Low High : Low
Medium Equal : Equal
High Low : High

In the second scenario, the speed of the falling tetriminos is adjusted as it directly
impacts the difficulty of the game by controlling the amount of time the player has

to decide where to put the tetriminos. When to make the adjustment is determined

' Tetriminos are game pieces shaped like tetrominoes, geometric shapes composed
of four square blocks each.

79

based on the stack height - the number of tetriminos from the baseline to the
highest point, which is an indication of the player’s perceived level of difficulty. In
Table 14, we show how the speed of tetriminos is changed based on the value
observed through the stack height sensor. Please note that a low stack height
indicates that the player is performing well, and so the speed of the tetriminos are
increased so as to make the game more challenging.

Table 14 : Stack height based scenario in the Tetris game

Stack Height Speed of Falling Tetriminos
Low Incremental Increase
Medium Incremental Decrease
High Slowest

In the Space Invaders game, three different aspects of the game are modified based
on a combination of observations from two different sensors monitoring the aliens’
height and number of aliens remaining. The aspects that are modified to create the
appropriate level of difficulty are aliens’ rate of descent, the speed of the player’s
shots and the overall speed of the game. Please note that as the alien height
decreases, the player’s perceived difficulty level increases whereas it decreases with
the numbers of aliens remaining. As we see from Table 15, when the aliens’ height
and the number of aliens remaining are either (close to top, high) or (middle,
medium), the player has equal likelihood of winning or losing and thus all the
attributes are kept at their original values to give the player the opportunity to show
his/her performance. When the aliens’ height and aliens remaining are either (close
to top, medium/low) or (middle, low), we can say the player has played well so far

and thus the aliens’ rate of descent, the speed of player’s shots, and the game speed

80

are set to (fast, slow, slow) to make the game challenging for the player. On the
contrary, when the aliens’ height and aliens remaining are (middle/close to bottom,
high), we can say the player is not playing as well and thus the aliens’ rate of
descent, speed of player’s shots, and the game speed are set to (slow, fast, fast) to
make the game easier to the player. Similarly, when the aliens’ height is close to the
bottom and the number of aliens remaining is medium, the last opportunity is given
to the player whereas when the aliens’ height is close to bottom and the number of
aliens remaining is low, we can say the player probably had a hard time catching up
with the aliens but is about to win, so the game speed is decreased to let him/her
enjoy the end of the game.

Table 15 : Combination of scenarios in the Space Invaders game

Alien Height Alien Alien’s rate of Speed of Game speed
Remaining descending player’s shots

Close to top High Normal Normal Normal
Close to top Medium/Low Fast Slow Slow
Middle High Slow Fast Fast

Middle Medium Normal Normal Normal
Middle Low Fast Slow Slow
Close to bottom Low Normal Normal Slow

Close to bottom Medium Slow Fast Normal
Close to bottom High Slow Fast Fast

8.4 Analysis Conducted

For analysis, we conducted a three-pass content analysis on the critical review and
the developer notes document. For effort related information, in the first pass, we
went through both documents and highlighted all time related information. In the
second pass, we summarized them in tabular format for each design pattern and
each game and compared between documents to verify that they do not have any

conflicts. In the third pass, information from separate documents were combined

81

and compared against the ease of usage information collected from the survey for
interpretation. For the critical review, in the first pass, we went through the critical
review document and highlighted any feedback about the design patterns or the
base level implementation. In the second pass, we combined multiple statements
discussing the same aspects into one feedback item. In the third pass, the feedback
items were categorized into one of the following five types: general praise, specific

strength, improvement suggestion, critical feedback, and red flags.

8.5 Results and Interpretations

We asked the participant about how easy or difficult it was to use each of the design
patterns. The participant’s response was collected on a five-level Likert scale where
1 means extremely easy and 5 means extremely difficult. In Table 16 and Table 17,
we show participant’s rating of ease of usage of each of the design patterns based on
his experience of applying them to the Tetris and the Space Invaders games
respectively. Please note that working with the Tetris game is the student’s first
exposure to the design patterns whereas in the Space Invaders game he is applying

them for the second time.

Table 16 : Ease of usage of each of the design patterns on the Tetris Game

_ Ease of usage (1= extremely easy; 5 = extremely difficult)
Design Patterns

1 2 3 4 5 N/A
Sensor factory X
Adaptation detector X
Case-based reasoning X

Game reconfiguration X

82

Table 17 : Ease of usage of each of the design patterns on the Space Invaders

game

Ease of usage (1= extremely easy; 5 = extremely

Design Patterns difficult)
1 2 3 4 5 N/A
Sensor factory X
Adaptation detector X
Case-based reasoning X
Game reconfiguration X

The Sensor factory and case-based reasoning patterns were consistently rated as 1
(i.e., extremely easy to use) for both the games. The adaptation detector and game
reconfiguration patterns were rated as 3 (i.e., moderately easy/difficult) based on
the experience of applying them in the Tetris game. Among them, the rating of the
game reconfiguration pattern has improved after applying the patterns in the Space
Invaders game. The rating of the adaptation detector pattern remained the same at
3. We have verified that these ratings match with the descriptions in the critical

review document which will be discussed later in this section.

Next, we present the effort-related information collected from the critical review
document. We have also verified that it matches with the information provided in

the developer notes document.

Table 18 : Effort spent of implementing ADD in the Tetris and the Space

Invaders games

Implementation Time (HH:MM)

Design Pattern

Tetris Space Invaders
Sensor factory 1:35 1:00
Adaptation detector 2:00 1:45
Case-based reasoning 0:30 0:30

83

Game reconfiguration 2:40 0:00
Post development testing 4:00 0:05
and debugging

Total 8:45 3:20

As we see from Table 18, within just about 12 development hours (i.e., 8:45 + 3:20),
provided the base level implementation, the participant managed to use the design
pattern based approach to implement two auto dynamic difficulty scenarios in each
of two different arcade style Java games. It is noteworthy that the overall
development time has decreased to less than 50% (3:20 from 8:45) just after his
first experience which is a clear indication of decrease in effort with more
experience with the design patterns. We can also see that the patterns the
participants rated to be comparatively difficult (i.e., adaptation detector and game
reconfiguration) contributed towards more development time in the Tetris game. As
the participant mentioned that he managed to reuse the game reconfiguration logic
from the Tetris to the Space Invaders game, the effort spent was negligible and is
recorded as 0 hours. Also, the participant reported that the exception messages in
our base level implementation were not descriptive enough and for the adaptation
detector pattern he had to add some custom code in the base level implementation.
These two factors contributed towards more post development testing and
debugging time in the Tetris game. The participant managed to mitigate these issues
by updating the exception messages and abstraction in the adaptation detector
implementation. Also, more testing was done during the development of the Space
Invaders game. Thus, the post development testing and debugging time for that
game has dropped to 5 minutes. Even though this study is not comparable to a

commercial project because of the scope, it is noticeable that the participant spent

84

about 33% time in post development testing and debugging which is very close to

the amount of time typically spent in such tasks in commercial projects (i.e., 30%

[48])-

Lastly, we discuss the participant’s critical feedback about the design patterns and
the base level implementations. In Figure 16, we show a summary of participant’s
feedback. Each feedback item is categorized into one of the following five types:
general praise, specific strength, improvement suggestion, critical feedback, and red
flags. The general praise and specific strengths were related to the design patterns
whereas the improvement suggestions, critical feedback, and red flags were related
to the base level implementation as summarized by the participants on his own

words:

“The simplicity, modularity, and reusability of the design pattern based ADD
framework enables an inexperienced user to generate a functional ADD enabled game
within a reasonable time period. Furthermore, improvements to the time needed to
implement various design patterns were observed after implementation of only one set
of scenarios, an indication of the rapid learnability of the framework—a fact that can

likely be attributed to its simplicity.

One of the greatest strengths of this framework is the modularity. This separation of
various aspects of the framework make it easier to focus on one aspect at a time—
simplifying the task at hand, and reducing the learning curve required. Not only can

each aspect of the framework be learnt and understood in progressive steps, but

85

decisions regarding the implementation and integration of the framework can be

analysed and addressed in progressive steps as well.

Many of the obstacles to the learnability of the framework were unrelated to the
framework itself, but rather a product of issues with the implementation and

documentation used.”

’ General Praise (6)
0

o o Specific Strength (6)
(o] ('

Critical Feedback (4)

1)
e Red Flags (2)

30% " [mprovement
Suggestions (2)

Figure 16 : Summary of participant’s feedback about the design patterns and

base level implementation

We will not discuss the feedback in the general praise and the specific strength
section as they do not call for any further action from our end. We will discuss the

feedback from the other three categories here:
Red-flags:

1. Partial implementation in the adaptation detector: In the base level
implementation provided to the participant, the adaptation detector class in
the adaptation detector pattern is partially implemented. We acknowledge
this as a deficiency of our base level implementation and a source of

confusion. We have already incorporated the participant-provided

86

suggestion of declaring that class as an abstract class and leaving the
developer to extend from there (this approach is more in par with our other
base level classes and has already been used in the sensor factory and the

case based reasoning pattern).

2. Non-descriptive exceptions: Some of the exceptions in our base level
implementation are not descriptive and do not provide enough contextual
information. We acknowledge it as a deficiency of our base level

implementation and are currently revising our code to address it.
Critical feedback:

1. Implementation order in adaptation detector: The adaptation detector class
requires referencing code segments that are completed later. This accounted
for confusion during the first scenario implementation in the Tetris game. We
believe this issue can be overcome by “programming to an interface”. Also,
our semi automation framework'’ (please see Chapter 7) can help manage

this logic.

2. Implementation order in case based reasoning: The participant implemented
the decisions after the inference engine and raised concern against this

implementation order. Indeed we have already suggested a different

" The proof-of-concept for the semi automation framework was under development
during this preliminary user study and thus could not be used here. We recognize
the potential of a similar user study involving the framework in the future.

87

implementation order in the step by step process described in [29]. We take
as an action item from this feedback to document our suggested

implementation order in the source code as well.

Applicability of game reconfiguration pattern: The game reconfiguration
pattern is very different from the other three patterns, as it does not contain
much adaptation logic. On the contrary, it creates the foundation to push
changes to the game from the case based reasoning pattern. Also, the
participant noted that the implementation logic was directly transferrable to
another game and thus should be part of the base level implementation. We
acknowledge that this pattern requires a lot of boilerplate coding and for
each game needs to be only implemented once in most cases. That said, we
differ on the opinion of this logic being part of the base level implementation.
The participant managed to port the implementation from the Tetris to the
Space Invaders game as they both used similar threading and input handling
techniques (a plausible reason for this could be that both of them were
implemented by the same developer), which might not be true for games

using different Java libraries for those purposes.

Incremental complexity in adaptation detector pattern: The participant
noted that the complexity of the adaption detector dramatically increases
with the number of sensors and if the adaptation scenarios are interrelated.

We consider this problem analogous to a system having a large number of

88

potentially interrelated requirements and thus a traceability matrix and

other validation techniques can help to mitigate this issue.
Improvement suggestions:

1. Adding typical modifications scenarios in decisions: The participant
suggested that typical adjustments such as increment and decrement can be
incorporated in the generic decision class to decrease the amount of custom

code.

2. Analysis tools for finding threshold boundaries: The participant found it very
time consuming to find the appropriate boundaries for threshold values. In
our semi-automatic framework, we have a module called enhancer (please
see Chapter 7) that encompasses such a task. The proof-of concept prototype

also provides ways for basic analysis such as plotting based on user logs.

8.6 Summary

In this Chapter, we reported on a preliminary user study where the participant,
without any prior knowledge of our design pattern based approach and minimal
experience of working with design patterns in general, managed to implement two
scenarios in each of the two games provided with minimal effort (about 12 hours).
The participant provided a detailed feedback of his experience about using the
design patterns and their base level implementation. We also conducted a survey on
the participant for a quantitative rating of his experience and other complementary

information. We also presented our analysis of his feedback.

89

Chapter 9

Conclusions

In this chapter, we highlight our contributions, discuss implications for using a
design pattern based approach for ADD, and list some possible future research

directions. Finally, we conclude the thesis with some final remarks.

9.1 Key Contributions

We derived four software design patterns namely, Sensor Factory, Adaptation,
Detector, Case-based Reasoning, and Game Reconfiguration from the self-adaptive
system literature in the context of auto dynamic difficulty (ADD) in video games. We
have created a generic base level implementation of these design patterns in Java.
We have applied the design pattern based approach and the base level
implementation to three different games - Pac-Man, TileGame and Minecraft. Based
on our experience from the first two games, we provided a step-by-by process for
applying the design pattern based approach in a video game and verified the
process by applying the process while developing ADD for Minecraft. We carried out
a source code analysis on the implementations of ADD in these games for measuring

reusability and amount of reuse. Through the analysis we found that reusability

90

metrics such as number of methods (NOM), weighted methods per class (WMC), and
coupling between objects (CBO) indicated high reusability of our base level
implementation and the amount of reuse can be as high as 74.26%, even for
commercial games like Minecraft. We described a code-generation based semi-
automatic framework that can be used to easily apply the design pattern based
approach in a game with minimal manual effort. Additionally, we implemented a
proof-of-concept prototype based on the framework and tested the integration of
the prototype with multiple games. We also conducted a preliminary user study
where a Post-Degree Diploma student at the University of Western Ontario
voluntarily participated. The student was not involved with this particular research
before the study and still he managed to apply the design pattern based approach to

create ADD in two popular arcade style games: Space Invaders and Tetris.

9.2 Implications
In this section, we discuss the benefits of using a design pattern approach for

implementing ADD in video games based on our work and their implications:

A) Reusable Source Code: Reusability refers to the degree to which existing
applications can be reused in new applications. Since design patterns provide
a reusable solution, it is expected that reusable source code can be created
for such solutions as well. In [27], we reported an empirical investigation
involving source code analysis of two prototypical Java games (i.e., Pac-Man
and TileGame). In that study, we noticed 77.52% and 79.68% code

reusability in Pac-Man and TileGame respectively while implementing the

B)

91

adaptive systems using these design patterns. In Chapter 6, we have
extended this study to a commercially acclaimed game (i.e., Minecraft [30])
and experienced comparable results. 600 SLOC (i.e., 74.26% in Minecraft;
79.68% in TileGame, and 77.52% in Pac-Man) of the adaptive system
remained unchanged across all three games. Reusability of source code
reduces implementation time and increases the probability that prior testing

has eliminated defects.

Repeatable Process: In the design pattern based approach, since the high
level structure of the solution is already known, it is possible to create a step-
by-step method for creating ADD in video games. From our experience on
developing ADD for Pac-Man and TileGame, we formalized such a process
and applied it on the Minecraft game. A well-defined process such as this is
also important for industrial adoption for several reasons such as measuring
progress, planning, and automation. Furthermore, developers can focus more
on game play design and ADD logic design rather than implementation
details. Unlike ad-hoc approaches, a well-defined process is repeatable with

consistent results across various games.

Since the process is defined in a step-by-step method with specific artifacts
expected as outputs from each step, it will be possible to define specific
metrics to estimate the project size and later measure the progress as the

project moves forward.

92

C) Impact on Quality Factors: In [27], we examined how different software
quality factors are impacted by the usage of these design patterns. We have
already discussed the impact on reusability (please see Section 6.2). We

briefly discuss the impact on few other quality factors below.

Integrability: Integrability refers to the ability to make the separately
developed components of the system work correctly together. As we can see
in Figure 5, the integration points among the design patterns and with the
game are clearly defined. Because of these clearly defined integration points,

the four design patterns can be integrated with each other and a game easily.

Portability: Portability is the ability of a system to run under different
computing environments. A framework- or middleware-based approach for
creating an ADD system is usually specific to a particular programming
language and or platform, whereas a design pattern-based approach is highly
portable across different platforms and programming languages [11]. These
design patterns were derived from the self-adaptive systems literature in the
context of ADD in video games. This indicates the portability of these design
patterns across domains. Also, in our case study, we managed to port them
(as a solution) from one game to another within the platform (Java). This
indicates portability across systems on the same platform. In the future, we
plan to examine the portability of these design patterns across platforms as

well.

D)

9.3

93

Maintainability: Maintainability refers to the ease of the future maintenance
of the system. As discussed earlier, different parts of the design patterns
have specific concerns (e.g., Sensors will collect data, Drivers will make
changes to the game, etc.), and so the resulting source code will have high
traceability and maintainability. Furthermore, as the use of these design
patterns provides source code reusability (please see Section 6.2), this will
increase the probability that prior testing has eliminated defects while being

used in a new game.

Automation: In Chapter 7, we described a framework that will guide the
developers through the process of applying the design patterns. It is
essentially a semi-automatic tool that will help developers to easily integrate
a game into the tool and then identify metrics for sensors, identify attributes
to adjust game difficulty, maintain traceability between these artifacts, and so
on. Such a framework works as motivation for adopting a new approach. The

proof-of-concept for the framework is validated through a prototype.

Future Directions

In this section, we briefly discuss some possible future directions for our research:

A)

Achieving Adaptive Gameplay: So far we have used these design patterns for
implementation of a specific type of adaptability in video games known as
auto dynamic difficulty. In principle, however, these design patterns should
be sufficient to implement more complex forms of adaptability in game-play

for other purposes. Figure 17 depicts our position of a multidimensional

94

adaptive game-play. For example, we have chosen two aspects of the game to
adjust adaptively. One is level structure and puzzle attributes, and the other
is combat difficulty. There are a number of rules and other associated
artifacts (i.e., sensors, observers, triggers and decisions) focused on each of
these aspects. In a scenario with a particular level structure and puzzle
attributes with minimum combat difficulty, the player may experience a
maze type game, whereas with a high combat difficulty and simple level
structure and puzzle attributes, the player may experience a fighting game.
Nearly every aspect of a game can be made adaptive in this way: the game
world (structural elements, composition); the population of the world (the
agents or characters in the world); any narrative elements (story, history, or
back-story); game-play (challenges, obstacles); the presentation of the game

to the player (visuals, music, sound); and so on.

Level structure &
Puzzle attributes
Fixed Rules-.
Rule 1
» Rule 2
Adaptive =
Gameplay —
Rule n-1
Time / Level
Rule N

Combat
difficulty

Figure 17: Concept of multi-dimensional adaptive gameplay

B)

)

95

Achieving ADD in Multiplayer Games: To date, we have used these design
patterns for implementation of ADD in single player games. Recently,
Baldwin et al. [49] presented a classification framework for ADD in
multiplayer games and, by applying that framework, found that many
modern multiplayer games use some sort of ADD. To the best our knowledge,
no existing scientific literature reports how to achieve ADD in multiplayer
games. One of the key challenges for ADD system for a multiplayer game
would be to provide different treatments to different players based on their
expertise and still appear unbiased and fair. Our future plan is to extend (if
necessary) and apply the design pattern based approach in a multiplayer
game to achieve ADD. The multiplayer version of Minecraft would be a

plausible test bed for such experimentation.

Further Empirical Studies: During our related work review, we noticed a
number of studies where the researchers provided the implemented game to
some external players and investigated their experience (e.g.,[18], [13], [19]
etc.). We did not find any empirical study in ADD literature where the
researchers provided their implemented artifacts to external developers and
empirically investigated their experience about further developing with the
help of those artifacts. We performed one such study in Chapter 8. Such
studies are important as they provide more insight into applying those
artifacts outside laboratory. We would like to conduct more such studies
with more participants, including experienced developers from industry. We

would also like to use the semi automation framework (please see Chapter 7)

96

for such a study. Additionally, we want to experiment on developers applying
our design pattern based approach in platforms other than Java. The
empirical research methods for such a study can be case-study, controlled

experiments, focus groups, and so on.

9.4 Concluding Remarks

Design patterns are a formal approach of describing reusable solutions for a design
problem. Game developers can benefit from two types of design patterns: game
design patterns and software design patterns for video games. While popular
commercial games such as “Max Payne”, “Half-Life 2” and “God Hand” use the
concept of auto dynamic difficulty, no information is publicly available about how
ADD is implemented in these games from a software design perspective.
Furthermore, research in this area has largely been done in an ad-hoc fashion and is
therefore not reusable or applicable to other games. In this thesis, we presented a
design pattern approach for implementing ADD in video games. We validated our
approach through multiple case studies. We discussed benefits of adopting this
approach based on results from our empirical investigations. Additionally, we have
developed process and automation tools for applying this approach. We have also
provided details of our research execution process and analysis tools used. We
encourage other researchers to take advantage of our design pattern based

approach and/or any other research artifacts.

97

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

A. Glassner, Interactive Storytelling: Techniques for 21st Century Fiction, A K
Peters, Ltd., 2004.

D. Charles and M. Black, "Dynamic Player Modelling: A Framework for Player-
Centered Digital Games," in International Conference on Computer Games: Al,

Design and Education, 2004.

B. Pfeifer, "Creating Emergent Gameplay with Autonomous Agents," in Game

Al Workshop at AAAI-04, 2004.

B. Reynolds, "How Al Enables Designers," 2004. [Online]. Available:
http://gamasutra.com/php-bin/news_index.php?story=11577. [Accessed 16
July 2014].

B. Snow, "Why most people don't finish video games," 17 August 2011.
[Online]. Available:
http://www.cnn.com/2011/TECH/gaming.gadgets/08/17 /finishing.videoga
mes.snow/. [Accessed 13 April 2014].

Y. Hao, S. He,]. Wang, X. Liu,]. Yang and W. Huang, "Dynamic Difficulty
Adjustment of Game Al by MCTS for the game Pac-Man," in Sixth International
Conference on Natural Computation (ICNC), Yantai, Shandong, 2010.

C. Bailey and M. Katchabaw, "An experimental test bed to enable auto-
dynamic difficulty in modern video games," in 2005 North American Game-On

Conference, 2005.

E. Adams, Fundamentals of Game Design (2nd Edition), New Riders, 2010.

M. Booth, "The Al systems of Left 4 Dead, Keynote on Fifth Artificial

[10]

[11]

[12]

[13]

[14]

[15]

[16]

98

Intelligence and Interactive Digital Entertainment Conference," 2009.
[Online]. Available:
http://www.valvesoftware.com/publications/2009/ai_systems_of_14d_mike_

booth.pdf. [Accessed 16 July 2014].

E. Gamma, R. Helm, R. Johnson and J. Vissides, Design patterns: elements of

reusable object-oriented software, Addison - Wesley, 1995.

A.]. Ramirez and B. H. Cheng, "Design patterns for developing dynamically
adaptive systems," in 2010 ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems, 2010.

M. I. Chowdhury and M. Katchabaw, "Software Design Patterns for Enabling
Auto Dynamic Difficulty in Video Games," in 17th International Conference on

Computer Games (CGAMES), Louisville, Kentucky, USA, 2012.

N. Hocine and A. Gouaich, "Therapeutic games' difficulty adaptation: An
approach based on player's ability and motivation," in 16th International

Conference on Computer Games (CGAMES), 2011.

P. Rani, N. Sarkar and C. Liu, "Maintaining optimal challenge in computer
games through real-time physiological feedback," in 11th International

Conference on Human-Computer Interaction, Las Vegas, 2005.

R. Hunicke, "The case for dynamic difficulty adjustment in games," in 2005
ACM SIGCHI International Conference on Advances in computer entertainment

technology, 2005.

N. Shaker, G. Yannakakis and J. Togelius, "Towards Automatic Personalized
Content Generation for Platform Games," in Sixth AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment, 2010.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

99

P. Demasi and A.]. d. O. Cruz, "Online Coevolution for Action Games,"
International Journal of Intelligent Games & Simulation, vol. 2, no. 2, pp. 80-88,

2003.

R. Hunicke and V. Chapman, "AlI for Dynamic Difficulty Adjustment in Games,’
in Challenges in Game Al Workshop, Nineteenth National Conference on

Artificial Intelligence, 2004.

H. Qin, P. P. Rau and G. Salvendy, "Effects of different scenarios of game
difficulty on player immersion," Interacting with Computers, vol. 22, no. 3, pp.

230-239, May 2010.

0. Missura, "Adaptive agents in the context of connect four," in LWA 2007:

Lernen - Wissen - Adaption, 2007.

O. Missura and T. Gartner, "Online adaptive agent for connect four," in Fourth
International Conference on Games Research and Development (CyberGames

2008), 2008.

K. A. Orvis, D. B. Horn and J. Belanich, "The roles of task difficulty and prior
videogame experience on performance and motivation in instructional
videogames," Computers in Human Behavior, vol. 24, no. 5, pp. 2415-2433,
September 2008.

P. Gestwicki and F. Sun, "Teaching Design Patterns Through Computer Game
Development," Journal on Educational Resource in Computing, vol. 8, no. 1, pp.

1-22,2008.

M. Antonio, G. Jiménez-Diaz and]. Arroyo, "Teaching Design Patterns Using a
Family of Games," in 14th Annual ACM SIGCSE Conference on Innovation and

Technology in Computer Science, Paris, France, 2009.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

100

J. Narsoo, M. Sunhaloo and R. Thomas, "The Application of Design Patterns to
Develop Games for Mobile Devices using Java 2 Micro Edition," Journal of

Object Technology, vol. 8, no. 5, pp. 153-175, 20009.

S. Bjork and J. Holopainen, Patterns in Game Design, Massachusetts, USA:

Charles River Media, Inc., 2004.

M. I. Chowdhury and M. Katchabaw, "Improving software quality through
design patterns : a case study of adaptive games and auto dynamic difficulty,"

in Game-ON 2012, 2012.

D. Brackeen, B. Barker and L. Vanhelsuwé, Developing Games in Java, New

Riders, 2004.

M. I. Chowdhury and M. Katchabaw, "Bringing auto dynamic difficulty to
commercial games: A reusable design pattern based approach,” in Computer

Games (CGames'13), Louisville, KY, USA, 2013.

"Minecraft," [Online]. Available: https://minecraft.net/. [Accessed 16 July
2014].

"Main Page - Minecraft Coder Pack," [Online]. Available: http://mcp.ocean-
labs.de/. [Accessed 16 July 2014].

M. Salehie and L. Tahvildari, "Self-Adaptive Software: Landscape and
Research Challenges," ACM Transactions on Autonomous and Adaptive

Systems, vol. 4, no. 2, pp. 1-42, May 2009.

L. H. Rosenberg, R. Stapko and A. Gallo, "Risk based object oriented testing," in
24th annual Software Engineering Workshop, NASA, 1999.

S. R. Chidamber and C. F. Kemerer, "A metrics suite for object oriented

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

101

design," IEEE Transactions on Software Engineering, vol. 20, no. 6, pp. 476-
493,1994.

"USC Code Count," [Online]. Available:
http://sunset.usc.edu/research/CODECOUNT. [Accessed 16 July 2014].

"Metrics 1.3.6," [Online]. Available: http://metrics.sourceforge.net. [Accessed
16 July 2014].

"Understand Your Code," [Online]. Available: http://www.scitools.com.

[Accessed 16 July 2014].

M. Jennings-Teats, G. Smith and N. Wardrip-Fruin, "Polymorph: dynamic
difficulty adjustment through level generation," in PCG Workshop with
FDG’2010, 2010.

B. Bostan and S. Ogiit, "Game challenges and difficulty levels: lessons learned

From RPGs," in ISAGA-2009, 2009.

F. Southey, G. Xiao, R. C. Holte, M. Trommelen and J. Buchan, "Semi-Automated
Gameplay Analysis by Machine Learning," in Conference on Artificial

Intelligence in Interactive Digital Entertainment (AIIDE-05), 2005.

"MYSQL :: The world's most popular open source database," [Online].

Available: http://www.mysqgl.com/. [Accessed 16 July 2014].

"PHP: Hypertext Preprocessor," [Online]. Available: https://php.net/.
[Accessed 16 July 2014].

"ajaxCRUD.com - Use PHP & AJAX to CRUD from a mysql database table
(create / read / update / delete),” [Online]. Available: http://ajaxcrud.com/.
[Accessed 16 July 2014].

[44]

[45]

[46]

[47]

[48]

[49]

102

"JavaScript Web APIs - W3(," [Online]. Available:
http://www.w3.org/standards/webdesign/script. [Accessed 16 July 2014].

M. Bostock, V. Ogievetsky and]. Heer, "D3: Data-Driven Documents," IEEE
Transactions on Visualization & Computer Graphics, vol. 17, no. 12, pp. 2301-

2309, December 2011.

"D3.js - Data-Driven Documents," [Online]. Available: http://d3js.org/.
[Accessed 16 July 2014].

"Java 2D games tutorial," [Online]. Available:

http://zetcode.com/tutorials/javagamestutorial/. [Accessed 16 July 2014].

S. A. Safavi and M. U. Shaikh, "Effort Estimation Model for each Phase of
Software Development Life Cycle," in Computer Engineering: Concepts,

Methodologies, Tools and Applications, IGI Global, 2012, pp. 238-246.

A. Baldwin, D. Johnson, P. Wyeth and P. Sweetser, "A framework of Dynamic
Difficulty Adjustment in competitive multiplayer video games," in 2013 IEEE

International Games Innovation Conference (IGIC), 2013.

103

Appendices

Appendix A: Programmer’s Manual for the Usage of the

Base Level Implementations of the Design Patterns

A1l. Defining a Sensor:

import com.game.designpattern.autodynamicdifficulty.monitoring.sensorfactory.*;

public class AverageScoreSensor extends Sensor({

public AverageScoreSensor (Object object){
this.object = object;
this.fieldName = "AverageScore";
this.setvalue(0);
this.setInterval(1000);

public void refreshvalue(){

try{
int score = ((Game)this.object).getScore();
int 1life = ((Game)this.object).getPlayer().getLife();
int averageScore = score / (6 - life);

this.setValue(averageScore);
}
catch(Exception ex){
System.out.print("Exception in Sensor:"+ex.getMessage());

this.setValue(0);
}

104

A2. Defining the Adaptation Detector:

package
com.game.designpattern.autodynamicdifficulty.decisionmaking.adaptationdetector;
import com.game.designpattern.autodynamicdifficulty.monitoring.sensorfactory.*;
import
com.game.designpattern.autodynamicdifficulty.decisionmaking.casebasedreasoning.

* .
r

public class AdaptationDetector extends Thread{

InferenceEngine inferenceEngine;
SensorFactory sensorFactory;
GenericObserver averageScoreObserver;
Threshold lowAverageScoreThreshold;

Threshold highAverageScoreThreshold;

public AdaptationDetector(InferenceEngine inferenceEngine,
SensorFactory sensorFactory) {
this.inferenceEngine = inferenceEngine;
this.sensorFactory = sensorFactory; this.createObservers();

this.createThresholds();

public void createObservers() {
averageScoreObserver = new GenericObserver();
Sensor averageScoreSensor =
sensorFactory.getSensorByName ("AverageScoreSensor");

averageScoreSensor.addObserver (averageScoreObserver) ;

public void createThresholds(){
lowAverageScoreThreshold = new Threshold(ThresholdType.LESS_THAN, 4);
highAverageScoreThreshold = new Threshold(ThresholdType.GREATER THAN,
4);

public void run(){

System.out.println("Adaptation Detector started");

while(true) {
if (averageScoreObserver.isRecentlyUpdated()){

if (ThresholdAnalyzer.analyze(lowAverageScoreThreshold,

105

averageScoreObserver.getValue())){

System.out.println("Adaptation Detector created
'MakeGameEasy’ trigger");

Trigger makeLevelEasyTrigger = new Trigger("MakeGameEasy");

inferenceEngine.notifyTrigger (makeLevelEasyTrigger);

if (ThresholdAnalyzer.analyze(highAverageScoreThreshold,

averageScoreObserver.getValue())){

System.out.println("Adaptation Detector created
'MakeGameDifficult' trigger");

Trigger makeLevelDifficultTrigger = new
Trigger ("MakeGameDifficult");

inferenceEngine.notifyTrigger (makeLevelDifficultTrigger);

}
}
try{
this.sleep(1000);
}

catch(InterruptedException e){

System.out.println(e.getMessage());

A3. Extending Inference Engine:

Import
com.game.designpattern.autodynamicdifficulty.decisionmaking.casebasedreasoning.

* o
r

import
com.game.designpattern.autodynamicdifficulty.reconfiguration.gamereconfiguratio

n.*;
public class PacManInferenceEngine extends InferenceEngine({

public PacManInferenceEngine(AdaptationDriver adaptationDriver) {
super (adaptationDriver);
this.fixedRules.addRule(new Rule("MakeGameEasy",
new Trigger ("MakeGameEasy"),

new MakeGameEasyDecision()));

106

this.fixedRules.addRule(new Rule("MakeGameDifficult",
new Trigger ("MakeGameDifficult"),

new MakeGameDifficultDecision()));

public void run(){

super.run();

A4. Defining a Decision:

class MakeGameDifficultDecision extends Decision{

public MakeGameDifficultDecision(){

super ("MakeGameDifficult");

public void compileDecision(){
subDecisions.put("GHOST_SPEED", 5);

System.out.println("Game is being difficult");

A5. Extending the GameState:

import
com.game.designpattern.autodynamicdifficulty.reconfiguration.gamereconfiguratio
n.*;

import java.util.*;

import java.awt.event.*;
public class GameState extends Game implements State, KeyListener{

int state = 1;

// 1 = active; 2 = being inactive; 0 = inactive; 3 = being active;
ArrayList<KeyEventEntry> keyEvents = new ArrayList<KeyEventEntry>();

public void keyPressed(KeyEvent e){
if(state == 1){
super.keyPressed(e);

} else {

keyEvents.add(new KeyEventEntry("keyPressed", e));

public void keyReleased(KeyEvent e){
if(state == 1){
super.keyReleased(e);
} else {
keyEvents.add(new KeyEventEntry("keyReleased", e));

public void keyTyped(KeyEvent e){
if(state == 1){
super.keyTyped(e);
} else {
keyEvents.add(new KeyEventEntry("keyTyped", e));

public void makeInactive(){
if(state == 1){
state = 2;

public void makeActive(){
if(state == 0){
state = 3;

public int getState()({

return state;

public boolean isActive(){

return (state == 1);

public boolean isInactive(){

return (state == 0);

107

108

public void run(){

long starttime;

Thread.currentThread().setPriority(Thread.MAX PRIORITY);

while(true)

{

starttime=System.currentTimeMillis();

try {
if(state == 3 && l!keyEvents.isEmpty()){
// Game is being active
//so all the stored requests need to be served
if (keyEvents.get(0).getEventType() == "keyPressed")({
super.keyPressed(keyEvents.get(0).getKeyEvent());
}
else if(keyEvents.get(0).getEventType() == "keyReleased")({
super.keyReleased (keyEvents.get(0).getKeyEvent());
}
else if(keyEvents.get(0).getEventType() == "keyTyped"){
super.keyTyped(keyEvents.get(0).getKeyEvent());

keyEvents.remove(0);

if(state != 0){

// Game is not inactive so game loop needs to be executed

super.run();

if(state == 1){

// Game is active so game thread needs to

// sleep after executing each time
starttime += 40;
Thread.sleep(Math.max(0,

starttime-System.currentTimeMillis()));

if(state == 2){

// Inactivate request made so inactivate

109

if(state == 3 && keyEvents.isEmpty()){
// Activate request made and no pending requests left. So activate

state = 1;

}
catch (InterruptedException e) {

break;

class KeyEventEntry({
private String eventType;

private KeyEvent keyEvent;
public KeyEventEntry(String eventType, KeyEvent keyEvent){

this.eventType = eventType;
this.keyEvent = keyEvent;

public String getEventType(){

return eventType;

public KeyEvent getKeyEvent() {

return keyEvent;

A6. Integration of Patterns:

import javax.swing.JFrame;

import javax.swing.JPanel;

110

import
com.game.designpattern.autodynamicdifficulty.decisionmaking.adaptationdetector.

* .
r

import
com.game.designpattern.autodynamicdifficulty.monitoring.sensorfactory.Registry;
import
com.game.designpattern.autodynamicdifficulty.monitoring.sensorfactory.ResourceM
anager;

import
com.game.designpattern.autodynamicdifficulty.reconfiguration.gamereconfiguratio
n.AdaptationDriver;

import
com.game.designpattern.autodynamicdifficulty.monitoring.sensorfactory.SensorFac

tory;

public class PacMan extends JFrame {

public PacMan(JPanel game) {
add (game) ;
setTitle("PacMan");
setDefaultCloseOperation(EXIT ON_CLOSE);
setSize (500, 500);
setLocationRelativeTo(null);
setVisible(true);

setResizable(false);

public static void main(String[] args) {

GameState game = new GameState();
new PacMan(game) ;
AdaptationDriver adaptationDriver = new AdaptationDriver (game);
PacManInferenceEngine inferenceEngine =

new PacManInferenceEngine(adaptationDriver);
inferenceEngine.start();
SensorFactory sensorFactory=new SensorFactory(game,

new ResourceManager(),

new Registry());
sensorFactory.setSensorBasePath("pacman");
AdaptationDetector adaptationDetector =

new AdaptationDetector(inferenceEngine,sensorFactory);

adaptationDetector.start();

111

112

Appendix B: User’s Manual for the Proof-of-concept

Automation Tool

1. Collector Component

1.1. Configure the collector component

Configuring the Collector is basically passing the main game object to the
ObjectInformationCollector and RauntimelnformationCollector and creating the
CollectorFrame from them. Here we show how you can configure it with an existing

game:

//The existing game object is called board

ObjectInformationCollector infoCollect =
new ObjectInformationCollector (board);

RuntimeInformationCollector runtimeInformationCollector =
new RuntimeInformationCollector (board);

runtimeInformationCollector.start () ;

new CollectorFrame (infoCollect, runtimeInformationCollector):;

1.2.Use Collector Component

After configuring the Collector component with the game, if you run the game, then
apart from the game window, the following “Game Information Collector” window

will appear:

113

£ Game Information Collertor = Dn

Clear Meta Information

Record Runtime Information

Click on the “Clear Meta Information” button to delete all the existing attribute
information. Click on the “Record Meta Information” button to populate the
attribute information up to a certain height. The height to discover can be

configured in the ObjectInformationCollector class.

After collecting the attribute information, go to the Manager component to mark the

attributes that needs to be monitored (please see section 0 below).

Click on the “Record Runtime Information” button to start a session and start
recording values of all the attributes marked for monitoring at that moment. The
frequency of recording can be adjusted in RuntimelnformationCollector class. Click
on the “Sop Recording” button to stop recording attribute values and to end the

session.

114

2. Manager Component

Open your browser and type the URL of the web Ul to go to the Manager component
(for local installation the URL will be http://localhost/addautomation/). Use the

vertical “Manager” menu (shown with arrow in the picture below) to access each of

the Uls within the Manager component.

R _—
y Auto Dynamic Difficulty / % |
€« C A [localhost/addautomation, ayl » =
i Apps @ www.bthse/fou/cu.. @ Dynamic Difficulty B.. [Howto connectto.. [d] Effort Estimation M.. [WLEZProxy [EJ Search gl Could notfindorlo.. [J AMAZON (] 1971 » (] Other bookmarks

Auto Dynamic Difficulty

.) Enh 1 Attribute Tre S Attribut
Design Patterns Based Automation Tool nhancer foute Lree ession Attribute

Manager
Attributes

Sessions

Sensors
Observers
Thresholds
Triggers

Decisions

Translator
Sensors
Adaptation Detector

Inference Engine
Decisions

© Copyright 2014 - Chowdhury & Katchabaw o

115

2.1. Attributes

Click on the “Attributes” menu item from the “Manager” menu to get a list of all the

attributes. Each page shows 10 attributes at a time. Use the pagination at the bottom
of the page to go to the next page. Use the filters at the top of the page to quickly find
an attribute. Click on the checkboxes under the observe column to mark an attribute

for monitoring.

/ Auto Dynamic Difficulty / % _

€« C' A | [} localhost/addautomation/index.php?page=attributes
% Apps @ www.bth.se/fou/cu.. @ Dynamic Difficulty B.. [Howto connectto... Effort Estimation M. [] WLEZProxy [EJ Search
Auto Dynamic Difficulty
Design Patterns Based Automation Tool
Filter for searching
Attributes (5297):
Name: Data Type: []
Attribute ID | Parent Attribute | Name Object Path Data Type Observe | Action
5297 board board [Ltetris. TShape$ Tetr | delete | | details |
5296 curPiece coordsTable curPiece.coordsTable | [[[I M m
5295 curPiece coords curPiece.coords [[1 | delete | | details |
5294 pieceS List of attributes nieceShape. | [Ltetris. TShape$Tetr | delete | | details |
5293 MirroredLShape | ENUM$VALUES | curPiece.pieceShape. | [Ltetris.TShape$Tetr | delete | | details |
5292 MirroredLShape ENUM$VALUES | curPiece.pieceShape. | [Ltetris. TShape$Tetr @ m
5291 MirroredLShape | ENUM$VALUES | curPiece.pieceShape. | [Ltetris. TShape$Tetr | delete | | details |
5290 MirroredLShape | MirroredLShape | curPiece.pieceShape. | tetris. TShape$Tetrom | delete | | details |
5289 MirroredLShape | LShape curPiece.pieceShape. | tetris. TShape$Tetrom | delete | | details |
52§ Pagination hape | SquareShape curPiece.pieceShape. | tetris.TShape$Tetrom | delete | | details |
1234567891011121314151617181920212223 2425262728 203031323334353637383040414243
44 45 46 47 48 49 50 31 32 53 34 55 56 57 38 59 60 61 62 63 64 65 66 67 68 62 70 71 72 73 74 75 76 77 78 79 80 81 82 83

116

2.2.Sessions

Click on the “Session” menu item from the “Manager” menu to get a list of all the
sessions. You can use the filters at the top of the page to quickly find a session. Click
on the “details” buttons under the “Action” column to get more details about the

corresponding session.

/"" Auto Dynamic Difficulty # % \\ ~

[C' A [} localhost/addautomation/index.php?page=sessions

2% Apps @ www.bth.se/fou/cu.. @ Dynamic Difficulty B.. [Howto connectto... Effort Estimation M... [} WLEZProxy [

Auto Dynamic Difficulty

Design Patterns Based Automation Tool

Sessions

Sessions (4):

Session Name: | ‘ Description: |
Session ID | Session Name | Description | Start Time End Time Action
73 - - 2014-07-14 12:18:08 | 2014-07-14 12:19:06 | | delete | | details |
72 - - 2014-07-14 12:16:50 | 2014-07-14 12:18:00 | | delete | | details |
71 - - 2014-02-23 03:13:34 | 2014-02-23 03:14:21 | | delete | | details |
70 - ~ 2014-02-21 00:10:45 = 2014-02-21 00:10:58 | | delete | | details |

Add Session

117

On the session details page, you will see list of values for different attributes along
with timestamp within that session. Use the dropdown attribute filter to look at
values for a specific attributes. Use the pagination at the bottom of the page to get to

the next page of the list of attribute value pairs.

/ Auto Dynamic Difficulty # % _

€« C #D localhost/addautomation/index.php?page=sessions

Sessions

Session Details:

Session ID | Session Name | Description | Start Time End Time

73 - - 2014-07-14 12:18:08 | 2014-07-14 12:19:06

Related Attributes (110):

Attribute: | ==Select== v Attribute filter
Attribute = Time Attribute Value | Action
curX 2014-07-14 12:18:09 | 6 | delete |
cury 2014-07-14 12:18:09 | 13 | delete |
curX 2014-07-14 12:18:10 | 6 | delete |
curY 2014-07-14 12:18:10 | 10 | delete |
“" List of attribute values | gelete |
curs, Ll | delete |
curX 2014-07-14 12:18:12 | 6 | delete |
curY 2014-07-14 12:18:12 | 5 | delete |
curX 2014-07-14 12:18:13 | 6 | delete |
curY 2014-07-14 12:18:13 | 2 | delete |

Pagination 1234567891011 2>32>|

118

2.3.Sensors

Click on the “Sensor” menu item from the “Manager” menu to get a list of all the
sensors. Use the filters at the top of the page to quickly find a sensor. Click on the
“Add Sensor” button under the list of the sensors to open the form for adding
sensor. Fill up the form and then click on “Save Sensor” to add a sensor. Once a
sensor is created, click on the “details” button under the “Action” column to see

more options.

/ Auto Dynamic Difficulty / % \ ~

€ > C A [localhost/addautomation/index.php?page=sensors
Filter for searching
Sensors (5):
Sensor Name: | ' Description: '
Sensor ID | Sensor Name Description Value Calculation | Interval | Action
9 SensorX A c/p 50 | delete | | details | | source |
8 SensorA Sensor Desc c/D 50 | delete | | details | | source |
7 SensorA : a/d 100 | delete | | details | | source |
List of sensors
6 D c/A 10 | delete | | details | | source |
1 AverageScoreSensor | Some Description | curX curY 500 | delete | | details | | source |
| Add Sensor |
Sensor Name
Description
Add sensor form 4
Value Calculation | |
Interval | |
| save Sensor Cancel

119

On the sensor details page, click on the “Add Related Attributes” button to open the
form to associate an attribute to the sensor. In the form, select an attribute and a
function for the corresponding dropdowns and click on “Save Related Attributes”
button to associate that attribute to the sensor. Once an attribute is associated it will
appear under the “Related Attributes” section and option for updating and/or

deleting that association will appear.

/ Auto Dynamic Difficulty / X \ ~

€« C' A [) localhost/addautomation/index.php?page=sensors

Auto Dynamic Difficulty

Design Patterns Based Automation Tool

Sensor Details:

Sensor ID = Sensor Name | Description | Value Calculation | sensor_interval

9 SensorX A C/D 50

Related Attributes (0):
No data in this table. Click add button below.

| Add Related Attributes |
Attribute serialVersionUID v
Function SUM ¥

| Save Related Attributes | Add related attribute form

120

2.4.0bservers

Click on the “Observer” menu item from the “Manager” menu to get a list of all the
observers. Use the filters at the top of the page to quickly find an observer. Click on
the “Add Observer” button under the list of the observers to open the form for
adding observer. Fill up the form and click on the “Save Observer” to add an
observer. Once an observer is created, click on the “details” button under the

“Action” column to see more options.

} Auto Dynamic Difficulty # x \ _

&« C' A [O localhost/addautomation/index.php?page=observers

Auto Dynamic Difficulty

Design Patterns Based Automation Tool

Filter for searching
Observers (3):

Observer Name: | ‘ Description:

Observer ID = Observer Name | Description | Is Generic | Precision = Action

3 : &0 co ‘ 12 | delete | | details |
List of observers 0 | delete | | details |
1 test - o 0 | delete | | details |

Observer Name
Description

Is Generic
Precision
| Save Observer | | Cancel |

Add observer form

121

On the observer details page, click on the “Add Related sensors” button to open the
form to associate a sensor to the observer. In the form, select a sensor from the
dropdown and click on the “Save Related sensors” button to associate that sensor to
the observer. Once a sensor is associated it will appear under the “Related sensors”

section and option for deleting that association will appear.

/ Auto Dynamic Difficulty / % \7

<« C f® D localhost/addautomation/index.php?page=observers

Auto Dynamic Difficulty

Design Patterns Based Automation Tool

Observers

Observer Details:

Observer ID | Observer Name | Description | Is Generic | Precision

3 AB CD 0 12

Related sensors (2): .
List of related sernors

sensor Action

AverageScoreSensor | delete {

| Add Related sensors |

sensor AverageScoreSensor ¥

| Save Related sensors | Cancel |

Add related sensor form

122

2.5.UlIs for Thresholds, Triggers, Decisions, and Rules

The Uls for managing thresholds, triggers, decisions, and rules use the same
patterns as the ones described above and thus are not discussed in details. From the
trigger details page, combination of observer and thresholds can be added to a

trigger. Similarly, a trigger and decision combination is created as rules.
3. Enhancer Component

Use the horizontal “Enhancer” menu (shown with arrow in the picture below) to

access each of the two visualization within the Enhancer component.

- oEN

€« C' M [localhost/addautomation Qe » =

E] Auto Dynamic Difficulty # x / Auto Dynamic Difficulty # x

Auto Dynamic Difficulty

Design Patterns Based Automation Tool Enhancer : Attribute Tree Session Attribute

Manager
Attributes

Sessions
Sensors
Observers
Thresholds
igger:
Rules
Decisions

F
5
o

Translator

Sensors

Adaptation Detector
Inference Enagine
Decisions

© Copyright 2014 - Chowdhury & Katchabaw -

123

3.1. Attribute Tree Visualization

Click on the “Attribute Tree” menu item from the “Enhancer” menu to access the
attribute tree visualization. This visualization shows all the attributes starting from
the root object in a tree structure. Initially only the first level nodes are expanded.

Any expandable node is blue colored and can be clicked to expanded.

/[Auto Dynamic Difficulty # x \

€« C' A [localhost/addautomation/index.php?page=visualization/attributetree/attribute_data Qe » =
Visualization/attributetree/attribute_data -
O seralVersionUiD
(o]
O Boargsigt
O EEzImgEEes
O sSaneg
O ulCiassiD
O wPauses
© e Translator
O rumLinesRemoed Sensors
O memonicincex Adaptation Detector
O oux Inference Engine
e
O e
O cury Decisions
O oetaumion
© omAY
© asadkegicon
© ooaspest
came O 5 <
© cieveaomss
satusoar O
O wertcalAligament
© rorzazANgmT:
Q wenicalTesPoskion
O rorzomtaTesPoskion
O loonTenGap
O taoeiFor
O LABELED_BY_PROPERTY
plceswape ©
curPiece O O ooorcs
O oars O coorosTaoke
v

124

3.2.Session Attribute Visualization

Click on the “Session Attribute” menu item from the “Enhancer” menu to access the
session attribute visualization. It will require you to select one or more attributes
from one or more sessions using a dropdown list. Once you select the attributes and

click on the “Visualize” button, it will show the change of values for those attributes

in a time line.

/ [E Auto Dynamic Difficulty # x \ |

L C' & [O localhost/addautomation/index.php?page

Auto Dynamic Difficulty

Design Patterns Based Automation Tool

Visualization/multiseriesline/multiseries_selector

Select Sessions-Attributes for Visualization:

[Session-70] curX %
Session-70] curY :]

[Session-71] curX
[Session-7T1] curY ¥

I Visualize l

/ [E] Auto Dynamic Difficulty # x __|

€« C N [3 localhost/addautomation/index.php?page=visualization/multiseriesline/multiseries_selector Qe »

Auto Dynamic Difficulty

- - H Attribute Tree Se. Attribute
Design Patterns Based Automation Tool e = =slen Stnsy

Visualization/multiseriesline/multiseries_selector

.

:§
-
o
i

Translator

Sensors

Adaptation Detector
Inference Engine
Decisions

125

4. Translator Component

Use the vertical “Translator” menu (shown with arrow in the picture below) to

access the generated source code from the Translator component.

[Z] Auto Dynamic Difficulty /# x \

L C M [} localhost/addautomation Qe » =

Auto Dynamic Difficulty

Design Patterns Based Automation Tool

1 Attribute Tree Session Attribute

—

Click on the “Sessions” menu item from the “Translator” menu to get a list of sensors
with buttons titled “source” to generate source code. Click on any of the “source”

button and download the generated source code for the corresponding sensor.

Click on the “Decision” menu item from the “Translator” menu to get a list of
decisions with buttons titled “source” to generate source code. Click on any of the
“source” button and download the generated source code for the corresponding

decision.

Click on the “Adaptation Detector” or the “Inference Engine” menu item from the
“Translator” menu to download the source of the Adaptation Detector or the

Inference Engine correspondingly.

Copy the generated source codes to the game source code folder and make required
code changes (i.e., very few lines of code from our experience) to integrate the ADD

system to the game.

Appendix C: PHP Source Code for the Translator

Component

C1. Sensor Code Generator (sensor.java.php):

<?php
require once ('functions.php');
$sensor = getSensorDetails ($ REQUEST['sensor id']);
?>
<?php
header ("Content-Type: text/plain");
header ('Content-Disposition: attachment;
filename=""'.S$sensor['name'].'.java"");
?>
public class <?=$sensor['name'] ?> extends Sensor{
public <?=$sensor['name'] ?>(Object object) {
this.object = object;
this.fieldName = "<?=$sensor|['name'] ?2>";
this.setInterval (<?=$sensor|'sensor interval'] ?2>);
this.setValue (0);
}
public void refreshValue () {
try{
<?php if ($sensor['attributes']!=""): 2>
<?php foreach ($sensor['attributes'] as Sattribute): ?>

<?=dataType ($attribute['data type']) 2>
<?=Sattribute['name'] ?> = <?=Sattribute['attribute path'] ?>;
<?="\n" ?>
<?php endforeach; ?>
<?php foreach ($sensor['attributes'] as Sattribute): ?>
<?php if ($attribute['function']!="NONE"): 2>

<?=str_ replace(array("[","]"),"",dataType (Sattribute['data type']))

<?=$Sattribute['name'] ?><?=Sattribute['function'] 2> = 0;

for(int 1 = 0; i < <?=$Sattribute['name'] ?>.length;

126

?>

?>

?>

<?php if ($attribute['function']=="SUM" || $attribute['function']=="AVG") :

<?=$Sattribute['name'] ?><?=Sattribute['function']
= <?=Sattribute['name'] ?><?=Sattribute['function'] ?> + <?=S$Sattribute['name']
?>[11;
<?php elseif ($Sattribute['function']=="MAX"): 2>

<?=$Sattribute['name'] ?><?=Sattribute['function']
= Math.max (<?=S$attribute['name'] ?><?=$Sattribute['function'] ?> ,
<?=$Sattribute['name'] ?2>[1i]);
<?php elseif ($Sattribute['function']=="MIN"): 2>

<?=$Sattribute['name'] ?><?=Sattribute['function']
= Math.min (<?=S$attribute['name'] ?><?=$attribute['function'] 2> ,
<?=$Sattribute['name'] ?2>[1i]);

<?php endif; ?>
}
<?php if ($attribute['function']=="AVG"): ?>

127

<?=$Sattribute['name'] ?><?=$Sattribute['function'] ?> =
<?=Sattribute['name'] ?><?=Sattribute['function'] ?> / <?=S$Sattribute['name’']
?>.length;
<?php endif; ?>
<?php endif; ?>
<?="\n" 2>
<?php endforeach; ?>

double value = <?=S$sensor['value'] ?>;

this.setValue (value) ;
<?php endif; ?>
}
catch (Exception ex) {
System.out.print ("Exception in Sensor: <?=$sensor|'name']
?>:"+ex.getMessage ()) ;
this.setValue (0) ;
}

C2. Decision code generator (decision.java.php):

<?php
require once ('functions.php');
Sdecision = getDecisionDetails ($ REQUEST['decision id']);
?>
<?php
header ("Content-Type: text/plain");
header ('Content-Disposition: attachment;
filename=""'.S$decision['name']."'.java""');
?>
public class <?=$decision['name'] ?> extends Decision{
public <?=S$decision['name'] ?>() {
super ("<?=$decision['name'] ?>");
}
public void compileDecision () {
<?php if ($decision['attributes']!=""): 2>
<?php foreach($decision['attributes'] as $attribute): 2>

subDecisions.put ("<?=$attribute['attribute path'] ?>",
<?=Sattribute['value'] ?>);
<?="\n" ?>
<?php endforeach; ?>
<?php endif; ?>

System.out.println ("Decision <?=S$decision['name'] ?> is being
execute!");

}

}

C3.Adaptation Detector code generator (adaptationdetector.java.php):

<?php

128

require once ('functions.php');

Sobservers = getObservers();
Sthresholds = getThresholds () ;
Ssensors = getSensors();
Sobservers sensors = getObserverSensorAssignments();
Sobservers thresholds = getObserverThresholdAssignments() ;
?>
<?php
header ("Content-Type: text/plain");
header ('Content-Disposition: attachment;
filename="AdaptationDetector.java""');
?>
package

com.game.designpattern.autodynamicdifficulty.decisionmaking.adaptationdetector;

import com.game.designpattern.autodynamicdifficulty.monitoring.sensorfactory.*;
import
com.game.designpattern.autodynamicdifficulty.decisionmaking.casebasedreasoning.

* .
’

public class AdaptationDetector extends Thread({

InferenceEngine inferenceEngine;
SensorFactory sensorFactory;

<?php foreach ($observers as $observer): ?>
<?php if (Sobserver['is generic']): 2>
GenericObserver <?=strtolower ($Sobserver['name']) ?>Observer;
<?php else: ?>
<?=$observer['name'] ?> <?=strtolower ($observer|['name']) ?>Observer;

<?php endif; ?>
<?php endforeach; ?>

<?php foreach ($thresholds as $threshold): 2>
Threshold <?=strtolower (Sthreshold['name']) ?>Threshold;
<?php endforeach; ?>

public AdaptationDetector (InferenceEngine inferenceEngine, SensorFactory
sensorFactory) {
this.inferenceEngine = inferenceEngine;
this.sensorFactory = sensorFactory;
this.createObservers();
this.createThresholds () ;

public void createObservers () {

<?php foreach ($observers as $observer): ?>
<?php if (Sobserver['is generic']): 2>
<?=strtolower ($Sobserver['name']) ?>0Observer = new

GenericObserver () ;
<?php else: ?>
<?=strtolower ($Sobserver['name']) ?>0Observer = new
<?=S$Sobserver['name'] ?>() ;
<?php endif; ?>
<?php endforeach; ?>

<?php foreach ($sensors as $sensor): ?>
Sensor <?=strtolower ($sensor['name']) ?>Sensor =
sensorFactory.getSensorByName ("<?=$sensor ['name'] ?>");

<?php endforeach; ?>

129

<?php foreach (Sobservers sensors as $observer sensor): ?>
<?=strtolower (Sobserver sensor['sensor']['name'])
?>Sensor.addObserver (<?=strtolower (Sobserver sensor['observer']['name'])

?>0bserver) ;
<?php endforeach; ?>

}
public void createThresholds () {

<?php foreach ($thresholds as $threshold): 2>
<?=strtolower ($Sthreshold['name']) ?>Threshold = new
Threshold (ThresholdType.<?=Sthreshold['type'] ?>, <?=$threshold['valuel'] 2>
<?php if ($threshold['value2']!="") echo ",".$threshold['value2'] ?2>);
<?php endforeach; ?>
}

public void run() {
while (true) {
<?php foreach (Sobservers thresholds as S$Sobserver threshold): ?>
if (<?=strtolower (Sobserver threshold['observer']['name'])

?>0bserver.isRecentlyUpdated()) {

if (ThresholdAnalyzer.analyze (<?=strtolower (Sobserver threshold['threshold

'"]['name']) ?>Threshold, <?=strtolower (Sobserver threshold['observer']['name'])
?>0bserver.getValue ())) {
Trigger
<?=strtolower (Sobserver threshold['trigger']['name']) ?>Trigger = new
Trigger ("<?=$observer threshold['trigger']['name'] 2>");

inferenceEngine.notifyTrigger (<?=strtolower ($observer threshold['trigger'
]['name']) ?>Trigger);
}

}
<?php endforeach; ?>

try{
this.sleep(1000) ;
}
catch (InterruptedException e)
{
System.out.println ("Exception in Adaptation Detector
"te.getMessage ());
}
}

C4.Inference Engine code generator (inferenceengine.java.php):

<?php
require once ('functions.php');
Sobservers = getObservers();
Sthresholds = getThresholds();
Ssensors = getSensors();
Sobservers sensors = getObserverSensorAssignments();
Sobservers thresholds = getObserverThresholdAssignments() ;
?>
<?php

header ("Content-Type: text/plain");

130

header ('Content-Disposition: attachment;
filename="AdaptationDetector.java""');
?>

package
com.game.designpattern.autodynamicdifficulty.decisionmaking.adaptationdetector;

import com.game.designpattern.autodynamicdifficulty.monitoring.sensorfactory.*;
import
com.game.designpattern.autodynamicdifficulty.decisionmaking.casebasedreasoning.

* .
’

public class AdaptationDetector extends Thread({

InferenceEngine inferenceEngine;
SensorFactory sensorFactory;

<?php foreach ($observers as $observer): ?>
<?php if (Sobserver['is generic']): 2>
GenericObserver <?=strtolower (Sobserver['name']) ?>Observer;
<?php else: ?>
<?=Sobserver['name'] ?> <?=strtolower (Sobserver['name']) ?>0Observer;

<?php endif; ?>
<?php endforeach; ?>

<?php foreach ($thresholds as $threshold): 2>
Threshold <?=strtolower (Sthreshold['name']) ?>Threshold;
<?php endforeach; ?>

public AdaptationDetector (InferenceEngine inferenceEngine, SensorFactory
sensorFactory) {
this.inferenceEngine = inferenceEngine;
this.sensorFactory = sensorFactory;
this.createObservers();
this.createThresholds () ;

public void createObservers () {

<?php foreach ($observers as $observer): ?>
<?php if (Sobserver['is generic']): 2>
<?=strtolower ($Sobserver['name']) ?>0Observer = new

GenericObserver () ;
<?php else: ?>

<?=strtolower ($Sobserver['name']) ?>0Observer = new
<?=$observer['name'] ?>() ;
<?php endif; ?>
<?php endforeach; ?>
<?php foreach ($sensors as $sensor): ?>
Sensor <?=strtolower ($sensor['name']) ?>Sensor =
sensorFactory.getSensorByName ("<?=$sensor ['name'] ?>");
<?php endforeach; ?>
<?php foreach (Sobservers sensors as $observer sensor): ?>
<?=strtolower (Sobserver sensor['sensor']['name'])
?>Sensor.addObserver (<?=strtolower (Sobserver sensor['observer']['name'])

?>0bserver) ;
<?php endforeach; ?>

131

public void createThresholds () {

<?php foreach ($thresholds as $threshold): 2>
<?=strtolower ($Sthreshold['name']) ?>Threshold = new
Threshold (ThresholdType.<?=Sthreshold['type'] ?>, <?=$threshold['valuel'] 2>
<?php if ($threshold['value2']!="") echo ",".$threshold['value2'] ?2>);
<?php endforeach; ?>
}

public void run() {
while (true) {
<?php foreach (Sobservers thresholds as S$Sobserver threshold): ?>
if (<?=strtolower (Sobserver threshold['observer']['name'])
?>0bserver.isRecentlyUpdated()) {
if (ThresholdAnalyzer.analyze (<?=strtolower (Sobserver threshold['threshold

'"]['name']) ?>Threshold, <?=strtolower (Sobserver threshold['observer']['name'])
?>0bserver.getValue ())) {

Trigger
<?=strtolower (Sobserver threshold['trigger']['name']) ?>Trigger = new
Trigger ("<?=$observer threshold['trigger']['name'] 2>");

inferenceEngine.notifyTrigger (<?=strtolower ($observer threshold['trigger'
]['name']) ?>Trigger);
}
}

<?php endforeach; ?>

try{
this.sleep(1000) ;
}
catch (InterruptedException e)
{
System.out.println ("Exception in Adaptation Detector
"te.getMessage ());
}
}

132

Appendix D: Example Source Code from the Base Level

Implementation of the Design Patterns

D1. Abstract Sensor class (Sensor.java):

package com.game.designpattern.autodynamicdifficulty.monitoring.sensorfactory;
import com.game.designpattern.autodynamicdifficulty.monitoring.sensorfactory.*;

import
com.game.designpattern.autodynamicdifficulty.decisionmaking.adaptationdetector.

* .
r

import
com.game.designpattern.autodynamicdifficulty.decisionmaking.casebasedreasoning.

* .
r

22§?;Zme.designpattern.autodynamicdifficulty.reconfiguration.gamereconfiguratio
n.*;
import java.util.Observer;
public abstract class Sensor extends Thread{
protected String fieldName;
protected Object object;
protected Object value;

protected int interval;

protected SimpleObservable observable = new SimpleObservable();

public Object getObject(){
return this.object;

}

public String getFieldName(){
return this.fieldName;

}

public Object getValue(){

return this.value;

public int getInterval(){
return this.interval;
}
public void setInterval(int interval){
this.interval = interval;
}
public void setValue(Object value) {
if((this.value==null |
!this.value.equals(value)) &&
this.observable.countObservers()!= 0){
this.value = value;
if(this.observable.countObservers()!= 0){
this.observable.setChanged();
this.observable.notifyObservers(this.value);
}
System.out.println(this.getFieldName()+"

value changed to = "+this.getValue().toString());

public void addObserver (Observer o){

this.observable.addObserver(o);

public abstract void refreshvalue();

public void run(){
while(true){
this.refreshvalue();

try{

133

134

this.sleep(this.getInterval());

}

catch(InterruptedException e){
System.out.println(e.getMessage());

this.refreshvalue();

D2. Sensor Factory class (SensorFactory.java):

package com.add.monitoring.sensorfactory;
import java.lang.reflect.Constructor;
public class SensorFactory extends Thread{
Object defaultObject;
ResourceManager resourceManager;
Registry registry;
/*

* If sensors are outside the sensor factory package then the
SensorBasePath needs to be set

*/
String sensorBasePath;
public SensorFactory(){
this(null, new ResourceManager(), new Registry());

}

public SensorFactory(Object defaultObject, ResourceManager
resourceManager, Registry registry)({

this.defaultObject = defaultObject;

this.resourceManager = resourceManager;

this.registry = registry;

135

sensorBasePath =

wn o,
r

public void setDefaultObject(Object defaultObject){

this.defaultObject = defaultObject;

public void setResourceManager (ResourceManager resourceManager) {

this.resourceManager = resourceManager;

public void setRegistry(Registry registry){

this.registry = registry;

public Sensor getSensorByName(String sensorName) throws SensorException {

return this.getSensorByName(sensorName, this.defaultObject);

public void setSensorBasePath(String sensorBasePath){

this.sensorBasePath = sensorBasePath;

public String getSensorBasePath(){

return sensorBasePath;

public Sensor constructSensorByName(String sensorName, Object object)
throws SensorException {

if(!this.sensorBasePath.equals("")){

sensorName = this.sensorBasePath + "." + sensorName;
}
try{

@SuppressWarnings ("unchecked")
Class<? extends ReflectiveSensor> sensorClass

= (Class<? extends ReflectiveSensor>)
Class.forName(sensorName) ;

136

Constructor<? extends Sensor> sensorConstructor

= sensorClass.getConstructor(new Class[]{
Object.class });

return (Sensor) sensorConstructor.newInstance(new
Object[]{ object });

catch(Exception e){

throw new SensorException("Error: Unable to construct
+ e.getMessage());

n

sensor

public Sensor getSensorByName(String sensorName, Object object) throws
SensorException {

Throwable t = new Throwable();
StackTraceElement[] elements = t.getStackTrace();

String client =
elements[1l].getClassName()+"."+elements[1l].getMethodName();

if(this.resourceManager.sensorAllowed()){
Sensor sensor = null;
if(this.registry.doesSensorExist (sensorName)) {
sensor = this.registry.getSensor(sensorName);
this.registry.addClient(sensor, client);

return sensor;

}

else{
sensor = constructSensorByName(sensorName, object);
sensor.start();
this.registry.addEntry(sensor, client);

}

return sensor;

137

else{

throw new SensorException("Error: Sensor not allowed");

D3. Registry class (Registry.java):

package com.add.monitoring.sensorfactory;

import java.util.*;

public class Registry{
ArrayList<RegistryEntry> registryEntries;
public Registry(){
registryEntries = new ArrayList<RegistryEntry>();
}
public boolean doesSensorExist(String sensorName) {
for(int i=0; i<registryEntries.size(); i++){

if(registryEntries.get(i).getSensor().getClass().getName().equals(sensorN
ame)) {

return true;

return false;

}

public boolean doesSensorExist(Object object, String fieldName) {

for(int i=0; i<registryEntries.size(); i++){

if(registryEntries.get(i).getSensor().getObject().equals(object) &&
registryEntries.get(i).getSensor().getFieldName().equals(fieldName)) {

138

return true;

}

return false;
}
public Sensor getSensor(String sensorName) {
for(int i=0; i<registryEntries.size(); i++){
if(registryEntries.get(i).getSensor().getClass().getName().equals(sensorN
ame)) {

return registryEntries.get(i).getSensor();

}

return null;
}
public Sensor getSensor(Object object, String fieldName)
for(int i=0; i<registryEntries.size(); i++){
if(registryEntries.get(i).getSensor().getObject().equals(object) &&
registryEntries.get(i).getSensor().getFieldName().equals(fieldName)) {

return registryEntries.get(i).getSensor();

}

return null;

}

public int getIndexOfSensor(String sensorName) {
for(int i=0; i<registryEntries.size(); i++){

if(registryEntries.get(i).getSensor().getClass().getName().equals(sensorN
ame)) {

return ij;

139

return -1;
}
public int getIndexOfSensor(Object object, String fieldName) {
for(int i=0; i<registryEntries.size(); i++){
if(registryEntries.get(i).getSensor().getObject().equals(object) &&
registryEntries.get(i).getSensor().getFieldName().equals(fieldName)) {

return ij;

return -1;
}
public Sensor getSensorAtIndex(int index)({
return registryEntries.get(index).getSensor();
}
public void addClient(Sensor sensor, String client) {
for(int i=0; i<registryEntries.size(); i++){
if(registryEntries.get(i).getSensor().equals(sensor)){

registryEntries.get(i).addClient(client);

}
public void addEntry(Sensor sensor, String client){
registryEntries.add(new RegistryEntry(sensor, client));
}
class RegistryEntry{
Sensor sensor;
ArrayList<String> clients;
public RegistryEntry(){

this.clients = new ArrayList<String>();

public

public

public

public

public

public

public

public

140

RegistryEntry(Sensor sensor){
this.sensor=sensor;

this.clients = new ArrayList<String>();

RegistryEntry(Sensor sensor, String client){
this.sensor=sensor;
this.clients = new ArrayList<String>();

clients.add(client);

void setSensor(Sensor sensor) {

this.sensor = sensor;

void addClient(String client){
clients.remove(client);

clients.add(client);

void removeClient(String client) {

clients.remove(client);

boolean isClient(String client){

return (clients.indexOf(client)!=-1);

int numberOfClients(){

return clients.size();

Sensor getSensor(){

return sensor;

141

D4. Threshold class (Threshold.java):

package com.add.decisionmaking.adaptationdetector;
public class Threshold {
public static enum ThresholdType({
GREATER_THAN,
GREATER_THAN OR_EQUAL,
LESS_THAN,
LESS_THAN OR_EQUAL,
EQUAL,
NOT_EQUAL,
IN_BETWEEN,
IN_BETWEEN_ INCLUSIVE,
NOT IN BETWEEN
}
protected ThresholdType thresholdType;
protected Object firstBoundary;
protected Object secondBoundary;

public Threshold(ThresholdType thresholdType, Object firstBoundary,
Object secondBoundary){

this.thresholdType = thresholdType;
this.firstBoundary = firstBoundary;
this.secondBoundary = secondBoundary;
}
public Threshold(ThresholdType thresholdType, Object firstBoundary){
this(thresholdType, firstBoundary, null);
}
public Object getFirstBoundary(){

return firstBoundary;

142

public Object getSecondBoundary(){

return secondBoundary;

D5. Threshold Analyzer class (ThresholdAnalyzer.java):

package com.add.decisionmaking.adaptationdetector;
public class ThresholdAnalyzer{
public static boolean analyze(Threshold threshold, Object value){
double objectDoubleValue = Double.parseDouble(value.toString());

double firstBoundaryDoubleValue =
Double.parseDouble(threshold.getFirstBoundary().toString());

double secondBoundaryDoubleValue;
switch(threshold.thresholdType) {
case GREATER THAN:

return (objectDoublevValue >
firstBoundaryDoubleValue);

case GREATER THAN OR EQUAL:

return (objectDoubleValue >=
firstBoundaryDoubleValue);

case LESS_THAN:

return (objectDoubleValue <
firstBoundaryDoubleValue);

case LESS_THAN OR_EQUAL:

return (objectDoubleValue <=
firstBoundaryDoubleValue);

case EQUAL:

return (objectDoubleValue =
firstBoundaryDoubleValue);

case NOT_ EQUAL:

return (objectDoublevValue !=
firstBoundaryDoubleValue);

case IN_BETWEEN:

143

secondBoundaryDoubleValue =
Double.parseDouble(threshold.getSecondBoundary().toSt
ring());

return (objectDoublevValue > firstBoundaryDoubleValue
&& objectDoubleValue < secondBoundaryDoubleValue);

case IN_BETWEEN_ INCLUSIVE:
secondBoundaryDoubleValue =

Double.parseDouble(threshold.getSecondBoundary().toSt
ring());

return (objectDoublevValue >= firstBoundaryDoubleValue
&& objectDoubleValue <= secondBoundaryDoubleValue);

case NOT IN BETWEEN:
secondBoundaryDoubleValue =

Double.parseDouble(threshold.getSecondBoundary().toSt
ring());

return ! (objectDoubleValue > firstBoundaryDoubleValue
&& objectDoubleValue < secondBoundaryDoubleValue);

}

return false;

D6. Abstract Adaptation Detector class (AdaptationDetector.java):

package com.add.decisionmaking.adaptationdetector;

import com.add.decisionmaking.casebasedreasoning.InferenceEngine;

import com.add.monitoring.sensorfactory.SensorException;

import com.add.monitoring.sensorfactory.SensorFactory;

public abstract class AdaptationDetector extends Thread ({
private final InferenceEngine inferenceEngine;

private final SensorFactory sensorFactory;

/*x*

* Constructs a new AdaptationDetector object.

* @param inferenceEngine

* @param sensorFactory

* @throws SensorException

*/

public AdaptationDetector(InferenceEngine inferenceEngine,

sensorFactory)

throws SensorException({

this.inferenceEngine = inferenceEngine;

this.sensorFactory = sensorFactory;

this.createObservers();

this.createThresholds();

/x*
* Instantiates
*/
public abstract
/x*
* Instantiates
*/

public abstract

/*x*

sensors and observers and attach observers to the

void createObservers() throws SensorException ;

the thresholds

void createThresholds();

* Adaptation logic

*/
public abstract

/* (non-Javadoc)

void adapt();

* @see java.lang.Thread#run()

*/

public void run(

) A

144

SensorFactory

sensors

System.out.println("Adaptation Detector started");
while(true) {
this.adapt();

try {

AdaptationDetector.sleep(1000);

catch(InterruptedException e) {

System.out.println(e.getMessage());

/*x*

* Get the inferenceEngine

* @return the inferenceEngine

*/
public InferenceEngine getInferenceEngine() {
return inferenceEngine;
}
/*x*

* Get the sensorFactory

* @return the sensorFactory
*/
public SensorFactory getSensorFactory() {

return sensorFactory;

145

146

D7. Inference Engine class (InferenceEngine.java):

package com.add.decisionmaking.casebasedreasoning;
import com.add.reconfiguration.gamereconfiguration.*;

import java.util.*;

public class InferenceEngine extends Thread{

ArrayList<Trigger> triggerPool;

public FixedRules fixedRules;

AdaptationDriver adaptationDriver;

public InferenceEngine(AdaptationDriver adaptationDriver){
this.triggerPool = new ArrayList<Trigger>();
this.fixedRules = new FixedRules();
this.adaptationDriver = adaptationDriver;;

}

public void notifyTrigger(Trigger trigger){

System.out.println("Inference Engine Got Notified With A
Trigger");

this.triggerPool.add(trigger);

}

public void implementDecision(Decision decision) {
System.out.println("implement decision "+decision.getName());

this.adaptationDriver.implementDecision(decision);

}
public void run(){
while(true){

System.out.println("Inference Engine is waiting for
trigger");

System.out.println("Inference Engine triggerPool
Size="+this.triggerPool.size());

if(!this.triggerPool.isEmpty()){

System.out.println("Inference Engine got a trigger");

147

Decision decision =
this.fixedRules.getDecision(this.triggerPool.get(0));

decision.setContextualInformation(this.triggerPool.ge
t(0).getContextualInformation());

this.triggerPool.remove(0);

System.out.println("Trigger removed from pool in
inference engine");

System.out.println("Going to implement
decision"+decision.getName());

this.implementDecision(decision);

try{

Thread.sleep(1000);
}
catch(InterruptedException e){

System.out.println(e.getMessage());

D8. Decision class (Decision.java):

package com.add.decisionmaking.casebasedreasoning;
import java.util.*;
public abstract class Decision {
String name;
HashMap<String, Object> contextualInformation;
public HashMap<String, Object> subDecisions;
public Decision(String name){
this.name = name;

this.contextualInformation = new HashMap<String, Object>();

148

this.subDecisions = new HashMap<String, Object>();

public void setName(String name) {

this.name = name;

public String getName(){

return this.name;

public HashMap<String, Object> getContextualInformation()({

return contextualInformation;

public void setContextualInformation(HashMap<String, Object>
contextualInformation) {

this.contextualInformation = contextualInformation;

public Object getContextualInformation(String informationPath){

return contextualInformation.get(informationPath);

public void setContextualInformation(String informationPath, Object
value) {

this.contextualInformation.put(informationPath, value);

public Iterator<Map.Entry<String, Object>> getDecisionsIterator(){

Set<Map.Entry<String, Object>> decisionsSet =
subDecisions.entrySet();

return decisionsSet.iterator();

/*x*

* Defines and adds the decision's component effects to the subDecisions
map.

*/

public abstract void compileDecision();

149

D9. State interface (State.java):

package com.add.reconfiguration.gamereconfiguration;
public interface State {

public void makeInactive();

public void makeActive();

public int getState();

public boolean isActive();

public boolean isInactive();

D10. Driver class (Driver.java):
package com.add.reconfiguration.gamereconfiguration;
import java.lang.reflect.Array;

import java.lang.reflect.Field;

public class Driver{

State stateObject;

Object object;

public Driver(State stateObject){
this.stateObject = stateObject;

}

public void update(String attributePath, Object wvalue){
/*
while(stateObject.isInactive()){
}
while(!stateObject.isInactive()){

stateObject.makeInactive();

150

}
*/
System.out.println("State object made inactive");
object = stateObject;
Class<?> objectClass = this.object.getClass();
String[] objectPath = attributePath.split("\\.");
Field field = null;
for(int i=0; i<objectPath.length; i++){

try{

if(!isInteger(objectPath[i])){

field =
getDeclaredOrInheritedField(objectClass, objectPath[i]);

}

if (i<objectPath.length-1){
field.setAccessible(true);
this.object = field.get(this.object);

while(i<objectPath.length-2 &&
isInteger (objectPath[i+1])){

this.object =
Array.get(this.object,Integer.parseInt(objectPath[i+1]));

i++;
}
objectClass = this.object.getClass();

field.setAccessible(false);

}

catch(Exception e){
System.out.println("Exceptionl: "+e.getMessage());

e.printStackTrace();

151

String fieldName = objectPath[objectPath.length-1];

try{
if(isInteger(fieldName)){
System.out.println("Field is an index");
Array.set(this.object, Integer.parselInt(fieldName),
value);
}
else {
System.out.println("Field is an attribute");
if(field.isAccessible()){
System.out.println("Field is accessible");
field.set(this.object, value);
}
else{
System.out.println("Field is not accessible");
field.setAccessible(true);
field.set(this.object, value);
field.setAccessible(false);
System.out.println("Field value modified");
}
}
}
catch(Exception e){
System.out.println("Exception: "+e.getMessage());
}
}

public Field getDeclaredOrInheritedField(Class<?> c, String fieldName) {

try{

return c.getDeclaredField(fieldName);

152

}

catch(Exception el){

try{

return c.getField(fieldName);

}
catch(Exception e2){
return getDeclaredOrInheritedField(c.getSuperclass(),

fieldName) ;

}

public boolean isInteger(String str) {
if (str == null) {
return false;
}
int length = str.length();
if (length == 0) {
return false;

}

int i = 0;

if (str.charAt(0) == '=-') {
if (length == 1) {
return false;
}
i=1;

for (; i < length; i++) {
char ¢ = str.charAt(i);
if (¢ <= "/" || e>= ":") {

return false;

153

}

return true;

154

Appendix E: Source Code Generated by the Proof-of-

concept Automation Tool

E1. AverageScoreSensor

import com.game.designpattern.autodynamicdifficulty.monitoring.sensorfactory.*;
import
com.game.designpattern.autodynamicdifficulty.decisionmaking.adaptationdetector.

* .
r

import
com.game.designpattern.autodynamicdifficulty.decisionmaking.casebasedreasoning.

* .
r

import
com.game.designpattern.autodynamicdifficulty.reconfiguration.gamereconfiguratio

n.*;

public class AverageScoreSensor extends Sensor({

public AverageScoreSensor (Object object){
this.object = object;
this.fieldName = "AverageScoreSensor";
this.setInterval(1000);
this.setvValue(0);

}

public void refreshvalue(){

try{
int score =

(int) (((com.brackeen. javagamebook.state.ScoreManager) (((TileGameState)object).s
coreManager)) .score);

int level =
(int) (((com.brackeen. javagamebook.state.ScoreManager) (((TileGameState)object).s
coreManager)).level);

double value = score/level;
this.setValue(value);
}
catch(Exception ex){
System.out.print("Exception in Sensor:
AverageScoreSensor: "+ex.getMessage());
this.setvValue(0);

}

E2. AdaptationDetector

package
com.game.designpattern.autodynamicdifficulty.decisionmaking.adaptationdetector;

import com.game.designpattern.autodynamicdifficulty.monitoring.sensorfactory.*;

import
com.game.designpattern.autodynamicdifficulty.decisionmaking.adaptationdetector.

* o
r

155

import
com.game.designpattern.autodynamicdifficulty.decisionmaking.casebasedreasoning.
*3

import
com.game.designpattern.autodynamicdifficulty.reconfiguration.gamereconfiguratio

n.*;

public class AdaptationDetector extends Thread{

InferenceEngine inferenceEngine;

SensorFactory sensorFactory;

GenericObserver averagescoreobserverObserver;

Threshold lowaveragescorethresholdThreshold;
Threshold mediumaveragescorethresholdThreshold;

Threshold highaveragescorethresholdThreshold;

public AdaptationDetector(InferenceEngine inferenceEngine, SensorFactory
sensorFactory) {

this.inferenceEngine = inferenceEngine;
this.sensorFactory = sensorFactory;
this.createObservers();

this.createThresholds();

public void createObservers() {

averagescoreobserverObserver = new GenericObserver() ;

Sensor averagescoresensorSensor =

sensorFactory.getSensorByName ("AverageScoreSensor");

averagescoresensorSensor.addObserver (averagescoreobserverObserver) ;

156

public void createThresholds(){

lowaveragescorethresholdThreshold

new Threshold(ThresholdType.LESS_ THAN, 30);

mediumaveragescorethresholdThreshold
new Threshold(ThresholdType.IN BETWEEN_ INCLUSIVE, 30 ,60);

highaveragescorethresholdThreshold

new Threshold(ThresholdType.GREATER_THAN, 60);

public void run(){

while(true){

if (averagescoreobserverObserver.isRecentlyUpdated()) {

if (ThresholdAnalyzer.analyze(lowaveragescorethresholdThreshold,
averagescoreobserverObserver.getValue())){
System.out.println("observer value
"+averagescoreobserverObserver.value.toString()+" considered easy");
Trigger makeleveleasytriggerTrigger = new

Trigger ("makeLevelEasyTrigger");

inferenceEngine.notifyTrigger (makeleveleasytriggerTrigger);

}
}

if (averagescoreobserverObserver.isRecentlyUpdated()) {

if (ThresholdAnalyzer.analyze(mediumaveragescorethresholdThreshold,
averagescoreobserverObserver.getValue())){

System.out.println("observer value
"+averagescoreobserverObserver.value.toString()+" considered medium");
Trigger makelevelmediumtriggerTrigger = new

Trigger ("makeLevelMediumTrigger");

inferenceEngine.notifyTrigger (makelevelmediumtriggerTrigger);

}
}

if (averagescoreobserverObserver.isRecentlyUpdated()) {

if (ThresholdAnalyzer.analyze(highaveragescorethresholdThreshold,
averagescoreobserverObserver.getValue())){

157

System.out.println("observer value
"+averagescoreobserverObserver.value.toString()+" considered difficult");

Trigger makeleveldifficulttriggerTrigger = new
Trigger ("makeLevelDifficultTrigger");

inferenceEngine.notifyTrigger (makeleveldifficulttriggerTrigger);

}
}
try{

this.sleep(1000);
}

catch(InterruptedException e)

{

System.out.println("Exception in Adaptation Detector
"+e.getMessage());

E3. GamelnferenceEngine

import
com.game.designpattern.autodynamicdifficulty.decisionmaking.casebasedreasoning.

* .
r

import
com.game.designpattern.autodynamicdifficulty.reconfiguration.gamereconfiguratio

n.*;

public class GameInferenceEngine extends InferenceEngine({

AdaptationDriver adaptationDriver;

public GameInferenceEngine(AdaptationDriver adaptationDriver) {

super();

this.adaptationDriver = adaptationDriver;

158

this.fixedRules.addRule(new Rule("MakeLevelEasy", new
Trigger ("makeLevelEasyTrigger"), new MakeLevelEasyDecision()));

this.fixedRules.addRule(new Rule("MakeLevelMedium", new
Trigger ("makeLevelMediumTrigger"), new MakeLevelMediumDecision()));

this.fixedRules.addRule(new Rule("MakeLevelDifficult", new
Trigger ("makeLevelDifficultTrigger"), new MakeLevelDifficultDecision()));

public void run(){

super.run();

public void implementDecision(Decision decision) {
System.out.println("implement decision "+decision.getName());

this.adaptationDriver.implementDecision(decision);

E4. Decisions

import
com.game.designpattern.autodynamicdifficulty.reconfiguration.gamereconfiguratio

n.*;
public class MakeLevelEasyDecision extends Decisionf{

public MakeLevelEasyDecision(){

super ("MakeLevelEasyDecision");

public void compileDecision(){
subDecisions.put("scoreManager.mapDifficulty", "easy");

System.out.println("Decision MakeLevelEasyDecision is being
execute!");

}

159

import
com.game.designpattern.autodynamicdifficulty.reconfiguration.gamereconfiguratio

n.*;
public class MakeLevelMediumDecision extends Decision{

public MakeLevelMediumDecision(){

super ("MakeLevelMediumDecision");

public void compileDecision(){

subDecisions.put("scoreManager.mapDifficulty"”, "medium");
System.out.println("Decision MakeLevelMediumDecision is being
execute!");
}
}

import
com.game.designpattern.autodynamicdifficulty.reconfiguration.gamereconfiguratio

n.*;
public class MakeLevelDifficultDecision extends Decision{

public MakeLevelDifficultDecision(){

super ("MakeLevelDifficultDecision");

public void compileDecision(){

subDecisions.put("scoreManager.mapDifficulty", "difficult");

System.out.println("Decision MakeLevelDifficultDecision is being
execute!");

}

160

Curriculum Vitae

Name: Muhammad Iftekher Chowdhury

Post-secondary North South University
Education and Dhaka, Bangladesh
Degrees: 2003 - 2006 BS

The University of Western Ontario
London, Ontario, Canada
2008 - 2009 MS

The University of Western Ontario
London, Ontario, Canada
2010 - 2014 Ph.D.

Honors and Western Graduate Research Scholarship
Awards: 2008 - 2009, 2010 - 2012
Related Work Game Developer
Experience Infrablue Technology
2004 - 2004

Software Development Engineer
Amazon
2013-2014

Publications:

M. I. Chowdhury and M. Katchabaw, "Software Design Patterns for Enabling Auto
Dynamic Difficulty in Video Games," in 17t International Conference on Computer
Games (CGAMES’12), Louisville, Kentucky, USA, pp. 76-80, 2012.

M. I. Chowdhury and M. Katchabaw, "Improving software quality through design
patterns : a case study of adaptive games and auto dynamic difficulty,” in Game-ON
2012,2012.

M. I. Chowdhury and M. Katchabaw, "A Software Design Pattern Based Approach to
Adaptive Video Games," in 5t International Conference on Adaptive and Self-
Adaptive Systems and Applications (ADAPTIVE 2013), pp. 40-47, 2013.

M. I. Chowdhury and M. Katchabaw, "Bringing auto dynamic difficulty to commercial
games: A reusable design pattern based approach,” in 18t International Computer
Games (CGames'13), Louisville, KY, USA, pp. 103-110, 2013.

	A Software Design Pattern Based Approach to Auto Dynamic Difficulty in Video Games
	Recommended Citation

	Microsoft Word - Iftekher_PhD_Monograph_v2.4.docx

