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Abstract

When an algebra is endowed with the additional structure of an action or a grading,

one can often make striking conclusions about the algebra based on the properties of the

structure-induced subspaces. For example, if A is an associative G-graded algebra such

that the homogeneous component A1 satisfies an identity of degree d, then Bergen and

Cohen showed that A is itself a PI-algebra. Bahturin, Giambruno and Riley later used

combinatorial methods to show that the degree of the identity satisfied by A is bounded

above by a function of d and |G|. Utilizing a similar approach, we prove an analogue of

this result which applies to associative algebras whose induced Lie or Jordan algebras are

G-graded.

Group-gradings and actions by a group of automorphisms are examples of Hopf alge-

bras acting on H-algebras. If H is finite-dimensional, semisimple, commutative, and splits

over its base field, then it is known that A is an H-algebra precisely when the H-action on

A induces a certain group-grading of A. We extend this duality to incorporate other natural

H-actions. To this end, we introduce the notion of an oriented H-algebra. For example, if

A has an action by a group of both automorphisms and anti-automorphisms, then A is not

an H-algebra, but A is an oriented H-algebra. The vector space gradings associated to ori-

ented H-algebra actions are not generally group-gradings, or even set-gradings. However,

when A is a Lie algebra, the grading is a quasigroup-grading, and, when A is an associative

algebra, the grading is what we call a Lie-Jordan-grading.

Lastly, we call certain H-polynomials in the free associative H-algebra essential, and

show that, if an (associative) H-algebra A satisfies an essential H-identity of degree d, then

A satisfies an ordinary identity of bounded degree. Furthermore, in the case when H is

m-dimensional. semisimple and commutative, we prove that, if AH satisfies an ordinary

identity of degree d, then A satisfies an essential H-identity of degree dm. From this we are

able to recover several well-known results as special cases.

Keywords: Noncommutative Algebra, Polynomial Identity Algebras, Hopf Algebras,

Graded Algebras, Anti-automorphisms.
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Chapter 1

Introduction

In order to study the properties of an algebra A, we sometimes endow A with some addi-

tional structure; in this thesis, this structure usually takes the form of a prescribed action

or a grading. Once this is done, properties of A can sometimes be determined based on

the properties of the structure-induced subspaces of A. This tactic has proven especially

effective in polynomial identity theory. For example, if an associative algebra is graded by

a finite group, then it will satisfy a polynomial identity whenever the homogeneous iden-

tity component of the grading does. Similarly, if an associative algebra has an action by

automorphisms, then it will satisfy a polynomial identity whenever the subspace of fixed

points does. Recently, combinatorial techniques have been utilized in order to find quan-

titative versions of these classic theorems. One of our major goals in this thesis is to use

combinatorial methods to formulate several new quantitative theorems which encapsulate

a wider range of both actions and gradings on algebras.

This type of additional structure can often be formalized as the action of a finite-

dimensional Hopf algebra. In fact, a powerful duality between Hopf algebra actions and

group-gradings has long acted as a bridge between the theory of graded algebras and the

study of actions. This duality has been known to have deep implications in several areas of

mathematics, including polynomial identity theory. Another major goal in this thesis is to

extend this duality to incorporate other naturally occurring Hopf algebra actions, and as a

1



2 Chapter 1. Introduction

consequence, various new types of gradings.

More specifically, an algebra A is said to satisfy a polynomial identity if there is a

(nonzero) polynomial in noncommuting variables which evaluates to zero upon the substi-

tution from any elements of A (in this case, we say that A is a PI-algebra). For example,

any commutative algebra satisfies the polynomial identity x1x2 − x2x1 = 0, any nilpotent

algebra satisfies the identity x1 · · · xn = 0, for some n > 0, and one may also show that

any finite-dimensional algebra is a PI-algebra. The interest in polynomial identity theory

resides in the fact that, although demonstratively larger than the classes of commutative and

finite-dimensional algebras, the class of PI-algebras still enjoys many nice structural prop-

erties; further, PI-algebras have been instrumental in the resolution of several important

mathematical problems (see Section 2.1 for more details).

Questions in polynomial identity theory typically focus on either structure theory, or

the study of the identities that an algebra satisfies. In this thesis, we are interested in the

combinatorial study of identities. For example, consider the following result of Bergen and

Cohen ([BC]): if A is an associative algebra which is graded by a finite group G, then A

satisfies a polynomial identity whenever the identity component A1 does. The proof of this

result used a structure theory approach, and no general information on the degree of the

identity was obtained. However, utilizing a combinatorial approach, Bahturin, Giambruno

and Riley ([BGR]) were able to formulate a quantitative version of this result, showing

that the degree of the identity satisfied by A is bounded by an explicit function depending

only on |G| and the degree of the identity satisfied by A1. Our first major result utilizes a

similar approach to show that an associative algebra A whose induced Lie or Jordan algebra

is group-graded satisfies a polynomial identity of explicitly bounded degree whenever the

identity component of this grading does.

The motivating example of an algebra whose induced Lie or Jordan algebra is group-

graded (we call such a grading a Lie-group-grading or Jordan-group-grading, respectively)

is an associative algebra with an action by an involution. Recall that an involution is an

anti-automorphism of order 2; for instance, the transpose map the matrix algebra Mn(K) is
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an involution. If A is any algebra with involution, then (as we will see) A is Lie-Z2-graded

and Jordan-Z2-graded; moreover, the identity component of the Lie-group-grading is the

subspace of skew-symmetric elements, and the identity component of the Jordan-group-

grading is the subspace of symmetric elements. Therefore, as a corollary to our first major

result, we obtain a quantitative version of the following classic result of Amitsur [Am1]:

an associative algebra which admits an involution satisfies a polynomial identity whenever

the symmetric or skew-symmetric elements satisfy an identity.

As it happens, there is an extensive relationship between actions and gradings on alge-

bras. The precise nature of this relationship is rather deep and delicate, although certain

aspects of it have been long known. For instance, in certain cases, actions by automor-

phisms on an algebra are equivalent to group-gradings. The origin of this well-known and

powerful duality is difficult to pinpoint; it was noticed in [BI] and [Pa2], but was likely

known earlier (appearing in Cartier duals, for instance). Similarly, a duality between ac-

tions by derivations and group-gradings, which is also well-known, appears in [BK] but

can be deduced from earlier results. Both of these dualities may be formalized as exam-

ples of a (more general) duality between actions of finite-dimensional Hopf algebras and

group-gradings, as was demonstrated by Bergen and Cohen in [BC].

There are actions of interest not included in this duality, however. For instance, as evi-

denced by the above mentioned theorem of Amitsur, an action by a group of automorphisms

and anti-automorphisms is an interesting piece of additional structure in polynomial iden-

tity theory. Unfortunately, such an action cannot be recognized as an (ordinary) Hopf alge-

bra action. For our second major result, we extend the duality appearing in [BC] to incor-

porate more general Hopf actions and gradings, including actions by anti-automorphisms

and anti-derivations. To accomplish this, we first introduce the notion of an oriented Hopf

algebra action. Subsequently, we demonstrate that every oriented Hopf action on A induces

a vector space decomposition which is a quasigroup-grading when A is a Lie algebra and a

Lie-Jordan-grading when A is an associative algebra.

Our last objective is to show how to take an all-encompassing Hopf algebra approach to
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polynomial identities. The so-called polynomial H-identities of an algebra with the action

of a Hopf algebra have been previously considered (for instance, [BL]). We study a type of

identity called an essential H-identity, and as a consequence, we are able to encapsulate and

generalize several theorems from polynomial identity theory, including the aforementioned

theorems of Bahturin, Giambruno and Riley and Amitsur.

The thesis is organized as follows. In Chapter 2, we provide background information

about polynomial identity theory and graded algebras. We outline some of the historical,

and some of the more recent, results from polynomial identity theory so as to place the

subsequent matter appropriately within the literature. In Chapter 3, we prove our new result

on Lie-group-gradings and Jordan-group-gradings of associative algebras. In Chapter 4, we

review the existing duality of Hopf algebra actions and group-gradings, and subsequently

show how to extend this duality. In Chapter 5, we describe a unified Hopf algebra approach

to the study of polynomial identities. In Chapter 6, we explicitly describe our results as they

apply to the two main predominant examples of (finite-dimensional) Hopf algebra actions:

the group algebra and the restricted universal enveloping algebra of a restricted Lie algebra.

Finally, in Chapter 7, we provide some applications and mention a few open problems.

This thesis will attempt to be (mostly) self-contained, however, we assume that the

reader is familiar with basic concepts of graduate algebra; namely, the elementary proper-

ties of vector spaces, groups, modules, algebras, character theory, and tensor products. The

necessary background information can be found in [Ja2] and [Ja4], or [Ro2] for instance.

Fixed Notation

The following notation will be fixed throughout the thesis, except if explicitly stated other-

wise.

• K will always denote an arbitrary field of characteristic p ≥ 0, and all vector spaces,

tensor products, algebras, and Hopf algebras are assumed to be over K.

• A will always denote a (nonassociative) algebra.
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• G will always denote a finite group.

• g will always denote a finite-dimensional restricted Lie algebra.

• S n will always denote the symmetric group on n elements.

• Actions on algebras will be frequently denoted with exponential notation; for in-

stance, if a group G acts on an algebra A, then we write ag := g(a).

• We shall denote by Aut(A) the group of all automorphisms on an algebra A, contained

in Aut∗(A), the group of all automorphisms and anti-automorphisms on A (note that

we do not allow anti-automorphisms to be automorphisms).

• We shall denote by Der(A) the restricted Lie algebra of all derivations on an algebra

A (over a field of positive characteristic), contained in Der∗(A), the restricted Lie

algebra of all derivations and anti-derivations an algebra A (note that we do not allow

anti-derivations to be derivations).



Chapter 2

Polynomial Identities and Graded

Algebras

This chapter is meant to provide the reader with an introduction into polynomial identity

theory, and to provide much of the necessary background information that will be needed in

the sequel. In the first section, we provide a brief historical account of some of the classical

results from polynomial identity theory. In the second section, we discuss group-graded

algebras, and we define some other types of gradings that are perhaps more general than

the reader is accustomed to. In the third section, we discuss two classic results of Amitsur

which serve as an impetus for much of what follows in the thesis. We conclude this chapter

with a brief introduction to the combinatorial approach in polynomial identity theory, and

we describe some key results which will be addressed in later chapters.

We take a moment to acknowledge that the results presented here are by no means a

complete account of the theory; many of the interesting and important aspects of polyno-

mial identity theory which are not presently needed have been omitted. For more complete

accounts, the interested reader should refer to [Ja3] and [Ro1] for a general reference on

polynomial identity theory, or [DF] and [GZ] for a reference more specific to our current

cause.

6



2.1. Polynomial Identity Theory 7

2.1 Polynomial Identity Theory

In this section, all algebras are assumed to be associative. The theory of polynomial identi-

ties began to take shape in 1948 with an influential paper of Kaplansky ([Ka1]). Previously,

while attempting to classify certain projective geometries, M. Hall (who was following the

earlier work of Dehn ([De]) and Wagner ([Wa])) showed that a division algebra D with the

property that

(xy − yx)2z − z(xy − yx)2 = 0, for all x, y, z ∈ D,

is finite-dimensional over its center ([Ha]). Kaplansky recognized that the precise nature

of the relation that D satisfied (he called such a relation a polynomial identity) was in-

consequential, and in fact a division algebra satisfying any polynomial identity is finite-

dimensional over its center. Consequently, it was evident that satisfying a polynomial iden-

tity was an important property for an algebra to have, and Kaplansky’s theorem (which we

state shortly) became the starting point for the branch of algebra now called polynomial

identity theory.

Formally, if X = {x1, x2, . . .} is a countable set, then we let A〈X〉 denote the free asso-

ciative K-algebra on the generators X. Recall thatA〈X〉 has a basis consisting of all words

xi1 · · · xin , where xi j ∈ X, n ∈ N, and multiplication is defined by juxtaposition:

(xi1 · · · xin)(x j1 · · · x jm) = xi1 · · · xin x j1 · · · x jm .

The elements of A〈X〉 are called polynomials, and we often write a polynomial f ∈

A〈X〉 as f (x1, . . . , xn) to point out that x1, . . . , xn are the indeterminates appearing in f .

The degree of a polynomial, written deg( f ), is defined as the total degree of f ; that is, if we

define the degree of a monomial by deg(xm1
i1
· · · xmn

in
) =

∑n
i=1 mi, then deg( f ) is the maximum

degree of a monomial appearing in f .

The algebra A〈X〉 has the following universal property: if A is an associative algebra,

then any set-theoretic map ϕ : X → A completes uniquely to an algebra homomorphism

ϕ̄ : A〈X〉 → A. We define polynomial identities as follows.



8 Chapter 2. Polynomial Identities and Graded Algebras

Definition 2.1.1. Let X = {x1, x2, . . .} , let f (x1, . . . , xn) ∈ A〈X〉, and let A be an associative

algebra.

1. If f (a1, . . . , an) = 0, for all a1, . . . , an ∈ A, then f is called a polynomial identity of

A.

2. If A satisfies any nonzero polynomial identity, then A is called a polynomial identity

algebra (or a PI-algebra).

3. The set of polynomial identities of A is denoted by Id(A).

Clearly, Id(A) is an ideal of A〈X〉, and furthermore, Id(A) is invariant under the endo-

morphisms ofA〈X〉. If a polynomial has the form:∑
σ∈S n

ασxσ(1) · · · xσ(n), ασ ∈ K,

then it is called a multilinear polynomial. It is well-known, and not too difficult to show,

that an algebra over any field which satisfies a polynomial identity of degree n also satisfies

a multilinear polynomial identity of degree n. Further, over fields of characteristic 0, all the

polynomial identities of an algebra are generated by the multilinear polynomial identities.

Therefore, in many situations, we may restrict ourselves to the study of multilinear poly-

nomials. For a more complete description of the multilinearization process, the reader may

consult the monograph [GZ].

To get a better sense of the class of PI-algebras, we consider several preliminary ex-

amples. First, observe that every commutative algebra is a PI-algebra since [x1, x2] =

x1x2 − x2x1 is a polynomial identity. Less obvious, but not difficult to see, is that every

finite-dimensional algebra A satisfies the identity∑
σ∈S n

sign(σ)xσ(1) · · · xσ(n),

whenever n > dim(A) (this particular identity is called the standard identity of degree n).

Thus, the matrix algebra Mn(K) satisfies the standard identity of degree n2 + 1. Other ex-

amples of PI-algebras include nilpotent algebras (by definition), and the Grassman algebra.
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Problems in polynomial identity are usually approached using either structure theory or

certain combinatorial techniques. The aforementioned theorem of Kaplansky, which is still

considered one of the most important results in polynomial identity theory, gives us insight

into the structural properties of PI-algebras.

Theorem 2.1.2 (Kaplansky, 1948). Every primitive algebra satisfying a polynomial iden-

tity is finite-dimensional over its center.

Other important structure theorems emerged in the ensuing years, notably, Posner’s

Theorem ([Po]) and Artin’s Theorem ([Ar]). Without getting into detail, we mention that

all of these major theorems lend towards a common theme: an algebra which satisfies

a polynomial identity (and some other hypotheses) has a relatively large center. In this

thesis, we refrain from the structural aspect of PI-algebras, so that we may focus on the

(more recent) combinatorial approach.

This combinatorial approach in polynomial identity theory is rooted in the study of the

identities that an algebra satisfies. Given a concrete algebra A, it is generally a very hard

problem to determine a set of generators of Id(A). In fact, this question is unknown even for

Mn(K) with n ≥ 3. The most famous related problem is the Specht problem ([Sp]), which

asks: If A is a PI-algebra, then does Id(A) always have a finite generating set? We briefly

mention that a positive solution for associative algebras over fields of characteristic 0 was

obtained by Kemer in 1987 (see [Ke]), and infinitely-generated counterexamples have been

found for fields of positive characteristic (for a full exposition of the topic, see [BRV]).

Our interest involves quantitative questions regarding the minimal degree of an identity

which an algebra satisfies. For instance, we already know that the matrix algebra Mn(K)

satisfies an identity of degree n2 + 1, but we wish to know if it satisfies any identities of a

lower degree. The famous Amitsur-Levitzki theorem ([AL]) provides us the answer.

Theorem 2.1.3 (Amitsur-Levitzki, 1950). The standard identity of degree 2n given by∑
σ∈S 2n

sign(σ)xσ(1) · · · xσ(2n),

is a polynomial identity for Mn(K) of minimal degree.
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In some sense, PI-algebras which satisfy smaller degree polynomials can be thought

of as being closer to commutative algebras, and so once we ascertain that an algebra (or a

class of algebras) satisfies a polynomial identity, we then seek the lowest degree identity

that A satisfies; failing this, we try to find an upper bound on this degree. Combinatorial

techniques have proven especially useful in this regard, and we will discuss some results of

this nature at the end of this chapter.

For now, we conclude our brief history by mentioning some of the predominant ap-

plications of polynomial identity theory. Aside from being extensively researched in their

own right, PI-algebras have proven a critical tool in several major developments, perhaps

most notably appearing in Zelmanov’s solution of the Restricted Burnside Problem (see

[Ze1], [Ze2]). Recall that the Restricted Burnside Problem asks: Are there only finitely

many groups (up to isomorphism) of exponent n generated by m elements? After major

reductions by P. Hall and Higman ([HH]), Zelmanov successfully solved this problem in

the affirmative by transferring it to a question involving the identities of Lie algebras. For

this, he was awarded the Fields Medal in 1994. Along a similar line, we recall the famous

Kurosh ([Ku]) problem (which is a ring-theoretic analogue of the Burnside problem): Let

A be a finitely generated associative algebra such that every element of A is algebraic. Is

A finite-dimensional? If A is nil, is it nilpotent? In 1946, Levitzki ([Le]) solved the nil

question under the additional assumption that A was a PI-algebra, and in 1950, Kaplansky

([Ka2]) solved the general question for PI-algebras. However, in 1960, Golod ([Go]) con-

structed an example of a finitely generated nil algebra that is infinite-dimensional and not

nilpotent. More information on the Kurosh problem can be found in the book by Hernstein

[He] or in [DF].

2.2 Graded Algebras

When an algebra is endowed with the additional structure of a grading by a finite group,

then the identity component of the grading retains a surprising amount of information about
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the algebra. In particular, in several cases, we can deduce that an algebra is a PI-algebra

as soon as the identity component satisfies an identity. Before we discuss this, we take a

minute to introduce the basic concept of a graded algebra, and we offer various refinements

of this notion that will be used in the sequel.

In the most general sense, an algebra with a vector space decomposition such that the

product of homogeneous components is again homogeneous is called a graded algebra.

Most commonly, the indexing set is taken to be a group, however, we shall consider al-

gebras which are graded over more general group-like structures. The most traditional

definition of a group-graded algebra is as follows.

Definition 2.2.1. Let G be a group and let A be a nonassociative algebra with a vector

space decomposition given by

Γ : A =
⊕
g∈G

Ag.

If AgAh ⊆ Agh, for all g, h ∈ G, then A is said to be a G-graded algebra and Γ is called a

G-grading of A.

Clearly, the identity component, A1, of a group-graded algebra is a subalgebra of A. An

obvious example of an algebra that is naturally group-graded is a group algebra.

Example 2.2.2. Let K be a field, let G be any group, and denote by KG the group algebra

of G over K. Recall that KG is the set of formal linear combinations of G with coefficients

in K, where multiplication is induced by the group operation. It is clear that KG has a

vector space decomposition given by

KG =
⊕
g∈G

Kg,

and since KgKh ⊆ Kgh, for all g, h ∈ G, this decomposition is a G-grading of KG.

It has been determined precisely when a group algebra is a PI-algebras (see [Pa1]).

To further illustrate the idea PI-algebras generally have large centers, we mention that (in

characteristic 0) it is necessary and sufficient that the group have an abelian subgroup of
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finite index. In the future, we are interested in the manner in which group algebras act on

algebras, hence we are only interested in group algebras over finite groups.

For any algebra A which is graded by a group G, if N is a normal subgroup of G then

it is possible to grade A by the group G/N; in this case, the homogeneous components are

sums of the G-graded components with index belonging to a given coset.

Example 2.2.3. If A =
⊕

g∈G Ag is a G-graded algebra, and N EG is a normal subgroup,

then A can be endowed with the group-grading

A =
⊕
x∈G/N

Ax, where Ax =
⊕

g∈x

Ag,

for each coset x ∈ G/N.

The following theorem demonstrates how we may use the additional structure that a

group-grading offers in polynomial identity theory. Bergen and Cohen deduced the fol-

lowing theorem in [BC] from a theorem of Montgomery and Smith ([MS]). The proof

of Theorem 2.2.4 is based on structure theory, and no general bound on the degree of the

identity was disclosed.

Theorem 2.2.4 (Bergen and Cohen, 1986). Let G be a finite group, and let A =
⊕

g∈G Ag

be a group-graded associative algebra. If the identity component A1 satisfies a polynomial

identity, then A is a PI-algebra.

We remark that that if A is a Lie algebra, then the analogous result was proved by

Bahturin and Zaicev in [BZ], also without a bound on the degree of the identity.

It seems surprising (at first) that a single homogeneous component could determine

important properties of an entire algebra, but when an algebra is group-graded, the identity

component is somehow special in this regard. As an illustration, suppose that G is a finite

group and that A =
⊕

g∈G Ag is an associative G-graded algebra such that A1 = 0. Then,

by using the following general lemma about groups (which was proved in [BGR]), we can

show that A must be nilpotent of degree |G|.
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Lemma 2.2.5. If G is a finite group, then any fixed word w = g1g2 · · · g|G|d in G contains a

product of d consecutive subwords each with trivial evaluation.

Indeed, in the above scenario, we can use Lemma 2.2.5 to deduce that any product of

homogeneous elements in A of length |G| contains a subword contained in A1 = 0; hence

A|G| = 0. Along a similar line, if we suppose instead that the identity component satisfies

(A1)m = 0, then we can infer that A|G|m = 0.

If we consider group-gradings over infinite groups, we cannot make similar conclu-

sions. For instance, the free associative algebraA〈X〉 has a Z-grading given by

A〈X〉 =
⊕
n∈Z

A〈X〉n,

where A〈X〉n = { f ∈ A〈X〉| deg( f ) = n}, if n ≥ 0, and A〈X〉n = 0, if n < 0. It is clear

thatA〈X〉0 = K satisfies a polynomial identity, butA〈X〉 is not a PI-algebra. In particular,

Theorem 2.2.4 does not extend to infinite groups.

We will also consider algebras which are graded over other group-like structures (the

reader is referred to Appendix A for definitions of the various group-like structures). We

now offer various refinements of Definition 2.2.1.

Definition 2.2.6. Let S be a set and let A be an algebra with a vector space decomposition

Γ : A =
⊕

s∈S

As.

1. Suppose that S is a magma (that is, a set with a binary operation). Then, whenever

As1 As2 ⊆ As1 s2 , for all s1, s2 ∈ S , Γ is called a magma-grading. If S happens to

be a group (respectively, semigroup, quasigroup, etc.), then we also say that Γ is a

group-grading (respectively, semigroup-grading, quasigroup-grading, etc.).

2. If S is just a set with the property that whenever, for every s1, s2 ∈ S , either As1 As2 = 0

or there exists a (unique) s3 ∈ S such that As1 As2 ⊆ As3 , then Γ is called a set-grading.

In this case, we denote the partially defined binary operation on the support of Γ (that

is, {s ∈ S | As , 0}) by s1 · s2 = s3. If G is a magma and there exists an embedding
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(S , ·) → G, then the magma-grading A =
⊕

g∈G Ag, where Ag = 0, for all g < S , is

called a realization of Γ as a magma-grading.

For example, we could have referred to the decomposition A〈X〉 =
⊕

n∈ZA〈X〉n as a

realization of the semigroup-grading
⊕

n∈NA〈X〉n as a group-grading. A question of in-

terest is whether or not all gradings on certain algebras can be realized as a certain type

of grading. If A is an associative algebra, then the associativity of A assures that every

set-grading can be realized as a semigroup-grading. If A is not associative, then the sit-

uation is less clear. In 1989, Patera and Zassenhaus claimed that all set-gradings of Lie

algebras can be realized as semigroup-gradings ([PZ]). However, Elduque discovered a

counterexample in [El1]. Consequently, gradings of Lie algebras which cannot be real-

ized as semigroup-gradings have become a topic of interest (see [EK] for more details). In

Chapter 7 we further discuss this topic. For now, we conclude this section with an example

of a semigroup-grading that is not realizable as a group-grading.

Example 2.2.7. Let n ≥ 2, and consider the following vector space decomposition of

Mn(K):

Γ : Mn(K) =
⊕

1≤i, j≤n

Ei, j,

where Ei, j is the span of the matrix unit ei, j, which has a 1 in the (i, j)-component and

0’s elsewhere. Notice that Γ is a set-grading of Mn(K) since ei, jek,l = ei,l, if j = k, and

ei, jek,l = 0, if j , k.

Let S = {ei, j| 1 ≤ i, j ≤ n} and denote by (·) the partially defined binary operation on S

induced by Γ. We define S̄ = S ∪ {0}, and we extend (·) onto S̄ via:

• ei, j · 0 = 0 · ei, j = 0, for all ei, j ∈ S ;

• 0 · 0 = 0;

• ei, j · ek,l = 0, whenever ei, j · ek,l is not defined (in other words, j , k).

Then (S̄ , ·) is a magma, and further, (·) is an associative operation on S̄ , and so (S̄ , ·) is
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a semigroup. Thus, Γ is realized as a semigroup-grading via

Mn(K) =
⊕

s∈S̄

As

where As = Ei, j, if s = ei, j and As = 0 if s = 0. Further, observe that Γ cannot be realized

as a group-grading. Indeed, since ei,i · ei,i = ei,i, for all i, it follows that any embedding will

result in at least two idempotents, but a group may only have one idempotent.

2.3 Amitsur’s Theorems on Algebras with an Involution

We saw in the previous section how a group-graded structure can be utilized to determine

certain properties of an algebra. If an associative algebra A comes endowed with another bit

of additional structure in the form of an action by an involution, then two celebrated results

of Amitsur allow us to make similar conclusions. Recall that an involution is a linear map

∗ : A→ A such that (ab)∗ = b∗a∗ and (a∗)∗ = a. Whenever an algebra admits an involution,

we can define the following two subspaces:

• S = {a ∈ A| a∗ = a}, called the symmetric elements of A, and

• K = {a ∈ A| a∗ = −a}, called the skew-symmetric elements of A.

Amitsur proved ([Am1]) that if an associative algebra A admits an involution, then A is a

PI-algebra whenever either S or K satisfy a polynomial identity. Note that S and K are

not necessarily subalgebras of A.

Theorem 2.3.1 (Amitsur, 1968). Let A be an associative algebra with an involution. If the

subspace of symmetric elements or skew-symmetric elements of A satisfies a polynomial

identity, then A is a PI-algebra.

There are many algebras that naturally admit involutions, for instance, the transpose

map is an involution on Mn(K). In this case, S and K are the usual symmetric and skew-

symmetric matrices, respectively. Also, notice that for any Lie algebra L, there is an invo-

lution ∗ given by x∗ = −x, for all x ∈ L. In this case, S = 0 and K = L, and thus Amitsur’s
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theorem does not extend to nonassociative algebras. In general, determining exactly when

an algebra admits an involution can be a difficult question, even when the algebra is known

to admit an anti-automorphism of greater order (for instance, see [Le]).

Amitsur soon generalized Theorem 2.3.1 by considering a more general type of identity

on A. If we set X∗ = {x1, x∗1, x2, x∗2, . . .}, then notice thatA〈X∗〉 has a natural involution. The

elements of A〈X∗〉 are called ∗-polynomials, and ∗-identities on an associative algebra A

with involution are defined in a natural way: f (x1, x∗1, . . . , xn, x∗n) ∈ A〈X∗〉 is a ∗-identity of

A if f (a1, a∗1, . . . , an, a∗n) = 0, for any a1, . . . , an ∈ A. The following appears in [Am2].

Theorem 2.3.2 (Amitsur, 1969). Let A be an associative algebra with an involution. If A

satisfies a ∗-identity, then A is a PI-algebra.

This generalizes Theorem 2.3.1 since, if the symmetric elements satisfy the polynomial

identity f (x1, . . . , xn), then A satisfies the ∗-identity f (x1 + x∗1, . . . , xn + x∗n); similarly, if the

skew-symmetric elements satisfy the polynomial identity f (x1, . . . , xn), then A satisfies the

∗-identity f (x1 − x∗1, . . . , xn − x∗n). Amitsur used structure theory to prove his theorem, and

similar to Theorem 2.2.4 no bound on the degree of the identity satisfied was given. In

order to find bounded versions of these theorems, the incorporation of new combinatorial

techniques was required, which we will review next.

2.4 A Combinatorial Approach to Polynomial Identity The-

ory

We conclude this background chapter by giving a brief discussion of the combinatorial

approach that has been employed in recent years to attain quantitative versions of Theorem

2.2.4 and Theorem 2.3.2. In later chapters, we will utilize a similar approach to formulate

some new results; consequently, in this section, we only give a brief preview, sparing the

details for later.

The key ingredient used is the so-called codimension sequence of an algebra. This
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numerical sequence is used to prove that an algebra is a PI-algebra. We denote by

Pn = span{xσ(1) · · · xσ(n)|σ ∈ S n},

the subspace of A〈X〉 consisting of all multilinear polynomials in the variables x1, . . . , xn.

Clearly, dim Pn = n!. The multilinear identities of a PI-algebra A belong to the spaces

Pn∩Id(A), and if A satisfies an identity of degree n, then dim(Pn∩Id(A)) < dim(Pm∩Id(A)),

for all n < m. By analyzing the sequence of dimensions of Pn ∩ Id(A), we can get a sense

of the growth of the polynomial identities of A. For technical reasons, it is more convenient

to consider the sequences of codimensions of A.

Definition 2.4.1. Let A be an associative algebra, and let A〈X〉 be the free associative

algebra on X = {x1, x2, . . .}. The number

cn(A) = dim
Pn

Pn ∩ Id(A)

is called the nth-codimension of A.

The following easy fact is important enough that we state it explicitly.

Remark 2.4.2. An algebra A satisfies an identity of degree n ≥ 1 if and only if cn(A) < n!.

The exact codimensions are explicitly known for very few algebras; here we only study

the asymptotic behaviour of this sequence. It is worth noting that, for any PI-algebra A,

the codimension sequence is invariant under extensions of the base field K, since we only

consider multilinear polynomial identities.

The codimension sequence was first utilized by Regev in [Re1] when he proved that the

tensor product of two PI-algebras is a PI-algebra (notably, Latyshev ([La]) later provided

some modifications and simplified proofs). This was proved by demonstrating that if A

satisfies an identity of degree d, then cn(A) ≤ (d − 1)2n, for any integers 2 ≤ d ≤ n. In other

words, the codimension sequence of a PI-algebra is exponentially bounded. The method to

find this bound involved partitioning the monomials of Pn into two sets called ‘d-good’ and

‘d-bad’ monomials. In [Re1], Regev established an upper bound on the number of such



18 Chapter 2. Polynomial Identities and Graded Algebras

monomials; in [Re2] this bound was sharpened to (d−1)2n

(d−1)! . By showing that Pn is spanned by

only the d-good monomials (modulo Id(A)), the proof was completed. A similar approach

was taken by Bahturin, Giambruno and Riley when they gave the following quantitative

version of Theorem 2.2.4 in [BGR] .

Theorem 2.4.3 (The Bahturin-Giambruno-Riley Theorem). If G is a finite group, A =⊕
g∈G Ag is a group-graded associative algebra, and A1 satisfies a polynomial identity of

degree d, then A satisfies a polynomial identity of degree de|G|(d|G| − 1)2e (where e is the

base of natural logarithms and dxe is the least integer greater than or equal to x).

In the ensuing chapter, we will offer both a Lie and Jordan analogue of this theorem.

Around the same time, Bahturin, Giambruno and Zaicev in [BGZ] gave the first quan-

titative version of Amitsur’s Theorem 2.3.2. In the same way that Amitsur considered

∗-identities on an algebra A with involution, we can consider the following more general

construction. Let G be a finite group which embeds into Aut∗(A), the group of all automor-

phisms and anti-automorphisms on A. Let XG = {xg
i | i ∈ Z

+, g ∈ G}, and call A〈XG〉 the

free associative algebra with G-action. Notice that G acts on A〈XG〉 in a natural way via

(xg1)g2 = xg2g1 , and this action extends to monomials by (vw)g = vgwg, if g ∈ Aut(A), and

(vw)g = wgvg, if g ∈ Aut∗(A)/ Aut(A). The elements of A〈XG〉 are called G-polynomials,

and if a G-polynomial f (xg1
i1
, . . . , xgn

in
) has the property that f (ag1

1 , . . . , a
gn
n ) = 0, for all

a1, . . . , an ∈ A, then f is called a G-identity. Bahturin, Giambruno, and Zaicev consid-

ered a special type of G-identity.

Definition 2.4.4. A G-polynomial is called essential if it is of the form

x1
1 · · · x

1
d −

∑
1,σ∈S d ,

g∈Gd

ασ,gxg1
σ(1) · · · x

gd
σ(d).

They proved the following theorem.

Theorem 2.4.5 (The Bahturin-Giambruno-Zaicev Theorem). Let A be an associative al-

gebra, and suppose that G is a finite subgroup that embeds into Aut∗(A). If A satisfies an
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essential G-identity of degree d, then A satisfies an ordinary polynomial identity of degree

bounded by a function of d and |G|.

The precise (and complicated) nature of the function can be found in the original paper.

We conclude this section by taking a moment to observe how the Bahturin-Giambruno-

Zaicev Theorem improved Amitsur’s Theorem 2.3.2 (using an argument found in [BGZ]).

First, notice that a ∗-identity on an algebra with involution is just a G-identity with G =

{1, ∗}. Now, if we suppose that A is an algebra with involution which satisfies a multilinear

∗-identity, then by multilinearizing, we can write this identity in the form

∑
g∈Gn

αgxg1
1 · · · x

gn
n +

∑
1,σ∈S n,

h∈Gn

βσ,hxh1
σ(1) · · · x

hn
σ(n).

Further, we may assume that α(1,...,1) , 0, since otherwise we may replace our identity with

an identity of this form. Now, for each indeterminate x1, . . . , xn, we substitute xi with the

indeterminate y2i−1y2i to obtain a multilinear G-identity of degree 2n. Since α(1,...,1) , 0, this

identity can be written as

y1 · · · y2d +
∑

1,σ∈S 2n,
g∈G2n

γσ,gyg1
σ(1) · · · y

g2n
σ(2n),

which is an essential G-identity. Hence, Amitsur’s Theorem 2.3.2 follows. It is worth

noting that Bahturin, Sehgal and Zaicev offered similar results for certain nonassociative

(including Lie) algebras in [BSZ].



Chapter 3

Lie-Group-Graded and

Jordan-Group-Graded Associative

Algebras

An algebra will sometimes admit a natural vector space decomposition that is not a group-

grading (or even a set-grading), but can nevertheless be used to determine important prop-

erties of the algebra. In this chapter, our goal is demonstrate that any associative algebra

whose induced Lie or Jordan algebra is group-graded satisfies a polynomial identity of

bounded degree whenever the identity component of the grading satisfies a polynomial

identity. For instance, any associative algebra with an involution can be naturally decom-

posed in such a way that the induced Lie and Jordan algebras are group-graded; hence, we

will obtain, as a special case, Amitsur’s Theorem 2.3.1. To this end, we assume throughout

this chapter that A is an associative algebra and G is a finite group. Also,

• A(−) will henceforth denote the Lie algebra induced by A via the bracket operation

[a, b] = ab − ba; and,

• A(+) will henceforth denote the Jordan algebra induced by A via the circle operation

a ◦ b = ab + ba.

20
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For a reminder of the defining properties of Lie and Jordan algebras, the reader may consult

Appendix B.

In the first section, we will define (what we call) Lie-group-gradings and Jordan-group-

gradings, and we offer our motivating example of an algebra that is Lie-group-graded and

Jordan-group-graded: an associative algebra with an involution. In the second section,

we introduce graded identities and develop the necessary machinery in order to prove our

main theorem. In the third section, we prove our main result using a method similar to the

combinatorial approaches taken in [BGR] and [BGZ].

3.1 Lie-group-gradings and Jordan-group-gradings

Since the defining property of a group-grading is category dependent, and to simplify our

notation, we make the following definitions.

Definition 3.1.1. Let G be a finite group, and let A be an associative algebra with vector

space decomposition Γ : A =
⊕

g∈G Ag. Then we say that

1. Γ is a Lie-G-grading of A if it is a G-grading of A(−);

2. Γ is a Jordan-G-grading of A if it is a G-grading of A(+); and,

3. Γ is an associative-G-grading of A whenever A is viewed fully as the underlying

associative algebra.

Notice that in cases (1) and (2), if g, h ∈ G do not commute, then [Ag, Ah] = 0 and Ag ◦

Ah = 0. Thus, unless G is abelian, an associative-G-grading of A may not necessarily be a

Lie-G-grading or Jordan-G-grading. On the other hand, if it happens that A =
⊕

Ag is both

a Lie-G-grading and Jordan-G-grading, then it is also an associative-G-grading, whenever

the characteristic p is different from 2. Indeed, if a ∈ Ag and b ∈ Ah are homogeneous

elements, then

2ab = [a, b] + a ◦ b ∈ [Ag, Ah] + Ag ◦ Ah ⊆ Agh.
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It is also clear that the identity component, A1, of a Lie-G-graded algebra is a Lie subalgebra

of A(−), and that the identity component of a Jordan-G-graded algebra is a Jordan subalgebra

of A(+).

We demonstrate an important class of algebras with a natural vector space decomposi-

tion that can be viewed as either a Lie-group-grading or a Jordan-group-grading, but not as

an associative-group-grading.

Example 3.1.2. Let A be an associative algebra over field of characteristic not 2 that

admits an involution ∗. Notice that if S = {a ∈ A| a∗ = a} and K = {a ∈ A| a∗ = −a}, then

Γ : A = S ⊕ K

is a vector space decomposition of A. This follows since, for every a ∈ A, we have a = s + k

where

s =
a + a∗

2
and k =

a − a∗

2
.

Observe that Γ is not generally a set-grading of A, since, for instance, the product of a sym-

metric element and a skew-symmetric element is not necessarily homogeneous. However,

since the following relations hold:

[S,S] ⊆ K ,

[S,K] ⊆ S,

[K ,K] ⊆ K ,

it follows that A = A0 ⊕ A1, where A0 = K and A1 = S, is a Lie-Z2-grading of A. Similarly,

since the following relations hold:

S ◦ S ⊆ S,

S ◦ K ⊆ K ,

K ◦ K ⊆ S,

it follows that A = A0 ⊕ A1, where A0 = S and A1 = K , is a Jordan-Z2-grading of A.
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We are now ready to state our main theorem in this chapter. The function f mentioned

in the theorem below is the same one used in the Bahturin-Giambruno-Zaicev (see [BGZ]);

we will offer some additional details regarding f in Section 3.3, but the reader can refer to

the original paper or [GZ] for a complete description.

Theorem 3.1.3. Let G be a finite group, and let A be an associative algebra such that

A =
⊕

g∈G Ag is a Lie-G-grading or a Jordan-G-grading of A. If the subspace A1 satisfies

a polynomial identity, then the entire algebra A satisfies a polynomial identity. More point-

edly, if A1 satisfies a polynomial identity of degree d, then A satisfies a polynomial identity

of degree bounded above by f (d|G|, |G|).

3.2 Graded Identities

An identity on a homogeneous component of a group-graded algebra (for instance, as in the

Bahturin-Giambruno-Riley Theorem) can be viewed as an example of a more general type

of identity called a graded identity. Whereas ordinary polynomial identities are evaluated

upon the substitution of arbitrary elements of A, graded identities are evaluated only upon

the substitution of elements from specified homogenous components of A. Traditionally,

graded identities are defined only for group-graded algebras, but we will extend this notion

so that it is applicable to more general types of gradings.

We first present the notion of a free associative-group-graded algebra. For a finite

group G of order k, let X(G) be the disjoint union of k-many countably infinite sets X(G) =⋃
g∈G X(g), where X(g) = {x(g)

1 , x(g)
2 , . . .}. Let A〈X(G)〉 be the free associative algebra on X(G).

A monomial x(g1)
i1
· · · x(gt)

it
∈ A〈X(G)〉 is said to have homogeneous degree g1 · · · gt (as op-

posed to its total degree, which is t). Then

A〈X(G)〉 =
⊕
g∈G

A〈X(G)〉(g),

where A〈X(G)〉(g) is the subspace of A〈X(G)〉 spanned by all monomials having homoge-

neous degree g, and further, this vector space decomposition is an associative-G-grading.
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We will denote by A〈X〉gr the algebra A〈X(G)〉 when it is endowed with this grading, and

we call its elements graded polynomials.

We now make the following general definitions: it is important to note that we do not

assume that the vector space decomposition A =
⊕

g∈G Ag satisfies any implicit algebraic

properties, such as being an associative-G-grading.

Definition 3.2.1. Let G be a finite group, and let A be an associative algebra admitting a

vector space decomposition A =
⊕

g∈G Ag.

1. A graded identity of A is a graded polynomial f (x(g1)
1 , . . . , x(gn)

n ) with the property that

f (a1, . . . , an) = 0, for all a1 ∈ Ag1 , . . . , an ∈ Agn .

2. Idgr(A) denotes the set of all graded identities of A.

3. For each monomial w = x(g1)
i1
· · · x(gn)

in
∈ A〈X〉gr and permutation σ ∈ S n, we denote

wσ = x(gσ(1))
iσ(1)

· · · x(gσ(n))
iσ(n)

.

4. We denote

Pgr
n = span{wσ|w = x(g1)

1 · · · x(gn)
n , g1, . . . , gn ∈ G, σ ∈ S n};

the integer

cgr
n (A) = dim

Pgr
n

Pgr
n ∩ Idgr(A)

is called the nth G-graded codimension of A.

We have already seen an example of an algebra which satisfies a graded identity but

not an ordinary polynomial identity: the free associative algebra, when decomposed as

A〈X〉 =
⊕
A〈X〉n, satisfies the graded identity x(0)

1 x(0)
2 − x(0)

2 x(0)
1 .

We identify ordinary polynomials with graded polynomials by setting zi =
∑

g∈G x(g)
i , for

each i ≥ 1. Under the identification xi → zi, we may regard Pn ⊆ Pgr
n . Further, observe that

f (x1, . . . , xm) ∈ A〈X〉 is a polynomial identity of A if and only if f (z1, . . . , zm) ∈ A〈X〉gr is

a graded identity of A. Hence, we may also suppose that Pn ∩ Idgr(A) = Pn ∩ Id(A). Using
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these facts, we can deduce the following well-known result (which holds even when A is

not necessarily associative-G-graded); a proof can be found in [BGR] for example.

Lemma 3.2.2. Let G be a finite group, and let A be an associative algebra admitting a

vector space decomposition A =
⊕

g∈G Ag. Then the following inequality holds:

cn(A) ≤ cgr
n (A).

Thus, an algebra A =
⊕

g∈G Ag satisfies an ordinary polynomial identity of degree n

whenever cgr
n (A) < n!.

Note that Idgr(A) is always an associative ideal. The algebra A〈X〉gr has the following

universal property: if A =
⊕

Ag is an associative-G-graded algebra, then any set-theoretic

map ϕ : X → A such that ϕ(Xg) ⊆ Ag, for all g ∈ G, extends uniquely to a G-graded ho-

momorphism ϕ̄ : A〈X〉gr → A. Therefore, if Φ̄ is the set of all such homomorphisms, then

Idgr(A) =
⋂

ϕ̄∈Φ̄ kerϕ̄ is a graded ideal that is invariant under all G-graded endomorphisms

of A〈X〉gr. However, if A is only Lie-G-graded or Jordan-G-graded, then the homomor-

phisms ϕ̄ are not necessarily G-graded homomorphisms. Furthermore, in these situations,

the ideal Idgr(A) is not necessarily invariant under the G-graded endomorphisms ofA〈X〉gr.

Yet, we can make some more limited observations. First we require a definition.

Definition 3.2.3. Let G be a finite group, and let A be an associative algebra admitting a

vector space decomposition A =
⊕

g∈G Ag.

1. L〈X(G)〉 will denote the free Lie subalgebra of A〈X(G)〉(−) generated by the set X(G).

For each g ∈ G, we denote

L〈X(G)〉(g) = L〈X(G)〉 ∩ A〈X(G)〉(g).

2. J〈X(G)〉 will denote the free Jordan subalgebra of A〈X(G)〉(+) generated by the set

X(G). For each g ∈ G, we denote

J〈X(G)〉(g) = J〈X(G)〉 ∩ A〈X(G)〉(g).
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We end this section by offering some technical results which we utilize in our proof of

Theorem 3.1.3. The first lemma says that, if A is Lie or Jordan-G-graded, then, although

Idgr(A) is not invariant under G-graded endomorphisms of A〈X〉gr, it is invariant under

graded homomorphismsA〈X(G)〉 → L〈X(G)〉. This is obvious and the proof is omitted.

Lemma 3.2.4. Let G be a finite group, let A be an associative algebra admitting a vector

space decomposition A =
⊕

g∈G Ag, and let f (x(g1)
1 , . . . , x(gn)

n ) be a graded identity of A.

Then the following statements hold.

1. If A =
⊕

g∈G Ag is Lie-G-graded and zi ∈ L〈X(G)〉(gi), for each i = 1, . . . , n, then

f (z1, . . . , zn) is also a graded identity of A.

2. If A =
⊕

g∈G Ag is Jordan-G-graded and zi ∈ J〈X(G)〉(gi), for each i = 1, . . . , n, then

f (z1, . . . , zn) is also a graded identity of A.

Lemma 3.2.5. Let G be any finite group. Then the following statements hold.

1. Suppose that g1, . . . , gm in G pairwise commute, and put g = g1 · · · gm. Then every

Lie (respectively, Jordan) product of x(g1)
i1
, . . . , x(gm)

im
lies in L〈X(G)〉(g) (respectively,

J〈X(G)〉(g)).

2. L〈X(G)〉 =
⊕

g∈G L〈X(G)〉(g) if and only if G is abelian, in which case L〈X(G)〉 is a

G-graded Lie algebra.

3. J〈X(G)〉 =
⊕

g∈G J〈X(G)〉(g) if and only if G is abelian, in which case J〈X(G)〉 is a

G-graded Jordan algebra.

Proof. Statement (1) is obvious. The proof of (3) is analogous to (2), so we prove only (2).

Suppose that L〈X〉 =
⊕

g∈G L〈X(G)〉(g) is G-graded and g, h ∈ G are such that gh , hg. Then

[x(g)
1 , x(h)

2 ] ∈ L〈X(G)〉(gh) ∩ L〈X(G)〉(hg) = 0, which is impossible. Conversely, if G is abelian,

then the fact that L〈X(G)〉 =
⊕

g∈G L〈X(G)〉(g) follows from (1). When G is abelian, the

associative-G-grading on A〈X〉gr induces an natural Lie-G-grading on A〈X(G)〉, and hence

on L〈X(G)〉. �
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We adopt the convention that Lie monomials [a1, . . . , am] and Jordan monomials a1 ◦

· · · ◦ am are left-normed. We require one more technical result before we proceed to the

proof of our main theorem.

Lemma 3.2.6. Let G be any finite group, let A =
⊕

g∈G Ag be a Lie-G-graded (respectively,

Jordan-G-graded) algebra, and let m ≥ 2 be an integer. Then, either the Lie (respectively,

Jordan) monomial [x(g1)
1 , . . . , x(gm)

m ] (respectively, x(g1)
1 ◦ · · · ◦ x(gm)

m ) is homogeneous of degree

g1 · · · gm or it is a graded identity of A.

Proof. We prove only the case where A is Lie-G-graded because the Jordan-G-graded case

is similar. If g1g2 , g2g1, then [a(g1)
1 , a(g2)

2 ] ∈ Ag1g2 ∩Ag2g1 = 0, for all a1 ∈ Ag1 , a2 ∈ Ag2 , and

so [x(g1)
1 , x(g2)

2 ] is a graded identity of A. Otherwise, [x(g1)
1 , x(g2)

2 ] is homogeneous of degree

g1g2 by part (1) of Lemma 3.2.5. In general, if [x(g1)
1 , . . . , x(gm)

m ] is a graded identity of A,

then so is [x(g1)
1 , . . . , x(gm+1)

m+1 ] since Idgr(A) is an ideal ofA〈X〉gr. Otherwise, by the induction

hypothesis, we can assume that z = [x(g1)
1 , . . . , x(gm)

m ] is homogeneous of degree g = g1 · · · gm,

in which case the claim follows from the m = 2 case applied to [z, x(gm+1)
m+1 ]. �

3.3 Lie and Jordan Analogues of the Bahturin-Giambruno-

Riley Theorem

We are now in a position to prove Theorem 3.1.3. To this end, we assume in this section

that A =
⊕

g∈G Ag is Lie-G-graded (or Jordan-G-graded) and that A1 satisfies a polynomial

identity of degree d.

We fix t ≥ d|G| and ḡ = (g1, . . . , gt) ∈ Gt. We denote the subspace of all multilinear

polynomials in the variables x(g1)
1 , . . . , x(gt)

t by

Pḡ
t = span{x(gσ(1))

σ(1) · · · x
(gσ(t))
σ(t) |σ ∈ S t}.

Observe that dimPḡ
t = t!.

Our present goal is to demonstrate that every monomial w = x(g1)
i1
· · · x(gt)

it
∈ Pḡ

t lies in

span{wσ| 1 , σ ∈ S t} + Idgr(A).
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Proposition 3.3.1. Let G be any finite group, and suppose that A is either a Lie-G-graded

or Jordan-G-graded algebra such that A1 satisfies a nontrivial polynomial identity of de-

gree d. Then w ∈ span{wσ|1 , σ ∈ S t} + Idgr(A), for all multilinear monomials w =

x(g1)
i1
· · · x(gt)

it
with t ≥ d|G|.

Proof. We consider only the case when A is Lie-G-graded: a similar proof works substi-

tuting x ◦ y for [x, y].

Let w be given, and put W = span{wσ|1 , σ ∈ S t}. By Lemma 2.2.5, we can factor w =

aw1 · · ·wdb into submonomials where w1, . . . ,wd have homogeneous degree 1. Thus, we

can write w1 = y(g1)
1 · · · y(gm)

m for some y(g1)
1 , . . . , y(gm)

m ∈ X(G) with the property that g1 · · · gm =

1. We claim that

w ≡ aw̄1w2 · · ·wdb (mod W),

where w̄1 is the Lie monomial [y(g1)
1 , . . . , y(gm)

m ]. To see why, first observe that

w ≡ a[y(g1)
1 , y(g2)

2 ]y(g3)
3 · · · y(gm)

m w2 · · ·wdb (mod W)

since ay(g2)
2 y(g1)

1 y(g3)
3 · · · y(gm)

m w2 · · ·wdb ∈ W. Repeated application of this same sort of argu-

ment proves the claim. Applying the same procedure to each wi yields

w ≡ aw̄1 · · · w̄db (mod W).

Next, notice that Lemma 3.2.6 implies that either w̄i is homogeneous or w̄i is a graded

identity of A. Consequently, without loss of generality, we may assume that every w̄i is ho-

mogeneous for otherwise w ∈ W +Idgr(A), as required. Thus, since each wi is homogeneous

of degree 1, each w̄i lies in L〈X(G)〉(1).

By the usual multilinearization process, we can assume the nontrivial polynomial iden-

tity satisfied by A1 is of the form

f (x(1)
1 , . . . , x(1)

d ) = x(1)
1 · · · x

(1)
d −

∑
1,τ∈S t

ατx
(1)
τ(1) · · · x

(1)
τ(d),

for some scalars ατ. Since A is Lie-G-graded and each w̄i ∈ L〈X(G)〉(1), it follows from part

(1) of Lemma 3.2.4 that f (w̄1, . . . , w̄d) ∈ Idgr(A). Therefore,

w ≡
∑

τ∈S t ,τ,1

ατaw̄τ(1) · · · w̄τ(d)b (mod W + Idgr(A)).
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Because each nontrivial permutation τ contributes only nontrivial permutations of the in-

determinates in w, it follows that w ∈ W + Idgr(A) in every case. �

Next, we impose a total order on the multilinear monomials xi1 · · · xin ∈ Pn according to

their subscripts, by requiring that xi < x j, whenever i < j, and extending lexicographically

from left to right. This extends to a partial order of the graded monomials by disregarding

the homogeneous degrees. We define the following special type of monomial.

Definition 3.3.2. Let w ∈ Pn be a multilinear monomial. Then w is called m-decomposable

if it can be represented in the form:

w = aw1w2 · · ·wmb,

where w1, . . . ,wm are nonempty monomials such that:

a) The first indeterminate in wi is greater than the first indeterminate in w j whenever i < j;

b) The first indeterminate in wi is greater than any other indeterminate in wi.

If w has no m-decompositions, then it is called m-indecomposable. Also, the total

number of m-indecomposable monomials in Pn shall be denoted by am(n).

Observe that if w = aw1w2 · · ·wmb is an m-decomposition, then any nontrivial per-

mutation of the submonomials w1w2 · · ·wm results in a monomial which is smaller in the

lexicographic order.

Our next objective is to demonstrate that, for every n ≥ t ≥ d|G|, the space Pḡ
n is spanned

by the t-indecomposable monomials (modulo Pḡ
n ∩ Idgr(A)). From this it will follow that

dim
Pḡ

n

Pḡ
n ∩ Idgr(A)

< at(n),

and consequently that cgr
n (A) < at(n)|G|n.

Proposition 3.3.3. Let G be a finite group, and suppose that A is either a Lie-G-graded or

Jordan-G-graded algebra such that A1 satisfies a non-trivial polynomial identity of degree

d. Fix n ≥ t ≥ d|G| and ḡ = (g1, . . . , gn) ∈ Gn, and put w = x(g1)
1 · · · x(gn)

n and Pḡ
n =
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span{wσ|σ ∈ S n}. Then Pḡ
n is spanned by the set {wσ|wσ is t-indecomposable} modulo

Pgr
n ∩ Idgr(A).

Proof. As usual, we prove only the Lie-G-graded case because the Jordan-G-graded case

is so similar. It suffices to show that, whenever wσ is t-decomposable, wσ ∈ W + Idgr(A),

where W is the span of all the monomials wτ (τ ∈ S t) smaller than wσ in the lexicographic

ordering.

By assumption, we can factor wσ = aw1w2 · · ·wtb according to its t-decomposition. For

each w j = x
(gσ(i j))

σ(i j)
· · · x

(gσ(i j+k j))

σ(i j+k j)
, we denote

w̄ j = [x
(gσ(i j))

σ(i j)
, . . . , x

(gσ(i j+k j))

σ(i j+k j)
].

Recall that the first indeterminate of each w j is the greatest indeterminate appearing in w j.

Thus, as in the proof of Proposition 3.3.1, it follows that

wσ ≡ aw̄1 · · · w̄tb (mod W).

Furthermore, by Lemma 3.2.6, either a given w̄ j is a graded identity of A or w̄ j is homoge-

neous of degree h j ∈ G, say. Consequently, we can assume that every w j is homogeneous

since otherwise

wσ ≡ aw̄1 · · · w̄tb ≡ 0 (mod W + Idgr(A)),

as required. Now, by Proposition 3.3.1, given indeterminates y(h1)
1 , . . . , y(ht)

t ∈ X, there exist

scalars ατ ∈ K, such that

y(h1)
1 · · · y(ht)

t ≡
∑

1,τ∈S t

ατy
(hτ(1))
τ(1) · · · y

(hτ(t))
τ(t) (mod Idgr(A)).

Therefore, by Lemma 3.2.4,

aw̄1 · · · w̄tb ≡
∑

1,τ∈S t

ατaw̄τ(1) · · · w̄τ(t)b (mod Idgr(A)).

Since wσ = aw1w2 · · ·wtb is a t-decomposition, expanding all the Lie monomials on the

right produces only associative monomials smaller than wσ in the lexicographic ordering.

This yields

wσ ≡ aw̄1 · · · w̄tb ≡
∑

τ∈S t ,τ,1

ατaw̄τ(1) · · · w̄τ(t)b ≡ 0 (mod W + Idgr(A)),
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as required. �

An upper bound of am(n) was demonstrated in [BGZ]. We refer the reader to the original

paper or [GZ] for complete details; we will only briefly outline the key constructions here.

Fix m and n and any positive integer c. Put t = m + blog2cc, N = 2t2t+1
, p2 = 2t2t

, and

define p j, for each j > 2, to be the integer for which

logN . . . logN︸         ︷︷         ︸
j−2

p j = p2.

Finally, set f (m, c) = log2 pm. The following lemma was proved in [BGZ].

Lemma 3.3.4. If n ≥ f (m, c), then am(n) < n!( 1
c )n.

We are now ready to finish the proof of Theorem 3.1.3. It follows immediately from

the following corollary and Proposition 3.3.3.

Corollary 3.3.5. Let G be a finite group, and suppose that A is either a Lie-G-graded or

Jordan-G-graded such that A1 satisfies a non-trivial polynomial identity of degree d. Then,

for each integer n ≥ f (d|G|, |G|), we have

cn(A) ≤ cgr
n (A) ≤ |G|nad|G|(n) < n!

As an illustration of Theorem 3.1.3, observe the following corollary, which follows

from Example 3.1.2 (and also from the Bahturin-Giambruno-Zaicev Theorem, obtained by

other means). This is a quantitative version of Amitsur’s Theorem 2.3.1.

Corollary 3.3.6. Let A be an algebra over a field of characteristic not 2 which admits an

involution ∗. If either S or K satisfy a polynomial identity of degree d, then the entire

algebra A satisfies a polynomial identity of degree bounded above by f (2d, 2).

In Chapter 4 and Chapter 6, we will demonstrate that (in certain circumstances) if A is

an associative algebra such that G ≤ Aut∗(A), then A can be endowed with a Lie-group-

grading and a Jordan-group-grading (in the form of what we will come to call a Lie-Jordan-

group-grading). In this case, the respective identity components of the gradings are the
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subspace of invariants, AG = {a ∈ A| ag = a}, and the subspace of skew-invariants, GA =

{a ∈ A| ag = −a}. Consequently, we will be able to deduce that if either of these subspaces

satisfies a nontrivial polynomial identity of degree d, then A satisfies a polynomial identity

of degree bounded above by f (d|G|, |G|). In order that we may construct these gradings,

we need to further examine the relationship that exists between actions on algebras and

gradings in detail; we begin our investigation into this topic in Chapter 4.



Chapter 4

Hopf Algebra Actions and Dualities

In this chapter, we discuss the relationship between actions and gradings on algebras.

Sometimes, an action or a grading can be formalized as the action of a Hopf algebra, and as

we will see, we can sometimes utilize the dual nature of Hopf algebras to produce powerful

dualities between these two concepts.

For example, when a Hopf algebra H is finite-dimensional, commutative, semisimple,

and split, certain actions of H are equivalent to group-gradings; special cases of this duality

include the well-known duality of actions by automorphisms and group-gradings, and the

duality of actions by derivations and group-gradings. Our primary goal in this chapter is

to extend this relationship to include more general Hopf algebra actions (which we call

oriented Hopf actions); in particular, we wish to include actions by anti-automorphisms

and anti-derivations.

In the first section, we describe the notion of a Hopf algebra. We will only recall the

basic properties that are needed, additional details can be found in [Sw] or [Mo]. Follow-

ing this, we introduce Hopf algebra actions and we present the Bergen and Cohen Duality

between certain finite-dimensional Hopf actions and group-gradings. Note that the mono-

graph [Mo] contains a detailed exposition of Hopf algebra actions on algebras. In the

second section, we describe a new type of Hopf action that we call an oriented Hopf action.

In the final section of this chapter, we extend the Bergen and Cohen Duality to incorpo-

33
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rate our oriented Hopf algebra actions, and resultantly, we incorporate gradings which are

more general than group-gradings. We remind the reader that in this section, except when

explicitly stated otherwise, we do not assume that A is associative.

4.1 Hopf Algebras and Duality of Hopf Actions

4.1.1 Hopf Algebras

Our goal in this section is to define what a Hopf algebra is, and also to recall some basic

concepts from linear algebra that will be needed. Hopf algebras are surprisingly pervasive

structures in mathematics which are prompted by the notion of the dual of a unital associa-

tive algebra. As we will see, a Hopf algebra is a structure that is simultaneously a unital

associative algebra and a counital coassociative coalgebra which satisfies several compati-

bility conditions and possesses a particular anti-automorphism (called the antipode). In this

thesis, we only consider Hopf algebras that are finite-dimensional.

Before we begin, we recall some basic definitions. If H is a vector space with basis

{e1, . . . , en}, then the linear dual Hom(H,K) is a vector space with (dual) basis {pei | 1 ≤ i ≤

n}, where pei(e j) = δi, j (here, δ is Kronecker’s delta). We recall the transpose of a linear

map.

Definition 4.1.1. Let V and W be vector spaces, and let ϕ : V → W be a linear map.

The transpose of ϕ is the map ϕ∗ : Hom(W,K) → Hom(V,K), defined by ϕ∗( f )(v) =

f (ϕ(v)), for all v ∈ V, f ∈ Hom(W,K).

Algebras and Coalgebras

We begin by defining the algebraic structures that a Hopf algebra encapsulates. We choose

to define associative unital algebras using diagrams, so that this definition may be more

easily dualized. An associative unital algebra is a triple (A,m, u) consisting of: a vector

space A, a multiplication map m : A ⊗ A → A, and a unit map u : K → A, such that the
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following diagrams commute.

Associativity:

A ⊗ A ⊗ A

id⊗m
��

m⊗id // A ⊗ A
m
��

A ⊗ A m // A

Unit:

A ⊗ A

m

��

K ⊗ A
u⊗id

99

�
%%

A ⊗ K
id⊗u

ee

�
yy

A

Dualizing this definition (that is, turning all the arrows around) yields a vector space

with a product expansion map and a map into the base field. Formally, we define a coas-

sociative counital coalgebra as a triple (C,∆, ε) consisting of: a vector space C, a map

∆ : C → C ⊗ C called comultiplication or the coproduct, and a map ε : C → K called the

counit, for which the following diagrams commute:

Coassociativity:

C

∆
��

∆ // C ⊗C

∆⊗id
��

C ⊗C id⊗∆// C ⊗C ⊗C

Counit:

C ⊗C
id⊗ε

%%

ε⊗id

yy
K ⊗C C ⊗ K

C
1⊗id

ee

id⊗1

99∆

OO

If (A,m, u) is a finite-dimensional algebra, then (Hom(A,K),m∗, u∗) is a counital coasso-

ciative coalgebra; similarly, whenever (C,∆, ε) is a finite-dimensional coalgebra, (Hom(C,K),∆∗, ε∗)

is an associative unital algebra. This is not necessarily true in the infinite-dimensional case.
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Sweedler Notation and Cocommutativity in Coalgebras

If C is a countial coassociative coalgebra, then coproducts can be written as finite sums

∆(c) =

n∑
i=1

ai ⊗ bi, where ai, bi ∈ C.

In order to simplify notation, we will henceforth adopt the conventional Sweedler notation

(as introduced in the monograph [Sw]) by writing

∆(c) =
∑

c

c(1) ⊗ c(2), for all c ∈ C.

It is understood that c(1) and c(2) do not represent any specific elements in C, and that the

summands in this expression are not necessarily related. To illustrate why such a notation

is useful, notice that when we apply the coproduct map twice, then the coassociativity

condition implies that

∆2(c) =
∑

c

∆(c(1)) ⊗ c(2) =
∑

c

c(1) ⊗ ∆(c(2)).

Using Sweedler notation, we may write both of these expressions as

∆2(c) =
∑

c

c(1) ⊗ c(2) ⊗ c(3),

so that the components c(i) are each assumed to lie in the ith tensor factor.

If an element c in a coalgebra C satisfies

∆(c) =
∑

c

c(1) ⊗ c(2) =
∑

c

c(2) ⊗ c(1),

then c is called cocommutative. If C is spanned by cocommutative elements, then C is

called a cocommutative coalgebra.

Bialgebras and Hopf Algebras

When a vector space is simultaneously endowed with the structure of an algebra and a

coalgebra, we can impose certain compatibility conditions to ensure that the various op-

erations behave well together; further, we would like that our structure may be dualized

accordingly. To that end, if (H,m, u) is a unital associative algebra and that (H,∆, ε) is a

counital coassociative coalgebra, we will consider when the following condition holds:
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• ∆ and ε are algebra homomorphisms.

One may demonstrate this is equivalent to saying that m and u are coalgebra homomor-

phisms. If this holds, then (H,m, u,∆, ε) is called a bialgebra.

Finally, if (H,m, u,∆, ε) is a bialgebra, then a K-linear map S : H → H such that

∑
h

S (h(1))h(2) =
∑

h

h(1)S (h(2)) = ε(h)1,

for all h ∈ H, is called an antipode. A bialgebra with an antipode (H,m, u,∆, ε, S ) is called

a Hopf algebra. Whenever the context is clear, we refer to H as a Hopf algebra omitting

the collection of maps.

We take a moment to consider the reasoning behind these compatibility conditions to

illustrate that the complicated definition of a Hopf algebra is not futile; the reader should

consult Bergman’s excellent article [Bg] which affably describes the motivation behind

Hopf algebras (from our perspective at least, as many ulterior motivations exist).

Looking ahead, our applications for Hopf algebras will involve when an algebra A has

the additional structure of an H-module action via a mapping h · a ∈ A. The conditions

we have imposed on H allow us to study such actions in a reasonable way. For example,

actions which expand on products in a manner conducive with the coproduct ∆ (in the

sense that h · (ab) =
∑

h(h(1) · a)(h(2) · b)) are important. By imposing coassociativity on H,

we ensure that h · ((ab)c) = h · (a(bc)). Similarly, the associativity of H ensures that, for

x, y, z ∈ H, the two expressions x · ((yz) · a) and (xy) · (z · a) are equal. We would also like

to be able to expand xy · (ab) in the two obvious ways; and it turns out that this condition is

expressed by saying that ∆ is an algebra homomorphism.

Dual Hopf Algebras and Other Examples

As expected, if (H,m, u,∆, ε, S ) is a finite-dimensional Hopf algebra, then it is easy to see

that (Hom(H,K),∆∗, ε∗,m∗, u∗, S ∗) is also a finite-dimensional Hopf algebra. In keeping

with convention, we denote this Hopf algebra by H∗, and when the context is clear we also

denote the underlying algebra (Hom(H,K),∆∗, ε∗) by H∗. Observe that multiplication in
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H∗ is the convolution operation (abbreviated ∆∗ = ∗),

(α ∗ β)(h) =
∑

h

α(h(1))β(h(2)), for all α, β ∈ Hom(H,K),

and the unit element is ε∗ = ε.

We introduce an important multiplicative subgroup existing in any Hopf algebra. For

any H, elements h ∈ H satisfying ∆(h) = h⊗ h and ε(h) = 1 are called group-like elements.

The set of all group-like elements of H is denoted by G(H). We will observe that G(H)

is a group under the multiplication of H. Indeed, G(H) is not empty since 1 ∈ G(H),

and furthermore G(H) is closed under multiplication (since comultiplication and counit are

algebra maps). Further, by the compatibility condition of the antipode, for every g ∈ G(H),

we have gS (g) = S (g)g = 1, and since S (g) ∈ G(H), we have that G(H) is a group.

When we consider a finite-dimensional Hopf algebra H and its dual, it is a routine

observation that G(H∗) = Alg(H,K), the set of algebra maps from H to K. Further, G(H∗)

is a (finite) group of linearly independent units in H∗ (linear independence is shown in [Sw],

page 55). This group is important in the sequel, and so we formally state this definition.

Additional properties of the group G(H∗) can also be found in [Mo].

Definition 4.1.2. For a finite-dimensional Hopf algebra H, we define G(H∗) = Alg(H,K)

to be the set of all algebra maps from H to K. Note that (G(H∗), ∗) is a group of linearly

independent units contained in H∗.

We conclude by presenting examples of the Hopf algebras which will be of most interest

to us.

Example 4.1.3. Let G be group a and let K be a field. The group algebra KG is made into

a Hopf algebra by setting the following operations.

• Coproduct: ∆(g) = g ⊗ g, for all g ∈ G;

• Counit: ε(g) = 1, for all g ∈ G, and;

• Antipode: S (g) = g−1.
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We note that KG is commutative if and only if G is abelian, finite-dimensional if and only

if G is finite, and always cocommutative.

Example 4.1.4. Let g be a restricted Lie algebra over a field K of characteristic p > 0.

The restricted universal enveloping algebra of g, denoted by u(g) (see Appendix C for the

definition of u(g)), is made into a Hopf algebra by setting the following operations.

• Coproduct: ∆(x) = x ⊗ 1 + 1 ⊗ x, for all x ∈ g;

• Counit: ε(x) = 0, for all x ∈ g, and;

• Antipode: S (x) = 0, for all x ∈ g.

We note that u(g) is not commutative unless g is abelian, finite-dimensional if and only if g

is finite-dimensional, and always cocommutative.

Due to its prevalence in the ensuing section, we take a moment to describe the important

Hopf algebra which arises as the dual of a group algebra.

Example 4.1.5. Let G be a finite (multiplicative) group, and let KG be the group Hopf

algebra. Recall that (KG)∗ has a basis {pg| g ∈ G}, given by pg(x) = δg,x, for all g, x ∈ G.

Recall multiplication is the convolution operation, (pg ∗ ph)(x) = δg,h,x. A routine check

verifies the other Hopf operations in (KG)∗ are as follows.

• Coproduct: ∆(pg) =
∑

xy=g px ⊗ py.

• Counit: ε(pg) = pδg,1 .

• Antipode: S (pg) = pg−1 .

Notice that the dual basis consists of orthogonal idempotents which sum to 1. The Hopf

algebra (KG)∗ is finite-dimensional, always commutative, and cocommutative whenever G

is abelian.
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4.1.2 Duality Between Hopf Actions and Gradings

In this section we consider when a Hopf algebra H acts on an algebra A. By using the

dual nature of Hopf algebras, we are able to build some interesting relationships between

various types of Hopf actions. We reiterate that, for the remainder of this thesis, all Hopf

algebras are assumed to be finite-dimensional. If A has the structure of an H-module via

some mapping h · a ∈ A, then we make the following definition.

Definition 4.1.6. If A is a (left) H-module via the mapping h · a ∈ A, and

h · (ab) =
∑

h

(h(1) · a)(h(2) · b)

is satisfied for all a, b ∈ A, h ∈ H, then A is called a (left) H-algebra. If A happens to be

associative and unital, then we further require that h · 1A = ε(h)1A, for all h ∈ H.

We begin with a worked example. Suppose that G is a finite group and A =
⊕

g∈G Ag is a

group-grading. There is a natural action on A by the set of projection maps, {pg| g ∈ G} (that

is, pg · (
∑

h∈G ah) = ag, where each ah ∈ Ah). Under function composition, this set spans

a subalgebra of the linear transformations of A, and moreover, it consists of orthogonal

idempotents which sum to 1. It follows that this subalgebra is isomorphic to the underlying

algebra of (KG)∗. Further, notice that if a ∈ Ag and b ∈ Ah are homogeneous, then, for each

x ∈ G,

px · (ab) =


ab, if x = gh;

0, if x , gh.

Consequently, px · (ab) =
∑

yz=x(py · a)(pz · b), and so any G-grading of A can be recognized

as a (KG)∗-algebra structure on A.

On the other hand, suppose that an algebra A has a structure of a (KG)∗-algebra via a

mapping pg · a ∈ A. In this case, we define pg · A = Ag, for all g ∈ G. Recalling from

Example 4.1.5 that {pg| g ∈ G} are orthogonal idempotents with sum 1, it is not hard to see

that A =
⊕

g∈G Ag is a vector space decomposition of A. Further, if a ∈ Ag1 and b ∈ Ag2 ,

pg1g2 · (ab) =
∑

xy=g1g2

(px · a)(py · b) = ab.
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Hence ab ∈ Ag1g2 and A =
⊕

g∈G Ag is a group-grading of A. Thus we deduce that an

algebra A is G-graded if and only if A is a (KG)∗-algebra.

This leads us to the key result on Hopf actions, which appears in [BC]. Suppose that H

is any finite-dimensional commutative Hopf algebra that is semisimple as an algebra and

splits over K. In this case, H has a basis of orthogonal idempotents whose sum is 1. Since

the dual basis in H∗ is precisely Alg(H,K) = G(H∗), and since dimH = dimH∗, it follows

that H∗ = KG(H∗) and consequently H = (KG(H∗))∗.

Similarly to the above example, it follows that every H-module A admits a vector space

decomposition

A =
⊕
ϕ∈G(H∗)

Aϕ, where Aϕ = {a ∈ A| h · a = ϕ(h)a, for all h ∈ H},

and conversely, that every graded vector space A =
⊕

ϕ∈G(H∗) Aϕ has a natural H-module

action induced by h · aϕ = ϕ(h)aϕ, for every aϕ ∈ Aϕ and h ∈ H. Bergen and Cohen proved

that every associative H-algebra is graded by the group (G(H∗), ∗) in [BC]. In fact, this

assertion holds equally true for all H-algebras, and the converse also holds. We summarize

these facts with the following duality theorem.

Theorem 4.1.7 (The Bergen and Cohen Duality). Let H be a Hopf algebra that is a finite-

dimensional, commutative, semisimple, and splits over K. Then an algebra A is an H-

algebra if and only if A =
⊕

ϕ∈(G(H∗),∗) Aϕ is a group-grading.

We remark that special cases of this duality appeared earlier in the literature, for in-

stance, see [Wt]. We now present examples of finite-dimensional H-algebra actions. The

first example involves group algebras; more on this duality can be found in Chapter 6.

Example 4.1.8. Let G be a finite group and let H = KG be the group (Hopf) algebra. If A

is a KG-algebra, then it follows that

g · (ab) =
∑

g

(g(1) · a)(g(2) · b) = (g · a)(g · b), for all a, b ∈ A.
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Since (·) is a module map, by defining ag := g · a, for all g ∈ G, it follows that G acts as

automorphisms on A. Conversely, if G ≤ Aut(A), then A is a KG-algebra via the action

g · a := ag. So G embeds into Aut(A) if and only if A is a KG-algebra.

If we suppose further that KG satisfies the hypotheses of the Bergen and Cohen Duality,

then A is a KG-algebra if and only if A is graded by the group (G(H∗), ∗). By recognizing

that (G(H∗), ∗) � Ĝ (see Chapter 6), we observe that Theorem 4.1.7 implies the well-known

duality: G embeds into Aut(A) if and only if

A =
⊕
χ∈Ĝ

Aχ, where Aχ = {a ∈ A| ag = χ(g)a, for all g ∈ G},

is a Ĝ-grading of A.

Another pertinent example of an H-action involves the restricted universal enveloping

algebra of a restricted Lie algebra; again, additional details may be found in Chapter 6.

Example 4.1.9. Let K be a field of characteristic p > 0, let g be a restricted Lie algebra,

and let H = u(g) be the restricted universal enveloping (Hopf) algebra. If A is a u(g)-

algebra, then it follows that

x · (ab) =
∑

x

(x(1) · a)(x(2) · b) = (x · a)b + a(x · b), for all a, b ∈ A.

Since (·) is a module map, and by defining ax = x · a, for all x ∈ g, it follows that g acts

as derivations on A. Conversely, if g ≤ Der(A), then A is a u(g)-algebra via the action

x · a := ax. Hence, a restricted Lie algebra g embeds into Der(A) if and only if A is a

u(g)-algebra.

If we suppose further that u(g) satisfies the hypotheses of the Bergen and Cohen Duality,

then A is a u(g)-algebra if and only if A is graded by the group (G(H∗), ∗). By recognizing

that (G(H∗), ∗) � Zn
p (see Chapter 6), we observe that Theorem 4.1.7 implies the following

duality: g embeds into Der(A) if and only if

A =
⊕

(λ1,...,λn)∈Zn
p

A(λ1,...,λn), where A(λ1,...,λn) =

n⋂
i=1

{a ∈ A| aδi = λia},

is a Zn
p-grading of A.
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4.2 Oriented Hopf Algebras and Their Actions

Our goal in this section is to define and describe oriented Hopf actions on algebras. In

naturally occurring examples, Hopf algebras act on algebras in manners that are not cap-

tured by Definition 4.1.6 (for instance, a group which acts on A as both automorphisms

and anti-automorphisms, or a restricted Lie algebra acting on A as both derivations and

anti-derivations). Hence, we offer the following generalization.

Definition 4.2.1. Let H be a Hopf algebra, and let A be an algebra.

1. Suppose that H has a vector space decomposition given by

Γ : H = H+ ⊕ H−.

If Γ is a Z2-grading of H as an algebra (but not necessarily as a coalgebra), then

Γ will be called an orientation of H, and the pair (H,Γ) will be referred to as an

oriented Hopf algebra. We shall say that Γ is trivial when H = H+.

2. Suppose that H = H+ ⊕ H− is an oriented Hopf algebra. If an algebra A is a (left)

H-module such that

h+ · (ab) =
∑
h+

(h(1) · a)(h(2) · b), for all h+ ∈ H+, and

h− · (ab) =
∑
h−

(h(2) · b)(h(1) · a), for all h− ∈ H−,

then A is an oriented H-algebra. If A is associative and unital, then we further

require that h · 1A = ε(h)1A, for all h ∈ H.

Our choice of terminology is motivated by the notion of an oriented group G and the

Z2-grading it induces on the group algebra KG (see the following example). Moreover,

the terms ‘graded Hopf algebra’ and ‘super Hopf algebra’ are used ambiguously in the

literature. Notice that every H-algebra is an oriented H-algebra via the trivial orientation.

We also remark that an oriented H-algebra action is a special case of a generalized H-

action, as defined by Berele in [Be].
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Example 4.2.2. Recall that an oriented group is defined to be a group G together with a

group homomorphism ϕ : G → {−1, 1}. If G is any such group, then we may orient the

Hopf algebra KG by setting

Γ : KG = KG+ ⊕ KG−,

where KG+ = span{g|ϕ(g) = 1}, and KG− = span{g|ϕ(g) = −1}. Since ϕ is a homomor-

phism, Γ is a Z2-grading of KG.

Next, we introduce a kind of conjugation operation. In order for this to make proper

sense, we shall assume, for the remainder of this chapter, that our characteristic p is differ-

ent from 2.

Definition 4.2.3. Let H = H+ ⊕ H− be an oriented Hopf algebra, let h = h+ + h− ∈ H,

where h+ ∈ H+ and h− ∈ H−, and let α, β ∈ Hom(H,K).

1. The conjugate of h is h̄ = h+ − h−.

2. The conjugate of α is the map ᾱ ∈ Hom(H,K) given by ᾱ(h) = α(h̄), for every h ∈ H.

Set

D+ = {α| ᾱ = α} and D− = {α| ᾱ = −α}.

It follows that

Hom(H,K) = D+ ⊕ D−

since every α = α+ + α−, where

α+ =
1
2

(α + ᾱ) ∈ D+ and α− =
1
2

(α − ᾱ) ∈ D−.

3. We shall write H? = Hom(H,K) to indicate the non-associative algebra with multi-

plication given by oriented convolution

α ? β = α ∗ β.

4. Let A be an oriented H-algebra. Then

AH = Aε = {a ∈ A| ah = ε(h)a, for all h ∈ H}
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is the set of all H-invariants of A, while

HA = Aε̄ = {a ∈ A| ah = ε̄(h)a, for all h ∈ H}

is the set of all skew H-invariants of A.

We summarize a few straightforward properties of conjugation as follows.

Lemma 4.2.4. Let H = H+ ⊕ H− be an oriented Hopf algebra. Then the following state-

ments hold for every α ∈ Hom(H,K).

1. ᾱ = α+ − α− and α = α.

2. α ∈ D+ if and only if α(H−) = 0, while α ∈ D− if and only if α(H+) = 0.

For the applications we have in mind, we will be interested to know exactly when H?

is associative. Given the abstract nature of oriented convolution, this is sometimes difficult

to ascertain. Therefore, we offer the following characterizations.

Theorem 4.2.5. Let H = H+ ⊕ H− be an oriented Hopf algebra. Then the following

conditions are equivalent.

1. The algebra H? is associative.

2. The algebra H? has a unital element.

3. For every α ∈ Hom(H,K), the following property holds:

α ∗ ε̄ = ᾱ = ε̄ ∗ α.

In particular, ε̄ ∗ ε̄ = ε.

4. The decomposition H? = D+ ⊕ D− is the sum of ideals.

5. H? is an associative algebra with multiplication given by α? β = α ∗ β ∗ ε̄ and unity

ε̄; moreover, H? = D+ ⊕ D− is a sum of ideals.
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Furthermore, in the case when (1)-(5) hold, conjugation H∗ → H? : α 7→ ᾱ is an algebra

isomorphism.

Proof. Let α, β, γ ∈ Hom(H,K), and suppose that ? is an associative operation. Since

(α ? β) ? γ = α ? (β ? γ), we have (α ∗ β) ∗ γ = α ∗ (β ∗ γ). If we choose β = γ = ε, we

obtain ᾱ = α ∗ ε̄. Likewise, if we take α = β = ε, we obtain ε̄ ∗ γ = γ̄. So, (1) implies (3).

Next suppose that (2) holds, and observe that H? has unital element τ precisely when

α ∗ τ = ᾱ = τ ∗ α, for every α. So, by the associativity of ∗,

(α ? β) ? γ = (α ∗ β) ∗ γ = ((τ ∗ (α ∗ β)) ∗ γ) ∗ τ = α ∗ (β ∗ γ) = α ? (β ? γ).

Thus, (2) implies (1).

Observe that (3) is equivalent to saying ε̄ in the unital element of H?; hence, (3) implies

(2).

It remains then to show that (3) and (4) are equivalent. Suppose then that (3) holds, and

let α ∈ D+ and β ∈ Hom(H,K). Then

β ? α = β ∗ α = (β ∗ α) ∗ ε̄ = β ∗ ᾱ = β ∗ α = β ? α.

Hence, β ? α ∈ D+ and D+ is a left ideal of H?. Likewise, D+ is a right ideal of H?. The

proof that D− is an ideal is similar. On the other hand, if (4) holds, then, for every α ∈ D+,

α ? ε+ = α ? ε+ + α ? ε− = α ? ε = α ∗ ε = ᾱ = α.

By symmetry, ε+ ? α = α as well, and so ε+ is unity in D+. Similarly, −(ε−) is unity in D−.

Therefore, for every α ∈ Hom(H,K),

α ? ε = (α+ + α−) ? (ε+ − ε−) = α+ + α− = α = ε̄ ? α,

as required.

Finally, suppose that the equivalent statements (1)-(5) hold. Then clearly conjugation

is a linear map preserving unity; moreover, for every α, β ∈ H∗, we have

α ∗ β = α ∗ (ε̄ ∗ ε̄) ∗ β = ᾱ ∗ β̄ = ᾱ ? β̄.

�
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We remark that the subspaces D+ and D− are ideals in H∗ if and only if they are ideals

in H?.

Corollary 4.2.6. Let H = H+⊕H− be a nontrivial oriented Hopf algebra (that is, H , H+).

Then either ε̄ , ε or H? is not associative.

Proof. Suppose, to the contrary, that H? is associative and ε̄ = ε. Then part (3) of Theorem

4.2.5 implies that α = ᾱ, for every α ∈ Hom(H,K). However, this is impossible. For in-

stance, let x ∈ H− be nonzero, and let α ∈ Hom(H,K) be the map induced by the projection

of H onto Kx. Then α(x) = 1, but ᾱ(x) = −1. �

Lemma 4.2.7. Let H = H+ ⊕ H− be an oriented Hopf algebra. Then the following state-

ments hold.

1. If ϕ ∈ G(H∗), then ϕ̄ ∈ G(H∗).

2. The set G(H∗) is closed under ?.

3. The magma (G(H∗), ?) is a quasigroup.

Proof. We leave the proof of (1) to the reader. Since G(H∗) is closed under ∗, (2) follows

easily from (1). It remains to demonstrate that, for every ϕ, ψ ∈ G(H∗), there exist unique

elements x, y ∈ G(H∗) such that ϕ? x = ψ and y?ϕ = ψ. Since ψ̄ ∈ G(H∗) and (G(H∗), ∗) is

a group, there exists a unique x ∈ G(H∗) such that ϕ ∗ x = ψ̄, which is equivalent to saying

ϕ ? x = ϕ ∗ x = ψ = ψ. The other case follows by symmetry. �

If H = H+⊕H− is an oriented Hopf algebra, then to avoid ambiguity, we shall henceforth

set the following notation:

• G∗H will denote the group (G(H∗), ∗);

• G?
H will denote the quasigroup (G(H∗), ?); and,

• GH will denote the set G(H∗).
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Lemma 4.2.7 and the proof of Theorem 4.2.5 essentially form a proof of the following

result.

Theorem 4.2.8. Let H = H+ ⊕ H− be an oriented Hopf algebra. Then G?
H is a quasigroup

such that the following properties are equivalent.

1. G?
H is a semigroup.

2. G?
H is a loop.

3. For every ϕ ∈ G, ϕ ∗ ε̄ = ϕ̄ = ε̄ ∗ ϕ. In particular, ε̄ ∗ ε̄ = ε.

4. G?
H is a group with multiplication given by ϕ ? ψ = ϕ ∗ ψ ∗ ε̄ and identity element ε̄.

Furthermore, if (1)-(4) hold, conjugation G∗ → G? : ϕ 7→ ϕ̄ is an isomorphism of groups.

Corollary 4.2.9. Let H = H+ ⊕ H− be a nontrivial oriented Hopf algebra such that H is

finite-dimensional, commutative, semisimple, and splits over K. Then either ε̄ , ε or G?
H is

not associative. Consequently, if dim(H) is odd, then G?
H is not associative.

Proof. Suppose, to the contrary, that G?
H is associative and ε̄ = ε. Then, by part (3) of

Theorem 4.2.8, ϕ ∗ ε = ϕ̄ = ε̄ ∗ ϕ, for every ϕ ∈ GH. Hence, by part (2) of Lemma

4.2.4 forces α(H−) = 0, for every α ∈ GH. However, this is impossible since GH forms a

basis of Hom(H,K) under the hypotheses on H. Finally, suppose that G?
H is associative and

dim(H) = |GH | is odd. Then, as above, ε̄ ∗ ε̄ = ε, and so ε̄ = ε, a contradiction. �

We close this section with the construction of an orientation that will be useful later.

Lemma 4.2.10. Let H be a Hopf algebra that is a finite-dimensional, commutative, semisim-

ple, and splits over K. Suppose that H has even dimension, and let {e1, . . . , e2n} be its basis

of orthogonal idempotents. Then H = H+ ⊕ H− is an orientation of H, where

H+ = span{e1 + e2, e3 + e4, . . . , e2n−1 + e2n} and

H− = span{e1 − e2, e3 − e4, . . . , e2n−1 − e2n}.
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4.3 A Duality Between Oriented Hopf Actions and Grad-

ings

Our goal in this section is to extend the Bergen and Cohen Duality to include oriented Hopf

actions. In particular, we show that oriented H-algebra actions on a Lie algebra are dual

to certain quasigroup-gradings; whereas, in the case of associative algebras, we show that

oriented Hopf actions are dual to, what we call, Lie-Jordan-gradings.

Throughout this section, we assume that H = H+ ⊕ H− is an oriented Hopf algebra.

In addition, we assume that H satisfies the hypotheses of Theorem 4.1.7. Furthermore,

because the gradings that we will introduce below only make proper sense when G∗H is

abelian, we shall also assume that H is cocommutative. We thus set the following notation.

Definition 4.3.1. We say that a Hopf algebra H satisfies the duality hypothesis if H is

a finite-dimensional, commutative, semisimple, cocommutative Hopf algebra which splits

over K.

Recall now that every H-module A has a vector space decomposition

A =
⊕
ϕ∈GH

Aϕ, where Aϕ = {a ∈ A| h · a = ϕ(h)a for all h ∈ H },

and, conversely, that every graded vector space A =
⊕

ϕ∈GH
Aϕ has a natural H-module

action induced by h · aϕ = ϕ(h)aϕ, for every aϕ ∈ Aϕ and h ∈ H. Consequently, A is an

oriented H-algebra if and only if, for all homogeneous a ∈ Aϕ, b ∈ Aψ, h+ ∈ H+, and

h− ∈ H−, we have

h+ · (ab) = (ϕ ∗ ψ)(h+)ab, and

h− · (ab) = (ϕ ∗ ψ)(h−)ba.

Using these facts, we will obtain dualities between actions and gradings in three special

cases: when A is commutative, anti-commutative, or associative. In order to handle the

associative case, we make use of the induced Lie algebra, A(−), and the induced Jordan
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algebra, A(+). Recall that since our characteristic p is assumed not to be 2, associative

multiplication decomposes via the identity

2ab = a ◦ b + [a, b]

into commutative and anti-commutative operations. We will make use of the following

simple observation:

Lemma 4.3.2. Let A be an oriented H-algebra. If A is associative and H is cocommutative,

then A(−) and A(+) are oriented H-algebras under the induced H-action.

Commutative Algebras

If A happens to be commutative, then A is an oriented H-algebra if and only if A is an

H-algebra. Thus, A is an oriented H-algebra precisely when A =
⊕

ϕ∈G∗H
Aϕ is a group-

grading.

Anti-commutative Algebras

Let A be an anti-commutative algebra (for instance, a Lie algebra). If A is an oriented

H-algebra, then

(ϕ ∗ ψ)(h+) = (ϕ ? ψ)(h+), and

(ϕ ∗ ψ)(h−) = −(ϕ ? ψ)(h−),

and it follows that the vector space decomposition A =
⊕

ϕ∈G?
H

Aϕ described above is a

quasigroup-grading.

Conversely, if A =
⊕

ϕ∈G?
H

Aϕ is a quasigroup-grading, then h · (ab) = (ϕ ? ψ)(h)(ab),

for all h ∈ H and homogeneous a ∈ Aϕ and b ∈ Aψ. Similarly to the last paragraph, but in

reverse, one can verify that this property is equivalent to A being an oriented H-algebra.

Now suppose that G?
H is either a semigroup or a loop. Then, by Theorem 4.2.8, G?

H is a

group such that, for every ϕ, ψ ∈ GH, we have ϕ̄ ? ψ̄ = ϕ ∗ ψ. Thus we have the following:
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Theorem 4.3.3. Let H = H+ ⊕ H− be an oriented Hopf algebra satisfying the duality

hypothesis, and let A be an anti-commutative algebra. Then the following statements hold.

1. A is an oriented H-algebra if and only if the vector space decomposition A =
⊕

ϕ∈G?
H

Aϕ

is a quasigroup-grading of A.

2. Suppose that the quasigroup G?
H is a either a semigroup or a loop, and define Bϕ =

Aϕ̄, for each ϕ ∈ GH. Then A is an oriented H-algebra if and only if the vector space

decomposition A =
⊕

ϕ∈G∗H
Bϕ is a group-grading.

We recall that determining when a Lie algebra admits a quasigroup-grading may be

of some independent interest, due to the ongoing search for set-gradings of Lie algebras

which cannot be realized as semigroup-gradings. Recall that Zassenhaus and Patera once

asserted that such things did not exist ([PZ]). In Chapter 7 we offer an example of how to

use the above duality to construct a counterexample to this claim.

Associative Algebras

Let A be an associative algebra, and suppose that A is an oriented H-algebra. Then, since

H is cocommutative, A(+) and A(−) are also oriented H-algebras by Lemma 1.3. Hence,

from the discussion above, A(+) =
⊕

ϕ∈G∗ Aϕ is a group-grading and A(−) =
⊕

ϕ∈G? Aϕ is a

quasigroup-grading. These facts prompt the following definition.

Definition 4.3.4. Let H = H+⊕H− be an oriented Hopf algebra, and let A be an associative

algebra with an H-module action. Then a vector space decomposition A =
⊕

ϕ∈GH
Aϕ will

be called a Lie-Jordan-grading of A whenever A(+) =
⊕

ϕ∈G∗H
Aϕ is a group-grading and

A(−) =
⊕

ϕ∈G?
H

Aϕ is a quasigroup-grading. If the operations ∗ and ? coincide, we shall say

that a Lie-Jordan-group-grading is trivial.

Notice that a Lie-Jordan-group-grading is trivial precisely when it is a group-grading

over G∗H. It follows from above that every oriented H-algebra action on an associative

algebra A gives rise to a Lie-Jordan-grading of A. On the other hand, if A =
⊕

ϕ∈GH
Aϕ
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is a Lie-Jordan-grading of A, then, for every a ∈ Aϕ, b ∈ Aψ, the induced H-action on A

satisfies

h · (ab) =
1
2

(h · (a ◦ b) + h · [a, b]) =
1
2

((ϕ ∗ ψ)(h)(a ◦ b) + (ϕ ? ψ)(h)[a, b]).

Consequently, for h+ ∈ H+ and h− ∈ H−, we see that

h+ · (ab) = (ϕ ∗ ψ)(h+)(ab), and

h− · (ab) = (ϕ ∗ ψ)(h−)(ba);

that is, A is an oriented H-algebra. We summarize as follows.

Theorem 4.3.5. Let H = H+ ⊕ H− be an oriented Hopf algebra satisfying the duality

hypothesis, and let A be an associative algebra. Then A is an oriented H-algebra if and

only if the vector space decomposition A =
⊕

ϕ∈GH
Aϕ is a Lie-Jordan-grading of A.

We remark that, in the case where H = KG, any Lie-Jordan-group-grading of an as-

sociative algebra A is, in particular, a Jordan-group-grading of A. Moreover, according to

the above construction, the identity component of this grading is Aε = AG = {a ∈ A| ag =

a, for all g ∈ G}. Hence, in the case that A is an oriented KG-algebra, we can derive from

Theorem 3.1.3 that A is a PI-algebra of bounded degree whenever AG is.

In fact, using the above dualities, several similar remarks to this one can be made. In

Chapter 6, we elaborate further on these special cases of the duality theorems, but first, we

provide a unified approach to polynomial identities in Chapter 5 which will organize these

results in an all-encompassing manner.



Chapter 5

Essential H-identities

In this chapter, we return to the study of polynomial identities, and offer a unified Hopf

algebra approach which will encompass many of the aforementioned results as special

cases. Throughout this chapter, H denotes an m-dimensional Hopf algebra over a field K

of characteristic p ≥ 0 with a basis B = {e1, . . . , em}.

In the first section, we define H-identities, which generalize the previous notions of

G-identities (as used in Amitsur’s theorems on involutions and the Bahturin-Giambruno-

Zaicev Theorem) and graded identities (as used in the Bahturin-Giambruno-Riley Theorem

and Theorem 3.1.3). Subsequently, we define and discuss essential H-identities, and use

this notion to prove our main results. Finally, we further elaborate on the difference between

essential H-identities and ordinary polynomial identities on the subalgebra of invariants,

AH = {a ∈ A| ah = ε(h)a}.

5.1 H-identities

If an algebra A is an H-module, then we can consider the H-identities on A. We denote

the free associative K-algebra on the set {xe j

i | e j ∈ B, i ∈ Z+} by A〈X|H〉. Elements in

A〈X|H〉 are called H-polynomials. We identify xh
i =

∑m
j=1 α jx

e j

i , for all linear combinations

h =
∑m

j=1 α je j ∈ H, and xi = x1
i , for 1 = 1H. There is a natural H-action on A〈X|H〉 given
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by

h · (xh1
i1
· · · xhn

in
) =

∑
h

xh(1)h1
i1
· · · xh(n)hn

in
,

where ∆n−1(h) =
∑

h h(1) ⊗ · · · ⊗ h(n). In this way, A〈X|H〉 is the free associative H-algebra

on X in the sense that it satisfies the following universal property: given any set map ϕ :

X → A to an associative H-algebra A, there is a unique algebra homomorphism extension

ϕ̄ : A〈X|H〉 → A of ϕ such that ϕ̄( f h) = h · (ϕ( f )), for every f ∈ A〈X|H〉 and h ∈ H.

Now let A be any associative algebra, and suppose that A is an H-module (but not

necessarily an H-algebra). An H-polynomial f (x1, . . . , xn) ∈ A〈X|H〉 is an H-identity of A

if f (a1, . . . , an) = 0, for all a1, . . . , an ∈ A, where the H-action on A is used in the evaluation

of f (x1, . . . , xn). Notice, however, that if we denote by IdH(A) the ideal in A〈X|H〉 of all

H-identities of A, that IdH(A) is not closed under endomorphisms unless A is an H-algebra.

The following definition generalizes the notion of an essential G-identity (where G is a

group acting by automorphisms and anti-automorphisms) given in Chapter 2.

Definition 5.1.1. A multilinear H-polynomial is called essential if it is of the form

x1 · · · xd −
∑

1,σ∈S d ,b∈Bd

ασ,bxb1
σ(1) · · · x

bd
σ(d),

where b = (b1, . . . , bd).

5.2 Essential H-identities on H-algebras

We are now ready to state our first result of this chapter.

Theorem 5.2.1. Let H be an m-dimensional Hopf algebra, and let A be an associative

H-algebra. If A satisfies an essential H-identity of degree d, then A satisfies a polynomial

identity of degree at most dem(d − 1)2e.

Here e denotes the base of natural logarithms and dxe is the least integer greater than or

equal to a real number x. We remark that the Bahturin-Giambruno-Riley Theorem can be
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formulated as follows: if H is a semisimple commutative m-dimensional Hopf algebra, and

A is an H-algebra such that

AH = {a ∈ A| h · a = ε(h)a, for every h ∈ H}

satisfies a polynomial identity of degree d, then A satisfies an identity of degree at most

dem(dm − 1)2e. In Section 5.3, we will show how to induce an essential H-identity in this

case. We also remark that, if H is a finite-dimensional Hopf algebra that is not semisimple,

then there exists an associative H-algebra A such that AH satisfies a polynomial identity but

A does not, as shown by Bahturin and Linchenko in [BL]. Thus, we have:

Corollary 5.2.2. Let H be a finite-dimensional Hopf algebra that is not semisimple. Then

there exists an associative H-algebra A such that AH satisfies a polynomial identity but A

does not satisfy an essential H-identity.

Before we begin the proof of Theorem 5.2.1, we make a few more definitions. Let A

be an associative algebra with a given H-module action. We do not assume that A is an

H-algebra. For each positive integer n, set

PH
n = spanK{x

b1
σ(1) · · · x

bn
σ(n)|σ ∈ S n, bi ∈ B}.

That is, PH
n is the space of all multilinear H-polynomials in the indeterminates x1, . . . , xn.

The nth H-codimension of A is given by

cH
n (A) = dim

PH
n

PH
n ∩ IdH(A)

,

respectively. Key to our proof is the observation that, since cn(A) ≤ cH
n (A), for every n ≥ 1,

A satisfies an ordinary polynomial identity of degree n whenever cH
n < n!. See Lemma 5

in [Gd], for example. We impose a left lexicographic partial order on the monomials in PH
n

by setting xb1
i < xb2

j , whenever i < j, and extending this ordering left lexicographically. Let

σ ∈ S n. We recall Regev’s ([Re1]) definition of d-good (and d-bad) monomials.

Definition 5.2.3. The monomial xσ(1) · · · xσ(n) is called d-bad if there are integers 1 ≤ i1 <

· · · < id ≤ n such that σ(i1) > · · · > σ(id); otherwise, xσ(1) · · · xσ(n) is called d-good.
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Now, in order to prove Theorem 5.2.1, suppose that an associative H-algebra A satisfies

an essential H-identity

f = x1 · · · xd −
∑

1,σ∈S d ,b∈Bd

ασ,bxb1
σ(1) · · · x

bd
σ(d).

We claim that, for all integers n ≥ d, PH
n is spanned by the set of all d-good monomials

modulo IdH(A). Indeed, suppose that this were false. Then there exists a monomial w =

xb1
i1
· · · xbn

in
minimal in the lexicographical order that is d-bad and not a linear combination

of d-good monomials modulo IdH(A). As such, we may write w = uwd · · ·w1 with the

property that, whenever j > k, the left variable in w j is greater than the left variable in wk.

Then, because A is an H-algebra,

u f (wd, . . . ,w1) = w − u
( ∑

1,σ∈S d ,b∈Bd

ασ,bwb1
σ(d) · · ·w

bd
σ(1)

)
is a well-defined H-identity on A. Therefore, since each monomial in the sum on the

right is smaller than w in the lexicographical order, it is a linear combination of d-good

monomials. In other words, w is a linear combination of d-good monomials modulo IdH(A),

a contradiction.

Since it is known that the number of d-good permutations in S n is no greater than (d−1)2n

(d−1)!

(see [Re2]), it follows that

cH
n (A) ≤ mn (d − 1)2n

(d − 1)!
.

Thus, substituting n = dem(d − 1)2e into the inequality ( n
e )n < n! (see [FR]), allows us to

conclude

cn(A) ≤ cH
n (A) ≤ mn(d − 1)2n < n!,

so that A satisfies a polynomial identity of degree dem(d − 1)2e. This completes the proof

of Theorem 5.2.1 and proves the following fact interesting in its own right.

Theorem 5.2.4. Let H be an m-dimensional Hopf algebra, and let A be an associative

H-algebra. If A satisfies an essential H-identity of degree d, then

cH
n (A) ≤ (m(d − 1)2)n,

for all n, so that the H-codimensions of A grow at most exponentially in n.
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5.3 Essential H-identities on Lie and Jordan H-algebras

In this section, A will always denote an associative algebra, although A will also be viewed

as the Lie algebra A(−), and as the Jordan algebra A(+). Below, we investigate H-module

actions on A with the property that either A(+) or A(−) is an H-algebra for which we propose

the following terminology.

Definition 5.3.1. Let A be an associative algebra, and let H be a Hopf algebra.

1. We shall say A is a Lie H-algebra whenever A(−) is an H-algebra.

2. Similarly, A is a Jordan H-algebra whenever A(+) is an H-algebra.

Since Lie algebras and Jordan algebras are anti-commutative and commutative, respec-

tively, it is natural to assume that H is cocommutative. Thus, in this section, H will always

denote a cocommutative Hopf algebra. Under this assumption, if A is an associative H-

algebra, then A is both a Lie H-algebra and a Jordan H-algebra (via the induced H-action).

In particular, the free associative H-algebra,A〈X|H〉, is both a Lie H-algebra and a Jordan

H-algebra. Analogously to the notation introduced in Chapter 3, we shall write L〈X|H〉

(respectively, J〈X|H〉) for the Lie H-subalgebra (respectively, Jordan H-subalgebra) gen-

erated by X in A〈X|H〉(−) (respectively, A〈X|H〉(+)). It follows that L〈X|H〉 (respectively,

J〈X|H〉) is the free Lie H-algebra (respectively, free Jordan H-algebra) on X, in the sense

discussed for associative H-algebras.

The function f (d,m) in our next result is the same used to prove the main theorem in

[BGZ] and Theorem 3.1.3.

Theorem 5.3.2. Let H be an m-dimensional cocommutative Hopf algebra, and let A be an

associative algebra that is either a Lie or Jordan H-algebra. If A satisfies an essential H-

identity of degree d, then A satisfies a polynomial identity of degree bounded by the function

f (d,m).

The proof of Theorem 5.3.2 proceeds along a line similar to the proof of Theorem 5.2.1
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but uses instead the notion of d-indecomposable monomials in place of d-good monomials

(recall d-decomposable monomials were defined in Definition 3.3.4).

We prove Theorem 5.3.2 only in the case when A is a Lie H-algebra as the case when

A is a Jordan H-algebra is similar. Thus, suppose that A is a Lie H-algebra that satisfies an

essential H-identity

f (x1, . . . , xd) = x1 · · · xd −
∑

1,σ∈S d ,b∈Bd

ασ,bxb1
σ(1) · · · x

bd
σ(d).

We claim that, for all integers n ≥ d, PH
n is spanned by the set of d-indecomposable mono-

mials modulo IdH(A). Suppose then, to the contrary, that this were false. Then there exists a

monomial w = xb1
i1
· · · xbn

in
in PH

n minimal in lexicographical ordering that is d-decomposable

and is not a linear combination of d-indecomposable monomials. Let w = uwd · · ·w1v be

its d-decomposition. For each 1 ≤ j ≤ d, write w j = y
b j1
1 · · · y

b jl
l (we use y’s in place of x’s

for simplicity) and set w̄ j = [y
b j1
1 , . . . , y

b jl
l ]. It follows that

w ≡ uw̄dw̄d−1 · · · w̄1v (mod W),

where W is the span of all the monomials xbσ(1)
iσ(1)
· · · xbσ(n)

iσ(n) which are smaller than w in the

lexicographical ordering. Indeed, writing wd = y
b j1
1 · · · y

b jl
l , we have

w ≡ u[y
b j1
1 , y

b j2
2 ]y

b j3
3 · · · y

b jl
l wd−1 · · ·w1v (mod W)

since uy
b j2
2 y

b j1
1 y

b j3
3 · · · y

b jl
l wd−1 · · ·w1v ∈ W. Repeated application of this same sort of argu-

ment applied to each wi yields the assertion. Now, since each w̄σ(i) lies in L〈X|H〉, the free

Lie H-algebra on X, and A(−) is an H-algebra, the evaluation of w̄bd−i+1
σ(i) in A is unambiguous.

Consequently,

u f (w̄d, . . . , w̄1)v = uw̄d · · · w̄1v − u
( ∑

1,σ∈S d ,b∈Bd

ασ,bw̄b1
σ(d) · · · w̄

bd
σ(1)

)
v

is a well-defined H-identity on A. Expanding all the Lie monomials in the sum on the right

produces only associative monomials in W; thus, w ∈ IdH(A) + W, contrary to assumption.

This proves the claim.
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In order to complete the proof of Theorem 5.3.2, we recall that ad(n) denotes the number

of d-indecomposable words in Pn. We have just seen that cH
n (A) ≤ ad(n)mn. Consequently,

using Lemma 3.3.4 we have

cn(A) ≤ cH
n (A) ≤ ad(n)mn < n!,

for all n ≥ f (d,m). In particular, A satisfies a polynomial identity of degree f (d,m), proving

Theorem 5.3.2. Thus, by Lemma 4.7 in [GR],

cn(A) ≤ ( f (d,m) − 1)2n,

for all n ≥ f (d,m), yielding the following result.

Corollary 5.3.3. Let H be an m-dimensional co-commutative Hopf algebra, and let A be

an associative algebra that is either a Lie or Jordan H-algebra. If A satisfies an essential

H-identity of degree d, then, for all n ≥ f (d,m),

cH
n (A) ≤ (m( f (d,m) − 1)2)n,

so that the H-codimensions of A grow at most exponentially in n.

5.4 Essential H-Identities Versus Ordinary Identities on

AH

Next we further explore the relationship between essential H-identities and ordinary iden-

tities on AH. Recall from Corollary 5.2.2 that, if H is not semisimple, then there exists an

associative H-algebra A such that AH satisfies a polynomial identity, but A does not satisfy

an essential H-identity.

Theorem 5.4.1. Let H be an m-dimensional semisimple commutative Hopf algebra, and

let A be an associative algebra with an H-module action.

1. If A satisfies an essential H-identity of degree d, then AH satisfies a polynomial iden-

tity of degree d.
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2. Conversely, if AH satisfies a polynomial identity of degree d, and one of the following

conditions holds:

(a) A is an H-algebra, or

(b) H is co-commutative and A is a Lie or Jordan H-algebra,

then A satisfies an essential H-identity of degree dm.

Proof. It suffices to assume that the base field is algebraically closed; consequently, H is

isomorphic to (KG(H∗))∗ as Hopf algebras (see [BC]). Hence, we set G = G(H∗) and

we may assume that H = (KG)∗. Let B = {e1, . . . , em} = {ρg | g ∈ G} be the standard

dual basis of (KG)∗. Then B is a complete set of orthogonal idempotents of H such that

e1 + · · ·+em = 1. Furthermore, e1 := ρ1 is the augmentation map on KG, so that AH = e1 ·A.

Thus, if f (x1, . . . , xd) is an essential identity of A, then g = f (xe1
1 , . . . , x

e1
d ) is an H-identity

on A which may be viewed as an ordinary identity on AH. This proves (1).

To prove (2), we first remark that a nonassociative algebra A is an H-algebra precisely

when A is G-graded with Ag = ρg · A, for each g ∈ G. This was proved for associative

algebras in [BC], but the same proof works for all nonassociative algebras as noted in

[PR2]. Now notice that, if AH satisfies a polynomial identity

f (x1, . . . , xd) = x1 · · · xd −
∑

1,σ∈S d

ασxσ(1) · · · xσ(d)

of degree d, then obviously it satisfies some multilinear degree dm consequence, which we

shall denote by g. It follows that g(xe1
1 , . . . , x

e1
dm) is an H-identity of A. Using the fact that

e1 = 1 − e2 − · · · − em and expanding linearly, we obtain

g(xe1
1 , . . . , x

e1
dm) = x1

1 · · · x
1
dm−

∑
1,b∈Bdm

γbxb1
1 · · · x

bdm
dm (5.1)

−
∑

1,τ∈S dm,b∈Bdm

δτ,bxb1
τ(1) · · · x

bdm
τ(dm).

Let W be the span of monomials of the type in the second sum of (5.1). Then A satisfies an

essential H-identity as soon as

g(xe1
1 , . . . , x

e1
dm) ≡ x1

1 · · · x
1
dm (mod IdH(A) + W).
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According to Lemma 2.2.5, for any word of length dm in G, there exists a string of d

consecutive subwords each with trivial evaluation. Hence, we may write each of the mono-

mials in the first sum of (5.1) as w = xb1
1 · · · x

bdm
dm = uw1 · · ·wdv, where each submonomial

wi is of the form wi = x
ρg1
i1
· · · x

ρgl
il

with g1 · · · gl = 1.

Consider now the case when A is an H-algebra. As remarked above, this means A is

G-graded. Thus, each wi evaluates into A1 = AH, and so

u f (w1, . . . ,wd)v = w − u(
∑

1,σ∈S d

ασwσ(1) · · ·wσ(d))v ∈ IdH(A).

It follows that w ∈ W + IdH(A), and so A satisfies an essential H-identity.

Now suppose that H is co-commutative, as in condition (b). This is equivalent to sup-

posing that the group G is abelian. We shall only prove the case when A is a Lie H-algebra:

the case when A is a Jordan H-algebra being analogous. Let w be one of the monomials

appearing in the first sum of (5.1) and write w = uw1 · · ·wdv, where each wi = x
ρg1
i1
· · · x

ρgl
il

with g1 · · · gl = 1, as before. As in the proof of Theorem 5.3.2, we have

w ≡ uw̄1 · · · w̄dv (mod W),

where each w̄i = [x
ρg1
i1
, · · · , x

ρgl
il

]. Since A is a Lie H-algebra, A(−) is G-graded. Hence, each

w̄i evaluates into A1 = AH, and so

u f (w̄1, · · · , w̄d)v = uw̄1 · · · w̄dv − u(
∑

1,σ∈S d

ασw̄σ(1) · · · w̄σ(d))v ∈ IdH(A).

Therefore, because

u(
∑

1,σ∈S d

ασw̄σ(1) · · · w̄σ(d))v ∈ W,

each w ∈ W + IdH(A) and A satisfies an essential H-identity, as before. �

Combining Theorems 5.2.1, 5.3.2 and 5.4.1 yields the following result.

Corollary 5.4.2. Let H be an m-dimensional semisimple commutative Hopf algebra, and

let A be an associative algebra with an H-module action with the property that AH satisfies

a polynomial identity of degree d.



62 Chapter 5. Essential H-identities

1. If A is an H-algebra, then A satisfies a polynomial identity of degree bounded by

dem(dm − 1)2e.

2. If H is co-commutative and A is either a Lie or Jordan H-algebra, then A satisfies a

polynomial identity of degree bounded by f (dm,m).

Part (1) is equivalent to the Bahturin-Giambruno-Riley Theorem. Part (2) is equivalent

to Theorem 3.1.3: if G is a finite abelian group, A is an associative algebra such that either

A(−) or A(+) is G-graded, and A1 satisfies an identity of degree d, then A satisfies an identity

of degree f (d|G|, |G|).



Chapter 6

Worked Examples

In this chapter, we offer a detailed account of the two predominant examples of finite-

dimensional Hopf algebra actions on algebras. First, we investigate when the Hopf algebra

in question is H = KG, the group Hopf algebra of a finite group, and subsequently, we

investigate when H = u(g), the restricted universal enveloping Hopf algebra of a finite-

dimensional restricted Lie algebra. In each case, we begin by describing sufficient condi-

tions for H to be semisimple, finite-dimensional, commutative, cocommutative, and split.

Following this, we describe well-known dualities between actions and group-gradings,

which are actually examples of the Bergen-Cohen Duality involving these particular Hopf

algebras. Subsequently, we apply the theory presented in Chapter 4 to extend these duali-

ties. Finally, we discuss the applications to polynomial identity theory.

6.1 The Case of Group Algebras

In this section, our goal is to go into greater detail on how the theory presented in the

previous two chapters relates to the most well-known case of Hopf algebra actions on

algebras; hence, in this section, we assume that H = KG.

63
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The Duality Hypothesis on H = KG

To guarantee that the duality hypothesis (Definition 4.3.1) holds on H = KG, we clearly

need G to be a finite abelian group. Further, by Maschke’s Theorem, KG is semisimple if

and only if the characteristic p is 0 or does not divide |G|. Lastly, by a theorem of Brauer

(see [Ja2], Theorem 5.25), if G has exponent m, then any field containing a primitive mth

root of unity is a splitting field of G. Hence, for example, the duality hypothesis holds on G

whenever G is a finite abelian group and K is an algebraically closed field of characteristic

p = 0 or p > 0 and G has no p-torsion. Note that these hypotheses imply that G � Ĝ =

{χ1, . . . , χk}, and each character χi ∈ Ĝ is a homomorphism.

It is well-known that when the duality hypothesis holds on H = KG, then the unique

basis of orthogonal idempotents summing to 1 is given by B = { fχ| χ ∈ Ĝ}, where

fχ =
1
|G|

∑
g∈G

χ(g−1)g, for all χ ∈ Ĝ.

See [GZ] for details. It is clear that the dual basis to B is in fact Ĝ.

The Standard Duality of Actions by Automorphisms and Ĝ-gradings

The best known duality between actions and gradings is the following proposition, men-

tioned in [BI] and [Pa2], but known earlier to specialists like Cartier. It follows from the

Bergen and Cohen Duality but is frequently used in its own right; hence we take a moment

to view its explicit construction.

Proposition 6.1.1 (The Duality Between Actions by Automorphisms and Group-gradings).

Let A be an algebra and let G be a group such that the duality hypotheses holds on KG.

Then G embeds into Aut(A) if and only if

A =
⊕
χ∈Ĝ

Aχ, where Aχ = {a ∈ A| ag = χ(g)a, for all g ∈ G},

is a group-grading of A.
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Proof. Given an embedding of G into Aut(A), we can decompose A into a direct sum of

eigenspaces with respect to the characters of G:

A =
⊕
χ∈Ĝ

Aχ, where Aχ = {a ∈ A| ag = χ(g)a, for all g ∈ G}. (6.1)

Furthermore, for every a ∈ Aχ, b ∈ Aψ, and g ∈ G,

(ab)g = agbg = (χψ)(g)(ab).

Hence, ab ∈ Aχψ and (6.1) is a group-grading of A. Conversely, if A =
⊕

χ∈Ĝ Aχ is a

group-grading, we can define a G-action on A by setting

ag
χ = χ(g)aχ,

for each g ∈ G and aχ ∈ Aχ, and extending linearly. If a ∈ Aχ and b ∈ Aψ, then the grading

forces ab ∈ Aχψ. Thus,

(ab)g = (χψ)(g)ab = agbg,

and so G embeds into Aut(A). �

Duality Theorems for Actions by Anti-automorphisms

The original motivation behind the duality theorems in Section 4.3 was a desire to extend

Proposition 6.1.1 to include anti-automorphisms. Observe that any group G which embeds

into Aut∗(A) gives rise to an orientation of the Hopf algebra KG. Indeed, by defining

σ : G → {−1, 1} as the group homomorphism given by σ(g) = 1, if g ∈ Aut(A), and

σ(g) = −1, if g ∈ Aut∗(A)\Aut(A), it follows that G is an oriented group. Hence by setting

G+ = {g ∈ G|σ(g) = 1}, and

G− = {g ∈ G|σ(g) = −1},

it follows (as in Example 4.2.2) that H = KG+ ⊕ KG− is an orientation of H.

We proceed to consider the quasigroup G?
H. First, observe that ε̄ is the linear extension

of σ. We are interested in whether or not G?
H is a group; as such, we offer the following

easy lemma.
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Lemma 6.1.2. Let G be any oriented group, and let H = KG+ ⊕ KG− be the induced

oriented Hopf algebra. Then H? is an associative algebra and G?
H is a group with multi-

plication ϕ ? ψ = ϕ ∗ ψ ∗ ε̄ and identity ε̄.

Proof. Let ϕ ∈ Hom(H,K), and let g be a homogeneous element in G. Notice that ḡ =

σ(g)g = ε̄(g)g. Therefore,

(ϕ ∗ ε̄)(g) = ϕ(g)ε̄(g) = ϕ(ḡ) = ϕ̄(g),

and so, by Theorems 4.2.5 and 4.2.8, we are done. �

We will now demonstrate that, when the duality hypothesis holds on KG, embeddings

of G into Aut∗(A) are oriented KG-algebras, similar to how embeddings of G into Aut(A)

are KG-algebras. We also remark on how to induce a group-grading from the subgroup of

automorphisms, given a subgroup of Aut∗(A).

Lemma 6.1.3. Let G be a group such that the duality hypothesis holds on KG, and let A

be an algebra. Then the following statements hold.

1. If G embeds into Aut∗(A), then, via the induced orientation, KG is an oriented Hopf

algebra and A is an oriented KG-algebra.

2. If G is an oriented group, KG = KG+ ⊕ KG− is the induced orientation, and A is an

oriented KG-algebra, then G embeds into Aut∗(A) in such a way that G+ ⊆ Aut(A)

and G− ⊆ Aut∗(A).

3. Suppose G ≤ Aut∗(A), and let G+ = G ∩ Aut(A). Then AχG+ = Aχ + Aχ, for all

χ ∈ Ĝ, where χG+ is the restriction of the character χ to G+. The sum of all AχG+ is a

group-grading of A by Ĝ+.

Proof. Suppose that G embeds into Aut∗(A). Then G is an oriented group and KG is an

oriented Hopf algebra as seen above. Write g · a = ag, for all a ∈ A and g ∈ G. It follows

that

g · (ab) = (ab)g =


agbg = (g · a)(g · b), if g ∈ G+,

bgag = (g · b)(g · a), if g ∈ G−.
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This proves (1). To prove (2), write ag = g · a and reverse the proof of (1).

To prove (3), notice that G+ is the kernel of σ, and thus, without loss of generality,

|G : G+| = 2. Since χ̄G+ = χG+ , for every χ ∈ Ĝ, we can write Ĝ = {χ1, . . . , χn, χ̄1, . . . , χ̄n},

say. Because |G : G+| = 2, it follows that |Ĝ+| = |G+|, and so KG+ also satisfies the duality

hypothesis. Clearly, Aχ + Aχ̄ ⊆ AχG+ , for every χ ∈ Ĝ. Conversely, let a ∈ AχiG+ and write

a =
∑

aχ j + aχ̄ j . Then, for every g ∈ G+,

ag = χi(g)

 n∑
j=1

aχ j + aχ̄ j


=

n∑
j=1

χ j(g)
(
aχ j + aχ̄ j

)
.

Hence, for each 1 ≤ j ≤ n, either aχ̄ j + aχ j = 0 or χ j(g) = χi(g), for all g ∈ G+. So, if there

exists j , i such that aχ̄ j + aχ j , 0, then χi(g) = χ̄i(g) = χ j(g) = χ̄ j(g), for every g ∈ G+.

However, this is impossible because |G : G+| = 2. �

As consequence of Lemmas 5.2 and 5.3 and Theorems 4.3.3 and 4.3.5, we have the fol-

lowing corollary. It generalizes Proposition 6.1.1 in the case when A is a Lie or associative

algebra.

Corollary 6.1.4. Let G be a group such that H = KG satisfies the duality hypothesis. Then

the following statements hold.

1. Suppose that A is a Lie algebra and set Bϕ = Aϕ̄, for each ϕ ∈ GH. Then the following

statements are equivalent:

(a) G embeds into Aut∗(A).

(b) A =
⊕

ϕ∈G?
H

Aϕ is a group-grading.

(c) A =
⊕

ϕ∈G∗H
Bϕ is a group-grading.

2. Suppose that A is an associative algebra. Then G embeds into Aut∗(A) if and only if

A =
⊕

ϕ∈GH
Aϕ is a Lie-Jordan-group-grading.
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Polynomial Identity Theorem for H = KG

The following corollary is the interpretation of the results outlined in Chapter 5 for the case

where H = KG. In particular, we obtain the Baturin-Giambruno-Zaicev Theorem, from

which Amitsur’s Theorem 2.3.2 is deduced.

Corollary 6.1.5. Let G be a finite group of order m, let A be an associative algebra, and

let H = KG.

1. If G ≤ Aut(A) and A satisfies an essential H-identity of degree d, then A satisfies a

polynomial identity of degree dem(d − 1)2e.

2. If G ≤ Aut∗(A) (or, more generally, if G ≤ Aut(A(+))) and A satisfies an essential

H-identity of degree d, then A satisfies a polynomial identity of degree bounded by

the function f (d,m).

Proof. To prove (1), notice that A is an H-algebra. Thus, we may apply Theorem 5.2.1. To

prove (2), observe that KG is co-commutative and A(+) is a KG-algebra. In this case, we

may apply Theorem 5.3.2. �

6.2 The Case of Restricted Universal Enveloping Algebras

In this section, we provide details on how the theory presented in the previous chapters

relates to another well-known case of Hopf algebra actions; namely, we assume that H =

u(g).

The Duality Hypothesis on u(g)

Suppose that g is a restricted Lie algebra over a field of characteristic p > 0. Determining

when the duality hypotheses holds on H = u(g) is less clear than the group algebra case; as

such, we make the following observations.

If the duality hypothesis holds on u(g), then g is finite-dimensional; in this case, u(g) is

semisimple if and only if g is abelian and its p-map is injective (see [Ho]). To guarantee
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that u(g) splits over K, we could assume that K is algebraically closed, which would further

allow us to assume that g is an (abelian) n-torus; namely, g has a basis {δ1, . . . , δn} consisting

of toral elements (see [SF], Theorems 2.36 and 2.37). Recall that δ ∈ g is called toral if

δp = δ. On the other hand, assuming g is an n-torus is sufficient to satisfy the duality

hypothesis, as we shall see below.

Lemma 6.2.1. Let g be an n-torus with toral basis {δ1, . . . , δn} over a field K of character-

istic p > 0, and put H = u(g). Then the following statements hold.

1. The set of all ordered monomials {e(λ1)
1 · · · e(λn)

n | 0 ≤ λi ≤ p − 1}, where, for each

1 ≤ i ≤ n,

e(0)
i = 1 − δp−1

i and

e(λi)
i = −

∑
1≤ j≤p−1

λ
− j
i δ

j
i (λi , 0),

is a basis of orthogonal idempotents of u(g) which sum to 1.

2. The duality hypothesis holds on u(g).

3. Let p(λ1,...,λn) be the element in the dual basis of Hom(H,K) corresponding to the

idempotent e(λ1)
1 · · · e(λn)

n . Then p(λ1,...,λn)(δi) = λi, for every i. Hence, G∗H � (Zn
p,+).

Proof. First notice that δie
(λi)
i = λie

(λi)
i , for every i. It follows that each e(λi)

i is an idempotent.

Now suppose λi , µi, for some i. Then λ−1
i µi , 1, and so

e(λi)
i e(µi)

i = −

 ∑
1≤ j≤p−1

λ
− j
i δ

j
i

 e(µi)
i

= −

 ∑
1≤ j≤p−1

(λ−1µi) j

 e(µi)
i

= −(0)e(µi)
i .

Thus, e(λ1)
1 · · · e(λn)

n and e(µ1)
1 · · · e(µn)

n are orthogonal idempotents, and

{e(λ1)
1 · · · e(λn)

n | 0 ≤ λi ≤ p − 1}
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is a linearly independent set of pn elements. By Jacobson’s version of the PBW Theorem for

restricted universal enveloping algebras (see [SF], for example), dim(H) = pn. Statements

(1) and (2) now follow.

To prove (3), observe that, since g is an n-torus, defining q(λ1,...,λn)(δi) = λi, for each i,

induces a well-defined algebra map q(λ1,...,λn) from H to K. Because q(λ1,...,λn)(e
(µk)
k ) = δ(λi,µk),

it follows that q(λ1,...,λn) = p(λ1,...,λn). Hence, for every i,

(
p(λ1,...,λn) ∗ p(µ1,...,µn)

)
(δi) =

(
p(λ1,...,λn) + p(µ1,...,µn)

)
(δi)

= λi + µi

= p(λ1+µ1,...,λn+µn)(δi),

and so G∗H � Z
n
p. �

The Standard Duality Between Actions by Derivations and Zn
p-gradings

We will explicitly describe another well-known duality, which follows from the Bergen and

Cohen Duality.

Proposition 6.2.2 (Duality Between Actions by Derivations and Group-Gradings). Let K

be a field of characteristic p > 0, let g be the n-torus, and let A be a K-algebra. Then g

embeds into Der(A) if and only if

A =
⊕

(λ1,...,λn)∈Zn
p

A(λ1,...,λn), where A(λ1,...,λn) =

n⋂
i=1

{a ∈ A| aδi = λia},

is a group-grading.

To demonstrate how this duality works, we suppose first that g embeds into End(A).

Then, since each basis element δi of g satisfies δp
i − δi = 0, we can decompose A into the

eigenspaces of δi corresponding to its eigenvalues λi = 0, 1, . . . , p − 1. From these eigen-

values, we form the additive group G = Zn
p, whose elements we denote by λ̄ = (λ1, . . . , λn).

It follows that

A =
⊕
λ̄∈G

Aλ̄, where Aλ̄ =

n⋂
i=1

{a ∈ A| aδi = λia},
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is a vector space decomposition of A. Furthermore, if g ≤ Der(A), for every a ∈ Aλ̄ and

b ∈ Aµ̄, then

(ab)δi = aδib + abδi = (λi + µi)ab,

for each i, so that this is indeed a G-grading of A. Conversely, suppose that G = Zn
p and

that A =
⊕

λ̄∈G Aλ̄ is any vector space decomposition. Then, for each i = 1, . . . , n, we may

define δi ∈ End(A) by aδi = λia, for every a ∈ Aλ̄ and λ̄ = (λ1, . . . , λn) ∈ G. Furthermore, if

this vector space decomposition is a G-grading of A, then, for every homogeneous a ∈ Aλ̄

and b ∈ Aµ̄, we have ab ∈ Aλ̄+µ̄, so that

(ab)δi = (λi + µi)ab = aδib + abδi .

Notice, as well, that each δi = δ
p
i since each λi = λ

p
i . Consequently, each δi is a toral

derivation and {δ1, . . . , δn} spans an n-torus which embeds into Der(A).

Duality Theorems for Actions by Anti-derivations

We now describe how to extend the above duality to include actions by anti-derivations on

A. Recall that a K-linear map δ is called an anti-derivation of A if (ab)δ = bδa + baδ, for all

a, b ∈ A. First, we observe that Der∗(A) admits a natural Z2-grading: Der∗(A) = g+ ⊕ g−,

where g+ = Der(A) and g− is the subspace of all anti-derivations on A. Now let g = g+ ⊕ g−

be a Z2-graded restricted Lie algebra. We shall call g a Z2-graded n-torus if g is an n-torus

with a homogeneous basis ∆ = {δ1, . . . , δn} consisting of toral elements.

Let

B = {δs1
i1
· · · δsn

in
| 0 ≤ si ≤ p − 1}

be the corresponding basis of PBW monomials of u(g). Define σ : ∆ → {−1, 1} by

σ(δ) = 1, if δ ∈ g+, and σ(δ) = −1, if δ ∈ g−, extend σ to u(g) via σ(δs1
i1
· · · δsn

in
) =

σ(δi1)
s1 · · ·σ(δin)

sn , for each δs1
i1
· · · δsn

in
in B, and put

u(g)+ = span{b ∈ B|σ(b) = 1} and u(g)− = span{b ∈ B|σ(b) = −1},

so that u(g) = u(g)+ ⊕ u(g)−.
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Lemma 6.2.3. Let g = g+⊕g− be a Z2-graded n-torus, and let H = u(g). Then the following

statements hold.

1. H = u(g)+ ⊕ u(g)− is an orientation of H such that ε̄ = ε.

2. Multiplication in the quasigroup G?
H is given by

(p(λ1,...,λn) ? p(µ1,...,µn))(δi) = σ(δi)(λi + µi), for each i.

Thus, if we define a new binary operation ? on Zn
p by

λ ? µ = (σ(δ1)(λ1 + µ1), . . . , σ(δn)(λn + µn)),

for each λ = (λ1, . . . , λn), µ = (µ1, . . . , µn) in Zn
p, then G?

H and (Zn
p, ?) are isomorphic

as quasigroups.

3. Suppose that g , g+. Then the algebra H? is neither associative nor unital; moreover,

the quasigroup G?
H is neither a semigroup nor a loop.

Proof. Since g is the n-torus, it is easy to see B is closed under multiplication. The fact

that H = u(g)+ ⊕ u(g)− is an orientation is an easy consequence. Since ε(x) = 0, for all

x ∈ g, and 1 ∈ u(g)+, it follows that ε̄ = ε. This proves (1). Part (2) follows from part (3) of

Lemma 6.2.1. Since ε̄ = ε, part (3) follows from Corollaries 4.2.6 and 4.2.9. �

The proof of the next lemma is analogous to that of Lemma 6.1.3.

Lemma 6.2.4. Let g = g+ ⊕ g− be a Z2-graded n-torus, let H = u(g) = u(g)+ ⊕ u(g)− be

the induced oriented Hopf algebra, and let A be an algebra. Then the following statements

hold.

1. If g embeds into Der∗(A) as a Z2-graded restricted Lie algebra, then A is an oriented

u(g)-algebra.

2. If A is an oriented u(g)-algebra, then g embeds into Der∗(A) in such a way that

g+ ⊆ Der(A) and g− ⊆ Der∗(A)\Der(A).
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The preceding results, together with Theorems 4.3.3 and 4.3.5, imply the following

corollary.

Corollary 6.2.5. Let g = g+ ⊕ g− be a Z2-graded n-torus and let H = u(g) = u(g)+ ⊕ u(g)−

be the induced oriented Hopf algebra. Then the following statements hold.

1. Let A be a Lie algebra. Then g embeds into Der∗(A) as a Z2-graded Lie algebra if

and only if A =
⊕

ϕ∈G?
H

Aϕ is a quasigroup-grading (which is not a group-grading

unless g = g+).

2. Let A be an associative algebra. Then g embeds into Der∗(A) as a Z2-graded Lie

algebra if and only if A =
⊕

ϕ∈GH
Aϕ is a Lie-Jordan-grading (which is not a Lie-

Jordan-group-grading unless g = g+).

Polynomial Identity Applications for H = u(g)

As before, we interpret the results from Chapter 5 for this particular choice of Hopf algebra.

We omit the proof of this corollary which is similar to that of Corollary 6.1.5.

Corollary 6.2.6. Let g = g+ ⊕ g− be a Z2-graded m-dimensional restricted Lie algebra, let

A be an associative algebra, and let H = u(g), the restricted universal enveloping algebra

of g.

1. If g ≤ Der(A) and A satisfies an essential H-identity of degree d, then A satisfies a

polynomial identity of degree dem(d − 1)2e.

2. If g embeds into Der∗(A) as a Z2-graded restricted Lie algebra (or, more generally, if

g ≤ Der(A(+))), and A satisfies an essential H-identity of degree d, then A satisfies a

polynomial identity of degree bounded by the function f (d,m).
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Applications and Open Problems

In this chapter, we present some other applications and questions for future research. Our

first application is a method for constructing non-semigroup-graded Lie algebras (which

were once thought not to exist). After this, we briefly discuss how to our results relate

to the open problem of determining when an algebra admits an involution. Lastly, we

mention a problem to the ones addressed in this thesis that involves Lie algebras rather

than associative algebras.

7.1 Non-semigroup-graded Lie Algebras

Our first application involves a method for finding gradings of Lie algebras which cannot be

recognized as semigroup-gradings (see [EK] for a current survey of the topic). Patera and

Zassenhaus asserted in [PZ] that all Lie algebra set-gradings can be realized as semigroup-

gradings, but a counterexample was found by Elduque in [El1]. The structure of non-

semigroup-gradings on Lie algebras has since become an area of investigation. We saw

in the previous section that every modular Lie algebra that admits a toral anti-derivation

has a grading over a quasigroup that is not a semigroup. We note, however, that such a

set-grading could, simultaneously, be realized as a semigroup-grading.

Proposition 7.1.1. Let A be a Lie algebra over a field of odd characteristic p that admits a

74
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toral anti-derivation δ. Let g be the Z2-graded 1-torus given by g = g0 ⊕ g1 = 0 ⊕ span{δ},

and let Γ be the induced set-grading

Γ : A =
⊕
λ∈Zp

Aλ, where Aλ = {a ∈ A| aδ = λa}.

Then the following statements hold.

1. The set-grading Γ cannot be realized as a semigroup-grading if and only if there exist

λ, µ, ν ∈ Zp such that λ , ν and each of the subspaces

[Aλ, Aµ], [A−(λ+µ), Aν], [Aµ, Aν], [Aλ, A−(µ+ν)]

is nonzero.

2. If Γ is a fine grading, then Γ can always be realized as a semigroup-grading.

Proof. Let α · β denote the partially defined binary operation on the support of Γ. From

Lemma 6.2.3 and Corollary 6.2.5, if α · β is defined, then α · β = α ? β = −(α + β).

Now suppose Γ cannot be realized as a semigroup-grading; in other words, that there exist

λ, µ, ν ∈ Zp such that (λ · µ) · ν , λ · (µ · ν). In particular, since these products are defined,

[Aλ, Aµ], [A−(λ+µ), Aν], [Aµ, Aν], and [Aλ, A−(µ+ν)] are each nonzero. Moreover,

λ + µ − ν = (λ · µ) · ν , λ · (µ · ν) = −λ + µ + ν

implies λ , ν. The converse follows by reversing this argument, proving (1).

To prove (2), suppose that Γ is fine; namely, that dim(Aλ) ≤ 1, for each λ ∈ Zp. Suppose

now, to the contrary, that Γ cannot be realized as a semigroup-grading. Then there exists

λ, µ, ν with the properties described in part (1). Since Γ is fine, [Aλ, Aµ] , 0 implies that

A−(λ+ν) = [Aλ, Aµ], while [A−(λ+µ), Aν] , 0 implies that Aλ+µ−ν = [[Aλ, Aµ], Aν] , 0. It now

follows from the Jacobi identity that (λ · µ) · ν = λ + µ − ν coincides with µ + ν − λ or

ν + λ − µ. However, since λ , ν, we must have that λ + µ − ν = ν + λ − µ, and therefore

µ = ν. Thus, the symmetric argument applied to λ · (µ · ν) yields λ = µ = ν, our desired

contradiction. �
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Example 7.1.2. Let K be a field of odd characteristic p, and consider the metabelian Lie

algebra L = span{a, u, v,w}, where multiplication is given by

[a, u] = u, [a,w] = v, [a, v] = w,

the product of all other basis elements defined to be 0. Define a linear map δ on L via

aδ = uδ = 0, vδ = v, and wδ = −w.

It is clear that δ3 = δ, and so δp = δ is a toral map. A straightforward check shows that δ

is an anti-derivation. Thus, L admits the quasigroup-grading

L =
⊕
λ∈(Zp,?)

Lλ, where Lλ = {a ∈ L| aδ = λa},

which can be simplified to

L = L−1 ⊕ L0 ⊕ L1.

By Proposition 7.1.1, this grading cannot be realized as a semigroup-grading; for instance,

take λ = µ = 0 and ν = 1.

Hence we obtain a counterexample to the assertion made in [PZ]. We remark that this

example was first obtained by Elduque in [El2] by other means.

An open problem related to the above discussion is the following, which was posed by

Elduque and Kochetov in [EK].

Open Problem 7.1.3. Is every set-grading on a finite-dimensional simple Lie algebra over

C a semigroup-grading?

In [EK], it is shown that semigroup-grading can be replaced with group-grading.

7.2 Algebras with Involution

In this section, we revisit a familiar example and present a tool which may be of some

independent interest. The following is an open question.



7.2. Algebras with Involution 77

Open Problem 7.2.1. When does a given algebra A admit an involution?

Even in the case where A admits an anti-automorphism of higher order, this is unknown.

Here, we describe how this condition is equivalent to A possessing a nontrivial Lie-Jordan-

Z2-grading.

Let A be an associative algebra over a field of characteristic not 2, and suppose that

A admits an involution T . Then the group G = {e,T } (where e is the identity map on A)

induces a nontrivial orientation

H = KG = KG+ ⊕ KG− = Ke ⊕ KT.

Clearly H satisfies the duality hypothesis. Indeed,

f1 =
1
2

(e + T ) and f2 =
1
2

(e − T )

are the basis of orthogonal idempotents. The corresponding dual basis {p1, p2} is defined

by

p1(e) = p1(T ) = 1, and

p2(e) = 1, p2(T ) = −1;

in other words, p1 = ε and p2 = ε̄, so that (G(H), ∗) = {ε, ε̄} = Ĝ. By Corollary 6.1.4, we

know that A admits the Lie-Jordan-group-grading

A = Aε ⊕ Aε̄.

In this case, Aε = {a ∈ A| aT = a} is the subspace of symmetric elements, and Aε̄ = {a ∈

A| aT = −a} is the subspace of skew-symmetric elements.

Conversely, let G = 〈t〉 be an oriented group of order 2 such that

H = KG = KG+ ⊕ KG− = Ke ⊕ Kt

is the induced orientation, and suppose that A = Aε ⊕ Aε̄ is a Lie-Jordan-group-grading.

Then, t acts on A via at = ε(t)aε + ε̄(t)aε̄ = aε − aε̄, and it is easy to verify that (ab)t = btat,

for every a, b ∈ A, as expected. This allows us to make the following conclusion.
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Proposition 7.2.2. An associative algebra A over a field of characteristic not 2 admits an

involution precisely when A admits a nontrivial Lie-Jordan-group-grading over a group of

order 2.

7.3 An Analogue for Lie Algebras

One may also consider polynomial identities of Lie algebras in an analogous way. Bahturin

and Zaicev proved in [BZ] that when the identity component of a group-graded Lie algebra

satisfies a Lie polynomial identity, then the algebra itself satisfies an identity. No bound on

the degree of the identity was found, however. More general non-associative algebras were

studied in [BSZ], and it was shown that if A is a Lie algebra which is G-graded and satisfies

an essential Lie identity of degree d, then A satisfies an identity of degree bounded by a

function depending on |G| and d. In general, such an identity does not imply an identity

on the homogeneous component A1, and as far as the author is aware, it remains an open

question as to whether or not a similar bound exists for this case.

Open Problem 7.3.1. If A =
⊕

g∈G Ag is a group-graded Lie algebra such that the identity

component A1 satisfies a polynomial identity of degree d, then is there an explicit function

which bounds the degree of the identity satisfied by A?
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Appendix A

Group Like Structures

For the convenience of the reader, we recall the definitions of various ‘group-like’ struc-

tures. A group-like structure consists of a set with a single binary operation which may or

may not satisfy various additional properties. We will assume that the binary operation is

closed, but in general we do not impose any other conditions.

Definition A.0.2. A magma is a set G together with a binary operation · : G ×G → G.

If G is a magma, then depending on the properties of the operation (·), we may refer to

G by one of the following names:

• Quasigroup - If G has divisibility, that is, for each g, h ∈ G, there exist unique

elements x, y ∈ G such that a · x = b and y · a = b, then G is called a quasigroup.

• Loop - If G is a quasigroup with identity, that is, there exists an element e ∈ G such

that g · e = e · g = g, for all g ∈ G, then G is called a loop.

• Semigroup - If G is an associative magma, that is, (g1 · g2) · g3 = g1 · (g2 · g3), for all

g1, g2, g3 ∈ G, then G is called a semigroup.

• Monoid - If G is a semigroup with identity, then G is called a monoid.

• Group - If G is an associative loop, or equivalently, a monoid with invertibility, then

G is called a group.
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86 Chapter A. Group Like Structures

The following diagram may be helpful to remember the relationship between these struc-

tures.

Magma

Quasigroup Semigroup

divisibility associativity

Loop Monoid

identity identity

Group

associativity invertibility



Appendix B

Lie and Jordan Algebras

B.1 Lie Algebras

A Lie algebra L is an algebra over a field K, whose product we denote by [, ] : L × L→ L,

which satisfies the following axioms, for all x, y, z ∈ L:

1. [x, x] = 0;

2. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

The second property is referred to as the Jacobi identity. Note that if the characteristic of

K is not 2, then a Lie algebra is anti-commutative: [x, y] = −[y, x].

B.2 Jordan Algebras

A Jordan algebra A is an algebra over a field K such that the following axioms hold, for all

a, b ∈ A:

1. ab = ba;

2. (ab)(aa) = a(b(aa)).

That is, the first property says that A is commutative, and the second property is called

the Jordan identity.
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Appendix C

Restricted Universal Enveloping

Algebras

We briefly recall the restricted universal enveloping algebra of a restricted Lie algebra.

Additional properties and details can be found in [Ja1] or [SF], for example. To begin,

we define the universal enveloping algebra of a Lie algebra; this is an associative unital

construction which maintains the important properties of the Lie algebra and contains it as

a subalgebra.

Recall that if L is any Lie algebra, then given a unital associative algebra U(L) and a

Lie algebra homomorphism i : L → U(L)(−), we say that U(L) is the universal enveloping

algebra of L if it satisfies the following universal property: for any unital associative algebra

A and Lie algebra homomorphism ϕ : L → A(−), there exists a unique unital algebra

homomorphism ϕ̄ : U(L)→ A such that ϕ = i ◦ ϕ̄.

The important Poincaire-Birkhoff-Witt theorem (known as the PBW theorem) gives a

description of the universal enveloping algebra.

Theorem C.0.1. Let L be a Lie algebra with a totally ordered basis {xi| i ∈ I}. The mono-

mials xs1
i1
· · · xsn

in
, where xi1 < · · · < xin and si ≥ 0, form a basis for U(L).

Now let g be a Lie algebra over a field of positive characteristic p. If g is paired with an

additional operation, denoted x→ x[p], such that the following conditions hold:
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• ad(x[p]) = ad(x)[p], for all x ∈ g;

• (αx)[p] = αpx[p], for all α ∈ K, x ∈ g;

• (x + y)[p] = x[p] + y[p] +
∑p−1

i=1
si(x,y)

i , where si(x, y) is the coefficient of ti−1 in the formal

expression ad(tx + y)p−1(x),

then g is called a restricted Lie algebra.

When g is a restricted Lie algebra, we can consider the restricted universal enveloping

algebra, denoted u(g). We construct the ordinary universal enveloping algebra U(g), and set

u(g) = U(g)/I, where I is the two-sided ideal generated by elements of the form xp − x[p].

The PBW theorem for restricted enveloping algebras is as follows.

Theorem C.0.2. Let g be a restricted Lie algebra with a totally ordered basis {xi| i ∈ I}.

The monomials xs1
i1
· · · xsn

in
, where xi1 < · · · < xin and 0 ≤ si ≤ p − 1, form a basis for u(g).
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