
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

8-18-2014 12:00 AM 

Regulation of the Kcnq1ot1 Imprinting Domain in Mouse Regulation of the Kcnq1ot1 Imprinting Domain in Mouse 

Lauren SM Landschoot, The University of Western Ontario 

Supervisor: Dr. Mellissa Mann, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Biochemistry 

© Lauren SM Landschoot 2014 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

Recommended Citation Recommended Citation 
Landschoot, Lauren SM, "Regulation of the Kcnq1ot1 Imprinting Domain in Mouse" (2014). Electronic 
Thesis and Dissertation Repository. 2382. 
https://ir.lib.uwo.ca/etd/2382 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F2382&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/2382?utm_source=ir.lib.uwo.ca%2Fetd%2F2382&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


REGULATION OF THE KCNQ1OT1 IMPRINTING DOMAIN IN MOUSE 
 

(Thesis format: Monograph) 
 
 
 

by 
 
 
 

Lauren Susanne Magri Landschoot 
 
 
 
 

Graduate Program in Biochemistry 
 
 
 
 

A thesis submitted in partial fulfillment 
of the requirements for the degree of  

Doctor of Philosophy 
 
 
 
 

The School of Graduate and Postdoctoral Studies 
The University of Western Ontario 

London, Ontario, Canada 
 
 
 
 

© Lauren S.M. Landschoot 2014 

	
  

	
  



 

ii 

 

Abstract 
Genomic imprinting is an epigenetic mechanism that controls gene expression based 

on parental-origin of an allele. The Kcnq1ot1 imprinting cluster consists of an imprinting 

control region (ICR), the Kcnq1ot1 ncRNA, and maternally expressed protein-coding genes. 

Truncation of the Kcnq1ot1 ncRNA or deletion of the Kcnq1ot1 ICR, including the Kcnq1ot1 

ncRNA promoter results in biallelic expression of normally paternally silent protein-coding 

genes in postimplantation, suggesting the Kcnq1ot1 ICR/ncRNA are required for 

bidirectional silencing. However, Kcnq1ot1 ncRNA regulation of imprinted genes during 

preimplantation is unknown. To address this, imprinted expression was investigated in 

preimplantation embryos with a paternally deleted Kcnq1ot1 ICR or truncated Kcnq1ot1 

ncRNA. Kcnq1ot1 mutant embryos were capable of silencing Phlda2, Slc22a18 and Cdkn1c 

paternal alleles, suggesting the Kcnq1ot1 ICR and ncRNA are dispensable for repression at 

this stage. Imprinted expression in early postimplantation embryos carrying a paternally 

deleted Kcnq1ot1 ICR showed the ICR was necessary for maintenance of paternal repression 

at Phlda2, Slc22a18, Cdkn1c, Kcnq1 and Ascl2. However, truncation of the Kcnq1ot1 

ncRNA resulted in paternal reactivation of distal genes, Phlda2, Slc22a18 and Ascl2, while 

genes proximal to the ICR, Kcnq1 and Cdkn1c, maintained maternal-specific or maternal-

biased expression. This indicates the Kcnq1ot1 ICR and ncRNA are dispensable in early 

development for paternal silencing but are required later for maintenance of imprinted 

expression. However, epigenetic modifiers maintaining paternal silencing of adjacent 

protein-coding genes in coordination with the Kcnq1ot1 ICR or ncRNA are unknown. 

Therefore, epigenetic modifiers regulating imprinting at the Kcnq1ot1 domain were 

identified in embryo-derived stem cells using a positive selection, loss-of-function RNA 

interference (RNAi) screen. Depletion of candidates Ezh1, Smarca5 and Smarcad1 resulted 

in loss of imprinted expression of Cdkn1c and Kcnq1 but not Osbpl5 and Slc22a18, 

suggesting epigenetic modifiers identified here function at genes proximal to the Kcnq1ot1 

ICR and not domain-wide. Kcnq1ot1 expression was reduced when Smarca5 and Smarcad1 

but not when Ezh1 were depleted, indicating loss of imprinting can occur independently of 

Kcnq1ot1 ncRNA expression and epigenetic modifiers could be acting directly on imprinted 

genes. Further characterization of candidates will provide better understanding of imprinted 

gene regulation and the protein complexes responsible for maintaining repression. 
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Chapter 1  

1 Introduction 

1.1 Epigenetics 

1.1.1 General Introduction 

The term epigenetics was first coined by C.H.Waddington, to describe the 

complexities of developmental processes that cannot simply be explained by the 

connection between genotype and phenotype (Waddington, 2012). As an experimental 

embryologist, he observed the variability in sizes of structures and the differentiation of 

cells into various tissues despite all cells having the same genes. Therefore, the 

phenotype is guided by genetic content but influenced by “a set of organizers”, 

accounting for the variability between organs (Gilbert, 2012). These molecular and 

developmental pathways interact and converge on the genotype leading to the phenotype. 

Evolving from Waddington’s description of the disconnect between genotype and 

phenotype in a developmental context, epigenetics had been used to explain previously 

unusual biological phenomena, such as position effect variegation (location and 

environment of genes influencing expression), genomic imprinting in mammals, and 

cellular differentiation (Goldberg et al., 2007). Modern day epigenetics provides a more 

specific definition: study of changes in gene expression by modifications that do not 

include alterations to the DNA sequence. Combining “genetics” and the prefix “epi” 

(meaning above), epigenetics influences gene expression by changing the way genes are 

recognized and read, affecting the accessibility of genes to transcriptional machinery. 

Epigenetic processes change the epigenetic “landscape” during germ cell specification 

and early embryonic development, generating cell types with a distinct gene expression 

profile and a unique cellular phenotype (Goldberg et al., 2007).   
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1.1.2 Mechanisms of Epigenetic Regulation 

Epigenetic changes to the genome can occur by different complex molecular 

modifications that influence how genes are written, read and erased ultimately controlling 

the way genes are expressed. By changing the ionic microenvironment, macromolecular 

conformation of a gene locus and binding capabilities of regulatory factors, gene 

expression can either be activated or repressed (Goldberg et al., 2007; Kouzarides, 2007; 

Lee, 2012). 

1.1.3 Histone Modifications 

DNA exists as a string of nucleotides organized into a complex three-dimensional 

structure with proteins, known as chromatin, which condenses to form chromosomes. 

Chromatin is composed of DNA wrapped around an octamer of histone proteins (made of 

two molecules each of H2A, H2B, H3 and H4 histones) to form a nucleosome. Histone 

H1 acts as a linker between nucleosomes and condenses chromatin further into higher-

order structure (Campos and Reinberg, 2009; Quina et al., 2006). The configuration of 

chromatin is important as it dictates the accessibility of regulatory factors to the 

incorporated DNA and modifications to this structure will influence the transcriptional 

state of nearby genes (Quina et al., 2006). Modifications to histones can occur along the 

length of the protein, including the N-terminal region, which protrudes from the DNA-

histone particle. These histone “tails” allow for diverse post-translational modifications, 

influencing inter-nucleosomal interactions, DNA and histone interactions, as well as 

forming a hypothesized recognition code for specific regulatory proteins (Bannister and 

Kouzarides, 2011). Histone tails can be modified by acetylation, lysine and arginine 

methylation, phosphorylation and ubiquitination (Kouzarides, 2007). These modifications 

are typically associated with either increased gene activity or gene repression. Activation 

and repression are dependent on the amino acid that is modified and the type of 

modification applied (Figure 1). For methylation, lysine and arginine resides can be 

mono-, di- or tri-methylated. Tri-methylation at histone 3 lysine 4 (H3K4) and histone 3 

lysine 36 (H3K36) are associated with active genes, while tri-methylation at histone 3 

lysine 27 (H3K27), histone 4 lysine 20 (H4K20) and di-and tri-methylation of histone 3 

lysine 9 (H3K9) are associated with repressed genes (Bannister and Kouzarides, 2011; 
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Campos and Reinberg, 2009). Addition of ubiquitin polypeptides to lysine residues has 

been characterized on histones H2A and H2B (Wang et al., 2004). Mono-ubiquitination 

of H2A at lysine 119 (H2AK119) is involved in gene silencing, while H2B mono-

ubiquitination at K123 (H2BK123) is important for transcriptional initiation and 

elongation (Kim et al., 2009; Wang et al., 2004). Acetylation of lysine residues alters the 

charge of histones, allowing for a more open chromatin state (Campos and Reinberg, 

2009), while lack of acetylation is associated with repressed chromatin. Multiple histone 

modifications may exist concurrently, adding an additional layer of complexity that is not 

fully understood. 

Given the combinatory variability of site and type of histone modifications, 

histone interactions with DNA and their mediation of higher-order chromatin structure is 

complex and not fully understood. However, evolutionary conservation of histones and 

the residues modified highlights their importance. Loss of histone modifiers causes 

lethality, abnormal chromatin structure and transcriptional output, imprinting defects and 

alterations in other epigenetic marks like DNA methylation (Ciccone et al., 2009; 

Terranova et al., 2008; Wagschal et al., 2008). 
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Figure 1: Histone Modifications 

Chromatin is made of repeating units of nucleosomes. Nucleosomes are composed of 

DNA (blue) wrapped around an octamer of histones (gray): two dimers of H3/H4 and 

H2A/H2B. Nucleosomes are linked together by histone H1. Post-translational 

modifications to histone tails (wavy lines) can be activating (green) or repressive (red). 

Common modifications are depicted: acetylation (Ac), methylation (Me), ubiquitination 

(Ub).  Repressed chromatin is more compact and closed off to gene expression. Active 

chromatin has a more open conformation and is accessible to transcriptional machinery.  
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1.1.4 DNA Methylation 

Gene expression can be influenced by modifications to the DNA itself through the 

addition of a methyl group (CH3) to cytosines in CpG dinucleotides (Figure 2). This 

modification is usually associated with gene repression by altering interactions of DNA 

with chromatin-binding proteins and transcription factors. DNA methylation is 

established at unmethylated DNA by de novo DNA methyltransferases DNMT3A, 

DNMT3B, and DNMT3L (Bourc'his et al., 2001; Hata et al., 2002; Okano et al., 1999). 

DNA methylation is subsequently maintained by the maintenance DNA 

methyltransferase DNMT1, which recognizes hemi-methylated DNA generated during 

DNA replication and adds methyl groups to the unmethylated (daughter) strand using the 

parental strand as a template.  

DNA methylation controls gene expression, genomic stability, chromatin 

structure, X-chromosome inactivation, genomic imprinting and silencing of repetitive 

DNA elements (Robertson, 2002; Rodenhiser and Mann, 2006). Aberrant methylation 

state produces multiple defects including altered gene expression, genomic imprinting 

disorders, abnormal development, cancer and lethality (Biniszkiewicz et al., 2002; 

Bourc'his et al., 2001; Hata et al., 2002; Rodenhiser and Mann, 2006). Consequences of 

aberrant DNA methylation relating to genomic imprinting will be discussed later. 

1.1.5  Non-coding RNAs 

Once considered an intermediate during protein synthesis, RNA is now known to 

play important regulatory roles in gene expression. Only 1% of the genome encodes for 

proteins. However, 70-90% of the genome is transcribed, suggesting that the resultant 

RNA is functional (Lee, 2012). These noncoding RNAs (ncRNA) can vary in size from 

>100 nucleotides to 400,000 in length and can function in various biological processes, 

such as nuclear architecture, chromatin modification, RNA processing and genomic 

imprinting (Yan and Wang, 2012). ncRNAs are distributed throughout the genome and 

can be intragenic, intergenic, and intronic. Alterations in gene activity due to ncRNA-

mediated regulation can occur at the level of individual genes, gene-clusters/domain, or 

over entire chromosomes. ncRNAs function by diverse and complex mechanisms, 
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working in cis or in trans to either activate or repress gene expression (Chaumeil et al., 

2006; Fitzpatrick et al., 2002; Latos et al., 2012; Rinn et al., 2007; Tian et al., 2010). The 

ncRNA can act as a scaffold to mediate chromatin structure and chromatin-looping 

between distantly located regions (Zhang et al., 2014) (Figure 3). ncRNAs can also act as 

adaptors to recruit epigenetic modifiers that will alter the expression of nearby genes 

(Rinn and Chang, 2012; Wang et al., 2011; Zhao et al., 2010). Transcription of the 

ncRNA tethers the ncRNA to its genomic location, accounting for its ability to recruit 

epigenetic modifiers in cis (Lee, 2012). By this method, ncRNAs add specificity to 

chromatin modifiers, bringing them to specific sites in the genome, unlike transcription 

factors that recognize multiple sites in the genome (Lee, 2012).  

An additional method of regulation excludes the RNA itself and proposes the act 

of transcription is functionally important, as depletion of two ncRNAs induced no 

changes in gene expression of nearby genes (Golding et al., 2011; Latos et al., 2012). 

How this is mediated is unclear but transcriptional interference has been shown to be 

important by preventing binding of RNA polymerase at repressed genes (Latos et al., 

2012) (Figure 3). Overall, the complexity of ncRNA regulatory mechanisms and the 

potential for a RNA or transcriptional interference method makes studying ncRNAs 

difficult, as both mechanisms may be intrinsically linked.  
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Figure 2: DNA Methylation 

Modification to the DNA (blue) itself can influence chromatin and gene expression. 

Methyl groups (CH3) are added to cytosines (C) within CpG dinucleotides. Methylated 

cytosines (black circles) are associated with repressed chromatin. DNA methylation is 

catalyzed by DNA methyltransferases (DNMT). De novo addition of methyl groups to 

unmethylated DNA is executed by DNMT3A/B and DNMT3L. Addition of methyl 

groups to hemi-methylated DNA is carried out by DNMT1. Active chromatin is not 

associated with DNA methylation, with cytosines being unmethylated (white circles). 
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Figure 3: Long Non-coding RNAs 

Long non-coding RNAs (orange lines) function beyond a protein-synthesis intermediate, 

controlling gene expression by various proposed methods. A) By acting structurally, 

ncRNAs function to maintain chromatin-looping and chromatin conformation. B) 

ncRNAs can also function as adaptors to protein-complexes, guiding and localizing 

chromatin-modifying enzymes (teal complex), like H3K27 histone methyltransferase to 

specific regions. C) During its transcription, the ncRNA is tethered by transcriptional 

machinery (orange complex), allowing recruitment of chromatin-modifying enzymes in 

cis (teal complex). Transcription per se of the ncRNA has also been shown to be 

important. Transcriptional interference preventing binding of RNA polymerase to 

downstream promoters, leading to their repression.  



9 

 

1.1.6 Nucleosome Remodelers 

Epigenetic changes to histone tails or DNA occurs by enzymatic proteins like 

histone modifiers and DNA methyltransferases, respectively. Histone modifying enzymes 

add covalent marks (methyl, acetyl, ubiquitin groups) to histones. Non-covalent 

modifications are also important for controlling chromatin structure. Modifications to 

nucleosome structure and nucleosome placement can modify gene expression. Protein 

complexes called chromatin remodelers use ATP hydrolysis to disrupt DNA-histone 

contacts and alter DNA accessibility by modifying the position, spacing, presence of 

histones (eviction), and replacement of canonical histones with non-canonical histone 

variants (Quina et al., 2006; Wang et al., 2007) (Figure 4). Histone variants (H3.3, 

macroH2A, H2A.Z) can replace core histones (H3 and H2A) within nucleosomes via 

chromatin remodelers (Campos and Reinberg, 2009). Chromatin remodelers play roles in 

transcriptional regulation, functioning in both activation and repression, as well as 

regulating DNA replication and repair (Petty and Pillus, 2013; Wang et al., 2007). During 

transcription, nucleosomes are positioned to expose cis-regulatory regions and are 

removed during RNA polymerase passage and then are reassembled (Petty and Pillus, 

2013). 

Multiple families of chromatin remodelers exist in vertebrates, based on the 

shared structure of the ATPase subunit found between complexes. The vertebrate genome 

contains multiple ATPases with similarities to the yeast SWI2/SNF2 ATPase. Some of 

these include BRM/SMARCA4 or BRM/SMRCA2 ATPase within the SWI/SNF 

complex; Mi2-α or β ATPase in the NuRD complex; SNF2L/SMARCA1 or 

SNF2H/SMARCA5 ATPase in the ISWI complex (Hargreaves and Crabtree, 2011; Wu 

et al., 2009). The ATPases interact within a complex along with multiple accessory 

proteins, ranging from 4-12 subunits (Wu et al., 2009) (Table 1). Accessory subunits may 

alter the activity of the ATPase, facilitate binding to transcription factors, or target the 

complex to DNA-histones (Hargreaves and Crabtree, 2011).  
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Figure 4: Chromatin Remodeling 

Chromatin remodelers use ATP hydrolysis to alter chromatin accessibility (blue) of gene 

regulatory regions (teal) to the transcriptional machinery. Accessibility of gene regulatory 

elements can be occluded or exposed by chromatin remodelers when nucleosomes are re-

positioned (sliding), displaced (eviction) or replaced by a variant histone. 
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Table 1: ATP Chromatin Remodeling Complexes 
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1.2 Genomic Imprinting 

1.2.1 Overview of Genomic Imprinting 

Genomic imprinting was first termed by Helen Crouse in 1960, who proposed that 

chromosomes can be marked outside of their genetic content and that this “imprint” is 

based on the sex from which the chromosome was inherited (Crouse, 1960). In the 1980s, 

parental-specific effects were observed in mammals using nuclear transplantation 

experiments. Mouse zygotes carrying two maternal genomes (gynogenotes) and zygotes 

carrying two paternal genomes (androgenotes) failed to develop to term, illustrating that 

parental contributions to the embryo are not equivalent (Barton et al., 1984; McGrath and 

Solter, 1984; Surani et al., 1984). Parental-specific effects were further established in 

mice and humans possessing uniparental disomy (chromosome or partial chromosome 

from a single parent). However, not all genomic regions contributed to parental-specific 

effects, indicating that imprinted regions are not found throughout the genome (Cattanach 

and Kirk, 1985; Ledbetter and Engel, 1995). These early studies demonstrated that 

parental contributions to offspring are distinct and critical for proper mammalian 

development. 

Imprinted genes have a large influence on mammalian development and function 

in growth and development of the embryo and placenta, regulation of pre and postnatal 

resources, cell specification and differentiation, metabolism, neural function and 

behaviour (Barton et al., 1984; Constancia et al., 2004; McGrath and Solter, 1984; 

Plasschaert and Bartolomei, 2014). Imprinted genes in the prenatal embryo control tissue 

development and growth (Constancia et al., 2004). Imprinted genes in the postnatal 

embryo control energy homeostasis (hormonal regulation), neural function and behaviour 

(Constancia et al., 2004; Plasschaert and Bartolomei, 2014). Imprinted genes in 

extraembryonic lineages function to control morphogenesis, physiological processes and 

lineage specification in the placenta (Coan et al., 2005). Misregulation or mutations of 

imprinted genes cause human imprinting disorders (Constancia et al., 2004; Plasschaert 

and Bartolomei, 2014) (Table 2). Imprinted disorders are associated with growth 

restriction, overgrowth, neurological defects and behavioural abnormalities (Coan et al., 
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2005; Constancia et al., 2004). Studying imprinted genes will aid in understanding 

imprinted gene regulation and the disorders they cause. 

Genomic imprinting is currently defined as a specialized transcriptional 

mechanism that controls gene expression based on the parental-origin of an allele (Green 

et al., 2007; Rodenhiser and Mann, 2006; Terranova et al., 2008) (Figure 5).  Imprinted 

genes frequently reside in clusters, allowing for coordinated regulation of imprinted 

expression. Within imprinting domains is a regulatory DNA element called the 

imprinting control region (ICR), which functions in cis to regulate imprinted genes within 

the cluster. ICRs are specific DNA regions with a high CpG content and are subject to 

differential DNA methylation, with one parental allele being methylated while the other 

parental copy is unmethylated. To be classified as an ICR in addition to a differentially 

methylated region, loss of imprinted expression of adjacent genes must occur when this 

element is deleted, demonstrating “control” over the domain (Spahn and Barlow, 2003). 

Parental-specific DNA methylation and histone modifications are established at ICRs 

during gametogenesis and maintained faithfully thereafter (Guseva et al., 2012).  

Imprinting domains usually include a ncRNA. ncRNAs are monoallelically-

expressed with the ncRNA promoter embedded or adjacent to the ICR. Like ICRs, 

ncRNAs may play a functional cis-acting role in regulating the domain. How imprinted 

ncRNAs mediate repression is unclear, although functions proposed include RNA 

interference, spread of heterochromatin, and inducing transcriptional interference or 

repressive effects (Koerner et al., 2009; Royo and Cavaille, 2008; Wan and Bartolomei, 

2008). 

Imprinting regulation begins in the gametes, with erasure of previous imprinting 

modifications to establish parental-specific marks at ICRs. Epigenetic marks found at 

ICRs include DNA methylation, activating H3K4me2/3 and repressive H3K9me2 

(MacDonald and Mann, 2014).  These parental-specific marks must be maintained or 

protected throughout development of the offspring. Failure to establish or maintain these 

marks will result in loss of imprinted expression and imprinting disorders.  
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Table 2: Imprinted Genes and Associated Human Disorders 
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Figure 5: Genomic Imprinting 

For most genes in the genome, expression occurs biallelically, that is from both parental 

alleles (red box, maternally expressed allele; blue box, paternally expressed allele). 

However, a sub-set of genes are expressed based on parental-origin. These imprinted 

genes are monoallelically expressed, either paternally expressed but maternally silent or 

maternally expressed but paternally silent (black box; silenced allele). 
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1.2.2 Epigenetic Reprogramming 

Gametogenesis and early embryogenesis are dynamic periods of epigenetic 

changes. The first wave of epigenetic modifications begins in the gametes, with erasure 

of previous somatic DNA and histone modifications, including at imprinted genes. This is 

followed by acquisition of new epigenetic parental-specific marks (Hajkova et al., 2002; 

Kageyama et al., 2007). Once established in the gametes, these parental-specific marks 

are maintained or protected after fertilization and throughout development of the 

offspring.  

A second wave of epigenetic programming occurs shortly after fertilization. The 

early embryo undergoes dynamic epigenetic changes to modify the genome from a 

haploid gametic-state to a diploid embryonic genome. Epigenetic changes occur globally 

through DNA methylation and histone modifications. Both parental genomes undergo 

global DNA demethylation (Santos et al., 2002).  

On the paternal genome, DNA demethylation begins before the first cell division 

by an active mechanism (Oswald et al., 2000). The maternal genome loses methylation in 

a passive manner, after each cell division (Howell et al., 2001). However, ICRs at 

imprinted domains maintain DNA methylation during this demethylation wave. Oocyte 

and somatic forms of DNMT1 along with developmental pluripotency-associated 3 

(DPPA3), zinc finger protein 57 (ZFP57) and tripartite motif-containing 28 (TRIM28) 

maintain DNA methylation at these important regulatory sites during preimplantation 

development (Cirio et al., 2008; Howell et al., 2001; Kurihara et al., 2008; Nakamura et 

al., 2007).  

Asymmetry between parental-alleles is also seen with histone modifications 

shortly after fertilization. The maternal pronucleus maintains repressive H3K9me2/3 and 

H3K27me3 inherited from oocytes (Erhardt et al., 2003; Liu et al., 2004). The paternal 

pronucleus exchanges protamines (nuclear proteins that replace histones during 

spermatogenesis) for histones, which are hyperacetylated and hypomethylated (Santos et 

al., 2005). The presence of active marks and few repressive marks is hypothesized to 

allow for increased accessibility and remodeling of the condensed paternal genome. The 
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paternal allele gains repressive H3K9me2/3 and H3K27me3 marks by the four-cell stage 

(Santos et al., 2005). Protection of ICRs from these global histone changes is less well 

characterized than DNA methylation. In sperm, H3K9me2 is enriched at paternally-

methylated ICRs of Hepatocyte #19 fetal liver mRNA (H19) and RAS protein-specific 

guanine nucleotide-releasing factor 1 (Rasgrf1), and H3K4me2/3 is enriched at 

maternally-methylated ICRs, suggesting that these marks could provide information to 

the preimplantation embryo (Guseva et al., 2012; Nakamura et al., 2012). Additionally, 

H3K9me3 and H3K27me3 are localized to the maternally-methylated KCNQ1 

overlapping transcript 1 (Kcnq1ot1 ICR) in 4-cell and morula embryos, suggesting that 

repressive histone marks from the gametes can be preserved during preimplantation (Kim 

and Ogura, 2009). Further studies are needed to examine how ICRs are regulated during 

preimplantation. Furthermore, less is known about transmission and protection of 

epigenetic information outside of the ICR during this dynamic epigenetic period, 

requiring studies to determine whether other regions within imprinted domains have 

regulatory information inherited from the gametes. 

1.2.3 Imprinting Domains 

Imprinted genes are found at specific regions in the genome. To date, 150 genes 

have been identified (http://www.mousebook.org/catalog.php?catalog=imprinting). These 

genes exist in clusters, most of which have an ICR/DMR and ncRNA. However, 

imprinting domains do have unique regulatory features that enable repression of one 

parental allele and activation of the other allele. Silencing can occur by ICR-mediated 

enhancer-blocking, transcriptional-interference and ncRNA-mediated repression. These 

three silencing mechanisms are discussed below, modeled by three imprinting 

domains/chromosomes: H19 domain, Airn domain and imprinted X-chromosome 

inactivation, respectively. 

1.2.3.1 H19 Domain 

The H19 domain is a well-characterized example of an enhancer-blocking or 

insulator repressive mechanism. The H19 domain contains an ICR, the H19 ncRNA and 

the protein-coding gene Insulin-like growth factor 2 (IGF2/Igf2), and is located on 
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chromosome 11 and 7 in human and mouse, respectively. On the maternal allele, the ICR 

is unmethylated, H19 is expressed and Igf2 is silent. On the paternal allele, the ICR is 

methylated, H19 is silent and Igf2 is expressed (Figure 6). Deletion of the H19 ncRNA 

has no effect on regulation of the domain (Jones et al., 1998). However, deletion of the 

ICR results in loss of imprinted expression, demonstrating ICR-mediated control of the 

domain (Thorvaldsen et al., 1998). By adopting a specific chromatin-looping 

conformation based on the parental origin of the ICR, H19 and Igf2 proximity to 

regulatory regions are altered. One structural protein responsible for this specific 

conformation is CCCTC-binding factor (CTCF), which functions to control higher-order 

chromatin structure and long-range interactions to “insulate” or block genes from 

regulatory elements like enhancers. CTCF binds to the unmethylated maternal H19 ICR 

and induces a chromatin loop with regions upstream of Igf2, preventing Igf2 from 

interacting with enhancer elements. The promoter of H19 is unmethylated and interacts 

with available enhancers. On the paternal allele, CTCF cannot bind to the methylated 

ICR, and the domain adopts a conformation allowing Igf2 to interact with enhancers. 

DNA methylation from the ICR spreads to the adjacent H19 promoter, silencing its 

expression (Thorvaldsen et al., 1998).  

In humans, defects in the H19 domain are associated with the imprinting disorder 

Beckwith-Wiedemann syndrome (BWS) (Weksberg et al., 2010).  This overgrowth 

disorder is characterized by macroglossia (enlarged tongue), visceromegaly (enlarged 

organs), abdominal wall defects and a predisposition to Wilm’s tumors (Zhang et al., 

1997). In 5% of BWS patients, the maternal ICR is hypermethylated causing loss of H19 

and gain of IGF2 expression (Weksberg et al., 2010). 
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Figure 6: H19 Domain 

The H19 domain contains an ICR, the H19 ncRNA and protein-coding gene Igf2. This 

domain is an example of an insulator/enhancer regulatory mechanism. On the maternal 

allele, CTCF binds the unmethylated ICR and a conformation change is induced blocking 

Igf2 from interacting with enhancers and allowing H19 to associate with enhancers to 

become expressed. On the paternal allele, CTCF does not interact with the methylated 

ICR, instead adopting a conformation that allows Igf2 to associate with enhancers. 

Methylation spreads from the paternal ICR to the H19 promoter, silencing the gene. 
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1.2.3.2 Airn Domain 
The Airn/AIRN domain is located on chromosome 17 and 6 in mouse and human, 

respectively, and is an example of the second type of allelic-silencing: transcriptional-

interference. The Airn domain contains a maternally-methylated ICR, the paternally 

expressed Antisense of Igf2r RNA (Airn) ncRNA, and the maternally expressed protein-

coding genes Insulin-like growth factor 2 receptor (Igf2r), Solute carrier family 22, 

member 2 (Slc22a2), and Solute carrier family 22, member 3 (Slc22a3) (Figure 7). The 

Airn ncRNA is paternally expressed from the unmethylated paternal ICR, and acts in cis 

to silence neighbouring imprinted genes. Igf2r is located downstream of Airn, and is 

silenced by transcriptional interference. Antisense transcription of the Airn ncRNA across 

the Igf2r promoter interferes with RNA polymerase II (Pol II), silencing Igf2r (Latos et 

al., 2012; Stricker et al., 2008). Slc22a2 and Slc22a3 are positioned upstream of Airn and 

are imprinted specifically in the placenta. Unlike Igf2r, they do not require transcriptional 

overlap to be silenced but are instead regulated by a ncRNA mechanism (Sleutels et al., 

2003).  The Airn RNA itself is important for repression by interacting with the Slc22a3 

promoter and recruiting the histone methyltransferase Euchromatic histone lysine N-

methyltransferase 2 (EHMT2/ also known as G9A), which silences genes by catalyzing 

H3K9me2/3 (Nagano et al., 2008).   

1.2.3.3 Imprinted X-chromosome Inactivation 

Dosage compensation in mammalian females occurs by silencing one of two X 

chromosomes, equalizing X-linked expression with males. Imprinted X-chromosome 

inactivation (XCI) occurs during early development and silences the paternal X 

chromosome by the blastocyst stage (Huynh and Lee, 2003). This repressive process is a 

well-studied example of a ncRNA-mediated silencing mechanism, an example of the 

third type of allelic-specific repression. During XCI, silencing occurs at the level of an 

entire chromosome initiated in cis by the X inactive specific transcript (Xist) ncRNA. The 

17 kb-Xist ncRNA is expressed from the future inactive paternal X chromosome, and is 

located within the X inactivation centre (XIC), a cis-acting element important for XCI 

(Leung and Panning, 2014). The paternal X chromosome is inherited from sperm in a 

partially silent state with repetitive elements already repressed (Namekawa et al., 2006; 
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Namekawa et al., 2010). Genes on the paternal X are initially active but become 

progressively silenced during preimplantation development, which may be facilitated by 

the repressed repetitive elements. The maternal X chromosome inherits markings from 

the oocyte, which protects it from inactivation during preimplantation (Goto and Takagi, 

2000; Nesterova et al., 2001; Tada et al., 2000; Takagi and Abe, 1990). The X (inactive)-

specific transcript, opposite strand (Tsix) is another ncRNA within the X inactivation 

center that is expressed solely from the maternal X chromosome during preimplantation 

development. Tsix represses Xist by antisense transcription (Sado et al., 2001). 

Initiation of X-linked gene silencing begins with Xist coating and spreading 

across the future inactive X, eventually altering its chromosomal structure and forming a 

repressive compartment that represses most X-linked genes (Chaumeil et al., 2006). As 

Xist localizes along the inactivating X, epigenetic modifications accumulate, including 

H3K9me2/3 and H3K27me3, H3K4 hypomethylation, loss of RNA polymerase II and 

eventually DNA methylation (Chaumeil et al., 2006; Okamoto et al., 2004; Reik and 

Lewis, 2005) (Figure 8). The importance of Xist RNA in mediating silencing is based on 

its ability to interact with and directly recruit to the X chromosome the Polycomb 

repressive complex (PRC2), which contains Enhancer of zeste homolog 2 (EZH2) histone 

methyltransferase that catalyzes H3K27 tri-methylation (Wutz et al., 2002; Zhao et al., 

2008). 
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Figure 7: Airn Domain 

The Airn domain contains an ICR, three protein-coding genes, Igf2r, Slc22a2 and 

Slc22a3, and the Airn ncRNA (blue wavy arrow), whose promoter resides within the 

ICR. On the maternal allele, Airn is silenced by methylation at the ICR and Igf2r, 

Slc22a2 and Slc22a3 are expressed (red and pink boxes). Igf2r is maternally expressed in 

the embryo and placenta (red box). Slc22a2 and Slc22a3 are only maternally expressed in 

the placenta (pink boxes), and are biallelic expressed in the embryo. On the paternal 

allele, Airn is expressed from the unmethylated ICR and induces repression of adjacent 

imprinted genes in cis (black boxes). Transcription of Airn across the promoter of Igf2r 

impedes RNA polymerase II (Pol II) binding, thereby silencing Igf2r. The Airn ncRNA 

silences Slc22a2 and Slc22a3 by associating with gene promoters and recruits the histone 

methyltransferase G9A (teal hexagon), which catalyzes the repressive mark H3K9me3 to 

promoters of these genes. 
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Figure 8: Imprinted X-Chromosome Inactivation 

Imprinted X-chromosome inactivation equalizes X-linked expression between females 

and males by silencing the paternal X chromosome in females. The maternal X 

chromosome remains active while the paternal chromosome is silenced by the Xist 

ncRNA (blue wavy arrow). The promoter of Xist lies within an important DNA element, 

known as the X inactivation centre (XIC). Expression of Xist is blocked (red hexagon) 

from the maternal XIC by transcriptional interference from the maternally expressed Tsix 

RNA (red wavy arrow), leading to the maintenance of gene expression on the maternal 

chromosome. On the paternal chromosome, Xist is transcribed and associates with 

repressive complexes (teal complex), that are transferred to DNA where they confer 

repressive histone marks like H3K27me3 (red circle). Xist ncRNA begins to spread to 

adjacent regions, eventually coating and altering the structure of the entire chromosome, 

forming a repressive compartment (red shaded area) devoid of histone active marks 

(green circles) that leads to repression of X-linked genes by the blastocyst stage. 
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1.2.4 Kcnq1ot1 Domain 

The Kcnq1ot1 imprinted cluster is located on syntenic regions of mouse 

chromosome 7 and human chromosome 11. Interestingly, investigation into the allelic-

silencing of the Kcnq1ot1 domain supports multiple repressive models, including the 

three mechanisms outlined above. Description of three proposed regulatory models for 

the Kcnq1ot1 domain will be discussed in detail in the following section.  

The Kcnq1ot1 domain contains a maternally methylated ICR, the paternally 

expressed Kcnq1ot1 ncRNA, nine maternally expressed protein-coding genes and six 

biallelically expressed genes (Figure 9). The Kcnq1ot1 ncRNA extends to 471 kb in 

length and originates from a promoter embedded in the ICR (Golding et al., 2011). On 

the maternal allele, the ICR is methylated, silencing Kcnq1ot1 and permitting upstream 

and downstream protein-coding genes to be expressed. Genes monoallelically-expressed 

in both embryonic and placental-tissues genes in postimplantation are classified as 

ubiquitously imprinted: Pleckstrin homology-like domain, family A, member 2 (Phlda2); 

Solute carrier family 22, member 18 (Slc22a18); Cyclin-dependant kinase inhibitor 1C 

(Cdkn1c) and Potassium voltage-gated channel, subfamilty Q, member 1 (Kcnq1). Genes 

imprinted in placental-tissue only are classified as placental-specific imprinted genes: 

Oxysterol binding protein-like 5 (Osbpl5); Tumor-suppressing subchromosomal 

transferable fragment 4 (Tssc4); CD81 antigen (Cd81); Achaete-scute complex homolog 

2 (Ascl2) and Tyrosine-hydroxylase (Th). On the paternal allele, the Kcnq1ot1 ncRNA is 

expressed due to an unmethylated ICR, and adjacent protein-coding genes are silent. The 

importance of Kcnq1ot1 in silencing the paternal allele in cis was established through a 

paternally inherited deletion of the Kcnq1ot1 ICR, including the Kcnq1ot1 promoter, and 

truncation of the Kcnq1ot1 ncRNA, which resulted in biallelic expression of the normally 

paternally silent imprinted genes within the domain (Fitzpatrick et al., 2002; Mancini-

Dinardo et al., 2006; Shin et al., 2008).  

Parental-specific epigenetic modifications are seen throughout the Kcnq1ot1 

domain in embryonic day 9.5 embryos and placentas, with active marks correlating with 

expression and repressive marks associating with repressed genes (Lewis et al., 2006; 

Lewis et al., 2004; Terranova et al., 2008; Umlauf et al., 2004). DNA methylation is low 
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at CpG-rich gene promoters throughout the domain, except for the maternal ICR and 

somatic DMR of Cdkn1c (Lewis et al., 2006; Lewis et al., 2004; Terranova et al., 2008; 

Umlauf et al., 2004). Active histone marks (H3K4me3) are present at the paternal ICR 

and maternally expressed genes while repressive histone marks (H3K27me3, 

H3K9me2/3) are found on the paternally silenced genes and maternal ICR (Lewis et al., 

2006; Lewis et al., 2004; Terranova et al., 2008; Umlauf et al., 2004).  

Misregulation of the Kcnq1ot1 domain leads to the imprinting disorder Beckwith-

Wiedemann Syndrome (BWS) (Weksberg et al., 2010). In 50% of BWS patients, loss of 

DNA methylation occurs on the maternal KCNQ1OT1 ICR, causing biallelic expression 

of the KCNQ1OT1 ncRNA and silencing of CDKN1C and KCNQ1 on the maternal allele 

(Choufani et al., 2010; Weksberg et al., 2010). Mutations in CDKN1C occur in 5-10% of 

BWS patients (Choufani et al., 2010). The H19 imprinted domain is also associated with 

BWS patients. In 5% of BWS patients, a gain of DNA methylation at the maternal ICR 

occurs causing increased IGF2 expression (Choufani et al., 2010). In 20% of BWS 

patients, both the KCNQ1OT1 and H19 domains are altered due to inheritance of two (or 

partial) paternal chromosomes 11, causing lack of CDKN1C and increased IGF2 

expression (Weksberg et al., 2010).    
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Figure 9:  The Kcnq1ot1 Imprinted Domain 

The Kcnq1ot1 domain consists of an ICR, which contains the promoter of the paternally 

expressed Kcnq1ot1 ncRNA (blue wavy arrow), nine protein-coding with maternal-

specific expression (red and pink boxes) and six biallelically-expressed genes (white 

boxes). On the maternal allele, the ICR is methylated and the Kcnq1ot1 ncRNA is silent. 

Ubiquitously imprinted genes, Phlda2, Slc22a18, Cdkn1c and Kcnq1 (red boxes), have 

maternal-specific expression in both embryonic and extraembryonic tissues. Placental-

specific imprinted genes, Osbpl5, Tssc4, Cd81, Ascl2 and Th (pink boxes), are maternally 

expressed in placental tissues but biallelic in the embryo proper. On the paternal allele, 

Kcnq1ot1 is expressed from the unmethylated ICR and neighbouring protein-coding 

genes are silent (black boxes). 
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1.2.5 Models of Kcnq1ot1 Domain Regulation 

The importance of the Kcnq1ot1 ncRNA in silencing the paternal allele was 

established through paternal-inheritance of deletion and truncation mutations, where 

deletion of the ICR, including the Kcnq1ot1 ncRNA promoter, and truncation of the 

Kcnq1ot1 ncRNA resulted in biallelic expression of imprinted genes within the domain 

when analyzed at midgestation (day 13.5-16.5) (Fitzpatrick et al., 2002; Mancini-Dinardo 

et al., 2006; Shin et al., 2008). Kcnq1ot1 is paternally expressed prior to the 2-cell stage 

and is credited with silencing the domain into adulthood (Lewis et al., 2006; Terranova et 

al., 2008). Several models have been proposed to regulate imprinting across the Kcnq1ot1 

domain: Kcnq1ot1 ICR enhancer-blocking, Kcnq1ot1 ncRNA-mediated silencing and 

Kcnq1ot1 transcriptional interference models. 

The first model is an enhancer-blocking mechanism similar to the H19 domain. 

This model is based on the Kcnq1ot1 ICR functioning as an insulator when placed 

between an enhancer and a gene of interest in an episomal system (Kanduri et al., 2002; 

Thakur et al., 2003). The ICR insulator model is supported by binding of CTCF insulator 

protein to the unmethylated paternal ICR, suggested to mediate a repressive ICR function 

by restricting access to the enhancer required for gene transcription (Fitzpatrick et al., 

2007; Shin et al., 2008) (Figure 10). However, other studies have found that CTCF 

binding occurs at both the maternal and paternal Kcnq1ot1 ICRs and is dispensable for 

enhancer-blocking mechanisms (Fitzpatrick et al., 2007; Lin et al., 2011). In addition, a 

region within the Kcnq1ot1 ICR may have silencer activity, inducing repression of 

adjacent genes in an episomal system (Mancini-DiNardo et al., 2003; Thakur et al., 2003; 

Thakur et al., 2004). It is unclear how this silencer activity within the ICR is mediated. 

The second model proposed to regulate domain imprinting is by Kcnq1ot1 

ncRNA-mediated paternal silencing, similar to X chromosome inactivation. The ncRNA 

model suggests the Kcnq1ot1 ncRNA interacts with promoters of imprinted genes, 

directing repressive histone modifications to promoters (Mohammad et al., 2008; Pandey 

et al., 2008). The Kcnq1ot1 ncRNA or its transcription can recruit histone 

methyltransferases, G9A and EZH2, to induce bidirectional repressive chromatin in cis. 

G9A is recruited to placental-imprinted genes to induce H3K9 di-and tri-methylation 
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(Umlauf et al., 2004; Wagschal et al., 2008) while EZH2/PRC2 catalyze H3K27me3 

throughout the domain (Mager et al., 2003; Pandey et al., 2008; Terranova et al., 2008; 

Umlauf et al., 2004) (Figure 11). When there is decreased Kcnq1ot1 ncRNA stability, 

paternal Kcnq1ot1 ncRNA truncation or paternal ICR deletion, activation of the normally 

silent paternally imprinted genes within the domain occurs with concordant loss of 

repressive epigenetic marks (Fitzpatrick et al., 2002; Kanduri et al., 2006; Lewis et al., 

2004; Mancini-Dinardo et al., 2006; Mohammad et al., 2008; Pandey et al., 2008; Shin et 

al., 2008; Thakur et al., 2003; Thakur et al., 2004). Additionally, the Kcnq1ot1 ncRNA 

forms a nuclear domain for silent genes, which is suggested to subsequently target the 

domain to the nuclear periphery or perinucleolar regions (Mohammad et al., 2008; 

Redrup et al., 2009). This model necessitates additional epigenetic factors to allow for 

Kcnq1ot1 ncRNA-promoter interactions and possibly the recruitment of other repressive 

complexes. 

Debate exists as to whether it is the Kcnq1ot1 RNA itself or its transcription that 

induces paternal silencing, leading to the third model of transcriptional interference. 

Similar to Airn transcriptional-silencing of Igf2r, the paternal Kcnq1ot1 ncRNA is 

initiated from the ICR and is transcribed through downstream genes, Kcnq1, Tssc4, Cd81, 

Ascl2 and Th. During antisense transcription, Kcnq1ot1 may impede RNA polymerase 

binding, leading to paternal silencing of downstream genes. In support of this, our 

laboratory has reported that short-hairpin RNA (shRNA)-mediated depletion of the 

Kcnq1ot1 ncRNA did not alter imprinted expression in embryo-derived stem cells, 

demonstrating that it is likely the act of transcription that is responsible for imprint 

maintenance rather than the RNA itself (Golding et al., 2011). However, antisense 

transcription cannot solely mediate paternal silencing at the Kcnq1ot1 domain since 

overlapping transcription of Kcnq1ot1 can only account for the repression of downstream 

and not upstream genes. Therefore, additional mechanisms must exist to silence upstream 

genes. Similar to Airn recruitment of G9A to silence Slc22a2 and Slc22a3, Kcnq1ot1 may 

recruit epigenetic factors to repress upstream genes within the domain (Figure 12). 

However, which factors are recruited is currently unclear and thus, requires further 

investigation. 
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In summary, silencing of the paternal allele within the Kcnq1ot1 domain is 

complex and not fully understood. Several models have been proposed for the Kcnq1ot1 

domain paternal repression consisting of multiple regulatory features, such as the 

Kcnq1ot1 ICR, Kcnq1ot1 ncRNA and its transcription. The ICR contains the promoter of 

the Kcnq1ot1 ncRNA and may also contain important regulatory roles outside the 

ncRNA, such as acting as an insulator or silencer to repress adjacent protein-coding genes 

while maintaining Kcnq1ot1 ncRNA expression. The Kcnq1ot1 ncRNA itself may recruit 

repressive epigenetic modifiers, targeting repressive epigenetic modifications like 

H3K27me3 and H3K9me2/3 to protein-coding genes. Transcription of the Kcnq1ot1 

ncRNA may also be important, and may silence the paternal allele by an unknown 

mechanism. Further investigation is required to better understand the mechanisms 

controlling paternal silencing at the Kcnq1ot1 domain. 
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Figure 10:  The Kcnq1ot1 ICR Enhancer-Blocking Model 

Kcnq1ot1 ICR can act as an insulator when placed between an enhancer (E) and a gene of 

interest and as a silencer to nearby genes in an episomal system, giving rise to an ICR-

mediated silencing model. On the maternal allele, the methylated ICR cannot bind CTCF 

(yellow circle) and allows the interaction of imprinted genes (red and pink boxes), such 

as Cdkn1c, to interact with putative downstream enhancers, activating expression of these 

genes while blocking the interaction between the Kcnq1ot1 promoter and enhancer. On 

the paternal allele, the unmethylated ICR binds CTCF, blocking the interaction of Cdkn1c 

and other protein-coding genes with downstream enhancers, inducing gene silencing 

while permitting Kcnq1ot1 promoter-enhancer interactions. 
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Figure 11:  The Kcnq1ot1 ncRNA-mediated Silencing Model 

The ncRNA model of Kcnq1ot1 imprinted regulation proposes the paternally expressed 

Kcnq1ot1 ncRNA (blue wavy arrow) acts in cis to induce repressive chromatin 

modifications to silence the paternal alleles of adjacent imprinted genes (black boxes). 

The Kcnq1ot1 ncRNA localizes to promoters of imprinted genes and recruits repressive 

histone methyltransferases (teal octagons) that induces paternal allelic silencing through 

repressive histone modifications. This model necessitates additional epigenetic factors to 

allow for Kcnq1ot1 ncRNA-promoter interactions and possibly the recruitment of other 

repressive complexes. 
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Figure 12:  The Kcnq1ot1 Transcriptional Interference Model 

The ncRNA transcriptional interference model proposes that Kcnq1ot1 transcription 

blocks transcription from other gene promoters. The Kcnq1ot1 ncRNA (blue wavy arrow) 

is paternally expressed, initiating from the ICR and transcribes through downstream 

genes (Kcnq1, Tssc4, Cd81, Ascl2 and Th). During antisense transcription, Kcnq1ot1 

impedes RNA polymerase II (Pol II) binding, leading to paternal silencing of downstream 

genes. However, silencing of upstream genes by transcriptional overlap must occur by 

another mechanism. Therefore, a hybrid model is proposed where both the Kcnq1ot1 

ncRNA and its transcription are required. The Kcnq1ot1 ncRNA (blue dotted arrow) is 

tethered to the domain during transcription, and Kcnq1ot1 ncRNA spreads recruiting 

repressive epigenetic modifiers (teal octagon) to silence the paternal alleles of upstream 

genes (as described in Figure 11). This hybrid model necessitates additional epigenetic 

factors for spreading function. 
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1.3 Rationale 

The epigenetic silencing mechanisms of the paternal allele of imprinted genes within 

the Kcnq1ot1 domain are poorly understood. While previous studies examining paternal 

Kcnq1ot1 domain repression have expanded our understanding of Kcnq1ot1 domain 

regulation, these studies are confounded by the fact that the majority of studies to date 

have investigated imprinted expression at stages when imprinting has already been 

established across the domain. For example, Kcnq1ot1 ICR deletion and ncRNA 

truncation mutations showing loss of imprinting were analyzed at midgestation (day 13.6-

16.5) (Fitzpatrick et al., 2002; Mancini-Dinardo et al., 2006; Shin et al., 2008). Since the 

Kcnq1ot1 ncRNA is expressed at the zygote stage (Lewis et al., 2006; Terranova et al., 

2008), studies are required to delineate the mechanisms regulating Kcnq1ot1 domain 

imprinting during preimplantation development. Furthermore, it is currently unclear how 

Kcnq1ot1 ICR and ncRNA induce and maintain paternal allelic silencing and through 

which epigenetic factors. The few epigenetic modifiers that do associate with the 

Kcnq1ot1 domain are based on other imprinting models (Pandey et al., 2008). Thus, 

investigation is required to examine the epigenetic players acting on the domain.    

My approach is to address when imprinting is acquired at the Kcnq1ot1 domain and 

whether the Kcnq1ot1 ICR or ncRNA are required for imprinted domain establishment. 

Additionally, I will use an approach independent of assumptions based on current 

proposed models to identify the epigenetic modifiers regulating paternal allelic repression 

at the Kcnq1ot1 domain. Both approaches are imperative to understanding the regulatory 

mechanisms of the Kcnq1ot1 domain. 

1.4 Hypothesis 

I hypothesize that the Kcnq1ot1 ICR and ncRNA are required for paternal allelic 

repression of genes within the domain during preimplantation development. Furthermore, 

I hypothesize that factors identified independent of current models will act domain-wide 

to control paternal silencing of imprinted genes within the Kcnq1ot1 domain. 
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1.5 Objectives 

(1) Determine the role of the Kcnq1ot1 ICR or ncRNA in paternal allelic 

repression during preimplantation development.  

a. Determine the stage during preimplantation development when paternal 

allelic silencing is established at protein-coding genes within the domain. 

b. Determine whether the Kcnq1ot1 ICR and/or ncRNA are required for the 

paternal allelic silencing of genes upstream or downstream of Kcnq1ot1 

using paternally inherited Kcnq1ot1 ICR deletion and paternally inherited 

Kcnq1ot1 truncation mutants. 

c. Determine whether DNA methylation at the Kcnq1ot1 ICR is altered 

during the establishment of paternal allelic silencing when the Kcnq1ot1 

ICR is paternally deleted and the paternal Kcnq1ot1 ncRNA is truncated. 

(2) Determine the epigenetic modifiers associated with maintaining paternal 

allelic silencing. 

a. Identify epigenetic modifiers involved in allelic silencing at the Kcnq1ot1 

domain using a positive selection, loss-of-function RNA interference 

screen. 

b. Determine the effects on imprinted gene expression and Kcnq1ot1 ncRNA 

levels when screen candidates are depleted in stem cells. 

c. Determine the effects on imprinted DNA methylation at the Kcnq1ot1 ICR 

when screen candidates are depleted in stem cells. 
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Chapter 2  

2 Material and Methods 

2.1 Embryo Collection 

Female B6(CAST7) mice contained a Mus musculus castaneus chromosome 7 on 

a B6 background (Mann et al., 2004). Males were wildtype C57BL/6J (B6) (Charles 

River Laboratories, St. Constant, Quebec, Canada), congenic B6 heterozygous 2.8 kb 

Kcnq1ot1 ICR deletion or congenic B6 heterozygous Kcnq1ot1 ncRNA truncation (2.6 

kb from the start site) mice (Fitzpatrick et al., 2002; Shin et al., 2008). B6(CAST7) 

females were mated to wild-type, deleted or truncated males to obtain F1 8-cell, 

blastocyst stage, and day 6.5 embryos (Figure 13). Wildtype 8-cell embryos were flushed 

from oviducts 2.5 dpc and frozen into pools of 5-7 embryos. In total, five 8-cell embryos 

pools were collected and analyzed for allelic-expression. Early blastocysts were flushed 

from uteri at 3.3 dpc (7am on 3 dpc) and late blastocysts at 3.5 dpc (noon on 3dpc). 

Embryos were washed in 20 µL drops of M2 media (Sigma). For each mutant (Kcnq1ot1 

ICR deletion and ncRNA truncation), 100 and 130 blastocysts were collected, of which 

27 and 37 were analyzed for both DNA methylation and allelic expression, respectively. 

Wildtype blastocysts were collected from WT X WT and WT X Mutant heterozygotes 

crosses and 27 wildtype blastocysts were analyzed for allelic expression. Embryos were 

harvested from both WT X WT and WT X Mutant heterozygous crosses to rule out 

differences in developmental timing between control and mutant embryos. Day 6.5 

embryos were dissected into embryonic, extraembryonic ectoderm and ectoplacental cone 

tissues with care taken to eliminate maternal tissue through successive washes. 

Experiments were performed in compliance with guidelines set by the Canadian Council 

for Animal Care, and the policies and procedures were approved by the University of 

Western Ontario Council on Animal Care. 

2.2 Embryo Genotyping 

Heterozygous Kcnq1ot1 ICR deletion and ncRNA truncation males were mated 

with CAST7 females to collect F1 blastocysts and day 6.5 embryos. Individual embryos 
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were genotyped for presence of the wildtype or mutant alleles. Deletion of the ICR was 

detected following bisulfite mutagenesis using first round primers BIS DEL OUTER F 

and R, and second round primers BIS DEL INNER F and R (Section 2.5). Lack of the B6 

allele following bisulfite and sequencing of the BIS WT INNER amplicon also indicated 

deletion of the ICR. Truncation of the ncRNA was detected following bisulfite 

mutagenesis using first round primers BIS TRU OUTER F and R, and second round 

primers BIS TRU INNER F and R. Additionally, expression of the truncated Kcnq1ot1 

ncRNA was detected using TRU F and R following cDNA synthesis and first strand 

synthesis (Section 2.3-4).  

2.3 RNA Isolation from Embryos and cDNA Synthesis  

RNA isolation and cDNA library generation for preimplantation and early 

postimplantation embryos was performed as previously described (Korostowski et al., 

2011). Second-strand synthesis was performed using forward primers and second-strand 

products were moved to PCR tubes containing Illustra Ready-to-Go PCR Beads (GE 

Healthcare Biosciences) containing the reverse (R) primer.  

2.4 Allelic Expression Analysis 

Primers were designed to span introns to avoid amplification of any remaining 

DNA. Primers were designed for Phlda2, Slc22a18 and Osbpl5 or synthesized as 

previously reported for Kcnq1, Cdkn1c, and Ascl2 (Golding et al., 2011) (Table 3). For 

Phlda2 analysis, primers amplified a 389 bp fragment containing a polymorphism 

between B6 (A) and CAST (C). Restriction digestion with Hpy188III resulted in 282 bp 

and 107 bp bands in B6 and 231 bp, 107 bp and 51 bp fragments in CAST. For Slc22a18 

analysis, primers amplified a 227 bp fragment containing a polymorphism between B6 

(C) and CAST (T). Restriction digestion with SacII resulted in 200 bp and 27 bp 

fragments in B6 and 231 bp, 107 bp and 51 bp bands in CAST. For Osbpl5 analysis, 

primers amplified a 415 bp fragment containing a polymorphism between B6 (T) and 

CAST (C). Restriction digestion with AluI resulted in 369 bp, 40 bp, 22 bp, 21 bp bands 

in B6 and 319 bp, 90 bp, 40 bp, 22bp, 21 bp fragments in CAST. Restriction enzymes 

that cleaved at B6:CAST polymorphisms were used to digest PCR products. Maternal 
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(red) and paternal (blue) transcript abundance was determined by densitometry of PCR 

amplicons following parental-specific digestion using the BioRad Gel Doc quantificaion 

system. Parental allele-specific expression was calculated as the percentage expression of 

the B6 or CAST allele relative to the total expression of both alleles. To control for 

primer bias, allelic expression analysis was also performed on cDNA from CAST and B6 

adult kidney RNA, and on cDNA from equally mixed CAST and B6 RNA (C:B), shown 

on far left of allelic expression graphs (Figure 18).  

2.5 Bisulfite mutagenesis and clonal sequencing assay 

Bisulfite mutagenesis was performed as described (Golding et al., 2011; Golding et 

al., 2010; Market-Velker et al., 2010).  Individual embryos or wildtype or siRNA-

transfected XEN cells (15,000 cells) were lysed and embedded in 2% low melting point 

agarose (Sigma).  Following bisulfite treatment, the agarose was divided into four 

independent PCR reactions, three containing the Kcnq1ot1 ICR bisulfite (BIS WT 

OUTER) primers, and one containing either the BIS DEL OUTER or BIS TRU OUTER 

primers (Table 3). Following amplification, 5 µl of the first round PCR product was 

added to the second round amplification reaction mix containing either the BIS WT 

INNER, BIS DEL INNER or BIS TRU INNER primers. PCR products were ligated into 

pGEM-Easy Vector according to the manufacturers’ instructions (Promega) and 

sequenced at BioBasic Sequencing Facility (Markham, ON). Sequences with less than 

90% conversion were excluded. Percent methylation was calculated as the number of 

methylated CpGs over the total number of CpGs. 

2.6 Cell Culture  

CASTXB6neoR extraembryonic endoderm (XEN) stem cells were generated by 

crossing a Mus musculus (CAST) female to a congenic C57BL/6J (B6) male carrying a 

targeted mutation of the Cdkn1c gene, in which exons 1 and 2 were replaced by the PGK-

Neomycin resistance cassette (Cdkn1c+/Δneo) (Zhang et al., 1997) (Jackson Laboratory). 

Cells were genotyped for the paternal Cdkn1c+/Δneo allele using primers p57neoF and 

p57neoR. B6XCAST wild-type and CASTXB6Cdkn1c/Δneo XEN cells were generated and 

cultured as previously described (Golding et al., 2010)  (Figure 14). Briefly, XEN cell 
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cultures were maintained in RPMI (Sigma) supplemented with 50 mg/ml 

penicillin/streptomycin (Sigma), 1 mM sodium pyruvate, 100 µM β-mercaptoethanol 

(Sigma), 2 mM L-Glutamine (Sigma), and 15% Hyclone ESC grade fetal bovine serum 

(FBS) (Fisher Scientific). Cells were passaged on a layer of mitomycin C (Sigma) treated 

mouse embryonic fibroblasts. 

2.7 Epigenetic shRNA Transduction of XEN Stem Cells and 
Screen Candidate Identification by PCR and DNA 
sequencing 

A library of shRNAs targeting 250 different epigenetic factors used in this experiment 

was previously described (Golding et al., 2010). Transduction of shRNAs into XEN cells 

was modified from (Golding et al., 2010). shRNA vectors and lenti class plasmids 

encoding Vesicular stomatitis virus glycoprotein pseudotype (plasmid pMDG) and Psi 

(pPsi) packaging elements were transfected into 10 cm dish of HEK293 cells (ATCC) 

using Lipofectamine 2000 (Invitrogen). Media was changed 6 hr later. Viral-containing 

media was harvested and filtered (0.45 µm pore) 72 hr posttransfection and added to 

freshly trypsinized XEN cells along with 1X polybrene (Sigma) into 1.5 X 6-well plates 

(Fisher). XEN cell media was changed 48 hr later. Low levels of infection were necessary 

to ensure single viral integration per cell and was verified using flow cytometry. XEN 

cells were selected for viral integration with 1 µg/mL puromycin (Sigma). shRNA-

containing XEN cells were moved to 8 X 10 cm dishes and selected for loss of silencing 

of Cdkn1c+/Δneo allele with 50 µg-200 µg/mL neomycin (Sigma). While still under 

neomycin selection, XEN cells were plated at an even lower density into 15 cm dishes 

and incubated until individual colonies formed. Individual colonies were picked and 

moved into individual wells of 24-well plates and underwent a second round of neomycin 

selection. DNA of surviving colonies was isolated (Qiagen DNeasy Blood & Tissue Kit) 

and PCR amplification was performed for the hairpin region inside the shRNA construct 

with primers Lenti F and R. PCR amplicons were sequenced (BioBasic Inc, Markham 

ON) to determine identity of the shRNA and therefore the candidate epigenetic factor 

responsible for loss of neomycin silencing. 
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2.8 siRNA-transfection 

XEN cells were plated at low density (5%) into 6-well plates and transfected 8 hr 

later with siRNAs (Dharmacon) targeting either Ezh1 (L-058527-01-0005), Smarca5 (L-

041484-01-0005), Smarcad1 (L-056219-01-0005) or Non-Targeting (D-001810-10-05) 

using PepMute siRNA Transfection Reagent (FroggaBio) according to manufacturers’ 

instructions. Cells were incubated for 72 hr and then collected for DNA and RNA.  

2.9 RNA Isolation from Cultured Cells and cDNA Synthesis   

RNA from cultured cells was isolated using Trizol (Invitrogen) according to the 

manufacturers’ instructions. Following removal of genomic DNA using DNaseI 

(Invitrogen), cDNA was synthesized from 2 µg of total RNA using Superscript II 

(Invitrogen) and oligo(dT) primers (Invitrogen). Depletion of siRNA-targeted mRNA and 

Kcnq1ot1 abundance were determined using RT-PCR with Mrpl as the reference control 

(Table 3).  

2.10 Statistical Analysis 

For statistical difference of maternal-specific, maternal-bias, and biallelic expression 

of each imprinted gene between wildtype, Kcnq1ot1 paternal deletion and truncation 

mutants was determined by Yate’s Chi-squared test. P-value less than 0.05 was 

considered to be significant. 

 

 

 

 

 

 

 



40 

 

 

 

 

Figure 13:  Preimplantation and Early Postimplantion Embryo Mouse Crosses   

CAST7 (brown mouse; red chromosomes) females were mated with B6 (black mouse; 

blue chromosomes) males to generate wildtype embryos that were collected at the 8-cell 

and blastocyst embryo stages. Kcnq1ot1 ncRNA (blue wavy line) is expressed from the 

paternally unmethylated imprinting control region (ICR). CAST7 females were mated 

with heterozygous congenic B6 males, carrying a 2.8 kb deletion (Δ) of the Kcnq1ot1 

ICR, to generate wildtype and mutant embryos lacking the Kcnq1ot1 ICR and ncRNA. 

CAST7 females were mated with heterozygous congenic B6 males, carrying an insertion 

of a polyA cassette (pA) at 2.6 kb from the transcriptional start site, to generate wildtype 

and mutant embryos with a truncated Kcnq1ot1 ncRNA. Blastocysts and day 6.5 embryos 

were collected from both mutant crosses. 
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Figure 14:  XEN Cell Mouse Crosses   

Wildtype B6 (black mouse; red chromosomes) females were mated with CAST (brown 

mouse; blue chromosomes) males to collect embryos that were used to generate wildtype 

extra-embryonic endoderm (XEN) stem cells. Cdkn1c is maternally expressed (red box) 

and paternally silent (black box). Wildtype CAST (brown mouse; pink chromosomes) 

females were mated with heterozygous congenic B6 (black mouse; light blue 

chromosomes) males carrying the Neomycin resistance gene (NeoR) recombined at the 

Cdkn1c gene, removing the promoter and Exon 1 and 2. Wildtype and mutant embryos 

were collected and used to generate XEN cells. Wildtype XEN cells have maternally 

expressed Cdkn1c (pink box) and paternally silent Cdkn1c (black box). Mutant XEN cells 

have maternally expressed Cdkn1c (pink box) and paternally silent neoR (gray box) and 

were used to screen for epigenetic modifiers regulating paternal silencing of the 

Kcnq1ot1 domain. 
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Table 3: PCR Primers 
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Chapter 3  

3 Results 

3.1 Paternal Allelic Repression in Wildtype Blastocyst 

Even though paternal Kcnq1ot1 ncRNA begins to be transcribed at the 1-cell 

stage (Lewis et al., 2006; Terranova et al., 2008), Cdkn1c expression was observed 

previously to be biallelic in 4- and 8-cell embryos, with progressive silencing of the 

paternal allele by the late blastocyst stage (Market Velker et al., 2012).  Imprinted 

expression of other genes within the Kcnq1ot1 domain has not been examined until later 

stages (morula and blastocyst embryos) using pools of preimplantation embryos (Lewis 

et al., 2006; Terranova et al., 2008; Umlauf et al., 2004). To assess developmental 

expression of other imprinted genes within the domain, pools of 8-cell embryos, and 

individual blastocysts were examined for imprinted expression of genes upstream 

(Phlda2, Slc22a18, Cdkn1c) and downstream (Kcnq1, Ascl2) of the Kcnq1ot1 ncRNA 

promoter. Here, I define maternal-specific expression as 90-100% expression from the 

maternal allele, maternal-biased expression as 65-89% expression from the maternal 

allele and biallelic expression as <64% expression from the maternal allele. In our 

analysis, expression of both downstream genes, Kcnq1 and Ascl2, was not detected in 8-

cell or blastocyst stage embryos. The upstream genes, Phlda2 and Cdkn1c, were 

biallelically expressed in 8-cell embryos (Figure 15). In blastocyst stage embryos, Phlda2 

and Cdkn1c underwent paternal repression. For Phlda2, 30%, 52% and 18% of wildtype 

(WT) blastocysts displayed maternal-specific, maternal-biased and biallelic expression, 

respectively (Figure 17). While for Cdkn1c, 11%, 50% and 39% of WT blastocysts 

displayed maternal-specific, maternal-biased and biallelic expression. While Slc22a18 

was not expressed at the 8-cell stage, embryonic expression was activated in 30% of WT 

blastocysts (Figure 15). Of these embryos, 75% had maternal-specific expression and 

25% possessed biallelic expression (Figure 17). However, progressive maternal 

activation of imprinted genes in addition to paternal silencing cannot be ruled out. A 

comparison of imprinted expression across the three genes revealed that Phlda2, 

Slc22a18 and Cdkn1c are not coordinately regulated (Figure 15). For example, embryo 
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12W had Phlda2 and Slc22a18 maternal-specific expression and Cdkn1c biallelic 

expression. Embryo 24W showed Slc22a18 maternal-specific expression while Phlda2 

and Cdkn1c had maternal-biased expression. Embryo 26W had Slc22a18 and Cdkn1c 

maternal-specific expression while Phlda2 was biallelically expressed. Overall, this 

indicates that imprinted expression of the Phlda2, Slc22a18 and Cdkn1c genes were 

differentially and developmentally regulated with the paternal alleles switching from an 

expressed to repressed state. 
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Figure 15:  Developmentally Regulated Cdkn1c, Slc22a18 and Phlda2 Paternal 

Silencing During Preimplantation Development  

Allelic expression of Cdkn1c, Slc22a18 and Phlda2 was examined in wildtype (WT), 

pools of 8-cells (5-7 per pool) and individual blastocysts (BL). Cdkn1c and Phlda2 

expression underwent paternal silencing beginning at the blastocyst stage. Slc22a18 was 

expressed in few preimplantation embryos but displayed mostly maternal expression once 

activated in blastocysts. Red bar, maternal expression; blue bar, paternal expression; W, 

wildtype; Number, designation given to pools of embryos or blastocysts at the time of 

embryo collection.  
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3.2 Paternal Silencing in Kcnq1ot1 ICR Deleted and 
Kcnq1ot1 ncRNA Truncated Blastocysts 

Imprinted expression of Phlda2, Slc22a18 and Cdkn1c did not occur until the 

blastocyst stage, despite the presence of Kcnq1ot1 ncRNA as early as the 1-cell stage 

(Lewis et al., 2006; Terranova et al., 2008). This led us to question whether the Kcnq1ot1 

ncRNA is required for the establishment of imprinted gene expression during 

preimplantation development. To delineate this, blastocyst stage embryos harboring the 

paternally inherited Kcnq1ot1 ICR deletion or ncRNA truncation were analyzed for 

imprinted expression of Phlda2, Slc22a18 and Cdkn1c. Mutant blastocysts with a 

paternal deletion or truncation of Kcnq1ot1 were capable of silencing the paternal allele 

similar to WT blastocysts, with mutant embryos showing maternal-specific and maternal-

biased expression (Figure 16). Importantly, for the Kcnq1ot1 ICR deletion, maternal-

specific and maternal-biased expression was observed in 44% of embryos for Phlda2 

(20% and 24%, respectively), 67% of embryos for Slc22a18 (56% and 11%, 

respectively), and 32% of embryos for Cdkn1c (12% and 20%, respectively) (Figure 17). 

For Kcnq1ot1 ncRNA truncation, maternal-specific and maternal-biased expression was 

found in 50% of embryos for Phlda2 (15% and 35%, respectively), 67% of embryos for 

Slc22a18 (42% and 25%, respectively), and 35% of embryos for Cdkn1c (6% and 29%, 

respectively) (Figure 17). Statistical analysis using the Yates Chi-squared test showed no 

significant difference between all three groups or between each pair-wise comparison 

(p>0.05) (Preacher, 2001). Despite not being statistically different from controls, there 

appears to be an increased percentage of mutant embryos with biallelic expression. This 

may be due to developmental delay or an early effect of the Kcnq1ot1 ICR or ncRNA.  

Since mutant embryos appeared to have slower developmental rates, the former 

explanation is favored. The important point is that mutant embryos had the ability to 

achieve paternal allelic silencing of Phlda2, Slc22a18 and Cdkn1c in the absence of the 

Kcnq1ot1 ICR or with truncation of the Kcnq1ot1 ncRNA in blastocyst stage embryos, 

demonstrating that the Kcnq1ot1 ICR and its ncRNA are dispensable for establishment of 

paternal allelic silencing during preimplantation development. 
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Figure 16:  Paternal Kcnq1ot1 ICR Deleted and ncRNA Truncated Blastocysts 

Possessed Developmentally Regulated Paternal Silencing  

Allelic expression of Cdkn1c, Slc22a18 and Phlda2 was analyzed in individual 

blastocysts having either paternal Kcnq1ot1 ICR deletion (DEL) or paternal Kcnq1ot1 

ncRNA truncated (TRU). Cdkn1c and Phlda2 expression underwent paternal silencing 

beginning at the blastocyst stage. Slc22a18 was expressed in few preimplantation 

embryos but displayed mostly maternal expression once activated. Red bar, maternal 

expression; blue bar, paternal expression; D, deletion; T, truncation; Number, designation 

given to blastocysts at the time of embryo collection. 
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Figure 17: Paternal Kcnq1ot1 Mutant Blastocysts Possessed a Similar Percentage of 

Embryos with Maternal-specific, Maternal-bias or Biallelic Expression 

Statistical analysis based on expression patterns revealed no significant difference in the 

percentage of WT, paternal Kcnq1ot1 ICR deleted (DEL) and ncRNA truncated (TRU) 

blastocysts having Phlda2, Slc22a18 and Cdkn1c maternal-specific (M; >90%), maternal-

bias (MB; 65%-89%) or biallelic (Bi; <64%) expression using the Yates Chi-squared test. 

Note that embryos with paternal only expression were not included in the analysis. 
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3.3 Gene-specific and Tissue-specific Requirement for 
Kcnq1ot1 ICR and ncRNA at Day 6.5 

To determine whether imprinted expression can be maintained in the absence of 

Kcnq1ot1 ICR and ncRNA during early postimplantation development, imprinted 

expression of genes upstream (Cdkn1c, Slc22a18, Phlda2) and downstream (Kcnq1, 

Ascl2) of the Kcnq1ot1 ICR/ncRNA promoter were examined in day 6.5 embryos that 

were dissected into three lineages, embryonic ectoderm (EMB), extra-embryonic 

ectoderm (EEE) and ectoplacental cone (EPC). WT embryos primarily displayed 

maternal-specific expression at all genes (mean maternal expression levels 91-100%), 

except for Ascl2 where half of the tissue-samples had maternal-biased expression with 

mean maternal expression levels of 87%, 91% and 75% for EMB, EEE and EPC, 

respectively (Figure 18, Table 4). By comparison, day 6.5 embryos harbouring a 

paternally inherited Kcnq1ot1 ICR deletion had activated the silent paternal alleles, 

resulting in biallelic expression for all genes (mean maternal expression levels of 40-

64%), except for Slc22a18 in EPC samples which exhibited maternal-biased expression 

(mean maternal expression 68%). Similarly, day 6.5 embryos inheriting a paternal 

Kcnq1ot1 ncRNA truncated allele had activated the silent paternal alleles of Phlda2, 

Slc22a18 and Ascl2 genes (mean maternal expression levels of 50-63%), except for 

Slc22a18 in EPC samples that exhibited maternal biased expression (mean maternal 

expression 71%). In contrast to deletion mutants, day 6.5 embryos with a paternal 

Kcnq1ot1 truncation mutation maintained Kcnq1 maternal-specific expression in EMB 

and EPC samples (mean maternal expression levels of 95%) and maternal-biased 

expression in EEE tissues (mean maternal expression levels of 88%). For Cdkn1c, 

paternal truncation mutants had maternal-biased expression with mean maternal 

expression levels of 68-73%. Thus, analysis of early postimplantation tissues revealed a 

gene-specific maintenance of imprinted expression in truncation mutants (Kcnq1 and 

Cdkn1c) and tissue-specific maintenance of imprinted expression in truncation and 

deletion mutants (Slc22a18 in EPC samples). A comparison of deletion and truncation 

mutants indicates that the Kcnq1ot1 ICR and its ncRNA have distinct functions. In day 

6.5 embryos, while the ICR was required to maintain paternal silencing of all genes in the 

domain, the Kcnq1ot1 ncRNA was dispensable for imprint maintenance of genes closest 
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to the ICR (Kcnq1, Cdkn1c). In contrast, the Kcnq1ot1 ncRNA was necessary for 

maintenance of imprinted expression of genes located at a distance (Phlda2, Slc22a18, 

Ascl2). 

3.4 Preservation of DNA Methylation in Day 6.5 Kcnq1ot1 
ICR Deleted and Kcnq1ot1 ncRNA Truncated Embryos 

Even though there was no statistical difference in the number of embryos with 

maternal-specific, maternal-biased and biallelic expression of imprinted genes at the 

blastocyst stage, a larger number of embryos had biallelic expression when they inherited 

paternal Kcnq1ot1 ICR deleted or Kcnq1ot1 ncRNA truncated alleles. Although this may 

reflect developmental timing, I wanted to determine whether there was an aberrant gain 

of paternal DNA methylation at the Kcnq1ot1 ICR in blastocysts exhibiting biallelic 

expression for one or more imprinted genes as well as in day 6.5 samples with biallelic 

and/or maternal-biased expression. Aberrant gain of paternal DNA methylation at the 

Kcnq1ot1 ICR could potentially silence Kcnq1ot1 in truncation mutants or alter the ICR 

function causing biallelic expression or maternal-biased expression. The bisulfite 

mutagenesis and clonal sequencing assay was performed on WT, Kcnq1ot1 ICR deleted 

and Kcnq1ot1 ncRNA truncated individual blastocysts and day 6.5 tissues. I observed 

that the maternal allele was hypermethylated as expected while the paternal allele was 

hypomethylated in all WT and Kcnq1ot1 mutant embryos (Figure 19, Figure 20), 

consistent with previous results (Fitzpatrick et al., 2002; Shin et al., 2008).  
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Figure 18:  Gene-specific and Tissue-specific Reactivation of Paternal Alleles in Day 

6.5 Kcnq1ot1 Paternally ICR Deleted or ncRNA Truncated Embryos  

Phlda2, Slc22a18, Cdkn1c, Kcnq1 and Ascl2 allelic expression was analyzed in 

individual day 6.5 embryonic ectoderm (EMB), extraembryonic ectoderm (EEE) and 

ectoplacental cone (EPC) having either a paternal wild-type (WT), Kcnq1ot1 ICR deleted 

(DEL) or Kcnq1ot1 ncRNA truncated (TRU) alleles.  

 



52 

 

Table 4: Maternal Expression in Day 6.5 WT, Paternal Kcnq1ot1 ICR Deleted and 

Kcnq1ot1 Truncated Embryos 

 

Red, maternal-specific expression (>90%); light red, maternal-biased expression (65-

89%); white, biallelic expression (<64%). 
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Figure 19:  Maintenance of Maternal Kcnq1ot1 ICR Methylation in Kcnq1ot1 

Paternally Deleted and Truncated Blastocysts   

DNA methylation within the Kcnq1ot1 ICR in blastocysts with paternal wildtype (WT), 

deleted (DEL) or truncated (TRU) Kcnq1ot1 alleles. Two blastocysts (BL) were analyzed 

for each genotype. Each column represents an individual embryo. Each row represents a 

DNA strand with methylated CpGs (black circles) or unmethylated CpGs (white circles).  

Maternal allele (MAT) and paternal allele (PAT) with percent methylation shown at the 

top. 
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Figure 20: Maintenance of Maternal Kcnq1ot1 ICR Methylation in Kcnq1ot1 

Paternally Deleted and Truncated in Day 6.5 Embryos   

DNA methylation within the Kcnq1ot1 ICR in day 6.5 embryonic ectoderm (EMB), 

extraembryonic ectoderm (EEE) and ectoplacental cone (EPC) with a paternal wild-type 

(WT), deleted (DEL) or truncated (TRU) Kcnq1ot1 alleles. Two sets of tissue were 

analyzed per genotype. Each column represents a tissue from an individual embryo. Each 

line represents a DNA strand with methylated CpGs (black circles) or unmethylated 

CpGs (white circles).  Maternal allele (MAT) and paternal allele (PAT) with percent 

methylation shown at the top. 
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3.5 Identification of Epigenetic Modifiers Controlling 
Paternal Cdkn1c+/Δneo Allelic Silencing 

As discussed in the introduction to this thesis, mechanisms controlling paternal 

allelic silencing of imprinted genes at the Kcnq1ot1 domain remain unclear and several 

models to explain Kcnq1ot1 domain regulation have been proposed. To date, only a few 

repressive factors have been linked to Kcnq1ot1 domain silencing. Therefore, an 

independent characterization of the factors mediating paternal silencing is required. To 

determine the epigenetic modifiers involved in paternal allelic silencing at the Kcnq1ot1 

domain, a positive selection, loss of function screen was performed using RNA 

interference (RNAi) and a library of short hairpin RNAs (shRNAs) for 250 epigenetic 

factors, with ~three hairpins per factor. Extra-embryonic endoderm (XEN) cells carrying 

a paternal targeted mutation of the Cdkn1c gene where exons 1 and 2 were replaced by 

the PGK-Neomycin resistance cassette (Cdkn1c+/Δneo ) were used to select for loss of 

silencing (Figure 21). The initial plan had been to screen all three stem cell lineages from 

the early embryo. However, only XEN cells showed repression of paternally inherited 

Cdkn1c+/Δneo, while Cdkn1c+/Δneo silencing had not yet been achieved in embryonic stem 

and trophectoderm stem cells (Figure 22). Reactivation of the silent Cdkn1c+/Δneo allele 

following depletion of repressive mediators allowed for survival and selection of colonies 

in the presence of neomycin (Figure 23). The epigenetic library was divided into four 

pools, allowing for four independent rounds of the screen. In total, 584 individual 

colonies were picked for a second round of neomycin selection following which 192 

individual colonies were selected and DNA was sequenced to identify shRNA targeted 

factors controlling paternal NeoR repression. In total, 34 different epigenetic modifiers 

were identified. Ranking of top candidates was determined by: (1) the number of colonies 

recovered, (2) the number of different hairpins recovered, and (3) the number of pools 

from which the candidate was recovered (Table 5). The top 10 candidates were Enhancer 

of zeste homolog 1 (Ezh1), Histone deacetylase 9 (Hdac9), Lysine (K)-specific 

demethylase 4A (Kdm4a), Nucleoporin 107 (Nup107), SWI/SNF-related, matrix-

associated actin-dependent regulator of chromatin, subfamily a, containing DEAD/H box 

1 (Smarcad1), SWI/SNF-related, matrix-associated actin-dependent regulator of 

chromatin, subfamily a, member 5 (Smarca5), SWI/SNF-related, matrix-associated actin-
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dependent regulator of chromatin, subfamily e, member 1 (Smarce1) , SWI/SNF-related, 

matrix-associated actin-dependent regulator of chromatin, subfamily c, member 2 

(Smarcc2), Suppressor of variegation 4-20 homolog 1 (Suv420h1), TAF6-like RNA 

polymerase II, p300/CBP-associated factor (PCAF)-associated factor (Taf6l) (Table 6). 

Candidates Smarcc2, Hdac9, Smarcad1 and Smarce1 were isolated from multiple pools 

with reactivation of the paternal Cdkn1c+/Δneo allele occurring with multiple shRNAs. 

Ezh1, Nup107, Taf6l, Kdm4a and Suv420h1 were isolated from one pool and one shRNA 

elicited paternal Cdkn1c+/Δneo allelic reactivation. Note that the shRNA for Nup107 was 

not intended to be in the epigenetic shRNA library, but was inadvertently included when 

shRNAs were isolated from the whole genome shRNA library. The highest number of 

colonies recovered was for Ezh1. Interestingly, the list of candidates was composed of 

both repressive and activating epigenetic factors, which is a novel finding since the few 

factors (EZH2, RNF2, SUV420H1 and DNMT1) that were known to regulate imprinting 

act to repress chromatin (Mohammad et al., 2010; Pandey et al., 2008; Pannetier et al., 

2008; Terranova et al., 2008). Some of these epigenetic factors were identified in this 

screen: Ezh2, Rnf2, Suv420h1 and Dnmt1. However, they were recovered at a lower 

frequency than the other epigenetic candidates. This attests to the validity of this study’s 

methods.  
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Figure 21:  NeoR Gene Recombined at Cdkn1c is Silent on the Paternal Allele at the 

Kcnq1ot1 Domain 

Gene targeting of Cdkn1c deleted the first two exons and replaced it with the PGK-driven 

Neomycin Resistance (Cdkn1c+/Δneo ) cassette. Like Cdkn1c, paternal inheritance of 

Cdkn1c+/Δneo allele resulted in gene silencing. Targeted depletion of epigenetic regulators 

by shRNAs resulted in reactivation of Cdkn1c+/Δneo, allowing for positive selection of 

colonies. 
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Figure 22:  Neomycin Expression in WT Brain and in Cdkn1c+/Δneo ES, TS and XEN 

cells.  

Neomycin (Neo) expression was normalized to mitochondrial ribosomal protein L1 

(Mrpl). Paternal silencing of Cdkn1c+/Δneo was only observed in XEN cells. WT, 

wildtype; ES, embryonic stem cells; TS, trpohectoderm stem cells; XEN, extra-

embryonic endoderm stem cells. 
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Figure 23:  Screen for Epigenetic Modifiers of Genomic Imprinting at the Kcnq1ot1 

Domain 

Lentivirus infection of extraembryonic endoderm (XEN) cells stably integrated the 

shRNA expressing construct in XEN cells with the paternal Cdkn1c+/Δneo allele. RNA 

depletion of epigenetic regulators of imprinting caused expression of the paternally 

silenced Cdkn1c+/Δneo, allowing selection of cells that had lost Cdkn1c+/Δneo silencing by 

adding neomycin to the culture media. Following the first round of neomycin selection, 

colonies of cells were picked and expanded in a 24-well dish. Following a second-round 

of neomycin selection, candidate factors were identified by DNA sequencing.  
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Table 5: Candidate Epigenetic Modifiers of the Kcnq1ot1 Domain 

 

 



61 

 

 

 

 

Table 6: Top 10 Candidate Epigenetic Modifiers of the Kcnq1ot1 Domain 
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3.6 Loss of Imprinted Expression at Specific Genes Within 
the Kcnq1ot1 Domain Following Candidate Depletion 

Isolation of screen candidates was based on reactivation of the paternally inherited 

Cdkn1c+/Δneo gene. Therefore, candidates may play a role in paternal allelic silencing, 

locally (based on DNA elements residing at Cdkn1c) or may act domain-wide. Three 

candidates were chosen for analysis based on the number of colonies recovered (Ezh1; 21 

colonies), number of distinct shRNAs (Smarcad1, 3 shRNAs) and a combination of both 

(Smarca5, 8 colonies, 2 shRNAs). EZH1 is a noncanonical catalytic subunit of PRC2 

(Shen et al., 2008). Its homologue EZH2 has been previously linked to the Kcnq1ot1 

domain, associating directly with the Kcnq1ot1 RNA and catalyzes the H3K27me3 

repressive mark to silent genes in ES cells (Pandey et al., 2008; Terranova et al., 2008). A 

large proportion of the top candidates were ATP-chromatin remodelers, albeit from 

different families of complexes. SMARCA5 is an ATPase in the SNF2-like family and 

SMARCAD1 is an ATPase of the SWR1-like family (Flaus et al., 2006).  

To determine the candidates’ role in paternal allelic silencing, wildtype B6 X CAST 

XEN cells were transfected with short-interfering (siRNAs) targeting candidates Ezh1, 

Smarca5 and Smarcad1, as well as a non-targeting (NT) siRNA. Candidate depletion 

levels were measured by qRT-PCR (Figure 24). Compared to WT and NT siRNA 

controls, candidates were depleted to 62.4% for Ezh1; 9.4% for Smarca5; and 26.9% for 

Smarcad1. 

To determine the role of the screen candidates in paternal Cdkn1c silencing, WT, NT 

siRNA, Ezh1 siRNA, Smarca5 siRNA, and Smarcad1 siRNA-depleted XEN cells were 

assessed for Cdkn1c allelic expression. Maternal-specific expression was defined as 90-

100% expression from the maternal allele, with less than 10% expression from the 

paternal allele. In contrast to WT and NT siRNA-transfected cells, which displayed 

paternal Cdkn1c silencing, the paternal Cdkn1c was reactivated when Ezh1, Smarca5, 

and Smarcad1 were depleted, with 39%, 26% and 48% expression from the paternal 

allele, respectively (Figure 25). Thus, paternal reactivation of Cdkn1c in all candidate-

depleted cells demonstrates that candidates identified here function in paternal allelic 

silencing.  
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 To assess whether candidates play a role in domain-wide paternal allelic silencing 

or specifically at Cdkn1c, genes downstream (Kcnq1) and upstream (Osbpl5, Slc22a18) 

of the Kcnq1ot1 ncRNA promoter were examined for allelic expression. The downstream 

Ascl2 gene and the upstream Phlda2 gene possessed biallelic-expression in XEN cells 

and thus were not included in the analysis (Golding et al., 2011). For the downstream 

Kcnq1 gene, paternal silencing was lost in Ezh1-, Smarca5- and Smarcad1-depleted XEN 

cells (41%, 38% and 36% paternal expression, respectively) (Figure 25). Upstream gene 

Osbpl5 had maternal-specific expression in wildtype XEN cells. Maternal-biased 

expression was observed in candidate-depleted samples and not different from non-

targeting transfected cells, suggesting candidates are not acting to silence the paternal 

allele of this gene (Figure 25). For Slc22a18, NT cells maintained paternal allelic 

repression, as did Smarcad1-depleted cells (0% paternal expression), while the paternal 

Slc22a18 allele was slightly reactivated in Ezh1- and Smarca5-depleted XEN cells (13% 

and 17% paternal expression, respectively) (Figure 25). All together, this indicates that 

candidate factors do not act domain-wide to control paternal allelic silencing, but instead 

function to regulate paternal silencing at proximal rather than distal genes. 
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Figure 24:  Candidate Depletion Levels in siRNA-transfected XEN Cells 

Candidate expression was analyzed in wildtype (WT), non-targeting (NT), Ezh1, 

Smarca5, and Smarcad1 siRNA-targeted XEN cells. Expression levels were compared to 

wildtype and averaged over multiple independent transfections (N=2 to 4) with each PCR 

done in duplicate replicates. Error bars indicate standard error of the mean. 
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Figure 25:  Imprinted Expression Analysis in Control and Candidate Deleted XEN 

Cells. 

Allelic-expression of Kcnq1, Cdkn1c, Slc22a18, and Osbpl5 was analyzed in wildtype 

(WT), non-targeting (NT), Ezh1, Smarca5 and Smarcad1 siRNA-targeted cells. Percent 

maternal expression (red bar) and paternal expression (blue bar) was calculated from the 

total expression of both alleles averaged over multiple independent transfections (N=2 to 

4). Error bars indicate standard error of the mean.  
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3.7 Reduced Kcnq1ot1 Transcription Following Candidate 
Depletion 

As described above, a novel observation for the RNA interference screen was that 

both repressive and active epigenetic factors were recovered. This includes SMARCAD1, 

and SMARCA5 that have documented activating functions (Dluhosova et al., 2014; Hong 

et al., 2009). To determine whether the candidates play a role in maintaining Kcnq1ot1 in 

an active chromatin configuration, total Kcnq1ot1 transcript abundance was measured 

using quantitative real-time PCR in both control and siRNA-deleted XEN cells. 

Compared to wildtype and non-targeting siRNA-transfected XEN cells, Kcnq1ot1 

transcript levels were reduced when Smarca5 (60.4%) and Smarcad1 (55%) were 

depleted (Figure 26). Thus, loss of paternal allelic repression and reduced Kcnq1ot1 

expression suggests that SMARCA5 and SMARCAD1 could be silencing the paternal 

allele by activating Kcnq1ot1 transcription or maintaining the Kcnq1ot1 ICR in an active 

configuration. Interestingly, Kcnq1ot1 expression remained unchanged when Ezh1 

(103.4%) was depleted. 

3.8 Maintenance of DNA Methylation Following Candidate 
Depletion 

Reduced Kcnq1ot1 expression in Smarca5- and Smarcad1-depleted XEN cells 

suggested that the Kcnq1ot1 ncRNA is being silenced in the absence of the candidates. 

Aberrant gain of paternal ICR methylation could explain the reduced transcript 

abundance of the Kcnq1ot1 ncRNA. To examine this, DNA methylation at the paternal 

ICR was analyzed in wildtype, non-targeting, Ezh1-, Smarca5- and Smarcad1-depleted 

cells using the bisulfite mutagenesis and clonal sequencing assay. In wildtype samples, 

the maternal ICR was hypermethylated while the paternal ICR was hypomethylated 

(Figure 27). Similarly, hypomethylation was observed on the paternal allele for depleted 

candidates, suggesting that changes in Kcnq1ot1 expression or ICR function were not 

altered due to gain of paternal methylation.  
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Figure 26:  Reduced Kcnq1ot1 Transcript Abundance in Specific Candidate-

depleted XEN cells. 

Kcnq1ot1 transcript abundance was analyzed in wildtype (WT), non-targeting (NT), 

Ezh1, Smarca5 and Smarcad1 siRNA-targeted XEN cells. Percent Kcnq1ot1 transcript 

levels were averaged over multiple independent transfections (N=2 to 4) with each PCR 

done in duplicate replicates. Error bars indicate standard error of the mean.  
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Figure 27:  Maintenance of Maternal Kcnq1ot1 ICR methylation in Candidate-

depleted XEN Cells  

DNA methylation was examined within the ICR of wildtype (WT), non-targeting (NT), 

Ezh1, Smarca5 and Smarcad1 siRNA-targeted cells. Each line represents a DNA strand 

with methylated CpGs (black circles) or unmethylated CpGs (white circles).  Maternal 

allele (MAT) and paternal allele (PAT) with percent methylation shown at the top.  
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Chapter 4  

4 Discussion 

4.1 Kcnq1ot1 ICR and its ncRNA are Dispensable for 
Establishment of Paternal Silencing During 
Preimplantation Development  

The Kcnq1ot1 ICR possesses maternal DNA methylated and paternal 

unmethylated gametic marks. In the zygote, these gametic marks, together with the 

Kcnq1ot1 ncRNA, were thought to function to establish Kcnq1ot1 domain imprinting. 

The importance of Kcnq1ot1 ICR and ncRNA in repressing adjacent protein-coding 

genes on the paternal allele was delineated from Kcnq1ot1 ICR deletion or ncRNA 

truncation studies which resulted in loss of imprinting during postimplantation 

development (Fitzpatrick et al., 2002; Mancini-Dinardo et al., 2006; Shin et al., 2008). 

The caveat of those studies was that analysis of gene expression was performed during 

midgestation when domain imprinting had long been established and thus, would not be 

able to distinguish between failure to establish or failure to maintain Kcnq1ot1 domain 

imprinting. Here, I set out to more precisely determine the timing of paternal allelic 

silencing of genes within the Kcnq1ot1 domain and whether the Kcnq1ot1 ICR and/or 

ncRNA were required for imprinted domain establishment or maintenance. In WT 

embryos, I observed that paternal Phlda2, Slc22a18 and Cdkn1c alleles were becoming 

progressively silenced during preimplantation development. Significantly, I found that 

blastocyst-stage embryos with paternal Kcnq1ot1 ICR deleted or Kcnq1ot1 truncated 

allele underwent paternal silencing of the Phlda2, Slc22a18 and Cdkn1c genes. In 

contrast, day 6.5 embryos carrying a paternally deleted Kcnq1ot1 allele, the Kcnq1ot1 

ICR was necessary for maintenance of paternal repression at Phlda2, Slc22a18, Cdkn1c, 

Kcnq1 and Ascl2. By comparison, truncation of the Kcnq1ot1 ncRNA resulted in paternal 

reactivation of distal genes within the domain, Phlda2, Slc22a18 and Ascl2, while genes 

more proximal to the ICR, Kcnq1 and Cdkn1c, maintained maternal-specific or maternal-

biased expression. The data indicates that the Kcnq1ot1 ICR and ncRNA were 

dispensable for establishment of paternal allele silencing during preimplantation 
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development. During early postimplantation development, the Kcnq1ot1 ICR and 

Kcnq1ot1 ncRNA function differently, with the Kcnq1ot1 ICR required for imprint 

maintenance at all imprinted genes while the Kcnq1ot1 ncRNA was required for 

maintenance of paternal repression at only a subset of genes. Together, this indicates that 

the Kcnq1ot1 ncRNA does not play a role in regulating genes domain-wide or genes 

specifically upstream and downstream of the Kcnq1ot1 ICR/promoter. This maintenance 

of Cdkn1c and Kcnq1 imprinted expression in truncation mutants can be considered 

transient since all genes show paternal reactivation by day 13.5-16.5 in a C57BL/6 

background, while on a 129 background, Cdkn1c remains paternally repressed 

(Fitzpatrick et al., 2002; Mancini-Dinardo et al., 2006; Shin et al., 2008). 

Maternal-biased expression of Cdkn1c in WT blastocyst was previously reported 

by our group as well as Terranova et al., who also reported maternal-biased expression of 

Tssc4 and Cd81 (Market Velker et al., 2012; Terranova et al., 2008). In contrast, Umlauf 

et al. and Lewis et al. observed maternal-specific Kcnq1 and Cdkn1c expression (Lewis et 

al., 2006; Umlauf et al., 2004). This difference may relate to the use of a 100 pooled 

embryos or timing of embryo recovery (Lewis et al., 2006; Terranova et al., 2008). 

Analysis of imprinted-expression using individual preimplantation embryos rather than 

pooled embryos has been performed in previous studies for multiple imprinted genes, 

including H19, Snrpn, Igf2r, Ascl2, and Cdkn1c (Mann et al., 2003; Mann et al., 2004; 

Market Velker et al., 2012). I observed that Cdkn1c underwent completion of paternal 

silencing to be maternal-specific by day 6.5, consistent with previous data (Terranova et 

al., 2008). This switch to maternal-specific expression following implantation also 

occurred for Cd81 and Tssc4 by day 6.5 extra-embryonic ectoderm (Terranova et al., 

2008). Developmental imprinted domain establishment also occurred at the H19 domain. 

The neighbouring protein coding gene, Igf2, was biallelically expressed in blastocysts 

and was undergoing maternal allelic silencing at day 6.5 and possessed paternal-specific 

expression at day 9.5 (Thorvaldsen et al., 2006). Imprinted XCI also undergoes 

developmental silencing with paternal repression of protein-coding genes beginning in 8-

16-cell stage embryos (Chaumeil et al., 2006; Kalantry et al., 2009). Interestingly, Xist is 

not required for imprinted XCI but is required by day 6.5 for maintenance of paternal 

silencing (Kalantry et al., 2009). Together, this suggests parental-specific expression of 
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imprinted genes is initiated at an early developmental stage and has been shown to occur 

in the absence of the Kcnq1ot1 ICR and the Kcnq1ot1 and Xist ncRNAs. 

Since mutant embryos were capable of invoking paternal allelic silencing, 

indicating that the Kcnq1ot1 ICR and ncRNA were dispensable for imprinted domain 

establishment, it invokes the question of what is directing the preimplantation silencing 

of paternal alleles of imprinted genes. One possibility is that gene-specific epigenetic 

marks, other than DNA methylation at the Kcnq1ot1 ICR, are derived from the gametes. 

During spermatogenesis, histones are replaced by protamines with the exception of 

sperm-specific, developmental and imprinted genes as well as repetitive elements and 

unmethylated CpG-rich regions where histones are retained (Erkek et al., 2013; 

Hammoud et al., 2009). This includes the mouse/human Kcnq1ot1/KCNQ1OT1 domain 

(Erkek et al., 2013; Hammoud et al., 2009). Mining of published data from mouse and 

human sperm revealed the presence of H3K27me3 (with or without H3K4me3) at 

Phlda2/PHLDA2, Slc22a18/SLC22A18, Cdkn1c/CDKN1C, Kcnq1/KCNQ1 and 

Ascl2/ASCL2. However, these marks were absent at nearby non-imprinted genes, 

Nap1l4/NAP1L4 and Cars/CARS (Erkek et al., 2013; Hammoud et al., 2009). 

Additionally, in the mouse, H3K27me3 foci were detected at the paternal Kcnq1ot1 

domain by immunofluorescence in zygotic through to blastocyst stage embryos, 

indicating retention of this repressive histone mark (Terranova et al., 2008). Repressive 

histone modifications retained at imprinted genes in sperm could explain why silencing 

occurs independently of the Kcnq1ot1 ICR, suggesting that imprinted genes within a 

domain may harbour their own gametic mark contrary to current opinion that the ICR 

solely possesses gametic epigenetic modifications. 

Intragenic regions within the Kcnq1 gene, but outside of the deleted ICR, may 

also play a role in paternal allelic silencing of imprinted genes. Interestingly, mining of 

whole-genome bisulfite sequencing data revealed a germline, differentially methylated 

region within Kcnq1 intron 2. In sperm, this CpG-rich region is unmethylated, in 

germinal vesicle oocytes it is 100% methylated, while in blastocysts its methylation level 

(24.5%) is similar to other imprinted control regions, indicating that differentiation 

methylation is likely preserved after fertilization (Kobayashi et al., 2012). This CpG-rich 
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region continues to maintain intermediate methylation levels (31%-61%) in day 14.5 

placenta and adult tissues, which is suggestive of an important allelic role (Hon et al., 

2013). 

Another possibility is that paternal repression of protein-coding genes results from 

insulator or silencing elements with the domain. A cluster of matrix attachment regions 

(MARs) is situated just downstream of the Kcnq1ot1 ICR outside of the deleted region 

(Purbowasito et al., 2004). MARs are AT-rich sequences involved in chromatin-looping, 

boundary formation and transcriptional regulation (Purbowasito et al., 2004; Tattermusch 

and Brockdorff, 2011). At the H19 domain, on the maternal allele, a MAR associates 

with the differentially methylation region 1 upstream of Igf2 together with the CTCF 

insulator protein, forming a chromatin loop around Igf2, that is suggested to contribute to 

its silencing (Kurukuti et al., 2006; Weber et al., 2003). Furthermore, MAR association 

within the Gtl2 domain is altered when the maternal Gtl2 ICR is deleted, resulting in loss 

of maternal Gtl2 silencing (Braem et al., 2008). Similar to the H19 and Gtl2 domains, 

MARs within the Kcnq1ot1 domain may mediate the generation of repressive chromatin 

loops that induce paternal allelic silencing of imprinted genes within the domain. 

Interestingly, ectopic expression of a MARs-binding protein Special AT-rich sequence 

binding protein 1 (SATB1) in lymphoma and embryonic stem cells, which do not 

normally undergo X-chromosome inactivation (even though Xist is expressed), initiates 

Xist-induced gene silencing and chromosome repression (Agrelo et al., 2009). Similarly, 

SATB1 or another MARs-binding protein may bind to MARs within the Kcnq1ot1 

domain, facilitating paternal allelic repression without the Kcnq1ot1 ICR or ncRNA. 

Numerous MARs and repetitive elements are dispersed throughout the Kcnq1ot1 

domain. The cluster of MARs closest to the Kcnq1ot1 ICR (described above) contains 

some of the highest content of interspersed repeats, including LINEs, within the domain 

(Purbowasito et al., 2004). On the X chromosome, silencing of LINE1 elements occurs 

by the 2-cell stage, forming a silent compartment into which protein-coding genes are 

later recruited and repressed at the morula stage (Chow et al., 2010; Namekawa et al., 

2010).  If formation of a repressive compartment similarly takes place at the Kcnq1ot1 

domain, active marks would be excluded from the domain at the time of silencing. 
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Indeed, RNA polymerase II and H3K4me3 were absent at the paternal Kcnq1ot1 domain 

in outer cells of the blastocyst (Terranova et al., 2008). Thus, MARs, repeat sequences 

and repressive modifications may act in concert to bring about the preimplantation 

paternal silencing of genes within the Kcnq1ot1 domain. 

My data suggests that the Kcnq1ot1 ICR and Kcnq1ot1 ncRNA function 

differently to regulate maintenance of imprinted expression at day 6.5. More specifically, 

the Kcnq1ot1 ICR was required for maintenance of maternal-specific expression at 

imprinted genes while the Kcnq1ot1 ncRNA was required for maintenance of imprinted 

expression at only a subset of genes.  In truncation mutant embryos, the Kcnq1ot1 ICR 

remained intact, leaving open the possibility that regulatory sequences contained within 

the ICR were sufficient to maintain repression at Kcnq1 and Cdkn1c (Fitzpatrick et al., 

2007; Thakur et al., 2004). In cell culture-based enhancer-blocking assays, the Kcnq1ot1 

ICR has been shown to function as an insulator when placed between an enhancer and a 

gene of interest. Since the unmethylated paternal Kcnq1ot1 ICR remained intact in 

truncation mutants, it may prevent Cdkn1c and Kcnq1 from accessing nearby enhancers 

on the paternal chromosome.  

A region within the Kcnq1ot1 ICR also possesses silencer activity by inducing 

repression of adjacent genes in an episomal system (Mancini-DiNardo et al., 2003; 

Thakur et al., 2003; Thakur et al., 2004). Paternal deletion of the silencer region 

reactivated the paternal Kcnq1 and Phlda2 alleles in midgestation placenta and the 

paternal Kcnq1 allele in midgestation liver (Mohammad et al., 2010). Furthermore, 

paternal Kcnq1 promoter association with the paternal Kcnq1ot1 ICR was lost when the 

Kcnq1ot1 ICR was deleted, resulting in lost paternal Kcnq1 and Cdkn1c silencing (Zhang 

et al., 2014). Thus, it is possible that silencer activity at the Kcnq1ot1 ICR may function 

to maintain paternal silencing of Kcnq1 and Cdkn1c in day 6.5 ncRNA truncation 

mutants in this study.  

A secondary differentially methylated region at Cdkn1c may also play a role in 

maintenance of paternal Cdkn1c silencing in truncation mutants. During embryonic 

development, Cdkn1c acquires de novo methylation at the paternal Cdkn1c differentially 
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methylation region beginning at day 6.5, which is complete by day 9.5 (Bhogal et al., 

2004). This methylation acquisition is dependent on the Kcnq1ot1 ICR, which when 

deleted abolishes de novo methylation acquisition. Thus, the Kcnq1ot1 ICR-dependent de 

novo methylation initiated at Cdkn1c may account for the maternal-biased Cdkn1c 

expression that I observed when the Kcnq1ot1 ncRNA was truncated.  

 Alternatively, the maintenance of paternal Kcnq1 and Cdkn1c silencing in 

truncation mutants may be independent of the Kcnq1ot1 ICR. In a previous study, it was 

reported that shRNA-mediated depletion of the Kcnq1ot1 ncRNA did not alter imprinting 

in embryo-derived stem cells, demonstrating that it is likely the act of transcription that is 

responsible for imprint maintenance rather than the RNA itself (Golding et al., 2011). In 

this thesis, maintenance of Kcnq1 and Cdkn1c imprinted expression in day 6.5 truncation 

mutants is most likely independent of the Kcnq1ot1 ncRNA itself since most of the 

transcript has been deleted. Since truncation of Kcnq1ot1 to 2.6 kb was sufficient to 

maintain paternal repression of Kcnq1 and Cdkn1c, it indicates that if transcription 

through an important regulatory region exists, it most likely is localized within that non-

truncated region. However, it is possible that sequences within the shortened RNA are 

capable of recruiting repressive factors to maintain paternal allelic silencing at some 

genes in the domain. During the process of X-chromosome inactivation, a small ncRNA 

embedded with the Xist gene, known as RepA, binds to EZH2 then deposits this protein to 

the RepA gene, where it initiates the deposition of H3K27me3 (Zhao et al., 2008). EZH2 

also interacts directly with the Kcnq1ot1 ncRNA and catalyzes the addition of 

H3K27me3 within the Kcnq1ot1 domain (Pandey et al., 2008; Terranova et al., 2008). 

Despite this role of EZH2, it is unlikely to bind to the truncated Kcnq1ot1 ncRNA since 

the interaction site occurs downstream of the truncation (Zhao et al., 2010). Having said 

this, an additional EZH2 binding site has been reported within the shortened Kcnq1ot1 

ncRNA (Pandey et al., 2008). In addition to EZH2, other unidentified epigenetic proteins 

may carry out a similar function with the truncated Kcnq1ot1 ncRNA, allowing initial 

maintenance of Kcnq1 and Cdkn1c imprinted expression at early postimplantation stages 

of development.  
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 My preimplantation development model proposes that in wildtype embryos, 

imprinted protein-coding genes are recruited into a silent region and this repression is 

maintained during postimplantation (Figure 28). When the Kcnq1ot1 ICR is deleted, 

imprinted genes are still recruited into this repressive compartment and undergo paternal 

silencing. However, paternal-repression is not maintained during postimplantation and 

genes become reactivated. When the Kcnq1ot1 ncRNA is truncated, imprinted genes are 

still recruited into this repressive compartment and still undergo paternal silencing during 

preimplantation. However, paternal repression is only maintained for genes proximal to 

the ICR during postimplantation, with proximal genes remaining inside the repressive 

compartment. 

My research shows that paternal allelic silencing is established later in 

preimplantation development and not with the onset of Kcnq1ot1 ncRNA expression. The 

Kcnq1ot1 ICR and ncRNA are dispensable for paternal repression at this stage. Imprinted 

expression in early postimplantation embryos carrying a paternally deleted or truncated 

Kcnq1ot1 allele showed that the Kcnq1ot1 ICR was necessary for maintenance of 

paternal repression at Phlda2, Slc22a18, Cdkn1c, Kcnq1 and Ascl2, while truncation of 

the Kcnq1ot1 ncRNA resulted in paternal reactivation of distal genes, Phlda2, Slc22a18 

and Ascl2, while genes more proximal to the ICR, Kcnq1 and Cdkn1c, maintained 

maternal-specific or maternal-biased expression. Demonstrating for the first time that the 

Kcnq1ot1 ICR and ncRNA are dispensable in early development for paternal silencing 

but are required later for maintenance of imprinted expression.  

Further investigation is needed to understand the complex regulation of the 

Kcnq1ot1 imprinted domain. Remaining questions include: through which mechanism(s) 

does paternal repression of genes within the domain occur, including whether repetitive 

elements facilitate repressive compartment formation; how does the Kcnq1ot1 ICR 

mediate silencing of neighbouring genes; how does the Kcnq1ot1 ncRNA or its 

transcription facilitate paternal allelic silencing of upstream and downstream genes; and 

which epigenetic modifiers facilitate imprinted domain establishment and maintenance. 

The analysis of preimplantation and early postimplantation embryos will be instrumental 

in addressing these questions.  
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Figure 28:  Model of Kcnq1ot1 Paternal Silencing in Early Development 

A) In both pre- and postimplantation, the wildtype paternal Kcnq1ot1 domain consists of 

an ICR, which contains the promoter of the paternally expressed Kcnq1ot1 ncRNA (blue 

wavy arrow) within an active region (green circle) and silent adjacent genes (black 

boxes) within a repressive compartment (red circle) along with repressive epigenetic 

complexes (teal octagon). B) Deletion of the paternal ICR results in no change in 

establishment of paternal repression (black boxes) during preimplantation. However, in 

early postimplantation embryos, maintenance of silencing is lost and expression of 

imprinted-genes occurs on the paternal allele (blue boxes). C) Truncation of Kcnq1ot1 

ncRNA results in establishment and maintenance of paternal silencing only at genes 

proximal to the ICR (distal genes not shown). 
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4.2 Epigenetic Factors Regulating Paternal Repression at 
the Kcnq1ot1 Domain 

To identify epigenetic factors that play a role in maintaining paternal allelic 

repression of imprinted genes in the Kcnq1ot1 domain, I performed a loss-of-function 

RNA interference screen that was unbiased with respect to the proposed models for 

paternal silencing of imprinted genes within the Kcnq1ot1 domain. The screen identified 

35 epigenetic factors. Investigation of the top 3 candidates found that EZH1, SMARCA5, 

and SMARCAD1 regulated paternal allelic repression of imprinted genes at the Kcnq1ot1 

domain. More specifically, depletion of Ezh1, Smarca5 and Smarcad1 caused paternal 

reactivation of Kcnq1 and Cdkn1c but not at Osbpl5 and Slc22a18, indicating that the 

candidates identified here do not function domain-wide. Loss of paternal repression at the 

upstream gene, Cdkn1c, and downstream gene, Kcnq1, indicates that antisense 

transcription is not responsible for paternal repression across the entire domain. Kcnq1ot1 

transcript abundance was reduced in Smarca5- and Smarcad1-depleted cells, suggesting 

that nucleosome remodeling is important for Kcnq1ot1 ncRNA transcription and/or 

Kcnq1ot1 ICR function. Silencing of Kcnq1ot1 expression was not due to aberrant 

paternal ICR DNA methylation. By comparison, EZH1 functioned to silence the 

proximal Kcnq1 and Cdkn1c paternal alleles in a Kcnq1ot1 ncRNA transcription 

independent manner, since Kcnq1ot1 transcript levels were unchanged in Ezh1-depleted 

cells, suggesting that EZH1 acts through Kcnq1ot1 ICR function or acts locally at 

specific genes. All together, the data suggest that multiple epigenetic modifiers and 

remodelers are required for paternal silencing in XEN cells  

An interesting finding from my research is that depletion of Ezh1, Smarca5 and 

Smarcad1 reactivated the paternal allele of proximal genes Cdkn1c and Kcnq1 but not the 

distal gene Osbpl5 or Slc22a18, similar to the postimplantation Kcnq1ot1 ncRNA 

truncation mutants maintenance of proximal genes Cdkn1c and Kcnq1 paternal 

repression. Decreased Kcnq1ot1 transcript abundance in Smarca5- and Smarcad1-

depleted XEN cells indicates that the Kcnq1ot1 ICR, the Kcnq1ot1 ncRNA or its 

transcription are important for paternal silencing. Since the Kcnq1ot1 ICR was intact in 

both the candidate-depleted cells and the Kcnq1ot1 ncRNA truncated postimplantation 
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embryos, it indicates that the ICR could be important for maintaining paternal silencing at 

Kcnq1 and Cdkn1c. For example, boundary/insulator elements on either side of the ICR 

could function to maintain the Kcnq1ot1 ICR in an active state, requiring the activity of 

nucleosome remodelers. SMARCA5 was found to bind to the H19 ICR in mouse 

erythroleukemia (MEL) cells and functioned to activate transcription of H19 (Dluhosova 

et al., 2014). Therefore, SMARCA5 could function to maintain Kcnq1ot1 transcription by 

allowing interaction with enhancers, similar to H19. As a result, loss of Kcnq1ot1 

expression in Smarca5-depleted cells could allow Kcnq1 and Cdkn1c access to enhancers 

normally blocked by SMARCA5, which could lead to activation of Kcnq1 and Cdkn1c.  

The unmethylated paternal Kcnq1ot1 ICR has been proposed to act as an insulator 

and binding site for the insulator protein CTCF, acting in a similar manner to the H19 

ICR to repress adjacent genes by restricting access to enhancers. Although my RNA 

interference screen was not exhaustive, the insulator protein CTCF was not isolated from 

our functional screen. Analysis of CTCF binding in online genomic databases in multiple 

tissues demonstrated that CTCF binds weakly to the Kcnq1ot1 ICR relative to the strong 

peaks upstream of Cdkn1c and downstream of Kcnq1. Additionally, CTCF binds equally 

to the maternal and paternal Kcnq1ot1 ICR (Lin et al., 2011). Together, these results 

suggest that CTCF function is limited at the Kcnq1ot1 ICR, possibly explaining why it 

was not isolated from the functional screen. Consistent with this, imprinted expression of 

Kcnq1, Kcnq1ot1 and Cdkn1c was maintained when CTCF was depleted in mouse 

embryonic fibroblasts (MEFs) (Lin et al., 2011). The function of boundary elements 

outside of CTCF could be mediated by SMARCA5, with an important role for 

nucleosome remodeling. Loss of Kcnq1ot1 expression in Smarca5-depleted cells may 

result from an loss of nucleosome remodeling at the boundary/insulator region, no longer 

allowing the Kcnq1ot1 ICR to maintain an active state, leading to activation of the 

paternal Kcnq1 and Cdkn1c alleles.  

Alternative to the Kcnq1ot1 ICR having enhancer-blocking or insulator function, 

the ICR could act directly on promoters of proximal genes through a chromatin looping 

mechanism. At Cdkn1c, the ICR is required to methylate the paternal promoter in day 6.5 

embryos, stabilizing paternal silencing (Bhogal et al., 2004). For Kcnq1, the paternal 
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promoter can associate with the ICR. However, control of paternal repression during this 

interaction seems to be tissue-specific: paternal Kcnq1 promoter interaction with the ICR 

in MEFs correlated with silencing of Kcnq1(Zhang et al., 2014). Conversely, when the 

paternal Kcnq1 allele lost paternal silencing in the developing heart, the Kcnq1 promoter 

was able to bind to presumptive upstream heart-specific enhancers but not to the 

Kcnq1ot1 ICR (Korostowski et al., 2011). Although the paternal ICR may stabilize 

proper looping conformation, it still does not explain how repression is lost when the ICR 

remains intact in screen candidate-depleted cells. Interestingly, interaction of the Kcnq1 

promoter with the paternal ICR is also influenced by Kcnq1ot1 ncRNA transcription or 

the ncRNA itself (Korostowski et al., 2012; Zhang et al., 2014). Thus, reduced levels of 

Kcnq1ot1 transcripts in Smarca5- and Smarcad1-and depleted cells may similarly 

interfere with Kcnq1ot1 ICR-imprinted gene promoter interactions. Further investigation 

is required to understand the relationship between chromatin looping and Kcnq1ot1 

ncRNA transcription.  

Previous research has shown that the SMARCA5 and SMARCAD1 can function in 

both gene activation and repression (Dluhosova et al., 2014; Hong et al., 2009; 

Rowbotham et al., 2011; Vargova et al., 2009). Thus, these remodeling proteins could 

mediate paternal allelic silencing by maintaining the ICR in an active conformation, 

activating Kcnq1ot1 ncRNA expression or by repressing neighbouring protein-coding 

genes directly. However, the ACF1-ISWI chromatin remodeling complex containing 

SMARCA5 is required to replicate DNA within the densely packed chromatin of 

heterochromatin, presumably to move nucleosomes so the replication fork can progress 

(Collins et al., 2002). Furthermore, another SMARCA5 containing complex, NoRC, 

silences ribosomal RNA genes in yeast by re-positioning nucleosomes downstream of the 

transcriptional start site (Zhou et al., 2009). NoRC is recruited to promoters by RNA 

(pRNA), and this silencing occurs at the nucleolus during S-phase (Strohner et al., 2001; 

Zhou et al., 2009). Consistent with this, SMARCA5 associates with the inactive X 

chromosome at S-phase in MEFs, suggesting that it has a role in maintaining repressive 

marks during replication. Interestingly, Kcnq1ot1 ncRNA also localizes near SMARCA5 

foci and the nucleolus in XEN cells (Supplementary Figure 30) and near the nucleolus in 

JEG-3 cells (Mohammad et al., 2008). Interestingly, SMARCA5 mainly overlaps with 
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euchromatin by confocal microscopy in ES cells (Vargova et al., 2009).  Therefore, it is 

possible that SMARCA5 interacts with the active paternal Kcnq1ot1 gene and its ncRNA 

to re-establishing paternal allelic repression after replication. This is consistent with 

heterozygous SMARCA5 deletion which abolishes heterochromatin marks, suggesting 

that SMARCA5 regulates repressive chromatin structure (Vargova et al., 2009), perhaps 

at boundaries of active/repression chromatin.  

Similar to SMARCA5, SMARCAD1 acts in a repressive complex along with KAP1, 

HDAC1, G9a and PCNA to re-establish repressive heterochromatin marks after DNA 

replication. Depletion of SMARCAD1 in HeLa cells caused reduced global level of 

histone deacetylation and H3K9me3 (Rowbotham et al., 2011). If SMARCAD1 has a 

similar function in XEN cells, loss of paternal allelic repression at the Kcnq1ot1 domain 

in Smarcad1-depleted cells could be the result of failure to re-establish heterochromatin 

after replication, following a similar loss of heterochromatin architecture that occurs on a 

global level. However, for both SMARCA5 and SMARCAD1, loss of global 

heterochromatin loss would imply that all genes on the paternal Kcnq1ot1 domain would 

be activated, yet that is not the case, requiring other proteins within the repressive 

complex to provide specificity. Alternatively, there may be multiple boundary elements 

or chromatin looping regulatory regions within the Kcnq1ot1 domain. Changes in 

nucleosome occupancy may lead to loss of Kcnq1ot1 activation and activation of paternal 

alleles of proximal genes, changing active and repressive compartments when 

SMARCA5 and SMARCAD1 levels are reduced.  Future studies are required to examine 

nucleosome occupancy in WT and Smarca5- and Smarcad1-depleted XEN cells.  

Interestingly, EZH1, the homologue to EZH2, which is a member of the PRC2 

complex, was identified in the functional screen. EZH1 can take the place of EZH2 

within the PRC2 complex, interacting with SUZ12 and EED (Margueron et al., 2008). 

Loss of Cdkn1c paternal repression occurred in EZH2-deficient day 6.5 extra-embryonic 

ectoderm (Kcnq1 was not examined) and Kcnq1ot1 ncRNA expression was not altered in 

EZH2-deficient TS cells (Terranova et al., 2008), similar to Ezh1-depleted XEN cells. 

EZH2 has been proposed to interact with Kcnq1ot1 ncRNA to recruit H3K27me3 to 

induce paternal allelic silencing at Kcnq1, Cdkn1c and Ascl2 (Pandey et al., 2008; 
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Umlauf et al., 2004; Zhang et al., 2014). When EZH2 is deleted in ES cells, EZH1 was 

found to bind to Osbpl5, Phlda2, Cdkn1c, Kcnq1 and Ascl2, a subset of genes within the 

Kcnq1ot1 domain (Shen et al., 2008), suggesting that EZH1 binding may be gene 

specific. To determine whether EZH1 replaced EZH2 in the PRC complex, EZH1 was 

depleted in EZH2-deficient ES cells (Margueron et al., 2008). However, little change in 

global H3K27me3 was observed. Therefore, it is possible that paternal allelic reactivation 

occurs without a change in H3K27me3, suggesting that an alternative repressive 

mechanism is mediated by EZH1. Consistent with this, EZH1 has little histone 

methyltransferase activity, but may instead function to induce chromatin compaction, 

altering chromatin structure resulting in repression of transcription (Margueron et al., 

2008). This suggests that paternal activation of Cdkn1c and Kcnq1 in Ezh1-depleted XEN 

cells could be result of chromatin decompaction. Future studies will need to investigate 

EZH1 binding to the Kcnq1ot1 ncRNA, and whether EZH1 induces chromosome 

compaction. 

My proposed model for candidate maintenance of paternal silencing suggests that on 

the paternal allele in wildtype XEN cells, Kcnq1ot1 ncRNA is expressed and protein-

coding genes are silent and contained within a silent region (Figure 29). When chromatin-

remodelers are depleted, Kcnq1ot1 ncRNA expression is reduced and adjacent protein-

coding genes lose paternal allelic silencing, perhaps forming the basis for changes in 

active/repressive compartmentalization of proximal genes. When Ezh1 is depleted, 

Kcnq1ot1 ncRNA expression is unchanged and adjacent protein-coding genes lose 

paternal allelic silencing via decompaction of chromatin. 

In summary, my research identified epigenetic modifiers regulating maintenance of 

imprinting at the Kcnq1ot1 domain in embryo-derived stem cells using a positive 

selection, loss-of-function RNA interference (RNAi) screen. The RNAi screen was an 

excellent system to dissect the regulation of paternal allelic silencing as it does not rely 

on assumptions of previously proposed models. The screen represents a first in the field 

of genomic imprinting. Importantly, the identification of SMARCA5 and SMARCAD1 

as epigenetic regulators of genomic imprinting indicates that nucleosome occupancy 

plays a functional role in paternal allelic silencing at the Kcnq1ot1 domain. Furthermore, 
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the identification of EZH1 as a regulator of paternal allelic silencing at the Kcnq1ot1 

domain suggests an important role for chromatin structure as EZH1 likely act via a non-

enzymatic function. I had hypothesized that identified epigenetic factors would act 

locally or domain-wide. My data unexpectedly demonstrate for the first time that there is 

regional regulation of paternal allelic repression, identifying further complexity to 

imprinted domain regulation. The factors identified in the screen provide the foundation 

that will determine how paternal silencing is mediated. Further studies are required to 

identify where SMARCA5, SMARCAD1 and EZH1 bind within the domain; demarcate 

boundaries between active and repressed chromatin compartments; map nucleosome 

positioning particularly at boundary regions; and to further define chromatin structure, 

locally, regionally and domain-wide. These studies will provide the context to delineate 

the various models for Kcnq1ot1 domain regulation. 
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Figure 29:  Model of Kcnq1ot1 Paternal Silencing of Proximal Genes in XEN Cells 

A) The wildtype paternal Kcnq1ot1 domain consists of an ICR, which contains the 

promoter of the paternally expressed Kcnq1ot1 ncRNA (blue wavy arrow) within an 

active region (green circle) and silent adjacent genes (black boxes) within a repressive 

compartment (red circle) with repressive epigenetic complexes (teal octagon). B) 

Depletion of chromatin remodelers results in reduced Kcnq1ot1 levels and activation of 

the paternal alleles of genes proximal to the ICR (blue boxes), changing active/repressive 

compartmentalization of the Kcnq1ot1 ICR and proximal genes. C) Depletion of Ezh1 

results in maintenance of Kcnq1ot1 levels but activation of proximal genes (blue boxes), 

possibly through decompaction of proximal genes (distal genes not shown).  
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Appendices 

Appendix A:  

Supplementary Figure 30: Colocalization of Kcnq1ot1 ncRNA RNA with SMARCA5 

and perinucleolar region in XEN cells.  

A-B) RNA-FISH labeling of Kcnq1ot1 (green) in XEN cells. RNA-FISH was performed 

on XEN cells with probes targeting Kcnq1ot1 RNA, as previously described (Golding et 

al., 2011). (C-F) Sequential RNA-FISH and immunofluorescence in XEN cells was used 

to detect the co-localization of Kcnq1ot1 (green) and proteins-of-interest (Red). RNA-

FISH combined with immunofluorescence allows detection of Kcnq1ot1 interactions with 

proteins of interest. Kcnq1ot1 localizes near SMARCA5 foci and to the perinucleolar 

region in XEN cells. (C-D) SMARCA5 (Red) shows multiple foci with some adjacent to 

Kcnq1ot1 (green). (E-F) Nucleolar maker FIBRILLARIN (Red) localizes adjacent to 

Kcnq1ot1, as shown in previous studies. 
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