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Abstract

Auditory processing disorder (APD) is characterized by difficulty listening in noisy

environments despite normal hearing thresholds. APD was previously thought to be

restricted to deficits in the central auditory system. The current work sought to

investigate brainstem and peripheral mechanisms that may contribute to difficulties

in speech understanding in noise in children with suspected APD (sAPD). Three

mechanisms in particular were investigated: cochlear tuning, efferent function, and

spatial hearing.

Cochlear tuning was measured using stimulus frequency otoacoustic emission

(SFOAE) group delay. Results indicate that children suspected with APD have atyp-

ically sharp cochlear tuning, and reduced medial olivocochlear (MOC) functioning.

Sharper-than-typical cochlear tuning may lead to increased forward masking. On

the contrary, binaural efferent function probed with a forward masked click evoked

OAE (CEOAE) paradigm indicated that MOC function was not different in typically

developing (TD) children and children suspected with APD. A third study with mul-

tiple OAE types sought to address this contradiction. Despite numerically smaller

MOC inhibition in the sAPD group, MOC function was not significantly different

between the two groups. Finally, spatial release from masking, localization-in-noise

and interaural time difference thresholds were compared in TD and children with

sAPD. Results indicate no significant difference in spatial hearing abilities between

the two groups. Non-significant findings at group level in these studies may be related

to the large heterogeneity in problems associated with APD. Fragmentation of APD

into deficit specific disorders may facilitate research in identification of the specific

anatomical underpinnings to listening problems in APD.

Prior to conducting studies in children, three studies were conducted to opti-

mize stimulus characteristics. Results of these studies indicate that the MOC may

not be especially sensitive to 100 Hz amplitude modulation, as previously reported.
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Click stimulus presentation rates >25 Hz activate the ipsilateral MOC reflex in typ-

ical MOC assays, contaminating contralateral MOC inhibition of CEOAEs. Finally,

localization-in-noise abilities of TD children are on par with adults for a white noise

masker, but not for speech-babble. This finding suggests that despite maturation

of physiological mechanisms required to localize in noise, non-auditory factors may

restrict the ability of children in processing complex signals.

Keywords

Auditory processing disorder, otoacoustic emission, medial olivocochlear, cochlear

tuning, localization, spatial hearing, spatial release from masking, interaural time

difference, amplitude modulation, click rate
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Chapter 1

Contributions of Auditory Noise
Reduction Mechanisms in
Auditory Processing Disorder

1.1 The Noisy World

The environment that we live in is acoustically dynamic, in the sense that time vary-

ing and overlapping sounds are omnipresent. Some sounds are essential for promoting

communication and for perception of space, but some are undesirable. These unde-

sirable sounds are typically called noise (Knecht, Nelson, Whitelaw, & Feth, 2002).

Noise competes with relevant signals as a result of peripheral masking in the cochlea,

and central masking that competes for cognitive resources even in the absence of any

peripheral masking. The former phenomenon is called ‘energetic masking’, while the

latter is ‘informational masking’1. In both cases the result is reduced speech percep-

tion. On an evolutionary scale, detection of signals amidst a noisy background would

be beneficial in locating a food source and avoiding predators (Endler, 1992). In to-

day’s world, listening to relevant signals such as speech is critical for communication

and language development in children.

1Informational masking is a term used to describe elevation of thresholds that cannot be explained
by energetic masking caused by overlapping of signal and masker frequency on the basilar membrane,
causing reduction in signal representation in the neural system (Lutfi, Kistler, Oh, Wightman, &
Callahan, 2003).
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Optimal noise levels have been recommended for classrooms to facilitate speech

perception and learning, considering a typical child would spend most of his/her for-

mal learning time in school (American National Standards Institute [ANSI], 2010;

American Speech-Language-Hearing Association [ASHA], 2005a). ASHA (2005a)

recommended that noise levels in an unoccupied classroom must be no more than 35

dBA SPL. However, studies have shown that noise levels in classrooms range from

28-71 dBA SPL (Crukley, Scollie, & Parsa, 2011; Knecht et al., 2002). For speech to

be understood clearly at a comfortable level, its level must be sufficiently higher than

background noise. The ratio of the two is typically expressed as signal-to-noise ratio

(SNR). Bradley and Sato (2008) reported that younger children (6 years) required an

SNR of 15.5 dB to obtain 95% speech intelligibility, while older children (11 years)

required a lower SNR of 8.5 dB. Using a sentence perception task, Soli and Sullivan

(1997) showed that six year olds required SNR of -1 dB to perform at 50% correct

levels, while adults could achieve similar performance at -4 dB SNR.

It is clear that children require a higher SNR than adults to understand speech

clearly. Although ASHA (2005a) has recommended a minimum SNR of +15 dB for

classrooms, Bradley and Sato (2008) suggested that +15 dB SNR is inadequate for six

year olds. A more critical issue is that classroom SNRs can be as low as -7 dB (Cran-

dell & Smaldino, 2000). Children expend considerable listening effort to understand

speech at such low SNRs. Howard, Munro, and Plack (2010) reported that children’s

performance on dual tasks was significantly reduced in the presence of classroom level

noise. A common dual task in typical classrooms would be listening to the teacher

and writing notes simultaneously. If a child expends a considerable amount of mental

effort merely to listen to the teacher, he/she may not be able to take notes efficiently

or more importantly, synthesize what is being spoken. This may disrupt the learn-

ing process. Indeed, studies show that schools located near airports and highways
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have a higher percentage of ‘poor readers’ (after controlling for socioeconomic status),

i.e., children whose reading ability is 1-2 years below their grade level (e.g. Evans &

Maxwell, 1997). This situation is further complicated if the child is not a native

speaker of the language of instruction (Nilsson, Gelnett, Sullivan, Soli, & Goldberg,

1992).

Poor auditory processing skills have been linked to several developmental disor-

ders, such as dyslexia (e.g. Ahissar, 2007; Chandrasekaran, Hornickel, Skoe, Nicol, &

Kraus, 2009; Ziegler, Pech Georgel, George, & Lorenzi, 2009), reading/learning dis-

ability (e.g. Bradlow, Kraus, & Hayes, 2003; Cunningham, Nicol, Zecker, Bradlow,

& Kraus, 2001; Hornickel, Skoe, Nicol, Zecker, & Kraus, 2009), specific language

impairment (e.g. Ferguson, Hall, Riley, & Moore, 2011), and auditory processing dis-

order (APD; Chermak, Tucker, & Seikel, 2002). For instance, the ‘anchoring’ deficit

hypothesis posits that children with dyslexia are unable to exploit the predictability

of repeating acoustic events to enhance SNR (Ahissar, 2007), a phenomenon related

to auditory stream segregation (Bregman, 1993). But how are most children able to

perform well in school despite such unfavorable acoustic conditions?

1.2 Auditory Noise Reduction Mechanisms

The auditory system employs several mechanisms to combat noise, and promote

speech perception in adverse listening conditions. The process of segregating noise

from speech begins in the cochlea and continues up to the cortex; this is the ‘bottom-

up’ route. There are also reciprocal connections from cortex to cochlea that further

aid in noise reduction in the system by selectively amplifying relevant information. All

auditory mechanisms and their corresponding processes contribute to speech percep-

tion in noise in some way, however, the focus of this thesis will be on three particular
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mechanisms:

(a) Cochlear tuning

(b) Efferent System

(c) Spatial hearing

(c.1) Auditory localization

(c.2) Spatial release from masking

Reasons for selection of these three processes pertain to the paucity of information

on their role in children with APD, the study group in this work. Children with APD

are well suited for the study of these mechanisms because their prime complaint is dif-

ficulty listening in noise despite normal hearing ability, among other complaints such

as difficulty following instructions, prosody, or rapid speech (American Academy of

Audiology [AAA], 2010). Naturally, understanding the role of auditory noise reduc-

tion mechanisms in these children may provide insights into their atypical behavioral

manifestations, and may also help us understand their role in good listeners. Phys-

iology of these noise reduction mechanisms are reviewed first, following which, their

implications for APD are discussed.

The basilar membrane in the cochlea decomposes incoming signals into their in-

dividual constituent frequencies (Békésy, 1947), a discovery that fetched a Nobel

prize. Békésy’s experiments, however, fell short of explaining the sharp frequency

tuning seen in auditory nerve fibers (ANF). His cadaveric cochleae only exhibited

broad tuning due to the lack of the vulnerable cochlear active process. It is now well

understood that the sharp tuning within the cochlea is critical for ‘normal’ hearing,

and frequency selectivity in the auditory system, especially in noise (Dorman, Loizou,
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Fitzke, & Tu, 1998; Shera, Guinan, & Oxenham, 2002). Along the ascending audi-

tory pathway, the next major processing centre is the superior olivary complex (SOC)

where binaural interaction of inputs from individual cochleae takes place. Binaural

interaction is fundamental to auditory processes such a sound localization and spatial

release from masking (SRM; Grothe, Pecka, & McAlpine, 2010).

Localization aids in formation of auditory streams which the brain uses to segre-

gate wanted from unwanted sounds based on their location (Bregman, 1993). Speech

perception in noise is further facilitated with the aid of working memory, and cogni-

tive processes such as attention at higher auditory (and related) centers in the cortex

(Colflesh & Conway, 2007; Salamé & Baddeley, 1987). Also, the cortex fine-tunes

bottom-up signals by selectively enhancing relevant information while inhibiting oth-

ers via its vast efferent network (Luo, Wang, Kashani, & Yan, 2008; Perrot et al.,

2006; Winer, 2006). Attention is known to play a large role in this fine tuning pro-

cess, both at the cortical level (Kauramäki, Jääskeläinen, & Sams, 2007; Okamoto,

Stracke, Wolters, Schmael, & Pantev, 2007), and at the periphery (de Boer & Thorn-

ton, 2007; Maison, Micheyl, & Collet, 2001). The efferent auditory pathway ends

in the cochlea with axons of the medial olivocochlear system (MOC) contacting outer

haircells (OHCs; Warr & Guinan, 1979).

1.2.1 The Cochlea and Cochlear Tuning

The cochlea is a low noise, energy efficient, and adaptive amplification device that

surpasses any human-made digital or analog amplification system. It works as a fre-

quency analyzer by transforming frequency information into spatial positions along

the basilar membrane. This remarkable feat is made possible by the apically propa-

gating traveling wave, and dictated by the stiffness gradient of the basilar membrane

(Pickles, 2008). The traveling wave progressively slows down, and peaks at its char-
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acteristic frequency (CF) before perishing. The peak occurs at the CF because this

is where the impedances of the mass and elasticity of the basilar membrane cancel

out to cause resonance for a given frequency. As remarkable as it is, this process

only produces a broad and off-CF centered peak activation of outer hair cells (Yates,

1995). So, how is the tuning of auditory nerve fibers that innervate the inner hair

cells much sharper?

The impressive tuning and dynamic range (120 dB) observed in the auditory

system is accomplished with the help of the “cochlear amplifier”. The cochlear am-

plification process is essentially the electromotile OHCs feeding energy back into the

traveling wave, amplifying their transverse motion for low level sounds close to the

CF on a cycle-by-cycle basis (Kemp, 2007). Two prevailing theories explain the

mechanisms behind the active amplification process: OHC electromotility (Brownell,

Bader, Bertrand, & de Ribaupierre, 1985), and OHC hair-bundle motility (Martin

& Hudspeth, 1999). OHC electromotility is the ability of the OHCs to undergo

rapid voltage-dependent mechanical changes in length (contraction - when depolar-

ized and expansion - when hyperpolarized), and stiffness, owing to the motor protein

prestin (Zheng et al., 2000). These length changes are thought to boost the basilar

membrane traveling wave just basal to the CF of the evoking stimulus. OHC hair-

bundles have also been reported to produce active movements that feed-back into the

basilar membrane in the direction of the force applied. Neither of these proposed

mechanisms completely explain the amplification process, but the hair-bundle motil-

ity draws much criticism (Pickles, 2008). Mathematical modeling efforts show that

OHC electromotility is necessary for the cochlear active process while hair-bundle

motility is not. However, Ramamoorthy, Deo, and Grosh (2007) reported that inclu-

sion of hair-bundle motility in their model explained experimental results of basilar

membrane motion better than OHC motility alone. Therefore, they suggested that
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both these mechanisms should work in a synergistic manner.

Whatever may be the underlying mechanism, cochlear amplification is pivotal

for ‘normal’ hearing and sharp frequency tuning in the auditory system. Without

cochlear amplification our hearing thresholds would be 40-60 dB worse (Liberman et

al., 2002), and frequency selectivity at the traveling wave peak, i.e., cochlear filtering,

would be 20-60 dB broader (Robles & Ruggero, 2001). Sharpness of the cochlear

filter, i.e., tuning, is also important for resolving harmonics and pitch perception

(Oxenham, Bernstein, & Penagos, 2004). Recent studies have shown that human

cochlear tuning is three times as sharp as other animals (guinea pigs, cats et cetra), an

evolutionary advantage that is thought to aid in processing of speech signals (Shera

et al., 2002; Shofner, 2014). Loss of cochlear amplification, as occurs in cochlear

hearing loss, leads to reduced audibility and widened auditory filters, affecting fre-

quency resolution (B. C. J. Moore, 2003). While amplification devices can be used to

restore audibility, loss of sharp cochlear tuning cannot be compensated by any means

(Peters, Moore, & Baer, 1997). Broad tuning of cochlear filters is one of the prime

causes of speech-in-noise difficulties in individuals with hearing loss. This is due to

the filter becoming particularly vulnerable to the masking effects of noise, either due

to upward or downward spread of masking, depending on the affected frequency skirt

of the filter (Glasberg & Moore, 1986; B. C. J. Moore, 1991).

Typically, broader tuning, or poor frequency selectivity, is only associated with

cochlear hearing loss (B. C. J. Moore, 2003). However, Patterson, Nimmo-Smith,

Weber, and Milroy (1982) first showed that auditory filter widths increased, i.e., tun-

ing deteriorated, as a function of age from 23-72 years in individuals with clinically

normal audiograms. They also reported that reduced speech intelligibility appeared

to closely relate to the reduction of frequency selectivity in the cochlea. More re-
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cently, Badri, Siegel, and Wright (2011) investigated cochlear tuning in individuals

with speech perception difficulties in noise but with clinically normal audiograms.

Their findings were similar to that of Patterson et al. (1982); individuals with speech

perception difficulties had broader cochlear tuning. Interestingly, these individuals

also had elevated hearing thresholds at high frequencies (>8 kHz). Results of these

studies suggest that clinical audiograms are not sufficient to uncover underlying prob-

lems in some individuals with speech in noise difficulties. These findings may have

implications for children with APD, whose hallmark is difficulty listening in noise

despite clinically normal audiograms (Chermak et al., 2002). Considering noise in

classrooms are low-mid frequency in nature (Crukley et al., 2011), increased upward

spread of masking may pose considerable speech perception difficulties in children

who have broader cochlear tuning.

Despite the benefits of sharp cochlear tuning, the time-frequency trade-off in filter

responses cannot be overlooked. Considering that the basilar membrane acts like a

filter, filter theory dictates that sharp frequency tuning would come at the expense

of longer filter ringing [(Oppenhiem and Wilsky (1997) cited in: Francis & Guinan,

2010)]. Zheng et al. (2011) indicated that an exceptionally sharp filter will cause

longer lasting basilar membrane vibrations, and may forward mask an incoming sig-

nal’s response. Longer filter ringing can thus potentially reduce temporal resolution in

the auditory system. Indeed, Shailer and Moore (1983) showed that gap detection2 is

poorer at lower frequencies owing to longer ringing times of the relatively sharper low

frequency basilar membrane filters. Therefore, optimal cochlear tuning may be bet-

ter suited for speech-in-noise perception than an exceptionally sharp filter. Cochlear

tuning is mature at full-term birth (Abdala, 2001; Abdala & Chatterjee, 2003),

and can be tested objectively using otoacoustic emissions (OAEs). Therefore, further

2As an assay to measure temporal resolution, the gap detection task measures listeners’ ability
to identify the smallest temporal gap between a pair of stimuli.
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investigation of tuning using OAEs in individuals with speech-in-noise difficulties may

help delineate subtle underlying irregularities.

1.2.2 The Efferent System

The efferent system begins in the cerebral cortex, and forms a corticofugal network

that contacts several auditory nuclei as it traverses towards the periphery. Indepen-

dent corticothalamic, corticocollicular, and corticobulbar tracts have been identified

(review: Winer, 2006). These networks have been posited to fine-tune bottom-up

signal encoding, and control gain in the system such that salient information can be

extracted easily (Robinson & McAlpine, 2009; Schofield, 2010). The topic of interest

here is the final leg in this efferent projection: the superior olivary complex’s (SOC)

olivocochlear bundle (OCB). This is because, the OCB contacts cochlear outer hair-

cells directly, and the type-I afferent fibers just beneath the inner haircells, thereby

exerting a fine-tuning process right at the auditory periphery. In turn, cortico-olivary

projections contact the OCB directly (Coomes & Schofield, 2004; Mulders & Robert-

son, 2000), or through indirect connections that traverse via various collicular nuclei,

and modulate their reflexive activity (Huffman & Henson, 1990).

Based on cell types and myelination of axons, two separate systems in the OCB

have been identified: the lateral olivocochlear reflex (LOC) and the medial olivo-

cochlear reflex (MOC; Warr & Guinan, 1979). Considering the LOCs are unmyeli-

nated, almost all efferent effects in the cochlea are attributed to the MOC (Guinan,

2010). Indeed, little is known about the LOC; therefore, this thesis will focus only

on the role of MOC as a noise reduction mechanism.
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The Medial Olivocochler Reflex

MOC neurons can be grouped as ipsilateral and contralateral units; the former re-

spond to monaural sound in the ipsilateral ear, and the latter to the contralateral ear.

There are also neurons that respond to binaural and either-ear stimulation (Liberman

& Brown, 1986), although the majority of MOC neurons respond to binaural stimula-

tion (Brown, Kujawa, & Duca, 1998). In humans, MOC neurons are found scattered

around the medial superior olive (MSO) in a manner that separate nuclei cannot be

defined (J. K. Moore, 1987). MOC neurons receive ascending inputs from the ven-

tral cochlear nucleus, evident from their short latency (Ye, Machado, & Kim, 2000).

A single MOC axon can receive multiple frequency inputs from the ventral cochlear

nucleus, making them particularly sensitive to noise (Liberman, 1988). They also

receive descending inputs from the inferior colliculus (Mulders & Robertson, 2000),

and direct inputs from the cortex (León, Elgueda, Silva, Hamame, & Delano, 2012).

MOC axons directly innervate the OHCs tonotopically, albeit with asymmetric

density across frequencies (Guinan, 2006). Recent studies show that the functional

frequency specificity of MOC innervation in the cochlea is rather poor (Lilaonitkul

& Guinan, 2012; Zhao & Dhar, 2012). Stimulation of the MOC, causes the in-

hibitory neurotransmitter acetylcholine to inhibit the putative cochlear active process

(Guinan, 2006). Acetylcholine causes calcium gated potassium channels in the OHC

to open, which reduces its basolateral resistance. The basolateral resistance permits

the essential voltage drop across the OHC, and is required for driving the cochlear

amplifier. A drop in OHC resistance drains charge from the scala media causing a

drop in OHC direct current (DC) voltage. Therefore, the voltage drive to the motor

protein, prestin, is reduced. Thus, MOC activity essentially hyper-polarizes the OHC

and reduces cochlear amplification, which is reflected as reduced neural output and

OAE amplitude (Robertson, 2009).
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The prevalent model that explains implications of MOC inhibition of OHC activity

is the “unmasking model” (Guinan, 2006). This model argues that noise overdrives

OHC activity and saturates the ANF responses, reducing the dynamic range of ANF

as a result. Reduced dynamic range would not allow for coding of novel incoming

time-varying stimuli such as speech. Inhibition of OHC activity by the MOC is

thought to restore some of the lost dynamic range, allowing for incoming stimuli such

as speech to be coded on to ANF (Kawase, Delgutte, & Liberman, 1993; Winslow

& Sachs, 1988). Thereby, the MOC unmasks time-varying signals whose neural

representation in the auditory system would otherwise be masked by noise. MOC

unmasking has been correlated with concurrent improvements in behavioral measures

of speech perception in noise (de Boer, Thornton, & Krumbholz, 2012; Giraud et

al., 1997; Kumar & Vanaja, 2004; Mishra & Lutman, 2014). MOC function also

explains variability in localization-in-noise (Andéol et al., 2011), protection against

acoustic trauma (Rajan, 2000), and is responsible for proper development of the

auditory system itself (Pujol, Carlier, & Devigne, 1979). It can thus be envisaged

that reduced MOC function may increase vulnerability to peripheral masking, and

reduce SNR in the system. In addition, atypical MOC function may also point towards

potential developmental cochlear irregularities (Abdala, 2001).

1.2.3 Spatial Hearing

Spatial hearing is the ability of the auditory system to use binaural cues to form a

perceived representation of space, and aid speech perception in noise. Both these

properties aid higher level processes such as stream segregation in further improving

SNR in the system (Culling & Akeroyd, 2010). Naturally, the precursor to spatial

hearing is binaural hearing, i.e., listening through two ears. In addition to spatial

processing, there are several advantages to listening binaurally. When the same sig-
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nal is processed through two ears, an improvement in hearing occurs (1-2 dB SNR,

3 dB improvement in thresholds) due to redundancy of information in the system

(MacKeith & Coles, 1971). Other advantages include: improvement in frequency

selectivity and intensity discrimination (Jesteadt & Wier, 1977), ease of listening

(Feuerstein, 1992), and improved speech perception (Helfer, 1994). But specifically,

how does spatial hearing help in noise reduction?

Auditory Localization and Spatial Release from Masking

The auditory system uses two one-dimensional cues (azimuth and elevation) to map

the three dimensional space around us. This remarkable feat is achieved with the help

of several cues working in tandem. For sounds occurring in the horizontal (azimuthal)

plane, the auditory system uses timing and level differences between signals arriving

at the two ears. These cues are aptly named, interaural time difference (ITD) and in-

teraural level difference (ILD), respectively (Culling & Akeroyd, 2010). Wavelength

(therefore frequency) of a signal dictates which cue is used for horizontal plane local-

ization. For example, when sounds are presented from the right, low frequency sounds

reach the left ear with a time delay relative to the right ear (i.e. ITD), but with-

out much loss of energy, due to their large wavelengths. For high frequency sounds,

the head casts a shadow for the left ear due to their shorter wavelengths, effectively

reducing the signal level, and thus creating an ILD (review: Middlebrooks & Green,

1991). However, both ITD and ILD do not provide differential information for sounds

occurring in the median plane, i.e, front/back and up/down. This is because a sound

in the median plane would reach both ears at the same time and at the same level.

Instead, the auditory system uses spectral differences engendered by pinna, head and

torso to resolve front/back and up/down confusions (Wightman & Kistler, 1989).

Effective noise reduction in the auditory system is achieved by spatially separating
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masker and speech, which provides a relative improvement in speech perception. This

phenomenon is called spatial release from masking (SRM; Freyman, Helfer, McCall, &

Clifton, 1999; Hawley, Litovsky, & Colburn, 1999; MacKeith & Coles, 1971). The

more complex the acoustic environment, the larger the SRM (Johnstone & Litovsky,

2006). This suggests that the auditory system relies more on spatial hearing in

adverse listening conditions. There are several mechanisms by which the auditory

system achieves SRM (Arbogast, Mason, & Kidd, 2002; Bregman, 1993; Litovsky,

2012);

(a) Better ear listening: essentially ILD

(b) Binaural unmasking: essentially ITD

(c) Binaural squelch: utilizes both ITD and ILD to suppress noise in the system

(d) Binaural summation: summation of signals from both ears, improves overall SNR

(e) Localization: facilitates stream segregation

When masker and noise are in separate hemi-fields (e.g. left and right), at least

one ear would receive a better SNR, and this apparent ILD improves speech percep-

tion. This phenomenon is thought to explain the bulk of SRM in a “cocktail party”

situation, but does not provide benefit when masker and speech occur in the same

hemi-field (Culling, Hawley, & Litovsky, 2004; Litovsky, 2012). Binaural unmasking

on the other hand, uses the auditory system’s ability to read ITD to separate noise

and speech, therefore it is robust even when noise and speech occur in same hemi-

field (Culling et al., 2004). A typical example of binaural unmasking is the binaural

masking level difference (BMLD), where a phase difference in either the masker or

signal causes an improvement in signal thresholds. Binaural squelch is the term given

to central auditory processing that utilizes both ILD and ITD in adverse listening

conditions to parse speech and noise (MacKeith & Coles, 1971). Binaural summation

causes an improvement in SNR, simply because the same stimulus (typically from the

13



front) is added with itself in the auditory system due to binaural inputs, causing an

increase in signal representation (MacKeith & Coles, 1971). Finally, localization of

the target source improves speech perception in a noisy environment by directing at-

tention to the relevant source signal. This is analogous to turning one’s gaze towards

a desired visual source. The auditory system would then be able to parse relevant

information based on direction, i.e., by grouping acoustic events from one direction

into a single related event (Bregman, 1993).

Localization is thought to contribute less to stream segregation when compared to

other means such as tracking the pitch of a talker (Bregman, 1993). It has also been

shown to be trivial for improving speech perception compared to better ear listening

and binaural unmasking (Culling et al., 2004; Hawley, Litovsky, & Culling, 2004).

Some researchers do suggest that perceptual spatial separation, i.e., knowledge of

location of the target/masker aids significantly in masking release for informational

maskers (Arbogast et al., 2002; Arbogast, Mason, & Kidd, 2005; Freyman et al.,

1999; Kidd, Arbogast, Mason, & Gallun, 2005). Arbogast et al. (2002) demon-

strated this effect by generating speech stimuli using a cochlear implant simulator.

By allotting different modulation frequencies for speech and noise stimuli, they elim-

inated binaural unmasking, yet they observed SRM. The obtained masking release

was much higher (18.6 dB) than what could be explained using better ear listening

and binaural unmasking. Therefore, they suggested that SRM in the informational

masking condition is more perceptual than acoustic.

Resolving fundamental questions on SRM was not the motive of this thesis, rather

the focus was on measuring localization abilities in noise and SRM in children. Even

though there is no clear consensus yet on the role of localization in SRM (Culling

& Akeroyd, 2010), it is a valuable tool for testing binaural hearing. Considering,
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maturation of localization starts early in life and children localize at adult levels at

as young as 5 years (Litovsky, 1997; Van Deun et al., 2009), localization and SRM

may serve as a test to detect abnormalities in binaural hearing (Hall & Grose, 1993).

On the other hand, children’s ability to localize in noise is relatively unknown, despite

studies showing that children as young as three years show robust SRM (Garadat &

Litovsky, 2007). Understanding localization-in-noise in children is crucial because

localization itself is not immune to noise. Studies in adults show that localization

ability deteriorates before the signal becomes inaudible (Good & Gilkey, 1996). It is

unclear how well children are able to localize in noise, especially children with APD.

1.2.4 Implications of Auditory Noise Reduction Mechanisms

The aforementioned noise reduction mechanisms work in tandem to improve both sig-

nal integrity (at the cochlea), and response fidelity (in neural systems) in the auditory

system. In addition, the auditory system has high ‘intrinsic’ redundancy, making it

less vulnerable to the effects of noise and pathologies (Krishnamurti, 2007). However,

breakdown in any of these processes can lead to subtle deficits in signal processing,

or reduce an individual’s ability to take advantage of available cues to, at the least,

reduce mental effort in listening (Howard et al., 2010). Evidence from older normal

hearing and presbyacusic adults shows that reduction in working memory capacity,

either due to age or noise, can lead to reduced speech perception in noise (Pichora-

Fuller, Schneider, & Daneman, 1995). Conversely, it can be thought that ‘freeing-up’

these mental resources can aid speech perception in noise.

A conceptual model, shown in Figure 1-1 was created to hypothesize and visu-

alize possible outcomes of the three noise reduction mechanisms, and their inter-

connections, that may impact speech perception in noise. Briefly, broad cochlear

tuning can increase masking effects, and thus reduce speech perception in noise. On
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the contrary, exceptionally sharp tuning can cause forward masking effects, reducing

temporal resolution in the system, which may also lead to reduced speech perception.

Reduced MOC function can reduce SNR in the system, and may cause difficulties in

speech perception in noise.

Figure 1-1: A conceptual model involving the three noise reduction mechanisms,
placed under their respective anatomical positions. Filled thin black arrows con-
nect processes/mechanisms to their further consequential outcomes. Unfilled grey
arrows inside decision boxes indicate sharp (up arrow) or broad (down arrow)
tuning, reduced MOC function (down arrow), and reduced localization-in-noise
(down arrow). Note that only the processes/mechanisms within thick grey boxes
were investigated in this work. Their outcomes are inferred based on empirical
evidence from previous studies.
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Reduced MOC function can also be related to sharpened cochlear tuning, as reduction

in gain control from the MOC may lead to increased cochlear amplification, result-

ing in exceptionally sharp cochlear tuning (Abdala & Chatterjee, 2003; Abdala,

Sininger, Ekelid, & Zeng, 1996). Finally, reduced ability to use spatial cues to sepa-

rate noise and speech, either energetically (SRM), or perceptually (stream segregation

due to localization) may also reduce an individual’s speech perception ability in noise.

Difficulty in speech understanding in noise will require increased mental effort, and

additional working memory resources which may hinder learning in classrooms.

Considering adults and children who do not have speech-in-noise difficulties benefit

from these mechanisms, it may be useful to investigate these processes in children who

have difficulty in noisy situations. Therefore, the focus of this thesis was investigation

of the role of these auditory noise reduction mechanisms in children with APD. Note

that only the processes within thick grey boxes in Figure 1-1 were investigated in

this work. Outcomes of these processes, and their influence on speech-perception,

and ultimately mental effort (e.g., Wild et al., 2012), were inferred from empirical

evidence reported in previous studies. Therefore, a direct causal relationship cannot

be drawn between these processes and their implications for speech perception in

noise. But first, what is APD?

1.3 Auditory Processing Disorder

“A riddle wrapped in a mystery inside an enigma”

- Stuart Rosen, 2005

In the words of Sir Winston Churchill, Rosen (2005) described APD in this way,

largely because, despite decades of research, APD remains a topic of immense debate.

APD is a highly heterogeneous disorder, involving a breakdown of various aspects of
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auditory processing that result in complaints and symptoms that vary considerably

across populations (D. R. Moore, 2006). AAA (2010) defined APD as “difficulties

in perceptual processing of auditory information in the central nervous system and

the neurobiological activity that underlies the processing”. APD affects about 2-3%

of school age children (Chermak, Somers, & Seikel, 1998). APD may also co-occur

with other developmental disorders such as attention deficit hyperactivity disorder

(Chermak et al., 1998), dyslexia (Mody, Studdert-Kennedy, & Brady, 1997; Tallal,

1980), specific language impairment (Tallal & Piercy, 1973) and learning disability

(Kraus & Zecker, 1996). Sharma, Purdy, and Kelly (2009) reported that language

impairment and reading disability commonly co-occurred with APD.

In congruence with the heterogeneity of its symptoms and causes, there is no sin-

gle test or measure that can diagnose a person as having APD, nor is there any gold

standard (Bellis, 2003). Therefore, in clinical assessment a test battery approach is

followed based on recommendations from professional Audiology bodies. As recom-

mended by the American Speech-Language-Hearing Association [ASHA] (2005b), and

emphasized by the Canadian Interorganizational Steering Group for Speech-Language

Pathology and Audiology [CISG] (2012), an APD test battery must include tests that

are capable of evaluating several auditory processes, such as, temporal processing, bin-

aural integration/interaction, pattern recognition, speech recognition in competing

and degraded acoustic signals, auditory discrimination, and localization. Typically, a

child would fail at least two out of five tests to be diagnosed as APD (ASHA, 2005b).

However, no recommendations on specific tests are made, therefore, a clinician is free

to choose tests of his/her choice. This leads to a considerable mismatch in results

across research studies, often rendering them difficult to compare (Allen & Allan,

2014). Behavioral speech-based tests have also been criticized because of their sensi-

tivity to the language ability of the child being tested (Allen & Allan, 2014; British
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Society of Audiology [BSA], 2011). For this reason, some researchers argue that

primarily non-speech tests must be used to diagnose APD (BSA, 2011; Rosen, 2005).

Although not widely used, objective tests have also been recommended for use as

part of the APD diagnosis process (AAA, 2010; ASHA, 2005b). Interest in objective

tests is increasing due to two reasons: one, recent studies demonstrate that specific

deficits can be identified in various parts of the auditory system (Allen & Allan,

2014; Gopal & Pierel, 1999; Hornickel et al., 2009; Muchnik et al., 2004); two,

objective tests eliminate the need for subjective responses that can be influenced by

various factors as mentioned above. However, considering there are no guidelines for

basing APD diagnosis on objective tests, behavioral tests take precedence in clinical

settings (Singer, Hurley, & Preece, 1998). Nevertheless, objective tests are valuable

tools for research, especially in unraveling anatomic underpinnings of a behavioral

manifestation.

1.3.1 Anatomic Basis of Auditory Processing Disorder

Owing to its heterogeneity involving various perceptual and cognitive manifestations,

difficulties reported in APD typically cannot be pinned to a single anatomic place or

one impaired process (Banai & Kraus, 2007). Physiological causes of APD, if present,

can stem from a neurological lesion anywhere in the auditory system, delayed central

nervous system maturation, or other developmental disorders (Bamiou, Musiek, &

Luxon, 2001). APD can also result from peripheral hearing loss as occurs in chronic

otitis media, leading to deprivation of acoustic input to the auditory system that alters

short term plasticity (Hall & Grose, 1993). Therefore, understanding the underlying

anatomical basis of APD, as diverse it may be, could help develop objective tests and

more focused treatment regimens. For instance, Veuillet, Magnan, Ecalle, Thai-Van,

and Collet (2007) identified atypical voice onset time (VOT) sensitivity and reduced
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asymmetry3 in MOC function in children with reading disabilities. Following audio-

visual training on a consonant-vowel task that targeted VOT sensitivity, they showed

that children’s VOT perception improved with a concurrent improvement in MOC

functional asymmetry.

Further, objective studies have also highlighted the role of the brainstem in APD

(review: Banai & Kraus, 2007), in contrast to behavioral tests, which are typically

restricted to testing higher brain centers. APD was indeed previously called central-

APD, owing to the notion that only central auditory processing was affected (Jerger

& Musiek, 2000). Yet there remain several auditory processes and mechanisms that

need to be investigated. Despite the profound implications of cochlear tuning in

frequency selectivity in the auditory system, no studies have investigated its role in

APD. The peripheral auditory system is merely screened for presence of an overt

hearing loss. While previous studies have indicated reduced MOC functioning in

children with APD (Muchnik et al., 2004), there is no clear consensus, and studies

that show significant group effects suffer from methodological limitations. Finally,

position statements and guidelines from professional Audiology bodies such as CISG

(2012), AAA (2010) and ASHA (2005b) have indicated that localization is affected in

children with APD, although there are no published data. It is unclear if localization

is indeed affected in children with APD.

3Stronger inhibition of OHC activity by MOC activation in the right ear compared to the left
(Khalfa & Collet, 1996)
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1.4 Measures to Probe Auditory Noise Reduction

Mechanisms in APD

Developing objective measures was not the aim of this thesis, so tools that are already

at the disposal of clinicians were predominantly used. This was done in order to

allow easier translation of assays to clinical settings, should a biological marker be

identified. To this end, assays based on OAEs were central to this thesis. Use of a

single measure such as OAEs across studies (except localization) ensured continuity

amidst investigations of varied auditory processes and mechanisms.

1.4.1 Otoacoustic emissions

OAEs measured in the ear-canal are extra energy generated as a byproduct of the

cycle-by-cycle cochlear amplification process. Considering that OAEs are generated

in the cochlea and are measurable in the ear-canal, they serve as a window into

the workings of the inner ear (Pickles, 2008). Based on the generation mechanism

involved, OAEs can be classified into two types: (1) reflection-type emissions, and

(2) distortion-type emissions (Shera & Guinan, 1999). Reflection-type emissions,

according to the ‘coherent reflection’ theory (Zweig & Shera, 1995), are thought

to be generated by reflection of the forward traveling stimulus wave due to random

impedance perturbations on the basilar membrane at the traveling wave peak. These

perturbations could be a difference in force generated by OHCs, their size, their ar-

rangement on the basilar membrane, and the traveling wave itself. This reflection

is a linear process mediated by the non-linearity of the cochlear amplifier. Reflected

wavelets combine constructively to form a coherent emission (Shera & Abdala, 2012).

With the exception of distortion product OAEs (DPOAEs, e.g. 2f1 − f2), all

evoked OAEs are reflection-type emissions, at least at low stimulus levels (Shera &
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Guinan, 1999). These include click evoked (CEOAEs), tone-burst evoked (TBOAEs),

stimulus frequency (SFOAEs), and spontaneous (SOAEs). Distortion-type emissions

are thought to be generated by the non-linear distortion generated due to the overlap

of two close-by frequencies stimulating the same OHC. Two wavelets at the overlap

region are generated in this process. Wavelets with negative phase that combine

constructively on the basilar membrane travel backwards (towards the middle-ear),

and reach the ear-canal as acoustic DPOAEs. However, wavelets with positive phase

travel towards the 2f1−f2 place on the basilar membrane. These wavelets essentially

are forward traveling waves similar to the pure tones that evoked them. Upon reach-

ing the 2f1 − f2 place on the basilar membrane, the reflection mechanism discussed

earlier generates reflection emissions. Therefore, DPOAEs observed in the ear-canal

are a composite mixture of both distortion and reflection components. Because the

reflection component of the DPOAE is evoked by a much smaller stimulus (re: f2

level), it is diminutive compared to the distortion component (Kemp, 2007; Shera

& Abdala, 2012; Shera & Guinan, 1999).

But what does OAE generation have to do with measuring cochlear tuning and

MOC function? Understanding the generation mechanisms of OAEs is critical for

their interpretation. For instance, coherent reflection theory predicts, and has been

experimentally shown, that the SFOAE group delay is roughly half of basilar mem-

brane group delay for a given frequency (Shera & Guinan, 2003). SFOAE group delay

is the total time taken from stimulus presentation to recording a resultant SFOAE in

the ear-canal. This includes stimulus travel time from the ear-canal to the CF place

on the basilar membrane, building a peak at the CF, generation of backward traveling

wavelets of the stimulus frequency that coherently add on the basilar membrane, the

reverse travel time on the basilar membrane, and across the middle-ear and ear-canal.

However, the traveling wave build-up at the CF accounts for almost the entire time
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taken. Middle-ear and cochlear traveling times are negligible (Don, Ponton, Egger-

mont, & Kwong, 1998; Shera et al., 2002). Therefore, half of this total time-taken

(for forward and reverse travel), can be approximated using half of SFOAE group

delay, to reflect BM group delay. This is true at least for roughly the basal 60% of

the basilar membrane (∼>1 kHz). This relationship can be used to predict cochlear

tuning at a given frequency. In addition, filter theory dictates that sharper filters will

take longer to build-up (Oppenhiem and Wilsky (1997) cited in: Francis & Guinan,

2010). Therefore, individuals with broad cochlear tuning present with short SFOAE

group delays, while individuals with sharper tuning present longer group delays.

Also, OAEs are currently the simplest means to quantify MOC activity on OHCs.

This is because, as discussed earlier, MOC innervates the OHCs directly and inhibit

the OHC active process, of which the OAEs are a byproduct. Consequently, MOC

inhibition of OHC activity also inhibits OAE level and alters its phase, a phenomenon

referred to as ‘OAE inhibition’ (Guinan, 2006). By studying OAE level and phase

in separate conditions with and without MOC activation, one can quantify MOC

activity, or ‘MOC strength’ for an individual at a given frequency.

1.5 Purpose of This Thesis

The purpose of this thesis was to investigate the contributions of known auditory

noise reduction mechanisms in children with APD in order to understand if a break-

down in any of these mechanisms could explain their listening difficulties in noise.

However, we first set out to optimize instrumentation and select stimulus parameters

that would ensure success in recording high quality OAEs, as well as behavioral re-

sponses in children with APD. This phase was essential because children in general

have higher internal noise than adults in any physiological measure, and methods
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developed for the purpose of these thesis studies were novel to the employed instru-

mentation. Chapters 2-4 in this thesis are a result of this optimization phase, where

normal hearing adults and children were used as study participants.

Following the optimization phase (Chapters 2-4), four studies were conducted in

children with APD. The first study (Chapter-5) investigated cochlear tuning, and its

relationship to MOC function. The second study (Chapter-6) investigated binaural

MOC function and interaction, and also evaluated group (APD vs. typically develop-

ing [TD]) differences in a behavioral correlate of binaural interaction. Contradicting

results were obtained between chapters 5 and 6 for MOC function in children with

APD. The SFOAE in Chapter-5 indicated reduced MOC strength with APD, but

CEOAE in Chapter-6 indicated no such differences between children with APD and

TD children. Therefore, the motive of the third study (Chapter-7) was to resolve

this conflict by studying MOC function using three different types of OAEs. The aim

of the fourth study (Chapter-8) was to investigate localization-in-noise and spatial

release from masking abilities in children with APD.

1.6 Chapter Synopses

1.6.1 Instrumentation and Stimulus Optimization Phase

Chapter-2: Influence of 100 Hz Modulation on the MOC

Amplitude modulation (100 Hz) following ability of the MOC was investigated.

A previous study had indicated that the MOC is particularly sensitive to 100 Hz

modulation (Maison, Micheyl, & Collet, 1999). Considering children with APD

have been reported to have reduced MOC functioning, we studied MOC inhibition

using a 100 Hz modulated elicitor4 to possibly enhance MOC activity. A comparison

4Elicitor refers to the MOC activating stimulus; typically a broadband noise is used.
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of modulation following ability of the MOC between TD, and children with APD

was also planned. However, adult data showed that the MOC is insensitive to high

modulation rates, and in fact modulations in an elicitor reduced its effectiveness

in eliciting MOC activity. Therefore, this stimulus manipulation was not used in

further studies.

Chapter-3: Optimal Click Presentation Rate for Recording CEOAEs

In order to interpret observed reduction in OAE level due to MOC activation,

several variables need to be carefully controlled. One such variable is the stimulus

(click) presentation rate in measuring click evoked OAEs. Faster rates (>50 Hz) have

been reported to activate the MOC reflex when presented in the contralateral ear

(Veuillet, Collet, & Duclaux, 1991). However, clicks are presented in the ipsilateral

ear as the OAE evoking stimulus, in addition to broadband noise elicitors in the

contralateral ear. Therefore, it was unclear what click rates would elicit ipsilateral

MOC activity in the presence of a contralateral elicitor. A forward masking paradigm

was used in this study to investigate this rate effect. It was found that rates as low

as 31.25 Hz evoke significant MOC activity.

Chapter-4: Localization-in-noise and MOC Activity in Typically Developing Chil-

dren and Young Adults

One previous study showed that variability in median plane localization-in-noise

ability can be explained partially by MOC strength (Andéol et al., 2011). Consid-

ering children with APD have been suggested to have poor localization abilities, and

reduced MOC function, we sought to investigate if front/back localization-in-noise

in TD children and adults could be explained by MOC strength. Results indicated

no correlation between the two variables in both children and adults. Therefore, in

Chapter-8, only the localization-in-noise ability of children with APD was investi-

gated, and no attempts were made to correlate localization and MOC strength in
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children with APD.

1.6.2 APD Study Phase

Chapter-5: Cochlear Tuning and MOC Function in Children with APD

Cochlear tuning and its relationship to MOC strength was investigated in chil-

dren with APD. Results showed significantly sharper tuning in children with APD

compared to TD children. Children in the APD group also showed an atypical

relationship between tuning with MOC strength, as compared to TD children.

Chapter-6: Binaural MOC Function and Interaction in Children with APD

Considering we always listen through both ears, binaural MOC can be expected

to be activated in real-life. No previous studies have investigated binaural MOC

function in children with APD. Results showed no significant difference in MOC

strength, and no difference in binaural MOC interaction between APD and TD

groups.

Chapter-7: Is MOC Function Affected in Children with APD?

Conflicting results from Chapters 5 and 6, and from the literature, led to com-

parison of MOC inhibition of OAEs obtained using three different OAEs (SFOAE,

DPOAE, and CEOAE) in this study. Results again were inconclusive.

Chapter-8: Localization-in-noise Abilities of Children with APD

Localization-in-noise in the front/back and lateral domains, spatial release from

masking and ITD thresholds were compared between TD and APD groups. Results

showed no significant difference between groups, suggesting that not all children

with APD have localization difficulties.

Chapter-9: General Discussion, Conclusion and Future Directions
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Results of all studies are discussed to arrive at a coherent exposition of this work.

Conclusions are drawn based on the present results, strengths and limitations have

been identified, and future directions have been proposed.
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Chapter 2

Influence of 100 Hz Amplitude
Modulation on the Medial
Olivocochlear Reflex1

2.1 Introduction

The human auditory system has reciprocal connections through which higher audi-

tory centers influence the working of lower auditory systems; this has been shown

in animals models (Winer, 2006; Xiao & Suga, 2002), and humans (Khalfa et al.,

2001; Perrot et al., 2006). The final stop in the descending auditory pathway is the

medial olivocochlear system (MOC). The MOC hyper-polarizes the cochlear outer

hair cells (OHCs) through direct cholinergic action, consequently, reducing the gain

of the cochlear active process (Murugasu & Russell, 1996). Reduction in the cochlear

active process can be recorded as reduced otoacoustic emission (OAE) level (Guinan,

2006). Such reduction in cochlear amplification is beneficial in several avenues such

as, listening in noise (Bhagat & Carter, 2010; Kumar & Vanaja, 2004; Mishra

& Lutman, 2014), protection against acoustic injury (Rajan, 2000), localization in

noise (Andéol et al., 2011), learning (Irving, Moore, Liberman, & Sumner, 2011),

and for proper development of the auditory system itself (Simmons, 2002). Consid-

1A version of this chapter has been published: Boothalingam, S. Purcell, D. W., & Scollie, S.
D. (2014). Influence of 100 Hz Amplitude Modulation on the Human Medial Olivocochlear Reflex.
Neuroscience Letters, 580, 56–61.
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ering the MOC plays a multifaceted role in the auditory system, it is imperative to

understand its response to stimuli of diverse spectral and temporal characteristics.

Despite the wealth of understanding of the MOCs effect for spectrally varying stimuli

(Lilaonitkul & Guinan, 2009; Maison, Micheyl, Andéol, Gallégo, & Collet, 2000;

Zhao & Dhar, 2012), the effect for various temporal patterns of the MOC elicitor

remain unclear. Maison, Micheyl, and Collet (1999) reported an enhanced MOC in-

hibition of 1 kHz toneburst OAEs (TBOAEs) for broadband noise (BBN) amplitude

modulated at 100 Hz/100% depth (AM-BBN), compared to unmodulated noise and

other modulation frequencies (MFs) and depths (MD). AM (Maison, Micheyl, & Col-

let, 1997) and frequency modulated (FM: Maison, Micheyl, & Collet, 1998) tones

also elicit larger MOC inhibition than unmodulated tones, but this can partially be

due to increase in the elicitor-tone bandwidth caused by modulation. The bandwidth

of BBN does not change with AM.

Contrary to Maison et al. (1999), Backus (2005), using stimulus frequency OAEs

(SFOAEs), showed a monotonic increase in the overall MOC response as a function of

elicitor MF (0.5-200 Hz). Backus (2005) also reported that the largest MOC inhibition

of SFOAEs was obtained for unmodulated BBN, and no special effect for 100 Hz AM

was found. Backus (2005) suggested that this is due to MOC time constants, which

will be discussed further below. While the n-size in Backus (2005) study was only

four, the difference between the Maison et al. (1999) and Backus (2005) findings could

possibly also arise due to the use of different OAE types: TBOAEs in the former and

SFOAEs in the latter. Although both TBOAEs and SFOAEs are hypothesized to be

generated by the same mechanism in the cochlea (Kalluri & Shera, 2007), it is possible

that differences in MOC activation could be observed, possibly due to the use of a 50

Hz toneburst (TB) presentation rate in Maison et al. (1999). It is possible that the

50 Hz rate and its harmonics, produced during the neural transduction process, may
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interact with 100 Hz contralateral modulation at the neural level. Interactions are

sometimes possible, as demonstrated with binaural auditory steady state responses

(ASSRs) (Lins, Picton, Picton, Champagne, & Durieux-Smith, 1995). In addition,

high click presentation rates (e.g., 50 Hz and above) have been shown to activate

the contralateral MOC (Veuillet, Collet, & Duclaux, 1991), and hence lower rates

(e.g., 40 Hz) are employed in more recent studies (Francis & Guinan, 2010). For

these reasons, we cannot rule out the possibility that enhanced MOC activity at

100 Hz MF in Maison et al. (1999) may stem from the specific parameters used to

evoke MOC activity and record OAEs, rather than a true MOC effect. Therefore,

to investigate this rate effect further, two studies were conducted: the first study

attempted to reconcile the results of Maison et al. (1999) and Backus (2005) using

both SF- and TB-OAEs. TBs were specifically presented at 41.67 Hz (lower than the

typical 50 Hz rate) in this experiment to minimize the possibility of the TBs evoking

MOC activity by themselves (Francis & Guinan, 2010; Veuillet et al., 1991). In

the second experiment, TBs were presented at 50 Hz to tease out the effect of TB

presentation rate as a possible contributor to the enhanced 100 Hz AM-BBN MOC

response reported by Maison et al. (1999).

2.2 Method

2.2.1 Participants

Twenty-seven young adults (18 to 30 years) participated in the studies. All par-

ticipants had normal hearing, defined by normal middle ear function and hearing

thresholds of 20 dB HL or better between 0.25 and 8 kHz at octave intervals. In

addition, acoustic reflex threshold (ART) for steady-state BBN was required to be

>80 dB HL (Guinan, 2006), measured using a clinical immitance meter (Madsen

Otoflex, GN-Otometrics, Denmark). Spontaneous OAEs (SOAEs) were recorded to
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allow rejection of SFOAEs within 50 Hz of an SOAE to avoid phase related com-

plexities (Francis & Guinan, 2010). The Health Sciences Research Ethics Board of

Western University, Canada approved the study methods. Written informed consent

was obtained from each participant after the nature of the study was explained. Par-

ticipants sat in a comfortable chair in the double walled sound attenuated booth and

were encouraged to relax, swallow as few times as comfortable, and sleep if possible.

The ear being tested and the order of the OAE being tested were counterbalanced

across participants.

2.2.2 Stimulus generation and recording

Probe tones (fP ) in the frequency range 0.96 to 1.92 kHz (48 Hz intervals) were of

2.048s in duration and were presented at 40 dB SPL to evoke SFOAEs. To obtain

SFOAEs, the suppression method (Brass & Kemp, 1993) was used with discrete

Fourier transforms. Each fP thus had a corresponding intra-cochlear suppressor (fS)

that was presented at 60 dB SPL, where fS = fP +16 Hz with linear rise/fall ramps of

50 ms duration. Blackman-window gated TBs of frequencies 1 and 2 kHz, and 2 ms in

duration were used to obtain TBOAEs (Norton & Neely, 1987). The frequency range

was chosen based on empirical evidence that contralateral MOC activity is more pro-

nounced in the 1-2 kHz region (Lilaonitkul & Guinan, 2012; Zhao & Dhar, 2012).

Efferent elicitors were uniform BBN and AM-BBN (BBN modulated at 100 Hz and

100% depth) (Maison et al., 1999). Elicitors had equal root-mean-square (RMS) am-

plitude and rise/fall ramps of 20 ms each to avoid causing a startle response. Stimuli

were calibrated using a Type-2250 sound level meter (Brüel and Kjær, Denmark) and

ear simulator Type-4157 (IEC711; Brüel and Kjær, Denmark).

Signals were played through a digital-to-analog converter (6289 m-series, National

Instruments, TX) at a sampling rate of 32 kHz to three separate programmable atten-
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uators (PA5; Tucker-Davis Technologies, FL) that controlled the output signal levels

of the probes (tones and TBs), suppressors, and elicitors. These signals were power

amplified (SA1; Tucker-Davis Technologies, FL) and fed to two ER2 transducers (Et-

ymotic Research, IL) connected to an ER-10B+ otoacoustic emission probe system

(Etymotic Research, IL) that delivered the signals in the ear-canal. A single ER2

insert receiver delivered elicitors in the contralateral ear. Responses were recorded

using the ER-10B+ (Etymotic Research, IL) probe system with the pre-amplifier gain

set at +40 dB. The recorded signal was then bandpass filtered (Frequency Devices

Inc., IL) from 0.2 to 10 kHz with further 20 dB gain. The filtered response was

then digitized by an analog-to-digital converter which applied another 6 dB of gain

prior to conversion (6289 m-series, National Instruments, TX). Stimulus delivery and

response acquisition were controlled using custom programs developed in LabView

(National Instruments, TX), similar to Purcell, Butler, Saunders, and Allen (2008).

Experiment I

Elicitor conditions for SFOAE and TBOAE were organized as illustrated in Figure

2-1A and B, respectively. At least 8 sweeps for the SFOAE, and 20 sweeps for the

TBOAE measurement were obtained. A total of 2120 TBs/elicitor condition were

obtained from the 20 sweeps. The inter-sweep-block interval between elicitor con-

ditions and the inter-sweep interval between sweeps (see Figure 2-1) ensured that

MOC activity reverted to baseline before it was activated again with a different elici-

tor (Backus & Guinan, 2007). The SFOAE measurement at every frequency started

with an in-the-canal calibration of stimulus levels to produce the desired stimulus SPL

in the ear-canal. A single isovoltage calibration was used for TBOAE measurements.

Influence of probe-drifts was avoided with the use of interleaved short duration sweep-

blocks (2.048 s for SFOAE and 2.544 for TBOAE). Prior to calculating an average

SFOAE response, all epochs were evaluated offline using a discrete Fourier transform
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to obtain noise metrics in a 20 Hz band just below fP . Epochs whose noise metric

exceeded the mean plus two standard deviations (SDs) were not included in the aver-

age. The SFOAE at each frequency was obtained by vector subtraction of ear-canal

pressure recorded in average sweep-blocks 1 and 2 (see Figure 2-1A). Final SFOAE

and inhibition magnitude were obtained by averaging SFOAE across all included fre-

quencies.

Figure 2-1: Panels A and B are block diagrams of SFOAE and TBOAE measure-
ment paradigms, respectively. Left columns in both panels indicate the stimulus
delivery channels, i.e., separate transducers. Shaded (in grey) regions represent
stimulus presence.

TBOAE responses (OAEs+background noise mixture) in the time window from

8.5 to 18.5 ms post stimulus onset were extracted and digitally band-pass filtered

using a fourth order Butterworth filter (cut-offs: 0.5-2 kHz for 1 kHz TB and 1-3

kHz for 2 kHz TB). Although a different time window from Maison et al. (1999)
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has been used in this study, all TBOAE frequency components can be expected

to be captured within this time-window, based on their latency (Shera, Guinan, &

Oxenham, 2002). Consecutive TBOAE epochs were separated into two buffers (A

and B); the correlation coefficient between the two buffers served as a measure of

reliability. Noise and SNR for TBOAEs were calculated according to equations 2.1

and 2.2, respectively:

Noise =

√
abs(bufferA− X̄)2 + abs(bufferB − X̄)2

2
(2.1)

SNR = 10 ∗ log10[(
X̄2

Noise2
)− 1] (2.2)

In equation 2.1, buffers A and B refer to the average responses in the respective

buffers, and X̄ is the mean response across both buffers. TBOAE amplitude is the

mean RMS of the response within the time window.

Experiment II

Experiment II repeats Experiment I except that the TBs were presented at 50 Hz

instead of 41.67 Hz. The 50 Hz TB rate was used to test if an interaction between

TB presentation rate and 100 Hz AM-BBN could lead to the hypothesized enhance-

ment in MOC inhibition for 100 Hz AM-BBN reported in Maison et al. (1999). This

hypothesis was based on the ability of the auditory system to encode stimulus pre-

sentation rate, due to rectification in the cochlea and at the auditory nerve (John,

Dimitrijevic, & Picton, 2003). For example, the modulation frequency of a stimulus

used to elicit the ASSR is not present in the spectrum of the acoustic stimulus, but

rather appears during the transduction process (Lins et al., 1995). In the present

case, the neural response to the second harmonic of the 50 Hz presentation rate in the

ipsilateral ear may interact with a 100 Hz AM response from the contralateral ear at
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the level of the brainstem, potentially causing an enhancement of MOC inhibition for

100 Hz AM-BBN. An enhancement is hypothesized because of the potential binaural

stimulation at 100 Hz MF, with reference to monaural (contralateral) stimulation

alone (Berlin, Hood, Hurley, Wen, & Kemp, 1995; Lins et al., 1995).

2.2.3 Test for MEMR
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Figure 2-2: Deviations in stimulus level for all TBOAE measurements during BBN
and AM-BBN presentations are plotted in dB (re: no-elicitor). Filled symbols
represent group mean with error-bars representing 95% confidence interval. Grey
unfilled symbols are raw data. Note that deviations in stimulus level occur in
both directions from baseline across participants and are very small.

In addition to recruiting participants only with high enough ARTs (>80 dB HL),

tone-burst levels were evaluated offline for deviations in level during elicitor pre-

sentations (re: no-elicitor condition). This test is based on the hypothesis that a

significant MEMR would consistently increase probe-tip stimulus levels. This is be-

cause, MEMR activation will stiffen the ossicular chain and retract the tympanic
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membrane, resulting in increased reflection of stimulus energy back to the ear-canal.

A cut-off value of 1.4% (0.12 dB) increase in stimulus level during elicitor-on condi-

tion compared to no-elicitor condition has been suggested as an indication of MEMR

activation (Abdala, Dhar, Ahmadi, & Luo, 2014; Abdala, Mishra, & Garinis, 2013).

To test for such changes in level, RMS levels in the ear-canal recorded stimulus

time-window near the first trough of the tone-burst waveform (∼530 µs duration)

for elicitor-on/off conditions for every participant was obtained. As seen in Figure

2-2A, changes in the presence of MOC elicitors was on average -0.004 dB ±0.013 (re:

baseline no-elicitor). Observed stimulus level deviations occur in both directions, i.e.,

increase and decrease in level. A decrease in level would not be expected if MEMR

were to affect the ear-canal recorded stimulus. The observed changes are small com-

pared to level changes that would be expected if the MEMR was activated (Abdala

et al., 2014, 2013). Notwithstanding, a repeated measures analysis of variance (RM-

ANOVA) was conducted for the 41.67 Hz tone-burst stimulus condition to evaluate

systematic effects of frequency (1 or 2 kHz) or elicitor (BBN or AM-BBN). Results

indicate no effect of frequency (F [1,14] = 1.90, p = 0.19, η2Partial = 0.12), elicitor

(F [1,14] = 0.98, p = 0.34, η2Partial = 0.06), and no interaction between frequency

and elicitor (F [1,14] = 0.69, p = 0.42, η2Partial = 0.05). The observed changes likely

arise due to random fluctuations in background noise.

2.2.4 Data inclusion criteria

The following criteria were applied for data to be included in statistical analyses: an

SNR of 12 dB or better, and less than 10% epoch rejection was required for both OAE

types, and a minimum of 85% correlation between response buffers for TBOAE, and

no large stimulus level changes in the MEMR test.

Of the 27 participants, 10 were unique to experiment I, 9 to experiment II, and 8
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participants took part in both experiments. Three from experiment I and two from

experiment II were rejected based on inclusion criteria. All 22 included participants

were considered for SFOAE, however, for both TBOAE experiment I (41.67 Hz), and

TBOAE experiment II (50 Hz) there were 15 participants.

2.3 Results

RM-ANOVAs were conducted as appropriate for Experiments I and II and are de-

scribed below with Greenhouse-Geisser corrections where necessary. Post-hoc tests

with false discovery rate (FDR; Benjamini & Hochberg, 1995) corrections for multiple

comparisons were conducted to study the effect of each elicitor separately.

2.3.1 Experiment I

Response spectra for SFOAE and TBOAEs are plotted in Figure 2-3. Note that fre-

quency domain representations of TBOAEs are shown in Figures 2-3B and C. Activa-

tion of MOC reduced OAE levels for both SFOAE and TBOAE. Further, A one-way

RM-ANOVA with elicitor condition (no-elicitor, BBN, AM-BBN) as the independent

variable and SFOAE level as the dependent variable indicated a significant effect of

the elicitor (F [1.49, 31.47] = 77.78, p<0.001, η2Partial = 0.79). A similar elicitor

effect (F [1.05, 14.71] = 30.59, p<0.001, η2Partial = 0.69) was obtained for TBOAEs

in a 2-way RM-ANOVA with frequency (1 and 2 kHz), and elicitor (no-elicitor, BBN,

AM-BBN) as independent variables, and TBOAE level as the dependent variable. No

interaction between elicitor and frequency (F [1.07,15.08] = 2.18, p = 0.13, η2Partial

= 0.13) was found, despite a significant frequency effect (F [1,14] = 89.81, p<0.001,

η2Partial = 0.86), suggesting that 100 Hz AM-BBN did not elicit larger MOC inhi-

bition than BBN. Post-hoc comparisons (Figure 2-3D) indicated that both elicitors

caused significant reduction in both SFOAE (BBN: mean difference [MD] = 1.88,
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CI95% = ±0.43 dB [95% confidence interval], t [21] = 9.03, p<0.001; AM-BBN: MD

= 1.79, CI95% = ±0.36 dB, t [21] = 10.48, p<0.001) and TBOAE (BBN: MD = 1.73,

CI95% = ±0.82 dB, t [14] = 5.70, p<0.001; AM-BBN: MD=1.58, CI95% = ±0.79 dB,

t [14] = 5.42, p<0.001) levels (re: baseline no-elicitor). Differences between BBN and

AM-BBN inhibition of TBOAEs was also significant (MD = -0.15, CI95% = ±0.15,

t [14] = -2.62, p = 0.02), with a trend towards AM-BBN eliciting lower inhibition

than BBN, contrary to Maison et al. (1999).

-2

 2

 6

 10

O
A

E
 L

ev
el

 (
d
B

S
P

L
)

 

A: [SFOAE] No-elicitor

BBN

AM-BBN

-42

-32

-22

 960  1200  1440  1680  1920

 

 

Noise floor

-4

 0

 4

 8

 

B: [1 kHz-TB] 1k-No-elicitor

1k-BBN

1k-AM-BBN

-42

-32

-22

 500  750  1000  1250  1500  1750

 

Frequency (Hz) 

Noise floor

-8

-6

-4

-2

 0

 

C: [2 kHz-TB] 2k-No-elicitor

2k-BBN

2k-AM-BBN

-42

-32

-22

 1000  1250  1500  1750  2000  2250

 

 

C: [2 kHz-TB]

Noise floor

 0

 1

 2

 3

SFOAE TB-1kHz (41.6 Hz) TB-2kHz (41.6 Hz) TB-1kHz (50 Hz) TB-2kHz (50 Hz)

M
O

C
 i

n
h

ib
it

io
n

 (
d
B

)

OAE type

D: [MOC inhibition across OAEs and elicitors] BBN AM-BBN
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2.3.2 Experiment II

Results were very similar to experiment I: there was a significant effect of elici-

tor (F [1.08,15.17] = 69.98, p<0.001, η2Partial = 0.83) and frequency (F [1,14] =

65.53, p<0.001, η2Partial = 0.83), and no interaction between elicitor and frequency

(F [1.3,18.21] = 1.44, p = 0.77, η2Partial = 0.10). Results of post-hoc comparisons

(see Figure 2-3D) were also similar to experiment I, i.e., BBN caused larger MOC

inhibition than 100 Hz AM-BBN (MD = -0.13, CI95% = ±0.12 dB, t [14] = -2.37, p =

0.03). Also, both BBN (MD = 2.03, CI95% = ±0.66 dB, t [14] = 8.67, p<0.001) and

AM-BBN (MD = 1.90±0.69 dB, t [14] = -2.37, p<0.001) caused significant reduction

in TBOAE level.

2.4 Discussion

One of the main aims of this study was to better understand the physiology of the

MOC in response to 100 Hz AM. Contrary to Maison et al. (1999), the 100 Hz AM-

BBN in this study did not elicit larger OAE inhibition than BBN in both OAE types.

Considering BBN and AM-BBN have the same spectral bandwidth, similar OAE in-

hibition may seem reasonable to expect and may be based on the modulation transfer

function and time-constants of the MOC. The MOC has a ∼200 ms rise time and

∼100 ms decay time (Backus & Guinan, 2006), and its modulation transfer function

suggests that at elicitor MFs higher than 1 Hz, i.e., a modulation period of 1000

ms, the MOC becomes progressively less sensitive, but not insensitive, to modulation

(Backus, 2005). This is consistent with data from chinchillas, studied using distortion

product OAEs, which show the MOCs ability to follow elicitor MFs until 19 Hz, i.e.,

a modulation period of 52.6 ms (Harrison, Sharma, Brown, Jiwani, & James, 2008).

It is apparent from these studies that a modulation period of 100 Hz AM (i.e., 10 ms)

may be too fast for the MOC to follow instantaneously. Despite this inability, a lower
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inhibition for AM-BBN compared to BBN is observable in the current study (Figure

2-3D). This is congruous with Backus (2005), and also with Maison et al. (1999) for

their 50 Hz MF. Reduced MOC inhibition for AM-BBN might occur due to energy

integration across time when the response is averaged over longer periods (Maison,

Durrant, Gallineau, Micheyl, & Collet, 2001). Although the elicitors RMS ampli-

tudes were matched, the current data suggest that the increased energy at AM-BBN

peaks may not be sufficient to compensate for the silent periods during modulation.

The effective elicitor energy available may thus be smaller, even for faster AM rates,

compared to BBN, as the MOC appears to be sensitive to AM. Modulations in noise

energy may thus reduce its effectiveness in evoking MOC activity.

2.4.1 Relation between transient-stimuli presentation rate

and elicitor modulation frequency

Pairwise comparisons in experiments I and II show that AM-BBN does not evoke

larger inhibition than BBN for either rate. Therefore, it can be suggested that 50

Hz TB presentation rate used in Maison et al. (1999) may not be responsible for the

enhanced 100 Hz AM effect reported in their study. Since the MOC does not appear

to have an enhancement of MOC inhibition at 100 Hz MF, the true reason for the

difference in results obtained between the present study and Maison et al. (1999) is

currently unknown.

2.5 Conclusion

The current study investigated the effect of stimulating the MOC with BBN and

100 Hz AM-BBN in a sample of 22 participants (15 for TBOAE). Results suggest

that AM-BBN (100 Hz MF and 100% MD) does not evoke larger MOC inhibition
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compared to BBN, which is contrary to Maison et al. (1999), but in keeping with

Backus (2005). Any observable differences in the MOC response between BBN and

AM-BBN are likely due to differences in their temporal characteristics: constant

stimulation provided by BBN as opposed to the presence of sections of the modulation

period that contain no noise energy in AM-BBN. Consistency of the results across

the two OAE types, and TB presentation rates strengthen these findings.
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Chapter 3

Influence of Click Presentation
Rate on Medial Olivocochlear
System Assays

3.1 Introduction

There is an increased interest in studying the function of the medial olivocochlear

system (MOC) in recent years. This is because the MOC is thought to play a variety

of roles in the auditory system such as: unmasking sounds from background noise

(Giraud et al., 1997; Winslow & Sachs, 1988), protection from acoustic injury

(Kujawa & Liberman, 1997; Maison, Micheyl, Andéol, Gallégo, & Collet, 2000;

Rajan, 2000), aiding localization-in-noise (Andéol et al., 2011; Irving, Moore,

Liberman, & Sumner, 2011; May, Budelis, & Niparko, 2004) and auditory system

development (Lauer & May, 2011; Simmons, 2002). Reduced MOC functioning

has been reported in auditory neuropathy/dyssynchrony (Hood, Berlin, Bordelon,

& Rose, 2003), auditory processing disorders (Muchnik et al., 2004; Sanches &

Carvallo, 2006; Yalçinkaya, Yilmaz, & Muluk, 2010), learning disabilities (Garinis,

Glattke, & Cone-Wesson, 2008), and reading disabilities (Veuillet, Magnan, Ecalle,

Thai-Van, & Collet, 2007), further emphasizing its functional importance for normal

listening. Owing to the multifaceted role of the MOC in hearing, assessing its func-

tioning has been recommended as part of a test for normal auditory function (Mishra
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& Lutman, 2013). Considering the MOC forms cholinergic synapses with the outer

hair cells (OHCs), studying OHC activity by measuring changes in otoacoustic emis-

sion (OAE) level serves as an effective non-invasive technique to study MOC activity.

While different OAE types are available to study the MOC, the MOC inhibitory effect

is not consistent across all OAE types. Inconsistencies mostly arise from differences

in OAE measurement techniques (Guinan, Backus, Lilaonitkul, & Aharonson, 2003).

Methods that control for complications that influence the measurement of MOC ac-

tivity are necessary to accurately interpret its effect on OHC functioning.

The most commonly used OAE to study MOC functioning, both clinically and in

research, is the transient evoked OAE. All clinical OAE instruments have a transient

OAE module, making it the most easily accessible OAE to clinicians. Transient OAEs

can be evoked using clicks or tonebursts (CEOAE or TBOAE, respectively). These

OAEs are thought to be generated by coherent reflection from random irregularities

along the basilar membrane (Kalluri & Shera, 2007; Shera & Guinan, 1999). Due

to the broadband nature of the click, wavelets of multiple frequencies interact on the

basilar membrane to produce distortion components (Withnell, Dhar, & Thomsen,

2005; Yates & Withnell, 1999). However, unlike the constructive and destructive in-

terference seen in the ear-canal measurement of distortion product OAEs (DPOAEs;

Abdala, Mishra, & Williams, 2008; Gaskill & Brown, 1996), distortion products in

the CEOAE are thought to reinforce the overall emission due to their broadband na-

ture (Yates & Withnell, 1999). Considering click stimuli are broadband, it is quicker

to obtain responses from a larger region of the basilar membrane using CEOAEs.

Although CEOAEs are not frequency specific, they are useful in testing gross MOC

function, and a frequency specific assessment of the MOC may not be necessary in a

clinical setting. Besides, the MOC itself is not frequency specific with a skew in its

inhibition frequency tuning towards the 1-2 kHz region (Lilaonitkul & Guinan, 2012;
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Zhao & Dhar, 2012).

However, CEOAEs have some shortcomings that are particularly relevant to MOC

assays. Click levels as low as 43 dB peSPL have been shown to evoke both ipsilateral

and contralateral MOC activity (Guinan et al., 2003). Many studies that have inves-

tigated the effect of click level in evoking MOC activity have used high click levels (60

dB peSPL or higher) to monitor CEOAEs in the ipsilateral ear, which may confound

estimation of a true contralateral effect (Veuillet, Collet, & Duclaux, 1991). Also,

rapid click presentation rates have been shown to evoke MOC activity by themselves

(Veuillet et al., 1991). Veuillet et al. (1991) studied several click presentation rates

and suggested that rates higher than 50 Hz, i.e., clicks that are presented less than 20

ms apart, can evoke MOC activity. A rate effect may occur due to temporal energy

integration, facilitated by the broadband nature of clicks. Veuillet et al. (1991) used

the click-train as an elicitor in the contralateral ear in addition to using clicks to

monitor MOC activity in the ipsilateral ear.

However, if clicks were to evoke MOC activity in a typical MOC assay (i.e., OAE

measurement with clicks in the ipsilateral ear and noise as the contralateral elicitor),

they would evoke the ipsilateral MOC pathway, not the contralateral. The results

of Veuillet et al. (1991) thus only show whether clicks presented at a given rate are

sufficient to evoke contralateral MOC activity. These caveats (level and presenta-

tion rate) render the MOC effect observed with typical assays ambiguous; it cannot

be ascertained if MOC inhibition was caused by the ipsilateral click-train or the

contralateral broadband noise (BBN), or a binaural effect of the click-train+BBN

combination. This can influence interpretation of the contralateral MOC effect. To

elucidate the specific effect of click presentation rates on MOC activity, rate effects

must be examined in the test/ipsilateral ear in a manner that emulates a typical
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MOC test paradigm. Understanding the effect of presentation rate will provide us

valuable information about MOC function, and will help us make recommendations

for optimal click presentation rate for clinical use. The present study investigated the

effect of click presentation rate on MOC activity using forward masking methods to

maintain the stimulus paradigms as close to typical MOC assays as possible.

3.2 Method

3.2.1 Participants

Twenty eight participants (3 males) in the age range 18-30 (mean = 23.4) years took

part in the study. All participants were screened for normal hearing, defined by:

hearing thresholds ≤20 dB HL at octave intervals between 0.25 and 8 kHz, normal

middle ear functioning defined by type-A tympanogram, middle ear pressure between

±50 daPa and static compliance between 0.3 and 1.5 mmho (Madsen-Otoflex100,

GNOtometrics, Denmark). In addition, the acoustic reflex threshold for steady state

contralateral and ipsilateral BBN was required to be at least 70 dB HL to rule out

middle ear muscle reflex (MEMR) as a potential cause for changes in OAE level

(Madsen Otoflex-100, GNresound, Denmark). A screening CEOAE measurement

(Integrity-v500, Vivosonic Inc., ON) with 55 dB peSPL clicks at 50 Hz rate was also

performed to determine if participants had measurable CEOAEs. The Health Sciences

Research Ethics Board of Western University, Canada approved the study methods.

Written informed consent was obtained from each participant after the nature of the

study was explained. Participants were compensated for their time. The study was

conducted in a double walled, sound attenuated booth.
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3.2.2 Stimulus generation and recording

All stimuli were digitally generated in Matlab (Mathworks, MA) at a sampling rate

of 32 kHz and a bit depth of 24. Clicks were four sample points wide, i.e., 93.75 µs

plateau with no rise/fall time. Uniform random BBN of 478 ms duration with 20 ms

linear rise/fall ramps was used as the noise elicitor (NE) ipsilaterally, and BBN of

576 ms duration was the contralateral MOC elicitor. Signals were played through a

digital-to-analog converter (6289 m-series, National Instruments, TX) at a sampling

rate of 32 kHz to three separate programmable attenuators (PA5; Tucker-Davis Tech-

nologies, FL) that controlled the output signal levels. Signals were power amplified

(SA1; Tucker-Davis Technologies, FL) and fed to two ER2 transducers (Etymotic Re-

search, IL) connected to an ER10B+ otoacoustic emission probe system (Etymotic

Research, IL) that delivered the signals in the ipsilateral ear. A single ER2 insert

receiver delivered MOC elicitor in the contralateral ear. Stimuli were calibrated using

a Type-2250 sound level meter (Brüel and Kjær, Denmark) and ear simulator Type-

4157 (IEC711; Brüel and Kjær, Denmark).

Responses were recorded using the ER-10B+ probe system with pre-amplifier gain

set at +40 dB. The recorded signal was fed through a bandpass filter (Frequency De-

vices Inc., IL) that filtered responses from 0.4 to 10 kHz and applied an additional

+20 dB gain. A final gain of 2 was applied at the analog-to-digital converter (6289

m-series, National Instruments, TX). Stimulus delivery and response acquisition were

controlled using custom programs developed in LabView (National Instruments, TX).

All clicks were presented at 55 dB peSPL, and elicitors at 60 dB SPL. Participants sat

in a comfortable chair in the sound attenuated booth and watched a closed captioned

silent movie; they were encouraged to relax and swallow as few times as comfortable.

OAEs were recorded from only one ear per participant. The ear being tested was

chosen based on the ear with larger OAE amplitude in the screening CEOAE mea-
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surement.

To describe the presentation of each stimulus, we will define the terms ‘click elic-

itor (CE)-block’, ‘noise elicitor (NE)-block’, ‘test-block’, ‘sweep-block’, ‘sweep’ and

‘epoch’ as illustrated in Figure 3-1. Two ‘Test clicks’, i.e., two epochs, were presented

in each test-block at 20.83 clicks/s, and only OAEs generated by these clicks were

used to study MOC inhibition.

Figure 3-1: A schematic representation of the temporal order of CE-/NE-blocks
and elicitor presentations. A sweep-block contains either a CE or NE block with a
test-block. Every pair of sweep-blocks includes one elicitor-off and one elicitor-on
condition, emulating a typical MOC assay. Duration of each stimulus element is
provided in their respective labels. Baseline MOC inhibition measurement (not
shown here) had similar click set-up as in the NE sweep-block but without any
NE. Note that the sizes of elements in this figure are enhanced disproportionately
to show shorter events more clearly.

Test-block duration of 96 ms was specifically chosen to capture MOC activity

evoked by the preceding CE-block before it decayed (Backus & Guinan, 2006). A

CE-block could contain clicks presented at one of five different presentation rates

(20.83, 25.00, 31.25, 41.67, and 62.50 clicks/s), and had a fixed duration of 480 ms.
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Therefore the number of clicks in different CE-blocks varied. The test- and CE-blocks

were presented in channel-1 of the ipsilateral probe. An NE-block (480 ms) contained

the NE (478 ms) and a 2 ms silent period to allow any stimulus ringing to subside and

was presented in channel-2 of the ipsilateral probe. A sweep-block (576 ms) contained

one NE- or CE-block and a test-block combination. Every sweep-block was followed

by an identical sweep-block with contralateral MOC elicitor. This set-up emulates

typical MOC assays with the CEOAE evoking clicks in the ipsilateral ear and MOC

evoking elicitor in the contralateral ear. There were 12 sweep-blocks in one complete

sweep: five CE+test-block combinations, and one NE+test-block combination, and

their identical paired sweep-blocks with contralateral elicitor. Every sweep-block was

separated by a 272 ms silent period, and every sweep by 336 ms of silence. These

gaps allowed the MOC to revert back to its resting state before being activated by

another elicitor (Backus & Guinan, 2006). The total duration of one sweep was

10.24 s and sweeps were repeated 700 times to obtain 1400 CEOAEs per rate and

NE condition, respectively. The order of presentation of sweep-blocks (i.e., rates) was

counterbalanced. Baseline MOC inhibition was obtained from the difference between

mean CEOAE levels evoked by two clicks presented at 20.83 Hz in isolation and two

similar clicks with contralateral elicitor in a separate sweep that was 1.024 s long, to

obtain 1400 clicks for baseline CEOAEs with and without contralateral elicitor. The

experiment was completed in two sessions in most participants based on participant

availability.

3.2.3 CEOAE extraction

In offline analysis with Matlab, stimulus reliability was checked across all recorded

epochs to remove artifactual epochs. Epochs with stimulus root-mean-square (RMS)

amplitude that was two standard deviations (SD) above or below the mean (within-

individual) were rejected. Responses in the time-window from 5-20 ms were extracted,
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and digitally bandpass filtered from 0.5 to 6 kHz using a fourth order zero delay But-

terworth filter to obtain CEOAE and noise metrics. To estimate response reliability,

consecutive epochs were separated into two buffers: A and B. A correlation analysis

was performed between the two buffers which served as a measure of reliability. Noise

was estimated by subtracting the RMS difference between the grand response mean

(mean of buffers A and B) and mean responses obtained in each buffer (A and B)

separately. CEOAE level was calculated as the mean RMS amplitude of the response

within the time window (5-20 ms). The MOC inhibitory response is expressed as

the normalized (re: baseline CEOAE level) percent change in CEOAE level (in Pa)

from baseline no-elicitor condition (∆OAEn) to either the preceding CE-block, con-

tralateral MOC elicitor, or a combination of CE-block+contralateral MOC elicitor

conditions.

3.2.4 Test for MEMR

In addition to recruiting participants only with sufficiently high ARTs (>70 dB HL),

click levels were probed offline for deviations in level during elicitor presentations (re:

no-elicitor condition). This test is based on the hypothesis that a significant MEMR

would consistently increase probe-tip stimulus levels. This is because MEMR activa-

tion will stiffen the ossicular chain and retract the tympanic membrane, resulting in

increased reflection of stimulus energy back to the ear-canal. A cut-off value of 1.4%

(0.12 dB) increase in stimulus level during elicitor-on condition compared to elicitor-

off condition was suggested as a possible indication of MEMR activation (Abdala,

Dhar, Ahmadi, & Luo, 2014; Abdala, Mishra, & Garinis, 2013).

To test for such changes in stimulus level, average RMS click levels in a time-window

(125 µs) near the first trough of the recorded click waveform across all conditions

for every participant were obtained. As seen in Figure 3-2, changes in the presence

of MOC elicitors was on average -0.0036 dB (re: baseline elicitor-off). The largest
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change in both directions (increase and decrease in amplitude) were ±0.06 dB (±

indicates ±95% confidence interval [CI95%]).
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Figure 3-2: Level change in stimulus across all conditions employed in the study.
Shape of the symbol indicate presence or absence of elicitor. Filled symbols in
black are group mean and their corresponding error-bars represent 99% confidence
interval. Open symbols in grey are individual data.

To check for systematic changes in stimulus level across conditions, a repeated

measures analysis of variance (RM-ANOVA) was conducted with independent vari-

ables (1) presence of contralateral elicitor, i.e., MOC elicitor and (2) CE-block click-

rate (rate), and change in stimulus amplitude as the dependent variable. Results were

interpreted with Greenhouse-Geisser corrections for degrees of freedom for violation

of sphericity. No interaction between elicitor (on/off) and rate (F [2.3,46.69] = 1.40,

p = 0.24, η2Partial = 0.07) was found. There was also no effect of elicitor (F [1,20]

= 0.53, p = 0.82, η2Partial = 0.003) and no effect of rate (F [3.14,62.89] = 2.64, p =
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0.054, η2Partial = 0.12). The small changes observed in stimulus amplitude therefore

did not vary significantly between with and without MOC elicitor conditions, or as

a function of rate. Therefore, data from all CE-block conditions (with and without

MOC elicitor) were pooled to create one variable. This CE-block variable and three

NE-block variables (ipsilateral, contralateral and binaural noise presentations) were

subjected to another RM-ANOVA to test for systematic changes in stimulus ampli-

tude due to the presence of CE- or NE- blocks. These results also show no difference

in stimulus amplitude changes across CE- and any NE-block conditions (F [1.9,38.63]

= 0.69, p = 0.56, η2Partial = 0.03). These analyses suggest that, across participants,

stimuli used to evoke MOC activity did not evoke any MEMR. The observed deflec-

tions in stimulus amplitude are likely due to random changes in noise. Therefore, we

conclude that any level change reported in the present study is likely only due to the

MOC, and not MEMR.

3.2.5 Data inclusion criteria

For data to be considered for statistical analysis the following criteria had to be met:

(1) a correlation coefficient of 0.85 or higher was required between the two response

buffers, (2)<10% epochs could be rejected, (3) a minimum signal-to-noise ratio (SNR)

of 10 dB, and (4) no MEMR activation. Based on the inclusion criteria, 7 participants

were rejected either due to poor SNR or excessive participant related artifacts.

3.3 Results

3.3.1 Statistical analyses

To analyze the omnibus effect of rate, repeated measures analysis of variance (RM-

ANOVA) were performed. The results of RM-ANOVA were interpreted with Greenhouse-

Geisser degrees of freedom corrections for violations of sphericity. Further, post-hoc
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paired t-tests with alpha (0.05) correction using the false discovery rate (FDR; Ben-

jamini & Hochberg, 1995) for performing multiple comparisons were carried out to

study the effect of each rate separately.
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Figure 3-3: Panel [A] shows the effect of CE-block+elicitor combination on
CEOAEs as a function of rate in open circles. The regression line fit is shown
as a dashed diagonal line with its corresponding equation on top right corner of
the box. This rate effect is compared against baseline ∆OAEn (14.9%) shown in
dashed grey horizontal line. Panel [B] is the elicitor effect derived by subtracting
the ∆OAEn obtained in CE-blocks with and without elicitor, compared against
baseline ∆OAEn. Panel [C] is the ∆OAEn elicited by ipsilateral CE-block alone,
compared against no change in OAE level depicted in the grey dashed horizontal
line. Panel [D] is the ∆OAEn obtained by subtracting baseline ∆OAEn from the
∆OAEn elicited by CE-block+elicitor combination. In essence, this is the rate
effect in panel A minus the baseline ∆OAEn. In all panels, asterisks represent
significant mean differences between the ∆OAEn elicited by respective CE-/NE-
block conditions and baseline ∆OAEn due to elicitor or preceding clicks (for C).
Error bars represent 95% confidence interval.
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Results are divided into two types of measures: direct and derived. A direct

measure is a straightforward interpretation of the observed change in CEOAE due to

MOC activation. The derived equivalent of a direct measure is ascertained from two

or more direct measures.

3.3.2 Effect of CE-block+contralateral elicitor combination:

Emulated typical MOC assay (direct measure)

The RM-ANOVA with rate as the independent variable and ∆OAEn (baseline, all

rates, and NE-block+contralateral elicitor) as the dependent variable indicated a sig-

nificant effect of rate as expected (F[2.41,48.27] = 43.11, p<0.001, η2Partial = 0.68).

Post-hoc t-tests showed that click rates higher than 25 Hz in combination with the

contralateral elicitor evoked significantly larger MOC inhibition than baseline inhibi-

tion caused by contralateral elicitor alone (Figure 3-3A; t [20] = -1.101, p = 0.284 for

20.83 Hz; t [20] = -1.313, p = 0.204 for 25 Hz; t [20] = -2.417, p = 0.025 for 31.25 Hz;

t [20] = -3.419, p = 0.003 for 41.6 Hz; t [20] = -3.829, p = 0.001 for 62.5 Hz).

A linear regression model fit to the CE-block+contralateral elicitor inhibition data

(Figure 3-3A) shows that click rate significantly predicted MOC inhibition; in ∆OAEn

(i.e., % as in Figure 3-3A): β=0.1%, t [19] = 5.69, p = 0.01; in dB: β=0.01 dB, t [19]

= 5.21, p = 0.01, after correction for α using FDR for performing multiple regression

analyses. Click presentation rate also explained a significant proportion of variance

in the inhibition; in %: R2 = 0.90, (F [1,18] = 27.22, p = 0.01) and in dB: R2 = 0.91

(F [1,18]=32.31, p = 0.01). There is a near monotonic increase in the rate effect on

MOC inhibition due to CE-block+contralateral elicitor combination.
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3.3.3 Effect of contralateral MOC elicitor (derived measure)

The direct contralateral elicitor measure, or the true effect of contralateral elicitor is

the baseline ∆OAEn (14.9%). However, because all CE-blocks had a elicitor-on and

-off condition, simple subtraction of CEOAE levels from the two conditions would

cancel out any rate effects if the MOC inhibition was linear. Therefore, remaining

∆OAEn should equal baseline ∆OAEn, i.e., it should represent the effect of con-

tralateral elicitor only (Figure 3-3B). Results of paired t-tests show that the derived

contralateral elicitor-only effect is significantly higher than baseline ∆OAEn for the

41.67 Hz condition (t [20] = -3.092, p = 0.006 for 41.6 Hz); for 31.25 Hz and 62.5 Hz

conditions, the mean differences approached significance (t [20] = -1.948, p = 0.06 for

31.25 Hz; t [20] = -2.079, p = 0.051 for 62.5 Hz). Considering the effect of rate is not

completely removed by simple subtraction, this suggests that the combined effect of

click presentation rate and contralateral elicitor on the MOC may be non-linear.

3.3.4 Effect of CE-block - I (direct measure)

The effect of CE-block, i.e., preceding clicks, obtained from test-blocks preceded by

CE-blocks (elicitor-off), ranged from 0.09% for 20.83 Hz to 3.62% for 62.5 Hz (Figure

3-3C). RM-ANOVA with CE-block as the independent variable and raw CEOAE

level (baseline, all rates, and ipsilateral NE-block) as the dependent variable shows

a significant effect of CE-block (F [1.74,34.86] = 35.77, p<0.001, η2Partial = 0.64).

Post-hoc t-tests results show that only the 62.5 Hz (t [20] = 2.622, p = 0.016) and

ipsilateral NE-block (t [20] = 6.59, p<0.001) elicit significant MOC activity without

any aid from the contralateral elicitor. MOC inhibition elicited by all NE-blocks are

shown in Figure 3-4.
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3.3.5 Effect of CE-block - II (derived measure)

Another means of obtaining the effect of preceding clicks on CEOAEs is by sub-

tracting the ∆OAEn elicited by CE-block+contralateral elicitor combination from

the baseline ∆OAEn due to contralateral elicitor alone. Linearly, if the preceding

clicks independently evoked the ipsilateral pathway, this subtraction should remove

the effect of contralateral elicitor and bring forth the effect of click presentation rate,

as in Figure 3-3C. However, as illustrated in Figure 3-3D, ∆OAEn obtained using this

method appears larger than the ∆OAEn evoked by CE-blocks alone. This finding

further supports non-linear MOC activity, possibly due to binaural activation (clicks

in the ipsilateral ear and MOC elicitor in the contralateral ear).

3.3.6 Effect of noise elicitor laterality

In order to test for the presence of a laterality effect, MOC inhibition obtained using

ipsilateral, contralateral and binaural noise were compared. NE-blocks with elicitor-

on and off provide binaural and ipsilateral MOC activations, respectively, and the

baseline ∆OAEn provides contralateral MOC activation. As illustrated in Figure 3-

4, contralateral elicitor evoked (i.e., baseline ∆OAEn; labeled as ‘contra’ in Figure

3-4) and ipsilateral NE-block evoked ∆OAEn (labeled as ‘ipsi’ in Figure 3-4) were not

significantly different (t [20] = -1.342, p = 0.19), consistent with evidence for similar

MOC strengths between the contralateral and ipsilateral MOC pathways in humans

(Berlin, Hood, Hurley, Wen, & Kemp, 1995; Lilaonitkul & Guinan, 2009). The bin-

aural BBN elicitor (contralateral elicitor+NE block combination; labeled as ‘binaural’

in Figure 3-4) evoked significantly larger MOC inhibition (mean = 38.97%; t [20] =

2.649, p = 0.01) than the sum of ipsilateral + contralateral combination (mean =

33.01%).
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ted. Symbols in black represent mean ∆OAEn for different laterlities. Accom-
panying symbols in grey are individual ∆OAEn for respective mean data. Error
bars around the mean represrent 95% confidence intervals.

An MOC equivalent of the binaural interaction component (mBIC) was obtained

from these measures (-5.96%), where mBIC is the difference between the sum of

ipsilateral and contralateral inhibitions and the binaural MOC inhibition;

mBIC = ∆OAEnIpsi+Contralateral −∆OAEnBinaural (3.1)

A negative mBIC suggests binaural facilitation, whereas a positive value would

suggest inhibition of binaural inputs at the level of the brainstem.
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3.4 Discussion

3.4.1 Optimal click presentation rate

The current study was undertaken to investigate click presentation rates that may

enhance ∆OAEn elicited by contralateral MOC elicitor in typical CEOAE-based

MOC assays. Click rates as low as 31.25 Hz significantly enhance MOC inhibition

of CEOAEs, confounding the true MOC effect due to contralateral elicitors. The

∆OAEn increases near monotonically as a function of click rate, presumably due

to activation of the ipsilateral and binaural MOC pathways in addition to the con-

tralateral pathway. This rate effect can be explained based on reduced temporal gaps

between stimulus clicks at high rates, and thus an increase in temporal energy integra-

tion. A similar effect on the MOC has been previously demonstrated using amplitude

modulated elicitors, where MOC inhibition of OAEs increased with modulation rate

(Backus, 2005). Veuillet et al. (1991) also reported increased MOC inhibition of

OAEs with increasing click presentation rates.

Based on temporal energy integration, an argument for the rate effect can be

made by considering intrinsic latencies of the MOC. The onset latency of the MOC

ranges from 7 ms to 70 ms, and the offset latency from 20 to 81 ms (Backus &

Guinan, 2006; Hill, Prasher, & Luxon, 1997; James, Harrison, Pienkowski, Da-

jani, & Mount, 2005; Maison, Durrant, Gallineau, Micheyl, & Collet, 2001). Of

particular interest is that the MOC inhibitory effect sustains for much longer than

the elicitor duration. For example, James et al. (2005) showed that the onset/offset

times were 26/66 ms, respectively in chinchillas for a 5 ms long BBN MOC elicitor. It

is unknown how long the MOC response is sustained for the click stimulus employed

in the current study. The longer neural conduction pathway in humans compared

to chinchillas leads to longer onset times in humans (45 ms) (James et al., 2005).
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The MOC time-constants reported in the literature also vary across studies: 100 ms

onset time-constant reported by James et al. (2005), while Backus and Guinan (2006)

reported 277±64 ms. Backus and Guinan (2006) also reported a decay time-constant

of 159±54 ms.

Despite differences across studies, collectively these temporal aspects of the MOC

indicate that even for the lowest click presentation rate (20.83 Hz, i.e., 48 ms inter-

click-interval) the MOC could be kept active due to its large time-constants. Even if

the MOC does not reach saturation as evoked by a continuous noise elicitor, successive

clicks would prevent the MOC from decaying to its baseline activity due to temporal

energy integration (Maison et al., 2001). Therefore, for increasing click presentation

rates, the temporal integration of click energy will progressively increase. However,

at what rate does this integration become significant? In the current study, only

click presentation rates of 31.25 Hz and higher, in combination with contralateral

elicitor, significantly activated the ipsilateral and binaural MOC pathways to cause

a reduction in CEOAE level. Although lower rates appear to have evoked MOC

activity, evident from their numerically larger-than-baseline ∆OAEn, they were not

significantly different from contralateral MOC inhibition. Nevertheless, results from

the present study are in agreement with current understanding of MOC functioning,

that the MOC integrates energy over time (Backus & Guinan, 2006; Berlin et al.,

1995). Crucially, these results indicate that past studies that have used click presen-

tation rates higher than 25 Hz (at click levels 55 dB peSPL or above) to study the

contralateral MOC inhibition of CEOAEs would have likely evoked a combination

of ipsilateral, contralateral and binaural MOC pathways. While these studies inter-

pret that their observed CEOAE inhibition is caused by MOC activation, the MOC

pathways (contralateral vs. a combination of all three pathways) responsible for the

observed inhibition remain ambiguous.
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Most studies that investigate the MOC using clicks have used a 50 Hz click pre-

sentation rate as a safe cut-off to avoid evoking ipsilateral MOC activity. This is

probably based on the results of Veuillet et al. (1991), who reported that clicks pre-

sented at rates higher than 50 Hz are potent MOC elicitors. It should be noted that

Veuillet et al. (1991) only investigated the potency of clicks presented at various rates

in evoking contralateral MOC activity. Therefore, their use of clicks as contralateral

elicitor does not represent a typical MOC assay. Typical MOC assays use clicks in

the ipsilateral ear to monitor the MOC activity evoked by contralateral elicitor, usu-

ally BBN. In addition, the effectiveness of a given click rate evoking MOC activity

in Veuillet et al. (1991) is not independent of their ipsilateral click presentation rate

of 50 Hz. This is evident from the rather small ipsilateral (CE-block only) click rate

effect observed for 62.5 Hz in the present study (Figure 3-3C), 0.34 dB (3.62%), as

opposed to ∼0.6 dB in Veuillet et al. (1991) for contralateral clicks.

Another important parameter to consider is the level of the clicks used to obtain

CEOAEs. Although the present study only investigated the effect of click presenta-

tion rate for one click level (55 dB peSPL), the effect of contralateral elicitor level

on MOC inhibition is well known (Berlin et al., 1993; Collet et al., 1990). For

example, Guinan et al. (2003) reported that contralateral click levels as low as 40

and up to 72 dB peSPL evoked substantial MOC activity when monitored using

stimulus frequency OAEs, and sometimes even elicited middle ear muscle reflexes.

However, additional tests show that MEMR was not activated in the current study

(for 55 dB peSPL clicks). Veuillet et al. (1991) also reported that click levels as low

as 17.5 dB sensation level (SL) evoked contralateral MOC activity, and this effect

increased with further increase in click level. Veuillet et al. (1991) reported effects

of click presentation rate for two different click levels: (1) constant peak level for
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all click presentation rates (derived from the level required for 30 dB SL with clicks

presented at 100 Hz), (2) a constant 30 dB SL for each click presentation rate. The

former condition would ensure increasing overall RMS energy (i.e., increasing SPL)

with increasing click rates, while the latter would cause progressive reduction in click

levels (i.e., decreasing SPL). In their across-rate, constant stimulus peak level (first)

condition, significant MOC inhibition of CEOAE was found for click presentation

rates as low as 30.39 Hz, but significance was reached only at 50 Hz and above for

the constant SL condition. Despite Veuillet et al. (1991) employing higher click levels

than the current study, results of their first condition appear to be in agreement with

the current data (31.25 Hz). However, it should be noted that considerable method-

ological differences exist between the two studies. Given that most studies typically

use a 50 Hz click rate and 60 dB peSPL or higher levels to obtain CEOAE in the ipsi-

lateral ear, it is conceivable that the observed MOC inhibition in these studies would

be a combination of contralateral, ipsilateral, and binaural MOC effects. They may

also evoke middle ear muscle reflexes in some ears and it is prudent to evaluate this

possibility. Results from the current study and that of Guinan et al. (2003) suggest

that progressively slower click rates must be used with increasing click levels.

We suggest that the widely used 50 Hz cut-off is too lenient to avoid evoking

ipsilateral MOC activity in typical MOC assays. Click rates of 25 Hz or lower must be

used while measuring contralateral MOC activity, at least when clicks are presented at

55 dB peSPL, to avoid contamination from ipsilateral and binaural MOC pathways.

In studies where 55 dB peSPL click levels are used at rates higher than 25 Hz, a

correction factor obtained from the regression model based on the current data might

be used:

y1 = 0.012x− 0.3 (dB) (3.2)
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y2 = 0.108x− 2.7 (%∆OAE) (3.3)

where, y1 and y2 are the corrections in dB and % change in CEOAE, respec-

tively, and x is the click presentation rate (>25 Hz). The corrections would be

subtracted from the obtained MOC inhibition. As this model is derived from the

CE-block+contralateral elicitor combination, this correction factor will account for

enhancement in MOC inhibition due to ipsilateral and binaural MOC activation, at

least at 55 dB peSPL.

3.4.2 The ipsilateral effect

Inhibition of CEOAEs by the ipsilateral MOC pathway due to the use of high click

presentation rates and levels may also influence CEOAE levels recorded in regular

clinical evaluations (even with elicitor-off). Typically, a 50 Hz rate and 70 dB peSPL

(or higher) level combination is used clinically to obtain reliable CEOAEs in a short

time span (Glattke & Robinette, 2007). Results from the current study indicate that

preceding clicks evoke significant MOC activity even without a contralateral MOC

elicitor at rates above 41.67 Hz for 55 dB peSPL clicks. This can reduce the level

of the evoked OAE. Although inhibition observed in the current study for 55 dB

peSPL clicks is small (3.62%), it can be expected to be larger for clicks presented

at higher levels. Use of either low click levels, a slower presentation rate, or both

in combination, is prudent to obtain CEOAEs free from inhibition caused by the

ipsilateral MOC pathway. However, lower click levels will in turn evoke lower CEOAE

levels, and therefore may increase time taken to run the test and/or require quieter

clinic rooms, for obtaining a lower noise floor. Both approaches have their trade-offs:

a clinician may choose to embrace the best stimulus parameters based on individual

clinic needs. Nevertheless, the use of lower click presentation rates (25 Hz) may at

least reduce some, if not all, of the MOC inhibition evoked by the ipsilateral pathway
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in regular CEOAE measurements.

3.4.3 The binaural effect

An interesting observation in the current study is the apparent non-linearity of the

click presentation rate effect observed in both derived measures. If the ipsilateral click

rate effect on the MOC were linear, a simple subtraction of CEOAE obtained from the

test-blocks with elicitor-on and -off would exhibit only the inhibition due to contralat-

eral elicitor, and therefore should be invariate across rates. The results (Figure 3-3B)

indicate otherwise: MOC inhibition across rates, after removing the supposed rate

effect, still displays significantly larger ∆OAEn at 41.67 Hz. In addition, the effect of

CE-block (i.e., preceding clicks-only) on ∆OAEn obtained using direct and indirect

methods show differences (Figures 3-3C and D). These differences may indicate some

non-linearity in the MOC response. One possible reason for this non-linearity could

be a rate specific binaural MOC activation. Even when the ipsilateral rate effect was

removed by simple subtraction, the presentation rate may have, in combination with

the contralateral elicitor, evoked binaural MOC neurons. Physiological studies have

documented MOC neurons that respond specifically to binaural inputs, and monaural

neurons whose responses are facilitated by binaural stimuli (Brown, Kujawa, & Duca,

1998; Liberman, 1988). Liberman (1988) reported that higher stimulus levels can

activate more binaural neurons, and suggested that most MOC neurons respond to

binaural inputs. Evidence for this facilitation can be observed in the current study

from the negative mBIC (-5.96%). Similarly, residual MOC inhibition observed in

the present study after subtracting the rate effect is thus an indication that binaural

MOC stimulation occurs when higher click rates are used in typical MOC assays.

These results provide further impetus for the use of low click rates while investigating

the MOC using CEOAEs.
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3.5 Conclusion

The current study investigated the influence of click presentation rates on contralat-

eral MOC inhibition of CEOAEs. Rates as low as 31.25 Hz can significantly enhance

MOC inhibition of CEOAEs through both ipsilateral and binaural MOC pathways.

Use of click rates 25 Hz or lower is recommended for studies investigating the MOC

using CEOAEs. As an alternative, correction factors for MOC inhibition of CEOAEs

evoked using rates higher than 25 Hz (for clicks presented at 55 dB peSPL) have

been proposed using a linear regression model of the current data. Use of lower

click presentation rates is also recommended for recording CEOAEs (even without

elicitor-off) in regular clinical use, to avoid activating the ipsilateral MOC pathway.

As mentioned in the introduction, evaluation of MOC function is gaining attention

for use as a potential diagnostic tool (Mishra & Lutman, 2013). For example, it

might be useful in testing for auditory processing disorders (Muchnik et al., 2004),

auditory neuropathy/dyssynchrony (Hood et al., 2003), and vulnerability to noise

damage (Maison & Liberman, 2000), among others. Therefore, obtaining a reliable

and unambiguous measure of MOC function is crucial. Consideration of the rate effect

in future studies and clinical protocols may improve the interpretability of observed

MOC inhibition of CEOAEs. Future studies that investigate the interaction of click

presentation rates and levels in combination may provide broader correction factors.
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Andéol, G. F., Guillaume, A., Micheyl, C., Savel, S., Pellieux, L., & Moulin, A. (2011).
Auditory efferents facilitate sound localization in noise in humans. The Journal
of Neuroscience, 31 (18), 6759–6763.

Backus, B. C. (2005). Using stimulus frequency otoacoustic emissions to study ba-
sic properties of the human medial olivocochlear reflex. Unpublished doctoral
dissertation, Massachusetts Institute of Technology, Cambridge, MA, USA.

Backus, B. C., & Guinan, J. J. (2006). Time-course of the human medial olivocochlear
reflex. The Journal of the Acoustical Society of America, 119 (5), 2889–2904.

Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate - a
Practical and Powerful Approach to Multiple Testing. Journal of the Royal
Statistical Society Series B-Methodological , 57 , 289–300.

Berlin, C. I., Hood, L. J., Hurley, A. E., Wen, H., & Kemp, D. T. (1995). Binaural
noise suppresses linear click-evoked otoacoustic emissions more than ipsilateral
or contralateral noise. Hearing Research, 87 (1), 96–103.

Berlin, C. I., Hood, L. J., Wen, H., Szabo, P., Cecola, R. P., Rigby, P., & Jackson,
D. F. (1993). Contralateral suppression of non-linear click-evoked otoacoustic
emissions. Hearing Research, 71 (1), 1–11.

Brown, M. C., Kujawa, S. G., & Duca, M. L. (1998). Single olivocochlear neurons in
the guinea pig. I. Binaural facilitation of responses to high-level noise. Journal
of Neurophysiology , 79 (6), 3077–3087.

Collet, L., Kemp, D. T., Veuillet, E., Duclaux, R., Moulin, A., & Morgon, A. (1990).
Effect of Contralateral Auditory-Stimuli on Active Cochlear Micromechanical
Properties in Human-Subjects. Hearing Research, 43 , 251–262.

Garinis, A. C., Glattke, T., & Cone-Wesson, B. K. (2008). TEOAE suppression in
adults with learning disabilities. International Journal of Audiology , 47 (10),
607–614.

Gaskill, S. A., & Brown, A. M. (1996). Suppression of human acoustic distortion
product: dual origin of 2f1-f2. The Journal of the Acoustical Society of America,
100 (5), 3268–3274.

Giraud, A. L., Garnier, S., Micheyl, C., Lina, G., Chays, A., & Chéry-Croze, S. (1997).
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Chapter 4

Localization-in-Noise and Binaural
Medial Olivocochlear Functioning
in Children and Young Adults

4.1 Introduction

The ability to localize sounds requires complex processing of auditory inputs arriv-

ing at both ears. Volitional head-turn localization begins as early as four months

of age (Muir, Clifton, & Clarkson, 1989), and in quiet, children as young as five

years old localize with the same accuracy as adults (Litovsky, 1997; Van Deun et

al., 2009). However, most studies in children are restricted to investigations of lo-

calization in the front hemifield (e.g., Litovsky & Godar, 2010; Van Deun et al.,

2009), whereas localization in the median plane is scantily studied (Morrongiello &

Rocca, 1987). Furthermore, in stark contrast to the adult localization-in-noise liter-

ature (e.g., Abouchacra, Emanuel, Blood, & Letowski, 1998; Good & Gilkey, 1996;

Lorenzi, Gatehouse, & Lever, 1999), there is a paucity of information on localization-

in-noise abilities of children. Localization helps listeners orient themselves to a desired

source to attain better signal-to-noise ratio (SNR), which aids speech perception in

noise (Bronkhorst, 2000; Kidd, Mason, Rohtla, & Deliwala, 1998). One physi-

ological mechanism that is thought to aid both speech perception in noise (Kumar

& Vanaja, 2004; Mishra & Lutman, 2014) and localization in noise (Andéol et
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al., 2011) is the medial olivocochlear system (MOC). The MOC’s unmasking func-

tion (described below) is thought to specifically aid sound localization in the median

plane by unmasking spectral contrasts (Andéol et al., 2011). Considering median

plane localization of speech is the most vulnerable to masking (Gilkey & Anderson,

1995), MOC activation may be invaluable in listening and localizing in noise. The

present study sought to expand current literature on: (1) localization-in-noise abilities

of children in the horizontal plane, including the front/back (F/B) dimension, and (2)

the relationship between binaural MOC function and localization-in-noise in children.

A variety of stimuli and maskers have been used to probe localization in adults.

While lateral localization of both clicks and speech is quite resilient to masking by

broadband noise (BBN) (Abouchacra et al., 1998; Good & Gilkey, 1996; Lorenzi et

al., 1999), F/B localization degrades at much better SNRs (Good & Gilkey, 1996).

Physiologically, the strength of the response to a directional stimulus is reduced in

auditory cortical neurons in the presence of noise (Brugge, Reale, & Hind, 1998;

Furukawa & Middlebrooks, 2001). Noise also alters the tuning of directional maps

in the superior colliculus (Martin, Vachon-Presseau, Pageau, Lepore, & Guillemot,

2010), affecting localization. Few studies have investigated the effect of complex noise

such as speech-babble on localization (Hawley, Litovsky, & Colburn, 1999; Kopco,

Best, & Carlile, 2010). Hawley et al. (1999) found that localization of speech sounds

was relatively intact (70% correct) even in the presence of three competing sentences

in a 1-of-7 loudspeaker identification task. Their results also showed that localization

of a speech target did not depend on the proximity or configuration of the maskers.

On the other hand, with the use of band-limited speech and low-pass filtered (both

at 4 kHz) head related transfer functions (HRTF), Drullman and Bronkhorst (2000)

found relatively poor localization performance (51% correct) in the presence of one

to four competing talkers in a 1-of-5 loudspeaker identification task.
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Simpson, Brungart, Iyer, Gilkey, and Hamil (2006) reported that detection and

lateral plane localization of speech did not degrade significantly even with five com-

peting speech maskers. However, localization performance in the median plane de-

graded systematically with increase in the number of maskers, independent of masker

and target speaker sex. Localization performance thus degrades well before the sig-

nal becomes inaudible. It is also evident that, irrespective of masker type, median

plane localization is most vulnerable to the detrimental effects of noise. This is par-

ticularly relevant for speech sound localization, considering speech has a low-pass

characteristic, and high-frequency cues that provide information about median plane

location can be most effectively masked (Best, Carlile, Jin, & van Schaik, 2005;

Bronkhorst, 1995; Butler & Helwig, 1983; Gilkey & Anderson, 1995). Also,

all the aforementioned studies have investigated the effect of masker configuration on

speech localization, but the effect of a diffuse noise field has not yet been investigated.

Children require higher SNRs to achieve optimal speech intelligibility compared

to adults. Bradley and Sato (2008) reported that younger children (grade-I) required

15.5 dB SNR to achieve 95% correct scores in speech intelligibility tests, while older

children (grade-VI) required only 8.5 dB SNR. Since most of a child’s learning takes

place in school, which can have SNRs as low as -7 dB in some cases (Crandell &

Smaldino, 2000; Crukley, Scollie, & Parsa, 2011), mechanisms that help chil-

dren achieve better speech intelligibility will promote better learning. Good binaural

hearing and localization will help children achieve better SNRs in adverse listening

conditions by promoting orientation towards desired signals.

Development of localization begins very early. Volitional sound localization begins

at 4 months of age, with a suppression of the reflexive sub-cortex based localization
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which dominates 0-1 month (Muir et al., 1989). Ashmead, Davis, Whalen, and

Odom (1991) reported that infants in the age range 16-28 weeks were able to discrim-

inate click ITDs as small as 50-75 µs. They also showed that minimum audible angle

(MAA) decreased rapidly from 20◦ at 20 weeks to 10◦ at 48 weeks in infants, and

by 18 months MAAs decreased to 4◦ (Morrongiello, 1988). In the median plane, in-

fants’ localization improved from an MAA of 15◦ at six months to 4−6◦ by 18 months

(Morrongiello & Rocca, 1987). The accuracy of median plane localization is typically

less (4◦) than the accuracy of lateral plane localization (1◦) even in adults (Perrott

& Saberi, 1990). By 5-6 years of age, children localize in quiet at adult levels, in the

frontal hemi-field (Litovsky, 1997; Lovett, Kitterick, Huang, & Summerfield, 2012;

Van Deun et al., 2009). It should be noted that most localization studies in school

age children are restricted to investigations in the front hemi-field (e.g., Litovsky &

Godar, 2010; Van Deun et al., 2009). Little is known about children’s localization

ability in the median plane.

Furthermore, despite several studies on localization in quiet (Grieco-Calub &

Litovsky, 2010, 2012; Litovsky, 1997; Van Deun et al., 2009), to our knowl-

edge, there are no studies on the localization-in-noise abilities of school age children.

However, investigators have explored the concept of spatial release from masking (e.g.,

Litovsky, 2005; Litovsky & Ashmore, 1997). Spatial release from masking is the ap-

parent improvement in speech perception when target speech and masking noise are

spatially separated (Hawley, Litovsky, & Culling, 2004; MacKeith & Coles, 1971).

Spatial release from masking taps localization abilities as well as other processes such

as the head-shadow effect, binaural summation and extraction of ITD cues from the

masker envelope (Litovsky, 2012). Children as early as three years of age are able to

exploit the spatial separation of speech and noise to parse a desired source from noise

and achieve better speech intelligibility (Garadat & Litovsky, 2007; Johnstone &
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Litovsky, 2006; Litovsky, 2005). The present study, however, focused on extending

current knowledge of the speech-sound localization abilities of children in BBN and

speech-babble (SB) maskers. Two different maskers were used to explore whether

children perform at adult levels when the target is masked by an energetic masker

(BBN), and informational masker (SB). In the first part of this study, both lateral

and F/B localization were investigated in children (between 7 and 16 years), and

compared with young adults.

In the second part of the study, the relationship between localization-in-noise

and the function of the binaural medial olivocochlear system (MOC) was investi-

gated. The rationale behind this study is based on evidence that the MOC may aid

localization-in-noise (Andéol et al., 2011; May, Budelis, & Niparko, 2004). Andéol

et al. (2011) reported a significant correlation between contralaterally evoked MOC

strength and median plane localization-in-noise in human adults. This relationship

is thought to be related to hypothesized MOC unmasking (Guinan & Gifford, 1988;

Kawase, Delgutte, & Liberman, 1993; Liberman & Brown, 1986). Due to its cholin-

ergic inhibitory action on cochlear outer haircell (OHC) activity, the MOC is thought

to improve the dynamic range of afferent auditory neurons. This improved dynamic

range is thought to aid afferent neurons in firing for novel transient stimuli such as

speech (Guinan, 2006). Thus far, only the relationship between the contralater-

ally evoked MOC and localization-in-noise has been investigated. The contralaterally

evoked MOC response involves only uncrossed olivocochlear fibers. Crossed fibers

cross the midline and feed back to the same ear that was acoustically stimulated,

while uncrossed fibers supply the contralateral cochlea without crossing the midline

(Warr, 1992; Warr & Guinan, 1979).

Methodologically, there are challenges involved in separating the MOC reflex mon-
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itoring probe, typically otoacoustic emissions (OAEs), from the MOC-activating stim-

ulus in the ear-canal while measuring the crossed MOC reflex. However, MOC in-

hibitory activity decays with a lag of at least 100 ms (Backus & Guinan, 2006).

This small time-window can be used to capture the response of the crossed MOC

reflex in the ipsilateral ear without significant signal related complications. Although

uncommon, several investigators have used this method to study ipsilateral and bin-

aural activation patterns of the MOC (Berlin, Hood, Hurley, Wen, & Kemp, 1995;

Lilaonitkul & Guinan, 2009; Tavartkiladze, Frolenkov, & Artamasov, 1996). Un-

derstanding binaural MOC function and its relationship to localization-in-noise is

critical because most neurons in the MOC are sensitive to binaural stimulation, and

5% of MOC neurons only respond to binaural stimuli (Liberman, 1988; Warr, 1992).

Binaural activation of the MOC may also be critical for proper signal encoding

in the afferent auditory system because asymmetry in inhibition of cochlear activity

may lead to subtle differences in cochlear outputs (Francis & Guinan, 2010). Francis

and Guinan (2010) showed that the MOC-mediated inhibition of OHC activity alters

cochlear filter widths, and consequently their delay. Therefore, if the MOC were to

activate the two cochleae differently, it could alter the balance in interaural timing

which could potentially impact localization. Although there is no direct evidence for

this hypothesis, Darrow, Maison, and Liberman (2006) showed that selective destruc-

tion of the lateral olivocochlear neurons (LOC), another member of the periolivary

group of neurons to which the MOC belongs, altered ILD sensitivity in a mouse

model. Moreover, real life listening invariably comprises binaural acoustic stimu-

lation; contralateral-only stimulation seldom takes place. Therefore, understanding

binaural MOC function may provide further insights into the relationship between

MOC function and localization-in-noise in both children and adults. Further, al-

though the MOC is mature at birth (Abdala, Mishra, & Garinis, 2013), functional
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use of the MOC in everyday tasks, such as localization, varies considerably across

individuals (Andéol et al., 2011). Acoustic activation of the MOC is also modulated

by corticofugal connections (Khalfa et al., 2001; Perrot et al., 2006) in a task-

dependent manner (de Boer & Thornton, 2007; Garinis, Glattke, & Cone-Wesson,

2011; Maison, Micheyl, & Collet, 2001). Consequently, differences between adults

and children in allocation of attentional resources during listening tasks (Allen &

Wightman, 1994; Newman, 2009) may provide further insights into the relationship

between behaviorally measured localization-in-noise and MOC strength.

In the present study, ipsilateral, contralateral and binaural MOC inhibition of

click-evoked OAEs (CEOAEs) was measured in a forward masking paradigm. Fur-

ther, considering it has been suggested that the MOC exhibits interaction of binaural

inputs (Backus & Guinan, 2006), and since localization also involves interaction

of binaural inputs, to allow direct comparison of MOC function and localization, an

MOC equivalent binaural interaction component (mBIC)1 was derived from the MOC

inhibition measured with the three elicitor lateralities tested. The mBIC was defined

as the difference between the MOC inhibition of CEOAEs evoked by a binaural elicitor

and the sum of the two monaural inhibitions evoked by ipsilateral and contralateral

elicitors. The mBIC measure was subjected to correlation with localization-in-noise

ability to understand the role of binaural MOC interaction in localization-in-noise.

1It should be noted that the mBIC obtained here is from ipsilateral and contralateral MOC inhi-
bition of CEOAEs, but not from right and left ears that is typical in the evoked potential literature
(Dobie & Norton, 1980). Although analogous, they are not the same, because the pathways evoked
by ipsilateral and contralateral MOC elicitors are different, crossed versus uncrossed, respectively.
Whereas, scalp recorded afferent responses evoked by left or right ear stimulation evoke similar
pathways on both sides.
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4.2 Method

4.2.1 Participants

Twenty one children (7-16 years; mean: 11.4 years; 13 females), and twenty one young

adults (18-30; mean: 22.8 years; all females) took part in the study. Participants were

screened for normal hearing; defined by hearing thresholds within 20 dB HL between

0.25 and 8 kHz, normal middle ear function defined by a type-A tympanogram, middle

ear pressure between ±50 daPa, and static compliance between 0.3 and 1.5 mmho. In

addition, the ipsilateral and contralateral acoustic reflex thresholds (ART) for BBN

were required to be >70 dB HL (Madsen Otoflex-100, GNotometrics, Denmark). Par-

ticipants also underwent a screening distortion product OAE (DPOAE) measurement

(Integrity-v500, Vivosonic Inc., ON) to confirm the presence of OAEs. The nature

of the study was explained prior to obtaining a written informed assent from every

child participant and an informed consent from adult participants and child partic-

ipants’ parents/care givers. Participants were compensated for their time with gift

cards/cash towards books or school supplies. The Health Sciences Research Ethics

Board of Western University, Canada approved the study methods.

4.2.2 Part I: Localization experiment

The experimental set-up of loudspeakers for the localization experiment is illustrated

in Figure 4-1. The experiment was conducted in an hemi-anechoic chamber (Eckel

Industries, ON, Canada). Targets were presented from 8 loudspeakers placed 45◦

apart in the presence of a diffuse noise field. Participants stood at the center of the

loudspeaker array facing the 0◦ azimuthal loudspeaker.
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Figure 4-1: Schematic representation of the loudspeaker array for the localization
experiment. Maskers were presented simultaneously through four loudspeakers
placed just beneath the loudspeakers marked with asterisks. Participants stood
in the center of the circular array, the radius of which was 1.5 m. The electromag-
netic head tracker transmitter was positioned above and behind the participant’s
head, and the tracker sensor was mounted on a custom made plastic helmet worn
by the participant.

Stimulus

The target stimulus was a 600-ms long speech token (‘baseball’) spoken by a native

Canadian speaker from south-western Ontario (Grieco-Calub & Litovsky, 2012). The

speech token was recorded in a sound attenuated audiometric booth using a studio-

grade AKG condenser microphone (Type C 4000B) at 44.1 kHz, and later up-sampled

to 48.828 kHz using Praat (Boersma, 2002) to match the sampling rate of the lo-

calization system. This speech target was chosen because of its relevance to the real

world and the fact that F/B confusions occur more often with speech, compared to

broadband or click targets (Gilkey & Anderson, 1995). The word baseball, how-

ever, contains both high- and low-frequency cues. Maskers were BBN (uniform and
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random) and SB. SB was created by concatenating two sentences from the HINT sen-

tence corpus (Nilsson, Soli, & Sullivan, 1994). Four different sentences pairs formed

a four-channel masker that was simultaneously presented at sampling rate of 44.1

kHz in free-field using loudspeakers positioned at azimuths of 45◦, 135◦, 225◦, and

315◦ (loudspeakers marked with asterisks in Figure 4-1). This set-up produced a dif-

fuse noise field that avoided the effect of masker location on the obtained localization

responses (Lorenzi et al., 1999). Similarly, BBN was presented from the same four

loudspeakers during the BBN noise condition. The use of two different loudspeaker

arrays to present noise and speech targets avoided any electrical mixing of signals.

Maskers were looped continuously for a single block duration.

Each block, obtained by roving the target level in random order, contained 40

stimulus presentations (trials) at three different SNRs (-12, -6, and 0 dB). Three

such blocks were completed for each participant for each masker condition to obtain

5 responses per SNR condition for every azimuth. In total, there were 120 trials (8

speakers x 3 SNRs x 5 repetitions). One block of trials was performed in quiet to

obtain baseline localization ability.

The target was presented from any one of the 8 loudspeakers placed 45◦ apart,

starting at 0◦ in a 16-channel loudspeaker array (see Figure 4-1). Using a reference

microphone placed at center of the array, the root-mean-square (RMS) amplitudes of

the maskers were matched, and were presented constantly with a combined level of 66

dB SPL throughout the experiment. Each target stimulus presentation was initiated

by a button press by the investigator standing outside the loudspeaker array, with

the participant facing the 0◦ azimuth loudspeaker. All stimuli were calibrated using a

Type-2250 sound level meter (Brüel and Kjær, Denmark) with the microphone placed

at ear level in the center of the loudspeaker array. A potential caveat in the use of a

single target is that the task may be easier than real life localization of speech. On

the other hand, especially in children, using a single target reduces uncertainty and
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may avoid the use of high level cognition-based processes for the task.

Instrumentation

Maskers were played through a multi-channel sound interface (Audiofire12; Echo

Digital Audio Corp., CA) to four separate channels of a networked signal processor

(SoundWeb9008; BSS Audio, Hertfordshire, UK) which was amplified by CX18 am-

plifiers (QSC Audio, CA) before being fed to four Tannoy i5AW loudspeakers placed

just below the loudspeakers marked with asterisk in Figure 4-1. The speech target

was played through a real-time signal processor (RX6; Tucker-Davis Technologies,

FL) for digital-to-analog conversion before following the same (equipment) route as

the maskers, and finally to one of eight loudspeakers. Participants stood in the middle

of the loudspeaker array on an adjustable stand, such that the target loudspeakers

were at ear level. They were fit with a custom-made adjustable plastic helmet with a

focused red LED light beam that guided them in pointing to the response azimuth.

Participants were instructed to turn their head and point the red LED light to the

loudspeaker from which they thought the word ‘baseball’ had emanated. The helmet

also carried a sensor for an electromagnetic head tracker device (Frastrak, Polhemus,

VT) that recorded the head position with reference to 0◦ azimuth. Head position was

recorded upon a button press by the investigator using a custom-made response box.

The head-tracker was connected through a serial data line to a head tracker interface

(HTI3; Tucker-Davis Technologies, FL), which then fed the data to the RX6 real-time

signal processor via a fiber optic connection. The button box was directly connected

to the RX6; together, the button-press and the corresponding azimuth information

was stored in a personal computer.
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Measures to quantify localization ability

Example localization data obtained from a child participant are shown in Figure 4-2.

Two measures were obtained to quantify the localization performance of each partic-

ipant in each listening condition. The first was F/B percent correct (FBpc), which

is the percentage of correct identification of sounds arriving from the front or rear

hemifields. To calculate FBpc, only the responses to targets with azimuths between

-67.5◦ to 67.5◦ (front hemifield) and between 112.5◦ to 247.5◦ (rear hemifield) were

considered, illustrated as boxes in Figure 4-2A. The FBpc measure provides an esti-

mate of F/B percent correct responses within the correct hemi-field, independent of

the accuracy of the response. FBpc was used instead of an overall localization error

because: (1) lateral angle localization is resilient to noise, and it is median plane

localization that is most affected (Good & Gilkey, 1996), especially for a speech tar-

get, (2) A metric based on RMS azimuthal error (example: Abouchacra et al., 1998;

Good & Gilkey, 1996; Van Deun et al., 2009) is not informative about the type of

error, i.e., F/B vs. lateral.

The second measure was lateral scatter (Lscat), which is the RMS angle difference

between every response and a linear regression model fit to the data. To calculate

this measure, response and target azimuths from both hemi-fields (Figure 4-2A) were

reduced to their lateral-angle (left/right) components lying between −90◦ and 90◦

(Figure 4-2B), i.e., one hemi-field. This is akin to folding Figure 4-2A horizontally at

90◦ on the y-axis and vertically at 90◦ on the x-axis along the dark-grey dashed lines

to reflect each target and response azimuth into the frontal hemisphere (as shown in

Figure 4-2B). This measure estimates the mean consistency of responses across trials.
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Figure 4-2: Example of localization data from a child participant and analysis
methods. The plot on the left [A] shows responses to all tested azimuths on the
y-axis and their corresponding target azimuths on the x-axis. Responses on or
within the small black boxes are counted as F/B errors. The plot on the right
[B] shows only the lateral-angle (L/R) components of the target and response
locations, and is essentially a re-formatted version of A, such that if A were
folded along the dashed lines running through its center, it would place rear and
front hemi-fields in one quadrant. The RMS distance of individual responses from
this line provides an estimate of Lscat.

4.2.3 Part II: MOC experiment

Experimental set-up: summary

The organization and temporal sequence of stimulus presentation for the MOC exper-

iment is illustrated in Figure 4-3. Clicks (OAE evoking stimuli) and elicitors (MOC

evoking stimuli) were presented in different channels. The ipsilateral probe consisted

of two channels, one for clicks and one for the ipsilateral elicitor. Clicks were pre-

sented in trains of four at a rate of 41.67 Hz encompassing a duration of 96 ms; we

call this arrangement a ‘sweep-block’. Elicitors always preceded these ‘sweep-blocks’

such that they activated the MOC, and the inhibitory effect of the MOC was probed

by the CEOAEs evoked by the clicks that followed. Adequate silent gaps were intro-

90



duced between each MOC activation so that the MOC reverted back to its baseline

activity before being activated by another elicitor. A minimum duration of 200 ms is

required (Backus & Guinan, 2006). The difference in this gap duration across sweep-

blocks is to accommodate integer number of 1.024 s windows in one complete sweep,

to match the restrictions of our measurement system. MOC inhibition of CEOAEs

is the reduction in CEOAE level in any of the elicitor conditions from its baseline

no-elicitor condition (the first and last sweep-blocks in Figure 4-3).

Stimulus generation and recording

Figure 4-3: Schematic representation and temporal sequence of events for CEOAE
recording with MOC elicitors. Four clicks per elicitor condition were presented to
obtain CEOAE, this is depicted as squares (with clicks) on the top row. Elicitors
in ipsilateral and contralateral channels are in illustrated in separate rows. Du-
ration of each event is provided in the fourth row. Note that size of each element
in the figure is made disproportionate to their duration to show shorter events
clearly.

All stimuli were digitally generated in Matlab (Mathworks Inc, MA). Clicks were

unfiltered, 93.75 µs in duration (corresponding to four sample points at the 32-kHz

sampling rate), and were presented at 55 dB peSPL. This level was chosen to maximize
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the probability of MOC-mediated CEOAE inhibition while minimizing any ipsilateral

MOC inhibitory effects on CEOAE due to the evoking signals (the clicks) themselves

(Hood, Berlin, Hurley, Cecola, & Bell, 1996; Veuillet, Collet, & Duclaux, 1991). The

sweep-block duration was designed to capture the complete MOC inhibitory effect,

which has been shown to have a decay time of 159 ± 54 ms (Backus & Guinan, 2006).

MOC activating elicitors were bursts of uniform random broadband noise (BBN)

of 478-ms duration with 20-ms onset/offset ramps to avoid startle responses. Elicitors

were presented at 60 dB SPL, below the acoustic reflex threshold of every participant.

Notwithstanding, additional tests were performed to check for an effect of the middle

ear muscle reflex (MEMR) on click stimuli (see section 4.2.3). A 2-ms gap between

elicitor presentation and the start of click presentation was introduced to allow any

transducer ringing to subside, and for the basilar membrane to revert to baseline

activity, thus avoiding intracochlear suppression. In this forward masked CEOAE

paradigm, elicitors were presented ipsilaterally, contralaterally and binaurally (see

Figure 3). Signals were played through a digital-to-analog converter (National In-

struments 6289 m-series, TX) at a sampling rate of 32 kHz to three separate pro-

grammable attenuators (PA5; Tucker-Davis Technologies, FL) that controlled output

signal levels.

Clicks and ipsilateral elicitors were presented in two separate channels routed to

the same ear. These signals were power amplified (SA1; Tucker-Davis Technologies,

FL) and fed to ER2 transducers (Etymotic Research, IL) connected to an ER-10B+

otoacoustic emission probe system (Etymotic Research, IL) that delivered signals in

the ear-canal. A single ER2 insert receiver delivered elicitors to the contralateral ear.

All stimuli were calibrated using a Type-2250 sound level meter (Brüel and Kjær,

Denmark), and an ear simulator Type-4157 (IEC 711; Brüel and Kjær, Denmark).
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Responses were recorded using the ER-10B+ probe system with the pre-amplifier

gain set at +40 dB. The recorded signal was then fed through a bandpass filter (Fre-

quency Devices Inc., IL; chassis 90IP with a 90PF dual-channel programmable filter

card) that filtered responses from 0.4 to 10 kHz and applied a further 20 dB gain.

The filtered response was then digitized by an analog-to-digital converter which ap-

plied another 6 dB of gain prior to conversion (National Instruments 6289 m-series).

Stimulus delivery and response acquisition were controlled using custom programs de-

veloped in LabView (National Instruments, TX), similar to Purcell, Butler, Saunders,

and Allen (2008). The laterality of MOC elicitor presentation was counterbalanced

between participants. Participants sat in a comfortable chair in a double-walled sound

attenuated booth and watched a silent closed captioned movie. They were encour-

aged to relax and to swallow as few times as comfortable. OAEs were recorded from

only one ear per participant. The ear being tested was chosen based on DPOAE

amplitude obtained during a screening process.

CEOAE offline analyses

To ensure stimulus reliability, all ear-canal recordings of click stimuli were checked

to remove artifacts. Epochs (each click plus its corresponding CEOAE, 24 ms dura-

tion) with RMS amplitudes that were two standard deviations (SD) above the mean

(within-individual) were rejected. Following which, responses in the time-window

from 5-20 ms following every click presentation were extracted and digitally band-

pass filtered from 0.5 to 6 kHz using a fourth order, zero delay Butterworth filter to

obtain CEOAE and noise metrics. Prior to obtaining CEOAE levels, an estimate of

CEOAE reliability was calculated. For this, alternating click epochs across sweeps

were collected into two buffers: A and B. A correlation analysis was performed be-

tween the two buffers that served as a measure of reliability. Noise was estimated
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by subtracting the RMS difference between the grand response mean and mean re-

sponses from each buffer. CEOAE level was calculated as the mean RMS amplitude

of the response within the time window. The MOC inhibitory response is expressed

as normalized (re: baseline CEOAE level) percent change in CEOAE level (∆CEn)

due to MOC activation by the elicitors.

Test for MEMR

In addition to recruiting participants only with high enough ARTs (>70 dB HL),

click levels were probed offline for deviations in level during elicitor presentations (re:

no-elicitor condition). This test is based on the hypothesis that a significant MEMR

would consistently increase probe-tip stimulus levels. This is because, MEMR acti-

vation will stiffen the ossicular chain and retract the tympanic membrane, resulting

in increased reflection of stimulus energy back to the ear-canal. A cut-off value of

1.4% (0.12 dB) increase in stimulus level during elicitor-on condition compared to no-

elicitor condition has been suggested as an indication of MEMR activation (Abdala,

Dhar, Ahmadi, & Luo, 2014; Abdala et al., 2013).

To test for such changes in level, RMS levels of the ear-canal recorded stimulus

in a time-window (125 µs wide) near the first trough of the recorded click waveform

across three elicitor-on conditions for every participant were obtained. Individual

and mean level-change data are plotted in Figure 4-4, which clearly shows that the

deviations in stimulus level do not exceed ±0.06 dB, with the largest mean deviation

being -0.005±0.01 dB (± indicates 95% confidence interval [CI95%]) in the ipslilateral

elicitor condition.
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Figure 4-4: The result of MEMR test. The black straight line at 0 dB represents
the baseline stimulus level change (in the no-elicitor condition). The plotted
data for every elicitor condition is the dB change in level from baseline. Black
symbols are group means with their corresponding 95% confidence intervals. Grey
symbols are individuals means of RMS amplitude around the stimulus peak.
Circles represent adults and boxes represent children.

Observed deviations are very small, and are seen in both directions, i.e., increase

and decrease in level. A level reduction would not be expected if MEMR were to act on

the stimulus (Abdala et al., 2013). Further, a one-way repeated measures analysis of

variance (RM-ANOVA) was conducted to test for any effect of MOC elicitor laterality.

If there was an effect of MEMR, a larger reduction in stimulus level in the binaural

elicitor condition would be expected, compared to the two monaural lateralities, due

to increased stimulus energy resulting from binaural summation. However, results

show no effect of MOC elicitor laterality (F [2,68] = 0.56, p = 0.58, η2Partial = 0.02),

suggesting that the observed changes in stimulus levels are not due to MEMR. These

changes probably arose due to random fluctuations in the noise floor. Therefore, any

CEOAE level reduction reported in this study is likely due only to MOC activation,

rather than to MEMR activation.
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Data inclusion criteria

For data to be considered in statistical analyses, the following criteria had to be

met: (1) a correlation coefficient of 0.85 or higher between the two CEOAE response

buffers, (2) <10% epoch rejection, (3) minimum SNR of 10 dB, and (4) no MEMR

activation. Four participants were rejected from the child group and three participants

from the adult group for the MOC experiment analyses due to poor SNR. None of the

participants had MEMR activation. All participants were included in the localization

experiment analyses.

4.3 Results

4.3.1 Part I: Localization

Figure 4-5 shows individual localization data (FBpc [top panel] and Lscat [bottom

panel]) for all SNRs as a function of age. Larger FBpc and smaller Lscat indicate

good localization performance. An effect of SNR can be appreciated for both FBpc

and Lscat in both adults and children. Increase in SNR increases FBpc and reduces

Lscat, but no effect of age can be observed. This is consistent with a regression anal-

ysis; age as independent variable and both FBpc and Lscat as dependent variables

did not show any systematic age effect within children (FBpcBBN : β = 0.05, t [18] =

0.51, p = 0.619; FBpcSB: β = 0.06, t [18] = 0.58, p = 0.570; LscatBBN : β = -0.01,

t [18] = -0.04, p = 0.973; LscatSB: β = -0.12, t [18] = 0.40, p = 0.694), therefore the

child group was collapsed across age for further analyses.

Individual FBpc and Lscat values for every participant and corresponding group

means are plotted in Figure 4-6 as a function of SNR. As evidenced in the figure, mean

localization performance improves with increasing SNR for both adults and children.
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FBpc performance is better in SB compared to BBN for both adults and children,

as would be expected based on the low-pass characteristic of SB. However, children’s

FBpc values appear slightly below adult levels for SB, despite similar performance in

quiet and in BBN. Mean FBpc ranged from 79±4.4% at -12 dB SNR to 92±3.4% at

0 dB SNR for BBN in adults.
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Figure 4-5: Localization data plotted as a function of age with FBpc on the top
row and Lscat on the bottom row. This plot indicates that there is no trend in
either measure across age. In the top row, higher scores are better, in the bottom
row, lower scores are better. Note that the adult data (age A) are the means
for all 21 participants, and that jitter (±0.25 years) has been added to children’s
ages for better visualization.

The slope of this improvement in FBpc across SNR in adults equated to 1.05%/dB.

Similar improvement for BBN was also seen in children; mean FBpc values were

78±3.8% at -12 dB SNR for BBN to 90±2.9% at 0 dB SNR. The improvement slope

in children was very similar to adults, with a value of 1%/dB (Figure 4-6A). However,

for SB, adults performed at 92±2.8% even at -12 dB SNR, and this improved to

98±0.9% at 0 dB SNR, which equated to a shallow slope of 0.52%/dB. Children also

showed improvement in FBpc in SB compared to BBN; FBpc varied from 84±3.6%
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at -12 dB SNR to 95±3.3% at 0 dB SNR. However, children’s SNR slope for SB was

numerically steeper at 0.91%/dB (Figure 4-6B).
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Figure 4-6: Localization data plotted as a function of SNR, with FBpc on the top
row and Lscat on the bottom row. Labels above each column of panels describe
the masker conditions. Plotted data are mean (black symbols) and raw values
(grey symbols) for adults (circles) and children (boxes) as a function of SNR.
Error bars around the means represent 95% confidence intervals. Larger FBpc in
the top panel and smaller Lscat in the bottom panel indicate better localization.

In contrast to FBpc, means of Lscat are separated markedly different between

adults and children. Children appear to benefit from increasing SNR, whereas adults

appear to perform equally well, and consistently better, than children at all SNRs.

Also, unlike FBpc, Lscat is similar for both maskers. In children, Lscat improved,

i.e., decreased from 13 ± 2.2◦ at -12 dB SNR to 9.9±1.2◦ at 0 dB SNR for BBN and
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from 13±1.8◦ at -12 dB SNR to 8.8±1◦ at 0 dB SNR for SB. However, such an SNR

effect was not observable in adults. Lscat at -12 dB SNR for BBN was 8.9±1.6◦ and

7.1±0.8◦ at 0 dB SNR in BBN and 7.9±1.4◦ at -12 dB SNR to 7.4±1.3◦ at 0 dB SNR

for SB.

As seen in Figures 4-6C and 4-6F, adults and children performed at equal levels

in quiet for both FBpc and Lscat, respectively. Mean adult group FBpc was 96.20

±2.36% and Lscat was 6.92±1.06%, and mean child group FBpc was 96.47±2.17%

and Lscat was 7.08±1.04%. Independent-sample t-tests performed to test for group

differences in the quiet condition reflect this for both FBpc (t [40] = 0.03, p = 0.97)

and Lscat (t [40] = 0.22, p = 0.83). Localization ability in quiet obtained in the

present study is thus consistent with previous studies that show adult-like localiza-

tion in five-year-old children (Litovsky, 1997; Van Deun et al., 2009).

Further, to ascertain main effects of SNR, masker and group, and their interac-

tions, a split-plot (mixed design) ANOVA (SP-ANOVA) with localization measures

(FBpc and Lscat) as dependent variable, and masker, SNR, and group (adults ver-

sus children) as independent variables was performed. Results were interpreted with

Greenhouse-Geisser corrections if the assumption of sphericity was violated. Post-

hoc tests were interpreted with false discovery rate (FDR: Benjamini & Hochberg,

1995) corrections (α = 0.05) for performing multiple comparisons. Results indicate

a significant main effect of masker for FBpc (F [1,40] = 43.65, p<0.001, η2Partial =

0.52), but not for Lscat (F [1,40] = 1.01, p = 0.32, η2Partial = 0.03). This result

suggests that when data were pooled across SNRs and groups, there was a significant

difference in FBpc between the two maskers for FBpc. There was also a significant

main effect of SNR for both FBpc (F [2,80] = 101.30, p<0.001, η2Partial = 0.72) and

Lscat (F [2,80]=23.44, p<0.001, η2Partial = 0.37). This suggests that when data were
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pooled across maskers and groups, localization performance improved as a function

SNR, as expected, and as evidenced in Figures 4-6A, B, D and E.

The apparent difference in FBpc across SNRs for the two maskers caused a signifi-

cant interaction between masker and SNR for FBpc (F [2,80] = 3.67, p = 0.03, η2Partial

= 0.08). Post-hoc comparisons show significantly lower FBpc in the BBN condition

compared to SB at all SNRs (SNR{−12 dB}: Mean difference [MD] = -9.13%, CI95%

= ±3.60%; t [41] = -4.97, p<0.001; SNR{−6 dB}: MD = -9.28%, CI95% = ±3.13%,

t [41] = -5.93, p<0.001; SNR{0 dB}: MD = -5.36%, CI95% = ±2.41%, t [41] = -4.54,

p<0.001). This result suggests that BBN causes significantly larger disruption of

F/B localization than SB. Note that this result is obtained when data were collapsed

across groups considering no group interactions were found.

Contrary to FBpc, the qualitative differences between adults and children in Lscat

(Figures 6D and E) were consistent with a significant group interaction (group X SNR)

(F [2,80] = 6.63, p = 0.02, η2Partial = 0.14). Considering no 3-way interaction (Group

X SNR X Masker) was found (F [2,80] = 1.43, p = 0.25, η2Partial = 0.04), data were

collapsed across maskers for post-hoc analysis.

Results of this post-hoc analysis show significantly higher Lscat in children at

all SNRs compared to adults (SNR{−12 dB}:MD = 4.67◦, CI95% = ±2.21◦, t [40] =

4.27, p<0.001; SNR{−6 dB}: MD = 2.51◦, CI95% = ±1.60◦, t [40] = 2.50, p = 0.003;

SNR{0 dB}: MD = 2.16◦, CI95% = ±1.26◦, t [40] = 3.46, p = 0.001). Results of Lscat

suggest that childrens’ localization-in-noise is more variable than adults, consistent

with Litovsky and Godar (2010). Results of Lscat also suggest that adults’ lateral

localization is robust on a trial-by-trial basis, even in the poorest SNR, consistent

with Good and Gilkey (1996).
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Despite qualitative difference in FBpc between adult and children (as seen in

Figure 4-6B) for the SB masker, considering there were no group interactions in the

omnibus ANOVA, further group specific post-hocs could not be conducted. Therefore,

t-tests for slopes of both measures (FBpc and Lscat) were conducted (and interpreted

with FDR corrections) to further evaluate if the aforementioned numeric differences

were significant. Results showed that improvement in localization as a function of

SNR, i.e., slope, differs significantly between adults and children for both FBpc (t [40]

= 2.43, p = 0.02) and Lscat (t [40] = -3.39, p = 0.002) in SB masker, but not for

BBN; FBpc (t [40] = -0.28, p = 0.78) and Lscat (t [40] = -1.07, p = 0.29). This is

consistent with Figures 4-6A, B, D and E, and suggests that adults localize better

than children in the F/B dimension in SB, but not in BBN.

4.3.2 Part II: MOC inhibition of CEOAEs

To investigate group differences between MOC inhibition of CEOAEs evoked by MOC

elicitors of different lateralities (ipsi, contra and binaural), a one-way RM-ANOVA,

with CEOAE inhibition as dependent variable and group as independent variable,

was conducted. Results indicate no interaction between MOC elicitor lateralities and

group (F [2,66] = 1.76, p = 0.179, η2Partial = 0.05), suggesting that MOC-mediated

CEOAE inhibition across different MOC elicitor lateralities was similar across the two

groups. This result is not surprising as previous studies have indicated that MOC

(contralateral) inhibition of OAEs is mature at birth (Abdala et al., 2013). There was

however a main effect of MOC elicitor laterality (F [2,66] = 94.51, p<0.001, η2Partial

= 0.74).

Post-hoc tests with pooled group data show that the binaural MOC elicitor evoked

significantly larger inhibition of CEOAEs than either ipsilateral (MD = 18.67%, CI95%

= ±4.25%, t [34] = 10.72, p<0.001) or contralateral elicitors (MD = 19.83%, CI95%

= ±3.49%, t [34] = 14.45, p<0.001), as evident in Figure 4-7A.
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To study binaural interaction in the elicitation of MOC inhibition, the mBIC was

calculated based on the following equation;

mBIC = (ipsi + contra) inhibition - binaural inhibition (4.1)

As evidenced in Figure 4-7B, the mBIC is predominantly negative in both groups,

indicating that binaural MOC-mediated inhibition of CEOAEs was larger than the

sum of the two monaural (ipsilateral + contralateral) inhibitions (MD = 4.47%, CI95%

= ±2.13%, t [34] = 4.07, p<0.001)
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Figure 4-7: MOC inhibition of CEOAE and MOC binaural interaction component
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(%).
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Negative mBIC suggests binaural facilitation, while positive mBIC suggest binau-

ral inhibitionA
2 at the level of the brainstem. An independent-sample t-test showed

that mBIC was significantly more negative (t [22.13] = -2.80, p = 0.01 [Note that de-

grees of freedom from this t-test is corrected for unequal group variances.]) in children

(Mean = -7.39%; CI95% = ±3.64%) compared to adults (Mean = -1.70%; CI95% =

±1.61%). This results suggests that the child group had significantly negative mBIC,

indicating a predominance of binaural facilitation.

4.3.3 Binaural MOC function and localization-in-noise
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is shown as a linear-fit line (dashed), and its corresponding equation is provided
in the key. No correlation was found at higher SNRs in adults (diamonds and
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2In order to avoid confusion between binaural neural inhibition at the brainstem level and MOC
inhibition of CEOAEs, we will refer to binaural neural inhibition as inhibitionA (subscript ‘A’ refers
to afferent pathway). Note that these terms are descriptive (McPherson & Starr, 1993).
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Correlation analyses were done to elucidate the relationship between MOC-mediated

inhibition of CEOAEs and localization measures across listeners for the two maskers

and SNRs separately. FBpc in BBN (FBpcBBN) for adults for all SNRs is plotted as

a function of mBIC in Figure 4-8. As seen in the figure, it is only FBpcBBN (filled

circles) at the lowest SNR (-12 dB) in adults that shows a significant correlation. No

other SNRs or maskers correlated with mBIC in adults. mBIC significantly predicted

FBpcBBN(−12 dB SNR), b=1.67, t [16] = 2.83, p = 0.01. mBIC also explains a significant

proportion of the variance in FBpcBBN(−12 dB SNR), R
2 = 0.33, (F [1,16] = 8.04, p =

0.01). However, following FDR corrections for performing multiple correlations, this

significance was lost. No significant correlations were found for any FBpc SNR and

mBIC in children. All correlation coefficients for FBpc are tabulated in Table 4-1.

SNR

Correlation coefficients (r)

Adults Children

BBN SB BBN SB

-12 0.578 0.032 0.108 -0.238

-6 0.303 0.043 0.111 -0.172

0 0.330 -0.139 -0.375 -0.073

Table 4-1: Correlation coefficients (r) obtained for comparisons between mBIC and
FBpc across groups, SNRs and maskers.

4.4 Discussion

4.4.1 Part I: Localization

F/B localization

The first goal of this study was to investigate children’s F/B localization in com-

parison to adults in two different types of maskers: BBN and SB. FBpc results in

104



quiet provide evidence that children are able to grossly distinguish between a speech

sound (‘baseball’) arriving from the front and rear as accurately as adults. This re-

sult extends the existing literature on children’s localization ability in quiet in the

front hemi-field (Grieco-Calub & Litovsky, 2010; Litovsky, 1997; Van Deun et

al., 2009). These investigators showed that localization in quiet is adult-like at 5

years of age. Further, BBN appears to have similar effects on gross F/B localization

in both adults and children. However, visual examination of FBpc means in Figure

6B and the significant difference between adults and children for FBpc slopes in SB

collectively suggest that children’s gross F/B localization is disrupted more by SB

compared to the adults. Considering that no effect of age in F/B localization (FBpc)

was observed in the present study, it can be suggested that F/B localization in BBN,

but not in SB, is also is adult-like by 7 years of age.

Improvement in FBpc as a function of SNR is also similar in adults and children,

but thresholds from the present study appear better than similar previous reports in

adults (Abouchacra et al., 1998; Good & Gilkey, 1996). Abouchacra et al. (1998)

reported that their adult participants obtained 85% FBpc at around 10 dB SNR.

In the current study, both children and adults reached 85% FBpcBBN at around -6

dB SNR in BBN. Good and Gilkey (1996) reported that among lateral, F/B and

up/down (U/D) dimensions, the F/B was most affected by noise. Their participants

on average scored 65% FBpc at around -2 dB SNR. The difference between the re-

sults of the current study and those of Abouchacra et al. (1998) and Good and Gilkey

(1996) could arise due to several methodological factors. Firstly, differences in the

method of calculation of localization errors may have contributed considerably to the

observed differences in localization ability. In the present study, only the gross FB

error was obtained, and no RMS azimuth errors were calculated, since they do not

provide accurate information on the type of localization error. Abouchacra et al.
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(1998) did not calculate a direct FBpc because they did not include a front loud-

speaker in their experiment (0o), therefore any response in the midline was biased

towards the rear (180o). To avoid this, we only compared their ‘mid-front’ and ‘mid-

back’ (their Figures 2A and 2C, respectively) results with our own. Good and Gilkey

(1996) on the other had used a three-pole coordinate system that converted lateral,

F/B and U/D localization errors to a single plane. Nevertheless, Good and Gilkey

(1996) ultimately calculated RMS error as one of their measures to quantify FBpc.

Considering both studies have used RMS error, which describes the degree of error

in greater detail compared to FBpc in the present study, an apparent difference in

overall performance can be expected. Thus, a direct comparison between the results

of the present study and previous studies may not be applicable.

Better FBpc performance in SB compared to BBN was expected based on spectral

and temporal differences between maskers. First, SB does not mask high frequencies

(>4 kHz) as effectively as BBN, due to the low-pass nature of the speech spectrum.

Considering that high-frequency information is critical for F/B localization (Lan-

gendijk & Bronkhorst, 2002; Roffler & Butler, 1968), better F/B localization can

be expected in SB than in BBN. Second, due to the presence of amplitude fluctuations

in speech, SB may promote ‘dip-listening’ (Cooke, 2006; Festen & Plomp, 1990;

Nelson, Jin, Carney, & Nelson, 2003) by allowing listeners to exploit momentary

improvements in SNR to localize better (Kopco et al., 2010; Yost & Brown, 2013).

Although not significant in the omnibus ANOVA, there was a significant difference in

rate of improvement in FBpc across SNR (slope) between adults and children. Adults

performed better than children at worse SNRs, therefore their improvement as a func-

tion of SNR was restricted. However, children caught up to adult levels at 0 dB SNR,

despite inferior performance at lower SNRs. This difference in performance across

SNRs caused a difference in their FBpc slopes. This result is interesting because chil-
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dren performed at adult levels in both the quiet and BBN masker conditions. The

difference in performance cannot be attributed to spectral differences between BBN

and SB, because as evidenced in BBN, energetic masking is similar between adults

and children. Two reasons for the difference in F/B localization in SB between adults

and children can be envisaged. First, although localization in quiet is mature at five

years of age, and gross FBpc in BBN by 7 years of age, differences in maturational

trajectories of other auditory processes such as temporal resolution (Hall & Grose,

1994; Hartley, Wright, Hogan, & Moore, 2000; Hill, Hartley, Glasberg, Moore,

& Moore, 2004; Wightman, Allen, Dolan, Kistler, & Jamieson, 1989) may limit

childrens’ ability to extract the target embedded in SB (Garadat & Litovsky, 2007).

Due to an inadequacy in temporal resolution, perhaps children are unable to extract

target information as well as adults using dip-listening (Garadat & Litovsky, 2007).

Although it can be argued that the number of temporal dips in a multi-talker babble

is limited compared to a single-talker masker, it would always be more than with

BBN. For this reason, the possibility that adults were able to exploit subtle temporal

dips in SB to localize better than children cannot be ruled out.

Secondly, the presence of linguistic content, although unintelligible, in the SB

masker could have caused larger informational masking in children, affecting their

overall performance. Informational masking is a phenomena in which elevation of

thresholds due to a masker cannot be explained by energetic masking alone (Oh,

Wightman, & Lutfi, 2001). Indeed SB is known to cause informational masking

(Brungart, Simpson, Ericson, & Scott, 2001), and children are known to be more

prone to informational masking (Hall, Buss, & Grose, 2005; Oh et al., 2001; Wight-

man, Callahan, Lutfi, Kistler, & Oh, 2003), and distraction (Allen & Wightman,

1994; Lutfi, Kistler, Oh, Wightman, & Callahan, 2003). Increased informational

masking due to SB may also relate to its higher temporal uncertainty compared to
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BBN (Lutfi, 1990). Considering that children are able to grossly localize sounds in

the F/B dimension as well as adults in both quiet and BBN, the difference in FBpc

between adults and children in SB suggests that there is more than energetic mask-

ing at play for SB. This is because both BBN and SB energetically mask the target,

although with different strengths. If only energetic masking were at play, one would

expect equal performance in SB between adults and children, mirroring the BBN re-

sults, which does not appear to be the case here. Therefore, it can be proposed that a

combination of developmental factors, particularly pertaining to temporal resolution,

and potentially higher informational masking, may have led to lower FBpc in children

in SB compared to adults.

Lateral angle localization

Results of Lscat-in-noise show significant group effects in both raw values and slopes;

the accuracy of localization-in-noise in children is significantly lower than in adults.

This suggests that although children are able to grossly differentiate sounds arriving

from the front and back, their responses in noise are not as consistent as adults.

Developmental studies in binaural hearing show that peripheral encoding of binaural

signals may be mature at birth but that central neural processes may continue to

develop until at least six years of age when measured using binaural masking level

difference (BMLD; Hall & Grose, 1990; Moore, Cowan, Riley, Edmondson-Jones, &

Ferguson, 2011). Temporal resolution measured using gap detection is also adult-like

at five years of age (Trehub, Schneider, & Henderson, 1995), although when mea-

sured using backward masking, it continues to develop at least until 10 years of age

(Hartley et al., 2000), which shows the influence of noise in children’s hearing. The

typically obtained measure of localization, minimum audible angle (MAA) thresholds,

are adult-like at 5 years of age (Litovsky, 1997; Van Deun et al., 2009), in addition

to ITD sensitivity, which also reaches 90% of adult values by 5 years (Ashmead et
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al., 1991). Accordingly, Litovsky (1997) suggested that localization in quiet may not

entirely depend on temporal resolution. It thus appears that children in the age range

tested in the present study would be expected to have a mature binaural system that

should allow them to localize as precisely as adults. Thus, maturational trajectories

obtained in quiet for temporal resolution, ITD sensitivity, and binaural hearing may

not explain the observed difference in localization accuracy between adults and chil-

dren, as they are adult-like in 5 year olds. In line with this evidence, lack of difference

in Lscat-in-quiet between the two groups does suggest that the neural circuitry and

motor skills required to respond as accurately as adults are present in children, at

least in quiet. However, children’s performance in noise suffered significantly more

than adults. This is also evident in their FBpc scores in SB.

One reason for this inconsistency could be related to overall lower processing effi-

ciency of children in auditory tasks arising from higher “internal noise”, thus requiring

higher SNR than adults (Hill et al., 2004). Two different kinds of internal noise have

been described by Oxenham and Buus (2000). The first type, dubbed sensation noise,

arises due to the signal encoding process. The second type, dubbed central noise, is

stimulus independent and is thought to arise due to central auditory and memory re-

lated processes in the auditory system (Oxenham & Buus, 2000). It is possible that

children use more central resources to combat the effects of acoustic noise. This is

perhaps due to inexperience, which potentially results in higher central noise (Werner

& Bargones, 1991), and poorer localization accuracy. However, measures of inter-

nal noise assume that a listener is attentive to the target (Amitay, Zhang, Jones,

& Moore, 2013) and children are known to be less attentive than adults (Allen &

Wightman, 1994; Leibold & Bonino, 2009; Litovsky & Godar, 2010; Lutfi et

al., 2003; Newman, 2009; Oh et al., 2001). Monitoring more ‘auditory filters’

than required has been posited to be one of the reasons for distraction in children
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(Allen & Wightman, 1994; Lutfi et al., 2003). By monitoring more than the re-

quired auditory filters, children may place less weight on the target filter compared

to adults. This may affect signal integrity, and thus internal SNR (Faisal, Selen, &

Wolpert, 2008), which in turn may increase the work load of higher auditory centers,

resulting in reduced overall efficiency (Hill et al., 2004). However, training related

improvement in reduction of internal noise has recently been reported (Jones, Moore,

Amitay, & Shub, 2013). This is thought to be achieved by promoting higher weights

for the target stimulus during the decision making process, which occurs as a result

of learning. Perhaps due to increased experience and learning, adults are better able

to monitor the correct filters, which may reduce their cognitive work load. In addi-

tion, similar to FBpc SNR slope, the slope of Lscat (as a function of SNR) was only

significantly different between the groups for SB. Despite significant differences in

Lscat in BBN, group slopes were not significantly different. This again suggests that

children are more prone to informational masking, which affects their localization in

a multi-talker babble. It can thus be suggested that an interplay of variables such

as distraction, informational masking and higher central noise, arising from reduced

processing efficiency, could have led to childrens’ poor localization accuracy in noise.

4.4.2 Part II: Binaural MOC function

In line with previous studies on the maturation of MOC function (Abdala, Ma, &

Sininger, 1999; Abdala et al., 2013; Chabert et al., 2006; Ryan & Piron, 1994),

data from the present study shows that contralateral MOC function is mature in the

age group tested. As with contralateral MOC function, both ipsilateral and binaural

MOC function in children are indistinguishable from adults when individual MOC

elicitor lateralities are considered. Previous binaural MOC studies have shown that

contralateral and ipsilateral MOC inhibition of OAEs are the same (Berlin et al.,

1995; Lilaonitkul & Guinan, 2009) and that binaural MOC activation causes signif-
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icantly larger inhibition of OAEs compared to monaural activation. The findings are

consistent with the findings of the present study.

Few studies have investigated binaural MOC inhibition of OAEs (Backus & Guinan,

2006; Berlin et al., 1995; Lilaonitkul & Guinan, 2009; Philibert, Veuillet, & Collet,

1998), and none of them have explored the concept of binaural interaction. Backus

and Guinan (2006) briefly mentioned the existence of interaction at the level of the

MOC. Two of their participants exhibited binaural facilitation, while one of them

exhibited inhibitionA. The results obtained here are thus novel for the MOC realm.

But what does mBIC signify, and how is it related to localization? To answer this,

parallels to the binaural interaction component (eBIC3) described in the auditory

evoked potential literature can be considered.

The concept of the binaural interaction component has been investigated widely

in the auditory evoked potentials literature, and it is thought to reflect binaural pro-

cessing (Dobie & Norton, 1980; Gardi & Berlin, 1981; McPherson & Starr, 1993).

In the evoked potential literature, the binaural response is typically smaller than

the sum of monaural responses (positive eBIC) (McPherson & Starr, 1993) or no

difference between the two is observed (Dobie & Norton, 1980; Gopal & Pierel,

1999). In the present study, the mBIC was, on average, negative for both groups.

Anatomically speaking, it has been found that the more rostral the generation site,

the larger the binaural response, i.e., larger eBIC (McPherson & Starr, 1993; Wada

& Starr, 1989). If the efferents are governed by the same gradient in binaural inhi-

bition that applies to eBIC, the position of MOC neurons (Liberman, 1988; Warr,

1992) towards the caudal end of this gradient would predict minimal inhibition or

3To avoid confusion between the two types of binaural interaction components discussed in this
study (derived from MOC or evoked potential measurements), the binaural interaction component
described in the evoked potential literature will be referred to as eBIC throughout this chapter.
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even facilitation. Another explanation for the differences between mBIC and eBIC

could be that mBIC is an efferent response, while eBIC is an afferent response.

Indirect corticofugal projections that traverse via collicular nuclei (Huffman &

Henson, 1990), and direct cortico-olivary projections (Coomes & Schofield, 2004;

Mulders & Robertson, 2000) from cortex to the MOC have been identified. These

projections are involved in adjusting the gain of sensory input to higher centers,

forming a feedback loop (Robinson & McAlpine, 2009). A predominantly excitatory-

facilitatory role has been suggested for corticofugal connections to various brainstem

nuclei (Feliciano & Potashner, 1995; Lamas, Alvarado, Carro, & Merchan, 2013).

Further, cortical connections to the brainstem terminate bilaterally, although they

are stronger on the ipsilateral side (Coomes & Schofield, 2004), therefore excitation

of binaural MOC can be expected. This corticofugal excitation may in part augment

the MOC’s response for binaural sound stimulation. The afferent pathway, in con-

trast, does not receive such a binaural augmentation, which may lead to a larger eBIC

as evidenced in evoked potentials. Should such an augmentation of binaural response

exist in the MOC, it could counteract inhibitionA witnessed in the afferent pathway.

In addition, Liberman and Brown (1986) showed that MOC neurons exhibit binaural

facilitation, i.e., an increase in spike rate when a second stimulus is added to the

contralateral ear. Considering most MOC neurons respond to binaural stimulation,

in addition to those that are dedicated binaural units, it is also possible that binaural

facilitation is predominant in the MOC (Liberman & Brown, 1986). Brown, Kujawa,

and Duca (1998) also studied the binaural properties of the MOC and suggested that

most MOC neurons are facilitated by binaural stimulation, which could lead to a neg-

ative mBIC. In contrast, afferent responses from the medial superior olive (MSO) and

lateral superior olive (LSO) show inhibition to binaural stimulation (Covey, Vater,

& Casseday, 1991; Grothe & Sanes, 1993). In essence, the mBIC indicates the
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interaction of binaural afferent inputs and corticofugal influence at the MOC. Since

all modes of MOC activation are included in mBIC, it may portray a complete picture

of MOC activity, compared to contralateral, ipsilateral and binaural MOC inhibition

of CEOAEs alone.

The present study considered the difference in mBIC between groups, which sug-

gest differential MOC function between adults and children. Children show signifi-

cantly more negative mBIC, suggesting that the MOC response is significantly larger

when activated binaurally (with respect to ipsi + contra monaural inputs). This

result is unexpected, considering there are no maturational factors at play (Abdala

et al., 2013). The eBIC too, although not consistently observed in both ABRs and

MLRs in neonates (Cone-Wesson, Ma, & Fowler, 1997; McPherson, Tures, & Starr,

1989), is consistently present in children at least at seven years of age (Gopal & Pierel,

1999). The additional MEMR tests conducted in this study provide confidence that

larger binaural OAE inhibition is due to MOC activation, and not due to the MEMR.

Therefore, a straightforward explanation for the observed group difference in mBIC

based on the current literature is unavailable. One speculation could be based on sub-

tle asymmetries in MOC inhibition of CEOAEs across elicitor lateralties. Although

not significant, the subtle difference between contralateral and ipsilateral inhibition

seen in adults is not present in children (Figure 4-7A). While studies have investi-

gated asymmetries between left and right ears (e.g., McFadden, 1993), there are no

data on ipsilateral versus contralateral MOC inhibition of CEOAEs across different

age groups. Perhaps the mBIC is sensitive to such subtle asymmetries, and therefore

requires further close examination. However, an effect of age was not observed within

children in the current data.
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4.4.3 Binaural MOC function and localization-in-noise

Only a few studies have investigated the relationship between efferent functioning and

localization (Andéol et al., 2011; Darrow et al., 2006; Irving, Moore, Liberman,

& Sumner, 2011). These studies unequivocally show that that efferents facilitate

localization. The strength of the MOC is strongly correlated with median plane lo-

calization (Andéol et al., 2011), which is thought to be due to MOC unmasking of

spectral cues. However, Andéol et al. (2011) only studied the relationship between

localization-in-noise and contralaterally evoked MOC, i.e., uncrossed MOC fibers.

The present study sought to extend this further by evoking the MOC binaurally,

thereby activating both the crossed and uncrossed MOC reflex. The mBIC provides

an objective measure of binaural interaction of the MOC. However, unlike in Andéol

et al. (2011), correlation between F/B localization and mBIC was not significant at

any SNRs. Although, a significance was found for the poorest SNR (-12 dB) in adults,

this was lost due to FDR corrections.

First, the difference in results between the two studies can be explained based on

the localization task. Andéol et al. (2011) used targets that included variation in the

U/D dimension. The current study however, involved only the F/B and L/R dimen-

sions. It is possible that the MOC is more critical for unmasking the spectral cues for

U/D localization than those for F/B localization. Thus, the inclusion of the U/D di-

mension in Andéol et al. (2011) could explain their larger correlations found between

localization-in-noise and MOC inhibition of CEOAEs, compared to the present study.

Secondly, the presence of a trend only at the worst SNR may be explained by a

lack of spread in the data. Many adults were performing at 75% or higher at better

SNRs (>-12 dB), and there appears to be less spread in the data for -6 and 0 dB

SNRs. This lack of correlation may thus be dependent on task difficulty rather than
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a lack of relationship between mBIC and FBpc. The same would apply for Lscat for

adults. However, considering that children performed at the same level as adults in

FBpcBBN , the task-difficulty hypothesis may not apply to children. One potential

explanation for the presence of correlation in adults and its absence in children could

be based on the sensitivity of the MOC to attention. Previous studies have shown

that the MOC influence on the cochlea can be enhanced through focused attention

(Garinis et al., 2011; Maison et al., 2001) that may even reduce physiological noise

in the ear-canal (Walsh, Pasanen, & McFadden, 2014). Poor SNR can be thought to

demand increased attention to perform the same task effectively. This increased at-

tention may consequently enhance corticofugal influence on the cochlea via the MOC

(Smith, Aouad, & Keil, 2012; Srinivasan, Keil, Stratis, Woodruff Carr, & Smith,

2012). It is possible that adults attended to the target more in the poorest SNR con-

ditions relative to better SNR conditions. Perhaps, this increased attention caused

a larger binaural MOC activation, resulting in better correlation between mBIC and

F/B localization-in-noise in adults at -12 dB SNR.

On the other hand, the poorer localization accuracy and potentially larger infor-

mational masking evidenced in children may suggest that children did not attend to

the stimulus as well as adults, leading to lower corticofugal influence on the periphery.

Collectively, these findings suggest that the MOC may be involved in localization-

in-noise, and may play a larger role in poorer SNRs and particularly in unmasking

spectral contrasts. Therefore, MOC activation may be more beneficial for U/D lo-

calization compared to azimuthal localization, due to its reliance on spectral cues

(Andéol et al., 2011). Considering task dependent attention was not systematically

studied or controlled in the present experiment, the relationship between attention-

augmented improvement in localization-in-noise and its relationship to MOC function

can neither be confirmed nor rejected. However, these results provide impetus for fur-
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ther studies involving U/D localization, and for including control of attention to shed

more light on the relationship between localization-in-noise and binaural MOC func-

tion.

The direction of correlation between FBpcBBN(−12 dB) and mBIC (Figure 4-8) sug-

gest that binaural inhibitionA may be beneficial for localization-in-noise. However,

from current physiological evidence, it appears that binaural inputs are largely fa-

cilitated in the MOC. Although both facilitation and inhibitionA are seen in both

groups, their respective roles and the reasons for such large differences across samples

is elusive. Further physiological studies are required to better understand binaural

interaction in the MOC and its implications for hearing.

4.5 Conclusion

Two experiments were conducted to investigate (1) the localization-in-noise ability of

children, and (2) the relationship between binaural MOC function and localization-

in-noise. Results indicate that while children are able to grossly differentiate sounds

arriving in the F/B dimension, their localization accuracy is not on par with adults.

Differences in binaural MOC function (mBIC) between adults and children were also

found. For reasons which are not clear, adult localization-in-noise correlates better

with binaural MOC function, perhaps due to augmentation of MOC by focused at-

tention. Further studies are warranted to better understand the observed difference

in mBIC between adults and children, and the relationships between binaural MOC

function and median plane localization.
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Chapter 5

Cochlear Tuning and Medial
Olivocochlear Functioning in
Children with Suspected Auditory
Processing Disorder

5.1 Introduction

“Auditory Processing Disorder (APD) refers to difficulties in the perceptual process-

ing of auditory information in the central nervous system and the neurobiological ac-

tivity that underlies the processing” (American Academy of Audiology [AAA], 2010).

Difficulty hearing speech-in-noise despite normal hearing thresholds is the hallmark of

APD (Chermak, Hall, & Musiek, 1999). APD is a heterogeneous disorder involving

a breakdown of various aspects of auditory processing, resulting in complaints and

symptoms that vary remarkably across the population (D. R. Moore, 2006). Prob-

lems at various levels of the auditory neural system in both the afferent (bottom-up)

pathway and in the higher level processing that fine-tunes afferent pathways via effer-

ent connections (top-down) have been reported in APD (British Society of Audiology

[BSA], 2011). For example, studies have shown atypical auditory encoding at the

brainstem (Allen & Allan, 2014; Anderson, Skoe, Chandrasekaran, Zecker, & Kraus,

2010; Cunningham, Nicol, Zecker, Bradlow, & Kraus, 2001; Gopal & Pierel, 1999;
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Song, Skoe, Banai, & Kraus, 2011; Wible, Nicol, & Kraus, 2002), midbrain (Hall

& Johston, 2007; Musiek, Charette, Kelly, Lee, & Musiek, 1999; Purdy, Kelly, &

Davies, 2002), and the cortex (Abrams, Nicol, Zecker, & Kraus, 2009; McArthur,

Atkinson, & Ellis, 2009) in children with listening problems. However, cochlear pro-

cessing remains unexamined in these children.

Peripheral auditory mechanisms are not typically included in the diagnosis of

APD, rather, they are only screened for the presence of an overt hearing loss. How-

ever, the cochlea performs substantial signal processing that is crucial for speech

perception. Cochlear tuning is directly related to frequency selectivity and temporal

processing ability (B. C. J. Moore, 1993; D. R. Moore, 2007), and therefore is impor-

tant for good speech discrimination, especially in noise (Dorman, Loizou, Fitzke, &

Tu, 1998; B. C. J. Moore, 2003b). Impaired cochlear tuning increases masking and

reduces suppression, which can in turn reduce contrasts between speech sounds and

affect speech perception (Festen & Plomp, 1983; B. C. J. Moore, 1985). Although

cochlear tuning impairments are typically seen in individuals with cochlear hearing

loss, Badri, Siegel, and Wright (2011) reported broader tuning in normal hearing

adults who complained of poor speech discrimination in noise. Patterson, Nimmo-

Smith, Weber, and Milroy (1982) previously showed that cochlear tuning deteriorated

with age, despite clinically normal hearing sensitivity. This suggests that conventional

audiograms and speech tests in quiet do not capture subtle deficits in cochlear func-

tioning that can impact speech perception in noise, which is typical of APD. Although

speech impairments are most often mentioned for those with poor tuning, unusually

sharp tuning impacts temporal aspects of speech perception (Shailer & Moore, 1983;

Zheng et al., 2011). Hence, there appears to be a range of optimal cochlear filter

widths. To better understand cochlear processing in children with listening problems,

an objective physiological measure of cochlear tuning, stimulus frequency otoacoustic
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emission (SFOAE) group delay (Shera, Guinan, & Oxenham, 2002; Shera & Zweig,

1993) was used in the present study to investigate cochlear tuning.

Cochlear processing, including tuning, does not happen in isolation, it is influenced

by corticofugal connections (top-down) via the medial olivocochlear system (MOC;

Khalfa et al., 2001; Winer, 2006; Xiao & Suga, 2002). MOC axons innervate outer

hair cells (OHCs) directly and due to their cholinergic nature, reduce OHC electro-

motility and thus cochlear amplification (Guinan & Gifford, 1988). This inhibitory

action reduces otoacoustic emission (OAE) level (review: Guinan, 2006) and alters

cochlear tuning (Francis & Guinan, 2010). Such subtle changes have been hypothe-

sized to affect pitch perception and localization abilities (Francis & Guinan, 2010).

MOC inhibition of OAEs is of particular interest in the APD population because it

aids in unmasking signals from noise (Bhagat & Carter, 2010; de Boer, Thornton,

& Krumbholz, 2012; Guinan, 2006; Micheyl & Collet, 1996; Mishra & Lutman,

2014). Some studies show that the MOC unmasking function is reduced in individu-

als with listening difficulties (Garinis, Glattke, & Cone-Wesson, 2008; Muchnik et

al., 2004; Sanches & Carvallo, 2006; Yalçinkaya, Yilmaz, & Muluk, 2010), while

others do not (Burguetti & Carvallo, 2008; Butler, Purcell, & Allen, 2011; Clarke,

Ahmmed, Parker, & Adams, 2006; Veuillet, Magnan, Ecalle, Thai-Van, & Collet,

2007). Thus there is no clear consensus on MOC function in APD. However, it should

be noted that investigations in APD assaying the MOC have only investigated gross

changes in OAE level. MOC mediated change in other cochlear attributes such as

tuning remain unrecognized. Subtle discrepancies in cochlear processing due to MOC

activation may be reflected better in a tuning metric, and thus may augment findings

of OAE level changes. Therefore, we chose to measure MOC inhibition of SFOAE

level and tuning to characterize MOC functioning in children with APD in the present

study. SFOAEs are generated from a narrow site on the basilar membrane and can
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be evoked at low stimulus levels (Shera & Guinan, 1999). Both these properties are

important to delineate confounding factors such as middle ear muscle reflex (MEMR)

from a true MOC effect (Guinan, Backus, Lilaonitkul, & Aharonson, 2003). Further,

relationships between a tuning metric and MOC functioning were also probed.

5.2 Method

5.2.1 Participants

Sixty three children in the age range 7-17 years took part in the study. Thirty eight

children were referred to our in-house Audiology clinic with listening problems (sus-

pected APD group: sAPD, mean age: 9.79 years, standard deviation (SD): 2.99

years, 8 females) and twenty five were typically developing children with no com-

plaints in listening (TD group, mean age: 11.39 years, SD: 2.59 years, 13 females).

All children had normal middle ear function as determined by clinical tympanome-

try (GSI-TympStar, Grason-Stadler Inc., MN) and hearing thresholds of 20 dB HL

or better at octave intervals between 0.25 and 8 kHz measured using a clinical au-

diometer (GSI-61, Grason-Stadler Inc., MN). All children had contralateral acoustic

reflex thresholds >70 dB HL for steady state broadband noise (BBN). Children also

underwent a screening DPOAE measurement (Integrity v-500, Vivosonic Inc., ON)

to confirm the presence of OAEs.

Children in the sAPD group underwent a test battery similar to that used by Allen

and Allan (2014) that included three standard clinical tests: the Staggered Spondaic

Word Test (SSW; Katz, 1998), Words in Ipsilateral Competition (WIC; Ivey, 1969)

and Pitch Pattern Sequence test (PPS; Pinheiro, 1977), and two psychoacoustic tests

that use adaptive procedures developed in-house for use with children: Gap Detection

(GD), and Difference Limen for Frequency (DLF) and auditory brainstem response
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(ABR) measures at slow (13.3 Hz) and fast rates (57.7 Hz). Tests were administered

in accordance with their respective manuals and were interpreted according to pub-

lished age-specific normative data. Of the 38 children in the sAPD group, 27 were

diagnosed as having APD based on American Speech-Language-Hearing Association

[ASHA] (2005) guidelines, i.e., scored 2 SDs below the normative expectation in at

least two tests. Seven children failed in one test, and four children passed all tests.

Of the 11 children who passed all or all-but-one behavioral measures, all had atypical

ABR in the form of prolonged peak latencies; prolonged inter-peak latencies; or ab-

normal wave I-V amplitude ratio. Abnormalities in ABR have been recently reported

in children suspected with APD. A recent study (Allen & Allan, 2014) showed that

behavioral tests alone may not be adequate in diagnosis of APD, which supports

recommendations by professional bodies (e.g., AAA, 2010). Allen and Allan (2014)

found several children who passed these behavioral tests had abnormal neural encod-

ing of sound measured using ABR and/or absent/elevated acoustic reflex thresholds.

Therefore, children who passed the behavioral test battery but who had abnormal

ABR were also included in the study group (sAPD) along with children diagnosed as

APD.

Participants sat in a comfortable chair in a double-walled sound attenuated booth

(Eckel Industries, ON) and watched a silent closed captioned movie. They were en-

couraged to relax, and swallow as few times as comfortable. OAEs were recorded

from only one ear per participant. The ear being tested was chosen based on DPOAE

amplitude obtained during the screening process. Study methods were approved by

the Health Sciences Research Ethics Board of Western University, Canada. The na-

ture of the study was explained prior to obtaining written informed assent from every

participant, and informed consent from participants’ parent/caregiver. Participants

were compensated for their time with gift cards towards books or school supplies.
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5.2.2 SFOAE measurement

Stimulus and instrumentation

All signals were generated digitally in Matlab (Mathworks, MA) at a sampling rate

of 32 kHz and at a bit depth of 24. Probe-tones (fP ) 2.048 s in duration, in the

frequency range 0.928 to 1.248 kHz at 16 Hz intervals and 40 dB SPL were used to

evoke SFOAEs. This frequency region, approximately representing the 1 kHz region,

was chosen based on empirical evidence of pronounced MOC activity (Lilaonitkul

& Guinan, 2012; Zhao & Dhar, 2012). Intra-cochlear suppressor tones (fS) cor-

responding to each fP (where, fS) = fP + 16 Hz) with linear rise/fall ramps of 50

ms duration and 60 dB SPL in level were used according to the suppression method

(Brass & Kemp, 1993; Guinan, 1990) to extract SFOAE using discrete Fourier

transforms. Frequencies of all tones were adjusted to have an integer number of cy-

cles in the analysis window. The MOC elicitor, was uniform random noise/broadband

noise (BBN) presented at 60 dB SPL.

Signals were presented through a digital-to-analog converter (6289 m-series, Na-

tional Instruments, TX) at a sampling rate of 32 kHz to three individual programmable

attenuators (PA5; Tucker-Davis Technologies, FL) that controlled the output signal

levels of the probes, suppressors and elicitors. Signals were then power amplified

(SA1; Tucker-Davis Technologies, FL, USA) and fed to ER2 transducers (Etymotic

Research, IL) connected to an ER-10B+ otoacoustic emission probe system (Etymotic

Research, IL) that delivered the signals in the ear-canal.

The ear-canal pressure was recorded using the ER-10B+ probe system with a

pre-amplifier gain of +40 dB. The recorded signal was bandpass filtered (Frequency
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Devices Inc., IL) between 0.4 and 10 kHz and a gain of 20 dB was applied. The filtered

signal was then digitized by an analog-to-digital converter (6289 m-series, National

Instruments, TX) which applied another 6 dB of gain prior to conversion. Stimulus

delivery and response acquisition was controlled using custom programs developed in

LabView (National Instruments, TX). All stimuli were calibrated using a Type-2250

sound level meter (Brüel and Kjær, Denmark), and an ear simulator Type-4157 (IEC

711; Brüel and Kjær, Denmark).

SFOAE recording

To describe each stimulus, we will use the terms ‘epoch’, ‘sweep-block’ and ‘sweep’

(see Figure 5-1). An epoch was 1.024 s in duration and sweep-blocks were made of two

consecutive epochs of the same stimulus. Multiple sweep-blocks were concatenated

to create a sweep of 7.168 s in duration.

Figure 5-1: Schematic representation and temporal sequence of events for SFOAE
recorded with and without MOC elicitors. Channels in the left most column
indicate separate physical transducers. Note that size of each element in the
figure is made disproportionate to their duration to show shorter events clearly.

One complete sweep had three sweep-blocks: 1. fP in isolation, 2. fP with fS, and

fP with elicitor. A 1.024 s inter-sweep interval was used between sweeps to ensure

131



that the MOC reverted to its baseline activity (Backus & Guinan, 2006). An in-

the-ear calibration of the tones was carried out before every measurement to produce

the desired SPL (40 dB SPL) in the ear-canal. Each frequency fP was repeated for

at least five sweeps to obtain reliable SFOAEs. Additional epochs were recorded for

every noisy epoch (if the epoch root-mean-square [RMS] amplitude exceeded 0 dB

SPL in a 0.5 to 0.9 kHz band), for clipped epochs, or if the SNR was lower than 10

dB.

SFOAE extraction

Ear canal pressure in the first sweep-block contained both the probe stimulus, fP ,

and the SFOAE as a composite mixture (PECtot). The intracochlear suppressor, fS,

was then presented in the second sweep-block, in addition to the fP , to completely

suppress the generated SFOAE (PECms) by pushing the OHCs into saturation at the

fP frequency place (Guinan, 1990). A vector subtraction of the average ear canal

pressure in sweep-blocks 1 and 2 yielded the baseline SFOAE (PSF ), i.e., SFOAE in

elicitor-off condition:

PSF = PECtot − PECms (5.1)

Similarly, vector subtraction of the sweep-blocks 2 and 3 yielded the SFOAE

with MOC inhibition, i.e., elicitor-on condition. SFOAE stimulus levels were chosen

based on previous studies (Guinan et al., 2003; Schairer, Ellison, Fitzpatrick, &

Keefe, 2006) to obtain good signal-to-noise ratio (SNR) while avoiding the SFOAE

stimulus from evoking any ipsilateral MOC activity. The first and last 128 ms of every

response were discarded to avoid transients that may have occurred due to stimulus

onset/offset. All epochs were evaluated offline using a discrete Fourier transform to

obtain noise metrics in a 20 Hz band just below fP . Epochs with noise metrics that

exceeded the mean plus two SDs were not included in the average response sweep.
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An SFOAE-based measure of cochlear tuning

A measure of cochlear tuning, τ , was obtained from the negative slope of the SFOAE

phase gradient (rate of change of SFOAE phase as a function of frequency). This

has been shown to reflect the round-trip propagation time: the time taken for fP to

reach its characteristic frequency (CF) place on the basilar membrane, and for the

generated emission to return to the ear-canal (Schairer et al., 2006; Shera et al.,

2002; Talmadge, Tubis, Long, & Piskorski, 1998; Zweig & Shera, 1995). The

traveling wave build-up near the CF however accounts for the bulk of time during

this round-trip propagation, while the ear-canal, middle-ear and basilar membrane

transmission times are negligible (Don, Ponton, Eggermont, & Kwong, 1998; Zweig

& Shera, 1995). For these reasons, τ , which is roughly half of the total time taken,

serves as an indirect measure of cochlear tuning. The phase slope and the bandwidth

(BW) of the cochlear filter at a given frequency is thus inversely related, with steeper

phase slopes corresponding to sharper cochlear tuning (Shera et al., 2002). This

method has been validated in several animal models (Bergevin, Freeman, Saunders,

& Shera, 2008; Joris et al., 2011; Shera, Guinan, & Oxenham, 2010) and humans

(Bhagat & Kilgore, 2014; Boothalingam & Lineton, 2012; Guinan et al., 2003;

Schairer et al., 2006). The τ in the present study was measured in a similar fashion

to Boothalingam and Lineton (2012), as in equation 5.2:

τ ≡ 1

fB − fA

∫ A

B

τ(f)df (5.2)

where, for a single frequency:
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τ(f) ≡ −1

2π

dφ

df

φ(f) ≡ arg{PSF/stim(f)} (5.3)

Equation 5.2 shows the calculation of τ for frequencies (f ) A to B. The first line

in equation 5.3 shows how τ(f) is obtained for the frequency f. In the second line,

the phase φ(f) is obtained by separating the real and imaginary parts of the SFOAE

sound pressure PSF (f). Only the frequency regions that had SNRs better than 10 dB

were considered for obtaining the group delay. This was achieved by the first author

manually picking only the best SNR region; a linear regression line was then fit in

that band to obtain τ . Thus a weighting function as in Boothalingam and Lineton

(2012) was not required.

Spontaneous OAEs (SOAEs) were recorded to allow rejection of SFOAEs within

50 Hz of an SOAE to avoid phase related complexities.

5.2.3 Test for MEMR

In addition to confirming that ARTs for all children were >70 dB HL using a clinical

immitance meter, additional analyses were performed to rule out MEMR affecting

the observed MOC inhibition of SFOAE. This additional check was performed in

light of several recent studies showing that MEMR can be activated at levels much

lower than what is typically obtained with a clinical immitance meter (e.g. Goodman,

Mertes, Lewis, & Weissbeck, 2013; Guinan et al., 2003; Zhao & Dhar, 2009). The

present test is based on the hypothesis that a significant MEMR would consistently

increase probe-tip stimulus levels. This is because MEMR activation will stiffen the

ossicular chain and retract the tympanic membrane, resulting in increased reflection

of stimulus energy back to the ear-canal. A cut-off value of 1.4% (0.12 dB) increase
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in stimulus level during elicitor-on condition compared to no-elicitor condition has

been suggested as an indication of MEMR activation (Abdala, Dhar, Ahmadi, &

Luo, 2014; Abdala, Mishra, & Garinis, 2013).

To test for such changes in level, 55 dB peSPL clicks presented at 41.67 Hz were

used as probe stimuli. Clicks were recorded in the ear-canal in two conditions, one

without any contralateral elicitor and one with the same contralateral elicitor used

in the study to elicit MOC reflex. RMS levels of the ear-canal recorded clicks in a

time-window near the first trough of the click waveform (125 µs duration) for elicitor-

on/off conditions for every participant were obtained.
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Figure 5-2: Results of MEMR test. Means and their corresponding individual
data for the change in stimulus level with reference to baseline no-elicitor con-
dition (dB) is plotted (Y-axis). Black straight line in plot A at 0 dB represents
normalized baseline stimulus level (in no-elicitor condition). Black symbols are
group means with their corresponding 95% confidence intervals represented by er-
ror bars. Grey symbols are individual means of RMS amplitude near the stimulus
trough. Circles represent TD and boxes represent sAPD.

As seen in Figure 5-2A, changes in the presence of MOC elicitors were on average
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-0.0019 dB ±0.008 (re: baseline no-elicitor). The largest change in both directions

(increase and decrease in amplitude) was<0.08 dB. Observed stimulus level deviations

occur in both directions, i.e., increase and decrease in level. The observed changes are

small compared to level changes that would be expected if the MEMR was activated,

i.e., <1.4% (0.12 dB) (Abdala et al., 2014, 2013). These changes probably arise due

to random fluctuations in background noise. Note that five children (1 from TD,

and 4 from sAPD group) did not undergo this secondary MEMR test due to time

constraints. Therefore, in these children, their ART thresholds were used for the

evaluation of MEMR activation.

5.2.4 Data inclusion criteria

For data to be considered for statistical analyses the following criteria had to be met:

(1) <10% epoch rejection, (2) minimum SNR of 10 dB, and (3) no MEMR activation.

Based on the inclusion criteria, 18 participants (15 from the sAPD group and 3 from

the TD group) were rejected from the study either due to excessive participant-related

artifacts leading to unreliable SFOAE estimates, or poor SNR. This led to inclusion

of 22 participants in the TD and 23 in the sAPD group. Rejected data are considered

in again in the discussion section to explore reasons for rejection in detail.

5.3 Results

Mean SFOAE level for elicitor-on and elicitor-off conditions across groups are plotted

in Figure 5-3A. Examples of phase slopes, steep and shallow, one from each group are

presented in Figure 5-3B. Visual examination of Figure 5-3A shows that SFOAE level

is reduced in both groups with elicitor-on. To examine if the magnitude of inhibition

is different between the two groups, statistical analyses were carried out.
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Figure 5-3: Panel-A shows mean (averaged across participants) SFOAE level as a
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from sAPD group, for elicitor-off and elicitor-on conditions are shown. The two
phase gradient examples illustrate differences in the obtained τ . In both plots,
straight lines indicate elicitor-off, and dashed lines indicate elicitor-on condition.

One-way repeated measures analysis of variance (RM-ANOVA) with ‘elicitor con-

dition’ (elicitor-on/off) as the independent variable and ‘measure’ (SFOAE level or

τ) as the dependent variables were performed with group (TD and sAPD) as the

grouping variable. Results show a significant interaction between elicitor condition

and group for both level (F [1,43] = 6.76, p = 0.013, η2Partial = 0.14), and τ (F [1,43]
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= 5.05, p = 0.030, η2Partial = 0.11).
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C and D show mean τ for both TD and sAPD groups respectively. In both panels
open circles represent elicitor-off condition and open boxes represent elicitor-on
condition. Significant mean differences are marked with asterisks.

Post-hoc analyses with correction for multiple comparisons using the false discov-

ery rate (FDR: Benjamini & Hochberg, 1995) indicate significant inhibition of SFOAE

level by elicitor in both TD (Mean difference [MD] = 2.19 dB (21.71% change),

CI95% = ±0.51 dB, t [21] = 9.01, p<0.001), and sAPD groups (MD = 1.49 dB (15%

change), CI95% = ±0.40 dB, t [22] = 11.83, p<0.001). However, as illustrated in the
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top panels of Figure 5-4 (A and B), SFOAE level change was significantly higher in

the TD group compared to the sAPD group (MD = 0.70 dB (6.13%), CI95% = ±0.55

dB, t [43] = 2.60, p = 0.013). This suggests weaker MOC functioning in the sAPD

group.

The bottom panels of Figure 5-4 (C and D) illustrates significantly longer τ in

the sAPD group as compared to the TD group (MD = -1.38 ms, CI95% = ±0.95 ms;

t [43] = -2.92, p = 0.006), suggesting sharper tuning in the sAPD group. Mean τ in

the TD group was 11.27 ms, and it was 12.64 in the sAPD group.
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Figure 5-5: Symbols in black show absolute mean change in τ (|∆τ |) for TD and
sAPD groups, and their corresponding raw data are shown in grey symbols. Error
bars represent 95% confidence interval. Asterisks indicate significant change in τ
in elicitor-on condition from baseline elicitor-off condition.

τ in elicitor-on condition was also significantly different between groups (MD =

-1.21 ms, CI95% = ±1.02 ms, t [43] = -2.40, p = 0.021). Unlike the MOC mediated

change in level, change in τ was in both directions, i.e., both increase, and decrease in

delay from elicitor-off condition were observed across participants. Simple averaging
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of this bidirectional change may not represent the actual MOC mediated change in

tuning. Therefore, mean of the absolute change in delay was obtained for both groups,

as shown in Figure 5-5.

Single-sample FDR corrected t-tests show that τ was significantly altered by the

MOC in both TD (Mean = 0.23 ms, CI95% = ±0.09 ms, t [21] = 5.14, p<0.001) and

sAPD (Mean = 0.20 ms, CI95% = ±0.04 ms, t [22] = 7.72, p<0.001) groups. This

result appears to contradict two previous reports on MOC induced change in SFOAE

group delay (Bhagat & Kilgore, 2014; Boothalingam & Lineton, 2012). Both these

studies did not find a significant change in SFOAE group delay due to MOC inhibi-

tion. However, both these studies averaged their raw phase gradient change across

participants. Due to the bidirectional nature of change in the tuning metric across

participants, perhaps an absolute measure is appropriate to understand the role of

MOC strength on tuning. However, individual data or regression analysis may be

more appropriate if one were to study the direction of change. The absolute MOC

mediated change in τ , i.e., |∆τ | = |τ(elicitoroff ) − τ(elicitoron)|, was not signifi-

cantly different between groups (MD = 0.031 ms, CI95% = ±0.10 ms, t [43] = 0.62, p

= 0.53). Mean τ of 11.27 ms and 11.40 ms equate to filter BWs of 78.71 and 78.16

Hz, in elicitor-off and elicitor-on conditions, respectively in the TD group. In the

sAPD group, mean τ of 12.64 ms and 12.60 ms equate to bandwidths of 70.37 and

70.74 Hz in elicitor-off and elicitor-on conditions. Group delay was converted to filter

bandwidths using the method of Shera et al. (2002). These results suggest sharper

tuning in children in the sAPD group compared to the TD group.

To investigate relationships between cochlear tuning and MOC functioning, a nor-

malized measure of MOC strength (∆SFn) was subjected to correlation analysis with

tuning measures. ∆SFn is the percent change in SFOAE level from elicitor-off condi-

tion to elicitor-on condition, normalized by baseline SFOAE level at each frequency
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in Pascals (Garinis, Glattke, & Cone-Wesson, 2011; Mishra & Lutman, 2013).
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Figure 5-6: Panels A and B show correlation between ∆SFn and τ for TD and
sAPD groups, respectively. Note that the correlation was significant only in the
TD group. Panels C and D show correlation between ∆SFn and ∆τ for TD and
sAPD groups, respectively. In panels A, C, and D, dashed diagonal lines repre-
sent the relationship between variables in x - and y- axes and the corresponding
equation is shown on the top right corner in each panel. Note that the x -axis is
different for TD and sAPD groups, owing to greater MOC strength in the TD
group. In panels C and D, dotted horizontal line at 0 represents no change in τ
due to MOC inhibition. Data points above the line represent increase in cochlear
delay, and data points below the line represent decrease in cochlear delay due to
MOC activation. Notice that most children in TD group are above the 0 change
line and the opposite is true in the sAPD group.

As illustrated in Figures 5-6A and 5-6B, correlation between ∆SFn and τ (in

quiet) was significant in the TD group (Pearson r [19] = 0.56, p = 0.006) but not

in the sAPD group (Pearson r [20] = -0.14, p = 0.52). However, with elicitor-on,

correlations between ∆SFn and ∆τ were significant for both TD (Pearson r [19] =
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0.46, p = 0.031), and sAPD groups (Pearson r [20] = -0.44, p = 0.035), albeit in

opposite directions (Figures 5-6C and 5-6D). This may suggest that MOC inhibition

sharpens cochlear tuning in the TD and broadens tuning in the sAPD group.

5.4 Discussion

The objective of this study was to: (1) investigate cochlear tuning, (2) reconcile

MOC functioning, and (3) explore the relationship between cochlear tuning and MOC

functioning in children with listening problems (sAPD).

5.4.1 Cochlear tuning

The τ obtained for the TD group in the current study (11.27 ms) is consistent with

adult data reported in a previous study for the same frequency (1 kHz) region (Shera

& Guinan, 2003). However, children in the sAPD group have significantly longer

SFOAE delay (12.64 ms), indicative of sharper cochlear tuning. This result may

appear counterintuitive at first, because individuals with sharper cochlear tuning

would typically be expected to demonstrate good listening (Glasberg & Moore, 1986;

B. C. J. Moore, 2003a; Oxenham & Shera, 2003; Shera et al., 2002). However,

it should be noted that fine frequency resolution comes at the cost of temporal res-

olution. A significantly longer τ in the sAPD group could potentially affect their

auditory processing in many ways. First, filter theory dictates that a sharper filter

will ring longer (Oppenhiem and Wilsky (1997) cited in: Francis & Guinan, 2010).

Consequently, filter ringing in the sAPD group (2.29 ms) is longer than the TD group

(2.02 ms), where ringing duration is obtained from the BW of the filter using the

formula: 1/(2∗π ∗BW ) (Hamilton, 2007). This seemingly small difference in ringing

between the two groups (∼250 µs) can be considered large in the auditory realm,

especially for localization where humans have been shown to discriminate sounds oc-
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curring as small as 10 µs apart (Yost, 1974). Longer ringing time in the sAPD group

thus has the potential to affect their localization acuity (Wakeham, 2008; Zakaria,

2007).

Secondly, in addition to a linear response such as filter ringing, a frequency spe-

cific cochlear non-linearity driven basilar membrane response called ‘after-vibrations’

is also shown to be sensitive to cochlear filter gain and delay (Zheng et al., 2011).

After-vibrations are basilar membrane motions that persist for tens of milliseconds

after stimulus cessation. A sharper cochlear filter will thus ring longer and produce

longer lasting after-vibrations, increasing forward masking. In fact, Shailer and Moore

(1983) reported an inverse relationship between filter bandwidth and gap detection

threshold for frequencies 1 kHz and below in adult listeners. These authors suggested

that ringing of the auditory filter would partially fill in the gaps in a gap detec-

tion task, limiting temporal acuity. Cochlear contributions to forward-masking has

also been reported (Oxenham & Plack, 2000). In a typical speech discourse, speech

sounds occur in rapid succession and an increase in forward masking can mask speech

contrasts, affecting overall speech perception (Dubno, Horwitz, & Ahlstrom, 2003),

especially for lower frequencies where filter ringing is more prominent. It is thus pos-

sible that sharper cochlear tuning in children with sAPD may affect their auditory

temporal acuity, and in turn, speech perception and other related auditory processes.

A closer look at the results of our APD test battery shows that 12 out of 23 children

(sAPD group) failed in the Gap Detection Test, suggesting difficulties in temporal

processing in half the sample. However, there was no correlation between gap de-

tection thresholds and τ . This is not surprising given the restricted range in τ (9.55

to 15.7 ms) in comparison to a much larger range in gap detection thresholds (4.55

to 60.44 ms). Also, behavioral measures of temporal acuity involve coordination of

several neural mechanisms and may be influenced by non-auditory factors (Allen &
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Allan, 2014).

Processing aberrations at the periphery can likely cause a cumulative effect that

may alter signal integrity at higher levels of the auditory system. For instance, given

cochlear influences on auditory brainstem responses (Dhar et al., 2009; Nuttall,

Heinrich, Moore, & de Boer, 2013), it can be envisaged that atypical cochlear pro-

cessing could have a bearing on some of the timing deficits reported at the brainstem

level in children with listening problems (Hornickel & Kraus, 2013; Skoe & Kraus,

2010; Warrier, Johnson, Hayes, Nicol, & Kraus, 2004). Further, temporal processing

deficits have long been suggested to affect normal development of the phonological

system (Tallal, 1980; Tallal, Miller, & Fitch, 1993) and are evident in reading

disability (Reed, 1989), although with no clear consensus (Bishop, Carlyon, Deeks,

& Bishop, 1999). Nevertheless, the importance of temporal processing in language

development (Benasich & Tallal, 2002; Trehub & Henderson, 1996) and speech

perception (Dubno et al., 2003; B. C. J. Moore, 2003a; Phillips, 1999) is well

established. Given the commonly observed co-morbidity of reading/learning difficul-

ties in children with listening difficulties (Sharma, Purdy, & Kelly, 2009), it can be

asserted that atypical cochlear tuning may have some bearing on their global audi-

tory processing deficits. It should be noted that there is considerable overlap in the

delay metric between the two groups. This means that not all children with listening

difficulties will have sharper tuning, but perhaps a subset of APD may have listening

difficulties arising due to atypically sharp tuning. Identifying children with known

physiological processing differences, such as cochlear tuning, and profiling their audi-

tory behavior may shed more light on the influence of subtle physiological differences

in children with APD.

Some caveats to consider are middle-ear transmission differences across the age
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group tested in this study. However, considering there was no age effect in the tuning

metric obtained, this middle-ear effect can be largely ruled out. Another variable

may be level differences across individuals, this variable too was accounted for with

the use of individualized in-ear calibration at every frequency. thus even if there were

ear-canal size differences or probe insertion depth differences, they were accounted

for. In addition, a 10 dB SNR criterion was used in this study to avoid contamination

of phase responses due to noise. Although this high SNR criterion led to rejection of

many children, the remaining sample can be considered with confidence. Thus the

stimulus level reaching the cochlea can be assumed to be homogeneous across the

sample, therefore, the difference in tuning metric observed can only be attributed to

the difference in actual cochlear tuning.

5.4.2 MOC function and cochlear processing

Significantly lower MOC strength in the sAPD group is consistent with previous stud-

ies (e.g., Muchnik et al., 2004), and is suggestive of reduced MOC functioning. It

is possible that this reduced MOC functioning may contribute to speech-in-noise dif-

ficulties in children with sAPD. Further, the presence of correlation between τ and

∆SFn in the TD group and the lack of which in the sAPD group indicates that the

MOC influence is important for normal functioning of the cochlea, even in quiet. It

is enticing to interpret reduced MOC control on the cochlea in the sAPD group as

responsible for their elevated cochlear tuning. However, as seen in Figure 5-6A, the

direction of correlation in the TD group suggests otherwise: stronger MOC reflex

was associated with sharper cochlear tuning. It is important to note the relationship

between MOC reflex and τ exists in the absence of an MOC elicitor. One possible

reason for this correlation could be the pre-natal relationship between the MOC and

the developing cochlea. Transient MOC innervation on the inner hair cells has been

shown to be critical for proper development of the auditory system (Johnson et al.,
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2013; Lauer & May, 2011; Simmons, 2002).

E. J. Walsh, McGee, McFadden, and Liberman (1998) reported broader tuning

curves resulting from improper development of the cochlear amplifier in neonatally

de-efferented cats. These investigators also suggested that the de-efferentation could

lead to either over- or under- expression of a key component of the OHC amplifi-

cation process. However, it is unknown if ‘reduced’, as opposed to complete loss

of, MOC activity during developmental stages in the sAPD group could lead to the

subtle irregularities observed in their cochlear processing. Another related reason is

based on maturity of non-linear cochlear processing. OAE-based studies report adult

like intra-cochlear suppression tuning curves in full-term neonates (Abdala, Sininger,

Ekelid, & Zeng, 1996; Bargones & Burns, 1988; Chabert et al., 2006; Egger-

mont, Brown, Ponton, & Kimberley, 1996), providing support for cochlear maturity

at birth. However, pre-term neonates show sharper cochlear tuning than full-term

neonates and adults for frequencies below 1.5 kHz (Abdala et al., 1996). This unusu-

ally sharp tuning has been unexplained by middle-ear transmission differences across

age groups (Abdala & Dhar, 2012; Abdala, Keefe, & Oba, 2007). In addition,

Abdala and Chatterjee (2003) reported that the DPOAE input/output function in

immature cochleae shows saturation at very high levels compared to adults, suggesting

an extended range, and ‘over-activity’ in cochlear amplification. Basilar membrane

immaturity in the apical half of the cochlea (Abdala & Dhar, 2012) and immature

MOC (Abdala, 2000) have been suggested as possible causes for such atypical pro-

cessing. Evidence for immature MOC activity has also been reported by Abdala et

al. (2013), where pre-term neonates showed persistent DPOAE level enhancement

that is unrelated to DPOAE source mixing. Sharper tuning observed in the sAPD

group in the current study is similar to the sharper-than-normal tuning observed in

cochleae that are thought to be immature. Reduced MOC control on cochlear ampli-
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fication, and the lack of correlation between τ and ∆SFOAE support the hypothesis

that cochlear processing discrepancies observed in the sAPD group could stem from

reduced MOC functioning with potential developmental links.

An intriguing result from the current study is the opposing correlation between

∆SFn and ∆τ between groups. While MOC activation sharpens cochlear tuning in

the control group, it appears to broaden cochlear tuning in the sAPD group. Consid-

ering MOC activation reduces cochlear gain, a broadened cochlear filter is expected

according to filter theory (Francis & Guinan, 2010). However, the increase in tuning

found in the control group is consistent with previous studies for the 1 kHz region

(Bhagat & Kilgore, 2014; Francis & Guinan, 2010). Using afferent fiber tuning

curves in cats, Guinan and Gifford (1988) showed sharpened tuning elicited by MOC

activation at low frequencies (<2 kHz) due to an increase in the threshold of the low

frequency side of the tuning curve. At frequencies above 2 kHz, broadened tuning

occurred due to an increase in threshold at the CF, i.e., at the tip of the tuning curve.

This difference in MOC activation is suggestive of differential cochlear amplification

between low and high frequency regions on the basilar membrane (Cooper & Rhode,

1995; Ruggero, Rich, Recio, Narayan, & Robles, 1997). Similar results have also

been reported for psychoacoustic tuning curves (Aguilar, Eustaquio-Mart́ın, & Lopez-

Poveda, 2013; Kawase et al., 2000; Quaranta, Scaringi, Nahum, & Quaranta, 2005;

Vinay & Moore, 2008). MOC inhibition of SFOAEs has thus revealed a difference in

the cochlear amplification process for the sAPD group, in addition to their sharper

tuning. Collectively, the differential cochlear amplification and overactive cochlea ap-

pear to provide reasoning for both atypically sharp tuning and the tendency towards

broadening of tuning with MOC activation.

∆τ in the TD group suggests that the MOC may aid in maintaining broad tuning
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in quiet which promotes better temporal resolution. In the presence of background

noise, MOC inhibition of OHC activity sharpens cochlear tuning, promoting better

spectral resolution, at least at 1 kHz. Both frequency and temporal resolution are

critical for optimal auditory processing. Therefore, it can be envisaged that reduced

MOC functioning in the sAPD group may lead to difficulties in auditory processing,

due to forward masking, and reduced signal unmasking in noise. Improper signal

processing can lead to development of a weak phonological system in children (Tallal,

1980). This may in turn fail to fine-tune the auditory system in selectively responding

to meaningful speech stimuli (Hornickel & Kraus, 2013), with consequent auditory

and reading/learning difficulties. It is currently unknown how much such an adaptive

change in tuning can influence auditory processing further up the auditory system.

Further studies that investigate other auditory processes in conjunction with the

MOC and cochlear functioning may provide additional insights into the MOC and

cochlear role in the difficulties presented by children with sAPD.

5.4.3 What about rejected data?

Considering many of the children whose data were rejected belonged to the sAPD

group (15 out of 18), rejected data were examined for common factors for rejection

among sAPD children. All children whose data were rejected passed the screening

DPOAE test, therefore were expected to have good SFOAEs. Indeed, many children

did have good SFOAEs. However, SFOAE group delay calculation is derived from

measures at multiple discrete frequencies. Therefore, if some frequencies are affected

by noise or artifacts, the SFOAE group delay calculation will be unreliable. This

is because, the group delay calculation requires a reliable estimate of the slope of

the regression line fitted to the phase data. If some frequencies are affected by large

artifacts, it will render the resulting slope unreliable. This happened in 7 of 15 sAPD

children who were rejected.
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Further, average noise floor level in the 13 of 15 children (data from two children

could not be used due to excessive artifacts) that were rejected was -12 dB SPL,

with some as high as -3 dB SPL, compared to -17 dB SPL in TD children who were

included in the study. Pairwise comparison of noise levels between children rejected

from the sAPD group and TD children revealed a significant difference between these

groups (t [15.06] = -3.54, p = 0.003). This suggests that children with listening

problems can also be quite noisy. Sources of this noise may be due to an inability to

follow instruction to sit quietly, causing artifacts, or some were unable to sit quietly

even if they understood instructions. These factors point towards distractibility of

these children, and may have implications in an academic setting. A few children

who were able to sit quietly had excessive physiological noise such as breathing and

circulatory sounds. K. P. Walsh, Pasanen, and McFadden (2014) suggested that MOC

activity mediated by attention may be involved in reducing ear-canal physiological

noise. Together, reduced MOC activity and co-morbidities that may be related to

inattention (D. R. Moore, Ferguson, Edmondson-Jones, Ratib, & Riley, 2010) may

also contribute to excessive noise in the sAPD group. Higher rejection in the sAPD

group thus calls for two things; (1) further examination of aspects such as internal

physiological noise that may or may not be associated with the auditory system, (2)

development of tools that are resilient to physiological noise and participant related

artifacts to measure cochlear tuning and MOC inhibition of OAEs.

5.5 Conclusion

Results from the current study show atypically sharp cochlear tuning and reduced

MOC functioning in children with listening difficulties. Increased tuning causes longer

cochlear filter ringing times and increased after-vibrations that can potentially affect
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temporal processing ability. However, there were overlap in data between the two

groups, suggesting that not all children with suspected APD will have sharper cochlear

tuning, but perhaps a subset of children with suspected APD may have listening

difficulties arising due to sharper-than-optimal cochlear tuning. Correlation between

tuning in quiet and MOC reflex in the TD group, and the lack of this in the suspected

APD group suggests that MOC is important for normal functioning of the cochlea.

The change in cochlear tuning in opposite directions (sharper in TD, and broader in

sAPD) due to MOC activation shows contrastive cochlear function between the two

groups. Collectively, differential cochlear amplification, reduced MOC function, and

significantly sharper tuning may be interlinked in the findings of the sAPD group.

Further studies are required to explore auditory processes that could be influenced

by such subtle differences in cochlear processing and MOC functioning in children

suspected with APD.
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Chapter 6

Binaural Medial Olivocochlear
Functioning in Children with
Suspected Auditory Processing
Disorder

6.1 Introduction

It is now well known that cortical influence on peripheral hearing mechanisms fine

tunes bottom-up signal encoding (Khalfa et al., 2001; León, Elgueda, Silva, Hamame,

& Delano, 2012; Perrot et al., 2006; Winer, 2006; Xiao & Suga, 2002). The final

leg in this feedback loop is the medial olivocochlear system (MOC) at the level of

the superior olivary complex (SOC). Cortico-olivary projections contact the MOC di-

rectly (Coomes & Schofield, 2004; Mulders & Robertson, 2000), or through indirect

connections that traverse via various collicular nuclei (Huffman & Henson, 1990).

This top-down influence has been shown mainly to regulate the gain of bottom-up

signals in the system (Robinson & McAlpine, 2009). This gain regulation starts

from the cholinergic MOC axons that directly innervate the electromotile outer hair

cells (OHCs) in the cochlea (Gifford & Guinan, 1987; Liberman & Brown, 1986;

Warr & Guinan, 1979). Upon activation, the MOC hyperpolarizes OHC activity

thereby reducing the putative cochlear amplification (Guinan, 2006), measured as
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reduced afferent neural responses (Guinan & Gifford, 1988) and otoacoustic emis-

sions (OAEs; Collet et al., 1990; Guinan, 2006). This reduction in OHC activity

improves the dynamic range of afferent fibers in noise, such that they can fire for

novel transient stimuli, essentially improving the signal-to-noise ratio (SNR; Kawase,

Delgutte, & Liberman, 1993; Winslow & Sachs, 1988). Improvement in SNR trans-

lates to better speech perception in noise (de Boer, Thornton, & Krumbholz, 2012;

Giraud et al., 1997; Kumar & Vanaja, 2004; Mishra & Lutman, 2014). Improve-

ment in speech-in-noise is relevant to the present study because, it is the prime issue

in children with auditory processing disorder (APD), despite their normal hearing

thresholds (Chermak, Tucker, & Seikel, 2002).

American Academy of Audiology [AAA] (2010) defines APD as “difficulties in the

perceptual processing of auditory information in the central nervous system and the

neurobiological activity that underlies the processing”. Impetus for investigation of

MOC strength (magnitude of reduction in OAE level) was provided by recent stud-

ies that show reduced MOC function in children with APD (Muchnik et al., 2004;

Sanches & Carvallo, 2006), selective mutism (Bar-Haim et al., 2004) and adults

with learning difficulties (Garinis, Glattke, & Cone-Wesson, 2008). On the other

side of the ‘listening’ spectrum, musicians show stronger than typical MOC strength

(Brashears, Morlet, Berlin, & Hood, 2003; Micheyl, Khalfa, Perrot, & Collet, 1997;

Perrot, Micheyl, Khalfa, & Collet, 1999). Considering musicians show exceptional

listening abilities (review: Perrot & Collet, 2013), strong MOC reflex in musicians,

and weak MOC reflex in individuals with poor speech-in-noise perception makes a

strong argument towards MOC’s role in fine-tuning the auditory system, especially

in noise. These studies have led to speculation that MOC inhibition, and/or reduced

corticofugal influence on the cochlea could play a role in speech-in-noise problems in

children with listening difficulties. However, there is no clear consensus on the MOC
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inhibition of OAEs in APD. Some studies have failed to find any difference in MOC

function between typically developing (TD) children and children with APD (e.g.,

Butler, Purcell, & Allen, 2011).

It should also be noted that Sanches and Carvallo (2006) too did not find a

significant group difference in MOC inhibition; inhibition in their APD group was

numerically smaller when it was expressed as a percentage of control group inhibi-

tion. Muchnik et al. (2004) found statistically significant group differences, and also

reported that fewer children in their control group had MOC inhibition that was

smaller than a cut-off value (0.6 dB or 1 dB) compared to their APD group in an

equality of proportions test. It is thus unclear, if MOC function is truly reduced in

children with APD. Moreover, MOC-based studies in individuals with listening diffi-

culties have only used contralateral stimulation of the MOC so far; this only evokes

the uncrossed MOC pathway (Guinan, 2006; Warr & Guinan, 1979). Anatomi-

cally, the contralateral stimulus crosses midline and evokes ‘contra’ MOC neurons (re:

MOC monitoring probe ear) which project to the ipsilateral ear without crossing the

midline. An ipsilateral stimulus on the other hand, crosses the midline and evokes

‘ipsi’ MOC neurons; axons from ipsi neurons cross the midline again (double-crossed)

and project back to the ipsilateral cochlea (Guinan, 2006; Warr, 1992).

Listening in noise in real life will evoke both these crossed and uncrossed MOC

pathways through binaural activation. In addition, a large proportion of MOC neu-

rons respond to binaural stimuli (Brown, Kujawa, & Duca, 1998; Liberman, 1988;

Liberman & Brown, 1986). Several differences in physiological responses between

monaural and binaural MOC activation have been reported. For instance, binaural

MOC activation is more effective in protecting the cochlea against loud noises (Rajan

& Johnstone, 1988). MOC inhibition also alters cochlear tuning; if both cochleae are
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not adjusted in tandem, auditory process such as localization, that depend on subtle

timing differences between ears, can be disrupted (Francis & Guinan, 2010). Thus,

if one were to elucidate MOC function in children with APD, binaural MOC activity

must be studied.

The present study sought to address this by measuring ipsilateral (crossed), con-

tralateral (uncrossed) and binaural (both crossed and uncrossed) MOC activation

of MOC in children with suspected APD. Another motivation for studying binaural

MOC function in this population is that, children with APD have also been indicated

to have inconsistencies in binaural signal processing (American Academy of Audiol-

ogy [AAA], 2010; Delb, Strauss, Hohenberg, & Plinkert, 2003; Gopal & Pierel,

1999; Sweetow & Reddell, 1978). Sweetow and Reddell (1978) reported reduced

binaural masking level difference (BMLD) in children with APD.

Reduced BMLD has also been indicated in children with a history of otitis media,

typically considered at risk for APD (Hall & Grose, 1993; Moore, Hutchings, &

Meyer, 1991). In addition to reduced BMLD, reduced binaural interaction measured

using behavioral tests such as binaural resysnthesis have also been reported in children

with listening difficulties (Roush & Tait, 1984). Physiological measures such the

auditory brainstem response (ABR) binaural interaction component (BIC) have also

been reported to be affected in children with APD (Delb et al., 2003; Gopal &

Pierel, 1999). Obtaining ipsilateral, contralateral and binaural MOC inhibition of

OAEs presents an opportunity to study binaural interaction at the level of the MOC

in children with APD. However, note that fundamental differences exist between

the electrophysiological BIC (eBIC), an afferent response, and an MOC counterpart

of eBIC (mBIC), an efferent response measured acoustically. Nevertheless, mBIC

may provide insights into both MOC function and its binaural interaction in these
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children. Thus, a secondary aim of this study was to explore mBIC in children with

APD. Where, mBIC is the difference between the sum of ipsilateral and contralateral

MOC inhibition of OAEs and binaural MOC inhibition of OAEs:

mBIC = (ipsi+ contra)MOCinhibition− binauralMOCinhibition (6.1)

A positive mBIC would mean binaural inhibitionA
1 because the response to bin-

aural stimulation would be smaller than the sum of monaural responses. A negative

mBIC would mean binaural facilitation, as binaural response would be larger than

the sum of monaural responses. In addition to the mBIC, binaural resysnthesis (BR;

Ivey, 1969), a behavioral test, was also conducted to obtain a behavioral correlate

of binaural interaction. BR involves dichotic presentation of two words, where in-

formation to one ear is low-pass filtered, and words presented to the opposite ear is

high-pass filtered. The listener’s task is to repeat the correct word by integrating

information from both ears. This has been shown to be an effective test in diagnosis

of APD in children (Singer, Hurley, & Preece, 1998). In summary, binaural MOC

function, and binaural interaction obtained using MOC inhibition of OAEs, and a be-

havioral measure of binaural interaction was investigated in children with suspected

APD in the present study.

6.2 Method

6.2.1 Participants

Forty-seven children in the age range 7-17 years, twenty-one TD children (TD group;

mean age = 11.4 years, standard deviation (SD) = 2.4 years, 13 females) and twenty-

1In order to avoid confusion between binaural neural inhibition at the brainstem level and MOC
inhibition of CEOAEs, we will refer to binaural neural inhibition as inhibitionA (subscript ‘A’ refers
to afferent pathway). Note that these terms are descriptive (McPherson & Starr, 1993).
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six children referred to our in-house Audiology clinic with listening problems took

part in the study (sAPD group; mean age = 9.9 years, SD = 2.8 years, 8 females).

All children had normal middle ear function and hearing thresholds of 20 dB HL or

better between 0.25 and 8 kHz at octave intervals. All children had ipsilateral and

contralateral acoustic reflex thresholds >70 dB HL for steady state broadband noise

(BBN). Children also underwent a screening DPOAE measurement (Integrity v-500,

Vivosonic Inc., ON) to confirm the presence of OAEs.

Children in the sAPD group underwent a test battery similar to that used by Allen

and Allan (2014) that included three standard clinical tests: the Staggered Spondaic

Wordlist (SSW; Katz, 1998), Words in Ipsilateral Competition (WIC; Ivey, 1969)

and Pitch Pattern Sequence test (PPS; Pinheiro, 1977), and two psychoacoustic

tests that use adaptive procedures developed in-house for use with children: Gap

Detection (GD), and Difference Limen for Frequency (DLF). Tests were administered

in accordance with their respective manuals and were interpreted according to pub-

lished age-specific normative data. Of the 26 children in the sAPD group, 16 were

diagnosed as having APD based on American Speech-Language-Hearing Association

[ASHA] (2005) guidelines, i.e., scored 2 SDs below the normative expectation in at

least two tests. Eight children failed in one test, and two children passed all tests.

Of the 10 children who passed all or all-but-one behavioral measures, all had atypical

ABR in the form of prolonged peak latencies; prolonged inter-peak latencies; or ab-

normal wave I-V amplitude ratio. Abnormalities in ABR have been recently reported

in children suspected with APD. A recent study (Allen & Allan, 2014) showed that

behavioral tests alone may not be adequate in diagnosis of APD, which supports

recommendations by professional bodies (e.g., AAA, 2010). Allen and Allan (2014)

found several children who passed these behavioral tests had abnormal neural encod-

ing of sound measured using ABR and/or absent/elevated acoustic reflex thresholds.
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Therefore, children who passed the behavioral test battery but who had abnormal

ABR were also included in the study group (sAPD) along with children diagnosed as

APD.

The study was conducted in a double-walled, sound attenuated booth (Industrial

Acoustics Company, NY). Study methods were approved by the Health Sciences Re-

search Ethics Board of Western University, Canada. The nature of the study was

explained prior to obtaining written informed assent from every participant, and in-

formed consent from participants’ parent/caregiver. Participants were compensated

for their time with gift cards towards books or school supplies.

6.2.2 Otoacoustic emission experiment

Stimulus generation and recording

All stimuli were digitally generated in Matlab (Mathworks Inc, MA) at a sampling

rate of 32 kHz. Clicks were unfiltered, and 93.75 µs in duration, corresponding to four

sample points at 32 kHz sampling rate, and were presented at 55 dB peSPL. This

level was chosen to maximize the probability of MOC inhibition (Hood, Berlin, Hur-

ley, Cecola, & Bell, 1996; Veuillet, Collet, & Duclaux, 1991) while minimizing any

ipsilateral MOC inhibition due to the stimulus clicks. In order to obtain ipsilateral

and binaural MOC inhibition of CEOAEs, the present study used a forward masking

paradigm. This is illustrated in Figure 6-1; the MOC elicitor was presented first to ac-

tivate the MOC, and OAE evoking clicks followed after a 2 ms gap. More specifically,

four click ‘epochs’ were presented in a sequence following MOC elicitor presentation;

each epoch was 24 ms long and contained one click presentation. A train of four

epochs, called a sweep-block, was 96 ms long, and corresponded to the rate 41.67 Hz.

This arrangement was chosen to capture the complete MOC inhibitory effect, which

has been shown to have a decay time of 159 ± 54 ms (Backus & Guinan, 2006).
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MOC activating elicitors were uniform random BBN of 478 ms duration with 20 ms

onset/offset ramps to avoid startle responses. Elicitors were presented at 60 dB SPL,

sufficiently below the ART of every participant. Notwithstanding, additional tests

(see subsection 6.2.2) were performed to check for the effect of the middle ear muscle

reflex (MEMR) on click stimuli. The 2 ms gap between elicitor presentation and start

of click presentation was introduced to allow any transducer ringing to subside, and

the basilar membrane to revert to baseline activity to avoid intracochlear suppression.

Figure 6-1: Schematic representation and temporal sequence of events for CEOAE
recording with MOC elicitors. Four clicks per elicitor condition were presented to
obtain CEOAE, this is depicted as squares (with clicks) on the top row. Elicitors
in ipsilateral and contralateral channels are in illustrated in separate rows. Du-
ration of each event is provided in the fourth row. Note that size of each element
in the figure is made disproportionate to their duration to show smaller events
clearly.

In the forward masked CEOAE paradigm, elicitors were presented ipsilaterally,

contralaterally and binaurally (see Figure 6-1). Adequate silent gaps were introduced

between each MOC activation so that the MOC reverted back to its baseline activity

before being activated by another elicitor. A minimum duration of 200 ms is required
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for these gaps (Backus & Guinan, 2006). The difference in this gap duration across

sweep-blocks is to accommodate integer number of 1.024 s windows in one complete

sweep, to match the restrictions of our measurement system.

Signals were played through a digital-to-analog converter (National Instruments

6289 m-series, TX) at a sampling rate of 32 kHz to three separate programmable

attenuators (PA5; Tucker-Davis Technologies, FL) that controlled the output signal

levels. Clicks and ipsilateral elicitors were presented in two separate channels routed

to the same ear. These signals were power amplified (SA1; Tucker-Davis Technolo-

gies, FL) and fed to two ER2 transducers (Etymotic Research, IL) connected to an

ER-10B+ otoacoustic emission probe system (Etymotic Research, IL) that delivered

signals in the ear-canal. A single ER2 insert receiver delivered contra-elicitors in the

contralateral ear. All stimuli were calibrated using a Type-2250 sound level meter

(Brüel and Kjær, Denmark), and an ear simulator Type-4157 (IEC 711; Brüel and

Kjær, Denmark). Responses were recorded using the ER-10B+ probe system with

the pre-amplifier gain set at +40 dB. The recorded signal was then fed through a

bandpass filter (Frequency Devices Inc., IL; chasis 90IP with a 90PF dual-channel

programmable filter card) that filtered responses from 0.4 to 10 kHz and applied a

further 20 dB gain. The filtered response was then digitized by an analog-to-digital

converter which applied another 6 dB of gain prior to conversion (National Instru-

ments 6289 m-series). Stimulus delivery and response acquisition were controlled

using custom programs developed in LabView (National Instruments, TX), similar

to Purcell, Butler, Saunders, and Allen (2008). The laterality of elicitor presentation

was counterbalanced across participants. Participants sat in a comfortable chair in a

double-walled sound attenuated booth and watched a silent closed captioned movie.

They were encouraged to relax, and swallow as few times as comfortable. OAEs were

recorded from only one ear per participant. The ear being tested was chosen based
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on DPOAE amplitude obtained during the screening process.

CEOAE offline analyses

Stimulus reliability was checked across all recorded epochs to remove artifactual

epochs. Epochs with stimulus RMS amplitudes that were two SDs above the mean

(within-individual) were rejected. Responses in the time-window from 5-20 ms were

extracted, and digitally bandpass filtered from 0.5 to 6 kHz using a fourth order zero

delay Butterworth filter to obtain CEOAE and noise metrics. To estimate response

reliability, consecutive epochs were separated into two buffers: A and B. A correlation

analysis was performed between the two buffers and served as a measure of reliability.

Noise was estimated by subtracting the RMS difference between the grand response

mean and mean responses from each buffer. A CEOAE was calculated as the mean

RMS amplitude of the response within the time window. MOC inhibition of CEOAEs

obtained in Pascals was expressed as normalized (re: baseline CEOAE level) percent

change in CEOAE level (∆OAEn).

Test for MEMR

In addition to recruiting participants only with high enough ARTs (>70 dB HL),

click levels were probed offline for deviations in level during elicitor presentations (re:

elicitor-off condition). This test is based on the hypothesis that a significant MEMR

would consistently increase probe-tip stimulus levels. This is because, MEMR acti-

vation will stiffen the ossicular chain and retract the tympanic membrane, resulting

in increased reflection of stimulus energy back to the ear-canal. A cut-off value of

1.4% (0.12 dB) increase in stimulus level during elicitor-on condition compared to

elicitor-off condition was suggested as an indication of MEMR activation (Abdala,

Dhar, Ahmadi, & Luo, 2014; Abdala, Mishra, & Garinis, 2013).
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To test for such large changes in level, RMS levels of the ear-canal recorded stim-

ulus in a time-window near the first trough of the recorded click waveform (125 µs)

across all elicitor conditions for every participant were obtained. Individual and mean

data of this analysis are plotted in Figure 6-2, which clearly shows that the deviations

in stimulus level do not exceed ±0.075 dB. Deviations observed here are very small,

and are seen in both directions, i.e., increase and decrease in level. A level reduction

would not be expected if MEMR were to act on the stimulus (Abdala et al., 2013).
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group mean with their corresponding 95% confidence intervals represented by er-
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stimulus trough. Circles represent TD and boxes represent sAPD.

Further, one-way repeated measures analysis of variance (RM-ANOVA) was con-

ducted to test for effect of MOC elicitor laterality. If there was an effect of MEMR, a
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larger reduction in stimulus level in the binaural elicitor condition would be expected,

compared to the two monaural lateralities, due to increased stimulus energy resulting

from binaural summation. However, results show no effect of MOC elicitor laterality

(F [2, 68] = 0.26, p = 0.74), suggesting that the observed changes in stimulus levels

are not due to MEMR. These changes probably arise due to random fluctuations in

background noise. Therefore, any CEOAE level reduction reported in this study is

likely only due to MOC activation, rather than MEMR.

6.2.3 Binaural Re-synthesis Test (BR)

BR test was carried out with a two channel clinical audiometer (GSI-61, Grason-

Stadler Inc., MN) at 25 dB above participant’s thresholds, i.e., 25 dB sensation level

(SL). Hearing thresholds at 0.5 and 1 kHz were used to set presentation levels for low-

and high-pass channels, respectively, as per Ivey (1969). The audiometer’s VU meter

was adjusted to zero using a calibration tone prior to testing every participant. Stereo

speech stimulus was routed through two channels of the audiometer from a JVC CD

player (Model: XL-Z232) and delivered to the ear-canal by two ER-3A (Etymotic

Research, IL) insert receivers. Children sat in a double walled sound treated booth

(Eckel Industries, ON), and were instructed to repeat the words they heard. The

experimenter in the observation room listened to children’s responses through the

audiometer’s talk-back option, and judged if the responses were correct or wrong.

There were 20 words for each ear and separate ear scores (% correct) were obtained

prior to averaging right and left ear scores to obtain a composite score.

6.2.4 CEOAE data inclusion criteria

For data to be considered for statistical analyses the following criteria had to be

satisfied: (1) a correlation coefficient of 0.85 or higher between the two response

buffers, (2) <10% epoch rejection, (3) minimum SNR of 10 dB, and (4) no MEMR
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activation. Based on the inclusion criteria, four participants from the TD group and

nine participants from the sAPD group were rejected from the MOC inhibition study

due to poor SNR. Two children did not undergo the BR test due to time constraints,

therefore there were 45 participants in analysis of BR.

6.3 Results
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Figure 6-3: All obtained measures are plotted as a function of age for both TD
(circles) and sAPD (pluses) groups. In all panels (A-F), x -axis represents age in
years, and in panels A-C y-axis represents normalized MOC inhibition (∆OAEn),
and mBIC(%) in panel D. Dotted grey lines are drawn in figures A-C to indicate
zero, or no change in CEOAE level due to MOC activation. Dotted grey line
in figure D indicate zero mBIC. In panels E and F, Y-axis represents % correct
response in the BR test. Significant effect of age for BR in TD is depicted as linear
line fit to data in sub-plot E, and its corresponding equation and r is presented
at the bottom of the sub-plot. Sub-plot F represents BR as a function of age for
sAPD which does not show a significant age trend.

Regression analysis with age as independent variables and ∆OAEn (all elicitor

lateralities) and mBIC as dependent variables, did not show any systematic effect of
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age within groups (Figure 6-3A-D). However, average ([right ear + left ear]/2) BR

scores improved significantly as a function of age in the TD group (r = 0.54, β =

4.04, t [18] = 2.78, p = 0.012) as seen in Figure 6-3E. No such trend was present

in the sAPD group (β = 2.23, t [21] = 1.69, p = 0.104), as seen in Figure 6-3F.

Considering there was no significant difference in age between TD and sAPD groups

(Mean difference [MD] = 1.54, CI95% = ±1.55 years, t [45] = 2.0, p = 0.051) all

further analyses were made with groups as a whole for all measures (∆OAEn, mBIC

and BR). RM-ANOVAs were conducted as appropriate, and are described below with

Greenhouse-Geisser corrections where necessary.

6.3.1 MOC inhibition

Raw values and group means for ∆OAEn across all elicitor lateralities are presented in

Figure 6-4A. Visual examination of the figure shows considerable overlap in ∆OAEn

between the two groups. An RM-ANOVA with elicitor laterality as independent vari-

able and ∆OAEn as dependent variable, showed no group interactions (F [1.69, 54.20]

= 0.63, p = 0.509, η2Partial = 0.02), as evident in Figure 6-4A. This suggests that

the MOC strength is not different across the two groups, contrary to previous studies

(e.g., Muchnik et al., 2004), but in keeping with (e.g., Butler et al., 2011). There was

a significant effect of elicitor laterality (F [1.69, 54.20] = 100.81, p<0.001, η2Partial =

0.76), owing to the large binaural ∆OAEn.

Post-hoc tests for data collapsed across groups (after false discover rate (FDR:

Benjamini & Hochberg, 1995) corrections) showed a significant difference between

binaural ∆OAEn and both ipsilateral (MD= 19.93%, CI95% = ±4.88%, t [33] = 10.41,

p<0.001) and contralateral (MD = 20.42%, CI95% = ±3.31%, t [33] = 15.85, p<0.001)

∆OAEn. There was no difference between ipsilateral and contralateral ∆OAEn

(MD= 0.49%, CI95% = ±3.32%, t [33] = 0.30, p = 0.763), consistent with findings of
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other studies that show similar MOC strengths between ipsilateral and contralateral

MOC activations (Berlin, Hood, Hurley, Wen, & Kemp, 1995; Lilaonitkul & Guinan,

2009a, 2009b).
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Independent sample t-test showed no significant difference in mBIC between the

two groups (MD= -0.51%, CI95% = ±6.36%, t [32] = -0.16, p = 0.871), as evident in

Figure 6-4B. Lack of difference between groups for mBIC is contrary to eBIC studies

that show reduced binaural interaction in children with listening difficulties (Delb et

al., 2003; Gopal & Pierel, 1999).

To elucidate if ∆OAEn varies temporally between groups, two temporal analyses

were performed. The first temporal analysis is a within-epoch analysis, where the

CEOAE time-waveform was separated into six 2.5 ms long sequential time-windows
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(5-7.5 ms, 7.5-10 ms, 10-12.5 ms, 12.5-15 ms, 15-17.5 ms, 17.5-20 ms) for all elicitor

conditions (including elicitor-off).
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Individual ∆OAEn were then calculated for each of the six time-windows in the same

manner as the original ∆OAEn, with the corresponding elicitor-off time-windows as

reference. Mean ∆OAEn across time-windows are plotted in Figure 6-5A for both

groups separately.

RM-ANOVA with time, elicitor-laterality and group as independent variables and

∆OAEn as dependent variable did not show any significant group interactions, con-

sistent with original ∆OAEn analysis above: elicitor X group interaction (F [2,64] =

1.06, p = 0.354, η2Partial = 0.03), time X group (F [3.76,120.39] = 1.69, p = 0.159,

η2Partial = 0.05) and time X elicitor X group (F [5.63,180.02] = 0.71, p = 0.714,

η2Partial = 0.02). There was however a significant effect of elicitor (F [2,64] = 95.71,

p<0.001, η2Partial = 0.75), owing to larger binaural ∆OAEn. Interestingly, there was

a significant interaction between time X elicitor (F [5.63,180.02] = 3.97, p = 0.001,

η2Partial = 0.11). This interaction was followed up with post-hoc tests, results are

tabulated in Appendix B. Figure 6-5 and post-hoc tests suggest that MOC inhibition

increases with time, substantially beyond 10 ms for the binaural elicitor. For both

monaural elicitors, the increase in inhibition is not as pronounced.

The second temporal analysis, shown in bottom row of Figure 6-5, is an across-

epoch analysis; here, CEOAE levels were obtained for each average epoch (from the

train of four average epochs) separately for every elicitor. ∆OAEn was then calcu-

lated using the corresponding elicitor-off epoch from the train. This analysis provided

data on how MOC inhibition decayed over time, i.e., ∆OAEn from 7-22 ms, 31-46 ms,

55-70 ms, and 79-94 ms after the elicitor had been switched off. Note that the CEOAE

recording window is 5-20 ms, however, this temporal analysis takes into considera-

tion the 2 ms gap between elicitor cessation and first click presentation, therefore the

analysis time starts at 7 ms, not 5 ms.
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In the same fashion as within-epoch temporal analysis, an RM-ANOVA with time,

elicitor and group as independent variables and ∆OAEn as dependent variable did not

show any significant group interactions: elicitor X group interaction (F [2,64] = 1.32,

p = 0.273, η2Partial = 0.04), time X group (F [2.41,77.26] = 0.36, p = 0.783, η2Partial

= 0.01) and no 3-way time X elicitor X group (F [4.08, 130.82] = 0.32, p = 0.928,

η2Partial = 0.01). There was a significant effect of elicitor (F [2,64] = 70.24, p<0.001,

η2Partial = 0.69), and a significant interaction between time X elicitor (F[4.08,130.82]

= 3.45, p = 0.01, η2Partial = 0.10). Results of post-hoc tests are tabulated in Ap-

pendix C. These results demonstrate decay of MOC inhibition over time. Considering

no group differences were found in both additional temporal ∆OAEn analyses, no fur-

ther analyses were performed to explore rise and decay times of the MOC.
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6.3.2 Binaural Re-synthesis

Scores obtained for BR (mean of left and right ears) in the TD group (Mean = 60%,

SD = 18.01%; right ear: 58.5%; left ear: 61.4%) were not statistically different from

the sAPD group (Mean = 55.2%, SD = 19.10%; right ear: 54%; left ear: 56.4%) in an

independent-samples t-test (t [43] = 0.71, p = 0.479). Means and SDs of BR scores

for both groups are plotted in Figure 6-6. BR scores of TD group are consistent with

Roush and Tait (1984), whose control group scores were 58.5±9.1%. However, their

experimental group (‘poor listeners’) performed worse (38.6±11.8%) than the sAPD

group in the current study.

6.4 Discussion

6.4.1 MOC inhibition of OAEs

The current study was undertaken to investigate ipsilateral, contralateral and binau-

ral MOC inhibition of CEOAE in children with listening difficulties, and explore an

MOC equivalent of the binaural interaction component. Contrary to previous studies

(Garinis et al., 2008; Muchnik et al., 2004; Yalçinkaya, Yilmaz, & Muluk, 2010)

that show reduced MOC inhibition in children with listening difficulties, the present

results show no difference in ∆OAEn between the two groups. However, these find-

ings are consistent with studies that show no difference in MOC inhibition between

TD and sAPD groups (Abdelrazeq, 2014; Burguetti & Carvallo, 2008; Butler et al.,

2011; Clarke, Ahmmed, Parker, & Adams, 2006; Veuillet, Magnan, Ecalle, Thai-

Van, & Collet, 2007). Several factors could have led to the difference between the

present and previous studies that show significant differences. We will first consider

methodological differences between previous OAE studies and the present study. A

forward masking MOC paradigm was used in the present study to evoke the MOC
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response. All previous studies have used a simultaneous elicitor paradigm. However,

if the hypothesis that MOC function is weaker in children with listening difficulties

is true, a weaker MOC function should reveal itself in any type of MOC stimulation,

simultaneous or forward masked. One exception could be if MOC inhibition of OAEs

decayed over time more quickly in children with sAPD compared to TD. However,

as evidenced in Figure 6-5B, MOC decay across time is near identical for the two

groups. Therefore, differences in MOC activation (forward masked vs. simultaneous

activation) should not cause differences in MOC inhibition of OAEs across groups.

Secondly, previous studies that report a significant difference between APD and

TD have used high click presentation levels (60 to 80 dB peSPL) and faster click pre-

sentation rates (50 Hz). From Veuillet et al. (1991) and Guinan, Backus, Lilaonitkul,

and Aharonson (2003) it is clear that clicks presented at high levels and faster rates

evoke ipsilateral MOC activity, and possibly MEMR. Both Muchnik et al. (2004) and

Sanches and Carvallo (2006) did not control for MEMR in their respective studies.

Muchnik et al. (2004) reported that normal contralateral acoustic reflex was one of

their criterion for including children in their study, but did not mention any cut-off

values. Recent studies have shown that MEMR can be evoked at much lower lev-

els, in normal hearing individuals, than acoustic reflex thresholds obtained from a

clinical immitance meter (Goodman, Mertes, Lewis, & Weissbeck, 2013; Guinan

et al., 2003; Schairer, Ellison, Fitzpatrick, & Keefe, 2007; Zhao & Dhar, 2009).

Further, children with suspected APD have been reported to have elevated or absent

MEMR, which has been thought to be part of their deficits in neural integrity (Allen

& Allan, 2014). Collectively, elevated MEMR in sAPD children, and use of a stim-

ulus that can potentially evoke MEMR in the TD group could lead to an apparent

increase in MOC inhibition in the TD group. This may be interpreted as reduced

MOC functioning in the APD group. In the present study, with a combination of
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low click levels (55 dB peSPL) and with only four clicks presented in sequence at a

slower rate of 41.67 Hz, MEMR was carefully controlled. Further, additional tests

provide confidence that MEMR was not activated in the present study. This evi-

dence supports the notion that MEMR mediated reduction in OAE level in the TD

group, but not in the study group, cannot be ruled out in previous studies that report

differences in MOC inhibition for children with listening difficulties and their controls.

Thirdly, differences in inclusion criteria used to group children as sAPD and TD

between the studies may have potentially led to the differences between the present

study and previous studies that show group differences. Muchnik et al. (2004) only

included children with a diagnosis of APD in their APD group. Their APD diagnosis

was based on Bellis (1996), who suggests positive APD diagnosis if a child fails in one

or more central auditory processing tests. Muchnik et al. (2004) used a competing

sentences test, a speech-in-noise test, a gap detection test, binaural masking level

difference, and auditory brainstem response. Sanches and Carvallo (2006) segregated

children into the APD group if they scored <68% in a speech-in-noise test and scored

<85% on SSW test. These tests are similar to the test battery used in the present

study. Although ASHA (2005) guidelines for diagnosis of APD were followed in the

present study, they are not different from Bellis (1996). However, all children that

presented with listening difficulties were included in the sAPD group in the present

study, irrespective of their diagnosis as APD or non-APD, unlike both Muchnik et

al. (2004) and Sanches and Carvallo (2006). It is possible that inclusion of non-APD

children together with APD children in the present study might have reduced any

contrasts between the sAPD and TD groups. To test if non-APD children had larger

MOC inhibition than children diagnosed as APD, additional analyses were performed

where APD (n = 10) and non-APD (n = 7) were separated into two groups and their

MOC inhibition were compared using independent sample t-tests. Results showed
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no significant difference in MOC inhibition for ipsilateral (t [15]= -0.14, p = 0.891),

contralateral (t [15]= -0.17, p = 0.867) and binaural MOC (t [15]= -0.66, p = 0.515)

lateralities between APD and non-APD children. This suggests that inclusion of non-

APD children may not have improved MOC inhibition of the sAPD group. It is also

likely that diagnosing APD using current behavioral tests and procedures may not

be adequate to identify subtle deficits in auditory physiology. This is either because

of the variability in auditory processing deficits within the group, or mis-diagnosis

of children with problems in non-auditory modalities as APD using the current test

battery (Allen & Allan, 2014). By including children diagnosed as APD and as

non-APD together in the sAPD group, we attempted to mitigate the limitations of

the behavioral test battery. However, segregating children according to their audi-

tory deficits, obtained either using behavioral or physiological measures, may provide

a better avenue for studying MOC strengths in different auditory processing problems.

In the present study, similarity between the two groups for all three lateralities

suggests that MOC function is similar across the two groups, at least when mea-

sured using CEOAEs. Despite the difference in the type of OAE used, the present

results are consistent with Butler et al. (2011) and Abdelrazeq (2014), both these

studies used DPOAEs. DPOAEs measured in the ear canal are a complex mixture of

OAEs generated from two different places, corresponding to two different generation

mechanisms (coherent linear reflection and non-linear distortion) on the the basilar

membrane (Shera & Guinan, 1999). CEOAEs on the other hand are thought to

be generated mainly by coherent linear reflection (Kalluri & Shera, 2007), although

some contributions to CEOAE from distortion components do exist (Withnell, Dhar,

& Thomsen, 2005; Yates & Withnell, 1999). Butler et al. (2011) discussed how

differences between their results and those of Muchnik et al. (2004) and Sanches

and Carvallo (2006) could arise from differences in the type of OAE used to study
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MOC inhibition. Results from the present study, and that of Abdelrazeq (2014) who

separated DPOAE components in his study, suggest that this may not be the case,

considering results from the present study using CEOAEs also do not show group dif-

ferences in MOC inhibition of OAEs. However, further studies that record different

OAE types in a repeated measures design are required to resolve the use of different

OAEs in comparing MOC inhibition across two study groups, such as sAPD and TD.

In conclusion, MOC inhibition of OAEs, across the three lateralities appear to be

similar in sAPD and TD groups, at least when measured using CEOAEs. Method-

ological caveats may likely explain the difference in results between the present study

and previous studies that show significant group differences in MOC inhibition be-

tween children with and without APD.

6.4.2 Binaural interaction and mBIC

A secondary aim of this study was to better understand binaural interaction (mBIC)

at the level of MOC, and explore any differences in mBIC between the two groups.

Results indicate that binaural facilitation is predominant in both groups, consistent

with similar ∆OAEn across groups. Although several studies have measured both

monaural and binaural MOC inhibition of OAEs, a binaural interaction has not been

explicitly studied. Backus and Guinan (2006) briefly mentioned that two out of three

participants in their study showed binaural facilitation, while one participant showed

binaural inhibitionA. The current study thus presents novel findings on binaural in-

teraction at the level of the MOC. Therefore, to understand mBIC findings, we will

compare it with eBIC studies in the APD realm.

Results of mBIC in the present study are different from results of eBIC stud-

ies in two ways; (1) mBIC predominantly displays binaural facilitation despite large
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variability, whereas eBIC shows inhibitionA (Dobie & Norton, 1980; McPherson &

Starr, 1993; Wada & Starr, 1989), (2) no difference between sAPD and TD groups

in mBIC, whereas eBIC shows significant differences (Delb et al., 2003; Gopal &

Pierel, 1999). Several reasons could lead to differences between the two measures.

Firstly, mBIC captures efferent activity that originates at the level of lower brainstem,

whereas eBIC can be generated from anywhere in the auditory system from brainstem

to cortex (McPherson & Starr, 1993; Wada & Starr, 1989). Further, McPherson

and Starr (1993) showed that eBIC increases as its generation site moves rostrally. If

the efferents are governed by the same gradient in binaural inhibitionA that applies

to eBIC, the position of MOC neurons (Liberman, 1988; Warr, 1992) towards the

caudal end of this gradient would predict minimal inhibition or even facilitation.

Secondly, physiological studies show that the response of an ipsilateral MOC neu-

ron is typically facilitated by contralateral acoustic stimulation (Liberman, 1988).

Brown et al. (1998) extensively studied single neuron properties of the MOC to binau-

ral stimulation, and concluded that the response of most MOC neurons are facilitated

by binaural stimulation. This could lead to negative mBIC. In contrast, afferent re-

sponses from the medial superior olive (MSO) and lateral superior olive (LSO) show

inhibition to binaural stimulation (Covey, Vater, & Casseday, 1991; Grothe & Sanes,

1993). Covey et al. (1991) reported that output of LSO neurons to ipsilateral stim-

ulation were completely suppressed when a contralateral stimulus of the same level

was introduced. In the MSO however, the output was not completely suppressed

even at high contralateral stimulus level, but suppression of responses was predom-

inant. Also, inhibitionA of binaural afferent responses are thought to essential for

sound localization (Covey et al., 1991; Yin & Chan, 1990). It thus appears that

the afferent auditory system produces positive BICs, arising from inhibitionA of bin-

aural responses, in contrast to the MOC, which facilitates binaural responses, both
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for different reasons. Facilitation of binaural responses by the MOC may be bene-

ficial for inhibition of cochlear amplification in a manner that is adaptive to input

sound levels, especially for loud sounds where it offers protection against haircell dam-

age (Rajan & Johnstone, 1988). Thus, in addition to the obvious afferent/efferent

differences between eBIC and mBIC, respectively, these BICs reflect fundamentally

different auditory phenomena that serve entirely different purposes in the auditory

system. Further physiological studies that closely compare and contrast these two

BICs may provide further insights into their characteristics.

One reason for the lack of difference in mBIC between TD and sAPD groups could

be that mBIC simply reflects the similarity in ∆OAEn across lateralities. Further,

results of mBIC corroborates equal performance in BR between the two groups. Al-

though no attempts were made to correlate these measures, their outcome suggests

that binaural interaction in the sAPD and TD groups may be similar. This result is

inconsistent with Roush and Tait (1984) who reported poor BR scores in language-

learning disabled children with listening difficulties. BR scores in the TD group are

consistent with those of Roush and Tait (1984), but their study group performed

much poorer. One possible reason for the lack of difference in BR at a group level

could be due to the difference in processing difficulties experienced by each child in

the sAPD group. Children in the sAPD group failed almost equally across the five

tests in the APD test battery (SSW, PPT, GDT, and WIC), but fewer children failed

in the frequency discrimination test. This variability in auditory processing skills

suggests a lack of consistency in binaural processing deficits among sAPD. Allen and

Allan (2014) also reported that no one objective or behavioral test was abnormal in

all children in their APD or non-APD group, and objective measures did not always

correlate with behavioral test outcomes. Allen and Allan (2014) suggested that bas-

ing APD diagnosis on behavioral tests alone may misdiagnose children as APD if they
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had language or attention related problems.

On the other hand, behavioral tests alone may also miss children with genuine

auditory deficits who compensate for their auditory problems with superior language

and attention skills. Perhaps, children in the sAPD group in the present study fall in

the former category, where their auditory processing may be on par with TD children

but other non-auditory factors play a predominant role in their listening problems.

Such children, at least at a group level, may not be different in either behavioral

(BR) or physiological measures (mBIC) from the TD group. One way to filter-out

such children is to study children with known behavioral and physiological (e.g., in

ABR, elevated ART) deficits. It appears that, to better understand relationships

between MOC function and APD, specific processing deficiencies must be studied

individually. Comparing APD as a group with TD on physiological measures such

as MOC inhibition of OAEs comes with large variability due to children with varied

processing issues. For example, to reduce this variability, mBIC could be studied

specifically in children who fail binaural masking level difference (BMLD), consider-

ing BMLD is a binaural interaction test.

Another reason for lack of difference in BR scores between groups could be due

to the large variability of scores in both groups. In contrast, SDs for BR scores

in Roush and Tait (1984) were almost half of SDs obtained in the present study.

Increased variability could have stemmed from the larger age range included in the

present study, 7-17 years, compared to 6-12 years in Roush and Tait (1984). Further,

variability may also arise due to improvement in BR scores with age in both groups,

although this trend was not statistically significant in the sAPD group. The significant

correlation between BR scores and age suggests that binaural interaction measured

using the BR test may not be mature in this age range, and continues to develop until
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late teenage years. This hypothesis is consistent with maturation of other complex

binaural processes such as the precedence effect (Litovsky, 1997). However, this

relationship should be interpreted with caution because a limited number of children

represent different age groups in the present study.

6.5 Conclusion

The present study aimed to elucidate ipsilateral, contralateral and binaural MOC

functioning, and explore binaural interaction at the level of the MOC in children

with listening difficulties (sAPD). Results suggest that children in the sAPD group

do not differ from the TD group in their MOC strength in all three lateralities. This

is consistent with Butler et al. (2011) but is contrary to the findings of Muchnik et

al. (2004) and Sanches and Carvallo (2006). Methodological differences across studies

could have possibly led to differences in findings across studies. Results of mBIC and

BR corroborate with the lack of difference in MOC inhibition of CEOAE between the

two groups. The predominantly negative mBIC compared to positive eBICs may be

explained based on their generation sites, and the response properties of neurons in

the efferent (MOC) vs. afferent (MSO and LSO) circuitry. Further studies that sepa-

rate children based on their specific auditory processing issue are required to explore

relationships between MOC function and specific auditory processing deficiencies.

References

Abdala, C., Dhar, S., Ahmadi, M., & Luo, P. (2014). Aging of the medial olivocochlear
reflex and associations with speech perception. The Journal of the Acoustical
Society of America, 135 (2), 755–765.

Abdala, C., Mishra, S., & Garinis, A. (2013). Maturation of the human medial efferent
reflex revisited. The Journal of the Acoustical Society of America, 133 (2), 938–
950.

Abdelrazeq, S. (2014). Efferent-mediated Changes in the Composite Distortion Prod-
uct Otoacoustic Emissions Signal and its Components: A Potential Tool to In-

185



vestigate Auditory Processing Disorder. Abstracts of The American Academy
of Audiology Conference 2014 .

Allen, P., & Allan, C. (2014). Auditory processing disorders: relationship to cognitive
processes and underlying auditory neural integrity. International Journal of
Pediatric Otorhinolaryngology , 78 (2), 198–208.

American Academy of Audiology [AAA]. (2010). American Academy of Audiology
Clinical Practice Guidelines:Diagnosis, Treatment and Management of Children
and Adults with Central auditory Processing Disorder. Retrieved from http://

www.audiology.org/resources/

American Speech-Language-Hearing Association [ASHA]. (2005). (Central) Auditory
Processing Disorders. Retrieved from http://www.asha.org/policy/

Backus, B. C., & Guinan, J. J. (2006). Time-course of the human medial olivocochlear
reflex. The Journal of the Acoustical Society of America, 119 (5), 2889–2904.

Bar-Haim, Y., Henkin, Y., Ari-Even-Roth, D., Tetin-Schneider, S., Hildesheimer, M.,
& Muchnik, C. (2004). Reduced auditory efferent activity in childhood selective
mutism. Biological Psychiatry , 55 (11), 1061–1068.

Bellis, T. J. (1996). Assessment and Management of Central Auditory Processing Dis-
orders in the Educational Setting: From Science to Practice. SanDiego: Singular
Publishing.

Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate - a
Practical and Powerful Approach to Multiple Testing. Journal of the Royal
Statistical Society Series B-Methodological , 57 , 289–300.

Berlin, C. I., Hood, L. J., Hurley, A. E., Wen, H., & Kemp, D. T. (1995). Binaural
noise suppresses linear click-evoked otoacoustic emissions more than ipsilateral
or contralateral noise. Hearing Research, 87 (1), 96–103.

Brashears, S. M., Morlet, T. G., Berlin, C. I., & Hood, L. J. (2003). Olivocochlear
efferent suppression in classical musicians. Journal of the American Academy
of Audiology , 14 (6), 314–324.

Brown, M. C., Kujawa, S. G., & Duca, M. L. (1998). Single olivocochlear neurons in
the guinea pig. I. Binaural facilitation of responses to high-level noise. Journal
of Neurophysiology , 79 (6), 3077–3087.

Burguetti, F. A. R., & Carvallo, R. M. M. (2008). Efferent auditory system: its
effect on auditory processing. Brazilian Journal of Otorhinolaryngology , 74 (5),
737–745.

Butler, B. E., Purcell, D. W., & Allen, P. (2011). Contralateral inhibition of distortion
product otoacoustic emissions in children with auditory processing disorders.
International Journal of Audiology , 50 (8), 530–539.

Chermak, G. D., Tucker, E., & Seikel, J. A. (2002). Behavioral characteristics of
auditory processing disorder and attention-deficit hyperactivity disorder: pre-
dominantly inattentive type. Journal of the American Academy of Audiology ,
13 (6), 332–338.

186

http://www.audiology.org/resources/
http://www.audiology.org/resources/
http://www.asha.org/policy/


Clarke, E. M., Ahmmed, A., Parker, D., & Adams, C. (2006). Contralateral sup-
pression of otoacoustic emissions in children with specific language impairment.
Ear and Hearing , 27 (2), 153–160.

Collet, L., Kemp, D. T., Veuillet, E., Duclaux, R., Moulin, A., & Morgon, A. (1990).
Effect of Contralateral Auditory-Stimuli on Active Cochlear Micromechanical
Properties in Human-Subjects. Hearing Research, 43 , 251–262.

Coomes, D. L., & Schofield, B. R. (2004). Projections from the auditory cortex to the
superior olivary complex in guinea pigs. The European Journal of Neuroscience,
19 (8), 2188–2200.

Covey, E., Vater, M., & Casseday, J. H. (1991). Binaural Properties of Single Units
in the Superior Olivary Complex of the Moustached Bat. Journal of Neuro-
physiology , 66 (3), 1080–1094.

de Boer, J., Thornton, A. R. D., & Krumbholz, K. (2012). What is the role of the
medial olivocochlear system in speech-in-noise processing? Journal of Neuro-
physiology , 107 (5), 1301–1312.

Delb, W., Strauss, D. J., Hohenberg, G., & Plinkert, P. K. (2003). The binaural inter-
action component (BIC) in children with central auditory processing disorders
(CAPD). International Journal of Audiology , 42 (7), 401–412.

Dobie, R. A., & Norton, S. J. (1980). Binaural interaction in human auditory evoked
potentials. Electroencephalography and Clinical Neurophysiology , 49 (3-4), 303–
313.

Francis, N. A., & Guinan, J. J., Jr. (2010). Acoustic stimulation of human medial
olivocochlear efferents reduces stimulus-frequency and click-evoked otoacoustic
emission delays: Implications for cochlear filter bandwidths. Hearing Research,
267 (1-2), 36–45.

Garinis, A. C., Glattke, T., & Cone-Wesson, B. K. (2008). TEOAE suppression in
adults with learning disabilities. International Journal of Audiology , 47 (10),
607–614.

Gifford, M. L., & Guinan, J. J. (1987). Effects of electrical stimulation of medial
olivocochlear neurons on ipsilateral and contralateral cochlear responses. Hear-
ing Research, 29 (2), 179–194.

Giraud, A. L., Garnier, S., Micheyl, C., Lina, G., Chays, A., & Chéry-Croze, S. (1997).
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Chapter 7

Contralateral Inhibition of
Multiple Otoacoustic Emission
Types in Children with Suspected
Auditory Processing Disorder

7.1 Introduction

Cortical feedback networks fine tune bottom-up signal encoding, and control overall

gain in the auditory system (Khalfa et al., 2001; León, Elgueda, Silva, Hamame, &

Delano, 2012; Perrot et al., 2006; Robinson & McAlpine, 2009; Winer, 2006;

Xiao & Suga, 2002). The medial olivocochlear system (MOC) from the periolivary

group of neurons form one of the final legs in this network by contacting cochlear

outer haircells (OHCs) directly. MOC neurons in the brainstem receive inputs from

both ascending (Liberman, 1988a) and descending (Mulders & Robertson, 2000) au-

ditory fibers. Although their projections to the cochlea are tonotopic, a single MOC

neuron can receive ascending inputs of multiple frequencies, and they are particularly

sensitive to noise (Liberman, 1988a). In the cochlea, a single OHC could be supplied

by as many as 8-10 MOC synapses, and a single MOC axon can innervate multiple

OHCs spanning up to one octave (Liberman & Brown, 1986). The MOC input to

OHCs is cholinergic, therefore acoustic or electric stimulation of the MOC reduces
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the putative cochlear amplification process (Guinan, 2006). Considering otoacoustic

emissions (OAEs) are a direct byproduct of cochlear amplification, MOC inhibitory

action is typically assayed using OAEs (Collet et al., 1990; Guinan, 2006). In-

hibition of OHC activity is thought to restore the dynamic range of afferent fibers

by reducing cochlear amplification for steady-state noise, while allowing encoding of

transient stimuli (Kawase, Delgutte, & Liberman, 1993; Winslow & Sachs, 1988).

This ‘unmasking’ is thought to improve speech perception in noise.

Understanding anatomic underpinnings of speech-in-noise difficulties is particu-

larly relevant in auditory processing disorder (APD). This is because, difficulty un-

derstanding speech in noise despite clinically normal hearing is the prime complaint

of individuals with APD. APD is broadly defined as “difficulties in the perceptual

processing of auditory information in the central nervous system and the neurobiolog-

ical activity that underlies the processing”(American Academy of Audiology [AAA],

2010). Despite several decades of research, there is no clear consensus on the diagnos-

tic process of APD, nor the definition of APD itself. Typically, behavioral tests are

used as part of a test battery assessment (e.g., dichotic listening tests such as Stag-

gered Spondaic Word Test) in diagnosis of APD. However, most behavioral tests for

APD are criticized for tapping non-auditory processes that may influence test results

and limit them from providing a true representation of the underlying deficit (Allen

& Allan, 2014; Cacace & McFarland, 2005; Moore, Ferguson, Edmondson-Jones,

Ratib, & Riley, 2010).

Recommendations have been made to include objective tests that can identify

a breakdown in processing (AAA, 2010; Allen & Allan, 2014; American Speech-

Language-Hearing Association [ASHA], 2005; Canadian Interorganizational Steer-

ing Group for Speech-Language Pathology and Audiology [CISG], 2012). Although
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studies have identified abnormalities in brainstem afferent signal encoding, profiled

using objective measures (e.g., Allen & Allan, 2014; Gopal & Pierel, 1999; Hor-

nickel & Kraus, 2013), an objective diagnostic tool for APD does not exist yet. Some

studies have used the aforementioned unmasking property of the MOC to investigate

potential abnormalities in the efferent pathway in individuals with listening problems,

especially in noise. Thus far, MOC function in individuals with listening difficulties

associated with different disorders has been studied: APD (Burguetti & Carvallo,

2008; Butler, Purcell, & Allen, 2011; Muchnik et al., 2004; Sanches & Carvallo,

2006; Yalçinkaya, Yilmaz, & Muluk, 2010), specific language impairment (Clarke,

Ahmmed, Parker, & Adams, 2006), learning/reading disabilities (Garinis, Glattke, &

Cone-Wesson, 2008; Veuillet, Magnan, Ecalle, Thai-Van, & Collet, 2007), auditory

dyssynchrony (Berlin, Hood, Cecola, Jackson, & Szabo, 1993) and selective mutism

(Bar-Haim et al., 2004). While some studies show significantly reduced MOC inhibi-

tion in their study group compared to control group (Garinis et al., 2008; Muchnik

et al., 2004; Sanches & Carvallo, 2006; Yalçinkaya et al., 2010), others do not

(Abdelrazeq, 2014; Burguetti & Carvallo, 2008; Butler et al., 2011; Clarke et al.,

2006; Veuillet et al., 2007). However, the trend is towards lower MOC inhibition in

study groups of investigations that do not show statistically significant group differ-

ences.

If MOC function is indeed affected in APD, MOC assays may serve as a diagnostic

tool in the APD test battery. Considering MOC is amenable to training (de Boer

& Thornton, 2008; Irving, Moore, Liberman, & Sumner, 2011; Veuillet et al.,

2007), targeted regimens might be established to strengthen efferent networks in

individuals with APD, to help their speech perception difficulties (Veuillet et al.,

2007). Currently however, there is no clear consensus on MOC function in children

with APD. Therefore, it is paramount to elucidate if MOC function in individuals
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with APD is indeed affected or not. First, differences between studies that report

contrasting results on MOC function in APD must be gleaned to better understand

the reasons for such contrasting findings. Contrasting findings between the above

mentioned APD-MOC studies probably arise due to methodological differences.

Many previous studies have not addressed methodological caveats critical for MOC

assays that can potentially lead to incorrect interpretation of results. Recent stud-

ies (Guinan, Backus, Lilaonitkul, & Aharonson, 2003; Zhao & Dhar, 2009) have

shown that the middle ear muscle reflex (MEMR) can be evoked at levels much lower

than acoustic reflex thresholds (ARTs), and can thus inflate true MOC effects. The

most common reasons that lead to unwanted activation of MEMR are high stimulus

presentation level (Guinan et al., 2003) and high MOC elicitor level (>60 dB SPL;

Guinan et al., 2003; Veuillet, Collet, & Duclaux, 1991). Stimuli (clicks) presented

at levels 60 dB peSPL and above have been shown to evoke MOC activity, and higher

levels could even evoke MEMR (Guinan et al., 2003). While some studies have ad-

hered to using relatively low level stimuli (Butler et al., 2011; Clarke et al., 2006;

Garinis et al., 2008; Veuillet et al., 2007) others have used click stimuli that are

at least 80 dB peSPL in amplitude (Muchnik et al., 2004; Sanches & Carvallo,

2006; Yalçinkaya et al., 2010). In addition to click and elicitor levels, rapid click

presentation rates influence contralateral MOC inhibition by evoking ipsilateral and

binaural MOC activity. The observed OAE inhibition will thus be complicated due

to activation of ipsilateral, contralateral and binaural MOC, often with large variabil-

ity across samples. With the exception of studies that assayed MOC activity using

distortion product OAEs (DPOAE; Abdelrazeq, 2014; Butler et al., 2011), most

click evoked OAE (CEOAE) studies have either used the standard 50 Hz click rate,

or did not report this parameter.

Further, a 3 dB signal-to-noise ratio (SNR) criteria is typically used in clinical
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settings to reliably differentiate OAE from the noise floor. However, Mishra and Lut-

man (2013) suggested that at least 6 dB SNR is required for MOC assays to avoid

the noise floor from influencing OAE levels. Other investigators recommend SNRs

of 9 dB or higher for MOC assays (Francis & Guinan, 2010; Goodman, Mertes,

Lewis, & Weissbeck, 2013). Most APD-MOC studies mentioned above have either

used a 3 dB SNR cut-off, or have not mentioned any SNR criterion. Poor SNR or

high noise levels can modulate OAE level, and difference in noise levels across MOC

elicitor-on and -off conditions may further complicate interpretation of the observed

MOC inhibition of OAEs.

Another caveat that can affect MOC assays is the systematic change in stimu-

lus level across measurement duration due to probe drifts. Goodman et al. (2013)

reported that unless probe-drifts in stimulus level are accounted for, they can cause

spurious changes in MOC inhibition of OAEs. Past APD-MOC studies have typically

used continuous presentation of the elicitor, as opposed to an interleaved elicitor-on

and -off strategy. Obtaining MOC inhibition of OAEs from measurements that are

made far apart in time can lead to an artificial decrease in OAE level in later con-

ditions due to probe-drifts. Such changes in level may be mistaken for reduction in

OAE level due to MOC activation (Goodman et al., 2013). Interleaving elicitor-on

and -off conditions in short durations may minimize such caveats, or completely elim-

inate them. Signal processing methods such as ‘de-trending’ can remove probe-drifts,

but only one study to date has used this method (Goodman et al., 2013).

The CEOAE is readily available to clinicians, and given several frequencies can be

studied at once, it appears logical to use them to assay the MOC. With the exception

of two studies (Abdelrazeq, 2014; Butler et al., 2011), all other APD-MOC studies

have used CEOAEs to assay MOC activity in their respective study groups. Due to
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the broadband nature of the click stimulus and its rapid presentation method, many of

the above mentioned confounds pertain to the use of clicks. On the other hand, while

Butler et al. (2011) have used an interleaved elicitor presentation, low stimulus and

elicitor levels, and robust noise rejection methods, they did not separate DPOAE com-

ponents. DPOAEs measured in the ear-canal are complex mixtures of OAE wavelets

arising from two different places on the basilar membrane: f2 frequency place (dis-

tortion component) and 2f1 − f2 frequency place (reflection component). This is the

result of two different generation mechanisms: non-linear distortion and linear coher-

ent reflection, respectively (Kalluri & Shera, 2001; Shera & Guinan, 1999). Abdala,

Mishra, and Williams (2009) reported that the reflection component is inhibited more

by the MOC, compared to the distortion component. They suggested that the large

level difference typically observed between the two emission types (reflection <dis-

tortion) may be responsible for their difference in MOC inhibition. Whatever may

be the reason, separating DPOAE components is critical because artificial level en-

hancements (as opposed to level reduction) may occur due to a different MOC effect

on the phase of the two DPOAE components (Abdala et al., 2009; Deeter, Abel,

Calandruccio, & Dhar, 2009). Nevertheless, Abdelrazeq (2014) showed that MOC

inhibition is not different between children diagnosed as APD and controls, even after

separating the two DPOAE components, corroborating results reported by Butler et

al. (2011).

Most aforementioned caveats can be addressed with the use of stimulus frequency

OAEs (SFOAEs). SFOAEs can be evoked at relatively low stimulus levels (e.g., 40

dB SPL) where the cochlear amplifier is most active, allowing for better visualization

of the MOC inhibitory effect (Guinan et al., 2003). SFOAEs are also generated from

a narrow region on the basilar membrane by coherent reflection, making them easily

interpretable compared to DPOAEs (Shera & Guinan, 1999). Although CEOAEs are
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thought to be primarily reflection emissions, they have been shown to contain some

non-linear distortion products (Yates & Withnell, 1999). To elucidate MOC function

in children with listening difficulties, the present study sought to obtain MOC activity

assayed using three types of OAEs in the same individuals: SFOAE, CEOAE, and

DPOAE (components unmixed). Steps were taken to avoid methodological caveats

discussed earlier. The study asked whether MOC inhibition of OAEs is affected in

children with listening difficulties, and is MOC inhibition of OAEs coherent across

the three OAE types used?

7.2 Method

7.2.1 Participants

Seventy-two children in the age range 7-17 years, twenty-five typically developing

children (TD group, mean age = 11.4±2.7 years, 14 females) and forty-seven chil-

dren referred to our in-house Audiology clinic with listening problems took part in

the study (suspected APD group: sAPD, mean age = 9.6±2.6 years, 9 females).

All children had normal middle ear function as determined by clinical tympanome-

try (GSI-TympStar, Grason-Stadler Inc., MN) and hearing thresholds of 20 dB HL

or better at octave intervals between 0.25 and 8 kHz, measured using a clinical au-

diometer (GSI-61, Grason-Stadler Inc., MN). All children had contralateral acoustic

reflex thresholds >70 dB HL for steady state broadband noise (BBN). Children also

underwent a screening DPOAE measurement (Integrity v-500, Vivosonic Inc., ON)

to confirm the presence of OAEs.

Children in the sAPD group underwent a test battery similar to that used by Allen

and Allan (2014) that included three standard clinical tests: the Staggered Spondaic

Word Test (SSW; Katz, 1998), Words in Ipsilateral Competition (WIC; Ivey, 1969)

198



and Pitch Pattern Sequence test (PPS; Pinheiro, 1977), and two psychoacoustic tests

that use adaptive procedures developed in-house for use with children: Gap Detec-

tion (GD), and Difference Limen for Frequency (DLF). Tests were administered in

accordance with their respective manuals and were interpreted according to published

age-specific normative data. Of the 47 children in the sAPD group, 32 were diagnosed

as having APD based on ASHA (2005) guidelines, i.e., scored 2 standard deviations

(SDs) below the normative expectation on at least two tests. Of the 15 children who

did not obtain the diagnosis, 11 children failed in one test, and 4 children passed all

tests. Of the 15 children who passed all or all-but-one behavioral measures, all had

atypical ABR in the form of prolonged peak latencies; prolonged inter-peak latencies;

or abnormal wave I-V amplitude ratio. Abnormalities in ABR have been recently

reported in children suspected with APD. A recent study (Allen & Allan, 2014)

showed that behavioral tests alone may not be adequate in diagnosis of APD, which

supports recommendations by professional bodies (e.g., AAA, 2010). Allen and Allan

(2014) found several children who passed these behavioral tests had abnormal neu-

ral encoding of sound measured using ABR and/or absent/elevated acoustic reflex

thresholds. Therefore, children who passed the behavioral test battery but who had

abnormal ABR were also included in the study group (sAPD) along with children

diagnosed as APD.

Participants sat in a comfortable chair in a double-walled sound attenuated booth

(Eckel Industries, ON) and watched a silent closed captioned movie. They were en-

couraged to relax, and swallow as few times as comfortable. OAEs were recorded

from only one ear per participant. The ear being tested was chosen based on DPOAE

amplitude obtained during the screening process. Study methods were approved by

the Health Sciences Research Ethics Board of Western University, Canada. The na-

ture of the study was explained prior to obtaining written informed assent from every
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participant, and informed consent from participants’ parent/caregiver. Participants

were compensated for their time with gift cards towards books or school supplies.

7.2.2 OAE recording

Signals were played through a digital-to-analog converter (National Instruments 6289

m-series, TX) at a sampling rate of 32 kHz to three separate programmable attenu-

ators (PA5; Tucker-Davis Technologies, FL) that controlled the output signal levels.

OAE evoking stimuli (clicks and tones) were always presented in channel-1, with the

exception of f1 in the DPOAE experiment which was presented in channel-2. Both

channel-1 and 2 were routed to the ipsilateral ear, as illustrated in Figure 7-1. These

signals were power amplified (SA1; Tucker-Davis Technologies, FL) and fed to ER2

transducers (Etymotic Research, IL) connected to an ER-10B+ otoacoustic emission

probe system (Etymotic Research, IL) that delivered signals in the ear-canal. A sin-

gle ER2 insert receiver delivered elicitors in the contralateral ear (contra-channel).

All stimuli were calibrated using a Type-2250 sound level meter (Brüel and Kjær,

Denmark), and an ear simulator Type-4157 (IEC 711; Brüel and Kjær, Denmark).

Responses were recorded using the ER-10B+ probe system with the pre-amplifier gain

set at +40 dB. The recorded signal was then fed through a bandpass filter (Frequency

Devices Inc., IL; chasis 90IP with a 90PF dual-channel programmable filter card) that

filtered responses from 0.4 to 10 kHz and applied a further 20 dB gain. The filtered

response was then digitized by an analog-to-digital converter (National Instruments

6289 m-series, TX) which applied another 6 dB of gain prior to conversion. Stimulus

delivery and response acquisition were controlled using custom programs developed

in LabView (National Instruments, TX), similar to Purcell, Butler, Saunders, and

Allen (2008).
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7.2.3 Stimuli and response characteristics

All stimuli were digitally generated in Matlab (Mathworks Inc, MA) at a sampling

rate of 32 kHz. The temporal order of stimulus presentation for all OAE types is

illustrated in different panels in Figure 7-1. Stimulus levels for all OAE types were

chosen to obtain the largest OAE while minimizing the possibility of the OAE stimulus

evoking the ipsilateral MOC pathway (Guinan et al., 2003; Hood, Berlin, Hurley,

Cecola, & Bell, 1996; Schairer, Ellison, Fitzpatrick, & Keefe, 2006; Veuillet et al.,

1991) and middle ear muscle reflex (Guinan et al., 2003). All OAE evoking stimuli

were presented in an ‘epoch’, the duration of which varied across the three OAE

types. Successive epochs were concatenated to make a ‘sweep-block’. The number of

epochs in a given sweep-block varied with OAE type, due to the difference in duration

of different OAE evoking stimuli. The MOC elicitor remained on for the duration of

one sweep-block. Sweep-blocks with and without contralateral MOC elicitors were

interleaved with a silent gap: an inter-sweep-block-interval (ISBI) or an inter-sweep-

interval (ISI). As seen in Figure 7-1 (for CEOAE and DPOAE measurements), both

these interval durations vary across OAE types. This was done to include an integer

number of 1.024 s windows in one complete sweep, to match the restrictions of our

measurement system. The goal of an ISI was to allow the MOC to revert back to its

baseline activity (after MOC activation by the elicitor) before OAE evoking stimuli

were presented again. This gap should at least be 200 ms in duration, commensurate

with the MOC decay time (Backus & Guinan, 2006). Duration of a sweep-block

(across OAE types) was less than 9 s long. Such short duration sweep-blocks were

employed, instead of continuous stimulus presentation to ensure that stimulus levels

across conditions were not affected by probe-drifts. Specific details of different OAE

evoking stimuli are described below.
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SFOAE - stimulus

Figure 7-1: Schematic representation and temporal sequence of events for (A)
SFOAE, (B) CEOAE, and (C) DPOAE recorded with and without MOC elicitors.
Channels indicate separate physical transducers. Duration of each epoch, and
sweep-block across OAE types, are mentioned within their respective channels
(in rectangular boxes). Note that size of each element in the figure are made
disproportionate to their duration to show shorter events clearly.

Probe-tones (fP ) 2.048 s in duration and 40 dB SPL in level, in the frequency

range 0.928 to 1.248 kHz at 16 Hz intervals were used to evoke SFOAEs. This

frequency region, approximately representing the 1 kHz region, was chosen based on

empirical evidence of its pronounced MOC activity (Lilaonitkul & Guinan, 2012;

202



Zhao & Dhar, 2012). Intra-cochlear suppressor tones (fS) corresponding to each fP

(where, fS = fP + 16 Hz) with linear rise/fall ramps of 50 ms duration and 60 dB

SPL in level were used according to the suppression method (Brass & Kemp, 1993;

Guinan, 1990) to extract SFOAEs using discrete Fourier transforms. Frequencies of

all tones were adjusted to have an integer number of cycles in the analysis window.

As seen in Figure 7-1A, stimulus epoch duration in the SFOAE experiment was 1.024

s and sweep-blocks were made of two consecutive epochs of the same stimulus. One

complete sweep had three sweep-blocks: 1. fP in isolation, 2. fP with fS, and fP with

elicitor in contra-channel (elicitor-on condition). The inter-sweep interval was 1.024

s, and total duration of a sweep was 7.168 s. An in-the-ear calibration of the tones

was carried out before every measurement to produce desired SPL in the earcanal.

Each frequency sweep was repeated at least five times to obtain reliable SFOAEs.

Additional epochs were recorded for every noisy epoch (if RMS amplitude exceeded

0 dB SPL in the 0.5 to 0.9 kHz band), for clipped epochs, or if the SNR was lower

than 10 dB.

SFOAE - response extraction

To start, the first and last 128 ms of every response were discarded to remove SFOAE

obtained during the raise/fall phase of the elicitor and to avoid transients that may

have occurred due to stimulus onset/offset. All epochs were evaluated offline using

a discrete Fourier transform to obtain noise metrics in a 20 Hz band just below fP .

Epochs with noise metrics that exceeded the mean plus two SDs were not included in

the average response sweep. A vector subtraction of the average ear canal pressure in

sweep-blocks one and two yielded the baseline SFOAE (PSF ), i.e., SFOAE in elicitor-

off condition. Similarly, vector subtraction of sweep-blocks two and three yielded

SFOAE after MOC inhibition, i.e., elicitor-on condition. MOC inhibition of SFOAE

obtained in Pascals was expressed as normalized (re: baseline SFOAE level) percent
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change in SFOAE level (∆SFn).

CEOAE - stimulus

CEOAE were evoked using unfiltered clicks of 93.75 µs duration, corresponding to

four sample points at 32 kHz sampling rate, and were presented at 55 dB peSPL. A

single iso-voltage calibration of clicks was performed to set their level using an ear

simulator Type-4157 (IEC711; Brüel and Kjær, Denmark). Clicks were presented in

epochs that were 24 ms in duration. This translated to a slower than typical (50 Hz)

presentation rate of 41.67 Hz. A train of 106 epochs encompassed one sweep-block.

As illustrated in Figure 1B, inter-sweep-block-intervals and inter-sweep-intervals for

CEOAE measurement were 528 ms in duration. Total duration of one sweep was

6.144 s, twenty such sweeps were obtained per participant to acquire 2120 click epochs

in total. Clicks were presented in one of the two transducers in the ipsilateral ear

(channel-1), and elicitors in the transducer in the contra-channel.

CEOAE - response extraction

All CEOAE processing was done offline. Similar to the SFOAE experiment, the first

and last two epochs of every sweep-block were discarded to avoid epochs that occurred

during the rise/fall phase of the elicitor. Stimulus reliability was checked across all

recorded epochs to remove artifactual epochs. Epochs with ear-canal recorded click

stimulus root-mean-square (RMS) amplitudes that were two SD above the mean

(within-individual) were rejected. Responses in the time-window from 5-20 ms were

extracted, and digitally bandpass filtered from 0.5 to 6 kHz using a fourth order zero

delay Butterworth filter to obtain CEOAE and noise metrics. To estimate reliability

of data from a given participant, consecutive click epochs across sweeps were collected

into two buffers: A and B. A correlation analysis was then performed between the

two buffers and served as a measure of reliability. Each CEOAE was calculated as the
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mean RMS amplitude of the waveform within the time window. Congruent with the

SFOAE experiment, MOC inhibition of CEOAEs obtained in Pascals was expressed

as normalized (re: baseline CEOAE level) percent change in CEOAE level (∆CEn).

Noise and SNR were estimated using the formulae:

Noise =

√
abs(bufferA− X̄)2 + abs(bufferB − X̄)2

2
(7.1)

SNR = 10 ∗ log10[(
X̄2

Noise2
)− 1] (7.2)

where, X̄ is the grand average of responses across all epochs.

DPOAE - stimulus

Primaries, f1 (from 1231 Hz to 2462 Hz) and f2 (from 1502 Hz to 3003 Hz) were

exponentially ramped at 8 s/octave in one continuous glide1 to obtain 2f1-f2 DPOAE

(fdp) in the frequency range from 960 Hz to 1920 Hz. The frequency difference between

primaries were maintained at a constant ratio (f2/f1) of 1.22, and levels (L1/L2) at

60/50 dB SPL. One sweep-block contained both primaries in two separate channels

(1 and 2), and was 8.54 s long. Two consecutive sweep-blocks with an inter-sweep-

block-interval and inter-sweep-interval of 676 ms made one complete sweep of 18.432

s. Twenty-one such sweeps were acquired for further offline analysis.

DPOAE - response extraction

First, noisy epochs were rejected to obtain best possible SNR. For this, difference in

RMS level across epochs (1.024 s length of data) were compared to reject noisiest

epochs. Epochs were rejected until no further decrement in SNR was observed within

1Typically, the word ‘sweep’ is used in the literature to describe a continuous signal presentation
where frequency is swept across time. However, to avoid confusion between the previously described
‘sweep’ which encompasses sweep-blocks, the word glide will be used.

205



a 5% symmetric level of significance. Following noise rejection, DPOAE response

extraction involved unmixing of the two DPOAE components: the distortion com-

ponent (dfdp) and the reflection component (rfdp). Considering the two components

are generated by two different mechanisms, the reflection component involves accu-

mulation of phase at the fdp place, while the distortion component does not. This

difference in phase characteristics between the two components, and their difference

in time of arrival in the ear canal allows for time domain separation of the two com-

ponents (Kalluri & Shera, 2001; Knight & Kemp, 2001). The mixed response was

first considered in the time domain, where the two components can be separated and

then individually converted to the frequency domain. Considering DPOAEs obtained

in the present study contained exponentially increasing frequencies, a least square

fit algorithm (LSFA) described in Long, Talmadge, and Lee (2008) was adapted to

obtain amplitude and phase information. The LSFA method uses a model fit to the

signal, and input parameters to this model are such that the squared error between

the model and original signal are minimized.

MOC elicitor

The MOC activating elicitor was uniform and random broadband noise (BBN) of

varying duration (one sweep-block) across OAE types with 20 ms onset/offset ramps

to avoid startle responses. Differences in MOC elicitor duration would not be ex-

pected to cause any change in MOC activation pattern, considering all sweep-block

durations outlast MOC rise time and are sustained for 2 seconds or more (Backus &

Guinan, 2006; Berlin, Hood, Hurley, Wen, & Kemp, 1995; Liberman, 1988b). Elic-

itors were presented at 60 dB SPL, sufficiently below the ART of every participant.

Notwithstanding, additional tests (see subsection 7.2.4) were performed to check for

middle ear muscle reflex (MEMR) activation.
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7.2.4 Test for MEMR
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Figure 7-2: Results of MEMR test. Means and their corresponding individual
data for the change in stimulus level with reference to baseline no-elicitor con-
dition (dB) is plotted (y-axis). Black straight line in plot A at 0 dB represents
normalized baseline stimulus level (in no-elicitor condition. Black symbols are
group means with their corresponding 95% confidence intervals represented by
error bars. Grey symbols are individual means of RMS amplitude near the stim-
ulus trough. Circles represent TD and boxes represent sAPD.

In addition to recruiting participants only with high enough ARTs (>70 dB HL),

click levels were evaluated offline for deviations in level during elicitor presentations

(re: no-elicitor condition). This test is based on the hypothesis that a significant

MEMR would consistently increase probe-tip stimulus levels. This is because, MEMR

activation will stiffen the ossicular chain and retract the tympanic membrane, result-

ing in increased reflection of stimulus energy back to the ear-canal. A cut-off value

of 1.4% (0.12 dB) increase in stimulus level during elicitor-on condition compared to

no-elicitor condition has been suggested as an indication of MEMR activation (Ab-

dala, Dhar, Ahmadi, & Luo, 2014; Abdala, Mishra, & Garinis, 2013).
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To test for such changes in level, RMS levels of the ear-canal recorded stimulus

in a time-window near the first trough of the click waveform (125 µs duration) for

elicitor-on/off conditions for every participant were obtained. As seen in Figure 7-

2A, changes in the presence of MOC elicitors were on average -0.0003 dB ±0.008 (re:

baseline no-elicitor). The largest change in both directions (increase and decrease in

amplitude) was <±0.08 dB. Observed stimulus level deviations occur in both direc-

tions, i.e., increase and decrease in level. A level reduction would not be expected if

MEMR were to act on the stimulus (Abdala et al., 2013). The observed changes are

small compared to level changes that would be expected if the MEMR was activated

(Abdala et al., 2014, 2013). These changes probably arise due to random fluctuations

in background noise. Note that five children (1 from TD, and 4 from sAPD group) did

not undergo this secondary MEMR test due to time constraints. Therefore, in these

children, their ART thresholds were used for the evaluation of MEMR activation.

7.2.5 Data inclusion criteria

For data to be considered for statistical analyses the following criteria were applied

for all OAE types: (1) <10% epoch rejection, (2) minimum SNR of 9 dB, and (3)

no MEMR activation. In addition, for CEOAEs, a correlation coefficient of 0.85 or

higher between the two response buffers was also required.

In children who chose to take part in the experiment in two sessions, those with

poor SFOAE were not recalled for other OAE measurements, this led to rejection

of 14 participants from the sAPD group and two from TD group. A further three

from the sAPD group (one due to ART <70 dB HL) and one from the TD group

were rejected from the SFOAE experiment based on the data inclusion criteria above.

Final sample size for all OAE types are detailed in Table 7-1;
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Group
OAE type

SFOAE CEOAE DPOAEm DPOAEd DPOAEr

sAPD 30 21 22 22 21

TD 22 18 18 18 16

Table 7-1: n size in all OAE experiments across the two groups. Subscript in DPOAE
columns represent their respective generation mechanism; m = composite (distortion
+ reflection) DPOAE, d = distortion component DPOAE, and r = reflection compo-
nent DPOAE.

7.3 Results

OAE frequency spectra for all three OAE types are plotted in Figure 7-3 for both TD

and sAPD groups. Qualitatively, both groups show reduction in OAE level in the

elicitor-on condition, suggestive of MOC mediated change in OAE level. While it is

common to display both SFOAEs and DPOAEs in the frequency domain, CEOAEs

are often plotted in the time domain. To allow visual comparison of all OAEs, Panel B

shows the Fourier transformed frequency domain representation of CEOAEs obtained

in the 5-20 ms time-window. As CEOAE level decreased rapidly beyond 2 kHz, only

the frequency range 0.5-2 kHz is shown in Panel B of Figure 7-3. However, the entire

0.5-6 kHz range was used for statistical analyses. Considering 41.67 Hz rate was used,

correction factors derived in Chapter 3 were applied for MOC inhibition of CEOAEs

to account for possible ipsilateral MOC activation:

y = 0.108x− 2.7 (%∆CEOAE) (7.3)

Where, x here is 41.67, and resultant y is the correction factor to be subtracted

from overall MOC inhibition of CEOAEs.

Both groups showed significant (p<0.001) MOC-mediated reduction in OAE level
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in single sample t-tests, results of which are tabulated in Table 2. All results were in-

terpreted with alpha correction using false discovery rate (FDR: Benjamini & Hochberg,

1995) for performing multiple comparisons.
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Figure 7-3: Amplitudes of all OAE types (in dB SPL) are plotted in this figure as
a function of frequency. SFOAE in plot A, CEOAE in plot B, composite DPOAE
in plot C, distortion component of DPOAE in plot D, and reflection component
of DPOAE in plot E. In all plots, black lines represent TD data, and grey lines
represent sAPD data. Continuous lines represent OAEs in elicitor-off condition
and dashed lines represent OAEs in elicitor-on condition. Noise floor for all OAEs
are plotted as a function of frequency. Note that mean noise levels of composite
DPOAE are plotted in panel E because OAE levels were closest to the noise in
this panel. Also note that the y axis of plots A, B and E are not continuous.
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Group
Mean MOC inhibition of OAEs (within group)

∆SFn (%) ∆CEn (%) m∆DPn (%) d∆DPn (%) r∆DPn (%)

TD 21.71 (±4.27) 24.42 (±6.97) 14.75 (±4.80) 14.03 (±4.99) 25.34 (±8.00)

t [df], p< 10.57[21], 0.001 7.37[18], 0.001 6.47[17], 0.001 5.94[17], 0.001 6.75[15], 0.001

sAPD 16.97 (±2.40) 19.21 (±4.26) 12.60 (±2.44) 12.76 (±2.86) 23.62 (±5.34)

t [df], p< 14.50[29], 0.001 9.42[20], 0.001 10.75[21], 0.001 9.27[21], 0.001 9.23[20], 0.001

Table 7-2: Results of single sample t-test. Means and 95% confidence intervals (values
in brackets) of normalized MOC inhibition across OAE types are provided in the first
row of respective groups. Second rows of each group contain t values, degrees of
freedom, and their respective p values.

Mean MOC inhibition across OAE types and groups are plotted in Figure 7-4,

and tabulated in Table 7-2. As evident in the figure, and the table, MOC inhibition

of OAEs is numerically slightly lower in the sAPD group in comparison to the TD

group.
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elicitor-off condition) has been plotted for all OAE types. Circles represent TD
group and squares represent sAPD group. Error bars represent 95% confidence
interval around the mean.
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Individual data in grey shows considerable overlap between the two groups. To

investigate group differences in MOC inhibition of OAEs, normalized OAE metrics

for all OAE types (∆SFn, ∆CEn, m∆DPn, g∆DPn, and r∆DPn) were subjected to

statistical tests. Analyses were complicated by rejection of participants across OAE

types. For instance, participant ‘c193’ had good DPOAE and SFOAE, but poor

CEOAE; on the other hand, participant ‘c196’ had good SFOAE and CEOAE, but

poor DPOAE. If a repeated measures analysis were performed, this type of participant

rejection would have led to an n size of only 12. This would significantly reduce the

power of the study, undoing the advantage of performing repeated measures ANOVA.

To avoid this, groups means were compared using independent sample t-tests for each

OAE type separately with corrections for performing multiple comparisons.

Across group comparison (TD vs. sAPD) for all OAE types

∆SFn (%) ∆CEn (%) m∆DPn (%) d∆DPn (%) r∆DPn (%)

MD 4.74 (±4.47) 5.20 (±7.71) 2.15 (±4.92) 1.26 (±5.30) 1.72 (±8.92)

t [df], p= 2.13[50], 0.038 1.67[38], 0.180 0.88[38], 0.381 0.63[38], 0.633 0.39[35], 0.698

Table 7-3: Results of across group comparison of MOC inhibition of OAEs. Values
displayed in the first row are mean differences across groups for each OAE type and
their corresponding CI95% (in brackets) of normalized MOC inhibition. Second row
contains t values, degrees of freedom, and their respective p values.

As evidenced in Table 7-3, a group difference in MOC inhibition reached signifi-

cance only for SFOAEs (p=0.038), however, due to alpha corrections this significance

was lost. Current results suggest that although numerically smaller in all OAE types,

MOC inhibition is not significantly smaller in the sAPD group.
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7.4 Discussion

7.4.1 General discussion

The present study was conducted to reconcile the results of previous studies that

show opposing findings on MOC strength in children with APD. Three different OAE

types were used for this purpose, CEOAE, DPOAE and SFOAE. Consistent with

the inhibitory effect of MOC on OHC activity, both groups (TD and sAPD) showed

significant reduction in all OAE types. However, despite numerically smaller MOC

inhibition in all OAE types in the sAPD group, none of the OAEs show significant

group differences.

There are several potential factors that should be considered. First, there was large

variability within each group, leading to considerable overlap in MOC inhibition of

OAEs between groups. This is observable in the individual data plotted in Figure 7-4.

Secondly, power calculation based on means and standard deviations obtained

from studies that show significant group difference (APD vs. TD) in MOC inhibi-

tion of OAEs show that the current study possesses adequate power and sample size.

Therefore, sample size is not one of the reasons for non-significant group differences.

On the other hand, it should be noted that the sAPD group indeed showed signifi-

cantly lower inhibition when measured using SFOAEs, but the significance was lost

due to alpha corrections for multiple comparisons. Previous studies have either not

reported, or not applied alpha corrections (e.g., Sanches & Carvallo, 2006). There-

fore, if only SFOAE were used to compare these two groups, one would conclude that

children in the sAPD group do indeed have significantly compromised MOC inhibi-

tion of OAEs. While the trend does appear that way, the results are variable, within

the current study, and across studies.
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Another reason for non-significant differences between groups could have stemmed

due to inclusion of non-APD children. Unlike previous studies that show significant

differences between groups, the current study included children who were deemed as

non-APD. This was done based on the findings of Allen and Allan (2014), who showed

that children who were deemed non-APD did indeed have listening difficulties, and

showed abnormalities in physiological tests such as ABR and acoustic reflex. Separate

comparisons of MOC inhibition between children diagnosed as APD and TD children

again showed no significant group differences (in ∆SFn for e.g., t [40] = -1.93, p =

0.06). Therefore, addition of non-APD children in the sample probably did not lead

to the non-significant group differences between sAPD and TD groups.

The results of all OAE types show non-significant group differences, given the het-

erogeneity in auditory problems in APD (Moore et al., 2010), it is not surprising that

weak MOC is not prevalent in children suspected with APD. Identifying children with

weak MOC specifically and profiling their auditory characteristics may shed light on

the role of the MOC in such children, rather than attempting to identify such children

in an APD group. The question then is, what is considered a weak MOC? Given the

variability even in individuals with normal listening, as seen in the present study and

various previous other studies (e.g: Backus & Guinan, 2007; Butler et al., 2011), a

cut-off limit for strong vs. weak MOC inhibition of OAEs may be difficult to estab-

lish. Nevertheless, Muchnik et al. (2004) used cut-off values of 0.6 and 1 dB CEOAE

inhibition proposed by Prasher, Ryan, and Luxon (1994) to classify weak vs. strong

MOC. Based on these cut-off values, they found that a significantly larger number of

children in their APD group fell short of the cut-off, compared to their control group.

A more recent look at the distribution of MOC strength in normal listening individ-

uals was carried out by Backus and Guinan (2007). They also found MOC strength

to vary considerably across their sample, however it followed a normal distribution
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with a mean strength of 35±12% (reduction in OAE level due to MOC activation).

Considering Backus and Guinan (2007) used an SFOAE assay which included phase

information (vector) in their MOC strength calculation, a direct comparison is not

possible with the current study (TD group: 21±10%). The current study obtained

only the scalar part of the SFOAE level, no phase information was included in calcu-

lation of SFOAE magnitude. For example, if a cut-off of mean (TD group) minus 1

SD of ∆SFn was considered as weak MOC, 8/30 (26%) children in the sAPD group

fall below the cut-off, while 2/21 (9%) children in the TD group fall below the cut-off.

Therefore, despite the lack of significant group differences, the current study does not

completely dismiss the idea that MOC strength may be weaker in some children with

listening difficulties. Based on current results, it appears that children in the sAPD

group are more likely to have a weak MOC system, despite the considerable overlap

between the two groups. However, evaluating MOC strength may not be a viable

clinical test for diagnosing APD, at least as APD is currently defined.

As mentioned earlier, there is considerable difference in diagnosis of APD across

clinics. For instance, Muchnik et al. (2004) included educational and/or behavioral

symptoms as a diagnostic marker in addition to an APD test battery. Sanches and

Carvallo (2006) on the other hand used only SSW test to diagnose APD. While there

are specific tests that audiology professional bodies recommend for use as APD tests,

the list is vast, and is subject to clinician selection. There are also no gold stan-

dards in APD diagnosis. Furthermore, considering most APD tests in typical test

batteries tap higher auditory function, separating children based on these tests may

not be a suitable marker to test for reduced MOC function, a brainstem mechanism.

This is because, although MOC is influenced by corticofugal connections, MOC as-

says typically use a noise elicitor to activate and investigate the MOC reflex, where

the cortical influence is minimal (de Boer & Thornton, 2007). Therefore, if one is
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interested in identifying anatomical underpinnings of APD, recruiting children based

on the ‘umbrella-term’ APD may not suffice. Further sub-classes of APD could be

created and their specific physiological characteristics could be studied. An exam-

ple is the one created based on difficulties in spatial processing (Cameron, Dillon, &

Newall, 2006). Dillon (2012) suggested using a hierarchical pathway in diagnosis and

treatment of APD. In order to probe for biological markers of APD, including MOC

function, such a diagnostic pathway might become useful. To identify children with

specific difficulties, for example, if they failed gap detection tests, further temporal

processing tests can be performed to evaluate the problem in question. If temporal

problems are consistent across behavioral tests with no other auditory problems, an

objective test to probe for a biological marker of the observed temporal difficulties

can be initiated using neural response fidelity tests such as speech ABR (Banai &

Kraus, 2007). This method of testing children, at least for research purpose, may

aid in identification of underlying physiological anomalies.

7.5 Conclusion

The present study aimed to elucidate if MOC inhibition of OAEs is affected in children

with listening difficulties. Also, with the use of three different OAEs, reconciliation

of results of previous studies that show opposing views was attempted to obtain a

coherent view on this topic. Results indicate that although the sAPD group shows

numerically smaller MOC inhibition of OAEs in comparison to the TD group, they

were not statistically significant at a group level. However, these results do not

dismiss the notion that some children with listening difficulties may have reduced

MOC function. An alternative means to grouping children based on their auditory

difficulties rather than a generic diagnosis such as APD may facilitate identification

of specific biological markers.
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Perrot, X., Ryvlin, P., Isnard, J., Guénot, M., Catenoix, H., Fischer, C., . . . Collet,
L. (2006). Evidence for corticofugal modulation of peripheral auditory activity
in humans. Cerebral Cortex , 16 (7), 941–948.

Pinheiro, M. L. (1977). Tests of Central Auditory Function in Children with Learning
Disabilities. In R. W. Keith (Ed.), Central auditory dysfunction (pp. 43–72).
New York: Grune and Stratton.

Prasher, D., Ryan, S., & Luxon, L. (1994). Contralateral suppression of transiently
evoked otoacoustic emissions and neuro-otology. British Journal of Audiology ,
28 (4-5), 247–254.

Purcell, D. W., Butler, B. E., Saunders, T. J., & Allen, P. (2008). Distortion product
otoacoustic emission contralateral suppression functions obtained with ramped
stimuli. The Journal of the Acoustical Society of America, 124 (4), 2133–2148.

220



Robinson, B. L., & McAlpine, D. (2009). Gain control mechanisms in the auditory
pathway. Current Opinion in Neurobiology , 19 (4), 402–407.

Sanches, S. G. G., & Carvallo, R. M. (2006). Contralateral Suppression of Transient
Evoked Otoacoustic Emissions in Children with Auditory Processing Disorder.
Audiology and Neurotology , 11 (6), 366–372.

Schairer, K. S., Ellison, J. C., Fitzpatrick, D., & Keefe, D. H. (2006). Use of stimulus-
frequency otoacoustic emission latency and level to investigate cochlear mechan-
ics in human ears. The Journal of the Acoustical Society of America, 120 (2),
901–914.

Shera, C. A., & Guinan, J. J. (1999). Evoked otoacoustic emissions arise by two
fundamentally different mechanisms: a taxonomy for mammalian OAEs. The
Journal of the Acoustical Society of America, 105 (2 Pt 1), 782–798.

Veuillet, E., Collet, L., & Duclaux, R. (1991). Effect of contralateral acoustic stimu-
lation on active cochlear micromechanical properties in human subjects: depen-
dence on stimulus variables. Journal of Neurophysiology , 65 (3), 724–735.

Veuillet, E., Magnan, A., Ecalle, J., Thai-Van, H., & Collet, L. (2007). Auditory
processing disorder in children with reading disabilities: effect of audiovisual
training. Brain, 130 (11), 2915–2928.

Winer, J. A. (2006). Decoding the auditory corticofugal systems. Hearing Research,
212 (1), 1–8.

Winslow, R. L., & Sachs, M. B. (1988). Single-tone intensity discrimination based on
auditory-nerve rate responses in backgrounds of quiet, noise, and with stimula-
tion of the crossed olivocochlear bundle. Hearing Research, 35 (2), 165–189.

Xiao, Z., & Suga, N. (2002). Modulation of cochlear hair cells by the auditory cortex
in the mustached bat. Nature Neuroscience, 5 (1), 57–63.
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Chapter 8

Spatial Hearing Abilities in
Children with Suspected Auditory
Processing Disorder

8.1 Introduction

The acoustic environment of a typical classroom has been studied by several investi-

gators (eg: Crandell & Smaldino, 2000; Crukley, Scollie, & Parsa, 2011; Knecht,

Nelson, Whitelaw, & Feth, 2002; Nelson & Soli, 2000). Unequivocally, all these stud-

ies suggest that the noise levels in typical classrooms are higher than recommended

limits, and the signal-to-noise ratios (SNRs) can be as low as -7 dB (Crandell &

Smaldino, 2000). At such low SNRs, children are faced with the daunting task of

separating noise from speech in order to learn and carry out effective communication.

Howard, Munro, and Plack (2010) showed that even children with good listening abil-

ities expend considerable listening effort in typical classroom SNRs, and as a result,

make more errors while performing dual tasks. Despite such unfavorable acoustics,

most children are able to perform well in school, but about 2-3% of children are un-

able to follow conversations in noise (Chermak & Musiek, 1997). These children

are typically referred to audiology clinics where they are tested for the presence of

auditory processing disorder (APD). Although there is no clear consensus on what

does or does not constitute APD and its diagnosis, children with listening difficul-
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ties typically undergo a test battery assessment (American Academy of Audiology

[AAA], 2010; American Speech-Language-Hearing Association [ASHA], 2005). The

test battery approach has recently been criticized for its inefficiency (Dillon, 2012).

This is primarily because, a simple pass/fail in the behavioral test battery does not

necessarily guarantee correct identification of children with genuine listening difficul-

ties (Allen & Allan, 2014; Dillon, 2012). Dillon (2012) pointed out that assessing

children with such a vast selection of tests increases the probability of failing in a test,

and may also cause fatigue due to performing large numbers of tests. Dillon (2012)

suggested a hierarchical approach to APD diagnosis for identifying the underlying

problem, rather than for application of the diagnosis itself.

As an example of a specific underlying problem, Cameron, Dillon, and Newall

(2006) identified a sub-category of children with listening problems who did not ben-

efit from spatial separation of speech and noise using a novel test called Listening

in Spatialized Noise (LiSN: Cameron & Dillon, 2008). The LiSN tests for percep-

tual parsing of sound streams based on both spatial segregation (spatial separation

of masker and target) and vocal segregation (difference in speaker quality between

masker and target) (Cameron & Dillon, 2008). Spatial separation of speech and

noise is useful because it offers an improvement in speech perception compared to co-

located sounds; this is called ‘spatial release from masking’ (SRM: Freyman, Helfer,

McCall, & Clifton, 1999; Hawley, Litovsky, & Colburn, 1999). SRM has been

shown to occur in both adults and children even as young as 3 years of age (Garadat

& Litovsky, 2007). Binaural hearing plays a key role in SRM (Kidd, Mason, Rohtla,

& Deliwala, 1998), which in turn aids auditory stream segregation (Bregman, 1993).

Spatial separation of speech and noise is achieved in the auditory system through

at least four processes: (1) binaural unmasking (discussed below) that provides re-
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lease from masking for both energetic (Bronkhorst, 2000) and informational1 (Kidd

et al., 1998) masking, (2) the head-shadow effect occurs because at least one ear

receives larger SNR (Zurek, 1993), (3) binaural summation (when signals arriving

from the front achieve greater representation in the system due to their presence in

both ears), and (4) envelope cues from maskers. The head-shadow effect has been

thought to account for a large proportion of masking release from energetic masking,

and binaural cues are thought to be more important in informational masking release.

Binaural unmasking occurs when the auditory system exploits interaural time differ-

ence (ITD) cues to compare and selectively improve the binaural signal to noise ratio

(Culling & Akeroyd, 2010). Considering speech and noise typically overlap in both

temporal and spectral domains (Arbogast, Mason, & Kidd, 2002; Saberi, Dostal,

Sadralodabai, Bull, & Perrott, 1991), spatial unmasking may provide the best SNR

compared to other biological noise reduction mechanisms because noise and speech

are separated at the level of the source.

The timing cues (ITD) that promote SRM also, in part, govern sound localization.

However, ITDs are important only for low frequencies, and its sound level counter-

part (interaural level difference: ILD) plays a crucial role at high frequencies. Both

ITD and ILD play a critical role in azimuthal or horizontal plane localization, while

spectral cues induced by pinna, head and torso filtering of high frequency sound facili-

tate median plane, i.e., front/back (F/B) and up/down (U/D) localization (Culling &

Akeroyd, 2010; Grothe, Pecka, & McAlpine, 2010; Middlebrooks & Green, 1991).

Localization aids in the formation of auditory streams that aids speech perception,

especially when masked by informational maskers (Kidd, Arbogast, Mason, & Gallun,

2005). It is thus clear that localization and SRM are essential for achieving better

1Informational masking occurs when a signal threshold is elevated for reasons unexplained by
peripheral overlap of signal and masker. It is thought to arise due to uncertainty related to the
masker (Lutfi, 1990).
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SNR in adverse listening conditions.

Despite being indicated as one of the processes that can be affected in children

with APD, there is a startling lack of evidence on localization abilities in this popu-

lation (AAA, 2010; ASHA, 2005). Localization and localization-in-noise has received

little or no attention in the APD domain. Indeed Domitz and Schow (2000), using

factor analysis, showed that localization, lateralization and other binaural tests are

less commonly performed, despite recommendations from professional bodies. With

the exception of two unpublished theses (Wakeham, 2008; Zakaria, 2007), there are

no other studies that have investigated localization in children with APD. Wakeham

(2008) studied the localization ability of 7-12 year old children with APD in free field

with a speech-babble masker. He found that children with APD performed poorer

than their age matched controls, but cautioned the interpretation of his results due

to considerable overlap in localization ability between the two groups. He concluded

that any deviation in the localization abilities of children with APD are sub-clinical,

and may not lead to difficulties in day-to-day activities. Zakaria (2007) on the other

hand found that children with APD performed on par with controls in azimuthal lo-

calization but performed poorer in median plane localization. Presently it is unclear

as to what aspect and to what extent localization is affected in children with APD.

It is also unclear what localization metrics were used by the two previous studies to

quantify localization errors. It is also unknown how different noises affect localization

in children with APD, and what signal-to-noise ratio is required for accurate localiza-

tion. In order to address these questions, the present study sought to understand if

children suspected with APD have problems in localizing speech in noise by compar-

ing them to localization abilities of typically developing (TD) children. Localization

ability of a speech token (‘baseball’) was investigated in three SNR conditions (-12,

-6, and 0 dB) for two different maskers: broadband noise (BBN) and speech babble
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(SB). The Hearing In Noise Test (HINT: Nilsson, Soli, & Sullivan, 1994) was used to

measure speech perception ability in noise, and obtain SRM. Further, to obtain ITD

sensitivity, a just noticeable difference task was also performed under headphones.

8.2 Method

8.2.1 Participants

Forty-seven children in the age range 7-17 years, twenty-one TD children (TD group;

mean age = 11.4 years, standard deviation (SD) = 2.4 years, 13 females) and twenty-

six children referred to our in-house Audiology clinic with listening problems took

part in the study (sAPD group; mean age = 9.9 years, SD = 2.8 years, 8 females).

All children had normal middle ear function as determined by clinical tympanometry

(GSI-TympStar, Grason-Stadler Inc., MN) and hearing thresholds of 20 dB HL or

better at octave intervals between 0.25 and 8 kHz measured using a clinical audiome-

ter (GSI-61, Grason-Stadler Inc., MN). Children also underwent a screening DPOAE

measurement (Integrity v-500, Vivosonic Inc., ON) to confirm the presence of OAEs,

as an indication of normal peripheral auditory function.

Children in the sAPD group underwent a test battery similar to that used by Allen

and Allan (2014) that included three standard clinical tests: the Staggered Spondaic

Word Test (SSW; Katz, 1998), Words in Ipsilateral Competition (WIC; Ivey, 1969)

and Pitch Pattern Sequence test (PPS; Pinheiro, 1977), and two psychoacoustic

tests that use adaptive procedures developed in-house for use with children: Gap

Detection (GD), and Difference Limen for Frequency (DLF). Tests were administered

in accordance with their respective manuals and were interpreted according to pub-

lished age-specific normative data. Of the 26 children in the sAPD group, 16 were

diagnosed as having APD based on ASHA (2005) guidelines, i.e., scored 2 standard
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deviation (SD) below the normative expectation in at least two tests. Eight children

failed in one test, and two children passed all tests. Of the 10 children who passed

all or all-but-one behavioral measures, all had atypical ABR in the form of prolonged

peak latencies; prolonged inter-peak latencies; or abnormal wave I-V amplitude ratio.

Abnormalities in ABR have been recently reported in children suspected with APD.

A recent study (Allen & Allan, 2014) showed that behavioral tests alone may not

be adequate in diagnosis of APD, which supports recommendations by professional

bodies (e.g., AAA, 2010). Allen and Allan (2014) found several children who passed

these behavioral tests had abnormal neural encoding of sound measured using ABR

and/or absent/elevated acoustic reflex thresholds. Therefore, children who passed the

behavioral test battery but who had abnormal ABR were also included in the study

group (sAPD) along with children diagnosed as APD.

Study methods were approved by the Health Sciences Research Ethics Board

of Western University, Canada. The nature of the study was explained prior to

obtaining written informed assent from every participant, and informed consent from

the participants’ parent/caregiver. Participants were compensated for their time.

8.2.2 Localization experiment

The experimental set-up of loudspeakers for the localization experiment is illustrated

in Figure 8-1. The experiment was conducted in a hemi-anechoic chamber (Eckel

Industries, ON, Canada). Targets were presented from 8 loudspeakers placed 45o

apart in the presence of a diffuse noise field. Participants stood at the center of the

loudspeaker array facing the 0o azimuthal loudspeaker. Maskers were BBN (uniform

and random) and SB. SB was created by concatenating two sentences from the HINT

sentence corpus (Nilsson et al., 1994). Four different sentence pairs formed a four-

channel masker that was presented simultaneously at a sampling rate of 44.1 kHz
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in free-field using loudspeakers positioned at azimuths of 45◦, 135◦, 225◦, and 315◦

(loudspeakers just beneath the ones marked with asterisks in Figure 8-1). This set-

up produced a diffuse noise field that avoided the effect of masker location on the

obtained localization responses (Lorenzi, Gatehouse, & Lever, 1999). Similarly, BBN

was presented from the same four loudspeakers during the BBN noise condition.

Stimulus

The target stimulus was a 600 ms long speech token (‘baseball’) spoken by a na-

tive Canadian speaker from south-western Ontario (Grieco-Calub & Litovsky, 2012).

The speech token was recorded in a sound attenuated audiometric booth using a

studio-grade AKG condenser microphone (Type C 4000B) at 44.1 kHz, and later up-

sampled to 48.828 kHz using Praat (Boersma, 2002) to match the sampling rate of

the localization rig. This speech target was chosen because of its relevance to the

real world and the fact that F/B confusions occur more often with speech, compared

to broadband or click targets (Gilkey & Anderson, 1995). The use of two different

loudspeaker arrays to present noise and speech targets avoided any electrical mixing

of signals. Maskers were looped continuously for a single block duration. Each block,

obtained by roving the target level in random order, contained 40 stimulus presen-

tations (trials) at three different SNRs (-12, -6, and 0 dB). Three such blocks were

completed for each participant for each masker condition to obtain 5 responses per

SNR condition for every azimuth. In total, 120 trials (8 loudspeakers x 3 SNRs x

5 repetitions) were shuffled and divided into three blocks. One block of trials was

performed in quiet to obtain baseline localization ability. The target was presented

from any one of the 8 loudspeakers placed 45◦ apart, starting at 0◦ in a 16-channel

loudspeaker array (see Figure 8-1). Using a reference microphone placed at center

of the array, the root-mean-square (RMS) amplitudes of the maskers were matched,

and were presented constantly with a combined level of 66 dB SPL throughout the

228



experiment. Each target stimulus presentation was initiated by a button press by the

investigator standing outside the loudspeaker array, with the participant facing the

0◦ azimuth loudspeaker. All stimuli were calibrated using a Type-2250 sound level

meter (Brüel and Kjær, Denmark) with the microphone placed at ear level in the

center of the loudspeaker array. A potential caveat in the use of a single target is

that the task may be easier than real life localization of speech. On the other hand,

especially in children, using a single target reduces uncertainty and may avoid the

use of high level cognition-based processes for the task.

0o

180o

45o315o

225o 135o

90o270o/-90o

Participant

Head tracker

Front hemi-field

Rear hemi-field

Figure 8-1: Schematic representation of the loudspeaker array for the localization
experiment. Maskers were presented simultaneously through four loudspeakers
placed just beneath loudspeakers marked with asterisks. Participants stood in the
center of the circular array, the radius of which was 1.5 m. The electromagnetic
head tracker transmitter was positioned above and behind the participant’s head,
and the tracker sensor was mounted on a custom made plastic helmet worn by
the participant.
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Instrumentation

Maskers were played through a multi-channel sound interface (Audiofire12; Echo

Digital Audio Corp., CA) to four separate channels of a networked signal processor

(SoundWeb9008; BSS Audio, Hertfordshire, UK) which was amplified by CX18 am-

plifiers (QSC Audio, CA) before being fed to four Tannoy i5AW loudspeakers placed

just below the loudspeakers marked with asterisks in Figure 8-1. The speech target

was played through a real-time signal processor (RX6; Tucker-Davis Technologies,

FL) for digital-to-analog conversion before following the same (equipment) route as

the maskers, and finally to one of eight loudspeakers. Participants stood in the middle

of the loudspeaker array on an adjustable stand, such that the target loudspeakers

were at ear level. They were fit with a custom-made adjustable plastic helmet with

a focused red LED light beam that guided them in pointing to the response az-

imuth. Participants were instructed to turn their head and point the red LED light

to the loudspeaker from which they thought the word ‘baseball’ had emanated. The

helmet also carried the sensor for an electromagnetic head tracker device (Frastrak,

Polhemus, VT) that recorded the head position with reference to 0◦ azimuth. Head

position was recorded upon a button press by the investigator using a custom-made

response box. The head-tracker was connected through a serial data line to a head

tracker interface (HTI3; Tucker-Davis Technologies, FL), which then fed the data to

the RX6 real-time signal processor via a fiber optic connection. The button box was

directly connected to the RX6, where the button-press and corresponding azimuth

information was stored in a personal computer.

Measures to quantify localization ability

Example localization data obtained from a child participant are shown in Figure 8-2.

Two measures were obtained to quantify the localization performance of each partic-

ipant in each listening condition. The first was front/back percent correct (FBpc),
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which is the percentage of correct identification of sounds arriving from the front or

rear hemifields. To calculate FBpc, only responses to targets with azimuths between

-67.5◦ to 67.5◦ (front hemifield) and between 112.5◦ to 247.5◦ (rear hemifield) were

considered, illustrated as boxes in Figure 8-2A. The FBpc measure provides an esti-

mate of F/B percent correct responses within the correct hemi-field, independent of

the accuracy of the response. FBpc was used instead of an overall localization error

because: (1) lateral angle localization is resilient to noise, and it is the median plane

localization that is most affected (Good & Gilkey, 1996), especially for a speech tar-

get, (2) A metric based on RMS azimuthal error (e.g., Abouchacra, Emanuel, Blood,

& Letowski, 1998; Good & Gilkey, 1996; Van Deun et al., 2009) is not informative

about the type of error, i.e., F/B vs. lateral.
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Figure 8-2: Example of localization data from a child participant and analysis
methods. The plot on the left [A] shows responses to all tested azimuths on the
y-axis and their corresponding target azimuths on the x -axis. Responses on or
within the small black boxes are counted as F/B errors. The plot on the right
[B] shows only the lateral-angle (L/R) components of the target and response
locations, and is essentially a re-formatted version of A, such that if A were
folded along the dashed lines running through its center, it would place rear and
front hemi-fields in one quadrant. The RMS distance of individual responses from
this line provides an estimate of Lscat.
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The second measure was lateral scatter (Lscat), which is the RMS angle difference

between every response and a linear regression model fit to the data. To calculate

this measure, response and target azimuths from both hemi-fields (Figure 8-2A) were

reduced to their lateral-angle (left/right) components lying between −90◦ and 90◦,

i.e., one hemi-field (Figure 8-2B). This is akin to folding Figure 8-2A horizontally at

90◦ on the y-axis and vertically at 90◦ on the x-axis along the dark-grey dashed lines

to reflect each target and response azimuth into the frontal hemisphere. The resulting

plot places all responses within the first quadrant (−90◦ to 90◦), as shown in Figure

8-2B. This measure estimates the mean consistency of responses across trials.

8.2.3 Lateralization experiment

A just noticeable difference task was carried out with participants to obtain ITD

thresholds. Two noise bursts of 500 ms in duration, and 60 dB SPL in level served as

stimuli. Noise-bursts were generated in real-time with variable ITD per presentation

from a computer using a custom-built Matlab program. Signals were then passed

through an Audiofire (Echo Digital Audio Corp., CA, USA) for digital-to-analog

conversion before delivery to Sennheiser HD-Pro headphones.

Upon hearing the stimuli, children were instructed to click either the ‘right’ or

‘left’ button on a computer screen (with a mouse) to indicate whether the bursts

moved from left to right or right to left, respectively. The ITD of the first noise-burst

was also randomly roved. Children were able to indirectly indicate if they perceived

an apparent difference in ITD between the two noise bursts. The initial inter-burst

ITD difference was 1600 µs (one ear leading by 800 µs in the first interval, and the

other leading by 800µs in the second). The leading ear in the first burst was chosen

randomly from trial to trial and the second burst in the opposite ear led by the the

same amount. Threshold tracking was based on the 2-down, 1-up rule. Initial ITD

was reduced progressively on a geometrical scale by the factor current-step-size/
√

2

232



for every correct response. For every incorrect response, the ITD was increased by

the factor
√

2Xcurrent-step-size. The experiment continued until ten reversals were

obtained. The average of inter-burst ITD difference from the final six reversals was

considered as the ITD threshold. Visual reinforcement was provided for both correct

and incorrect responses. The on-screen button turned green for the correct response,

and turned red for an incorrect response. No training was provided, and only one run

per participant was conducted in consideration of the time taken for participants to

undergo all experiments. The experiment was conducted in the same hemi-anechoic

chamber used for the localization experiment.

8.2.4 HINT: Spatial Release from Masking

The commercially available HINT test was automated using custom programs written

in C# (Ibrahim, Parsa, Macpherson, & Cheesman, 2012). The HINT was performed

in a sound attenuated audiometric booth, in a sound field setting. Speech sentences

and noise were passed through an Audiofire for the digital-to-analog conversion from

a computer running the HINT software. The analog signal was then fed to four

separate PA5 attenuators (one each for speech, and noise at three azimuths), and

then amplified by a CX168 amplifier. Signals were then delivered to four Nucleus

loudspeakers (AnthonyGallo Acoustics, CA, USA), with two loudspeakers placed at

0◦ (one for speech and one for noise), and one each at 90◦, and 270◦. Speech was always

presented from the loudspeaker at 0◦, but noise was presented for each condition from

the three different azimuths at 65 dBA SPL. Two trials of twenty sentences in each

noise condition were completed with every participant. Speech level was adapted by

±2 dB for every incorrect or correct response, respectively. A reception threshold for

sentences (RTS) score was calculated based on standard HINT procedures (Nilsson et

al., 1994), at a 50%-correct performance level. Briefly, the final five response levels

and an additional 21st, predicted response (-2 if the 20th response is correct and vice

233



versa) were averaged to obtain a final RTS score. Noise level (65 dBA SPL) was

subtracted from the RTS score to obtain an SNR score. The SNR score indicates the

SNR at which children were able to perform at 50%-correct level. Average SNR of

two trials was considered for statistical analyses. Therefore, there were three SNR

scores for the three noise azimuth conditions (0◦, 90◦, and 270◦).

8.3 Results

8.3.1 Localization

Figure 8-3 shows individual localization data for FBpc in the top two rows for TD

(8-3A through D) and sAPD (8-3E through H) groups, and Lscat in the bottom two

rows for TD (8-3I through L) and sAPD (8-3M through P) groups. Columns in Figure

8-3 represent SNR conditions, and data are plotted as a function of age. Larger FBpc

scores, and smaller Lscat scores indicate good localization performance. An effect of

SNR can be seen for FBpc and Lscat in both TD and sAPD groups. An increase

in SNR causes an improvement in FBpc and reduces Lscat, but no effect of age can

be observed. Considering many children obtain 100% FBpc, slope (described below)

of improvement in scores as a function of SNR was subjected to regression analyses

to investigate any systematic effect of age. Age was the independent variable and

both FBpc (BBN and SB maskers) and Lscat (BBN and SB maskers) slopes were

dependent variables. This analysis did not show any systematic age effect for both

TD (BBN: β = 0.08, t [18] = 1.33, p = 0.199; SB: β = -0.08, t [18] = -1.56, p = 0.134)

and sAPD (BBN: β = 0.04, t [23] = 0.58, p = 0.565; SB: β = -0.01, t [23] = -0.27,

p = 0.788) groups. The same analysis was done for Lscat scores for TD (BBN: β =

0.002, t [18] = 0.065, p = 0.949; SB: β = 0.02, t [18] = 0.608, p = 0.55) and sAPD

(BBN: β = 0.02, t [23] = 0.45, p = 0.654; SB: β = -0.01, t [23] = -0.07, p = 0.724)

groups. Considering no age trends were found, data for both groups were collapsed
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across age for further analyses.
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Figure 8-3: Individual scores for both FBpc and Lscat are plotted for both masker
conditions and the quiet condition (pluses) as a function of age (years). Circles
indicate the BBN, and crosses indicate the SB masker. The top two rows show
FBpc data, while the bottom two rows show Lscat data. TD group data for FBpc
are shown in the topmost row, and Lscat in the third row. Second and fourth
rows show the sAPD group data for FBpc and Lscat, respectively. Columns
differentiate SNR conditions. Labels A through P are used in the text to refer to
individual panels.

Individual FBpc and Lscat for every participant and corresponding group means

as a function of SNR are plotted in Figure 8-4. As evidenced in the Figure 8-4C, gross

front-back localization in quiet is equally good in both groups. Average FBpc was

96.47±2.16% (95% confidence interval [CI95%]) in the TD group and 94.28±3.39% in

the sAPD group. An independent sample t-test, interpreted with false discovery rate
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(FDR: Benjamini & Hochberg, 1995) corrections for multiple comparisons, showed

no group differences (t [45] = 1.01, p = 0.320) for FBpc in quiet. Lscat in quiet in

the TD group was 7.08±1.04%, and, as seen in Figure 8-4F it is slightly higher at

9.55±1.76% in the sAPD group. Although this difference was significant (t [45] =

-2.23, p = 0.031), the significance was lost due to FDR corrections.
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Figure 8-4: Individual scores (grey symbols) and means (black symbols) for both
FBpc and Lscat are plotted for both masker conditions and the quiet condition
as a function of SNR. Circles indicate the TD group, and squares indicate the
sAPD group. The top row shows FBpc data, while the bottom row shows Lscat
data. Columns differentiate masker conditions. Labels A through F are used in
the text to refer to individual figures.

Collectively, results of FBpc and Lscat in quiet suggest that baseline (in-quiet)

localization levels for the two groups are not different. As evident in Figure 8-4A,
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localization performance improves as a function of SNR for both groups. Mean FBpc

ranged from 78.21±3.8% at -12 dB SNR to 90.28±2.9% at 0 dB SNR for BBN in

the TD group. The slope (rate) of this improvement was 1.01±0.29%/dB. Despite

slightly lower FBpc values, a similar improvement was seen in the sAPD group, for

whom FBpc ranged from 74.51±2.51% at -12 dB SNR to 85.62±4.07% at 0 dB SNR

for BBN. The slope of this improvement in FBpc across SNR in the sAPD group was

0.92±0.33%/dB.

FBpc performance was better in SB as compared to BBN (Figures 8-4A and

8-4B), for both groups, as would be expected based on the low-pass characteristic

of SB. However, FBpc improvement in SB as a function of SNR followed the same

trend as BBN in both groups (Figure 8-4B). In the TD group, FBpc improved from

84.04±3.6% at -12 dB SNR to 95.07±3.3% at 0 dB SNR. The slope of this improve-

ment was 0.91±0.25%/dB. Similar FBpc values were obtained in the sAPD group,

and improved from 83.34±3.92% at -12 dB SNR to 91.56±0.9% at 0 dB SNR, which

had a slightly shallower slope of 0.68±0.25%/dB.

Lscat-in-noise appears markedly similar between the two groups, and unlike FBpc,

Lscat appears similar for both maskers. In the TD group, Lscat improved, i.e., re-

duced, from 13.05±2.2◦ at -12 dB SNR to 9.98±1.2◦ at 0 dB SNR for BBN and from

13.10±1.8◦ at -12 dB SNR to 8.79±1◦ at 0 dB SNR for SB. Similarly in the sAPD

group, Lscat for BBN was 12.83±1.92◦ at -12 dB SNR and 9.75±1.69◦ at 0 dB SNR.

For SB it was 13.87±1.74◦ at -12 dB SNR and 10.93±2.02◦ at 0 dB SNR. Respective

slopes for Lscat were -0.26±0.16%/dB for BBN, and -0.35±0.13%/dB in SB for the

TD group, and -0.26±0.18%/dB in BBN and -0.24±0.16%/dB in SB for the sAPD

group.

237



To ascertain SNR, masker, group effects, and interactions, a split-plot (mixed de-

sign) ANOVA (SP-ANOVA) with localization measures (FBpc and Lscat) as depen-

dent variables and masker, SNR, and group (TD vs. sAPD) as independent variables

was performed. Results were interpreted with Greenhouse-Geisser corrections if the

assumption of sphericity was violated. Post-hoc tests were interpreted with FDR

corrections (α = 0.05) for performing multiple comparisons. Results indicate a signif-

icant main effect of masker for FBpc (F [1,45] = 39.10, p<0.001, η2Partial = 0.46), but

not for Lscat (F [1,45] = 3.70, p = 0.348, η2Partial = 0.02). This result suggests that

when data were pooled across SNRs and groups, there was a significant difference in

FBpc between the two maskers. A post-hoc test across maskers (SNRs and groups

collapsed) showed that BBN caused significantly larger (Mean difference [MD] = -

6.99%, CI95% = ± 2.25%, t [46] = -6.39, p<0.001) disruption in FBpc compared to SB.

There was also a significant main effect of SNR for both FBpc (F [2,90] = 89.28,

p<0.001, η2Partial = 0.67) and Lscat (F [2,90] = 37.27, p<0.001, η2Partial = 0.45). This

result suggests that, when data were pooled across maskers and groups, localization

performance improved as a function SNR, as expected and evidenced in Figures 8-4A,

B, D and E. There was no interaction between masker X SNR for FBpc (F [2,90] =

1.69, p = 0.189, η2Partial = 0.04) or Lscat (F [2,90] = 0.140, p = 0.869, η2Partial =

0.004). There were also no two-way (masker X group or SNR X group) or three-way

(masker X SNR x group) group interactions for both FBpc and Lscat. Collectively,

the results suggest that children in the sAPD group perform on par with TD children.

8.3.2 Lateralization

Similar to FBpc and Lscat analysis, a regression with age as independent variable

and ITD scores as dependent variable did not show any effect of age in both TD [β

= 0.08, t [18] = -107.31, p = 0.272] and sAPD [β = 0.08, t [22] = 95.83, p = 0.452]
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groups, therefore data were collapsed across age for further analyses. A histogram

of the lateralization data is shown in Figure 8-5A. Due to a software limitation, the

smallest ITD threshold value attainable was 60.34 µs. Nine of 21 TD children and 3 of

25 children suspected of APD obtained this value and possibly had lower thresholds.

One child did not complete the ITD task due to time restrictions.
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Figure 8-5: A Histogram of ITD thresholds for both groups [A] is presented.
Frequency of occurrence of ITD (µs) thresholds are plotted across intervals of
ITD threshold bins. The grey dashed vertical line indicates a cut-off point; ITD
thresholds beyond this cut-off were considered outliers. Group means (black
symbols) and individual (grey symbols) ITD thresholds [B] are presented. Circles
represent TD, and squares represent sAPD groups. Note that the limit of y axis
in panel B is 240 µs, i.e., the cut-off value (dashed vertical line in panel A).

Fifteen children from each group scored <120 µs, where 120 µs is the highest

threshold obtained for ITD measurements in naive adult listeners (Ortiz & Wright,

2009). A further three children from each group scored >120 and <240 µs. However,
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10 children, three from the TD and seven from the sAPD group, scored above 240 µs.

As seen in the histogram seven children from the sAPD group scored above 960 µs,

but only one child did so in the TD group. Adaptive tracking of participants whose

data were indicated as outliers in SPSS (IBM Corporation, NY) ‘Explore’ function,

i.e., ITD values >240 µs were inspected. This was done to understand if such ex-

treme values arose due to a true underlying ITD discrimination problem, or because

children did not understand the task. Examples of good and bad tracking are shown

in Figure 8-6. Data of children whose tracking indicated that either they were not

paying attention to the task, or did not understand the task, were excluded from

further analysis.
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Figure 8-6: Threshold tracking in the ITD task for two participants, one from each
group, demonstrate good and bad tracking. The experiment starts at 1600 µs and
successive steps are decreased/increased on a geometric scale. The participant
from the sAPD group clearly shows poor threshold tracking because the threshold
increases to a very large ITD. The participant from the TD group has good
tracking that decreases to a small ITD.

Figure 8-5B plots data from children that were not identified as outliers. There

240



were 18 participants in each group after rejecting outliers. An independent sample

t-test showed no difference between TD (Mean = 88.03±23.81 µs) and sAPD (Mean

= 88.16±19.70 µs) groups (t [34] = -0.01, p = 0.993). This may suggest that the ITD

thresholds of both groups, measured using BBN, are similar, and corroborates results

obtained in the free-field localization task.

8.3.3 Spatial Release from Masking

Raw HINT SNR scores were first converted to ‘adult equivalent SNR’ as per the

HINT manual. These SNR scores are plotted in Figure 8-7A. These scores indicate

the SNR required to obtain 50% correct speech reception scores for speech presented

at 65 dBA SPL. A regression analysis with age as the independent variable and HINT

score at 0◦ as the dependent variable was conducted to investigate the effect of age.

Results indicated no systematic trend in HINT score as a function of age for both

TD (β = 0.14, t [17] = 1.09, p = 0.291) and sAPD (β = 0.16, t [23] = 0.84, p = 0.408)

groups. Note that one child from the TD group did not complete HINT measure due

to time constraints. Visual inspection of the data in Figure 8-7A for SNR scores at

0◦ azimuth show that children in the sAPD group have slightly lower speech-in-noise

perception compared to the TD group. This difference appears to be due to a few

poor performers. A two-way RM-ANOVA with azimuth and group as independent

variables, and HINT SNR scores as the dependent variable did not show any group

(azimuth X group) interaction (F [2,88] = 2.16, p = 0.121, η2Partial = 0.05). However,

there was a significant main effect of azimuth (F [2,88] = 131.72, p<0.001, η2Partial =

0.75), suggesting that when data were collapsed across groups, there was a significant

difference in speech perception across the three azimuths.

Post-hoc tests with data collapsed across groups, interpreted with FDR correc-

tions, showed a significant reduction in SNR required for 50% correct response at both
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90◦ (MD = 5.21, CI95% = ± 0.74 dB, t [45] = 17.12, p<0.001) and 270◦ (MD = 4.05,

CI95% = ± 0.85 dB, t [45] = 12.14, p<0.001) azimuths compared to 0◦ azimuth. This

result suggests a significant release from masking, and the respective mean differences

show the amount of release in masking in dB (Figure 8-7B).
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Figure 8-7: Plot A shows HINT SNR scores (dB) plotted as a function of masker
azimuth (degrees). A derived metric from Figure 7A, SRM (dB), is plotted panel
B or 90◦ (right ear) and 270◦ (left ear). In both plots, group means are indicated
by black symbols and individual data by grey symbols. Circles in both plots
represent the TD group and squares represent the sAPD group.

Lack of azimuth X group interaction indicates that SRM was not different across

the two groups, corroborating results of other two binaural measures (localization

and lateralization). Separate SRM scores were obtained for 90◦ and 270◦ azimuths by

subtracting their respective SNR score from the SNR score obtained for 0◦ azimuth.

Interestingly, SRM scores obtained for 90◦ and 270◦ were also significantly different
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(MD = 1.21, CI95% = ± 0.73 dB, t [45] = 3.30, p = 0.002). This result shows that

SRM was larger for 90◦ azimuth, which was always the right ear in every participant

in the experiment, possibly reflecting right ear dominance.

8.4 Discussion

8.4.1 Localization-in-noise

The goal of this study was to better understand binaural hearing, pertaining to lo-

calization in children suspected with APD. Three different measures were used for

this purpose: sound field localization-in-noise, lateralization assay to measure ITD,

and SRM. Results of all three measures show that, despite numerically smaller per-

formance scores in the sAPD group, they do not differ significantly from children in

the TD group. Findings of the present study are thus contrary to reports of working

groups of audiology professional bodies that suggest localization/lateralization can

be one of the auditory processes affected in children with APD (AAA, 2010; ASHA,

2005; Bamiou, Musiek, & Luxon, 2001; Bellis, 2003). One reason that could have led

to the inclusion of localization/lateralization in the list of affected processes in APD

may be that, localization and lateralization are a part of central auditory processes,

including auditory discrimination, pattern recognition, temporal processing, dichotic

listening, and listening with degraded acoustic signals, that are required for normal

listening (AAA, 2010; ASHA, 2005). Perhaps, localization difficulties are included in

the definition of APD as part of a generic central auditory dysfunction (AAA, 2010).

However, results of the current study suggests that such a deficit is not prevalent in

children with listening difficulties.

With the exception of two unpublished theses (Wakeham, 2008; Zakaria, 2007),

there are no studies that have investigated localization or localization-in-noise in
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children with APD. Although both studies suggest that localization may in fact be

affected in APD, to varying degrees, there is no clear consensus. Wakeham (2008)

suggested that the differences observed between his TD and APD groups were sub-

clinical due to considerable overlap in performance between the two groups. He also

suggested that such subtle differences may not cause any localization difficulties in

real life. Zakaria (2007) found significantly poorer localization in the F/B and U/D

dimension in children with APD. He also found atypical binaural interaction using

post auricular muscle response (PAMR), BMLD and ITD discrimination. Specific

results and conclusions of Zakaria (2007) and Wakeham (2008) are unknown because

both of these reports are unpublished, so, further comparisons between the findings

of these two studies and current data is not possible.

Although data on localization in APD is sparse, several tests have been developed

and are in use, to test the binaural system as a whole. These tests use either speech or

non-speech stimuli dichotically or diotically to test the ability of the auditory system

to integrate and/or fuse signals to form a coherent auditory image (Bellis, 2003).

Examples of such tests are the SSW (Katz, 1998), binaural fusion test (Ivey, 1969),

dichotic digits test (Musiek, 1983), and BMLD (Hall & Grose, 1993; Moore, Hutch-

ings, & Meyer, 1991). Indeed, these tests are routinely used to identify children with

auditory processing difficulties. Although there is no gold standard test to compare

the results of these tests, at least some have been shown to be sensitive in identi-

fying known brain lesions that cause auditory processing disorders (Katz & Smith,

1991; Musiek, Gollegly, Kibbe, & Verkest-Lenz, 1991). Objective measures such as

the binaural interaction component (BIC) derived from auditory brainstem response

have also been shown to be sensitive to subtle deficits in binaural signal processing in

the auditory system (Delb, Strauss, Hohenberg, & Plinkert, 2003; Gopal & Pierel,

1999). Results of the present study suggest that while global binaural processing
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may be affected in some children with APD, this may not necessarily translate to im-

paired localization ability. Even if children diagnosed as sAPD perform poorer than

TD children, as suggested by Wakeham (2008), such differences may be sub-clinical

and may not significantly impact day-to-day listening.

A question may arise as to why localization deficits may not be exhibited in chil-

dren in whom binaural processing is thought to be affected. The answer to this

probably lies in the number of processes a typical speech based binaural test, such

as SSW, might tap. Many investigators suggest that attention and memory are in-

tertwined with all auditory processes, consequently, the outcome of all auditory tests

will have some variability due to the involvement of attention and cognition (Dawes &

Bishop, 2009; Moore, Ferguson, Edmondson-Jones, Ratib, & Riley, 2010; Musiek,

Bellis, & Chermak, 2005). For instance, Moore et al. (2010) studied a large sample

(n = 1469) of randomly chosen children between 6 and 11 years of age with a variety

of auditory processing tasks. Their results suggested that, in children who performed

poorly in auditory tasks, attention and cognition scores best predicted their listening

abilities. However, the amount of variability explained by attention, cognition and

language may vary across different tests. The localization-in-noise assay in the present

study used a speech token as target, but children were only required to identify the

direction from which the speech sound emanated. On the other hand, dichotic tests

like SSW involve listening to four words (two overlapping) and repeating them in

the correct sequence. This process can be thought to involve, attending to all four

words, storing them in temporary/working memory, retrieving them, and repeating

them in sequence. Language skills further complicate task difficulty; children with

poor language skills may fail such tests despite good auditory skills (Allen & Allan,

2014; Moore, Rosen, Bamiou, Campbell, & Sirimanna, 2013; Rosen, 2005).
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The non-speech BMLD test on the other hand has been shown to be similar across

APD and control groups (Cameron et al., 2006). BMLD is thought to test lower

brainstem structures, while, SSW and other dichotic tests clearly involve higher or-

der processing (Bellis, 2003). Due to such additional complexities involved in speech

based binaural processing tests, poor performers may include children who do not

have specific deficits pertaining to binaural signal processing, but rather experience

other non-sensory deficits (Moore et al., 2010; Moore & Hunter, 2013). There-

fore, an increased number of children may be identified as APD who may or may not

have deficits in binaural processing (Wilson, Heine, & Harvey, 2004). In contrast,

localization and lateralization assays in the current study used a rather simple task,

involving perhaps non-sensory factors to a lesser degree. Considering SRM is ob-

tained by comparison of speech-in-noise performance across three different conditions

(repeated measures), non-sensory factors that arise due to the use of speech material

may cancel out across spatial conditions (90◦ and 270◦). Also, speech based dichotic

tests have been reported to be sensitive to deficits in information transfer from left

to right hemisphere (via corpus callosum), which may indicate a deficit unrelated

to sound localization (Musiek et al., 1991). Further, localization errors of children

who failed the SSW (12/26) performed as part of the current APD test battery,

were compared with children who passed the SSW (14/26). Children in both groups

performed at equal levels in all binaural hearing assays in this study. This further

emphasizes that difficulties in binaural hearing, as measured by standard APD tests,

do not necessarily indicate difficulties in localization.

8.4.2 Lateralization

There were no group differences in ITD threshold between the two groups. How-

ever, the results of ITD from the present study must be handled with caution due to

a methodological caveat. Due to a software limitation, the smallest ITD threshold

246



value attainable was 60.34 µs. Larger proportion of children (43%) in the TD group

obtained this threshold value compared to children in the sAPD group (12%). It is

possible that children in the TD group could have scored better if the limits of our

instrumentation were reduced further, which could have differentiated the two groups.

Mean ITD threshold values obtained here for both groups are larger than those re-

ported for children by Van Deun et al. (2009). However, considerable methodological

differences exist between the present study and Van Deun et al. (2009). For instance,

Van Deun et al. (2009) presented a reference signal in the mid-line and listeners were

asked to judge the position of the second (test) stimulus (with different ITD) relative

to the reference signal. In the present study, the reference was not fixed at mid-line.

It is possible that the larger uncertainty due to a reference that was not fixed could

have made it more difficult to identify the change in ITD. This difference in method

could have led to higher ITD discrimination thresholds in the present study. The

ceiling effect described above, observed as a result of software limitation, could also

have inflated ITD threshold values in both groups.

Nevertheless, the motive of this study was to compare ITD thresholds between TD

and sAPD groups. To this end, excluding the outliers, both groups performed at equal

levels. However, the outliers cannot be wholely disregarded. It is interesting to note

that more children (1 TD vs. 7 sAPD) in the sAPD group obtained ITD thresholds

greater than 960 µs. For instance, two children in the sAPD group obtained thresholds

greater than 5000 µs. Such high ITD thresholds are not found even in cochlear implant

users (Laback, Pok, Baumgartner, Deutsch, & Schmid, 2004). Thus, an impairment

in sAPD children’s binaural hearing mechanism is probably not the cause of such

high thresholds. Instead, inattention, fatigue or inability to follow task instructions

could have led to such poor thresholds. Indeed, the inability to follow instructions is

a common complaint in APD (Chermak, Somers, & Seikel, 1998). This is evident
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in threshold tracking as seen in an example from a child in the sAPD group (Figure

8-6). Given the complexity of the task, perhaps more children in the sAPD group

found it difficult to follow task instructions.

8.4.3 Spatial release from masking

SRM was similar in both groups. The amount of SRM obtained in the present study

is slightly lower than the ∼10 dB SRM obtained for younger TD children (4.5 year

olds) by Garadat and Litovsky (2007). Again, it should be noted that consider-

able methodological differences exist between the two studies. Garadat and Litovsky

(2007) used a more child friendly test tool with inclusion of graphics, whereas the

present study did not optimize the HINT protocol for use with graphics. The HINT

used here requires children to repeat the entire sentence in order to be judged cor-

rect or wrong. Repeating whole sentences is more difficult and more errors can be

expected compared to only repeating words as in Garadat and Litovsky (2007). Such

differences may have restricted the SRM that could be achieved in the present study.

An interesting observation in the SRM results is that, on visual examination of Figure

8-7B, children in the sAPD group appear to have benefited more than the TD group

from the spatial separation of speech and masker, although this difference was not

significant. This is in contrast to the findings of Cameron et al. (2006), who reported

a significantly reduced SRM in children with APD. Their control group achieved an

SRM of 10 dB, while the present study achieved a maximum of only 4.5 dB for the

90◦ azimuth condition. Their APD group on the other hand achieved an SRM of

only 3.7 dB, while in the present study, the sAPD group achieved as much as 5.9 dB

in the 90◦ azimuth condition. While Cameron et al. (2006) used a specialized test

for spatial release from masking, the HINT is primarily a speech-in-noise reception

test and thus lacks the sophistication of LiSN to obtain SRM. Nevertheless, based

on the large effect size of the Cameron et al. (2006) study, if the sAPD group in the
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current study indeed had poor SRM, it should have been observable in either measure.

One critical factor that could have differentiated SRM between groups based on

SRM in the Cameron et al. (2006) study and not the current study, could be the

difference in maskers. LiSN uses distracter sentences (meaningful speech) as maskers,

while the current study used speech-spectrum noise. Competing speech is known to

cause larger informational masking, compared to energetic masking caused by speech-

shaped random noise (Brungart, Simpson, Ericson, & Scott, 2001). While children

in general are more prone to informational masking (Hall, Buss, & Grose, 2005; Oh,

Wightman, & Lutfi, 2001; Wightman, Callahan, Lutfi, Kistler, & Oh, 2003), and

distraction (Allen & Wightman, 1994; Lutfi, Kistler, Oh, Wightman, & Callahan,

2003), it is possible that children with APD are even more vulnerable. Therefore,

the type of masking release obtained in the present study and that of Cameron et al.

(2006) does not strictly measure the same underlying mechanisms. Perhaps children

in the sAPD group are genuinely able to reap similar benefits from spatial separation

of speech and noise, provided the noise only causes energetic masking. However, as

evidenced from the LiSN test (Cameron & Dillon, 2008; Cameron et al., 2006),

children with APD may benefit less from spatial separation when the masker causes

informational masking. Further studies that investigate SRM in both energetic and

informational maskers may provide evidence for this hypothesis.

8.4.4 General discussion

It is well known that APD is characterized by heterogeneity in listening difficulties,

and in test battery outcomes. Different children fail different tests within a battery.

There is no ‘pure’ APD where only one modality or a specific auditory processing

ability is affected. ‘APD’ is thus an umbrella term encompassing a wide variety of

deficits ranging from temporal processing, to attention (Dawes & Bishop, 2009).
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Therefore, for investigation of specific auditory modality deficits, selection of children

based on an APD test battery may not be very useful, as much as they are clinically

useful in APD diagnosis. The current study included both children diagnosed as APD

and non-APD to mitigate pitfalls related to excluding children based on the outcome

of an APD test battery (Allen & Allan, 2014). Perhaps, previous studies that show

significant group differences in localization used stricter criteria in including APD

children, or children who were severely impaired (Zakaria, 2007).

Asymmetric or unilateral conductive hearing loss has been shown to alter short-

term brain plasticity in the auditory system that persists even after the peripheral

hearing loss has resolved, affecting binaural hearing (Moore, Hartley, & Hogan, 2003).

Perhaps investigating the localization abilities of children with a history of known bin-

aural processing deficits and a history of otitis media may provide insights into the

relationship between binaural hearing and localization in APD. Evidence for impaired

binaural processing in children with a history of otitis media comes from impairments

in BMLD, a non-speech diotic test (Hall & Grose, 1993; Moore et al., 1991).

It is also possible that the present study was unable to detect an underlying deficit

in localization-in-noise performance in children with sAPD. Two reasons for such an

inability can be considered: sample size and sensitivity of the measure. Sample size in

the previous two studies [Zakaria (2007): 20 TD, 15 APD; Wakeham (2008): 24 TD,

24 sAPD] that report significant differences between the TD and sAPD groups in lo-

calization are comparable to the present study (21 TD, 26 sAPD). Therefore, sample

size may not be a factor contributing to the non-significant differences between TD

and sAPD groups in the current study. In addition, post-hoc power analysis using

G*Power software (with β/α ratio = 1; Faul, Erdfelder, Lang, & Buchner, 2007) with

combined means and standard deviations (across SNRs) for FBpc and Lscat shows
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a moderate power of 0.56 for both measures. Another possibility is that the metrics

used to quantify localization was not sensitive enough to identify subtle differences

in localization abilities between the two groups.

However, that FBpc, Lscat, ITD discrimination, and SRM were all same between

groups suggests that the two groups are genuinely not different in their localization

abilities. Clearly, more studies are needed to reconcile the findings of the present

study, and establish if localization-in-noise is indeed affected in children with APD.

However, it is clear that while some children may have difficulties in localization, due

to the heterogeneity of the disorder, it is not prevalent across APD. Identification

of children based on a hierarchal model suggested by Dillon (2012) may be more

appropriate to disambiguate APD, and identify those children with specific auditory

processing difficulties. Dillon (2012) suggested using a master test to decide what

auditory process is affected, and follow-up with more detailed tests that are specific

to the one affected auditory process. For example, children who fail the binaural

component of the SSW may be tested with the LiSN, localization tests, and BMLD

to establish the problem domain. This method may help identify the underlying

problem, facilitate treatment, and be more useful than labeling someone as APD.

Future research in APD should probably focus on fragmenting APD into separate

entities that show a specific tendency to one type of listening difficulty, such as the

spatial processing disorder identified by Cameron et al. (2006).

8.5 Conclusion

Localization-in-noise, ITD discrimination, and spatial release from masking were com-

pared in children with listening difficulties (both APD and non-APD) and TD children

in the present study. Results indicate that children with listening difficulties do not
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differ significantly from TD children on all three assays. These findings contradict

two previous unpublished reports on localization in APD, probably due to method-

ological differences, and inherent heterogeneity of the disorder. While some children

may indeed have difficulties with localization-in-noise, it is unclear if these subtle

difficulties will make any difference in day-to-day listening (Wakeham, 2008). Fur-

ther investigations are warranted to reconcile contradicting results on the localization

function in APD.
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Chapter 9

Summary and Concluding Remarks

9.1 Summary

9.1.1 General Summary

The general aim of this work can be divided into two parts; (1) to investigate physio-

logical irregularities in the peripheral and brainstem auditory mechanisms in children

with APD, (2) to understand the role of spatial hearing in children with APD. Both

aims pertained to auditory noise reduction mechanisms that may influence speech

perception in noise, the prime complaint in children with APD. These mechanisms

are widely reported to aid normal listening individuals in understanding speech in

noisy environments, but have been scantily studied in the children with APD.

Due to the heterogeneity associated with APD, it is not surprising that a single

physiological process or an anatomical site cannot be isolated as the reason for the

disorder across all children diagnosed with APD. Nevertheless, physiological irregu-

larities in the brainstem, and cortical processing of auditory signals in children with

listening difficulties have been reported recently (e.g., Allen & Allan, 2014; Muchnik

et al., 2004), which is encouraging for future research. Understanding the underlying

physiological irregularities may pave the way for differential diagnosis, and disam-

257



biguation of the term APD itself (Dillon, 2012).

To this end, three auditory noise reduction mechanisms (cochlear tuning, efferent

function, and spatial hearing) were investigated in children with listening difficul-

ties (sAPD group), and their results were compared with typically developing (TD)

children who did not report any listening difficulties. More specifically, Chapter-5

reports an investigation of cochlear tuning using a physiological measure based on

stimulus frequency otoacoustic emissions (SFOAEs) and their relationship to medial

olivocochlear (MOC) functioning. The specific motives for this study were that: (1)

subtle deficits in cochlear tuning go undetected in conventional audiological screening,

and (2) peripheral auditory mechanisms have not been investigated in great detail in

children suspected with APD. Considering that MOC function is crucial for the proper

development of cochlear tuning, the relationship between tuning and MOC function

was also probed. Chapter 6 reports findings on the working and strength of the

binaural MOC reflex obtained using a forward masked click evoked OAE (CEOAE)

assay. Motivation for this study stems from the fact that the binaural MOC reflex

will almost always be stimulated in real life, and that contralateral MOC function,

as typically studied, may not be a good proxy for either the ipsilateral or binaural

MOC reflex. Further, contradicting results on the relative strength of MOC in the

sAPD group was observed between Chapters 5 and 6 led to a comparison of the MOC

strength obtained using three different OAE assays (SFOAE, CEOAE, and distortion

product OAE [DPOAE]) in Chapter 7. Finally, Chapter 8 reports an investigation of

spatial hearing using three assays: localization-in-noise, spatial release from masking

(SRM), and interaural time difference (ITD) thresholds.

An ‘optimization’ (stimulus and instrumentation) phase preceded the ‘APD study’

phase described above. Three studies were conducted in the optimization phase in
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normal listening adults and children. Chapter 2 describes an investigation into the

previously reported enhancement in MOC sensitivity to 100 Hz amplitude modula-

tion. The motive behind this study was to use a 100 Hz modulated MOC elicitor

instead of an unmodulated elicitor to improve the effect size of the MOC inhibition

of OAEs. The study described in Chapter 3 aimed to find the optimal click stim-

ulus presentation rate for eliciting CEOAEs without activating the ipsilateral MOC

reflex. Although it is well known that faster click presentation rates evoke MOC

activity, the rate at which the ipsilateral MOC is activated in a typical MOC assay

remained elusive. Finally, localization-in-noise ability of TD children was studied and

described in Chapter 4. The motive for this study evolved from the paucity of data

on localization-in-noise abilities of young children.

9.1.2 Summary of Findings

Optimization Phase Studies

Results from studies in the optimization phase (Chapter 2-4) have improved our un-

derstanding of some of the physiological properties of the MOC, and have revealed

localization-in-noise abilities in children and adults in the front/back and lateral do-

mains.

First, in Chapter 2 the replicability of previously reported (Maison, Micheyl, &

Collet, 1999) improvement in MOC inhibition of OAEs was investigated using broad-

band noise (BBN) modulated at 100 Hz. This property of the MOC was studied using

two different OAE-types (SFOAE and tone-burst OAE [TBOAE]) and frequencies

spanning two octaves. Results of this study indicate that MOC activity may not be

enhanced at 100 Hz, contradicting the findings of Maison et al. (1999) but corroborat-

ing Backus (2005). Based on the MOC time constants, it appears that 100 Hz is too

fast for the MOC to follow. Low level periods in a modulated elicitor appear to reduce

its effectiveness in eliciting MOC activity. Therefore in this work, subsequent stud-
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ies on MOC function in children suspected with APD did not use modulated elicitors.

In Chapter 3 a search for the optimal click stimulus presentation rate for use in

MOC assays was carried out using a forward masking method that emulated typical

MOC assays (click stimulus in the ipsilateral ear and MOC elicitor in the contralat-

eral ear). Results indicated that click rates as low as 31.25 Hz evoke significant MOC

activity and contaminate contralateral MOC inhibition of CEOAEs with ipsilateral

and binaural MOC activity. This result has implications in both clinical and research

settings when investigating MOC function using CEOAEs and contralateral noise

elicitors. Due to temporal energy integration in the MOC, 50 Hz click rate the typi-

cally used will certainly elicit the ipsilateral MOC response. Therefore rates ≤25 Hz

appear ideal for use in MOC assays.

The goals of Chapter 4 were two fold: (1) to investigate if the localization-in-noise

ability of children (7-17 years) is adult-like for two different noise maskers (uniform

and random broadband noise [BBN] and speech-babble [SB]), and (2) to investigate

the relationship between front/back localization ability and MOC strength. Results

indicated that while children are able to grossly differentiate sounds coming from front

and back as well as adults in quiet, and amidst an energetic masker (BBN), they made

significantly more errors in the presence of the informational masker speech-babble.

Their responses were also less consistent. These findings suggest that, despite matu-

ration of the required neuronal circuitry to localize sounds in noise, non-auditory fac-

tors may prevent children from localizing sounds accurately amidst an informational

masker. Further, no correlation between MOC strength and localization-in-noise was

found in both adults and children. This finding indicates that MOC activity is in-

volved to a lesser degree in unmasking azimuthal cues from noise as compared to

elevation cues (Andéol et al., 2011). Finally, binaural MOC interaction was signifi-
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cantly different between adults and children, despite similar inhibition of OAEs.

Overall, studies in the optimization phase identified some basic temporal aspects

of MOC physiology and recommended optimal parameters for recording CEOAEs in

MOC assays that are relevant for both research and clinical use. It was also revealed

that despite mature localization abilities in children as young as 5 years Van Deun

et al. (2009), localization-in-noise abilities appear to develop on a protracted scale

for informational maskers, which is presumably due to immaturity of non-auditory

factors.

APD Studies

The study described in Chapter 5 investigated the role of cochlear tuning, and its

inter-relationship with MOC function in children with sAPD. Results indicated that

cochlear tuning is sharper in the sAPD group when compared to TD children. This

finding was contrary to our hypothesis that children in the sAPD group may have

broader tuning. However, these findings suggest that many children in the sAPD

group could be more vulnerable to forward masking that may influence their temporal

resolution. Further, reduced MOC control on the cochlea, and an inverse relationship

between MOC strength and change in tuning suggests differential cochlear and MOC

function in children in the sAPD group.

Chapter 6 investigated the role of binaural MOC function and interaction in chil-

dren with sAPD. Previous studies in the APD literature have only investigated the

contralateral MOC pathway, so the role of ipsilateral and binaural pathways were

largely unknown. In addition, the results of Chapter 4 suggested a different binaural

interaction of the MOC between TD children and adults. Although the implications

of the binaural interaction of the MOC are not very clear, it was probed in this study
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to investigate the existence of potential deficits in the study population. Results sug-

gested that MOC function and binaural interaction in both groups were similar, which

conflicted with the initial findings of Chapter 5. A behavioral measure of binaural

interaction [Binaural Re-synthesis Test (Ivey, 1969)] did not show any significant

difference between the two groups.

Contradicting findings were found in Chapters 5 and 6; SFOAE based MOC as-

say suggested reduced MOC function in children with APD (Chapter 5) while the

CEOAE based assay did not show such group differences (Chapter 6). Therefore a

study was designed (Chapter 7) to reconcile the results of these conflicting studies.

In this study, strength of the MOC reflex in children with sAPD was assayed using

three different OAEs and compared with TD children. Neither CEOAE nor DPOAE

measures in the two groups showed any significant difference in MOC strength. Al-

though there was a significant difference in the SFOAE assay, the significance was

lost due to corrections for multiple comparisons. It is still unclear if MOC strength

is reduced in children with sAPD.

Finally, Chapter 8 details the investigation of localization-in-noise abilities of chil-

dren with sAPD. Various professional bodies (e.g., American Academy of Audiology

[AAA], 2010) have suggested that localization is one of the affected processes in

children suspected with APD, yet there are few published data. Front/back and lat-

eral angle localization was obtained in two different noise maskers (broadband and

speech-babble) in children with sAPD. Results of this study indicate that localiza-

tion abilities of children in the sAPD group are not significantly different from TD

children, contrary to the supposition of professional bodies.

Revisiting the conceptual model introduced in Chapter 1, the present findings
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suggest altering it slightly for children in the sAPD group. As seen in Figure 9-1, it is

now clear that children in the sAPD group have sharper than typical cochlear tuning.

This may lead to reduced temporal resolution and increased forward masking, which

may in turn affect their speech perception in noise.

Figure 9-1: A conceptual model involving the three noise reduction mechanisms,
grouped under their respective anatomical positions. Filled thin black arrows
connect processes/mechanisms to their further consequential outcomes. Unfilled
grey arrows inside decision boxes indicate sharp (up arrow) or broad (down arrow)
tuning, reduced MOC function (down arrow), and reduced localization-in-noise
(down arrow). Note that only the processes/mechanisms within thick grey boxes
were investigated in this work, their outcomes are inferred based on empirical
evidence from previous studies. Blurred boxes indicate that the current findings
rule out the possibility of those outcomes.
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Localization-in-noise, spatial release from masking and ITD sensitivity does not

appear to be affected in children with sAPD, so these abilities may not contribute

to their speech perception problems. Finally, although efferent function does not

appear to be affected in children with sAPD at the group level, many children in the

sAPD group do appear to have reduced MOC functioning. This is evident from the

variability in results across OAE types, and the numerically smaller MOC inhibition

of OAEs in the sAPD group. This finding portrays the heterogeneity in auditory

problems associated with APD.

9.2 Implications

The findings recorded in Chapter 2 indicate that the MOC is not as sensitive to 100

Hz modulation as was previously thought, and illustrates that the MOC integrates

energy temporally. This finding has extended our understanding of the temporal

properties of the MOC, and may have implications in design of future research and

theoretical modeling of MOC function.

The findings described in Chapter 3 have direct clinical and research implications.

Clinically, audiologists will need to be more aware of the contributions of ipsilateral,

contralateral, and binaural MOC effects are in part dependent on click presenta-

tion rates. In future research, investigators will be able to control for activation of

ipsilateral and binaural MOC activity by using lower click presentation rates. Fur-

ther, the correction factors for higher click presentation rates will also aid clinicians

and researchers alike if they are unable to use slower rates, for example, with children.

The findings recorded in Chapter 4 provide evidence that maturation of the un-

derlying auditory neuronal circuitry is sufficient to carry out complex tasks such as
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speech localization amidst noise that causes energetic masking. However, maturation

of non-auditory factors may play a role in protracted development of localization-in-

noise amidst the informational masker speech babble. These findings also corrobo-

rate studies that show children are more prone to informational masking compared

to adults (e.g., Hall, Buss, & Grose, 2005). This finding may have implications when

advocating for acoustical considerations in school classroom settings. Performance

equivalent to adults in localization amidst a broadband masker, suggests that chil-

dren are as prone to the effects of energetic masking as adults, corroborating findings

in previous spatial release from masking studies (e.g., Lovett, Kitterick, Huang, &

Summerfield, 2012). These findings may have implications in developing spatial

listening tests, and generating normative data for young children on localization-in-

noise tasks. Implications of the difference in binaural interaction of the MOC between

adults and children are unclear and therefore require further investigation.

Chapter 5 provides the first evidence of subtle differences in cochlear function and

its links with MOC function between TD children and those with sAPD. These find-

ings may have implications in the definition of APD itself. No previous studies had

investigated the possible role of the cochlea in children suspected with APD (Bellis,

2003). These results show that deficits in children suspected with APD can include

aberrant tuning within the cochlea. Upon further validation of the present findings by

other investigators, future iterations of an APD definition may incorporate peripheral

mechanisms in their list of deficits. Already, the change in central processing due to

middle-ear effusion and related plasticity in children, has been attributed to the pe-

ripheral origin of APD (Moore, Hartley, & Hogan, 2003). The difference in the effect

of MOC activation on cochlear tuning between the two groups also requires further

validation. The current results provide impetus to studies that may investigate links

between MOC and cochlear function.
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Chapter 6 details the first study of binaural MOC function and interaction in

children with sAPD. No significant differences in MOC function between children

with sAPD and TD children were found. Considering Chapter 5 shows a significant

difference in MOC function between sAPD and TD children, findings of this study

complicate the interpretation of MOC function of the sAPD group. However, the

method used in the study was successful in obtaining binaural MOC inhibition of

CEOAEs in young children in a reasonable amount of time (∼25 minutes). Studying

binaural MOC may provide a better indication of MOC function in real life. Al-

though first reported almost 20 years ago by Berlin, Hood, Hurley, Wen, and Kemp

(1995), only a handful of studies have investigated binaural MOC activation. This

is probably due to the complexities involved in separating signal and elicitor in the

ear-canal. The method used in the present study can be easily adapted to clinical

OAE instruments. The findings and methods of this study may therefore have both

clinical and research implications for future investigations on binaural MOC function.

Chapter 7 describes a comprehensive study of MOC strength in sAPD partici-

pants using three different OAEs (SFOAE, CEOAE, and DPOAE with components

unmixed) but the results were equivocal. It is not yet clear if MOC function is

indeed affected in children with APD. Implications of these results may help disam-

biguate APD as an umbrella term and identify children with specific deficits. For

instance, identifying children with reduced MOC function may help in developing

targeted treatment regimens. Considering MOC is amenable to training, improve-

ment in MOC strength may parallel improvements in speech perception in noise (de

Boer & Thornton, 2008; Veuillet, Magnan, Ecalle, Thai-Van, & Collet, 2007).

The study in Chapter 8 showed that children with sAPD, in general, may not have
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deficits in localization-in-noise, as suggested in the reports of various professional bod-

ies (e.g., AAA, 2010). In addition, as speculated in Chapter 5, longer filter ringing in

children suspected with APD does not seem to affect their gross localization ability,

as measured in Chapter 8. Investigating the relationship between cochlear tuning and

ITD in the same sample might provide further insights. Considering the findings of

the present study contradicts two unpublished reports on the localization abilities of

children with sAPD (Wakeham, 2008; Zakaria, 2007) it calls for further investiga-

tion. However, if localization-in-noise was indeed unaffected in a significant number

of children with sAPD, then identifying children with such deficits and prescribing

targeted treatments may help children with genuine localization deficits, similar to

the implications of results from Chapter 7.

Overall, the results of four studies on children with sAPD corroborate literature

reporting large variability associated with sAPD. The spread of sAPD data in all four

studies was large and overlapped with the TD group, suggesting that not all children

with listening problems have similar deficits in the auditory system. Statistical com-

parisons of data with such large variability are less likely to show significant differences

across groups. However, heterogeneity within the sAPD group does not negate the

fact that these children may have genuine listening difficulties. Non-significant re-

sults only means that the deficit under question is not homogeneous across the entire

sAPD cohort. Some reasons for this heterogeneity may be the inclusion of a large

number of symptoms, and consequently, diagnostic tests for the diagnosis of APD.

This also leads to large variability in findings across studies. Therefore, investigating

physiological mechanisms in children with auditory problems that are homogeneous

across the group would better inform about the underlying aberrations. This will

also lead to a reduction of mis-match across studies, and will facilitate systematic

reviews in the future. Currently, there is only one systematic review available in the

267



APD literature that reviews treatment methods (Fey et al., 2011). No studies have

yet systematically reviewed methods used in APD diagnosis. Further, the present

findings, although non-significant in some cases, call for a better definition of APD

itself, or a fragmentation of APD into several deficit specific disorders, which may

help in achieving a diagnosis and that can lead to effective treatment, as suggested

by Dillon (2012).

9.3 Strengths

• The present work aimed to investigate potential physiological mechanisms that

may be associated with the most commonly reported problem in children with

APD: speech understanding in noise. Objective methods were used, except in

the spatial hearing studies. Unlike typical behavioral tasks that are used in

clinical and research settings for APD testing, objective methods avoid non-

auditory factors that often influence study results. The focus of this work was

only on mechanisms that are thought to promote speech perception in adverse

listening conditions. By keeping a narrow focus, we were able to use objective

methods that are known to invoke responses from known anatomical regions

along the auditory pathway. This aids in the interpretation of the results.

• The optimization phase allowed for the selection of ideal stimulus parameters

and instrumentation for use in further studies. These parameters yielded ro-

bust OAEs while avoiding complications such as the middle-ear muscle reflex

(MEMR). These parameters are easily transferable to both clinical and research

settings for clinicians and investigators interested in studying the MOC using

OAE assays. Consideration of these parameters in future studies will improve

the quality of the OAEs obtained.

• Several steps were taken to prevent and identify the MEMR effects on OAEs.
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First, only children with acoustic reflex thresholds higher than 70 dB HL were

included in the screening stage. Later, offline tests were conducted to investigate

subtle changes in the stimulus level in the ear-canal that may have indicated

MEMR activation.

• The quality of OAEs obtained in this work can be considered high, consequently

the MOC inhibition can also be considered to be of good quality. Quality of

responses here refers to the size of the emission above the noise floor, or the

signal-to-noise ratio (SNR). In the present work, a high (10 dB) SNR was set

as the cut-off for response inclusion. This is uncommon for OAE-MOC studies

in APD, but ensured that the findings minimized influence from the noise floor.

• Despite a high rejection rate in the sAPD group, the sample size was consider-

ably larger than most OAE based MOC studies, and comparable with studies

that report significant group difference between APD and TD children for MOC

measures (e.g., Muchnik et al., 2004). Power calculation based on mean and

standard deviations of Muchnik et al. (2004) indicated that a sample size of 15

in each group is required to achieve a power of 0.8. All studies in this work in-

cluded more than 15 participants. Therefore, the power of all studies reported

here for the MOC inhibition of OAEs can be considered reasonable, and the

non-significant effects should not be related to the sample size.

• One problem that affects most MOC assays that do not use an interleaved

elicitor presentation method is probe-drift. Level changes in OAEs due to probe-

drift can mislead an investigator into thinking an OAE level reduction is due

to MOC activation. The current study avoided this problem by using short

duration (2, 2.5 or 8 s for SFOAE, CEOAE and DPOAE assays, respectively)

sweep-blocks for interleaving the elicitor on and off. Unlike continuous elicitor

presentation methods, interleaving the elicitor on/off minimizes the differential
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effect of probe drifts.

• A normalized metric was used to quantify MOC mediated change in OAE level

(re: baseline OAE level in no-elicitor condition). By obtaining a normalized

metric, as recommended by Backus and Guinan (2007), the influence of indi-

vidual differences in OAE levels on the MOC strength was ruled out.

• The use of three different OAE measures to reconcile contrasting findings from

the present work, and also from the literature, provides a comprehensive view

of the status of MOC function in children with sAPD.

• Two different maskers were used (broadband and speech-babble) in localization

studies helped in identification of the protracted development of non-auditoy

factors, and their influence on localization amidst speech-babble in TD, and

sAPD children.

• The use of a diffuse masker source created a more real-life noise field, in addi-

tion to avoiding masker location related complexities in localization (Lorenzi,

Gatehouse, & Lever, 1999).

9.4 Limitations and Alternate Methods

Several limitations of the work need to be acknowledged:

• The conceptual model introduced in Chapter 1 assumes that all the auditory

noise reduction mechanisms investigated in this work pertain to speech percep-

tion in noise. While previous studies indicate that the mechanisms in question

do influence speech-in-noise perception, the degree to which they aid speech-

in-noise perception can be ascertained only with the use of appropriate test

materials. Such a direct correlation was not done in this present work, instead
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the focus was only on the investigation of the underlying mechanism. Speech-in-

noise tests with low redundancy could be used for this purpose but it should be

noted that the Hearing In Noise Test (HINT; Nilsson, Soli, & Sullivan, 1994), a

sentence perception test, did not show any group differences between the sAPD

and TD children included in this study.

• The focus of this work was the investigation of mechanisms that may aid speech

perception in noisy environments, considering speech in noise is the prime com-

plaint in children who are referred for APD testing. However, children with APD

may also have other difficulties such as difficulty understanding rapid speech,

following instructions, attention, academic difficulties, and difficulty following

subtle prosodic changes in speech (AAA, 2010). These difficulties were not a

focus of this work. It is possible that some children included in the sAPD group

in this study do not have any speech-in-noise problems at all, but may have

other auditory difficulties. Inclusion of such children, although suspected of

having APD, may have led to non-significant group differences in the processes

being studied. Inclusion of children with only speech-in-noise problems and/or

analysis of subgroups of children with different APD profiles could have resulted

in different outcomes. Although such a select study group may not represent

the current definition of APD it may help in the targeted investigation of a

breakdown in specific physiological mechanisms.

• All OAE-based studies in this work required a high signal-to-noise ratio of 9 dB

or more to consider a response as above noise floor. While this is one of the

strengths of this work, it also led to an increased rejection rate (see Chapter

5). Also, the rejection was disproportionate; more sAPD than TD participants

were rejected from the study. This may indicate that children with sAPD have

inherently higher noise levels than their age matched TD peers. Therefore the

271



methods used in this work, at least for the SFOAE phase measurement, are

not very robust to noise related artifacts. Two reasons could have led to the

higher rejection rate in the SFOAE assay: (1) SFOAE was completed first in

most participants, and participants rejected from the SFOAE assay were not

recalled for other OAE measures, therefore many children with poor SFOAEs

did not participate in other OAE measures, (2) SFOAE measurement took the

longest to complete (∼30 minutes), increasing the chance of participant related

artifacts. SFOAE phase measurements are particularly sensitive to movement

artifacts; because artificial changes in phase (between frequencies) even by a few

degrees can render the phase data non-meaningful for obtaining reliable phase

gradients and group delay. Measurement of phase in closely spaced frequencies

(e.g., 4 Hz; the present study used 16 Hz) in discrete clusters is one option to

avoid phase related complexities (Francis & Guinan, 2010). Another option

is using more novel methods such as a SFOAE sweep measurement technique

(Kalluri & Shera, 2013). However, both these measures have not yet been used

with children and therefore the outcomes are yet to be ascertained.

• In consideration of time, OAEs from only one ear per participant were obtained

in all studies in this work. Previous studies have indicated a functional asym-

metry in MOC inhibition of OAEs, which is thought to be a manifestation of

right ear dominance observed throughout the auditory system (Khalfa & Collet,

1996). This asymmetry is thought to be a part of typical listening ability and is

reduced in individuals with listening difficulties (Veuillet et al., 2007). Obtain-

ing MOC inhibition of OAEs from both ears could have added more information

to the present work.

• Most children spent around two hours to complete the entire study. These

two hours were in addition to the time taken for their APD diagnostic tests
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(approximately 1 hour). Although most assays in this work are objective, and

the order of tests were semi-randomized, fatigue may have had an effect in some

children. Testing was completed in a single session in most participants due to

a lack of participant willingness to attend two sessions. Conducting all studies

spread across 2-3 sessions may have avoided fatigue. However, multiple visits

would have significantly increased the time required to complete a given study,

and may have led to increased participant drop-out.

• In Chapter 2, only one modulation frequency was studied. This was done to

replicate a previous study’s findings (Maison et al., 1999). More modulation

frequencies could have been included in the study to obtain a complete perspec-

tive of the temporal characteristics of the MOC.

• Only one click level (55 dB peSPL) was investigated in Chapter 3, as the focus

was on click rate. Considering that a 20.83 Hz click rate was used for ‘test-

clicks’, the experiment took each participant ∼2.5 hours to complete. However,

previous studies have indicated the effect of elicitor level on MOC inhibition

of OAEs non-linear (Hood, Berlin, Hurley, Cecola, & Bell, 1996), therefore

recommendations from this study can only be used where 55 dB peSPL clicks

are used.

• In Chapter 7, the method used to separate DPOAE components, although

promising, is based on signal processing assumptions. There is always a margin

of error in separating the two components. Improved automated methods are

required to objectively, and consistently separate DPOAE components.

• In Chapter 8, the interaural time difference (ITD) assay showed a prominent

ceiling effect, and only one trial per participant was performed due to time

constraints. Therefore results of this assay must be considered with caution.
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9.5 Future Directions

Several questions have come to light from the findings of the current work and war-

rant further investigation. Also, some new results are reported that require further

validation.

• Results of Chapter 2 suggest that the MOC is not especially sensitive to 100

Hz modulation, and that it integrates energy over time. Future studies may

investigate the energy integration of the MOC in greater detail. Considering

only 100 Hz modulation was evaluated in the current work, the effects of other

modulation frequencies should also be investigated. Although, Backus (2005)

investigated several modulation frequencies, his study only involved four par-

ticipants. Validation in a larger sample is warranted.

• Results of Chapter 3 apply only to a 55 dB peSPL click stimulus. The present

findings should be extended to other click levels (low to high). In addition,

more click rates could be evaluated in order to determine a narrower range of

optimal click presentation rate.

• Results from Chapter 4 suggest that MOC activity may not play a role in

azimuthal plane localization, but from Andéol et al. (2011) it is understood

that the MOC aids median plane localization. It is unknown if the same applies

to children. The reflexive pathway of the MOC, typically studied using acoustic

stimuli, is mature at term birth (Abdala, Mishra, & Garinis, 2013). Therefore,

differences in MOC activation between adults and children may not arise due

to the reflexive element of this pathway, rather from corticofugal influences,

perhaps due to focused attention (de Boer & Thornton, 2007). Therefore, a

MOC study that controls for attention while measuring localization and MOC

inhibition of OAEs may throw light onto differences in MOC function in adults

and children.
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• Chapter 5 provides evidence for physiological irregularities at the peripheral

level in children with sAPD. First, this finding must be validated. Next, the

possible repercussions of such irregularities must be ascertained.

• The method used in the study in Chapter 6 shows promise for use with children

and could be easily introduced into clinical OAE instruments. Future studies

with a clinical focus and a wider range of disorders may aid in our understand-

ing of the binaural MOC system. Further, functional asymmetry in the MOC

may prove to be more informative when ipsilateral and contralateral MOC path-

ways are investigated separately, compared to studying only the contralateral

pathways of the left and right ears.

• An improvement over the method from Chapter 7 could be an investigation of

MOC function using all three OAE types, but in a homogeneous study group.

For example, only with children who complain of speech-in-noise difficulties and

fail speech-in-noise tests. This may provide a better indication of MOC function

in children who only suffer from speech-in-noise deficits, and may also extend

our understanding of the MOC.

• The results of Chapter 8 contradict two previous unpublished reports (Wake-

ham, 2008; Zakaria, 2007) on localization abilities of children with APD.

Therefore further study is warranted to reconcile contradictory findings. Also,

an investigation of localization abilities for sounds of varying elevations may pro-

vide more insight into the localization abilities of children with sAPD. Studies

that investigate SRM in energetic, and informational maskers are warranted.
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9.6 Concluding Remarks

Studies conducted during both the optimization phase and APD study phase have

contributed to our understanding of some basic MOC functions. It is now clear that

the MOC’s time-constants prevent it from following 100 Hz amplitude modulation.

Also, consideration of click stimulus presentation rates for MOC assays is essential

to avoid ipsilateral and binaural MOC activation. The MOC may not play a role in

localization-in-noise in the azimuthal plane.

Evidence for cochlear involvement in children with sAPD is perhaps the most

important finding of this work. As stated in the introduction, this is one of the noise

reduction mechanisms in the auditory system. Therefore, increased cochlear tuning

may contribute to speech processing deficits in some children. This finding calls for,

upon further validation, inclusion of the peripheral auditory system in the list of

processes affected in APD. This has opened a new avenue to pursue for research in

the APD domain. Studies that investigate other peripheral processes may further

improve our understanding of peripheral contributions to APD. Results from other

studies in the present work highlights the heterogeneity of deficits in children with

APD. Nevertheless, unlike localization-in-noise, MOC function appears to be affected

in at least some children with listening problems. Investigating MOC function or

localization-in-noise in children with a homogeneous auditory deficit may be a better

means to study the role of specific auditory processes in children with APD.

In general, based on the APD data, disambiguating the term ‘APD’ appears to

be necessary. Also, fragmenting constituent deficits under the umbrella term ‘APD’

into process specific disorders may be useful. Although it is impossible to separate

contributions of one auditory process from another, at least identifying a predominant

deficit, and possibly a physiological reason behind the behavioral manifestation, may

help in targeting treatment regimens that may help the child. It is thus necessary to

continually search for potential ‘biological-markers’ of APD. Identification of biologi-
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cal markers linked to specific auditory processing deficits will aid in the development

of gold-standard tests.
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Appendix B: Results of Within-Epoch Analysis
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Mean difference ± 95% confidence intervals of within-epoch temporal analysis from Chapter
6 are displayed along with their respective FDR corrected p. Time windows along columns
are compared with time windows in rows. Significant mean differences after FDR correction
are indicated with a superscripted asterisk.
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Appendix C: Results of Across-Epoch Analysis

Epoch-time (ms)

Elicitor 7-22 31-46 55-70

Ipsi

31-46 -1.92±4.21; p=1

55-70 2.84±5.04; p=0.738 4.76±3.23; p=0.002∗

79-94 2.91±5.99; p=1 4.83±4.49; p=0.029∗ 0.70±3.89; p=1

Contra

31-46 3.56±3.27; p=0.027∗

55-70 7.11±4.45; p=0.001∗ 3.55±3.61; p=0.056

79-94 5.99±5.78; p=0.039∗ 2.44±5.20; p=1 -1.11±4.90; p=1

Binaural

31-46 0.51±5.39; p=1

55-70 6.98±5.67; p=0.009∗ 6.46±4.12; p=0.001∗

79-94 9.36±6.39; p=0.002∗ 8.85±6.12; p=0.002∗ 2.39±5.96; p=1

Mean difference ± 95% confidence intervals of across-epoch temporal analysis from Chapter
6 are displayed in the table above. ∆OAEn obtained from clicks presented sequentially every
24 ms after elicitor cessation are compared. Epoch-time along columns are compared with
epoch-times in rows. Significant mean differences after FDR correction are indicated with
a superscript asterisk. Note that the comparisons are made after collapsing TD and sAPD
groups together, considering no group interactions were found in RM-ANOVA.
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