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Abstract
Cooperative communication has recently been considered as a key technology for modern

wireless standards and next generation wireless networks to improve the quality-of-service
(QoS) and extend transmission coverage in a cost-effective manner. In this thesis, we aim
to address the challenges of wireless cooperative communications, and design the efficient
OFDM-based relay systems.

Starting with the channel accumulation problem in the amplify-and-forward (AF) relay
system, we proposed two adaptive guard interval (GI) schemes for single/multiple-relay net-
works respectively to cover the accumulated delay spread and enhance the transmission effi-
ciency. Distinct from the traditional adaptive GI, the dynamical GI length can be detected by
the destination individually. Numerical results show that the proposed scheme can further save
the control signaling overhead without any symbol error rate (SER) performance loss. For
multiple-relay systems, a novel relay selection criterion is proposed to achieve the trade-off

between the transmission reliability and overhead by considering both the channel gain and the
accumulated delay spread. From computer simulations, the proposed relay selection scheme
significantly improves the efficient throughput over the multipath channel with variable channel
length.

Moreover, cooperative systems require an accuracy resource allocation to achieve the high
capacity in the two-way decode-and-forward (DF) relay system with time-varying channels
and the bidirectional asymmetric traffic. We propose two allocation algorithms, where the
total capacity is maximized under a capacity ratio constraint which depends on the traffic-load
difference between the uplink and downlink. The balanced capacity performance shows that
the proposed schemes can assure the fairs data rate of the two terminals and improve the overall
QoS of the relay network. A low-complexity suboptimal allocation algorithm is proposed for
the frequency-division model which separates subcarrier and time/power allocation. Verifying
by simulations, the suboptimal scheme can achieve the similar performance with the optimal
one with reduced complexity.

In order to further enhance the transmission reliability and maintain low processing delay,
we propose a novel equalize-and-forward (EF) relay scheme, which can equalizes the channel
between source and relay and eliminate the channel accumulation effect. The relay processing
time is reduced by performing the channel estimation and equalization in parallel. In the EF
relay, free-delay equalization is realized by presetting the equalizer with the current channel
response that is predicted in parallel. Numerical results show that the EF relay can achieve
comparable SER performance as the DF relay with much less latency and exhibit low outage
probability at the same data rate as compared to traditional AF and DF schemes.

Keywords: wireless networks, cooperative communications, relay techniques, orthogonal
frequency division multiplexing (OFDM), multipath channel.
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Chapter 1

INTRODUCTION

1.1 Research Motivations

1.1.1 Challenges in the explosive growth of wireless communications

Over the last decades, wireless communication has experienced a significantly fast develop-

ment and has become indispensable to modern society, for instance, the latest generations of

cellular systems, data networks and wireless local area networks (WLAN) for wireless com-

puters, home and personal networking, etc. Between 2009 and 2014, global mobile traffic

increased 66 times with an annual growth rate of 131 percent [1]. Today, mobile telephone

services surpassed fixed line telephone services in terms of both availability and number of

subscribers, and turned into an important tool in social and business communications. Mo-

bile ad hoc networks are implemented in homes, campuses, hotels and airports, and provide a

freedom for users to access Internet from anywhere at anytime. The next generation wireless

communications systems are expected to offer high speed Internet access, wireless multimedia

services and mobile computing with higher Quality of Service (QoS) requirements. The explo-

sive growth of wireless communications is creating the demand for high-speed, reliable, and

spectrally efficient communication over the wireless medium.

Obviously, there is a huge gap between the growth of wireless data traffic demand and

the capacity growth rates of new wireless access technologies. There are several challenges

in attempts to provide high-quality service in the dynamic wireless environment. This has

1



2 Chapter 1. INTRODUCTION

increased the effort in the investigation and implementation of wireless communication systems

to accommodate communication reliability, coverage, and high data rate services for various

applications.

A fundamental challenge of the wireless communication is the low reliability of the wire-

less channels. These pertain to the channel impairment due to multipath, fading, and shadow-

ing, which is caused by receiving different versions of the source signal from different paths.

The propagate paths result from scattering, reflection and diffraction of the transmitted signals

by objects in the environment [2], such as buildings, trees, etc. Therefore, the capacity of a

wireless channel has very high variability.

In addition to the unreliable channel, the spectrum resource over wireless channel is limit-

ed. Meanwhile, the required spectrum is increased as a consequence of high demand of high

data rate services. Therefore, in order to reuse the frequency resource and satisfy the QoS re-

quirements, the cellular coverage is restricted. Moreover, the increasing demand of high data

rate transmission and the migration to high carrier frequency regions greatly limits the cover-

age of the wireless network. With the potential use of millimeter wave band in next generation

wireless systems [3, 4], the cell size is reduced because by the Friis free-space equation, a mil-

limeter wave signal experiences tens of dB more attenuation than a microwave signal. On other

hand, to improve the transmission bit rate, more spectrum is required, and it also leads to cov-

erage reduction. For instance, the coverage area has to reduce by 13 times, if the corresponding

transmission bit rate rises by 100 times [5]. The natural method to address the coverage issue

is to increase the number of the base stations in a region. However, it significantly raises the

infrastructure cost.

Furthermore, energy consumption and environmental issue are caused by the fast growing

data traffic volume and remarkable expansion of network infrastructures. From [6], approxi-

mately 18% of the Operation Expenditure results from the energy bill in the mature European

market and at least 32% in India. Meanwhile, the enormous escalation of energy consump-

tion due to the explosive development of wireless communications will directly result in the

increase of greenhouse gas emission and becomes one of the major challenges in meeting the

cost reduction and green environment targets [7].

Many techniques of wireless communications are emerging that suggest different architec-
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tures for the described problems above. Cooperative communications as an attractive alterna-

tive is suggested by the standard task group in IEEE 802.16j Mobile Multihop Relay to extend

the coverage of a base station by deploying several relay stations around the base station [8].
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1.1.2 Advantages of cooperative communications

It is well known that signal fading arising from multipath propagation can be mitigated through

the use of diversity. Diversity is to provide the destination node with several copies of the

transmitted signal, so if one copy undergoes deep fading, the destination still can detect the

received signal successfully using the other received copies. Diversity in wireless system can be

achieved through time diversity, frequency diversity, and spatial diversity. A popular technique

to achieve spatial diversity is the multiple-input and multiple-output (MIMO). This technique

is attractive for its significant improvement to information rate and transmission reliability [9]

[10]. However, high cost and complicate implementation issues bring challenges to MIMO

systems.

Cooperative communications, shown in Fig. 1.1, have recently become a key technolo-

gy for the modern wireless networks as an effective means of saving power, attaining broader

coverage range, and mitigating channel impairments resulting from fading. It has been incor-

porated into many wireless standards, such as 3GPP long-term evolution (LTE) [11–13], IEEE

802.11s (mesh networking) [14], IEEE 802.16j (wireless multihop relay) [8], IEEE 802.16m

(WiMAX2) [15, 16] and Femtocell [17].

Relay communication, which is a specific kind of wireless cooperative communication,

has been demonstrated to be an effective way to combat wireless fading by providing spatial

diversity without the need of multi-antenna configurations [18]. The fundamental idea of relay

communication is that several relay terminals participate in communications by retransmitting

Base
Station

Relay

Mobile 
Station

Mobile 
Station

Relay

Relay
Mobile 
Station

Figure 1.1: Cooperative communications in a wireless network.
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a signal from a source to a destination by forming a distributed multi-antenna system [19, 20].

Relaying mimics MIMO communications by establishing interactions among the distributed

nodes that serve as virtual multiple antennas both at the transmitter and receiver sides. The

final destination receives multiple versions of the transmitted signals through the cooperative

relay nodes and combines them forming the final received signal. In relay systems, the received

and retransmitted signals at any relay node is typically orthogonalized to avoid the interference.

It means the transmissions of source-relay and relay-destination are performed in different time

slots or frequency bandwidths.

The application of relays in cellular systems can permit economical design for the case

that there is few or infrequent user at the edge of cellular. Since the relay does not need a

wired connection to the backhaul, it can eliminate the costs of the backplane that serves as the

interface between the BS and the wired backhaul network. Besides, relay communications will

reduce the required transmit power compared to those for a base station (BS) due to the smaller

coverage. Moreover, if the density of relays in a cell is moderately high, the propagation loss

from the relay to a terminal is much lower than from a BS to the terminal. Thereby higher data

rates can be achieved in larger cells [21].

Furthermore, multi-hop relay cooperation scheme is a attractive approach to solve the area-

coverage problem with a reasonable infrastructure cost. In a cellular, all idle users can act

as relays to participate in the communication by establishing independent paths between the

source and the destination. Hence, there is a potentially large number of relays which are able

to help the base station to forward the signals. When the target mobile station is out of the

service coverage of the base station, one or more relay node can retransmit the signals from the

base station towards the destination. As a result, the coverage is substantially extended with

the assist of relay nodes.

All the aforementioned benefits of the cooperative communication motivate us to inves-

tigate it as a promising techniques which can be used to combat the challenges of wireless

networks.
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1.2 Technical Challenges in Relay Communications

Although the relay technology is promising in improving communication quality, the involve-

ment of multiple relay nodes and multi-hop transmissions also poses many challenges to the

reliability and efficiency of the systems.

In relay communications, the diversity is achieved by exploiting the relay node to retrans-

mit the source signal. Based on the signal processing methods employed by the relay node,

cooperative schemes can be divided into two main protocols: amplify-and-forward (AF) and

decode-and-forward (DF). In AF, the relay simply captures the waveform received from the

source, amplifies it, then re-transmits a noisy version of source transmission. In DF, the re-

lay implements a full physical layer transceiver. It decodes a transmission by the source, re-

encodes the entire received signal, then retransmits.

One of the major challenges of cooperative communications is the low transmission reli-

ability due to channel characteristic of the transmission links (i.e., the source-relay link, and

the relay-destination link). In the broadband wireless systems, the channels take place over

multipath propagation which leads to frequency selective fading and delay spread. In non-

coherent cooperative relay systems, the channel condition will become rougher because of the

accumulation of multipath fading in the multiple hops if there is no channel compensation tech-

niques at relay nodes. The overall channel impulse response from the source via the relay to

the destination is the convolution of the impulse responses of the multiple frequency-selective

channels. As a result, the delay spread in the different links add together to form the overall

delay spread of the concatenated channel, and the delay spread of the relaying link increases

proportionally to the number of relays [22]. Meanwhile, in frequency domain, the frequency

selectivity of overall channel response is also grown, which is the product of the frequency

selectivity of each hop. Compared to the DF scheme, it is obvious that the AF scheme has

simpler operation. However, without channel compensation techniques at AF relay nodes, the

severe channel response will increase the noise level in the system, and cause the reduction the

transmission reliability of the relay link [18].

Meanwhile, in the cooperative network with multiple available relay nodes, the trade-off of

system reliability and efficiency becomes complicated to achieve. The cooperative multiple-
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relay system, enabling the architecture called virtual MIMO, has become promising in various

networks as it is able to enhance the overall system performance by achieving full cooper-

ative diversity. Although the diversity order is high compared to a single-relay cooperative

system, the operation becomes very complicated and the system suffers the additional resource

consumption. The repetition-based cooperation schemes are bandwidth inefficient, since the

larger number of relay nodes used for cooperative transmission reduces the spectral efficiency

and increase the power consumption due to the transmission over orthogonal channels. The

required resources in multiple-relay system increase by the number of available relay nodes.

In order to benefit from the multiple-relay systems, relay selection (RS) is an alternative effi-

cient transmission scheme which provides all the advantages of the cooperative diversity while

minimizing the overhead without the need of synchronization across relays. Relay selection

chooses a single best relay according to some criterion to participate in the transmission be-

tween relay and destination. However, in the specified situation with accumulated multipath

fading channels, the relay selection schemes only based on the channel gain or signal-to-noise

ratio (SNR) cannot achieve high transmission efficiency without considering the effect of the

accumulated channel delay spread and relaying delay.

Besides, the multi-hop transmission involved in cooperative systems requires an accuracy

resource allocation to achieve the high capacity. Especially, in the scenario with time-varying

channels and the bidirectional asymmetric traffic, the traditional allocation which only depends

on the channel condition causes the fairness issue and degradation of the overall QoS of the

relay network. Practical relay systems typically avoid the interference between the received

and retransmitted signals at any relay node by orthogonalizing these signals. Two common

methods for orthogonal relay transmission are frequency division (FD) and time division (TD)

where the available bandwidth or time frame, respectively, are shared. Due to the path loss and

fading effects, the channel condition and capacity of these orthogonal channels are considerably

different. Also, taking the mobility of the relay and terminal nodes into account, the channels

fadings are time-variant. Therefore, allocating transmission resources to the hops equally and

statically will lead to the overall system capacity reduction. It is important to make a wireless

relay system which adaptively allocates the transmission resource, such as time slot, bandwidth

and power. Meanwhile, in two-way relay systems, the traffic loads of down-link and up-link are
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asymmetric in most practical cases [23–25]. Hence, the resource allocation algorithm without

considering the asymmetric traffic loads leads to the fairness issue. Simply maximizing the

total end-to-end capacity will result in the lopsided allocation of the resource, i.e., light traffic

flows would obtain relatively excessive resource. On the other hand, forcing the two terminals

with different traffic loads achieve the same capacity only according to the channel condition

causes a problem such that the heavy traffic flows is deprived of resources and suffers low data

rate. Moreover, the allocation scheme to achieve the equal capacity of two terminals does not

take into account the notion that the two terminals might have different data rate requirements,

eg., in the systems with service level differentiation or flexible billing mechanisms for different

classes of users. Therefore, ignoring the asymmetric traffic in resource allocation lowers the

overall quality of service of the relay network. For the bidirectional asymmetric traffic scenario,

the traffic-load ratio between the two terminals should also be one of the factor to determine

the resource allocation algorithm.

Furthermore, the channel compensation techniques applied at relay nodes, which have high

complexity and long processing delay, results in additional delay overhead and reduce the end-

to-end transmission time utilization rate particularly in packet and interactive communications.

In order to improve the quality of retransmission, some relay schemes apply error correction

techniques at relay nodes, such as DF relay. However, this high-complexity techniques result

in another challenge of relay system, i.e., the reduction of transmission efficiency. In relay

systems, the additive processing delay at relay nodes will increase the transmission overhead.

Specifically, in the DF relay which completes the entire receiving and regenerating opera-

tions, the FFT/IFFT will take over 10µs delay [26], and de/interleaving and de/encoding need

even much more processing time. Furthermore, in some decoding schemes, to achieve high

throughput, the relay has to collect all coded packets in a block before being able to decode.

It indicates that the long processing time at the relay is not negligible at all. This overhead

reduces the transmission efficiency especially in the packet and interactive communications.

Besides, for the delay sensitive and realtime application which requires imminently feedback

information, the stringent latency requirement cannot tolerate high-complexity operations and

long processing time of relay nodes.
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1.3 Main Contributions of This Thesis

The above mentioned issues and factors encourage us to investigate the relay communication

systems and propose several solutions. Specifically, motivated by the benefits of orthogonal

frequency division multiplexing (OFDM) in terms of supporting the high bit rate transmission

and combating the multipath channels, we use OFDM as the underlying modulation technique

for our physical layer design.

The major contributions of this thesis is summarized as follows:

• Beginning with the transmission reliability and efficiency problem in AF relay systems,

we proposed an adaptive GI scheme which can eliminate the overall transmission over-

head by dynamically choosing the suitable GI length. The destination can detect the GI

length individually. Hence, the proposed adaptive GI scheme can be implemented with-

out any extra control signal transmitted by the source to notify the destination about the

GI used. Numerical results show that the proposed scheme (without additional control

signal) can achieve the same symbol error rate (SER) performance as the convention-

al adaptive GI approaches (with control signal), and further save the control signaling

overhead without any SER performance loss.

Next, we extend this work to multiple-relay systems. Based on the adaptive GI scheme

for AF relay network, we propose a novel RS scheme to minimize the overhead as well

as enhance the overall transmission reliability. In the proposed strategy, an effective

throughput is defined as the selection criterion which depends on both the end-to-end

channel gain and the accumulated delay spread. Both the theoretical analysis and simu-

lation results show that when the channel delay spread varies, the proposed scheme can

dramatically improve the effective data transmission throughput.

• We then consider resource allocation problem in the two-way DF relay system with

asymmetric traffic loads. Two resource allocation algorithms are investigated to optimize

the end-to-end capacity of the two-way system under the constraints which includes the

total transmission time/power and the capacity ratio between the bidirectional transmis-

sions.
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In the first scheme where the two-way communication is executed by time-division, the

total end-to-end capacity is maximized by optimizing the transmission time and power

allocations under the capacity ratio and total transmission time/power constraints. The

performance of this scheme is compared with different allocation schemes through sim-

ulations. The results show that the proposed optimal allocation can significantly improve

the balanced capacity compared to the random and equal allocation schemes.

By exploiting the orthogonality of the subchannels in OFDM systems, the two-way com-

munication in the second allocation scheme is performed by frequency-division model.

In this scenario, subcarriers, subcarrier power and time slot are optimized to achieve the

maximum balanced capacity. Since the optimal solution is extremely computationally

complex to obtain, we propose a low-complexity suboptimal allocation algorithm which

separates subcarrier allocation and time/power allocation. Simulation results verify that

the suboptimal algorithm can provide the similar performance with the optimal one.

• To further improve the transmission reliability under multiple multipath channels, we

present a novel equalize-and-forward (EF) relay scheme. To eliminate the accumulation

of both delay spread and frequency selectivity, the relay node estimates and equalizes

the channel between source and relay. To shorten the processing time, estimation and

equalization are performed in two parallel parts. In main path, delay-free equalization is

realized by passing data symbols through an equalizer preset with the up-to-date channel

response from parallel path. In parallel path, the current channel condition are estimat-

ed and predicted from multiple past channel responses. Compared to AF and DF relay

schemes, the proposed EF relay scheme has an efficient structure to eliminate the multi-

path channel effect as well as the relay overhead.

1.4 Thesis Structure

The remainder of this dissertation is organized as follows.

The background subjects is briefly introduced in Chapter 2, including the motivation for us-

ing the frequency agile multicarrier modulation technique in frequency-selective fading chan-
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nels, the basic principles of OFDM-based communication systems, the benefits of cooperative

communications and the classification of cooperative schemes. The chapter also provides a

literature survey of cooperative communication systems related to our research.

Beginning with the channel accumulation problem in AF relay systems, two adaptive relay

schemes against the accumulation of delay spread are proposed in Chapter 3. For the signel-

relay networks, we introduced an adaptive GI scheme which can eliminate the overall trans-

mission overhead by dynamically choosing the suitable GI length. Extending the adaptive GI

scheme to multiple-relay systems, a novel relay selection (RS) scheme is proposed to minimize

the overhead as well as enhance the overall transmission reliability. In the proposed strategy, an

effective throughput is defined as the selection criterion which depends on both the end-to-end

channel gain and the accumulated delay spread to maximize the transmission efficiency. The

performance of the proposed scheme are evaluated through numerical simulations.

In Chapter 4, we present the adaptive resource allocation schemes for the two-way DF relay

systems. Considering the different capacity requirements due to the asymmetric traffic loads of

two-way communications, the transmission resources, including transmission time and power,

are dynamically allocated to each hop. For the time-division systems, the end-to-end channel

capacity is maximized under the constraints. Moreover, exploiting the orthogonal subchannels

of OFDM systems, the two-way relay communications are performed simultaneously on dif-

ferent subchannels, i.e., frequency-division systems. Based on this scenario, a low-complexity

subcarrier allocation algorithm is also introduced. Finally, numerical examples of the proposed

schemes are presented.

To further improve the transmission reliability under multiple multipath channels, a novel

equalize-and-forward (EF) relay scheme is presented in Chapter 5. First, we investigate the

performance impact of the multihop transmission in relay systems. We then provide the EF

relay design, which adopted an efficient parallel structure to shorten the processing time and

to achieve both transmission reliability and low processing delay. Finally, the performances of

EF relay scheme is compared to AF and DF relay schemes through computer simulations.

The conclusions of the thesis are summarized in Chapter 6. In addition, the future research

directions relevant to the work in this thesis are discussed.



Chapter 2

Background and Literature Review

This chapter briefly introduce the background subjects related to our research. It includes the

multicarrier modulation technique for frequency-selective fading channels, the basic principles

of OFDM-based communication systems, the benefits of cooperative communications and the

classification of cooperative schemes. We then review the development and important results

in the major issues associated with cooperative communication from a broad array of related

references. Specifically, we discusses considerations involved in the study of this dissertation,

i.e., OFDM-based cooperative communications, relay techniques for multipath channels, relay

selection and resource allocation in relay systems, and transmission efficiency improvement of

relay communications. The motivation of this chapter is to familiarize the readers with the field

of study and lay the foundation for the rest of the dissertation.

2.1 Principles of Multicarrier Communication

2.1.1 Multi-Carrier Modulation

In recent years, wireless applications are widely used and becoming more and more sophisti-

cated, meanwhile the demand for high data-rate communications has increased substantially.

Therefore, a communication system should be able to achieve high data-rates for transmis-

sion with the limited spectrum resource. The multicarrier communications (MCM) approach

can supporting huge data-rates by dividing the transmitted bit stream into several parallel bit

12
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Figure 2.1: Comparison of the effect of frequency-selective fading channel on the signle-
carrierr vs. the multi-carrier communications

streams and modulating these sub-streams with different narrowband subcarriers [27]. The

number of the subcarriers is chosen to ensure that each subchannel experiences flat fading,

where the intersymbol interference (ISI) on each subchannel is negligible. As a result, M-

CM is robust to frequency selective fading, hence MCM becomes a prime candidate for high

data-rate transmissions.

The coherence bandwidth for a channel is defined as Bc, over which the signal propagation

characteristics are correlated. The coherence bandwidth can be approximately estimated by the

inverse of the maximum path delay spread, τmax. Consider a linearly modulated system with

data rate R and bandwidth B. The channel is frequency selective if the signal bandwidth is larg-

er than the coherence bandwidth, i.e., Bc > B. And the signal experiences frequency-selective

fading. On the other hand, if B is smaller than Bc, the channel can be approximately consid-

ered flat. The comparison of the MCM and single carrier communications is shown in Fig. 2.1.

Compared to single carrier systems, the fading of each subchannel in MCM communications
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can be considered relatively flat since the subcarrier bandwidth is small compared to the coher-

ence bandwidth of the channel. Moreover, in a MCM system, a single fade or interferer only

affects a small percentage of the subcarriers. However, in a single carrier system, it can cause

the entire link to fail.

Due to different delays on different propagation paths, ISI is caused by the delay spread

when adjacent symbols overlap and interfere with each other. The symbol duration of the

signal, Ts, is defined as the inverse of the signal bandwidth, B. In a single-carrier modulated

system, the number of interfering symbols is given by

NISI =

⌈
B
Bc

⌉
=

⌈
τmax

Ts

⌉
, (2.1)

where d·e is ceiling operation. When the data rate is high, the symbol duration of the single-

carrier-modulated system will be very short, consequently, the bandwidth B becomes large, i.e.

B > Bc, then the effect of ISI will significantly increase.

On the other hand, if the signal bandwidth is much smaller than the coherence bandwidth,

B � Bc, the amount of ISI will become negligible. This effect is exploited in the multicarrier

systems. The basic premise of multicarrier modulations is to break this wideband system into

N linearly modulated sub-systems in parallel, each with subchannel bandwidth BN = B/N and

data rate RN ≈ R/N. In this case, the number of interfering symbols in multi-carrier modulated

systems becomes

NISI =

⌈
B

NBc

⌉
=

⌈
τmax

NTs

⌉
. (2.2)

For sufficiently large N, the subchannel bandwidth BN � Bc, which ensures relatively flat

fading on each subchannel. In the time domain, the symbol time TN of the modulated signals

in each subchannel is approximate to N × Ts. So BN � Bc implies that TN � τmax. Thus, the

ISI degradation in MCM systems is much lower than that in single-carrier systems.

Moreover, there are some other advantages of the MCM systems. The multi-carrier system-

s are less susceptible to impulse noise, since the energy of the impulse noise only distributes

over several subchannels at the multi-carrier receiver, thereby its effect reduces. Besides, multi-

carrier systems can perform adaptive power and bit loading, which can enhance performance

with respect to maximizing throughput or minimizing power consumption. Multicarrier com-
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munications require separated modulators and demodulators on each subchannel, which was

too complex to implement in the early years. However, the development of simple and cheap

implementations of the discrete Fourier transform (DFT) and its inverse reduces the compu-

tational complexity of MCM systems and ignited MCM’s widespread use. Furthermore, low

complexity equalizers can be adopted for satisfactory equalization in multi-carrier implemen-

tation, while more complex equalizers are required in a single carrier system.

2.1.2 Orthogonal frequency division multiplexing (OFDM)
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Figure 2.2: Block diagram of an OFDM system

In this thesis, we mainly focus on OFDM-based relay systems, which is a multi-carrier
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transmission technique, and fundamentals of OFDM is described in this section.

OFDM is a popular scheme for many existing and future wideband digital communication

systems, whether wireless or over wirelines, such as asymmetric digital subscriber line (ADSL)

broadband internet access systems [28], digital video and audio broadcasting systems [29],

IEEE 802.11a [30], IEEE 802.11g [31] and IEEE 802.11n [32] Wi-Fi systems, IEEE 802.16

WiMAX systems [33], and 4G mobile cellular communication systems, such as LTE and UMB.

The basic principle of OFDM is to divide the available spectrum into N subcarriers, with

each subcarrier containing a low rate data stream. The subcarriers have appropriate spacing

and passband filter shape to satisfy orthogonality. The block diagram of an OFDM system is

shown in Figure 2.2. First, the high data rate stream of symbols is passed through serial to

parallel converter resulting in a block of N low rate parallel data streams. This serial to parallel

conversion increases the symbol duration by a factor of N. Then these streams are modulated

individually by exploiting M-ary quadrature amplitude modulation (QAM) or M-ary phase

shift keying (PSK). The low rate streams are loaded onto N orthogonal subcarrier and summed

up to yield an OFDM symbol. The baseband transmitted signal for a single OFDM block

corresponds to

s(t) =
1
N

N−1∑
k=0

S ke j2πk∆ f t, (2.3)

where S k, k = 0, 1, . . . ,N − 1, represents the complex symbols of the k-th subcarrier, and

∆ f is the frequency spacing between adjacent subcarriers [2]. The baseband OFDM signal

given in (2.3) is equivalent to the implemented by IFFT of N M-ary PSK (or M-ary QAM)

input symbols. Therefore, the IDFT and DFT are used to modulating and demodulating the

data constellations on the orthogonal subcarriers. The discrete sample of the OFDM symbol is

written as

s(n) =
1
N

N−1∑
k=0

S ke
j2πkn

N , n = 0, 1, . . . ,N − 1. (2.4)

As compared to the traditional parallel systems, frequency division multiplexing (FDM),

OFDM can achieve a higher spectrally efficient. In FDM systems shown in Fig. 2.3, when ad-

jacent subcarriers are located without sufficient guard spacing, spectral bleeding into adjacent

subcarriers results in the distortion of the signal. Therefore, a guard band is necessary between

subcarriers, which leads to an inefficient usage of spectrum. However, OFDM systems resolve
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this issue by insuring that any two subcarriers are mutually orthogonal. Then, OFDM can uses

overlapping spectrum of orthogonal subcarriers, which leads to effective usage of spectrum, as

shown in Fig. 2.3 [34].

Before the samples in (2.4) are sent to the digital to analogue converter (D/A), the guard

interval (GI) or cyclic prefix (CP) is appended to the OFDM symbols. CP was an important

contribution to OFDM, which was proposed by Peled and Ruiz in 1980 to solve the orthog-

onality problem [29]. A cyclic prefix, instead of the conventional null band, is added at the

beginning of the OFDM symbol after IFFT procedure. The length of the cyclic prefix is cho-

sen to be longer than the channel length such that the interference of multipath components

from one symbol cannot affect the next symbol. Meanwhile, if the guard interval contains

cyclically extending the OFDM signal, i.e.,

{s(N − 1 − P), s(N − P), . . . , s(N − 1), s(0), s(1), . . . , s(N − 2), s(N − 1)},

where P is the length of CP, the linear circular channel is converted into a cyclic circular
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channel, which ensures orthogonality over a time-dispersive channel and eliminates the ISI

between subcarriers to a large extent. The only drawback of the CP extension is the reduction in

the efficiency of transmissions. After the parallel-to-serial (P/S) conversion, the baseband time-

domain OFDM signal s(n) is passed through the digital-to-analog (D/A) converter to generate

the analog signals from the digital signals. Then, the baseband OFDM signal is upconverted to

the desired centering frequency fc and amplified for transmission.

The receiver as shown in Fig. 2.1.2 (b) performs the reverse operation of the transmitter.

The RF signals is downconverted to baseband for processing and converted to digital signals

using an analog-to-digital (A/D) converter. The sampled time signals pass through a S/P con-

verter to generate the parallel streams. Then the CP is discarded from the received composite

signal. The received time-domain signal is given by

r(n) =
1
N

N−1∑
k=0

HkS ke
j2πnk

N + ω(n), (2.5)

where Hk denotes the channel fading coefficients for the k-th subchannel which is assumed to

be a flat fading, and ω(n) is additive white Gaussian noise. After that, a fast Fourier transform

(FFT) is applied to recover the original frequency-domain transmitted data in parallel as

Ŝ k =
1
N

N−1∑
n=0

r(n)e
j2πnk

N . (2.6)

These parallel data substreams are aggregated into the serial data stream and demodulated to

recover the original high speed serial information data stream. At the receiver side, frequency

and timing synchronization is an important task to correctly demodulate the OFDM symbol.

Channel estimation and equalization techniques are also required depending upon the trans-

mission surroundings and the bit-error-rate requirements of the communication systems.
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2.2 Basic Concepts for Relay Communication

2.2.1 Fundamental Idea of Relay Communication

Cooperative communication is an alternative technique to provide impressive performance by

exploiting spatial diversity in wireless transmission. In fact, relay communication has been

seriously considered for cellular, wireless ad hoc and sensor networks [35].

In relay communications, the cooperative diversity is achieved by using relay nodes. The

relay nodes receive the source transmission and retransmit the signals to the destination based

on some protocols. Relays can be mobile terminals (user terminals) or fixed terminals known as

infrastructure relays. When there is only one relay node is assigned to assist the communication

between the source and the destination, it is called a single-relay system, while if multiple

relays participate in the communications, it is called a multiple-relay system. In a two-hop

relaying communication system as shown in Fig. 2.4, the general operation can be divided into

two phases. In the first phase, the source S broadcasts the signal to the relay node R and the

destination D. During the second phase, the relay forwards the received signal from the source

to the destination node through an orthogonal (non-interfering) channel, while the source keeps

silent.

When the direct link between the source and the destination is available, the destination

node will receive two replicas of the same data transmitted through two different and indepen-
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dent channels: the S−R−D channel and the S−D channel. The destination node combines the

relayed signals in the second phase and the direct signal in the first phase to improve the S-

NR. Since the relay nodes are generally located in different physical locations, a diversity gain

can be created by the spatial separation of the relays which would enforce independent fading.

In addition to the benefits of increased diversity, cooperative networks also can increase the

coverage and lower power consumption compared to the conventional networks [36].

2.2.2 Classification of Relay Schemes

A huge variety of relay schemes have been proposed; [37] provides a good overview. Accord-

ing to the processing functionality of relay node, the cooperative communication scheme can be

divided in to two major categories: Amplify-and-Forward (AF) [18] and Decode-and-Forward

(DF) [38].

AF Relaying

In AF scheme, the relay simply captures the waveform received from the source, amplifies it,

then re-transmits a noisy version of source transmission. Therefore, AF relays can be consid-

ered transparent to modulation and coding techniques which are performed at the source and

the destination. Since AF relay do not need decoding, it has low-complexity transceivers and

low processing power consumption. One of the key parameters in AF relaying design is the

amplifying gain. There are two widely used types of amplifying gain, i.e., variable gain which

depends on the instantaneous channel fading of the received path to choose the amplification

gain [39] and fixed gain which is constant and depends on the fading channel statistics [40].

Variable gain relaying generally outperforms the fixed gain relaying systems. However, the re-

quirement of instantaneous channel information will rise the complexity and cost of the relay.

While in fixed gain relaying, the relay uses long term statistics of the inward channel when

designing the amplification gain [41]. Therefore, fixed gain relaying does not required the in-

stantaneous channel state information (CSI). This scheme is also known as semi-blind relay.

The advantage of fixed gain relaying is that the relay does not need to measure the channel from

the source, and hence has less system overhead and complexity. Due to its lower complexity,
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Figure 2.5: Comparison of the signal processing between the AF and the DF relays

the fixed gain AF relaying scheme is preferred in the systems which has a strict requirement of

transmission delay.

DF Relaying

In DF scheme, the relay implements a full physical lay transceiver. The relay decodes the

signals received from the source, re-encodes the entire received signal, then retransmits to

the destination. In order to achieve the maximal diversity order, the relay should be able to

know whether or not it has decoded correctly and then adaptively transmit the re-encoded

signal based on the obtained knowledge. Usually, error correction codes are utilized for DF

relaying to detect and correct the errors at relay node. Under reasonable channel conditions,

the regenerated signal can be identical to the source signal when all transmission errors between

source and relay are corrected by channel coding.

Fig. 2.5 compares the signal processing in AF and DF relays. As illustrated in this figure,

DF relay can generates the clean retransmitted signal which is equal to the signal transmitted

by the source. Such an ability can be realized through some sophisticated mechanisms, such

as error detecting codes [42] and appropriate SNR thresholds at the relay [43, 44]. However,

these mechanisms will increase the complexity of the systems. On the other hand, if the relay

forwards the decoded signals blindly, the system performance will be degraded by errors at the

relay which are propagated to the destination. Compared to DF relay, the noise and fading of

the two-hop channel is accumulated with the desired signals along the transmission path in the
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AF relay systems. Although, the AF relay does not suffer from the error propagation problem

as the DF relay, since no hard-decision operation is performed on the received signal at the

relay.

In addition to AF and DF protocols, other relaying protocols have been proposed in the

literature, such as estimate-and-forward [45], and compress-and-forward [46].

2.2.3 One-Way & Two-Way Relay Systems

In One-way relay systems, the information is always transmitted form the source node, and

the destination only receive the signal of the source. In two-way scenario, the communication

is bidirectional where two users exchange information. Under this scenario, each node is not

only a source, but also the intended destination of the other node. Examples of two-way relay

systems are when a mobile user communicates with the base station via a dedicated relay in a

cellular system, or two mobile users exchange their data in a WLAN via the access point.

The relay scheme used in one-way communication systems can also be used for two-way

relay systems, with some modifications. In a typical one-way relay system, the communication

is established in two phases. A straightforward approach of a two-way relay system to avoid

interference is to deploy two successive one-way relay schemes. Since most of the current

wireless devices operate in half-duplex transmission mode, a two-way relaying scheme requires

four phases (in time or frequency) to accomplish the exchange of symbols between the two

transceivers.

In order to achieve two-way relay transmission in less phases, the relay node requires a

more complicated hardware and a higher signal processing capability. The received data from

the two transceivers need be combined at the relay. There are different approaches of comb-

ing data, such as superposition coding, network coding and Lattice coding. In superposition

coding, the relay retransmits the linear sum of the two sets of symbols containing the decoded

data of the two transceivers. Each transceivers subtracts its own data first and then decodes the

data of the other user [47]. In network coding, the relay combines data from the two terminals

exploiting the XOR operation. The combined data is remodulated and retransmitted. The two

terminals will find out the desired data by XORing the received data with its own transmitted
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data [48, 49]. While, the relay with Lattice coding utilizes nonlinear operations for combining

the data [50].

2.3 Literature Review

2.3.1 OFDM-based Cooperative Communications

The concept of cooperative communication can be traced back to the three-terminal communi-

cation channel (or the relay channel) in [51] by Van Der Meulen. Upper and lower bounds on

the capacity of such channel were also developed in [51]. Shortly after, Cover and El Gamal

studied the general relay channel and established an achievable lower bound for data transmis-

sion [52]. These two seminal works laid down the foundation for the present-day research on

cooperative communication.

Recent interest in OFDM techniques and cooperative communication has resulted in a

number of new protocols employing OFDM to improve the system performance of relay net-

works [53–72].

In [53], OFDM is applied to a simple single-relay-node ST-coded cooperative transmis-

sion. The design of an OFDM frame and techniques for synchronization, as well as channel

estimation, are considered. In other work, [54–56], the focus is either on other aspects of

a cooperative system (such as coding and synchronization problems) or the OFDM signal is

treated as a single entity. Mei et al. [57] and Li et al. [58] adopted a distributed OFDM scheme

based on the assumption that the relay nodes can perfectly recover the original information.

In [59], power allocation scheme over the subcahnnels in frequency and space domain is pro-

posed to maximize the instantaneous rate. The power and bandwidth allocation for an OFDM

multihop network with the objective of maximizing the end-to-end rate is considered in [60].

In [61], a soft-decode-and-forward (SDF) relay strategy for asynchronous wireless networks

with doubly-selective (both time-selective and frequency selective) was presented which adopt

distributed OFDM scheme and employ a block decision feedback equalizer (BDFE) at relay

nodes.

In OFDM-based relay systems, the amplification gain can be adaptively changed for each
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subchannel to compensate multipath channels. These systems are classified into AF relay sys-

tems [61, 67–72], as they avoid decoding and encoding operations. Bit and power loading

techniques for OFDM-based AF relay systems was investigated in [67, 68]. The proposed ap-

proaches are to minimize the transmit power consumption with the throughput constraint [67]

or minimize the bit error rate under power consumption constraint [68]. Bit and power loading

techniques were investigated for OFDM-based AF relay systems in [68, 69] to minimize the

bit error rate under power consumption constraint or minimize the total transmit power at the

relay node.

Th OFDMA systems are considered in [62–66]. In [62], with amplify-and-forward relay-

ing, OFDMA is used to enable a node to transmit both its own information as well as that

from another source by partitioning the set of subchannels. The focus of this work is on op-

timizing the resource assignment problem to determine which nodes help other nodes, how

many subchannels are allocated for helping, and how many are allocated for sending their own

data. The solutions that are presented come from a complex optimization that requires global

knowledge of the channel conditions and the transmit powers. In [63], aiming at maximizing

the achievable sum rate from all the sources to the destination, a source, relay, and subchannel

allocation problem for an OFDMA relay network is studied. In [64], the choices of relay node,

relay strategy, and the allocation of power and bandwidth for each user in a cooperative OFD-

MA uplink scenario are considered. An optimal resource allocation algorithm is proposed.

In [65], joint cooperative diversity and scheduling for multiuser OFDMA relaying systems is

addressed. In [66], the cooperative cellular network employs orthogonal frequency-division

multiple-access (OFDMA) is considered, and cross-layer resource allocation optimization is

design maximize the overall utility.

2.3.2 Relay Techniques for Combating Multipath Channels

In practical systems, channels connecting the source, relay and destination suffer from inter-

symbol interference (ISI) caused by frequency-selective fading. A number of related tech-

niques have been investigated in [61, 68–80] to address the frequency selective fading in relay

communications.
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Relaying schemes for single-carrier transmission over frequency-selective channels are in-

vestigated in [73, 74, 76–79, 81]. A cooperative filter-and-forward beamforming (FF-BF) tech-

nique [73, 74, 81] was proposed and optimized under the assumptions that there is the destina-

tion and full channel state information of all links is available. FF-BF relays are equipped with

finite impulse response (FIR) or infinite impulse response (IIR) filters (corresponding to the lin-

ear equalization and decision feedback equalization) to compensate for the transmitter-to-relay

and relay-to-destination channels. The considered BF problems are to maximize the SNR at

the receivers subject to the total and individual relay transmitted power constraints [81] [73], or

minimize the total relay transmitted power subject to the destination SNR constraint [73]. Nev-

ertheless, beamforming technique require the relay nodes are close to each other to achieve the

performance improvement, which is less economical in the cellular with large coverage. More-

over, beamforming technique needs multiple relay nodes to assist the communication between

the source and destination, which additional feedbacks between relay nodes and terminal nodes

are required to perform the global optimization. When the number of relay nodes is large, the

amount of the control signals lead to a low system efficiency and long processing delay.

Other related work simply focuses on the receiver design at destination nodes to equalize

the frequency selective channel [76–80]. The distributed space time-coding techniques at the

relays and equalization at the destination proposed in [76] has became a technique for the

frequency selective fading. H. Mheidat et al. applied this combination of space time-coding

and single carrier frequency domain equalization in cooperative diversity communication in

[76] [77]. Block equalization of space-time coding scheme was proposed in [76–78] for the

so-called protocol III [78] where the source sends to the relay during the first slot and both

the source and relay send to the destination in the second slot. The simulation results they got

showed this kind of combination could obtain significant diversity gain and superior symbol

error rate (SER) performance. The transmission model protocol III neglected the broadcasting

property of the wireless communications. In [79], the authors introduced a maximum ratio

combining (MRC)-aided strategy for protocol I [78], i.e., a scheme similar to protocol III

except that the destination receives direct signal from the source in the first slot, under the AF

mode and operating over a frequency-selective relay channel. Distributed space-time coding

does not require full CSI but has a worse performance than FF-BF. However, combating the
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accumulated channel effect at destination naturally increases the processing complexity as well

as the power consumption of mobile terminals.

2.3.3 Relay Selection in Multiple-Relay Networks

When there exist multiple relays in a cooperative communication, there are many different

strategies to exploit multiple relays: distributed space-time coding (DSTC) [76–78], distribut-

ed beamforming [82–84], and relay selection.Although it is shown that DSTC achieves full

diversity order and has higher spectral efficiency than the repetition-based schemes [76], im-

plementing space-time coding over distributed nodes needs the symbol level synchronization

which makes it almost surely impractical. Relay selection is an integral component in perfor-

mance optimization problems for cooperative communication since proper choice of the relays

in the network can have profound impact on the achievable performance of a session. Besides,

compared to the distributed STC and distributed beamforming which require ideal frequen-

cy/time synchronization across the relays, relay selection can exhibit excellent performance

with full diversity while it is simple to implement and it requires only low feedback signaling

overhead [85–95].

In [85] and [86], Bletsas et al. proposed opportunistic AF-based relaying in which the best

relay is selected based on a quality policy among the available relay nodes, and showed that it

was outage-optimal among single relay selection schemes. In [87], the outage probability and

throughput of AF-based relaying with and without relay selection are compared which showed

that the relay with relay selection provided better performance except in the low SNR regime.

Following the opportunistic relay selection, several other single relay selection schemes

emerged in the same spirit as opportunistic relay selection but with different choice of relay s-

election criteria. In [86–88], the optimal single relay selection scheme that maximizes the end-

to-end signal-to-noise ratio (SNR) while achieving full diversity with the highest throughput

is examined. In [89–91], the relay selection rule based on the location of the node is demon-

strated which is called distributed nearest-neighbor protocol. In this schemes, the user selects

a neighboring node as the relay based on its proximity to the source node. In [85, 90], the best

worse channel selection is proposed. For two-hop relay system, the worse channel between
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the source-to-relay and the relay-to-destination links is recognized as its bottleneck channel.

Among all the relays, the one whose bottleneck channel is the best gains the permission to

forward. In [85] and [93], a derivative of the best worse selection is used for AF relay systems

where the relay with the best harmonic mean of the source-to-relay and the relay-to-destination

links is selected.

There are some research work on the performance analysis of relay selection schemes adopt

either AF or DF protocols [88, 93–95]. In [88], Jing et al. derived the diversity order of the

above single relay selection schemes and proposed several SNR-suboptimal multiple relay

selection schemes. It has been shown that the relay selection schemes achieve full diversity

under perfect channel state information. The work in [88, 94, 95] provides analysis in term of

outage and bit error probability for AF and DF protocol.

The aforementioned RS schemes only focus on the effect of channel fading to improve

the transmission reliability and throughput of relay networks. In the specified situation with

accumulated multipath fading channels, the relay selection scheme should not only consider

the received SNR but also the effect of delay spread and the transmission efficiency.

2.3.4 Resource Allocation in Relay Systems

Adaptive resource allocation (RA) plays a crucial role in relay networks. The main goal of

resource allocation for relay systems is to maximize the end-to-end channel capacity or mini-

mize the resource consumption by adaptively allocating the transmission resources, including

time slots, frequency bandwidth and power consumption. In order to improve the system per-

formance, many resource allocation schemes have been investigated in the literature for the

different scenarios of the relay networks [96–122].

In [96–98], a two-hop relay system is considered in which the channel resource is al-

located for maximizing the instantaneous channel capacity, subject to the total power con-

straints [96, 97] or individual power constraints [98]. The optimal resource allocation to guar-

anteeing QoS for the users has been investigated in [99,100]. Several other resource allocation

problems have been considered with the objective of minimizing outage probability [104],

minimizing transmission power [105, 106], and minimizing average symbol error rate prob-
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ability [107]. In the relay network where there exist multiple relay nodes, the performance

of the cooperative systems also depends on how the relay nodes are selected to participate in

the communications between the source and destination [105, 107, 108]. Therefore, relay s-

election and resource allocation should be jointly optimized as a combinatorial problem, but

this problem is often handled as separate subproblems [104, 105, 107–110]. In most cases, a

fixed number of relays are selected first, then resource allocation is performed. However, since

the channels are fluctuating all the time, the relay node should be able to adaptively decide

to cooperate or not cooperate to avoid certain loss in terms of spectral efficiency or energy

efficiency [104, 109–112], for instance, when the source-relay channel is poor. To solve this

problem, selective relaying, i.e., relaying only when it is beneficial for the system, can signifi-

cantly improve the performance [104, 109, 110, 112].

For the OFDM-based relay systems, the resource allocation problem has been studied

in [113–117, 123]. In [123], the optimal power allocation over the subchannel at source and

relay that maximizes the instantaneous rate is proposed for a two-hop OFDM-based AF relay

network. Optimal power allocations at source and relay nodes (regenerative and nonregenera-

tive) are discussed in [113, 114] for the case that source and relay nodes share a total amount

of transmission power over the two time slots. In [115], the optimal gain allocation for mul-

tiple AF relays is presented which maximizes the instantaneous rate. The power allocation is

proposed in [116] for multiple OFDM-based AF relays maximizing the average SNR of the

maximum-ratio combiner at the destination node. In [117], the OFDM and OFDMA networks

consisting of multiple relays and one source/destination pair was considered. Resource allo-

cation for a multiuser two-way OFDMA relay network is investigated in [124] and [125] to

support two-way communication between the base station and each of multiple users.

In [101–103, 126–129], the resource allocation problem combined with the subcarrier se-

lection has been investigated for the OFDM-based relay systems. In [126, 127, 129] the best

relay selection and resource allocation for an OFDMA relay network with multiple relays and

multiple/single user have been investigated. When both users and relays are multiple, relay

selection and resource allocation are complicated because of the interactions among the users.

In [128], an isolated relay assignment and power allocation algorithm is proposed for cooper-

ative wireless networks considering homogeneous traffic.
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For the multihop relay systems, the resource allocation scheme are investigated in [118–

122]. The allocation schemes for AF and DF relay systems were proposed in [118] and [119]

respectively. In [120], the time slot and transmission power are optimized for the multihop

OFDM-based relay system. In [121, 122], allocation algorithms are proposed for the specific

requirements of the multihop relay networks employing cognitive radio or MIMO techniques

respectively.

2.3.5 Transmission Efficiency Improvement of Relay Communications

In relay communication systems, multiple time slots or different frequency bands are used to

send same information signals to a destination node. This will cause a reduction in the trans-

mission rate or bandwidth and an increase in the transmission delay. Meanwhile, the additive

processing delay at relay nodes involves in the extra transmission overhand and lowers the

transmission efficiency of the overall systems [130]. To address this problem, some techniques

have been prosed in the literature to improve the efficiency of the relay networks with the

different scenarios [11, 131–140].

Different adaptive relay schemes are proposed in [131–134] to enhance the transmission

efficiency of the cooperative communications. Authors in [131] presented an adaptive relay

scheme based on hierarchical constellations to improve the cell capacity of multi-hop net-

works. In the proposed scheme, a symbol consists of multiple bits with varying degrees of

robustness against channel errors, and was retransmitted adaptively according to the channel

conditions. Two strategies for performing independent adaptive modulation and coding over

dual-hop systems were studied in [132]. A finite-state Markov chain model is used to analyze

the proposed strategies over general fading channels, and exact analytical expressions of key

performance indicators were obtained in [132], including the average transmission efficiency,

the average packet loss rate as well as the average transmission delay. In [133], a relay-caching

mechanism was introduced that exploits fixed RSs in cellular networks to improve spectrum

efficiency and to reduce energy consumption. In [134], the authors propose an incremental

opportunistic DF relay scheme employing orthogonal spacetime block codes to maximize the

diversity gain and improve transmission efficiency.
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Besides, the cooperative network coding technique was investigated in [135, 136] to re-

duce the consumption of radio resources and improve the spectrum efficiency. In [135], the

performance of network coding based cooperative multicast scheme was analyzed in terms of

throughput, delay and average queueing length, and an optimal scheme to maximize through-

put subject to delay and queue length constraints was proposed. In [136], the relay transmis-

sion using instantaneously-decodable binary network coding is studied, which can minimize

decoding delay and achieve low complexity. Although the network coding technique can di-

minish resource consumption, the additional control signal overhead involved by it will worsen

spectrum efficiency [141]. Therefore, it is important and difficult to achieve a good trade-off

between system efficiency and control overhead.

The relay station placement schemes for improving the transmission or energy efficiency

were also studied in [11,137–140]. A random selection scheme was proposed in [137] to min-

imize the deployment cost based on the integer programming technique. [138, 139] proposed

relay deployment mechanisms for IEEE 802.16j WiMAX Networks. In [138], the mechanism

determines the relay locations so that the bandwidth requirement of mobile stations was satis-

fied and the network throughput was improved. In [139], the objective of the relay placement

problem is to determine the required number of relay nodes and their locations such that the

network capacity can be maximized under the deployment budget constraint. The placement

strategy in [11] maximized the capacity of the network as well as achieved the minimal traf-

fic demand by each subscriber station. The joint optimization of relay station (RS) placement

and RS sleep/active probability was investigated in [140] to enhance the energy efficiency of a

one-dimensional cellular network.

2.4 Summary

In this chapter, we briefly introduce the background subjects related to our research and dis-

cusses considerations involved in the study of this dissertation. The basic principles of mul-

ticarrier modulation and OFDM techniques are presented. The benefits of cooperative com-

munications and the classification of cooperative schemes are also introduced. In Literature

Review part, we survey the development and important results in the major issues associated
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with cooperative communication from a broad array of related references. The study areas

involved in this dissertation are specifically discussed, i.e., OFDM-based cooperative commu-

nications, relay techniques for multipath channels, relay selection and resource allocation in

relay systems, and transmission efficiency improvement of relay communications.
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Amplify-and-Forward Relay System with

Adaptive Guard Interval

3.1 Introduction

An AF relay typically has lower complexity and less processing burden than a DF relay, hence,

it is often preferable in the systems with strict latency requirement. However, given that there

is no channel compensation techniques at AF relays, multi-hop transmissions over frequency

selective fading channels result in an accumulation of delay spread, which could lead to strong

intersymbol interference (ISI) at the destination. The length of the end-to-end channel of the

relaying link is increased by the sum of channel lengths of each hop. This means that if OFDM

with fixed length guard interval (GI) were to be used in this AF system, the duration of the GI

has to be extended to the longest possible channel delay spread to avoid ISI.

Although increasing the GI length can alleviate the channel delay spread issue, it comes

at the expense of a lower data transmission rates. For instance, in WiMAX [33], the longest

GI length is 25% of the OFDM symbol. If the GI length has to be doubled to cover two

multipath channels, that means as much as 40% of the signal transmission time becomes GI.

In the multi-hop scenario, the GI length has to extend even further. However, using such a long

GI lowers the effective data transmission throughput. In practice, considering the mobility of

relay and destination nodes, the channel delay spread varies over a wide range during data

transmission [142] [143]. Hence, a large fixed GI will reduce the resource utilization rate when

32
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the delay spread is small.

To this end, an adaptive GI technique are proposed to reduce the GI overhead and en-

hance the transmission efficiency in this chapter for dual-hop signal-relay and multiple-relay

AF systems. The proposed adaptive GI technique can dynamically choose the most suitable GI

length to cover the accumulated delay spread in AF relay systems as well as reduce the overall

transmission overhead.

Compared to the single-relay systems, cooperative multiple-relay systems can further en-

hance the overall system performance by performing full cooperative diversity. However, the

cooperative multiple-relay transmission requires complex operations (e.g. symbol level syn-

chronization in distributed space-time code) and the additional resource consumption (e.g.

power and bandwidth in the repetition-based cooperation schemes). In order to achieve the

benefits of multiple-relay systems, relay selection (RS) is an efficient alternative transmission

scheme which provides all the advantages of the cooperative diversity while minimizing the

overhead by avoiding the synchronization across relays. However, considering the challenge

of AF relay networks, the multipath channel accumulation, an appropriate RS scheme in coop-

erative multiple-relay networks should not only enhance the overall transmission reliability but

also minimize the relay overhead. Therefore, a novel relay selection scheme is proposed based

on the adaptive GI technique which selects the best relay by considering both the end-to-end

SNR and the effect of delay spread on the transmission efficiency.

3.2 System Model

In this chapter, we consider an AF relay system as shown in Fig. 3.1, which is composed of a

source node S, a destination node D, M relay nodes, {R1, . . . ,RM}. The relay nodes dedicate

their resources to relaying the information for the source. It is assumed that there is no direct

link between the source and destination nodes. The relaying link is dual-hop, where only one

relay is chosen to participate into the communication between the source and the destination

by forwarding the signal for the source node. For the multiple-relay system in Sections 3.4,

i.e., M ≥ 2, the best relay node is selected based on some relay selection techniques; while in

the single-relay system, i.e., M = 1, in Section 3.3, the best relay node becomes the relay node
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Figure 3.1: A two-hop AF relay system over accumulated multipath channels.

itself.

Each relay node operates in a time-division half-duplex mode. To avoid interference, each

hop is assigned an orthogonal channel. The transmission from the source to destination in-

volves two stages. During the first phase, signals are transmitted from source S to relay R.

During the second time slot, the relay node forwards the received signal to the destination D

while the source node remains silent.

In wireless communications, multipath propagation causes frequency selective fading and

delay spread due to the broadband transmission. Here, we consider a baseband-equivalent,

discrete-time model of the multipath channels between S and Rs and between Rs and D. Denote

that hi = [hi(0), hi(1), . . . , hi(Li − 1)] is the channel of the i-th hop, where Li is the channel

length of hi, {hi(l)} is the the baseband channel tap coefficients of the i-th hop, and i = 1, 2. It

is assumed that hi(l) are mutually independent complex random variables, and the channel is

reciprocal [118, 119], i.e., the uplink and downlink gains are the same. The amplitude of hi(l)

is modeled as a Rayleigh distribution with probability density function (PDF)

f|hi(l)|(x) =
2x
Υi,l

exp(−
x2

Υi,l
), x ≥ 0, (3.1)

where Υi,l = E[|hi(l)|2] is the power of the l-th tap of hi.
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In an OFDM system with N subcarriers, the time-domain transmitted signal is defined as

s(n), n = 0, 1, . . . ,N − 1. During the first stage of the relay communications, the transmitted

signal s(n) is distorted by channel h1, and superimposed by an additive white Gaussian noise

(AWGN) term ω1(n) with variance σ2
1. The received signal at relay R is therefore given by

r1(n) =

L1−1∑
l=0

h1(l)s(n − l) + ω1(n). (3.2)

In order to mitigate ISI, guard interval (GI) is introduced for each OFDM symbol. The CP

length should be no less then the channel length to completely eliminate ISI. Consequently, the

convolution in time domain in (3.2) becomes a circular one on blocks of size N, i.e.,

r1 = H1s + w1, (3.3)

where H1 is an N × N matrix given by



h1(0) 0 · · · 0 h1(L1 − 1) · · · · · · h1(1)

h1(1) h1(0) · · · 0 · · · h(L1 − 1) · · · h1(2)
...

. . .
. . .

...
...

h1(L1 − 1) h1(L1 − 2) · · · h1(0) 0 · · · · · · 0

0 h1(L1 − 1) · · · h1(1) h1(0) · · · · · · 0
...

. . .
. . .

...
...

0 · · · 0 h1(L1 − 1) · · · h1(1) h1(0)



, (3.4)

r1 = [r1(0), r1(1), . . . , r1(N−1)]T, s = [s(0), s(1), . . . , s(N−1)]T and w1 = [ω1(0), ω1(1), . . . , ω1(N−

1)]T.

The N-size discrete Fourier transform (DFT) of the received signal r1(n) and channel im-

pulse response h1(l) is denoted by

R1,k =

N−1∑
n=0

r1(n)e
− j2πnk

N , (3.5)
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and

H1,k =

L1−1∑
l=0

h1(l)e
− j2πlk

N , (3.6)

where k = 0, 1, . . . ,N − 1 is the subcarrier index. In frequency domain , the convolution

becomes the product as

R1,k = H1,kS k + W1,k, (3.7)

where {S k} and {W1,k} are the DFT of {s(n)} and {ω1(n)}. And, the received signals at the relay

node can be expressed by

r1(n) =
1
N

N−1∑
k=0

R1,kH1,ke
j2πnk

N + ω1(n). (3.8)

For AF relay protocols, the received signal at relay node is multiplied with a amplifica-

tion factor and then retransmitted. In the second phase, the selected relay node amplifies the

received signal, and forwards it to the destination node. The retransmitted signal at the relay

node is

y(n) = Gr1(n) (3.9)

where G is the amplifying gain at the AF relay node which can be defined as

G =

√
Ps

Psσ
2
h1

+ σ2
1

, (3.10)

where Ps is the average symbol power, σ2
h1

and σ2
1 are the variance of h1 and Gaussian noise,

respectively. After the completion of the all phased, the instantaneous AF received signal at

the destination node becomes

r2 = Gh2 ⊗ h1 ⊗ s + Gh2 ⊗ w1 + w2,

= Gh ⊗ s + w, (3.11)

where

h = h2 ⊗ h1, (3.12)
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and

w = Gh2 ⊗ w1 + w2. (3.13)

The time domain received signal is given by

r2(n) =
G
N

N−1∑
k=0

S kH1,kH2,ke
j2πnk

N +
G
N

N−1∑
k=0

H2,kW1,ke
j2πnk

N + ω2(n). (3.14)

In AF relay systems, one of the major impacts from the accumulation of multipath chan-

nels is that the delay spread of the end-to-end channel increases proportionally to the num-

ber of relays [22]. Since there is no channel compensation at AF relay node to alleviate the

channel accumulation, the end-to-end channel impulse response from to the destination, i.e.,

h = {h0, . . . , hL−1}, becomes the convolution of the impulse responses of the multipath channel-

s. When the relay link is a multi-hop one, the end-to-end channel in AF relay systems is given

by

h = h1 ⊗ h2 ⊗ · · · ⊗ hM, (3.15)

where M is the number of hops. The time-domain received signal at destination becomes

rM = h1 ⊗ h2 ⊗ · · · ⊗ hM ⊗ s + w

= h ⊗ s + w.
(3.16)

As a result, the end-to-end delay spread increases proportionally to the number of relays [22]

as

L = L1 + L2 + · · · + LM − 1. (3.17)

Therefore, when the CP length is not long enough, the signal will suffer ISI. On the other hand,

the long CP, which is used to avoid ISI from the extended delay spread, comes at the expense

of a lower data transmission rates.
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From (3.14), the instantaneous end-to-end SNR of the AF relay link can be written as

γAFk =

∣∣∣∣∣∣ GH1,kH2,kS k

GH2,kW1,k + W2,k

∣∣∣∣∣∣2

=

∣∣∣∣∣∣∣∣
H2,kS k

W2,k

H1,kS k

W1,k

H2,kS k

W2,k
+ S k

W1,kG

∣∣∣∣∣∣∣∣
2

=
γ1,kγ2,k

γ2,k + S k
W1,kG

, (3.18)

where γi,k is the SNR of the k-th subcarrier in i-th hop, γi,k =
∣∣∣∣H2,kS k

W2,k

∣∣∣∣2, i = 1, 2.

3.3 An Efficient Single-Relay Systems with Adaptive Guard

Interval

We propose a novel adaptive guard interval (GI) scheme for OFDM-based AF relay networks to

cover the extended delay spread and reduce the overall transmission overhead by dynamically

choosing the most suitable GI length. The proposed adaptive GI scheme for AF relay networks

allows the destination to detect the length of the variable GI without resorting to the transmis-

sion of an additional control signal. This is achieved by asking the transmitter to determine

the delay spread from the training signal sent by the destination. Then by invoking channel

reciprocity, the source selects the code from a pre-determined variable-length orthogonal set

that represents that delay spread and used it as the GI. By exploiting the orthogonal property

between different GI sequences, the proposed adaptive GI scheme can be implemented without

any extra control signal transmitted by the source to notify the destination about the GI used. In

contrast, the related work in [144] [145] requires an additional control signal from the source to

inform the destination of the GI length used, which introduces extra transmission overhead and

reduces system efficiency. Therefore, the proposed adaptive GI scheme can address the accu-

mulation of delay spread in multi-hop transmission without increasing the signaling overhead

while improving the overall transmission efficiency.



3.3. An Efficient Single-Relay Systems with Adaptive Guard Interval 39

modulation

Channel 

information

Orthogonal code 

generater

D/A+

Information 

source IFFT P/SS/P

0

1

N-1

0

1

N-1

(a) Transmitter at the source.

GI length detector

GI 

Remover

Frequency 

domain 

equalizer

Demod 

A/D 

& 

Sync.
IFFTS/P

0

1

N-1

0

1

N-1

(b) Receiver at the destination.

Figure 3.2: Block diagram of adaptive GI relay system.

3.3.1 Adaptive Guard Interval with Variable Length Orthogonal Codes

The transmitter and the receiver of the proposed AF system with OFDM and adaptive GI tech-

nique are shown in Fig. 3.2. The OFDM symbol at the source node, s, is obtained by an inverse

fast Fourier transform (IFFT) of the complex data vector S of size N. Each OFDM symbol in

time domain can be described as

s = F−1
N S, (3.19)

where F is a FFT transform matrix

F =



1 1 · · · 1

1 e−2π j/N · · · e−2π j(N−1)/N

...
...

. . .
...

1 e−2π j/N · · · e−2π j(N−1)(N−1)/N


. (3.20)
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Before transmission of the OFDM symbol, s, a variable-length GI sequence is inserted into

s as its prefix. The source estimates the length of the overall reverse channel relay from the

training symbols transmitted from D to S via R. Exploiting channel reciprocity, S can then

determine the GI length of the next frame transmitted to D.

In order to adapt the length of the GI according to the channel without additional control

signals, the GI length, P, is quantized into several different lengths as follows

P = Pq, Pq−1 < L ≤ Pq, (3.21)

where L is the end-to-end channel length, and q = 1, . . . ,Q are the quantization levels. Then,

the corresponding binary code

cq = {cq(i)}, i = 0, 1, . . . ,Pq − 1, (3.22)

is used as the GI sequence. Usually the format of the GI in OFDM systems is zero-padded

or cyclic prefix extension of the data symbols [146] [147]. In the proposed scheme though,

the GI is chosen from variable length orthogonal codes which are those with different lengths

satisfying the orthogonal property [148].

Specifically, variable length Walsh Hadamard codes are employed as the GI sequence in the

proposed system. The code generation algorithm is similar to the recursive generation of the

Walsh codes by means of the Hadamard matrices. The codes are generated from a orthogonal

variable spreading factor code tree as shown in Fig. 3.3 . A code with length 2k can be generated

1

1  1
1   1  -1  -1

1  -1  -1   1

1  -1   1  -1

1   1   1   1

1 -1

1  -1  -1  1  1 -1 -1  1

1   1   1  1 -1 -1 -1 -1

1   1  -1 -1 -1 -1  1  1

1  -1   1 -1  1 -1  1 -1

1   1   1  1   1  1  1  1

1  -1   1 -1 -1  1 -1  1

1  -1  -1  1  1 -1 -1  1

1  -1  -1  1 -1  1  1 -1

Figure 3.3: Code tree for generation of variable length orthogonal codes.
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at the k-th layer using the recursive relation in with an initial condition c0 = {1}. Any two codes

in the tree are orthogonal to each other only if:

• The codes are in the same layer; or

• One code is not the mother code of the other.

The code set adopted in the proposed strategy includes Q codes whose lengths are different

from each other. The length range is from 2u to 2u+Q, corresponding to GI lengths of {Pq =

2u+q−1}, where u and Q are positive integers. The periodic correlation between any two codes

in the code set at shift υ is

2u+q−1∑
i=0

cq(i)cp(i − υ) = 0, q < p and q, p ∈ [u, u + Q]. (3.23)

For instance, a code set which includes three different length codes can be given as


1 1

1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

 . (3.24)

If the estimated channel length L equals to 6, the 8-bit code {1, 1,−1,−1, 1, 1,−1,−1} will be

adopted as the GI.

These orthogonal codes with different lengths allow us to adapt the GI to the channel length.

When there is no change in the delay spread of channel, each OFDM symbol is preceded by the

same orthogonal code as its GI. This process creates a series of new symbols of length P + N

samples,

[cq(0), . . . , cq(Pq − 1), s(0), . . . , s(N − 1)]T . (3.25)

 Symbol 1
Guard

Interval
 Symbol 2

New Symbol 1
Cyclic 

Prefix  New Symbol 2
Cyclic 

Prefix

Transmitter

Receiver

Guard

Interval

Guard

Interval

Figure 3.4: Signal transmission and receiving of two adjacent data symbols.
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The received signal at destination can be expressed as

r = H

 c

s

 + wN+P+L−1, (3.26)

where

s = [s(0), s(1), . . . s(N − 1)]T (3.27)

cq = [cq(0), . . . cq(P − 1)]T , (3.28)

and H is the end-to-end channel matrix with size (N + Pq + L − 1) × (N + Pq),

H =



h0 0 · · · · · · · · · 0

h1 h0 0 · · ·
...

...
. . .

...

hL−1 · · · h1 h0 · · · 0
...

. . .
...

0 · · · hL−1 · · · h0
... · · · hL−1 · · · h1
...

. . .
...

0 . . . 0 hL−1



, (3.29)

and w denotes the Gaussian noise vector with length (N +Pq +L−1). Removing the last (L−1)

samples which is the delay spread of s, and the first Pq GI samples which is overlapped by the

delay spread from the previous symbol, the desired symbol is given by

r̃ = Hss + HgcN + wN , (3.30)

where cN = [01×(N−Pq), c(0), . . . c(Pq − 1)]T .
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Hs and Hg are two N × N matrices,

Hs =



h0 0 · · · 0 0 · · · 0

h1 h0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . . 0

hL−1 hL−2 · · · h0 0 · · · 0

0 hL−1 · · · h1 h0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 hL−1 · · · h0



, (3.31)

Hg =



0 · · · 0 hL−1 hL−2 · · · h1

0 · · · 0 hL−1 · · · h2
...

...
. . .

...
...

. . .
. . .

0 · · · · · · · · · 0 h0

0 · · · 0 · · · 0
...

...
. . .

...
...

. . .
...

0 · · · 0 · · · 0



. (3.32)

3.3.2 Detection and Equalization for Adaptive Guard Interval System

In the proposed adaptive GI system, there is no extra control signal for the GI information

transmission, hence the GI length is unknown to the receiver. Moreover, from (3.30), the pre-

ceding GI sequence overlaps with the received symbols in the current interval. It is therefore of

great importance to develop a receiver with ISI cancelation and GI length detection. Fig.3.2(b)

shows the block diagram of the receiver.

When the channel length does not change, the same GI sequence precedes and succeeds

every data symbol, i.e.,

s′ = [cq(0), . . . , cq(Pq − 1), s(0), . . . , s(N − 1), cq(0), . . . , cq(Pq − 1)]T .

It is equivalent to generating a new symbol of (N + 2Pq) samples with the orthogonal code as

its last Pq samples and the same code as its cyclic prefix in the first Pq samples [149]. Fig. 3.4
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depicts the transmitted and received signal over two data symbols and three adjacent GIs. By

exploiting this CP extended structure, we can force the convolution to become a circular one

on blocks of size (N +Pq). The received signals, after the removal of the CP, can be written in

the following matrix form

r′ = Hcycs′ + wN+Pq , (3.33)

where Hcyc is an (N + Pq) × (N + Pq) matrix given by



h0 0 · · · 0 hL−1 · · · · · · h1

h1 h0 · · · 0 · · · hL−1 · · · h2
...

. . .
. . .

...
...

hL−1 hL−2 · · · h0 0 · · · · · · 0

0 hL−1 · · · h1 h0 · · · · · · 0
...

. . .
. . .

...
...

0 · · · 0 hL−1 · · · h1 h0



, (3.34)

and s′ = [s(0), . . . , s(N − 1), c(0), . . . , c(Pq − 1)]. Applying a FFT matrix to the Eq. (5.2) leads

to

FN+Pr′ = FN+PqHcycF−1
N+Pq

S′ = HdiagS′, (3.35)

where Hdiag is the (N + P) × (N + Pq) diagonal matrix with the frequency domain channel

response as its diagonal elements, and S′ is the frequency domain vector of s′. At this point,

we can employ zero-forcing (ZF) equalization in the frequency domain [150]. The equalized

received signal in time domain is

 s̃

c̃

 = F−1
N+Pq

(H−1
diagFN+Pqr

′). (3.36)

The above discussion is for the scenario which the channel’s delay spread (i.e. the GI

length) remains constant between two adjacent block of data. When the channel length varies,

the transmitter will reset the GI length according to the channel condition. In order to recon-

struct the cyclic structure for ISI cancelation, the last symbol before the GI length changing
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should be succeeded by an additional GI sequence, i.e.,

[c(0), . . . , c(Pq − 1), s(0), . . . , s(N − 1), c(0), . . . , c(Pq − 1)]T .

After equalization, the block c̃ is collected to perform GI detection. Since the GI length

is unknown to the destination, equalization is repeated for each possible Pq to obtain c̃q, q =

1, . . . ,Q. Then, inner products between the c̃q and the corresponding cq are calculated. From

the orthogonal property of the codes, when the transmitted code does not equal to cq, the

inner product should be zero. Hence, the code that yields the maximum inner product will be

detected as the transmitted GI sequence ĉ. Moreover, the orthogonal characteristics between

the variable length codes is affected by the equalization error and channel noise. To improve

the detection accuracy of proposed adaptive GI technique, we extend the detection range from

single symbol to Md multiple symbols.

ĉ = arg max
cq

 Md∑
i=1

〈c̃q, cq〉

 , q = 1, . . . ,Q. (3.37)

where 〈·〉 is the calculation of inner product. Then, the transmitted GI length is equal to the

length of ĉ.

3.3.3 Simulation Results

In this section, the performance of the proposed adaptive GI strategy for OFDM-based AF

relay systems is evaluated by simulation. In the simulation, uncoded QPSK scheme with 1024

Table 3.1: The channel models used in simulations
hm,1 hm,2

Tap Delay τ
Average

Delay τ
Average

power (dB) power (dB)

1 0.0783 -2.2204 0.0498 -2.6682
2 0.0550 -1.7184 0.0221 -6.2147
3 0.2259 -5.1896 0.1420 -10.4132
4 0.5938 -9.0516 0.4887 -16.4735
5 1.0000 -12.5013 1.0000 -22.1898
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Figure 3.5: Detection error rates of the proposed adaptive GI technique over fixed channel
lengths, L = 31, 63, 127, 255. The corresponding length of GI sequence is 32, 64, 128, 256.
The detection range is one symbol, Md = 1.

OFDM subcarriers is employed.

h1 and h2 are the channels from S to R and from R to D which are multipath channels

with Rayleigh fading in each path. The parameters of each path are listed in Table 3.1 [151].

The channel length of h1 and h2, L1 and L2 are independent and identically distributed (i.i.d.)

random variables which follow the same truncated log-normal distribution with expected value

µ′ and variance σ′2 i.e.,

Li =


5 Li ≤ 5

dLi ∼ lnN(µ, σ2)e 5 < Li < 128

128 Li ≥ 128

. (3.38)
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Figure 3.6: Detection error rates of the proposed adaptive GI technique with different detection
ranges. The channel lengths is variable and follows the log-normal distribution, µ′ = 64 and
σ′2 = 32. Md = 1, 2, 4, 10.

where

µ = ln

 µ′2√
σ′ + µ′2

 (3.39)

and

σ2 = ln
(
σ′

µ′2
+ 1

)
. (3.40)

The delay spread of each tap equals to dLi×τe. Four different GI lengths are chosen, { 1
32 ,

1
16 ,

1
8 ,

1
4 }×

N. The length of corresponding codes, or GIs, are {32, 64, 128, 256}. The average SNRs of each

hop are equal and defined as

SNR =
E[|Hk,1|

2]
N01

=
E[|Hk,2|

2]
N02

. (3.41)

To evaluate the proposed adaptive GI scheme, the detection error rate is simulated and
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Figure 3.7: Symbol error rates of the proposed adaptive GI with different detection ranges
and variable GI which required extra control signals. Md = 1, 2, 4, 10. The channel lengths is
variable and follows the log-normal distribution, µ′ = 64 and σ′2 = 32.

plotted in Fig. 3.5 and Fig. 3.6. Fig. 3.5 shows the detection error rate of the proposed adaptive

GI scheme over the fixed length channel, i.e., L = 31, 63, 127, 255, L = L1 + L2 − 1. The

corresponding lengths of the GI sequence are 32, 64, 128, 256. The detection is operated over

one symbol, i.e., Md = 1. It is observed that the detection error is reduced when long GI

sequences are used.

The detection error rate of over variable channel lengths is shown in Fig. 3.6. Here, the

channel length follows the distribution in (3.38), and the detection operation is over multiple

symbols, i.e., Md = 1, 2, 4, 10. The detection error significantly decrease as the detection range

extend to multiple symbols. With single symbol detection, detection error is 10−3 at the SNR

of 18dB. However, this number can be reduce to 10−7 when the detection is performed over 10

symbols. Therefore, the detection accuracy can be guaranteed by using more received symbols

when the system suffers low SNR.
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Figure 3.8: Average percentages of GI overhead of the proposed adaptive GI and the fixed
GI systems. The channel lengths is variable and follows the log-normal distribution, µ′ =

16, 32, 64.

Fig. 3.7 presents the symbol error rate (SER) at the destination for the proposed adaptive

GI OFDM systems over variable length channels. From the figure, the SER performance of

the proposed scheme is improved when the GI length and detection range are extended, which

is expected as seen form the detection error property. Besides, the performance of the con-

ventional variable GI scheme, which requires extra control signals, and the proposed variable

orthogonal GI schemes are compared under the same modulation and equalization scheme. In

the conventional variable GI scheme, receiver has the GI knowledge notified by transmitter.

With low SNR, the proposed scheme with different detection ranges provides the same SER

with variable GI scheme which requires extra control signals. It means that although the de-

tection error rate is high when SNR is low, the effect on the SER performance is not significant

because

Fig.3.8 compares average GI overhead percentages of the proposed adaptive GI and the
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fixed GI systems over different distributions of the channel length, which is defined as

Percentage of GI overhead =
P

P + N
. (3.42)

The fixed GI length is chosen to satisfy Pfix ≥ lnN−1(0.95|µ′, σ′). The mean value of the chan-

nel length, µ′, equals to 16,32,64 respectively. When the average channel length is relatively

low, the overhead percentages of the fixed GI system and the proposed adaptive GI system both

increase with the variance of the channel length. It implies that when channel length is varying

strongly, the average overhead becomes high. Compared to the fixed GI system, the overhead

of the proposed adaptive GI system always provides a lower overhead percentage. When the

average channel length is 64, the overhead percentage of the fixed GI system still grows with

the variance of the channel length, while, the adaptive GI system only exhibits little overhead

increasing. Especially, when the variance is large, i.e., σ2 = 64, the overhead percentage of the

proposed scheme remarkably reduces, i.e., the fixed GI system have to used 25% of symbol as

GI, while the adaptive GI only occupies average less than 16% of symbol.
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3.4 Relay Selection Scheme for Multiple-Relay Systems with

Adaptive GI

In order to reduce the overhead as well as improve the transmission reliability for the multiple-

relay cooperative networks, we propose a novel RS scheme based on the adaptive CP technique.

Most of the previous RS schemes [85–88, 90, 152–154] only focus on the effect of channel

fading to improve the transmission reliability and throughput of relay networks, while the

transmission overhead of the multi-hop link and its effect on the overall system performance

are largely ignored.

To achieve high transmission efficiency, the RS schemes for AF relay networks should not

only consider the channel gain or SNR but also the effect of the accumulated channel delay

spread. In multiple-relay systems, the relay link with shortest delay spread and requiring the

minimum CP length is trended to be chosen to reduce the transmission overhead; on the other

hand, the relay link with highest channel gain should be selected to enhance the transmission

reliability. Therefore, we defined the normalized effective throughput as the selection criterion

which depends on both the accumulated channel delay spread and end-to-end SNR. With this

criterion, the best relay link and the corresponding CP length are selected at source to achieve

the trade-off between the transmission reliability and overhead.

3.4.1 Relay Selection Scheme with Adaptive GI

We consider a dual-hop relay system with one source terminal S , M relay nodes {R1, . . . ,RM}

and one destination terminal D as shown in Fig. 3.9.

In this section, define that

h1,m = [h1,m,0, h1,m,1, . . . , h1,m,L1,m−1] (3.43)

and

h2,m = [h2,m,0, h2,m,1, . . . , h2,m,L2,m−1] (3.44)

are the baseband channels of the first and second hop respectively, where Li,m is the channel
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Figure 3.9: Cooperative multiple-relay system over accumulated multipath channels.

length of hi,m, m = 1, . . . ,M, i = 1, 2.

We assume that the source estimates the length of the overall reverse channel from the

training symbols transmitted from D to S via R. Exploiting channel reciprocity, the source can

then determine required GI length of the next frame transmitted to D and notices the destina-

tion with control signals. With the adaptive CP scheme, the CP length is dynamically chosen

according to the end-to-end delay spread, i.e., P = (Lm,1 + Lm,2).

In OFDM systems, when the number of subchannels is sufficiently large, the signal in

each subchannel is exposed to flat fading rather than frequency selective fading. Then, the

frequency-domain received signal can be written as

Rk = H2,m,kGH1,m,kS k + H2,m,kGW1,m,k + W2,m,k, (3.45)

where G is given by (3.10). Based on the availability of instantaneous channel state informa-

tion, approximate bit error rate (BER) expression with the Rayleigh fading channel is given
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by [2]

Pbm ≈ d
N∑

k=1

Q(
√

aγm,k), (3.46)

where Q(·) represents the Gaussian Q function,

Q(x) =
1
√

2π

∫ ∞

x
e−t2/2dt, (3.47)

a =


2
σ2 sin2

(
π
M

)
forM-PSK

3
σ2(M−1) forM-QAM

, (3.48)

d =


M−1∑N

k=1 log2M
forM-PSK

4∑N
k=1 log2M

( √
M−1
√
M

)
forM-QAM

, (3.49)

and γm,k is the end-to-end SNR of the each subcarrier at the destination,

γm,k = E
[ ∣∣∣∣∣∣ Hm,2,kGHm,1,kS k

H2,m,kGW1,m,k + W2,m,k

∣∣∣∣∣∣2 ]
= E

[
|Hm,2,kGHm,1,k|

2Ps

(|Hm,2,kG|2 + 1)σ2
ω

]
=
γ1,m,kγ2,m,k

γ2,m,k + C
,

(3.50)

where σ2
ω = σ2

1 = σ2
2, γi,m,k = |Hi,m,k|

2Ps/σ
2
ω, and C = Ps/(|G|2σ2

ω).

The performance of the relay system is not only affected by the end-to-end channel gain

but also the transmission overhead. If a long CP is adopted, the effective data throughput at

destination will decrease. To improved the system performance by considering both channel

fading and delay spread, we defined a normalized effective throughput as the relay selection

criterion. The effective normalized throughput is given as

η =
N
P + N

(1 − Pb), (3.51)

which represents the percentage of the effective data received correctly at destination in the

total data (including effective data and overhead) transmitted by source.
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When the delay spread increases, the CP length grows, therefore the throughput degrades;

on the other hand, when the channel gain is severe, BER at destination will raise, then the

throughput also degrades. In order to achieve the trade-off between the transmission reliability

and efficiency, the best relay node, Rb is the one with maximum η, which can be formulated as

b = arg max
m∈{1,...,M}

ηm

= arg max
m∈{1,...,M}

N
Pm + N

(1 − Pbm).
(3.52)

In Eq. (3.52), ηm depends on the overall subchannel conditions of the two-hop link via the mth

relay. For OFDM systems, since the overall performance is limited by the subcarrier with the

worst error probability, therefore, using the fact that

Pb(γk) = dQ(
√

aγk) ∝
1
γk
, (3.53)

we obtain the following RS strategy

b = arg max
m∈{1,...,M}

N
Pm + N

(
1 − Pb( min

k∈{1,...,N}
γm,k)

)
. (3.54)

After the best relay node b is determined, the GI length can be set corresponding to (L1,b +L2,b).

3.4.2 Performance Analysis

Assume that the b-th relay has the maximum effective throughput, ηmax = max{η1, . . . , ηM}.

Since each relaying link in the networks is independent, the cumulative distribution function

(CDF) of ηmax is given by

P(ηmax ≤ η) =

M∏
m=1

P(ηm ≤ η). (3.55)

From Eq. (3.54), we clearly have

Pbm ≈ c
N∑

k=1

Q(
√

aγm,k) ≥ c
N∑

k=1

Q
(√

a min
k∈{1,...,N}

γm,k

)
. (3.56)
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Therefore, the CDF of ηmax can be written as

P(ηmax ≤ η) ≥
M∏

m=1

P
(

N
Pm + N

(1 − Pbm) ≤ η
)
. (3.57)

We suppose that the end-to-end delay spread of relay channels, {L1, . . . , LM}, are independent

and identically distributed (i.i.d.) random variables which follow a log-normal distribution, i.e.,

Pm = Lm ∼
1

x
√

2πσ2
exp(−

(ln x − µ)2

2σ2 ), (3.58)

where µ is the expectation of ln x, and σ2 > 0 is the variance of ln x, then

Pm + N
N

∼
1

x
√

2πσ′2
exp

(
−

(ln x − µ′)2

2σ′2

)
, (3.59)

where µ′ and σ′ satisfy the following equations,


1
N eµ+σ2

2 + N = eµ
′+σ′2

2

1
N2 (eσ

2
− 1)e2µ+σ2

= (eσ
′2
− 1)e2µ′+σ′2

. (3.60)

The CDF of (Pm + N)/N is given by

P
(
Pm + N

N
≤ x

)
=

1
2

erfc
(
−

(ln x − µ′)2

2σ′2

)
. (3.61)

Since both N
Pm+N and η

1−Pbm
are positive, Eq. (3.57) can be rewritten as

P(ηmax ≤ η) ≥
(
P(
Pm + N

N
≥

1 − Pbm

η
)
)M

. (3.62)
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We have

P
(
Pm + N

N
≥

1 − Pbm

η

)
= 1 − P

(
Pm + N

N
≤ D(η)

)
= 1 −

1
2

erfc
(
−

(ln D(η) − µ′)2

2σ′2

)
= 1 − Q

(
−

(ln D(η) − µ′)2

√
2σ′2

)
.

(3.63)

where D(η) =
1−Pbm
η

. The lower bonder of P(ηmax ≤ η) can be obtained as

P(ηmax ≤ η) ≥
(
1 − Q

(
−

(ln D(η) − µ′)2

√
2σ′2

))M

. (3.64)

With that 0 < Q(x) < 1,

0 < 1 − Q
(
−

(ln D(η) − µ′)2

√
2σ′2

)
< 1. (3.65)

From Eq. (3.64) and (3.65), when the number of available relay nodes M increases, the lower

bonder of P(ηmax ≤ η) decreases, which impacts that the effective throughput improves.

Consider the following three cases:

1. σ2 is large, i.e.,
√

2σ′2 > 1;

If
√

2σ′2 > 1, the value of
(
1 − Q(− (ln D(η)−µ′)2

√
2σ′2

)
)

keeps low, because
(
−

(ln D(η)−µ′)2
√

2σ′2

)
ap-

proaches zero slowly. Therefore, the lower bonder of the effective throughput will drop

quickly when M rises, and the improvement of the throughput is significant.

2. σ2 is small, i.e.,
√

2σ′2 ≤ 1;

When
√

2σ′2 ≤ 1,
(
−

(ln D(η)−µ′)2
√

2σ′2

)
approaches zero quicker than that with

√
2σ′2 > 1. Then

the throughput gain will reduce.

3. σ2 is tiny, i.e.,
√

2σ′2 → 0.

In the case with
√

2σ′2 → 0, the channel delay spread can be considered as a constant,

hence the proposed RS scheme provides the same performance as the maximum end-to-

end SNR RS scheme, i.e.,

b = arg max
m∈{1,...,M}

min
k∈{1,...,N}

γm,k. (3.66)
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Figure 3.10: The average normalized effective throughput of different RS schemes for AF
relay networks with variable channel length. The channel lengths is variable and follows the
log-normal distribution, µ′ = 4.5 and 1/

√
2 < σ2.

3.4.3 Simulation Results

In the simulations, we assume that the length of each channel, Li,m, i = 1, 2, m = 1, . . . ,M,

follows the same distribution given by (3.38). The CP length, Pm, is adapted to (L1,m + L2,m).

At destination, the zero forcing channel equalization with ideal channel response is performed.

We evaluate the normalized effective throughput of the proposed RS scheme, and compare

it with that of the maximum end-to-end SNR selection schemes with variable/fixed-CP given

by (3.66). The fixed CP length is decided to satisfy CPfix ≥ lnN−1(0.9|µ, σ). Three different

cases are considered: the variance of channel length is large, small and close to zero. The

corresponding values of σ are σ2 > 1
√

2
, 0 < σ2 < 1

√
2

and σ2 → 0 respectively. In the three

cases, we keep the same value of µ, i.e., µ ≈ 4.5.
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Figure 3.11: he average normalized effective throughput of different RS schemes for AF relay
networks with variable channel length. The channel lengths is variable and follows the log-
normal distribution, µ′ = 4.5 and 0 < σ2 < 1/

√
2.

For the case that the variance of channel length is large, we set 1
√

2
< σ2 ≈ 1. Fig. 3.10

presents the normalized effective throughput of the proposed selection scheme and maximum

end-to-end SNR scheme with variable/fixed CP. The throughput of the maximum SNR and

proposed RS scheme grows when the number of available relay nodes increases because of the

improvement of the end-to-end SNR. Compared to the maximum SNR RS scheme with vari-

able CP, the proposed scheme provides a higher effective throughput by considering channel

length as well as the end-to-end SNR. For the maximum SNR scheme with fixed CP, a large

CP duration has to be chosen due to the wide variation range of the channel length. There-

fore, the effective throughput of the fixed-CP maximum SNR scheme is significantly limited

even with a high SNR. Moreover, the performance gain of the proposed scheme significantly

increases when the available relay nodes become more. While the maximum end-to-end S-
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Figure 3.12: he average normalized effective throughput of different RS schemes for AF relay
networks with variable channel length. The channel lengths is variable and follows the log-
normal distribution, µ′ = 4.5 and σ2 → 0.

NR scheme with variable/fixed CP whose selection criterion only depends on SNR provides a

slight improvement.

For the case that the variance of channel length is small, i.e., 0 < σ2 < 1
√

2
, the channel

length is varying in a smaller range than the case 1
√

2
< σ2. We set σ = 0.28. From the results

in Fig. 3.11, the proposed scheme can achieve a higher throughput gain than the maximum

end-to-end SNR scheme in this case. With the narrow variation range of channel length, the

fixed-CP RS scheme can adopt a shorter CP duration, and consequently has a higher effective

throughput than in the case with σ2 > 1
√

2
. However, the throughput of the maximum end-

to-end SNR scheme with variable/fixed CP approaches to a constant when SNR increases,

which implies that the maximum SNR scheme cannot obtain the throughput gain from the

large SNR. While the throughput performance of the proposed scheme can keep growing with



60 Chapter 3. Amplify-and-Forward Relay System with Adaptive Guard Interval

SNR. Compared to the case with σ2 > 1
√

2
, the performance gain of the proposed RS strategy

becomes lower, because the smaller variable range of channel length affects the activity of the

proposed scheme.

For the third case that the variance of channel length ψ = (eσ
2
− 1)e2µ+σ2

→ 0, we have

σ2 → 0. In this case, the channel length is little variable, and the proposed scheme become the

maximum end-to-end SNR scheme. In the simulation, we set σ′ = 0.03. Fig. 3.12 presents the

effective throughput of the different relay selection schemes. As expected, the performances of

the maximum end-to-end SNR and proposed schemes are the same. In this case, the fixed-CP

maximum SNR scheme also exhibits similar throughput performance by choosing a relatively

short CP duration. The performance gain provided by these schemes only shows in terms

of the error probability rather than the throughput when the number of available relay nodes

increases.

3.5 Summary

In this chapter, we have proposed two adaptive cooperative schemes for amplify-and-forward

relay systems, i,e., the efficient adaptive guard interval scheme for single-relay systems and the

relay selection scheme for multiple-relay systems with adaptive guard interval.

The novel adaptive guard interval (GI) scheme was proposed to solve the accumulation of

multipath delay spread caused by multi-hop transmissions in AF relay systems. The GI was

adapted to channel conditions and was replaced by a variable length orthogonal codes which

can carry the GI length information. By exploiting the orthogonal property between different

GI sequences, the destination detects GI length independently without an extra control signal.

The corresponding receiver for the proposed system was designed by combining the GI length

detection and equalization. The detection error is reduced by operating the detection over

multiple symbols. The proposed adaptive GI scheme can achieve the same symbol error rate

performance as the variable GI scheme with additional control signals. The adaptive GI scheme

can address the variable delay spread in multi-hop AF relay systems, meanwhile compared to

the fixed GI scheme, the transmission overhead was reduced.

For multiple-relay systems, the novel relay selection scheme was proposed to minimize the
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overhead as well as enhance the overall transmission reliability. This scheme maximizes the

end-to-end transmission efficiency by dynamically choosing the most suitable relay node and

adapting the corresponding cyclic prefix length over variable-length multipath channels. We

defined a normalized effective throughput as the selection criterion in the proposed strategy

which depends on both the end-to-end channel gain and the accumulated delay spread. The

performance of the proposed scheme is evaluated with different variances of the end-to-end

channel lengths. When the variance is large, the effective throughput of the proposed scheme

achieves increases significantly with the growing of the number of available relay nodes and

signal-to-noise ratio (SNR). When the channel length is invariant, the proposed scheme pro-

vides the same performance as the maximum end-to-end SNR selection scheme.

The works in this chapter can be found in published research papers [155, 156].



Chapter 4

Resource Allocation for Two-Way

Decode-and-Forward Relay Systems

4.1 Introduction

In two-way relay systems, the communication is bidirectional where the two terminals ex-

change information assisted by the relay node. Examples of two-way relay systems are when

a mobile user communicates with the base station via a dedicated relay in a cellular system, or

two mobile users exchange their data in a wireless local area networks (WLAN) via the access

point. The relay scheme used in one-way communication systems can also be used for two-

way relay systems, with some modifications [157]. A straightforward approach of a two-way

relay system is to deploy two successive one-way relay schemes.

Practical relay systems typically avoid the interference between the received and retrans-

mitted signals at any relay node by orthogonalizing these signals. Two common methods for

orthogonal relay transmission are frequency division (FD) and time division (TD) where the

available bandwidth or time frame, respectively, are shared. A simple way to perform FD or

TD is to share the channel resource equally among hops. However, due to the path loss and fad-

ing effects, the capacity of these orthogonal channels are considerably different. Also, taking

the mobility of the relay and terminal nodes into account, the channel fading is time-variant.

Therefore, allocating transmission resources to the hops equally and statically will lead to the

overall system capacity reduction.

62
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The main goal of resource allocation for multihop relay systems is to maximize the end-

to-end channel capacity or minimize the resource consumption by adaptively allocating the

transmission resources, including time slots, frequency bandwidth and power consumption. In

order to improve the system performance, many resource allocation schemes have been inves-

tigated in the literature, for the different scenarios of the relay networks [99, 101, 157–166].

However, the allocation schemes in previous work only aim to maximize the total end-to-end

channel capacity, which implies the assumption that the traffic loads from the source to the

destination and from the destination to the source are the same. However, this assumption is

not practical at all. For different application, the traffic loads of down-link and up-link are

asymmetric in most practical systems. For instance, the web browsing and online video ser-

vice have dominant traffic volume in downlink direction [167–169]. The results of measured

traffic statistics also shows that the traffic of down-link and up-link is significantly different in

most practical cases [23–25]. Therefore, in two-way systems, the resource allocation algorithm

without considering the asymmetric traffic loads leads to the fairness issue. Simply maximiz-

ing the total end-to-end capacity will result in the lopsided allocation of the resource, i.e., light

traffic flows would obtain relatively excessive resource. On the other hand, forcing the two

terminals with different traffic loads achieve the same capacity only according to the channel

condition causes a problem such that the heavy traffic flows is deprived of resources and suffers

low data rate. Meanwhile, the allocation scheme to achieve the equal capacity of two terminals

does not take into account the notion that the two terminals might have different data rate re-

quirements, eg., in the systems with service level differentiation or flexible billing mechanisms

for different classes of users. Therefore, ignoring the asymmetric traffic in resource allocation

lowers the overall quality of service of the relay network. For the bidirectional asymmetric

traffic scenario, the traffic-load ratio between the two terminals should also be one of the factor

to determine the resource allocation algorithm.

To this end, we propose two adaptive resource allocation schemes for two-way commu-

nications to improve the performance of the dual-hop relay systems. In the two allocation

algorithms, transmission time, power and subcarriers are optimally allocated to maximize the

end-to-end capacity of the two-way system under the capacity ratio constraint. In order to

consider both the requirements of total end-to-end capacity and the capacity ratio between the
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Figure 4.1: A two-way relay system.

forward and reverse links, a balanced end-to-end capacity is defined as the performance met-

ric. In these two schemes, the two-way communication is performed by time division and

frequency division respectively.

For the time division relay system, the total end-to-end capacity is maximized by optimiz-

ing the transmission time and power allocation subject to the capacity ratio and total transmis-

sion time/power constraints. For the frequency division system, which exploits the orthogo-

nality of the subcarriers, we optimize the subcarrier allocation, subcarrier power or time slot

to achieve the maximum balanced capacity. Since the allocation algorithm for the frequency

division scenario combines the subcarrier and power allocation together, the optimal solution

is extremely computationally complex to obtain and probibit it form practical implementation.

Therefore, we develop a low-complexity suboptimal approach which considers the fairness of

resource allocation, system efficiency as well as complexity. The suboptimal scheme separates

subcarrier allocation and time/power allocation to reduce the complexity. Simulation results

compare the performance of the suboptimal algorithm with the optimal one.

4.2 System Model

In this chapter, we consider a two-way relay system as shown in Fig. 4.1, which is composed

of a source node S, a destination node D and a relay node. It is assumed that there is no direct

link between the source and destination nodes. The communication between the source and the

destination is the two-way scenario. In one-way systems, the data signals are transmitted from
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the source to the destination through the dual-hop link. While, in a two-way relay system, the

source and the destination want to exchange information with each other with the help of a relay

node. The two-way relaying models the communication scenario where the destination node

also has some data to send to source node e.g. downlink and uplink in cellular communication,

or packet acknowledgments in a wireless network.

The relay node operates in a half-duplex mode. To avoid interference, each hop is assigned

an orthogonal channel. A straightforward approach to achieve two-way relaying is to deploy

two successive one-way relaying schemes. Frequency division and time division are two com-

mon methods for orthogonal relay transmission. For the time division model, it requires four

stages to accomplish the exchange of and symbols between the source and destination nodes

in the same frequency bandwidth. And for the frequency division, two stages and two different

frequency bandwidths are needed to execute the two-way transmission.

Denote that the traffic load from S to D is LS, and the traffic load from D to S is LD. The

traffic load ratio between the forward and reverse transmission is defined as

` =
LS

LD
. (4.1)

The multipath channels between S and R is denoted as h1 = [h1(0), h1(1), . . . , h1(L1 − 1)] and

the channel between R and D is h2 = [h2(0), h2(1), . . . , h2(L2 − 1)], where Li, i = 1, 2, is the

channel length of hi. It is assumed that hi(l) are mutually independent complex random vari-

ables whose amplitude follow the same Rayleigh distribution, and the channels are reciprocal.

The amplitude of hi(l) is modeled as a Rayleigh distribution with PDF

f|hi(l)|(x) =
2x
Υi,l

exp(−
x2

Υi,l
), x ≥ 0, (4.2)

where Υi,l = E[|hi(l)|2] is the power of the l-th tap of hi. The application of DFT represents a

linear transformation of jointly Gaussian random variables and yields jointly Gaussian random

variables [170]. Thus, the frequency response of each subchannel also has a Rayleigh fading

distribution [171], i.e.,

f|Hm,k |(y) =
y

2ΥLi

exp(−
y2

4ΥLi

), y ≥ 0, (4.3)
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where Hi,k is the frequency domain channel gain of k-th subchannel, i = 1, 2, and ΥLi =∑Li−1
l=0 Υi,l.

Since the DF relay scheme can provide flexible and adaptive communications for the

source-relay and relay-destination links, we use the DF scheme at the relay node for retrans-

mission. In the one-way DF relay protocol, the transmission starts with sending a source infor-

mation to the selected relay node in the first phase. The received signals at the relay node can

be expressed by

r1(n) =
1
N

N−1∑
k=0

R1,kH1,ke
j2πnk

N + ω1(n), (4.4)

where R1,k is the frequency domain received signal at the relay node and ω1(n) the AWGN term

with variance N01 .

Unlike the AF relay, the DF mode can eliminate the additive noise and channel fading

that accumulated in the relays. The relay node with the DF protocols is equipped with error

detection and correction techniques. Therefore, in the second phase, the selected relay node

detects, encodes, and retransmits the received signal to the destination node. The retransmitted

signal at the relay node can be written as

y(n) = ŝ(n), (4.5)

where ŝ(n) is the regenerated signal at the relay node. ŝ(n) will be the original source signal s(n)

with reasonable channel conditions under which all transmission errors between the source and

relay are corrected by the error protection coding. Then, the received signal at the destination

node can be written as

r2 = h2 ⊗ ŝ + w2, (4.6)

where r2 = {r2(n)} is the time-domain received signals at the destination, n = 0, 1, . . . ,N − 1,

and

r2(n) =
1
N

N−1∑
k=0

Ŝ kH2,ke
j2πnk

N + +ω2(n). (4.7)

In a DF relay system, errors at the destination occur either when the S→ R transmission is

received correctly and the R→ D transmission is received in error, or when the S→ R transmis-

sion is received in error and the R→D transmission is received correctly. Hence, the end-to-end
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Figure 4.2: A two-way relay system with time-division model.

error probability of DF relay is given by

PγDF(γ|γ̄1, γ̄2)

= (1 − Pe(γ|γ̄1))Pe(γ|γ̄2) + (1 − Pe(γ|γ̄2))Pe(γ|γ̄1)

= Pe(γ|γ̄1) + Pe(γ|γ̄2) − 2Pe(γ|γ̄1)Pe(γ|γ̄2),

(4.8)

where Pe(γ) is the error probability with SNR γ, and γ̄i is the average SNR of the ith hop.

4.3 Resource Allocation for Two-Way Time-Division Relay

Systems with Asymmetric Traffic

In this section, we consider a dual-hop two-way relay system as illustrated in Fig. 4.2 in which

the two-way communication is accomplished by time-division model. All the nodes in the

system are half-duplex in the same channel (within the same frequency bandwidth or the same

time slot). To avoid interference without applying the network coding, the total transmission

time are split into four time slots to perform two-way communications. Each hop is assigned

a different time slot, and in each time slot all subcarriers of the OFDM system are used to

transmit signals. In the first two time slots, S transmits its data to D with the participation of

the relay node. During the third and forth time slot, the destination sends the data signals to the



68 Chapter 4. Resource Allocation for Two-Way Decode-and-Forward Relay Systems

source through the dual-hop relay link.

Denote the normalized time slot dedicated to each hop as

~α = [αSR, αRD, αDR, αRS],

and

αSR + αRD + αDR + αRS = 1. (4.9)

The instantaneous signal-to-noise ratio (SNR) of the k-th subcarrier of the hop between S and

R in the first time slot is given by

γSR,k =
PSR,k|H1,k|

2

N01

, (4.10)

where PSR,k and N01 are the transmission power and the variance of the additive white Gaussian

noise (AWGN) of the k-th subcarrier, respectively. The corresponding instantaneous Shannon’s

channel capacity in bit/second/Herz, cSR, can be obtain as

cSR =
1
N

N−1∑
k=0

log2(1 + γSR,k). (4.11)

The channel capacity of the links R→D, D→R and R→S in the other time slots, i.e., cRD, cDR

and cRS , can be similarly defined respectively. With DF protocol, the end-to-end capacity from

S to D and from D to S are limited by the minimum per hop capacity, and they are given by

CSD = min(αSRcSR, αRDcRD), (4.12)

and

CDS = min(αDRcDR, αRScRS) (4.13)

In related work, the resource allocation optimizes the total end-to-end capacity, i.e., (CSD +

CDS), with the assumption that the traffic loads from S to D and from D to S are equal, i.e.,

LS = LD. However, for the two-way systems with asymmetric traffic loads, the transmission

resources assigned to the forward and reverse links should be constrained by traffic load ratio



4.3. ResourceAllocation for Two-Way Time-DivisionRelay Systems withAsymmetric Traffic 69

between S and D. Given the total transmission time and power, the optimal resource allocation

of the time-dividing two-way relay systems is to dynamically determine the time slot and the

subcarrier power for each hop adaptively to the instantaneous channel condition and the traffic

loads. Hence, the allocation problem becomes

max
{~α,Pt}

CSD + CDS

subject to
CSD

CDS
= `

αSR + αRD + αDR + αRS = 1,

0 ≥ αSR, αRD, αDR, αRS ≥ 1,
N−1∑
k=0

PSR,k +

N−1∑
k=0

PRD,k +

N−1∑
k=0

PDR,k +

N−1∑
k=0

PRS,k = Ptot.

(4.14)

where Pt = {PSR,k, PDR,k, PRD,k, PRS,k}, Ptot is the total transmission power used for one two-way

relay communication, and CSD
CDS

= ` is the capacity ratio constraint which guarantees the fair data

rates of the two terminals.

To achieve the maximum total end-to-end capacity, both the time slot and subcarrier power

need to be optimally allocated. Since the joint transmission time and power allocation is con-

vex, which means that several combination of time slot and power allocations can provide the

maximum total end-to-end capacity. Therefore, in the following sections, we will discuss the

time slot and power allocation for the time-division two-way scenario respectively.

4.3.1 Time Slot Allocation for Two-Way TD Relay Systems

The time slot allocation is first investigated in this section. When the value of Pt is given, ~α is

optimized such that the total channel capacity from S to D and from D to S is maximized, i.e.,

max
~α

CSD + CDS

subject to
CSD

CDS
= `,

αSR + αRD + αDR + αRS = 1,

0 ≤ αSR, αRD, αDR, αRS ≤ 1.

(4.15)
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In order to achieve the optimal total channel capacity, the end-to-end channel capacity from

S to D and from D to S, i.e., CSD and CDS, need to be maximized respectively. Hence, we have


max
{αSR,αRD}

CSD = max
{αSR,αRD}

min(αSRcSR, αRDcRD),

max
{αDR,αRS}

CDS = max
{αDR,αRS}

min(αDRcDR, αRScRS).
(4.16)

The solution of the min-max problems in (4.16) is that


αSRcSR = αRDcRD,

αDRcDR = αRScRS.
(4.17)

Using (4.17) in the total time slot constraint, we have

αSRcRD

cSR
+ αRD + αDR +

αDRcDR

cRS
= 1. (4.18)

From (4.18), we can obtain that

αRD =
1 − αRD(1 + cDR

cRS
)

1 + cRD
cSR

. (4.19)

Moreover, according to the capacity ratio constrains, i.e.,

CSD

CDS
= `, (4.20)

when (4.17) is satisfied, the capacity ratio constrain becomes that

αSRcSR

αRScRS
=
αRDcRD

αDRcDR
= `. (4.21)

Substituting (4.19) into (4.21), the value of αDR can be figured out as

αDR =
1

cDR( `
cSR

+ `
cRD

+ 1
cRS

) + 1
, (4.22)

and consequently, αSR, αRD and αRS can be solved using (4.17),(4.18), and (4.21). The solution
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of the optimization problem stated in (4.15) is

~α =



αSR

αRD

αDR

αRS


=



`

cSR( `
cRD

+ 1
cDR

+ 1
cRS

)+`

`

cRD( `
cSR

+ 1
cDR

+ 1
cRS

)+`

1
cDR( `

cSR
+ `

cRD
+ 1

cRS
)+1

1
cRS( `

cSR
+ `

cRD
+ 1

cDR
)+1


. (4.23)

4.3.2 Power Allocation for Two-Way TD Relay Systems

In this section, the power allocation is considered for the two-way relay systems with asymmet-

ric traffic loads. Here, it is assumed that the vector ~α is given. Thus, Pt = {PSR,k, PDR,k, PRD,k, PRS,k}

is optimized to maximize the total instantaneous end-to-end channel capacity under the capac-

ity ratio ` and total transmission power Ptot constraints, i.e.,

max
Pt

CSD + CDS

subject to
CSD

CDS
= `

PSR,k, PRD,k, PDR,k, PRS,k ≥ 0,
N−1∑
k=0

PSR,k +

N−1∑
k=0

PRD,k +

N−1∑
k=0

PDR,k +

N−1∑
k=0

PRS,k = Ptot.

(4.24)

Denote the total transmission power in each time slot as

N−1∑
k=0

PSR,k = P̄SR,

N−1∑
k=0

PDR,k = P̄DR,

N−1∑
k=0

PRD,k = P̄RD,

N−1∑
k=0

PRS,k = P̄RS.

The optimization problem in (4.24) can be expressed by two optimization problems. One is to
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allocates the subtotal power for each time slot , {P̄SR, P̄RD, P̄DR, P̄RS}, i.e.,

max
{P̄SR,P̄DR,P̄RD,P̄RS}

CSD + CDS

subject to
CSD

CDS
= `,

P̄SR, P̄DR, P̄RD, P̄RS ≥ 0,

P̄SR + P̄DR + P̄RD + P̄RS = Ptot,

(4.25)

Then, when the optimal allocation of the subtotal powers is figured out, the subcarrier power

allocation is derived to maximized the instantaneous channel capacity of each hop, as

max
PX,k

cX =
1
N

N−1∑
k=0

log2

(
1 +

PX,k|Hi,k|
2

N0i

)
subject to PX,k ≥ 0,

N−1∑
k=0

PX,k = P̄X,

(4.26)

where cX is cSR, cDR, cRD or cRS, the PX,k and ρX,k are the corresponding power and selection

indicator of the k-th subcarrier, P̄X is the subtotal power of PX,k, and i = 1, 2.

The optimization problem in (4.26) is equivalent to finding the maximum of the following

cost function

L(PX,k, λX) =

N−1∑
k=0

log2

(
1 +

PX,k|Hi,k|
2

N0i

)
+ λX

( N−1∑
k=0

PX,k − P̄X

)
, (4.27)

where λX is the Lagrangian multipliers. Differentiate with respect to PX,k and set each deriva-

tive to zero to obtain

∂L

∂PX,k
=

1
ln 2

1

1 +
PX,k |Hi,k |2

N01

|Hi,k|
2

N0i

+ λX

=
1

ln 2
|Hi,k|

2

N01 + PX,k|H1,k|
2 + λX

= 0.

(4.28)
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Denote that |HX,min| is the minimum channel gain, and PX,min is the corresponding power of the

subchannel HX,min. Then, we can be obtained that

∂L

∂PX,k
=

∂L

∂PX,min
= 0, k = 0, . . . ,N − 1. (4.29)

Therefore, the relationship between PX,k and PX,min can be found out as

1
N ln 2

1

1 +
PX,k |Hi,k |2

N01

|Hi,k|
2

N0i

+ λX =
1

N ln 2
1

1 +
PX,min |Hi,k |2

N01

|Hi,k|
2

N0i

+ λX. (4.30)

From (4.30), we have

PX,k = PX,min + N0i

|Hi,k|
2 − |Hi,min|

2

|Hi,k|
2|Hi,min|

2 . (4.31)

The equation (4.31) shows that every subcarrier power in {PX,k}, expect PX,min, can be descript-

ed by PX,min, Hi,min and Hi,k. Based on this, P̄X can be expressed as

P̄X =

N−1∑
k=0

PX,k

= NPX,min + N0i

∑
k,min

|Hi,k|
2 − |Hi,min|

2

|Hi,k|
2|Hi,min|

2 ,

(4.32)

and the channel capacity of each time slot can be rewritten as

cX =
1
N

N−1∑
k=0

log2

(
1 +

PX,k|Hi,k|
2

N0i

)
=

1
N

log2

N−1∏
k=0

(
1 +

PX,k|Hi,k|
2

N0i

)
=

1
N

log2

((
1 +

PX,min|Hi,min|
2

N0i

) ∏
k,min

(
1 +

PX,k|Hi,k|
2

N0i

))
.

(4.33)
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Using PX,min to express PX,k from (4.31), we can obtained that

1 +
PX,k|Hi,k|

2

N0i

= 1 + PX,min
|Hi,k|

2

N0i

+
|HX,k|

2 − |HX,min|
2

|HX,min|
2

=
PX,min|Hi,k|

2

N0i

+
|Hi,k|

2

|Hi,min|
2

=

(PX,min|Hi,k|
2

N0i

+ 1
)
|Hi,k|

2

|Hi,min|
2 .

(4.34)

Then, (4.33) can be given by

cX =
1
N

log2

((
1 +

PX,min|Hi,min|
2

N0i

) ∏
k,min

(
1 +

PX,k|Hi,k|
2

N0i

))
=

1
N

log2

((
1 +

PX,min|Hi,min|
2

N0i

) ∏
k,min

((
1 +

PX,min|Hi,k|
2

N0i

)
|Hi,k|

2

|Hi,min|
2

))
=

1
N

log2

((
1 +

PX,min|Hi,min|
2

N0i

)N ∏
k,min

|Hi,k|
2

|Hi,min|
2

)
= log2

(
1 +

PX,min|Hi,min|
2

N0i

)
+

1
N

∑
k,min

log2
|Hi,k|

2

|Hi,min|
2 .

(4.35)

Moreover, using the relationship between P̄X and PX,min in (4.32), we have that

1 +
PX,min|Hi,min|

2

N0i

= 1 +
1
N

(
P̄X − N0i

∑
k,min

|Hi,k|
2 − |Hi,min|

2

|Hi,k|
2|Hi,min|

2

)
|Hi,min|

2

N0i

= 1 +
P̄X|Hi,min|

2

NN0i

−
∑

k,min

|Hi,k|
2 − |Hi,min|

2

N|Hi,k|
2

(4.36)

By substituting (4.36) into (4.35), the channel capacity of each time slot can be expressed as

cX = log2

(
1 +

P̄X|Hi,min|
2

NN0i

−
∑

k,min

|Hi,k|
2 − |Hi,min|

2

N|Hi,k|
2

)
+

1
N

∑
k,min

log2
|Hi,k|

2

|Hi,min|
2 (4.37)
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To optimize the subtotal power in each time slot, {P̄SR, P̄RD, P̄DR, P̄RS}, we have

max
{P̄SR,P̄DR,P̄RD,P̄RS}

min(cSR, cRD) + min(cDR, cRS)

subject to
min(cSR, cRD)
min(cDR, cRS)

= `,

P̄SR, P̄DR, P̄RD, P̄RS ≥ 0,

P̄SR + P̄DR + P̄RD + P̄RS = Ptot.

(4.38)

The optimal solution of the max-min problem in (4.38) can be given by


cSR = cRD,

cDR = cRS.
(4.39)

Rewrite (4.39) by using (4.37) as

log2

(
1 +

P̄SR|H1,min|
2

NN01

−
∑

k,min

|H1,k|
2 − |H1,min|

2

N |H1,k|
2

)
+

1
N

∑
k,min

log2
|H1,k|

2

|H1,min|
2

= log2

(
1 +

P̄RD|H2,min|
2

NN02

−
∑

k,min

|H2,k|
2 − |H2,min|

2

N|H2,k|
2

)
+

1
N

∑
k,min

log2
|H2,k|

2

|H2,min|
2

(4.40)

and

log2

(
1 +

P̄DR|H2,min|
2

NN02

−
∑

k,min

|H2,k|
2 − |H2,min|

2

N|H2,k|
2

)
+

1
N

∑
k,min

log2
|H2,k|

2

|H2,min|
2

= log2

(
1 +

P̄RS|H1,min|
2

NN01

−
∑

k,min

|H1,k|
2 − |H1,min|

2

N |H1,k|
2

)
+

1
N

∑
k,min

log2
|H1,k|

2

|H1,min|
2

(4.41)

Adding the capacity ratio and total transmission power constraints

cSR

cRS
=

cRD

cDR
= `, (4.42)

P̄SR + P̄DR + P̄RD + P̄RS = Ptot, (4.43)

the optimal {P̄SR, P̄RD, P̄DR, P̄RS} then can be solved from (4.40),(4.41),(4.42) and (4.43).

Once the subtotal power for each hop, {P̄SR, P̄DR, P̄RS, P̄RD}, is figured out, the power allo-
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cated to the subchannel with the lowest channel gain of each hop can be determined by

∂L

∂PX,min
=

1
ln 2

1

1 + ρX,k
PX,k |Hi,k |2

N0i

|Hi,k|
2

N0i

+ λX

= 0.

(4.44)

The solution is given by

PX,min =

[ 1
λX
−

N0i

|Hi,min|
2 ,

]†
(4.45)

where [·]† = max(·, 0). Then, the rest subcarrier power allocation in each hop can be calculated

by

PX,k = PX,min + N0i

|Hi,k|
2 − |Hi,min|

2

|Hi,k|
2|Hi,min|

2 . (4.46)

Equation (4.46) which gives the power distribution on the k-th subchannel for each the hop

shows that more power will be put into the subchannels with higher channel-to-noise ratio.

This is the water-filling algorithm [172] in frequency domain.

4.3.3 Simulation Results

In this section, we verify the proposed resource allocation schemes by computer simulations

and compare their performance with various allocation schemes, for different scenarios. One

of performance metrics adopted here is the balanced end-to-end capacity, which is defined as

Cb = min(CSD, `CDS). (4.47)

We adopt this metric instead of the total end-to-end capacity, CSD + CDS, for the two-way relay

system with asymmetric loads, because this parameter not only shows how large the total end-

to-end capacity is, but also shows how close the capacity ratio is to the required one. Therefore,

the balanced end-to-end capacity reflects both the requirements of maximizing the total end-

to-end channel capacity and minimizing the difference between the actual and the required

capacity ratio. The other metric defined to evaluated the performance of resource allocation
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Figure 4.3: Illustration of the proposed time slot and power allocation algorithm.

algorithms is the capacity gain, which is defined as

G =
Copt −C

C
, (4.48)

where Copt is the optimal achievable end-to-end capacity of the system, and C is the practical

end-to-end capacity based on a certain resource allocation scheme. This parameter shows how

the proposed optimal allocation algorithm outperforms other allocation schemes.
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Denote that the average SNRs of each hop are

γ̄1 =
E[|Hk,1|

2]
N01

, (4.49)

γ̄2 =
E[|Hk,2|

2]
N02

. (4.50)

The optimal allocation algorithm is calculated numerically which is implemented as the flow

shown in Fig. 4.3. The computer simulation results are obtained by 100, 000 independent

Monte Carlo runs of the network.

Time slot allocation

In this part, we assume that the subcarrier power of each hop is given, i.e., PSR,k = PRD,k =

PDR,k = PRS,k = 1, then with the channel reciprocity, we have

c1 = cSR = cRS =
1
N

N∑
k=1

log2

(
1 +
|H1,k|

2

N01

)
, (4.51)

c2 = cRD = cDR =
1
N

N∑
k=1

log2

(
1 +
|H2,k|

2

N02

)
. (4.52)

In order to evaluate the performance of the proposed time slot allocation scheme, we compare

it with two different allocation schemes. A simple method to perform two-way relay communi-

cations is equally sharing the transmission time in each hop. The end-to-end channel capacity

from S to D and from D to S are then given by

CSD = CDS =
1
4

min(c1, c2). (4.53)

Another allocation scheme we considered here is the random allocation scheme, where the

normalized time slot of each hop, {αSR, αRD, αDR, αRS}, is random selected.

The average balanced end-to-end capacity of the proposed optimal time slot allocation

scheme is compared with that of equal and random schemes in Fig. 4.4, where the average

SNRs of the hops S−−R and R−−D are equal, i.e., γ̄ = γ̄1 = γ̄2 =15, 25dB. In this figure,

the balanced capacity of the equal allocation keeps constant when the capacity ratio is varying,
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Figure 4.4: Average balanced end-to-end capacities of different time slot allocation schemes
vs. `. γ̄ = γ̄1 = γ̄2 =15, 25dB.

because the time slot assigning in this scheme is fixed without considering the instantaneous

channel condition and traffic loads. Compared to the optimal allocation, when the traffic loads

are equal, i.e., ` = 1, the equal and optimal allocation have a very similar balanced capacity, but

when ` grows, the optimal one significantly outperforms the equal one. Moreover, the balanced

capacities of the optimal and random allocation algorithms are increasing when the capacity

ratio rises. However, the proposed optimal scheme can provide a much higher balanced ca-

pacity than the random one under different average SNRs, because the required capacity ratio

can not be satisfied all the time in the random algorithm. On the other hand, the proposed

scheme considers both the channel condition and the asymmetric traffic loads at the same time,

therefore, it exhibits the best performance in the three algorithms.
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In Fig. 4.5, The average balanced end-to-end capacities of different allocation schemes are

compared under the scenario that the average SNR of each hop is different. Tow cases are

considered, i.e., γ̄1 = 2γ̄2 = 20dB and γ̄1 = 4γ̄2 = 24dB. Similarly to the results in Fig. 4.4,

the balanced capacity of equal allocation is constant, while that of the optimal and random

schemes grows with the increasing of the capacity ratio. Besides, the random allocation suffers

the similar low balanced capacity in both scenarios due to the blind selection of the time slot for

each hop. The performances of optimal and equal algorithms are affected by different average

SNRs of the two-hop channels. When the difference between γ̄1 and γ̄2 increases, i.e., γ̄1
γ̄2

becomes large, the balanced end-to-end capacities of optimal and equal allocations decrease.
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It happens because the end-to-end capacity is limited by the worse channel in the two hops

when only the time slot can be adaptively assigned. Although, the proposed optimal algorithm

provides the significant performance gains compared to the equal and random schemes in both

scenarios.

In Fig. 4.6, we present the capacity gains between the optimal and the other algorithms

with different required capacity ratios and average SNRs. Comparing the random allocation

scheme to the optimal one, the capacity gain is always higher than 1, which means the balanced

capacity of the optimal allocation is at least twice as large as that of the random one. When

the average SNRs of the hops are equal, i.e., γ̄1 = γ̄2 =15dB , the performance gain of the

optimal algorithm compared to the random time slot allocation is highest. While, compared to
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the equal one, the capacity gains of different scenario are very similar, and are lower than that

of random allocation. In additional, in all cases, the capacity gains grow when ` increases. It

implies that the proposed allocation scheme can provide higher balanced end-to-end capacity

than both the equal and random schemes when the traffic loads in two-way relay systems are

asymmetric.

Power allocation

We then evaluate the performance of the proposed power allocation scheme by comparing it

with random and equal power allocation schemes. Here, we assume that the time slot of each

hop is the same and normalizes to 1, and the total available transmit power, Ptot is 1W. For the

equal power allocation algorithm, the subtotal power of each hop is equal, i.e.,

P̄SR = P̄RD = P̄DR = P̄RS =
1
4

Ptot, (4.54)

and the subcarrier power is calculated by using waterfilling algorithm as

PX,k =

[ 1
λX
−

N0

|Hi,k|
2

]†
, (4.55)

where λX is a constant which satisfied that
∑N−1

k=0 PX,k = P̄X. In random power allocation

scheme, {P̄SR, P̄RD, P̄DR, P̄RS}, are random value and satisfy the total power constrain, i.e.

P̄SR + P̄RD + P̄DR + P̄RS = Ptot. (4.56)

Fig. 4.7 shows the average balanced end-to-end capacities of the proposed optimal, equal

and random power allocation schemes, where the average SNRs of the hops S−−R and R−−D

are equal, i.e., γ̄ = γ̄1 = γ̄2 =15, 25dB. In both cases, the balanced capacity of the optimal

power allocation increases when the capacity ratio ` is growing, while the capacity of equal

power allocations keep constant. With γ̄ = 15dB, the random scheme has the same constant

capacity with the equal one. With γ̄ = 25dB, the capacity of random algorithm is slight lower

than that of equal scheme, and the difference is relatively large when ` < 3. Moreover, the

optimal allocation significantly outperforms the equal and random one with both γ̄ = 15 and
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Figure 4.7: Average balanced end-to-end capacities of different power allocation schemes vs.
`. γ̄ = γ̄1 = γ̄2 =15, 25dB.

25dB, because the transmission power assigning in the proposed scheme considers both the

instantaneously channel condition and asymmetric traffic loads.

The average balanced end-to-end capacity of the optimal power allocation is compared with

the equal and random ones in Fig. 4.8 under the scenario that the average SNRs of hops are

different, i.e., γ̄1 = 2γ̄2 = 20dB and γ̄1 = 4γ̄2 = 24dB. When the traffic loads from S to D and

from D to S are equal, i.e., ` = 1, these three algorithm have similar capacity for both scenarios.

However, when ` rises, the capacity of the optimal scheme increases with `, while those of the

equal and random schemes do not change much. Besides, when the SNR difference between γ̄1

and γ̄2, i.e., γ̄1
γ̄1

, become large, the optimal algorithm provides similar results, but the capacities

of the equal and random allocation slightly increase. This result is different with the one which
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Figure 4.8: Average balanced end-to-end capacities of different power allocation schemes vs.
`. γ̄1 + γ̄2 =30dB.

only allocates the time slot for each hop. When the time slot is the only parameter to optimize,

the end-to-end channel condition is limited by the worse hop, however adaptively assigning the

power for each hop can improve the channel condition of the worse hop and balance the end-to-

end channel, therefore the overall capacity of the optimal power allocation does not vary a lot

under the same total power constraint. From Fig. 4.7 and 4.8, the end-to-end capacities of the

equal and random scheme are similar in different scenarios. It implies that the performance of

these two allocations only depends on the channel condition and the total available transmitted

power.

In Fig. 4.9, the capacity gains between the optimal and the other algorithms are presented

with different required capacity ratios and average SNRs. As expected from the results in Fig.
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4.7 and 4.8, the capacity gain of the equal and random power allocations are very similar. When

` grows, the balanced capacity gain significantly increases, since the proposed scheme can

maximize the capacity of each hop and achieves the required capacity ratio at the same time.

Moreover, when γ̄1
γ̄2

grows, the capacity gain become lower. Although the optimal allocation

can improve the channel condition of the worse hop, the end-to-end capacity is still limited by

the worse hop, therefore, balancing the two-hop channel capacity becomes difficult when γ̄1
γ̄2

is

large.
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Figure 4.10: An OFDM-based two-way relay system with frequency-division model.

4.4 Resource Allocation for Two-Way Frequency-Division Re-

lay Systems with Asymmetric Traffic

In this section, an OFDM-based two-way relay systems as illustrated in Fig. 4.10 is consid-

ered, where the frequency-division model is adopted. In OFDM systems, every subchannel is

orthogonal to each other, hence, the transmission between S and R and between D and R can

be perform simultaneously by using different subchannels. The frequency-division two-way

communications between the source and destination nodes consists of two time slots. In each

time slot, all the subcarriers are separated into two sets to be exploited as S–R and R–D links.

In the first time slot, S and D simultaneously transmit their data to the relay node through

channel h1 and h2 respectively. To avoid interference among S and D, the signals from S and

D are transmitted on different subcarrier sets. Each subcarrier is only assigned to one hop. For

the fairness, each hop at least occupies one subcarrier. During the second time slot, the relay

node forwards the received signals to S and D over different subcarrier sets respectively. The

subcarrier sets in the second time slot may not be the same as that used in the first time slot.
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In the first time slot, denote

~ρSR = [ρSR,0, ρSR,2, · · · , ρSR,N−1]T (4.57)

and

~ρDR = [ρDR,0, ρDR,2, · · · , ρDR,N−1]T (4.58)

as the indicator vectors of subcarrier selection for the transmission from S to R and from D

to R respectively, where ρSR,k, ρDR,k ∈ {0, 1}. When ρk = 1 means that the k-th subcarrier is

selected. Otherwise, ρk = 0. Since each subcarrier can be selected by one and only one hop,

the binary variables ρSR,k and ρDR,k must satisfy

N∑
k=1

ρSR,kρDR,k = 0. (4.59)

The instantaneous SNR of the k-th subcarrier of the hop between S and R in the first time slot

is given by

γSR,k =
PSR,k|H1,k|

2

N01

, (4.60)

where PSR,k and N01 are the transmission power and the variance of AWGN of the k-th subcarri-

er, respectively. The corresponding instantaneous Shannon’s channel capacity in bit/second/Herz,

cSR, can be obtain as

cSR =

N∑
k=1

log2(1 + ρSR,kγSR,k). (4.61)

The SNR of the k-th subcarrier and the channel capacity of the hop between D and R in the

first time slot are

γDR =
PDR,k|H2,k|

2

N02

, (4.62)

and

cDR =

N∑
k=1

log2(1 + ρDR,kγDR,k). (4.63)

Similarly, for the second time slot, the channel capacity of the hops between R and S and
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between R and D are respectively given by

cRD =

N∑
k=1

log2

(
1 + ρRD,k

PRD,k|H2,k|
2

N01

)
=

N∑
k=1

log2(1 + ρRD,kγRD,k).

(4.64)

and

cRS =

N∑
k=1

log2

(
1 + ρRS,k

PRS,k|H1,k|
2

N01

)
=

N∑
k=1

log2(1 + ρRS,kγRS,k),

(4.65)

where {ρRD,k}, {ρRS,k} are the indicators vector of subcarrier selection for the transmission R→D

and R→S, and PRD,k and PRS,k are the subcarrier powers. The end-to-end capacities from S to

D and from D to S are limited by the respective minimum hops, which are given by

CSD = min (αcSR, (1 − α)cRD) , (4.66)

and

CDS = min (αcDR, (1 − α)cRS) , (4.67)

where α is the normalized transmission time allocated to the first time slot.

When the traffic loads in the two-way relay system are unbalanced, the channel capacity

assigned to the source and the destination should satisfies the capacity ratio that

cSR

cDR
=

cRD

cRS
= `. (4.68)

In this specific scenario, there are two objectives for the resource allocation of the relay system,

i.e., to minimize the difference between the channel capacity ratio CSD
CDS

and the required ratio `,

and to maximize the total end-to-end capacity of the two-way relay transmission. Therefore,

considering the two requirements of the allocation algorithm, we choose the balanced end-to-
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end capacity as the objective function of the optima problem, i.e.,

min(CSD, `CDS), (4.69)

and then the optimal problem can be formulated as

max
{ρ1,ρ2,Pt,α}

min(CSD, `CDS)

subject to 0 < α < 1,

ρ1I2×1 = ρ2I2×1 = IN×1,

ρ1
TIN×1 = ρ2

TIN×1 = NI2×1,

PSR,k, PDR,k, PRD,k, PRS,k > 0,
N∑

k=1

PSR,k +

N∑
k=1

PDR,k +

N∑
k=1

PRD,k +

N∑
k=1

PRS,k = Ptot.

(4.70)

where Ii× j is an (i× j) identity matrix, ρ1 = [~ρSR ~ρDR], ρ2 = [~ρRD ~ρRS], Pt = {PSR,k, PDR,k, PRD,k, PRS,k},

and Ptot is the total transmission power used to finish one two-way relay communication. The

second constraint describes that each subcarrier is only allocated to one hop in one time slot,

and the third constraint requires that all subcarrier must be used in any time slot.

Unfortunately, since the subcarrier allocation in the optimal problem (4.70) is the discrete

optimization problem, to solve this optimal problem, the complexity is O(22N). When the num-

ber of subcarrier, N, is larger, this high complexity will significantly increase the processing

latency in practical systems. Therefore, we proposed a suboptimal algorithm with reduced

complexity for this problem. In the proposed algorithm, the optimization problem is separated

into two problems: the subcarrier allocation and the time slot/power allocation.
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Figure 4.11: Illustration of the proposed subcarrier allocation algorithm.

4.4.1 Subcarrier Allocation for Two-Way FD Relay Systems

In this section, we consider the subcarrier allocation problem for the two-way relay system with

unbalanced traffic loads. Here, we assume that the power and time slot allocation is known,

then the optimization problem in (4.70) becomes

max
{ρ1,ρ2}

min(CSD, `CDS)

subject to ρ1, ρ2 ∈ {0, 1},

ρ1I2×1 = ρ2I2×1 = IN×1,

ρ1
TIN×1 = ρ2

TIN×1 = NI2×1.

(4.71)

which is discrete optimization problem and the complexity of the exhaustive searching is

O(22N).

A suboptimal subcarrier allocation algorithm with low complexity is introduced, in which
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the subcarrier allocation is performed for each time slot. In each time slot, the searching for

the subcarrier sets is achieved by two individual searching which required the computation

complexity O(N) as shown in Fig. 4.11. The principle of the subchannel allocation algorithm

is to use the subchannel with high SNR as much as possible. At each iteration, one more

subcarrier is selected by the i-th hop till the difference between the capacity ratio and the

required ratio value is minimized. For the first time slot which including the transmissions

from S to R and from D to R, the assigning procedures starts by searching in {H1,k}, as follows

1. Initialize the vectors ~ρSR and ~ρSR as

~ρSR = [0, 0, . . . , 0],

~ρDR = [1, 1, . . . , 1];

set the capacity-ratio difference Rc as

Rc =

∣∣∣∣∣ N−1∑
k=0

log2(1 + ρDR,kγDR,k) − `
∣∣∣∣∣; (4.72)

and set the candidate subcarrier set of the hop between S and R to include all the nonas-

signed subcarrier, i.e.,

HSR = {H1,k}, k = 0, . . . ,N − 1. (4.73)

2. Select the subchannel with the largest instantaneous capacity for the hop between S and

R fromHSR, i.e.,

HSR,κ = max
{P1,k|H1,k|

2

N01

}
, H1,k ∈ HSR; (4.74)

find out the corresponding index of this subchannel, κ; and set that

ρSR,κ = 1

ρDR,κ = 0,
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3. Calculate the new capacity-ratio difference of the two hops

R′c =

∣∣∣∣∣ ∑N−1
k=0 log2(1 + ρSR,kγSR,k)∑N−1
k=0 log2(1 + ρDR,kγDR,k)

− `

∣∣∣∣∣; (4.75)

4. If R′c < Rc, remove the subcarriers κ from the set HSR, which means the κ-th subcarrier

is allocated to the hop between S and R, then go back to Step 2, repeat the procedures

from Step 2 to Step 5 until the setHSR is empty, i.e.,HSR = ∅;

if R′c ≥ Rc, set that

ρSR,κ = 0

ρDR,κ = 1,

and let ~ρ′SR = ~ρSR and ~ρ′DR = ~ρDR.

These procedures are repeated for the hop between D and R to search the subcarrier assigning

vectors ~ρ′′SR and ~ρ′′DR. In that case, the initial vextor ~ρSR and ~ρSR becomes

~ρSR = [1, 1, . . . , 1],

~ρDR = [0, 0, . . . , 0],

and the initial candidate subcarrier set isHDR = {H2,k}, k = 0, . . . ,N − 1. Then, we have that

~ρSR ∈ {~ρ′SR, ~ρ
′′

SR}, and ~ρDR ∈ {~ρ′DR, ~ρ
′′

DR}. (4.76)

Similarly, for the second time slot, the candidate assigning sets are obtained by using the same

algorithm

~ρRD ∈ {~ρ′RD, ~ρ
′′

RD}, and ~ρRS ∈ {~ρ′RS, ~ρ
′′

RS}. (4.77)

Finally, the vector combination which provider the highest total capacity will be selected from

the candicate sets and be used in subcarrier assigning, i.e.,

ρ1, ρ2 = argmax
~ρSR,~ρDR,~ρRD,~ρRS

min
(
CSD, `CDS

)
. (4.78)
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4.4.2 Time Slot Allocation for Two-Way FD Relay Systems

When the subcarrier allocation is determined, the transmission time assigned to the first and

second time slot will be optimized such that the instantaneous end-to-end channel capacity is

maximized. Denote that normalized transmission time allocated to the first slot is α, and then

(1 − α) is the transmission time for the second slot. The optimization problem becomes

max
α

CSD + CDS

subject to
CSD

CDS
= `,

0 < α < 1. (4.79)

Using the similar algorithm in Section 4.3.1, the capacity ratio of the hop between S and R

and between R and D in a time slot satisfies the channel capacity ratio constraint, i.e.,

cSR

cDR
=

cRD

cRS
= `. (4.80)

Therefore, the first constraint in (4.79) can be guaranteed. Then we have

min
(
αcSR, (1 − α)cRD

)
+ min

(
αcDR, (1 − α)cRS

)
= min

(
αcSR, (1 − α)cRD

)
+ min

(
α

1
`

cSR, (1 − α)
1
`

cRD

)
=

(
1 +

1
`

)
min

(
αcSR, (1 − α)cRD

)
.

(4.81)

The optimization problem is simplified as

max
{α}

min
(
αcSR, (1 − α)cRD

)
subject to 0 < α < 1. (4.82)

The solution of the problems in (4.82) is given by

α =
cRD

cSR + cRD
or

cDR

cDR + cRS
. (4.83)
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4.4.3 Power Allocation for Two-Way FD Relay Systems

When the time slot allocation is known, to a certain determined subcarrier allocation, the opti-

mization problem of power allocation can be formulated as

max
{Pt}

min(CSD, `CDS)

subject to PSR,k, PDR,k, PRD,k, PRS,k > 0,
N−1∑
k=0

PSR,k +

N−1∑
k=0

PDR,k +

N−1∑
k=0

PRD,k +

N−1∑
k=0

PRS,k = Ptot.

(4.84)

Different with the subchannel allocation which is a discrete optimization problem, the power

allocation problem is a continues one, therefore, this optimization problem in (4.84) can be

formulated by two optimization problems. One is to allocate the total power to each hop in

each time slot as

max
{P̄SR,P̄DR,P̄RD,P̄RS}

CSD + CDS

subject to
cSR

cDR
=

cRD

cRS
= `,

P̄SR, P̄DR, P̄RD, P̄RS ≥ 0,

P̄SR + P̄DR + P̄RD + P̄RS = Ptot,

(4.85)

where the subtotal power of each hop in each time slot is P̄SR, P̄DR, P̄RD and P̄RS respectively.

When the subtotal power of each hop is given, the subcarrier power allocation for each hop can

be derived to maximized the total channel capacity of this hop as

max
{PX,k}

cX =

N−1∑
k=0

log2

(
1 + ρX,k

PX,k|Hi,k|
2

N0i

)
subject to PX,k ≥ 0,

N−1∑
k=0

PX,k = P̄X,

(4.86)

where ρX,k is the corresponding selection indicator of the k-th subcarrier.

Similar to (4.27), the optimization problem in (4.86) can be derived to finding the maximum
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of the cost function

L(PX,k, λX) =

N−1∑
k=0

log2

(
1 + ρX,k

PX,k|Hi,k|
2

N0i

)
+ λX

( N−1∑
k=0

PX,k − P̄X

)
. (4.87)

Taking the gradient in terms of PX,k and equating it to zero

∂L

∂PX,k
=

1
ln 2

1

1 + ρX,k
PX,k |H1,k |2

N01

ρX,k|Hi,k|
2

N0i

+ λX

= 0.

(4.88)

Denote that ΛX is the subcarrier set which is given by

ΛX = {k | ρX,k = 1}, (4.89)

NX is the number of subcarriers in ΛX, |Hi,min| is the minimum channel gain, k ∈ ΛX, and PX,min

is the power of the subchannel Hi,min. Then, for k ∈ ΛX, it can be obtained that

∂L

∂PX,k
=

∂L

∂PX,min
= 0. (4.90)

The relationship between PX,k and PX,min can be found out as

PX,k = PX,min + N0i

|HX,k|
2 − |HX,min|

2

|HX,k|
2|HX,min|

2 , k ∈ ΛX, (4.91)

and consequently, P̄X can be expressed as

P̄X = NXPX,min + N0i

∑
k∈ΛX,k,min

|HX,k|
2 − |HX,min|

2

|HX,k|
2|HX,min|

2 . (4.92)

Then, the channel capacity of each hop is written as

cX = NX log2

(
1 +

P̄X|Hi,min|
2

NXN0i

−
∑

k∈ΛX,k,min

|Hi,k|
2 − |Hi,min|

2

NX|Hi,k|
2

)
+

∑
k∈ΛX,k,min

log2
|Hi,k|

2

|Hi,min|
2 (4.93)
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According to the capacity ratio constraints in (4.85),

cSR

cDR
=

cRD

cRS
= `, (4.94)

substituting (4.93) into (4.94), we have

NSR log2

(
1 +

P̄SR|H1,min|
2

NSRN01

−
∑

k∈ΛSR,k,min

|H1,k|
2 − |H1,min|

2

NSR|H1,k|
2

)
+

∑
k∈ΛSR,k,min

log2
|H1,k|

2

|H1,min|
2

= `NDR log2

(
1 +

P̄DR|H2,min|
2

NDRN02

−
∑

k∈ΛDR,k,min

|H2,k|
2 − |H2,min|

2

NDR|H2,k|
2

)
+

∑
k∈ΛDR,k,min

log2
|H2,k|

2

|H2,min|
2

(4.95)

and

NRD log2

(
1 +

P̄RD|H2,min|
2

NRDN02

−
∑

k∈ΛSR,k,min

|H2,k|
2 − |H2,min|

2

NRD|H2,k|
2

)
+

∑
k∈ΛRD,k,min

log2
|H2,k|

2

|H2,min|
2

= `NRS log2

(
1 +

P̄RS|H1,min|
2

NRSN01

−
∑

k∈ΛRS,k,min

|H1,k|
2 − |H1,min|

2

NDR|H1,k|
2

)
+

∑
k∈ΛRS,k,min

log2
|H1,k|

2

|H1,min|
2 .

(4.96)

When the capacity ratio constraint is satisfied, the problem in (4.85) will be equivalent to

max
{Pt}

min
(
cSR, cRD

)
+ min

(
cDR, cRS

)
subject to PSR,k, PDR,k, PRD,k, PRS,k ≥ 0,

N−1∑
k=0

PSR,k +

N−1∑
k=0

PDR,k +

N−1∑
k=0

PRD,k +

N−1∑
k=0

PRS,k = Ptot.

(4.97)

The optimal solution of the max-min problem in (4.97) is


cSR = cRD,

cDR = cRS.
(4.98)
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Therefore, we have

NSR log2

(
1 +

P̄SR|H1,min|
2

NSRN01

−
∑

k∈ΛSR,k,min

|H1,k|
2 − |H1,min|

2

NSR|H1,k|
2

)
+

∑
k∈ΛSR,k,min

log2
|H1,k|

2

|H1,min|
2

= NRD log2

(
1 +

P̄RD|H2,min|
2

NRDN02

−
∑

k∈ΛRD,k,min

|H2,k|
2 − |H2,min|

2

NRD|H2,k|
2

)
+

∑
k∈ΛRD,k,min

log2
|H2,k|

2

|H2,min|
2

(4.99)

and

NDR log2

(
1 +

P̄DR|H2,min|
2

NDRN02

−
∑

k∈ΛDR,k,min

|H2,k|
2 − |H2,min|

2

NDR|H2,k|
2

)
+

∑
k∈ΛDR,k,min

log2
|H2,k|

2

|H2,min|
2

= NRS log2

(
1 +

P̄RS|H1,min|
2

NRSN01

−
∑

k∈ΛRS,k,min

|H1,k|
2 − |H1,min|

2

NRS|H1,k|
2

)
+

∑
k∈ΛRS,k,min

log2
|H1,k|

2

|H1,min|
2

(4.100)

Adding the total power constraint

P̄SR + P̄DR + P̄RD + P̄RS = Ptot, (4.101)

the optimal subtotal power of each hop in each time slot can be solved from (4.95), (4.96),

(4.99), (4.100) and (4.101).

Once the total power for each hop, {P̄SR, P̄DR, P̄RS, P̄RD}, is known, the power allocated to

the subchannel with the lowest channel gain of each hop can be determined by

PX,min =

[ 1
λX
−

N0i

|Hi,min|
2

]†
. (4.102)

and then the other subcarrier power can be figured out as

PX,k = PX,min + N0i

|Hi,k|
2 − |Hi,min|

2

|Hi,k|
2|Hi,min|

2 . (4.103)

The complexity of the optimal solution which only can obtained by exhaustive searching is

O(22N), while the complexity of suboptimal allocation algorithm is O(N) in each iteration, and

the number of iterations is limited.

The proposed power allocation algorithm can be implemented as follows
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1. Initialize the power allocated to the first and second time slot P̄1 and P̄2 as

P̄1 = P̄2 =
Ptot

2
(4.104)

where

P̄1 = P̄SR + P̄DR (4.105)

and

P̄2 = P̄RD + P̄RS; (4.106)

2. Solve P̄SR and P̄DR from (4.95) and (4.99);

solve P̄SR and P̄DR from (4.96) and (4.100);

3. Calculate cSR and cRD using (4.93)

4. If cSR = cRD, go to the next step; if cSR , cRD, adjust P̄1 and P̄2, then go back to Step 2,

repeat the procedures from Step 2 to Step 4 until cSR = cRD.

5. Allocate the power to each subcarrier based on the water filling algorithm.
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4.4.4 Simulation Results

In this section, we verify the proposed allocation schemes by computer simulations and com-

pare its performance with different allocation schemes for different scenarios. To investigate

the performance of the proposed suboptimal scheme, two metric are adopted, i.e., the balanced

end-to-end capapcity, min(CSD, `CDS), and the relative error, which is defined as

eb =
Copt −C

Copt
(4.107)

where Copt is the optimal achievable end-to-end capacity of the system, and C is the practical

end-to-end capacity based on a certain resource allocation scheme. The average relative error

is the average of the relative error given by (4.107) over a large number of realizations. Here,

the optimal end-to-end capacity is obtained by exhaustive searching. The average SNRs of

each hop are denoted as

γ̄1 =
E[|Hk,1|

2]
N01

,

γ̄2 =
E[|Hk,2|

2]
N02

.

All simulation results in this section are based on 10 million independent realizations of the

system.

Subcarrier Allocation

In order to evaluate the performance of the proposed subcarrier allocation scheme, we compare

it with three different allocation schemes. A simple method to assign subchannels to each hop

is random allocation. In this scheme, the total number of subcarriers occupied by each hop in

a time slot, NX, is randomly selected. Then, the hop will randomly choose the subcarrier set

according the given total number of subcarriers. Another allocation scheme is equal allocation,

in which the overall subcarriers are equally shared by the hops in the same time slot, i.e.

NSR = NDR = NRD = NRS =
N
2
. (4.108)
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Figure 4.12: Average balanced end-to-end capacities of the optimal and suboptimal subcarrier
allocation schemes vs. `.

Then, each hop will randomly select the subcarriers. These schemes do not require the channel

information, therefore, the capacity of each hop is also random. The third scheme we compared

here is that the total number of the subcarriers allocated to each hop is based on the required

capacity ratio, i.e.,
NSR

NDR
=

NRD

NRS
= `, (4.109)

where NSR + NDR = NRD + NRS = N. In this scheme, the hop with the high traffic load will have

more subcarriers for transmission. However, since this allocation do not consider the channel

condition of each subchannel, it cannot guarantee that the hop with the high traffic load has a

high capacity.

The average balanced end-to-end capacities of the optimal and the proposed suboptimal
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Figure 4.13: Average relative error of different subcarrier allocation schemes vs. `. γ̄ = γ̄1 =

γ̄2 =15,25dB.

allocation schemes are compared in Fig. 4.12 with different the average SNR of the hops S–R

and R–D. In this figure, the balanced capacity of the suboptimal scheme is very close to the

optimal one especially with different values of `, γ̄1 and γ̄2, especially when the value of `

is large. This implies that the proposed algorithm can achieve similar performance with the

optimal one with a significantly lower complexity. The balanced capacities of the optimal

and suboptimal schemes are increasing when the capacity ratio rises. This feature becomes

obvious when the average SNR is high or the ratio between γ̄1 and γ̄2 is small, e.g., when

γ̄1 = γ̄2. When γ̄1 = 4γ̄2, the capacity tends to constant with different `. It happens because

when the difference of the channel condition of the two hops is larger, it becomes more difficult

to perform the balanced allocation. Moreover, since the end-to-end capacity is limited by the



4.4. ResourceAllocation for Two-Way Frequency-DivisionRelay Systems withAsymmetric Traffic 103

1

1 2 3 4 5 6 7 8 9 10
10

−4

10
−3

10
−2

10
−1

10
0

 

 

ℓ

A
ve

ra
ge

re
la

tiv
e

er
ro

r suboptimal, γ̄1 = 2γ̄2
ratio, γ̄1 = 2γ̄2
equal, γ̄1 = 2γ̄2
random, γ̄1 = 2γ̄2
suboptimal, γ̄1 = 4γ̄2
ratio, γ̄1 = 4γ̄2
equal, γ̄1 = 4γ̄2
random, γ̄1 = 4γ̄2

Figure 4.14: Average relative error of different subcarrier allocation schemes with different
average SNRs. γ̄1 + γ̄2 =30dB.

hop with the worse channel condition, the increasing of the ratio between γ̄1 and γ̄2, i.e., γ̄1/γ̄2,

results in the reduction of the balanced capacity.

The average relative error of different allocation schemes is compared in Fig. 4.13 with

γ̄ = γ̄1 = γ̄2 =15, 25dB. From the results, when the traffic loads ratio is varying, the average

error of the random allocation keeps constant without considering the instantaneously channel

condition and traffic loads. When ` = 1, the equal and ratio-based algorithm has the same

relative error. When ` increases, equally sharing the subcarrier leads to low balanced capacity

and high relative error, while the error of the proposed suboptimal and the ratio-based schemes

decrease. Among the four algorithms, the proposed suboptimal one exhibits the lowest relative

error, i.e., eb,subopt < 0.05, while the error of the other schemes is always higher than 0.1.
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Especially, when γ̄ = 25dB, the relative error of the suboptimal scheme can reach 0.003 with

` = 10. When the average SNR is large, i.e., γ̄ = 25dB, the proposed scheme can achieve a

lower average error than that when the SNR is small, because when the SNR approaches to

infinite, the subcarrier allocation will have less effect on the end-to-end capacity.

In Fig. 4.14, we present the average relative error of different subcarrier allocation algo-

rithms with the different average SNRs of each hop. Tow cases are considered, i.e., γ̄1 =

2γ̄2 =20dB and γ̄1 = 4γ̄2 =24dB. In this figure, when γ̄1
γ̄2

raises, the relative errors of random,

equal and ratio-based schemes almost keep the same value, while the one of the suboptimal

scheme reduces. The proposed scheme achieves the significantly low relative error compared

the other schemes under the two scenarios. Besides, similarly with the results in Fig. 4.13,

when the value of ` increases, the balanced capacity of suboptimal scheme become close to the

optimal one. These results verifies that the proposed suboptimal subcarrier allocation can ex-

hibit similar balanced end-to-end capacity with the optimal algorithm under different channel

conditions.

Subcarrier & Time Slot Allocation

In this part, we evaluate the allocation scheme which combines the subcarrier allocation pro-

posed in 4.4.1 and time slot allocation proposed in 4.4.2.

The proposed allocation scheme is compared with two different allocation schemes to veri-

fy the performance of it. One method to assign the subchannels and time slots for the two-way

relay systems is random allocation. In this scheme, the subcarrier is randomly allocated follow

the random subcarrier scheme in last part, then, the transmission time also randomly assigns to

each time slot. The other allocation scheme is equal allocation, in which the overall subcarriers

is equally shared by the hops, and the transmission time of each time slot is equal, i.e.

NSR = NDR = NRD = NRS =
N
2
, (4.110)
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Figure 4.15: Average balanced end-to-end capacities of the optimal and suboptimal resource
allocation (subcarrier & time slot allocation) vs. `.

and

CSD =
1
2

min(cSR, cRD), (4.111)

CDS =
1
2

min(cDR, cRS). (4.112)

Fig. 4.15 compares the average balanced end-to-end capacities of the optimal and the pro-

posed suboptimal allocation schemes with different value of ` and average SNRs. In this figure,

the balanced capacity of the suboptimal scheme is always close to the optimal one with differ-

ent values of `, γ̄1 and γ̄2, especially when the value of ` is large. It proves that the proposed

algorithm can achieve a significantly lower complexity without the capacity loose. The bal-
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Figure 4.16: Average relative error of different resource allocation schemes (subcarrier & time
slot allocation) vs. `. γ̄ = γ̄1 = γ̄2=15, 25dB.

anced capacity of the optimal and suboptimal schemes becomes large with the increasing of

the traffic-load ratio. When γ̄1 = γ̄2 = 25dB, the balanced capacity of the two schemes increase

most obviously in all cases. Moreover, when the ratio between γ̄1 and γ̄2, i.e., γ̄1/γ̄2, rises, the

values of balanced capacity become low because of the limitation of the hop with the worse

channel condition on the end-to-end capacity.

In Fig. 4.16, we present the average relative error of different allocation algorithms with

γ̄ = γ̄1 = γ̄2 =15, 25dB. Without considering the instantaneously channel condition and traffic

loads, the relative error of the random allocation keeps constant when the traffic loads ratio and

average SNR are varying. The relative error of the equal algorithm grows with the increasing

of `, because when ` > 1, equally sharing the subcarrier and transmission time results in the
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Figure 4.17: Average relative error of different resource allocation schemes (subcarrier & time
slot allocation) with different average SNRs. γ̄1 + γ̄2 =30dB.

reduction of the end-to-end capacity. By contrast, the error of the proposed suboptimal scheme

decreases when the value of ` rises, which implies that the proposed scheme can achieve better

performance when ` is large. Moreover, among the three algorithms, the suboptimal one ex-

hibits the lowest relative error. When ` ≥ 9, the error of the suboptimal scheme is lower than

0.001, while the one of the equal and random schemes is higher than 0.4.

The average relative error of the optimal power allocation is compared with the suboptimal,

equal and random ones in Fig. 4.17 under different average SNRs of hops, i.e., γ̄1 = γ̄2 = 15dB,

γ̄1 = 2γ̄2 = 20dB and γ̄1 = 4γ̄2 = 24dB. Similarly to the results in Fig. 4.16, the average

relative error of the random allocation is constant under different scenarios. The error of the

equal scheme slightly raises when γ̄1/γ̄2 increases. With different scenarios, the relative errors



108 Chapter 4. Resource Allocation for Two-Way Decode-and-Forward Relay Systems

of the proposed suboptimal scheme do not vary obviously. With the increasing of γ̄1/γ̄2, the

error of suboptimal algorithm become low when ` < 6; while when ` > 6, the relative error

slightly grows. In other words, when γ̄1/γ̄2 becomes large, the relative error of the suboptimal

scheme approaches to constant with different `.

Subcarrier & Power Allocation

In this part, the proposed allocation scheme which combines the subcarrier allocation in 4.4.1

and power allocation in 4.4.3 is evaluated. The total available transmit power, Ptot, is 1W. The

time slot of each hop is the same and normalized to 1.

We compare the proposed suboptimal allocation scheme with two different allocation schemes

to investigate the performance of it. One scheme is random allocation in which the subchan-

nels and the subtotal power for each hop is assigned randomly. In this scheme, the subcarrier is

first allocated using the random subcarrier scheme, then the subtotal transmission power also

randomly assigns to each hop, i.e., 0 < P̄SR, P̄DR, P̄RD, P̄RS < Ptot, and after that the power of

each subcarrier is calculated by using waterfilling algorithm.

The other allocation scheme is equal allocation, in which both the overall subcarriers and

transmission power are equally shared by the hops, i.e.

NSR = NDR = NRD = NRS =
N
2
, (4.113)

and

P̄SR = P̄DR = P̄RD = P̄RS =
1
4

Ptot, (4.114)

then the power of each subcarrier is also calculated by using waterfilling algorithm.

Fig. 4.18 compares the average balanced end-to-end capacities of the optimal and the sub-

optimal allocation scheme with different value of ` and average SNRs. From the figure, the

balanced capacities of the optimal and suboptimal schemes grow with the increasing of the ca-

pacity ratio. In all cases, this feature is most obvious when γ̄1 = γ̄2 = 25dB . Moreover, when

γ̄1/γ̄2 rises, the balanced capacity of both schemes becomes low, because the worse hop has to
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Figure 4.18: Average balanced end-to-end capacities of the optimal and suboptimal resource
allocation (subcarrier & power allocation) vs. `.

consume more resource to achieve the capacity balance. Furthermore, the balanced capacity of

the suboptimal scheme is close to that of the optimal one with different values of `, γ̄1 and γ̄2.

It proves that the proposed suboptimal resource allocation algorithm can provider the similar

performance with the optimal one with reduced complexity.

We present the average relative error of various allocation algorithms with different SNR

in Fig. 4.19. The random allocation has the same average error with different value of γ̄. And

when ` increases, the error of the random scheme only has a slightly reduction. Similarly with

the results of the subcarrier and time slot allocation in Fig. 4.16, the equal power allocation

scheme also suffers the growth of the relative error when ` becomes large. Among the three

algorithms, only the proposed suboptimal one provides a decreasing relative error with the in-
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Figure 4.19: Average relative error of different resource allocation schemes (subcarrier & pow-
er allocation) vs. `. γ̄ = γ̄1 = γ̄2=15, 25dB.

creasing of `. Moreover, both equal and suboptimal algorithms can achieve a lower average

error when γ̄ raises. The suboptimal one exhibits the lowest relative error in the three algo-

rithms which is always lower than 0.1 when ` > 2, while the error of the equal and random

schemes reach 0.4 when ` is large.

In Fig. 4.20, the average relative errors of different subcarrier allocation algorithms are

compared under the scenario that the average SNR of each hop is different. Three cases are

considered, i.e., γ̄1 = γ̄2 =15dB, γ̄1 = 2γ̄2 =20dB and γ̄1 = 4γ̄4 =24dB. In this figure, we

can see that the balanced capacity of the random allocation scheme is the lowest in the three

algorithms, and is not sensitive to the traffic load ratio and the channel condition of the two

hops. On the other hand, the errors of the equal and the suboptimal algorithms rise when
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Figure 4.20: Average relative error of different resource allocation schemes (subcarrier & pow-
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γ̄1/γ̄2 grows. When ` = 1, the suboptimal and equal algorithms has similar average error with

γ̄1 = 2γ̄2 and γ̄1 = 4γ̄4. However, when ` grows, the proposed suboptimal can provide the

lower error, e.g., eb,subopt < 0.03 with ` = 10.

4.5 Summary

In this chapter, we have proposed two resource allocation scheme for two-way decode-and-

forward relay systems with asymmetric traffic loads.

For the time-division two-way relay systems, the optimal resource allocation algorithm is

introduced to maximize the total end-to-end capacity with the capacity constraint which de-
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pends on the bidirectional asymmetric traffics. Both the time slot and the subcarrier power are

optimized where the total transmission time and power is given. The performance of the pro-

posed optimal allocation scheme is compared with different allocation schemes, including the

random and equal allocations, by computer simulations. In order to combine the requirements

of maximizing the end-to-end capacity and achieving the given capacity ratio, we defined a

balanced end-to-end capacity as the performance metric. From the simulation results, the pro-

posed allocation algorithm remarkably outperform the other schemes in different scenarios in

terms of the balanced capacity, which verified the proposed one can significantly improve the

system performance for the time-division two-way relay network with asymmetric traffic loads.

In the frequency-division two-way relay systems, where the two-way communication is

performed by exploiting the orthogonality of the subcarriers in OFDM system. In this scenari-

o, the S and D can simultaneously transmit signals to R by using different subcarriers. Three

transmission resources are adaptively assigned, i.e., the subchannels, time slot and subcarri-

er power. However, since the subcarrier allocation is the discrete optimization problem, the

complexity to solve this problem is extremely high, especially when the number of the sub-

carriers is large. Therefore, we proposed a suboptimal allocation scheme with low complexity,

which separates the subcarrier and time/power allocation. The performance of the proposed

scheme is evaluated and compared to the optimal and some other allocation schemes under

different channel conditions. The results shows that the suboptimal scheme can provide better

balanced end-to-end capacity then the random and equal allocations. Meanwhile, the proposed

algorithm achieve the similar performance with optimal one. In some cases, the relative error

of the suboptimal scheme can reach as low as 10−2. It implies that the proposed suboptimal

scheme can significantly reduce the complexity of adaptive resource allocation for two-way

relay systems without the performance loss.



Chapter 5

Equalize-and-Forward Relay System

5.1 Introduction

In the related work on relay systems, most of attentions focus on the two most popular relay

techniques, i.e., AF and DF protocols. The AF relay typically has lower complexity and less

processing burden than a DF relay, while the DF relay can provide a higher quality of retrans-

mission over fading channels and makes it possible to have flexible and adaptive communi-

cations for the source-relay and relay-destination links. However, both of them have obvious

drawbacks, i.e. the low transmission reliability for AF and large relay latency for DF schemes.

Although the AF relay has a short processing delay, the channel condition of the AF relay

link is rough because there is no channel compensation techniques at relay nodes. In traditional

AF relay systems, the end-to-end channel condition of relaying links deteriorates substantially

in broadband wireless systems using OFDM, where the aggregation of multipath propaga-

tion environment leads to accumulated frequency selectivity and delay spread. Since there

is no channel compensation at AF relay node to alleviate the channel accumulation, the sys-

tem performance of relay networks becomes a challenge. For OFDM systems, the end-to-end

frequency-domain channel response becomes the product of the two-hop channels. Therefore

the dynamic range of frequency-selective fading is significantly increased. This deteriorated

channel condition caused the reduction of the transmission reliability of the relay link in the

OFDM systems with the traditional AF relay. On the other hand, the overall channel impulse

response from the source via the relay to the destination is the convolution of the impulse re-

113
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Figure 5.1: Illustration of AF, DF and the proposed EF structures.

sponses of the two-hop multipath channels in AF relay systems. As a result, the end-to-end

delay spread increases proportionally to the number of relays [22], which results in further

performance degradation when the overall channel delay spread is longer than the duration of

cyclic prefix (CP) of OFDM signal.

Although the DF relay scheme can eliminate the accumulation effect of frequency selective

fading, it requires a long additional processing delay from the required signal demodulation,

decoding and regenerating at the relay node. For instance, the FFT/IFFT in OFDM-based

systems will take over 15µs delay [26], and de/interleaving and de/encoding need even longer

processing time. Furthermore, the relay has to retrieve all coded packets in an interleaved block

before decoding in order to achieve the expected performance. This means that the aggregated

processing time at the DF relay node cannot be neglected in the relay communications at all.

The large delay overhead in DF scheme reduces the end-to-end transmission time utilization

rate particularly in packet and interactive communications. Moreover, the stringent latency



5.1. Introduction 115

requirement in the realtime and delay sensitive applications cannot tolerate high-complexity

operations and long processing time of the multi-hop DF relay scheme.

In order to further improve the transmission reliability and minimal processing latency in

relay communications, we propose a novel equalize-and-forward (EF) relay scheme. The struc-

tural differences among AF, DF and EF relays are illustrated in Figure 5.1. Compared to the

traditional AF relay with an amplifier at relay node, the proposed EF relay scheme involves the

equalization procedure to eliminate the multipath distortion between source and relay nodes.

Meanwhile, the proposed EF relay achieves reduced processing latency at the relay node in

comparison to the DF relay by avoiding the highly complex operations, e.g., demodulation, de-

coding, encoding and modulation. Furthermore, the proposed EF relay scheme has an efficient

parallel structure, which can provide accurate equalization as well as limit the relay latency to

accomplish the reduction of the overhead and multipath channel effect accumulation.

Some related work also adopted equalization techniques at the relay node [173–176]. A

time-domain channel estimation scheme was proposed for the relay node in [173]. In [174–

176], the equalizer exploited at relay node is designed for two-hop multiple-input multiple-

output (MIMO) relay systems. Compared to AF relay scheme, these EF schemes also suffers

the long processing delay, because they have to involve high-complexity operations for equal-

ization and resource allocation algorithms. Moreover, the aforementioned techniques only

consider improving the transmission reliability or rate, while the processing delay at the relay

node caused by the highly complex processing and its effect on the overall system performance

are largely ignored.

More specifically, the proposed EF relay estimates and equalizes the channel between

source and relay to address the accumulation effect of frequency selective channels. To re-

duce the processing delay at relay nodes, channel estimation and equalization are performed in

parallel. In the proposed EF scheme, the equalization efficiency is improved by passing data

symbols through an equalizer preset with the current channel response, which is predicted by

using multiple previous channel responses. The equalization is performed in time-domain to

avoid the FFT/IFFT operations and minimize the processing time of the main path. Moreover,

the equalization accuracy is enhanced by exploiting the model-based channel estimation and

prediction to reduce the impact of background Gaussian noise and further improve the quality
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Figure 5.2: A two-hop relay system with accumulated multipath channels.

of retransmitted signals. Compared to the related work, the proposed scheme can

• exactly equalize the S−R channel with the accurate channel information to eliminate the

accumulation of the multipath distortion, which can not be achieve by the traditional AF relay

with a simple amplifier at relay node;

• accomplish reduced processing the processing latency at relay node in comparison to the

DF relay by avoiding some highly complex operations and employing the novel parallel struc-

ture;

• increase the estimation accuracy and limit the processing delay of equalization under time-

varying channels by adopting the parallel structure and the model-based channel prediction.

5.2 System Model

In this chapter, we consider a two-hop relay system as shown in Fig. 5.2 in which the source

terminal S communicates with the destination terminal D via a single relay R. It is assumed

that there is no direct link between the source and destination nodes. The transmission from
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the source to destination involves two stages: S−R and R−D.

Denote that the channel S−R is h1 and the channel R−D is h2. The received signal at relay

R is given by

r1(n) =

L1−1∑
l=0

h1(l)s(n − l) + ω1(n), (5.1)

where ω1(n) is the AWGN term with variance σ2
1. When the CP is long enough, the received

signal at relay node can be written as

r1 = H1s + w1, (5.2)

where H1 is an N × N matrix given by



h1(0) · · · 0 h1(L1 − 1) · · · · · · h1(1)

h1(1) · · · 0 · · · h(L1 − 1) · · · h1(2)
...

. . .
. . .

...
...

h1(L1 − 1) · · · h1(0) 0 · · · · · · 0

0 · · · h1(1) h1(0) · · · · · · 0
...

. . .
. . .

...

0 0 h1(L1 − 1) · · · h1(1) h1(0)



, (5.3)

r1 = [r1(0), r1(1), . . . , r1(N−1)]T, s = [s(0), s(1), . . . , s(N−1)]T and w1 = [ω1(0), ω1(1), . . . , ω1(N−

1)]T.

In frequency domain, the N-size discrete Fourier transform (DFT) of the received signal

r1(n) and channel impulse response h1(l) is denoted by

R1,k =

N−1∑
n=0

r1(n)e
− j2πnk

N , (5.4)

and

H1,k =

L1−1∑
l=0

h1(l)e
− j2πlk

N , (5.5)

where k = 0, 1, . . . ,N − 1 is the subcarrier index. The frequency-domain received signal at
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relay is

R1,k = H1,kS k + W1,k, (5.6)

where {S k} and {W1,k} are the DFT of {s(n)} and {ω1(n)}.

If there is no channel compensation at the relay node, the frequency-domain received signal

R2,k at destination D can be expressed by

R2,k = H2,kH1,kS k + H2,kW1,k + W2,k

= H2,kH1,kS k + Wk,
(5.7)

where {R2,k} and {H2,k} are the DFT of {r2(n)} and channel h2 respectively; and {W2,k} is the

DFT of white Gaussian noise {ω2(n)} with variance σ2
2. Wk = H2,kW1,k + W2,k is the overall

noise with zero mean and variance σ2 = σ2
1σ

2
h1

+ σ2
2, where σ2

h1
is the variance of channel h1.

In order to eliminate the accumulation of multipath channels as well as maintain a short

relay latency, the proposed equalize-and-forward (EF) relay scheme whose block diagram is

shown in Fig. 5.3 estimates and equalizes the channel between S and R. The proposed relay

provides a transparent operation to assist the transmission between S and D, which means it

does not requires any extra control signal or feedback from S and D. Denote that G is the

relay amplification factor matrix with size (N × N). In the proposed EF relay, the time domain

received signal at destination becomes

r2 = H2GH1s + H2Gw1 + w2 (5.8)

where H2 with the same format of H1 is the channel matrix between R and D, and w2 is

the noise vector. For the relay node, the channel H1 can be estimated from the pilot symbol

transmitted by S, while the channel H2 is unknown because the relay node is transparent to the

source and destination, thus there is not feedback from D to notice the channel information of

H2.

To reduce the relay overhead, the structure of EF relay is designed with two parallel signal

paths, i.e., main path and ancillary parallel path. The main signal path only includes minimum

operations for the time-domain equalization, while parallel path performs the high complexity
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Figure 5.3: Block diagram of the proposed equalize-and-forward relay with the delay-efficient
parallel structure .

operations which require long processing time, i.e., the channel estimation, prediction and

equalizer coefficient generation. Pilot symbols are processed in the parallel path to estimate

the channel h1. The current channel response is used to calculate the equalizer coefficients,

which are sent to the main path to set the equalizer. In the main path, the received OFDM

signals at the relay node pass through a time-domain equalizer which is preset by parallel path.

The frequency-domain equalization is often applied in OFDM systems, however it requires

FFT/IFFT operations which involve the extra processing time in the main path. Therefore, the

proposed EF relay scheme adopts a time-domain equalizer to avoid the processing overhead of

FFT/IFFT. After that, the equalized signals are forwarded to destination. The design of each

block in the proposed relay is shown in Section 5.4.

5.3 Performance Impacts of Multi-hop Transmissions

The communication between the source and destination through the relaying link involve multi-

hop transmission, which has fundamental impacts on the system performance in terms of trans-
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Figure 5.4: Effect of multi-hop transmissions on the channel characteristics and error probabil-
ity.

mission reliability and efficiency. In the traditional AF scheme, the transmission reliability is

impacted by the accumulated multipath channel in the multi-hop relaying, since there is no

proper channel equalization scheme to mitigate the accumulation of multipath channels at re-

lay nodes. In the DF relay scheme, the transmission efficiency (utilization rate of transmission

time) of the end-to-end link is impaired by the multi-hop relay due to the additional processing

delay involved at relay nodes.

5.3.1 Channel Accumulation

One of the major impacts from the accumulation of multipath channels is that the dynamic

range of the frequency selectivity significantly increases. Without channel compensation tech-

niques at the relay node, the end-to-end frequency response Hk becomes the product of the
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channel of each hop when the CP length is sufficient, i.e.,

Hk = H1,kH2,k . . .HM+1,k, M = 1, 2, 3, . . . , (5.9)

where M is the number of relay nodes. We define the frequency selectivity of channel |Hk| as

the variance of |Hk|, i.e.,

FH = E[(|Hk| − E[|Hk|])2], (5.10)

where E[·] is the expectation.

We assume that the baseband channel tap coefficients {hm(l)}, are mutually independent

complex random variables whose amplitude follow the same Rayleigh distribution [2], m =

1, 2, . . . ,M + 1. The probability density function (PDF) of |hm(l)| is

f|hm(l)|(x) =
2x

Υm,l
exp(−

x2

Υm,l
), x ≥ 0, (5.11)

where Υm,l = E[|hm(l)|2] is the power of the lth tap of hm. The application of DFT represents a

linear transformation of jointly Gaussian random variables and yields jointly Gaussian random

variables [170]. Thus, the frequency response of each subchannel also has a Rayleigh fading

distribution [171], i.e.,

f|Hm,k |(y) =
y

2ΥLm

exp(−
y2

4ΥLm

), y ≥ 0, (5.12)

where ΥLm =
∑Lm−1

l=0 Υm,l. The i-th moment of |Hm,k| is

E[|Hi
m,k|] =

∫ ∞

0

yi+1

2ΥLm

exp(−
y2

4ΥLm

)dy

= Υ
i/2
Lm

Γ

( i
2

+ 1
)
,

(5.13)

where Γ(t) =
∫ ∞

0
x(t−1)e(−x)dx.

Since the channel response of each hop is statistically independent, the expectation of |Hk|
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can be given as

E[|Hk|] = E[|H1,kH2,k . . .HM+1,k|]

= E[|H1,k|]E[|H2,k|] . . .E[|HM+1,k|]

= (ΥL1 . . .ΥLM+1)
1/2ΓM+1(

3
2

),

(5.14)

where

Γ(t) =

∫ ∞

0
x(t−1)e(−x)dx. (5.15)

The frequency selectivity of the accumulated channel can be determined using

FH = E[|Hk|
2] − E2[|Hk|]

=

M+1∏
m=1

E[|Hm,k|
2] −

M+1∏
m=1

E2[|Hm,k|]

= (ΥL1 . . .ΥLM+1)
(
ΓM+1(2) − Γ2(M+1)(

3
2

)
)
.

(5.16)

When the channel of each hop has the same power, i.e.

ΥL = ΥL1 = . . . = ΥLM+1 ,

the expectation and frequency selectivity of the accumulated channel can be given by

E[|Hk|] = Υ
(M+1)/2
L (

√
π

2
)(M+1), (5.17)

and

FH = 2(M+1)Υ
(M+1)
L [1 − (

π

4
)(M+1)]. (5.18)

From (5.16), it is implied that the frequency selectivity of the accumulated channel grows

with the increased number of hops. Fig. 5.4(a) shows the effect of the accumulated multipath

channel on the channel characteristics.

As shown in (5.7), the end-to-end frequency response Hk from source to destination be-

comes the combination of S→ R and R→ D channels. When the CP length is sufficient, the
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end-to-end channel response is the product of Mh channels in frequency domain, i.e.,

Hk = H1,kH2,k . . .HM+1,k. (5.19)

Hence, the distribution of |Hk| is no longer Rayleigh distribution. When the number of cascaded

channels equals to 2, the distribution of |Hk| becomes a double-Rayleigh distribution [177]

f|Hk |(y) =
y

4ΥL1ΥL2

K0(
y

2
√

ΥL1ΥL2

), (5.20)

where Ki(·) is the ith-order modified Bessel function of the second kind [178]. For m ≥ 3, the

distribution function can be generated by using the Meijer G-function as [179]

f|Hk |(y) = 2(
(M+1)∏
m=1

ΥLm)1/2G
(M+1),0
0,(M+1)

((M+1)∏
m=1

ΥLm)−1y2 |−1
2 ,··· ,

1
2

 . (5.21)

The definition of the Meijer G-function is given in [180].

Since the frequency selectivity of the end-to-end link is expanded by multi-hop transmis-

sions, the system performance at destination deteriorates. Although the OFDM technique can

combat the frequency-selective fading channel by achieving flat fading at each subchannel, the

enlarged frequency selectivity still increases the probability that the deep fading occurs at each

subchannel. Therefore, the large frequency selectivity degrades the reception performance at

the destination. In order to gain insight into the impact from the accumulated channel impair-

ments, the error probability over multi-hop channels is evaluated by averaging the conditional

symbol error probability in AWGN channel over the fading distribution, as

Pe =

∫ ∞

0
Pe(γ) f|Hk |(γ)dγ, (5.22)

where Pe(γ) is the error probability in AWGN.

Fig. 5.4(b) compares the error probabilities of single-hop and two-hop channels. From

this figure, we can see that the transmission reliability of the two-hop links substantially de-

grades. Although the OFDM technique can combat the frequency-selective fading channel by

achieving flat fading at each subchannel, the enlarged frequency selectivity still increases the
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Figure 5.5: Average transmission efficiency vs. different relaying delay. The number of hop,
m, is 2,3,5.

probability that the deep fading occurs at each subchannel. Therefore, the large frequency s-

electivity degrades the reception performance at the destination, such as in the traditional AF

scheme.

5.3.2 Transmission Efficiency

On the other hand, the transmission efficiency (utilization rate of transmission time) of the

end-to-end link is also impaired by the multi-hop relay due to the additional processing delay

involved at relay nodes. The large overhead at relay nodes causes a low efficiency of the

overall transmission time utilization, especially for packet or burst transmissions [181] [182].

Moreover, the long processing delay introduces additional challenge in achieving stringent

latency requirement in the delay sensitive communications, such as interactive and realtime

communications.
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Figure 5.6: Average transmission efficiency vs. different average packet sizes. The number of
hop, m, is 2,3,5. The relay delay Td equals to {0.1, 1, 10} × Ts.

Denote that the total end-to-end transmission time is Ttotal, which includes the data symbol

transmission time of each hop and processing delay Td of each relay. The end-to-end transmis-

sion efficiency can be defined as

ηT =
qTs

Ttotal
=

qTs

mqTs + (m − 1)Td
, (5.23)

where Ts is the symbol duration, and q is the number of symbols in a packet, q = 0, 1, 2, . . ..

With Td = φTs, the transmission efficiency becomes

ηT =
q

m(q + φ) − φ
, (5.24)

where φ is a real number and φ > 0.
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For a general scenario, we assume that q is a random variable with Poisson distribution.

Consequently, the average transmission efficiency becomes

η̄T = e−µ
∞∑

q=0

(
q

m(q + φ) − φ

)
µq

q!
, (5.25)

where q! is the factorial of q, and µ is the mean value of the number of symbols in a packet,

µ > 0.

In Fig. 5.5 and 5.6, the impact of the different relay delay and transmission packet size on

the system efficiency respectively is elaborated. Fig. 5.5 shows that the transmission efficiency

decreases as the relay delay increases. In particular, the efficiency sharply drops when φ > 1,

which means that high complexity and long processing time at relay node lead to the significant

degradation of the efficiency, such as in DF relay. Fig. 5.6 shows the transmission efficiency

vs. different transmission packet size. From this figure, it is clear that in continuous commu-

nications, i.e., µ → ∞, the efficiency η̄T →
1
m ; and relay schemes with different delay provide

the same performance. However, the relay nodes with long delay overhead, i.e., φ = 10, incurs

a poor efficiency performance in small packet communications, which usually happens in the

burst and interactive communications.

Based on the discussions above, it becomes clear that the performance of a relay system

is affected by both accumulated multipath channels and the processing delay of relay nodes.

Therefore, two requirements of the relay scheme design, i.e., the multipath distortion compen-

sation and reasonable processing delay, have to be addressed to overcome the current difficul-

ties of AF and DF schemes.

5.4 Equalize-and-Forward Relays Design

The major design objectives of the proposed equalize-and-forward relay scheme is to eliminate

the accumulation of multipath channels as well as maintain a short relay latency.

The processing delay of relay nodes is caused by the high complexity operations which

require long processing time, i.e., the channel estimation, prediction and equalizer coefficient

generation. If the frequency-domain equalization is performed, the FFT/IFFT operations will
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involve the extra processing time. Therefore, the structure of the propose EF relay scheme is

separated into two two parallel signal paths to reduce the relay overhead. As shown in Fig. 5.3,

parallel path includes the operations which lead to long processing latency, while the main

path only includes minimum operations for equalization. Moreover, the proposed EF relay

scheme adopts a time domain equalizer to avoid the processing overhead of FFT/IFFT. This

new parallel structure can minimize the relaying delay for each relay slot, and therefore shorten

the relay overhead.

The other design challenge addressed in the proposed relay scheme is the equalizer perfor-

mance in the main path due to the channel estimation noise in the parallel path. Denote that G

is the relay amplification factor matrix with size (N × N), r2 is the received signal vector at the

destination, H2 is the channel matrix between the relay and destination with the same format

of H1, and w2 is the noise vector. For the relay node, the channel H1 can be estimated from

the pilot symbol transmitted by S, while the channel H2 is unknown because the relay node

is transparent to the source and destination, thus there is not feedback from D to notice the

channel information of H2. In the proposed EF relay, G is optimized to remove the multipath

channel S→ R, i.e.,

r2 = H2GH1s + H2Gw1 + w2

≈ H2s + wtotal.
(5.26)

In (5.26), the total noise wtotal mainly comes from signal propagation environments and e-

qualization errors. The EF relay environmental noise includes the white Gaussian noise in

wireless channels and thermal noise from analog front-ends which both can be controlled in

a reasonable low range in practical devices. While the channel equalization and estimation

error introduce the major challenge to overcome in relay scheme design especially under time-

varying channels. To enhance the estimation accuracy, a channel variation model is utilized

to exploit multiple past channel estimations. This model is also used to predict the current

channel response to compensate the processing delay of the parallel path.
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Figure 5.7: Predictor Structure.

5.4.1 Channel Estimation and Prediction for the EF Relay

As mentioned, the performance of the proposed EF relay is sensitive to the equalization error

caused by channel estimation error and noise. The channel estimation from a single pilot

symbol cannot guarantee high estimation accuracy due to channel variation and background

noise. Therefore, the modeled-based channel estimation and prediction procedure are exploited

here to improve the performance of the EF relay. Although the channel response is time-

varying, it has been observed in [183] that the model for channel variation remains stable for

a sufficiently long time. This property can be exploited to improve the accuracy of channel

estimation based on multiple pilot symbols. The channel variation model also can be used to

predict the channel response in the absence of pilot symbols.

Although existing channel estimators are performed in the frequency-domain in OFDM

systems [184, 185], time-domain techniques in channel estimation and prediction have shown

to be an attractive alternative to frequency-domain ones [183,186]. The time-domain technique

adopted in this paper requires estimation of fewer parameters than in frequency domain, which

significantly decreases the complexity of signal processing at relay node.
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The complex baseband representation of the time-varying multipath channel is given as

h(t, τ) =

L−1∑
l=0

al(t)δ(τ − τl(t)), (5.27)

where τl(t) is the delay spread, al(t) is the complex amplitude of the lth multipath tap, and

L is the number of propagation paths. We consider a Wide Sense Stationary - Uncorrelated

Scattering (WSSUS) channel, which implies that the channel correlation is dependent only on

the time difference ∆t in the time domain and the multipath components are uncorrelated in

the delay domain [187]. Therefore, the Doppler shift and the channel variation of different

multipath taps are uncorrelated. In time domain, the variation of a given multipath component,

that experiences a Doppler shift of fd Hz, is:

h(n, l) = h(l)e j2π fd(l)n, (5.28)

where n is the discrete-time index, and the channel envelope h(l) remains invariant over a

number of symbols. The current channel can be generated by a linear filter as shown in Fig. 5.7,

which linearly combines the past channel impulse responses as follows,

h(n, l) =

Qp∑
q=1

Wp(q, l)h(n − q, l), (5.29)

where
−→
W l = {Wp(q, l)} is the coefficient set, and Qp is the modeling order. To further eliminate

the effect of noise, the channel variation rate is used in the predictor instead of the channel

impulse responses to built the channel variation model [183], which is defined as

∆2h(n, l) = h(n + 2, l) − 2h(n + 1, l) + h(n, l). (5.30)

The coefficient set
−→
W l is determined to minimize the mean square error (MSE) between the

estimated channel ĥ and the actual channel, i.e.,

MSE = E[|h(n) − ĥ(n)|2], (5.31)
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as [188]:

cl = R−1
∆2 r∆2 , (5.32)

where

R∆2(i, j) = E[∆2ĥ(n − 1 − i, l)∆2ĥ∗(n − 1 − j, l)] (5.33)

is the correlation matrix, calculated for the lth multipath component, and

rhh(i) = E[∆2ĥ(n − i, l)∆2ĥ∗(n, l)] (5.34)

is the cross-correlation vector between past and current channel variation rate.

To reduce the equalization induced latency, the equalizer coefficients are preset by the par-

allel path before the data symbol is received. Therefore, the equalizer coefficients are calculated

based on the past CSI instead of the current one. When the channel coherence time is short

(fast-varying channels), the channel response may vary between two available pilot symbols

for channel estimations. In addition, the processing delay in the parallel path also needs to

be compensated during the equalizer presetting in order to improve the equalization accura-

cy. Hence, a predictor is exploited to update the channel response according to the processing

delay of parallel path. The channel response ĥ(t + ∆t) is predicted from the past channel re-

sponse ĥ(t) in the absence of latest pilot symbols, where ∆t includes the signal propagation

time difference tp between the main path and the parallel path and the prediction range tr, i.e.,

∆t = tp + tr. The processing time difference tp can be self determined since it is a constant for

a given device.

The current channel response can then be given by

ĥ(n + ∆t, l) =

Q∑
q=1

cl(q)ĥ(n + ∆t − q, l). (5.35)

When the channel varies slowly, the model can be simplified as

ĥ(n, l) =
1
Q

Q∑
q=1

ĥ(n − q, l). (5.36)
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5.4.2 Equalization Algorithm with Power Constraint for the EF Relay

With the model-based estimation and predication, we can obtain the current channel impulse

response ĥ1. The estimated channel response is exploited to create the equalizer coefficients

based on an equalization algorithm. Unlike the traditional equalizer at destination, a relay

as a transceiver is usually under a power constraint. Therefore, we consider the equalization

algorithm subject to a power constraint for the EF relay.

Denote that the retransmitted signal vector at relay is y = [y(0), y(1), . . . , y(N − 1)]T. Then

the retransmitted signal can be written in the following matrix form

y = GH1s + Gw1, (5.37)

The retransmitted power can be determined by

Ptot = E[yHy], (5.38)

where (·)H denotes the conjugate transpose operation.

The coefficients of the equalizer are adjusted to minimize the error between the transmitted

signal by source and retransmitted signal by relay, i.e., e = y − s. The minimum mean squared

error (MMSE) algorithm with a power constraint is defined as

Gopt = arg min
G
E[|y − s|2]

subject to E[yHy] = Ptot.

(5.39)
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Since the problem in (5.39) is convex [189], we can formulate the Lagrangian problem as

L(G, λ) =E[|y − s|2] + λ(E[yHy] − Ptot)

=E[(GH1s + w1 − s)H(GH1s + w1 − s)]

+ λ(E[(GH1s + w1)H(GH1s + w1)] − Ptot)

=tr(σ2
sH1

HGHGH1 − σ
2
sG

HHH
1

+ σ2
1GHG − σ2

sH1G) − σ2
s + σ2

1

+ λ(tr(σ2
sH

H
1 GHGH1 + σ2

1GHG) − Ptot),

(5.40)

where σ2
s is the average symbol energy transmitted by source, λ is a Lagrangian multiplier, and

tr(·) is the trace operation. Taking the gradient of (5.40) in terms of G and equating it to zero

∇GL(G, λ) = 0, (5.41)

we obtain

G =
1

(1 + λ)
σ2

sH
H
1 (σ2

sH
H
1 H1 + σ2

1)−1. (5.42)

The value of λ is found out by substituting (5.42) into the power constraint equation, i.e.,

E[yHy] = Ptot. Then we have

λ =
±σ2

s

√
σ2

1‖H1‖
2
F + σ2

s‖HH
1 H1‖

2
F

√
Ptot(σ2

s‖H1‖
2
F + σ2

1)
− 1, (5.43)

where ‖ · ‖F denotes the Frobenius norm of the matrix. By substituting (5.43) in (5.42), the

optimal coefficient matrix Gopt can be solved as

Gopt =

√
Ptot(σ2

s‖H1‖
2
F + σ2

1)HH
1√

σ2
1‖H

H
1 ‖

2
F + σ2

s‖HH
1 H1‖

2
F

(σ2
sH

H
1 H1 + σ2

1)−1. (5.44)

The overall equalization algorithm can be described as follow,

1. The channel impulse response ĥ1(n) is estimated through the cross correlation of the re-

ceived signal r1 and the pilot, and send to channel information buffer.
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2. The time-domain equalizer is set with the coefficients trained by the proposed equalization

algorithm.

3. The current channel is estimated according to the past channel impulse response in the

buffer, i.e., ĥ(n), ĥ(n − 1), . . . , ĥ(n − Qp).

4. The accommodated channel impulse response h̃(n) is calculated by the time-domain pre-

dictor with the value of time delay parameter ∆t.

5. If the channel variation is ∆h =
|h̃(n)−ĥ(n)|

ĥ(n)
is smaller than a certain threshold value for judg-

ing channel variation, regenerate equalization coefficients with the update channel impulse

response h̃(n). Otherwise, regenerate the coefficients with the average of past channel im-

pulse response. Then return to Step 2 to reset the equalizer.

The complexity and processing delay of the proposed EF relay scheme are higher than

the traditional AF relay due to the involvement of the equalization operation. However, the

elimination of decoding and signal regeneration through encoding and modulation significantly

reduces the relay processing delay in the EF scheme, when compared with conventional DF

system. In addition, the delay of the EF relay is further minimized by exploiting the parallel

structure to a reasonable range compared to the relatively long delay of OFDM-based AF

relay in [68, 69] which adjusts the amplification gain for each subchannel. Moreover, the

improvement of the end-to-end SNR with the proposed relay scheme can support a higher data

rate which compensates the effect of relaying delay.

5.5 Performance Evaluation

In this section, the performance of the proposed EF relay is analysed and compared with AF

and DF schemes.

As we analysed in Section 5.3, the overall performance of a relay network is not only

impacted by error probability at destination, but also the transmission efficiency which depends

on the relaying delay. We therefore adopt the outage probability with effective data rate as the

metric to comprehensively compare the performance of various relay schemes. Denote that the
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size of the packet send from source to destination is Lp bit, and the transmission data rate Rd

bit per second is

Rd =
Lp

Ttotal
, (5.45)

where the end-to-end transmission time Ttotal includes the data symbol transmission time and

the relay delay Td. Obviously, with a constant Ttotal, the growing of the delay Td will affect the

available data transmission time. Hence, we define an effective data rate as

Re =
Lp

Ttotal − Td
. (5.46)

The analysis of the outage probability with the effective data rate can provide a comprehensive

evaluation of the performance of the relay schemes with different retransmission quality and

relaying delay.

From (5.26), we can drive the end-to-end SNR of kth subchannel from source via relay to

destination as

γk = E
[ ∣∣∣∣∣∣ H2,kGkH1,kS k

H2,kGkW1,k + W2,k

∣∣∣∣∣∣2 ]
= E

[ ∣∣∣∣∣∣∣∣
H2,kS k

W2,k

H1,kS k

W1,k

H2,kS k

W2,k
+ S k

W1,kGk

∣∣∣∣∣∣∣∣
2 ]
,

(5.47)

where Gk is the equivalent equalization coefficient of each subchannel in frequency domain.

For a fair comparison between various relay schemes, we assume that the ideal instantaneous

CSI of h1 is available at the relay node.

With the ideal channel information, the EF relay node can completely remove the multipath

channel S→ R. Thus, the equalizer weight Gk can be simplified as Gk = 1
H1,k

. The end-to-end

SNR of the EF relay link becomes

γEFk = E
[ ∣∣∣∣∣∣∣∣

H2,kS k

W2,k

H1,kS k

W1,k

H1,kS k

W1,k
+

H2,kS k

W2,k

∣∣∣∣∣∣∣∣
2 ]

=
γ1,kγ2,k

γ1,k + γ2,k
, (5.48)

where γi,k = |Hi,k|
2σ2

s/σ
2
i , i = 1, 2.

In the fixed-gain AF relay scheme, the amplification factor G keeps the same for all sub-
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channels, which is defined as

G =

√
σ2

s

σ2
s
∑L1−1

l=0 E[|h1(l)|2] + σ2
1

. (5.49)

The end-to-end SNR of the AF relay link can be written as

γAFk = E
[ ∣∣∣∣∣∣∣∣

H2,kS k

W2,k

H1,kS k

W1,k

H2,kS k

W2,k
+ S k

W1,kG

∣∣∣∣∣∣∣∣
2 ]

=
γ1,kγ2,k

γ2,k + CAF
, (5.50)

where CAF is a constant, CAF = σ2
s/(|G|

2σ2
1).

Since the frequency response of each subchannel |Hi,k| is a Rayleigh random variable, |Hi,k|
2

has a chi-squared probability distribution with two degrees of freedom. Consequently, γi,k also

is chi-square distributed, i.e.,

pγi,k(γ) =
1
γ̄i

e−γ/γ̄i , γ > 0, (5.51)

where γ̄i is the average SNR of the ith hop.

If the S→R and R→D links are identical, i.e., γ̄1 = γ̄2 = γ̄, the PDF, pγEF(γ), and moment

generating function (MGF), MγEF(α), of γEFk are expressed by [190]

pγEF(γ) =
2
γ̄2γe−

2γ
γ̄ [2K1(

2γ
γ̄

) + 2K0(
2γ
γ̄

)], γ > 0, (5.52)

and

MγEF(α) =

√
γ̄

4α( γ̄4 + 1) + arcsin(
√

γ̄

4α)

2
√

γ̄

4α( γ̄4α + 1)3/2
. (5.53)

The OFDM-based AF relay which applies a different amplification factor for each subchannel

has the same end-to-end SNR with the proposed EF relay scheme, therefore it drives the same

PDF and MGF with the EF relay scheme.

For AF relay, the PDF and MGF of γAFk can be given by [191]

pγAF(γ) =
2
γ̄2 e−

2γ
γ̄ [
√
CAFγ

γ̄
K1(
√
CAFγ

γ̄
) +
CAF

γ̄
K0(
√
CAFγ

γ̄
)], (5.54)
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and

MγAF(α) =
1

(γ̄α + 1)
+
CAFγ̄α exp(CAF/(γ̄2α + 1)

γ̄(γ̄α + 1)2 E1(
CAF

γ̄2α + γ̄
), (5.55)

where E1(·) is the exponential integral function.

In a DF relay system, errors at the destination occur either when the S→R transmission is

received correctly and the R→D transmission is received in error, or when the S→R transmis-

sion is received in error and the R→D transmission is received correctly. Hence, the end-to-end

error probability of DF relay is given by

PγDF(γ|γ̄1, γ̄2)

= (1 − Pe(γ|γ̄1))Pe(γ|γ̄2) + (1 − Pe(γ|γ̄2))Pe(γ|γ̄1)

= Pe(γ|γ̄1) + Pe(γ|γ̄2) − 2Pe(γ|γ̄1)Pe(γ|γ̄2).

(5.56)

Using the cumulative distribution function (CDF) of chi-squared distribution

Pe(γ|γ̄i) = 1 − e(− γ
γ̄i

)
, i = 1, 2, (5.57)

the CDF of γDFk can be written as

PγDF = e−
γ
γ̄1 + e−

γ
γ̄2 − 2e−( 1

γ̄1
+ 1
γ̄2

)γ
, (5.58)

and the PDF of γDFk is derived by

pγDF =
∂PγDF

∂γ

= 2
γ̄1γ̄2

γ̄1 + γ̄2
e−( 1

γ̄1
+ 1
γ̄2

)γ
−

1
γ̄1

e−γ/γ̄1 −
1
γ̄2

e−γ/γ̄2 .

(5.59)

With γ̄1 = γ̄2 = γ̄, pγDF is simplified as

pγDF =
1
γ̄

(e−2γ/γ̄ − 2e−γ/γ̄). (5.60)
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Using the definition of MGF, the MGF of γDFk can be expressed by

MγDF(α) =

∫ ∞

−∞

eαγpγDF(γ)dγ

=
4

2 + γ̄α
−

2
1 + γ̄α

.

(5.61)

In order to consider the effect of the relaying delay on the system performance, the outage

probability is evaluated with the effective data rate Re as

Pout = P(log2(1 + γ) < Re), (5.62)

where B is the bandwidth in Hz. When the received SNR at the destination and the total

transmission time Ttotal are not changed, a long relaying delay leads to a high Re, therefore the

outage probability will increase. On the other hand, when the relayding delay and Ttotal are

not changed, the outage probability will be raised by a low received SNR at the destination.

Therefore, the outage probability with the effective data rate, which is chosen as the metric,

combines both the effect of the relaying delay and retransmission quality.

Using the closed-form expressions of MGF for the relay schemes, the outage probability of

them can be evaluated by [192]

Pout = L−1
(

Mγ(α)
α

) ∣∣∣∣∣
γth

, (5.63)

where L−1(·) denotes the inverse Laplace transform, and γth = 2Re−1. The inversion of Laplace

transform can be calculated using numerical techniques as in [193, 194].

5.6 Simulation Results

The performance of the proposed EF relay scheme is evaluated and compared with AF and

DF relay schemes through computer simulations. MATLAB was used to plot all simulation

results. Numerical results are obtained by averaging over 105 independent Monte Carlo runs.

In the simulations, we consider an OFDM system with QPSK modulation in each subcar-

rier. The total number of subcarriers in the OFDM system is N = 512, and the CP length is
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64, CP≥ (L1 + L2). The OFDM symbol duration, Ts, is 94µs. The S→R and R→ D chan-

nels considered in the simulations are the multipath model with Rayleigh fading in each path

whose parameters are listed in Table 3.3.3. The channel length L1 = L2 = 31. The least square

(LS) channel estimation algorithm is used at relay and destination nodes, which is given by

ĥLS = (sHs)−1sHri, i = 1, 2. The received signal at destination is equalized in frequency domain

by a zero-forcing (ZF) equalizer which is to minimize the parameter (r2 −Hs)H(r2 −Hs). The

equalization coefficient U is the pseudoinverse of Ĥdiag = diag(H0,H1, . . . ,HN−1), i.e.,

U = (HH
diagHdiag)−1HH

diag. (5.64)

We use a rate 1/2 convolutional code. The relay node decodes signals using the Viterbi algo-

rithm, and the traceback depth is equal to 7 times of the constraint length.

For the EF relay, the power constraint at relay node is normalized Ptot = 1. The length of

channel state information (CSI) buffer is 50, which means that 50 previous channel responses

are used to generate the channel variation model. The modeling order Qp equals to 5, which

implies the current channel impulse response is estimated from 5 past channel responses. The

channel variation threshold ∆h=0.01.

5.6.1 Error Probability

We first elaborate the performance of the EF relay with the proposed parallel structure in terms

of the normalized mean square error (NMSE) at the relay nodes and average symbol error rate

(SER) at destination. The NMSE of the EF relay is compared with that of AF (fixed-gain and

OFDM-based) and DF schemes in Fig. 5.8. In this figure, the fixed-gain AF relay scheme

suffers from an error floor due to the lack of channel and noise compensation techniques. The

DF relay scheme performs better NMSE at high SNR (SNR> 15dB) by completely removing

the effect of channel and noise between source and relay. But the DF relay exhibits high

NMSE at low SNR as a result of involving additional decoding error. The EF and OFDM-

based AF relay have the similar low NMSE when SNR< 14dB over the time-invariant channel.

In additional, the NMSE of the EF relay with the proposed model-based estimation is better

then the OFDM-based AF scheme. In the case with the time-varying channel, the normalized
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Figure 5.8: Normalized mean square errors of retransmitted signals at relay nodes with different
relay schemes.

Doppler frequency is fdT = 0.05. When the model-based prediction is used at the EF relay

node, the proposed scheme over time-varying channel can keep the similar NMSE performance

to that under the time-invariant channel by predicting and equalizing the channel accurately.

Fig. 5.9 compares the average SER at destination of different relay schemes. The fixed-

gain AF relay scheme provides the worst SER performance resulting from the accumulation of

multipath channels and noise. Under the time-invariant channel, the EF relay exhibits the same

SER performance with DF and OFDM-based AF relay. Furthermore, the proposed EF relay

still achieves a low SER, when the channel is time-varying, i.e., fdT = 0.05. It implies that

the EF relay can perform the same error probability as the DF relay with a reduced processing

delay.
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Figure 5.9: Average end-to-end SERs of different relay schemes under time-invariant and time-
varying channels.

5.6.2 Outage Probability

We then consider the outage probabilities at destination of AF (fixed-gain and OFDM-based),

DF and EF relay schemes. Here we assume that the equalizer structure and algorithm used in

EF, OFDM-based AF and DF relays is the same. We set the total transmission time Ttotal = 3qTs

during the simulations. Ts is the same constant in all simulations of outage probability. When

M-ary modulation is adopted,

q =
Lp

N log2M
. (5.65)
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Figure 5.10: Average end-to-end outage probabilities of different relay schemes vs. SNR.
Lp = 214. φ=0.1 and 0.5.

The effective date rate then can be obtained as

Re =
Lp

3qTs − Td

=
bLp

(3Lp − φb)Ts
,

(5.66)

where b = N log2M. When QPSK modulation with 512 subcarriers is applied, b = 1024. The

fixed-gain AF relay has the shortest processing delay of only several microseconds; the pro-

posed EF relay has a longer delay than AF scheme caused by involving equalization operations;

the processing delay of the OFDM-based AF relay is longer than that of the proposed scheme

because the FFT/IFFT and high-complexity algorithms are performed in series; while the de-

lay of DF scheme (including de/modulation, de/interleaving, and de/encoding delay) is much

longer than the ones of AF and EF. Consequently, we set φAFfixed = φ, φEF = 5φ, φAFOFDM = 15φ,
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Figure 5.11: Average end-to-end outage probabilities of different relay schemes vs. relaying
delay. Lp = 210 and SNR= 10dB.

and φDF = 25φ.

Obviously, one of the main factors which affect the outage probability performance of

relay systems is the relaying delay. In Fig. 5.10, we show the average outage probabilities at

destination of different relay schemes vs. SNR. Two different delay is considered, i.e., φ = 0.1

and φ = 0.05. We can see from the plots that the outage probability of EF, DF and OFDM-

based AF relays becomes lower when the delay decreases from φ = 0.1 to φ = 0.05; while

the performance of fixed-gain AF relay scheme remains the same. It implies that the effect

of the delay on the outage probability is more appreciable in EF, DF and OFDM-based AF

schemes than in fixed-gain AF relay, because the percentage of relaying delay in the total

transmission time for the three relays are larger compared to that in fixed-gain AF scheme.

Moreover, for both φ = 0.1 and φ = 0.05, the proposed EF relay exhibits the lowest outage

probability by achieving channel compensation with a relatively short delay. In contrast, the
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outage probability of OFDM-based AF relay is higher than the proposed scheme as the result

of the inefficient structure. Meanwhile, both the fixed-gain AF and DF relays suffer high outage

probabilities due to the accumulated channel fading and the long relaying delay respectively.

The outage probability performance vs. relaying delay of the various relay schemes is fur-

ther investigated in Fig. 5.11. When the processing delay of the relay nodes increases, the

outage probabilities of these four schemes all rise. More specifically, the fixed-gain AF relay

incurs high outage probability even if φ is small due to the inferior retransmission. The DF re-

lay, which has the longest precessing delay in these schemes, only outperforms the fixed-gain

AF scheme when φ < 0.02. Compared to the fixed-gain AF scheme, the proposed EF relay has

higher complexity and longer processing delay by involving equalization operations; however

it achieves sufficiently low outage probabilities by improving the end-to-end SNR. Although

the OFDM-based AF scheme has the similar retransmission quality with the proposed scheme,

the processing latency of the FFT and channel compensation algorithms leads to high outage

probability when φ > 0.05. The EF relay has the best outage probability performance with vari-

able values of φ. It means that the proposed EF relay can guarantee the low outage probability

under different SNR and delay.

The outage probability performance of relay schemes is also affected by the transmitted

packet size. In continuous communications, i.e., Lp → ∞, the percentage of the relay delay

time approaches zero in the total transmission time, therefore the performance only depends

on SNR. When the packet size is small, the outage probability is determined by both SNR

and relay delay. Average outage probabilities at destination of various relay schemes vs. SNR

are depicted in Figure 5.12. In the case of Lp = 210, the fixed-gain AF relay achieves the

lowest outage probability, and the EF relay scheme can obtain similar outage probability with

fixed-gain AF relay when SNR>15dB. The EF relay provides the best outage probability when

Lp = 214 at different SNR by achieving the trade-off between the transmission reliability and

efficiency. The DF and OFDM-based AF relays only experience low outage probability when

Lp = 214, while it suffers the poor performance when the package size is short.

In Fig. 5.13, we evaluate the impact of packet size Lp on the performance of the four

relay schemes for SNR=10dB. As expected, the outage probabilities of these three schemes

reduce with the growing of packet size Lp. When the packet size increases, the performance
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Figure 5.12: Average end-to-end outage probabilities of different relay schemes vs. SNR.
φ = 0.1. The packet size is 210 and 214.

of fixed-gain AF relay cannot benefit form its short latency. Instead, its disadvantage in the

end-to-end SNR becomes obvious. The effect of Lp is remarkable on the performance of EF,

DF and OFDM-based AF schemes compared to fixed-gain AF relay. Particularly, the DF relay

exhibits high outage probability due to its long latency when Lp < 1500. This factor limits

the performance gain of DF relay substantially in burst and interactive communications. The

OFDM-based AF scheme outperforms the DF scheme, however, its outage probability is stil-

l relatively high especially when Lp < 2000. On the other hand the proposed EF relay can

achieve the lowest outage probability with different packet sizes, which implies that the pro-

posed relay strategy can provide reliable retransmissions in both the continuous and interactive

communications.
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5.7 Summary

In this chapter, a novel equalize-and-forward (EF) relay is proposed in this paper to provide

reliable relay communications with the eliminated multipath channel accumulation effect and

reduced processing delay at the relay node. The proposed EF relay scheme involves two par-

allel paths for channel equalization and estimation, i.e., main path and ancillary parallel path.

In the main path, the delay minimization for signal relay is achieved by equalizer presetting

mechanism without decoding and signal regeneration. The parallel path performs the model-

based channel estimation and prediction and equalizer coefficient calculation to compensate

the parallel path processing delay. Numerical results show that the proposed relay scheme

exhibits comparable symbol error rate (SER) performance as the DF relay with much shorter

delay. Compared to the traditional AF relay schemes, the EF relay scheme provides lower
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outage probability with minimal processing delay. Moreover, with increasing packet sizes and

SNR, the EF relay could achieve lower outage probability than both AF and DF approaches.



Chapter 6

Conclusions and Future Work

In this chapter, the contributions of this dissertation are summarized with some concluding

remarks, and the future research directions are discussed.

6.1 Conclusions and Contributions

Cooperative communications as a physical layer technology can be used to achieve spatial

diversity and cope fading without requiring multiple antennas on the same node. In coopera-

tive system, the diversity is created via cooperation among neighboring wireless relay nodes.

Through such cooperations, relay systems provide significant improvement in coverage and

energy efficiency in wireless networks. The engagement of cooperative systems with OFDM

transmission has been extensively used in many advanced wireless communications systems,

however, there remains many technical challenges due to the more complex communication

scenario. This thesis carries out a comprehensive study on relay techniques which mainly

explored some important aspects of cooperative OFDM systems: the transmission reliabili-

ty under accumulated multipath channels, and the transmission efficiency with extra relaying

overhead and resource assumption. We developed a number of effective and efficiency schemes

for these problems via various forms of OFDM-based relay systems.

The contributions that have been made in this thesis and the conclusions drawn from these

contributions can be summarized as follows:

• Adaptive guard interval scheme for amplify-and-forward relay systems

147
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In Chapter 3, two adaptive relay schemes with dynamical guard interval (GI) are proposed

to minimize the relaying overhead and improve the transmission efficiency for the amplify-and-

forward (AF) cooperative system. For the single-relay systems, we propose a novel adaptive

GI scheme in which the GI length is adapted to channel conditions and is replaced by a variable

length orthogonal codes to carry the GI length information. Numerical results show that the

destination can detect the GI length accurately by exploiting the orthogonal property between

different GI sequences. Moreover, the proposed adaptive scheme (without additional control

signal) can achieve the same symbol error rate (SER) performance as the conventional adaptive

GI approaches (with control signal). This implies that the proposed scheme can further save

the control signaling overhead without any SER performance loss. Meanwhile, the adaptive

GI scheme can cover the variable delay spread in multi-hop AF relay systems with the reduced

transmission overhead compared to the fixed GI scheme.

Extending the adaptive GI scheme to multiple-relay systems, a relay selection (RS) scheme

is proposed to minimize the overhead as well as enhance the overall transmission reliability.

In the proposed strategy, an effective throughput (the data bits which are received correctly

by the destination) is defined as the selection criterion which depends on both the end-to-

end channel gain and the accumulated delay spread. With this criterion, the best relay link

and the corresponding GI length are selected at source to maximize the effective throughput.

The performance of the proposed scheme are evaluated through numerical simulations. Both

the theoretical analysis and simulation results show that in the case that the channel delay

spread is variable, the proposed scheme can dramatically improve the effective data transmis-

sion throughput.

• Adaptive resource allocation for decode-and-forward two-way relay systems with unbal-

anced traffic loads

In Chapter 4, we present the two adaptive resource allocation schemes for the two-way

DF relay systems. The resource allocation algorithms are proposed to optimize the end-to-

end capacity of the two-way system under the capacity ratio constraint which is based on the

asymmetric traffic loads between the bidirectional transmissions. The capacity ratio is added as

a fairness constraint, which are imposed to assure the quality of service for two terminal nodes.

In order to combine the requirements of maximizing the end-to-end capacity and achieving the
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given capacity ratio, we defined a balanced end-to-end capacity as the performance metric.

For the time-division two-way relay systems, the total end-to-end capacity is maximized by

optimizing the transmission time and power allocations under the capacity ratio and total trans-

mission time/power constraints. The performance of this scheme is compared with different

allocation schemes through simulations. The results show that the proposed optimal allocation

can significantly improve the balanced capacity compared to the random and equal allocation

schemes.

The other resource allocation algorithm is investigated for the frequency-division relay sys-

tems where two-way transmission is performed by exploiting the orthogonality of the subchan-

nels in OFDM systems. In this scenario, subcarriers, subcarrier power and time slot are op-

timized to achieve the maximum balanced end-to-end capacity. Since the optimal solution is

extremely computationally complex to obtain, we propose a low-complexity suboptimal allo-

cation algorithm which separates subcarrier allocation and time/power allocation. Simulation

results verify that the suboptimal algorithm can provide the similar performance with the op-

timal one under different channel conditions. It means that the proposed suboptimal scheme

can significantly reduce the complexity of resource allocation without the performance loss.

Meanwhile, the performance of the proposed scheme is compared to some other allocation

schemes. The results shows that the suboptimal scheme exhibits better balanced end-to-end

capacity then the random and equal allocations.

• Adaptive equalize-and-forward relay scheme for accumulated multipath channels

The investigation of the trade-off between transmission reliability and efficiency in relay

networks leads to our work on a novel relay scheme. An equalize-and-forward (EF) relay s-

trategy is proposed in Chapter 5 which compensates the accumulation of frequency selective

fading as well as delay spread. First, we investigate the performance impact of the multihop

transmission in relay systems. We then provide the EF relay design, which adopted an efficient

parallel structure to shorten the processing time and to achieve both transmission reliability

and low processing delay. To reduce the processing delay at relay nodes, channel estimation

and equalization for the channel between the source and relay are performed in parallel. In the

proposed EF scheme, the equalization efficiency is improved by passing data symbols through

a time-domain equalizer preset with the current channel response. Moreover, the equaliza-
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tion accuracy is enhanced by exploiting the model-based channel estimation and prediction to

reduce the impact of background Gaussian noise and further improve the quality of retrans-

mitted signals. Numerical results show that the proposed relay scheme exhibits comparable

symbol error rate (SER) performance as the DF relay with much shorter delay. Besides, the

outage probability with a given effective data rate is adopted as the metric to comprehensively

compare the performance of various relay schemes under different scenarios. Compared to the

traditional AF relay schemes, the EF relay scheme provides lower outage probability with min-

imal processing delay. Meanwhile, with increasing packet sizes and SNR, the EF relay could

achieve lower outage probability than both AF and DF approaches.

6.2 Future Work

The contributions presented in this dissertation for relay communication systems can be ex-

tended or used to explore new research topics:

• Synchronization issue in multiple-relay networks

In this thesis and most of the previous research work in cooperative systems, it assumed that

ideal frequency and time synchronization among nodes. Although this assumption is widely

adopted in the literature and seems unavoidable for mathematical tractability, when studying

the design and the performance of the practical wireless networks, it is not very realistic. In a

large-scale network with a large number of mobile users, perfect synchronization among all the

nodes is difficult to achieve. Time offset and frequency offset will deteriorate the performance

of the relay networks, especially in an OFDM system. Hence, to model and analyze the relay

system performance, both the channel estimation error and the symbol level synchronization

error should be considered. When multiple distributed relay nodes transmit to the destination

simultaneously, different transmission delays occur due to the different locations of the relay

nodes, and each relay link has a different frequency offset. To eliminate the detrimental effects

of the multiple frequency offsets, some technique is required at the relay and the destination to

compensate the multiple frequency offsets. How to achieve the accurate symbol level synchro-

nization and minimize these synchronization errors are also challenging problems.

• Multiple-source multi-hop resource allocation for one/two-way relay systems
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In this thesis, we focused on the dual-hop relay system, where one source wishes to com-

municate with a destination, via a single relay. In realistic wireless networks, a large number

of relay nodes could participate in the relay communications, which would involve the multi-

hop relay transmissions. Although the allocation schemes in the previous works can enhance

the achievable rate of the system or save the power consumption, a centralized controller as

well as additional feedbacks are required to perform the global optimization for the network

adopting these schemes. When the number of relaying hops is large, the number of controlling

signals between terminal nodes and relay nodes increases, which leads to a low system effi-

ciency. Besides, the processing delay caused by receiving the channel state information of the

relay nodes, executing the optimization algorithm and feeding the resource allocation parame-

ters back to the relays, results in outdated and non-optimal performance of the system. To this

end a distributed resource allocation scheme with low-complexity should be investigated for

multihop relay systems.

On the other hand, considering the scenario that the relay node simultaneously forwards the

signals for multiple sources, a critical element of the design for such networks is an efficient

cooperative strategy in conjunction with the OFDM system. One promising solution for this

scenario is to transmit a multicarrier signal with different users’ data on different subchannels.

The relay node can dynamically allocates the subcarriers to each user according to the channel

condition between them. Meanwhile, the transmission resource is optimally assigned to each

link to maximize the total end-to-end capacity or data rate under the fairness constraint.

• Hybrid relay scheme design with latency constraints

General speaking, to improve the retransmission quality of the relay node, more high-

complexity operation or high-complexity relay scheme need to be applied at the relay node,

while the relay schemes with low burden tend to suffer the performance loss under the deteri-

orated channel condition. For the relay systems without a stringent latency requirement, e.g.,

continuous communications, the high-complexity operations can be adopted at relay node to

enhance the performance. However, in the realtime and delay sensitive applications, such as

the safety applications in vehicular communications, the high-complexity operations and long

processing time at relay node cannot be tolerated, and the relay techniques with low latency

will be preferred. Hence, a hybrid relay scheme need to be studied, which can dynamical-
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ly select the relay technique performed by the relay node and the corresponding operations

adaptive to the given latency constraints and the performance requirement. This strategy can

be implemented by centralized or distribute controlling. In the centralized method, the source

node decide and notice the relay and destination nodes the relay technique adopted for the

current communication based on the specific requirement of the certain content forms and the

overall channel condition. The distributed method can be executed by the relay nodes, where

each relay independently selects the proper technique to process the received signals from the

source. The adaptive relay scheme with latancy constraints can be applied for the communica-

tion networks which includes different content forms and different requirements on quality of

service.



Bibliography

[1] “Cisco visual networking index: Forecast and methodology 2009-2014,” Cisco White
Paper, Tech. Rep., June 2010.

[2] J. G. Proakis, Digital Communication, 5th ed. New York: McGraw-Hill, 2008.

[3] T. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. Wong, J. Schulz,
M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular:
It will work!” IEEE Access (Invited), vol. 1, no. 1, pp. 335–349, May 2013.

[4] C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. Aggoune, H. Haas, S. Fletch-
er, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless com-
munication networks,” IEEE Commun. Mag., vol. 52, no. 2, pp. 122–130, Feb. 2014.

[5] S. Zhang, “Cooperative relay in the next generation wireless networks,” Ph.D. disserta-
tion, The Hong Kong University of Science and Technology, Aug. 2009.

[6] D. Lister, “An operator’s view on green radio,” in Proc. IEEE Int. Workshop on Green
Communications, 2009.

[7] Y. Chen, S. Zhang, S. Xu, and G. Li, “Fundamental trade-offs on green wireless net-
works,” IEEE Commun. Mag., vol. 49, no. 6, pp. 30–37, June 2011.

[8] Air Interface for Fixed and Mobile Broadband Wireless Access Systems, IEEE Standerd
802.16j, 2006.

[9] A. Goldsmith, S. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits of MIMO chan-
nels,” IEEE J. Sel. Areas Commun., vol. 21, no. 5, pp. 684–702, June 2003.

[10] W. Zhang, X. Xiang-Gen, and K. B. Letaief, “Space-time/frequency coding for mimo-
ofdm in next generation broadband wireless systems,” IEEE Trans. Wireless Commun.,
vol. 14, no. 2, pp. 32–43, June 2007.

[11] B. Lin, P. Ho, L. Xie, X. Shen, and J. Tapolcai, “Optimal relay station placement in
broadband wireless access networks,” IEEE Trans. Mobile Comput., vol. 9, no. 2, pp.
259–269, Feb. 2010.

[12] E. Dahlman, S. Parkvall, and J. Skold, 4G LTE/LTE-Advanced for mobile broadband.
Academic Press, 2011.

153



154 BIBLIOGRAPHY

[13] Y. Yang, H. Hu, J. Xu, and G. Mao, “Relay technologies for wimax and lte-advanced
mobile systems,” IEEE Commun. Mag., vol. 47, no. 10, pp. 100–105, 2009.

[14] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications
Amendment 10: Mesh Networking, IEEE Standard 802.11s, 2011.

[15] S. Chia, T. Gill, L. Ibbetson, D. Lister, A. Pollard, R. Irmer, D. Almodovar, N. Holmes,
and S. Pike, “3G evolution,” IEEE Microw. Mag., vol. 9, no. 4, pp. 52–63, Aug. 2008.

[16] K. Loa, C. Wu, S. Sheu, Y. Yuan, M. Chion, D. Huo, and L. Xu, “IMT-advanced relay
standards [WiMAX/LTE Update],” IEEE Commun. Mag., vol. 48, no. 8, pp. 40–48,
2010.

[17] V. Chandrasekhar, J. Andrews, and A. Gatherer, “Femtocell networks: a survey,” IEEE
Commun. Mag., vol. 46, no. 9, pp. 59–67, 2008.

[18] J. N. Laneman, D. Tse, and G. Wornell, “Cooperative diversity in wireless networks:
Efficient protocls and outage behaiviour,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp.
3062–3080, Dec. 2004.

[19] E. E. A. Sendonaris and B. Aazhang, “User cooperation diversity, part I, II,” IEEE Trans.
Commun., vol. 51, pp. 1927–1948, Nov. 2003.

[20] J. N. Laneman and G. W. Wornell, “Distributed space-time-coded protocols for exploit-
ing cooperative diversity in wireless networks,” IEEE Trans. Inf. Theory, vol. 49, pp.
2415–2445, Oct. 2003.

[21] R. Pabst, B. Walke, D. Schultz, P. Herhold, H. Yanikomeroglu, S. Mukherjee,
H. Viswanathan, M. Lott, W. Zirwas, M. Dohler, H. Aghvami, D. Falconer, and G. Fet-
tweis, “Relay-based deployment concepts for wireless and mobile broadband radio,”
IEEE Commun. Mag., vol. 42, no. 9, pp. 80–89, Sept. 2004.

[22] T. Riihonen, S. Werner, and R. Wichman, “Hypoexponential power delay profile and
performance of multihop OFDM relay links,” IEEE Trans. Wireless Commun., vol. 9,
no. 12, pp. 3878–3888, Oct. 2010.

[23] C. Na and T. Rappaport, “Measured wireless LAN public hotspot traffic statistics,” Elec-
tronics Letters, vol. 40, no. 19, pp. 1202–1203, Sept. 2004.

[24] C. Na, J. K. Chen, and T. S. Rappaport, “Hotspot traffic statistics and throughput models
for several applications,” in Proc. IEEE GLOBECOM, 2004, pp. 3257–3263.

[25] ——, “Measured traffic statistics and throughput of IEEE 802.11b public WLAN
hotspots with three different applications,” IEEE Trans. Wireless Commun., vol. 5,
no. 11, pp. 3296–3305, Nov. 2006.

[26] Y. Chen, Y.-W. Lin, and C.-Y. Lee, “A block scaling FFT/IFFT processor for WiMAX
applications,” in IEEE Asian Solid-State Circuits Conference, Nov. 2006, pp. 203–206.



BIBLIOGRAPHY 155

[27] A. Goldsmith, Wireless Communication. Cambridge University Press, 2008.

[28] Carrier sense multiple access with collision detection (CMSA/CD) access method and
physical layer specifications, IEEE Standard 802.20, 2008.

[29] A. Peled and A. Ruiz, “Frequency domain data transmission using reduced computa-
tional complexity algorithms,” in Acoustics, Speech, and Signal Processing, IEEE Inter-
national Conference on ICASSP ’80, vol. 5, Apr. 1980, pp. 964–967.

[30] Wireless LAN medium access control (MAC) and physical layer (PHY) specifications:
High speed physical layer in 5 GHz band, IEEE Standard 802.11a, 1999.

[31] Wireless LAN medium access control (MAC) and physical layer (PHY) specifications:
Further higher-speed physical layer extension in 2.4 GHz band, IEEE Standard 802.11g,
2003.

[32] IEEE Draft STANDARD for Information TechnologyTelecommunications and informa-
tion exchange between systems-Local and metropolitan area networks-Specific require-
ments Part 11, IEEE Draft Standerd P802.11n/D9.0, 2009.

[33] Air Interface for Fixed Broadband Wireless Access Systems, IEEE Standerd 802.16,
2004.

[34] R. Prasad, OFDM for Wireless Communications Systems. Artech House, Inc., 2004.

[35] J. N. Laneman, D. Tse, and G. Wornell, “Cooperative diversity in wireless networks:
Efficient protocls and outage behaiviour,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp.
3062–3080, Dec. 2004.

[36] A. Nosratinia, T. Hunter, and A. Hedayat, “Cooperative communication in wireless net-
works,” IEEE Commun. Mag., vol. 42, no. 10, pp. 74–80, 2004.

[37] I. M. G. Kramer and R. Yates, “Cooperative communications,” Foundations and Trends
in Networking, vol. 1, no. 3, 2006.

[38] C. B. Norman and H. Jeremiah, “A closed-form expression for the outage probability
of decode-and-forward relaying in dissimilar rayleigh fading channels,” IEEE Commun.
Lett., vol. 12, no. 10, pp. 813–815, Dec. 2006.

[39] P. Anghel and M. Kaveh, “Exact symbol error probability of a cooperative network in a
rayleigh-fading environment,” IEEE Trans. Wireless Commun., vol. 3, no. 5, pp. 1416–
1421, 2004.

[40] C. S. Patel and G. L. Stuber, “Channel estimation for amplify and forward relay based
cooperation diversity systems,” IEEE Trans. Wireless Commun., vol. 6, no. 6, pp. 2348–
2356, 2007.

[41] M. Hasna and M.-S. Alouini, “A performance study of dual-hop transmissions with fixed
gain relays,” IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 1963–1968, 2004.



156 BIBLIOGRAPHY

[42] T. Wang, A. Cano, G. B. Giannakis, and J. N. Laneman, “High-performance coopera-
tive demodulation with decode-and-forward relays,” IEEE Trans. Commun., vol. 55, pp.
1427–1438, 2007.

[43] T. Himsoon, W. P. Siriwongpairat, W. Su, and K. J. R. Liu, “Differential modulation
with thresholdbased decision combining for cooperative communications,” IEEE Trans.
Signal Process., vol. 55, pp. 3905–3923, 2007.

[44] F. Onat, A. Adinoyi, Y. Fan, H. Yanikomeroglu, J. Thompson, and I. Marsland, “Thresh-
old selection for snr-based selective digital relaying in cooperative wireless networks,”
IEEE Trans. Wireless Commun., vol. 7, 2008.

[45] R. Dabora and S. Servetto, “On the role of estimate-and-forward with time sharing in
cooperative communication,” IEEE Trans. Inf. Theory, vol. 54, no. 10, pp. 440–4431,
Oct. 2008.

[46] B. Akhbari, M. Mirmohseni, and M. Aref, “Compress-and-forward strategy for relay
channel with causal and non-causal channel state information,” IET Communications,
vol. 4, no. 10, pp. 1174–1186, July 2010.

[47] B. Rankov and A.Wittneben, “Spectral efficient protocols for half-duplex fading relay
channels,” IEEE J. Sel. Areas Commun., vol. 25, no. 2, pp. 379–389, 2007.

[48] P. Larsson, N. Johansson, and K. Sunell, “Coded bi-directional relaying,” in Proc. IEEE
VTC Spring, vol. 2, 2006, pp. 851–855.

[49] R. Ahlswede, N. Cai, S. Li, and R. Yeung, “Network information flow,” IEEE Trans. Inf.
Theory, vol. 46, no. 4, p. 12041216, 2000.

[50] I. Baik and S. Chung, “Network coding for two-way relay channels using lattices,” in
Proc. IEEE ICC, 2008, pp. 3898–3902.

[51] E. van der Meulen, “Three terminal communication channels,” Advances in Applied
Probability, vol. 3, pp. 120–154, 1971.

[52] T. Cover and A. E. Gamal, “Capacity theorems for the relay channel,” IEEE Trans. Inf.
Theory, vol. 25, no. 5, pp. 572–584, 1979.

[53] O. S. Shin, A. Chan, H. T. Kung, and V. Tarokh, “Design of an OFDM cooperative
space-time diversity system,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 2203–2251,
July 2007.

[54] J. Qi and L. Cao, “Channel mean forwarded regenerative cooperative demodulation in
OFDM systems,” in Proc. IEEE WCNC, Mar. 2008.

[55] B. Can, H. Yomo, and E. D. Carvalho, “Hybrid forwarding scheme for cooperative relay-
ing in OFDM based networks,” in Proc. IEEE ICC, vol. 10, May 2006, pp. 4520–4525.

[56] D. Wang and U. Tureli, “Cooperative MIMO-OFDM and MAC design for broadband ad
hoc networks,” in Proc. Milcom, vol. 2, Oct. 2005, pp. 630–634.



BIBLIOGRAPHY 157

[57] Y. Mei, Y. Hua, A. Swami, and B. Daneshrad, “Combating synchronization errors in
cooperative relays,” in Proc. IEEE ICASSP, vol. 3, March 2005, pp. 369 – 372.

[58] Z. Li and X.-G. Xia, “A simple alamouti space-time transmission scheme for asyn-
chronous cooperative systems,” IEEE Signal Process. Lett., vol. 14, pp. 804 – 807, Nov.
2007.

[59] I. Hammerstrom and A. Wittneben, “Power allocation schemes for amplify-and-forward
MIMO-OFDM relay links,” IEEE Trans. Wireless Commun., vol. 6, no. 8, pp. 2798–
2802, August 2007.

[60] D. Chen and J. N. Laneman, “Joint power and bandwidth allocation in multihop wireless
networks,” in Proc. IEEE WCNC, Mar. 2008.

[61] J. Wu, “Soft-decode-and-forward for asynchronous wireless networks with doubly-
selective fading,” in Proc. Globecom, 2009, pp. 1–5.

[62] Z. Han, T. Himsoon, W. P. Siriwongpairat, and K. J. R. Liu, “Resource allocation for
multiuser cooperative OFDM networks: Who helps whom and how to cooperate,” IEEE
Trans. Veh. Technol., vol. 58, no. 5, pp. 2378–2391, Jun. 2009.

[63] G. Li and H. Liu, “Resource allocation for OFDMA relay networks with fairness con-
straints,” IEEE J. Sel. Areas Commun., vol. 24, no. 11, pp. 2061–2069, Nov. 2006.

[64] T. C. Ng and W. Yu, “Joint optimization of relay strategies and resource allocations in a
cooperative cellular network,” IEEE J. Sel. Areas Commun., vol. 25, no. 2, pp. 328–339,
Feb. 2007.

[65] P. Tarasak and Y. H. Lee, “Joint cooperative diversity and scheduling in ofdma relay
systems,” in Proc. IEEE WCNC, Mar. 2007, pp. 980–984.

[66] T. Ng and W. Yu, “Joint optimization of relay strategies and resource allocations in
cooperative cellular networks,” IEEE J. Sel. Areas Commun., vol. 25, no. 2, pp. 328–
339, February 2007.

[67] N. Y. Y. Ma and R. Tafazolli, “Bit and power loading for OFDM-based three-node re-
laying communications,” IEEE Trans. Signal Process., vol. 56, no. 7, pp. 3236–3247,
July 2008.

[68] O. Amin and M. Uysal, “Optimal bit and power loading for amplify-and-forward coop-
erative OFDM systems,” IEEE Trans. Wireless Commun., vol. 10, no. 3, pp. 772–781,
March 2011.

[69] T. T. Pham, H. H. Nguyen, and H. D. Tuan, “Power allocation in MMSE relaying over
frequency-selective rayleigh fading channels,” IEEE Trans. Commun., vol. 58, no. 11,
pp. 3330–3343, Nov. 2010.

[70] H. Eghbali and S. Muhaidat, “Single-carrier frequency-domain equalization for multi-
relay cooperative systems with relay selection,” in Proc. Globecom Workshops, 2011,
pp. 1353–1358.



158 BIBLIOGRAPHY

[71] O. Amin, S. Ikki, and M. Uysal, “Adaptive bit loading for multi-relay cooperative or-
thogonal frequency division multiple with imperfect channel estimation,” IET Commu-
nications, vol. 6, no. 12, pp. 1821–1828, Aug. 2012.

[72] Y. Ding and M. Uysal, “Achievable data rates and power allocation for frequency-
selective fading relay channels with imperfect channel estimation,” EURASIP Journal
on Wireless Communications and Networking, vol. 2012, no. 1, pp. 1–10, 2012.

[73] Y. Liang, A. Ikhlef, W. Gerstacker, and R.Schober, “Cooperative filter-and-forward
beamforming for frequency-selective channels with equalization,” IEEE Trans. Wireless
Commun., vol. 10, no. 1, pp. 228–239, Jan. 2011.

[74] H. Chen, S. ShahbazPanahi, and A. Gershman, “Filter-and-forward distributed beam-
forming for two-way relay networks with frequency selective channels,” IEEE Trans.
Signal Process., vol. 60, no. 4, pp. 1927–1941, April 2012.

[75] T. Wang, B. P. Ng, and M. H. Er, “Frequency-domain approach to relay beamform-
ing with adaptive decision delay for frequency-selective channels,” IEEE Trans. Signal
Process., vol. 61, no. 22, pp. 5563–5577, Nov. 2013.

[76] H. Mheidat, M. Uysal, and N. Al-Dhahir, “Equalization techniques for distributed space-
time block codes with amplify-and-forward relaying,” IEEE Trans. Signal Process.,
vol. 55, no. 5, pp. 1839–1852, May 2007.

[77] ——, “Single-carrier frequency domain equalization for broadband cooperative com-
munications,” in IEEE WCNC, Las Vegas, April 2006.

[78] R. U.Nabar, F. W.Kneubiihler, and H. Boelcskei, “Performance limits of amplify-and-
forward based fading relay channels,” in IEEE ICASSP, Montreal, May 2004.

[79] Q. Jia, T. Lv, and G. Ping, “An efficient scheme for joint equalization and interference
cancellation in distributed cooperative diversity networks,” in Proc. IEEE CNSR, Hali-
fax, May 2008.

[80] H. Eghbali, S. Muhaidat, and N.Al-Dhahir, “A novel receiver design for single-carrier
frequency domain equalization in broadband wireless networks with amplify-and-
forward relaying,” IEEE Trans. Wireless Commun., vol. 10, no. 3, pp. 721–727, March
2011.

[81] H. Chen, A. Gershman, and S. Shahbazpanahi, “Filter-and-forward distributed beam-
forming in relay networks with frequency selective fading,” IEEE Trans. Signal Pro-
cess., vol. 58, no. 3, pp. 1251–1262, March 2010.

[82] Z. Yi and I.-M. Kim, “Optimum beamforming in the broadcasting phase of bidirection-
al cooperative communication with multiple decode-and-forward relays,” IEEE Trans.
Wireless Commun., vol. 8, pp. 5806–5812, 2009.

[83] I. Hammerstom and A. Wittneben, “Impact of relay gain allocation on the performance
of cooperative diversity networks,” in Proc. IEEE VTC, Sept. 2004, pp. 1815–1819.



BIBLIOGRAPHY 159

[84] Z. Yi and I.-M. Kim, “Joint optimization of relay-precoders and decoders with partial
channel side information in cooperative networks,” IEEE J. Sel. Areas Commun., vol. 25,
pp. 447–458, Feb. 2007.

[85] A. Bletsas, A. Khisti, D. P. Reed, and A. Lippman, “A simple cooperative diversity
method based on network path selection,” IEEE J. Sel. Areas Commun., vol. 24, pp.
659–672, Mar. 2006.

[86] A. Bletsas, H. Shin, and M. Z. Win, “Cooperative communications with outage-optimal
opportunistic relaying,” IEEE Trans. Wireless Commun., vol. 6, pp. 3450–3460, Sept.
2007.

[87] Y. Zhao, R. Adve, and T. J. Lim, “Improving amplify-and-forward relay networks: op-
timal power allocation versus selection,” IEEE Trans. Wireless Commun., vol. 6, pp.
3114–3123, Aug. 2007.

[88] Y. Jing and H. Jafarkhani, “Single and multiple relay selection schemes and their achiev-
able diversity order,” IEEE Trans. Wireless Commun., vol. 7, pp. 1414–1423, Mar. 2009.

[89] A. K. Sadek, Z. Han, and K. Liu, “A distributed relay-assignment algorithm for cooper-
ative communications in wireless networks,” in Proc. IEEE ICC, vol. 2, June 2006, pp.
1592–1597.

[90] V. Sreng, H. Yanikomeroglu, and D. Falconer, “Relayer selection strategies in cellular
networks with peer-to-peer relaying,” in Proc. IEEE VTC Fall, vol. 3, Oct. 2003, pp.
1949–1953.

[91] Y. Zou, J. Zhu, B. Zheng, and Y.-D. Yao, “An adaptive cooperation diversity scheme with
best-relay selection in cognitive radio networks,” IEEE Trans. Signal Process., vol. 58,
no. 10, pp. 5438–5445, Oct. 2010.

[92] D. Gunduz and E. Erkip, “Opportunistic cooperation by dynamic resource allocation,”
IEEE Trans. Wireless Commun., vol. 6, pp. 1446–1454, Apr. 2007.

[93] A. Ribeiro, X. Cai, and G. Giannakis, “Symbol error probabilities for general coopera-
tive links,” IEEE Trans. Wireless Commun., vol. 4, no. 3, pp. 1264–1273, May 2005.

[94] Y. Zou, B. Zheng, and W.-P. Zhu, “An opportunistic cooperation scheme and its BER
analysis,” IEEE Trans. Wireless Commun., vol. 8, pp. 4492–4497, Sept. 2009.

[95] Q. Zhang, Q. Chen, F. Yang, X. Shen, and Z. Niu, “Cooperative and opportunistic trans-
mission for wireless ad hoc networks,” IEEE Network, vol. 21, pp. 14–20, Jan./Feb.
2007.

[96] A. Høst-Madsen and J. Zhang, “Capacity bounds and power allocation for wireless relay
channels,” IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 2020–2040, June 2005.
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