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Abstract 

Our lab previously demonstrated that expression of the lineage-determining transcription 

factor SOX17 in human embryonic stem cells was sufficient to specify stable definitive 

endoderm progenitors (DEPs). The current study was aimed at generating pancreatic 

precursors from SOX17-DEPs through controlled expression of the transcription factor 

NGN3. We generated hESC lines with inducible SOX17 and NGN3 and compared the 

effects of high and low levels of NGN3 expression. NGN3 expression in DEPs induced 

markers of pancreatic differentiation (PAX4, PAX6, NKX6.1, ISL1). While high NGN3 

expression induced the β cell marker PDX1, low NGN3 expression induced the δ cell 

markers (CCKBR, somatostatin) within 12 days. We subsequently aimed to guide 

SOX17-NGN3 precursors to mature endocrine cells by culture in media pre-conditioned 

by multipotent stromal cells previously screened for islet regenerative capacity following 

transplantation in vivo. However, endocrine maturation was not observed. These findings 

demonstrate the precision required to direct β cell differentiation. 
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human embryonic stem cells, SOX17, NGN3, pancreatic progenitors, multipotent stromal 

cells 
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 CHAPTER 1:  

General Introduction 
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1.1.  Diabetes Mellitus 

Diabetes Mellitus (DM) is a metabolic disorder characterized by hyperglycemia 

or high blood glucose levels.  Elevated blood glucose concentrations in diabetic patients 

are due to inadequate synthesis and secretion of insulin from the pancreas (insulin 

deficiency) or desensitization of insulin signaling response (insulin resistance) [1]. 

Insulin is a hormone that maintains glucose homeostasis: it regulates liver, skeletal 

muscle and adipose tissue to absorb glucose from the blood thereby reducing post-

prandial blood glucose levels [2]. Other symptoms of diabetes include increased urination 

(polyuria), increased thirst (polydipsia), increased hunger (polypaghia), and weight loss 

[3]. Currently, diabetes is an emerging epidemic that is expected to affect more than 360 

million people worldwide by 2030 [4]. The aging population of North America and rising 

obesity rates further exacerbate the prevalence of the disease.  Importantly, diabetes is a 

risk factor for many vascular diseases such as stroke, limb ischemia and heart attack 

along with retinopathy and neuropathic disorders, which will take an enormous toll on 

global healthcare costs in the near future. 

 

1.1.1. Types of Diabetes Mellitus 

Type I Diabetes Mellitus (T1DM) is caused by auto-immune destruction of 

insulin-secreting β cells of the islets of Langerhans in the pancreas resulting in absolute 

insulin deficiency. Major players of this auto-immune reaction are autoantibody 

producing B cells [5], CD4+ T helper cells [6], CD8+ T cells [7], and monocytes and 

macrophages of the innate immune system [8].  Onset of T1DM is early, usually 

diagnosed in children and adolescents. Patients afflicted with this condition are entirely 
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dependent upon exogenous sources of insulin for maintaining glucose homeostasis. If 

untreated T1DM is fatal; however, despite insulin supplementation children diagnosed 

with T1DM by age 10 are estimated to have a life expectancy 18 years shorter than the 

non-diabetic population [9]. 

In contrast, Type II Diabetes Mellitus (T2DM) is the result of insufficient 

secretion of insulin by β cells due to insulin resistance [10]. Insulin resistance is 

characterized by the decreased sensitivity of cells to insulin. Insulin resistant cells fail to 

adequately absorb circulating insulin causing hyperglycemia. β cells respond to decreased 

insulin sensitivity by increased insulin secretion resulting in compensatory 

hyperinsulinemia but are still unable to overcome insulin resistance [10]. This condition 

is known as relative insulin deficiency, a hallmark of T2DM. During late stages of 

T2DM, β cell toxicity and exhaustion reduces insulin secretion, leading to insulin 

dependence [11]. 

Unlike T1DM patients that depend solely on exogenous insulin injections, T2DM 

can be managed using drug-based treatment options combined with life-style adjustments 

such as increased physical activity.  Drugs that act to lower blood glucose levels or to 

enhance insulin secretion by β cells are the two primary treatment options. Metformin, 

one of the most commonly prescribed medications for T2DM, acts by suppressing 

glucose production and systemic release by the liver (hepatic gluconeogenesis), and 

enhances insulin sensitivity in muscle and adipose tissue, thereby lowering blood glucose 

[12]. Another class of anti-diabetic drug, sulfonylurea derivatives, acts to enhance insulin 

secretion by β cells to compensate for insulin resistance in the body [12]. Despite these 

treatment options, the relative risk of death for T2DM is two times higher than the non-
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diabetic population, resulting in significant reduction in life-expectancy of individuals 

with T2DM [13]. 

 

1.2 Pancreas Biology 

In mammals, the pancreas is located in the abdomen posterior to the stomach 

attaching to the duodenum. It is an essential organ for nutrient metabolism consisting of 

exocrine and endocrine components.  

  

1.2.1  The Exocrine Pancreas 

By mass the pancreas is primarily an exocrine organ; approximately 98% of the 

pancreas is composed of either acinar or ductal cells whose primary function is nutrient 

digestion. The cells are filled with secretory granules containing precursor proteases that 

are activated once released into the duodenum along with pancreatic lipase and amylase 

[14]. The pancreas responds to signals from the duodenum and secretes digestive 

enzymes along with bicarbonate ions to neutralize the acidic chyme released from the 

stomach [14]. 

 

1.2.2.  The Endocrine Pancreas 

Approximately 2% of pancreas mass is composed of endocrine cells organized in 

small highly vascularized structures called islets of Langerhans. The primary function of 

the islets of Langerhans is maintaining blood glucose homeostasis.  There are five 

different types of endocrine cells within islets: α cells that secrete glucagon, β cells that 

secrete insulin, δ cells that secrete somatostatin, F cells (or PP cells) that secrete the 
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hormone pancreatic polypeptide (PP) and ε cells that secrete ghrelin. In mice, α cells are 

located in the periphery of the islets forming a cortex of cells surrounding the more 

numerous β cells, which are located in the islet core [15] (Figure 1.1).  In contrast, in 

humans β cells do not reside at the center of the islets but are intermingled with α and δ 

cells [15] (Figure 1.1). 

 

1.2.2.1 α cells 

α cells are the second most abundant cells of the islets of Langerhans in both mice 

and humans [15].  Their primary function is to synthesize pro-glucagon, which is 

proteolytically processed and secreted as the hormone glucagon.  Glucagon is a 29 amino 

acid peptide that regulates blood glucose concentration by promoting glycogenolysis and 

gluconeogenesis in the liver [16], processes that increase plasma glucose levels. 

Glucagon acts on cells via G protein-coupled receptors [17], which have been identified 

in multiple tissues including liver, kidney, intestines, pancreas and brain [18].   

Glucagon is synthesized as a much larger precursor peptide called 

preproglucagon. Upon modification in the rough endoplasmic reticulum (RER) it is 

processed to proglucagon and it is further modified to functional glucagon by subtilisin- 

like proprotein convertase 2 (PC2) [19].  The principle factor that regulates glucagon 

secretion is serum glucose concentration [20], with the hyperglycemic state being 

inhibitory and hypoglycemic state being stimulatory. Peptides such as acetylcholine [21], 

epinephrine [22] and norepinephrine [23] have been shown to stimulate glucagon 

secretion, while  somatostatin and insulin secretion have an inhibitory effect on glucagon 

secretion [24,25]. 
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Figure 1.1. Schematic representation of cellular organization and composition of 
murine and human islets of Langerhans. In murine islets β cells are organized in the 
islet core and make up approximately 77% of all endocrine cells, while α cells make up 
approximately 18% of the islet and are located in the islet periphery along with other 
endocrine cells [15]. In contrast, human islets lack an organized core with cells 
intermingled with each other, and are composed of roughly 50% β cells, 35% α cells and 
10% δ cells [15]. 
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1.2.2.2 β cells 

β cells are the most abundant endocrine cells of the pancreas. In mice, 

approximately 77% of all islet endocrine cells are β cells, while in humans islet endocrine 

cells are composed of 50% β cells and a greater proportion of α and δ cells than mice 

[15]. β cells secrete insulin, proinsulin, C-peptide and amylin into the bloodstream. The 

function of β cells is to maintain glucose homeostasis. β cells secrete insulin in response 

to postprandial blood glucose concentration, and in turn insulin enables body cells to 

absorb and metabolize circulating glucose to bring glucose concentrations back to basal 

levels [26]. The biosynthesis of insulin is highly regulated by glucose. Studies have 

shown that proinsulin gene transcription and biosynthesis positively correlates with 

plasma glucose levels [27]. This is indicative of the adaptive response to elevation of 

glucose in the blood.  

The insulin gene is located on chromosome 11 in humans. The full insulin 

transcript codes for the 110 amino acid preproinsulin [28], which is cleaved in the ER to 

generate the 86 amino acid proinsulin [29]. Proinsulin is transported from the ER to the 

Golgi apparatus and subsequently into immature secretory vesicles where it is processed 

to insulin and C-peptide by coordinated action of proprotein convertase (PC) 2 and PC 

1/3 [30]. Within the proinsulin peptide, amino acids 1 to 30 constitute the B chain of 

insulin, amino acids 66 to 86 constitute the A chain of insulin, and residues 31 to 65 form 

the cleaved C-peptide moiety [31]. The monomeric insulin consists of the A chain and B 

chain linked together by disulfide bridges. Thus, insulin and C-peptide are secreted in 

equimolar amounts by β cells. Proinsulin may be is also secreted into the blood stream 

and has greater half-life [32], but a much lower biological potency than insulin [33].  



 
 

 
 

8 

Although β cells respond to many other nutrients in the circulation, including 

amino acids and fatty acids, the extent of insulin secretion in humans is much greater in 

response to glucose when compared with other stimuli. In β cells, glucose metabolites 

trigger insulin secretion into the bloodstream. Glucose enters β cells by the glucose 

transporter 2 (GLUT2) and is phosphorylated by glucokinase (GCK), and initiates 

glycolysis and ATP production [34]. Elevation of the cytosolic ATP to ADP ratio blocks 

ATP-dependent K+ channels, which in turn results in membrane depolarization and 

subsequent opening of voltage gated Ca+ channels [35]. Increase cytosolic Ca+2 

concentrations represents the main trigger initiating the exocytosis of insulin, proinsulin 

and c-peptide containing vesicles [35]. This process is termed glucose-mediated insulin 

secretion (Figure 1.2). 

 

1.2.2.3 δ cells 

In humans, δ cells comprise roughly 8-12% of all islet endocrine cells [15] and 

are responsible for the synthesis and secretion of the hormone somatostatin. Apart from 

the pancreas, somatostatin is also secreted by δ cells in the stomach and neuroendocrine 

cells in the periventricular nucleus of the hypothalamus. Functional forms of somatostatin 

exist as a 28 amino acid peptide or a 14 amino acid peptide. Somatostatin-14 is the C-

terminal portion of somatostatin-28, and represents the primary isoform responsible for 

its physiological function [36].  δ cells predominately secrete the 14 amino acid form, 

while intestinal mucosal cells secrete the 28 amino acid form [37].  

Somatostatin secretion is regulated by glucose [38], glucagon-like peptide 1 

(GLP-1) [39], and gastrin [40].  δ cells express Ryanodine Receptor 3 (RyR3), a Ca+2- 
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Figure 1.2. Schematic representation of glucose-mediated insulin secretion in β cells. 
Glucose enters β cells via GLUT2, and upon its metabolism the cytosolic ATP:ADP ratio 
increases resulting in inhibition of K+ channels. Increased cytosolic concentration of K+ 
results in plasma membrane depolarization and subsequent activation of voltage-gated 
Ca+2 channels. Cellular Ca+2 influx initiates the exocytosis of insulin containing vesicles. 
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channel shown to be responsible for glucose-mediated somatostatin secretion via Ca+2-

induced Ca+2 release mechanism. Glucose metabolites induce Ca+2 secretion from 

internal ER stores, and the resulting increase of cytosolic Ca+2 concentration leads to 

activation of RyR3 Ca+2 channels further increasing the cytosolic Ca+2 concentration, 

which activates exocytosis of somatostatin secretory vesicles [38]. δ cells also express 

Cholycytokinin (CCK) B Receptor (CCKBR), which upon binding with CCK and Gastrin 

promotes somatostatin secretion [40]. Somatostatin inhibits the secretion of several 

hormones such as growth hormone (GH) [41] and thyroid stimulating hormone (TSH) 

[42] from the anterior pituitary, pancreatic hormones [43], and gastro intestinal peptide 

hormones such as vasoactive intestinal peptide (VIP) and gastrin [44].  Somatostatin 

receptors (SSTRs) coupled to Gi/o proteins have been identified in gut endocrine G cells 

[45], and pancreatic endocrine α and β cells [46]. Activation of SSTRs inhibits hormonal 

secretion by suppressing cAMP and Ca+2 influx via voltage-gated Ca+2 channels, thereby 

directly reducing exocytosis [47]. Importantly, somatostatin activity is known to decrease 

glucose-stimulated insulin secretion in β cells.  

 

1.2.2.4 F cells 

F cells (or PP cells) constitute a very small portion of the human islets of 

Langerhans [15]. Their primary function is the synthesis and secretion of PP, a hormone 

known to regulate gastrointestinal motility and secretions. PP acts to reduce the rate of 

gastric emptying [48], gall bladder emptying [49], and pancreatic exocrine secretion [50]. 

PP secretion is promoted by insulin-induced hypoglycemia and direct vagal nerve 

stimulation [51]. Hyperglycemia inhibits PP secretion [52]. 
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1.2.2.5 ε cells 

ε cells synthesize and secrete ghrelin, a hormone which is also produced by D1 

cells residing in the fundus of the stomach. Ghrelin is a 28 amino acid peptide that acts as 

a hunger-inducing hormone by activating the mesolimbic cholinergic-dopaminergic 

circuitry that reinforces rewards such as food [53,54]. Therefore, it is suggested that 

ghrelin antagonists could be a potential treatment for obesity. Furthermore, gherlin has 

been shown promote the release of GH via activation of the G-protein coupled receptor 

GSH-R1a in the anterior pituitary [55].  Ghrelin secretion is primarily regulated by food 

intake.  

 

1.3. Pancreatic Development 

 During the blastula stage of development, the embryo is composed of a single 

layer of epiblast cells which become organized into a three-layered structure during 

gastrulation. Gastrulation occurs when epiblast cells around the newly formed primitive 

streak undergo epiblast to mesenchymal transition and ingress through the primitive 

streak giving rise to three germ layers [56]. Gastrulation is followed by organogenesis, 

where each of the three germ layers, the ectoderm, mesoderm and endoderm, gives rise to 

specific tissues and organs. The ectoderm gives rise to epidermis and cells of the nervous 

system [57], the mesoderm gives rise to the notochord, muscle, bone, cartilage and other 

connective tissues [58-60], and the endoderm gives rise to the respiratory system and 

organs associated with the digestive system such as the pancreas [61].  
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1.3.1.  Formation of the Pancreas from Definitive Endoderm. 

 Prior to organogenesis, the endoderm undergoes extensive patterning along the 

anterior-posterior axis. The definitive endoderm gives rise to the primitive gut tube, 

which becomes specified into distinct organ domains along the dorsal-ventral and 

anterior-posterior axes into foregut, midgut and hindgut in response to signaling events 

initiated by the surrounding mesoderm [61]. Factors secreted by mesodermal tissues such 

as the notochord including Activin and FGF2 allow for pancreas and liver fate 

determination from the gut endoderm [61]. Both exocrine and endocrine components of 

the pancreas arise from a common precursor population residing in the primitive gut [62]. 

In mice, the first morphological signs of pancreas formation occur at embryonic day (E) 

9.0, when the pancreas emerges as two epithelial buds from opposite ends of the foregut 

endoderm [63].  These buds contain multipotent pancreatic progenitor cells (MPCs) that 

will ultimately give rise to all three pancreatic lineages [64]. Lineage-tracing experiments 

have shown that MPCs retain the potential to develop all pancreatic lineages until E12.5. 

Between E9.0 to E12.5 the MPCs residing in the ventral and dorsal pancreatic epithelia 

proliferate and expand the progenitor population [65]. Both pancreatic buds also undergo 

expansion during this period and invade the surrounding mesenchyme, forming a multi-

layered stratified epithelium. Between E11.5 and 12.5 the two buds merge together 

during rotation of the gut [66]. At E12.5 the pancreas undergoes branching 

morphogenesis forming tubular structures. At this stage the pancreas  consists of two cell 

types: the epithelial tips contain MPCs which eventually give rise to acinar progenitor 

cells by E13.5, while the tubular or trunk regions are comprised of cells that will form 

either ducts or endocrine cell types [66]. 
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 Differentiation of endocrine pancreas cells is first seen in the dorsal bud, where 

glucagon-positive cells emerge around E9.5, and insulin positive cells emerge around 

E10.5 in both buds [67]. E12.5 to E15.5 is a period in which pancreas progenitors 

undergo extensive proliferation and terminal differentiation into endocrine or acinar cell 

fates [66]. Also during this phase of endocrine differentiation, the pancreatic endocrine 

cells begin to organize into cell clusters, which eventually coalesce post-natally to form 

islets.  

 Similar to mice, in humans, the pancreas forms from the fusion of dorsal and 

ventral pre-pancreatic buds of the primitive gut. The dorsal pancreatic bud is first evident 

morphologically at day 26 post-conception (dpc) and the fusion of the buds occurs by 56 

dpc [68]. Endocrine differentiation appears to begin around 8 weeks post-conception 

(wpc). Furthermore, human endocrine cells start coalescing into islet-like cell clusters 

around 11-14 wpc [68], and undergo a final reorganization after 21 wpc with 

intermingled β and α cells [69].  

 

1.3.2. Role of Transcription Factors in Pancreatic Development 

 Transcription factors (TFs) are crucial components of gene regulatory network; 

they interact with each other as well as other proteins to control mRNA and 

consequentially, protein expression.  During development TFs control the expression of 

genes necessary for cell fate specification and cellular differentiation. The formation of 

the pancreas depends on specific signaling events, which regulate TF activity. Cell type-

specific regulatory networks, consisting of interactions between TFs and extrinsic signals, 
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guide the pancreatic progenitor population in a context-dependent manner to their 

programmed fate.  

 

1.3.2.1 SOX17 

 Sex Determining Region Y (SRY) – High Mobility Group Box (HMG-box) 17 

(SOX17) is part of a family of transcription factors involved in regulation of embryonic 

development and cell fate determination. SOX17 belongs to the Sox-subgroup F along 

with SOX7 and SOX18. The HMG-box is the DNA-binding domain composed of three 

alpha helices separated by loops, a highly conserved domain among eukaryotic species 

[70].  

SOX17 is essential for the development of definitive endoderm: in Sox17 

knockout mice the definitive endoderm is depleted and the embryonic gut and all its 

associated organs fail to form [71]. Sox17 binds to the minor groove of DNA at the 

ATTGT consensus motif and regulates the transcription of genes involved in definitive 

endoderm specification during gastrulation [72]. The C-terminus of Sox17 has been 

shown to bind to β-catenin, and this is important for transcription of several endodermal 

genes including Hepatocyte Nuclear Factor (HNF) 1β, Forkhead box protein (FOX) A1 

and FOXA2. [73].   

 

1.3.2.2 Early Pancreatic Transcription Factors (HNF1β, HNF6, PDX1, SOX9 and 

PTF1a) 

The earliest transcription factors that mark the MPCs residing in the ventral and 

dorsal pancreatic buds are HNF1β, HNF6, Pancreatic and Duodenal Homeobox 1 
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(PDX1), SOX9 and Pancreas-specific Transcription Factor 1a (PTF1a) [66]. During 

mouse development, Hnf1β is expressed in the foregut endoderm at E8 prior to the 

formation of pancreatic endoderm [74], and at later stages of pancreatic development its 

expression is maintained exclusively in duct cells [75]. Hnf1β regulates the expression of 

Hnf6, which is an important regulator of Pdx1 expression, a key early pancreatic 

progenitor marker [76]. It has been suggested that sequential activation of Hnf1β, Hnf6 

and Pdx1 gives rise to pancreatic multipotent progenitor populations [76], whereas Sox9 

is implicated with MPC proliferation [77].  

Lineage tracing experiments in mice have demonstrated that Pdx1 expressing 

multipotent cells give rise to all pancreatic cell types [78]. Pdx1 marks the pre-pancreatic 

tissue of the endoderm since its expression is initiated at E8.5, prior to the morphological 

changes associated with the development of the ventral and dorsal pancreatic buds [79].  

Pdx1 is essential for early pancreatic development and precursor cell expansion. Pdx1-

null mice showed impaired pancreatic development by E10.5 and lack a pancreas at birth 

[80]. At later stages of pancreatic development Pdx1 is expressed in β cells [81]. Apart 

from the pancreas, Pdx1 is expressed in the other endoderm-derived endocrine cells such 

as gastric enteroendocrine cells of the developing gut [82,83]. For example, G cells are 

absent in Pdx1-null mice, suggesting that Pdx1 is important for the development of 

gastrin-secreting cells [83].  

Similar to Pdx1, pancreas-specific Sox9 knock-down results in loss of MPC 

proliferation [78]. Sox9 has also been implicated in the maintenance of MPC identity 

through direct regulation of key MPC genes including Hnf1β, FoxA2 and Hnf6 [84]. 

Another TF crucial for the commitment and expansion of MPCs is PTF1a. Ptf1a-
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deficient cells do not remain committed to the pancreatic fate and adopt an intestinal fate 

in vivo [85]. Furthermore, Pdx1 and Ptf1a have the ability to guide duodenal precursors 

to pancreatic fate when expressed ectopically [85].  

 

1.3.2.3 NGN3 

 In early pancreatic development, MPCs have the potential to give rise to all three 

pancreatic cell types including endocrine cells. Neurogenin 3 (NGN3), a basic helix loop 

helix (bHLH) TF, is necessary for endocrine specification of MPCs.  NGN3-positive 

precursor cells give rise to all five pancreatic endocrine cell types [62]. Ngn3-null mice 

are devoid of pancreatic endocrine cells but demonstrate normal acinar and ductal 

development [86]. NGN3 directly induces the expression of other TFs that are important 

for pancreatic endocrine differentiation, including paired-box containing gene (PAX) 4, 

Insulinoma-associated 1 (INSM1) and regulatory factor X (RFX) 6 [87]. Expression of 

Ngn3 occurs in a biphasic manner in the developing mouse pancreas: Ngn3 expression 

first occurs at E9.5 and is downregulated by E10.5 and then Ngn3 expression peaks again 

around E12.5 and diminishes permanently from pancreatic endocrine progenitors by E18 

[88]. In contrast, the human embryonic pancreas demonstrates a single phase of NGN3 

expression which is maintained from 8 wpc up to 21 wpc [89].  

 

1.3.2.4 Additional Pancreatic Endocrine Transcriptional Factors 

 Following NGN3 activation, several downstream TFs are activated that guide 

pancreatic endocrine progenitors to one of the five cell fates. Insm1 is expressed early in 

the endocrine specification pathway and Pax4 is expressed shortly after and has a more 
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specific role. This is supported by studies showing that Insm1-deficient mice demonstrate 

a deficiency in all endocrine cell types [90], whereas Pax4-null mice only show 

diminished numbers of β and δ cells, along with increased numbers of α and ε cells [91]. 

Thus, Pax4 serves to specify NGN3-positive progenitors to the β and δ cell fates, while 

repressing the α and ε cell fates.  

Another important TF that directs Ngn3-positive endocrine specifications is Arx. 

Ngn3-positive progenitors express both Pax4 and Arx, but Pax4 expression restricts 

endocrine progenitors to β and δ cell fates while Arx expression restricts them to α cell 

fate [91]. This is supported by studies showing Arx-null mice having the opposite 

phenotype of Pax4-null mice: complete loss of α cells but an increase in both β and δ cell 

types [92]. In addition to enhancing the expression of certain TFs, repression of specific 

TFs is required to maintain the phenotype of mature endocrine cells. For example, the 

continual repression of Arx expression in β cells is important for the maintenance of β 

cell phenotype and identity. The repression of Arx expression is maintained by Nkx2.2 

and Nkx6.1 [93,94]. 

Following Pax4 expression, Pax6 plays an important role for further maturation 

of α, β and δ cells. Pax6-null mice show a complete loss of α cells, and diminished 

numbers of β and δ cells, and an increase in ghrelin-positive cells [95]. Pax6 expression 

is maintained in mature α, β and δ cells and it serves to regulate insulin, glucagon and 

somatostatin gene transcription [95].  

Another late stage endocrine marker is NKX6.1, the expression of which is 

downstream of NKX2.2. Studies investigating human endocrine progenitor cells have 

shown that NKX6.1-positive precursors give rise to insulin-positive and somatostatin-
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positive cells, while NKX6.1-negative precursors give rise to greater proportions of 

glucagon-positive cells and lower proportion of β and δ cells [96]. This suggests that 

NKX6.1-positive progenitors have the ability to adapt either β or δ cell fates at the 

expense of the α cell fate. However, upon maturation NKX6.1 expression is maintained 

exclusively in β cells [97]. Nkx2.2 has been shown in mice to be necessary for the 

promotion of terminal β cell differentiation [98] and suppression of δ cell phenotype by 

repressing somatostatin gene expression [99] (Figure 1.3). 

β and δ cells have common regulators during development, and also show 

common patterns of TF expression in mature cell types (Figure 1.3). For instance, PDX1 

expression is restricted to mature β cells and a subpopulation of δ cells. In rat, Pdx1 and 

Pax6 have been shown to bind to the upstream somatostatin enhancer to promote gene 

transcription [100]. In β cells PDX1 directly binds to the insulin gene promoter resulting 

in activation of gene expression [101]. Another mature endocrine TF, insulin gene 

enhancer protein 1 (ISL1) enhances transcription of both insulin and somatostatin by 

binding to insulin enhancer elements and the somatostatin promoter, respectively [102]. 

MafA and Nkx6.1 are considered hallmarks of the mature β cell phenotype since 

they are uniquely expressed in β cells. These genes are also crucial for mature β cell 

function. MafA-null mice show reduced transcription of insulin, Pdx1 and Glucose 

transporter type 2 (Glut2) [94]. Similarly, Nkx6.1 directly controls the expression of 

genes that maintain the β cells function, including Glut2, the proinsulin-to-insulin 

convertase enzyme PC1, proteins associated with insulin protein folding and maturation 

such as endoplasmic reticulum oxidorecutin 1-β (ERO1-β), and the islet-specific zinc  
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Figure 1.3. Summary of transcription factor-mediated pancreatic endocrine 
specification during mammalian development. NGN3 activates the transcription of 
PAX4, which guides progenitor cells towards β and δ cell fates at the expense of other 
endocrine cell fates. Downstream of PAX4, PAX6 also promotes β and δ cell phenotype 
and its expression is maintained in both mature cell types. Whereas, NKX2.2 suppresses 
δ cell specification and promotes terminal β cell differentiation. Consequentially, mature 
δ cells do not express NKX2.2 and NKX6.1. 
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transporter (ZnT-8) important for insulin secretion [97]. Nkx6.1-null mice show impaired 

insulin biosynthesis and insulin secretion, and a rapid onset of hyperglycemia and 

hypoinsulinemia [97].   

  

1.4.  Stem Cells 

Stem cells are primitive cells with the ability to differentiate into a mature 

specialized cell types or self-renew and maintain their primitive phenotype [103]. There 

are two main categories of stem cells: pluripotent stem cells, and adult stem cells.  

Embryonic stem cells and induced pluripotent stem cells (iPSC - first derived from 

murine fibroblast by ectopic expression of the pluripotency associated factors Oct4, 

Sox2, c-Myc, and Klf4 [104]) have the ability to generate cells corresponding to all three 

embryonic germ layers. In contrast, adult stem cells typically reside within postnatal 

tissues and demonstrate a comparatively restricted differentiation potential, and act 

primarily to repair and replenish adult tissues [105]. 

 

1.4.1.  Human Embryonic Stem Cells (hESC) 

 
The first human embryonic stem cells (hESC) were derived from blastocysts in 

1998 by James Thompson [106]. hESCs can generate mesoderm, endoderm and 

ectoderm-derived cell types following spontaneous embryoid body-induced 

differentiation  in vitro and teratoma formation in vivo, thus demonstrating their 

pluripotent potential [107]. To permit stem cell experimentation, optimal culture 

conditions have been developed enabling hESC cell lines to be maintained in vitro 

indefinitely without loss of self-renewal or differentiation potential [108-110]. Due to 
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their unlimited potential to differentiate into all mature human cells types, hESC 

represent an exciting tool for future cell therapy applications.  

 

 

1.4.2. Human Bone-Marrow derived Multipotent Stromal Cells  

Multipotent stromal cells (MSCs) were first derived from the bone marrow of 

adult organisms[111]. MSCs, also known as mesenchymal stem cells, are flibroblast-like 

cells that grow adherent to plastic and can differentiate into osteoblasts, adipocytes and 

chondrocytes [112]. In addition to residing in the bone-marrow compartment [113], 

MSCs have been localized to the connective tissues of most organs including skeletal 

muscle [114], adipose tissue[115], lung [116], kidney [117], pancreas [118] and the 

umbilical cord [119]. It has been demonstrated that MSCs are present in adult organs 

throughout the body in close association with pericytes [118]. The perivascular 

association of MSCs in adult tissues may be due to their physiological role of localizing 

to sites of tissue injury and inducing tissue regeneration and repair. MSCs have been 

shown to enhance endogenous repair in various animal models such as lung disease 

[120], kidney disease [117], diabetes [121], and graft versus host disease with minimal 

signs of long-term engraftment following injection in vivo [122]. Despite low tissue 

engraftment, the regenerative effects of MSCs suggests that they regulate tissue repair by 

creating a regenerative microenvironment through the secretion of soluble paracrine 

factors rather than differentiating to replace cells within damaged tissue [123].  

Progenitor subpopulations of MSCs can be purified from the non-hematopoietic 

component of the human BM based on high aldehyde-dehydrogenase (ALDH) activity, 
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an enzymatic function conserved in endothelial, hematopoietic and mesenchymal 

progenitors [121,124]. ALDH high cells have been shown to have higher regenerative 

potential than unsorted BM cell populations [121,125,126]. 

 

1.5. Cell-Based Therapies for Diabetes Mellitus 

1.5.1. Islet Transplantation  

Islet-transplantation therapy, commonly known as the Edmonton Protocol, was 

developed using islets isolated from cadaveric donor pancreas [127].  These isolated 

islets were transplanted into severely type 1 diabetic patients via the hepatic portal vein 

and immunosuppressants were administered to protect the newly transplanted cells. All 

seven patients transplanted became insulin-independent in the first year of transplantation 

[127].  This procedure provided the proof-of-principle that insulin independence can be 

achieved using cell-based therapeutics for the treatment of diabetes.  However, the severe 

shortage of cadaveric donors paired with the requirement of islets from approximately 

two to three donors per transplant precludes the widespread use of such therapy. 

 

1.5.2. Differentiation of Embryonic Stem Cells to Islet Cells.  

Due to the limited supply of cadaveric islets it has become a priority to generate 

alternative sources of insulin-producing cells for transplantation. Pluripotent cells 

including hESC and iPSC have the potential to provide an unlimited source for cell-based 

regenerative therapies. Given the unlimited potential and proliferative capacity of hESC, 

efforts have been made to drive their differentiation towards the β cell fate by attempting 

to recapitulate signals present during embryonic development [128-131].  
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1.5.2.1 Growth Factor Based Differentiation 

Based on growth factor signaling during embryonic development, step-wise 

protocols have been developed to produce islet cell populations from pluripotent human 

cells, including glucose-responsive β cells [129,131].  During gastrulation, Wnt and TGF-

β secretion from the primitive streak is essential for specification of the definitive 

endoderm [132,133]. In particular, signaling events triggered by Nodal, a member of 

TGF-β family, are critical for definitive endoderm specification [134,135]. The first 

reports of definitive endoderm differentiation from hESC [136] used the TGF-β member 

Activin A as a substitute for Nodal, since it is readily available and binds to the same 

receptors as Nodal [137].  Expression of the definitive endoderm genes CXCR4, SOX17 

and FOXA2 were enhanced after 5 day treatment with Activin A. To generate insulin-

positive β cells, a landmark study developed a stepwise protocol in which definitive 

endoderm cells were subsequently treated with FGF10 for 3 days to generate equivalent 

of primitive gut tube, followed by noggin, KAAB-cyclopamine and retinoic acid for 3 

days to generate PDX1-positive pancreatic progenitors, and finally cultured in DMEM 

supplemented with B27 until 20 days post-definitive endoderm differentiation when C-

peptide levels were detected [131]. Although these studies established that recapitulation 

of embryonic growth factor signaling can be used to guide hESC differentiation, the 

clinical application of these findings was limited by low efficiency of c-peptide positive 

cell differentiation (7%) that were not able to respond to glucose stimulation and the 

generation of polyhormonal cells [129]. 

Building from these initial studies, numerous protocols for β-cell generation have 

been developed using various combinations of growth factors, mitogens and small 
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molecules that induce pleiotropic effects via activation of multiple, interacting signaling 

pathways. Although these protocols induce pancreatic endocrine differentiation from 

hESC and accomplish in 25 days what would take 21 weeks in humans, they are limited 

as they produce heterogenous populations containing polyhormonal cells, with severe 

restriction of cell proliferation from the onset of differentiation [129,131]. Furthermore, 

these protocols do not achieve functional maturation of endocrine cells in vitro, requiring 

up to 3 months transplantation in vivo to detect glucose-mediated insulin secretion [130]. 

Although recent protocols have demonstrated the ability to generate monohormonal 

insulin-positive cells that are exhibit glucose responsiveness after differentiation in vitro, 

they are only 20% as efficient at secreting insulin as adult islet β cells [138]. Thus, 

despite recent advances, protocols are still unable to recapitulate appropriate cell 

maturation, yielding cells unable to adequately secrete insulin in response to elevated 

blood glucose. 

 

1.5.2.2 Transcription Factor Based Differentiation 

Previous studies have established the importance of endoderm specification of 

hES cells to achieve efficient pancreatic endocrine differentiation [129]. Attempts to 

differentiate pancreatic endocrine cells from embryonic stem cells without endoderm 

specification led to the development insulin-expressing neural cell precursors [139,140]. 

Transcription factor-based protocols represent an alternate strategy to generate pancreatic 

cell types from hESCs that may lead to more efficient outcomes.  

The use of transcription factor-based strategies for pancreatic differentiation has 

been recorded extensively in literature. For instance, ectopic expression of Pdx1, Ngn3 
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and Mafa to reprogram pancreatic exocrine cells to β cells has been previously 

established [141]. Other strategies involve ectopic Ptf1a expression. Ptf1a expression in 

Xenopus endoderm induced the formation of endocrine pancreatic tissue but also led in 

the generation of exocrine fate [142]. Similarly, ectopic overexpression of Ptf1a in 

murine ES cells promoted the generation of exocrine, ductal and endocrine cell fates 

[143]. Previous research has demonstrated that transcription factor-mediated 

differentiation can generate proliferative, homogeneous, and lineage-restricted definitive 

endoderm progenitors (DEPs), that are receptive to signals for further cell-type-specific 

maturation. Definitive endoderm specification from hESC was achieved by ectopic 

expression of the transcription factor SOX17 in pluripotent stem cells [144].  Building on 

the concept of transcription factor-based differentiation, recent studies by the Séguin lab 

assayed for the ability of islet-specific transcription factors (PDX1, NGN3, PAX4) to 

specify pancreatic endocrine cells from definitive endoderm progenitors (Sattin and 

Watts, manuscript in preparation). These studies demonstrated that ectopic expression of 

either PAX4 or PDX1 was not sufficient to specify pancreatic cell types from hESC or 

DEPs. In contrast, sequential activation of SOX17 and NGN3 in hESC cells resulted in 

cells that express hallmarks of pancreatic β cell precursors (PAX4, PDX1, NKX6.1, 

NKX2.2, INSULIN). Importantly, NGN3 expression in the absence of SOX17-mediated 

DE specification did not promote this phenotype. Similarly, other studies have shown that 

ectopic expression of Ngn3 in Xenopus laevis endoderm promotes β and δ cell 

development [145]. Collectively, these data provide the proof-of-principle that NGN3 

expression can direct definitive endoderm cells towards the pancreas endocrine lineage. 
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1.5.3  Islet Regeneration Mediated by Human MSCs 

A second strategy to restore islet function is the use of adult stem cells to 

stimulate endogenous new islet formation to restore the β-cell mass. Transplantation of 

human bone-marrow (BM) derived stem cells has been shown to induce islet-

regeneration and reverse hyperglycemia in streptozotocin (STZ)-treated non-obsese 

diabetic severely compromised immune-deficient (NOD/SCID) mice [146]. Following 

MSC transplantation, STZ-treated NOD/SCID mice showed an increase in serum insulin 

levels and increased β cell mass [121]. Transplanted MSCs showed engraftment in the 

pancreas in vivo but did not exhibit endocrine characteristics, suggesting the rescue of 

hyperglycemia in STZ-treated mice was due to the improved function of recipient islets 

and endocrine cell proliferation [146]. It was subsequently shown that MSCs induced the 

formation of small islet clusters, suggesting the induction of new islet formation in STZ-

treated mice [147].  

Although the precise mechanism underlying endogenous islet regeneration is 

unknown, it has been suggested that MSCs release factors and cytokines that induce adult 

pancreatic endocrine progenitors to form new islets [121]. This idea is supported by 

lineage-tracing experiments that demonstrate that the adult pancreas contains multipotent 

progenitors that can give rise to mature endocrine cells [148]. Recent studies have 

demonstrated that adult BM-derived MSCs induce islet neogenesis within CK19-positive 

pancreatic ductal regions leading to CK19-positive cells found within new islets 

[121,147].  Collectively, these studies suggest that MSCs guide endocrine progenitor 

populations residing in the ductal regions of adult pancreas to differentiate into mature 

islets. 
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The islet-regenerative function of MSCs has been shown to vary considerably 

from donor to donor, leading to the functional classification of MSC samples as 

regenerative or non-regenerative based on their ability to induce islet neogenesis 

following in vivo transplantation [126]. Transcriptome analysis of these subset has 

established their distinct signatures: regenerative MSCs demonstrate increased expression 

of insulin-like growth factor binding protein 5 (IGFBP5), downstream effectors of Wnt-

signaling such as Wnt1-inducible-signaling pathway protein 1 (WISP1) and secreted 

frizzled-related protein 1 (SFRP1), epidermal growth factor receptor (EGFR) ligands 

such as amphiregullin (AREG), modulators of the transforming growth factor beta (TGF-

β) and also showed increased secretion of pro-angiogenic proteins and show decreased 

secretion of anti-inflammatory cytokines than non-regenerative MSCs [121]. These 

signaling pathways and their effectors are implicated as potential regulators of MSC-

induced islet regeneration [121]. Interestingly, several of these candidate effectors are 

essential components of protocols developed to differentiate pluripotent stem cells to 

pancreatic endocrine cells, including TGF-β/activin signaling [129,131]. Furthermore, 

EGF treatment has been shown to promote islet function and reverse hyperglycemia after 

onset of diabetes in NOD mice [149]. Furthermore, EGFR signaling has been shown to 

induce β cell mass expansion in mice [150]. The increased expression and secretion of 

factors implicated with enhanced islet-function by islet-regenerative MSCs highlights the 

importance of paracrine signaling in MSCs-induced islet regeneration. 
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1.6. Strategies for Transcription Factor Based Differentiation of hESC  

1.6.1. SOX-17 ERT2 System 

Previous studies in Séguin lab used constitutive transcription factor 

overexpression models to study stem cell differentiation, which differ from the inducible 

transgene expression strategy undertaken by the current study. Building on SOX17-

mediated differentiation of hESC to DEPs, it was necessary to refine our strategy to more 

accurately recapitulate the developmental pattern of transcription factor activation by 

generating inducible cell lines that allow to down-regulation of SOX17 following DEP 

specification.  hESC lines with inducible SOX17 expression (CA2-pCAGG-SOX17-

ERT2) were previously generated in the Séguin lab. SOX17-ERT2 is a fusion protein of 

SOX17 and a mutant form of human estrogen receptor (ERT2) that does not bind to its 

endogenous ligand (17β-estradiol) at physiological concentrations but will bind to 4-

hydroxytamoxifen (4OHT) at low concentrations,promoting ERT2 nuclear localization.. 

In these cells, SOX17-ERT2 is constitutively expressed under the control of strong 

cytomegalovirus (CMV) early enhancer/chicken β actin promoter (CAGG), and upon 

treatment of cells with 4OHT it becomes localized to the nucleus allowing SOX17 to 

function as a transcription factor.  

 

1.6.2. NGN3 piggyBac System 

In order to control differentiation downstream of SOX17 activation, we made use 

of a second gene expression system that would confer inducible expression of NGN3. We 

employed the transposon-based Tet-inducible piggyBac system [151] for NGN3 (PB-

NGN3) which is comprised of three separate vectors: 1) TetO-NGN3-IRES-βGEO, 2) 
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pCAGG-rtTA, and 3) CMV-transposase element.  While the first two vectors become 

stably integrated into the genome, the vector expressing the transposase element is 

transiently expressed and enables the incorporation of the other two vectors.  The PB-

NGN3 system utilizes the Tet-on system of transgene induction in which reverse 

tetracycline transcriptional activator (rtTA) is constitutively expressed and upon binding 

to doxycycline binds to the operator region upstream of NGN3-IRES-βGEO. Thus, 

expression of NGN3 is induced following treatment of cells with doxycycline.   

 

1.6.3. Strategies for Enhancing Maturation of Endocrine Precursors Cells 

Our group has previously shown that human MSC induce endogenous islet 

regeneration when injected into immune deficient mice following streptozotocin-

mediated β-cell destruction [121]. Although the precise mechanisms responsible for the 

induction of islet regeneration remain a topic under intense investigation, it has been 

established that MSCs promote islet regeneration in vivo with minimal long-term tissue 

engraftment, suggesting the role of MSC-secreted secreted paracrine factors in promoting 

islet regeneration from resident endocrine progenitors [121].  We therefore extrapolated 

from these findings and developed in vitro strategies using MSC-conditioned media 

(MSC-CM) to generate a microenvironment to promote pancreatic endocrine maturation 

of hESC-derived precursor cells. 

 

1.7. Rationale 

Definitive endoderm specification from hESC has been achieved by ectopic 

expression of the transcription factor SOX17 [144]. Furthermore, preliminary studies 
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show that sequential expression of SOX17 and NGN3 in hESCs (using a genetic strategy 

that conferred constitutive transgene expression) results in cells that express hallmarks of 

pancreatic β-cell precursors. Importantly, pancreatic differentiation following ectopic 

NGN3 expression was dependent on SOX17-mediated definitive endoderm 

differentiation. We therefore sought to use the SOX17-ERT2 and PB-NGN3 transgenic 

cell lines to develop a protocol to create pancreatic endocrine precursor populations from 

hESC. Previous studies demonstrated that the generation of functional β cells from 

hESCs is enhanced after transplantation in vivo [130], demonstrating the importance of 

the cell microenvironment on differentiation, development and maturation. We predict 

that following NGN3-mediated endocrine specification of hESC, maturation will be 

required to promote the transition from endocrine precursors to functional and mature 

endocrine cells in vitro.  Because the microenvironmental factors that control the final 

stages of endocrine cell maturation are largely unknown, we propose that soluble factors 

secreted by islet-regenerative human BM-derived MSCs will accelerate endocrine cell 

maturation. 

 

1.8.  Hypothesis 

Hypothesis I: NGN3-mediated differentiation of SOX17-definitive endoderm will 

produce pancreatic endocrine precursor cells.  

Hypothesis II: SOX17/NGN3 differentiated cells will be receptive to maturation signals 

secreted by islet-regenerative MSCs facilitating the production of mature pancreatic 

endocrine cell. 

 



 
 

 
 

31 

1.9. Objectives 

Objective I: Develop a transcription factor-based protocol to differentiate hESC to 

differentiate pancreatic endocrine-cell precursors via sequential activation of SOX17 

(definitive endoderm specification) and NGN3 (endocrine precursor specification). 

Objective II: Evaluate the effects of islet-regenerative human MSC-conditioned media in 

directing the maturation of endocrine precursors in vitro. 
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CHAPTER 2: 

Materials and Methods 
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2.1.  Generation of NGN3 expression constructs 

The open reading frame (ORF) corresponding to the human NGN3 gene was 

amplified by PCR using primers designed to incorporate the endogenous Kozac sequence 

and to add attB recombination sites to permit Gateway® cloning (Life Technologies). An 

entry clone was generated by a recombination reaction between the pDONRTM221 vector 

(Life Technologies) and the attB-NGN3 PCR product. The NGN3 ORF was introduced 

into the piggyBac (PB) transposon system, which allows for efficient transgene delivery 

in hESC [151] by Gateway® cloning. The resultant Tet-inducible piggyBac system [151] 

for NGN3 expression (PB-NGN3) was comprised of three separate vectors: 1) TetO-

NGN3-IRES-βGEO, 2) CAGG-rtTA, and 3) CMV-transposase element. The first two 

vectors become stably integrated into the genome because the vector expressing the 

transposase element is transiently expressed and enables the incorporation of the other 

two vectors.  The PB-NGN3 transgene utilizes the Tet-on system in which reverse 

tetracycline transcriptional activator (rtTA) is constitutively expressed and upon binding 

to doxycycline is activated and binds to the operator region upstream of NGN3-IRES-

βGEO. Following cloning, the PB-NGN3-IRES-βGEO construct was verified by 

sequencing (Figure 2.1). 

 

2.2.  Generation of transgenic SOX17-ERT2; PB-NGN3 inducible cell lines 

hESC lines with inducible SOX17 activity (CA2-SOX17-ERT2) were previously 

generated by the Séguin lab. In order to generate a transgenic cell line with inducible 

expression of both SOX17 and NGN3, the PB-NGN3-IRES-βGEO (PB-NGN3) construct 

was introduced along with the PB-rtTA and PB-transposase constructs into CA2-SOX17- 
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Figure 2.1. Alignment of the human NGN3 coding sequence with that of the PB-NGN3 
transgene. Missing base pairs (N) in sequencing results were verified by aligning the 
unknowns to their corresponding chromatograph. 
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ERT2 cells by electroporation (170 V, 1050 µF). rtTA integration was selected for by 

blasticidin resistance (5µg/ml) and clonal cell populations were expanded from single 

colonies. PB-NGN3 plasmid integration was selected for by treating replica well with 

doxycycline (24h; 0.5 µg/mL) to induce PB-Tet transcription which confers neomycin 

resistance through the expression of beta-galactosidase neomycin fusion protein (βGEO), 

and transgene-positive cells were selected by G418 resistance (50 µg/mL). 

Undifferentiated cells of the corresponding clonal populations in replica wells were then 

expanded and cryopreserved. 

 

2.3. Cell culture 

All hESC, including parental CA2, SOX17-ERT2, and SOX17-ERT2; PB-NGN3 

were maintained using established protocols [106].  Cells were grown on γ-irradiated 

mouse embryonic fibroblast feeders (MEFs; SickKids ESC Facility) in KnockOut 

Dulbecco’s Modified Eagle Medium (KO-DMEM; Life Technologies) supplemented 

with 15% KnockOut serum replacement (Life Technologies), 2 mM GlutaMAX, 0.1 mM 

nonessential amino acids (NEAA), 0.5 mM 2-mercaptoethanol, and 10 ng/mL FGF2 (all 

from Life Technologies). Transgenic cell populations were maintained in media 

supplemented with Puromycin to select for the SOX17-ERT2 transgene (Bioshop, 0.8 

µg/mL) or G418 (50 µg/ml) to select for the PB-NGN3 transgene. For activation of 

SOX17-ERT2, 4-hydrotamoxifen (4OHT) was administered (0.2 µM). For activation of 

PB-NGN3, doxycycline (DOX) was administered (0.5 µg/mL). When cultures had 

attained 75% confluence, cells were passaged by enzymatic dissociation (0.05% Trypsin-

EDTA; Life Technologies) at split ratio of 1:12 (every 4-6 days). All protocols were 
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reviewed and approved by the CIHR Stem Cell Oversight Committee (SCOC) as well as 

the Research Ethics Board (REB) at the University of Western Ontario. 

Human BM-derived MSCs were cultured in serum-free MSC media 

(STEMPRO® MSC SFM; Life Technologies), supplemented with STEMPRO® MSC 

SFM Supplement CTSTM (Life Technologies) and 2mM L-glutamine. When cultures 

attained 75% confluence, cells were passaged by enzymatic dissociation (0.5% Trypsin-

EDTA; Life Technologies) and seeded at a density of 10000 cells/cm2. 

Human ductal epithelial carcinoma cells (PANC-1) [152] were maintained in 

DMEM + 10% Fetal Bovine Serum (FBS). PANC-1 cells were passaged every 3 days (at 

approximately 75% confluence) by enzymatic dissociation (0.5% Trypsin-EDTA; Life 

Technologies).  

 

2.4. Generation of MSC Conditioned Media (CM) 

Human BM-derived MSC, previously screened for islet regenerative capacity 

after transplantation in vivo [126] were thawed from vials cryopreserved at passage 3 and 

maintained in culture to passage 6 in serum-free MSC media. At each passage, 

conditioned media was harvested (10 mL/T75 flask) following approximately 48 h of 

culture, and immediately stored at -20°C. For hESC-derived cultures, equal volumes of 

CM from MSC at passages 3-6 were combined, and supplemented with an additional 

30% fresh serum free MSC media (STEMPRO® MSC SFM; Life Technologies). 
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2.5. Quantification of PANC-1 cell proliferation  

Human ductal epithelial carcinoma cells (PANC-1) were plated at a density of 

8,820 cells/cm2 (in 96 well plates; 3,000 cells/well) and cultured in DMEM + 10% FBS 

for 4 h to permit cell adhesion.  Media was then replaced with MSC-CM, DMEM + 10% 

FBS (positive control), unconditioned serum free MSC media + supplement, or 

unconditioned serum free MSC media without supplement (negative control). After 72 h 

cell proliferation was quantified using the CyQUANT® cell proliferation assay kit 

(Invitrogen) according to the manufacturer’s instructions.   

 

2.6. Gene expression analysis 

Total RNA was isolated from cell cultures at specified time points using TRIzol® 

Reagent (Life Technologies) according to the manufacturer’s instructions and quantified 

by spectrophotometry on a Nanodrop 2000 (Thermo Scientific).  cDNA was reverse 

transcribed from 0.5 µg of input RNA with the iScript cDNA synthesis kit (Bio-Rad 

Laboratories).  mRNA expression was assessed by quantitative real-time PCR using the 

BioRad CFX384.  PCR reactions were performed in triplicate using 2.5 ng of cDNA per 

reaction and 312 nM forward and reverse primers (sequences provided in Table 2.1) with 

2X SsoFast EvaGreen Supermix (Bio-Rad Laboratories) for 40 cycles of amplification 

(95°C 10 sec melt; 60°C 30 sec annealing/elongation). For phenotypic analysis, gene 

specific primers were designed to attain efficiency values between 90-110% and melt 

curve analysis was used to confirm primer specificity. mRNA expression was determined 

by relative quantification (ΔΔCt) corrected for input using the housekeeper gene Beta-

glucuronidase (GUSB) and normalized relative to undifferentiated hESC. 
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Table 2.1. Primer sequences. 
Gene  Sequence (5’ to 3’) 
AMY Forward AATACACAACAACAAGGACGGACATC 
 Reverse TCCAAATCCCTTCGGAGCTAAA 
βGEO Forward CCTGCTGATGAAGCAGAACA 
 Reverse TTGGCTTCATCCACCACATA 
CCKBR Forward TTCACCAGAACGGGCGTTG 
 Reverse TGGAAGTTGCACGTAGCAGC 
CER1 Forward ACAGTGCCCTTCAGCCAGACT 
 Reverse ACAACTACTTTTTCACAGCCTTCGT 
CK19 Forward TGAGTGACATGCGAAGCCAA 
 Reverse TCAATTCTTCAGTCCGGCTGGT 
CXCR4 Forward CACCGCATCTGGAGAACCA 
 Reverse GCCCATTTCCTCGGTGTAGTT 
DLX5 Forward CGCCTCGCTGGGATTG 
 Reverse CTTGATCTTGGATCTTTTGTTCTGAA 
GCG Forward AAGCATTTACTTTGTGGCTGGATT 
 Reverse TGATCTGGATTTCTCCTCTGTGTCT 
GUSB Forward ACGCAGAAAATATGTGGTTGGA 
 Reverse GCACTCTCGTCGGTGACTGTT 
INS Forward AAGAGGCCATCAAGCAGATCA 
 Reverse CAGGAGGCGCATCCACA 
NANOG Forward TGATTTGTGGGCCTGAAGAAA 
 Reverse GAGGCATCTCAGCAGAAGACA 
NGN3-
att  
(cloning) 

Forward GGGGACAAGTTTGTACAAAAAAGCAGGCTGCATGACGC
CTCAACCCTCGGG 

 Reverse GGGGACCACTTTGTACAAGAAAGCTGGGTTTCACAGAA
AATCTGAGAAAG 

NKX2.2 Forward CGGGCCGAGAAAGGTATGG 
 Reverse CTTTGAGCGCGTGACATGG 
NKX2.5 Forward CCCAGCCAAGGACCCTAGA 
 Reverse GCGTTGTCCGCCTCTGTCT 
NKX6.1 Forward CACACGAGACCCACTTTTTCC 
 Reverse CCCAACGAATAGGCCAAACG 
OCT4 Forward TGGGCTCGAGAAGGATGTG 
 Reverse GCATAGTCGCTGCTTGATCG 
PAX4 Forward GGGTCTGGTTTTCCAACAGAAG 
 Reverse TCAGCCCCTGGGAAGCA 
PAX6 Forward CCAGAAAGGATGCCTCATAAAGG 
 Reverse TCTGCGCGCCCCTAGTTA 
PDX1 Forward AAGTCTACCAAAGCTCACGCG 
 Reverse GTAGGCGCCGCCTGC 
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PECAM Forward GGAAAAGGCCCCAATACACTT 
 Reverse TAAAACGCGGTCCTGTTCTT 
SOX3 Forward CCAGTCGTGTCGCGTCTGT 
 Reverse GCACACCTGGCTATAAATTAACATTG 
SST Forward CCCCAGACTCCGTCAGTTTC 
 Reverse TCCGTCTGGTTGGGTTCAG 
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PB-NGN3 transgene expression was quantified in clonal hESC populations 

(SOX17ERT2; PB-NGN3) by absolute quantifications. Primers were designed to amplify 

a 112 bp sequence specific to the βGEO transgene (Table 2.1). mRNA concentrations 

values of SOX17-ERT2; PB-NGN3 clonal cell lines were quantified using a 6 point 

standard curve generated from the PB-NGN3 construct (start = 33 ng, 1:10 serial 

dilutions).  

 

2.7.  Immunostaining 

Cells were fixed in 4% (w/vol) paraformaldehyde (PFA) for 10 min  at room 

temperature, rinsed twice in phosphate buffered saline (PBS), and blocked for 1 h in 

PBST (PBS + 0.1% Triton X-100 (Sigma)) + 5% species specific serum (blocking 

buffer). Primary antibodies diluted in blocking buffer were incubated overnight at 4⁰C 

followed by secondary antibody incubation for 1 h at room temperature. For nuclear 

staining, 1:1000 Hoechst 33258 (Sigma Aldrich) was added in the last 10 min of the 

secondary antibody incubation period. The following antibodies and dilutions were used: 

anti-NGN3 1:100 (Santa Cruz, SC-13793), anti-ISL1 1:50 (University of Iowa 

Hybridoma Bank, clone 39.4D5), anti-PAX6 1:100 (University of Iowa Hybridoma 

Bank, clone PAX6), anti-INS 1:350 (Sigma-Aldrich, Inc., I2018), anti-SST 1:200 (Beta 

Cell Biology Consortium, AB1985), Alexa Fluor 488 donkey anti-goat IgG 1:400 

(Molecular Probes), Alexa Fluor 488 goat anti-mouse IgG 1:400 (Molecular Probes) and 

Texas Red® horse anti-mouse (1:200).  

Imaging was performed using a Leica DMI6000B Inverted Microscope equipped 

with a Leica DFC360 FX High Resolution Camera. Images were analyzed in Leica 
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Application Suite Advanced Fluorescence (LAS AF) software. The mouse βTC6 cell line 

(β cells expressing T-antigen of simian virus 40 (SV40) [153]) was used as a positive 

control (Appendix 1), and cells incubated without primary antibody were used as 

negative control (Appendix 2) to assess the efficiency of staining. Although βTC6 cells 

are primarily a β insulinoma cell line, they are also known to contain cells that express 

small amounts of somatostatin protein [153], and therefore served as an appropriate 

positive control for all antibodies used in this study. For all immunostaining, the exposure 

time for each fluorescence channel was optimized using βTC6 cells, and the exposure 

time was standardized accordingly. Image acquisition parameters for each antibody 

including exposure and gain settings were kept constant to facilitate direct comparison 

between images.  

 

2.8. β-galactosidase staining 

 Cells were fixed in 0.25% (vol/vol) glutaraldehyde for 10 min at room 

temperature and rinsed twice in PBS. Cells were incubated with X-gal solution (0.2% 

(w/vol) X-gal + 2mM MgCl2
 + 5mM K4Fe(CN)6 + 5mM K3Fe(CN)6) overnight at room 

temperature. Imaging was performed using Leica DMI6000B Inverted Microscope 

equipped with a Leica DFC295 Colour Camera. Images were analyzed in Leica 

Application Suite Advanced Fluorescence (LAS AF) software. 

 

2.9. Statistical analysis 

Statistical analyses were performed using GraphPad Prism version 6. All data 

were expressed as mean ± SEM, and appropriate statistical tests were chosen based on 
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the number of groups and the number of independent variables (see figure legends for 

detail).   p<0.05 was considered significant.  
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CHAPTER 3: 

Results 
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3.1.  Characterization of CA2 SOX17ERT2; PB-NGN3 clonal cell lines 

To generate hESC lines with inducible expression of both SOX17 and NGN3, the 

piggyBac transposon system was used to introduce doxycycline-inducible NGN3 

expression to a cell line carrying the SOX17-ERT2 transgene (Figure 3.1A). G418-

resistant clonal cell populations were isolated and expanded (12 clones total). Expression 

of the PB-NGN3 construct was confirmed in each clonal cell line by quantifying mRNA 

expression of the βGEO element (transcribed along with NGN3 from the tetO promoter) 

following 48 h treatment of cells with DOX (0.5 µg/ml) (Figure 3.1B).  In all SOX17-

ERT2; PB-NGN3 clonal cell lines, transgene expression was exclusively detected 

following DOX treatment, confirming the functionality of the piggyBac system. Based on 

absolute qRT-PCR quantification of the PB-NGN3-βGEO transcript, clones were 

designated as either high or low PB-NGN3 (Figure 3.1B). All subsequent experiments 

were conducted using one representative SOX17-ERT2/PB-NGN3 low cell line (clone F) 

and one representative SOX17-ERT2; PB-NGN3 high cell line (clone G).  

In order to verify protein induction, X-gal staining was performed to detect β-

galactosidase activity (Figure 3.1C). β-galactosidase activity was detected in both 

SOX17-ERT2; PB-NGN3LOW and SOX17-ERT2/PB-NGN3HIGH cells following DOX 

treatment.  Furthermore, NGN3 protein induction in representative low and high clonal 

cell lines was verified by immunocytochemistry (Figure 3.2A and B). Like β-

galactosidase activity, NGN3 protein induction was only detected in both clonal cell lines 

following DOX treatment. 
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Figure 3.1. Characterization of clonal hESC lines with inducible NGN3 expression. 
A) Schematic illustration of the SOX17-ERT2 and piggyBac (PB)-NGN3-βGEO 
transgene expression systems. βGEO-specific primer annealing sites used to quantify PB 
transgene expression are indicated by blue arrows. B) Quantification of PB transgene 
expression by qRT-PCR in SOX17-ERT2; PB-NGN3 clonal cell lines with or without 
DOX treatment (48 h). C) X-gal staining to detect β-galactosidase activity in SOX17-
ERT2; PB-NGN3 low and high cell lines with or without DOX treatment (72 h). Scale bar 
equals 100µm. White arrowheads indicate cell colonies. 
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Figure 3.2. Immunolocalization of NGN3. Immunocytochemistry of NGN3 in A) 
SOX17-ERT2; PB-NGN3 low and B) SOX17-ERT2; PB-NGN3 high clonal cell lines with 
or without DOX treatment (72 h). Scale bar equals 100µm.  
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3.2. Differentiation of pluripotent hESCs to definitive endoderm progenitors 

(DEP) 

Based on our preliminary data and previous description of stepwise pancreatic 

differentiation [136], SOX17-ERT2; PB-NGN3LOW/HIGH cells were subjected to an initial 5 

days of SOX17 activation to initiate DE differentiation. To confirm that this period was 

sufficient for DEP specification, SOX17-ERT2; PB-NGN3LOW and SOX17-ERT2; PB-

NGN3HIGH cells were harvested following 5 days SOX17 activation (4OHT treatment; in 

the absence of DOX-induction of NGN3) and the expression of DE markers was 

assessed. In both cell lines, 4OHT-mediated SOX17 activation significantly induced the 

expression of known DE markers CXCR4 and DLX5 mRNA when compared to 

untreated cells (Figure 3.3). Changes in CER1 expression in both cell lines were not 

significantly different from untreated cells after 5 days of 4OHT treatment (Figure 3.3). 

Collectively, these results suggest the induction of DE phenotype. 

 

3.3. NGN3 expression directs SOX17-DEPs to a pancreatic endocrine fate 

Having established our ability to drive SOX17-mediated DE differentiation, we 

next assessed the effect of ectopic NGN3 expression in DE progenitors. NGN3 

expression was induced by DOX treatment in SOX17-ERT2; PB-NGN3LOW and SOX17-

ERT2; PB-NGN3HIGH clones subsequent to 5 days of SOX17 activation, and changes in 

cell phenotype were assessed over 12 days. We verified that the expression of PB-NGN3 

transgene was maintained during the differentiation by quantifying mRNA levels of the 

βGEO element after 12 days of DOX treatment (0.5 µg/ml) (Figure 3.4A).  
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Figure 3.3. Characterization of SOX17-induced definitive endoderm differentiation 
in SOX17-ERT2;PB-NGN3 cell lines. Real-time PCR analysis of definitive endoderm 
markers following 5 days of SOX17 activation in SOX17-ERT2; PB-NGN3LOW and 
SOX17-ERT2; PB-NGN3HIGH cells. Gene expression is corrected for input based on 
expression of GUSB and expressed relative to undifferentiated hESC.  Data are presented 
as the mean ± SEM (n = 4). Statistical analysis was performed using one-tailed Student’s 
t-test; * indicates significant difference compared to control (untreated) cells (p<0.05).   
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Figure 3.4. SOX17-ERT2; PB-NGN3LOW and SOX17-ERT2; PB-NGN3HIGH clones 
show loss of pluripotency-associated factors following NGN3 induction. A) 
Quantification of PB transgene expression by qRT-PCR in SOX17-ERT2; PB-NGN3 
clonal cell lines after 12 days of DOX treatment.  B) Representative images 
demonstrating the morphology of SOX17-ERT2; PB-NGN3LOW and SOX17-ERT2; PB-
NGN3HIGH cell lines following 3, 6, 9 or 12 days of NGN3 induction post SOX17-
mediated DE induction (indicated as Day 0). As cells remained proliferative following 
transgene induction, cultures were passaged following 5 days of SOX17 induction 
(indicated as Day 0) and at day 6 (indicated by blue arrows). White arrowheads indicate 
individual cell colonies. Scale bar equals 100µm. C) Real-time PCR analysis of 
pluripotency markers OCT4 and NANOG over 12 days of NGN3 induction. Gene 
expression is corrected for input based on expression of GUSB and expressed relative to 
Day 0 of NGN3 induction (DE progenitor cells). Data are presented as the mean ± SEM 
(n=3). For each gene, statistical analysis was performed using One-way ANOVA with 
Tukey’s multiple comparisons post-hoc test. * indicates significant difference (P<0.05) 
from expression at day 0 for each gene; X indicates significant difference from 
expression at day 3 for each gene; Δ indicates significant difference from expression at 
day 6 for each gene.  
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After 3 days of NGN3 induction, both SOX17-ERT2; PB-NGN3 LOW and SOX17-

ERT2; PB-NGN3HIGH cells retained a high nucleus to cytoplasm ratio and grew within 

tightly packed colonies, features characteristic of both hESC and DE progenitor cells. 

However, following 9 days of NGN3 induction, SOX17-ERT2; PB-NGN3HIGH cells 

appeared larger in size, and did not grow within densely packed cell colonies when 

compared to the starting population of DE progenitors (Day 0) (Figure 3.4B). In contrast, 

SOX17-ERT2; PB-NGN3LOW cells did not show overt morphological changes over the 12 

days of NGN3 induction (Figure 3.4B).   

To assess the effect of NGN3 induction on the expression of pluripotency-

associated transcription factors, expression of OCT4 and NANOG were assessed by qRT-

PCR at multiple time points over 12 days of NGN3 induction. Both SOX17-ERT2; PB-

NGN3 clonal cell lines showed a significant reduction in both OCT4 and NANOG 

mRNA expression within 3 days of NGN3 induction. However, SOX17-ERT2; PB-

NGN3LOW cells demonstrated a progressive reduction in pluripotency-associated gene 

expression over the 12 days of NGN3 induction while SOX17-ERT2; PB-NGN3HIGH cells 

showed a sharp reduction at day 3 with no subsequent change in gene expression levels 

from day 3 to day 12 (Figure 3.4C). Taken together, these data suggest that both low and 

high levels of NGN3 expression in SOX17-DEPs result in cell differentiation and loss of 

pluripotency-associated markers.  

To determine whether NGN3 activation stimulated pancreatic endocrine cell 

differentiation, we assessed the expression of transcription factors associated with early 

pancreatic endocrine differentiation (PAX4, PAX6 NKX6.1 and NKX2.2), β cell 

phenotype (PDX1), δ cell phenotype (CCKBR), β and δ cell phenotype (ISL1), and ductal 
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epithelial cell phenotype (CK19). In addition, mRNA transcript levels for pancreatic 

endocrine hormones insulin (INS), glucagon (GCG), somatostatin (SST) and the exocrine 

pancreatic enzyme amylase (AMY) were assessed using qRT-PCR. SOX17-ERT2; PB-

NGN3LOW and SOX17-ERT2; PB-NGN3HIGH cells showed divergent patterns in the 

expression of early pancreatic endocrine markers (Figure 3.5A). SOX17-ERT2; PB- 

NGN3HIGH cells showed a significant induction of PAX4 expression, a direct target of 

NGN3 [154] crucial for β and δ cell differentiation [91], after 3 days of DOX treatment 

with expression returning to baseline by day 6 (Figure 3.5A). SOX17-ERT2; PB-

NGN3HIGH cells also showed early induction of PAX6 expression, a transcriptional factor 

critical for the development of all pancreatic endocrine subtypes and also expressed in all 

mature pancreatic endocrine cells [89], after 6 days of NGN3 induction when compared 

to undifferentiated controls (Figure 3.5A). In contrast, SOX17-ERT2; PB-NGN3LOW cells 

did not show significant induction of these genes (Figure 3.5A). NKX6.1 expression, a 

transcription factor implicated in early β and δ cell progenitor fates [96] and with mature 

β cell function [89,97], was significantly upregulated in both clones at day 12 of NGN3 

induction (Figure 3.5A). Interestingly, the expression of NKX2.2, a TF important for 

terminal differentiation of β cells and suppression of the δ cell phenotype [99], was not 

significantly induced by ectopic NGN3 expression in either clone (Figure 3.5A). These 

data suggest that level of NGN3 expression in SOX17-DEPs is important in the induction 

of early pancreatic endocrine genes.  

The expression of markers of mature endocrine cell types also varied between 

NGN3 high and low-expressing cell lines. SOX17-ERT2; PB-NGN3HIGH but not SOX17-

ERT2; PB-NGN3LOW cells showed increased expression of the β cell marker PDX1 [155]  
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Figure 3.5. NGN3 induction in SOX17 DEPs promotes expression of pancreatic 
endocrine markers. Real-time PCR analysis of genes associated with pancreatic 
endocrine development and function over 12 days of NGN3 induction post SOX17-
mediated DE differentiation (indicated as day 0). A) Markers of early pancreatic 
endocrine differentiation, B) markers of β cell and/or δ cell fates, C) marker of pancreatic 
ductal epithelia, and D) pancreatic hormones (INS, GCG, SST) and exocrine marker 
(AMY). Gene expression is corrected for input based on expression of GUSB and 
expressed relative to undifferentiated hESC. Data are presented as mean ± SEM (n=3). 
Statistical analysis was performed using two-way ANOVA with Tukey’s multiple 
comparisons post-hoc test. * indicates significant difference (P<0.05) from day 0 (SOX17 
definitive endoderm cells) for each cell line as indicated by colour. 
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after 12 days of NGN3 induction (Figure 3.5B). However, INS gene expression was not 

significantly upregulated in either cell population during the 12 day period of NGN3 

induction (Figure 3.5B).  In contrast, SOX17-ERT2; PB-NGN3LOW cells showed a 

significant induction of the δ cell markers SST and CCKBR [40] (Figure 3.5B & D). The 

expression of neither the α cell marker glucagon (GCG) nor the exocrine pancreas marker 

amylase (AMY) [156] were induced by NGN3 induction in either cell line (Figure 3.5D). 

Interestingly, ISL1, a TF that co-regulates both SST and INS gene expression [102,157], 

was also not significantly induced in either cell line (Figure 3.5B). Unexpectedly, we 

noted the induction of CK19 expression, a marker of pancreatic duct cells [158], 

following 6 days of NGN3 induction in SOX17-ERT2; PB-NGN3LOW cells but not in  

SOX17-ERT2; PB-NGN3HIGH cells (Figure 3.5C). Collectively, these data suggest that 

the level NGN3 expression directs endocrine pancreatic differentiation such that high 

NGN3 expression promoted β cell-like characteristics, while lower NGN3 expression 

promoted a δ cell-like expression profile with some ductal cell characteristics. 

The induction of PAX6 and ISL1 protein were subsequently assessed by 

immunocytochemistry in SOX17-ERT2; PB-NGN3LOW (Figure 3.6 and 3.7) and SOX17-

ERT2; PB-NGN3HIGH (Figure 3.8 and 3.9) cell lines at multiple time points during 12 

days of NGN3 induction following SOX17-mediated DE specification. Interestingly, in 

SOX17-ERT2; PB-NGN3LOW cells small clusters of PAX6-positive (Figure 3.6) and 

ISL1-positive (Figure 3.7) cells were detected after 9 and 12 days of NGN3 induction 

even though changes in gene expression were not significant (Figure 3.5). We likewise 

observed clusters of SOX17-ERT2; PB-NGN3HIGH cells showing convincing nuclear 

localization of PAX6 (Figure 3.8) and ISL1 (Figure 3.9) after 9 and 12 of NGN3 
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Figure 3.6. NGN3 induction in SOX17-ERT2; PB-NGN3LOW cells induces areas of 
PAX6 positive cells. Representative images demonstrating immunocytochemistry of the 
pancreatic endocrine development transcription factor PAX6 after A) 6, B) 9 and C) 12 
days of NGN3 induction post SOX17-mediated DE differentiation. Areas with positive 
immunoreactivity were magnified (indicated by boxes). Arrows indicate areas positive 
for nuclear localization of PAX6. Scale bar equals 100µm. n = 3. 
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Figure 3.7. NGN3 induction in SOX17-ERT2; PB-NGN3LOW cells induces areas of 
ISL1 positive cells. Representative images demonstrating immunocytochemistry of the 
pancreatic endocrine development transcription factor ISL1 after A) 6, B) 9 and C) 12 
days of NGN3 induction post SOX17-mediated DE differentiation. Areas with positive 
immunoreactivity were magnified (indicated by boxes). Arrows indicate representative 
areas positive for nuclear localization of ISL1. Scale bar equals 100µm. n = 3. 
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Figure 3.8. NGN3 induction in SOX17-ERT2; PB-NGN3HIGH induces areas of PAX6 
positive cells. Representative images demonstrating immunocytochemistry of the 
pancreatic endocrine development transcription factor PAX6 after A) 6, B) 9 and C) 12 
days of NGN3 induction post SOX17-mediated DE differentiation. Areas with positive 
immunoreactivity were magnified (indicated by boxes). Arrows indicate representative 
areas positive for nuclear localization of PAX6. Scale bar equals 100µm. n = 3. 
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Figure 3.9. NGN3 induction in SOX17-ERT2; PB-NGN3HIGH cells induces areas of  
ISL1 positive cells. Representative images demonstrating immunocytochemistry of the 
pancreatic endocrine development transcription factor ISL1 after A) 6, B) 9 and C) 12 
days of NGN3 induction post SOX17-mediated DE differentiation. Areas with positive 
immunoreactivity were magnified (indicated by boxes). Arrows indicate representative 
areas positive for nuclear localization of ISL1. Scale bar equals 100µm. n = 3. 
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induction. However, we observed heterogeneity in both clonal cell lines, with a 

significant number ISL1 and PAX6-negative cells observed at both day 9 and 12 of 

NGN3 induction. Although we did not observe a homogeneous population of 

differentiated cells, we noted that the proportion of positive cells was greater in later 

stages of NGN3 induction (days 9 and 12) than at earlier stages (day 6). Considering that 

PAX6 and ISL1 are crucial for the development and specification of all islet cells 

[95,159], these data collectively suggest that expression of NGN3 in SOX17-DEPs 

directs a pancreatic endocrine phenotype. 

 We also performed immunocytochemistry for INS (Figure 3.10) and SST 

(Figure 3.11 and 3.12) in both SOX17-ERT2; PB-NGN3 cell lines after 12 days of 

NGN3 expression. We did not detect INS protein in either clone during the course of 

NGN3 induction. These data support our findings showing INS mRNA expression was 

not significantly induced in either SOX17-ERT2; PB-NGN3LOW or SOX17-ERT2; PB-

NGN3HIGH cells during the course of NGN3 induction (Figure 3.5).  Also, we did not 

detect convincing cytoplasmic immunofluorescence for SST in SOX17-ERT2; PB-

NGN3LOW cells over 12 days of NGN3 induction (Figure 3.11), even though we detected 

a significant induction of SST mRNA by day 12 of NGN3 expression (Figure 3.5). 

Similarly, we did not detect convincing cytoplasmic staining for SST in SOX17-ERT2; 

PB-NGN3HIGH cells over 12 days of NGN3 induction (Figure 3.12).  The fluorescence 

detected in both SOX17-ERT2; PB-NGN3 clones is not characteristic of positive 

cytoplasmic hormone staining as detected by SST immunocytochemistry in βTC6 cells 

(Figure 3.11A). 
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Figure 3.10. SOX17-ERT2; PB-NGN3 cells do not express insulin protein after 12 
days of NGN3 induction. Immunocytochemistry of insulin in: A) βTC6 cells as positive 
control, and B) SOX17-ERT2; PB-NGN3LOW and C) SOX17-ERT2; PB-NGN3HIGH cells 
after 9 and 12 days of NGN3 induction. Scale bar equals 100 µm. n = 4.  
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Figure 3.11. SOX17-ERT2; PB-NGN3LOW cells do not express SST protein after 12 
days of NGN3 induction. Representative images demonstrating immunocytochemical 
detection of SST in: A) βTC6 cells as positive control, and SOX17-ERT2; PB-NGN3LOW 
cells after B) 9 and C) 12 days of NGN3 induction. Areas with positive immunoreactivity 
were magnified (indicated by boxes). Scale bar equals 100 µm.  n = 3.  
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Figure 3.12. SOX17-ERT2; PB-NGN3HIGH cells express do not express SST protein 
after 12 days of NGN3 induction. Representative images demonstrating 
immunocytochemical detection of SST in: SOX17-ERT2; PB-NGN3HIGH cells after A) 9 
and B) 12 days of NGN3 induction. Areas with apparent immunoreactivity were 
magnified (indicated by boxes). Scale bar equals 100 µm. n = 3.  
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We also attempted immunocytochemistry for NKX2.2 and NKX6.1 but were unable to 

obtain convincing images due to high levels of non-specific background staining. 

 

3.4. Development of in vitro strategy to assess the effects of MSC-secreted factors 

on the differentiation of SOX17-ERT2; PB-NGN3 cells 

In order to determine the effects of MSC-conditioned media on our SOX17-ERT2; 

PB-NGN3 endocrine precursor populations, it was necessary to first assess whether the  

serum-free MSC media would support hESC growth without inducing spontaneous 

differentiation. Therefore, we cultured undifferentiated SOX17-ERT2 hESCs (no 4OHT 

treatment) in serum-free MSC media for 5 days and compared them to cells maintained 

for the same period in standard culture conditions (hESC media). Cells maintained under 

either culture condition demonstrated morphological characteristics associated with 

pluripotent hESC, such as high nuclear to cytoplasmic ratio and dense colonies with 

sharp contrasting borders (Figure 3.13A). No morphological signs of spontaneous 

differentiation were observed for either condition. We next assessed the expression of 

pluripoency markers (OCT4, NANOG), a neuroectodermal marker (SOX3), early 

mesoderm marker (NKX2.5), and endothelial marker (PECAM) in undifferentiated 

SOX17-ERT2 cells and SOX17-ERT2 cells treated with 4OHT over 5 days culture in 

hESC media or MSC media (Figure 3.13B). Under both conditions, cells maintained 

expression of OCT4 and NANOG mRNA, as expected for both undifferentiated hESC 

and DEPs. Furthermore, no induction of PECAM or NKX2.5 was detected under either 

condition, suggesting the absence of mesodermal differentiation (Figure 3.13B). Culture 

of undifferentiated SOX17-ERT2 cells or SOX17-DEPs in MSC  
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Figure 3.13. Culture of hESC and SOX17-DEPs in serum-free MSC media does not 
promote spontaneous differentiation. A) Representative images of undifferentiated 
SOX17-ERT2 cells cultured in either hESC media or MSC serum-free media. Scale bar 
equals 100µm; arrowheads indicate individual cell colonies. B) Real time-PCR analysis 
of pluripotent markers (OCT4, NANOG), ectodermal (SOX3) and mesodermal markers 
(NKX2.5, PECAM) expression in SOX17-ERT2 cells with or without 4OHT treatment 
(0.2 µM) grown in either hESC media or MSC serum-free media for 5 days. Gene 
expression is corrected for input based on expression of GUSB and expressed relative to 
undifferentiated hESC. Data are presented as the mean ± SEM (n = 3). Statistical analysis 
was performed using one-tailed Student’s t-test; * indicates significant difference 
between cells cultured in hESC media and MSC media (p<0.05).   
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media showed a significant decrease in the expression of SOX3 compared to cells 

maintained in hESC media (Figure 3.13B), suggesting the possible suppression of 

neuroectodermal lineage potential. Nonetheless, SOX17-ERT2 cells cultured in MSC 

media showed no sign of spontaneous differentiation based on the analyses performed. 

 

3.5. Islet-regenerative MSC-conditioned media promoted PANC-1 cell 

proliferation in vitro 

Previous studies characterizing the islet-regenerative potential of human bone-

marrow derived MSCs were performed using MSCs expanded in culture conditions 

containing bovine serum [121,126]. Since bovine serum is known to induce the 

spontaneous differentiation of hESCs, MSCs were propagated in serum-free media to 

generate conditioned media (CM) for hESC experiments. Consequently, we assessed 

whether MSC retained their proliferation-inducing characteristics when cultured under 

serum-free conditions based on their previously established ability to promote the 

proliferation of PANC-1 human pancreatic carcinoma cells in vitro [121]. As previously 

observed under serum containing conditions [121], PANC-1 cells showed a significant 

induction in cell proliferation when cultured in CM generated by regenerative MSC 

compared to non-regenerative MSC, serum-free MSC media controls, or PANC-1 cell 

basal media (DMEM + 10% bovine serum) (Figure 3.14B). Thus, conditioned media 

generated from regenerative MSCs generated under serum-free conditions retained 

proliferative-inducing capacity on PANC-1 cells in vitro. 
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Figure 3.14. Islet-regenerative MSC-conditioned media promotes PANC-1 cell 
proliferation.  A) Representative images of regenerative and non-regenerative MSC 
morphology 24h after passaging (passage 4). Scale bar equals 100 µm. B) PANC1 cell 
proliferation as quantified using the Cyquant cell proliferation assay. PANC-1 cells were 
cultured in either basal media (DMEM + 10% FBS; positive control), unsupplemented 
MSC media (negative control), MSC serum-free media or MSC-conditioned media from 
regenerative or non-regenerative MSCs. Data are presented as the mean ± SEM (n = 4). 
Statistical analysis was performed using one-way ANOVA with Tukey’s multiple 
comparisons post-hoc test.  Statistical significance (p<0.05) is indicated by the use of 
different letters between groups; same letters indicate that groups are not significantly 
different from each other. 
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3.6. Culture of SOX17-ERT2; PB-NGN3 cells in regenerative MSC-CM does not 

promote pancreatic endocrine maturation 

In order to assess the effects of islet regenerative MSC-CM on endocrine cell 

differentiation in vitro, SOX17-ERT2; PB-NGN3LOW and SOX17-ERT2; PB-NGN3HIGH 

cells were cultured in regenerative MSC-CM, non-regenerative MSC-CM or basal MSC 

media alone during NGN3-mediated specification of SOX17-DE progenitors. The 

expression of genes associated with pancreatic endocrine development and function were 

subsequently quantified by qRT-PCR. We first assessed differentiation when SOX17-

ERT2; PB-NGN3 cells were cultured in MSC-CM (or control conditions) from days 3-12 

of NGN3 induction, following 5 days of SOX17-mediated DE differentiation. SOX17-

ERT2; PB-NGN3LOW cells cultured in islet-regenerative MSC-CM from days 3-12 of 

NGN3 induction did not show induction of markers of pancreatic endocrine cell 

maturation such as PDX1, ISL1, INS or SST compared to cells maintained in non-

regenerative MSC-CM or MSC media alone (Figure 3.15). In fact, we observed a 

significant reduction of NKX6.1 and SST gene expression in regenerative MSC-CM 

culture when compared to NGN3-induction alone, suggesting suppression of endocrine 

differentiation (Figure 3.15). Similarly, SOX17-ERT2; PB-NGN3HIGH cells cultured in 

islet-regenerative MSC-CM from day 3 to day 12 of culture did not significantly alter the 

expression of pancreatic endocrine markers compared to cells maintained in non-

regenerative MSC-CM or MSC media alone (Figure 3.16).  

We next assessed the effects of islet regenerative MSC-CM on SOX17-ERT2; PB-

NGN3 cell differentiation during later stages of NGN3 induction (conditioned media 

added at days 6-12 or at days 9-12). Interestingly, SOX17-ERT2; PB-NGN3LOW cells  
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Figure 3.15. Culture of SOX17-ERT2; PBNGN3LOW cells in regenerative MSC 
conditioned media (CM) does not promote pancreatic endocrine maturation. Real 
time-PCR analysis of genes associated with pancreatic endocrine development and 
function over 12 days of NGN3 induction post SOX17-mediated DE differentiation 
(indicated as day 0). Cells were cultured in regenerative MSC-CM (green lines), non-
regenerative MSC-CM (blue lines), or MSC media alone (black lines) during days 3 to 12 
of NGN3 induction.  Levels of gene expression are compared to those from transgene-
mediated cell differentiation under standard conditions (data duplicated from Figure 3.5 
to facilitate direct comparison). A) markers of pancreatic endocrine differentiation, B) 
markers of β and/or δ cell fates, C) marker of pancreatic ductal epithelia, and D) 
pancreatic hormones (INS, GCG, SST) and the exocrine marker (AMY). Gene expression 
is corrected for input based on expression of GUSB and expressed relative to 
undifferentiated hESC (value set to 1). Data are presented as mean ± SEM (n = 3). 
Statistical analysis was performed using two-way ANOVA with Tukey’s multiple 
comparisons post-hoc test. X indicates significant difference (P<0.05) at each time point 
between culture conditions. 
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Figure 3.16. Culture of SOX17-ERT2; PBNGN3HIGH cells in regenerative MSC 
conditioned media (CM) does not promote pancreatic endocrine maturation. Real 
time-PCR analysis of genes associated with pancreatic endocrine development and 
function over 12 days of NGN3 induction post SOX17-mediated DE differentiation 
(indicated as day 0). Cells were cultured in regenerative MSC-CM (green lines), non-
regenerative MSC-CM (blue lines), or MSC media alone (black lines) during days 3 to 12 
of NGN3 induction.  Levels of gene expression are compared to those from transgene-
mediated cell differentiation under standard conditions (data duplicated from Figure 3.5 
to facilitate direct comparison). A) markers of pancreatic endocrine differentiation, B) 
markers of β and/or δ cell fates, C) marker of pancreatic ductal epithelia, and D) 
pancreatic hormones (INS, GCG, SST) and the exocrine marker (AMY). Gene expression 
is corrected for input based on expression of GUSB and expressed relative to 
undifferentiated hESC (value set to 1). Data are presented as mean ± SEM (n = 3). 
Statistical analysis was performed using two-way ANOVA with Tukey’s multiple 
comparisons post-hoc test. X indicates significant difference (P<0.05) at each time point 
between culture conditions 
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cultured in regenerative MSC-CM from days 9-12 of NGN3 induction showed a 

significant upregulation of the early endocrine markers PAX6 and NKX6.1 when 

compared to both the non-regenerative MSC-CM and MSC media controls (Figure 3.17). 

Furthermore, NKX2.2 expression was significantly higher in islet regenerative MSC-CM 

than non-regenerative MSC-CM (Figure 3.17). These data suggests that low NGN3 

expressing cells are receptive to MSC-CM at later stages of differentiation. However, no 

induction of mature endocrine markers PDX1, ISL1, INS or SST was observed (Figure 

3.17). In fact, suppression of SST expression was observed following MSC-CM exposure 

compared to transgene-mediated differentiation alone. This suggests that regenerative 

MSC-CM promotes an early pancreatic precursor fate in SOX17-ERT2; PB-NGN3LOW 

cells rather than directing functional endocrine maturation. Moreover, SOX17-ERT2; PB-

NGN3HIGH cells did not show significant changes in the expression of pancreatic 

endocrine markers when exposed to regenerative MSC-CM either from days 6-12 or days 

9-12 (Figure 3.18). Collectively these data suggest that factors secreted by islet-

regenerative MSCs did not efficiently promote endocrine maturation of SOX17-NGN3 

pancreatic precursors. 
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Figure 3.17. Culture in the presence of regenerative MSC conditioned media (CM) 
during later stages NGN3-mediated differentiation of SOX17-ERT2; PB-NGN3LOW 
cells enhanced the expression of early pancreatic endocrine markers. Real time-PCR 
analysis of regulatory genes of pancreatic endocrine development and function: A) 
markers of pancreatic endocrine differentiation, B) markers of β and/or δ cell fates, C) 
marker of pancreatic ductal epithelia, and D) pancreatic hormones (INS, GCG, SST) and 
the exocrine marker (AMY) assessed following 12 days of NGN3 induction in the 
presence or absence of MSC-CM. . Cells were cultured in regenerative MSC-CM (green 
lines), non-regenerative MSC-CM (blue lines), or MSC media alone (black lines) for 
either days 6-12 or days 9-12 of NGN3 induction.  Levels of gene expression are 
compared to those following 12 days of NGN3 induction under standard conditions (data 
duplicated from Figure 3.5 to facilitate direct comparison). Gene expression is corrected 
for input based on expression of GUSB and expressed relative to undifferentiated hESC. 
Data are presented as the mean ± SEM (n=3). Statistical analysis was performed using 
one-way ANOVA with Tukey’s multiple comparisons post-hoc test; * indicates statistical 
difference between the culture conditions (p<0.05). 
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Figure 3.18. Culture in the presence of regenerative MSC conditioned media (CM) 
during later stages NGN3-mediated differentiation of SOX17-ERT2; PB-NGN3HIGH 
cells enhanced the expression of early pancreatic endocrine markers. Real time-PCR 
analysis of regulatory genes of pancreatic endocrine development and function: A) 
markers of pancreatic endocrine differentiation, B) markers of β and/or δ cell fates, C) 
marker of pancreatic ductal epithelia, and D) pancreatic hormones (INS, GCG, SST) and 
the exocrine marker (AMY) assessed following 12 days of NGN3 induction in the 
presence or absence of MSC-CM. Cells were cultured in regenerative MSC-CM (green 
lines), non-regenerative MSC-CM (blue lines), or MSC media alone (black lines) for 
either days 6-12 or days 9-12 of NGN3 induction.  Levels of gene expression are 
compared to those following 12 days of NGN3 induction under standard conditions (data 
duplicated from Figure 3.5 to facilitate direct comparison).. Gene expression is corrected 
for input based on expression of GUSB and expressed relative to undifferentiated hESC. 
Data are presented as the mean ± SEM (n=3). Statistical analysis was performed using 
one-way ANOVA with Tukey’s multiple comparisons post-hoc test; * indicates statistical 
difference between the culture conditions (p<0.05).   
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CHAPTER 4: 

Discussion 
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4.1.  NGN3 expression in SOX17-DEPs specifies endocrine cell fate 

This study demonstrates that sequential activation of SOX17 and NGN3 in 

pluripotent hESCs promotes pancreatic endocrine specification. During development, the 

induction of NGN3 induces the expression of pancreatic endocrine transcription factors 

including PAX4, PAX6, ISL1 and NKX6.1 [89]. Also, clonal cell lines with high levels of 

ectopic NGN3 expression showed a significant induction in the mRNA expression of early 

endocrine markers PAX4 and PAX6, and other markers implicated in β cell development 

and function, NKX6.1 and PDX1. In contrast, clonal cell lines with lower levels of ectopic 

NGN3 expression demonstrated a significant increase in the expression of known δ cell 

markers CCKBR [40] and the hormone SST. However, we did not obtain convincing 

staining characteristic of hormone localization for SST in SOX17-ERT2; PB-NGN3LOW 

cells, suggesting that these cells are not functionally mature. In order to confirm our 

immunocytochemistry results and to establish that SST protein is not being translated, a 

more quantitative assessment of SST protein levels is required. Furthermore, induction of 

GCG mRNA, a marker of α cell fate, or insulin protein was not observed in either NGN3-

expressing cell population. Collectively, these observations suggest that low level of 

NGN3 expression guides SOX17-DEPs towards pancreatic endocrine precursors that 

express δ cell-related genes, whereas higher levels of NGN3 expression in SOX17-DEPs 

promotes the differentiation of pancreatic endocrine precursors that have a mRNA 

expression profile more characteristic of early β cells.  

Importantly, pancreatic differentiation in both clonal cell lines was not 

homogeneous, with clusters of differentiated cells detected throughout the heterogeneous 

cell populations. By immunocytochemistry, we consistently detected differentiated cells 
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staining in areas of high cell density, suggesting that components of the cellular 

microenvironment, such as paracrine signalling or cell-cell contact, may be influencing 

cell differentiation. Cell microenvironment plays a critical role in cell differentiation. 

Previous studies focusing on ectopic Pax4 expression in ES cells found enhanced cell 

differentiation when cells were cultured in 3D spheroids [160].  It is therefore possible that 

efficiency of our differentiation protocol may increase in 3D in vitro or in vivo culture 

conditions. It is also noteworthy that since the SOX17/NGN3 cells demonstrated 

continued cell proliferation, cells were passaged on day 5 of NGN3 induction in order to 

obtain clear immunocytochemistry images and avoid over-confluent cultures at later 

stages of differentiation. In contrast, cells were not passaged during the initial cell 

differentiation experiments where mRNA expression patterns were being assessed, 

meaning that cell density was significantly greater. If cell density does in fact influence 

cell differentiation, the difference of cell density between the two experiments may 

explain why we observed significant SST gene expression but we were unable to detect 

convincing SST immunocytochemistry.  

Previous studies in mouse pancreatic adenocarcinoma (mPAC) cells and mouse 

pancreatic ductal epithelial cells (mPDEC) have demonstrated that the level of ectopic 

Ngn3 expression influences the efficiency of differentiation towards the endocrine fate, 

such that higher levels of Ngn3 expression results in greater proportions of differentiating 

cells than lower levels [161]. Supporting these findings, qualitative assessment of our 

immunocytochemistry data suggests that high NGN3 expression in SOX17-DEPs results 

in greater proportions of PAX6 and ISL1-positive cells than low NGN3 expression.  
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The expression of β cell markers after NGN3 induction in SOX17-ERT2; PB-

NGN3HIGH cells may be due to the early induction of PAX4. During development it has 

been shown that PAX4 can promote the β cell fate [91], and repress the α-cell lineage 

[162] in pancreatic endocrine progenitors. Apart from β cell fate specification, PAX4-

positive progenitors have been also been implicated in δ cell differentiation during 

development [91]. However, we did not observe significant induction of PAX4 levels in 

SOX17-ERT2; PB-NGN3LOW cells which showed a significant increase in the expressions 

of δ cell-related genes upon NGN3 induction. Our findings are supported by studies 

showing that PAX4 is not required for δ cell specification. Indeed, mice lacking 

expression of both Pax4 and the α cell fate specification regulator Arx showed complete 

depletion of α and β cells, resulting in a δ cell dominated pancreas [163]. This suggests 

that Pax4 may serve more specifically to promote the β cell fate. Our study supports these 

findings by showing that significant induction of PAX4 expression is not necessary for the 

induction of SST-expression in the SOX17-ERT2; PB-NGN3LOW clone.  

Although SOX17-ERT2; PB-NGN3HIGH cells showed a significant induction in the 

mRNA expression of a known β cell marker PDX1, we did not observe a significant 

induction of INS mRNA or protein. This suggests that these cells may represent β cell 

precursors that are phenotypically and functionally immature. SOX17-ERT2; PB-

NGN3LOW cells showed significant SST gene induction. Importantly, in both cell lines we 

observed a lack of NKX2.2 mRNA induction, which is an important transcription factor 

for terminal differentiation of β cells [98] and repression of SST gene expression during 

development [99].  The lack NKX2.2 induction in both clones may help to explain why 

we observed more efficient induction of genes associated with δ cells than β cells.  
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Although PDX1 is commonly used as a β cell marker [164,165], it is also 

expressed in the developing gastric enteroendocrine cells [82,83]. Similarly, SST 

expression is not pancreas-specific but is also found in endocrine cells of the stomach and 

the intestine [166,167]. Therefore, we cannot rule out the possibility that NGN3 induction 

in DEPs may be promoting the differentiation of other endoderm-derived endocrine cell 

lineages. Future studies should focus on global mRNA expression analysis to better 

assess the effects of NGN3-mediated differentiation on DEPs. 

We detected some discrepancies when comparing our immunocytochemistry 

results with mRNA expression analysis. For instance, we detected PAX6 and ISL1 

protein expression in SOX17-ERT2; PB-NGN3LOW cells but we did not observe 

significant induction in their mRNA expression during the course of NGN3 induction. 

Also, for SOX17-ERT2; PB-NGN3HIGH cells we detected a subset of cells with 

ISL1protein induction despite the lack of a significant change in mRNA expression. The 

technical limitations associated with quantifying gene expression within a heterogeneous 

population versus being able to identify and image subpopulations of cells expressing 

candidate protein by immunostaining could explain these discrepancies.  In our 

immunocytochemistry data we observe a mixed population of protein-positive and 

negative cells. Since our mRNA analysis was performed on the total population of cells it 

is likely that the mRNA expression of the population was not significant due to a large 

proportion of non-differentiated cells. Furthermore, poor correlation of mRNA and 

protein expression has been previously noted in literature. In fact, mRNA expression and 

protein levels have a correlation coefficient of less than 0.4 [168]. Similar to our findings, 

several studies have shown that protein levels do not correlate with transcript levels [169-
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172]. For instance, Tian et al.measured the expression of 425 proteins and mRNA in 

multipotent mouse hematopoietic progenitor EML cells and their differentiated progeny.  

This study mapped the protein expression to their corresponding mRNA expression and 

showed that 35% of the genes investigated had significantly upregulated protein levels 

but the mRNA expression remained unaltered [169]. Such discrepancies are primarily 

due to post-transcriptional and translational regulation [168].  

 

4.2.  The level of NGN3 influences endocrine cell fate determination. 

Previous studies have shown that alterations in Ngn3 expression in vivo have 

considerable effects on determination of endocrine versus exocrine cell fates. Endocrine 

progenitors expressing reduced levels of Ngn3 adopted pancreatic ductal or acinar fates 

while high levels of Ngn3 expression was reported to be critical for endocrine 

commitment from multipotent pancreatic progenitors [173]. In addition, studies have 

shown that the level of Ngn3 expression has a considerable impact on the expression of 

downstream factors regulating endocrine differentiation. The transduction of a Ngn3 

retroviral transgene in mouse pancreatic ductal epithelial cells (mPDEC) demonstrated 

that Pax4 expression is linearly dependent on the level of Ngn3 expression [161]. We 

observed a similar correlation between the level of ectopic NGN3 expression with the 

mRNA expression of the early endocrine TFs PAX4 and PAX6 in SOX17-DEPs. 

We suggest that the difference in the induction of early endocrine transcription 

factors PAX4 and PAX6 influences the difference observed in the differentiation of high 

and low NGN3 expressing SOX17-DEPs. Previous studies have suggested that Pax4 and 

Pax6 orchestrate β cell differentiation, and that diminished levels of either of these 
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factors, as observed in Pax4-null and Pax6-null mice, leads to the development of ghrelin 

positive ε cells [174].  Based on our data, we suggest that the specific level of PAX4 and 

PAX6 expression induced differentially regulates endocrine fate specification, where 

lower levels of expression direct δ cell specification, whereas higher levels of expression 

direct β cell specification.  

Collectively, our data along with previous studies show that the level of NGN3 

expression significantly impacts the expression of downstream endocrine transcription 

factors. These findings may be related to the short half-life of the Ngn3 protein associated 

with post-translational ubiquitin-mediated degradation [175], and thus high levels of 

transcription and protein production may be critical for maintaining sufficient 

bioavailability for transcriptional activity.  

In order to improve our understanding of the effects of NGN3 expression on 

endocrine differentiation, future studies should more thoroughly characterize the 

phenotype of SOX17-ERT2; PB-NGN3LOW/HIGH cells by whole transcriptome analyses. 

Furthermore, to assess the biological activity of NGN3, chromatin immunoprecipitation 

with parallel DNA sequencing (ChIP-sequencing) could be performed for cell lines with 

different levels of NGN3 expression to identify direct NGN3 targets. This global 

characterization would provide a better understanding of the interplay between NGN3 

DNA binding, dose and bioavailability.  

Considering that previous studies aimed at generating pancreatic cells from 

pluripotent human cells show an improvement in the efficiency of endocrine 

differentiation after transplantation in vivo [130], it would also be informative to compare 

the in vivo differentiation of SOX17-ERT2; PB-NGN3LOW/HIGH cells using standard 
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teratoma assays or recently developed protocols for intra-pancreatic injection in NOD-

SCID mouse models after streptozotocin-induced deletion of endogenous β cells 

[121,126]. 

 

4.3.  Islet-regenerative MSCs conditioned media did not promote maturation of 

NGN3-positive endocrine precursors 

The current study also aimed to capitalize on previous studies by our group 

showing that certain human bone-marrow derived MSC samples were able to induce new 

islet formation following transplantation into STZ-treated NOD/SCID mice 

[121,126,146], while other BM MSC samples were not [121]. We hypothesized that 

paracrine factors secreted by islet regenerative MSC samples would promote the 

maturation of SOX17-NGN3 pancreatic endocrine precursors towards the β cell fate. 

However, our data shows that islet-regenerative MSC-CM did not direct NGN3-

expressing precursors to a mature phenotype in vitro. One potential explanation may be 

that additional factors or cell-cell contact present in vivo may be required to direct 

terminal differentiation. This is supported by previous studies that demonstrate the 

generation of insulin secreting cells from hESC only happens following in vivo 

maturation of cells [130]. It is also possible that the NGN3-positive precursors generated 

in these studies may not be responsive to islet regenerative MSC secreted factors. 

Previous studies have shown that NGN3-positive progenitors were not detected at 

specific time points during MSC-induced islet-regeneration [126], suggesting that 

paracrine factors secreted by regenerative MSCs may not act through an NGN3-positive 
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precursor cell or NGN3 expression was not induced in endogenous adult pancreatic cells 

as part of the islet-regenerative process.  

Furthermore, other studies have also suggested that CK19-positive ductal 

pancreatic progenitor cells may represent primary effectors implicated in adult islet 

neogenesis [176,177]. Indeed, MSC-induced islet formation was associated with ductal 

structures, and these small neoislets contained CD19+ cells as evidence of ductal cell 

involvement in the regenerative process [121,126]. Alternatively, MSC secreted factors 

may act on a more differentiated endocrine precursor cell that has already reduced NGN3 

expression and gained CK19 expression. Interestingly, the SOX17-ERT2; PB-NGN3LOW 

cells, which demonstrated induction of early pancreatic endocrine markers after culture 

with islet-regenerative MSC-CM during the later stages of NGN3 induction (days 9-12), 

were also found to express CK19 at this later stage of differentiation. In contrast, SOX17-

ERT2; PB-NGN3HIGH cells that do not express CK19 did not show changes in pancreatic 

endocrine markers expression following exposure to islet-regenerative MSC-CM. 

Therefore, similar to the in vivo tissue repair response, CK19-expressing SOX17-ERT2; 

PB-NGN3 cells may be more receptive to paracrine factors secreted by islet-regenerative 

MSCs. However, it is possible that CK19 does not co-localize with other endocrine 

markers (PAX6, ISL1), and may represent a distinct cell population. Protein co-

localization studies should be performed to understand the context of CK19 expression 

during NGN3-mediated differentiation of DEPs. 

 Importantly, the complete mechanism associated with MSC-induced islet-

regeneration in vivo has yet to be determined; however the results from the current study 

suggest that the factors that promote islet-regeneration in vivo may be distinct from the 
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factors required to promote functional maturation of hESC-derived NGN3-positive 

endocrine precursors. For instance, islet-regenerative MSCs have been shown to possess 

pro-angiogenic and anti-inflammatory potential [126], that may be important in inducing 

islet-regeneration in whole organ systems in vivo, but may not be relevant to promote 

pancreatic endocrine maturation of DEPs. Therefore, we propose that better 

understanding of the mechanisms by which islets are formed during development and 

during MSC-induced islet regeneration is required before achieving the ultimate goal of 

generating an unlimited number of functional β cells from pluripotent sources. 

 

4.4. Limitations of the Study and Future Directions 

There are several potential limitations associated with the use of conditioned 

media to recreate the MSC-mediated islet-regenerative microenvironment. First is the 

likelihood that short-term factors and cytokine secreted into the CM were degraded due 

to freezing of the conditioned media prior to experimentation. Alternatively, direct cell-

cell contact between MSC and pancreatic progenitors may be required for the islet 

neogenesis characterized in vivo. As a consequence, a complete recreation of in vivo 

regenerative microenvironment may not be possible using CM. In order to tackle these 

limitations, future experiments should focus on direct co-culture of MSCs and putative 

endocrine precursors to better assess the effects of islet-regenerative factors on 

maturation of endocrine precursors. Finally, the in vitro monolayer culture used in these 

studies does not mimic the in vivo 3D environment that may contribute to the maturation 

of SOX17-NGN3 pancreatic precursors. Therefore, these experiments should be repeated 

in vivo using co-transplantation of regenerative MSCs and NGN3-positive precursors. 
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This will test the effects of MSC-maturation signals in a 3D in vivo environment enabling 

a direct comparison with the in vitro experiment conducted in this study. 

Additionally, the protocol developed for transcription factor-mediated pancreatic 

endocrine specification from DEPs skips two key developmental stages that follow 

endoderm specification during embryonic development: primitive foregut gut 

specification [61] and PDX1-mediated pancreas specification [76], which occur before 

the initiation of NGN3-mediated endocrine differentiation [62]. Therefore, future 

experiments should investigate the effects of sequential induction of PDX1 then NGN3 in 

SOX17-DEPs in order to formulate a more efficient transcription factor based protocol 

for differentiating stable and mature endocrine cells from pluripotent stem cells.  

 

4.5.  Conclusion and Summary 

The current study demonstrated that NGN3 activation after SOX17-mediated 

DEP specification in hESC promotes step-wise induction of transcription factors 

important for pancreatic endocrine differentiation. We also show NGN3-mediated 

differentiation to be dose-dependent, with low levels of NGN3 expression promoting δ 

cell-like characteristics, and high expression of NGN3 promoting the induction of some β 

cell-like characteristics. Moreover, we found that these endocrine progenitor populations 

were not responsive to signals secreted by islet-regenerative MSCs, suggesting that 

microenvironmental regulators of islet regeneration after injury and the normal 

development of NGN3-positive progenitor cells may be distinct. 
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Appendix 
 
Appendix 1. Immunocytochemistry positive control experiments. Staining of βTC6 
cells (an insulin-secreting cell line derived from transgenic mice expressing the large T-
antigen of simian virus 40 (SV40) in pancreatic β cells as a positive control for endocrine 
markers: PAX6, ISL1 and NGN3. Scale bar equals 100 µm. 
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Appendix 2. Immunocytochemistry negative control experiments. Staining only with 
secondary antibodies used in this study. Scale bar equals 100 µm. 
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