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Abstract 

The ‘multiple hit’ hypothesis of Parkinson disease (PD) suggests that the combination of 

several risk factors leads to the development of PD. Here, we explore the interaction 

between two potential causes of PD; a genetic mutation in the leucine-rich repeat kinase 2 

(LRRK2) gene and exposure to the neurotoxin, Paraquat. This project characterizes 

transgenic BAC rats expressing human LRRK2 bearing the familial PD mutation, 

R1441G. These rats were tested for PD-related deficits at 3, 6, 9 & 12 months. These rats 

were then exposed to intraperitoneal injections of Paraquat. We hypothesized that 

LRRK2
R1441G

 rats will show increased vulnerability to Paraquat compared to wildtype 

controls. Our results showed that LRRK2
R1441G

 rats are not significantly different from 

wildtype rats by the 12 month stage, suggesting that this mutation alone is insufficient to 

manifest PD-like features in rats. In addition LRRK2
R1441G

 rats failed to show increased 

vulnerability to Paraquat administration.   

Keywords 

Parkinson disease, leucine-rich repeat kinase 2, genetic model, transgenic BAC rats, 

motor test, cognitive assessment, ‘multiple hit’ hypothesis, Paraquat  
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Chapter 1 

1.1 Introduction  

Parkinson disease (PD), the second most common neurodegenerative disease, is 

characterized by the degeneration of dopaminergic neurons in the substantia nigra pars 

compacta (SNpc) and the presence of proteinaceous inclusions, known as Lewy bodies. 

Diagnosis of PD is based on distinctive motor features including resting tremor, rigidity, 

bradykinesia and abnormal gait. Cardinal motor features occur relatively late in the time 

course of the disease and by this time 60% of dopaminergic neurons have degenerated 

and striatal dopamine (DA) content has been reduced by 80% (Bernheimer et al., 1973). 

Although, PD is primarily a movement disorder, a series of nonmotor symptoms are also 

associated with the disease and can precede motor symptoms by several years (Chen et 

al., 2013). These symptoms can include loss of smell, sleep disorders, and constipation. 

In addition, PD patients may present with cognitive symptoms, including depression, 

anxiety and impaired memory (Emre, 2004). 

Although the aetiology of Parkinson disease is not yet known, both genetic and 

environmental factors have been shown to play a role in disease development. While 

most cases of PD are sporadic, 5-10% are caused by familial mutations. Recently, the 

mapping of 16 PD associated loci (PARK 1-16), and the discovery of several 

corresponding genes has prompted renewed interest in genetic underpinnings of this 

disease. Mutations in the LRRK2 gene are a common cause of familial PD and result in 

PARK8 type of Parkinson disease (Paisan-Ruiz et al., 2004; Zimprich et al., 2004). 

LRRK2 encodes leucine-rich-repeat kinase II, a large multidomain protein with both 

kinase and GTPases enzymatic functions (Zimprich et al., 2004; Santpere and Ferrer, 

2009). The R1441G mutation on LRRK2 is the second most common mutation and it 

increases kinase activity through modulation of GTPase activity (Healy et al., 2008). 

LRRK2 mutations cause a familial PD which is indistinguishable from sporadic PD 

suggesting similar underlying mechanisms. 

Exposure to environmental toxins, particularly agrochemicals, has also been linked to 

PD, underscoring the complex aetiology of this disease. In particular, exposure to N,N’-
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dimethyl-4-4’-bipyridinium dichloride, or paraquat has been shown to increase PD risk 

(Costello et al., 2009). Paraquat, a widely used herbicide, induces PD related 

neuropathology through increased oxidative stress and production of reactive oxygen 

species (ROS).   

The relatively low incidence of familial PD, failure to recapitulate PD phenotypes in 

genetic models and lack of singular environmental insult has prompted discussion that 

PD may not have a singular cause and instead disease phenotypes may be the outcome of 

multiple factors. The ‘multiple hit’ hypothesis of PD suggests that multiple risk factors 

interact to induce the degenerative process, with the primary insult causing cellular stress 

and all succeeding insults resulting in a loss of protective pathways which together lead 

to neuronal death (Sulzer, 2007). 

The aim of the present study was to determine if mutated LRRK2 would induce PD 

phenotypes in a rat model. We characterized transgenic BAC rats expressing human 

LRRK2 bearing the autosomal dominant PD mutation, R1441G. Due to the progressive 

nature of PD, these rats were tested for motor and cognitive deficits, reminiscent of PD, 

through developmental stages of 3, 6, 9 and 12 months. As far as we are aware, this is the 

first study that characterizes transgenic BAC LRRK2
R1441G 

rats. Furthermore, in order to 

assess the ‘multiple hit’ hypothesis rats bearing the R1441G mutation were tested for 

vulnerability to Paraquat poisoning. We hypothesized that rats would show motor and 

cognitive symptoms of PD by 12 months of age and that these rats would have an 

increased vulnerability to Paraquat poisoning, as compared to wildtype controls.   
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Chapter 2 

2 Literature Review 

2.1 Parkinson Disease 

Parkinson disease (PD), first described by James Parkinson as ‘shaking palsy,’ is the 

second most common neurodegenerative disease and the most common movement 

disorder. Like many neurodegenerative diseases, PD incidence increases with age from 

0.3% in the general population to 1% in the over 60 population (Dexter and Jenner, 

2013). The relative risk of developing PD is higher in males, due perhaps to estrogen’s 

neuroprotective properties. Although the disease manifests in slow progressive symptoms 

over a wide clinical spectrum, PD diagnosis is based on impaired motor function which 

shows responsiveness to dopaminergic medication. Classic motor features of the disease 

include an high amplitude, low frequency (4-7 Hz) resting tremor, rigidity, bradykinesia 

or slowness of movement, shuffling gait and postural instability. In addition to these 

motor symptoms, PD is associated with various non-motor symptoms, including sleep 

disorders, depression, sensory abnormalities, gastrointestinal dysfunction, sexual 

dysfunction and cognitive decline (Langston, 2006). The frequency of non-motor 

symptoms increases with disease severity and age, however, certain symptoms, including 

loss of smell, depression and constipation, can often precede onset of motor dysfunction 

(Chaudhuri et al., 2006). Cognitive impairment is common in the disease and negatively 

impact quality of life in patients. Patients with PD show impaired procedural and working 

memory, executive dysfunction, learning impairments and dementia (Williams-Gray et 

al., 2006).      

Motor dysfunction in PD originates from degeneration of neuromelanin pigmented 

dopaminergic neurons in the substantia nigra pars compacta (SNpc) and subsequent 

dennervation of dopaminergic input from the SNpc to the striatum. Loss of striatal 

dopamine content accounts for many of the motor abnormalities noted in PD. Motor 

symptoms only occur when 60% of dopaminergic SNpc neurons have degenerated and 

80% of their axon terminals have been lost (Bernheimer et al., 1973). Another 

characteristic feature of the disease is the presence of Lewy bodies, which are 

proteinaceous inclusions, composed of α-synuclein. Although neuronal loss in the SNpc 
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characterizes the disease, PD is associated with widespread neuropathology affecting 

various extranigral structures including the dorsal motor nucleus of the vagus, reticular 

formation, raphe nucleus, locus coeruleus, amygdala, hippocampus, and the 

magnocellular nuclei of the basal forebrain (Braak et al., 2003; Dexter and Jenner, 2013). 

In 2003, Braak and colleagues proposed a staging progression for PD-related pathology 

which starts in the lower brain stem (Stage I) and progresses to the pons (Stage II), the 

mesencephalon (Stage III), the basal prosencephalon (Stage IV) and finally to the 

neocoertex (Stage V and VI). This model explains the progression of PD symptoms from 

olfactory dysfunction early in the disease (due to damage to olfactory bulb in Stage I), to 

motor dysfunction (due to damage to SNpc in Stage III), to cognitive decline noted in 

advanced stages of the disease (due to damage to neocortex in Stage V, Figure 1). 

Despite breakthroughs leading to better understanding of PD, the etiology of this disease 

and the mechanisms underlying neurodegeneration remain elusive. Currently, a variety of 

originating factors, including genetic predisposition, exposure to environmental toxins 

and traumatic brain injury are thought to induce PD related phenotypes through several 

pathological mechanisms including mitochondrial dysfunction, increased oxidative stress, 

altered proteolysis and inflammatory change.  

New insight into the disease was made possible by the discovery of several genetic 

mutations which are associated with the development of PD. While most cases of PD 

(90%) are considered idiopathic, these genetic mutations can explain a small percentage 

(10%) of disease cases. A better understanding of genetically linked PD may also 

improve our understanding of idiopathic PD. PD associated genes may exert their effect 

through a variety of pathological mechanisms such as forming protein aggregates (SNCA 

genes), disrupting protein degradation (Parkin and UCHL1), protein misfolding (DJ-1), 

impairment of lysosomal function (ATP13A2) and mitochondrial dysfunction (PINK1, 

LRRK2).  
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Figure 1: Progression of Parkinson disease.  

The progression of Parkinson disease, according to the Braak Hypothesis. Lewy 

pathology follows a caudo-rostral path from the lower brain stem, through susceptible 

regions of the mid brain and forebrain, into the cerebral cortex (modified from Schneider 

and Obeso, 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 

 

2.2 LRRK2: molecular structure, physiological role,   
and distribution 

Mutations in the leucine-rich repeat kinase-2 gene (LRRK2/PARK8) lead to autosomal 

dominant PD which is clinically indistinguishable from sporadic PD, suggesting similar 

underlying pathways (Paisan-Ruiz et al., 2004; Zimprich et al., 2004). The leucine-rich 

repeat kinase-2 gene codes for an eponymous, large intracellular protein with multiple 

domains (Figure 2). LRRK2 is a member of the ROCO family of proteins and has two 

conserved domains that are characteristic of this protein family: a Ras of complex 

proteins (ROC) domain, and a C-terminal of ROC (COR) domain (Zimprich et al., 2004). 

The function of the COR domain is not known, however the ROC domain functions as a 

dimeric GTPase (Deng et al., 2008). In addition, several other conserved domains were 

identified in this protein, including a leucine-rich repeat (LRR), a kinase domain, a 

WD40 domain, and an ankyrin (ANK) repeat (Paisan-Ruiz et al., 2004; Zimprich et al., 

2004). The leucine-rich repeat, WD40 domain, and ANK repeat are common features in 

many proteins and are thought to allow protein-protein interactions (Santperre and Ferrer, 

2009), suggesting that LRRK2 may serve as a scaffold for the assembly of protein 

complexes (Tsika and Moore, 2013). The kinase domain of LRRK2 is a member of the 

super-family of serine and tyrosine kinases and has a similar structure to receptor-

interacting protein (RIP) kinases, which are involved in activating cell death pathways in 

response to intracellular and extracellular signals (Meylan and Tschopp, 2005). The 

kinase activity of the protein is intramolecularly activated by the GTPase activity of the 

ROC domain (Guo et al., 2007; Ito et al., 2007).  In vivo LRRK2 presents as a dimer, in 

which the ROC domain interactions with the LRR domain and the WD40 domain 

(Greggio et al., 2008). The numerous functional motifs found in LRRK2 suggest that this 

protein regulates a variety of cellular processes including mitochondrial function, signal 

transduction, cell death pathways, vesicle trafficking, neurite outgrowth, autophagy and 

cytoskeleton assembly (Santperre and Ferrer, 2009; Cookson et al., 2010; Berwick et al., 

2011; Tsika and Moore, 2012).   

In adult humans, LRRK2 mRNA and protein is expressed in several tissues including the 

brain, lungs, liver, kidney, spleen and in low levels in the heart (Paisan-Ruiz et al., 2004; 
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Zimprich et al 2004; Miklossy et al., 2006; Westerlund et al., 2008). Within the brain 

LRRK2 mRNA and protein expression is highest in the striatum, but is also found in the 

frontal cerebal cortex, hippocampus, cerebellum, locus coreulus and the substantia nigra 

(Galter et al., 2006; Higashi et al., 2007b; Westerlund et al., 2008; Vitte et al., 2010). 

Within the neuron, LRRK2 localizes in a variety of structures including the mitochondria, 

the endoplasmic reticulum, lysosomes and the cytoplasm (Biskup et al., 2006; Alegre-

Abarratequi et al., 2009; Vitte et al., 2010). In addition to localizing in these subcellular 

structures in the cell body, LRRK2 is also found in dendrites and axonal processes 

(Higashi et al., 2007b). In the PD brain, overall neuronal expression of LRRK2 mRNA 

does not differ significantly from control brains (Sharma et al., 2011), however the 

LRRK2 protein has been shown to be a component of Lewy bodies in the brainstem, the 

substantia nigra and the locus coreulus (Higashi et al., 2007b; Vitte et al., 2010; Sharma 

et al., 2011), though results can differ depending on the antibody used. Despite no change 

in LRRK2 mRNA expression between control and PD cases in the frontal cortex, LRRK2 

protein expression is enhanced in sporadic PD patients, suggesting post-transcriptional 

modification or a failure to clear proteins (Cho et al., 2013).  

LRRK2 mRNA and protein expression is relatively abundant in almost all brain regions 

in the mouse brain including the striatum, cortex and the substantia nigra (Simon-

Sanchez et al., 2006; Higashi et al., 2007a; Melrose et al., 2007; Giesert et al., 2013). In 

contrast, LRRK2 mRNA expression in the rat brain is more restricted. In adult rat brains, 

high expression has been noted in the medium spiny neurons of the striatum (Galter et al., 

2006; Taymans et al., 2006; Westerlund et al., 2008), the pyramidal neurons of cerebral 

cortex (Taymans et al., 2006; Westerlund et al., 2008), the piriform cortex (Westerlund et 

al., 2008), the hippocampus (Taymans et al., 2006) and in the sensory dorsal root 

(Westerlund et al., 2008). Lower levels of LRRK2 mRNA have also been noted in the rat 

hypothalamus, olfactory bulb and substantia nigra (Taymans et al., 2006). In rats, 

temporal expression of LRRK2 in the striatum mirrors the postnatal development of 

dopamine innervations of the striatum which underscores the link of LRRK2 to 

dopaminergic neurons and the importance of LRRK2 malfunction in PD pathogenesis 

(Westerlund et al., 2008).  
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Figure 2: LRRK2 Structure.  

LRRK2 is multi-domain protein with a catalytic core (ROC-COR-kinase) surrounded by 

protein-protein interaction domains (ANK, LRR and WD40). Most pathogenic mutations 

affect the GTPase and kinase activity of this protein. LRRK2 has been implicated in a 

variety of cellular roles including mitochondrial function, vesicular trafficking, 

neurotransmission, cell death pathways, cytoskeleton organization (modified from Tsika 

and Moore, 2012).  
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2.3 PD Related LRRK2 Mutations 

Since the discovery of the link between LRRK2 and Parkinson disease, six mutations 

have been identified in the LRRK2 gene with several other mutations increasing PD risk 

(Zimprich et al., 2004; Berg et al., 2005; Di Fonzo et al., 2005; Goldwurm et al., 2005; Di 

Fonzo et al., 2006; Clark et al., 2006; Santpere and Ferrer, 2009; Zhang et al., 2009; Seki 

et al., 2011; Bozi et al., 2013; Anfossi et al., 2014; De Ross et al., 2014). Together these 

LRRK2 mutations account for 13% of familial PD cases and 5% of sporadic cases (Berg 

et al., 2005; Santpere and Ferrer, 2009). These pathogenic mutations have been found in 

the kinase (G2019S, I2020T), ROC (R1441C/G/H), LRR (I1122V) and COR (Y1699C) 

domains (Santpere and Ferrer, 2009). Regardless of the domain of origin, many 

pathogenic mutations alter the kinase and GTPase activity of LRRK2 suggesting that 

these functions are particularly important in PD pathogenesis (Li et al., 2007; Deng et al., 

2008; Anand and Braithwaite, 2009; Greggio, 2012; Biosa et al., 2013; Tsika and Moore, 

2013; Ray et al., 2014).  

The most common mutation, G2019S, is found in the kinase domain and increases the 

kinase activity of the LRRK2 protein by forcing the protein to remain in an active state 

(Berg et al., 2005; Funayama et al., 2005; Toft et al., 2005). When kinase capabilities of 

LRRK2 are genetically inactivated, cellular phenotypes including neuronal death and 

protein inclusions are greatly reduced, suggesting that kinase activity plays a crucial role 

in cell toxicity (Greggio et al., 2006; Smith et al., 2006; Iaccarino et al., 2007). The 

G2019S mutation may induce hyperphosporylation of tau, which in turn results in 

dendrite degeneration (Lin et al., 2010). The kinase domain has also been shown to 

phosphorylate sequences within the ROC domain, and therefore may regulate the GTPase 

activity of LRRK2 (Greggio et al., 2008; Pungaliya et al., 2010).  

The second most common site of PD related LRRK2 mutations is the R1441 “hotspot” 

amino acid codon where glycine, histidine and cysteine substitutions can occur. The 

R1441C/G/H mutations are in the ROC domain and affect the GTPase activity of the 

protein. The LRRK2 protein shows low intrinsic GTPase activity, however, this may be 

increased in vivo through binding with co-factors (Guo et al., 2007; West et al., 2007). 

Interestingly, mutations within the GTPase domain, including R1441G, increase kinase 
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activity through alteration of GTPase activity (West et al., 2007; Greggio et al., 2012; 

Tsika and Moore, 2013; Liao et al., 2014; Muda et al., 2014). Taken together, evidence 

suggests that the pathogenic effect of LRRK2 mutations depends on interplay between 

the GTPase and kinase activities of the protein. However, the intrinsic regulation which 

leads to LRRK2 toxicity remains unclear.  

2.4 Genetic LRRK2 Animal Models  

Modeling PD in animals can extend our understanding of etiology, pathogenesis and 

development of Parkinson disease. Currently, PD therapies are symptomatic and do not 

address the underlying pathogenic processes. A comprehensive animal model that 

recapitulates the full spectrum of the disease would allow the development of therapeutic 

strategies which specifically targeted the pathogenic process. Drosophila LRRK2 models 

of Parkinson disease have recapitulated many features of PD including reduced dopamine 

content, neuronal loss, mitochondrial abnormalities, and decreased locomotor activity 

which can be ameliorated by L-DOPA (Imai et al., 2008; Liu et al., 2008; Ng et al., 2009; 

Venderova et al., 2009). In addition, C.elegans models of LRRK2 mediated PD indicate 

age-dependent dopaminergic neurodegeneration, behavioural deficits and locomotor 

dysfunction (Yao et al., 2010). The success of these invertebrate models of Parkinson 

disease has prompted their validation in mammals. Several rodent models test the 

pathophysiology of LRRK2 in Parkinson disease, as well as attempt to recapitulate 

cardinal features of the disease. Aberrant LRRK2 in Parkinson disease is thought to 

mediate neurotoxicity through a gain of function, perhaps due to an increase in kinase 

activity. Knock in and knock out models can provide support for this hypothesis by 

investigating the function of neuronal system under abnormal levels of LRRK2. Indeed, 

LRRK2 knockout mice display intact dopaminergic function and an absence of PD 

related phenotypes (Andres-Mateos et al., 2009; Tong et al., 2010; Hinkle et al., 2012), 

suggesting that an increase in the activity of LRRK2 is required for disease pathogenesis. 

Recently transgenic mouse models have been developed that carry missense PD related 

LRRK2 mutations. These models may provide unique insight into the mechanisms 

through which familial LRRK2 mutations cause PD pathogenesis. Li and colleagues 

describe a LRRK2
R1441G 

BAC transgenic mouse line that recapitulates human PD 
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phenotypes (Li et al., 2009). These mice showed L-DOPA responsive, age dependent 

motor deficits starting at 6 months of age and progressively worsening by 12 months of 

age (Li et al., 2009). While these animals did not show dopaminergic neuron 

degeneration in the SNpc or aggregation of α-synuclein, dopamine release was impaired 

in these animals and axonal dystrophy reminiscent of PD was noted in the striatum (Li et 

al., 2009). Following studies with LRRK2
R1441G

 mice have largely failed to reproduce the 

motor dysfunction originally noted, however, mild Parkinsonism, gastrointestinal 

dysfunction , a common  non-motor feature of PD, and impaired dopaminergic 

transmission have since been reported in some transgenic models (Bichler et al., 2013; 

Dranka et al., 2013). LRRK2
G2019S

 rodents have shown similarly mixed results with some 

groups reporting PD related phenotypes, including degeneration of dopaminergic 

neurons, hypoactivity, and impaired adult neurogenesis (Winner et al., 2011; Chen et al., 

2012), while others fail to recapitulate key features of the Parkinsonian process including 

neurodegeneration (Zhou et al., 2011; Chou et al., 2014) and impaired locomotor ability 

(Ramonet et al., 2011). Overall these transgenic rodent models fail to display substantial 

PD pathology. One explanation for these results may be that multiple factors, such as 

interactions with other genes or environmental stressors are required to inhibit 

compensatory mechanisms and facilitate the degenerative process.   

2.5 Mechanisms of LRRK2-mediated 
neurodegeneration  

Although the underlying mechanisms through which LRRK2 mediates PD pathogenesis 

are still unclear, the molecular structure and distribution of LRRK2 can provide some 

insight into cellular pathways which are compromised in familial mutations. The 

presence of multiple protein-protein interaction domains in LRRK2 (ANK, LRR, WD40) 

suggest that it plays a role in maintaining the integrity of the cytoskeleton. In PD, 

degeneration of dopaminergic neurons in the SNpc is preceded by a loss of dopaminergic 

axonal projections from the substantia nigra into the striatum. Recent studies suggest that 

LRRK2 may play a role in the maintaining neuronal process integrity. Overexpression of 

LRRK2 mutants results in a reduction in neurite length, axonal arborization, and the 

formation of tau-positive inclusions, which eventually lead to neuronal death (MacLeod 
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et al., 2006; Parisiadou et al., 2009; Ramonet et al., 2011; Sepulveda et al., 2013). 

Conversely, suppression of LRRK2 results in the opposite phenotype of increased neuron 

process length, suggesting that LRRK2’s normal role in maintaining neuronal process 

integrity is disrupted by familial mutations (MacLeod et al., 2006; Parisiadou et al., 

2009).  While it is still unclear how LRRK2 alters neurite morphology, the protein has 

been shown to interact with ezrin/radixin/moesin (ERM) family of proteins and Rac1, 

which are implicated in cell motility and actin skeletal dynamics (Parisiadou et al., 2009; 

Chan et al., 2011). In addition, the ROC domain in LRRK2 interacts with β-tubulin and 

this interaction is disrupted by the R1441G mutation, suggesting a role for LRRK2 in 

microtubule stability (Gandhi et al., 2008; Gillardon et al., 2009; Law et al., 2014). 

Neurite remodeling in LRRK2 mediated PD might be a result of autophagic imbalance. 

Plowey et al. (2008) found that neurite retraction, in G2019S LRRK2 expressing 

neuroblastoma cells, was significantly reduced when proteins necessary for autophagic 

induction were suppressed. Impaired autophagic imbalance, specifically the accumulation 

of large autophagic vacuoles with incompletely degraded materials, have since been 

reported by various groups in both cells cultures (Alegre-Abarratequi et al., 2009; 

Manzoni et al., 2013; Schapansky et al., 2014) and animal models (Ramonet et al., 2011; 

Saha et al., 2014). The role of LRRK2 in autophagy may be of particular importance as 

disrupted autophagy has been known to induce neuronal death (Komatsu et al., 2006). 

Another mechanism through which LRRK2 is proposed to mediate neurodegneration is 

through an increase in oxidative stress caused by mitochondrial dysfunction. The 

localization of LRRK2 to the outer mitochondrial membrane supports this hypothesis 

(Biskup et al., 2006). Wildtype LRRK2 seems to offer protection against agents that 

cause mitochondrial dysfunction including Rotenone, Paraquat, hydrogen peroxide and 6-

OHDA (Ng et al., 2009; Saha et al., 2009; Nguyen et al., 2010; Pereira et al., 2014). 

Conversely, familial mutations in LRRK2 do not offer protection against these agents and 

are associated with an increased level of ROS and mitochondrial dysfunction (Iaccarino 

et al., 2007; Ng et al., 2009; Saha et al., 2009; Heo et al., 2010; Nguyen et al., 2010; 

Pereira et al., 2014). The increased vulnerability of LRRK2 mutants to oxidative stress 

may be caused by the interaction of mutated LRRK2 with dynamin like protein 1 (DLP1) 

which is a regulator of mitochondrial fission (Niu et al., 2012; Wang et al., 2012). These 
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results suggest that LRRK2’s normal protective role against oxidative stress is 

compromised with familial mutations, thus providing a mechanism through which these 

mutations induce PD.  While these studies have increased our understanding of cellular 

pathways implicated in LRRK2 mediated neurodegeneration, it is important to note that 

LRRK2 is a complex protein with several physiological functions and that PD 

phenotypes are likely a combination of dysfunction across cellular processes.  

2.6 Environmental Toxins and PD 

In addition to genetic causes, the development of Parkinson disease has been linked to 

exposure to environmental toxins, particularly agrochemicals that possess neurotoxicity 

(Allen and Levy, 2013). In 1983, a small group of young individuals presented with PD 

following 1-methly-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication (Langston 

et al., 1983). The discovery of toxin triggered parkinsonism prompted investigation into 

the association between the disease and environmental contaminants with several studies 

showing an increased risk for PD following pesticide exposure (Brown et al., 2006; 

Tanner et al., 2011; Liew et al., 2014). One of the many agrochemicals implicated in PD 

pathogenesis is Paraquat. Paraquat, or N,N’-dimethyl-4-4’-bipyridinium dichloride, is a 

widely used herbicide and pre-harvest desiccant.  Paraquat’s chemical structure 

resembles that of MPP
+ 

(1-methyl-4-phenylpyridium), the active metabolite of the 

neurotoxin MPTP. This chemical homology has prompted several studies to explore the 

causative connection between Paraquat exposure and Parkinson disease. Epidemiological 

studies investigating a correlation between Paraquat exposure and PD have yielded 

inconclusive results (Costello et al., 2009, Firestone et al., 2005, Pezzoli and Cereda, 

2013, Tanner et al., 2011), perhaps due in part to the challenges in exposure assessment. 

However, human studies investigating Paraquat exposure in combination with other risk 

factors (such as exposure to chemical agents and traumatic brain injury) have 

demonstrated an increased PD risk (Brown et al., 2006; Peng et al., 2007; Costello et al., 

2009; Tanner et al., 2011; Lee et al., 2012). In addition, Paraquat induced PD phenotypes 

such as dopaminergic neurodegeneration, substantia nigra reduction, decreased striatal 

tyrosine hydroxylase immunoreactivity and alpha-synuclein accumulation, have been 
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shown in animal studies (Chicchetti et al., 2005; Ossowska et al., 2006; Somayajulu-Nitu 

et al., 2009; Kumar et al., 2010; Singhal et al; 2011).     

In plants, Paraquat interacts with photosystem 1 to generate reactive oxygen species 

(ROS). This results in increased toxicity due to excess ROS as well as inhibition of 

photosynthesis and CO2 fixation. In rodents, Paraquat is able to cross the blood-brain 

barrier (BBB) through a carrier-mediated mechanism involving the neutral amino acid 

transporter (Shimizu et al., 2001). Recently, epidemiological studies have shown an 

increased risk for Paraquat induced PD in patients with genetic variants in the dopamine 

transporter (DAT), suggesting a role for DAT in Paraquat toxicity (Ritz et al., 2009). 

Paraquat in its native state is a divalent cation, PQ
2+

, however it can be reduced by 

NADPH oxidase to the monovalent cation, PQ
+
. PQ

+
 is a DAT substrate and can 

accumulate in dopaminergic neurons leading to increased oxidative stress and 

cytotoxicity (Rappold et al., 2011). In addition, PQ
+
 is a substrate for the organic cation 

transporter 3 (Oct3) which is expressed in non-DA cells in the substantia nigra (Rappold 

et al., 2011). Within the neuron, Paraquat’s exact mechanism of action is poorly 

understood. However, Paraquat’s toxicity is thought to be the result of excess generation 

of reactive oxygen species. Paraquat can be continuously oxidized and reduced (a process 

known as redox cycling) to produce superoxide molecules. Acute Paraquat exposure has 

been linked to excess production of intracellular ROS leading to cell apoptosis (Peng et 

al., 2004). Paraquat interacts with complex I and III of the electron transport chain 

resulting in an increase in H2O2 production (Drechsel and Patel, 2009). In addition, 

Paraquat may induce dopaminergic neuronal death through activation of the JNK 

pathway (Peng et al., 2004), and inhibition of autophagy (Wills et al., 2012).      

2.7 Multiple Hit Hypothesis  

Despite extensive research, the etiology of Parkinson disease remains unknown. Due to 

the relatively low incidence of familial PD (5-10%), it seems unlikely that a genetic 

mutation is sufficient to explain disease pathogenesis. Conversely, researchers have yet to 

discover a single shared insult in PD patients as epidemiological studies often report 

conflicting information. Taken together, this suggests that PD originates not from a 

singular cause, but from multiple causes working synergistically to induce disease 
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phenotypes. The ‘multiple hit’ hypothesis suggests that multiple risk factors interact to 

induce the degenerative process seen in Parkinson disease (Sulzer, 2007). A variety of 

factors have been shown to increase PD risk including aging (Driver et al., 2009; Collier 

et al., 2011), genetic mutations (Ross et al., 2008; Alcalay et al., 2010; Bonifati, 2010; 

Kim et al., 2010; Pan et al., 2012), exposure to environmental toxins (Baldereschi et al., 

2003; Phillipson, 2014) and trauma to the brain (Hubble et al., 1993; Doder et al., 1999; 

Maher et al., 2002; Lee et al., 2012). In addition, several environmental factors such as 

smoking, alcohol consumption, caffeine consumption, and exercise seem to have a 

protective effect on PD risk (Saaksjarvi et al., 2014; Van der Mark et al., 2014; Zhang et 

al., 2014), which suggests that environment does play an important role in the 

development of this disease. The primary insult is proposed to result in cellular stress, 

while secondary insults result in the loss of protective pathways thus inducing neuronal 

death (Sulzer, 2007). Recently, several studies have provided supported for this 

hypothesis. In rodent models of toxin-induced PD, multiple toxins working in 

conjunction were shown to enhance PD neuropathology, including nigrostriatal 

dopaminergic cell loss and reduced striatal dopamine content (Thiruchelvam et al., 2003; 

Peng et al., 2007; Kumar et al., 2010). This is further supported by epidemiological 

studies which show an increased PD risk in individuals exposed to multiple 

agrochemicals (Tanner et al., 2011). Similarly, gene-environmental interactions have 

been shown to play an important role in the development of PD. Peng et al. (2010) 

showed that mice expressing the A53T familial mutant form of human α-synuclein 

showed increased susceptibility to neonatal iron feeding and Paraquat exposure. Nuber et 

al (2014) found that Paraquat exposure synergistically induced dopaminergic cell 

degeneration in mice overexpressing familial PD linked mutant α-synuclein. In addition, 

exposure to neurotoxins, maneb and Paraquat, alters regulation of adult neurogenesis in 

transgenic mice carrying the SNCA and LRRK2
G2019S 

familial mutations (Desplats, 2012). 

In an epidemiological study, Ritz et al. (2009) found that individuals with dopamine 

transporter genetic variations showed an increased risk for PD following exposure to 

maneb or Paraquat. The combination of injury and exposure to environmental toxins has 

also been shown to increased PD risk. Hutson et al. (2011) showed that traumatic brain 

injury in adult rats increased vulnerability to Paraquat and caused degeneration of 
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dopaminergic SNpc neurons. This was later supported by an epidemiological study which 

noted increased incidence of PD in patients with traumatic brain injuries that had 

previously been exposed to Paraquat (Lee et al., 2012). These studies suggest that 

aetiology of Parkinson disease is a multifactorial. Animal models which explore the 

synergistic effect of combined PD risk factors can play an important role in furthering 

understanding of disease etiology.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



26 

 

 
 

Figure 3: Multiple factors affect PD.  

A proposed mechanism of multiple factors working in conjunction to induce Parkinson 

disease. Genetic predisposition for the disease can prime neurons for additional stress 

caused by environmental factors such as exposure to toxins or traumatic brain injury, 

which then leads to neurodegeneration. Protective environmental factors can reduce the 

likelihood of developing disease phenotypes. Adopted from Chen et al., 2013.   
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Chapter 3 

3 Research Purpose and Hypotheses 

The purpose of this study was to investigate the combined effect of a genetic 

predisposition and exposure to environmental toxins in the development of Parkinson 

disease. Transgenic rats expressing the human LRRK2
R1441G

 mutation were tested for 

motor and cognitive deficits, reminiscent of PD, in order to determine if a genetic 

mutation alone was sufficient to induce disease pathology. These rats were then exposed 

to the neurotoxin, Paraquat in order to test increased susceptibility of transgenic rats to 

environmental toxins. We hypothesized that LRRK2
R1441G 

rats show PD phenotypes by 12 

months of age and that these rats will have an enhanced susceptibility to Paraquat.     
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Chapter 4 

4 Materials and Methods 

4.1 Study 1: Assessing PD-related phenotypes in 
LRRK2

R1441G
 transgenic rats 

4.1.1 Animals 

A commercially available breeding pair of Sprague Dawley rats expressing the R1441G 

mutation on the human gene LRRK2 was obtained from Taconic (Line #10677). The 

original model was created by Dr. Chenjian Li through pronuclear injection of the human 

LRRK2
R1441G

 gene into Sprague Dawley zygotes. The line was maintained through in 

house breeding of hemizygous x wildtype breeding pairs. More information about the 

transgenic rat line used in this document can be found at http://www.taconic.com/10681. 

Rats were weaned at 3 weeks of age and genotyped to detect human LRRK2. Transgenic 

animals were housed with wildtype littermates in a 12 h light-dark cycle with food and 

water provided ad libitum. 17 wildtype and 24 LRRK2
R1441G

 transgenic rats underwent a 

battery of behavioral tests. Animals underwent behavioral tests at 3 months, 6 months, 9 

months and 12 months of age. All animals were tested on each behavioural test described 

below at each of the four time points. All procedures were in accordance with the ethical 

guidelines of the Canadian Council on Animal Care (CCAC) and approved by the 

University of Western Ontario Animal Use Subcommittee. 

4.1.2 Genotyping 

Before weaning, all rats were genotyped by polymerase chain reaction (PCR) using tissue 

obtained from ear-punching. Genotyping was performed using an assay kit from Taconic 

according to their specifications. The PCR reaction combined 5 µL of genomic DNA (2 

ng/µL), 2.5 µL of PCR Buffer (5 mM), 1 µL of MgCl2 (2.5 mM), 0.5 µL of 

deoxynucleotide mixture (0.2 mM), 0.5 µL of hpark8-F primer (0.5µM), 0.5 µL of 

hpark8-R primer (0.5µM) and 0.25 µL of HotStarTaq DNA Polymerase (0.05U/µL). The 

thermocycler protocol involved 1 cycle (15 min) at 95ºC, combined 35 cycles with 45 s at 

94ºC, 1 min at 65ºC, and 1 min at 72ºC, and 1 cycle at 72ºC (5 min). The primer 

sequence for the hpark8-F primer is GAT AGG CGG CTT TCA TTT TTC C and for the 

http://www.taconic.com/10681
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hpark8-R primer is ACT CAG GCC CCA AAA ACG AG. Primers were generated in 

house at the University of Western Ontario.    

 

4.1.3 Behavioral Testing 

4.1.3.1 Vibrissae-evoked forelimb placing 

The forelimb placing test was performed as previously described and used as a measure 

of movement initiation abilities (Schallert et al. 2002, Woodlee et al., 2005), a common 

deficit observed in PD patients. Briefly, the experimenter holds the animal aloft by its 

torso and brushes its vibrissae against the edge of the testing surface. This elicits a 

forelimb placing response from the limb on the same side. Placing is quantified as the 

percentage of correct responses or ‘hits’ elicited out of fifteen trials. Trials in which the 

animal struggles or resists the experimenter’s grip are discounted. Animals were all 

trained on this task prior to testing in order to ensure acclimation to the experimenter as 

well as reduction in struggling behaviors.    

4.1.3.2 Adjusting steps  

The adjusting steps task has been extensively used to measure postural stability in rats 

(Olsson et al., 1995, Chang et al., 1999, Fleming et al., 2009). The experimenter holds the 

animal by its torso such that its hindlimbs are lifted above the testing surface. One 

forelimb is then restrained so that the animal’s weight is entirely supported by the 

remaining free forelimb, which is in contact with the testing surface. The experimenter 

then moves the animal laterally across a testing surface with a distance of 70 cm. In order 

to compensate for the movement of the body, the animal should make adjusting steps 

with the weight-bearing forelimb. The average number of steps each animal makes over 

five trials is recorded and used for analysis. Animals with nigrostriatal degeneration will 

drag their forelimb instead of making the appropriate adjusting steps (Fleming et al., 

2012).  

4.1.3.3 Footprint Analysis 

Footprint analysis was performed in order to assess stepping patterns and abnormal gait 

(Li et al., 2010). The rat’s paws were dipped in non-toxic paint and the rat was placed on 
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a runway 110 cm long, 10 cm wide and with 25 cm high side walls. The runway led to 

the rat’s homecage and rats were thus motivated to traverse the gangway. The floor of the 

runway was lined with ordinary paper and the footprints marked on the paper were 

analyzed. The distance between forepaws and the left and right stride were recorded.   

4.1.3.4 Open Field Test 

The open field test was used to measure general locomotor activity in wildtype and 

transgenic rats. Each animal was placed in a square activity box (Med Associates Activity 

Monitor, St. Albans, VT, USA) for 30 minutes per day, for two days. After each animal 

finished testing, the activity boxes were cleaned with 70% ethanol to eliminate any odors 

which may bias the next animal. Using the MedAssociates Activity Monitor software, we 

analyzed the distance traveled and the number of rearing movements during the testing 

interval. Exploratory rearing was used as an indirect measure of paucity of movement, as 

previously shown (Landers et al., 2014).  

4.1.3.5 Acoustic Startle Response and Sensory Gating 

The acoustic startle response of these animals was tested using a protocol similar to those 

previously described (Typlt et al., 2013). Startle testing was conducted in sound 

attenuated startle boxes from Med Associates (MED ASR PRO1, St Albans, VT, USA). 

Animals were placed in holders mounted on a movement sensitive platform within the 

startle box. A transducer converted the vertical movement of the platform, induced by the 

animal’s startle response, into a voltage signal. The maximum amplitude of the signal 

was measured using Med Associates software (Startle Reflex Version 6, Med Associates, 

St Albanks, VT, USA). On day 1, animals were acclimated to the startle box and 

background noise (65 dB white noise) for 5 minutes in the morning and again for 5 

minutes several hours later. On day 2, animals underwent an input-output (IO) test to 

determine the appropriate gain setting for each animal. The IO function has an initial 

stimulation at 65 dB (20 ms duration) and increased in 5 dB intervals to 120 dB. On day 

3, animals were tested in two blocks for short term habituation and prepulse inhibition 

respectively. Block 1 assessed habituation by presenting 30 trials of the startle pulse (105 

dB white noise, 20 ms duration and 15 ms intertribal interval). Block 2 assessed prepulse 

inhibition. In Block 2, there were seven different trial conditions (10 trials per condition) 
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for a total of 70 trials. The trials presented the startle pulse alone, a low prepulse of 75 dB 

(4 ms duration) before the startle pulse, and a high prepulse of 85 dB (4 ms duration) 

before the startle pulse. The presentation of the prepulse and the startling pulse was 

separated by three different interstimulus intervals (ISIs): 10 ms, 30 ms or 100 ms. The 

trials were presented in pseudorandomized order. Animals were tested on both 

habituation and prepulse inhibition as both responses are disrupted in PD patients 

(Matsumoto et al., 1992; Zoetmulder et al., 2014).       

4.1.3.6 Morris Water Maze 

Both wildtype and transgenic animals underwent two versions of the Morris water maze 

task to assess learning and memory, as previously described (Myoshi et al., 2002). This 

task was conducted in a round tank, 146 cm in diameter and 58 cm deep, filled with 

water. The water was colored with non-toxic blue paint to ensure opaqueness. 

Throughout testing, the water temperature was monitored and maintained at 21°C. The 

tank was divided into four equally sized quadrants and a circular acrylic escape platform 

was placed in one of the quadrants. The escape platform was submerged in water by 2 cm 

so that it was not visible to the animals. A camera mounted above the tank recorded the 

movement of the animals in each trial. The Any-maze Behavior Tracking Software 

(Stoelting Co., Wood Dale, IL, USA) was used to record the latency to reach the escape 

platform and the time spent in the target quadrant.  

All animals were first tested on the cued version of the water maze task. This consisted of 

two training days with four trials on each day. In each trial, the animals were placed in 

the water facing the tank wall and had to locate the escape platform, which was cued by a 

yellow ball attached to the platform and protruding from the water. The trial was 

completed when the animal either found the escape platform or 90 s had passed. If the 

animal was unable to located the platform in 90 s, it was gently led to the platform. 

Animals were allowed to remain on the escape platform for 15 s before being removed 

and dried before the next trial. The initial position of the animal was the vertices of one of 

the four quadrants and was different for each trial. The initial position was assigned 

randomly and counterbalanced for the genotypes. The platform position was also changed 

between each trial and was randomly assigned and counterbalanced.  
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The animals were also tested on the spatial reference version of the water maze as 

previous described (Miyoshi et al., 2002). This consisted of four training days with four 

trials on each day. The experimental procedure was similar to the previous one, except 

that the location of the platform was no longer cued. Instead, animals could utilize 

external visual cues on the walls surrounding the tank to locate the platform. In addition, 

the platform position was kept constant between trials and days. The four trials of the first 

of the four training days were used as an indicator of spatial working memory.  

On day 7, experimenters ran a 90 s probe trial without the platform. During this trial, the 

time spent in the target quadrant was recorded for each animal.    

4.2 Study 2: Testing Paraquat Vulnerability in aged 
LRRK2

R1441G
 transgenic rats 

4.2.1   Vulnerability to Paraquat 

In study 2, all animals were exposed to an acute sub-toxic Paraquat regimen, as 

previously described, in order to assess vulnerability to toxins (Hutson et al., 2011). 

Animals were separated into four groups: wildtype-saline (n=8), wildtype-Paraquat 

(n=8), transgenic-saline (n=10), and transgenic-Paraquat (n=11). Animals received two 

IP injections of Paraquat (10 mg/kg dissolved in 0.9% saline) or saline, with three days in 

between injections. At the time of testing, animals were 14-16 months old. The toxin 

dose used in this study was ¼ of that previously shown to cause dopaminergic cell death 

in the substantia nigra in adult rats (Cicchetti et al., 2005). All animals underwent the 

open field test immediately after receiving injections and 24 hours after injections. As 

previously mentioned, MedAssociates Activity Monitor software was used to analyze the 

number of rearing movements during a 30 minute testing interval.    

4.2.2 q-RT PCR  

Some transgenic rats were perfused with saline and samples for various brain regions 

(cortex, substantia nigra, hippocampus), as well as liver and kidney were obtained and 

frozen on ice. RNA was isolated using QIAzol Lysis Reagent (Qiagen, Germantown, 

MD, CA) according to the manufacturer’s instructions. cDNA was synthesized using Life 

Technologies high-capacity cDNA Reverse Transcription Kit (Life Technologies, Grand 



33 

 

Island, NY, USA). Real time PCR assays were performed in triplicate on a 384 well 

plate. The level of human LRRK2 mRNA was detected using TaqMan probe 

Hs00411197_ml specific for human LRRK2 (Life Technologies, Grand Island, NY, 

USA). The housekeeping gene GAPDH was detected using Rn01775763 (Life 

Technologies, Grand Island, NY, USA) and was used as a reference gene.   

4.2.3 Statistical Analysis 

Mean values ± standard error are reported. Outliers, defined as data points three standard 

deviations from the mean, were identified and removed from the data set. Comparisons of 

genotype and treatment groups were performed using repeated measures ANOVA. IBM 

SPSS Statistics 2.0 software was used for all statistical analyses. Results were considered 

statistically significant at a p value of 0.05.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 

 

Chapter 5 

5 Results 

5.1 Study 1: Assessing PD-related phenotypes in 
LRRK2

R1441G
 transgenic rats 

 

All animals were weighed before behavioral testing, at each age point. All rats 

significantly increased their weight over time [ANOVA F(2,75)=378,90, p<0.001, 

Greenhouse-Geisser correction], however there was no significant difference in weight 

between transgenic LRRK2
R1441G 

rats and their wildtype littermates [ANOVA 

F(2,75)=0.63, p=0.52, Greenhouse-Geisser correction; Figure 4].  

 

 

Figure 4: Rat Weight. 

All rats were weighed before behavioral testing. There was no significant difference in 

weight between wildtype and transgenic LRRK2
R1441G

 rats at 3 (LRRK2
R1441G

: M=469.46, 

SEM=7.58; WT: M=464.35, SEM=9.84), 6 (LRRK2
R1441G

: M=552.46, SEM=10.55; WT: 

M=653.10, SEM=13.17), 9 (LRRK2
R1441G

: M=636.99, SEM=9.24; WT:M=653.96, 

SEM=13.17), and 12 (LRRK2
R1441G

: M=676.46, SEM=13.37; WT: M=683.17, 
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SEM=12.98) months of age [ANOVA F(2,75)=0.63, p=0.52, Greenhouse-Geisser 

correction].     

5.1.1 Motor Tests 

5.1.1.1 Vibrissae-evoked forelimb placing 

In order to assess movement initiation abilities, vibrissae-evoked forelimb placing 

responses were measured in transgenic LRRK2
R1441G 

rats and their wildtype littermates at 

3, 6, 9 and 12 months of age. While a significant main effect of age was noted in forelimb 

placing responses [ANOVA F(2,85)=8.14, p <0.05, Huynh-Feldt correction], no 

genotype and age interaction was noted [ANOVA F(2,85)=0.37, p=0.71, Huynh-Feldt 

correction]. Therefore, transgenic LRRK2
R1441G

 did not significantly differ from wildtype 

rats in vibrissae-evoked forelimb placing, suggesting intact movement initiation abilities 

(Figure 5).  

 

 

Figure 5: Vibrissae Evoked Forelimb Placing.  

Vibrissae evoked forelimb placing was measured in transgenic LRRK2
R1441G

 rats and 

wildtype littermates. There was no significant difference in forelimb placing between 

wildtype and transgenic LRRK2
R1441G

 rats at 3 (LRRK2
R1441G

: M=0.87, SEM=0.02; WT: 

M=0.87, SEM=0.02), 6 (LRRK2
R1441G

: M=0.91, SEM=0.06; WT: M=0.91, SEM=0.04), 9 

(LRRK2
R1441G

: M=0.90, SEM=0.05; WT:M=0.98, SEM=0.01), and 12 (LRRK2
R1441G

: 
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M=0.93, SEM=0.05; WT: M=0.99, SEM=0.01) months of age [ANOVA F(2,85)=0.37, 

p=0.71, Huynh-Feldt correction].     

5.1.1.2 Adjusting steps 

Postural stability in LRRK2
R1441G

 rats was measured using the adjusting steps task.  While 

a small but significant main effect of age was noted in the number of adjusting steps 

made [ANOVA F(3,102)=3.40, p <0.05, Huynh-Feldt correction], no genotype and age 

interaction was noted [ANOVA F(3,102)=1.06, p=0.37, Huynh-Feldt correction]. 

Therefore, transgenic LRRK2
R1441G

 rats did not significantly differ from wildtype rats in 

the adjusting steps task, suggesting normal postural stability (Figure 6). 

 

  

Figure 6: Adjusting Steps Task.  

Performance on the adjusting steps task was measured in all animals. No significant 

difference in adjusting steps was noted between transgenic LRRK2
R1441G

 rats and 

wildtype littermates at 3 (LRRK2
R1441G

: M=10.82, SEM=0.47; WT: M=12.15, 

SEM=0.48), 6 (LRRK2
R1441G

: M=10.89, SEM=0.51; WT: M=11.56, SEM=0.58), 9 

(LRRK2
R1441G

: M=11.28, SEM=0.73; WT:M=11.71, SEM=0.88), and 12 (LRRK2
R1441G

: 

M=13.04, SEM=0.75; WT: M=12.50, SEM=0.85) months of age [ANOVA 

F(2,85)=0.37, p=0.71, Huynh-Feldt correction]. 
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5.1.1.3 Footprint Analysis 

Foot print analysis was conducted on all animals in order to assess gait patterns. A main 

effect of age was noted in stride length of animals [ANOVA F(3,105)=37.36,  p <0.05, 

Huynh-Feldt correction]. Both right and left stride lengths were measured in all animals, 

however, no main effect of side was noted [ANOVA F(1,39)=0.12, p=0.72, Huynh-Feldt 

correction]. In addition, there was no interaction between age, side and genotype 

[ANOVA F(3,117)=0.60, p=0.62, Huynh-Feldt correction].Therefore LRRK2
R1441G

 rats 

showed normal gait patterns as compared to wildtype controls (Figure 7).  

 
 

Figure 7: Stride Length.  

Stride length was calculated on each side (L indicates left side and R indicates right side) 

in each animal and averaged within genotype. There was no significant difference in 

stride length in transgenic LRRK2
R1441G

 rats and wildtype littermates at 3 (LRRK2
R1441G

 

Left M=14.30, SEM=0.29; LRRK2
R1441G

 Right M=14.47, SEM=0.30; WT Left M=14.18, 

SEM=0.27; WT Right M=14.31, SEM=0.31), 6 (LRRK2
R1441G

 Left M=16.13, SEM=0.25; 

LRRK2
R1441G

 Right M=15.81, SEM=0.26; WT Left M=15.99, SEM=0.23; WT Right 

M=15.82, SEM=0.26), 9 (LRRK2
R1441G

 Left M=16.13, SEM=0.26; LRRK2
R1441G

 Right 

M=16.18, SEM=0.22; WT Left M=16.40, SEM=0.30; WT Right M=16.25, SEM=0.24) 

and 12 (LRRK2
R1441G

 Left M=16.39, SEM=0.24; LRRK2
R1441G

 Right M=16.56, 
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SEM=0.22; WT Left M=16.30, SEM=0.31; WT Right M=16.55, SEM=0.37) months of 

age [ANOVA F(3,117)=0.60, p=0.62, Huynh-Feldt correction].   

5.1.1.4 Open Field Test 

Locomotor activity of transgenic LRRK2
R1441G

 rats and wildtype controls was assessed on 

the open field test. Animals were tested for two 30 minute sessions across two 

consecutive days. Data presented here is calculated across both sessions. There was no 

significant difference between transgenic and wildtype animals in the total distance 

travelled during the two sessions [ANOVA F(3,102)=0.47,  p=0.67, Huynh-Feldt 

correction], although a main effect of age was noted [ANOVA F(3,102)=29.71,  

p<0.001, Huynh-Feldt correction; Figure 8]. Similarly, no significant difference in 

rearing behavior was noted between transgenic and wildtype rats [ANOVA 

F(3,103)=0.79,  p=0.49, Huynh-Feldt correction], although a main effect of age was 

noted [ANOVA F(3,102)=19.33,  p<0.001, Huynh-Feldt correction; Figure 9]. Finally, 

there was no difference in maximal velocity of transgenic LRRK2
R1441G

 rats and wildtype 

controls [ANOVA F(3,117)=0.59,  p=0.62; Figure 10]. 
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Figure 8: Total distance travelled in open field test.  

Total distance travelled across testing sessions was calculated for all animals. No 

significant difference in total distance travelled was noted between transgenic 

LRRK2
R1441G

 rats and wildtype littermates at 3 (LRRK2
R1441G

: M=3826.80, SEM=213.48; 

WT: M=3892.54, SEM=330.19), 6 (LRRK2
R1441G

: M=2739.56, SEM=265.96; WT: 

M=3036.17, SEM=267.54), 9 (LRRK2
R1441G

: M=2561.25, SEM=171.28; 

WT:M=2494.14, SEM=174.34), and 12 (LRRK2
R1441G

: M=2094.07, SEM=156.20; WT: 

M=2248.38, SEM=110.60) months of age [ANOVA F(3,102)=0.47,  p=0.67, Huynh-

Feldt correction]. The distance travelled by all animals decreased as they aged [ANOVA 

F(3,102)=29.71,  p<0.001, Huynh-Feldt correction]. 
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Figure 9: Rearing behavior in open field test.  

Rearing movements made by all animals was summed across testing sessions. No 

significant difference in rearing movements was noted between transgenic LRRK2
R1441G

 

rats and wildtype littermates at 3 (LRRK2
R1441G

: M=156.38, SEM=8.14; WT: M=128.53, 

SEM=6.98), 6 (LRRK2
R1441G

: M=151.38, SEM=10.30; WT: M=132.76, SEM=10.28), 9 

(LRRK2
R1441G

: M=167.50, SEM=14.72; WT:M=131.76, SEM=17.55), and 12 

(LRRK2
R1441G

: M=81.58, SEM=10.36; WT: M=77.29, SEM=11.21) months of age 

[ANOVA F(3,103)=0.79,  p=0.49, Huynh-Feldt correction]. The total number of rearing 

movements decreased as rats aged [ANOVA F(3,102)=19.33,  p<0.001, Huynh-Feldt 

correction]. 
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Figure 10: Maximal velocity in open field test.  

Maximal velocity of transgenic and wildtype rats was calculated across testing sessions. 

No significant difference in maximal velocity was noted between transgenic LRRK2
R1441G

 

rats and wildtype littermates at 3 (LRRK2
R1441G

: M=72.99, SEM=3.96; WT: M=79.22, 

SEM=6.01), 6 (LRRK2
R1441G

: M=73.65, SEM=3.54; WT: M=73.62, SEM=4.26), 9 

(LRRK2
R1441G

: M=73.17, SEM=3.61; WT:M=68.88, SEM=3.68), and 12 (LRRK2
R1441G

: 

M=65.87, SEM=3.79; WT: M=68.63, SEM=4.36) months of age [ANOVA 

F(3,117)=0.59,  p=0.62].  

5.1.2 Cognitive Tests 

5.1.2.1 Acoustic Startle Response and Sensory Gating 

The acoustic startle response was measured in all rats in order to investigate sensory 

gating mechanisms, including habituation and prepulse inhibition. Baseline startle 

amplitude was calculated at the onset of sensory gating testing at each age point and was 

not significantly different between transgenic and wildtype rats [ANOVA F(2,103)=0.32,  

p=0.79, Huynh-Feldt correction; Figure 11]. Habituation scores were calculated by 

dividing the average of the last five startle responses by the maximum of the first three 

startle responses. Habituation scores of transgenic LRRK2
R1441G

 rats and wildtype 

littermates did not significantly differ [ANOVA F(3,102)=0.33,  p=0.78, Huynh-Feldt 
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correction; Figure 12]. Habituation was also measured by examining the attenuation of 

startle response over time at each age point. At 3 months of age, a significant decrease in 

startle amplitude was noted [ANOVA F(16,643)=3.29,  p<0.001, Huynh-Feldt 

correction], however there was no significant difference between transgenic and wildtype 

rats [ANOVA F(16, 643)=0.68,  p=0.82, Huynh-Feldt correction; Figure 13]. Similarly 

habituation was observed in all animals at 6 [ANOVA F(12,476)=2.85,  p<0.001, 

Huynh-Feldt correction; Figure 14], 9 [ANOVA F(16,640)=1.91,  p<0.05, Huynh-Feldt 

correction; Figure 15] and 12 [ANOVA F(16,637)=2.97,  p<0.001, Huynh-Feldt 

correction; Figure 16] months of age but no significant difference between the genotypes 

was observed [6 months ANOVA F(12,476)=0.78,  p=0.67, Huynh-Feldt correction; 9 

months ANOVA F(16,640)=1.04,  p=0.42, Huynh-Feldt correction; 12 months ANOVA 

F(16,637)=0.92,  p=0.55, Huynh-Feldt correction].  

In addition, prepulse inhibition was measured in all rats using two different prepulse 

levels (75 dB and 85 dB) and three different interstimulus intervals (10 ms, 30 ms, 100 

ms). At 3 months, a significant main effect of prepulse [ANOVA F(1,39)=32.10,  

p<0.001; Figure 17 and Figure 18] and ISI was noted [ANOVA F(2,78)=10.28,  

p<0.001], however there was no significant difference between transgenic and wildtype 

rats [ANOVA F(2,78)=0.64,  p=0.53]. Therefore at 3 months of age, all rats displayed 

prepulse inhibition, with no significant difference between the two genotypes. Similarly, 

prepulse inhibition was noted at 6 [ANOVA F(1,39)=61.53,  p<0.001, Huynh-Feldt 

correction; Figure 19 and Figure 20], 9 [ANOVA F(1,39)=30.40,  p<0.001, Huynh-Feldt 

correction; Figure 21 and Figure 22], and 12 months of age [ANOVA F(1,39)=29.83,  

p<0.001, Huynh-Feldt correction; Figure 23 and Figure 24], however there was no 

difference in the extent of inhibition between transgenic LRRK2
R1441G

 rats and wildtype 

controls [6 months ANOVA F(2,61)=0.228,  p=0.74, Huynh-Feldt correction; 9 months 

ANOVA F(2,78)=1.49,  p=0.23, Huynh-Feldt correction; 12 months ANOVA 

F(2,78)=1.59,  p=0.21, Huynh-Feldt correction]. 
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Figure 11: Baseline startle amplitude.  

Baseline startle amplitude was measured by calculating the maximum startle response 

within the first three trials. Baseline startle amplitude did not differ between transgenic 

LRRK2
R1441G

 rats and wildtype littermates at 3 (LRRK2
R1441G

: M=1726.38, SEM=208.64; 

WT: M=2224.03, SEM=298.55), 6 (LRRK2
R1441G

: M=2093.78, SEM=306.49; WT: 

M=2641.25, SEM=342.10), 9 (LRRK2
R1441G

: M=2049.21, SEM=214.26; 

WT:M=2337.33, SEM=396.26), and 12 (LRRK2
R1441G

: M=1685.81, SEM=227.55; WT: 

M=2040.29, SEM=305.36) months of age [ANOVA F(3,103)=0.32,  p=0.79]. 
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Figure 12: Habituation of the acoustic startle response.  

Habituation scores were calculated for each rat by dividing the average of the last five 

startle responses by the maximum of the first three startle responses and then averaged 

across genotype. Habituation scores did not differ between transgenic LRRK2
R1441G

 rats 

and wildtype littermates at 3 (LRRK2
R1441G

: M=0.55, SEM=0.07; WT: M=0.67, 

SEM=0.19), 6 (LRRK2
R1441G

: M=0.65, SEM=0.15; WT: M=0.52, SEM=0.08), 9 

(LRRK2
R1441G

: M=0.64, SEM=0.09; WT:M=0.61, SEM=0.12), and 12 (LRRK2
R1441G

: 

M=0.63, SEM=0.06; WT: M=0.65, SEM=0.10) months of age [ANOVA F(3,102)=0.33,  

p=0.78]. 
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Figure 13: Habitation of the acoustic startle response at 3 months of age.  

Startle amplitude was measured for each rat for 30 trials and then averaged by genotype. 

While the rats did show a decrease in responsiveness over time [ANOVA 

F(16,643)=3.29,  p<0.001, Huynh-Feldt correction], there was no significant difference 

between transgenic LRRK2
R1441G

 rats and wildtype littermates [ANOVA F(16, 

643)=0.68,  p=0.82, Huynh-Feldt correction].     
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Figure 14: Habitation of the acoustic startle response at 6 months of age.  

Startle amplitude was measured for each rat for 30 trials and then averaged by genotype. 

While the rats did show attenuation of the startle response [ANOVA F(12,476)=2.85,  

p<0.001, Huynh-Feldt correction], there was no significant difference between transgenic 

LRRK2
R1441G

 rats and wildtype littermates [ANOVA F(12,476)=0.783,  p=0.67, Huynh-

Feldt correction].     
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Figure 15: Habitation of the acoustic startle response at 9 months of age.  

Startle amplitude was measured for each rat for 30 trials and then averaged by genotype. 

While the rats did show attenuation of the startle response [ANOVA F(16,640)=1.91,  

p<0.05, Huynh-Feldt correction], there was no significant difference between transgenic 

LRRK2
R1441G

 rats and wildtype littermates [ANOVA F(16,640)=1.04,  p=0.415, Huynh-

Feldt correction].     
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Figure 16: Habitation of the acoustic startle response at 12 months of age.  

Startle amplitude was measured for each rat for 30 trials and then averaged by genotype. 

While the rats did show attenuation of the startle response [ANOVA F(16,637)=2.97,  

p<0.001, Huynh-Feldt correction], there was no significant difference between transgenic 

LRRK2
R1441G

 rats and wildtype littermates [ANOVA F(16,637)=0.92,  p=0.55, Huynh-

Feldt correction]. 
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Figure 17: Prepulse inhibition of the acoustic startle response with 75 dB prepulse at 

3 months of age.  

Prepulse inhibition of the startle response was measured at three different interstimulus 

intervals: 10 ms, 30 ms, 100 ms. While all rats displayed prepulse inhibition of the startle 

response, there was no significant difference between transgenic LRRK2
R1441G

 rats and 

wildtype littermates at an ISI of 10 ms (LRRK2
R1441G

: M=0.23, SEM=0.04; WT: M=0.45, 

SEM=0.13), 30 ms (LRRK2
R1441G

: M=0.33, SEM=0.05; WT: M=0.33, SEM=0.05), and 

100 ms [LRRK2
R1441G

: M=0.38, SEM=0.05; WT:M=0.52, SEM=0.08; ANOVA 

F(2,78)=0.64,  p=0.53]. 
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Figure 18: Prepulse inhibition of the acoustic startle response with 85 dB prepulse at 

3 months of age.  

Prepulse inhibition of the startle response was measured at three different interstimulus 

intervals: 10 ms, 30 ms, 100 ms. While all rats displayed prepulse inhibition of the startle 

response, there was no significant difference between transgenic LRRK2
R1441G

 rats and 

wildtype littermates at an ISI of 10 ms (LRRK2
R1441G

 M=0.22, SEM=0.04; WT: M=0.18, 

SEM=0.06), 30 ms (LRRK2
R1441G

 M=0.24, SEM=0.05; WT: M=0.22, SEM=0.04), and 

100 ms [LRRK2
R1441G

 M=0.26, SEM=0.04; WT:M=0.31, SEM=0.08; F(2,61)=0.228,  

p=0.74; ANOVA F(2,78)=0.64,  p=0.53]. 
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Figure 19: Prepulse inhibition of the acoustic startle response with 75 dB prepulse at 

6 months of age.  

Prepulse inhibition of the startle response was measured at three different interstimulus 

intervals: 10 ms, 30 ms, 100 ms. While all rats displayed prepulse inhibition of the startle 

response, there was no significant difference between transgenic LRRK2
R1441G

 rats and 

wildtype littermates at an ISI of 10 ms (LRRK2
R1441G

: M=0.37, SEM=0.04; WT: M=0.33, 

SEM=0.05), 30 ms (LRRK2
R1441G

 M=0.28, SEM=0.03; WT: M=0.31, SEM=0.04), and 

100 ms [LRRK2
R1441G

 M=0.34, SEM=0.05; WT:M=0.35, SEM=0.05; F(2,61)=0.228,  

p=0.74; ANOVA F(2,61)=0.228,  p=0.74, Huynh-Feldt correction]. 
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Figure 20: Prepulse inhibition of the acoustic startle response with 85 dB prepulse at 

6 months of age.  

Prepulse inhibition of the startle response was measured at three different interstimulus 

intervals: 10 ms, 30 ms, 100 ms. While all rats displayed prepulse inhibition of the startle 

response, there was no significant difference between transgenic LRRK2
R1441G

 rats and 

wildtype littermates at an ISI of 10 ms (LRRK2
R1441G

 M=0.19, SEM=0.02; WT: M=0.16, 

SEM=0.02), 30 ms (LRRK2
R1441G

 M=0.17, SEM=0.01; WT: M=0.16, SEM=0.01), and 

100 ms [LRRK2
R1441G

 M=0.22, SEM=0.02; WT:M=0.21, SEM=0.03; F(2,61)=0.228,  

p=0.74;ANOVA F(2,61)=0.228,  p=0.74, Huynh-Feldt correction]. 
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Figure 21: Prepulse inhibition of the acoustic startle response with 75 dB prepulse at 

9 months of age.  

Prepulse inhibition of the startle response was measured at three different interstimulus 

intervals: 10 ms, 30 ms, 100 ms. While all rats displayed prepulse inhibition of the startle 

response, there was no significant difference between transgenic LRRK2
R1441G

 rats and 

wildtype littermates at an ISI of 10 ms (LRRK2
R1441G

: M=0.35, SEM=0.04; WT: M=0.50, 

SEM=0.09), 30 ms (LRRK2
R1441G

: M=0.31, SEM=0.05; WT: M=0.32, SEM=0.04), and 

100 ms [LRRK2
R1441G

: M=0.37, SEM=0.04; WT:M=0.45, SEM=0.07; F(2,61)=0.228,  

p=0.74; ANOVA F(2,78)=1.49,  p=0.23, Huynh-Feldt correction]. 
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Figure 22: Prepulse inhibition of the acoustic startle response with 85 dB prepulse at 

9 months of age.  

Prepulse inhibition of the startle response was measured at three different interstimulus 

intervals: 10 ms, 30 ms, 100 ms. While all rats displayed prepulse inhibition of the startle 

response, there was no significant difference between transgenic LRRK2
R1441G

 rats and 

wildtype littermates at an ISI of 10 ms (LRRK2
R1441G

: M=0.25, SEM=0.03; WT: M=0.24, 

SEM=0.03), 30 ms (LRRK2
R1441G

: M=0.25, SEM=0.03; WT: M=0.25, SEM=0.03), and 

100 ms [LRRK2
R1441G

: M=0.25, SEM=0.02; WT:M=0.23, SEM=0.03; F(2,61)=0.228,  

p=0.74; ANOVA F(2,78)=1.49,  p=0.23, Huynh-Feldt correction]. 
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Figure 23: Prepulse inhibition of the acoustic startle response with 75 dB prepulse at 

12 months of age.  

Prepulse inhibition of the startle response was measured at three different interstimulus 

intervals: 10 ms, 30 ms, 100 ms. While all rats displayed prepulse inhibition of the startle 

response, there was no significant difference between transgenic LRRK2
R1441G

 rats and 

wildtype littermates at an ISI of 10 ms (LRRK2
R1441G

: M=0.45, SEM=0.05; WT: M=0.48, 

SEM=0.08), 30 ms (LRRK2
R1441G

: M=0.48, SEM=0.08; WT: M=0.33, SEM=0.03), and 

100 ms [LRRK2
R1441G

: M=0.43, SEM=0.05; WT:M=0.45, SEM=0.06; F(2,61)=0.228,  

p=0.74; ANOVA F(2,78)=1.59,  p=0.21, Huynh-Feldt correction]. 
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Figure 24: Prepulse inhibition of the acoustic startle response with 85 dB prepulse at 

12 months of age.  

Prepulse inhibition of the startle response was measured at three different interstimulus 

intervals: 10 ms, 30 ms, 100 ms. While all rats displayed prepulse inhibition of the startle 

response, there was no significant difference between transgenic LRRK2
R1441G

 rats and 

wildtype littermates at an ISI of 10 ms (LRRK2
R1441G

: M=0.31, SEM=0.04; WT: M=0.24, 

SEM=0.02), 30 ms (LRRK2
R1441G

: M=0.29, SEM=0.04; WT: M=0.26, SEM=0.04), and 

100 ms [LRRK2
R1441G

: M=0.33, SEM=0.05; WT:M=0.29, SEM=0.07; F(2,61)=0.228,  

p=0.74; ANOVA F(2,78)=1.59,  p=0.21, Huynh-Feldt correction]. 

5.1.2.2 Morris Water Maze 

All rats were tested on the Morris water maze in order to assess learning. In the cued 

version of the test, latency to find the escape platform improved over training days at 9 

months [ANOVA F(1,39)=31.73, p<0.001, Huynh-Feldt correction; Figure 25] and 12 

months of age [ANOVA F(1,38)=7.11, p<0.05, Huynh-Feldt correction; Figure 29]. 

However at both 9 months [ANOVA F(1,39)=0.06, p=0.81, Huynh-Feldt correction] and 

12 months [ANOVA F(1,38)=1.54, p=0.22, Huynh-Feldt correction], there was no 

significant difference between transgenic  LRRK2
R1441G

 rats and wildtype controls. In the 

spatial version of the test, training improved the mean latency to the platform in all rats at 

9 [ANOVA F(2,66)=13.6, p<0.001, Huynh-Feldt correction; Figure 26] and 12 [ANOVA 
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F(3,102)=15.34, p<0.001, Huynh-Feldt correction; Figure 30] months of age, however 

no significant genotype difference was noted at either age point [9 months ANOVA F(2, 

66)=0.93, p=0.39, Huynh-Feldt correction; 12 months ANOVA F(3,102)=1.09, p=0.35, 

Huynh-Feldt correction]. In the working memory version of the test, performance 

improved as a function of trials at 9 [ANOVA F(2,91)=9.7, p<0.001, Huynh-Feldt 

correction; Figure 27] months and 12 [ANOVA F(2,68)=3.72, p<0.05, Huynh-Feldt 

correction; Figure 31] months of age. However at 9 [ANOVA F(2, 91)=1.10, p=0.34, 

Huynh-Feldt correction] and 12 [ANOVA F(2, 68)=1.15, p=0.32, Huynh-Feldt 

correction] months of age, there was no significant difference between transgenic and 

wildtype animals. Finally, a probe trial was conducted at the end of testing to assess the 

amount of time spent in the target quadrant. At 9 months [t(39)=0.43, p=0.67; Figure 28] 

and 12 months [t(38)=0.30, p=0.77; Figure 32] months of age, there was no significant 

difference in time spent in target quadrant between transgenic LRRK2
R1441G

 rats and their 

wildtype littermates.    
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Figure 25: Cued Version of the Morris Water Maze task at 9 months of age.  

Latency to find the target platform was measured across two training days in the cued 

version of the Morris water maze task. Performance on this task improved from training 

day 1 (LRRK2
R1441G

: M=22.28, SEM=2.86; WT: M=21.49, SEM=3.30) to training day 2 

(LRRK2
R1441G

: M=11.42, SEM=0.80; WT: M=9.63, SEM=0.81) in all rats [ANOVA 

F(1,39)=31.73, p<0.001, Huynh-Feldt correction], however there was no significant 

difference between transgenic LRRK2
R1441G

 rats and wildtype controls [ANOVA 

F(1,39)=0.06, p=0.81, Huynh-Feldt correction]. 
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Figure 26: Spatial Reference Version of the Morris Water Maze task at 9 months of 

age.  

Latency to find the target platform was measured across four training days in the cued 

version of the Morris water maze task. Performance on this task improved across training 

days (LRRK2
R1441G

: M=9.40, SEM=0.71; WT: M=7.03, SEM=0.76) in all rats [ANOVA 

F(2,66)=13.6, p<0.001, Huynh-Feldt correction], however there was no significant 

difference between transgenic LRRK2
R1441G

 rats and wildtype controls [ANOVA F(2, 

66)=0.93, p=0.39, Huynh-Feldt correction]. 
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Figure 27: Working Memory Version of the Morris Water Maze task at 9 months of 

age.  

Latency to find the target platform was measured across four consecutive trials on one 

day in the working memory version of the Morris water maze task. Performance on this 

task improved across trials (LRRK2
R1441G

: M=15.45, SEM=2.04; WT: M=10.17, 

SEM=1.66) in all rats [ANOVA F(2,91)=9.7, p<0.001, Huynh-Feldt correction], 

however there was no significant difference between transgenic LRRK2
R1441G

 rats and 

wildtype controls [ANOVA F(2, 91)=1.10, p=0.34, Huynh-Feldt correction]. 
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Figure 28: Probe Trial in the Morris Water Maze at 9 months of age.  

Time spent in the target quadrant was measured in a probe trial in LRRK2
R1441G

 

(M=33.41, SEM=1.53) and WT rats (M=32.46, SEM=1.47). There was no significant 

difference between the two genotypes [t(39)=0.43, p=0.67]. 
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Figure 29: Cued Version of the Morris Water Maze task at 12 months of age. 

 Latency to find the target platform was measured across two training days in the cued 

version of the Morris water maze task. Performance on this task improved from training 

day 1 (LRRK2
R1441G

: M=14.77, SEM=1.83; WT: M=12.26, SEM=1.65) to training day 2 

(LRRK2
R1441G

: M=9.83, SEM=0.77; WT: M=10.45, SEM=1.76) in all rats [ANOVA 

F(1,38)=7.11, p<0.05, Huynh-Feldt correction], however there was no significant 

difference between transgenic LRRK2
R1441G

 rats and wildtype controls [ANOVA 

F(1,38)=1.54, p=0.22, Huynh-Feldt correction]. 
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Figure 30: Spatial Reference Version of the Morris Water Maze task at 12 months 

of age.  

Latency to find the target platform was measured across four training days in the cued 

version of the Morris water maze task. Performance on this task improved by training day 

4 (LRRK2
R1441G

 M=6.65, SEM=0.55; WT: M=6.8, SEM=0.73) in all rats [ANOVA 

F(3,102)=15.34, p<0.001, Huynh-Feldt correction], however there was no significant 

difference between transgenic LRRK2
R1441G

 rats and wildtype controls [ANOVA 

F(3,102)=1.09, p=0.35, Huynh-Feldt correction]. 
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Figure 31: Working Memory Version of the Morris Water Maze task at 12 months 

of age.  

Latency to find the target platform was measured across four consecutive trials on one 

day in the working memory version of the Morris water maze task. Performance on this 

task improved by the last trial (LRRK2
R1441G

 M=9.06, SEM=0.86; WT: M=6.8, 

SEM=0.88) in all rats [ANOVA F(2,68)=3.72, p<0.05, Huynh-Feldt correction], 

however there was no significant difference between transgenic LRRK2
R1441G

 rats and 

wildtype controls [ANOVA F(2, 68)=1.15, p=0.32, Huynh-Feldt correction]. 
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Figure 32: Probe Trial in the Morris Water Maze at 12 months of age.  

Time spent in the target quadrant was measured in a probe trial in LRRK2
R1441G

 

(M=39.73, SEM=1.39) and WT rats (M=39.06, SEM=1.80). There was no significant 

difference between the two genotypes [t(38)=0.30, p=0.77]. 

5.2 Study 2: Testing Paraquat Vulnerability in aged 
LRRK2

R1441G
 transgenic rats 

In order to assess gene environment interactions in PD, vulnerability to Paraquat was 

measured in LRRK2
R1441G

 transgenic rats at approximately 14-16 months of age. 

Transgenic and wildtype rats were exposed to acute Paraquat poisoning and rearing 

behavior was recorded (Figure 33). Animals received two injections of Paraquat or saline 

and rearing behavior was measured immediately after each injection, 24 hours after each 

injection and ten days post injection. A significant reduction in rearing behavior over 

testing time points was noted in all animals [ANOVA F(3, 83)=9.30, p<0.001, 

Greenhouse-Geisser correction]. As expected, there was no overall main effect of drug, 

as a low dose of Paraquat was used in this experiment [ANOVA F(3, 83)=2.50, p=0.83, 

Greenhouse-Geisser correction]. There was no interaction between time, drug and 

genotype [ANOVA F(3, 83)=0.30, p=0.83, Greenhouse-Geisser correction]. Therefore, 

LRRK2
R1441G

 transgenic rats did not show vulnerability to Paraquat at the dose employed, 

as compared to wildtype controls. In addition, univariate ANOVA analysis was 
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conducted at each testing point. Immediately after injection 1, Paraquat exposed groups 

displayed significantly reduced rearing movements [ANOVA F(1, 32)=5.51, p<0.05], 

however the transgenic animals did not significantly differ from wildtype controls 

[ANOVA F(1, 32)=0.033, p=0.857]. This effect was lost 24 hours post injection 1, and 

no significant difference in rearing behavior was noted between groups exposed to 

Paraquat or saline [ANOVA F(1, 28)=1.81, p=0.189]. Immediately following injection 2, 

a significant main effect of drug was noted [ANOVA F(1, 28)=8.45, p<0.05], however 

again, there was no significant difference between transgenic and wildtype controls 

[ANOVA F(1, 28)=0.23, p=0.64]. 24 hours later, there was no difference between groups 

exposed to Paraquat or saline [ANOVA F(1, 28)=2.73, p=0.06]. Ten days post injection 

two, there was no significant main effect of drug [ANOVA F(1, 28)=1.10, p=0.30] or a 

genotype and drug interaction [ANOVA F(1, 28)=0.37, p=0.55]. Overall, although 

Paraquat had a short term effect on rearing behavior immediately following injections, 

this effect was not selective for LRRK2
R1441G

 rats, and was negated by ten days post 

injection. Kaplan-Meier curves and a log rank (Mantel-Cox) test were conducted to 

investigate survival estimates in transgenic LRRK2
R1441G

 and wildtype rats (Figure 34). 

There was no significant difference in survival time between transgenic and wildtype 

animals [X
2
(1)=2.65, p=0.10].  Quantitative RT-PCR was conducted on surviving 

transgenic animals at 18 months of age. Initial genotyping had revealed a genomic 

presence of human LRRK2 (Figure 35), however RT-PCR results performed in surviving 

transgenic rats at the end of the study revealed no detectable expression of human LRRK2 

in the substantia nigra, cortex, hippocampus, liver or kidney (Table 1).      
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Figure 33: Vulnerability to acute Paraquat poisoning.  

Rearing behavior following acute Paraquat poisoning or exposure to saline was measured 

in LRRK2
R1441G

 and wildtype rats. All animals were tested immediately after injection 1, 

24 hours after injection 1, immediately after injection 2, 24 hours after injection 2 and ten 

days after the last injection. Overall, there was no significant interaction between drug 

and genotype [ANOVA F(3, 83)=0.30, p=0.83, Greenhouse-Geisser correction]. 

Univariate ANOVA was conducted to investigate time point specific trends. Immediately 

following injection 1 [ANOVA F(1, 32)=5.51, p<0.05] and injection 2 [ANOVA F(1, 

28)=8.45, p<0.05], there was a reduction in rearing movements in Paraquat-exposed 

groups. However, this trend was not specific to LRRK2
R1441G

 transgenic rats [injection 1 

ANOVA F(1, 32)=0.033, p=0.857;injection 2 ANOVA F(1, 28)=0.23, p=0.64] and was 

negated 24 hours post injection [injection 1 ANOVA F(1, 28)=1.81, p=0.189; injection 2 

ANOVA F(1, 28)=2.73, p=0.06]. Ten days following injections, no main effect of drug 

[ANOVA F(1, 28)=1.10, p=0.30] or genotype drug interaction [ANOVA F(1, 28)=0.37, 

p=0.55] in rearing behavior was noted.  
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Figure 34: Survival curve for transgenic and wildtype rats.  

Survival estimates were generated for LRRK2
R1441G

 (M=17.91, SEM=0.38) and WT rats 

(M=18.75, SEM=0.17). A log rank (Mantel-Cox) test revealed no significant differences 

in survival between transgenic and wildtype animals [X
2
(1)=2.65, p=0.10].  
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Figure 35: Genotype results for wildtype and transgenic animals. 

 Genotype results show positive bands, indicating presence of human LRRK2, as 

compared to wildtype rats which do not express human LRRK2. 
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Animal 
ID Genotype DOB Tissue 

LRRK2 
expression 

GAPDH 
expression 

    

Mean SD Mean SD 

101 

 

7/26/2012 Hippocampus - - 17.808 0.203 

   

Substantia Nigra - - 18.217 0.287 

   

Cortex - - 21.133 0.212 

   

Kidney  - - 19.127 0.142 

   

Liver - - 18.912 0.096 

        102 

 

7/26/2012 Hippocampus - - 18.730 0.169 

   

Substantia Nigra - - 19.639 0.025 

   

Cortex - - 17.477 0.581 

   

Kidney  - - 18.105 0.372 

   

Liver - - 18.790 0.161 

        104 

 

7/26/2012 Hippocampus - - 18.897 0.928 

   

Substantia Nigra - - 21.802 4.886 

   

Cortex - - 19.578 0.121 

   

Kidney  - - 19.308 0.360 

   

Liver - - 22.004 0.194 

        102 

 

7/26/2012 Hippocampus - - 18.730 0.169 

   

Substantia Nigra - - 19.639 0.025 

   

Cortex - - 17.477 0.581 

   

Kidney  - - 18.105 0.372 

   

Liver - - 18.790 0.161 

        104 

 

7/26/2012 Hippocampus - - 18.897 0.928 

   

Substantia Nigra - - 21.802 4.886 
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Cortex - - 19.578 0.121 

   

Kidney  - - 19.308 0.360 

   

Liver - - 22.004 0.194 

        303 

 

8/5/2012 Hippocampus - - 20.458 0.347 

   

Substantia Nigra - - 20.347 0.961 

   

Cortex - - 19.271 0.261 

   

Kidney  - - 18.998 1.423 

   

Liver - - 21.391 0.311 

        305 

 

8/5/2012 Hippocampus - - 19.391 0.287 

   

Substantia Nigra - - 20.340 1.455 

   

Cortex - - 19.271 0.261 

   

Kidney  - - 18.901 0.102 

   

Liver - - 21.164 0.351 

        404 

 

9/16/2012 Hippocampus - - 19.710 0.153 

   

Substantia Nigra - - 20.246 0.051 

   

Cortex - - 19.144 0.567 

   

Kidney  - - 20.316 0.669 

   

Liver - - 23.021 3.470 

        406 

 

9/16/2012 Hippocampus - - 21.827 5.225 

   

Substantia Nigra - - 20.121 0.083 

   

Cortex - - 18.711 0.251 

   

Kidney  - - 19.768 0.282 

   

Liver - - 22.133 0.081 

        502 

 

9/25/2012 Hippocampus - - 18.933 0.103 
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Substantia Nigra - - 20.223 0.550 

   

Cortex - - 20.541 0.069 

   

Kidney  - - 19.134 0.029 

   

Liver - - 21.181 0.335 

        503 

 

9/25/2012 Hippocampus - - 23.215 0.079 

   

Substantia Nigra - - 24.910 0.151 

   

Cortex - - 23.557 0.258 

   

Kidney  - - 25.013 3.874 

   

Liver - - 20.843 0.110 

        506 

 

9/25/2012 Hippocampus - - 18.746 0.283 

   

Substantia Nigra - - 18.474 0.085 

   

Cortex - - 21.564 0.106 

   

Kidney  - - 28.604 0.233 

   

Liver - - 21.927 0.899 

        703 

 

9/29/2012 Hippocampus - - 21.522 0.130 

   

Substantia Nigra - - 34.326 0.436 

   

Cortex - - 21.379 0.127 

   

Kidney  - - 26.567 0.194 

   

Liver - - 23.392 0.092 

        Table 1: qRT-PCR expression of wildtype and transgenic animals.  

No detectable expression of human LRRK2 in surviving transgenic LRRK2
R1441G 

rats in 

the hippocampus, substantia nigra, cortex, kidney or liver was noted.   
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Chapter 6 

6 Discussion 

6.1 Introduction 

Animal models are critical tools for not only understanding LRRK2 pathobiology but 

also PD aetiology and pathogenesis. In particular, models which carry PD related 

mutations on the human LRRK2 gene can provide insight into LRRK2 function and the 

mechanisms by which it mediates PD related dysfunction. Recently, bacterial artificial 

chromosome (BAC) LRRK2 transgenic rodent models have been generated which allow 

us to investigate the link between genetic mutations and development of PD. Here we 

have characterized transgenic LRRK2
R1441G

 BAC rats. These rats do not display PD 

related motor or cognitive deficits by 12 months of age, and do not show increased 

vulnerability to Paraquat poisoning as compared to age-matched wildtype controls.    

6.2 Evidence from other transgenic models of LRRK2 
mediated PD 

Although to our knowledge no previous studies have examined PD phenotypes in 

LRRK2
R1441G

 transgenic BAC rats, our results are supported by recent studies in which 

transgenic LRRK2 BAC mice fail to consistently reproduce cardinal features of PD. 

Although Li et al. (2009) originally reported age-dependent, L-DOPA responsive, 

progressive motor dysfunction in LRRK2
R1441G  

BAC mice by 10 months of age, 

subsequent studies in transgenic mice have been unable to reproduce these results. 

Bichler et al. (2013) did not observe gross motor dysfunction in transgenic LRRK2
R1441G

 

BAC mice by 10 months of age, although modest motor deficits were observed in 

advanced age (21 months of age). These mice also did not display cognitive symptoms of 

PD, including depression and anxiety-like behaviour and impaired learning and memory 

(Bichler et al., 2013). However, gastrointestinal dysfunction, a common early non-motor 

symptom of PD was noted in these mice by 6 months of age (Bichler et al., 2013). 

Dranka et al. (2013) did not report gross motor abnormalities in LRRK2
R1441G

 BAC mice, 

although by 16 months of age, these mice did display deficits in motor coordination, an 

early symptom of PD. Similarly, other classic transgenic LRRK2 mouse models have 
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failed to show PD specific gross motor deficits (Li et al., 2010; Melrose et al., 2010; 

Ramonet et al., 2011). The mild impairment of motor function seen in transgenic mice 

models is further supported by the fact that these lines lack degeneration of nigrostriatal 

dopaminergic neurons, although impaired dopaminergic neurotransmission was observed 

(Li et al., 2009; Tong et al., 2009; Melrose et al., 2010; Dranka et al., 2013). Taken 

together, these results suggest that transgenic LRRK2 rodents at best model early 

phenotypes of Parkinson disease and do not recapitulate late stage PD phenotypes, 

including the motor and cognitive deficits tested here.  

6.3 Limitations of the Model 

Parkinson disease is characterized by slow and progressive degeneration of the substantia 

nigra and disruption of basal ganglia circuitry with advancing age. While neurotoxin 

models which display disease outcomes have had great success in rats, the relatively short 

life span of rats as compared to humans may make them imperfect models for studying 

genetic forms of PD. A healthy laboratory rat can survive for approximately 3 years 

while LRRK2 mediated PD is not apparent in humans until after 65 years of age. Indeed, 

despite the discovery of many genetic mutations, the greatest known risk factor for PD 

continues to be advanced age. The rats used in this study were 12 months of age, which is 

considered ‘advanced’ age for rats (Quinn, 2005) but may not have been sufficient to 

reproduce PD related phenotypes. Some researchers have argued that high levels of 

transgene expression can induce neurological phenotypes within the life span of a rat. 

Ramonet et al. (2011) tested four different transgenic mouse lines, expressing either the 

G2019S mutation or the R1441C mutation and observed neuronal loss in advanced age in 

only one line, in which transgene expression was more than 300% greater than the level 

of endogenous LRRK2. However, in this case non-physiological levels of transgene 

expression are used which while producing PD phenotypes may limit our ability to 

translate animal research to human disease. 

In addition, it is possible that because the transgene was constitutively expressed in these 

rats, they were able to develop compensatory mechanisms which counteracted the toxic 

effects of mutated LRRK2. Zhou et al (2011) found no behavioural phenotypes in rats 

that constitutively expressed mutated LRRK2 however they did observe abnormal motor 
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activity in rats with conditional adult onset expression of mutated LRRK2. Their results 

suggest that rats are able to accommodate LRRK2’s toxic effects when it is constitutively 

expressed. With this in mind, it is possible that future genetic models of PD should 

consider the viral mediated gene transfer approach instead of the BAC approach. With 

the viral mediated gene transfer approach, the mutated LRRK2 gene can be delivered to 

rodents through a viral vector in adulthood, thus bypassing the development of 

compensatory effects. This approach also allows researchers to target specific neuronal 

populations, such as susbtantia nigra dopaminergic neurons, to better model the 

degeneration seen in PD. Another advantage of the viral mediated gene transfer approach 

is that it allows researchers to correlate transgene dosage (by modulating copy number of 

transgene) with phenotype severity. Studies using this approach have already had success 

in recapitulating cardinal features of PD. Lee et al (2010) created a mouse model of PD 

expressing human G2019S LRRK2 using herpes simplex virus (HSV), which displayed 

50% degeneration of nigral dopaminergic neurons. In addition a rat model generated by 

Dusonchet et al (2011) expressing human G2019S LRRK2 showed a 20% reduction in 

dopaminergic neurons.  Viral models may allow us to recapitulate neurodegeneration 

observed in PD patients, which has thus far been difficult to show in transgenic BAC 

models.  

6.4 Multiple Hit Hypothesis of PD  

This study also explored the ‘multiple hit’ hypothesis of PD by investigating the 

vulnerability of LRRK2
R1441G

 transgenic rats to Paraquat poisoning. We exposed both 

transgenic and wildtype rats to a low, acute dose of Paraquat exposure, in order to 

examine synergistic effects of genetic mutations and environmental toxins on PD 

development. As expected, the low dose of Paraquat used in this study did not have 

lasting effects on rearing behaviour. Unexpectedly, transgenic rats did not differ from 

wildtype controls in rearing behaviour following acute Paraquat exposure, suggesting a 

lack of gene environment interaction between LRRK2 and Paraquat. Therefore, these 

results did not provide support for the ‘multiple hit’ hypothesis. Nevertheless, a dose-

reponse study with higher doses would be necessary before this hypothesis can be 

discounted. Our results are inconsistent with previous studies which show an interaction 
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between PD-related mutations in the SNCA gene and environmental exposure in 

mediating PD risk (Peng et al., 2010; Desplats et al., 2012; Nuber et al., 2014). Currently, 

few studies have investigated gene environment interactions using PD related mutations 

in the LRRK2 gene. However, one group did note altered transcriptional regulation of 

neurogenesis related genes upon exposure to Paraquat in LRRK2
G2019S 

mice (Desplats et 

al., 2012). In addition, Ray et al (2014) found enhanced neurodegeneration when C. 

elegans DA neurons expressing human α-syn or LRRK2 (G2019S) were exposed to a 

bacterial metabolite. Alternatively, an epidemiological study by Chung et al. (2013) did 

not find an interaction between environmental exposure and LRRK2 genes. Our results in 

the context of previous literature suggest that further investigation is necessary in order to 

confirm the interaction between PD-related LRRK2 mutations and environmental 

exposure. One explanation is that previous animal studies have largely looked at 

neuropathology and have not examined motor dysfunction. As previously mentioned, 

significant neurodegeneration is necessary before the onset of motor symptoms. It is 

possible that our rats simply did not develop motor symptoms at the time of testing and 

that continued exposure to Paraquat would have induced a motor phenotype in 

LRRK2
R1441G

 rats. The Paraquat paradigm used in this experiment was modeled after an 

earlier study investigating the interaction between traumatic brain injury and exposure to 

Paraquat (Hutson et al., 2011). This study reported a robust interaction between traumatic 

brain injury and Paraquat exposure on rearing behaviour in rats. However, it is possible 

that because our LRRK2 mutation did not cause neurodegeneration to the extent 

described in the TBI rats (Hutson et al., 2011), a more lethal dose of Paraquat was 

required to induce PD related motor phenotypes. 

6.5 Methodological Considerations    

 An important methodological limitation of this study is that there were no detectable 

levels of transgene expression in surviving LRRK2
R1441G

 transgenic rats. While transgenic 

rats did display genomic LRRK2 in initial genotyping PCR results, this gene seemed to be 

not transcribed to a detectable level as displayed by quantitative RT-PCR results. One 

limitation of the transgenic approach is that due to random integration of the transgene, 

positional effects can occur. Position effects refer to the phenomenon whereby transgene 
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expression is influenced by the integration site. BAC constructs are large genomic inserts 

and due to their size (~200 kb) allow the inclusion of endogenous regulatory elements, 

which should greatly reduce the probability of position effects. However the lack of 

transgene expression noted in this model suggests that transgene insertion, even with the 

BAC approach, was not stable. Position effects can include lack of transgene expression 

and extinction of transgene expression in successive generations. As the rats tested in this 

study were bred from an original pair obtained from Taconic, it is possible that transgene 

expression diminished due to successive breeding. Another consideration is that only rats 

which survived until the end of the study were tested for transgene expression. Indeed the 

animals most likely to show levels of transgene expression were those who did not 

survive after the administration of Paraquat as it is possible that insertion of the LRRK2 

gene impacted viability. Interestingly, post-mortem analysis conducted on LRRK2 rats 

which did not survive until the end of the study indicates morphology consistent with 

hemopoietic tumors. A recent study by Ruiz-Martinez et al (2014) reported a higher 

prevalence of hematological cancers in patients carried the R1441G mutation.   

6.6 Summary of findings 

In this study, we characterized transgenic BAC rats carrying the R1441G mutation on the 

human LRRK2 gene. Rats underwent motor and cognitive tests in order to assess the 

variety of behavioural phenotypes observed in Parkinson disease. Transgenic 

LRRK2
R1441G

 rats did not display any motor or cognitive deficits reminiscent of Parkinson 

disease by 12 months of age. These results are consistent with studies performed on 

transgenic mice which also fail to reproduce gross motor abnormalities (Li et al., 2010; 

Melrose et al., 2010; Ramonet et al., 2011; Bichler et al., 2013; Dranka et al., 2013). 

Together these results suggest that the genetic mutation itself is insufficient to reproduce 

PD phenotypes in these rats. Also, transgenic LRRK2
R1441G

 rats were tested for 

vulnerability to Paraquat poisoning, in order to assess the hypothesis that exposure to 

environmental toxins works synergistically with a genetic predisposition to PD to 

produce disease phenotypes. Our results show that LRRK2
R1441G

 rats did not display 

increased vulnerability to the neurotoxin Paraquat, as compared to wildtype controls. 

This may be due to the low dose of Paraquat used in this study and the lack of transgene 



78 

 

expression. Overall, our results indicate that these transgenic BAC LRRK2
R1441G

 rats are 

not a viable model of Parkinson disease.  
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