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Abstract 

The acoustic startle response (ASR) is mediated by a simple pathway which includes the giant 

neurons of the caudal pontine reticular nucleus (PnC). Habituation is theorized to occur via 

hyperpolarizing big potassium (BK) channels localized at glutamatergic terminals of auditory 

afferents in the PnC. Prepulse inhibition is suggested to be mediated by cholinergic innervation 

of PnC giant neurons, with possible glutamate and/or GABA co-release. Animals were injected 

with Fluorogold at C3/C4 to label a subpopulation of PnC giant neurons, and following a startle 

experiment, brainstems were processed for pCREB expression. Using their respective markers, 

BK channels, glutamatergic, GABAergic, and cholinergic terminals were also stained. pCREB 

expression overlapped with retrogradely-labeled PnC giant neurons of startled animals but not 

controls, supporting their startle-mediating role. Dual-staining shows some BK channel 

expression on glutamatergic terminals and glutamate/GABA co-expression in a subpopulation 

of cholinergic terminals which validate their respective implications in habituation or prepulse 

inhibition of startle.  
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1 Introduction 

The human brain is an intricate structure that is continuously being bombarded with sensory 

information from a variety of modalities. Sensorimotor gating is a process within the brain that 

regulates the transmission of sensory information to a motor system; it provides a mechanism 

for the prevention of excessive behavioral responses. One of the best tools we can use to study 

sensorimotor gating in a lab setting is the acoustic startle response (ASR). The ASR is mediated 

by a simple synaptic pathway within the brainstem that results in an activation of spinal and 

cranial motor neurons in response to an intense acoustic stimulus. The behavioral patterns 

observed in the ASR seem to be a protective reaction to the unexpected acoustic stimulus and 

consists of muscle flexion, eyelid closure, and heart rate acceleration (Koch and Schnitzler, 

1997; Koch, 1999). The primary startle pathway in rodents consists of auditory hair cells, spiral 

ganglion cells, and secondary auditory neurons in the cochlear root nucleus. The latter synapse 

onto giant neurons of the caudal pontine reticular nucleus (PnC), which is believed to be the 

sensorimotor interface of this oligosynaptic pathway (Lingenhöhl and Friauf, 1994) since giant 

neurons directly project their axons to the spinal cord and most likely synapse onto motor 

and/or spinal interneurons. 

Interestingly, the ASR can also be modulated intrinsically, within the pathway itself, or 

extrinsically, via higher order brain nuclei, to exhibit plasticity such as enhancement or 

decrement, depending on environmental conditions. Some of the modulations observed are 

fear-potentiation, sensitization, habituation, prepulse inhibition and pleasure-attenuation. 

Prepulse inhibition and habituation are of particular interest because of the role they play in 

sensory gating mechanisms. Prepulse Inhibition (PPI) occurs when a weak, non-startling 

prepulse strongly attenuates the ASR to the following startling stimulus. Theory suggests that 

the processing of the prepulse disrupts processing of the pulse, resulting in decreased startle 

(Koch and Schnitzler, 1997). PPI is processed by a feed-forward inhibitory pathway whereby 

cochlear root neurons project onto the superior and inferior colliculi, which synapse onto the 

pedunculopontine tegmental nucleus (PPT). This structure presumably sends cholinergic 

projections to the PnC (Fendt  et al., 2001). These cholinergic projections are believed to be 

inhibitory and thereby responsible for the attenuation of the startle response following a 
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prepulse. It is important to keep in mind however that the PPT has also been shown to be a 

heterogeneous structure containing distinct populations of cholinergic, GABAergic (Gamma-

Aminobutyric acid), and glutamatergic neurons (Wang and Morales, 2009), thus any one or a 

combination of these neurotransmitters may play a role in PPI.  

Habituation is the reduction in amplitude of the startle response after repeated presentation of 

the startling stimulus (Koch and Schnitzler, 1997). In this way, habituation allows for the 

filtering out of irrelevant stimuli in favor of more pertinent ones, and is known as the simplest 

form of learning. Habituation is thought to occur because of presynaptic depression in terminals 

of the cochlear root neurons synapsing onto the PnC. These terminals are hypothesized to 

express big potassium (BK) channels, which are activated both by a strong depolarization and 

calcium influx (Sausbier et al., 2006; Sailer et al., 2006). BK channel activation truncates 

synaptic transmission via hyperpolarization, which is believed to be responsible for short-term 

habituation.  

Although the hypothetical primary ASR pathway has been established, its synaptic architecture 

has not been mapped out. The present study aims to describe the synaptic organization of the 

ASR pathway and its modulatory afferents using histological and immunohistochemical tools in 

order to better understand the neurotransmitters involved and the effect of drugs on sensory 

gating. The giant neurons within the PnC, hypothesized to form the sensorimotor interface of 

this oligosynaptic pathway, were visualized using Fluorogold retrograde tracer and their 

response to activation by startle stimuli validated by testing expression of immediate early 

genes and transcription factors. We hypothesized that PnC giant neurons would express activity 

dependent markers only in animals receiving startle stimuli as opposed to control animals. We 

further employed dual and triple labeling immunofluorescence to stain for BK channels as well 

as glutamatergic, GABAergic, and cholinergic terminals that synapse on PnC giant neurons, to 

gain a better insight into the synaptic input(s) modulating startle. We hypothesized that a 

subpopulation of cholinergic terminals in the PnC would co-express glutamatergic and/or 

GABAergic markers, and that markers for BK channels would be expressed on glutamatergic 

presynaptic afferents.  
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2 Literature Review 

2.1 The various modalities and universality of the startle 

response 

The characteristics of the startle response were first introduced to the scientific community 

through a pioneering study undertaken by Landis and Hunt (1939). They tested the effect of a 

loud acoustic stimulus on human subjects who varied in age, race, drug-use, and psychosis, 

documenting the response with a high-speed camera. Landis and Hunt discovered that an 

involuntary pattern of movement consisting of eye blinks and contraction/jerking of the head, 

arms, trunk, and knees was generated uniformly across the subjects tested. Previous emotion 

theorists held that this reaction was an emotion, an extreme extension of surprise (Bull, 1951). 

Using a pistol, Ekman et al. (1985) were able to show that visible reactions to startle could not 

be suppressed upon anticipation of the gunshot nor properly simulated when no firing occurred. 

They concluded that startle must be a reflex, not an emotion, because cognition did not play a 

causal role in eliciting it. Thus, this rapid reaction to sudden and intense stimuli became known 

as the startle reflex and has since been replicated using various stimuli modalities across a 

diversity of test subjects (Prosser and Hunter, 1936; Pfeiffer, 1962; Fleshler, 1965; Davis, 

1974a; Russell, 1974; Currie and Carlsen, 1985; Wu et al., 1988; Baird et al., 1993; Wicks et 

al., 1996; Koch, 1999; Yeomans et al., 2002).  

Both albino Wistar (Prosser and Hunter, 1936; Fleshler, 1965) and Sprague-Dawley (Davis, 

1974a) rats exhibit top-down, abrupt crouch-like movements when a strong acoustic stimulus, 

in the form of a telegraph click (Prosser and Hunter, 1936) or pure tone (Fleshler, 1965; Davis, 

1974a) is introduced.  A similar phasic contraction of skeletal muscle was observed in cats 

presented with clicks or white noise bursts between 70–120dB (Wu et al., 1988). Both of these 

species can also evoke motor responses that mimic the startle pattern upon presentation with 

intense free-fall stimuli that excite the vestibular nerve (Yeomans et al., 2002). Vestibular 

stimuli in the form of water vibrations and mechanical taps delivered to the side of a substrate 

on which an animal moves, respectively induce C-type responses in Petromyzon marinus larval 

sea lampreys (Currie and Carlsen, 1985) and withdrawal reflexes in Caenorhabditis elegans 
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(C.elegans) nematodes (Wicks et al.,1996), both of which exhibit startle-like characteristics. In 

addition to acoustic and vestibular stimuli, powerful tactile stimuli in the form of airpuffs were 

shown by Simons-Weidenmaier et al. (2006) to elicit startle responses in both rats and C57BL/6 

mice, through the activation of the trigeminal pathway and the principal nucleus of the 5
th

 

nerve. Furthermore, Yeomans and colleagues (2002) described how cross modal summation 

between tactile, acoustic, and vestibular stimuli in rats, cats, and humans can produce a startle 

response stronger than single-modality stimulations, using an intensity threshold far below the 

intensity required for startle when the stimuli are individually presented.  

Despite their extensive startle responses to the above mentioned stimuli modalities, mammals 

are not as reactive to visual and olfactory stimuli as are flies and fish, respectively. For instance, 

Drosophila Melanogaster jump or initiate flight in response to a light-off stimulus (Baird et al., 

1993) and European minnows (Phoxinus laevis) undergo a fright reaction in which they swim 

to the opposite side of the alarm substance, when they smell the injured skin of fellow school 

members (Pfeiffer, 1962).  

It is well understood that across the animal kingdom and regardless of stimulus modality, the 

purpose of the startle reflex is to protect against life threatening blows or predatory attacks 

(Pfeiffer, 1962; Russell, 1974; Currie and Carlsen, 1985; Baird et al., 1993; Wicks et al., 1996; 

Koch and Schnitzler, 1997; Koch, 1999; Yeomans et al., 2002). This is especially noted in 

studies by Koch (1999) and Yeomans et. al. (2002) both of whom report that in addition to the 

abrupt movements generated by startle, test subjects showed increased heart rates and arrests of 

ongoing behaviours, indicative of a fight/flight sympathetic response.  

In spite of the many startle models that exist, the acoustic startle response (ASR) in mammals 

(rats, mice, cats, and humans) has the greatest amount of neurobiological data gathered and can 

be used to study behavioural plasticity due to its non-zero baseline (i.e., the response magnitude 

can be enhanced or diminished based on environmental conditions or experimental 

manipulations; Koch, 1999). Additionally, the ASR neuronal circuitry in rats is well 

characterized and can be generalized to humans since equal response paradigms in both 

mammals are observed when identical stimulus parameters are used (Koch, 1999).  
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2.2 The acoustic startle response circuitry 

One of the principal reasons why the ASR is a preferable study model is due to the ease in 

measuring the response in a laboratory setting: animals are placed on a transducer platform 

inside startle boxes, which converts their vertical movements into voltage signals (Koch, 1999; 

Valsamis and Schmid, 2011). Studies conducted in both rats (Davis et al., 1982a; Lingenhöhl 

and Friauf, 1994; Lee et al., 1996; Koch and Schnitzler, 1997; Koch, 1999; Yeomans et al., 

2002) and cats (Wu et al., 1988; Yeomans and Frankland, 1996) reveal that the startle response 

occurs when the acoustic stimulus is > 80dB, and that the latency of this reflex is very short – 

about 10ms in duration. It is this short latency that formed the basis of the assumption that the 

primary startle pathway is composed of a simple circuit with a small number of synapses (Davis 

et al., 1982a, Pilz et al., 1988).  

The involvement of the cerebral cortex was ruled out by Forbes and Sherrington (1914) who 

were able to show that decerebrated cats still startled, and by Prosser and Hunter (1936) who 

proposed that cerebral involvement was not likely due to its minimum latency of 8ms to 

auditory stimulation. Furthermore, based on latency data alone, Prosser and Hunter (1936) 

hypothesized that the startle circuit included the cochlea, eighth cranial nerve, cochlear nuclei, 

inferior colliculus, midbrain reticular nucleus, reticulo-spinal tract, anterior horn cells, and 

motor neurons.  In 1982, Davis and his colleagues conducted the first systematic study of the 

primary startle pathway using a combination of horseradish peroxidase (HRP) tracing 

techniques, electrical stimulations, and electrolytic lesions. The startle response was abolished 

following bilateral lesions in the ventral cochlear nucleus (VCN), nuclei of the lateral lemniscus 

(LL), and nucleus reticularis pontis caudalis (PnC), and elicited with electrical stimulation to 

these same regions. Davis et al. (1982a) thus concluded that the startle circuit involved five 

synapses which connect neurons of the following structures: VCN, LL, PnC, spinal 

interneurons, and spinal motor neurons. The circuit was further modified and shortened as a 

result of more modern and sensitive analytical methodologies which included using dual 

retrograde and anterograde tracing techniques to identify sources of input and efferent targets of 

the PnC (Lingenhöhl and Friauf, 1994). Retrograde tracing observations demonstrated the 

bilateral input of cochlear root neurons (CRNs) to the PnC with no afferents coming from the 

nuclei of the LL, and anterograde tracing showed that PnC neurons are reticulospinal cells with 
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similar axonal trajectories. This neuronal pathway implies that the primary startle circuit is 

composed of three central relay stations consisting of the CRNs, PnC, and cranial/spinal motor 

neurons (Figure 2.1). Further evidence for the obligatory role of cochlear root neurons in the 

elementary startle circuit was provided when bilateral kainic acid lesions of CRNs abolished 

startle without causing damage to the auditory nerve (Lee et al., 1996), and biotinylated dextran 

amine injections in CRNs were shown, using electron microscopy, to form synapses with PnC 

reticulospinal neurons (Nodal and López, 2003).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 

 

 

 

Figure 2.1 A schematic representation of the neural circuitry mediating the acoustic startle 

response. 
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In addition to their tracing experiments, Lingenhöhl and Friauf (1994) combined HRP 

morphological identification with electrophysiology to characterize the giant neurons within the 

PnC (named so because of their large soma diameter, >40µm) which they believed to be good 

candidate mediators of startle and the location of sensorimotor integration. These 20-60 giant 

neurons, polygonal in soma shape and consisting of multiple proximal dendrites (Koch et al., 

1992; Nodal and López, 2003) make up about 1% of the PnC (Koch et al., 1992), and are 

sufficient to relay the acoustic stimuli to the many hundreds of motor neurons in the spinal cord 

and brainstem (Yeomans and Frankland, 1996). Targeted lesions of the PnC giant neurons were 

executed using the excitotoxin quinolinic acid, an N-methyl-D-aspartate (NMDA) receptor 

agonist, which selectively destroys giant neurons due to their relative sensitivity to glutamate 

(Koch et al., 1992). Loss of giant neurons significantly reduced the startle amplitude and a 

positive correlation was observed between the number of neurons lost and the reduction of the 

amplitude (Koch et al., 1992). Giant PnC neurons show a remarkable number of physiological 

features such as short-latency auditory input, high firing threshold, sensitivity to pre-pulse 

stimulation, habituation to repetitive acoustic stimulation, and response enhancement following 

amygdaloid activity, all supporting their pivotal role as the sensorimotor interface between 

CRNs and motor neurons (Lingenhöhl and Friauf, 1994). Giant neurons within the pontine 

caudal reticular nucleus of cat (Wu et al., 1988; Yeomans and Frankland, 1996) and human 

(Martin et al., 1990) brains with similar characteristics to those described in the above 

mentioned rodent models, were likewise revealed to play an important role in the mediation of 

startle. Similarly, large neurons known as Mauthner cells, in goldfish (Russell, 1974) and larval 

lampreys (Currie and Carlsen, 1985), have been shown to actively initiate the motor response 

following startling stimuli. Furthermore, PnC giant neurons are important relay centers of 

multiple sensory stimuli, including vestibular stimuli from the lateral vestibular nucleus and 

tactile stimuli from the trigeminal neurons, into motor activity (Koch et al., 1992; Yeomans et 

al., 2002). Taken together, these studies provide adequate evidence for PnC giant neurons as the 

sensorimotor interface of the acoustic startle response pathway.  
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2.3 Modulation of the acoustic startle response through prepulse 

inhibition 

The acoustic startle response can be used as a tool to assess the neuronal basis of behavioural 

plasticity because of the ability to positively and negatively modulate sensorimotor information 

processing (Koch et al., 1997; Koch, 1999). Sensitization and fear-potentiation are examples of 

modulations that enhance the ASR magnitude, while pleasure-attenuation, prepulse inhibition, 

and habituation modulate the ASR by diminishing its magnitude. Prepulse inhibition and 

habituation are of particular interest because of the biologically significant role they play in 

sensory gating mechanisms (Koch et al., 1997; Koch, 1999), and as such will be further 

discussed in this and subsequent sections.  

Prepulse inhibition (PPI), a term coined by Ison and Hammond (1971), is the ability of a weak 

stimulus, which itself evokes no behavioural response, to briefly attenuate the startle reaction to 

a subsequent strong stimulus (Figure 2.2; Mongeluzi et al., 1998a; reviewed in Laurraui and 

Schmajuk, 2006). PPI is not learning-related because of its occurrence on the first trial 

(Mongeluzi et al., 1998a; Fendt et al., 2001), and the startle response across species can be 

attenuated by previous stimulation with a prepulse from various modalities including acoustic, 

tactile, and visual (Buckland et al., 1969; Pinckney, 1976; Mongeluzi et al., 1998a/b; Fendt et 

al., 2001). For instance, a 100msec vibrotactile prepulse delivered to marine mollusks Tritonia 

diomedea and Aplysia californica prior to a tail shock, prevents the escape swim response that 

these invertebrates undergo when startled (Mongeluzi et al., 1998a/b).  
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Figure 2.2 Schematic of prepulse inhibition where a weak, non-startling prepulse strongly 

attenuates the acoustic startle response to the following startling stimulus. 
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The biological significance of PPI, which in humans is measured as a change in the eye blink 

reflex – a component of the startle response (Li et al., 2009), is described in Graham’s (1975) 

protection-of-processing theory. Graham briefly states that the low-intensity prepulse stimulus 

produces a detection reaction that triggers a gating mechanism, which transiently inhibits the 

distractive startle-like response that would disrupt perceptual processing of the lead stimulus. 

PPI is therefore an important modulation of startle that reduces distraction and prevents 

information overload in the brain (Koch et al., 1993; Fendt et al., 2001; Holmstrand and Sesack, 

2011). As such, deficits in PPI are linked to a variety of neurological disorders such as 

Alzheimer’s disease, Huntington’s chorea, Tourette’s syndrome, and especially Schizophrenia, 

due to the inability of these patients to suppress intrusive sensory, motor, and cognitive 

information (Braff et al., 1978; Geyer and Braff, 1982; Putzki, 2008).  

PPI was first noted by Hoffman and Fleshler (1963) when they discovered that a continuous 

background noise had no effect on startle, however when the background noise was pulsed 

(0.5s on, 0.5s off), the startle response disappeared by 80%. Hoffman and Searle (1965) studied 

the inhibitory mechanisms of PPI in a more direct and controlled manner by varying prepulse 

intensities and the inter-stimulus-interval (ISI) – the time between the prepulse and the pulse. 

Using ISIs ranging from 10-4000msec, they concluded that inhibition of startle was maximum 

at shorter ISIs, with no inhibition observed below or above 20 and 1000msec, respectively. 

Thus, Hoffman and Searle were able to show that PPI is sensitive to temporal variables since it 

only occurs when the prepulse precedes the primary startle stimulus by a suitable interval, and 

that the magnitude of inhibition can be correlated with the intensity of the prepulse whereby 

higher intensities (up to the startle stimuli threshold) result in greater inhibitions. Based on their 

results, they cite three brain regions that may be responsible for the circuitry mediating PPI: the 

intratympanic reflex mediated by the reticular formation (Loeb, 1964), the oliveocochlear 

bundle (Desmedt, 1962), and the inferior colliculus (Prosser and Hunter 1936).  

The hypothetical circuit for PPI was delineated through the conduction of numerous lesion and 

stimulation studies (reviewed in Fendt et al., 2001). Lesions of the inferior colliculus (IC) 

disrupted PPI by acoustic but not visual prepulses (Leitner and Cohen, 1985), and electrical 

stimulation of the IC simulated an acoustic prepulse and inhibited the startle response (Li and 

Yeomans, 2000), both of which provide evidence for the IC as a relay of auditory input to PPI-
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mediating circuitry. The superior colliculus (SC) also plays a role in PPI and acts as the 

multimodal processing center in the circuit because of the direct input it receives from auditory, 

somatosensory, and visual nuclei (Meredith et al., 1992).  The SC has also been shown to 

receive inhibitory GABAergic input from the substansia nigra pars reticulata (SNR) which is 

proposed to modulate PPI (Chevalier et al., 1981), and pharmacological stimulations by 

blocking GABA support this finding (Fendt, 1999). As for the IC, lesions of the SC prevented 

PPI (Fendt et al., 1994b) and electrical stimulations of this region mimicked PPI (Li and 

Yeomans, 2000).  Since the SC projects to both the pedunculopontine tegmental nucleus 

(PPTg) and the laterodorsal tegmental nucleus (LTDg; Redgrave et al., 1987; Semba and 

Fibiger., 1992; Steiniger et al., 1992), lesions (Leitner et al., 1981) and electrical stimulations 

(Li and Yeomans, 2000) of these regions were undertaken to further reinforce their role in the 

PPI circuitry. Furthermore, a subpopulation of neuronal projections from the PPTg are shown to 

directly innervate the PnC giant neurons mediating startle, and inhibit their activation when a 

prepulse is present (Mitani et al., 1988; Lingenhöhl and Friauf, 1994; Bosch and Schmid, 

2006). Interestingly, the PPTg is also proposed to act as a relay station between the PnC and 

higher order brain nuclei such as the nucleus accumbens and ventral pallidum, which may 

influence the modulation of PPI (Koch et al., 1993; Laurrauri and Schmajuk, 2006).  This top-

down modulation of PPI has been shown in a variety of animal experiments and functional 

magnetic resonance imaging studies in human subjects, to involve many more brain structures 

including but not limited to, the prefrontal cortex, thalamus, amygdala, hippocampus, striatum, 

and globus pallidum (reviewed in Swerdlow et al., 2001). In summary, these studies taken 

together allow for the hypothetical pathway for PPI to be outlined as per the representation in 

Figure 2.3.  
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Figure 2.3 Schematic of the hypothetical circuit mediating PPI of the ASR. IC: inferior 

colliculus; SC: superior colliculus; PPTg/LDTg: pedunculopontine tegmental 

nucleus/laterodorsal tegmental nucleus; SNR: substansia nigra pars reticulate; SNC: substansia 

nigra pars compacta; VTA: ventral tegmental area; Ach: acetylcholine; GABA: γ-Aminobutyric 

acid (Fendt et al., 2001)  
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2.4 Cholinergic neurons in the pedunculopontine tegmental 

nucleus and their role in prepulse inhibition 

As described in the previous section, the brain stem circuitry mediating PPI of the startle reflex 

is important for our understanding of neuropsychological disorders in which this pathway has 

been compromised. Thus knowledge of the neurotransmitter(s) involved in this modulation will 

aid in the comprehension of various drug effects on sensory gating and may provide insight into 

prophylactic targets in cases where a deficit is evident. Based on a wealth of literature, both 

inhibitory cholinergic and GABAergic neurotransmission have been proposed to be major 

participants in PPI (Fendt et al., 2001).  

In 1988, Mitani and colleagues performed a series of tracing analyses to discern the identity of 

the PPTg/LDTg projections contacting PnC giant neurons, and believed to mediate PPI. Using a 

cat model, they used HRP conjugated to wheat germ agglutinin to retrogradely label neurons in 

the PPTg/LDTg from the PnC, as well as Phaseolus vulgaris leucoagglutinin anterograde 

transport to confirm projections from PPTg/LDTg to PnC. Combining these tracing techniques 

with the immunohistochemical staining of choline acetyltransferase (ChAT), a marker for 

cholinergic neurons, they discovered that 5% and 10% of the terminals from the PPTg and 

LDTg respectively, expressed the ChAT marker. This same tracing experiment coupled with 

ChAT immunohistochemistry was later conducted in rats (Semba et al., 1990; Grofova and 

Keane, 1991; Koch et al., 1993) with similar results, in addition to electrophysiological and 

neurotoxic lesioning tests. Recordings from PnC giant neurons in the presence of acetylcholine 

agonists acetyl-ß-methylcholine and carbachol revealed decreased responses as compared to 

controls, and quinolinic acid lesions of the cholinergic neurons in the PPTg significantly 

reduced PPI with no effect on ASR or habituation (Koch et al., 1993; Swerdlow and Geyer, 

1993). Increasing evidence for the importance of cholinergic neurons in PPI was revealed 

through electron microscopy analysis which showed ChAT-positive varicosities from the PPTg 

terminating onto cell bodies and proximal dendrites of PnC giant neurons (Jones, 1990), and in 

rats fed a choline-free diet who showed behavioural signs of impaired PPI (Wu et al., 1993). 

Furthermore, the inhibitory role that these cholinergic neurons play was confirmed using 

whole-cell patch clamp recordings of PnC giant neurons in which excitatory postsynaptic 
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currents elicited by trigeminal and auditory fiber stimulations were inhibited by carbachol 

(Bosch and Schmid, 2006 and 2008),  and in muscarinic receptor knockout mice who exhibited 

impaired PPIs (Gomeza et al., 2001). In both of these two studies, muscarinic receptor subtypes 

4 and 2 were hypothesized to be involved.  

No study has been able to completely block PPI following blockade of cholinergic input into 

the PnC (Leitner et al., 1981; Semba et al., 1990; Fendt et al., 1994b; Fendt, 1999; Li and 

Yeomans, 2000) and this suggests that while cholinergic release is important for PPI, it is not 

the sole neurotransmitter responsible for the mediation of this circuit. Using the GABAA 

receptor anatagonist bicuculline, the GABAB receptor antagonist phaclofen, and the muscarinic 

receptor antagonist scopolamine in Wistar rats and B6 mice, Yeomans et al. (2010) were able to 

show that both GABA receptors on PnC giant neurons mediate a part in PPI; GABAA receptors 

contributed to the peak of PPI and GABAB receptors were activated at long ISIs in synergy with 

the effects of cholinergic muscarinic receptors. This attenuation of PPI in the presence of 

GABA receptor antagonists supported a study conducted ten years prior by Koch and his 

colleagues (2000) who noted a 60% reduction in PPI when the SNR was lesioned. Combined, 

the results of these researchers suggest a role for inhibitory GABAergic projections from the 

SNR to PnC giant neurons in partially mediating PPI.  

Neurons have been traditionally assumed to only release one classical neurotransmitter, 

however the evidence against this notion is increasing. Co-release of neurotransmitters has 

widespread implications for the activation of postsynaptic receptors and the potential for 

distinct modes of signaling (reviewed by Hnasko and Edwards, 2012). A subpopulation of 

cholinergic, retinal amacrine cells in chicks, rats, and rabbits, simultaneously excite and inhibit 

postsynaptic cells by their respective co-release of acetylcholine and GABA neurotransmitters 

(reviewed in Duarte et al., 1999). Cholinergic neurons in both the basal forebrain (Allen and al., 

2006) and the striatum (Guzman et al., 2011) have also been shown to co-release transmitters, 

in this case acetylcholine and glutamate. In the basal forebrain, synaptically released 

acetylcholine exerts a negative-feedback inhibition on co-released glutamate (Allen and al., 

2006), and in the striatum, selective elimination of the vesicular acetylcholine transporter 

(VaChT) has only marginal consequences on striatal-related tasks because co-released 

glutamate mediates most functions previously attributed to acetylcholine (Guzman et al., 2011). 
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Moreover, Spann and Grofova (1992) combined light and electron microscopy to show that the 

PPTg is composed of a mixture of cholinergic and non-cholinergic neurons. This finding was 

elaborated by Wang and Morales (2009) who used ChAT immunohistochemistry coupled with 

in situ hybridization of GAD and VGLUT2 mRNA transcripts, to demonstrate that the PPTg 

and LDTg both contain distinct populations of cholinergic, glutamatergic, and GABAergic 

neurons. Therefore, due to the abundance of experimental evidence, the hypothesis that 

cholinergic terminals projecting to the PnC co-release GABAergic or glutamatergic transmitters 

that combine to inhibit the startle response during PPI, is a plausible theory to exam.  

  

2.5 Habituation as an intrinsic modulation of the acoustic startle 

response 

Both PPI and habitation represent important sensorimotor gating mechanisms (Koch and 

Schnitzler, 1997; Koch, 1999; reviewed in Rankin et al., 2009). In contrast to PPI however, 

habituation is (mostly) and intrinsic modulation of the ASR which means that the underlying 

mechanism is located in the primary startle pathway itself (see below). First described by 

Prosser and Hunter (1936), habituation refers to the reduction in magnitude of the startle 

response following repetitive presentation of the startling stimulus (Figure 2.4). Habituation is 

termed the “simplest form of non-associative learning” because the response decrement does 

not rely on the presentation of a conditioned stimulus (Koch, 1999; Rankin et al., 2009), and it 

modulates the startle reflex in a wide variety of vertebrate and invertebrate models including the 

gill withdrawal reflex in Aplysia (Engel and Wu, 1998), the tap reversal response in C.elegans 

(Rankin et al., 1990), and the escape circuit in Drosophila (Castellucci et al., 1970). Habituation 

is an important gating mechanism that allows for the filtration of irrelevant stimuli in favor of 

more salient ones, thus comprehension of its mediating neuronal mechanism is an important 

prerequisite for understanding other forms of learning.  
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Figure 2.4 Schematic of the habituation of a startle response when a repetitive stimulus (#25) is 

given (Koch and Schnitzler, 1997). 
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The dual-process theory by Groves and Thompson (1970) is the most influential theory of 

habituation and describes the existence of two independent and opposing mechanisms 

(habituation and sensitization) whose net result is measured as the decline in response 

amplitude. This implies that any given startling stimulus evokes both sensitizing and 

habituating properties which are at competition with one another (Borszcz et al., 1989; Ornitz 

and Guthrie, 1989). A landmark paper by Thompson and Spencer (1966) characterized nine 

common features that habituation entails including spontaneous recovery (response decrement 

recovers upon stimulus withdrawal), dishabituation (response decrement to original stimulus 

increases when an alternate stimulus is presented), and stimulus specificity (response decrement 

to one modality, tactile or acoustic, is not generalized to a different modality (see also Simons-

Weidenmaier et al., 2006)). Furthermore, because dishabituation is a characteristic of 

habituation, the latter can be differentiated from response decrements due to sensory adaptation 

or motor fatigue (Davis and File, 1984; Christofferson, 1997). These nine features remained 

relatively unchanged since they were first introduced in 1966, and in 2009, Rankin et al. saw 

the need to include one more consideration: long-term habituation (LTH).  

LTH is the reduction in the ASR magnitude of the first trial amplitude across several days 

(between sessions), and is differentiated from short-term habituation (STH; most often referred 

to as simply “habituation”) which typically occurs within a single test session (Koch, 1999; 

Rankin et al., 2009). Like STH, LTH is a non-associative learning process (Jordan et al., 2000) 

that shows stimulus modality specificity (Pilz et al., 2013) however, the neuronal mechanism 

underlying LTH is thought to be far more complex than STH and incorporate a variety of brain 

structures (Koch and Schnitzler, 1997; Rankin et al., 2009). STH occurs via an intrinsic 

mechanism within the primary ASR pathway but LTH suppresses ASR by an extrinsic 

mechanism outside of the stimulus response pathway, and includes brain regions such as the 

medial cerebellum (Leaton and Supple, 1986 and 1991; Lopiano et al., 1990) and the ventral 

periaqueductal gray (Borszcz et al., 1989). Despite lesion experiments implicating these various 

neuronal substrates in the mediation of LTH, the precise location in the primary ASR pathway 

where attenuation occurs remains unknown.  

In the case of STH, any role of rostral brain structures were ruled out because decerebrated rats 

at the level of the inferior colliculus still preformed short-term, but not long-term, habituation 
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(Fox, 1979; Leaton et al., 1985). Pilz and Schnitzler (1996) discovered that STH occurred 

without increasing the ASR threshold and concluded that the mechanism for habituation must 

lie downstream from the region that determines the ASR threshold, most likely at the synapse 

between CRNs and PnC giant neurons. Lingenhöhl and Friauf (1994) furthered this theory by 

testing EPSPs generated by giant neurons in the presence of repetitive sensory stimulations, 

which resulted in decreased amplitudes. Moreover, habituation of startle-like responses was 

evident with electrical stimulation of only CRNs and not reticular neurons (Davis et al., 1982b), 

which again indicated the synapse between CRNs and cells in the PnC as the neural substrate 

for habituation. Weber et al. (2002) used rat brain slices to show that repeated action potentials 

(mimicking sensory afferent fibers during startle stimuli presentation) induced an exponential 

decay of the synaptic response amplitude in PnC giant neurons; this synaptic depression is 

hypothesized to be the neural correlate for STH. Based on these findings, two processes of 

synaptic depression are possible: either attenuation of the CRN presynaptic transmitter release 

or reduction of sensitivity of postsynaptic receptors on PnC giant neurons (Koch and Schnitzler, 

1997). To determine which process of synaptic depression is most likely responsible for STH, 

Simons-Weidenmaier et al. (2006) conducted patch-clamp recordings in PnC giant neurons of 

rat and mice brain slices, following stimulation of auditory and trigeminal afferents. They 

proposed that since habituation was specific for each stimulus modality and not generalized 

between the two, a presynaptic mechanism is responsible for causing STH before signal 

integration from different pathways can occur in the PnC.   

Since STH is suggested to occur via presynaptic depression of CRN afferents, the identity of 

the neurotransmitter involved in the mediation of auditory input to the reticular brainstem is of 

great interest. Acetylcholine (Yao and Godfrey, 1992), glycine, and GABA (Kolston et al., 

1992), were ruled out as transmitter phenotypes of CRNs. Using electron microscopy, CRN 

axons were revealed to establish both en passant and terminal contacts in the PnC (Nodal and 

López, 2003). Based on the rounded morphology of these terminal vesicles and the asymmetric 

synapses they formed, it was concluded that they released excitatory transmitters. Ebert and 

Koch (1992) iontophoretically applied glutamate and both α-Amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) and NMDA receptor antagonists to examine their effects on 

acoustically-evoked responses of PnC giant neurons. Glutamate caused an increase in the tone-

evoked discharge rate of these neurons which was inhibited by both antagonists with a greater 
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reduction when the AMPA receptor antagonist was used. Using these same two antagonists, 

Miserendino et al. (1990) described an inhibition of the ASR in behaving rats. Therefore, the 

evidence compiled from these studies points to glutamate as the transmitter phenotype of CRNS 

(Krase et al., 1993).  

 

2.6 BK channels and their potential role in habituation of startle 

Since habituation involves a form of plasticity that calls for depression of excitatory 

neurotransmission, it is significant to gain insight into the molecular mechanisms which 

produce this reduction of depolarization in the synaptic terminal (Charpier et al., 1995). Large 

Ca
2+

-activated potassium (K
+
) channels, designated as Big K

+
 or BK channels due to their 100-

300pS sized single-channel conductance (Latorre and Miller, 1983; Marty, 1981), are 

hypothesized to be the key players in mediating presynaptic depression (reviewed in Cui et al., 

2009) which is believed to be responsible for habituation.  

BK channels are vastly expressed throughout the animal kingdom and they participate in a 

number of functions including regulation of neuronal transmitter release (Sailer et al., 2006; 

Sausbier et al., 2006; Wang, 2008), tuning of cochlear inner hair cells (Rüttiger et al., 2004; 

Pyott et al., 2007), and contractibility of both skeletal (Pallotta et al., 1981) and smooth 

musculature (Inoue et al., 1985). BK channels are heterooctamers composed of four α and (in 

mammals) four β subunits (Rüttiger et al., 2004). The α subunits each contain seven 

transmembrane domains (S0-S6) with S1-S4 as voltage-sensors and S5-S6 as pore-gate formers 

(Figure 2.5; Cui et al., 2009). The S0 domain secures the N-terminus to the extracellular side, 

and the carboxyl terminal contains two regulatory domains (RCK1 and Ca
2+ 

bowl) important 

for Ca
2+ 

 - dependent channel gating (Wang, 2008). The β subunits are made up of two domains 

which control channel properties related to Ca
2+ 

/toxin sensitivity (Farley and Rudy, 1988).  
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Figure 2.5 BK channel structural representation of the seven domains that form the α subunit 

(encoded for by the Slo1 gene). VSD: voltage-sensor domain; P: pore loop; RCK1: regulatory 

domain for K
+
 conductance (Cui et al., 2009).  

 

 

 

 

 

 

 



22 

 

The claim that BK channels are important modulators of membrane excitability at the 

presynaptic level (Robitaille et al., 1993; Xu and Slaughter, 2005) is supported by electron 

microscopy results localizing BK channels to presynaptic glutamatergic terminals in 

hippocampal pyramidal neurons (Sailer et al., 2006), and immunogold labeling of these 

channels in presynaptic cells (Hu et al., 2001). Furthermore, in retinal amacrine cells, BK 

channels are implicated in reciprocal synapse modulation of both pre- and postsynaptic 

signaling (Grimes et al., 2009), and in hippocampal/cortical nerve terminals, BK channels 

located at the presynaptic terminal were noted to selectively regulate the release of glutamate 

over GABA (Raffaelli et al., 2004; Martire et al., 2010).  

Presynaptic BK channels serve as negative regulators of excitatory glutamatergic release and 

are able to efficiently regulate the activity-dependent accumulation of presynaptic Ca
2+

 because 

of their colocalization with the presynaptic Ca
2+

 channels (Gho and Ganetzky, 1992). 

Intracellular calcium accumulation, which is triggered by N-type Ca
2+ 

channel depolarization 

(Katz et al., 1995) and leads to neurotransmitter release, is significantly increased in the 

presence of the BK channel blockers, Iberiotoxin and Charybdotoxin (Robitaille et al., 1993) or 

in conditions such as ischemia and epilepsy (Hu et al., 2001). Hyperpolarizing BK channels are 

therefore proposed to serve as emergency brakes which prevent this rise in intracellular calcium 

accumulation and ensuing excessive depolarization (Runden-Pran et al., 2002). Other than the 

need for high voltage and calcium, the exact mechanism for the activation of BK channels is 

not fully understood, however it is hypothesized that this is brought on as a result of 

phosphorylation of the channels (as seen in C.elegans) by the presynaptic Ca
2+

/Calmodulin-

dependent protein kinase II (CaMKII; Liu et al., 2007).  

The role of BK channels in habituation was first described in Drosophila with mutations in the 

slowpoke (Slo) gene which encodes subunits implicated in channel modulation (Engel and Wu, 

1998). Malfunctions of the BK channels in these flies led to a markedly reduced rate of 

habituation to a visually-induced jump response. The α pore-forming subunit of BK channels 

(Rüttiger et al., 2004) was abolished in C.elegans with a Slo1 channel mutant, and these 

mutants were unable to habituate to a reversal reflex induced by a mechanical stimulus 

(Unpublished data, personal communication, Catharine Rankin). Moreover, Typlt et al. (2013) 

found that mice with a knock-out mutation for the Slo1 gene had completely abolished STH but 
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unaffected LTH, reiterating the notion that LTH is mediated by an alternate circuit. Thus, in 

consistence with their physiological importance and molecular properties, BK channels acting 

on presynaptic glutamatergic afferents, are the likely mediators of CRN synaptic depression on 

PnC giant neurons, which is ultimately responsible for the habituation of startle (Figure 2.6).  
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Figure 2.6 Hypothetical molecular mechanism of BK channel dependent regulation of 

transmitter release at the sensorimotor synapse in the PnC. A. Subthreshold synaptic 

transmission that would not lead to a postsynaptic action potential/startle response. B. Action 

potential bursts that lead to a suprathreshold activation of PnC giant neurons. Ca
2+

 starts to 

accumulate in the terminal leading to BK channel activation through possible phosphorylation. 

C. BK channel activation truncates further depolarization and calcium influx, reducing 

transmitter release which results in synaptic depression. Upon gradual dephosphoylation of BK 

channels, the synapse recovers to its original status (A). 
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3 Hypotheses and Objectives 

This study was conducted to test the overall hypothesis that giant neurons within the PnC form 

the sensorimotor interface of the ASR pathway. More specifically, we hypothesized that these 

giant neurons are responsible for mediating the startle response and become activated in the 

presence of a startle stimuli. We additionally hypothesized that PnC giant neurons receive 

cholinergic input which may co-localize with GABAergic and/or glutamatergic markers, and 

that presynaptic glutamatergic afferents in contact with these giant neurons would co-express 

BK channel markers.   

There were three main objectives to this work: 

1. Confirm the location of giant neurons within the PnC by using Fluorogold retrograde 

labeling from the spinal cord and validate their function in mediating startle by looking at the 

expressions of immediate early genes c-Fos and Zif268/EGR-1, as well as the transcription 

factor pCREB, upon startle activation.  

2. Demonstrate and quantify the co-localization of cholinergic terminals in the PnC with 

GABA and glutamate markers by performing triple labeling immunofluorescence using high 

affinity choline transporter 1 (CHT1), glutamate decarboxylase (GAD67), and vesicular 

glutamate transporter 1 (VGLUT1) as respective markers. 

3. Show that glutamatergic terminals in the PnC express BK channels by performing dual 

labeling immunofluorescence using VGLUT1 and Kca1.1 as respective markers.    

* For the second and third objectives, subsequent staining was done using the neuronal 

biomarker NeuN in order to understand the relationship of these dual/triple labeled terminals 

with the startle mediating giant neurons. 
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4 Materials and Methods 

Animal care and handling 

A total of 19 adult (300-400g) male (n=5) and female (n=14) Sprague Dawley rats, obtained 

from Charles River Laboratories (Senneville, Quebec, Canada), were used for this study. 

Animals were housed at the animal care facility in Western University and kept in a 

temperature controlled room, on a 12/12 hour light/dark cycle, with access to food and water ad 

libitum. Animals used for behavioural testing were handled prior to the experiments to ensure 

familiarity with the handler and equipment used. All procedures were approved by the Western 

University Animal Care and Use Committees and conformed to Canadian Council on Animal 

Care research guidelines.  

4.1 c-Fos, Zif268, and pCREB expression 

Stereotaxic surgery 

Fifteen male (n=2) and female (n=13) rats were used for this portion of the study. Fluorogold 

(FG) retrograde tracer (Fluorochrome, LLC, Denver, CO, USA) was injected into the spinal 

cord of rats to confirm the location of giant neurons within the PnC. The neuronal tracer was 

injected under deep anaesthesia, using a mixture of Xylacine (13%) and Ketamine (87%) 

administered intraperitoneally at a concentration of 1ml/kg. Where warranted, an additional 

injection of the anaesthetic (1/5
th

 of the initial dosage), was given during the surgery. Following 

anaesthesia, animal furs were shaved off and skin was cleaned with soap, 70% ethanol, and 

iodine to ensure sterility. The head-positioning protocol referred to by Paxinos and Watson 

(2004) was used to place animals in a stereotaxic frame for spinal cord injections. For each 

animal, a midsagittal incision was made on the dorsal surface of the neck, and muscles within 

that region were removed to expose the laminae of the third and fourth cervical vertebrae. The 

lamina of the 4
th

 cervical vertebrae was removed and spinal dura was punctured to facilitate 

subsequent tracer injections. Two pressure injections (1µL each) of FG (4% in saline) were 

made into the spinal cord bilaterally on either side of the dorsal vein between C3 and C4 (Nodal 

and López, 2003). On both sides, the first injection was made 1.6mm down from the dorsal 

surface of the spinal cord, followed by a second injection 0.8mm from the dorsal surface. Silk 
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sutures (PERMA-HAND®, Ethicon, Sommerville, NJ, USA) were used to close the wounds 

and animals were allowed a 4 day rest period prior to behavioural testing. Ketoprofen (0.35ml 

in 3ml saline) was subcutaneously given to animals following surgeries.  

Behavioural testing 

To test the effects of startle on IEG and pCREB expression in PnC giant neurons, animals were 

randomly divided into three treatment groups. Seven rats of Group 1 rats “Startle” received 

startle stimuli. Rats were placed in startle boxes (Med Associates Inc., St. Albans, Vermont, 

USA) and acclimated to white background noise at 65 dB for 5 minutes. Following acclimation, 

rats received either 10 (n=4) or 30 (n=3) startle stimuli (Figure 4.1) of 115dB, with an inter trial 

interval of 15 seconds. Rats remained in the boxes for a total of 60 minutes prior to transcardiac 

perfusion. Group 2 “Background Noise” rats (n=2) received only white background noise while 

in the startle boxes for 60 minutes prior to transcardiac perfusion. Group 3 “Silence” rats (n=6) 

were placed into the startle boxes without any background noise or sound for 60 minutes.  
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Figure 4.1 Startle response curves for the animals in Group 1 “Startle”, Group 2 “Background 

Noise” and Group 3 “Silence”. All animals were acclimated for 5 minutes. Group 1 animals 

received either 10 or 30 startle stimuli of 115dB, with an inter trial interval of 15 seconds. The 

first ten trials are shown averaged for all animals in each group. Group 2 rats received only a 

background noise and Group 3 rats were not given any sound. All rats remained in the boxes for 

a total of 60 minutes. Only Group 1 rats exhibited a startle response, corrected for the gain 

factor (gain = 1). 
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Tissue Processing 

Animals were perfused intracardially using 50mls of 0.9% saline, followed by 500ml of 4% 

paraformaldehyde (PFA) in 0.1M phosphate buffer (PB), while under sodium pentobarbital 

anaesthesia (54 mg/kg, i.p.). Brains were harvested and post-fixed in the PFA mixture for 1h 

after which they were immersed in 15% sucrose in 0.1M PB and stored overnight at 4˚C. The 

following day, brainstems were sliced at the level of the PnC [Bregma 10.20mm, Interaural -

1.20mm, Paxinos and Watson, 2004, Figure 4.2] using a freezing microtome (KS34S, Micron, 

Walldorf, Germany) creating coronal tissue sections of 40μm in thickness. Parallel series (6-12) 

of each animal brain were collected and stored at -20˚C in cryoprotectant solution (30% 

sucrose, 30% ethylene glycol, and 5% of 0.01% sodium azide in 0.1M PB). Free floating tissue 

sections were thoroughly washed in 0.1M phosphate-buffered saline (PBS; pH 7.35-7.45) prior 

to immunohistochemical stainings, as well as in between the various incubations.  
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Figure 4.2 Brainstem slice showing the PnC. The coordinates of the PnC are located at Bregma 

10.20mm and Interaural -1.20mm as per Paxinos and Watson, 2004. The PnC is highlighted by 

the blue rectangle and can easily be distinguished in a tissue section by locating the facial/VII 

cranial nerves (red arrows). 
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Immunohistochemistry 

All immunohistochemical incubations were performed at room temperature. The expression of 

c-Fos was tested across all animals of the “Startle”, “Background Noise”, and “Silence” groups, 

Zif268/EGR-1 in only the three “Startle” group animals that received 30 stimuli, and pCREB in 

these same three animals, as well as an additional three rats from Group 3 “Silence”.  To ensure 

destruction of endogenous peroxidases, sections were extensively washed in 0.1M PBS and 

exposed to 1% H2O2 in PBS (Caledon Laboratories Ltd., Georgetown, ON, Canada) for 10 

minutes. Sections were subsequently blocked in PBS+ solution (0.1M PBS plus 0.4% Triton X-

100 and 0.1% bovine serum albumin both from Fisher Scientific, Ottawa, ON, Canada) for 1 

hour, followed by overnight incubation in PBS+ with the respective primary antibodies for c-

Fos [rabbit polyclonal antibody, 1:1000; sc-52 Santa Cruz Biotechnology, Santa Cruz, CA, 

USA], Zif268/EGR-1 [rabbit polyclonal, 1:1000; sc-110 Santa Cruz Biotechnology, Santa Cruz, 

CA, USA], or pCREB [Ser 133 mouse monoclonal, 1:1000; 1B6 Cell Signalling Technology, 

Beverley, MA, USA]. Figures 4.3, 4.4, and 4.5 show respective in-house positive controls 

performed for each antibody. Following primary antibody incubation, sections were incubated 

in PBS+ with their respective biotinylated secondary antibodies, goat anti-rabbit or goat anti-

mouse (1:500; Vector Laboratories, Burlingame, CA, USA) for 1 hour. Signal amplification 

was achieved by bathing sections in PBS+ with avidin-biotin horseradish peroxidase (ABC 

elite, 1:500; Vector Laboratories, Burlingame, CA, USA) for 1 hour, followed by 10 minutes in 

PBS containing Biotinylated Tyramine (BT, 1:250, Perkin Elmer, Woodbridge, ON, Canada) 

and 3% H2O2. Biotin was subsequently tagged with a fluorescent dye by incubating sections for 

30 minutes in PBS with Alexa Fluor (AF) 633-conjugated streptavidin (1:200; Life 

Technologies, Burlington, ON, Canada) followed by a short rinse with 0.1M PB. Sections were 

then mounted onto plus-charged glass slides using Gelatin A (0.3% in ddH2O) and cover-

slipped with Vectashield mounting medium (Vector Laboratories, Burlingame, CA, USA) to 

prevent photobleaching.  
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Figure 4.3 Positive control for c-Fos staining. A. Positive tissue control showing c-Fos staining 

in the soma of cerebellar Purkinje cells (Lärkfors et al., 1996). B. Magnified image of the region 

enclosed by the white rectangle in A. The arrow points to one brightly labeled c-Fos stained cell 

body. Scale bars indicate 100µm in both A and B.  

 

Figure 4.4 Positive control for Zif268/EGR-1 staining. A. Positive tissue control showing 

Zif268/EGR-1 staining in the central nucleus of the inferior colliculus (CIC; Illing et al., 2002). 

B. Magnified image of the region enclosed by the white rectangle in A. The arrow points to a 

brightly labeled Zif268/EGR-1 stained neuron. Scale bars indicate 100µm in both A and B. 
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Figure 4.5Positive control for pCREB staining. A. Positive tissue control showing pCREB 

staining in the central nucleus of the inferior colliculus (CIC; Illing et al., 2002). B. Magnified 

image of the region enclosed by the white rectangle in A. The arrow points to brightly labeled 

pCreb stained neurons. Scale bars indicate 100µm in both A and B. 
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Data analysis  

c-Fos expression was examined using all sections from a single series in each of the fifteen 

animals tested and compared across the different treatment groups. Specifically, the PnC, 

vestibular (MVeMC/MVePC), and trigeminal motor (Mo5) regions were isolated for analysis 

(Paxinos and Watson, 2004).  The expression of Zif268/EGR-1 in the PnC was analyzed using 

all sections from a second series in the three startle animals tested. pCREB expression was 

analyzed using a third parallel series from the animals tested for Zif268/EGR-1, along with a 

parallel series of sections from Group 3 “Silence” treated animals.  All images were captured 

with an SP5 TCS II Confocal Microscope (Leica Microsystems, Concord, ON, Canada) and 

LAS AF 2.6 software (Leica Microsystems, Concord, ON, Canada) using various objectives 

(5x, 20x, 40x, and 63x magnification). The 458nm Argon laser was used to excite FG 

(excitation max – 370nm); FG’s wide emission band (350-750nm) due to two emission peaks 

(430, 610nm) was filtered to only include signal between 464-550nm. The 633nm laser line was 

used to excite AF 633 (excitation max – 631nm) and the emission filters selected (670nm-

792nm) included the emission peak (647nm) and excluded overlap with FG signals (Figures 4.6 

and 4.7). 10% power was used for each laser and the gain/offset were fixed across all sections. 

In addition, resolution and signal intensity were increased for all images by setting the line 

average to 4 and frame accumulation to 2, respectively. While no alterations were made to 

actual images, representative images of c-Fos and Zif268/EGR-1 expression patterns were 

adjusted (brightness and contrast) for enhanced viewer observation before inclusion in the 

results. Only pCREB images were counted and subjected to statistical analyses. Giant neuron 

size was determined by calculating the maximum (length) and minimum (width) soma 

diameters of 20 regular sized FG labelled neurons within the PnC, perpendicular to each other. 

The means and standard deviations (SD) of both were calculated, and neurons whose maximum 

and minimum soma diameters were 3 SD away from the mean were regarded as outliers and 

characterized as giant neurons. Thus, PnC giant neurons exhibit maximum and minimum 

diameters that both exceed 36µm and 25µm, respectively.  Based on this criteria, 15 giant 

neurons across the 3 startle treated animals and 11 across the 3 silence treated animals were 

selected and manually counted to determine the percentage of PnC giant neurons in each case 

that express nuclear pCREB. The expression of pCREB within the various brainstem regions 

(PnC, vestibular, motor, and inferior colliculus) was analyzed by using data from three separate 
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images (63x magnification), for each animal, in each area. The number of pCREB positive cells 

in each image was counted using Image Pro Premier software (Media Cybernetics, Rockville, 

MD, USA) with threshold adjustments made to only include signals between the 40-190 

grayscale range (French et al., 2008). Statistical analysis for all data (expressed as mean ± 

SEM) was done using IBM SPSS Statistics 20 software, and an independent t-test or a non-

parametric Mann-Whitney U test comparing the means of startle treated animals to the silence 

treated ones was performed. Statistical significance was determined at a p-value of 0.05 

(α=0.05).  
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Figure 4.6 Fluorogold excitation and emission spectra. The excitation spectrum of FG is 

indicated by the blue line and the emission by the red line. Fluorogold is maximally excited at 

370nm and exhibits two emission peaks, 430nm and 610nm. Dashed vertical lines represent 

filters selected to collect signal from 464-550nm. (Image courtesy of AAT Bioquest, 2006). 

Figure 4.7 Excitation and emission spectra of the various Alexa Fluors used: 488, 568, and 

633. AF 488 is maximally excited at 499nm and exhibits an emission peak at 520nm (green). 

AF 568 is maximally excited at 578nm and exhibits an emission peak at 603nm (orange). AF 

633 is maximally excited at 631nm and exhibits an emission peak at 647nm (red). Filters 

selected to collect signal from AF 488, 568, and 633 are represented by blue (510-535nm), pink 
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(590-620nm), and purple (670-792nm) dashed vertical lines, respectively. (Image courtesy of 

Fluorescence SpectraViewer, Life Technologies, 2014). 

4.2 CHT1, VGLUT1, and GAD67 expression 

Triple immunofluorescence  

Two male and one female rat were used for this portion of the study. These animals did not 

undergo FG injection or behavioural testing procedures, but were perfused using the above 

protocol for immediate staining. Tissue was processed as described in section 4.1 and triple 

immunofluorescence staining was performed at room temperature. A single series of each 

animal was used to test the combined expression of CHT1, VGLUT1, and GAD67 markers 

within the PnC.  Immunohistochemistry was done as per the above protocol, with a few minor 

adjustments. CHT1 labeling was done by using a rabbit anti-CHT1 polyclonal antibody 

[1:10000; Courtesy of Dr. Jane Rylett, Western University, London, ON, CANADA, Figure 

4.8] followed by a biotinylated goat anti-rabbit secondary (1:500; Vector Laboratories, 

Burlingame, CA, USA). ABC elite, BT, and AF 633-conjugated streptavidin (1:200; Life 

Technologies, Burlington, ON, Canada) were used subsequently to complete staining. VGLUT1 

labeling was done using a guinea pig anti-VGLUT1 polyclonal antibody [1:1000, Millipore, 

Billerica, MA, USA, Figure 4.10] followed by a biotinylated goat anti-guinea pig secondary 

antibody (1:500; Vector Laboratories, Burlingame, CA, USA). ABC elite, BT, and AF 488-

conjugated streptavidin (1:200; Life Technologies, Burlington, ON, Canada) were used 

subsequently to complete staining. GAD67 labeling was done by using a mouse anti-GAD67 

monoclonal antibody [1:500; Millipore, Billerica, MA, USA, Figure 4.9] followed by AF 568-

conjugated goat anti-mouse secondary antibody (1:200; Life Technologies, Burlington, ON, 

Canada). Sections were then mounted onto positively-charged glass slides using Gelatin A 

(0.3% in ddH2O) and cover-slipped with Vectashield mounting medium (Vector Laboratories, 

Burlingame, CA, USA) to prevent photobleaching. For negative controls the primary antibody 

was omitted which resulted in the absence of labeling at the respective wavelength (Figure 

4.11).  
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Figure 4.8 Positive control for CHT1 staining (polyclonal rabbit antibody). A. Positive tissue 

control showing CHT1 staining in the pedunculopontine tegmental nucleus (PPT; Koch et al., 

1993; Mitani et al., 1988). B. Magnified image of the region enclosed by the white rectangle in 

A. The arrow points to brightly labeled cholinergic neurons. Scale bars indicate 100µm in both 

A and B. 

 

Figure 4.9 Controls for GAD67 staining. A –B. Positive tissue control showing GAD67 

staining in the cerebellum, specifically in Purkinje and granule cells (Escapez et al., 1994; 

Kaufman et al., 1991). Arrows indicate areas with brightly labeled GAD67. Scale bars indicate 

50µm in both A and B. 
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Figure 4.10 Positive control for VGLUT1 staining. A. Positive tissue control showing 

VGLUT1 staining (arrow) in a sagittal slice of the hippocampus (Antonucci et al., 2012).  B. An 

alternate positive control for VGLUT1 showing staining (arrow) in the lateral superior olivary 

(LSO) nucleus of the brainstem (Billups, 2005). Scale bars indicate 100µm in both A and B. 
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Figure 4.11 Negative controls for Alexa Fluorochromes. A. Hippocampal section showing no 

unspecific labeling from the Alexa Fluor 488 when no primary antibody was included in the 

staining. Contrast this image with Figure 4.9a. B. Hippocampal section showing no unspecific 

labeling from the Alexa Fluor 568 when no primary antibody was included in the staining. C. 

Negative control showing no unspecific labeling from the Alexa Fluor 633 in the absence of a 

primary antibody. Contrast this image with Figure 4.9b. Scale bars indicate 500µm in both A 

and B; 100µm in C. 
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Data analysis  

A single series of each animal was used to test the combined expression of CHT1, VGLUT1, 

and GAD67 markers within the PnC.  Z-series images (63 × magnification) were acquired at 

0.60 µm intervals with SP5 TCS II Confocal Microscope (Leica Microsystems, Concord, ON, 

Canada) using LAS AF 2.6 software (Leica Microsystems, Concord, ON, Canada). The 488nm 

Argon laser was used to excite AF 488 (excitation max – 499nm) and the emission filters were 

selected only include signal between 510-535nm. The 543nm laser was used to excite AF 568 

(excitation max – 578nm) and the emission filters were selected to only include signal between 

590-620nm. The 633nm laser line was used to excite AF 633 (excitation max – 631nm) and the 

emission filters were selected to only include signal between 670-792nm. Filters were chosen to 

reduce as much overlap as possible between the three lasers while still maintaining sufficient 

signal detection (Figure 4.7). 20% power was used for the Argon and 633nm laser, 40% for the 

543nm laser, and the gain/offset were fixed across all sections. In addition, resolution and 

signal intensity were increased for all images by setting the line average to 4 and frame 

accumulation to 2, respectively. While no alterations were made to actual images, 

representative images of CHT1, VGLUT1, and GAD67 expression patterns were adjusted 

(brightness and contrast) for enhanced viewer observation before inclusion in the results. The z-

series acquired from each animal consisted of anywhere between 30-50 steps. Three planes 

were chosen for analysis by dividing the number of total steps into quartiles, and selecting the 

planes that make up the end of the 1
st
 (Q1), 2

nd
 (Q2), and 3

rd
 (Q3) quartiles. The merged images 

for the three different quartiles in each of the three animals were imported into Image Pro 

Premier (Media Cybernetics, Rockville, MD, USA) for analysis. The software was used to split 

the combined triple immunofluorescence image into three separate channels (red, green, and 

blue). Threshold adjustments were made to only include signals between various grayscale 

ranges (French et al., 2008), dependent on antibody strength and intensity (CHT1: 70-190, 

VGLUT1: 40-190, GAD67: 50-190). Once threshold filters were selected, a masked image was 

composed to exclude background noise and unwanted signals. Using the program’s automated 

counter, combinations of two (CHT1+VGLUT1, CHT1+GAD67, VGLUT1+GAD67) channels 

were analyzed to determine the percentage of single or colocalized immunostained markers 

within the PnC. Since the Image Pro Premier only allows for colocalization to be determined 

between two channels, triple labeling of markers (CHT1+VGLUT1+GAD67) was manually 
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counted using the LAS AF Lite software (Leica Microsystems, Concord, ON, Canada). 

Descriptive statistics for all data (expressed as mean ± SEM) was done using IBM SPSS 

Statistics 20 software. 

 

4.3 CHT1 and VGLUT1/GAD67 expression on NeuN-labeled 

giant neurons 

Triple immunofluorescence  

A second and third series of tissue sections, from the same animals processed above in section 

4.2, were used for this portion of the study.  One series was used to test the combined 

expression of CHT1, NeuN, and VGLUT1 and the other, CHT1, NeuN, and GAD67, within the 

PnC.  Immunohistochemistry was performed as previously described. CHT1 labeling was done 

by using a rabbit anti-CHT1 polyclonal antibody (1:10000; Courtesy of Dr. Jane Rylett, 

Western University, London, ON, CANADA) followed by a biotinylated goat anti-rabbit 

secondary antibody (1:500; Vector Laboratories, Burlingame, CA, USA). ABC elite, BT, and 

AF 633-conjugated streptavidin (1:200; Life Technologies, Burlington, ON, Canada) were used 

to complete staining. Labeling of either VGLUT1 OR GAD67 was then performed using a 

guinea pig anti-VGLUT1 polyclonal antibody (1:1000, Millipore, Billerica, MA, USA) 

followed by a biotinylated goat anti-guinea pig secondary (1:500; Vector Laboratories, 

Burlingame, CA, USA) OR a mouse anti-GAD67 monoclonal antibody (1:500; Millipore, 

Billerica, MA, USA) followed by a biotinylated goat anti-mouse secondary antibody (1:500; 

Vector Laboratories, Burlingame, CA, USA). ABC elite, BT, and AF 488-conjugated 

streptavidin (1:200; Life Technologies, Burlington, ON, Canada) were used subsequently to 

complete staining. NeuN labeling was performed last using a mouse anti-NeuN monoclonal 

antibody [1:1000; Millipore, Billerica, MA, USA, Figure 4.12] followed by AF 568-conjugated 

goat anti-mouse secondary antibody (1:200; Life Technologies, Burlington, ON, Canada). 

Sections were then mounted onto plus-charged glass slides using Gelatin A (0.3% in ddH2O) 

and cover-slipped with Vectashield mounting medium (Vector Laboratories, Burlingame, CA, 

USA) to prevent photobleaching.  
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Figure 4.12 Control for NeuN staining. A. Positive tissue control showing NeuN staining in the 

inner granule cells of the cerebellum (Guo et al., 2011). B. Magnified image of the region 

enclosed by the white rectangle in A. The arrow points to brightly labeled NeuN stained cells. 

Scale bars indicate 100µm in A and 50µm in B. 
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Data analysis 

A single series of each animal was used to test the combined expression of CHT1 and VGLUT1 

cells contacting PnC giant neurons, and another was used to test that of CHT1 and GAD67.  Z-

series images were acquired as indicated in the previous section using all of the same laser 

settings. Again, no alterations were made to actual images except those adjustments necessary 

to enhance image visualization (brightness and contrast). The z-series acquired from each 

animal for the two separate series consisted of anywhere between 30-50 steps. This time, 

instead of three planes, three giant neurons (according to the above established criteria), from 

the section where their nucleoli were visible were chosen for analyzing contact on neuronal 

soma. Only one giant neuron was chosen for analyzing contact on proximal dendrites since not 

all giant neurons exhibited proximal dendrites due to incomplete filling of dendrites by NeuN 

labeling techniques. The merged images for the three giant neurons in each of the three animals 

for both series were imported into Image Pro Premier (Media Cybernetics, Rockville, MD, 

USA). The autotracing tool was used to trace a perimeter around each giant neuron and crop out 

any background information. The software was then used to split the combined triple 

immunofluorescence image into three separate channels (red, green, and blue). Threshold 

adjustments were made to only include signals between various grayscale ranges (French et al., 

2008), dependent on antibody strength and intensity (CHT1: 70-190, VGLUT1: 40-190, 

GAD67: 50-190). Once threshold filters were selected, a masked image was composed to 

exclude background noise and unwanted signals. Using the program’s manual counter function, 

the number of individually stained CHT1 synaptic terminals or those dually labeled with either 

VGLUT1 or GAD67 markers, contacting NeuN-labeled giant neurons were recorded. The 

location where contact occurred (soma or proximal dendrite) was also taken into account. 

Descriptive statistics for all data (expressed as mean ± SEM) were done using IBM SPSS 

Statistics 20 software. 
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4.4 BK Channel and VGLUT1/GAD67/CHT1 expression on 

NeuN-labeled giant neurons  

Triple immunofluorescence 

A fourth, fifth, and sixth series of tissue sections, from the same animals as processed in section 

4.2, were used for this portion of the study.  One series was used to test the combined 

expression of BK Channel, NeuN, and VGLUT1, another BK, NeuN, and GAD67, and a third, 

BK Channel, NeuN, and CHT1, within the PnC.  Once more, immunohistochemistry was 

performed as previously described. BK Channel labeling was done by using a rabbit anti-KCa 

1.1 polyclonal antibody [1:1000; Alomone Labs, Jerusalem, Israel, Figgure 4.13] followed by a 

biotinylated goat anti-rabbit secondary antibody (1:500; Vector Laboratories, Burlingame, CA, 

USA). ABC elite, BT, and AF 633-conjugated streptavidin (1:200; Life Technologies, 

Burlington, ON, Canada) were used subsequently to complete staining. Triton X was omitted in 

all solutions used to process BK immunohistochemistry. Labeling of either VGLUT1 OR 

GAD67 OR CHT1 was next completed using a guinea pig anti-VGLUT1 polyclonal antibody 

(1:1000, Millipore, Billerica, MA, USA) followed by a biotinylated goat anti-guinea pig 

secondary antibody (1:500; Vector Laboratories, Burlingame, CA, USA) OR a mouse anti-

GAD67 monoclonal antibody (1:500; Millipore, Billerica, MA, USA) followed by a 

biotinylated goat anti-mouse secondary antibody (1:500; Vector Laboratories, Burlingame, CA, 

USA) OR a mouse anti-CHT1 monoclonal antibody [1:1000, Millipore, Billerica, MA, USA, 

Figure 4.14] followed by a biotinylated goat-anti mouse secondary (1:500; Vector Laboratories, 

Burlingame, CA, USA). ABC elite, BT, and AF 488-conjugated streptavidin (1:200; Life 

Technologies, Burlington, ON, Canada) were used subsequently to complete staining. NeuN 

labeling was performed last using a mouse anti-NeuN monoclonal antibody (1:11000; 

Millipore, Billerica, MA, USA) followed by AF 568-conjugated goat anti-mouse secondary 

antibody (1:200; Life Technologies, Burlington, ON, Canada). Sections were then mounted 

onto positively-charged glass slides using Gelatin A (0.3% in ddH2O) and cover-slipped with 

Vectashield mounting medium (Vector Laboratories, Burlingame, CA, USA) to prevent 

photobleaching.  
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Figure 4.13 Positive control for BK Channel staining. A. Positive tissue control showing BK 

staining in the cerebellar Purkinje cells (referenced in Sausbier et al., 2006). B. Magnified 

image of the region enclosed by the white rectangle in A. The arrow points to brightly labeled 

BK stained cells. Scale bars indicate 100µm in A and 50µm in B. 

Figure 4.14 Positive control for CHT1 staining (monoclonal mouse antibody). A. Positive 

tissue control showing CHT1 staining in the pedunculopontine tegmental nucleus (PPT; Koch 

et al., 1993; Mitani et al., 1988). B. Magnified image of the region enclosed by the white 

rectangle in A. The arrow points to brightly labeled cholinergic neurons. Scale bars indicate 

50µm in both A and B. 
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Data analysis 

A single series of each animal was used to test the combined expression of BK and VGLUT1, 

another BK and GAD67, and a third BK and CHT1.  In this case two separate analyses were 

conducted: one to determine the percentage of the respective colocalization within the PnC, and 

another to quantify the number of co-labeled synaptic terminals contacting a given the PnC 

giant neuron. For the first analysis, the NeuN channel was ignored and only dual staining of BK 

and VGLUT1, GAD67, or CHT1, was looked at. Z-series images were acquired as indicated in 

the previous section using all of the same laser settings. Again, no alterations were made to 

actual images except those adjustments necessary to enhance image visualization (brightness 

and contrast). The z-series acquired from each animal for the two separate series consisted of 

anywhere between 30-50 steps. As described above, three planes per animal were chosen for 

analysis based on quartiles. The merged images for each of the three different quartiles and for 

each of the unique staining combination (from three different animals) were imported into 

Image Pro Premier (Media Cybernetics, Rockville, MD, USA) for analysis. The software was 

used to split the combined triple immunofluorescence image into three separate channels (red, 

green, and blue). Threshold adjustments were made to only include signals between various 

grayscale ranges (French et al., 2008), dependent on antibody strength and intensity (BK: 40-

190, VGLUT1: 40-190, GAD67: 50-190, CHT1: 70-190). Once threshold filters were selected, 

a masked image was composed to exclude background noise and unwanted signals. Using the 

program’s automated counter, combinations of two channels (BK+VGLUT1, BK+GAD67, 

BK+CHT1) were analyzed to determine the percentage of single or dual labeled synaptic 

terminals that exist within the PnC.  

For the second analysis, three giant neurons with a visible nucleolus were chosen. The merged 

images for each giant neuron, from the various series and animals used, were imported into the 

Image Pro Premier software. The autotracing tool was used to trace a perimeter around each 

giant neuron and crop out any background information. The software was then used to split the 

combined triple immunofluorescence image into three separate channels (red, green, and blue). 

Threshold adjustments were made to only include signals between various grayscale ranges 

(French et al., 2008), dependent on antibody strength and intensity (BK: 40-190, VGLUT1: 40-
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190, GAD67: 50-190, CHT1: 70-190). Once threshold filters were selected, a masked image 

was composed to exclude background noise and unwanted signals. Using the program’s manual 

counter function, the number of terminals labeled with only one antibody (BK, VGLUT1, 

GAD67, or CHT1), or dually labeled (BK+VGLUT1, BK+GAD67, BK+CHT1) that came into 

contact with NeuN-labeled giant neurons, were recorded. The location where contact occurred 

(soma or proximal dendrite) was also recorded. Descriptive statistics for all data (expressed as 

mean ± SEM) was done using IBM SPSS Statistics 20 software. 
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5 Results 

5.1 Giant neurons within the PnC mediate the startle response 

 The location of giant neurons within the PnC was confirmed by injecting a retrograde tracer, 

4% Fluorogold, into the spinal cord of 13 adult Sprague-Dawley rats [see Materials and 

Methods]. Fluorogold labelled all neurons in within the reticular formation as well as 

vestibular, auditory, trigeminal motor, and raphe nuclei that project to the injection site in 

C3/C4 segments of the cervical spinal cord (Figure 5.1). Giant neurons were distinguished from 

their counterparts based on their location within the PnC and size. The mean length (maximum) 

and width (minimum) soma diameters of regular neurons (n=20) were determined to be 23.70 ± 

0.95µm and 15.4 ± 0.74µm, respectively (Figure 5.2A). Neurons three standard deviations 

away from these means with a length > 36µm and a width > 25µm, were considered to be giant 

(see Materials and Methods). As such, the mean length and width soma diameters of giant 

neurons (n=73) were determined to be 48.71 ± 0.88µm and 31.69 ± 0.70µm, respectively 

(Figure 5.2B).  
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Figure 5.1 Fluorogold tracing effectively labels PnC giant neurons. A. Schematic of brainstem 

slice; PnC region is shown in blue. B. Region depicted by the red rectangle in A. All of the 

brightly lit neurons project to C3/C4 region of the spinal cord where Fluorogold was injected. 

C. Magnified image of the PnC area outlined in B. The criss-cross pattern of the reticular 

formation can be seen as well as a mixture of giant (arrow) and non-giant neurons. D. 

Magnified image of C. where the giant neurons of interest can be seen (>36μm; arrow). Scale 

bars indicate 100µm in B and 50µm in both C and D. 
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Figure 5.2 Maximum (length) and minimum (width) soma diameters (mean ± SEM) of labeled 

regular (A.) and giant (B.) neurons within the PnC. Legends represent number of neurons 

measured for each type. 
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The function of giant neurons, specifically their role in mediating startle, was tested by 

analyzing the expression of two immediate early genes, c-Fos and Zif268/EGR-1, as well as the 

active, thus phosphorylated, form of the transcription factor CREB, in animals that were 

startled. Positive tissue controls for all antibodies used can be found in the Materials and 

Methods section. c-Fos expression was seen in the Mo5 trigeminal motor nuclei of startled rats 

(n=7) but not those treated with background noise (n=2) or silence (n=3) (Figure 5.3). Activity 

dependent expression of c-Fos was seen within the vestibular nuclei of startled and background 

noise but not silence treated animals (Figure 5.4). Interestingly, c-Fos was not seen in the 

Fluorogold-labeled PnC giant neurons of startled animals nor in the animals treated with 

background noise or silence (Figure 5.5). Similar to its counterpart c-Fos, Zif268/EGR-1 was 

not expressed in Fluorogold-labeled PnC giant neurons of startled animals (n=3) (Figure 5.6).  
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Figure 5.3 c-Fos expression (red) within motor nuclei is seen in startled animals (C; n=7) but 

not in animals subjected to background noise (B; n=2) or silence (A; n=3) animals. D. 

Magnified image of the area outlined in C indicating c-Fos expression. E. A schematic 

brainstem slice where the red rectangle depicts the region shown in A-C. The motor region 

shown is the motor trigeminal (Mo5) nuclei. Fluorogold labeled neurons (green) are seen in B 

and C. Scale bars indicate 100µm in all images. 
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Figure 5.4 Activity-dependent expression of c-Fos (red) is not seen in the vestibular nuclei of 

silence (n=3) treated animals A. but is seen in background noise (n=2) B. and startle (n=7) C. 

treated animals. D. The image shown is a magnification of the area outlined in C. Double 

labeling for Fluorogold and c-Fos is seen in startled animals (white arrows). E. A schematic 

brainstem slice where the red rectangle depicts the region shown in A-D. Scale bars indicate 

100µm in A, B and C; 50µm in D. 
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Figure 5.5 PnC giant neurons do not express c-Fos (red) in startled (n=7) C., background noise 

(n=2) B. nor silence (n=3) treated animals A. Giant neurons are labeled with Fluorogold (green) 

in A-C. D. A schematic brainstem slice where the red rectangle depicts the region shown in A-

C. Scale bars indicate 100µm in all images. 
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Figure 5.6 PnC giant neurons do not express Zif268 (EGR-1) in startled animals (n=3). Giant 

neurons are labeled with Fluorogold (green) and Zif268 staining is labeled with Alexa Fluor-

568 (red). Scale bars indicate 10µm in all panels. 
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Phosphorylation status of CREB within PnC giant neurons of startle or silence treated animals 

was subsequently tested (Figure 5.7A/B). Fifteen PnC giant neurons across three startle treated 

animals and eleven giant neurons across three silence treated animals were used in the analysis. 

Giant neurons in startle treated animals showed a significantly higher percentage of nuclear 

pCREB expression as compared to those in silence treated animals [startle = 53 ± 0.13% with a 

mean rank of 16.43, silent = 0% with a mean rank of 9.50, Mann-Whitney U test, U=38.50, Z 

=-2.85, p=0.004, Figure 5.7C]. No significant main effect of treatment was observed when 

comparing the mean length [startle = 45.37 ± 1.83µm, silent = 47.17 ± 2.26µm, independent t-

test, t(24)=0.58, p=0.566, Figure 5.7D] and width [startle = 29.98 ± 1.60µm, silent = 32.24 ± 

1.29µm, independent t-test, t(24)=1.11, p=0.279, Figure 5.7D] soma diameters of giant neurons 

that show phosphorylated CREB (pCREB) in startle or silence treated animals .  
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Figure 5.7 pCREB labeling within PnC giant neurons of startle or silence treated animals. A. 

PnC giant neurons (green) of startle treated animals show pCREB (blue) within their nuclei; 

arrows in the merged image point to dual labeling. B. PnC giant neurons (green) of silence 

treated animals do not express pCREB (blue) within their nuclei. Merged image shows lack of 

dual labeling. C. Percentage (mean ± SEM) of giant neurons within the PnC that express 

pCREB in their nuclei. A significant main effect of treatment was observed; asterisks above 

bars depict significantly different means (Mann-Whitney U test, p < 0.05). D. Maximum 

(length) and minimum (width) soma diameters (mean ± SEM) of giant neurons in startle or 

silence treated animals. No significant main effect of treatment was observed (independent t-

test, p < 0.05). Legends represent the number of neurons analyzed in three animals for each 

group. Scale bars indicate 25µm in all images. 
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pCREB labeling was also generally assessed in all of the neurons that make up the PnC (giant 

and non-giant) as well as in various brainstem regions including the inferior colliculus, 

vestibular nuclei, and trigeminal motor area of startle (n=3) or silence (n=3) treated animals 

(Figure 5.8A-D). No significant main effect of treatment was seen on the mean number of 

pCREB neurons within the PnC [startle = 6.67 ± 2.40, silent = 0.33 ± 0.33, independent t-test, 

t(4)=2.61, p=0.059, Figure 5.8E], indicating that increased pCREB expression in PnC giant 

neurons is not sufficient to generally increase its expression within the area due to the relatively 

low number of giant neurons as compared to non-giant ones. A significant main effect of 

treatment was also not observed in either the inferior colliculus [startle = 73.33 ± 3.18, silent = 

70.33 ± 11.05, independent t-test, t(4)=0.26, p=0.807, Figure 5.8E] or the vestibular nuclei 

[startle = 87 ± 6.56, silent = 91 ± 6.43, independent t-test, t(4)=0.44, p=0.686, Figure 5.8E]. A 

significant increase in the mean number of pCREB neurons within the trigeminal motor area 

was seen in the startle treated animals as compared to the silent [startle = 39 ± 2.89, silent = 19 

± 0.58, independent t-test, t(4)=6.79, p=0.002, Figure 5.8E] 
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Figure 5.8 pCREB labeling within brainstem regions of startle or silence treated animals. A. 

Expression pattern of pCREB (blue) in representative images of various brainstem regions in 

startle or silence treated animals including, A. pontine caudal reticular nucleus (PnC), B. 

inferior colliculus (IC), C. vestibular nuclei (VN), and D. motor nucleus of the trigeminal nerve 

(Mo5). E. Percentage (mean ± SEM) of pCREB cells expressed within various brainstem 

regions of startle or silence treated animals. A significant main effect of treatment was observed 

in the Mo5 region. Legend represents the number of animals analysed for each treatment type. 

Asterisks above bars depict significantly different means (independent t-test, p < 0.05). Scale 

bars indicate 10µm in all images.  
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5.2 A subpopulation of cholinergic terminals co-label for 

glutamate or GABA synaptic markers 

Cholinergic neurons in the PPT/LTD have been reported to project to the PnC and potentially 

innervate PnC giant neurons. We here visualized the cholinergic terminals in the PnC and tested 

whether they also possess glutamate and or GABA synaptic markers, using triple labeling 

immunohistochemistry with antibodies against markers for glutamate (VGLUT1), GABA 

(GAD67), and acetylcholine (CHT1).  As described in the Materials and Methods, three planes 

were analyzed out of a z-stack confocal image of 30-50 sections in each of three animals (n=9).  

A subpopulation of CHT1 labeled axon terminals within the PnC were shown to co-express 

either VGLUT1 or GAD67 (Figure 5.9A/B). A proportion of colocalized VGLUT1 and GAD67 

cells were also seen within the PnC (Figure 5.9C), as well as rare instances where cholinergic 

terminals expressed both VGLUT1 and GAD67 (Figure 5.9D). The total percentage of 

terminals in the PnC that show co-expression of CHT1 with VGLUT1 was determined to be 

34.88 ± 4.91% as compared to single labeled cholinergic (21.98 ± 6.18%) and glutamatergic 

(43.13 ± 10.48%) markers (Figure 5.10A). The total percentage of PnC terminals that show a 

dual labeling for CHT1 and GAD67 markers was determined to be 17.81 ± 2.03% as compared 

to single labeled cholinergic (28.61 ± 8.02%) and GABAergic (53.58 ± 8.80%) markers (Figure 

5.10B). Colocalization of VGLUT1 and GAD67 markers was also observed at a percentage of 

32.86 ± 2.16%, with 37.06 ± 4.73% and 30.08 ± 4.92% single labeled glutamatergic and 

GABAergic markers, respectively (Figure 5.10C). The number of cholinergic terminals that 

expressed both VGLUT1 and GAD67 markers was manually counted across the images 

analyzed and determined to be 13.44 ± 5.50 cells (Figure 5.10D). The percentage of cholinergic 

terminals in the PnC that co-express either VGLUT1 or GAD67 was also analyzed. The 

proportion of CHT1-labeled terminals that colocalized with VGLUT1 markers was 69.59 ± 

6.59% as opposed to those that do not [30.41 ± 6.59%, Figure 5.11A]. The proportion of CHT1-

labeled terminals that co-express GAD67 markers was 45.82 ± 6.11% as compared with single 

labeled CHT1 terminals [54.18 ± 6.11%, Figure 5.11B]. 

 

 



62 

 

 

 

Figure 5.9 Glutamatergic or GABAergic colocalization on cholinergic terminals within the 

PnC. A subpopulation of CHT1 terminals (blue) within the PnC co-express either A. VGLUT1 

or B. GAD67 (green). C. Colocalized VGLUT1 (green) and GAD67 (red) cells within the PnC. 

Red circles depict areas of colocalization in each representative image.  D. Triple labelling of 

VGLUT1 (green), GAD67 (red) and CHT1 (blue) cells. Squares depict areas of cholinergic and 

glutamatergic dual labeling and circles those of cholinergic and GABAergic double labeling. 

Labeling for all three markers is represented by the arrowhead.  All images are single planes in 

a z-stack taken of about 30-50 steps; thickness of section is 0.6µm. Scale bars indicate 10µm in 

all images.  
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Figure 5.10 Percentage (mean ± SEM) of the total number of terminals in the PnC that show 

co-expression of CHT1 with VGLUT1 and/or GAD67. A. Percent colocalization of cholinergic 

and glutamatergic markers in the PnC as compared to single markers labeled. B. Percent 

colocalization of cholinergic and GABAergic markers in the PnC as compared to single 

markers labeled. C. Percent colocalization of glutamatergic and GABAergic markers in the PnC 

as compared to single markers labeled. D. Number (mean ± SEM) of cells labeled with all three 

markers (CHT1, VGLUT1, and GAD67) in the PnC. The legend represents the number of 

single z-stack planes analyzed, across three animals, for each combination. 
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Figure 5.11 Percentage (mean ± SEM) of cholinergic terminals in the PnC that co-express 

VGLUT or GAD67. A. Percent of PnC cholinergic terminals that co-express glutamatergic 

markers as compared to those that do not. B. Percent of PnC cholinergic terminals that co-

express GABAergic markers as compared to those that do not. The legend represents the 

number of single z-stack planes analyzed, across three animals, for each combination. 
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In order to understand the relationship of these dual-labeled cholinergic terminals with the 

startle mediating giant neurons, subsequent staining was done using the neuronal biomarker, 

NeuN. Fluorogold could not be used in conjunction with the colocalization stainings due to 

inherent limitations with its emission spectrum. The emission spectrum of Fluorogold overlaps 

with two of the three secondary Fluorochromes used and as such was replaced with NeuN.  

NeuN staining can be seen within the PnC labeling both our giant neurons of interest along with 

other neurons within the vicinity (Figure 5.12A). As expected, all neurons labeled with 

Fluorogold are also marked with NeuN, however not all NeuN-stained cells are Fluorogold 

positive (Figure 5.12B/C). Interestingly, while NeuN has been shown to mainly stain the nuclei 

of neurons and the cytoplasm to a lesser extent, PnC giant neurons seem to express an 

abundance of cytoplasmic NeuN. 
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Figure 5.12 NeuN (Neuronal Nuclei) is a neuronal nuclear antigen that is commonly used as a 

biomarker for neurons. A. NeuN staining can be seen in the PnC labeling both our giant neurons 

of interest and other neurons within the vicinity. B. The green image shows Fluorogold labelled 

neurons and the red image shows those same neurons labeled by NeuN. The last image in the 

series is a merge between Fluorogold and NeuN. C. NeuN (red) stains far more neurons in the 

PnC than those labelled with the Fluorogold retrograde tracer (green) which is limited to only 

those neurons that project to the C3/C4 spine. Scale bars indicate 100µm in A, and 20µm in B 

and C. 

 

  

http://en.wikipedia.org/wiki/Cell_nucleus
http://en.wikipedia.org/wiki/Antigen
http://en.wikipedia.org/wiki/Biomarker_%28cell%29
http://en.wikipedia.org/wiki/Neurons
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Glutamatergic or GABAergic colocalization on cholinergic terminals contacting PnC giant 

neurons was tested by using triple labeling immunohistochemistry with antibodies against 

NeuN, CHT1, and either VGLUT1 or GAD67.  A subpopulation of presynaptic cholinergic 

terminals outlining the NeuN-labeled giant neurons co-express either glutamate (Figure 

5.13A/B) or GABA (Figure 5.13C/D). The number of dual or single-labeled cholinergic 

terminals in either case were counted and the place of contact, giant neuron soma or proximal 

dendrite, was noted. For terminals contacting the soma, three giant neurons were analyzed in 

each of three animals (n=9); for terminals contacting proximal dendrites, one giant neuron was 

analyzed in each of three animals (n=3) (see Materials and Methods). The number of 

cholinergic terminals that contact the soma and co-express glutamate markers was determined 

to be 0.89 ± 0.35, those that co-express GABA markers 3.00 ± 1.18, and those that don’t 

express either markers 2.89 ± 0.90 (Figure 5.14A). For cholinergic terminals contacting 

proximal dendrites, none were observed to co-express glutamate markers, 1.33 ± 0.33 co-

expressed GABA markers, and 3.00 ± 2.52 remained singly labeled (Figure 5.14B). 
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Figure 5.13 Colocalization of glutamatergic or GABAergic markers on cholinergic terminals in 

contact with PnC giant neurons. A.and B. each show isolated images of representative giant 

neurons with dual CHT1 and VGLUT1 labeling. VGLUT1 (green) is expressed on CHT1 

terminals (blue) that are localized presynaptically as they border giant neurons stained for with 

NeuN (red). C. and D. each show isolated images of representative giant neurons with dual 

CHT1 and GAD67 labeling. GAD67 (green) is expressed on presynaptic CHT1 terminals. All 

images are single planes in a z-stack taken of about 30-50 steps; thickness of each section is 

0.6µm. Cholinergic terminals in contact with giant neurons are outlined with triangles, 

VGLUT1 or GAD67 with squares, and any colocalization with circles. Scale bars indicate 

10µm in all images. 
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Figure 5.14 Number (mean ± SEM) of single-labeled or glutamatergic/GABAergic-expressing 

cholinergic terminals contacting the A. soma or B. proximal dendrite of PnC giant neurons. 

Legends represent the number of giant neurons analyzed, across three animals, for each 

combination. 
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5.3 BK channels implicated in habituation are localized on 

auditory glutamatergic afferents 

Habituation is thought to occur as a result of the hyperpolarizing effect of BK channels that are 

hypothesized to be expressed on the sensory afferents that converge onto PnC giant neurons.  

Thus, BK channel colocalization on glutamatergic, GABAergic, and cholinergic terminals 

within the PnC was tested by using double labeling immunohistochemistry with antibodies 

against markers for BK channel (Kca1.1) and either VGLUT1, GAD67, or CHT1.  As in 

section 5.2, three planes were analyzed out of a z-stack confocal image of 30-50 sections in 

each of three animals (n=9).  A subpopulation of glutamatergic (Figure 5.15A), GABAergic 

(Figure 5.15B), and cholinergic (Figure 5.15C) terminals within the PnC were shown to co-

express BK channels. The percentage of glutamatergic, GABAergic, and cholinergic terminals 

in the PnC that co-express BK channels was analyzed. The proportion of VGLUT-labeled 

terminals that colocalized with BK markers was 85.83 ± 3.69% as opposed to those that do not 

[14.17 ± 3.69%, Figure 5.16A]. The proportion of GAD67-labeled terminals that co-express 

BK markers was 94.97 ± 4.23% as compared with single labeled GAD67 terminals [5.03 ± 

4.23%, Figure 5.16B]. Finally, the percentage of cholinergic terminals that co-localize with BK 

markers was determined to be 98.71 ± 0.80% as opposed to those that do not [1.29 ± 0.80%, 

Figure 5.16C]. 
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Figure 5.15 BK channel colocalization on glutamatergic, GABAergic, or cholinergic terminals 

within the PnC. BK channels (blue) are expressed on A. VGLUT1, B. GAD67, or C. CHT1 

terminals  (green) that are located within the PnC. Red circles depict areas of colocalization in 

each representative image.  All images are single planes in a z-stack taken of about 30-50 steps; 

thickness of each section is 0.6µm. Scale bars indicate 10µm in all images.  
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Figure 5.16 Percentage (mean  ± SEM)  of glutamatergic, GABAergic or cholinergic terminals 

in the PnC that express BK channels. A. Percent of PnC glutamatergic terminals that co-express 

Bk channel markers as compared to those that do not. B. Percent of PnC GABAergic terminals 

that co-express BK channel markers as compared to those that do not. C. Percent of PnC 

cholinergic terminals that co-express BK channel markers as compared to those that do not. The 

legend represents the number of single z-stack planes analyzed, across three animals, for each 

combination. 
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In order to understand the relationship of BK-expressing terminals with the startle mediating 

giant neurons, subsequent staining was done using the neuronal biomarker, NeuN. BK channel 

colocalization on glutamatergic, GABAergic, and cholinergic terminals contacting PnC giant 

neurons was tested by using triple labeling immunohistochemistry with antibodies against 

NeuN, Kca1.1, and either VGLUT1, GAD67 or CHT1.  BK channels were shown to be 

localized on a subpopulation of presynaptic glutamatergic (Figure 5.17), GABAergic (Figure 

5.18A/B), and cholinergic (Figure5.18C/D) terminals outlining the NeuN-labeled giant neurons. 

The number of dual-labeled cells in either case was counted and the place of contact, giant 

neuron soma (Figure 5.19A) or proximal dendrite (Figure 5.19B), was noted. For cells 

contacting the soma, three giant neurons were analyzed in each of three animals (n=9); for cells 

contacting proximal dendrites, one giant neuron was analyzed in each of three animals (n=3) 

(see Materials and Methods).  The number of glutamatergic terminals that contact the soma and 

co-express BK channel markers was determined to be 3.00 ± 0.68, as compared to 1.00 ± 0.25 

non BK channel-expressing glutamatergic terminals. The number of GABAergic terminals that 

contact the soma and co-express BK was 12.89 ± 2.36 as compared to 7.89 ± 2.23 single-

labeled GABA terminals. Finally, the number of cholinergic terminals that co-express BK was 

also analyzed and determined to be 10.33 ± 1.95, with 2.89 ± 0.90 CHT1 terminals not 

expressing the BK channel marker. For BK channel-expressing terminals contacting proximal 

dendrites, 2.00 ± 1.00 was observed to be glutamatergic, 7.00 ± 0.58 GABAergic, and 4.33 ± 

0.88 cholinergic. The number of single-labeled glutamatergic, GABAergic, and cholinergic 

terminals contacting proximal dendrites were determined to be 0.67 ± 0.33, 1.67 ± 0.67, and 

3.00 ± 2.52, respectively.  
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Figure 5.17 BK channel colocalization on glutamatergic 

terminals in contact with PnC giant neurons. A. BK 

channels (blue) are expressed on VGLUT1 (green) 

terminals that are localized presynaptically as they 

border giant neurons stained for with NeuN (red). B. and 

C. each show isolated images of representative giant 

neurons with dual BK and VGLUT1 labeling. BK 

channels in contact with giant neurons are outlined with 

triangles, VGLUT1 with squares, and any colocalization 

of the two with circles.  All images are single planes in a 

z-stack taken of about 30- 50 steps; thickness of each 

section is 0.6µm. Scale bars indicate 25µm in A. and 

10µm in both B. and C.  
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Figure 5.18 BK channel colocalization on GABAergic or cholinergic terminals in contact with 

PnC giant neurons. A.and B. each show isolated images of representative giant neurons with 

dual BK and GAD67 labeling. BK channels (blue) are expressed on GAD67 terminals (green) 

that are localized presynaptically as they border giant neurons stained for with NeuN (red). C. 

and D. each show isolated images of representative giant neurons with dual BK and CHT1 

labeling. BK channels are expressed on presynaptic CHT1 terminals (green). All images are 

single planes in a z-stack taken of about 30-50 steps; thickness of each section is 0.6µm. BK 

channels in contact with giant neurons are outlined with triangles, GAD67 or CHT1 with 

squares, and any colocalization with circles. Scale bars indicate 10µm in all images. 
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Figure 5.19 Number (mean ± SEM) of single-labeled or BK channel-expressing glutamatergic, 

GABAergic and cholinergic terminals contacting the A. soma or B. proximal dendrite of PnC 

giant neurons. Legends represent the number of giant neurons analyzed, across three animals, 

for each combination. 
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6 Discussion 

6.1 Giant neurons within the PnC mediate the startle response 

Based on the wealth of academic studies conducted using morphological identification, 

electrophysiology, targeted lesioning, and/or tracing techniques, giant neurons within the PnC 

are hypothesized to form the sensorimotor interface of the acoustic startle response and, as 

important relay centers of sensory stimuli, mediate startle (Koch et al., 1992; Lingenhöhl and 

Friauf, 1994; Yeomans and Frankland, 1996; Yeomans et al., 2002). One of the aims of this 

present study is to further solidify the pivotal role of giant neurons in ASR by using Fluorogold 

(FG) retrograde labeling from the spinal cord to confirm their location within the PnC, and by 

looking at the expression patterns of immediate early genes (IEGs) to validate their function in 

mediating startle.  

In order to label the maximum number of giant neurons, FG was injected into the spinal cord at 

the cervical level since at this level reticulospinal axons either project directly to the injection 

site or they run through it innervating more caudal spinal cord segments (Nodal and López, 

2003). Retrogradely labeled neurons were found within the PnC (Figure 5.1; the region dorsal 

to the superior olivary complex, ventral to the motor trigeminal nucleus, and within 2 mm 

medial to the facial cranial nerve; Koch et al., 1992; Lee et al., 1996; Yeomans and Frankland, 

1996) and classified as giant neurons based on their maximum (48.71 ± 0.88µm) and minimum 

(31.69 ± 0.70µm) soma diameters (Figure 5.2B; Lingenhöhl and Friauf, 1994; Nodal and 

López, 2003; Weber et al., 2008).   

One of the characteristics of PnC giant neurons is their high threshold to acoustic stimuli, which 

implies that these neurons do not respond to weak sounds, like human voice or laboratory 

noises, and only generate action potentials at sound intensities (>80 dB) that will elicit an ASR 

(Wu et al., 1988; Lingenhöhl and Friauf, 1994; Yeomans and Frankland, 1996). Therefore, 

giant neurons should only become activated (as measured indirectly by the expression of IEGs) 

in animals presented with a starting stimulus and not those of controls who received either 

background noise or silence. IEGs are the first genes activated that link membrane events with 

neuronal nuclei and they are rapidly induced by a variety of electrical or chemical signals 

(Cirelli and Tononi, 2000; Perez-Cadahía et al., 2011). The protein products of IEGs can 
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activate downstream targets because they act as transcription factors, regulating the expression 

of other genes (Cirelli and Tononi, 2000; Perez-Cadahía et al., 2011). c-fos, a nuclear proto-

oncogene (Dragunow and Robertson, 1987) is one such IEG whose protein product c-Fos can 

be used as a tool to detect activity changes and plasticity within neurons (Hoffman and Lyo, 

2002). c-fos encodes a DNA binding transcription factor having a zinc finger motif and is 

rapidly and transiently induced in many cells following exposure to a number of physiological 

stimuli, consequently, it is commonly used to study patterns of neuronal activation (Tian and 

Bishop, 2002).  

The presence of c-Fos was seen within the trigeminal motor (Mo5) nuclei of startled animals 

but not in those of background or silence control animals (Figure 5.3). Retrograde labeling 

studies in the rat (Vornov and Sutin, 1983) and rabbit (Kolta et al., 2000) have demonstrated 

that the Mo5 region receives extensive bilateral noradrenergic input from the PnC which might 

be involved in locomotor functions (Mori, 1995). Therefore, because PnC giant neurons are 

hypothesized to be activated in response to startling stimuli, it makes sense for the Mo5 nuclei 

of startled animals to show c-Fos expression since PnC activation would be expected to enable 

noradrenergic projections to activate the Mo5. c-Fos expression was found within the vestibular 

nuclei (VN) of both startle and background noise treated animals but not in animals who 

received no acoustic input (Figure 5.4). This activity-dependent expression of c-Fos, based on 

the presence of an acoustic stimulus, coincides with the work done by McCue and Guinan 

(1997) who demonstrate that a proportion of neurons within the mammalian vestibular system 

exhibit sound-evoked activity. Their findings however indicate that acoustically responsive 

vestibular neurons respond to sound with higher thresholds than cochlear neurons (>90 dB), 

which contrasts our results indicating expression of c-Fos in the VN of background treated 

animals.  

In alignment with our predictions, c-Fos expression was not observed in the PnC of control-

treated animals, however unexpectedly, c-Fos expression was also not seen in the PnC of 

startled animals. This lack of c-Fos expression within the PnC has also been demonstrated by 

Palmer and Printz (1999) who used a 12.5 psi airpuff (containing both acoustic and tactile 

stimulus modalities) to elicit startle. Although they could not explain this interesting finding, 

they suggested that strain differences among animals may play a role since fluctuating c-Fos 
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expression patterns were observed in hypothalamic and medullary nuclei of Spontaneous 

Hypertensive rats and Wistar Ryoto rats. While c-Fos is a robust marker for neuronal activity 

(Malakhova and Davenport, 2001; Maloney et al., 2000), its use poses many problems, one of 

which is the time course of c-Fos elevation and decay (Dragunow and Robertson, 1987). This 

temporal pattern of c-Fos induction varies depending on the brain region and can be observed 

within the dentate gyrus 30 minutes following seizure-induction, but is only seen in 

hippocampal pyramidal cells 4 hours after the onset of seizure. Dragunow and Faull (1989) 

further report that neurons in certain brain regions do not show elevation of c-Fos regardless of 

the stimulus and despite certainty of activation (e.g. substantia nigra). These neurons potentially 

lack the biochemical messengers that regulate c-fos activation and thus do not show c-Fos even 

when they are active. Furthermore, the expression of c-Fos in granule and glial cells within the 

rat cerebellum following chemical or electrical stimulation, and its expression in molecular 

layer cells following only chemical and not electrical stimulation (despite neuronal activation 

by both stimuli types) demonstrate that c-Fos expression is stimulus-dependent (Tian and 

Bishop, 2002). Reisch et al. (2007) used electrical intracochlear stimulation to explain why c-

Fos expression cannot be equated with electrophysiological activity; c-Fos expression was seen 

in the four auditory brainstem regions tested (ventral cochlear nucleus, dorsal cochlear nucleus, 

lateral superior olive, and central nucleus of the inferior colliculus) however, the spiral ganglion 

cells in the cochlea that drive these other auditory neurons failed to express c-Fos.  Finally, 

Dragunow and Faull (1989) also suggest that c-Fos induction can be blocked or interfered with 

in the presence of ketamine and barbiturates. Taken together, these studies suggest a variety of 

reasons why c-Fos expression was not observed in the PnC of startled animals, and they add 

evidence to the understanding that negative c-Fos results does not indicate a lack of structural 

activation by stimulation.  

Another integral step in the molecular cascades that underlie synaptic plasticity is the 

expression of early growth response 1 (Egr-1), a member of the IEG family with a GSG motif 

(Reisch et al., 2007). Egr-1 is also known as NGFI-1, Krox-24, Zif268, and can be expressed in 

regions following a seizure (Lanahan and Worley, 1998). Like its counterpart c-Fos, 

Zif268/Egr-1 was also not present in the PnC giant neurons of started animals (Figure 5.6). This 

coincides with studies that show a good correlation of Zif268 expression with that of c-Fos, 
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despite their differential structural properties and regulatory mechanisms (Reisch et al., 2007; 

Perez-Cadahía et al., 2011).  

Since both IEGs used were not expressed in the PnC of giant neurons upon startle stimulation, 

an alternative approach to monitor neuronal changes in activity was carried out by using signal 

transduction intermediates like pCREB (Hoffman and Lyo, 2002). Unlike c-Fos, cAMP-

response-element-binding protein (CREB) is expressed in all brain cells (Carlezon et al., 2005) 

and is essential in a variety of nervous system functions including circadian entrainment, 

growth and survival, neuroprotection and synaptic plasticity (Lonze and Ginty, 2002; Benito 

and Barco, 2010). The phosphorylation of CREB at serine 133 (Cirelli and Tononi, 2000) 

activates a cascade that involves CREB-binding protein (CBP) recruitment, and assembles a 

larger transcription complex which then promotes RNA synthesis (Carlezon et al., 2005). Thus, 

phosphorylation status of CREB within PnC giant neurons of startle or silence treated animals 

was subsequently tested, and a significantly higher percentage of nuclear pCREB expression 

was seen in the giant neurons of startled animals as compared to those subjected to silence 

(Figure 5.7). This finding is in alignment with our hypothesis that these neurons are only 

activated in response to a startling stimulus and since only about half of the giant neurons 

labeled with FG expressed pCREB (~53%), our data support the current understanding that not 

all of the giant neurons within the PnC are required for startle and the subpopulation that 

respond to an initial startle stimulus may not be the same group activated during a subsequent 

startle (Yeomans and Frankland, 1996). No significant main effect of treatment was seen in the 

mean number of pCREB neurons within the PnC (giant and non-giant), which indicates that 

increased pCREB expression in PnC giant neurons is not sufficient to generally increase its 

expression within the area due to the relatively low number of giant neurons as compared to 

non-giant ones (Figure 5.8). A significant main effect of treatment was also not seen in the 

inferior colliculus or the vestibular nuclei, however a greater number of pCREB neurons were 

observed within the Mo5 nuclei of startle treated animals as compared to controls, and this is 

consistent with c-Fos expression patterns (Figure 5.4; Figure 5.8).  

The discrepancy between the positive pCREB and negative c-Fos expression within PnC giant 

neurons of startled animals can perhaps be explained based on an understanding of their signal 

transduction pathway (Figure 6.1; Hoffman and Lyo, 2002). There are two separate regulatory 
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pathways for the activation of c-fos, one through pCREB and another through serum response 

factor; the former is a secondary messenger cascade that is induced as a result of 

neurotransmission/depolarization (Greenberg et al., 1986). Briefly, Ca
2+ 

influx can occur as a 

result of membrane depolarization via voltage-sensitive calcium channels (eg. L-type) or in the 

case of glutamatergic transmission, Ca
2+ 

influx can occur via cation-permeable ion channels 

that open when glutamate binds to ionotropic receptors (eg. NMDA). Ca
2+ 

then binds to the 

calcium binding protein calmodulin (CaM) and the Ca
2+

-CaM complex go on to activate a 

variety of kinases (CaMKI, CaMKII, CaMKIV) which each have the capacity to phosphorylate 

CREB (Lonze and Ginty, 2002). Thus, the expression of pCREB without c-Fos may suggest an 

initial phase of neuronal and synaptic modification, since the former transcription factor is 

upstream of the latter, and a protocol using a longer time course for the expression of c-Fos 

(>60 minutes) may remedy this discrepancy.  
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Figure 6.1 Illustration of the principal signal transduction pathways that evoke c-Fos in 

neurons. (AP-1: activating-protein 1; CaM: calcium binding protein calmodulin; CaRE/CRE: 

calcum response element/cAMP response element; SRF: serum response factor; SRE: serum 

response element; Hoffman and Lyo, 2002).  
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6.2 A subpopulation of cholinergic terminals within the PnC co-

release glutamate and/or GABA 

Inhibitory cholinergic neurons in the PPTg/LDTg have been proposed to be major participants 

in PPI (Fendt et al., 2001) as they reportedly project to the PnC and potentially innervate PnC 

giant neurons (Mitani et al., 1988). However, while cholinergic release is important for PPI, it is 

not the sole neurotransmitter responsible for mediating this circuit (Leitner et al., 1981; Semba 

et al., 1990; Fendt et al., 1994; Fendt, 1999; Li and Yeomans, 2000), and Wang and Morales’s 

(2009) finding that the PPTg/LDTg contain distinct populations of cholinergic, glutamatergic, 

and GABAergic neurons led to our hypothesis that cholinergic terminals within the PnC co-

localize with glutamatergic and/or GABAergic markers.  

As predicted, our results show that a proportion of cholinergic terminals within the PnC co-

express glutamate or GABA markers, including a very small number that co-localizes with both 

markers (Figures 5.9-5.11), which is a novel finding for midbrain cholinergic neurons. The 

number of single or dual labeled cholinergic terminals in close contact with either the soma or 

proximal dendrites of PnC giant neurons was also analyzed. Our findings demonstrate 

cholinergic terminals co-expressing either GABA or glutamate markers contacting the neuronal 

soma of PnC giant neurons; however, proximal dendrites were innervated only by cholinergic 

terminals expressing GABAergic markers but not by double cholinergic and glutamatergic 

marked terminals (Figure 5.14). This observed apposition of dual-labeled terminals with the 

PnC giant neurons shows an increase in the likelihood of synapses occurring at this location, 

nonetheless assurance cannot be determined using our methodology (see section 6.4).  

Our study supports the increasing view that neurons release more than one neurotransmitter 

which can implicate modes of signaling (Hnasko and Edwards, 2012). A proportion of 

cholinergic neurons in the retina have been shown to co-release GABA (Duarte et al., 1999) 

and both the basal forebrain (Allen et al., 2006) and the striatum (Guzman et al., 2011) contain 

populations of glutamate-releasing cholinergic neurons.  The possible reasons for the 

physiological role of co-release is poorly understood, although since both released transmitters 

can activate postsynaptic receptors, the potential for differential or synergistic regulation of 

signaling and behaviour is suggested (Guzman et al., 2011; Hnasko and Edwards, 2012). For 
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instance, the differential release of GABA and acetylcholine (ACh) in Starburst retinal 

amacrine cells contributes to direction-selective motion sensing; GABA is proposed to encode 

direction selectivity and ACh motion sensitivity (Demb, 2007). More so, as demonstrated by 

Allen and colleagues (2006), the release of one neurotransmitter (ACh) in basal forebrain 

cholinergic neurons, exerts a negative-feedback inhibition on its co-released partner 

(glutamate). Furthermore, both glutamate and ACh transmitters, co-released from midbrain 

interpeduncular nuclei, work together to activate postsynaptic neurons via distinct transmission 

pathways (Ren et al., 2011).  

Another physiological role for the co-release of neurotransmitters can be to regulate filling of 

one transmitter through vesicular uptake of the other, by influencing the H
+
 electrochemical 

driving force (Hnasko and Edwards, 2012). Therefore, the release of one neurotransmitter may 

help drive the gradient allowing for the uptake and subsequent release of the other transmitter, 

which perhaps plays a more functional role in synaptic transmission.  

Interestingly, we also observed the co-localization of two functionally opposing 

neurotransmitters, glutamate and GABA (Figures 5.9C and 5.10C). Consistent with this finding, 

Gutiérrez et al. (2000) describe the co-release of GABA from glutamatergic neurons of granule 

cells onto pyramidal neurons in the hippocampal dentate gyrus. They report that the 

GABAergic transmission may serve a homeostatic role by restraining the excitability 

responsible for epilepsy. In contrast, the co-release of glutamate and GABA transmitters from 

the medial nucleus of the trapezoid body are both excitatory and regulate sound localization in 

the auditory system during early development (Gillespie et al., 2005). 

Our data thus provides evidence for the combined roles that acetylcholine, glutamate and 

GABA may have in the mediation of PPI. Since inhibitory GABAergic projections from the 

substantia nigra reticulata (SNR) are known to partially mediate PPI (Koch et al., 2000), 

inhibitory GABAergic release from cholinergic terminals in the PnC may play a similar role, 

thus resulting in the rapid and long-lasting inhibition characteristic of PPI. Additionally, 

functionally opposing excitatory glutamatergic release may play a role in regulating the extent 

of inhibition by cholinergic terminals projecting from the PPTg/LDTg to the PnC, although 

glutamate can also be inhibitory, since Schmid and colleagues (2010) found that PnC giant 

neurons express inhibitory metabotropic glutamate receptors.  
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6.3 BK channels implicated in habituation are localized on 

auditory glutamatergic afferents 

Previous research with Aplysia (Castellucci et al., 1970), Drosophila (Engel and Wu, 1998), 

Caenorhabditis elegans (Unpublished data, personal communication, Catharine Rankin), and 

Slo1 homozygous knock-out mice (Typlt et al., 2013) suggests that short-term habituation is 

mediated via a presynaptic mechanism involving synaptic depression and a reduction of 

neurotransmitter release. More importantly, these studies proposed the BK channel to be a key 

player in this process. Thus, one of the aims of this work was to show the expressing of BK 

channels on PnC glutamatergic terminals using dual labeling immunofluorescence, in order to 

further validate this theory. Our results indicate that more than 85% of the glutamatergic 

terminals found within the PnC co-localize with BK channel markers (Figures 5.15A and 

5.16A), which is a strong support for the implication of BK channels in habituation. Electron 

microscopy techniques in the hippocampus (Hu et al., 2001; Sailer et al., 2006) also confirm 

our hypothesis that BK channels are important modulators of membrane excitability at the 

presynaptic level (Robitaille et al., 1993; Xu and Slaughter, 2005). Interestingly, we also 

observed the co-expression of BK channel markers on a subpopulation of GABAergic (Figures 

5.15B and 5.16B) and cholinergic (Figures 5.15C and 5.16C) terminals within the PnC, 

although whether or not they may be involved in habituation needs to be further investigated. 

Most likely however, these terminals do not play a role in modulating habituation since BK 

channels preferentially regulate excitatory neurotransmitter release over inhibitory and only 

minimally control GABA release (Martire et al., 2010). Finally, sparse immunolocalization of 

BK channels was also noted at the post-synaptic site which is consistent with findings in retinal 

amacrine cells (Grimes et al., 2009) and hippocampal pyramidal neurons (Sailer et al., 2006).  

The number of glutamatergic, GABAergic, or cholinergic terminals, single-labeled or co-

labeled with BK channel markers, in close contact with either the soma or proximal dendrites of 

PnC giant neurons was also analyzed. Our imaging demonstrates contact between the neuronal 

soma and both single and dual-labeled glutamatergic, cholinergic, and GABAergic terminals; 

contact between the proximal dendrites of PnC giant neurons and labeled terminals mimicked 

that seen at the soma (Figure 5.19). Electron microscopy of labeled axons and terminals from 

the CRN to PnC giant neurons (Nodal and López, 2003) confirmed some of the features we 
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observed using confocal fluorescence microscopy, with a few interesting differences. They 

noted that axosomatic contact was rare and only established via an en passant bouton, while the 

majority of synaptic contacts were axodendritic in manner. Our observed juxtaposition of 

single/dual-labeled terminals with PnC giant neurons at the microscopic level shows a higher 

number of axosomatic contacts than in the study conducted by Nodal and López (2003), 

nonetheless our methodology alone cannot guarantee certainty (see section 6.4).  

 

6.4 Technical considerations  

As with any scientific study, there are a few limitations that need to be acknowledged. As 

alluded to in previous sections, while this work does provide evidence for functional synaptic 

connections between the synaptic terminals labeled and our PnC giant neurons of interest, it 

does not actually prove that functional synapses are formed. Z-series images acquired at 0.60 

µm intervals with the SP5 TCS II Confocal Microscope allowed observation of terminals within 

a 2 µm distance from the neuronal soma or dendrite to be defined as juxtaposed. Actual 

synaptic activity however would need to be determined using electron microscopy (Nodal and 

López, 2003; Sailer et al., 2006), antibodies against selective pre-synaptic (Synapsin I) or post-

synaptic (PSD 95) markers (Sailer et al., 2006), and/or electrophysiological methods in 

functional studies. Additionally, the apposition of single/dual labeled terminals on the soma or 

proximal dendrites of PnC giant neurons is biased by the fact that FG does not label the entire 

cell. Due to this incomplete retrograde filling, entire dendritic trees were not visualized, thus 

only terminals located at the most proximal parts of the dendrites were considered juxtaposed 

terminals (Nodal and López, 2003). The same consideration can be applied to NeuN which 

limits the extent of axonal/dendritic labeling. Finally, while the Image Pro Premier software 

was useful in determining percent colocalization, only two channels at a time could be 

analyzed. Therefore, in a triple labeling immunofluorescence of CHT1, GAD67, and VGLUT1, 

combinations of two channels were selected to measure colocalization. This may have led to a 

possible overestimation of the number of double-labeled terminals in each case as well as an 

underestimation of the number of triple-labeled terminals since those had to be counted 

manually. Nevertheless, our imaging techniques were sufficient for our purposes in providing 
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strong evidence for the occurrence of colocalization, and to give a rough estimate of the amount 

of co-localization. Further tests need to be done to verify quantities.  

 

6.5 Significance of the study  

 Firstly, this study is significant because it uses an alternate method, imaging, to validate 

our current understanding of the acoustic startle response and its modulations. Startle is 

mediated by a hypothetical pathway that is constantly refined as new techniques and 

experiments come to light. It is therefore interesting to see our immunohistochemistry and 

histology results build upon previous theory established by behavioural and 

electrophysiological studies, as well as bring to light novel findings such as the discovery that a 

subpopulation of midbrain cholinergic neurons co-release glutamate and/or GABA. Secondly, it 

is important to look at the big picture and study the acoustic startle response and its modulations 

for its obvious clinical relevance. Deficits in habituation and/or prepulse inhibition result in 

information overload received by the brain which is characteristic of many neurological 

disorders, including fragile X syndrome (Frankland et al., 2004), schizophrenia (Braff et al., 

1978; Geyer and Braff, 1982), autism spectrum disorders (Perry et al., 2007), Alzheimer’s 

disease, Tourette’s syndrome, and Huntington’s chorea (Putzki, 2008). Therefore, a better 

understanding of the cellular and molecular mechanisms involved in habituation and prepulse 

inhibition will help to determine potential drug targets and, further down the line, aid in finding 

a treatment for these neurological disorders. 

 

6.6 Concluding remarks  

 In conclusion, this study aimed to use histology and immunohistochemistry in order to 

understand the synaptic organization of the primary ASR pathway and its modulatory afferents. 

The work presented here showed that giant neurons within the PnC form the sensorimotor 

interface of the oligosynaptic ASR pathway and play a key role in mediating the startle 

response because they project to the cervical spine and express pCREB when activated by a 

startle stimulus. Using dual and triple labeling immunofluorescence, we additionally 
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demonstrated that a subpopulation of cholinergic terminals within the PnC co-express 

glutamate and/or GABA synaptic markers, implying that a combination of transmitters may be 

involved in the attenuation of startle during PPI. Finally, markers for BK channels were 

employed to show the co-localization of these channels to glutamatergic presynaptic afferents, 

which greatly supports the theory that BK channels are essential for the synaptic depression and 

reduced neurotransmitter release that underlies habituation. Thus, taken together, the results of 

this study allow for greater insight into the synaptic inputs modulating startle and provide a 

better understanding of the neurotransmitters involved, which will help in determining effects 

that multiple drugs may have on sensorimotor gating mechanisms.  
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