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Abstract

Recurrent disease, characterized by repeated alternationsbetween acute relapse and long re-
mission, can be a feature of both common diseases, like ear infections, and serious chronic
diseases, such as HIV infection or multiple sclerosis. Due to their poorly understood etiology
and the resultant challenge for medical treatment and patient management, recurrent diseases
attract much attention in clinical research and biomathematics. Previous studies of recurrence
by biomathematicians mainly focus on in-host models and generate recurrent patterns by in-
corporating forcing functions or stochastic elements. In this study, we investigate deterministic
in-host models through the qualitative analysis of dynamical systems, to reveal the possible
intrinsic mechanisms underlying disease recurrence.

Recurrence in HIV infection is referred to as “viral blips”, that is, transient periods of high
viral replication separated by long periods of quiescence.A 4-dimensional HIV antioxidant-
therapy model exhibiting viral blips is studied using bifurcation theory. Four conditions for the
existence of viral blips in a deterministic in-host model are proposed. Guided by the four con-
ditions, the simplest 2-dimensional infection model whichshows recurrence is obtained. One
key point for recurrence is identified, that is an increasingand saturating infectivity function.
Furthermore, Hopf and generalized Hopf bifurcations, Bogdanov-Takens bifurcation, and ho-
moclinic bifurcation are proved to exist in this 2-dimensional model. Bogdanov-Takens bifur-
cation and homoclinic bifurcation provide a new mechanism for generating recurrence. From
the viewpoint of modelling, the increasing and saturating infectivity function gives rise to a
convex incidence rate, which further induces backward bifurcation and Hopf bifurcation, and
allows the infection model to exhibit rich dynamical behavior, such as bistability, recurrence,
and regular oscillation.

The relapse-remission cycle in autoimmune disease is investigated based on a regulatory T
cell model. By introducing a newly discovered class of regulatory T cells, Hopf bifurcation oc-
curs in the autoimmune model with negative backward bifurcation, and gives rise to a recurrent
pattern.

The main insight of this thesis is that recurrent disease canarise naturally from the de-
terministic dynamics of populations. It will provide a starting point for further research in
dynamical systems theory, and recurrence in other physicalsystems.
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Chapter 1

Introduction

Recurrent disease, such as several episodes of ear infections or bacterial sinusitis in one year,
can be very common and disagreeable. Recurrence can also poseserious health issues, and
even fatality [16], and it is often associated with chronic diseases for which there is no known
cure, such as human immunodeficiency virus (HIV) infection [3, 13], or lupus [10]. The pattern
of recurrent disease is an alternation between acute relapse and long remission [5, 16, 6, 8, 10].
In HIV infection for example, “viral blips” are commonly measured in patients under highly
active antiretroviral therapy (HAART), whose blood viral load is controlled for long periods
at an undetectable level, but is still punctuated periodically by short episodes of high viral
reproduction [14], as shown in Figure 1.1. Although the etiology is not well understood, HIV
infected patients chronically suffer from these episodes of acute viral relapse [7]. In addition,
important issues in recurrent disease, such as medical treatment and patient management, cry
out for new insight. In this study, we apply approaches characteristic of mathematical biology
to better understand the intrinsic mechanisms driving recurrent diseases.

1.1 Mathematical models for studying recurrence

Mathematical models using differential equations track changes in biological systems over
time, and provide new research tools to investigate and explain clinical and laboratory obser-
vations [1, 11, 12]. By translating verbal mechanisms into scientific prediction, mathematical
models play a fast-growing and well-recognized role in understanding, predicting, and con-
trolling diseases [11]. In this study, based on traditionalepidemic models at the population
level, we develop and analysein-hostmodels at the cell-to-cell level to describe the interaction
between pathogenic agents and cells.

1.1.1 Immunological models

The body’s defence against foreign pathogen invasion is theimmune system. Immunology
is the study of the immune system, including its function andpossible malfunctions, such
as autoimmune disease, hypersensitivities, immune deficiency, and transplant rejection. The
immune system is built mainly at the cellular level. Mathematical models in immunology
therefore attempt to describe the dynamical world of cells and molecules inside body.

1
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Mathematical models in immunology, typically systems of ordinary differential equations,
are well recognized and widely used to describe immune processes, understand the underly-
ing dynamical processes, reveal intrinsic mechanisms, andpredict the fate of the disease. In
addition, mathematical models can provide a persuasive wayto verify verbal assumptions in
immunology. Additionally, model simplification can help toidentify and emphasize the de-
termining factors in disease. Simplifications, such as quasi-steady state assumptions, are a
well-recognized way to reduce model dimension, while retaining the model’s main properties.
Although cellular processes are key to immune function, theimmune response also incorpo-
rates processes of a chemical nature, such as the antigen-antibody interaction and enzyme-
catalysed reactions, for example the cytokine molecule IL-2 signaling process. Mathematical
modeling can incorporate these biochemical factors into immunological models. For example,
the influence of reactive oxygen species on HIV infection rate can be modeled according to
Michaelis-Menten kinetics, and gives rise to an increasing, saturating HIV infectivity function
in Chapter 2. This function further determines the simplest 2-dimensional HIV infection model
which shows recurrent behavior, providing a new mechanism for HIV viral blips and a fresh
insight into the elusive world of HIV infection.

1.1.2 Infection models

A basic epidemic SIR model divides the population into susceptible, infected and recovered
groups, and denotes the numbers in each group asS, I , andR, respectively. An SIR model
with no disease-related death is written as

dS
dt
= bN− βIS − dS,

dI
dt
= βIS − γI − dI,

dR
dt
= γI − dR, (1.1)

where the total population size isN, the birth rate isb, the common death rate for each group is
d, the infectivity isβ, and the recovery rate isγ [1]. The recovery group can be reduced under
the assumption that the total population size is constant. Subsequently, the 3-dimensional
SIR model is reduced to a 2-dimensional SI model. Similarly,an in-host model tracks the
transmission of an infectious agent, for example a virus, from cell to cell within the body
of a single infected individual [12]. The basic model in thiscase also has three variables:
uninfected cells,X; infected cells,Y, and free virus particles,V. These variables can either
denote the total population size in an infected individual or population density in blood or
tissue [12]. Compared with the host cell, the infectious agent, such as a virus and bacterium,
is characterized by a short lifespan and extremely high reproduction rate. Due to these high
production and clearance (birth and death) rates, virus particles can be assumed to be in a
quasi-steady state with the population of infected cells, and eliminated from the system [12].
This step results in a 2-dimensional within-host model, which is proved to be equivalent to the
2-dimensional epidemic model in Chapter 4.

The spread of disease is a key point in modelling, and the rateat which new individuals are
added to the population of infectives is referred to as the incidence rate [4]. The functional form
of this term varies according to the properties of the disease and the hypothesis considered.
Based on the law of mass action, the spread of disease is usually written as the infection force,
multiplied the number of susceptibles [2]. The infection force describes the transition rate from
the susceptibles to infectives, and is usually a function ofthe number of infectives. The most
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common form of the infection force is linear, that isβI , whereβ is the per capita contact rate,
with the assumption of homogeneous mixing of both susceptible and infective populations.
By considering heterogeneous mixing and saturation effects due to fewer susceptibles being
available with the growth of the infective population, the infection force can be modified to be
an increasing and concave function in terms of the number of infectives [9]. In contrast, the
infection force may take the form of an increasing and convexfunction, if cooperative effects
are considered, for example if infected cells make other host cells more vulnerable to infection
[15, 17, 18].

1.2 Mathematical theories and methodologies used to study
recurrence in biological models

Biological models are characterized by changes, and differential equations are laws that rule
changes. For biological models described by differential equations, the description of the dy-
namical behavior of the differential equations is the description of the time evolutionof the
biological system. The differential equations are also referred to as a dynamical system. The
solution determines how the dynamical system develops in time. For most differential equa-
tions, describing real-world problems, their solution formula or analytic solutions are difficult
or even impossible to obtain. Therefore, we apply dynamicalsystems theory, in particular,
qualitative methodologies including stability and bifurcation analysis to extract important in-
formation and show the fundamental, long-term qualitativebehavior of the system.

In this study, we concentrate on continuous differential equation models, which is a reason-
able approximation to describe the continuous overlap of cells’ and infectious agents’ genera-
tions. Nonlinear systems theory and methodologies are applied to investigate the complexity
of the biological systems. To reveal intrinsic mechanisms underlying complex phenomena in
disease models, we use simple deterministic models to predict the long-term behavior of the
disease. In particular, asymptotic behavior is examined, such as local and global stability of
equilibrium solutions, and bifurcations from the equilibrium solutions, leading to Hopf bifur-
cation and even more complex bifurcation such as homoclinicorbits.

1.2.1 Stability analysis for equilibrium solutions

Mathematical analysis of population dynamics usually firstproves well-posedness of the solu-
tions, that is, the solutions of the system should be positive and bounded due to their biological
meaning. Equilibrium solutions expose the steady-state features of the system, which can be
either stable or unstable depending upon whether the solution trajectories of the system con-
verge towards the equilibrium or diverge away from it. The stability of an equilibrium solution
can be characterized, in the sense of Lyapunov stability theory, as local or global depending
on whether the final state depends on the initial condition. In other words, global asymptotic
stability means that any solution trajectory of the system will return to the equilibrium from
any initial point in the state space; while for local asymptotic stability this only occurs for
initial points near the equilibrium solution. The path of convergence may be either direct, i.e.
without oscillating, or with oscillating behavior. Besidesequilibrium solutions, many biologi-
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cal systems may exhibit complex behavior such as limit cycles, for which the trajectories may
approach or diverge from a periodic solution. We can also define the stability of limit cycles,
as stable or unstable, depending on whether they attract or repel nearby trajectories. Local
stability of the equilibrium solution can be obtained by examining the corresponding charac-
teristic equation, and usually (especially for higher-dimensional dynamical systems) applying
the Routh-Hurwitz stability criterion. This process often involves solving multivariate poly-
nomials. The Lyapunov function method (or Lyapunov direct method) is usually applied to
prove the well-posesness of the solutions and the global stability of equilibrium solutions. For
limit cycles, however, finding their stability is more involved, and requires more sophisticated
mathematical methods to be discussed next.

1.2.2 Bifurcation analysis

Bifurcation theory is fundamental for the qualitative studyof dynamical systems, and can
be used to reveal complex dynamical behaviors of the biological systems under study, such
as bistability, recurrence, and regular oscillation. Characterized by a controllable parameter,
called the bifurcation parameter, bifurcation occurs at a critical value of this parameter where
the properties of equilibria change significantly. These qualitative changes can be illustrated in
a bifurcation diagram. Bifurcations can be divided into two principle classes: local bifurcations
and global bifurcations. Local bifurcations occur when thelocal stability of an equilibrium
changes, leading to the birth of another equilibrium solution or a limit cycle, as the bifurcation
parameter passes through a critical value. Therefore, the characteristic equation and Routh-
Hurwitz stability criterion can be applied to study local bifurcations. More precisely, the local
bifurcations can be classified as saddle-node, transcritical, and pitch-fork bifurcations, which
characterize the “jump” from one equilibrium solution to another equilibrium solution. In
this thesis, for the convenience of use in Applied Science and Engineering Society, we call
the saddle-node bifurcation point, the “turning point”. Hopf bifurcation, which characterizes
the “birth of motion” from an equilibrium solution to periodic motion. Global bifurcations,
on the other hand, occur when periodic orbits collide with each other, or with equilibria, and
cause changes in the topology of the trajectories out of a small neighborhood. The terminol-
ogy “unfolding” determines the codimension of a bifurcation, that is, how many bifurcation
parameters are required to characterize the fundamental dynamical behavior of the system. In
this study, we mainly focus on local bifurcations includingsaddle-node, transcritical and Hopf
bifurcations, which are all codimension-one bifurcations. We will also investigate the well-
studied codimension-two bifurcation: Bogdanov-Takens bifurcation, since it can lead to the
global bifurcation: homoclinic bifurcation. We will pay more attention to Hopf bifurcation and
homoclinic bifurcation, since they provide two mechanismsfor generating recurrence.

1.2.2.1 Hopf bifurcation

Hopf bifurcation is perhaps the most typical way to generatelimit cycles and recurrent phe-
nomenon. It occurs when the Jacobian matrix of a dynamical system, evaluated at an equilib-
rium, contains a simple pair of purely imaginary eigenvalues, giving rise to a nonhyperbolic
critical point: the Hopf bifurcation point. The stability of the limit cycle is determined by the
behavior of the solution trajectories of the system on the center manifold near the Hopf bifurca-



6 Chapter 1. Introduction

tion point. Center manifold theory provides a means for systematically reducing the dimension
of the state space, resulting in a center manifold with reduced dimension. Further simplifying
the differential equations, describing the dynamical behavior on the reduced center manifold,
by additional coordinate transformations yields the normal form for the Hopf bifurcation. The
qualitative picture of the flows of Hopf bifurcation can be revealed by analyzing the stabil-
ity and bifurcations based on the normal form, and the stability of the bifurcating limit cycle is
determined by the coefficients of the normal form. Hopf bifurcations can be classified as super-
critial or subcritical, indicating whether the bifurcating limit cycle is stable or unstable. Center
manifold theory and normal form theory are the two most powerful and useful mathematical
tools in the study of stability and bifurcations for nonlinear dynamical systems.

1.2.2.2 Bogdanov-Takens bifurcation and homoclinic orbits

A homoclinic or saddle-connection bifurcation occurs whena limit cycle collides with a saddle
point. It is a global bifurcation and may arise from Bogdanov-Takens bifurcation. Bogdanov-
Takens bifurcation is characterized by a double-zero eigenvalue of the linearized system around
an equilibrium solution. The existence of homoclinic bifurcation, associated with Bogdanov-
Takens bifurcation, may provide a global mechanism for the existence of limit cycles and recur-
rence. By applying a rescaling or blow-up approach on the normal form obtained associated
with Bogdanov-Takens bifurcation, we may obtain a Hamiltonian system and thus properly
define a Melnikov function used to determine the homoclinic bifurcation curve, leading to
bifurcation of homoclinic orbits. Further, this approach can be employed to identify the pa-
rameter region where limit cycles exist between the Hopf bifurcation curve and the homoclinic
bifurcation curve.

1.3 Thesis contribution and structure

In this thesis, we study recurrent phenomena in infectious diseases and autoimmune diseases,
which are described by deterministic, ordinary differential equations. Local and global mech-
anisms generating recurrence are provided in explicit mathematical formulae, associated with
Hopf bifurcation, Bogdanov-Takens bifurcation and homoclinic bifurcation. Biologically, we
find that recurrent behavior can be an intrinsic property in disease dynamics. For infectious dis-
ease, an increasing and saturating infectivity function can be the determining component for
recurrence. While, for autoimmune disease, recurrence can be attributed to the newly discov-
ered terminally differentiated regulatory T cells. From the viewpoint of modeling, we believe
that the investigation of the relation between backward bifurcation and Hopf bifurcation reveals
a important finding: a convex incidence function is the key player in determining the bistable,
recurrent, and regular oscillating behaviors for a simple 2-dimensional infection model.

In Chapter 2, the dynamics of HIV viral blips are studied by investigating an established 4-
dimensional HIV antioxidant therapy model. A new blips-generating mechanism is proposed,
that is, infection makes the host more vulnerable to be infected, and is modeled by an increas-
ing, saturating infectivity function. Four conditions areproposed for proving the existence of
recurrence in deterministic in-host models.
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Chapter 3 is devoted to considering recurrent behavior in an autoimmune model. By in-
troducing a newly discovered regulatory T cell subtype, theautoimmune disease model can
exhibit Hopf bifurcation and further generate recurrent behavior.

In Chapter 4, the relation between backward bifurcation and Hopf bifurcation is examined
for exploring recurrence, by investigating the infectiousdisease model established in Chapter
2 as well as the autoimmune model studied in Chapter 3. We identify the parameter region
where bistability, recurrence, and regular oscillation can occur.

Chapter 5 provides a further study on the simplest 2-dimensional HIV model (established
in Chapter 2) to generate recurrence. More bifurcation parameters are involved in the study
to demonstrate complex dynamical behavior. A new mechanismfor generating recurrence is
obtained from Bogdanov-Takens bifurcation and homoclinic bifurcation.

Finally, the conclusion of the thesis and discussion of future work are given in Chapter 6.
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Chapter 2

Conditions for Transient Viremia in
Deterministic In-host Models: Viral Blips
Need no Exogenous Trigger

2.1 Introduction

Viruses are infectious intracellular parasites: they can reproduce only inside the living cells of
host organisms, and must spread from host to host for continued existence. Animal viruses tend
to exhibit either an acute or persistent mode of host infection to ensure this continuity [40]. An
acute viral infection is characterised by a relatively short period of symptoms, and resolution
within days or weeks. It usually triggers the host immune response to clear the infection, and a
memory response can then prevent the same virus from infecting the same host. Pathogens such
as influenza virus and rhinovirus typically cause acute viral infections. In contrast, persistent
infections [2] establish long-lasting infections in whichthe virus is not fully eliminated but
remains in infected cells. Persistent infections involve both silent and productive infection
stages without rapid killing or excessive damage to infected cells. Latent infection is a type of
persistent infection.

In latent infection, no clinical signs nor detectable infectious cells can be observed during
the silent or quiescent stage of low-level viral replication. However, the virus has not been
completely cleared, and recurrent episodes of rapid viral production and release can periodi-
cally punctuate relatively long periods in the silent stage. These episodes of recurrent infection
are a clinical phenomenon observed in many latent infections [41]. Recurrent infection can
also occur in the context of drug treatment for persistent infections. Human immunodeficiency
virus (HIV), for instance, can be suppressed by highly active antiretroviral therapy (HAART)
to below the limit of detection for months or years [4, 8], nonetheless supersensitive assays can
still detect low levels of viremia during this stage [8, 31, 30]. Moreover, these long periods
of relative quiescence are typically interrupted by unexplained intermittent episodes of viremia
above the detectable limit, termed viral blips [35, 34]. Although these blips have been the focus
of much recent research [12, 17, 14, 5], their etiology is still not well-understood [17, 34].

To date, many possible explanations for viral blips during HIV infection have been explored
mathematically. An early model of the long-term pathogenesis of HIV [11] incorporates the

9
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activation of T cells in response to antigen, as suggested earlier by [9]. In [11], both HIV
and non-HIV antigen exposure are considered in a coupled deterministic-stochastic model.
The probability of antigenic exposure evolves continuously in time, and Poisson-distributed
exposure events are generated, by simulation, at the appropriate probabilities. This approach
captures a number of features of long-term HIV dynamics, including episodic ’bursts’ of resid-
ual viral replication. Further work [10] considers the number of distinct antigens which activate
the CD4+ T cell pool as a random variable, coupled to an ordinary differential equation (ODE)
model. Stochastic changes to this number drive fluctuation in the basic reproductive number
and viral load. This model is also able to capture the episodic burst-like nature of residual HIV
viral replication during long-term infection.

More recent models are based on the recurrent activation of latently-infected lymphocytes,
a class of T cells introduced in immunological models by Perelson et al. [32] and Ronget
al. [33], in order to explain the slower second-phase decay of plasma viremia. By introducing
antigen concentrations as an explicit variable, Jones and Perelson [23] developed a system of
ODEs which exhibits viral blips. The model describes programmed proliferation and contrac-
tion of the CD8+ T cell population, and exhibits low viral loads under HAART as expected.
Opportunistic or concurrent infection, modelled as an initial concentration of antigen, activates
the immune system and is shown by numerical simulation to elicit a transient viral blip. The
same authors further showed that occasional intercurrent infections can generate viral blips
by the activation of target cells or latently-infected cells, predicting a power law relationship
between blip amplitude and viral load [24].

In further work, by considering the asymmetric division of latently-infected cells, Rong
and Perelson [34] developed a 4-dimensional ODE model basedon the basic model of latent
cell activation [32]. This new model not only generated viral blips but also maintained a sta-
ble latent reservoir in patients on HAART. In this model, latently-infected cells can divide to
produce latently-infected daughter cells, or differentiate into activated, productively-infected
cells, depending on antigen concentrations. In a further 5-dimensional ODE model [35], these
two types of daughter cells were distinguished as dependentvariables, and a contraction phase
was added to the activated daughter cells. Numerical simulation showed that both cases gave
rise to viral blips and a stable latent reservoir, which weregenerated from the activated and the
latently-infected daughter cells, respectively. In both papers [34, 35], the antigenic stimulation
of latently infected cells was modeled as an “on-off” forcing function, and viral blips were
initiated during brief pulses in which this activation function was “on”.

Most recently, a stochastic model developed by Conway and Coombs [5] presented another
possible treatment of latent cell activation. In this model[5], the authors derive the probability
generating function for a multi-type branching process describing the populations of produc-
tively and latently infected cells, and free virus. A numerical approach is then used to estimate
the probability distribution for viral load, which is then used to predict blip amplitudes and fre-
quencies; blip durations are studied by simulation. The authors are able to conclude that with
effective drug treatment and perfect adherence to drug therapy, viral blips cannotbe explained
by stochastic activation of latently-infected cells, and other factors such as transient secondary
infections, or imperfect adherence, must be involved.

In order to elicit transient episodes of high viral replication, the models described above ei-
ther incorporate transient immune stimulation, for example as a forcing function, or stochastic
approaches. In contrast, recent studies have shown that simple deterministic systems can ex-
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hibit viral blips. Based on the close relation between recurrent infections and antibody (B-cell)
immunodeficiency, Yaoet al. [41] investigated a 5-dimensional ODE model which included
antibody concentrations as an explicit variable, and exhibited transient periods of high viral
replication. By numerical simulation at specific, meaningful parameter values, the authors ex-
plored factors affecting the interval between recurrent episodes, and their severity. Later, an
even simpler 4-dimensional antioxidant-therapy model [39] was explored for HIV, and was
similarly used to simulate viral blips with appropriate parameter values. These examples indi-
cate that deterministic systems can produce blips as part ofthe natural, rich behaviour of the
non-linear system. Although to date numerical simulation has been invaluable in describing
and delineating the behaviour of these models, there is yet very little analytical work exploring
the mathematical underpinnings of recurrent infection. Itshould be noted that data from clin-
ical studies indicates that HIV viral blips appear to be random biological events, with varying
magnitude, frequency and duration. This suggests that stochastic tractable, and their analysis
may reveal a global picture or key underlying characteristics of the system. Moreover, non-
linear deterministic systems can indeed exhibit varying amplitudes and frequencies of motion,
particularly when the underlying parameters are functionsof time. We shall return to a discus-
sion of this point in the last section of the paper.

In this paper, we take advantage of dynamical systems theoryto reinvestigate deterministic
in-host infection models that exhibit viral blips. By examining the bifurcation behaviour in
parameter spaces “close” to the region where blips occur, wepropose an understanding for
the features of the dynamical system which underlie this complex model behaviour. We then
propose four conditions which, when satisfied, guarantee that an in-host infection model will
exhibit long periods of quiescence, punctuated by brief periods of rapid replication: viral blips.
Based on these conditions, we develop very simple 2- and 3-dimensional models that produce
blips. Further, we apply stability criteria to determine parameter ranges which may yield blips.
Most of the models discussed in this paper share a similar infectivity function, describing
the rate at which new infected cells are created. In a final section, we examine a related 5-
dimensional immunological model and demonstrate that viral blips are possible in this system
even when infectivity is constant.

The rest of the paper is organized as follows. In Section 2, the previously proposed 4-
dimensional HIV antioxidant-therapy model is reinvestigated analytically. Based on the in-
sights of our bifurcation analysis, conditions for generating viral blips are proposed. In Section
3, we use these conditions to propose a simpler 3-dimensional in-host infection model, and
parameter ranges which will exhibit blips in the simpler model are determined. In Section 4,
we develop a 2-dimensional model, characterized by an increasing and saturating infectivity
function, which can also generate viral blips. Finally, we demonstrate that a 5-dimensional
immunological model [41] can exhibit viral blips with constant infectivity.

2.2 A 4-dimensional model which exhibits viral blips

In this section, we reconsider a 4-dimensional HIV antioxidant-supplementation therapy model
which was developed and studied numerically in [39]. This model novelly introduced reactive
oxygen species (ROS) and antioxidants to an in-host model ofHIV infection. In uninfected
individuals, ROS play a positive physiological role at moderate levels [16, 25, 7, 20, 18], but
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are harmful at high levels [39].
HIV infection may lead to chronic and acute inflammatory diseases, which may cause

high levels of ROS [26] as well as lowered antioxidant levels; this phenomenon has been
observed clinically and experimentally [26, 15, 22, 36, 38]. In addition, high levels of ROS
may cause damage to CD4+ T cells, impair the immune response to HIV [37], and exacerbate
infected cell apoptosis, releasing more HIV virions. Thus,infected cells produce high levels
of ROS, which in turn increase the viral production by infected cells. To control this cycle,
antioxidant supplementation (vitamin therapy) has been suggested as a potential complement
to HIV therapy [15, 13], with the aim of counteracting and reducing ROS concentrations [16].

The equations of the 4-dimensional model are described by [39]:

ẋ = λx − dxx− (1− ǫ)β(r)xy,
ẏ = (1− ǫ)β(r)xy− dyy,
ṙ = λr + ky−mar− drr,
ȧ = λa + α − par− daa,

(2.1)

wherex, y, r and a represent respectively the population densities of the uninfected CD4+ T
cells, infected CD4+ T cells, reactive oxygen species (ROS), and antioxidants. The constant
λx denotes the production rate of CD4+ T cells, anddxx is the death rate. Uninfected cells
become infected at rate (1− ǫ)β(r)xy, whereǫ is the effectiveness of drug therapy, anddy is the
per-capita death rate of infected CD4+ T cells. ROS are generated naturally at rateλr , and by
the infected cells at ratek y; the concentration of ROS decays at ratedr r, and is eliminated by
interaction with antioxidants at ratemar. Antioxidants are introduced into the model through
natural dietary intake at a constant rateλa, and through antioxidant supplementation at rateα,
which is treated as a bifurcation parameter. Antioxidants are eliminated from the system by
natural decay at ratedaa, and by reacting with the ROS at ratepar, wherep is much smaller
thanm.

An important novel feature of this model is that the infectivity β(r) is a positive, increasing
and saturating function ofr (ROS),

β(r) = b0 +
r(bmax− b0)

r + rhalf
, (2.2)

whereb0 represents the infection rate in the ROS-absent case, whilebmax denotes the maximum
infection rate, andrhalf is the ROS concentration at half maximum. It is obvious thatβ(r) > 0,
and it is also assumed that 0< ǫ < 1. Therefore, all the parameters in equations (2.1) and (2.2)
are positive. The experimental values used for studying model (2.1) are given in Table 2.1.
Importantly, these parameters were chosen with careful reference to clinical studies, such that
the predicted equilibrium densities are clinically reasonable. Also note that the densities of
antioxidants and ROS are of order 1013 perµL, while cell densities are of the order 102 or 103

perµL.
In [39], this model was explored numerically to assess the potential of antioxidant therapy

as a complement to HIV drug therapy. In that study, regions ofoscillatory behaviour, rem-
iniscent of viral blips, were observed. In the following subsections we perform a thorough
equilibrium and stability analysis of the model, in order toshed further light on the factors
underlying these rich behaviours.
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Table 2.1: Parameter values used in model (2.1) [39]

Parameter Value
λx 60.76 cellsµL−1 day−1

dx 0.0570 day−1

dy 1.0 day−1

λa 2.74× 1013 moleculesµL−1 day−1

da 0.0347 day−1

ε 1
3

b0 2.11× 10−4 cell−1 µL day−1

bmax 0.00621 cell−1 µL day−1

rhalf 3.57× 1013 moleculesµL−1

dr 1.66× 107 day−1

λr 1.86× 1021 moleculesµL−1 day−1

k 1.49× 1019 molecules cell−1 day−1

m 1.27× 10−6 molecule−1 µL day−1

p 5.04× 10−14 molecule−1 µL day−1

2.2.1 Well-posedness of the solutions of system (2.1)

By using the method of variation of constants, we can easily obtain the solutions of (2.1) to
show that x(t) > 0, y(t) > 0, r(t) > 0, a(t) > 0, ∀ t > 0, if x(0) > 0, y(0) > 0, r(0) > 0,a(0) >
0. To consider the boundedness of the solutions, suppose in general we have the differential
inequality: Ṫ ≤ λ−dT (λ, d> 0, T(0)> 0). Then if Ṫ = λ − dT, we haveṪ+dT = λ. Thus,
T(t)=T(0)e−

∫ t
0 dds+

∫ t

0
λe−

∫ t
s dduds=T(0)e−d t+λd(1−e−d t), which implies that limt→+∞ supT(t)= λd.

From the first equation of (2.1), we have ˙x≤ λx−dxx, which yields limt→+∞ supx(t)= λx

dx
. It is

also easy to see from the first equation of (2.1) thatx(t)> 0, ∀ t > 0. Then, by adding the first

two equations of (2.1) we obtain
d[x(t)+y(t)]

dt =λx−dxx−dyy ≤ λx−d̃(x+y), whered̃=min(dx,dy).
Hence, limt→+∞ sup(x(t)+ y(t)) = λx

d̃
. Therefore, for any givenε > 0, there existst∗ > 0,

such thatx + y ≤ λx

d̃
+ ε, for all t ≥ t∗. For the third equation of (2.1), we similarly have

dr
dt ≤ (λr+kλx

d̃
)−drr, which results in limt→+∞ supr(t)= λr d̃+kλx

dr d̃
. Finally, for the fourth equation

of (2.1), we getda
dt ≤ (λa+α)−da a, and thus limt→+∞ supa(t)= λa+α

da
. We define Clearly,Γ is a

positively invariant set and attracts all non-negative solutions of (2.1).

2.2.2 Equilibrium solutions of (2.1) and their stability

To find the equilibrium solutions of (2.1), simply setting ˙x = ẏ = ṙ = ȧ = 0 yields two
solutions: the uninfected equilibrium solution E0, and the infected equilibrium solution E1,
given respectively by

E0 : (xe0, ye0, re0, ae0) =

(

λx

dx
, 0, re0,

λr − dr re0

m re0

)

, (2.3)
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where there0 is determined by the equation

F0(r, α) ≡ α + λa +
1
m

(

p dr r − da λr

r

)

+
da dr − pλr

m
= 0; (2.4)

and

E1 :
(

xe1, ye1, re1,ae1
)

, xe1 =
dy

(1− ǫ) βr(re1)
,

ye1 =
λx − dx xe1

(1− ǫ)βr(re1)xe1
, ae1 =

λa + α

da+pre1
,

(2.5)

wherere1 is a function in the system parameters, particularlyα (see the functionF1 in equa-
tion (2.8)). Both E0 and E1 are expressed in terms ofr (re0 or re1) for convenience.

We first consider the uninfected equilibrium E0. The solution ofre0 is determined by (2.4),
which is a quadratic equation inr. To simplify the analysis, we user to express the parameterα
since (2.4) is linear inα, andα is treated as a bifurcation parameter. Thus, solvingF0(r, α) = 0
for α we obtain

α0(re0) = −λa −
1
m

(

p dr re0 −
da λr

re0

)

− da dr − pλr

m
. (2.6)

To find the stability of the equilibrium solution E0, we first evaluate the Jacobian of system
(2.1) at E0 to get J0(re0), where (2.6) has been used, and then use det(ξ I − J0) to obtain the
4th-degree characteristic polynomial, given byP0(ξ, re0) = (ξ + dx)

[

ξ2 + (pre0 + da +
λr
re0

)ξ +

(daλr

re0
+ pdrre0)

]

(ξ + P0r), where

P0r = dy −
(1− ǫ)λx(b0rhalf + re0bmax)

dx(re0 + rhalf)
. (2.7)

P0(ξ, re0) contains three factors: the first one is a linear polynomialof ξ and the second one
is a quadratic polynomial ofξ, and both are stable polynomials (i.e., their roots (eigenvalues)
have negative real part); and thus the stability of E0 only depends upon the third factor, a
linear polynomial ofξ. Therefore, whenP0r > 0 (P0r < 0), the equilibrium solution E0 is
asymptotically stable (unstable).

The graph for the equationF0(r, α) = 0 given in (2.4) is shown as the red line in Fig-
ure 2.1(a), which clearly shows a hyperbola. It is seen from this red line that the relation (2.4)
also defines a single-valued functionr in α, if only the positive (biologically meaningful) value
of r is considered, (i.e., the positive branch of the red line in Figure 2.1(a)). More precisely,
it can be shown that the biologically meaningful solution must be located on the first quadrant
and above, including the top branch of red line (see Figure 2.1(a)), since E0 has the component
ye0 = 0.

Next, consider the infected equilibrium solution E1. The solution forre1 can be similarly
obtained by solving the following equation,

F1(r, α) = λr +
kλx

dy
− kdx(r + rhalf)

(1− ǫ)(b0rhalf + bmaxr)
− mr(λa + α)

pr + da
− drr = 0, (2.8)

which is again a linear function ofα, and we can usere1 to expressα as

α1(re1) = −λa +
λr(pre1 + da)

mre1
+

kλx(pre1 + da)
mre1dy

− kdx(re1 + rhalf)(pre1 + da)
mre1(1− ǫ)(b0rhalf + bmaxre1)

− (pre1 + da)dr

m
. (2.9)
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(a) (b)

Figure 2.1: (a): Complete bifurcation diagram for the 4-dimensional HIV antioxidant-therapy
model (2.1) projected on ther-α plane, with the red and blue lines denoting E0 and E1, respec-
tively; and (b): Bifurcation diagram in (a), restricted in the first quadrant, with the dotted and
solid lines indicating unstable and stable, respectively.

The graph of the equationsF0(r, α) = 0 given in (2.4) andF1(r, α) = 0 given in (2.8) is shown
in Figure 2.1(a). To find the stability of E1, in a similar way, we evaluate the Jacobian of (2.1)
at E1 to obtain the 4th-degree characteristic polynomial,P1(ξ, re1)= ξ4+ a1(re1)ξ3+ a2(re1)ξ2+
a3(re1)ξ+ a4(re1), where the lengthy expressions for the coefficientsa1(re1), a2(re1), a3(re1), and
a4(re1) are omitted here for brevity.

2.2.3 Bifurcation analysis

To understand the conditions underlying oscillatory behaviour and viral blips in this model, we
now consider possible bifurcations which may occur from theequilibrium solutions E0 and E1.

2.2.3.1 Transcritical bifurcation

First, for the uninfected equilibrium E0, it follows from P0(ξ, re0) and (2.7) that in general E0

is stable forP0r > 0, and the only possible singularity occurs at the critical point, determined
by P0r = 0 (see (2.7)). At this point, one eigenvalue of the characteristic polynomial becomes
zero (and the other three eigenvalues still have negative real part), leading to a static bifurcation,
and E0 becomes unstable. More precisely, when the parameter values in Table 2.1 are used,
the two equilibrium solutions E0 and E1 intersect and exchange their stability at the point
(

r t, αt
) ≈ (8.89×1012, 4.58×1013), indicating that atranscritical bifurcationoccurs at this

critical point (see Figure 2.1(b)). Here, the subscript ‘t’stands for transcritical bifurcation. The
value ofαt is obtained by substitutingr t into eitherα0(r t) in (2.6) orα1(r t) in (2.9). In fact,
α0(r t) = α1(r t).

As discussed above, the biologically meaningful solutionsshould be above or on the unin-
fected equilibrium solution E0 (the red line shown in Figure 2.1(b)), since solutions belowthe
red line contain the componenty < 0. It is obvious that there is no Hopf bifurcation from E0.
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Figure 2.2: The saddle-node bifurcation on the center manifold with the dotted line indicating
unstable and the solid line stable: (a) in the transformedx1-µ coordinates; and (b) in the original
coordinates.

So, the uninfected equilibrium E0 is asymptotically stable (unstable) whenr < r t (r > r t) or
α > αt (α < αt)(see Figure 2.1(b)).

It should also be noted from Figure 2.1(b) that besides a transcritical bifurcation point, E1
has asaddle-nodebifurcation which occurs at the so-calledturning point. To determine this
turning point, using (2.9) anddα1(r)

dr = 0, yields (rs, αs) ≈
(

1.72×1013, 5.06×1013
)

, where the
subscript ‘s’ denotes saddle-node bifurcation, andαs = α1(rs) by using (2.9). Note that this
bifurcation does not change the stability of E1, since the characteristic polynomialP1(ξ, re1)
still has an eigenvalue with positive real part whenre1 (or α) is varied along E1 to pass through
the turning point (see Figure 2.1(b)).

The saddle-node bifurcation can be seen more clearly if we examine the local dynamics
close to the turning point; this analysis will also be usefullater for analysing viral blips. At
the turning point, the system contains a 1-dimensional center manifold (whose linear part is
characterised by the eigenvalueξ11 = 0), a 1-dimensional unstable manifold (whose linear part
is characterised by the eigenvalueξ12 ≈ 0.142), and a 2-dimensional stable manifold (whose
linear part is characterised by the eigenvaluesξ13 ≈−0.290 andξ14 ≈−1.26×108), as shown in
Figure 2.2. It is noted that the eigenvaluesξ12 andξ11, which are both positive at the saddle-node
point, become a pair of complex conjugates with positive real part at the orange-color point
above the saddle-node point (see Figure 2.1(b)), moving towards the Hopf point. So the sub-
manifold that is the complement to the centre manifold is still expelling till meeting the Hopf
bifurcation point.

In order to find the differential equation described on the center manifold, we firstapply
the transformation (x, y, r,a)T = (xe1, ye1, re1,ae1)T + Ts(x1, x2, x3, x4)T , where (xe1, ye1, re1,ae1)
is the infected equilibrium solution E1, andTs is a constant, non-singular matrix. Under this
transformation, the Jacobian of system (2.1) becomes the Jordan canonical form:Λs ≈ Diag
{0, 0.142, −0.290, −1.26×108}. Then, by using center manifold theory [19] on the transformed
system of (2.1), we get the differential equation describing dynamics of the system, restricted
to the center manifold: ˙x1≈−2.66×10−12µ−1.93×10−4x2

1, for which the perturbation value ofµ
near the saddle-node point is roughlyµ ≈ 1012, about 2% ofα (see Figure 2.1(b)), as expected.
The bifurcation diagram restricted on the center manifold is depicted in Figure 2.2(a), with
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the corresponding bifurcation diagram in the original system, projected in theα-r plane as
shown in Figure 2.2(b). It should be noted that the scaling between the graphs in Figures 2.2(a)
and 2.2(b) depends upon the transformation matrixTs. Also, note that the upper half branch
in Figure 2.2(a)(denoted by the solid line) indicates that it is stable, but is only restricted to
the 1-dimensional center manifold. For the whole system, this branch is still unstable since the
system contains an unstable manifold (as shown in Figure 2.2(b)).

2.2.3.2 Hopf bifurcation and limit cycles

To find any possible Hopf bifurcation which may occur from theinfected equilibrium E1, we
first need to determine the critical points at which Hopf bifurcation occurs. The necessary and
sufficient conditions for generaln-dimensional systems to have a Hopf bifurcation are obtained
in [43]. To state the theorem, consider the following general nonlinear differential system:

ẋ = f (x, α), x ∈ Rn, α ∈ Rm. (2.10)

with an equilibrium determined fromf (x, α)=0, as, say,xe= xe(α). To find the stability ofxe,
evaluating the Jacobian of system (2.10) atx= xe(α) yieldsJ(α)=Dx f |x=xe(α)=

[∂ fi (xe(α),α)
∂x j

]

. The
eigenvalues of the JacobianJ(α) are determined by the following characteristic polynomial:

Pn(λ) = det[λI − J(α)]

= λn + a1(α) λn−1 + a2(α) λn−2 + · · · + an−2(α) λ2 + an−1(α) λ + an(α).
(2.11)

Then, by the Hurwitz Criterion [21], we know that the equilibrium solutionxe(α) is asymp-
totically stable if and only if all the roots of the polynomial Pn(λ) have negative real part, or
equivalently, if and only if all the following Hurwitz arrangements∆i(α), (i = 1, 2, · · · , n) are
positive:

∆1 = a1, ∆2 = det

[

a1 1
a3 a2

]

, ∆3 = det















a1 1 0
a3 a2 a1
a5 a4 a3















, · · · ∆n = an · ∆n−1.

Having defined the Hurwitz arrangements as above, we have thefollowing theorem.

Theorem 2.2.1 [43] The necessary and sufficient condition for a Hopf bifurcation to occur
from the equilibrium solution xe(α) of system (2.10) is∆n−1 = 0, with an > 0 and∆i > 0, for
1 ≤ i ≤ n− 2.

In order to further consider the post-critical dynamical behaviour of the system and to de-
termine the stability of bifurcating limit cycles, we may apply normal form theory to system
(2.10). Assume that at a critical pointα = αc, the Jacobian of (2.10) evaluated at the equilib-
rium xe contains a pair of purely imaginary eigenvalues±iωc, and all other eigenvalues have
negative real part. Then, the normal form of system (2.10) associated with Hopf bifurcation
can be written in polar coordinates as (e.g., see [42])

dρ
dt
= ρ

(

v0 µ + v1 ρ
2 + · · ·

)

,
dθ
dt
= ωc + t0 µ + t1 ρ

2 + · · · , (2.12)
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where µ=α − αc, ρ andθ denote the amplitude and phase of motion, respectively. Then, the
first equation of (2.12) can be used to approximate the amplitude of bifurcating limit cycles
and to determine their stability. The second equation of (2.12) can determine the frequency
of periodic motion. The coefficient v1, usually called the first-order focus value, plays an
important role in determining the stability of limit cycles. Whenv1 < 0 (v1 > 0, respectively),
the Hopf bifurcation is called supercritical (subcritical) and the bifurcating limit cycles are
stable (unstable). The Maple program developed in [42] can be easily applied to system (2.10)
to obtain the normal form (2.12). The coefficientsv0 andt0 for the linear part of system (2.10)
can be found from a linear analysis, given by [44],v0 =

1
2(a11+a22), t0 = 1

2(a12−a21), where
ai j =

∂ fi
∂x j∂µ

, evaluated at the critical point.
We now apply the above formula to consider the infected equilibrium E1 of system (2.10).

To check if there exists Hopf bifurcation from E1, based on the fourth-degree characteristic
polynomialP1(ξ, re1), we apply the formula∆3=a1a2a3−a2

3−a2
1a4=0 and solve this equation

for r to obtain a unique value,rH > 0, such that (by using (2.9))αH = α1(rH) > 0. When the
parameter values in Table 2.1 are used, these critical values are given by: (rH, αH) ≈ (6.72×
1013, 2.64×1013), at which the Jacobian of system (2.1) contains a purely imaginary pair and
two negative real eigenvalues:±0.308i, −1.66, and−3.66×107. Thus, asα is varied acrossαH,
a Hopf bifurcation occurs from E1, leading to a family of limit cycles.

To find the approximate solutions of the limit cycles and to determine their stability, we
apply normal form theory to this model associated with this singularity. First, we apply a
transformation (x, y, r,a)T = (xe1, ye1, re1,ae1)T +TH (x1, x2, x3, x4)T , where (xe1, ye1, re1,ae1) is
the infected equilibrium solution E1, andTH is a constant, non-singular matrix. We obtain
a transformed system of (2.1), which is omitted here due to its lengthy expression. Then,
applying the formulasv0 =

1
2(a11+a22), t0 = 1

2 (a12−a21) to the transformed system, we obtain
v0 ≈ 3.15×10−15 and t0 ≈ 3.33×10−15. Further, we apply the Maple program [42] to the
transformed system to obtainv1≈−4.18×10−7, andt1≈−3.38×10−6. Thus, the normal form up
to third order is given by

dρ
dt
≈ ρ(3.15×10−15µ − 4.18×10−7ρ2 + · · · ),

dθ
dt
≈ 0.308+3.33×10−15µ−3.38×10−6ρ2+· · · .

(2.13)

The first equation of (2.13) can be used to analyze the bifurcation and stability of bifurcating
limit cycles. Settingdρ

dt = 0 results in two solutions:ρ = 0, which represents the infected
equilibrium solution E1; andρ ≈ 8.68×10−5√µ (µ > 0), which is an approximation of the
amplitude of bifurcating limit cycles. Sincev1 < 0, this is a supercritical Hopf bifurcation,
and bifurcating limit cycles are stable. For example, choose µ = 1012. Then, the approximate
amplitude of the limit cycle isρ ≈ 86.8, and the frequency of the limit cycle approximately
equalsω ≈ 0.283, slightly less thanωc ≈ 0.308. The phase portrait of the simulated limit cycle,
projected on thex-y plane, is shown in Figure 2.3(d). It can be seen from Figure 2.3(a) and (d)
that the analytical prediction from the normal form,ρ ≈ 86.8, agrees well with the simulated
result.

The above analysis based on normal form theory is for local dynamical behaviour, that is,
the limit cycles must be near the Hopf critical point (rH, αH). It can be seen from Figure 2.1(b)
that values ofα taken from the intervalα ∈ (αH, αt) lead to unstable equilibrium solutions
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Figure 2.3: Simulated limit cycles of system (2.1) for the parameter values taken from Table
2.1, with the time course ofx and y on the top row, and the corresponding phase portraits
projected on thex-y plane on the bottom row. For (a) and (d)α = 2.74× 1013, (b) and (e)
α = 3.50× 1013, and (c) and (f)α = 4.55× 1013.

(since both E0 and E1 are unstable for this interval). However, due to the solutions being
non-negative and bounded, we expect that there should existcertain persistent motion such as
oscillating solutions for the values ofα taken from this interval, and the amplitudes of these
oscillations can be large. For example, forα = 3.50× 1013, the phase portrait of the simulated
solution, projected on thex-y plane is shown in Figure 2.3(e), corresponding to the oscillations
in time shown in Figure 2.3(b), which have much greater amplitude than the oscillations in
Figure 2.3(a).

Now, we take a particular value ofα from the intervalα ∈ (αH, αt), which is close toαt, to
simulate the system. For example, takingα=4.55×1013<αt≈4.58×1013, we obtain the phase
portrait of the simulated oscillating solution, projectedon thex-y place, shown in Figure 2.3(f)
with corresponding time history ofx andy shown in Figure 2.3(c). This clearly shows viral
blips.

Next, we will discuss what conditions are needed for creating the phenomenon of viral
blips.

2.2.4 Conditions for generating viral blips

In the previous subsection, we carefully analysed the occurrence of viral blips in a 4-dimensional
HIV model (2.1). System (2.1) is an example ofin-host infection model, an ODE system de-
scribing the dynamics of infection within a single infectedindividual. In-host infection models,
based on classical Susceptible-Infected-Recovered (SIR) models in epidemiology [1], typically
include populations of uninfected target cells, infected target cells, and the infection dynamics
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In order to discuss a new mechanism of generating blips, in the following we list Hypothesis
1 from [27, 28], and propose a second Hypothesis based on the results obtained in [29].

Hypothesis 1 [27, 28] The following four conditions are needed for an in-host infection model
to generate viral blips:

(i) there exist at least two equilibrium solutions;

(ii) there exists a transcritical bifurcation at an intersection of the two equilibrium solutions;

(iii) there is a Hopf bifurcation which occurs from one of theequilibrium solutions; and

(iv) large oscillations (or, more generally, global, persistent motions) can occur near the tran-
scritical critical point.

Hypothesis 2 [29] The following four conditions are needed for an in-hostinfection model to
generate viral blips: the conditions (i), (ii) and (iii) arethe same as that given in Hypothesis 1;
and

(iv) large oscillations (or, more generally, global, persistent motions) can occur far away from
the transcritical and Hopf critical points.

We use the bifurcation diagrams shown in Figures 5.22(a) and5.22(b) (which are Fig-
ures 3.3(a) and 3.3(b) in [28]) to illustrate Hypothesis 1, and the bifurcation diagram in Fig-
ure 5.22(c) (which is Figure 3.1(a) in [29]) to explain Hypothesis 2, whereR andA are state
variables,B andα are parameters. E0 and E1 denote the disease-free and disease equilibrium
solutions. The green lines indicate where the blip-like oscillations occur. It is clear from Fig-
ures 5.22(a) and 5.22(b) that the blips appear near the transcritical point, and may or may not
appear near the Hopf critical point, where both E0 and E1 are unstable, illustrating condition
(iv) in Hypothesis 1. Figure 5.22(c) (where the second Hopf critical point “Hopf2” is out-
side the figure) shows that the blips occur far away from the transcritical and Hopf bifurcation
points.

Through the study given in this section on the BT bifurcation,we have found a third mech-
anism for generating blips, due to the BT bifurcation, explained as follows. First of all, note
that the trajectory starting from a point on the homoclinic loop will reach the saddle point either
asτ → +∞ or τ → −∞. Therefore, it can be seen from Figure 5.17 that near the homoclinic
bifurcation curve, for certain parameter values, the bifurcating stable limit cycles can be large
close to the saddle separators and thus such a stable limit cycle will move extremely slowly
near the saddle point but will move fast when it is away from the saddle point – giving rise to
the blips phenomenon. A schematic bifurcation diagram for the case, which is depicted in Fig-
ure 5.19 whenB = 0.054,D = 0.057,A = 0.01487968, is shown in Figure 5.22(d). Also note
from Figures 5.20 and 5.21 that when the limit cycle inside the saddle separators is unstable,
the trajectories starting near the unstable limit cycle mayconverge to the stable focus E1−, or to
the stable node E0 but will take very long time since the solution will go through a route close
to the saddle point though not generating blips in this case.

The big difference between the first two mechanisms and the new mechanismis that the
first two mechanisms result in very large oscillations in both amplitude and frequency, while
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Figure 5.22: Bifurcation diagrams illustrating Hypotheses: (a) and (b) for Hypothesis 1, (c) for
Hypothesis 2 and (c) Hypothesis 3.

the new mechanism only causes significant changes in frequency, but very little variation in the
amplitude. The biological implication of the new mechanismis interesting and may explain
some real situations, namely, in some situations a patient may not feel obvious changes nor
will measurable changes in disease progression be apparent, but nonetheless the patient may be
experiencing recurrent disease without any significant observation. In other situations, neither
the infected individual nor the clinician may be able to detect whether the infection has been
cured, since complete recovery may take an extremely long time. In both cases, the patient is
in an uncertain situation. To describe these scenarios, we have the following hypothesis.

Hypothesis 3 The following four conditions are needed for an in-host infection model to gen-
erate viral blips or to take an extremely long time to recover(converge to the disease-free
equilibrium): conditions (i), (ii) and (iii) are the same asthat given in Hypothesis 1; and

(iv) there exists Bogdanov-Takens bifurcation, leading to homoclinic loops near a Hopf bi-
furcation, which may yield blips with very small changes in amplitude, or extremely
slow convergence to the disease-free equilibrium.
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5.5 Conclusion and discussion

In this paper, we have given a detailed dynamical study of a 2-dimensional disease model,
which can be used not only for in-host disease modelling, butalso for epidemiologic modelling.
We have shown that when the reproduction number, R0 =

B
D , is varied near R0 = 1, the

system exhibits rich dynamical behaviors, including equilibrium solutions which exchange
their stability at the transcritical point R0 = 1. Both Hopf and generalized Hopf bifurcations
can occur regardless whether R0 < 1 or R0 ≥ 1, which lead to bistability or even tristability.
In particular, our study has indicated that when R0 < 1, the system can have Bogdanov-Takens
bifurcation leading to more complex dynamical behavior such as homoclic orbit bifurcation.
This special bifurcation may provide a new scenario/mechanism for generating recurrence or
the viral blips phenomenon, summarized in Hypothesis 3.

Hypothesis 3 is completely different from Hypotheses 1 and 2, and may provide an ex-
planation for interesting clinical phenomena. In many disease models, the concept of R0 is
straightforward, i.e. if R0 < 1, the disease cannot invade or persist, and the disease onlyexists
for R0 > 1. In reality, disease dynamics are more complex, and our model indeed reflects
this complexity. Hypothesis 3 allows for the possibility that even if control or therapy reduces
R0 below one, a disease may persist indefinitely with low level oscillations, or may die out,
but with an extremely slow time course of decay. The possibility of disease persistence when
R0 < 1 is a feature of backward bifurcation [9, 30, 5, 4], an issue which we are investigating
for this model and related disease models as well [30].

Mathematically, the most interesting dynamical behavior of our model is the Bogdanov-
Takens bifurcation leading to homoclinic loops, which in turn provides a new mechanism for
explaining a very different blips phenomenon. In particular, this phenomenon does not have
obvious changes in the amplitude of the oscillating motion.This can only happen whenB < D
(i.e. R0 < 1). However, this condition,B < D, is not enough, the additional condition H1 ≥ 0,
which guarantees the existence of disease equilibrium, E1, must also be satisfied. Intuitively,
if B < D, then the epidemic cannot get started because near the disease-free equilibrium, E0,
the behavior of the model is similar to that studied in [17], and thus no oscillation can occur
with R0 < 1. However, H1 ≥ 0, as mentioned in Remark 5.2.3, implies that the contact rate
A exceeds its threshold such that the infected cells, denotedby Y, are sufficiently infectious
such that the epidemic can sustain itself once started even if B < D. Therefore, this leads,
after getting over an initial threshold, to potential bistable equilibrium solutions and even more
complex dynamical behavior.

The ideas and methodologies presented in this paper can be used to analyze other types of
in-host disease models as well as epidemiologic models. We hope that they can also be gener-
alized to study functional differential systems (e.g. with time delays), or even other physical or
engineering systems which exhibit similar “blips-like” phenomenon.
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Chapter 6

Conclusion

In this thesis, the problem of recurrent disease in infection and autoimmune models is studied
via the qualitative analysis of dynamical systems using bifurcation theory. Although previous
models with triggers such as stochastic components or forcing terms can simulate the cycle of
long remission and brief relapse, simple deterministic models also exhibit recurrence.

Recurrence in HIV infection is referred to as “viral blips”. A4-dimensional HIV antioxidant-
therapy model, which exhibits viral blips, is analysed. Thefirst hypothesis consisting of four
conditions for the emergence of viral blips is proposed, which guides the derivation of the
simplest (2- and 3-dimensional) infection model producingviral blips. A complete parame-
ter region for the 3-dimensional infection model exhibiting viral blips is identified. Further
dynamical study is conducted on the simplest 2-dimensionalinfection model, and gives rise
to two more blips-generating mechanisms: hypothesis 2 and 3. The first hypothesis describes
the scenario in which two equilibrium solutions intersect at a transcritical bifurcation point,
and a Hopf bifurcation occurs at the upper branch of the disease equilibrium. Blips appear
when the bifurcation parameter is close to the transcritical bifurcation point, and located in the
parameter region where both equilibrium solutions are unstable. The second hypothesis adds
another blips-generating mechanism, i.e. that large oscillations (or, more generally, global,
persistent motions) can occur far away from the transcritical and Hopf ciritical points. In the
third hypothesis, the existence of a Bogdanov-Takens bifurcation is proposed, which leads to a
homoclinic loop near a Hopf bifurcation. This scenario may yield blips with very little change
in amplitude, or extremely slow convergence to the disease-free equilibrium. The relapse-
remission cycle is also characteristic of many autoimmune diseases. An autoimmune model
which includes the role of regulatory T cells is modified by adding the terminally differentiated
regulatory T cell subclass. The dynamical behavior is altered. Thus, recurrence is displayed in
the modified autoimmune model and can be explained by the second hypothesis. Recurrence
in infection and autoimmune models can arise naturally fromthe dynamical behavior of the
system, without stochastic stimulation or exogenous triggers.

From the viewpoint of mathematical modelling, the occurrence of blips in the (2- and 3-
and 4-dimensional) infection model is attributed to the convex incidence rate, which is formed
by an increasing and saturating infectivity function. The convex incidence rate represents a co-
operative effect in infection progression, that is, the existing infection enhances the ability for
new infection to become established. The convex incidence rate also induces backward bifurca-
tion, which facilitates the appearance of Hopf bifurcation, and rich dynamical behaviors, such
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as bistability, recurrence, and regular oscillation. Cooperative effects in autoimmune disease
occur during the T cell regulation process, since HLA-DR− regulatory T cells differentiate and
proliferate, forming the terminally differentiated HLA-DR+ class, which shows more efficient
regulating capability. The autoimmune model investigatedhere displays negative backward
bifurcation, in which the turning point is located in the negative state variable space. With the
help of additional state variable, the modified autoimmune model shows Hopf bifurcation and
exhibits recurrence.

We note that the amplitudes and frequencies in the observed oscillating and recurrent mo-
tions are all constant, because all parameter values are fixed for deterministic systems. How-
ever, in reality parameters should be time-varying, ratherthan constant. Time-varying pa-
rameter values in deterministic systems can generate oscillations with varying amplitudes and
phases, called “amplitude modulation” and “frequency modulation”, which are analogous to
the variation from random perturbations in stochastic models. This is demonstrated in Figure
2.12 of Chapter 2.

Clearly, the models analysed in this thesis are extreme simplifications of the mechanisms
considered, and more precise mechanisms and accurate models could be considered in future.
Nevertheless, the main insight of this thesis is to demonstrate that recurrence in disease can
be generated from the cooperative interplay of dynamic populations. Hypotheses proposed in
this thesis will serve as a starting point for further research on recurrent phenomena in other
physical systems.

Other mechanisms for recurrence also exist, such as the recurrent activation of latently-
infected lymphocytes. The delay which is characteristic oflatent infection can be modelled
using delay differential equations (DDEs), which could also generate oscillation and even re-
current patterns. A study of recurrent disease using DDEs would be a clear possibility for
future work.
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