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Abstract

Recurrent disease, characterized by repeated alterndngiwsen acute relapse and long re-
mission, can be a feature of both common diseases, like &sutions, and serious chronic
diseases, such as HIV infection or multiple sclerosis. ueir poorly understood etiology
and the resultant challenge for medical treatment andrgati@nagement, recurrent diseases
attract much attention in clinical research and biomath®siaPrevious studies of recurrence
by biomathematicians mainly focus on in-host models ancgda recurrent patterns by in-
corporating forcing functions or stochastic elementshls study, we investigate deterministic
in-host models through the qualitative analysis of dynamsystems, to reveal the possible
intrinsic mechanisms underlying disease recurrence.

Recurrence in HIV infection is referred to as “viral blipdfiat is, transient periods of high
viral replication separated by long periods of quiescerfcd-dimensional HIV antioxidant-
therapy model exhibiting viral blips is studied using bdation theory. Four conditions for the
existence of viral blips in a deterministic in-host moded proposed. Guided by the four con-
ditions, the simplest 2-dimensional infection model whstlows recurrence is obtained. One
key point for recurrence is identified, that is an increasind saturating infectivity function.
Furthermore, Hopf and generalized Hopf bifurcations, BogdaTakens bifurcation, and ho-
moclinic bifurcation are proved to exist in this 2-dimemadmodel. Bogdanov-Takens bifur-
cation and homoclinic bifurcation provide a new mechanismgenerating recurrence. From
the viewpoint of modelling, the increasing and saturatmiggtivity function gives rise to a
convex incidence rate, which further induces backwardrbétion and Hopf bifurcation, and
allows the infection model to exhibit rich dynamical belmayisuch as bistability, recurrence,
and regular oscillation.

The relapse-remission cycle in autoimmune disease istige¢sd based on a regulatory T
cell model. By introducing a newly discovered class of retpraT cells, Hopf bifurcation oc-
curs in the autoimmune model with negative backward bifiimoaand gives rise to a recurrent
pattern.

The main insight of this thesis is that recurrent diseaseara® naturally from the de-
terministic dynamics of populations. It will provide a gtag point for further research in
dynamical systems theory, and recurrence in other physysiéms.
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Chapter 1

Introduction

Recurrent disease, such as several episodes of ear infeotidracterial sinusitis in one year,
can be very common and disagreeable. Recurrence can alseqromes health issues, and
even fatality [16], and it is often associated with chronigedses for which there is no known
cure, such as human immunodeficiency virus (HIV) infect®rif3], or lupus [10]. The pattern
of recurrent disease is an alternation between acute esdapblong remission [5, 16, 6, 8, 10].
In HIV infection for example, “viral blips” are commonly msared in patients under highly
active antiretroviral therapy (HAART), whose blood virabd is controlled for long periods
at an undetectable level, but is still punctuated peridlyiday short episodes of high viral
reproduction [14], as shown in Figure 1.1. Although theletig is not well understood, HIV
infected patients chronically fier from these episodes of acute viral relapse [7]. In additio
important issues in recurrent disease, such as medicaieeaand patient management, cry
out for new insight. In this study, we apply approaches attarastic of mathematical biology
to better understand the intrinsic mechanisms drivingmrect diseases.

1.1 Mathematical models for studying recurrence

Mathematical models using feerential equations track changes in biological systems ove
time, and provide new research tools to investigate andaexplinical and laboratory obser-
vations [1, 11, 12]. By translating verbal mechanisms iniergdic prediction, mathematical
models play a fast-growing and well-recognized role in us@anding, predicting, and con-
trolling diseases [11]. In this study, based on traditiog@ldemic models at the population
level, we develop and analysehostmodels at the cell-to-cell level to describe the interactio
between pathogenic agents and cells.

1.1.1 Immunological models

The body’s defence against foreign pathogen invasion isnimeune system. Immunology
is the study of the immune system, including its function @odsible malfunctions, such
as autoimmune disease, hypersensitivities, immune dedigie@nd transplant rejection. The
immune system is built mainly at the cellular level. Mathéoea models in immunology

therefore attempt to describe the dynamical world of cell$ molecules inside body.



Viral load (copies/mL)

CHAPTER 1. INTRODUCTION

Initiation of drug therapy

Viral blips

Limit of detection
(50 copies/mL)

I I I I I I I I I I
0O 100 200 300 400 500 600 700 800 900

Time on therapy (days)

Figure 1.1: lllustration of HIV viral blips



1.1. MATHEMATICAL MODELS FOR STUDYING RECURRENCE 3

Mathematical models in immunology, typically systems afioary diferential equations,
are well recognized and widely used to describe immune gease understand the underly-
ing dynamical processes, reveal intrinsic mechanisms pagdict the fate of the disease. In
addition, mathematical models can provide a persuasivetwvagrify verbal assumptions in
immunology. Additionally, model simplification can help igentify and emphasize the de-
termining factors in disease. Simplifications, such as igsteady state assumptions, are a
well-recognized way to reduce model dimension, while reta the model’s main properties.
Although cellular processes are key to immune function,itfune response also incorpo-
rates processes of a chemical nature, such as the antigboeninteraction and enzyme-
catalysed reactions, for example the cytokine molecul@ Hignaling process. Mathematical
modeling can incorporate these biochemical factors intoumological models. For example,
the influence of reactive oxygen species on HIV infectiom i@an be modeled according to
Michaelis-Menten kinetics, and gives rise to an incregssagurating HIV infectivity function
in Chapter 2. This function further determines the simpledin2ensional HIV infection model
which shows recurrent behavior, providing a new mechan@ntfV viral blips and a fresh
insight into the elusive world of HIV infection.

1.1.2 Infection models

A basic epidemic SIR model divides the population into spsbke, infected and recovered
groups, and denotes the numbers in each group, dsandR, respectively. An SIR model
with no disease-related death is written as

ds di drR
i bN - BIS —dS, I =pIS —yl —dlI, "
where the total population sizel§ the birth rate i$, the common death rate for each group is
d, the infectivity isg, and the recovery rate is[1]. The recovery group can be reduced under
the assumption that the total population size is constamtbs&juently, the 3-dimensional
SIR model is reduced to a 2-dimensional SI model. Similaaty,in-host model tracks the
transmission of an infectious agent, for example a virusmficell to cell within the body
of a single infected individual [12]. The basic model in teisse also has three variables:
uninfected cellsX; infected cells,Y, and free virus particles/. These variables can either
denote the total population size in an infected individuapopulation density in blood or
tissue [12]. Compared with the host cell, the infectious &gauich as a virus and bacterium,
is characterized by a short lifespan and extremely highodipstion rate. Due to these high
production and clearance (birth and death) rates, viruscjes can be assumed to be in a
guasi-steady state with the population of infected celtsl, @iminated from the system [12].
This step results in a 2-dimensional within-host model,olihs proved to be equivalent to the
2-dimensional epidemic model in Chapter 4.

The spread of disease is a key point in modelling, and theatatdich new individuals are
added to the population of infectives is referred to as thelance rate [4]. The functional form
of this term varies according to the properties of the disesasl the hypothesis considered.
Based on the law of mass action, the spread of disease isysugten as the infection force,
multiplied the number of susceptibles [2]. The infectiorcdescribes the transition rate from
the susceptibles to infectives, and is usually a functiothefnumber of infectives. The most

=yl —dR (1.1)
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common form of the infection force is linear, thaids whereg is the per capita contact rate,
with the assumption of homogeneous mixing of both suscleptihd infective populations.
By considering heterogeneous mixing and saturatibeces due to fewer susceptibles being
available with the growth of the infective population, théeiction force can be modified to be
an increasing and concave function in terms of the numbenfetiives [9]. In contrast, the
infection force may take the form of an increasing and corfuextion, if cooperative fects
are considered, for example if infected cells make other ¢elts more vulnerable to infection
[15, 17, 18].

1.2 Mathematical theories and methodologies used to study
recurrence in biological models

Biological models are characterized by changes, affdréntial equations are laws that rule
changes. For biological models described hjedential equations, the description of the dy-
namical behavior of the fferential equations is the description of the time evolutbrhe
biological system. The flierential equations are also referred to as a dynamicalrayskae
solution determines how the dynamical system developsria.tiFor most dferential equa-
tions, describing real-world problems, their solutionniela or analytic solutions arefticult

or even impossible to obtain. Therefore, we apply dynansgatems theory, in particular,
gualitative methodologies including stability and bifation analysis to extract important in-
formation and show the fundamental, long-term qualitabebavior of the system.

In this study, we concentrate on continuouatiential equation models, which is a reason-
able approximation to describe the continuous overlap 8’@nd infectious agents’ genera-
tions. Nonlinear systems theory and methodologies araeapf investigate the complexity
of the biological systems. To reveal intrinsic mechanismdeulying complex phenomena in
disease models, we use simple deterministic models togtré@i long-term behavior of the
disease. In particular, asymptotic behavior is examinadh s local and global stability of
equilibrium solutions, and bifurcations from the equiitbm solutions, leading to Hopf bifur-
cation and even more complex bifurcation such as homoabiriis.

1.2.1 Stability analysis for equilibrium solutions

Mathematical analysis of population dynamics usually firstves well-posedness of the solu-
tions, that is, the solutions of the system should be p@s#id bounded due to their biological
meaning. Equilibrium solutions expose the steady-stattifes of the system, which can be
either stable or unstable depending upon whether the soltrjectories of the system con-
verge towards the equilibrium or diverge away from it. Thabdity of an equilibrium solution
can be characterized, in the sense of Lyapunov stabilitgrihes local or global depending
on whether the final state depends on the initial conditionother words, global asymptotic
stability means that any solution trajectory of the systeithreturn to the equilibrium from
any initial point in the state space; while for local asyntigtatability this only occurs for
initial points near the equilibrium solution. The path ohgergence may be either direct, i.e.
without oscillating, or with oscillating behavior. Besideguilibrium solutions, many biologi-
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cal systems may exhibit complex behavior such as limit gydta which the trajectories may
approach or diverge from a periodic solution. We can alsadefe stability of limit cycles,
as stable or unstable, depending on whether they attracpat nearby trajectories. Local
stability of the equilibrium solution can be obtained by mxaing the corresponding charac-
teristic equation, and usually (especially for higher-eimsional dynamical systems) applying
the Routh-Hurwitz stability criterion. This process oftewolves solving multivariate poly-
nomials. The Lyapunov function method (or Lyapunov direetimod) is usually applied to
prove the well-posesness of the solutions and the glohailisgaof equilibrium solutions. For
limit cycles, however, finding their stability is more inveld, and requires more sophisticated
mathematical methods to be discussed next.

1.2.2 Bifurcation analysis

Bifurcation theory is fundamental for the qualitative stuofydynamical systems, and can
be used to reveal complex dynamical behaviors of the bickgystems under study, such
as bistability, recurrence, and regular oscillation. Cbtetézed by a controllable parameter,
called the bifurcation parameter, bifurcation occurs atitecal value of this parameter where
the properties of equilibria change significantly. Thesalitative changes can be illustrated in
a bifurcation diagram. Bifurcations can be divided into twimpiple classes: local bifurcations
and global bifurcations. Local bifurcations occur when libeal stability of an equilibrium
changes, leading to the birth of another equilibrium solutr a limit cycle, as the bifurcation
parameter passes through a critical value. Therefore,hgacteristic equation and Routh-
Hurwitz stability criterion can be applied to study localuscations. More precisely, the local
bifurcations can be classified as saddle-node, transdribied pitch-fork bifurcations, which
characterize the “jump” from one equilibrium solution too#imer equilibrium solution. In
this thesis, for the convenience of use in Applied Scienak Emgineering Society, we call
the saddle-node bifurcation point, the “turning point”. pidifurcation, which characterizes
the “birth of motion” from an equilibrium solution to periadmotion. Global bifurcations,
on the other hand, occur when periodic orbits collide witbheather, or with equilibria, and
cause changes in the topology of the trajectories out of d smighborhood. The terminol-
ogy “unfolding” determines the codimension of a bifurcatidhat is, how many bifurcation
parameters are required to characterize the fundamemahagal behavior of the system. In
this study, we mainly focus on local bifurcations includsapdle-node, transcritical and Hopf
bifurcations, which are all codimension-one bifurcationge will also investigate the well-
studied codimension-two bifurcation: Bogdanov-Takensiriodtion, since it can lead to the
global bifurcation: homoclinic bifurcation. We will pay mmattention to Hopf bifurcation and
homoclinic bifurcation, since they provide two mechanigorggenerating recurrence.

1.2.2.1 Hopf bifurcation

Hopf bifurcation is perhaps the most typical way to geneliaté cycles and recurrent phe-
nomenon. It occurs when the Jacobian matrix of a dynamicaésy, evaluated at an equilib-
rium, contains a simple pair of purely imaginary eigenvalugiving rise to a nonhyperbolic
critical point: the Hopf bifurcation point. The stabilityf the limit cycle is determined by the
behavior of the solution trajectories of the system on timteremanifold near the Hopf bifurca-
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tion point. Center manifold theory provides a means for syatecally reducing the dimension
of the state space, resulting in a center manifold with reduwdimension. Further simplifying
the diferential equations, describing the dynamical behavioherré¢duced center manifold,
by additional coordinate transformations yields the ndrioen for the Hopf bifurcation. The
gualitative picture of the flows of Hopf bifurcation can berealed by analyzing the stabil-
ity and bifurcations based on the normal form, and the steloif the bifurcating limit cycle is
determined by the cdigcients of the normal form. Hopf bifurcations can be clasgiéie super-
critial or subcritical, indicating whether the bifurcagitimit cycle is stable or unstable. Center
manifold theory and normal form theory are the two most pdwemnd useful mathematical
tools in the study of stability and bifurcations for nonlamelynamical systems.

1.2.2.2 Bogdanov-Takens bifurcation and homoclinic orbits

A homoclinic or saddle-connection bifurcation occurs whdimit cycle collides with a saddle
point. It is a global bifurcation and may arise from Bogdadakens bifurcation. Bogdanov-
Takens bifurcation is characterized by a double-zero e@ar of the linearized system around
an equilibrium solution. The existence of homoclinic bdation, associated with Bogdanov-
Takens bifurcation, may provide a global mechanism for igtence of limit cycles and recur-
rence. By applying a rescaling or blow-up approach on the abfarm obtained associated
with Bogdanov-Takens bifurcation, we may obtain a Hamikonsystem and thus properly
define a Melnikov function used to determine the homoclinfarbation curve, leading to
bifurcation of homoclinic orbits. Further, this approacdnde employed to identify the pa-
rameter region where limit cycles exist between the Hopfrg#ition curve and the homoclinic
bifurcation curve.

1.3 Thesis contribution and structure

In this thesis, we study recurrent phenomena in infectiossages and autoimmune diseases,
which are described by deterministic, ordinarffeliential equations. Local and global mech-
anisms generating recurrence are provided in explicit ema#tical formulae, associated with
Hopf bifurcation, Bogdanov-Takens bifurcation and homuclbifurcation. Biologically, we
find that recurrent behavior can be an intrinsic propertyisease dynamics. For infectious dis-
ease, an increasing and saturating infectivity functiam loa the determining component for
recurrence. While, for autoimmune disease, recurrence eatthbbuted to the newly discov-
ered terminally dierentiated regulatory T cells. From the viewpoint of moalgliwe believe
that the investigation of the relation between backwardrb#tion and Hopf bifurcation reveals
a important finding: a convex incidence function is the kegypl in determining the bistable,
recurrent, and regular oscillating behaviors for a simptirensional infection model.

In Chapter 2, the dynamics of HIV viral blips are studied byeistigating an established 4-
dimensional HIV antioxidant therapy model. A new blips-geating mechanism is proposed,
that is, infection makes the host more vulnerable to be tefea@nd is modeled by an increas-
ing, saturating infectivity function. Four conditions gmposed for proving the existence of
recurrence in deterministic in-host models.
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Chapter 3 is devoted to considering recurrent behavior inudmiramune model. By in-
troducing a newly discovered regulatory T cell subtype, db®oimmune disease model can
exhibit Hopf bifurcation and further generate recurrerttdagor.

In Chapter 4, the relation between backward bifurcation aopf#ifurcation is examined
for exploring recurrence, by investigating the infectialisease model established in Chapter
2 as well as the autoimmune model studied in Chapter 3. Weifgdehe parameter region
where bistability, recurrence, and regular oscillation oacur.

Chapter 5 provides a further study on the simplest 2-dimeasidlV model (established
in Chapter 2) to generate recurrence. More bifurcation patars are involved in the study
to demonstrate complex dynamical behavior. A new mechafosmgenerating recurrence is
obtained from Bogdanov-Takens bifurcation and homoclirfigrbation.

Finally, the conclusion of the thesis and discussion ofriitmork are given in Chapter 6.
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Chapter 2

Conditions for Transient Viremia in
Deterministic In-host Models: Viral Blips
Need no Exogenous Trigger

2.1 Introduction

Viruses are infectious intracellular parasites: they @graduce only inside the living cells of
host organisms, and must spread from host to host for cadiaxistence. Animal viruses tend
to exhibit either an acute or persistent mode of host indadid ensure this continuity [40]. An
acute viral infection is characterised by a relatively sip@riod of symptoms, and resolution
within days or weeks. It usually triggers the host immun@o@se to clear the infection, and a
memory response can then prevent the same virus from infgitte same host. Pathogens such
as influenza virus and rhinovirus typically cause acutel unf@ctions. In contrast, persistent
infections [2] establish long-lasting infections in whitie virus is not fully eliminated but
remains in infected cells. Persistent infections involeghbsilent and productive infection
stages without rapid killing or excessive damage to infiéctlls. Latent infection is a type of
persistent infection.

In latent infection, no clinical signs nor detectable iriegs cells can be observed during
the silent or quiescent stage of low-level viral replicaticHowever, the virus has not been
completely cleared, and recurrent episodes of rapid vi@dpction and release can periodi-
cally punctuate relatively long periods in the silent stafjeese episodes of recurrent infection
are a clinical phenomenon observed in many latent infest[dfd]. Recurrent infection can
also occur in the context of drug treatment for persistefiections. Human immunodeficiency
virus (HIV), for instance, can be suppressed by highly actintiretroviral therapy (HAART)
to below the limit of detection for months or years [4, 8], erthreless supersensitive assays can
still detect low levels of viremia during this stage [8, 3D].3Moreover, these long periods
of relative quiescence are typically interrupted by unakm@d intermittent episodes of viremia
above the detectable limit, termed viral blips [35, 34].h&ltigh these blips have been the focus
of much recent research [12, 17, 14, 5], their etiology isrstit well-understood [17, 34].

To date, many possible explanations for viral blips durinyg fection have been explored
mathematically. An early model of the long-term pathogenetHIV [11] incorporates the
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activation of T cells in response to antigen, as suggestdireby [9]. In [11], both HIV
and non-HIV antigen exposure are considered in a couplesfrdetistic-stochastic model.
The probability of antigenic exposure evolves continuguslitime, and Poisson-distributed
exposure events are generated, by simulation, at the ajgeprobabilities. This approach
captures a number of features of long-term HIV dynamicduiting episodic 'bursts’ of resid-
ual viral replication. Further work [10] considers the nwanbf distinct antigens which activate
the CD4 T cell pool as a random variable, coupled to an ordinaffecéntial equation (ODE)
model. Stochastic changes to this number drive fluctuahdhe basic reproductive number
and viral load. This model is also able to capture the eptsodist-like nature of residual HIV
viral replication during long-term infection.

More recent models are based on the recurrent activatiataitly-infected lymphocytes,
a class of T cells introduced in immunological models by Rereet al. [32] and Ronget
al. [33], in order to explain the slower second-phase decayasfipa viremia. By introducing
antigen concentrations as an explicit variable, Jones angl$dn [23] developed a system of
ODEs which exhibits viral blips. The model describes pragraed proliferation and contrac-
tion of the CD8 T cell population, and exhibits low viral loads under HAARS expected.
Opportunistic or concurrent infection, modelled as anah@oncentration of antigen, activates
the immune system and is shown by numerical simulation @it @itransient viral blip. The
same authors further showed that occasional intercurndettions can generate viral blips
by the activation of target cells or latently-infected selpredicting a power law relationship
between blip amplitude and viral load [24].

In further work, by considering the asymmetric division afdntly-infected cells, Rong
and Perelson [34] developed a 4-dimensional ODE model base¢le basic model of latent
cell activation [32]. This new model not only generated Motgps but also maintained a sta-
ble latent reservoir in patients on HAART. In this modelglatly-infected cells can divide to
produce latently-infected daughter cells, offelientiate into activated, productively-infected
cells, depending on antigen concentrations. In a furthéintensional ODE model [35], these
two types of daughter cells were distinguished as dependeiaibles, and a contraction phase
was added to the activated daughter cells. Numerical stroanlgshowed that both cases gave
rise to viral blips and a stable latent reservoir, which wggrerated from the activated and the
latently-infected daughter cells, respectively. In badipgrs [34, 35], the antigenic stimulation
of latently infected cells was modeled as an “dfi-dorcing function, and viral blips were
initiated during brief pulses in which this activation fuion was “on”.

Most recently, a stochastic model developed by Conway and Gebh presented another
possible treatment of latent cell activation. In this md&glthe authors derive the probability
generating function for a multi-type branching processcdbsg the populations of produc-
tively and latently infected cells, and free virus. A nunsatiapproach is then used to estimate
the probability distribution for viral load, which is thesed to predict blip amplitudes and fre-
guencies; blip durations are studied by simulation. Théa@stare able to conclude that with
effective drug treatment and perfect adherence to drug theraplyblips cannot be explained
by stochastic activation of latently-infected cells, arigen factors such as transient secondary
infections, or imperfect adherence, must be involved.

In order to elicit transient episodes of high viral replioat the models described above ei-
ther incorporate transient immune stimulation, for exagd a forcing function, or stochastic
approaches. In contrast, recent studies have shown thplesdaterministic systems can ex-
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hibit viral blips. Based on the close relation between reamirinfections and antibody (B-cell)
immunodeficiency, Ya@t al. [41] investigated a 5-dimensional ODE model which included
antibody concentrations as an explicit variable, and etddhtransient periods of high viral
replication. By numerical simulation at specific, meanihgi@rameter values, the authors ex-
plored factors fiecting the interval between recurrent episodes, and tbeargy. Later, an
even simpler 4-dimensional antioxidant-therapy mode] [88s explored for HIV, and was
similarly used to simulate viral blips with appropriate gareter values. These examples indi-
cate that deterministic systems can produce blips as péneafiatural, rich behaviour of the
non-linear system. Although to date numerical simulatias heen invaluable in describing
and delineating the behaviour of these models, there isgrgtlittle analytical work exploring
the mathematical underpinnings of recurrent infectiorshktuld be noted that data from clin-
ical studies indicates that HIV viral blips appear to be @ndiological events, with varying
magnitude, frequency and duration. This suggests thahasbic tractable, and their analysis
may reveal a global picture or key underlying charactesstif the system. Moreover, non-
linear deterministic systems can indeed exhibit varyingléodes and frequencies of motion,
particularly when the underlying parameters are functmfrisne. We shall return to a discus-
sion of this point in the last section of the paper.

In this paper, we take advantage of dynamical systems theagynvestigate deterministic
in-host infection models that exhibit viral blips. By examnig the bifurcation behaviour in
parameter spaces “close” to the region where blips occupmpose an understanding for
the features of the dynamical system which underlie thisggernmodel behaviour. We then
propose four conditions which, when satisfied, guarantaeah in-host infection model will
exhibit long periods of quiescence, punctuated by brielsrof rapid replication: viral blips.
Based on these conditions, we develop very simple 2- and 8rdiianal models that produce
blips. Further, we apply stability criteria to determinegraeter ranges which may yield blips.
Most of the models discussed in this paper share a similaciinity function, describing
the rate at which new infected cells are created. In a findlseove examine a related 5-
dimensional immunological model and demonstrate that klips are possible in this system
even when infectivity is constant.

The rest of the paper is organized as follows. In Section @,piteviously proposed 4-
dimensional HIV antioxidant-therapy model is reinvestaghanalytically. Based on the in-
sights of our bifurcation analysis, conditions for gengviral blips are proposed. In Section
3, we use these conditions to propose a simpler 3-dimensioiest infection model, and
parameter ranges which will exhibit blips in the simpler rabare determined. In Section 4,
we develop a 2-dimensional model, characterized by anasanrg and saturating infectivity
function, which can also generate viral blips. Finally, warebnstrate that a 5-dimensional
immunological model [41] can exhibit viral blips with coast infectivity.

2.2 A 4-dimensional model which exhibits viral blips

In this section, we reconsider a 4-dimensional HIV antiaxidsupplementation therapy model
which was developed and studied numerically in [39]. Thigleimovelly introduced reactive
oxygen species (ROS) and antioxidants to an in-host mod#l\éfinfection. In uninfected
individuals, ROS play a positive physiological role at made levels [16, 25, 7, 20, 18], but
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are harmful at high levels [39].

HIV infection may lead to chronic and acute inflammatory dsss, which may cause
high levels of ROS [26] as well as lowered antioxidant levelés phenomenon has been
observed clinically and experimentally [26, 15, 22, 36,.3B8] addition, high levels of ROS
may cause damage to CD7 cells, impair the immune response to HIV [37], and exacerba
infected cell apoptosis, releasing more HIV virions. Thuoected cells produce high levels
of ROS, which in turn increase the viral production by inésttells. To control this cycle,
antioxidant supplementation (vitamin therapy) has beguested as a potential complement
to HIV therapy [15, 13], with the aim of counteracting andueitig ROS concentrations [16].

The equations of the 4-dimensional model are described%y [3

X = Ay — dyX = (1 = €)B(r)xy,

y=(1-¢e)B(r)xy—-dy,

r=A + ky—mar—dr, (2.1)
a= Aa+a— par—dya,

wherex, y, r and a represent respectively the population densities of thefaoied CD4 T
cells, infected CD4 T cells, reactive oxygen species (ROS), and antioxidanke cdonstant
Ax denotes the production rate of CD7Z cells, anddix is the death rate. Uninfected cells
become infected at rate {le)B(r)xy, wheree is the dtectiveness of drug therapy, adgis the
per-capita death rate of infected CD# cells. ROS are generated naturally at rateand by
the infected cells at ratey, the concentration of ROS decays at rdte, and is eliminated by
interaction with antioxidants at ratear. Antioxidants are introduced into the model through
natural dietary intake at a constant ragg and through antioxidant supplementation at rate
which is treated as a bifurcation parameter. Antioxidamsediminated from the system by
natural decay at raté,a, and by reacting with the ROS at rgbar, wherep is much smaller
thanm.

An important novel feature of this model is that the infeityi\3(r) is a positive, increasing
and saturating function af(ROS),

r(bmax_bo)
1) = b+ —x_0
B(r) = bo P

(2.2)
whereb, represents the infection rate in the ROS-absent case, kyhilelenotes the maximum
infection rate, andy is the ROS concentration at half maximum. It is obvious @) > 0,
and itis also assumed that<Oe < 1. Therefore, all the parameters in equations (2.1) and (2.2
are positive. The experimental values used for studyingah(®l1) are given in Table 2.1.
Importantly, these parameters were chosen with carefeteate to clinical studies, such that
the predicted equilibrium densities are clinically reasae. Also note that the densities of
antioxidants and ROS are of order*iperulL, while cell densities are of the order26r 1C°
perul.

In [39], this model was explored numerically to assess therg@l of antioxidant therapy
as a complement to HIV drug therapy. In that study, regionesaillatory behaviour, rem-
iniscent of viral blips, were observed. In the following sabtions we perform a thorough
equilibrium and stability analysis of the model, in ordersteed further light on the factors
underlying these rich behaviours.
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Table 2.1: Parameter values used in model (2.1) [39]

Parameter Value
Ay 6076 cellsuLday™
dy 0.0570 day*
dy 1.0 day*’
Aa 2.74x 108 moleculegiL " day™
da 0.0347 day*
1

bo 311x 104 cell™ yuL day™

bmax ~ 0.00621 celi* uL day™

I haf 357x 102 moleculegL™
d; 1.66x 10’ day*

A 1.86x 10?8 moleculegiL"*day™
K 1.49x 10'° molecules ceif* day™
m 1.27x10°° molecule* uL day™

p 5.04x 10 molecule® uL day™

2.2.1 Well-posedness of the solutions of system (2.1)

By using the method of variation of constants, we can easitgiolihe solutions of (2.1) to
show thatx(t) > 0, y(t) > O, r(t) > 0, a(t) > 0, Yt > 0, if x(0) > 0, y(0) > 0, r(0) > 0,a(0) >
0. To consider the boundedness of the solutions, supposeniergl we have the fierential
inequality: T < A— dT (4, d>0, T(0)>0). ThenifT = A —dT, we haveT +dT = A. Thus
T(t)=T(0)e b sy Ae s ddugjg T(0)e 944 (1-e9"), which implies that lin, ,., SUpT (t) =
From the first equatlon of (2.1), we haxes A,—dyX, which yields lim_, . supx(t) = ”* It |s
also easy to see from the first equation of (2.1) t{gt> 0, Vt>0. Then, by addlng the first
two equations of (2.1) we obtaﬁ*%1 =Ax—dyx—dyy < A—d(x+Y), whered =min(d,, dy).
Hence, lim,, . supi(t) +y(t)) = % Therefore, for any gives > 0, there existst* > 0,
such thatx + y < 4; + g, for all t > t*. For the third equation of (2.1), we similarly have
&< (/lr+kAX) dr, WhICh results in linp, ., supr(t) = A"”"‘X Finally, for the fourth equation

of (2.1), we ge 4 <(Aat+a)—daa, and thus lin, .« supa(t) = *a:". We define Clearlyl” is a
positively invariant set and attracts all non-negativeisohs of (2.1).

2.2.2 Equilibrium solutions of (2.1) and their stability

To find the equilibrium solutions of (2.1), simply setting=y = r = a = 0 yields two
solutions: the uninfected equilibrium solution,Eand the infected equilibrium solutioni E
given respectively by

/lx /1 _d r
EO . (X609 YeO» reO, an) = (d_, O’ reO, r—reo) 5 (23)
X

M I
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where the o is determined by the equation

1 d, 1 d,d. — pAa
Fo(r,a)za+/la+m(pd(r— arr)+ a rmp L =0; (2.4)
and
Ei: (XetYer,le1, @), X = L
(1-¢€)pi(re) (2.5)
Vor = Ax — Oy Xe1 _ Aata '
. (1- E)ﬂr(rel)xel’ ! da+ prel’

whererg is a function in the system parameters, particularlfsee the functior; in equa-
tion (2.8)). Both g and g are expressed in terms ofre Or ;) fOor convenience.

We first consider the uninfected equilibriung.B he solution of  is determined by (2.4),
which is a quadratic equation i To simplify the analysis, we usdo express the parameter
since (2.4) is linear i, anda is treated as a bifurcation parameter. Thus, solN#y, @) = 0
for a we obtain

da/lr)_dadr_p/lr (2 6)

1
Olo(reo)—_/la_a (pdrreo_ - -
To find the stability of the equilibrium solutiongEwe first evaluate the Jacobian of system
(2.1) at | to get Jo(re), Where (2.6) has been used, and then usef tet{Jp) to obtain the
4th-degree characteristic polynomial, given By(&, reg) = (€ + dy)[£2 + (Preo + da + %)g +

(S + pdreo)](€ + Por), where

_ (1 — €)Ax(bor haif + r'eobmay)

Ox(reo + I'harf) '
Po(&,ren) contains three factors: the first one is a linear polynorofa and the second one
is a quadratic polynomial of, and both are stable polynomials (i.e., their roots (eigkres)
have negative real part); and thus the stability gfdaly depends upon the third factor, a
linear polynomial of¢é. Therefore, wherPy, > 0 (Por < 0), the equilibrium solution Eis
asymptotically stable (unstable).

The graph for the equatioRy(r,a@) = 0 given in (2.4) is shown as the red line in Fig-
ure 2.1(a), which clearly shows a hyperbola. It is seen frioisired line that the relation (2.4)
also defines a single-valued functiom «, if only the positive (biologically meaningful) value
of r is considered, (i.e., the positive branch of the red lineigufe 2.1(a)). More precisely,
it can be shown that the biologically meaningful solutionstiioe located on the first quadrant
and above, including the top branch of red line (see Figur&y), since ghas the component
Yeo = 0.

Next, consider the infected equilibrium solution. EThe solution forrg; can be similarly
obtained by solving the following equation,

KAy Kak(r + I'nar) mr(4a + @)

Pl ) = At g A o) botrar + bra) P+
which is again a linear function @f, and we can usk; to express as

Ar(Prer +da)  KAx(pres + da)
+ +

Mrgy Mre1dy

_ Kay(rer + Mair)(Pres + da) _ (prei + da)d;

Mreg (1 — €)(borhait + Pmaxfe1) m .

Por = Cly (2 . 7)

dr =0, (2.8)

a’l(rel) = -Aa

(2.9)
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Figure 2.1: (a): Complete bifurcation diagram for the 4-duasienal HIV antioxidant-therapy
model (2.1) projected on threa plane, with the red and blue lines denotingdad &, respec-
tively; and (b): Bifurcation diagram in (a), restricted iretfirst quadrant, with the dotted and
solid lines indicating unstable and stable, respectively.

The graph of the equatio#g(r, @) = 0 given in (2.4) and~4(r, ) = 0 given in (2.8) is shown
in Figure 2.1(a). To find the stability of,Ein a similar way, we evaluate the Jacobian of (2.1)
at E; to obtain the 4th-degree characteristic polynonfal(¢, rei) = £+ ay(rei)é3+ an(rey)&2 +
as(re1)é+ as(rer), where the lengthy expressions for the meentsa; (reg), ax(re1), as(rer), and
ay(re1) are omitted here for brevity.

2.2.3 Bifurcation analysis

To understand the conditions underlying oscillatory bé&havand viral blips in this model, we
now consider possible bifurcations which may occur fromegeilibrium solutions gand E.

2.2.3.1 Transcritical bifurcation

First, for the uninfected equilibriumdkit follows from Py(&,re) and (2.7) that in generalgE
is stable forPy. > 0, and the only possible singularity occurs at the criticahp determined
by Por = 0 (see (2.7)). At this point, one eigenvalue of the charattepolynomial becomes
zero (and the other three eigenvalues still have negatal@agt), leading to a static bifurcation,
and & becomes unstable. More precisely, when the parametersvaluBable 2.1 are used,
the two equilibrium solutions Eand g intersect and exchange their stability at the point
(r, ) =~ (8.89x 10%, 4.58x 10'%), indicating that aranscritical bifurcationoccurs at this
critical point (see Figure 2.1(b)). Here, the subscripstiinds for transcritical bifurcation. The
value of, is obtained by substituting into eitherao(r;) in (2.6) ora,(r;) in (2.9). In fact,
ao(re) = aa(ry).

As discussed above, the biologically meaningful solutisimsuld be above or on the unin-
fected equilibrium solution &(the red line shown in Figure 2.1(b)), since solutions betlogv
red line contain the componewpt< 0. It is obvious that there is no Hopf bifurcation frorg.E
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Figure 2.2: The saddle-node bifurcation on the center mlhfith the dotted line indicating
unstable and the solid line stable: (a) in the transformedcoordinates; and (b) in the original
coordinates.

So, the uninfected equilibriumglts asymptotically stable (unstable) whenr< ry (r > ry) or
a > o (@ < ay)(see Figure 2.1(b)).

It should also be noted from Figure 2.1(b) that besides atratical bifurcation point, E
has asaddle-nodéifurcation which occurs at the so-call&aning point To determine this
turning point, using (2.9) and4® = 0, yields ¢, as) ~ (1.72x10%, 5.06x10'), where the
subscript ‘s’ denotes saddle-node bifurcation, agd& a4(rs) by using (2.9). Note that this
bifurcation does not change the stability of, Eince the characteristic polynomi| (¢, re)
still has an eigenvalue with positive real part whign(or «) is varied along Eto pass through
the turning point (see Figure 2.1(b)).

The saddle-node bifurcation can be seen more clearly if veenée the local dynamics
close to the turning point; this analysis will also be usddbér for analysing viral blips. At
the turning point, the system contains a 1-dimensionalezantanifold (whose linear part is
characterised by the eigenvalée=0), a 1-dimensional unstable manifold (whose linear part
is characterised by the eigenvalge~ 0.142), and a 2-dimensional stable manifold (whose
linear part is characterised by the eigenvaléles —0.290 ands} ~ —1.26 x 10°), as shown in
Figure 2.2. Itis noted that the eigenvalygsind¢;, which are both positive at the saddle-node
point, become a pair of complex conjugates with positive paat at the orange-color point
above the saddle-node point (see Figure 2.1(b)), movingridsvthe Hopf point. So the sub-
manifold that is the complement to the centre manifold i$ estpelling till meeting the Hopf
bifurcation point.

In order to find the dterential equation described on the center manifold, we djpgly
the transformationxy,r, a)T = (Xe1, Ye1, lets ael)T + Ts(Xa, Xo, X3, X4)T, where e, Yer, le1, @e1)
is the infected equilibrium solution;EandTg is a constant, non-singular matrix. Under this
transformation, the Jacobian of system (2.1) becomes tldad@anonical formAs ~ Diag
{0, 0.142 -0.29Q -1.26x1(C%}. Then, by using center manifold theory [19] on the transfedm
system of (2.1), we get theftierential equation describing dynamics of the system,iotstr
to the center manifoldx; ~ —2.66x10712, — 1.93x107*x3, for which the perturbation value pf
near the saddle-node point is rougply 102, about 2% ofr (see Figure 2.1(b)), as expected.
The bifurcation diagram restricted on the center manifsldiepicted in Figure 2.2(a), with
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the corresponding bifurcation diagram in the original sgst projected in the-r plane as
shown in Figure 2.2(b). It should be noted that the scalirigyéen the graphs in Figures 2.2(a)
and 2.2(b) depends upon the transformation matgixAlso, note that the upper half branch
in Figure 2.2(a)(denoted by the solid line) indicates thas stable, but is only restricted to
the 1-dimensional center manifold. For the whole system fttanch is still unstable since the
system contains an unstable manifold (as shown in Figu(®y.2

2.2.3.2 Hopf bifurcation and limit cycles

To find any possible Hopf bifurcation which may occur from thiected equilibrium g, we
first need to determine the critical points at which Hopf bsation occurs. The necessary and
suficient conditions for generaldimensional systems to have a Hopf bifurcation are obthine
in [43]. To state the theorem, consider the following geheoalinear diferential system:

x=f(x a), xeR" aecR™ (2.10)

with an equilibrium determined from(x, ) =0, as, sayx. = Xe(@). To find the stability ofx,

evaluating the Jacobian of system (2.10x&txe(@) yields J(@) = Dy f ey = [2220]. The
]

eigenvalues of the Jacobid(x) are determined by the following characteristic polyndmia

Pa() = detfll — J(a)]

2.11
= A"+ a(a) A"+ ay(@) A" + - + ay_a(@) 22 + ap_1(@) A + an(e). (2.11)

Then, by the Hurwitz Criterion [21], we know that the equiitbn solutionxg(a) is asymp-
totically stable if and only if all the roots of the polynorhi@,(1) have negative real part, or

equivalently, if and only if all the following Hurwitz arrgement\i(a), (i=1, 2, ---, n) are
positive:
a 1 a 1 O
AL = aq, Azzdet y A3:det a3 a |, -+ Ay=a, Ap1.
% & as a; ag

Having defined the Hurwitz arrangements as above, we haveltbeing theorem.

Theorem 2.2.1 [43] The necessary and fgicient condition for a Hopf bifurcation to occur
from the equilibrium solution ga) of system (2.10) ia,,_; = 0, with a, > 0O andA; > O, for
1<i<n-2

In order to further consider the post-critical dynamicah&e&our of the system and to de-
termine the stability of bifurcating limit cycles, we maymy normal form theory to system
(2.10). Assume that at a critical poiat= «., the Jacobian of (2.10) evaluated at the equilib-
rium Xe contains a pair of purely imaginary eigenvalugs)., and all other eigenvalues have
negative real part. Then, the normal form of system (2.16pa@ated with Hopf bifurcation
can be written in polar coordinates as (e.g., see [42])

do 2 0 2
a=p(Vo/J+V1p +) gr " wWetloptiptae, (2.12)



18 CHAPTER 2. CONDITIONS FOR TRANSIENT VIREMIA IN DETERMINISTIC IN-HOST MODELS

where u = a — a., p andd denote the amplitude and phase of motion, respectivelyn,Tihe
first equation of (2.12) can be used to approximate the angdiof bifurcating limit cycles
and to determine their stability. The second equation dfZRcan determine the frequency
of periodic motion. The cd&cient v;, usually called the first-order focus value, plays an
important role in determining the stability of limit cycle#/henv; < 0 (v; > 0, respectively),
the Hopf bifurcation is called supercritical (subcriticaind the bifurcating limit cycles are
stable (unstable). The Maple program developed in [42] eaedsily applied to system (2.10)
to obtain the normal form (2.12). The d&eientsvy andt, for the linear part of system (2.10)
can be found from a linear analysis, given by [4¥]= 3(a11+a2), to = 3(a12— 1), Where

ajj = afj—féﬂ evaluated at the critical point.

We now apply the above formula to consider the infected dayuiin E; of system (2.10).
To check if there exists Hopf bifurcation fromy Ebased on the fourth-degree characteristic
polynomial Py (£, re), we apply the formula\; = aya,a3—a3—ajas =0 and solve this equation
for r to obtain a unique valuey > 0, such that (by using (2.99y = a1(ry) > 0. When the
parameter values in Table 2.1 are used, these critical vateegiven by: 1y, ap) =~ (6.72x
10%3, 2.64x10%), at which the Jacobian of system (2.1) contains a purely inzagipair and
two negative real eigenvalues0.308i, —1.66, and-3.66x10’. Thus, asy is varied acrossay,

a Hopf bifurcation occurs from £leading to a family of limit cycles.

To find the approximate solutions of the limit cycles and ttedmine their stability, we
apply normal form theory to this model associated with thigslarity. First, we apply a
transformation X,y,r,@)" = (Xe1, Ve, e, @e1)" + Th (X1, X2, X3, X4)T, Where e, Yet, Fe1, @er) iS
the infected equilibrium solutionEand Ty is a constant, non-singular matrix. We obtain
a transformed system of (2.1), which is omitted here dueddemgthy expression. Then,
applying the formulas, = %(a11+a22), to = % (a;2—ay1) to the transformed system, we obtain
Vo ~ 3.15x 10°1° andty ~ 3.33x 10715, Further, we apply the Maple program [42] to the
transformed system to obtam~ —4.18x1077, andt; ~ —3.38x107%. Thus, the normal form up
to third order is given by

d

£ ~ p(3.15x107 %5y — 4.18x107p2 + - --),

40 (2.13)
— ~ 0.308+3.33x10°4-3.38x10%p%+- - -

dt

The first equation of (2.13) can be used to analyze the bifisrcand stability of bifurcating
limit cycles. Setting% = 0 results in two solutionsp = 0, which represents the infected
equilibrium solution E; andp ~ 8.68x107° i (1 > 0), which is an approximation of the
amplitude of bifurcating limit cycles. Sincg < O, this is a supercritical Hopf bifurcation,
and bifurcating limit cycles are stable. For example, ckgos 10'2. Then, the approximate
amplitude of the limit cycle i ~ 86.8, and the frequency of the limit cycle approximately
equalsw ~ 0.283, slightly less than. ~ 0.308. The phase portrait of the simulated limit cycle,
projected on the-y plane, is shown in Figure 2.3(d). It can be seen from Figudé2 and (d)
that the analytical prediction from the normal formz 86.8, agrees well with the simulated
result.

The above analysis based on normal form theory is for locahthical behaviour, that is,
the limit cycles must be near the Hopf critical point (@y). It can be seen from Figure 2.1(b)
that values ofr taken from the intervak € (ay, ) lead to unstable equilibrium solutions



2.2. A 4DIMENSIONAL MODEL WHICH EXHIBITS VIRAL BLIPS 19

______________________

(@) (b) (©

30!

250
200
y 150
100

50

0
100 200 300 400 500 600 700 800 900 1000 1100
x

(d) (e) ()
Figure 2.3: Simulated limit cycles of system (2.1) for thegmaeter values taken from Table
2.1, with the time course at andy on the top row, and the corresponding phase portraits

projected on thex-y plane on the bottom row. For (a) and (@)= 2.74 x 103, (b) and (e)
a = 3.50x 103, and (c) and (flx = 4.55x 10",

(since both i and g are unstable for this interval). However, due to the sohsgibeing
non-negative and bounded, we expect that there shouldaexistin persistent motion such as
oscillating solutions for the values of taken from this interval, and the amplitudes of these
oscillations can be large. For example, foe 3.50 x 10'3, the phase portrait of the simulated
solution, projected on they plane is shown in Figure 2.3(e), corresponding to the @giwlhs

in time shown in Figure 2.3(b), which have much greater atugi than the oscillations in
Figure 2.3(a).

Now, we take a particular value affrom the intervakr € (ay, 1), which is close tay, to
simulate the system. For example, taking 4.55x 10'3 < a; ~ 4.58x 10'3, we obtain the phase
portrait of the simulated oscillating solution, projectedthex-y place, shown in Figure 2.3(f)
with corresponding time history of andy shown in Figure 2.3(c). This clearly shows viral
blips.

Next, we will discuss what conditions are needed for crgatire phenomenon of viral
blips.

2.2.4 Conditions for generating viral blips

In the previous subsection, we carefully analysed the @enge of viral blips in a 4-dimensional
HIV model (2.1). System (2.1) is an exampleiofhost infection modelan ODE system de-
scribing the dynamics of infection within a single infectedividual. In-host infection models,
based on classical Susceptible-Infected-Recovered (SIBgismm epidemiology [1], typically
include populations of uninfected target cells, infectgeét cells, and the infection dynamics
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In order to discuss a new mechanism of generating blipseifaffowing we list Hypothesis
1 from [27, 28], and propose a second Hypothesis based oeshés obtained in [29].

Hypothesis 1 [27, 28] The following four conditions are needed for an wstinfection model
to generate viral blips:

() there exist at least two equilibrium solutions;
(i) there exists a transcritical bifurcation at an intetsen of the two equilibrium solutions;
(i) there is a Hopf bifurcation which occurs from one of tlguilibrium solutions; and

(iv) large oscillations (or, more generally, global, pstsnt motions) can occur near the tran-
scritical critical point.

Hypothesis 2 [29] The following four conditions are needed for an in-hio$éction model to
generate viral blips: the conditions (i), (ii) and (iii) aiitee same as that given in Hypothesis 1;
and

(iv) large oscillations (or, more generally, global, pstsnt motions) can occur far away from
the transcritical and Hopf critical points.

We use the bifurcation diagrams shown in Figures 5.22(a)%ad(b) (which are Fig-
ures 3.3(a) and 3.3(b) in [28]) to illustrate Hypothesis rid ¢he bifurcation diagram in Fig-
ure 5.22(c) (which is Figure 3.1(a) in [29]) to explain Hybpesis 2, wher® and A are state
variables,B anda are parameters.gand & denote the disease-free and disease equilibrium
solutions. The green lines indicate where the blip-likaltzdmons occur. It is clear from Fig-
ures 5.22(a) and 5.22(b) that the blips appear near thectiical point, and may or may not
appear near the Hopf critical point, where bothdhd E are unstable, illustrating condition
(iv) in Hypothesis 1. Figure 5.22(c) (where the second Hopfcal point “Hopf,” is out-
side the figure) shows that the blips occur far away from theseritical and Hopf bifurcation
points.

Through the study given in this section on the BT bifurcatiwa,have found a third mech-
anism for generating blips, due to the BT bifurcation, expdali as follows. First of all, note
that the trajectory starting from a point on the homoclioiep will reach the saddle point either
ast — +oo0 Or T — —oo. Therefore, it can be seen from Figure 5.17 that near the blomo
bifurcation curve, for certain parameter values, the loditing stable limit cycles can be large
close to the saddle separators and thus such a stable lioh& wyll move extremely slowly
near the saddle point but will move fast when it is away fromshddle point — giving rise to
the blips phenomenon. A schematic bifurcation diagramtferdase, which is depicted in Fig-
ure 5.19 wherB = 0.054 D = 0.057, A = 0.01487968, is shown in Figure 5.22(d). Also note
from Figures 5.20 and 5.21 that when the limit cycle inside ¢hddle separators is unstable,
the trajectories starting near the unstable limit cycle o@mywerge to the stable focusg Eor to
the stable node Fbut will take very long time since the solution will go thrdug route close
to the saddle point though not generating blips in this case.

The big diference between the first two mechanisms and the new mechanteat the
first two mechanisms result in very large oscillations inhbamplitude and frequency, while
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Figure 5.22: Bifurcation diagrams illustrating Hypothegesg and (b) for Hypothesis 1, (c) for
Hypothesis 2 and (c) Hypothesis 3.

the new mechanism only causes significant changes in freguaut very little variation in the
amplitude. The biological implication of the new mechanisnnteresting and may explain
some real situations, namely, in some situations a patieryt mot feel obvious changes nor
will measurable changes in disease progression be apphoénbnetheless the patient may be
experiencing recurrent disease without any significaneéoiadion. In other situations, neither
the infected individual nor the clinician may be able to detehether the infection has been
cured, since complete recovery may take an extremely long.tin both cases, the patient is
in an uncertain situation. To describe these scenarios awe the following hypothesis.

Hypothesis 3 The following four conditions are needed for an in-host atiten model to gen-
erate viral blips or to take an extremely long time to recofgamverge to the disease-free
equilibrium): conditions (i), (ii) and (iii) are the same st given in Hypothesis 1; and

(iv) there exists Bogdanov-Takens bifurcation, leadingdmbclinic loops near a Hopf bi-
furcation, which may yield blips with very small changes mglitude, or extremely
slow convergence to the disease-free equilibrium.
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5.5 Conclusion and discussion

In this paper, we have given a detailed dynamical study ofdininsional disease model,
which can be used not only for in-host disease modellingalsatfor epidemiologic modelling.
We have shown that when the reproduction numbgr,=RE, is varied near R = 1, the
system exhibits rich dynamical behaviors, including efudim solutions which exchange
their stability at the transcritical pointoR= 1. Both Hopf and generalized Hopf bifurcations
can occur regardless whetheg R 1 or Ry > 1, which lead to bistability or even tristability.
In particular, our study has indicated that when<R1, the system can have Bogdanov-Takens
bifurcation leading to more complex dynamical behaviornsas homoclic orbit bifurcation.
This special bifurcation may provide a new scenanechanism for generating recurrence or
the viral blips phenomenon, summarized in Hypothesis 3.

Hypothesis 3 is completely fllerent from Hypotheses 1 and 2, and may provide an ex-
planation for interesting clinical phenomena. In many dssemodels, the concept of B
straightforward, i.e. if R < 1, the disease cannot invade or persist, and the diseaseasiy
for Ry > 1. In reality, disease dynamics are more complex, and oureinadeed reflects
this complexity. Hypothesis 3 allows for the possibilitytieven if control or therapy reduces
Ro below one, a disease may persist indefinitely with low lesil@ations, or may die out,
but with an extremely slow time course of decay. The possilof disease persistence when
Ry < 1 is a feature of backward bifurcation [9, 30, 5, 4], an issirctv we are investigating
for this model and related disease models as well [30].

Mathematically, the most interesting dynamical behavioowr model is the Bogdanov-
Takens bifurcation leading to homoclinic loops, which imtgprovides a new mechanism for
explaining a very dferent blips phenomenon. In particular, this phenomenos doé have
obvious changes in the amplitude of the oscillating motidms can only happen whe® < D
(i.,e. Ry < 1). However, this conditiorB < D, is not enough, the additional condition B 0,
which guarantees the existence of disease equilibriummigst also be satisfied. Intuitively,
if B < D, then the epidemic cannot get started because near theselsea equilibrium, F
the behavior of the model is similar to that studied in [1fiddhus no oscillation can occur
with Ry < 1. However, H > 0, as mentioned in Remark 5.2.3, implies that the contact rate
A exceeds its threshold such that the infected cells, dermted are stficiently infectious
such that the epidemic can sustain itself once started évBn«i D. Therefore, this leads,
after getting over an initial threshold, to potential bideaequilibrium solutions and even more
complex dynamical behavior.

The ideas and methodologies presented in this paper caredaaianalyze other types of
in-host disease models as well as epidemiologic models. &fye that they can also be gener-
alized to study functional ffierential systems (e.g. with time delays), or even otheriphi/er
engineering systems which exhibit similar “blips-like”gaiomenon.
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Chapter 6

Conclusion

In this thesis, the problem of recurrent disease in infeciind autoimmune models is studied
via the qualitative analysis of dynamical systems usingrbdtion theory. Although previous
models with triggers such as stochastic components omigiteirms can simulate the cycle of
long remission and brief relapse, simple deterministic e®dlso exhibit recurrence.

Recurrence in HIV infection is referred to as “viral blips”.4Adimensional HIV antioxidant-
therapy model, which exhibits viral blips, is analysed. Tin&t hypothesis consisting of four
conditions for the emergence of viral blips is proposed,chtguides the derivation of the
simplest (2- and 3-dimensional) infection model produonr@l blips. A complete parame-
ter region for the 3-dimensional infection model exhilgtiviral blips is identified. Further
dynamical study is conducted on the simplest 2-dimensiori@ttion model, and gives rise
to two more blips-generating mechanisms: hypothesis 2 ait8 first hypothesis describes
the scenario in which two equilibrium solutions intersecaaranscritical bifurcation point,
and a Hopf bifurcation occurs at the upper branch of the deseguilibrium. Blips appear
when the bifurcation parameter is close to the transctitidarcation point, and located in the
parameter region where both equilibrium solutions areabist The second hypothesis adds
another blips-generating mechanism, i.e. that large latois (or, more generally, global,
persistent motions) can occur far away from the transatisnd Hopf ciritical points. In the
third hypothesis, the existence of a Bogdanov-Takens lafioe is proposed, which leads to a
homoclinic loop near a Hopf bifurcation. This scenario mastd/blips with very little change
in amplitude, or extremely slow convergence to the disdéase-equilibrium. The relapse-
remission cycle is also characteristic of many autoimmugeeases. An autoimmune model
which includes the role of regulatory T cells is modified bgiag) the terminally dferentiated
regulatory T cell subclass. The dynamical behavior is attehus, recurrence is displayed in
the modified autoimmune model and can be explained by thenddtgpothesis. Recurrence
in infection and autoimmune models can arise naturally ftbendynamical behavior of the
system, without stochastic stimulation or exogenous éiigg

From the viewpoint of mathematical modelling, the occuceeof blips in the (2- and 3-
and 4-dimensional) infection model is attributed to theweonincidence rate, which is formed
by an increasing and saturating infectivity function. Thewex incidence rate represents a co-
operative #ect in infection progression, that is, the existing infestenhances the ability for
new infection to become established. The convex incideastesalso induces backward bifurca-
tion, which facilitates the appearance of Hopf bifurcatiand rich dynamical behaviors, such
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as bistability, recurrence, and regular oscillation. Coafree dfects in autoimmune disease
occur during the T cell regulation process, since HLA-DBgulatory T cells dferentiate and
proliferate, forming the terminally éfierentiated HLA-DR class, which shows morefient
regulating capability. The autoimmune model investigdiede displays negative backward
bifurcation, in which the turning point is located in the atige state variable space. With the
help of additional state variable, the modified autoimmureleh shows Hopf bifurcation and
exhibits recurrence.

We note that the amplitudes and frequencies in the obsesaliating and recurrent mo-
tions are all constant, because all parameter values arefbreleterministic systems. How-
ever, in reality parameters should be time-varying, rathan constant. Time-varying pa-
rameter values in deterministic systems can generatdaigmils with varying amplitudes and
phases, called “amplitude modulation” and “frequency mation”, which are analogous to
the variation from random perturbations in stochastic nedehis is demonstrated in Figure
2.12 of Chapter 2.

Clearly, the models analysed in this thesis are extreme #iogpions of the mechanisms
considered, and more precise mechanisms and accuratesncodéd be considered in future.
Nevertheless, the main insight of this thesis is to dematesthat recurrence in disease can
be generated from the cooperative interplay of dynamic [atioms. Hypotheses proposed in
this thesis will serve as a starting point for further resbayn recurrent phenomena in other
physical systems.

Other mechanisms for recurrence also exist, such as thereetwactivation of latently-
infected lymphocytes. The delay which is characteristitatént infection can be modelled
using delay dterential equations (DDESs), which could also generate latioih and even re-
current patterns. A study of recurrent disease using DDEddvbe a clear possibility for
future work.
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