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Abstract

Recurrent disease, characterized by repeated alterndngiwsen acute relapse and long re-
mission, can be a feature of both common diseases, like &sutions, and serious chronic
diseases, such as HIV infection or multiple sclerosis. ueir poorly understood etiology
and the resultant challenge for medical treatment andrgati@nagement, recurrent diseases
attract much attention in clinical research and biomath®siaPrevious studies of recurrence
by biomathematicians mainly focus on in-host models ancgda recurrent patterns by in-
corporating forcing functions or stochastic elementshls study, we investigate deterministic
in-host models through the qualitative analysis of dynamsystems, to reveal the possible
intrinsic mechanisms underlying disease recurrence.

Recurrence in HIV infection is referred to as “viral blipdfiat is, transient periods of high
viral replication separated by long periods of quiescerfcd-dimensional HIV antioxidant-
therapy model exhibiting viral blips is studied using bdation theory. Four conditions for the
existence of viral blips in a deterministic in-host moded proposed. Guided by the four con-
ditions, the simplest 2-dimensional infection model whstlows recurrence is obtained. One
key point for recurrence is identified, that is an increasind saturating infectivity function.
Furthermore, Hopf and generalized Hopf bifurcations, BogdaTakens bifurcation, and ho-
moclinic bifurcation are proved to exist in this 2-dimemadmodel. Bogdanov-Takens bifur-
cation and homoclinic bifurcation provide a new mechanismgenerating recurrence. From
the viewpoint of modelling, the increasing and saturatmiggtivity function gives rise to a
convex incidence rate, which further induces backwardrbétion and Hopf bifurcation, and
allows the infection model to exhibit rich dynamical belmayisuch as bistability, recurrence,
and regular oscillation.

The relapse-remission cycle in autoimmune disease istige¢sd based on a regulatory T
cell model. By introducing a newly discovered class of retpraT cells, Hopf bifurcation oc-
curs in the autoimmune model with negative backward bifiimoaand gives rise to a recurrent
pattern.

The main insight of this thesis is that recurrent diseaseara® naturally from the de-
terministic dynamics of populations. It will provide a gtag point for further research in
dynamical systems theory, and recurrence in other physysiéms.
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Chapter 1

Introduction

Recurrent disease, such as several episodes of ear infeotidracterial sinusitis in one year,
can be very common and disagreeable. Recurrence can alseqromes health issues, and
even fatality [16], and it is often associated with chronigedses for which there is no known
cure, such as human immunodeficiency virus (HIV) infect®rif3], or lupus [10]. The pattern
of recurrent disease is an alternation between acute esdapblong remission [5, 16, 6, 8, 10].
In HIV infection for example, “viral blips” are commonly msared in patients under highly
active antiretroviral therapy (HAART), whose blood virabd is controlled for long periods
at an undetectable level, but is still punctuated peridlyiday short episodes of high viral
reproduction [14], as shown in Figure 1.1. Although theletig is not well understood, HIV
infected patients chronically fier from these episodes of acute viral relapse [7]. In additio
important issues in recurrent disease, such as medicaieeaand patient management, cry
out for new insight. In this study, we apply approaches attarastic of mathematical biology
to better understand the intrinsic mechanisms drivingmrect diseases.

1.1 Mathematical models for studying recurrence

Mathematical models using feerential equations track changes in biological systems ove
time, and provide new research tools to investigate andaexplinical and laboratory obser-
vations [1, 11, 12]. By translating verbal mechanisms iniergdic prediction, mathematical
models play a fast-growing and well-recognized role in us@anding, predicting, and con-
trolling diseases [11]. In this study, based on traditiog@ldemic models at the population
level, we develop and analysehostmodels at the cell-to-cell level to describe the interactio
between pathogenic agents and cells.

1.1.1 Immunological models

The body’s defence against foreign pathogen invasion isnimeune system. Immunology
is the study of the immune system, including its function @odsible malfunctions, such
as autoimmune disease, hypersensitivities, immune dedigie@nd transplant rejection. The
immune system is built mainly at the cellular level. Mathéoea models in immunology

therefore attempt to describe the dynamical world of cell$ molecules inside body.
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Mathematical models in immunology, typically systems afioary diferential equations,
are well recognized and widely used to describe immune gease understand the underly-
ing dynamical processes, reveal intrinsic mechanisms pagdict the fate of the disease. In
addition, mathematical models can provide a persuasivetwvagrify verbal assumptions in
immunology. Additionally, model simplification can help igentify and emphasize the de-
termining factors in disease. Simplifications, such as igsteady state assumptions, are a
well-recognized way to reduce model dimension, while reta the model’s main properties.
Although cellular processes are key to immune function,itfune response also incorpo-
rates processes of a chemical nature, such as the antigboeninteraction and enzyme-
catalysed reactions, for example the cytokine molecul@ Hignaling process. Mathematical
modeling can incorporate these biochemical factors intoumological models. For example,
the influence of reactive oxygen species on HIV infectiom i@an be modeled according to
Michaelis-Menten kinetics, and gives rise to an incregssagurating HIV infectivity function
in Chapter 2. This function further determines the simpledin2ensional HIV infection model
which shows recurrent behavior, providing a new mechan@ntfV viral blips and a fresh
insight into the elusive world of HIV infection.

1.1.2 Infection models

A basic epidemic SIR model divides the population into spsbke, infected and recovered
groups, and denotes the numbers in each group, dsandR, respectively. An SIR model
with no disease-related death is written as

ds di drR
i bN - BIS —dS, I =pIS —yl —dlI, "
where the total population sizel§ the birth rate i$, the common death rate for each group is
d, the infectivity isg, and the recovery rate is[1]. The recovery group can be reduced under
the assumption that the total population size is constamtbs&juently, the 3-dimensional
SIR model is reduced to a 2-dimensional SI model. Similaaty,in-host model tracks the
transmission of an infectious agent, for example a virusmficell to cell within the body
of a single infected individual [12]. The basic model in teisse also has three variables:
uninfected cellsX; infected cells,Y, and free virus particles/. These variables can either
denote the total population size in an infected individuapopulation density in blood or
tissue [12]. Compared with the host cell, the infectious &gauich as a virus and bacterium,
is characterized by a short lifespan and extremely highodipstion rate. Due to these high
production and clearance (birth and death) rates, viruscjes can be assumed to be in a
guasi-steady state with the population of infected celtsl, @iminated from the system [12].
This step results in a 2-dimensional within-host model,olihs proved to be equivalent to the
2-dimensional epidemic model in Chapter 4.

The spread of disease is a key point in modelling, and theatatdich new individuals are
added to the population of infectives is referred to as thelance rate [4]. The functional form
of this term varies according to the properties of the disesasl the hypothesis considered.
Based on the law of mass action, the spread of disease isysugten as the infection force,
multiplied the number of susceptibles [2]. The infectiorcdescribes the transition rate from
the susceptibles to infectives, and is usually a functiothefnumber of infectives. The most

=yl —dR (1.1)
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common form of the infection force is linear, thaids whereg is the per capita contact rate,
with the assumption of homogeneous mixing of both suscleptihd infective populations.
By considering heterogeneous mixing and saturatibeces due to fewer susceptibles being
available with the growth of the infective population, théeiction force can be modified to be
an increasing and concave function in terms of the numbenfetiives [9]. In contrast, the
infection force may take the form of an increasing and corfuextion, if cooperative fects
are considered, for example if infected cells make other ¢elts more vulnerable to infection
[15, 17, 18].

1.2 Mathematical theories and methodologies used to study
recurrence in biological models

Biological models are characterized by changes, affdréntial equations are laws that rule
changes. For biological models described hjedential equations, the description of the dy-
namical behavior of the fferential equations is the description of the time evolutbrhe
biological system. The flierential equations are also referred to as a dynamicalrayskae
solution determines how the dynamical system developsria.tiFor most dferential equa-
tions, describing real-world problems, their solutionniela or analytic solutions arefticult

or even impossible to obtain. Therefore, we apply dynansgatems theory, in particular,
gualitative methodologies including stability and bifation analysis to extract important in-
formation and show the fundamental, long-term qualitabebavior of the system.

In this study, we concentrate on continuouatiential equation models, which is a reason-
able approximation to describe the continuous overlap 8’@nd infectious agents’ genera-
tions. Nonlinear systems theory and methodologies araeapf investigate the complexity
of the biological systems. To reveal intrinsic mechanismdeulying complex phenomena in
disease models, we use simple deterministic models togtré@i long-term behavior of the
disease. In particular, asymptotic behavior is examinadh s local and global stability of
equilibrium solutions, and bifurcations from the equiitbm solutions, leading to Hopf bifur-
cation and even more complex bifurcation such as homoabiriis.

1.2.1 Stability analysis for equilibrium solutions

Mathematical analysis of population dynamics usually firstves well-posedness of the solu-
tions, that is, the solutions of the system should be p@s#id bounded due to their biological
meaning. Equilibrium solutions expose the steady-stattifes of the system, which can be
either stable or unstable depending upon whether the soltrjectories of the system con-
verge towards the equilibrium or diverge away from it. Thabdity of an equilibrium solution
can be characterized, in the sense of Lyapunov stabilitgrihes local or global depending
on whether the final state depends on the initial conditionother words, global asymptotic
stability means that any solution trajectory of the systeithreturn to the equilibrium from
any initial point in the state space; while for local asyntigtatability this only occurs for
initial points near the equilibrium solution. The path ohgergence may be either direct, i.e.
without oscillating, or with oscillating behavior. Besideguilibrium solutions, many biologi-
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cal systems may exhibit complex behavior such as limit gydta which the trajectories may
approach or diverge from a periodic solution. We can alsadefe stability of limit cycles,
as stable or unstable, depending on whether they attracpat nearby trajectories. Local
stability of the equilibrium solution can be obtained by mxaing the corresponding charac-
teristic equation, and usually (especially for higher-eimsional dynamical systems) applying
the Routh-Hurwitz stability criterion. This process oftewolves solving multivariate poly-
nomials. The Lyapunov function method (or Lyapunov direetimod) is usually applied to
prove the well-posesness of the solutions and the glohailisgaof equilibrium solutions. For
limit cycles, however, finding their stability is more inveld, and requires more sophisticated
mathematical methods to be discussed next.

1.2.2 Bifurcation analysis

Bifurcation theory is fundamental for the qualitative stuofydynamical systems, and can
be used to reveal complex dynamical behaviors of the bickgystems under study, such
as bistability, recurrence, and regular oscillation. Cbtetézed by a controllable parameter,
called the bifurcation parameter, bifurcation occurs atitecal value of this parameter where
the properties of equilibria change significantly. Thesalitative changes can be illustrated in
a bifurcation diagram. Bifurcations can be divided into twimpiple classes: local bifurcations
and global bifurcations. Local bifurcations occur when libeal stability of an equilibrium
changes, leading to the birth of another equilibrium solutr a limit cycle, as the bifurcation
parameter passes through a critical value. Therefore,hgacteristic equation and Routh-
Hurwitz stability criterion can be applied to study localuscations. More precisely, the local
bifurcations can be classified as saddle-node, transdribied pitch-fork bifurcations, which
characterize the “jump” from one equilibrium solution too#imer equilibrium solution. In
this thesis, for the convenience of use in Applied Scienak Emgineering Society, we call
the saddle-node bifurcation point, the “turning point”. pidifurcation, which characterizes
the “birth of motion” from an equilibrium solution to periadmotion. Global bifurcations,
on the other hand, occur when periodic orbits collide witbheather, or with equilibria, and
cause changes in the topology of the trajectories out of d smighborhood. The terminol-
ogy “unfolding” determines the codimension of a bifurcatidhat is, how many bifurcation
parameters are required to characterize the fundamemahagal behavior of the system. In
this study, we mainly focus on local bifurcations includsapdle-node, transcritical and Hopf
bifurcations, which are all codimension-one bifurcationge will also investigate the well-
studied codimension-two bifurcation: Bogdanov-Takensiriodtion, since it can lead to the
global bifurcation: homoclinic bifurcation. We will pay mmattention to Hopf bifurcation and
homoclinic bifurcation, since they provide two mechanigorggenerating recurrence.

1.2.2.1 Hopf bifurcation

Hopf bifurcation is perhaps the most typical way to geneliaté cycles and recurrent phe-
nomenon. It occurs when the Jacobian matrix of a dynamicaésy, evaluated at an equilib-
rium, contains a simple pair of purely imaginary eigenvalugiving rise to a nonhyperbolic
critical point: the Hopf bifurcation point. The stabilityf the limit cycle is determined by the
behavior of the solution trajectories of the system on timteremanifold near the Hopf bifurca-
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tion point. Center manifold theory provides a means for syatecally reducing the dimension
of the state space, resulting in a center manifold with reduwdimension. Further simplifying
the diferential equations, describing the dynamical behavioherré¢duced center manifold,
by additional coordinate transformations yields the ndrioen for the Hopf bifurcation. The
gualitative picture of the flows of Hopf bifurcation can berealed by analyzing the stabil-
ity and bifurcations based on the normal form, and the steloif the bifurcating limit cycle is
determined by the cdigcients of the normal form. Hopf bifurcations can be clasgiéie super-
critial or subcritical, indicating whether the bifurcagitimit cycle is stable or unstable. Center
manifold theory and normal form theory are the two most pdwemnd useful mathematical
tools in the study of stability and bifurcations for nonlamelynamical systems.

1.2.2.2 Bogdanov-Takens bifurcation and homoclinic orbits

A homoclinic or saddle-connection bifurcation occurs whdimit cycle collides with a saddle
point. It is a global bifurcation and may arise from Bogdadakens bifurcation. Bogdanov-
Takens bifurcation is characterized by a double-zero e@ar of the linearized system around
an equilibrium solution. The existence of homoclinic bdation, associated with Bogdanov-
Takens bifurcation, may provide a global mechanism for igtence of limit cycles and recur-
rence. By applying a rescaling or blow-up approach on the abfarm obtained associated
with Bogdanov-Takens bifurcation, we may obtain a Hamikonsystem and thus properly
define a Melnikov function used to determine the homoclinfarbation curve, leading to
bifurcation of homoclinic orbits. Further, this approacdnde employed to identify the pa-
rameter region where limit cycles exist between the Hopfrg#ition curve and the homoclinic
bifurcation curve.

1.3 Thesis contribution and structure

In this thesis, we study recurrent phenomena in infectiossages and autoimmune diseases,
which are described by deterministic, ordinarffeliential equations. Local and global mech-
anisms generating recurrence are provided in explicit ema#tical formulae, associated with
Hopf bifurcation, Bogdanov-Takens bifurcation and homuclbifurcation. Biologically, we
find that recurrent behavior can be an intrinsic propertyisease dynamics. For infectious dis-
ease, an increasing and saturating infectivity functiam loa the determining component for
recurrence. While, for autoimmune disease, recurrence eatthbbuted to the newly discov-
ered terminally dierentiated regulatory T cells. From the viewpoint of moalgliwe believe
that the investigation of the relation between backwardrb#tion and Hopf bifurcation reveals
a important finding: a convex incidence function is the kegypl in determining the bistable,
recurrent, and regular oscillating behaviors for a simptirensional infection model.

In Chapter 2, the dynamics of HIV viral blips are studied byeistigating an established 4-
dimensional HIV antioxidant therapy model. A new blips-geating mechanism is proposed,
that is, infection makes the host more vulnerable to be tefea@nd is modeled by an increas-
ing, saturating infectivity function. Four conditions gmposed for proving the existence of
recurrence in deterministic in-host models.
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Chapter 3 is devoted to considering recurrent behavior inudmiramune model. By in-
troducing a newly discovered regulatory T cell subtype, db®oimmune disease model can
exhibit Hopf bifurcation and further generate recurrerttdagor.

In Chapter 4, the relation between backward bifurcation aopf#ifurcation is examined
for exploring recurrence, by investigating the infectialisease model established in Chapter
2 as well as the autoimmune model studied in Chapter 3. Weifgdehe parameter region
where bistability, recurrence, and regular oscillation oacur.

Chapter 5 provides a further study on the simplest 2-dimeasidlV model (established
in Chapter 2) to generate recurrence. More bifurcation patars are involved in the study
to demonstrate complex dynamical behavior. A new mechafosmgenerating recurrence is
obtained from Bogdanov-Takens bifurcation and homoclirfigrbation.

Finally, the conclusion of the thesis and discussion ofriitmork are given in Chapter 6.
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Chapter 2

Conditions for Transient Viremia in
Deterministic In-host Models: Viral Blips
Need no Exogenous Trigger

2.1 Introduction

Viruses are infectious intracellular parasites: they @graduce only inside the living cells of
host organisms, and must spread from host to host for cadiaxistence. Animal viruses tend
to exhibit either an acute or persistent mode of host indadid ensure this continuity [40]. An
acute viral infection is characterised by a relatively sip@riod of symptoms, and resolution
within days or weeks. It usually triggers the host immun@o@se to clear the infection, and a
memory response can then prevent the same virus from infgitte same host. Pathogens such
as influenza virus and rhinovirus typically cause acutel unf@ctions. In contrast, persistent
infections [2] establish long-lasting infections in whitie virus is not fully eliminated but
remains in infected cells. Persistent infections involeghbsilent and productive infection
stages without rapid killing or excessive damage to infiéctlls. Latent infection is a type of
persistent infection.

In latent infection, no clinical signs nor detectable iriegs cells can be observed during
the silent or quiescent stage of low-level viral replicaticHowever, the virus has not been
completely cleared, and recurrent episodes of rapid vi@dpction and release can periodi-
cally punctuate relatively long periods in the silent stafjeese episodes of recurrent infection
are a clinical phenomenon observed in many latent infest[dfd]. Recurrent infection can
also occur in the context of drug treatment for persistefiections. Human immunodeficiency
virus (HIV), for instance, can be suppressed by highly actintiretroviral therapy (HAART)
to below the limit of detection for months or years [4, 8], erthreless supersensitive assays can
still detect low levels of viremia during this stage [8, 3D].3Moreover, these long periods
of relative quiescence are typically interrupted by unakm@d intermittent episodes of viremia
above the detectable limit, termed viral blips [35, 34].h&ltigh these blips have been the focus
of much recent research [12, 17, 14, 5], their etiology isrstit well-understood [17, 34].

To date, many possible explanations for viral blips durinyg fection have been explored
mathematically. An early model of the long-term pathogenetHIV [11] incorporates the
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activation of T cells in response to antigen, as suggestdireby [9]. In [11], both HIV
and non-HIV antigen exposure are considered in a couplesfrdetistic-stochastic model.
The probability of antigenic exposure evolves continuguslitime, and Poisson-distributed
exposure events are generated, by simulation, at the ajgeprobabilities. This approach
captures a number of features of long-term HIV dynamicduiting episodic 'bursts’ of resid-
ual viral replication. Further work [10] considers the nwanbf distinct antigens which activate
the CD4 T cell pool as a random variable, coupled to an ordinaffecéntial equation (ODE)
model. Stochastic changes to this number drive fluctuahdhe basic reproductive number
and viral load. This model is also able to capture the eptsodist-like nature of residual HIV
viral replication during long-term infection.

More recent models are based on the recurrent activatiataitly-infected lymphocytes,
a class of T cells introduced in immunological models by Rereet al. [32] and Ronget
al. [33], in order to explain the slower second-phase decayasfipa viremia. By introducing
antigen concentrations as an explicit variable, Jones angl$dn [23] developed a system of
ODEs which exhibits viral blips. The model describes pragraed proliferation and contrac-
tion of the CD8 T cell population, and exhibits low viral loads under HAARS expected.
Opportunistic or concurrent infection, modelled as anah@oncentration of antigen, activates
the immune system and is shown by numerical simulation @it @itransient viral blip. The
same authors further showed that occasional intercurndettions can generate viral blips
by the activation of target cells or latently-infected selpredicting a power law relationship
between blip amplitude and viral load [24].

In further work, by considering the asymmetric division afdntly-infected cells, Rong
and Perelson [34] developed a 4-dimensional ODE model base¢le basic model of latent
cell activation [32]. This new model not only generated Motgps but also maintained a sta-
ble latent reservoir in patients on HAART. In this modelglatly-infected cells can divide to
produce latently-infected daughter cells, offelientiate into activated, productively-infected
cells, depending on antigen concentrations. In a furthéintensional ODE model [35], these
two types of daughter cells were distinguished as dependeiaibles, and a contraction phase
was added to the activated daughter cells. Numerical stroanlgshowed that both cases gave
rise to viral blips and a stable latent reservoir, which wggrerated from the activated and the
latently-infected daughter cells, respectively. In badipgrs [34, 35], the antigenic stimulation
of latently infected cells was modeled as an “dfi-dorcing function, and viral blips were
initiated during brief pulses in which this activation fuion was “on”.

Most recently, a stochastic model developed by Conway and Gebh presented another
possible treatment of latent cell activation. In this md&glthe authors derive the probability
generating function for a multi-type branching processcdbsg the populations of produc-
tively and latently infected cells, and free virus. A nunsatiapproach is then used to estimate
the probability distribution for viral load, which is thesed to predict blip amplitudes and fre-
guencies; blip durations are studied by simulation. Théa@stare able to conclude that with
effective drug treatment and perfect adherence to drug theraplyblips cannot be explained
by stochastic activation of latently-infected cells, arigen factors such as transient secondary
infections, or imperfect adherence, must be involved.

In order to elicit transient episodes of high viral replioat the models described above ei-
ther incorporate transient immune stimulation, for exagd a forcing function, or stochastic
approaches. In contrast, recent studies have shown thplesdaterministic systems can ex-
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hibit viral blips. Based on the close relation between reamirinfections and antibody (B-cell)
immunodeficiency, Ya@t al. [41] investigated a 5-dimensional ODE model which included
antibody concentrations as an explicit variable, and etddhtransient periods of high viral
replication. By numerical simulation at specific, meanihgi@rameter values, the authors ex-
plored factors fiecting the interval between recurrent episodes, and tbeargy. Later, an
even simpler 4-dimensional antioxidant-therapy mode] [88s explored for HIV, and was
similarly used to simulate viral blips with appropriate gareter values. These examples indi-
cate that deterministic systems can produce blips as péneafiatural, rich behaviour of the
non-linear system. Although to date numerical simulatias heen invaluable in describing
and delineating the behaviour of these models, there isgrgtlittle analytical work exploring
the mathematical underpinnings of recurrent infectiorshktuld be noted that data from clin-
ical studies indicates that HIV viral blips appear to be @ndiological events, with varying
magnitude, frequency and duration. This suggests thahasbic tractable, and their analysis
may reveal a global picture or key underlying charactesstif the system. Moreover, non-
linear deterministic systems can indeed exhibit varyingléodes and frequencies of motion,
particularly when the underlying parameters are functmfrisne. We shall return to a discus-
sion of this point in the last section of the paper.

In this paper, we take advantage of dynamical systems theagynvestigate deterministic
in-host infection models that exhibit viral blips. By examnig the bifurcation behaviour in
parameter spaces “close” to the region where blips occupmpose an understanding for
the features of the dynamical system which underlie thisggernmodel behaviour. We then
propose four conditions which, when satisfied, guarantaeah in-host infection model will
exhibit long periods of quiescence, punctuated by brielsrof rapid replication: viral blips.
Based on these conditions, we develop very simple 2- and 8rdiianal models that produce
blips. Further, we apply stability criteria to determinegraeter ranges which may yield blips.
Most of the models discussed in this paper share a similaciinity function, describing
the rate at which new infected cells are created. In a findlseove examine a related 5-
dimensional immunological model and demonstrate that klips are possible in this system
even when infectivity is constant.

The rest of the paper is organized as follows. In Section @,piteviously proposed 4-
dimensional HIV antioxidant-therapy model is reinvestaghanalytically. Based on the in-
sights of our bifurcation analysis, conditions for gengviral blips are proposed. In Section
3, we use these conditions to propose a simpler 3-dimensioiest infection model, and
parameter ranges which will exhibit blips in the simpler rabare determined. In Section 4,
we develop a 2-dimensional model, characterized by anasanrg and saturating infectivity
function, which can also generate viral blips. Finally, warebnstrate that a 5-dimensional
immunological model [41] can exhibit viral blips with coast infectivity.

2.2 A 4-dimensional model which exhibits viral blips

In this section, we reconsider a 4-dimensional HIV antiaxidsupplementation therapy model
which was developed and studied numerically in [39]. Thigleimovelly introduced reactive
oxygen species (ROS) and antioxidants to an in-host mod#l\éfinfection. In uninfected
individuals, ROS play a positive physiological role at made levels [16, 25, 7, 20, 18], but
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are harmful at high levels [39].

HIV infection may lead to chronic and acute inflammatory dsss, which may cause
high levels of ROS [26] as well as lowered antioxidant levelés phenomenon has been
observed clinically and experimentally [26, 15, 22, 36,.3B8] addition, high levels of ROS
may cause damage to CD7 cells, impair the immune response to HIV [37], and exacerba
infected cell apoptosis, releasing more HIV virions. Thuoected cells produce high levels
of ROS, which in turn increase the viral production by inésttells. To control this cycle,
antioxidant supplementation (vitamin therapy) has beguested as a potential complement
to HIV therapy [15, 13], with the aim of counteracting andueitig ROS concentrations [16].

The equations of the 4-dimensional model are described%y [3

X = Ay — dyX = (1 = €)B(r)xy,

y=(1-¢e)B(r)xy—-dy,

r=A + ky—mar—dr, (2.1)
a= Aa+a— par—dya,

wherex, y, r and a represent respectively the population densities of thefaoied CD4 T
cells, infected CD4 T cells, reactive oxygen species (ROS), and antioxidanke cdonstant
Ax denotes the production rate of CD7Z cells, anddix is the death rate. Uninfected cells
become infected at rate {le)B(r)xy, wheree is the dtectiveness of drug therapy, adgis the
per-capita death rate of infected CD# cells. ROS are generated naturally at rateand by
the infected cells at ratey, the concentration of ROS decays at rdte, and is eliminated by
interaction with antioxidants at ratear. Antioxidants are introduced into the model through
natural dietary intake at a constant ragg and through antioxidant supplementation at rate
which is treated as a bifurcation parameter. Antioxidamsediminated from the system by
natural decay at raté,a, and by reacting with the ROS at rgbar, wherep is much smaller
thanm.

An important novel feature of this model is that the infeityi\3(r) is a positive, increasing
and saturating function af(ROS),

r(bmax_bo)
1) = b+ —x_0
B(r) = bo P

(2.2)
whereb, represents the infection rate in the ROS-absent case, kyhilelenotes the maximum
infection rate, andy is the ROS concentration at half maximum. It is obvious @) > 0,
and itis also assumed that<Oe < 1. Therefore, all the parameters in equations (2.1) and (2.2
are positive. The experimental values used for studyingah(®l1) are given in Table 2.1.
Importantly, these parameters were chosen with carefeteate to clinical studies, such that
the predicted equilibrium densities are clinically reasae. Also note that the densities of
antioxidants and ROS are of order*iperulL, while cell densities are of the order26r 1C°
perul.

In [39], this model was explored numerically to assess therg@l of antioxidant therapy
as a complement to HIV drug therapy. In that study, regionesaillatory behaviour, rem-
iniscent of viral blips, were observed. In the following sabtions we perform a thorough
equilibrium and stability analysis of the model, in ordersteed further light on the factors
underlying these rich behaviours.
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Table 2.1: Parameter values used in model (2.1) [39]

Parameter Value
Ay 6076 cellsuLday™
dy 0.0570 day*
dy 1.0 day*’
Aa 2.74x 108 moleculegiL " day™
da 0.0347 day*
1

bo 311x 104 cell™ yuL day™

bmax ~ 0.00621 celi* uL day™

I haf 357x 102 moleculegL™
d; 1.66x 10’ day*

A 1.86x 10?8 moleculegiL"*day™
K 1.49x 10'° molecules ceif* day™
m 1.27x10°° molecule* uL day™

p 5.04x 10 molecule® uL day™

2.2.1 Well-posedness of the solutions of system (2.1)

By using the method of variation of constants, we can easitgiolihe solutions of (2.1) to
show thatx(t) > 0, y(t) > O, r(t) > 0, a(t) > 0, Yt > 0, if x(0) > 0, y(0) > 0, r(0) > 0,a(0) >
0. To consider the boundedness of the solutions, supposeniergl we have the fierential
inequality: T < A— dT (4, d>0, T(0)>0). ThenifT = A —dT, we haveT +dT = A. Thus
T(t)=T(0)e b sy Ae s ddugjg T(0)e 944 (1-e9"), which implies that lin, ,., SUpT (t) =
From the first equatlon of (2.1), we haxes A,—dyX, which yields lim_, . supx(t) = ”* It |s
also easy to see from the first equation of (2.1) t{gt> 0, Vt>0. Then, by addlng the first
two equations of (2.1) we obtaﬁ*%1 =Ax—dyx—dyy < A—d(x+Y), whered =min(d,, dy).
Hence, lim,, . supi(t) +y(t)) = % Therefore, for any gives > 0, there existst* > 0,
such thatx + y < 4; + g, for all t > t*. For the third equation of (2.1), we similarly have
&< (/lr+kAX) dr, WhICh results in linp, ., supr(t) = A"”"‘X Finally, for the fourth equation

of (2.1), we ge 4 <(Aat+a)—daa, and thus lin, .« supa(t) = *a:". We define Clearlyl” is a
positively invariant set and attracts all non-negativeisohs of (2.1).

2.2.2 Equilibrium solutions of (2.1) and their stability

To find the equilibrium solutions of (2.1), simply setting=y = r = a = 0 yields two
solutions: the uninfected equilibrium solution,Eand the infected equilibrium solutioni E
given respectively by

/lx /1 _d r
EO . (X609 YeO» reO, an) = (d_, O’ reO, r—reo) 5 (23)
X

M I
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where the o is determined by the equation

1 d, 1 d,d. — pAa
Fo(r,a)za+/la+m(pd(r— arr)+ a rmp L =0; (2.4)
and
Ei: (XetYer,le1, @), X = L
(1-¢€)pi(re) (2.5)
Vor = Ax — Oy Xe1 _ Aata '
. (1- E)ﬂr(rel)xel’ ! da+ prel’

whererg is a function in the system parameters, particularlfsee the functior; in equa-
tion (2.8)). Both g and g are expressed in terms ofre Or ;) fOor convenience.

We first consider the uninfected equilibriung.B he solution of  is determined by (2.4),
which is a quadratic equation i To simplify the analysis, we usdo express the parameter
since (2.4) is linear i, anda is treated as a bifurcation parameter. Thus, solN#y, @) = 0
for a we obtain

da/lr)_dadr_p/lr (2 6)

1
Olo(reo)—_/la_a (pdrreo_ - -
To find the stability of the equilibrium solutiongEwe first evaluate the Jacobian of system
(2.1) at | to get Jo(re), Where (2.6) has been used, and then usef tet{Jp) to obtain the
4th-degree characteristic polynomial, given By(&, reg) = (€ + dy)[£2 + (Preo + da + %)g +

(S + pdreo)](€ + Por), where

_ (1 — €)Ax(bor haif + r'eobmay)

Ox(reo + I'harf) '
Po(&,ren) contains three factors: the first one is a linear polynorofa and the second one
is a quadratic polynomial of, and both are stable polynomials (i.e., their roots (eigkres)
have negative real part); and thus the stability gfdaly depends upon the third factor, a
linear polynomial of¢é. Therefore, wherPy, > 0 (Por < 0), the equilibrium solution Eis
asymptotically stable (unstable).

The graph for the equatioRy(r,a@) = 0 given in (2.4) is shown as the red line in Fig-
ure 2.1(a), which clearly shows a hyperbola. It is seen frioisired line that the relation (2.4)
also defines a single-valued functiom «, if only the positive (biologically meaningful) value
of r is considered, (i.e., the positive branch of the red lineigufe 2.1(a)). More precisely,
it can be shown that the biologically meaningful solutionstiioe located on the first quadrant
and above, including the top branch of red line (see Figur&y), since ghas the component
Yeo = 0.

Next, consider the infected equilibrium solution. EThe solution forrg; can be similarly
obtained by solving the following equation,

KAy Kak(r + I'nar) mr(4a + @)

Pl ) = At g A o) botrar + bra) P+
which is again a linear function @f, and we can usk; to express as

Ar(Prer +da)  KAx(pres + da)
+ +

Mrgy Mre1dy

_ Kay(rer + Mair)(Pres + da) _ (prei + da)d;

Mreg (1 — €)(borhait + Pmaxfe1) m .

Por = Cly (2 . 7)

dr =0, (2.8)

a’l(rel) = -Aa

(2.9)
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Figure 2.1: (a): Complete bifurcation diagram for the 4-duasienal HIV antioxidant-therapy
model (2.1) projected on threa plane, with the red and blue lines denotingdad &, respec-
tively; and (b): Bifurcation diagram in (a), restricted iretfirst quadrant, with the dotted and
solid lines indicating unstable and stable, respectively.

The graph of the equatio#g(r, @) = 0 given in (2.4) and~4(r, ) = 0 given in (2.8) is shown
in Figure 2.1(a). To find the stability of,Ein a similar way, we evaluate the Jacobian of (2.1)
at E; to obtain the 4th-degree characteristic polynonfal(¢, rei) = £+ ay(rei)é3+ an(rey)&2 +
as(re1)é+ as(rer), where the lengthy expressions for the meentsa; (reg), ax(re1), as(rer), and
ay(re1) are omitted here for brevity.

2.2.3 Bifurcation analysis

To understand the conditions underlying oscillatory bé&havand viral blips in this model, we
now consider possible bifurcations which may occur fromegeilibrium solutions gand E.

2.2.3.1 Transcritical bifurcation

First, for the uninfected equilibriumdkit follows from Py(&,re) and (2.7) that in generalgE
is stable forPy. > 0, and the only possible singularity occurs at the criticahp determined
by Por = 0 (see (2.7)). At this point, one eigenvalue of the charattepolynomial becomes
zero (and the other three eigenvalues still have negatal@agt), leading to a static bifurcation,
and & becomes unstable. More precisely, when the parametersvaluBable 2.1 are used,
the two equilibrium solutions Eand g intersect and exchange their stability at the point
(r, ) =~ (8.89x 10%, 4.58x 10'%), indicating that aranscritical bifurcationoccurs at this
critical point (see Figure 2.1(b)). Here, the subscripstiinds for transcritical bifurcation. The
value of, is obtained by substituting into eitherao(r;) in (2.6) ora,(r;) in (2.9). In fact,
ao(re) = aa(ry).

As discussed above, the biologically meaningful solutisimsuld be above or on the unin-
fected equilibrium solution &(the red line shown in Figure 2.1(b)), since solutions betlogv
red line contain the componewpt< 0. It is obvious that there is no Hopf bifurcation frorg.E
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Figure 2.2: The saddle-node bifurcation on the center mlhfith the dotted line indicating
unstable and the solid line stable: (a) in the transformedcoordinates; and (b) in the original
coordinates.

So, the uninfected equilibriumglts asymptotically stable (unstable) whenr< ry (r > ry) or
a > o (@ < ay)(see Figure 2.1(b)).

It should also be noted from Figure 2.1(b) that besides atratical bifurcation point, E
has asaddle-nodéifurcation which occurs at the so-call&aning point To determine this
turning point, using (2.9) and4® = 0, yields ¢, as) ~ (1.72x10%, 5.06x10'), where the
subscript ‘s’ denotes saddle-node bifurcation, agd& a4(rs) by using (2.9). Note that this
bifurcation does not change the stability of, Eince the characteristic polynomi| (¢, re)
still has an eigenvalue with positive real part whign(or «) is varied along Eto pass through
the turning point (see Figure 2.1(b)).

The saddle-node bifurcation can be seen more clearly if veenée the local dynamics
close to the turning point; this analysis will also be usddbér for analysing viral blips. At
the turning point, the system contains a 1-dimensionalezantanifold (whose linear part is
characterised by the eigenvalée=0), a 1-dimensional unstable manifold (whose linear part
is characterised by the eigenvalge~ 0.142), and a 2-dimensional stable manifold (whose
linear part is characterised by the eigenvaléles —0.290 ands} ~ —1.26 x 10°), as shown in
Figure 2.2. Itis noted that the eigenvalygsind¢;, which are both positive at the saddle-node
point, become a pair of complex conjugates with positive paat at the orange-color point
above the saddle-node point (see Figure 2.1(b)), movingridsvthe Hopf point. So the sub-
manifold that is the complement to the centre manifold i$ estpelling till meeting the Hopf
bifurcation point.

In order to find the dterential equation described on the center manifold, we djpgly
the transformationxy,r, a)T = (Xe1, Ye1, lets ael)T + Ts(Xa, Xo, X3, X4)T, where e, Yer, le1, @e1)
is the infected equilibrium solution;EandTg is a constant, non-singular matrix. Under this
transformation, the Jacobian of system (2.1) becomes tldad@anonical formAs ~ Diag
{0, 0.142 -0.29Q -1.26x1(C%}. Then, by using center manifold theory [19] on the transfedm
system of (2.1), we get theftierential equation describing dynamics of the system,iotstr
to the center manifoldx; ~ —2.66x10712, — 1.93x107*x3, for which the perturbation value pf
near the saddle-node point is rougply 102, about 2% ofr (see Figure 2.1(b)), as expected.
The bifurcation diagram restricted on the center manifsldiepicted in Figure 2.2(a), with
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the corresponding bifurcation diagram in the original sgst projected in the-r plane as
shown in Figure 2.2(b). It should be noted that the scalirigyéen the graphs in Figures 2.2(a)
and 2.2(b) depends upon the transformation matgixAlso, note that the upper half branch
in Figure 2.2(a)(denoted by the solid line) indicates thas stable, but is only restricted to
the 1-dimensional center manifold. For the whole system fttanch is still unstable since the
system contains an unstable manifold (as shown in Figu(®y.2

2.2.3.2 Hopf bifurcation and limit cycles

To find any possible Hopf bifurcation which may occur from thiected equilibrium g, we
first need to determine the critical points at which Hopf bsation occurs. The necessary and
suficient conditions for generaldimensional systems to have a Hopf bifurcation are obthine
in [43]. To state the theorem, consider the following geheoalinear diferential system:

x=f(x a), xeR" aecR™ (2.10)

with an equilibrium determined from(x, ) =0, as, sayx. = Xe(@). To find the stability ofx,

evaluating the Jacobian of system (2.10x&txe(@) yields J(@) = Dy f ey = [2220]. The
]

eigenvalues of the Jacobid(x) are determined by the following characteristic polyndmia

Pa() = detfll — J(a)]

2.11
= A"+ a(a) A"+ ay(@) A" + - + ay_a(@) 22 + ap_1(@) A + an(e). (2.11)

Then, by the Hurwitz Criterion [21], we know that the equiitbn solutionxg(a) is asymp-
totically stable if and only if all the roots of the polynorhi@,(1) have negative real part, or

equivalently, if and only if all the following Hurwitz arrgement\i(a), (i=1, 2, ---, n) are
positive:
a 1 a 1 O
AL = aq, Azzdet y A3:det a3 a |, -+ Ay=a, Ap1.
% & as a; ag

Having defined the Hurwitz arrangements as above, we haveltbeing theorem.

Theorem 2.2.1 [43] The necessary and fgicient condition for a Hopf bifurcation to occur
from the equilibrium solution ga) of system (2.10) ia,,_; = 0, with a, > 0O andA; > O, for
1<i<n-2

In order to further consider the post-critical dynamicah&e&our of the system and to de-
termine the stability of bifurcating limit cycles, we maymy normal form theory to system
(2.10). Assume that at a critical poiat= «., the Jacobian of (2.10) evaluated at the equilib-
rium Xe contains a pair of purely imaginary eigenvalugs)., and all other eigenvalues have
negative real part. Then, the normal form of system (2.16pa@ated with Hopf bifurcation
can be written in polar coordinates as (e.g., see [42])

do 2 0 2
a=p(Vo/J+V1p +) gr " wWetloptiptae, (2.12)
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where u = a — a., p andd denote the amplitude and phase of motion, respectivelyn,Tihe
first equation of (2.12) can be used to approximate the angdiof bifurcating limit cycles
and to determine their stability. The second equation dfZRcan determine the frequency
of periodic motion. The cd&cient v;, usually called the first-order focus value, plays an
important role in determining the stability of limit cycle#/henv; < 0 (v; > 0, respectively),
the Hopf bifurcation is called supercritical (subcriticaind the bifurcating limit cycles are
stable (unstable). The Maple program developed in [42] eaedsily applied to system (2.10)
to obtain the normal form (2.12). The d&eientsvy andt, for the linear part of system (2.10)
can be found from a linear analysis, given by [4¥]= 3(a11+a2), to = 3(a12— 1), Where

ajj = afj—féﬂ evaluated at the critical point.

We now apply the above formula to consider the infected dayuiin E; of system (2.10).
To check if there exists Hopf bifurcation fromy Ebased on the fourth-degree characteristic
polynomial Py (£, re), we apply the formula\; = aya,a3—a3—ajas =0 and solve this equation
for r to obtain a unique valuey > 0, such that (by using (2.99y = a1(ry) > 0. When the
parameter values in Table 2.1 are used, these critical vateegiven by: 1y, ap) =~ (6.72x
10%3, 2.64x10%), at which the Jacobian of system (2.1) contains a purely inzagipair and
two negative real eigenvalues0.308i, —1.66, and-3.66x10’. Thus, asy is varied acrossay,

a Hopf bifurcation occurs from £leading to a family of limit cycles.

To find the approximate solutions of the limit cycles and ttedmine their stability, we
apply normal form theory to this model associated with thigslarity. First, we apply a
transformation X,y,r,@)" = (Xe1, Ve, e, @e1)" + Th (X1, X2, X3, X4)T, Where e, Yet, Fe1, @er) iS
the infected equilibrium solutionEand Ty is a constant, non-singular matrix. We obtain
a transformed system of (2.1), which is omitted here dueddemgthy expression. Then,
applying the formulas, = %(a11+a22), to = % (a;2—ay1) to the transformed system, we obtain
Vo ~ 3.15x 10°1° andty ~ 3.33x 10715, Further, we apply the Maple program [42] to the
transformed system to obtam~ —4.18x1077, andt; ~ —3.38x107%. Thus, the normal form up
to third order is given by

d

£ ~ p(3.15x107 %5y — 4.18x107p2 + - --),

40 (2.13)
— ~ 0.308+3.33x10°4-3.38x10%p%+- - -

dt

The first equation of (2.13) can be used to analyze the bifisrcand stability of bifurcating
limit cycles. Setting% = 0 results in two solutionsp = 0, which represents the infected
equilibrium solution E; andp ~ 8.68x107° i (1 > 0), which is an approximation of the
amplitude of bifurcating limit cycles. Sincg < O, this is a supercritical Hopf bifurcation,
and bifurcating limit cycles are stable. For example, ckgos 10'2. Then, the approximate
amplitude of the limit cycle i ~ 86.8, and the frequency of the limit cycle approximately
equalsw ~ 0.283, slightly less than. ~ 0.308. The phase portrait of the simulated limit cycle,
projected on the-y plane, is shown in Figure 2.3(d). It can be seen from Figudé2 and (d)
that the analytical prediction from the normal formz 86.8, agrees well with the simulated
result.

The above analysis based on normal form theory is for locahthical behaviour, that is,
the limit cycles must be near the Hopf critical point (@y). It can be seen from Figure 2.1(b)
that values ofr taken from the intervak € (ay, ) lead to unstable equilibrium solutions
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Figure 2.3: Simulated limit cycles of system (2.1) for thegmaeter values taken from Table
2.1, with the time course at andy on the top row, and the corresponding phase portraits

projected on thex-y plane on the bottom row. For (a) and (@)= 2.74 x 103, (b) and (e)
a = 3.50x 103, and (c) and (flx = 4.55x 10",

(since both i and g are unstable for this interval). However, due to the sohsgibeing
non-negative and bounded, we expect that there shouldaexistin persistent motion such as
oscillating solutions for the values of taken from this interval, and the amplitudes of these
oscillations can be large. For example, foe 3.50 x 10'3, the phase portrait of the simulated
solution, projected on they plane is shown in Figure 2.3(e), corresponding to the @giwlhs

in time shown in Figure 2.3(b), which have much greater atugi than the oscillations in
Figure 2.3(a).

Now, we take a particular value affrom the intervakr € (ay, 1), which is close tay, to
simulate the system. For example, taking 4.55x 10'3 < a; ~ 4.58x 10'3, we obtain the phase
portrait of the simulated oscillating solution, projectedthex-y place, shown in Figure 2.3(f)
with corresponding time history of andy shown in Figure 2.3(c). This clearly shows viral
blips.

Next, we will discuss what conditions are needed for crgatire phenomenon of viral
blips.

2.2.4 Conditions for generating viral blips

In the previous subsection, we carefully analysed the @enge of viral blips in a 4-dimensional
HIV model (2.1). System (2.1) is an exampleiofhost infection modelan ODE system de-
scribing the dynamics of infection within a single infectedividual. In-host infection models,
based on classical Susceptible-Infected-Recovered (SIBgismm epidemiology [1], typically
include populations of uninfected target cells, infectgeét cells, and the infection dynamics
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between the two classes [28]. More complex models also diechopulations of free virus,
latently-infected cells, and various relevant componenthe immune response, depending
on the infection under study. Although there are many exoeal cases, in-host models typ-
ically admit an uninfected equilibrium and at least one détde equilibrium, analogous to the
disease-free and endemic equilibria of an SIR model.

Since in-host infection models share many similar featunesch of our understanding
regarding the behaviour of system (2.1) can be general@ether models. Based on insights
obtained in analysing system (2.1), we propose in the fatiguypothesis four conditions for
an in-host infection model to generate viral blips.

Hypothesis 1: The following conditions are needed for an in-host infettiwodel to gen-
erate viral blips:

() there exist at least two equilibrium solutions;
(ii) there exists a transcritical bifurcation at an intextsen of the two equilibrium solutions;
(iii) there is a Hopf bifurcation which occurs from one of taguilibrium solutions; and

(iv) large oscillations (or more generally, global, petesiit motions) can occur near the tran-
scritical critical point.

The reasons for conditions (i) and (ii) are simple, becausenva parameter that reflects in-
fection severity is chosen as a bifurcation parameter, dnogt infection model typically starts
at the uninfected equilibrium and then bifurcates to thedtéd equilibrium as the parameter is
increased. Thus, these two equilibrium solutions musta&mgh their stability, yielding a tran-
scritical bifurcation. For the 4-dimensional model coesell in the previous subsection, the
uninfected equilibrium Eand the infected equilibrium Entersect at the critical pointy, ry),
where they exchange their stability. In fact, iB stable (unstable) far > a; (@ < at), while
the lower branch of Eis stable (unstable) far < o, (@ > @), as shown in Figure 2.1(b).

Condition (iii), the existence of a Hopf bi-
furcation, is necessary to obtain oscillations.

It can be seen from Figure 2.1(b) that limit x9

cycles bifurcate from Eat the Hopf critical
point (@n,ry), and the limit cycles become .
larger ifu = @ — ay > O increases. " fast

The reasoning behind the last conditionzoq

i i i i i fast AN
(iv) is not so obvious. Large oscnlatlonngI not
(or global, persistent motions) are necessargmall )
near the transcritical point, for viral blips to
emerge. As shown in Figure 2.1(b), both E
and g are unstable fox € (ay, @t) (though
a part of the lower branch of;Hs stable but
it is biologically meaningless due tpo< 0).

Thus, there exist large oscillations near the
transcritical critical pointy,. Moreover, it is Figure 2.4: Schematic diagram for explaining
noted from Figure 2.1(b) that at the left sidéhe occurrence of blips.

slow

0
0 £9>0 very small X1
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of the transcritical pointy, the eigenvalues
evaluated at fare all real, containing one positive eigenvalgg £ 0) and three negative
eigenvaluesf’ < 0,i = 2,3,4). In other words, any point on the uninfected equilibriupfd
@ < oy is a saddle point. Sinc® crosses zero at the critical poimt= a1, £ is very small near
the critical point fora < .

Now suppose we consider a value of< a4, but near the critical poinr = o, (e.g.,
a = 0.455x 10", as shown in Figure 2.3(c) and (f)). For simplicity, we maysider a sub-
manifold whose linear part is characterized by the eigers® and£?, and the corresponding
coordinates ar&) andx), respectively. A solution trajectory of system (2.1) focka value of
a, projected on this submanifold, is depicted in Figure 2.4e o 0< £ < 1, the trajectory
moves away from the critical point very slowly near teaxis, while it moves rapidly toward
the critical point near the&b-axis sinceéd| is not small. Further, due to the global boundedness
of solutions, the part of the trajectory which is not clos¢he saddle point moves rapidly, as
shown in Figure 2.4. This fast-slow motion yields the blipgpomenon, with slow changes
corresponding to the near-flat section in the time histany, i@pid changes occurring during
the viral blips, as shown in Figure 2.3(c) and (f). In otherdg the trajectory spends relatively
long periods in regions of state space which lie very clog@éauninfected equilibrium, then
transiently visits regions of state space which are closkdonfected equilibrium.

2.3 A simple 3-dimensional in-host infection model produc-
ing blips

Having established the conditions in Hypothesis 1 for gatiay viral blips, we are ready to
turn to some basic questions such as: what types of in-hiesttion model can generate blips?
and, what is the minimum dimension of such models?

2.3.1 Generalizing ROS to other physical variables

In model (2.1), the variablerepresents ROS, which are produced naturally in the bodyl\in
infection, extra ROS are generated by infected cells, aesktln turn directly accelerate HIV
progression [29, 36]. Therefore, infectivigyis an increasing and saturating function of ROS
concentrations. However, we note that the form of the imd@dierm is not specific to HIV nor
to ROS, and models of a similar form could in fact apply to oihéctions. To generalize the
physical meaning of the variablewe can for example lgtdenote any damage caused by the
infection, for example to the humoral immune response, fiectied organs, or to the infected
individual aspecifically. The model assumes that “damagefaases with the extent of the
infection at rateky, and is repaired or cleared at rate. This yields the 3-dimensional system:

X= A= dX=B)xy,  y=pr)xy—dy,  fr=ky-dr. (2.14)

To achieve an infection term similar to that in model (2.1 further assume that accrued
damage makes target cells more vulnerable to infectiomjgshaccrued damage increases the
infection rate. We thus takg(r) to be an increasing, saturating functiorrof
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In the original model (2.1)r represents ROS, for example®}, whose production and
decay rates are both extremely fast. For the more generaéini@d4), we would like to
assess whether viral blips are still possible at more meéelgnaduction and repair rateks,
andd,. For ROS the decay ra = 1.66 x 10’ day* implies a half life of only 4ms. We
decreased|, by several orders of magnitude; in particulardat 1.0x 10° day™?, a half life
of 60s, we find that viral blips are still possible. For thidueaof d,, we can tak&k = 1.49 x
10" molecules ceit* day . Note thatl, has been set to zero in (2.14) to make the model more
general.

For simplicity, leta= bmax—bo, b=Dby andc=rn4;. Then, the functioB(r) is rewritten as
B(r)=b+2%, anda, b, andc are treated as bifurcation parameters. Parameter vajudg dy,

K, dr, bo, bmax, @ndry, are given in Table 2.1. For practically meaningful solusipthe values
of the bifurcation parameters will be chosen close to theesln Table 2.1.

To analyze (2.14), we can follow the same procedure useiprvious section and treat
b as a bifurcation parameter. First of all, it is easy to prévewell-posedness of system (2.14).
Next, we get the infection-free equilibrium E (Xeo, Yeo, o) = (1x/dx, 0, 0) and the infected

equilibrium B := (X1, Yet, Fe1), Wherexe = % Ve = %(/lx—dxxel), andr; is determined

by F(r, c) = didy(a+b)r?+[d,(d)rbc—kdy) —kAx(a+b)] r + ke(dydy — by = 0. Again, it is easy
to show that i and & intersect at the transcritical bifurcation poibt,(;) ~ (9.38x1074, 0).
On the infected equilibrium £ there are two saddle-node bifurcation points (turningn{s)j
(b, Ts) ~ (-1.49x 1073, 4.18x10"), and ps,, I's,) ~ (-5.77x 1073, 3.05x 10'%), and a Hopf
bifurcation point by, ry) ~ (6.56x1074, 7.24x103).

The bifurcation diagram and simulated results are showngarg 2.5. All the conditions
()-(iv) in Hypothesis 1 are satisfied. Blips do appear siree Hopf critical point is close to
the transcritical point. However, becausg i& not globally stable, depending on the initial
conditions, the oscillation may converge to the stable ldgiuim E; (see Figure 2.5(c)), or
converge to a limit cycle with large amplitude (blips), aswh in Figure 2.5(d). Convergence
to a smaller, regular oscillation due to the Hopf bifurcatis also possible (not shown in
Figure 2.5).

2.3.2 ldentifying the region of parameter space exhibiting viral blips

Having found viral blip behaviour in the simple 3-dimensabmfection model (2.14), we are
now further interested in identifying the region of paraenetpace in which viral blips may
occur. This is particularly useful in applications sincer@ality, all parameters are roughly
measured. Thus, we need to study the robustness of the pkanarto variations in the system
parameters. If blips only appear for a very small region enghrameter space, then the results
are not practically useful. The main idea of identifying tbgion where blips may occur is to
study the instability of the solutions of the system. Onaeuthstable region is identified, blips
can be found by using the other conditions in Hypothesis Trdier to simplify the analysis,
we first introduce state variable scaling and parametealiegcinto system (2.14).
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Figure 2.5: Dynamics and bifurcation of system (2.14)doe 1.0x 10%, k = 1.49x 10'%: (a)
bifurcation diagram projected on ther plane; (b) a close-up of part (a); (c) simulated time
history y(t) converging to kE for b = 0.001 with the initial condition X,y,r) = (178 46, 73)
close to g; and (d) simulated time history(t) converging to a stable limit cycle (blips) for
b = 0.001 with the initial conditionX, y, r)=(1005 3, 3) close to k.



24 CHAPTER 2. CONDITIONS FOR TRANSIENT VIREMIA IN DETERMINISTIC IN-HOST MODELS

©) ©)
1 +

@ ®
+ +

@ )
00124 - N

@ 3) )

+ B 4
Oscillation Area
Oscillation Area

H @ 6
0,002 -+ ---ee-- R S AR

T T T 1
0 0.05 0.10 0.15 0.20
B

(@) (b) (c)

Figure 2.6: (a) Graph of;, = 0 in the A-B-C parameter space, identifying the region yielding
oscillations; (b) cross section of panel (a) whére 0.364; and (c) cross section of panel (a)
whereC=3.94x10.

2.3.2.1 State variable scaling and parameter rescaling
Introducing the following scaling=c; X, y=cY, r =C3R, t =47, Wwherec, = ﬂ , Cp= ﬂ , C3=
Ak oy = 4= g, t0 (2.14) and lettingA = ab g_blk c_- 4 p _d ylelds the

013d27 d)% B d2 ’ 012/1 k? dy,
foIIowmg scaled system

: AR - AR |
X_l—DXX—(B+R+C)XY, Y_(B+R )XY—Y, R=Y-DR  (2.15)

+C
which will be used in the following analysis, with the scafgrameter values given by
A=0364 C=394x10% D,=0.057 D,=100Q (2.16)

and B is treated as a bifurcation parameter.

2.3.2.2 Equilibrium solutions and their stability

The bifurcation patterns of the scaled system (2.15) aredhee as that of system (2.14). Two
equilibrium solutions are &: (Xe, Yeo, Reo) = (1/Dy, 0, 0), and & : (Xe1, Yer, Re1), where

Xo = Wg‘)ﬂTfﬁBC, Yy = 1-— mﬁg*"T{ﬁgc, andRy, is determined from the equatidfy(R) =

D, (A+B)R°+[D,;(BC+1)-(A+B)]R+D,-B)C=0.

The characteristic polynomial forgks Po(€) = (£ + Dy) (€ + Dy) (€ - BX . Itis easy to
show that 5 and B exchange stability at the transcritical bifurcation pot= Dy. The
characteristic polynomial for s P1(¢£) = £3 + ay(r)é? + ax(r)é + ag(r), and Hopf critical point
is determined by\, = a;(r) ax(r) — ag(r) = 0. We fix parameter®, and Dy, and choosé,

B andC as bifurcation parameters. Then, we want to find the parameg@n where blips
may occur. First of all, a Hopf bifurcation is necessaryuiggg the conditiomA,(A, B,C)=0.
The graph ofA;(A, B,C) =0 is plotted in the 3-dimension&-B-C parameter space, as shown
in Figure 2.6(a), where the green hypersurface defines & peirds which are Hopf critical
points; and the region bounded by the green surface is UadtatE,;, leading to oscillations.
Thus blips may occur within this region and near the bounderyvell, depending on the
relative position of the Hopf critical point with respectttee transcritical point.
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In the following, we fix either parameté or C to obtain two-dimensional graphs, which
illustrate more clearly the bifurcations necessary fopdli

2.3.2.3 ParameterA fixed

Fix A = 0.364, which cuts the surface in Figure 2.6(a) to yield cunasshown in Fig-
ure 2.6(b). The transcritical bifurcation occursit 0.057, which is denoted by a red line in
Figure 2.6(b). A Hopf bifurcation occurs on the green cuiasgd the region bounded by the
green and red curves indicates where oscillations can hagpipshould be noted that the above
results are based on local dynamical analysis, thus bligsaisa appear outside this bounded
region, but close to the green curve.

We take three typical values & (as the three dotted lines shown in Figure 2.6(b)), and
obtain the Hopf critical points as follows.

C=0002: @Bu Ry =~ (1.69x1071 7.90x10%),
C=0012: By, Ry,)~(6.27x1072, 1.53x10%),
C=0012: By, Ry,) ~(L06x1071, 531x10%),
C=0.018: No Hopf critical point

(2.17)

The bifurcation diagrams corresponding to the three lites,0.002 C =0.012 andC =
0.018, are shown in the top three graphs in Figure 2.7. Six sitedIresults are also presented
in this figure, corresponding to the six points marked on lined dotted lines in Figure 2.6(b).
Itis seen that the values taken from the points-(4) generate blips; point (5) leads to a regular
oscillation, while point (6) gives a simple stable equilifon solution, as expected. For this case
when parameteA is fixed, no blips have been found for the values outside thienebounded
by the red and green curves. It should be noted in the top mifiglire of Figure 2.7 that there
are two Hopf bifurcation points on the equilibrium.EOne of them is supercritical while the
other is subcritical, but the two families of the limit cyslbifurcating from these two critical
points are both stable, since the stability change is redeassthe two points. In fact, the three
eigenvalues along the unstable part gfetween the two Hopf bifurcation points contain one
negative eigenvalue and a pair of complex conjugates wisitige real part. On the two stable
parts, the real part of the complex conjugate eigenvaluasgds sign to become negative. As
the parameteC is increasing from @02 to 0018, the two Hopf bifurcation points merge to a
single point on E (corresponding to the turning point on the green curve, spar€ 2.6(b), at
which the horizontal line is tangent to the green curve) ahreesponding eigenvalues contain
a negative eigenvalue and a purely imaginary pair. Thiseddeharacterizes a degenerate
Hopf bifurcation (e.g. see [44]), flerent from the Hopf bifurcation defined by (2.12). A
similar discussion applies to the other two Hopf bifurcatpmints shown in the top left figure
in Figure 2.8.

2.3.2.4 ParametelC fixed

Now we fix paramete€ = 3.94 x 104, which results in curves in tha-B plane by cutting
the surface in Figure 2.6(a), as shown in Figure 2.6(c). Tdrestritical point is kept the same:
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Figure 2.7: Bifurcation diagrams corresponding@o= 0.002 0.012 and (018, respec-
tively, and numerical simulation results for the paramei@ues 8,C) = (0.06,0.002)%,
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Figure 2.9: (a) Bifurcation diagram of system (2.19), shaytime equilibrium solutions & E;,
and B with dashed and solid lines denoting unstable and staldpentively; (b) Simulated
viral blips in system (2.19) fon = 0.007. Other parameter values used here arek=p=
1, d=0.01, m=b=0.05 a=0.5, c=0.1.

B = 0.057. We choose three typical valuesfofand find the Hopf bifurcation points as follows.

A=0025: @u,.Ry)~ (5.82x102, 9.84x10°5),

A=0025: @Bu,Ry,)~ (6.75x102, 2.65x10%), (2.18)
A=0200: @Bu Ry =~ (832x102 7.33x10%), '
A=0364: (Bn Ry ~(399x1072, 7.99x10%).

The bifurcation diagrams corresponding to the three lihes0.025 A = 0.200 andA =
0.364 are shown in the top three graphs in Figure 2.8. Nine sitedlresults are also presented
in this figure, corresponding to the nine points marked orfitteedotted lines in Figure 2.6(c).
It is observed from these graphs that among the nine chogampeger values, seven cases
exhibit blips (see the points (2§7) and (9) in Figure 2.6(c) with the corresponding simudate
results shown in Figure 2.8). It is noted that some of thesetp@re not even close to the
red line, nor in the region bounded by the red and green cusuggjesting that a simple 3-
dimensional HIV model can generate rich blips.

2.3.3 3-dimensional immunological model

In this subsection, we briefly consider an immunological #i¢d8], and apply Hypothesis 1
to show that the model can have blips. For simplicity, thgioal 4-d model is reduced (by a
guasi-steady state assumption on the virus particles) td m8del, described by

X=A-dx=pBy)xy,
y=By)xy—ay- pyz
zZ=cyz- bz

(2.19)

wherex, y andz represent the densities of the infected cells, uninfecedld,cand CTL, re-
spectively. The system (2.19) with constg(y) is well-known [6, 27], which does not exhibit

blips. In order to generate viral blips, here we chg@g®=n+_2 , wheren andmare minimum

y+k?
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and maximum infectivity, and# represents the density of infected cells when the infagtivi
takes its median value. Since the analysis is similar toipusvmodels, we omit the details
and only give the results as follows. The system (2.19) hasetkquilibrium solutions: the
infection-free equilibrium, E, the infected equilibrium with CTL, E and the infected equi-
librium without CTL, E. There are two transcritical bifurcation points, one ofnth@amed
“transcritical 1” in Figure 2.9(a), is at the intersectiohEy and B: (ny, Yu) = (0.005 0),

at which i and B exchange their stability. The second one occurs at thesetéon of &
and B: (ny, Vi) = (-0.01 0.5), called “transcritical 2” in Figure 2.9(a). However, adhat
they only exchange their stability if restricted to a onsdnsional manifold, and both of them
are unstable in the whole space since one of the eigenvafiggsgositive when crossing this
transcritical point. Ebecomes stable untifi is increased to cross a Hopf critical point (called
“Hopf 1” in Figure 2.9()): (1n, Y1) =~ (0.206 0.5). Another Hopf bifurcation point (called
“Hopf 2” in Figure 2.9(a)) happens on &t (non, Yon) = (0.0213 1.81). The limit cycles
bifurcating from Hopf 1 are stable, while those from Hopf 2 anstable, leading to large os-
cillating motions when the values ofare chosen from the intervail( n,4). The above results
show that all the four conditions in Hypothesis 1 are satisfend blips indeed appear. The
simulated blips fon = 0.007 are depicted in Figure 2.9(b).

2.4 A 2-dimensional in-host infection model

For the generalized 3-dimensional model discussed in @e2ti3, we assume thatis some
form of damage to the host or to the host immune system, wharleases with the extent of the
infection, that is, in proportion to the infected cell depsHere, we further assume that there
is a quasi-steady state (as used in (2.14)) between the @éamand the infected cell density
y. Thus, the 3-dimensional HIV model can be further reduced2edimensional model, given
by

X= A= dX=BHYXY, Y =py)xy-dy, (2.20)

Note that system (2.20) is now in the form of an in-host infecmodel, which includes only
uninfected and infected target cell populations, and thetrbasic “birth” and death rates.
However, we now think of the infectivity(y) as a possible function of, other parameters
have the same meaning as in (2.19). We will show that thislgiegh2-dimensional infection

model may also be able to generate blips.

2.4.1 2-dimensional in-host model with constant and linear infection rate

First, we consider the case when the infection rafg) is simply a constant function, that is
Bly) = B. Takingp itself as a bifurcation parameter, it is easy to show thatetlexist two
equilibrium solutions and a transcritical bifurcation piibut no Hopf bifurcation exists. This
violates Hypothesis 1, and therefore no blips can appedisrcase.

Next, suppose the infection rg#€y) is a linear function of the infected cell densiyy that
is B(y) = b+ ay, where the parametessandb represent the same constants as beforeaand
is treated as a bifurcation parameter. In this case, we Wewequilibrium solutions Eand
E;. But K is always stable for all values afthough there exists a Hopf bifurcation on.E



30 CHAPTER 2. CONDITIONS FOR TRANSIENT VIREMIA IN DETERMINISTIC IN-HOST MODELS

Therefore, no transcritical bifurcation point exists fbrstcase, which violates Hypothesis 1,
implying that blips are not possible whg(y) is a linear function.

2.4.2 A 2-dimensional in-host model with saturating infection rate

Motivated by our previous results for the 3- and 4-dimenaignodels, we next assume that
infectivity is an increasing saturating function of thedofed cell densityy, namely,B(y) =
b+ yay For our numerical work, we take the same valuea ahdb, as used in Section 3.1,
while cis taken to be = 50, obtained by numerical simulation based on the expetimhdata
given in [39]. Other parameter values are as described folein@.14).

2.4.2.1 Scaling

For convenience in the following analysis, we first simplgiystem (2.20) by the following
scaling to reduce the number of parameters. Xee X, y= Y, t = 37, wheree, = g—y &=

¢, &=, and seA= %, B= b Cc= Cdy , D= d*. Then, the rescaled system is given by

d2) dz,
d_le—DX—(B+ AT )xy
dr Y+C 291
dy AY (2:21)
— =|B+ XY -Y,
dr ( Y + C)

with B treated as a bifurcation parameter. Taking the parameleev&om [28], we have the
scaled parameter valuds=0.364, C=0.823 andD =0.057 for system (2.21).

2.4.2.2 Equilibrium solutions and their stability

By settingX = Y = 0 in (2.21), we get two biologically meaningful equilibriusolutions:
the uninfected equilibrium solutiongE: (Xo, Yo) = (1/D, 0), and the infected equilibrium
solution B = (Xq, Y1), whereX; = (AE%, andY; is determined by the equatid®, =
(A+B)Y?+(D+BC-A-B)Y+(D-B)C=0. This indicates that the condition (i) in Hypothesis 1
is satisfied. Similarly, it is easy to find thag s stable (unstable) B < D (B > D).

2.4.2.3 Bifurcation analysis

By using the characteristic polynomials at &d &, we can show that a transcritical bifur-
cation occurs at the critical pointYy( B;) = (0, 0.057), which satisfies the condition (ii) in
Hypothesis 1. Eand g intersect at this critical point and exchange their stghilFurther,
a Hopf bifurcation happens at the critical poi.( Yy) ~ (0.121, 0.811). E is stable (un-
stable) on the right (left) side of the Hopf bifurcation piTherefore, the condition (iii) in
Hypothesis 1 holds for this case. If we take a valuBafearB, on the side where bothyEand
E; are unstable, then the condition (iv) in Hypothesis 1, ie akisfied and so blips occur. The
bifurcation diagram is shown in Figure 2.10(a), and the &ated viral blips forB = 0.060 are
depicted in Figure 2.10(b).

Summarizing the results of this section, we conclude thatsimple 2-dimensional in-
host model is stliciently complex to exhibit viral blips, provided the infagty function is an
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Figure 2.10: (a) Bifurcation diagram of system (2.21) prtgdmon theB-Y plane, with the red
and blue lines denoting theyEand B, respectively, dotted and solid lines indicating unstable
and stable, respectively; and (b) simulated time history®ffor B = 0.060.

increasing, saturating function of infected cell denskipwever, for this model, the range of
parameter space in which blips occur is relatively resdctompared with the 3-dimensional
model which is established in the previous section.

An interesting question is natually raised here: does tkgigt a more general function
B(y) such that the existence of blips depends upon the genegégies of the function like its
maximal values andr its derivatives. In fact, it has been found that by chogsive parameter
clarge enough in the functigsy a threshold is reached beyond which the Hopf bifurcatiad, a
hence also the viral blips, disappear.

2.5 Recurrency in a 5-dimensional model

So far, we have considered 2-, 3- and 4-dimensional in-mdstiion models with increasing,
saturating infectivity functions, and shown that all thesadels exhibit blips. Moreover, it has
been shown for the 2-dimensional model (and can be showhdd-tand 4-dimensional mod-
els, but omitted here) that replacing the infectivity fuantwith a constant or linear function of
y will cause blips to disappear. However, in this section wk stiow that higher-dimensional
systems may have blips even with a constant infectivity tionc

We consider a previously proposed 5-dimensional immuncédgnodel, in which recur-
rent phenomena or viral blips have been observed via nualaiimulation [41]. The model
describes antibody concentrations and cytotoxic T lymptesc(CTLS) explicitly, and is de-
scribed as follows:

X=A—dx—pBxv, (2.22a)
y=pxXv—ay- pyz (2.22b)
Z=cyz— bz+ hy, (2.22c)
U=£&z-nu-—Kkuy, (2.22d)

V = ey— Kuv— yxv— gv. (2.22e)
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Table 2.2: Parameter values used in model (2.22) [41].

Parameter Value

10" cellsuLtday™

0100 day*

1.25%x 10°° virion"t uL day™
104 cellstuLday™

10* cells'ulLday™
0.200 day*

0. 104 day™

100 molecules ceif day™
0.040 day®

250x 10°° particle® uL day™
250 virionscel!day™
5.00x10° cell*uLday™

R DI ™M T300T ™A~

Herex, y, z, uandv are respectively the population densities of uninfectegktecells, infected
target cells, CTLs, antibodies and virions. The parametersddx represent uninfected cells’
constant growth rate and death rate, respectively. Taejkt are infected by virus at rate,
Bxv. Infected cells die at ratay, being killed by CTLs at rat@yz It is assumed that CTLs
proliferate at rateyz and decrease with the natural death ketel' he fourth equation describes
the antibody growth raté&z, which is proportional to the number of CTLs, the natural Heate
of antibody,nu, and the binding rate of one antibody with one antider, In the last equation,
viruses are released from infected cells at ®teand are bound by antibody, absorbed by
uninfected cells, or cleared at ratesv, yxv, andqv, respectively. The ternhy corresponds
to the CTL diferentiated from memory T cells [41], and should be expreaségyz,, where
Zy is the population density of virus-specific memory T cellfjeh produce activated CTLs
with ratehyy. In [41], zy is assumed to be a constant, and so we lmlavehyzy. We will
consider two cased = 0 andh # 0; h = 0 is due to the absence of memory T cells (that is
zy = 0) during the primary #ector stage. We will show the relation between the two cases.
For simplicity, without loss of the properties of antibagligve assumg = 0 according to [41].
Other experimental parameter values used for studying hid¥2) are given in Table 2.2.

2.5.1 Well-posedness of model (2.22)

Due to physical meaning, negative values of the state Vesal system (2.22) are not allowed.
Only non-negative initial conditions are considered aral gblutions of (2.22) must not be
negative. The parameters in (2.22) are all positive duedw Hiological meaning. Expressing
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the solutions of the system (2.22) by variation of constgitls

X(t) = x(0) exp[- [(d+Av(9)ds] + A [, exp [ [.(d + Bv(w)) dw] ds, (2.23a)
y() = yO) expF [;(a+ pAs)ds] +8 [ (IS exp - [[(a+ pAw)) dwlds,  (2.23b)
Z(t) = Z(0) exp [, (cy(s) — b) ds] + h [ y(s) exp [[. (cy(w) — b) dw] ds, (2.23c)
u(t) = u(0) exp k- 5(n+ ku(9)) ds] + £ [ Z(S) exp - [ (7 + kvw)) dw] ds (2.23d)

v(t) = V(0)exp [ [{(ku(s)+yx(9)+a)ds| +e [ y(s) exp [ [ (ku(w)+yx(w)+g)dwils. (2.23e)

Theorem 2.5.1 When the initial conditions are taken positive, the soliof system (2.22)
remain positive for t- 0. Moreover, they are bounded.

Proof By the initial conditionx(0) > O, it is easy to see from (2.23a) thgt) > 0 Vt > 0.
Next, we show thay(t) > 0 Yt > 0 by an argument of contradiction. Suppose, otherwise,
y(t) < O for some intervat € (t3,t), t; > 0. Sincey(0) > 0, without loss of generality, we
may assume; is the first time fory to cross zero, i.ey(t) > 0 Vt € [0, t;), y(t;) = 0, and

y(t) < 0Vt e (13, tp). Thus, from (2.23e) we havwgt;) > 0 due tov(0) > 0. On the other
hand, it is seen from (2.23b) theft) must cross zero to become negative at sbméd; since

y(t) < 0Vt € (13, tp). So lett = t3 be the first time fom(t) to cross zero, i.ey(t;) = 0 and
v(t) > 0Vt € [t, t3). Now, taket* = min(t; — €, t3), satisfyingt* > t;, where O< € < 1. So
from the assumption we haygt*) < 0. However, on the other hand, it follows from (2.23b)
that

y(t') = y(t) exp - [ (a+ pZS)ds] +5 [} xS exp[- [ (a+ pzw)) dw]ds
=B [, X9 exp[- [ (a+ pzw)) dwlds> 0, sincewv(s) >0 Vte (ty.1).

leading to a contradiction. Henggt) > 0 ¥Vt > 0, and it then follows from (2.23c) and
(2.23e) thatz(t) > 0 andv(t) > 0 Yt > 0. Finally, by the positivity ofz(t), (2.23d) gives
uit) >0vt>0.

It remains to prove that positive solutions of system (2&2)all bounded. First, consider
equation (2.22a), which yields< 1 — dx. Given that the exponential functions have negative
exponents, we show tha(t) for t > 0 is bounded since ds— +oo,

X(t) < exp (- [ dds) [x(0)+A [, exp ([ ddu)ds] = x(0)e® + 4(1 — e ) < 4.

Thus, denotemay = lim_, ., supx(t) = g It is easy to see&min > 0. Next, we add (2.22a)
and (2.22b) together, to obtam+y =1 — dx—ay - pyz < 1 - min(d,a)(x + y). Using
the same boundedness argumentX@), we getx(t) +y(t) < m ast — +oo, and thus
Ymax = liMesre0 SUPY(L) < - NOW consider (2.22€), yielding< eymax—(yXmin+0) V. Sim-
ilarly using the same boundedness argumeni{dr we have lim, . v(t) < rim. To prove
boundedness df(t) ¥Vt > 0, we use proof by contradiction. Assurag) is unbounded, i.e.
limy_,, . Z(t) > +o00. Due to positivity ofx, y, z, vand boundedness gf y andy, it follows from
(2.22b) thaty<0 for z> z*, or fort>t* >0 (z* andt* are finite), which implies lim, . y(t) — 0.

Then, from (2.22c) we have= (cy-b)z+hy, so for suficiently larget, cy—b < 0, and soz’
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becomes negative (for sormze- z*), implying thatz can not increase unboundedly, which is a
contradiction. Thus, we denotg.x=maxz(t), t > 0}. Finally, from equation (2.22d), we have
U< EZmax—nU, Which yieldsu(t) < f% ast— +oo. Hence, we have shown that the solutions of
system (2.22) are positive and bounded.

If the initial conditions have some zero elements, it is éasgee from (2.23) that solutions
are nonnegative. Hence, system (2.22) is proved to be apos#d biological model, with
nonnegative and bounded solutions.

2.5.2 Equilibrium solutions and their stability

The following results are obtained based on the assumptien O [41]. The equilibrium
solutions of (2.22) are obtained by simply setting the vebdd of (2.22) to zero. There
are two equilibrium solutions: the infection-free equilibm: Ey : (Xeo, Ye0, Zeo» Ueos Veo) =

g, 0, 0, 0, 0), and the infected equilibrium:1E (Xe1, Ye1, Ze1, Uet, Ver), Wherevg = ”;;Zel, Ze1=

%, andye = “@&ea) pyrther, withh = 104 and other parameter values taken from
Table 2.2,us can be expressed in terms)af, and an equatiof4(Xe;, @) = 0 is obtained to
determineXxe;.

The stability analysis for Equilibriadgand B is based on the Jacobian matrix of (2.22).
Evaluating the Jacobian at the infection-free equilibribgryields the characteristic polyno-
mial P, () = det[¥l — Jo(Eo)] = (¥ +d)(¥ +b)(¥+1)Pe,,, WherePe, = P2+ (% +a)¥+ 221,

It is easy to see that the stability of 5 simply determined by the sign ¢y — €3), i.e., B

is stable (unstable) ifay — e8) > 0 (< 0). In a similar way, we evaluate the Jacobian at E
to obtain the 5th-degree characteristic polynomial, fromch the fourth Hurwitz determinant
A4 can be determined.

2.5.3 Bifurcation analysis forh # 0

Now we consider possible bifurcations which may occur framequilibrium solutions gand

E,. First, for the infection-free equilibriumdzas discussed in the previous subsectignisE
stable (unstable) ifay — e8) > 0 (< 0). The only possible singularity occurs at the critical
point, determined byy — e8 = 0, at which one eigenvalue of the characteristic polynomial
becomes zero (and other four eigenvalues are negativelintg#o a static bifurcation. The
critical pointag is solved fromay — €8 = 0 asayg = %8. Thus, g is stable (unstable) when

a> ay (a < ayp), andxy = 4. With the parameter values in Table 2.2 (witk- 10~%), we have
(X0, 80)=(0.625 1.00 x10°) which actually holds for both casést 0 andh = 0.

As for the infected equilibrium E one singularity happens wheg(xe, a8) becomes zero.
Thus, the critical point is determined by the equatiagie:, @) = F4(Xe, @) = 0, at which,
the characteristic polynomial of,Ehas a zero root. As a result, we obtain one biological
meaningful solution(X.1, as1) = (0.625, 1.00 x 105). Comparing this critical point with
(X0, 8c0) Shows that these two critical points are identical, implythat & and g intersect
and exchange their stability at this point. Denote this pa#, a) = (0.625 1.00x 10°),
which is actually identical for alh # 0. The bifurcation diagram projected on tae plane
is shown in Figure 2.11(a). It clearly shows a stability exolpe between Eand g at the
transcritical point.
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Figure 2.11: Bifurcation diagram and simulated viral blips$ystem (2.22) with the parame-
ter values taken from Table 2.2 whanr- 0.500: (a) Bifurcation diagram fdr = 10, with the
red and blue lines denotingyland g, respectively, and the dotted and solid lines indicating
unstable and stable, respectively (the lower branch, @ Biological meaningless, due to neg-
ative values in the solution); (b) simulated time historyj for h = 10-4; and (c) simulated
time history ofy(t) for h = 0.

Now we turn to possible Hopf bifurcation from ESince the characteristic polynomp,
for E; cannot be factorized into polynomials of lesser degree, Weuge the Routh-Hurwitz
criterion to analyze its stability. The criterion statesttithe corresponding equilibrium is
asymptotically stable if and only if all the Hurwitz detemants are positive [3]. According
to [43], the necessary condition for a Hopf bifurcation t@wcfrom the infected equilibrium
E; is A4, = 0, combined with the equatidf,(Xe;, &) = 0, since this Hopf bifurcation point is
located on the infected equilibrium. Solving these two é¢igus yields a biological meaningful
Hopf bifurcation point k4, a4) ~ (8.85x10% 0.617). Note that the Hopf bifurcation point is
above the turning poinXyming atuming) = (8.82x 10%, 0.604) in the upper branch of,Hsee
Figure 2.11).

Summarizing the above results shows that the tage0 satisfies all the four conditions
in Hypothesis 1 to generate recurrent infection, and indeedrrence occurs fa <€ (0, a),
wherea* < ay. Moreovera* should not be too close #y, otherwise the period of limit cycles
bifurcating from the Hopf critical pointxy, ay) is relatively small. The bifurcation diagram,
shown in Figure 2.11(a), indicates that the Hopf criticainp@y, is located on the left side
of a = a, where the kis unstable. A simulated time course exhibiting recurrafédtion is
depicted in Figure 2.11(b).

2.5.4 Bifurcation analysis forh — 0"

Now we turn to consider the special cakes 0. It is easy to observe from equation (2.22c)
that the solutions of system (2.22) are discontinuous -at0. Therefore, to have continuity,
we should regard the special case- 0, as the limiting caseh — 0*. In calculation, we
choose a small enough valuetofe.g.,h = 10-8) and then do the same analysis as done for the
caseh # 0. We also get two equilibrium solutions — the infectionefequilibrium E and the
infected equilibrium E— a transcritical bifurcation which occurs at the intersscbf the two
equilibria, a Hopf bifurcation emerging from the infecteglidibrium E;, and large oscillations
occurring near the transcritical critical point on the até¢ side of the Hopf critical point,
given by 4, ay) ~ (8.7511x 10%, 0.6249). The bifurcation diagram for this case<£ 1078)
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is similar to that shown in Figure 2.11(a), except that the branches of Eare much closer,
indicating that the Hopf bifurcation point moves down tods&the turning point in the upper
branch of i, which is also moving down. This implies that one branch dditson E; becomes
almost a vertical line as — 0*, and the Hopf critical point coincides with the turning poin

Forh = 0, we treat it as the limith — 0*. The seemingly vertical line in the bifurcation
diagram forh = O disappears, clearly showing the discontinuity @fdEh = 0. This causes
difficulty in bifurcation analysis. However, if we treat the cdse- O as the limiting case
h — 0%, the solution E continuously depends dm and the bifurcation diagram becomes
smooth. Therefore, we can still use our theory to explainot@irrence of blips for the case
h = 0, as shown in Figure 2.11(c). In fact, more precisely, when 0, a Bogdanov-Takens
bifurcation (double-zero singularity) occurs at the poiitere the Hopf and turning points
are merged. This is a codimension-2 bifurcation point, Whitgeneral needs two unfolding
(bifurcation) parameters to give a complete local dynaha@nalysis. In our case, the variation
of the single parameter can be considered as a line (ray) in the two-parameter pléne.
is well known that in the vicinity of a Bogdonov-Takens bifation point, there exists Hopf
bifurcation and homoclinic bifurcation. Therefore, thetron generated near the codimension
2 bifurcation point may be due to either the Hopf or homoclibifurcation. With respect to
the blips phenomenon, the motion is large (not the small enstbifurcating from Hopf or
homoclinic bifurcations) and is a globally persistent rantiand so it is not directly related to
the Hopf or homoclinc bifurcations. In other words, we areeninterested in possible large
motions near the transcritical point.

2.6 Conclusion and discussion

In this paper, the problem of recurrent infection (viralpsl in in-host infection models is
studied via the qualitative analysis of dynamical systeAg.-dimensional HIV antioxidant-
therapy model [39], which produces viral blips, is inveatag in detail using bifurcation the-
ory. A hypothesis consisting of four conditions for the egegrce of viral blips is proposed.
These conditions describe two equilibrium solutions whitiersect at a transcritical bifur-
cation point, with a Hopf bifurcation which originates fraime equilibrium solution. Under
these conditions, blips appear for values of the bifurceaparameter near the transcritical
point, where equilibrium solutions are unstable.

Guided by the proposed hypothesis, we propose severaleainmghost infection models
that can also generate viral blips. We develop a 3-dimeasinrhost model with an increasing,
saturating infection rate similar to the HIV antioxidahtetapy model, and show that all four
conditions in the hypothesis are satisfied, leading to blipsrther, stability and bifurcation
analyses determine all possible regions in parameter spheee blips may occur. We then
investigate an even simpler 2-dimensional in-host moddlis Very simple model can also
exhibit blips, as long as the infection rate is an increassadgurating function of infected cell
density. We also apply the hypothesis to study a standardrirtbdel with CTL response [28]
and find blips by using an increasing, saturating infectate function.

Overall, our results suggest that simple ODE models of isk-lafection dynamics are
suficient to describe transient periods of high viral replicatiseparated by long periods of
guiescence. Rather than needing an exogenous trigger sisthchastic stimulation of the
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Figure 2.12: Simulated viral blips of system (2.1) with vagyamplitude and frequency when
using a time-varying function(t) = at + [ — 0.31 + 0.3e73¢°¢/59) cos¢/100)| x 10*3, where
a1 = 4.58x10" is the transcritical bifurcation value.

immune system, the natural dynamics of such systems mayfieestly rich, in many cases,
to exhibit viral blips. One key to obtaining this rich behawt is to propose an infection rate
which increases, but saturates, with the extent of the fiiwiec This is a natural assumption
if the infection itself (high density of infected target Isglmakes the host more vulnerable to
further infection. Such an assumption is certainly nattwalHIV, where the primary target
cells are T lymphocytes.

All the simulated oscillating motions and blips presentethis paper show constant am-
plitudes and frequencies. This is because all parameteesalre fixed in these simulations.
We note, however, that nonlinear, deterministic systemsmaeed generate oscillations with
varying amplitudes and phases, called “amplitude modwiatand “frequency modulation”
due to nonlinearity. This can be seen from the equation [2\Bere both amplitude and
phase are functions of the parameter Since in reality parameters are not constant, time-
varying parameters can be seen as analogous to the variateoto random perturbations in
stochastic models. Although deterministic models withdiparameter values cannot generate
varying amplitude and phase, deterministic models canrgénsuch variation if the system
is nonlinear and some parameters vary with time. For exanijidgire 2.12 shows the result
of changing the fixed used in Figure 2.3(c) to a time-varying deterministic fumct clearly
demonstrating that a deterministic model can generats bliwarying magnitude, frequency
and duration.

We note that mathematically, a system of delajedential equations (DDES) could also
generate oscillatory behaviours similar to viral blips.véwer in this case, the inherent delay
would need to be of the same order as the interval betwees lthiat is, on the order of several
months. Since it is dlicult to suggest a physiological or immunological procesd tould
impose a delay of this magnitude, it seems unlikely that DBEesthe most natural approach
for modeling viral blips.

While we are able to show that linear or constant infectioagao not lead to blips in the
2-, 3- or 4-dimensional models we have studied, furthenstic 5-dimensional immunolog-
ical model reveals that a system with a constant infectioe can also generate blips. This



38

CHAPTER 2. CONDITIONS FOR TRANSIENT VIREMIA IN DETERMINISTIC IN-HOST MODELS

suggests that the use of an increasing, saturating infedte function is not necessary, but is
effective in low-dimensional models. The results presented pevide a useful tool for the
mathematical study of viral blips or other examples of reeuirinfection. The conditions in
our hypothesis may also be used or generalized to studyregttyoshenomena in other physical
systems.
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Chapter 3

Modelling and Analysis of Recurrent
Autoimmune Disease

3.1 Introduction

The adaptive immune system consists of a set of highly siiesricells and processes that can
limit or eradicate the growth of foreign pathogens. Normahe immune system must be able
to mount responses against pathogens that invade the hosiydid attacking the organism’s
own tissues; when this discrimination fails, the resultutoanmunity. Autoimmune diseases
are often chronic and debilitating. Theffect 50 million (or one in five) Americans, but are
more common in women (75 percent of cases), according to therigan Autoimmune Re-
lated Diseases Association [2]. In fact, autoimmune desgase among the main causes of
death of young and middle-aged women in developed coun@jekvidence is also mounting
that the prevalence of autoimmune disease is increasingxéomple, a 3% global increase in
type 1 diabetes per year has been reported [26]. Althouglthhesre costs related to autoim-
mune diseases amount to over billion dollars each year iththe).S.A. alone, patients are still
sufering from misdiagnosis and delayed diagnosis due to a laokderstanding of autoim-
mune disease. These facts illustrate the vital need to fioctiger research on all autoimmune
diseases.

To address autoimmune disease in a mathematical model,steditine in brief the nor-
mal function of the immune system. The cells of the adaptmmune system are T and B
lymphocytes: B cells are involved in *humoral immune resgesi, while T cells play a large
role in the cell-mediated immune responses. Here, we foctiselatter response. Initiation of
an adaptive immune response starts when immature denciltsc(DCs), which are the most
important professional antigen presenting cells (pAPGH)lesat a site of infection or inflam-
mation, become activated and undergo maturation. Sinediasly, naive conventional T cells,
each bearing a specific antigen receptor, constantly eitewhrough the peripheral lymphoid
tissues, browsing many DCs as they carry out brief contantsyeceiving two signals: dis-
crimination of the antigen presented by DCs and interplay wi-stimulatory molecules on
the same DCs. After making a stable interaction with DCs ptasgitheir cognate antigen,
naive T cells can be activated and proliferate infieetor T cells. The proliferation phase
is significant and driven by cytokine interleukin-2 (IL-2yhich can be produced by active

42
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conventional T cells themselves and from other sources is we

Central tolerance is the main mechanism which allows the imersystem to avoid mount-
ing a response against the organism’s own tissues. In tbhceps, auto-reactive T cells, which
have antigen receptors specific to self antigens, are dedietieng lymphocyte development in
the thymus. Nevertheless, the T cells that leave the thymausedatively but not absolutely
safe. A large body of research has demonstrated that someeadtive T cells are present in
the periphery of under normal conditions [39]. In this camjpheral tolerance is established
after T cells mature and migrate into the periphery to preaeto-reactive T cells from direct-
ing an immune response toward self-antigens. One mechafiperipheral tolerance is the
population of regulatory T (deg) cells.

Regulatory T cells are a subpopulation of CDHcells, that modulate the immune system,
preventing the expansion of auto-reactive T cells, andesuent autoimmune disease [30].
Evidence [29, 4, 18] has shown that humagngkells are phenotypically heterogeneous. Most
thymus-derived &e4 cells found in the periphery are naiveg] cells [18, 22, 15], which have
not experienced T cell receptor (TCR) stimulation-mediatetumation, and are in a quiescent
stage, resistant to apoptosis. Like naive conventionalll5,c& order to participate in an
immune response, naivezd; cells require activation by antigen on pAPCs and possible co-
stimulation [1, 21]. IL-2 seems to be a necessary factor3B8031] for Treg Cell proliferation.
Activated conventional T cells are believed to be the maure® of IL-2 [12, 41], although
there also exist other IL-2 sources, such as DCs. Followitigedion, naive kegcells become
‘effector’ natural keq (NTreg) Cells, which have potent suppressive activity.

Recently, a new subset oftector nlreq Cells has been discovered experimentally [5, 27].
This subset of cells have further matured to become teriyimifferentiated suppressors,
which show more fiicient suppression, but have a shorter lifespan, thaggells. Phe-
notypic analysis has demonstrated that the expressioneofeh surface receptor HLA-DR
in NTreg Cells is heterogeneous [28], and distinguishes this taltyidifterentiated subpopu-
lation; in particular HLA-DR Tgeg Cells suppress proliferation of conventional T cells more
rapidly than HLA-DR Tgeg Cells. It is believed that activation and expansion of HLRD
effector nreg Cells provoke the generation of this subset of HLA“DRkeq cells [5].

Despite these multi-layer barriers, self-tolerance meigmas fail occasionally. Although
the activity of auto-reactive T cells in humans is not untteyd completely, research in non-
human primates has indicated that these cells in the peyigaa be activated and may pro-
voke a T-cell-mediated attack against self-determinaBif$, [causing autoimmune disorders.
For example, when auto-reactive T cells attack the centalaus system [37], acute focal
inflammation may cause a relapse of symptoms in multiplessie [38]. Treq Cells are capa-
ble of limiting these attacks, and their deficiency can leathtal autoimmune disease which
affects multiple organs in mice [6, 14], and human beings [34, 25

Autoimmune diseases are often chronic, requiring lifeloage and monitoring, despite the
fact that symptoms may disappear occasionally. Many aunine diseases are characterized
by recurrence, that is, disease relapses (return of syng)tottowed by remittance (absence of
symptoms, possibly for a long period). In several autoimendiseases, this relapse-remission
behaviour occurs even in the absence of treatment, for eeampnultifocal osteomyelitis
[16, 19], eczema [13], subacute discoid lupus erythematfki, and psoriasis [11]. In fact,
the subtypes of some diseases are clinically classifieddb@se¢he patterns of this recurrent
behaviour [38]. Therefore, an improved understanding ofime@nt dynamics in autoimmune
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disease is crucial to promote correct diagnosis, patiemagement and treatment decisions.

Recently, the relapse-remission behavior of multiple ssisrwas studied using a stochas-
tic differential equation model developed by Mendizadtadl. [36]. The authors investigated
cross-regulation interactions, modeled as Hill functjdretween regulatory and auto-reactive
effector T cells. A predator-prey system is adopted in this papevhere auto-reactive ef-
fector T cells act as prey anckd; cells as predators. The resting auto-reacttveator T cell
and resting keq cell populations are introduced to the deterministic ptedarey model us-
ing stochastic pulse trains [40], which model the probatdiinflux of resting cells. This
predator-prey model with stochasticity generates theatharistic relapse-remission behavior
of multiple sclerosis. The paper concludes that weaknedisemegative feedback between
effector and regulatory T cells may allow the immune system tegse the typical recurrent
dynamics of autoimmune disease without the need for exagetmiggers.

Recent models introduced by Alexander and Wahl [1] captuerttninsic feedback cycle
of autoimmunity, in which professional antigen presentels (pAPCs) present self-antigen,
eliciting self-reactive ffector T cells, which in turn attack host tissues. The damadest
tissue results in increased concentrations of self-amtigetivating further pAPCs. This cycle
is kept in check by the actions ofz{, cells, which limit the self-reactive immune response
via several putative mechanisms. These models exhibitilegaicorresponding to tolerance
and autoimmunity, but bistability is not observed. Instemdranching process was used to
demonstrate that from identical starting conditions,estatf immune tolerance or intolerance
could be reached probabilistically. Although this set ddited models fiers a general approach
to autoimmunity and the role ofgE, cells, they do not capture the recurrent behavior which
characterizes many autoimmune diseases.

Following the recent experimental discovery of HLA-DRge4 cells described above, we
chose to expand the model of Wahl and Alexander to includertbw class of potently sup-
pressive cells. In some parameter regimes, we observedrimathethat the expanded model
exhibits long periods of self tolerance, punctuated byflapsodes of disease recurrence, de-
terministic dynamics reminiscent of our recent investwa of viral blips in in-host infection
models [45]. In these infection models, relapse-remisbimaviour may in some cases arise
simply from the nonlinear dynamics of the underlying dyneahisystem, in the absence of
stochasticity, therapy, or other trigger mechanisms [&2, By taking advantage of dynamical
systems theory, we recently proposed four conditions whitdrantee recurrent behavior in
deterministic viral infection models [45]. Given the impamce of recurrence to autoimmune
disease, here we apply a similar approach to gain an aralyticlerstanding of the dynamical
features underlying recurrence in the autoimmune model.

The rest of the paper is organized as follows. In Section 2intveduce two established
models [1] describing autoimmune disease. We demonstratéhtese two models do not have
Hopf bifurcations, and so cannot exhibit the oscillatorjrdngor which underlies recurrence.
Based on recent experimental findings, we introduce the ngyslibtype and establish a new
model. In Section 3, we first prove that the new model is wellenl, and then perform mathe-
matical analysis to find equilibrium solutions and detemtimeir local and global stability. By
choosing proper bifurcation parameters, we also idertiéyttanscritical and Hopf bifurcation
critical points, showing that the new model should displerecurrent dynamics characteristic
of many autoimmune diseases. Further, by applying centeifabé theory and normal form
theory, we find approximate solutions of the limit cycles determine their stability. Then, in
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Section 4, we use numerical simulation to verify the anedftpredictions obtained in Section
4. Moreover, a comparison between the analytical and naalaesults for the Hopf bifurca-
tion are given in this section. In order to identify key farston the mechanism of recurrence, in
Section 5 we perform model reduction under a quasi-steady assumption. This is achieved
by reducing the number of state variables and parametelisalan by a rescaling of the time
variable. Then, we prove that the original and reduced nsoebdtibit the same dynamical be-
havior as long as the parameter values are chosen propesggdBa the reduced model, three
bifurcation parameters are used to classify the paramatgyes for which recurrence exists.
Furthermore, we show that there do not exist homoclinictsrioi either the original or the
reduced models, and so the recurrence phenomenon eithesdomm Hopf bifurcation or is
due to persistant oscillations. We conclude with a briefalsion of these results in Section 6.

3.2 Model development

Following recent experimental findings, we sought to introglterminally diferentiated regu-
latory T cells as an explicit variable into models estaldsby Alexander and Wahl [1]. Their
models consider two suppressive mechanisms enactegdgygdlls. The first of these is the
direct suppression of pAPCs byd; cells, gfectively removing pAPCs from the system. The
corresponding model is given by

A = fUG - (1R, + b)) A — paA,

Rn = (mE + B)A — unRy,

E = AeA - pueE,

G =yE - VG - usG,

(3.1)

where the variables, R,, E, G represent the populations of mature pAPCs, activg.gdells,
active auto-reactiveffector T cells, and the particular self-antigen of interéditcell popula-
tions are specific for a given self-antigen. Parameter defins and their numerical values are
listed in Table 3.1; meaningful numerical values were adhlgthosen in [1] with extended ref-
erence to the primary literature. Model (3.1) assumes tAR(Gs undergo maturation at a rate
of f VG, while during this process the antigen uptaken rateGs The activated auto-reactive
effector T cells E) are produced at a rate @ A by resting T cells through an interaction with
mature pAPCsA). After activation, auto-reactiveffiector T cells E) can produce IL-2, which

is required for keg cell proliferation, while other IL-2 sources also exist.uBmTgey Cells are
activated at a rate oftf(E+p3)A, wheren,E represents IL-2 produced by active auto-reactive
effector T cells E), andg represents background sources of IL-2.rgcells R,) then sup-
press pAPCsA) at a rate ofo;R,A, while b; represents a level of non-specific background
suppression. Auto-reactiveéfector T cells E) attack the host tissues, causing the release of
self-antigen at a rate of E, which in turn triggers the maturation of pAPCs, and thugates

a new cycle of autoimmunity. Here, the deatharance rates of the populatioAsR,, E, and

G areua, un, ug, andug respectively.

Another suppressive mechanism is considered in isolatigf]j that is, nkeq cells may
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directly reduce the auto-reactivector T cell population. This model is described by

A= UG - uaA,
E = AgA - (3R, + b3)E — ueE, '
G =yE - VG - ucG,

where the auto-reactivetector T cells are suppressed byraJcells and background suppres-
sion at a rate ofd3 R,+bs3) E. Other terms have the same meaning as the counterparts &l mod
(3.2).

3.2.1 No recurrence in models (3.1) and (3.2)

Since the main purpose of this paper is to study recurrenegitioimmune models, we first
want to ask if the above two models (3.1) and (3.2) can exthistbehavior. According to the
Hypothesis given in [45], a Hopf bifurcation is a necessamgdition for recurrence. In this
section, we will show that the two models (3.1) and (3.2) edldo not have a Hopf bifurcation.
For simplicity, we only briefly outline the proof for model.(3. Similarly, one can prove this
for model (3.2).
First, as usual, we can show that the solutions of model 8. hon-negative if the initial

conditions are non-negative, and all solutions are bounBaedher, we show that model (3.1)
has two equilibrium solutions: one of them is the trivial gi(paium,

Eo: Ao=Rwo=Ey=Gy=0;

and the other is the non-trivial equilibrium,

fUy1e — ue(b , 1 1
E,: Ry = Uyde — pe( £+/1A)(V+,UG)’ E-a G = Y% A
o1ue(V+ ug) ME ue(V + uc)
where
Bue \/ Bue 2 TUyAe — pe(by + pua)(V + )
Al = —r0 3.3
1 27'[1/15 * (27T1/1E) * 0'17T1/1E ’ ( )

for fV)//lE - (bl +/1A),uE(\7+,uG) > 0, and thU$1 >0.

Then, the stability of Eand & can be determined from the linearized system of (3.1) and its
characteristic polynomials, associated with these twdliega. The characteristic polynomial
for Eg is obtained a®o(L) = (L + un)(L3 + @91 L? + agy L + ags), where

ag1 = by + pa + pe + V+ g,
a2 = ue(by + ua + V+ ug) + (by + pa + V+ ug),
o3 = pe(br + pa)(V + u) — FUyAe.

Further, it is easy to show that
Aoz = 01802 — @03 = (D1 +1a) (e +V+1c)” + (ue +V+ ) [ue(V+uc) + (bl+,UA)2] + fUyde > 0.

Thus, according to the Routh-Hurwitz criterion we can codelthat the equilibrium gis
stable (unstable) ific(b; + ua)(V + ug) — f¥yAe is > 0 (< 0). The only possible bifurcation
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from Ey is a static bifurcation which occurs at the critical poirgtermined byf vyAg = ug(by+
upn)(V+ ug). Note that wheme(by + ua)(V+ ug) — f¥yAe > 0, the equilibrium E does not exist.

Next, similarly we can discuss the stability of. H he characteristic polynomial, associated
with E; is given byPy(L) = L* + a1 L3 + a15 L2 + a3 L + ay4, Where

a1 [fVﬂE + ue(V + pe)(uy + pe + \7+,uG)],

 ue(VF pe)

agp o1(V + uc)(mde As + Bue) Ay + FUyAe(un + pe + V + ug)

2 ue(V +,UG){
(7 + )| pettn + (un + pe) (@ + a) |},

(1@ + 1) | Aema (¥ + G + 2ue) As + Bue(ue + ¥+ pe) | A
a2 (0 + ) + (ue + ¥ + ) Ty e},

a4 = 01(V+ uc)(2r1de Ar + Bue) A,

A3 = —=——~
pe(V + uc)

whereA; is given in (3.3). It is easy to see thaf; > 0, i = 1, 2, 3,4. Moreover, we can show
that

Ao = ag1a1p — g3
3 (o 2
= 5o He(V+uc) 1B AL
pg(V+ MG)Z{

2 (T + o) nuie + ¥+ pe)? + (V+ pe) (1 + 2 + pe(@ + o))
+ugin(un + by + ,UA)]
+ 0y + p0)Ae] (un + T+ 1)” + 1e(3W + 6) + e + pan)|

H(FOye) (i + pte + T+ ) + pin| Ty e + paopte (¥ + i) || 1972 — pe(r + )V + 1) ||
> 0,

due tOfV’)//lE > ,UE(bl + yA)(\7 + ,uG), as well a3 = (allalz - alg)alg - a14a%1 > 0. Here the
lengthy expression o3 is omitted for brevity. Therefore,Hs stable (unstable) if vyAg —
ue(by + ua)(V + us) > 0(< 0). Noticing the stability condition for &Zwe can see thatgand
E; exchange their stability at the critical point, determinsdf VyAe = ug(by + ua)(V + ug),
and only a transcritical bifurcation exists at this critipaint. This implies that there is also no
Hopf bifurcation which can occur from the equilibrium.E

Further, we can show that the trivial equilibrium of modell(3is globally asymptoti-
cally stable. This can be achieved by first considering trsg, fihird and the last equations
of (3.1), and ignoring the nonlinear terAvr;R,A in the first equation, yielding a linear sys-
tem, which has the characteristic polynomi(L). Thus, by using comparison theory and
this linear system (obtained by ignoring the nonlinear e can easily prove that the equi-
librium Eg is globally asymptotically stable. Although we have notya the global stabil-
ity of the non-trivial equilibrium, we have tried a number méimerical simulations, which
show that all solutions converge tqQ Eegardless the initial conditions as long as the condition
fUyAe > pe(by + ua)(V + ug) is satisfied. Hence, we conjecture that the two models (3.1)
and (3.2) do not have any persistent solutions, except tbeetyuilibrium solutions Eand
E;. This motivates the development of new models for studyehgpse-remission dynamics in
autoimmune disease.
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3.2.2 Developing new models

Now, based on the two models (3.1) and (3.2), we develop nedelmo First, instead of
considering the two immunosuppressive mechanisms intisnlave combine them to obtain
the following 4-dimensional ODE model:

A= UG - (01R, + by)A - 1aA,
E = AgA - (3R, + b3)E — ueE,
G =yE - VG - ucG,

(3.4)

where ther; is replaced byrs. Note that the numerical value of eitheror 73 from [1] could
be used; the dlierence is immaterial to our analysis.

As mentioned in the introduction, phenotypic analysis ¢atis that theffector Tgeq Cell
subset is heterogeneous in the expression of HLA-DR [29i¢chvidentifies a terminally dif-
ferentiated subpopulation oftector Treq Cells, the HLA-DRF TreS. Therefore, we introduce
these short-lived but potently suppressivggells into our model (3.4), denoted By. Then,
we get a 5-dimensional model as follows:

A = fUG - O'l(Rn + de)A— blA—,uAA,
Rn = (m3sE + B)A — punRn — &R,
Ry = C¢R, — uaRy, (3.5)

E_ = /lEA— O'3(Rn + de)E — b3E —/,IEE.
G = yE — VG — 16G.

For the above model, the possibility remains that HLA-DiRreq Cells may be activated to
become terminal HLA-DR TgegCells [29]. Therefore, we indicate the part of HLA-DRTgeq
cells which undergo activation as an output term friggrpopulation, with the activation rate,
‘¢Ry". The activated HLA-DR nTgegcCells may further experience expansion and proliferation,
say three divisions, thus = 2% = 8, which contribute an input source of HLA-DRIgeq
cells, denoted bycéR,. From the functional point of view, compared to HLA-DRI geq
cells, HLA-DR" Tgeq cells show more féective suppression offfector conventional T cells
and pAPCs, and secrete cytokines more rapidly [5]. Thergfeeeassume the suppression
rate to pAPCs andfector T cells asd1dRyA’ and ‘o3dRyE’, respectively, and sed = 2.
In healthy adults, HLA-DR is expressed by approximately tmel of effector Treq cells in
peripheral blood [3], so here we assume in autoimmune gatiba ratio is one half, implying
that the ratio% is one. We can use this fact to approximéte the quasi-steady state of the
Ry population, that iscéR, — ugRy = 0, yieldingé = 0.025. The death and clearance rates
ue andua are based on the references given in [1], and are much the lsaree Hector T
cell lifetimes are approximately 4-5 days [24], so we get= 0.2 day’. The death rate of
mature pAPCs is less certain [20]; we assume the lifetime obtura pAPC is of the same
order as that of a maturefector T cell and take, = 0.2 day® as well [1]. We likewise
assume a similar death rate between tfieotor T cells and de4 cells, and set terminalgEys
death rate agq = 0.2 day?, and sej, = 0.1 day?, due to the rapid death rate of terminally
differentiated fector HLA-DR" Treg Cells.

To simplify this model, for which the parameter values arevahin Table 3.1, we impose a
guasi-steady state assumption on the free antigen coatientrin particular, we know that the
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decay rate of the free antigen moleculgg)(is much faster than the dynamics of théeetor
T cells (E), and we can thus assume that the free antigen is in quaslysttate with (and
proportional to) the #ector T cell population. Therefore, in the following, we Blgiminate
G from system (3.5) by settingkE — VG — ucG = 0 to obtainG = #L E, to reduce system

G+V

(3.5) by one dimension. Further, lettiag= ™ 'we obtain a new model, given by

u+v’

A=aE - 5y(Ry + dR)A - i A — 11aA, (3.6a)
Rn = (m3E + B)A — nR — ER,, (3.6b)
Ry = C¢R,y — uaRy, (3.6¢)
E:/lEA—O'3(Rn+dR;|)E—b3E—/JEE. (36d)

The parameter definitions and their values are given in TaldleThe state variables in (3.6)
are defined as follows [1].

A . Mature pAPCs (professional antigen presenting cellsiarily mature dendritic cells,
which present a particular self-antigen of interest andesgpsticiently high levels of
co-stimulatory molecules so as to be capable of activating|lE.

R, : Activated natural keq cells, HLA-DR", specific for the antigen of interest, capable of
exerting their suppressor function.

Rq : Terminally diferentiated keq cells, HLA-DR", with hyper-suppressive ability.

m

. Active auto-reactive fector T cells that are specific for the antigen of interestesgh
may be either CDZ4or CD8" T cells, or even a combination of these two; the distinction
is not important given the other simplifications we employ.

In the following sections, we study the new model (3.6) inadetvith particular interest in
stability and bifurcation behaviors, and show that the nhode exhibit cycles of relapse, inter-
vened by relatively long periods of remission, which arerabgeristic of several autoimmune
diseases.

3.3 Well-posedness, equilibrium solutions and stability of moel
(3.6)

First, we investigate the well-posedness of the solutidmsamel (3.6).

3.3.1 Well-posedness

Due to physical meaning of this autoimmune disease mod#é}, rmn-negative initial condi-
tions are considered and negative solutions are not allow&edwise the parameters in (3.6)
are all positive due to their biological meaning. More psety, we have the following result.

Theorem 3.3.1 All solutions of system (3.6) are non-negative, if theahitonditions are non-
negative. Furthermore, they are bounded.
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Proof Write the equations (3.6a) and (3.6d) as a non-autonomotensys

A= —[o1(Ra(t) + dRy(t)) + by + a] A + aE,
E = —[o3(Ra(t) + dRy(t)) + bs + el E + AeA.

Thus, according to Theorem 2.1 (P. 81) in [32] we know #} > 0, andE(t) > 0 fort > 0,
provided thatA(0) > 0 andE(0) > 0. Then,R,(t) = R.(0) exp F(un + ] + j(;t[ﬂgE(T) +
BIA(T) expl-(un + €)(t — 7)]dr > 0 for A(t) > 0, E(t) > 0 andR,(0) > 0. FurtherRy(t) =
Ry(0) exp Eugt) + fot c& Ry(7) expl-uq(t — 7)] dr > 0 for Ry(t) > 0 andRy(0) > O.

Next, we prove that all solutions of system (3.6) are boundféel first consider two equa-
tions (3.6a) and (3.6d). Let

wi(t) = o1 [Ry(t) + dRy(t)] + (b1 + ua),
Wa(t) = o3[Ra(t) + dRy(t)] + (b3 + ue).

With non-negative initial conditions, we havwg(t) > 0 andw,(t) > 0 Yt > 0. We construct a
Lyapunov-candidate-function of the fori(A, E) = (A% + E?), YA, E > 0. Itis easy to see
thatVy(A, E) > 0, YA, E > 0, andV4(0, 0) = 0. Taking the time derivative d¥; along the
trajectory governed by theftierential equation (3.6a) and (3.6d) yields

(3.7)

v = AA+ EE = A(-W;A + aE) + E (1eA — W,E)
dt lzea). 369 A (3.8)
-~ B Q¢ ).
where wi(t) —(a + Ag)
Q(t) :[ 1 (a1+ 10 ng(t) E ] (3.9

To consider the positive definiteness @ft), first note thatw; > 0 VYt > 0. For the sign
of det@), if we assumeR,(t) is unbounded, i.e., lim,., Ry(t) = +o0, then it will lead to a

contradiction. Due to positivity dRy(t), o1, 03, d, by, bs, ua, andug, it follows from (3.7) that

M 00 Wi(t) = lim, . Wo(t) = +00, which implies that there exits finite a timeg> 0, such

that detRQ(t)] > 0 Vt > t;. That mean®)(t) is positive definite, fot > t;. Therefore, it follows
from (3.8) thatV; < 0 Vt > t;. Thus, the equilibrium4, E) = (0, 0) is proven to be globally
asymptotically stable, which implies lim,., A(t) = lim(.,. E(t) = 0. However, from (3.6b)
we have

lim Ry(t) = [ lim E() + 4] lim A(t) = (ue +£) lim Ry(t) = oo, (3.10)

which indicates that there exits a finite tilge> t; > 0, such thaRn(t) < 0Vt > tp, leading to
lim_,. Ry(t) = 0, which is a contradiction with our assumption. ThRg(t) is bounded and
we denoteMg, = maxR,(t),t > 0}. This also means that equation (3.10) does not hold. Then,
there exits arlN > 0, such that lim,, .. [73 E(t) + B]A(t) = N. Since the positivity oE(t), 73,
andg, we haver; E(t) + 8 > g Vt > 0. Thus, there exist8l, > 0, such that lip, .., A(tt) = M3,
implying thatA(t) is bounded, and we denoi, = maxA(t),t > 0}.

For the remaining part of the proof, we give a general claist.fiSuppose we have the
differential inequality T < A—-dT(1, d > 0, T(0) > 0). Then, forT = A —dT, we have
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solutionT(t) = T(0) €' + 4(1 — e "), which implies that lin, ... supT(t) = 4. Thus, from
the equation (3.6c), we haWy < c& Mg, — g Ry, Which yields lim_,.., SupRy(t) = % and
SORy is bounded. Recalling thai(t) is bounded, so for the equation (3.6d), we similarly have
E < Ag Ma— (bs + ue) E, which yields lim_, ..., SUpE(t) = ﬁ;ﬂg implying thatE(t) is bounded.
Hence, the solution of system (3.6) is bounded.

The proof is complete.

Next, we will consider the equilibrium solutions of systeBnd) and determine their stabil-
ity by using the Routh-Hurwitz criterion [17]. When we consi@eHopf bifurcation, we will
use the result given in [44] to determine the Hopf criticahdibion.

3.3.2 Equilibrium solutions

By setting A = R, = Ry = E = 0 in model (3.6), we get two equilibrium solutions: the
tolerance equilibrium g: (Ao, Ry, Rao, Eo) = (0, 0, 0, 0), and the autoimmune disease equi-
librium E; : (A, R,, Ry, E), where

= [ﬂs(bl + pa)A + ,3@] o A
A pac (i + &) — w301 (g + d CE)A?’
R, = S (3.11)
Hd
— [fflﬁn(ﬂd +dcé) + pa(by + ,UA)] A
) Mo '

andA is a function in terms of the system parameters, particularland determined by the
following 4th-degree equation, in which the parameter @algiven in Table 3.1 have been
used. Note that the rational numbers given below are oltaisag symbolic computation in
which all the parameter values given in digital format (sabl& 3.1) have been transformed to
rational numbers for convenience in computation.

_ 81 4 _1521a 2 _ _ 8la 5 2 _ _8la _
Fl(A’ al) 3814697265625 62500000 1OOOOOOOA + 8 640000 — 0. (312)

The graphs oA = 0 andF,(A, @) = 0 as given in (3.12) are shown in Figure 3.1, where
Figure 3.1(a) shows the complete bifurcation diagram, evhRigure 3.1(b) only depicts the
part which is biologically meaningful. Figure 3.1(c) shows3-D plot, indicating why the
branch in Figure 3.1(a) is biologically meaningless.

3.3.3 Stability of the disease-free equilibriumEg

For the stability of i, we have the following result.

Theorem 3.3.2Whena < ay = i(bl + ua)(bs + ug), the disease-free equilibriui, of the
model (3.6) is globally asymptotically stable.
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Figure 3.1: (a): Complete bifurcation diagram for model Y36ojected on ther-A plane,
with the red and blue lines denoting Bnd g, respectively; (b): Bifurcation diagram in (a),
restricted to the first quadrant; (c): Bifurcation diagramrwdel (3.6) projected on the-A-

R, space, with the red, green and blue lines denotiggHe inner branch of £ and the outer
branch of & which is biologically meaningless sin&g takes negative values. Here, the dotted
and solid lines indicate unstable and stable equilibrispeetively.

Proof In order to examine the stability of equilibria for systenG()3 we compute the Jacobian
matrix of system (3.6), given by

o1(R+dRy)—(b1+ua) -0 A —o1dA «
_ 7T3E+ﬂ —(,un+§) 0 7T3A
J= 0 cE 5 (3.13)
Ae —03E  —03dE —03(Ry+dRy)— (D3 +1ie)

Evaluating the Jacobian (3.13) a§ E (Ao, Ruo, Rio, Eo) = (0, 0, 0, 0), yieldsJ|g,, and then
setting deti_ | — J|g,) zero results in a 4th-degree characteristic equationshwbén be factor-
ized as

Po(L, @) = (L+pq)(L+pn+£) [L2+(b3+,uE+b1+,UA)|—+(b1+ﬂA)(b3+,UE)—/1Ea’] =0. (3.14)

The asymptotic stability of g&is determined by the sign of real part of the roots of Equation
(3.14): if all roots of Equation (3.14) have negative reatphen g is asymptotically stable;

if there is at least one root has positive real part, thegis Enstable. In factPy(L, @) contains
three factors: the first two are linear polynomialsLinwith positive parameter values from
Table 3.1, both of them are stable (i.e. their roots (eiglel@& have negative real part); and
thus the stability of Eonly depends upon the third factor, which gives a quadragiagon,

L? + (b3 + pe + by + pa)L + (b + pa)(bs + pe) — e a = 0. (3.15)

Using the general formula for solutions of the quadraticagigu, we know that whether the
two roots of Equation (3.15) have negative real part is deitezd by the sign oftz + ug)(by +

up) — Ag a: the negativity (positivity) of the real part of the two readf Equation (3.15) is
equivalent to s + ug)(by + ua) — Ag @ > 0 (< 0), that is, Equation (3.15) has stable (unstable)
roots if (o3 + ug)(by + ua) — Ae @ > 0(< 0), and a zero eigenvalue root comes out at

_ (b1 + pa)(bs + ﬂE).

. (3.16)

at
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Here, the subscript ‘t’ stands faranscritical bifurcation Using the parameter values from
Table 3.1, the transcritical bifurcation point is obtairesl,, A) = (2.025x 104, 0). The
equilibrium solution g is locally asymptotically stable (unstable), wher: a; (@ > a).

Next, we want to prove thatgs also globally asymptotically stable far< a;. To achieve
this, we construct a Lyapunov function of the form

Vy(A, E) = % (1eA? + aE?), (3.17)

which is positive-definite and continuouslyfiédirentiable for all positive bounded valuesAof
andE, i.e., V,(0, 0) = 0 andV,(A, E) > 0 YA, E > 0. Moreover, the time derivative of the
Lyapunov functionv, satisfies
Ag AA + o EE
= AeAla E - 01(Ry + dRy)A — (b + a)Al
+a E[1g A— 03(Ry + dRy)E — (bs + ug)E]
= —Ag(by+pp) A% —a(bz + ug) E> + 2a A AE
~(le o1 A% + 2 03 E?)(R, + dRy)
g (by + up) A2 — a (b3 + ) E2 + 20 A AE
= -(ABQ(AP),

Vs

IA

which is a quadratic form, with

| Ae(br+ua)  —ade
Q B - oz/lE a/(b3+,uE) (318)

being positive definite fort +ua)(bs+ue) > ale. HenceV, < 0 andV, = 0 if and only if

(A, E) = (0, 0). This yieldsA(t), E(t) — 0 ast — +oo, for any positive initial conditions. It
follows that equation (3.6b) becomes an asymptoticallg@minous equation with the limiting
equationR, = —(un+£)R,. By the theory of asymptotically autonomous systems [7], mavk
that the solutiorR,(t) — 0 ast — +oo. Finally, using the same theory on equation (3.6c), we
getRy(t) —» 0 ast —» +oo. Therefore, under the conditian < a4, the local stability and the
global attractivity of i established above give the global asymptotic stabilitypf E

3.3.4 Stability of the autoimmune disease equilibriumEg;

In order to examine the stability of;Fwe evaluate the Jacobian matrix (3.13) of system (3.6)
at E, to obtain the characteristic equation ddt- J|g,) = 0. By straightforward but tedious
computations, the characteristic polynomialladit E; is obtained as the following 4th-degree
polynomial:

Pi(L,A @) = L* + (A @)L + ax(A, a)L? + ag(A, o)L + au(A ) = 0, (3.19)

where the cofficients,a;(A, @), 1 = 1,2, 3,4, are expressed in terms Afand @, with other
parameter values taken from Table 3.1, &nshtisfies=;(A, a) = 0 (see equation (3.12)).
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The static bifurcation happens at equilibriuR) #zhen the characteristic polynomRj(L, A, @) =
0 in (3.19) has zero root (zero eigenvalue). That mea(, @) = 0, andA should satisfy
F1(A, @) = 0. Thus, we obtain
_ 2133359375000000£ +266174472656252— 4946484375@s+8748000

AS((XS) - 35253883125085-457234200@s+979776 (320)
whereas is the root of the following equatiof,(as) = @s(1353012%s—2592)x (400000 s —
81) = 0. SolvingF,(as) = 0, and then substituting the solutions irAglas) using Equation
(3.20), we get three points. The first one is a transcritidarbation point ¢, A;) = (2.025x
1074, 0), which is exactly the same as that we obtained from theante equilibrium E
Moreover, at this point, all other Hurwitz arrangementsparsitive, thatispy = 32, A, = oo

16000’
andA; = 2287 The two equilibrium solutionsgand E intersect and exchange their stability

at this criteiéogi)%ooint. Eis stable whew > a4, (E; does not exist fowr < ), as shown in Figure
3.1. Here, the subscript ‘t’ stands for transcritical baation. The second point is a turning
point (@ruming Atuming = (1.9157x 104, —1.7097), which has a negative value #dmnd so
is not biologically interesting (see Figure 3.1(a)). Thiedlone is @5, As) = (0, 0), which is
not allowed since the parametercannot take zero.

To check if a Hopf bifurcation exists from the infected eduium E; of system (3.6), we
apply the theorem given in [44] to,Eefined by (3.11), whera satisfies equatioR; (A, @) =0
in (3.12). Based on the fourth-degree characteristic patyabP;(L, A, @) in equation (3.19),
we apply the formula in [44], that i&\s(A, @) = &y a, a3 — a5 — a2 ay = 0. SolvingAs(A,@) = 0
andF,(A, @) = 0, together with the parameter values given in Table 3.1, etewgo Hopf
bifurcation points: ¢u1, An1) = (7.8666x 104, 11.4436), and ¢uo, Ap) = (5.0387 %
104, —-13.1534), as shown in Figure 3.1(a). We only consider the biokty meaning-
ful point with two positive entries to obtain a unique Hopfuscation point: &y, Ay) =
(7.8666x 1074, 11.4436). Here, the subscript ‘H’ stands for Hopf bifurcatigt.the critical
point (@y, Ay), other conditions are satisfied; = 2.0989 a, = 0.6311, az = 0.1145 a4 =
0.0314 A, = 1.210Q A3 = 0.1 x 1078 ~ 0. Indeed, with these given parameter values, one
can numerically calculate the Jacobian matrix of syste®) @ E, which contains a purely
imaginary pair and two negative real eigenvalue8:2335i, —1.7739, and-0.325. Thus, as
a is varied across the point = ay, the equilibrium solution Ebecomes unstable and a Hopf
bifurcation occurs, leading to a family of limit cycles. Somarizing the above results gives the
following theorem.

Theorem 3.3.3Whena; < @ < ay, the disease equilibrium,Bf model (3.6) is asymptotically
stable.

Now we apply normal form theory and the Maple program devadoim [43] to system
(3.6) to analyze the Hopf bifurcation which occurs at théaal point (@, Ay) = (7.8666x%
104, 11.4436) (with other parameters given in Table 3.1). Using &seaf linear and nonlin-
ear transformations and the Maple program [43], we obtamtbrmal form associated with
this Hopf bifurcation up to third order, given by

F=r(op+vird), 0=we+Top+11r2 (3.21)

whereyg = 34.2048,u; = -2.0161x 10", w, = 0.2335,7¢ = 1328998,7; = -1.3186x 107
The steady-state solutions of equation (3.21) are detedryr = 6 = 0, resulting inr; = 0
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andr? = 0.1697x 10" . The equilibrium solutiom; = 0 actually represents the autoimmune
equilibrium E of model (3.6). A linear analysis on the firstfidirential equation of (3.21)
shows that% (r)|r_:r_1 = vou, and thusr; = 0 (E,) is stable (unstable) fqu < 0 (> 0), as
expected. Whep is increasing from negative to cross zero, a Hopf bifureatiocurs and the

amplitude of the bifurcating limit cycles is given by the Apero steady state solution,
r(u) = 0.4119x 10"\ (u > 0). (3.22)

Since % (f)|(3.22) = 2w, r?, it indicates that the bifurcating limit cycles are stabde & > 0.
We can get the same stability conclusion from< 0, implying that the Hopf bifurcation is
supercritical and so the bifurcating limit cycles are staldEquation (3.22) gives the approx-
imate amplitude of the bifurcating limit cycles, while thagse of the motion is determined
by 8 = wt, wherew is given byw = é)|(3_22) = 0.2335- 90.8185u. We summerize the above
results, yielding the following theorem.

Theorem 3.3.4 At the critical pointe = ay, a supercritical Hopf bifurcation occurs, leading
to a family of stable limit cycles.

3.4 Numerical simulation

In this section, we present some simulation results toywéné analytical predictions obtained
in the previous section. In particular, we will show the camgon between the analytical
and numerical results obtained for the Hopf bifurcationr €anvenience in the simulation,
we will fix all parameter values, except far(or x). We will vary a to demonstrate the stable
equilibrium solution€y andE;, and the stable limit cycles. Finally, we will also choosargé
positive value of:, which means that this value is far away from the Hopf critp@int ay, to
show the relapse-remission phenomenon. Note that the misamaf generating recurrence in
this paper is slightly dierent from that defined by the conditions in Hypothesis 1 pEpd45]

in which recurrence is guaranteed to appear near a tranatpbint. In this paper, recurrent
oscillations are generated far from the transcritical pejr= 2.025x 104, In other words, the
oscillations described in this paper are determined by mglaeal properties of the system.

Suppose that all parameter values, exceptfare taken from Table 3.1. Then, it follows
from formula (3.16) that the equilibrium solutidfy, is asymptotically stable for @ a < a; =
2.025x 10*. Eq becomes unstable whenis increased to pass through and bifurcates into
the equilibrium solutiorE,, which is asymptotically stable far, < & < ay = 7.8666x 1074,
E; becomes unstable at= ay, and a family of limit cycles bifurcates from this Hopf caél
point. The normal form for the Hopf bifurcation is given byZ3). Sinces; = -2.0161x107%?,
the Hopf bifurcation is supercritical, and the bifurcatiigit cycles are stable.

Now, we first taken = 1.50 x 104 < ;. The simulation result is shown in Figure 3.2(a),
which clearly indicates thd, is asymptotically stable, in agreement with the analytpat
diction. Next, choose; < a = 4.0 x 10 < ay, for which the simulation result is depicted in
Figure 3.2(b), showing thd; is asymptotically stable, which again agrees with the arally
prediction. Further, we select a valueof= 3.0 x 1012 which implies that we take a post-
critical value ofa near the Hopf critical point. This is a perfect Hopf bifuicat, as shown in
Figure 3.3.
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Figure 3.2: Simulated time history for system (3.6) with fimiial condition A(0) =
17, Ry(0) = Ry(0) = 4800Q E(0) = 12700 for (a)e = 1.50x 10* < a4, converging to
Eo; and (b)a = 4.0 x 1074, converging tcE;.
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Figure 3.3: Comparison between the simulated time histodyaaralytical prediction for sys-
tem (3.6) withu = 3 x 10°*2, the red solid line denoting the simulation results, wHile black
dash-dot line indicating the analytical predictions, simgastable limit cycles.

The simulations compared with the analytical predictiomsdepicted in Figure 3.3, show-
ing excellent agreement between simulation results anlgtae predictions, particularly for
the smaller values qf, as expected. Note that the analytical predictions ararwaiahrough
a series of linear and nonlinear transformations, avail&iadm the output of the Maple pro-
grams [43]. The details are omitted here for brevity. Finalle takea = 3.0 x 102 > ay,
which is not close ta. For this case, normal form theory is not applicable sincevalue of
a is not neakry. In other words, if we apply the above procedure to obtaingoraimation,
it would have a very large error. The simulation result issgivn Figure 3.4, indeed showing
the recurrence phenomenon. It should be noted that theakatxis in Figure 3.4 (c) and (d)
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Figure 3.4: Simulated time history for system (3.6) whea 3 x 10-3, showing recurrence.

have a logarithmic scale so that the minimum levelfééetor T cells E) can be clearly seen.
The reason for this behavior can be seen from Figure 3.4 @hj@no be: theE population
grows very quickly in the absence Bf andRy, and therR, responds very quickly§A term)
and suppresses, but R, does not last long. This pattern is of course how the adaptiak
innate immune responses work against pathogens, as wellwiButs E not eliminated like
a pathogen would be? We speculate that the system is nowb&imeen two equilibria’, as
described later in the Discussion.

3.5 Modelreduction and parameter identification for autoim-
mune recurrence

In the previous sections, we have studied the 4-dimensioioalel (3.6) in detail and found
recurrence. Now, we are interested in finding the key factdrneh play the most important
roles in generating this phenomenon. To achieve this, a ammapproach is first to reduce
the dimension of the system under a quasi-steady state pgsarrand then identify the main
system parameters (usually treated as bifurcation paeag)ethich may fectively influence
recurrence so that we may find the mechanism of generatiagseland remission. For model
reduction (in particular, the reduction from the 5-d modebj to (3.6) and a further reduction
from the 4-d model (3.6) to a 3-d model, which will be consetebelow in detail), we need
to answer a fundamental question: does model reductionthkedynamical behavior of the
system? We have carefully studied this problem and have rstio&t when proper parameter
values are chosen, both the original 5-d model and 4-d madelvell as the 4-d model and
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the 3-d model exhibit the same dynamical behavior: receger{Details will be given in a
forthcoming paper.) Therefore, in the following, we willtrmonsider the 5-d model (3.5), but
the 4-d model and its reduction.

3.5.1 Model reduction

For the model described by (3.6), we assume that at the stteeciutoimmune reaction, the
influence of IL-2 from other sources, such as dendritic ddl]sis negligible compared to
the IL-2 generated by activatedfector T cells. Therefore, we can gt 0, and the model
becomes ,

A =aE - O'l(Rn + dF\)j)A— (bl +,UA)A,

Ry = mEA = (un + §R,,

Ra = CERy — uaRy,

E = AgA - 03(Ry + dRy)E — (b3 + ue)E.
It can be shown that model (3.23) still has two equilibriuntutons. One is the tolerance
equilibrium Ey : (A, Ry, Ry, E) = (0, 0, 0, 0), and the other is the autoimmune equilib-
rium, E; = (A R.(A), Ry(A), E(A)). We again choose as the bifurcation parameter, and
find that the two equilibrium solutions exchange their digbat the transcritical bifurcation
point (@s, As) = (2.025x 104, 0). That is, asy increases fromx < as to cross the critical
pointa = as, the stable Ebecomes unstable, while, Emerges from this critical point and
is stable. Asx continues to increase, a Hopf bifurcation occurs freat the critical point
(an, Ay) = (6.4729x 1074, 124401). The simulated time history far= 3 x 10~2 shown in
Figure 3.4 displays recurrent autoimmunity, as expected.

In order to further simplify the analysis on model (3.23);ehee will adopt a quasi-steady

state assumption, which is often used in the study of bioatedrand biological systems. The
basic idea of the quasi-steady state assumption can belsssasing the following system [8]:

X =e1f(x ), xe RM
y=dXY), yeR",

where O< € < 1, f andg are nonlinear functions, andandy represent ‘fast’ and ‘slow’ vari-
ables, respectively. We consider the evolution of the sy$tem an arbitrary initial condition,
including a transient period. For the fast variak)eve may rewrite the first equation of (3.24)
asex = f(x, y). Thus, for smalk, settinge = 0 results inf(x, y) = 0, from which we obtain
an algebraic expression farin terms of the slow variables = x(y); x # 0 (see [8] for more
details on this topic). This leads to af@rential equation for the slow variabjan the form
y = g(x(y), y). Intuitively, although the slow variabkeis changing, the fast variable ‘catches
up’ so quickly thatf(x, y) remains close to zero at all times.

Now, we return to consider system (3.23) and carefully caephe coéicients in the
system, finding that the parametgr = 1000 is greater than all other parameters, which are on
the order of 16° ~ 1. Thus, we may write the fourth equation of (3.23) as

(3.23)

(3.24)

: o bs + u _ bs + u
E:/IE(A—/I—:(Rn+dR,)E—3/l—EEE) l(A——(Rn dRyE - = EE),

wheree = 1073, Then, according to the general formula (3.24), we obséraeE is a fast
variable, whileA, R,, andRy are slow variables, all of the same order. This is also redftect
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Figure 3.5: Simulated time history for system (3.23) with thitial conditionsA(0) = E(0) =
1,R,(0) = Ry(0) = 0, for the bifurcation parameter= 3x10°3: (a) for the transient period; and
(b) over a longer interval showing periodic behavior. Thiesaf change of cell populations,
A, R., Ry, andE, are represented by the red solid, black dotted, blue dodted green solid
curves, respectively.

in the simulated time history for the transient period shanhkigure 3.5(a), which shows the
rapid rate of change i& relative to the other populations. Therefore, we can makeasig
steady state assumption on the fast vari&hlgielding

AgA

E = 3.25
oo+ dR) + by + 112 (3.25)

and so the reduced system is given by

A oz/lEA _ _

A R e ORI

5 T3E _ (3.26)
. _0'3(Rn+de)+b3+,uE (ﬂn+§)Rn’

Ra = C&Ra — paRa

3.5.2 Rescaling on system (3.26)

In order to reduce the number of parameters for convenienaralysis, we further attempt to
rescale system (3.26) by scaling the state and time vasiasle

Ri=erx, Ri=ey, A=ez t=¢grT (3.27)
Then, With% = é, the left hand side of system (3.26) becomes

dR, _edx dRy edy dA _edz

—n_= ZZ34_x=J ==_, 2
dt €4 dr’ dt €4 dr’ dt €4 dr (3 8)
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Next, we substitute (3.27) and (3.28) into system (3.26) ety

dx & €& Ae 73
Z-e X,
gT 920'3X+elezo'3dY+el(b3+ME) 4 +4)
dy ele4C§X_e4ﬂdy’ (3.29)
T 57)
dz e adg

3 = elagx+ezg3dy+(b3+ﬂE)z—e1e4crlxz—e2e4aldyz—e4(b1 + Up) Z.

Further, we se¢;e,01 =1, &e,01d =1, e§e4 Ag 3 = 1 andey ug = 1 to obtain

NI=

1
o=t o - Hd egz(ﬂd), e = —. (3.30)
o1 o1d Ag 73 Hd

Finally, system (3.26) becomes

dx z

—=———— -CX

gr AX+Yy)+ B

Y _px-y, (3.31)
dr

dz &

E = mz—xz—yz—WL

o 2
where the new parameters are definedzas- ;’gd B = “—"(bg + ug), C = ";—f D =

°§d, E=k, F =8 G- bytpe, H = bl:;“‘. Here, we se€ as the bifurcation
parameter smce is used as the bifurcation parameter for the original syg&6). We then
use the parameter values from Table 3.1 to obtain new paeavetues for system (3.31) as
A =200 8=30000C =2,D=2F =%,G = 5, H = 2. Moreover, it follows from (3.30)

20’
thate1 _ 200000' e = 100000, e = I/(; ey = 5

The blfurcatlon patterns of the scaled system (3.31) areséinee as that of the original
system (3.6), namely, there exist two equilibrium solusio, : (X0, Yo, 20) = (0, O, 0), and
E:: (X1, Y1, z1), wherey; = DX,z = VC X [A (L + D) x; + B], andx; is determined from
the equation: (+ D2 F X +[(G+HF)L+D)]x-E+HG=0

Theorem 3.5.1 The solutions of system (3.31) are non-negative and boyrpmiedided that
the initial conditions are non-negative.

Proof For the non-negativeness, we write the solutionszfandy of system (3.31) by using
the method of constant variations as

d &
2(r) = (0) exp| fo ( ATCECETE X(s) - Y(s) - H)ds]. (3.32)

and .
y(r) = y(0)e™ + D f e 9 x(s)ds. (3.33)
0

There are two cases.
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Case 1.7(0) = 0. Then, it follows from (3.32) that(r) = 0, VYt > 0. Thus, the first equation
of system (3.31) is reduced @ = —CX, which vyields the solutiox(r) = x(0)e°".
Therefore x(r) > 0, Yz > 0 if x(0) > 0. Then, we use (3.33) to obtayfr) >0, Y >0
if y(0) > 0.

Case 2.7(0) > 0. Then, itis easy to see from (3.32) tlz&t) > 0, ¥ > 0. We need to discuss
four subcases.

Case 2.1.x(0) > 0 andy(0) > 0. To provey(r) > 0, Y7 > 0, we adopt the argument
of contradiction. Sincg(0) > 0, we assume the first time at whigfr) becomes
negative isrq, i.e.,y(r) > 0, V7 € [0, 1), ¥(r1) = 0 andy(r) < O, V1 € (11, 72).
Then, sincg/(0)e™™ > 0, (3.33) implies that there should exist an interval {4) C
[0, 71), such thatx(r) < O, V7 € (13, 74) (1 may equal,). With x(0) > 0, we
may, without loss of generality, assumgis the first timex(r) become zero, that
is, X(13) = 0 andx(r), y(r) > 0 ¥Vt € (0, 73). On the other hand,

dx z

E:W—Cx > —Cx, for 7e€]l0, 73] (3.34)

By the comparison principle, we hawérs) > x(0)e¢™ > 0 for x(0) > 0, which
contradicts thak(r3) = 0. Therefore, there is no time fg(r) to be zero and then
become negative, that ig(r) > 0, Yr > 0. Then, using a similar argument on
(3.34), we can prove thadr) > 0, V 7 > 0.

Case 2.2x(0) = y(0) = 0. Due to tge continuity of the solutions and the conditighs

0 andB > 0, for the termm, there existss > 0, such that, for € [0, 5],
(r)2 dx _ 2
&’W > 0. Theng = z-5-2-Cx> —Cx, V1 € (0, 75]. Thereforex(r) >

x(0)e ¢ = 0 for 7 € [0, 75]. Moreover, the solution of(r) = D [ &9 x(s)ds
indicatesy(r) > 0 for 7 € [0, 75]. Hence, we obtaix(rs) > 0 andy(zs) > 0. So we
can takers as the initial point and use the conclusion obtained in Caké&oXxhow
thatx(r) > 0 andy(r) > O for v > 75. Combining the above two steps proves that
X(r) > 0 andy(r) > O for 7 > O.

Case 2.3x(0) = 0 andy(0) > 0.

Case 2.4x(0) > 0 andy(0) = 0.

For Cases 2.3 and 2.4, we can apply similar arguments useddang Cases 2.1
and 2.2 to prove that the solutions of system (3.31) witheheisial conditions are
non-negative.

The remainder of the proof is devoted to the boundednesduif@us. Suppose thg(r) is
unbounded, that is, as— +0, y(7) — +c0. Then, according to the second equation in (3.31),
we have lim_,,., X(r) = +c0, and further obtain lim,,., z(r) = 0 by using the third equation
in (3.31), and then obtain lim,. x(r) = 0 from the first equation in (3.31). This leads to a
contradiction, and sg(r) is bounded. Now applying the boundednesy(@) to the second
equation in (3.31) yields the boundedness(@). Finally, with bounded(r) andy(z), the first
equation in (3.31) shows thafr) must be bounded as well. Hence, all the solutions of system
(3.31) are bounded. The proof is complete.
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The characteristic polynomial f& is Po(L) = (L+1) (L+C) (L G-E+H G)/G, from which
it is easy to show thd, is asymptotically stable faf < & = H G and becomes unstable at
the critical point&s = H G, from which E; appears. Further, we can use the characteristic
polynomial forE; to show that the two equilibrium solutions exchange theab#ity at the
transcritical bifurcation poinEs = H G. Further, we have the following result f&g.

Theorem 3.5.2 The trivial equilibriumEy : (X0, Yo, Z20) = (0, O, 0) is globally asymptotically
stable, for& < Es=HG.

Proof We construct the Lyapunov functiod(x, y, ) = 3(x? + p1y? + p,7°) for system (3.31),

3C 1 .. . . "
wherep; = D2 andp; = B V is continuously dierentiable for all positive bounded values

of each variable, and positive definite with positive pareenealues, i.e.\V(0, 0, 0) = 0 and
V(X y,2 >0, VxY,z>0. Then, the derivative of the Lyapunov functigrwith respect to
time, along the solution trajectory of system (3.31), yseld

v by
dr (3_31)_ dr plydT p2 dr

—XL—CX+ [Dx-y]+ ZZL—X— —H

T AKx+Y) + B Py YI+p F(X+Y)+G y

_ 1 pmD \ p1D?

g b e R G R iy

&
+[m—ﬂ]pzf—pzxf—p2yf,
(3.35)

which implies tha% <0, VX Y, z> 0due to& < ‘H G. The proof is complete.

The characteristic polynomial fd; is P1(L) = L3+a3(X1) L% +ax(x1) L+ag(X1). ag(x)) = 0
defines the transcritical poiét = Es. The Hopf bifurcation point can be determined from the
Hurwitz arrangemem; = a;(X1) ax(X1)—as(X1) = 0. In general, we may take three parameters,
say,C, D, and&, as the bifurcation parameters. Therefore, the stabitityniolary, based in
particular on the Hopf critical condition, can be displayiadthe 3-dimensional parameter
space as a surface. We then try to identify the region in tder&nsional parameter space
where recurrence may occur. For a clear view of the stalibiyndary, we us€ = constant
or O = constant to intersect the surface to obtain planes, as shofigure 3.6. The curves
shown in Figure 3.6 are the stability boundary determinethkyHopf critical condition. The
graphs ofA;(C, &) = 0 andA,(D, &) = 0 are plotted in the 2-dimension@l- & andD — &
parameter planes, as shown in Figure 3.6. Recurrence may atthe right side (stable side
for bifurcating limit cycles) of the Hopf critical curves. ddeover, in these planes, we select
several fixed values fa€ or D to obtain the horizontal lines, as shown in Figure 3.6. Then,
we choose the points (according to the value&)odn these lines to perform simulation. Two
sets of nine simulated results are presented in Figuresn8l B8, corresponding to the nine
points marked on the five solid lines in each figure of Figuée B.is seen from Figure 3.7 that
recurrence becomes more visible when the notation numkéegdoints increases. That is, as
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D is fixed, reducing the value @f (see Figure. 3.6(a)) causes more dramatic recurrences whil
changingé& in this case does not change the pattern. Figure. 3.8, onttiee band, shows
that whenC is fixed at an appropriate value, the change®adnd& (see Figure. 3.6(b)) do
not play a significant role in determining recurrence. Them@meter studies provide us with
information regarding which parameters play an importal# in generating recurrence: while
some parameters mainly change the frequency of the motibarsoonly &ect amplitude.

Finally, we would like to ask a question: since the recurgattern (or periodic solution)
occurs at the parameter values which are far away from théd etggal point, is there any
factor other than the Hopf bifurcation contributing to thecillation. More specifically, do
there exist homoclinic orbits? The answer is negative,rgimehe following theorem.

Theorem 3.5.3 There exist no homoclinic orbits in the 3-dimensional sdagstem (3.31) or
the 4-dimensional system (3.6). Thus, the stable limiesyeither come from Hopf bifurcation
or are due to persistant oscillations.

Proof First, for the 3-dimensional scaled system (3.31), notedkistence of homoclinic or-
bits needs a saddle or a saddle-focus point, which reqéire${ G. Evaluating the character-
istic polynomial atEy : (0, O, 0) yields three eigenvalues; = —C, A, = -1, andis = S‘QQ.
Their corresponding eigenvectors afe= (1‘30, 1,07, V,=(0,10)7, andV3 = (0,0, 1)",
starting fromE,. Then, since foE, the eigenvaluel; is positive, while the other two eigen-
valuesi; andA; are negatively is a saddle point. If a homoclinic orbit exists, it must cocine
the saddle point to itself, leaving in the direction tangenV; at E;, and coming back along
a convergent trajectory tBy, which is located in the stable manifold of system (3.31)is It
easy to show that the two eigenvectdisandV, actually construct the stable manifold, which
is the first quadrant of the-y plane, denoted by;. The solution on the stable manifold
can be expressed as= Tv; + TV, for Ty, T, € R*, wherev; = (%e‘&, e, 0) and
Vv, = (0, €7, 0)". Then it is obvious tha®; is invariant by verifying the solutiom to satisfy
system (3.31). The complementary spac&pfs thez-axis, which is tangent to the unstable
manifold. Thus if a homoclinic orbit exists, it must connétet unstable and stable manifolds.
However, this is impossible since there is no singular poms; (expect forkg), and so it
cannot intersecH; due to the uniqueness of solutions. Therefore, no homactirbits ex-
ist in system (3.31), and thus the stable limit cycles ineys{3.31) either come from Hopf
bifurcation or are due to persistent oscillations.

Next, we consider the 4-dimensional system (3.6). Note slgatem (3.6) also has two
equilibrium solutions & : (Ao, R, Rio, Eg) = (0,0, 0,0) and & : (A, Ry, Ry, E), where
A is determined by equation (3.12), and the other three coemierare given in equation
(3.11). i and & exchange their stability at a transcritical bifurcationrmpa@ = «a; defined in
(3.16). When O< a < ay, Eg is globally asymptotically stable, and Hoes not exist; when
ay < a < ay, Eg becomes unstable, while Es asymptotically stable, wheke, is a Hopf
bifurcation point at which limit cycles bifurcate from EWhena > ay, E; also becomes
unstable.

The existence of homoclinic orbits, requires the existesica saddle or a saddle-focus
point, yielding the conditiom > a; = ﬁ(bl + ua)(bs + ug). The characteristic polynomial for
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(a) _ (b)

¢ / D 6 ®
( A4
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, /§)

Figure 3.6: Bifurcation diagrams for the scaled system (3r82-dimensional -& andD-&
parameter spaces, where @)= 2; and (b)C = g; with the red and blue lines denoting the
transcritical bifurcation and Hopf bifurcation, respeety.

Eo is given by equation (3.14), from which we obtain four eigdoes:
Ll = _(/ln + f),
L2 = —HMd,
Ls = %{_(bl + b3 + pa + pg) — V(b1 + bs + pua + pe)? + 4Ag(a - CVt)},
Ly = %{—(bl + b3+ pa + pg) + V(D1 + D3 + pa + pe)? + 4e(a - a’t)},

(3.36)

Since,a > a; and we havd.; < 0 andL, > 0O, indicating that & is a saddle point when
a > . The eigenvectors corresponding to the two negative egjeeslL, andL, areV; =

(O, ‘%”‘f 1, O)T andV, = (0, 0, 1, 0)7, respectively. It is easy to verify that the solutions:
vi = Vet andy, = V, et satisfy system (3.6). Further, it can be shown that the
general solution(A, R,, Ry, E)" = Tyvi + T,V also satisfies system (3.6), wherg T, €
R*. This implies that the subspace determinedfby E = 0, i.e., the first quadrant of the
R,-Ry plane is a two-dimensional invariant stable submanifokhaled byS,. Hence, if a
homoclinic orbit exists in system (3.6), it cannot returrEtovia S,, otherwise, it contradicts
the uniqueness of solutions. So, the remaining possildititya homoclinic orbit to appear
is in the complementary space 8%, which is the first quadrant of th&-E plane, denoted
by C : {(A, R, Ry, E)JA,E > 0, R, = Ry = 0} on which the dynamics are described by
A = aE — (b + up)A, E = 2eA— (bs + ue)E. However, this system is linear. So no homoclinic
orbits can exist in system (3.6), and thus the stable limitey/in system (3.6) either come
from Hopf bifurcation, or are due to persistent oscillafomhe proof is complete.

In this section, we have made two reductions, one based oaskgieady state assumption
and the other based on rescaling. It should be noted that tae@sreductions have a funda-
mental diference. The latter one actually generates an equivaletg@nsyse., system (3.31)
is equivalent to system (3.26), while the former yields eys{(3.26) which is dierent from
system (3.23). However, system (3.26) still keeps the basgresting dynamic behaviour
(recurrency) as that of the original system (3.23) undeqtreesi-steady state assumption.
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Figure 3.7: Numerical simulations for equation (3.31) whk parameter value&(C) taken
as: (1) (131.0), (2) (85, 0.8), (3) (10 0.8), (4) (5 0.625), (5) (6 0.625), (6) (3 0.4), (7)
(4,0.4), (8) (2 0.2), (9) (3 0.2).

3.6 Conclusion and discussion

Adaptive immunity in vertebrates comprises an extremelynglex dynamical system, and
much remains to be elucidated, particularly with respethéorole and action of regulatory T
cells. In this contribution, we demonstrate that the additf a newly discovered subclass of
Treg Cells, the terminally dferentiated HLA-DR class [5, 27], alters the dynamical behavior
of a general model of autoimmune disease [1]. In particukther than being restricted to
stable equilibria corresponding to self-tolerance andiauhunity, the system now displays
long periods of quiescence, punctuated by brief bursts tfirmune activity. These cycles
of relapse and remission, characteristic of many autoinendiseases, arise naturally from the
dynamical behavior of the system, without the need for sietib input or exogenous environ-
mental triggers.

As an intuitive explanation for this phenomenon, we argus the dynamical system is
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Figure 3.8: Numerical simulation for equation (3.31) witle pparameter value€( D) taken

?281 (1))(8 15),(2) (10 1.5), (3) (3 2), (4) (7 2), (5) (4 3), (6) (6 3), (7) (3 4), (8) (3 4), (9)
.5, 5).

‘torn between two equilibria’, one of which is the trivial @jbrium corresponding to immune
tolerance (self-reactive populations at zero), the otleeresponding to a full-blown autoim-
mune reaction. As a result, after the Hopf bifurcation theleipopulations remain close to the
tolerance equilibrium for long intervals, during which imarre regulation (the deg population)
gradually wanes. When regulatory populations af@@antly small, the autoreactivetector
population escapes immune regulation and a brief episodetofmmune disease, a relapse,
occurs.

Although the cycles of relapse and remission observed snystem occur at regular in-
tervals, we note that even slight fluctuations in the parametlues, or deterministic changes
in parameters over time, can result in highly variable waés between relapse episodes, as
demonstrated in [45]. We also note that in any organismsasdifyen is likely to be continually
present at low levels. Thus, even if the relevant populati@ach extremely low frequencies
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during the cycles of remission predicted here, pAPCs spduifiself-antigen are likely to
be periodically generated, renewing the relapse-remissite if they are activated when the
Treg POpulations have waned. This could be a further factor dmuting to variable intervals
between relapse episodes.

Clearly, the models we analyse are extreme simplificatioite@Mmechanisms of immune
regulation. As the precise mechanisms of action of regutafocells are further elucidated,
more accurate and predictive models should be possibleetNeless we hope that the main
insight of this paper, that recurrence in autoimmune desgaan arise naturally from the com-
plex interplay of dynamic populations, will serve as a stgrpoint for further research both
in dynamical systems theory, and in theoretical immunalogy
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Table 3.1: Parameter definitions and values used in Chapter 3.

Para. Definition Values

v per capita rate at which free antige®)(is taken up| 0.0025 day® per
by immature pAPCs molecule ofG

f proportion of antigen molecules that, upon uptaké,x 10*
lead to maturation of the pAPC to enter population
A

n; | rate (perA, perE) at which active nkeqcells are gen{ 0.0160 day'/E
erated from the pool of ‘naive’ g4 cells, due to ent perA ()
counter with mature pAPC#\j and influence of IL-2
from specific &ector T cells

nz | rate (perA, perE) at which active nkegcells are gen{ 0.0256  day'/E
erated from the pool of ‘naive’ deq cells, due to en; perA (r3)
counter with mature pAPC#\j and influence of IL-2
from specific &ector T cells

B rate (perA) at which active nkeq cells are generated200 day*/A
from the resting pool, due to encounter with mature
pAPCs @) and influence of IL-2 from other sources

Ae | rate (perd) at which dfector T cells E) are generated 1000 day'/A
from the resting pool, due to encounter with mature
pAPCs @)

v rate (perE) at which self antigenG) is released du¢ 2000 day'/E
to the actions of ector T cells E)

o3 | rate (per capitaR, or Ry) at which mature pAPCsA) | 3x10°° day* per
and dfective T cells are féectively eliminated due t0 R, or Ry perA
suppression by specific active g cells R,) or ter-
minal Treg Cells Ry)

b, | rate (per capita) at which mature pAP@y ére dfec- | 0.25 day'/E
tively eliminated due to suppression byj cells of
other specificities or by therapy

bs | rate (per capita) at whichffective T cells E) are ef-| 0.25 day'/E
fectively eliminated due to suppression by.Jcells
of other specificities or by therapy

ua | per capita death rate of mature pAPCs 0.2 day¥/A

ue | per capita death rate offector T cells E) 0.2 day/E

Ug | per capita rate at which free antige®)(s cleared, for| 5 day /G
example due to degradation

Un | per capita death rate of active g cells R,) 0.1 day¥/R,

Hd | per capita death rate of terminagef; cells (Ry) 0.2 day /Ry

& proportion of activated ndeq cells 0.02R,

o' rate (perk) at which immature pAPCs become maBifurcation param-
ture eter

d the ratio of supressfiectiveness of ndgq cells to ter-| 2
minal Treg Cells

C the fold of matured ndeq cells expansion and prolifr 2°=8
eration to terminal ge4 cells
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Chapter 4

Backward Bifurcation Underlies Rich
Dynamics in Simple Disease Models

4.1 Introduction

In the mathematical modelling of epidemic diseases, treedathe disease can be predicted
through the uninfected and infected equilibria and theibsity. The basic reproduction num-
ber,Ry, represents the average number of new infectives intratiimte an otherwise disease-
free system by a single infective, and is usually chosen edifurcation parameter. If the
model involves a forward bifurcation, the uninfected edpilim is in general globally asymp-
totically stable [28], characterized B3y < 1, and infection fails to invade in this parameter
regime. The threshol®, = 1 defines a bifurcation (or critical) point, and whBp > 1, a
stable infected equilibrium emerges. This simple exchafggability implies that complex
dynamics will not typically occur in forward bifurcation.

In contrast, backward bifurcation describes a scenariohithva turning point of the in-
fected equilibrium exists in a region where all state vdaalare positive, anB, < 1. This
induces multiple infected equilibria, disrupting the gabistability of the uninfected equilib-
rium. Multiple stable states (e.g., bistability) may like® appear [15, 47, 4, 2]. Instead of
converging globally to the uninfected equilibrium whign< 1, the solution may approach an
infected equilibrium, depending on initial conditions.

In practice, the phenomenon of backward bifurcation giigesto new challenges in disease
control, since reducing, such thatRy < 1 is not stficient to eliminate the disease [22, 5].
Instead,R, needs to be reduced past the critical value given by thertgrpoint [22], since
the result in [47] shows that the uninfected equilibrium ackward bifurcation is globally
stable ifRy is smaller than the turning point. Furthermore, an infectutbreak or catastrophe
may occur ifRy increases and crosses unity, while the upper branch of thetéd equilibrium
remains stable [15, 21, 48, 49]. In addition, oscillatiomeen recurrent phenomena may occur
if uninfected and infected equilibria coexist in a parametage, and both are unstable [48,
49]. Hadeler [22] predicted oscillations arising from baekd bifurcation, and Brauer [5]
pointed out that the unstable infected equilibrium “comigarises from Hopf bifurcation”,
but did not demonstrate oscillations.

Several mechanisms leading to backward bifurcation haga peoposed, such as partially
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effective vaccination programs [5, 2], educational influencendectives’ behavior [22], the
interaction among multi-group models [10, 9, 25] and midtistages of infection [40]. In
this study, we will investigate the emergence of backwafdrbation in three simple disease
models which have arisen in the study of epidemiology, ietliisease and autoimmunity. In
each case, we find that backward bifurcation facilitatesethergence of Hopf bifurcation(s),
and Hopf bifurcation in turn underlies a range of complex aldically relevant dynamical
behaviors.

A central theme in our investigation is the role of the incide rate in the epidemiologi-
cal and in-host disease models. The incidence rate desdtibespeed at which an infection
spreads; it denotes the rate at which susceptibles becdewtivies. Under the assumptions
of mass action, incidence is written as the product of theatdn force and the number of
susceptibles. For example,Sfandl denote the susceptible and infective population size re-
spectively, a bilinear incidence rat&(S, 1) = 8S | (whereg is a positive constant), is linear in
each of the state variableS:andl.

The possibility of saturationfiects [8, 7] has motivated the modification of the incidence
rate from bilinear to nonlinear. Saturation occurs whenrtbmber of susceptible contacts
per infective drops b as the proportion of infectives increases. A nonlineardeoce rate,
therefore, typically increases sublinearly with resped¢he growth of the infective population,
and may finally reach an upper bound. The development of meaaliincidence was first
investigated in the forndl PS% (whereg, p, andq are positive constants), see [32, 31, 23, 24, 13,
29]. Other forms of nonlinear incidence have also been aedlysuch akIPS/(1 + al') [32],
andkSIn(1 + vP/K) [6].

Since the nonlinear incidence functions described above wien developed to incor-
porate saturationfiects, these functions are typically concave at realistrarpater values.
Korobeinikov and Maini [28] used this feature to derive gahessults for disease models with
concave incidence. They proved that standard epidemuzdbgiodels with concave incidence
functions will have globally asymptotically stable uniofed and infected equilibria fé?y < 1
andR, > 1, respectively.

More specifically, denoting the incidence rate functiorf €& I, N), whereN is the popu-
lation size, the classical SIRS model considered in [28]ddke form

?j—?:uN—f(S,I,N)—/JS+a/R, %:f(S,I,N)—((5+/J)I, ?j—?:cil—aR—yR, (4.1)

wherey, 6, anda represent the birfdeath rate, the recovery rate and the loss of immunity

rate, respectively. Whem = 0, system (4.1) becomes an SIR model. Assuming that the total
population size is constant, that ¥, = S + | + R, the above system can be reduced to a

2-dimensional model:

C:j—f:,uN—f(S,l,N)—,uS, %:f(S,I,N)—(éﬂl)l. (4.2)

Moreover, it is assumed in [28] that the functid(S, |, N), denoting the incidence rate, satis-
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fies the following three conditions [28]:

f(S,0,N)=f(0, I, N) =0, (4.3a)
of(S, 1, N) of(S, 1, N)
T > 0, 95 >0, VS 1>0 (4.3b)
2
FISLN o ys1ag 430

The first two conditions (4.3a) and (4.3b) are necessary surenthat the model is bio-
logically meaningful. The third condition (4.3c) impliekat the incidence raté(S, I, N),

is concave with respect to the number of infectives. It i® @ssumed tha¥ &Y evalu-
ated at the uninfected equilibrium is proportional to theibaeproduction number, [42],
and thus should be a positive finite number [28]. Korobemikod Maini first considered

| =0, 0rf(S, I, N) = (6 + u)l =0, and showed that forward bifurcation occurs in model (4.2)
with a concave incidence function. They further proved thatuninfected equilibriun@, =

(So, 1g) = (N, 0) and the infected equilibriur® = (S, |) are globally asymptotically stable,
whenR, = L Z6eloN) 9 andR, > 1, respectively.

o+ al
In the sections to follow, for an incidence rate functid(®, 1), satisfying (4.3a) and (4.3b),

we definef (S, 1) as concave, if it satisfies (4.3c); as convexX 3 > 0,V | > 0; and as
convex-concave, if there exist |1 < I, < +co, such that™! > 0, v | € (0,1,), and

FIGD 5 0,v 1 €(0,17), 28D = 0, forl = Iy, 28D < 0, v | € (I, 1,).

Several models closely related to (4.2) have been preyiaisdied. For example, by
adding a saturating treatment term to model (4.2) with a aeacencidence rate, Zhou and
Fan [51] showed that this model may yield backward bifuaratind Hopf bifurcation. With an
even more sophisticated nonlinear incidence rate funckitis/(1+«!') [38], wherep = | = 2,
Ruan and Wang [38] proved that a reduced 2-dimensional SIR®Inodld exhibit backward
bifurcation, Hopf bifurcation, and even Bogdanov-Takerarsation and homoclinic bifurca-
tion. Although the choice op = | = 2 was not motivated by a specific physical process, this
important result demonstrates that a nonlinear incideatgeaan induce backward bifurcation,
and further generate complex dynamics in a simple diseaselmo

One of the focal points of our study will be a convex incidefggction which arose in a
4-dimensional HIV antioxidant therapy model [43]. In thi®del, the infectivity of infected
cells was proposed to be an increasing function of the dens$iteactive oxygen species,
which themselves increase as the infection progresse<3lnheaningful parameter values
were carefully chosen by data fitting to both experimentdi@mical results. In this parameter
regime, the model was observed to capture the phenomenarablbhps, that is, long periods
of undetectable viral load punctuated by brief episodesgif tiral load. Viral blips have been
observed clinically in HIV patients under highly active iagtroviral therapy [11, 14, 35, 34],
and have received much attention in the research literabate by experimentalists [17, 18,
20] and mathematicians [16, 27, 12, 37, 36]. Nonethelegsitechanisms underlying this
phenomenon are still not thoroughly understood [20, 36].

We recently re-examined the model developed in [43], withaim of providing new in-
sight into the mechanism of HIV viral blips [48, 49]. Focugian the dynamics of the slow
manifold of this model, we reduced the dimension of the 4eatisional model by using quasi-
steady state assumptions. After a further generalizatiwhparameter rescaling process, a
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2-dimensional in-host HIV model [48, 49] was obtained, gty

dXx AY dy AY
E—l—DX—(B+Y+C)XY, E—(B'Fm)XY—Y, (44)

whereX andY denote the concentrations of the uninfected and infectéslrespectively. The
constant influx rate and the death raterdfave been scaled to 1. The death rat¥ & D. The
2-dimensional infection model above (4.4), reduced fromm4kdimensional HIV model [43],
preserves the viral blips observed in the HIV model.

Importantly, system (4.4) is equivalent to the SIR mode2)4except that the incidence
function is convex, as we will show in section 4.2.2. Thisieglence can be demonstrated if
we setS = e x, | = ey, andt = esTwithe, = e, = % ande; = ﬁ In this case, system (4.2)
is rescaled to . & 1
1 XTIN f(x ). dr = N f(xy) -y, (4.5)
which takes the same form as system (4.4). Therefore, athsystem (4.2) arises in epidemi-
ology and system (4.4) was derived as an in-host model, tleegnathematically equivalent in
this sense. We will refer to both systems (4.2) and (4.4) f@fiion models.

In previous work [48, 49], we analyze the recurrent behawioich emerges in system (4.4)
in some detail. Recurrence is a particular form of oscillateehavior characterized by long
periods of time close to the uninfected equilibrium, puatéd by brief episodes of high in-
fection [45]. Thus HIV viral blips are an example of recutréehavior, but recurrence is a
more general feature of many diseases [45, 49]. We have ddrated that the increasing
and saturating infectivity function of system (4.4) is icad to the emergence of recurrent be-
haviour. This form of an infectivity function correspondsé convex incidence rate function
in the associated 2-dimensional infection model (4.4), @an likewise induce recurrence in
this model. Convex incidence has been previously suggesteddel ‘cooperationféects’ in
epidemiology [28], or cooperative phenomena in reacticta/ben enzyme and substrate, as
proposed by Murray [33].

The rest of this paper is organized as follows. In Section study two 2-dimensional
infection models, both closely related to system (4.2). Wansthat system (4.2) with either
(a) a concave incidence rate and saturating treatment tefim @ convex incidence rate as
shown in system (4.4), can exhibit backward bifurcation;tinen identify the necessary terms
in the system equations which cause this phenomenon. Ino8egt we demonstrate that
in both models, backward bifurcation increases the likedth of a Hopf bifurcation on the
upper branch of the infected equilibrium. Studying systém)(in greater detail, we illustrate
how the location of the Hopf bifurcations and their diren8o(supercritical or subcritical),
determine the possible dynamical behaviors, concludiaghickward bifurcation facilitates
Hopf bifurcation(s), which then underly the rich behav®wbserved in these models. In
Section 4, we explore backward bifurcation further, présgran autoimmune disease model
which exhibits negative backward bifurcation, that is, faitmation for which the turning point
whenR, < 1 is located in a region where one or more state variablesgative. Although
this bifurcation introduces two branches of the infectedildgrium, we demonstrate that, in
the biologically feasible area, only forward bifurcationgs in this model. We then present a
modification to this autoimmune model, motivated by the neciescovery of a new cell type,
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which generates a negative backward bifurcation and Hdpfdation, and allows recurrent
behavior to emerge. A conclusion is drawn in Section 5.

4.2 Backward bifurcation

In this section, we study backward bifurcation in two 2-dimsi®nal infection models. In par-
ticular, we explore the essential terms and parameteligetatvhich are needed to generate
backward bifurcation. Furthermore, we examine the conueidence rate, and reveal its un-
derlying role in determining the emergence of backwardrbdtion.

4.2.1 Backward bifurcation in the infection model with concave incidace

First, we consider the SIR model with concave incidencecrilesd by the following equa-
tions [51]:

as BS| d gSI dR

A TS T @yl g =vi-dR o (46)
whereS, | andR denote the number of susceptible, infective, and recovedididuals, re-
spectively;A is the constant recruitment rate of susceptibtks;, ande represent the rates of
natural death, recovery, and the disease-induced mgrtagpectively. Note that the function
f+—ﬁ‘('| is an incidence rate of theforﬁﬁ% [32], whenl = h = 1. Heregis the infection rate, and
k measures the inhibitionfiect. Since the variablR is not involved in the first two equations,
system (4.6) can be reduced to a 2-dimensional model as

Lgs @S

ds BS|
A dt  1+kl

at = 1+kl

—([d+y+el. (4.7)

In [51] an additional assumption regarding limited medicahtment resources is introduced
to the above model, leading to a model with a saturatingrtreat term, given by

C;—? = 14(S, 1) :A—1’8+—Skll—d3 %: (S, 1) = f+—slll—(d+y+e)l —wa—ll, (4.8)
where the real, positive parameterepresents the maximal medical resources per unit time,
and the real, positive parameteris the half-saturation constant. For simplicity, let thadu
tions on the right-hand side of the equations in (4.8)fpand f,, respectively. Then, the
equilibrium solutions of system (4.8) are obtained by sajvihe following algebraic equa-
tions: f1(S, 1) = 0 andf,(S, I) = 0. from which the disease-free equilibrium can be easily
obtained a%, = (A/d, 0). For the infected equilibriurk = (S, 1), S is solved fromf, = 0 as
() = AL+ kl)

~ (dk+p)l +d
the form

. Then, substituting = S_(I) into f, = 0 yields a quadratic equation of

F)=AI?+8l +C=0, (4.9)

which in turn gives two rootsi, , = Z2YZAAC where, A = (d + y + €)(dk + B), B =
[(dk+B)w +d](d+ 7y + €) + (dk+ B)a — BA, C = [(d + v + €)w + a]d — BAw for system (4.8).
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Since all parameters take positive values, we lydve 0. To get the two positive roots essential
for backward bifurcation, it is required th& < 0 andC > 0. Noticing thai, A, w > 0, we
can see that the infection forcg, the constant influx of the susceptibles, and the &ect
of medical treatment% are indispensible terms for backward bifurcation. The nemnddf
positive infected equilibrium solutions changes from twoohe when the value & passes
from negative to positive, which gives a critical poinGat 0, that s, [(l+y+€)w+a]d = BAw,
which is equivalent t6 = g2 = 1.

On the other hand, we may infer the emergence of backwardchtion without solving
the equilibrium conditions. If we do not consider the mebltosatment termu% and remove
it from system (4.8), that leads to system (4.7), which is@cigl example of an SIR model

studied by (4.2). By setting the incidence functionfas, 1) = ffk'l, we havefs(0, I) =

f2(S, 0) = 0; 2880 = £ > 0and 280 = S5 > oforall S, | > 0; and 253D =
-28kS(1 + k)™ < Ofor all S, 1 > 0. Therefore, the incidence functidig(S, 1), satisfies
the conditions given in (4.3). In particular, the functiandoncave, and can only have one
intersection point with the linedy + €)1 in thel-S plane, as shown in Figure 4.1(a). Thus, the
unigueness of the positive infected equilibrium impliestthackward bifurcation cannot occur
in this case. Moreover, according to the result in [28], thenfected and infected equilibria
are globally asymptotically stable &, = d(d+ o < 1 andR, > 1, respectively. No complex
dynamical behavior happens in system (4. 7)

In contrast, when we introduce the loss of the infectives @umedical treatment, the
dynamics of system (4.8) flier greatly from system (4.7). In particular, backward atron
emerges and complex dynamical behaviors may occur. Tdyckhis effect, we denote the
function induced byi = 0 from (4.8) asfy(S, 1) = B5L _ ol Note thatfs(S, 1) is not

1+kl w+l*
an incidence rate. But, if we fi$ = S > 0, there exist O< |; < I2 < 400, such that
LD = mreelBS(w + 12 — aw(l + k1A > 0,¥ | € (0, I); and £G.0 f;;ff D = _2kpS(1 +
kD)™ + 200(w + 1) > 0,V | € (0, 1), ‘”;S" =0, forl = Iy, ‘”;f?') <0,¥ 1 €y, ly).

Thus, f4(S, 1) actually has a convex-concav& shape, and may have two positive intersection
points with the ray lineg;(I) = (d + y + €)l, in the first quadrant; see Figure 4.1(b). These
intersections contribute the two positive equilibriumwmns that are a necessary feature of
backward bifurcation.

In summary we may conclude that the necessary terms whiechdshe contained in system
(4.8) in order to have backward bifurcation are the constdhix A, the infection forces, and
the saturating medical treatm%.

4.2.2 Backward bifurcation in the infection model with convex inciderte

Now we consider the 2-dimensional infection model (4.4) chhéxhibits viral blips, stud-
ied in [48, 49]. The motivation for this model was a series lofical discoveries indicating
that viral infection can increase the density of a harmfidnalcal substance [19, 30, 39, 26],
thereby amplifying an associated biochemical reactior), [d4d thus accelerating the infec-
tion rate [19]. This cooperative phenomenon in viral inf@ctis expressed by an increasing,
saturating infectivity function: § + 3 ) According to the principle of mass action, the inci-
dence function is then denoted &4( )XY which is a convex function with respect to the
infectives’ densityy.
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Figure 4.1: Graphs of the incidence functiénin system (4.6, 4.7) and functiofa in sys-

tem (4.8) with respect tb, for whichS = 50 has been used. The parameter values are chosen
asp = 0.01,k=001,a=6,w=7,d=01,y =001, ¢ = 002, according to [51]. The
solid lines denotd; in (a) andf, in (b), while the dashed ray lines in both graphs represent
au(1) = (d + ¥ + &)l. (a) the incidence functiofs(S, 1) = £21, showing one intersection point

1+Kl?
with g;; and (b) the functiorf,(S, 1) = f+—si('| — 2 showing two intersection points with.

w+l’

To analyze the occurrence of possible backward bifurcatieirst examine the two equi-
librium solutions from the following equations:

AY AY
XY=0, fs(X VY)=(B
vic) X Y)=B+7 ¢

where all parameterd, B, C andD are positive constants. It is easy to find the uninfected
equilibriumEg = (Xo, Yo) = (%, 0), whose characteristic polynomial has two roats= -D <

0, andl, = £ - 1, which givesR, = £. ConsequentlyE, is stable (unstable) fd&y < 1 (> 1).

To find the infected equilibrium solution, settirig{X, Y) = 0 yieldsX;(Y) = M+\E§)+C+m, which

is then substituted intd;(X, Y) = O to give the following quadratic equation:

F5(Y) = (A+ B)Y2+ (BC+ D - A-B)Y +C(D - B) = 0. (4.11)

fs(X, Y) = 1- DX — (B+ )XY-Y =0, (4.10)

In order to have two real, positive roots, two conditions trhes satisfied, that iBC + D —
A-B < 0andD - B > 0, orin compact form, < D - B < A—- BC. The condition
D-B > 0isequivalentto < Ry = % < 1, which is a necessary condition for backward
bifurcation. Moreover, the positive influx constant, haybeen scaled to 1, is a necessary term
for the positive equilibrium ofy. Therefore, the positive influx rate term and the increasing
and saturating infectivity function are necessary for ekl bifurcation.

In the rest of the subsection, we further examine the incdduanction,
AY
Y+C

without solving the equilibrium solutions. The incidenesétion f; obviously satisfies the
condition (4.3a), as well as the condition (4.3b) sirﬁé;(x, Y)=[B+AY(Y+C)Y>0

f2(X, Y) = (B +

)XY, (4.12)
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Figure 4.2: Graphs of the incidence functiofy$X,Y) and f;(Y) for the parameter values
A =0.364,B = 0.03,C = 0.823, andD = 0.057. The incidence functions are denoted by the
solid lines, while the ray lines, determined g(Y) = Y, are denoted by dotted lines: (a) the
incidence functionf;(X, Y), showing one intersection point with with an inset, with a fixed
valueX = 12.54; and (b) the incidence functida(Y), showing two intersection points with an
inset.

and% f2(X, Y) = ACXY(Y + C)2 + [B+ AY(Y + C)Y]X > O for all X, Y > 0. However, the

second partial derivative of;(X, Y) with respect toY, j—jzh(x, Y) = 2AC?X(X +C)2 > 0
for all X, Y > 0, showing thatf;(X, Y) is a convex function with respect to the variaMe
Consequentlyf;(X, Y) can only have one intersection wigh(Y) = Y, implying that only one
equilibrium solution would exist if we only consider the sad equation in (4.10), as shown
Figure 4.2 (a). However, when considering both conditiongrgin (4.10) for equilibrium
solutions, we will have two intersection points betwdeandg,. According to the first equa-
tion in (4.10), that isfs(X, Y) = 0, we can use/ to expressX in the equilibrium state as
X(Y) = (Y + C)[(A+ B)Y?2 + (BC+ D)Y + DC] 2. SubstitutingX(Y) into f;(X, Y) in (4.12), we
obtain

f2(Y) = Y[(A + B)Y + BC][(A+ B)Y? + (BC+ D)Y + CD] ¢, (4.13)
andZ f,(Y) = D[(A+ B)Y? + 2(A+ B)CY + BC?|[(A+ B)Y?+ (BC + D)Y + CD] 2 > O for all
X, Y > 0. However, the sign oniz f;(Y) = —2D[(A+ B)?Y3 + 3C(A + B)?Y2 + 3(A+ B)BC?Y +
(B?C - AD)C?|[(A+B)Y?+(BC+D)Y+CD] 3, could alter at the inflection point from positive
to negative as’ increases. Therefore, with appropriate parameter vali}€g) can have a
convex-concaveS’ shape, yielding two intersection points with the ray ligg(y), in the first
guadrant of theX-Y plane, as shown in Figure 4.2 (b). The above discussionlussrdted in
Figure 4.2, implies that system (4.4) can have two positiueldrium solutions wheriRy < 1,
and thus backward bifurcation may occur.

Remark 1. Summarizing the discussions and results given in this@eoidicates that a dis-
ease model with a convex-concave incidence function mayddaatkward bifurcation, which
in turn implies: (a) the system has at least two equilibriudusons, and the two equilibrium
solutions intersect at a transcritical bifurcation poirdnd (b) at least one of the equilibrium
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solutions is determined by a nonlinear equation.

4.3 Hopf bifurcation

In the previous section, we studied backward bifurcatioth established the necessary con-
ditions for the occurrence of backward bifurcation in twodals. In this section, we turn to
Hopf bifurcation, since it typically underlies the chandestability in the upper branch of the
infected equilibrium, the key condition in determining wiiner a model can exhibit oscillation
or even recurrence. Again, we will present detailed stuftiethe two models.

4.3.1 Hopf bifurcation in the infection model with concave incidence

In this subsection, we study two cases of an infection mod#l woncave incidence: sys-
tem (4.7) and (4.8). First, we discuss the equilibrium sohg and their stability by using the
Jacobian matrix, denoted ky and examining the corresponding characteristic polyagmi

P3(L) = L2 + Tr(J)L + Det(J). (4.14)

Bifurcation analysis is conducted by choosi@s the bifurcation parameter.
First, we consider the case without saturating medicatrtreat, system (4.7). This system
satisfies the three conditions in (4.3), and consequetglyninfected equilibriunky = (ﬁ, 0)

is globally asymptotically stable iR, = —2~— < 1, while the infected equilibriunf; =

(d+y+e)d
(e, AoiEedS) emerges and is globally asymptotically stabl&f> 1. Therefore, for

this case the system has only one transcritical bifurcgtimint atR, = 1 and no complex
dynamics can occur.

Next, with the saturating treatment term, system (4.8)ates the conditions established for
model (4.3), but leads to the possibility of complex dynaahiehaviors. In fact, evaluating the
Jacobian matri¥; = J|4.8)(Eo) at the uninfected equilibriunk, = (4, 0), yields the character-

istic polynomial in the form of (4.14), denoted I8y, (L), with Tr(Jy) = (-2} + € + £ + 2d),

and Det(;) = (—BA +d? + de + 29) = Tr(J;)d — d?. This indicates that Delf) < o when

Tr(J;) = 0, and thus Hopf bifurcation cannot occur frdfg On the other hand, a static bifur-
cation can occur when Dek() = 0, thatis,As = 1(d2 +de+ “d) where the subscripg’ refers

to static bifurcation Therefore E, is stable (unstable) fok < As (> As), oOrRy < 1(> 1),
with Ry = BAd™H(d +y + e + £)1 [51].

We will show that complex dynamical behaviors can emergeystesn (4.8) from the in-
fected equilibriumg; = (S, 1), wherel is determined from the equatiofi(l) = 0 in (4.9).
In the A-I plane, the bifurcation diagram as shown in Figure 4.3 (},)4(tlicates a turning
point on the curve with appropriate parameter values, oeterd by both the quadratic equa-
tion (4.9) and the relatiof* = -4 /%= = 0, which is equivalent t§~- = 0. Solving%Z- = 0
yields the turning point of, denoted byT (‘T meansturning), taking the form

| _y A 0 d e
T2\ dk+pd+e © dk+B d+el

(4.15)
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whereA+ is obtained fronyF(I1) = 0, see (4.9). Thus, whdr > 0 (< 0), the turning point of
the quadratic curve appears above (below) thgis, meaning that backward bifurcation occurs
for 1 > 0 (< 0). Evaluating the Jacobian matrix at the infected equiliorE;, and further
denoting it as), = J|s)(E1), we obtain the characteristic polynomial in the form ofi@),
with Tr(J,) = ag1/[(w+1)?(kl+1)(dkI+81 +d)] and Det(,) = ay1/[(w+1)?(kI+1)(dkI+a1 +d)],
whereay;, = aia — ayp anday; = ax, — g, With ag, = BA(w + 1)? anday, = dayy,, anday, anday,
only contain positive terms (their expressions are omitiea for brevity). Therefore, we can
rewrite Det(,) = %d/[(w+ 1)2(kl +1)(dkl+ g1 +d)]. Determining whether a Hopf bifurcation
can occur fronE is equivalent to finding whether D&}) remains positive when T3§) = 0.
Ignoring the positive factors in the following subtractigields

Tr(J,) — Det(Jy)/d 1
(0+ DP(KI + (ki + Bl +d) 17 goe = G g (4.16)

hy(1) = 5 5
wherehy(l) = %(dkl + Bl + d)[(kl + 1)d?*(w + 1)? — Bel (w + 1)? — aBwl]. Thus, wheray, = 0,
%aZa andhy(l) have opposite signs, implying that when J)(= 0, Det(J,) could be positive
only if hy(1) is negative. Therefore, the necessary condition for sygte8) to have a Hopf
bifurcation from the infected equilibriurg; is thath,(l) is negative.

In the remaining part of this subsection, we demonstratewaidynamics which may hap-
pen in system (4.8) with éierent parameter values kfas shown in Table 4.1. Taking other
parameter values as= 6, w = 7,e = 0.02,y = 0.01,8 = 0.01, andd = 0.1, and solving the
two equations Til,) = 0 and¥ (1) = 0 in (4.9) gives the Hopf bifurcation point candidates,
(An, 1y), for whichhy(Iy) < 0. Since the formula for the transcritical bifurcation pgohy has
no relation withk, (As, Is) = (9.87, 0) is a fixed value pair in Table 4.1. Bifurcation diagrams
and associated numerical simulations are shown in Fig@reatresponding to the five cases
given in Table 4.1. The blue lines and red curves represeniitinfected equilibriuniy and
infected equilibriumE,, respectively. The stable and unstable equilibrium sohgiare shown
by solid and dashed lingsurves, respectively. Backward bifurcation occurs in Case?, 1
and 3 (see Table 4.1), which are illustrated by the corredipgrbifurcation diagrams in Fig-
ures 4.3(1), (2), and (3), respectively. For Cases 1 and £,a@ Hopf bifurcation occurs on
the upper branch of the infected equilibridg, and this bifurcation point exists at the critical
point Ay < As for Case 1 and\y > Asg, for Case 2. For Case 1 with = 9.78, the simulated
time history converges tBy with initial condition IC= [93.6, 0.44], shown in Figure 4.3(1a),
but converges t&; with initial condition IC= [46.8, 10], shown in Figure 4.3(1b). This clearly
indicates the bistable behavior whap < As, and an overlapping stable region for b
andE; exists (see Figure 4.3(1)). The recurrent behavior for Cdsestnulated ai\ = 9.87
with IC= [50, 5], shown in Figure 4.3(2a). For CaseXy > As, and an overlapping unstable
parameter region for bothy andE; occurs betweens andAy (see Figure 4.3(2)). For Case
3, two Hopf bifurcations occur on the left side Af, and a stable part in the upper branch of
E; exists whem\ passes through the critical valhe= As. In this case, although backward bi-
furcation still exists and the turning point is also locaadve the\-axis, giving two branches
of biologically feasibleE;, only regular oscillating behavior is observed. The sirteddime
history is conducted ak = 10, with initial condition IG= [50, 2], shown in Figure 4.3(3a).
For Case 4, only forward bifurcation occurs in the biolodicéasible region, and the turning
point for backward bifurcation moves down to the fourth qaad, that is, negative backward
bifurcation occurs in this case. The whole upper branck;ah the first quadrant is stable,
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Table 4.1: Dynamics of system (4.8) foffiéirent values ok,

withae =6,w =7, =0.02,y =0.01,4=0.01,d = 0.1,

and a fixed transcritical bifurcation poimk§, 1s) = (9.87, 0).

Case| k (AT, I7) hy(1) <0 (An, Ih) Dynamics Notes
1 |0.001]| (948 4.57) | € [1.72 o] (9.73,10.28) | Bistability | Ay < As
2 (001 | (971 282 | € [1.76, o] (9.96, 8.00) Recurrence Ay > As
3 [0.02 |(9.85 0.84) | €[1.82 o] (9.88, 2.09), Oscillation| Two Hopf
(10.14, 5.62) critical points
4 10.027 | (9.86, —0.65) | | €[1.85, 30.65] | No Hopf No Negative
oscillation | backward
bifurcation
5 |0.05 | No Turning | €[2.01, 1503] | (6.18 —2215) | No No backward
oscillation | bifurcation

therefore, no oscillations (or recurrence) can happenallyirfurther increases to the value
of k change the shape of the red curves, as shown in Figure 4\8(0h again indicates

that no biologically meaningful backward bifurcation orcigtions can occur. Note that in
Figure 4.3(5) a Hopf bifurcation point exists on the lowearch of the equilibrium solution,

which is biologically unfeasible since it is entirely beldte horizontal axis. In conclusion,
interesting dynamical behaviors can emerge in system if8rkward bifurcation occurs.

4.3.2 Hopf bifurcation in the infection model with convex incidence

In this subsection, we return to system (4.4), that is, tlinZensional HIV model with con-
vex incidence derived in [48, 49], and analyze the variousadyical phenomena which sys-
tem (4.4) could possibly exhibit. To achieve this, we Beds the bifurcation parameter, and
A as a control parameter; the bifurcation analysis will beiedrout for various values oA.
Also, simulated time histories are provided to illustrdte tlynamical behavior predicted in the

analysis.

We first consider the uninfected equilibrilﬁo = (%, 0), which has two eigenvalues. One

of them, given byti|g, = -D, is always negative. The other onedgg, =

B
5 — 1 Thus,

depending upon the relation betweBrandD, 1,|g, = O gives a static bifurcation &8s = D
(orRy = g = 1), which is further proved to be a transcritical bifurcatioHere the ‘S’ in
subscript stands fastatic bifurcation Therefore Ey is stable wheB < D (or Ry < 1), loses
its stability and becomes unstable wHgmcreases to pass througg = D, that isB > D (or
R, > 1), and no other bifurcations can happen.

Next, we examine the infected equilibriuBy = (X, Y). SinceX(Y) =

Y+C
(A+B)Y+BC’

Y is

determined by the quadratic equation (4.11), which givegdiming point By, Y7) as

3 -A+D+2vVACD

Br =

C+1

’ T —

_A+B-BC-D

A+B

2

(4.17)

where T’ in the subscript stands faurning bifurcation We perform a further bifurcation
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analysis on its corresponding characteristic polynondidl4), which takes the form

Aa 1+ a
[(A+ B)Y + BC|(Y +C) [(A+ B)Y + BC|(Y +C)’
a1a = (A+ B)?Y3 + (2BC + D)(A + B)Y? + (B?C? + ACD+ 2BCD - ACQ)Y + BC?D,
A = (A+ B)?Y3 + 2(A+ B)BCY? + (B°C — AD)CY.

where

Plg,(1,Y) = 22 +

(4.18)
Therefore, the sign of the subtraction between the tracedaterminant is determined by
hy(Y) = a1 — aa = D(A+ B)Y2+[2CD(A + B) — AC]Y + BC?D. Here the equilibrium solution
of Y and other parameters satisfy the quadratic equation (4wlligh leads to an explicit
expression, given b = —%. SubstitutingB = B into h,(Y), we obtain
[AC(D — 1) - D4 Y2 - [AC(D — 1) + 2CD?]Y - C2D?

. (4.19)

ho(Y)lg-g = &1a — @2a =

Hopf bifurcation may occur when the trace is zero, while tatedninant is still positive. This
impliesh,(Y) < 0, which is possible with appropriately chosen parametkrega Hence, by
solvinga;; = 0in (4.18) together with the quadratic equation (4.11), e&tgo pairs of points
denoted by B, Y1) and Bnz, Yiz), Which are candidates for Hopf bifurcation. Then validat-
ing the above two points by substituting them back into tharatteristic polynomial (4.18),
respectively, we denote the Hopf bifurcation point Bg,(Yy) if this validation confirms their
existence. According to [47], Hopf bifurcation can happetydrom the upper branch of the
infected equilibriume,;.

The various dynamical behaviors which may appear in sysfed) biave been classified in
Table 4.2 for diferent values of the paramet&grwith fixed values o€ = 0.823 andD = 0.057.
Thus, the transcritical bifurcation point is fixed for alles:Bs = D = 0.057 andYs = 0. The
two solutionsBy,; and By, are solved from the two equations (4.1, (4,Y) = 0 and (4.11)
Fs(Y) = 0, respectively. They become a Hopf bifurcation point ofiyeir correspondingy
values t,,; andYy,, respectively) are in the range such thgly) < 0. Otherwise, system (4.4)
has a pair of real eigenvalues with opposite sign®at, (Y1) or (Br, Yr2), which is denoted
by the superscript® (which is actually a saddle point) in Table 4.2, while thegfibifurcation
point is denoted by the superscript’“in Table 4.2.

Next, we further examine the direction of the Hopf bifurcatithat is, check whether itis a
supercritical or subcritical Hopf bifurcation. Since tleedbian matrix of the system evaluated
at the Hopf bifurcation point has a pair of purely imaginaigeavalues, the linearized system
(4.4) does not determine the nonlinear behavior of the systEherefore, we take advantage
of normal form theory to study the existence of the limit @sbifurcating from the Hopf
bifurcation point as well as their stability. As mentionearleer, Hopf bifurcation can only
occur from the upper branch of the infected equilibri therefore we first transform the
fixed pointE; to the origin by a shifting transformation, and, in additiomake the parameter
transformatiorB = By + u; the Hopf bifurcation point is thus defined @as- uy = 0. Then the
normal form of system (4.4) near the critical poiat: uy = 0, takes the form up to third-order
approximation:

F=dur+ar+0(r%), 6=wec+cu+brZ+0(?, (4.20)
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Table 4.2: Parameter values taken to illustrate variousuaycs of system (4.4).
The fixed transcritical bifurcation pointBg, Ys) = (0.057, 0)
Case| A (Bt, Y1) ha(Y) <0, Ye (Bh1, Yh1) (Bh2, Yh2) Dynamics | Notes
1 [080| (-0.195Q 0.5850) | (0.0036 0.9830) | (0.0355 0.8725)7 | (0.054 0.0034) | Unstable | By < Bs
limit cycle,
Bistable
2 [ 0.71] (-0.1580 0.5660) | (0.004Q 0.9800) | (0.0539 0.0038) | (0.0574 0.8650)" | Recurrence| Bp, > Bs
3 | 060/ (-0.114Q 0.5380) | (0.0048 0.9769)| (0.054Q 0.0045) | (0.0819 0.8530)" | Recurrence| By, > Bs
4 | 0.07]| (0.0557 0.0909) (0.0476 0.8030) | (0.056Q 0.0470y | (0.1015 0.5612)" | Recurrence| By, > Bs
5 | 0.06| (0.056558 0.05581)| (0.0574 0.7700)| (0.056559 0.0574)"| (0.0961, 0.5225§" | Recurrence| Bn < Bs
< th
6 | 0.05| (0.05697 0.01442) | (0.0724 0.7232) | (0.0574 0.0741f' | (0.0894 0.4701f' | Recurrence| Bp < Bs
< Bh2
7 | 004 illation | Br1 < Bs
.04 | (0.0569 -0.0358) | (0.0986 0.6507)| (0.0592 0.1071f' | (0.0806 0.3897§' | Oscillation < By
_ YT <0
8 | 0.03] (0.0559 —0.0994) | (0.1611 0.5149) — — E;stable | Yy <O

Table 4.3: Classification of Hopf bifurcations based on thema form (4.20).

Class Stability of = 0 | Stability of ?=-2% | Hopf bifurcation
u<0 u>0 u<0 u>0
(@):d>0,a>0| stable | unstablel unstable — subcritical
(b):d>0,a<0| stable | unstable - stable supercritical
(c):d<0,a> 0 | unstable| stable - unstable subcritical
(d):d<0,a<0 | unstable| stable | stable — supercritical

wherer ando represent the amplitude and phase of the motion, resplctivee first equation
of (4.20) can be used for bifurcation and stability analysisile the second equation of (4.20)
can be used to determine the frequency of the bifurcatiniggiermotions. The positivey in
the second equation of (4.20) is the imaginary part of thereiglues at the Hopf bifurcation
point. The parametesandc can be easily obtained from a linear analysis, waiéandb must

be derived using a nonlinear analysis, with the Maple prnogrgailable in, say, [46].

Note that the infected equilibriur; is represented by the fixed point= 0 of system
(4.20), while the nonzero fixed point> 0 (satisfyingr? = %) is an approximate solution for
a limit cycle or periodic orbit. The periodic orbit is asyroptally stable (unstable) & < 0
(a> 0), and the corresponding Hopf bifurcation is called supgcal (subcritical). According
to the Poincare-Andronov Hopf Bifurcation theorem [44], fosuficiently small, there are
four possibilities for the existence of periodic orbits dhdir stability, which are classified in
Table 4.3, based on the four sets of the parameter valuesg inatmal form (4.20). Then we
use the results presented in Table 4.3 with a nonlinear sisddased on normal form theory to
classify the Hopf bifurcations appearing in Table 4.2, dreresults are shown in Table 4.4.

To illustrate the analytical results given in Tables 4.2 dntl we provide the bifurcation
diagrams in Figures 4.4 (1)-(8). These figures depict thefanied equilibriumE, and the
infected equilibriumE; in blue and red, respectively. The solid and dashed linfsrdn-
tiate stable and unstable states of the equilibrium saigtioThe bifurcation points on the
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Table 4.4: Classification of Hopf bifurcations appearing afl€ 4.2.

Case| A Hopf bifurcation d a Stability of | Table 4.3

point By, Yn) limit cycles | class

1 |08 |(0.03550.8725) | -1.0722| 0.2114x 1072 | Unstable (c)

2 |0.71] (0.0574 0.8650) | —1.0726| 0.1424x 102 | Unstable (c)

3 |06 |(0.0819 0.8530) | -1.0733| 0.6755x 1073 | Unstable (c)

4 ]0.07](0.1015 0.5612) | -1.0307| —-0.8791x 103 | stable (d)

5 | 0.06| (0.056559 0.0574)| 88427 | -0.1019 Stable (b)
(0.0961, 0.5225) | —-1.0079| —-0.8613x 10°° | Stable (d)

6 | 0.05] (0.0574 0.0741) 18232 | —-0.3145x 102 | Stable (b)
(0.0894 0.4701) | —0.9629| —0.8457x 10°° | Stable (d)

7 | 0.04] (0.0592 0.1071) 4.7242| —-0.1577x 102 | Stable (b)
(0.0805 0.3897) | —-0.8437| —0.8438x 10°° | Stable (d)

equilibrium solutions are highlighted by solid black dotgloreover, ‘Transcritical’, ‘Turn-
ing’, ‘Hopfsyy, and ‘Hopfs,per, are used to denot@ranscritical bifurcation Turning point
subcritical Hopf bifurcation andsupercritical Hopf bifurcationrespectively. Simulated time
histories are used to validate the analytical results, anshow diferent dynamical behav-
iors in each case listed in Tables 4.2 and 4.4. Subcriticgdf Wdfurcation occurs in Cases
1-3, shown in Figures 4.4 (1)-(3)A = 0.8 is used in Figure 4.4 (1) for Case 1. Choosing
B = 0.036, we haveE, = [17.1282566 0.023689] andE; = [2.233533 0.8726886]. The
simulated solution converges t@ Br E;, with initial condition taken as I¢= [17.13, 0.024]
or IC, =[2.233 0.873], shown in Figures 4.4 (1d) and (1c), respectively. Fegut.4 (1a) and
(1b), on the other hand, show the unstable limit cycle bdting from the subcritical Hopf
bifurcation with I1G, = [2.233 0.873].

Figure 4.4 (2) corresponds to Case 2 with= 0.71. ChoosingB = 0.0572 € [Bs, By]
yields recurrence, independent of the initial conditicsese, for example, the result given in
Figure 4.4 (2b) with IG = [2.4, 0.5]. However, forB = 0.06 > By, the simulated time
history converges t&;, with an initial condition close t&;, such as I§ = [2.4, 0.6] as shown
in Figure 4.4 (2a); or shows recurrence with an initial cdéiodi far away fromg,, such as
IC. = [2.4, 0.4], as shown in Figure 4.4 (2c).

Figure 4.4 (3) plots the result for Case 3 with= 0.6, and shows a broader region be-
tween the transcritical and Hopf bifurcation points, assted with a larger recurrent region.
Recurrence occurs independent of the initial conditionsBot 0.083 € [Bs, By], giving
Eo = [12.048 0] and E; = [2.576 0.852], as shown in Figures 4.4 (3a) and (3b), with
IC, = [2.7, 0.84] and 1G, = [14, 0.1], respectively. But if we choosB = 0.07 > By,
we haveky = [14.286 0] andE; = [2.67, 0.8478]. The time history converges E with
IC. = [2.6, 0.8], or shows recurrence with }C= [2.6, 0.1], as shown in Figure 4.4 (3c) and
(3d), respectively.
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Supercritical Hopf bifurcations occur in Cases 4-7, as shmwrigures 4.4 (4)-(7). Fig-
ure 4.4 (4) depicts the result for Case 4 with= 0.07. Only one supercritical Hopf bifurcation
happens in this case, and gives a large recurrent pararegtenbetween the transcritical and
Hopf bifurcation points. Although the simulated recurréshavior does not depend on ini-
tial conditions, the recurrent pattern will fade out witke throwth of the value oB from the
transcritical point to the Hopf bifurcation point, see Figsi 4.4 (4a) and (4b) with the same
IC4 b = [8, 0.1], but different values oB: B = 0.06 andB = 0.09, respectively.

Figure 4.4 (5) shows the result for Case 5 with= 0.06. A transcritical bifurcation hap-
pens between two supercritical Hopf bifurcations. The mexu region still starts from the
transcritical point and independent of the initial coratis, but is narrower than that shown in
Figure 4.4 (4). The simulated recurrent behavior for thisecs conducted at K [12, 0.1]
andB = 0.06. Figure 4.4 (6) corresponds to Case 6 Witk 0.05, and two supercritical Hopf
bifurcations occur on the right side of the transcriticdulgation point, which makes the re-
current region even narrower and the recurrent patterrolegsus, as shown in the simulated
time history with IC= [10, 0.1] andB = 0.06. Negative backward bifurcations occur in Cases
7 and 8, as shown in Figure 4.4 (7) and (8). Although two Hofirbations are still present
in Case 7, see Figure 4.4 (7), only a regular oscillating pateists. For Case 8, no Hopf
bifurcation happens in the biologically feasible parttaf and therefore no more interesting
dynamics occur.

In general, backward bifurcation, which occurs above thezbatal axis, is much more
likely to induce Hopf bifurcation. A Hopf bifurcation can lynoccur along the upper branch
of E;, sinceE, only changes its stability at a transcritical bifurcatiasirg, and any point on
the lower branch oE; is a saddle node [47]. Moreover, Hopf bifurcation can lead éhhange
in the stability of the upper branch of the infected equilior E;. Thus the system further
develops bistable, recurrent, or regular oscillating behracorresponding to Cases-17 in
Tables 4.2 and 4.4, and in Figures 4.4 (1)-(7). In particutestability happens when both
equilibria Eo and E; share a stable parameter region, see Case 1 in Table 4.2 ané Eig
Q).

As for recurrent behavior, we observe that recurrence isrhikely to happen if the fol-
lowing two conditions are satisfied for the upper branctegaf (1) the equilibrium remains
unstable as the bifurcation parameter increases and srtygs@ancritical point, wherg, and
E: intersect, such that the two equilibria share an unstalvEnpeter range; and (2) at least one
Hopf bifurcation occurs fronk;. As shown in Cases 2-6 in Table 4.2, and the corresponding
Figures 4.4 (2)-(5), the common recurrent parameter refgioboth subcritical and supercriti-
cal Hopf bifurcations starts beside the transcritical pand is located entirely in the unstable
parameter region OF, andE;. The simulated recurrent pattern becomes more pronounced
if the value of the bifurcation parameter is close to thegcaitical point, but approaches an
oscillatory pattern as the parameter diverges from thestréical point, as shown in Figure 4.4
(4a) and (4b). In this common recurrent parameter regiaryrrence occurs independent of
initial conditions; see Figures 4.4 (3a) and (3b). In additio the common recurrent region,
for subcritical bifurcation, seen in Table 4.2 for Cases (&) €3) and Figures 4.4 (2) and (3),
recurrence may also appear on the stable side of the sehtHtopf bifurcation point with an
initial condition close taE;. Moreover, the subcritical Hopf bifurcation and the tramtszal
point should be close to each other for a clear recurreneéatiWhen this is not the case, the
periodic solutions show a more regular oscillating pattasxcompared in Figures 4.4 (2c) and
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(3d). Although two Hopf bifurcation points occur in Table24or Case 5, see Figure 4.4 (5),
the transcritical point is located inside the unstable eaoigthe upper branch d&;, between
the two Hopf bifurcation points. A recurrent pattern sthlecacterizes the dynamical behavior
in this case. However, if the unstable rangeEef between the two Hopf bifurcation points,
is located entirely in the unstable rangeky, and moves further away from the transcritical
point, the recurrent motion gradually becomes a regulalason, as shown in Figures 4.4 (6)
and (7).

Summarizing the results and discussions presented in #wops two sections, we have

the following observations.

1. Due to the fact tha, only changes its stability at the transcritical bifurcatjmint, and

the fact that any point on the lower branchEfis a saddle node, Hopf bifurcation can
only occur from the upper branch &);. A Hopf bifurcation may result in convergent,
recurrent, bistable, or regular oscillating behaviors.

Backward bifurcation gives rise to two branches in theatgd equilibriumg;. Hopf
bifurcation is more likely to happen when the turning poihttee backward bifurcation
is located on the positive part of the equilibrium solutiarthe bifurcation diagram, as
shown in Figures 4.4 (2)-(6). This means that we have twabioklly feasible infected
equilibria, which is essential to observe bistability, Bewsn in Figure 4.4 (1).

However, if the turning point on the infected equilibriddn or the backward bifurcation
moves down to the negative part of a state variable in thedafion diagram, that is,
negative backward bifurcation occurs, then Hopf bifumais very unlikely to happen.
Although Figure 4.4 (7) shows an exceptional case, the patermange for such a Hopf
bifurcation is very narrow.

. The bifurcation diagram for system (4.4) wigh= 0.03, shown in Figure 4.4 (8), is a

typical model with negative backward bifurcation. Suchateg backward bifurcation

may occur in higher-dimensional systems. However, by dangig more state variables,
which make the system more complicated, Hopf bifurcatiom lcappen in the upper
branch of the negative backward bifurcation. We will disctlsis possibility in more

detail in the next section by examining an autoimmune deseasdel.

The results obtained in this section suggest the followurgmsary.

Remark 2. If a disease model contains a backward bifurcation on an dgpuim solution, then
as the system parameters are varied, there may exist noegyramo Hopf bifurcations from
the equilibrium solution, which may be supercritical or stitical. If further this equilibrium
has a transcritical bifurcation point at which it exchangesstability with another equilibrium,
then recurrence can occur between the transcritical and Hafifrcation points and near
the transcritical point, where both equilibrium solutionseainstable, and bistability happens
when Hopf bifurcation makes a shared stable parameter refgiohoth equilibria.
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4.4 Negative backward bifurcation in an autoimmune dis-
ease model

In the previous section, we examined three cases of nedaaslevard bifurcation: Table 4.1
Case 4 for system (4.8) and Table 4.2 Case (7) and (8) for sys#émThe analytical and
numerical results showed that solutions typically congeggthe infected equilibrium in these
cases, and the parameter range for Hopf bifurcation is verigeld. As a result, negative
backward bifurcation tends to give no interesting behavioithis section, however, we shall
explore an established autoimmune model [1] in which negditackward bifurcation occurs.
We demonstrate that after modification, the autoimmune treatealso exhibit recurrence.
The autoimmune model [1] takes the form

?gn: fUG — (1R, + b)) A — uaA

—_— = (7T1E +ﬁ)A_,uan

gjﬁ e (4.21)
% _ JE — 76 - G,

where mature pAPC%\) undergo maturation by intaking self-antiged)( at ratefV, and are
suppressed by specific regulatory T cellgeglcells R,), at rateos; b, represents additional
non-specific background suppression. Thg,tells are activated by mature pAPCs at a rate
proportional to the number of auto-reactivieetor T cells E) at rater;, and by other sources
at rateB. Active auto-reactive féector T cells E) come from the activation process initiated
by mature pAPCs, at rat&:, then attack healthy body tissue and release free setfean{s)
at ratey, which is ready for mature pAPCs to engulf; the antigen enggiifate isv. The death
rates of the populatioms, R,, E, andG are denoted by, un, ue, andug, respectively.

Following the steps described in detail in [50], system 13.2an be reduced via quasi-
steady state analysis to a 2-dimensional system:

@ = Ty — pal A= 0 RWA,

ue(V+uc)

T = (ZEA+HA— R,

(4.22)

For simplicity, we set = HE‘((‘&”EG — by — ua andb = % For the stability and bifurcation

analysis, we choosge as the blfurcatlon parameter. System (4.22) has a diseasefui-

librium Eo = (0, 0), which is stable i > 0 or lg > &a)Ctele; and unstable i < O or

g < Gn@iehe  Th s a static bifurcation occurs diy whena = 0 or 1g = &utra@tucke

iy a o _ iy
The disease equilibrium is given 1§ = (A, R,), in whichR, = (bA+ﬁ)A , andA is given by the

roots of the following equation,
fa(A) = bo1A? + Bo1 A — pna. (4.23)

Equation (4.23) has two roots with negative signa & 0, with opposite signs i& > 0, and
only one zero root ih = 0. This means that a negative backward bifurcation is ptesgib
system (4.22) with proper parameter values. We further exatie characteristic equation
at E;, which shares the same form as equation (4.14), witl|@)( = Nin(balA2 + Bo1A +

— aun) = ay; and Det(|g,) = 3bo1A? + 2801A — aun = ap. Solving fg(A) = 0 and
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a;; = Det(J|g,) = O, gives the static bifurcation point &, at (A a) = (0, 0) or (A Ag) =
(0, Crumucie) which is a transcritical bifurcation point betwe&p and E;. Moreover,
Hopf bifurcation can happen if and only f§(A) = 0 anda;; = Tr(J|g) = O, which can be
satisfied only ifu, = 0. This implies that the positive branch Ef is stable for any positive
values ofu,. Thus, this model cannot exhibit recurrence, bistabitityeven regular oscillation.
The same conclusion was obtained in [50] for the originalMeshsional model (4.21).

However, a recent experimental discovery [3] has revealeshaclass of terminally dier-
entiated keg Cells. As described in detail in [50], introducing this getipulation, denoteRy,
into the model yields the full system

B = UG — o1 (Ry + dR)A = (by + pa)A

b (it A Ry - R,

& = C¢R, — uaRy (4.24)
= deA— icE

L _ JE -G - yeG

%@-

and quasi-steady state analysis then yields a reduced@&adional model in the form

A _ [ I () 1 )] A— oy (Ry + AR)A,

(V+uc)ue

d(in — (ﬂl/lEA_i_ﬁ)A nRy — €R,, (4.25)
& Cé:Rn HdRa.

Again, herelg is chosen as the bifurcation parameter for stability anarbétion analysis. Itis
easy to show that system (4.25) still has a disease-fregl®gun Eo as A, R,, Ry) = (0, 0, 0),

and a disease equnlbrlurﬁl as QA, R, Rd) whereRy = CER” , R, = %A andA is
determined from the following quadratic equation:

Md(un + &)

fo(A) = mAA? + BueA + —
o) = mdeA+ BUeA+ G Ve + oo

[—fyVAe + (b + pa)(ue + Vue],  (4.26)

which gives two negative roots i < dgs = Q#allete and two roots with opposite signs
whendg > Aes. The critical point is determined by = Ags, which is actually the intersection
point of E; andE;. The two equilibrium solutions exchange their stabilitylag, leading to
a transcritical bifurcation atX, Ag) = (0, Ags). Note that the negative backward bifurcation
still happens in system 4.25. Moreover, a Hopf bifurcaticouss from the upper branch of
E1, giving rise to oscillation and recurrence.

Realistic parameter values have been obtained in [50], angieen as follows:

f=1x10% ¥=025x102 oy =3x10° b, =025 us=02, m =0016
B =200 un=01, pg=02 y=200Q pg=5 ug=02, c=8, d=2, &=0025

For the above parameter values, the Hopf critical pointiaiokd at Ay, 1gy)=(5.6739 16916414),
while the turning point is atAr, 1gt) =(-1.4205 8799848), and the transcritical bifurcation
point is at As, Ags) = (0, 90045). These three bifurcation points and the stability ofildaju

rium solutions are shown in the bifurcation diagram giveifrigure 4.5(a), and the simulated
recurrent time history is plotted in Figure 4.5(b) fr = Agn + 1000.
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Figure 4.5: Dynamics of system (4.22): (a) bifurcation déa; and (b) simulated time history
for Ag = Agy + 1000.

In summary, when negative backward bifurcation occurg, i§)ahe turning point is lo-
cated in the negative state variable space, less compleandgal behavior will be present.
Hopf bifurcation in a biologically feasible area does ngpjp@n in the reduced 2-dimensional
system (4.22), nor in the original system (4.21) [50]. Hoereif we increase the dimension of
the system, Hopf bifurcation and complex dynamical pherm@arean emerge, as shown in our
results for system (4.25).

4.5 Conclusion

In this paper, we first review the previous work on a reducetin2ensional infection model
with a concave incidence rate [28]. The authors proved kieadlisease equilibrium will emerge
and be globally stable when the basic reproduction nuriRpeés greater than 1. This means
that no complex dynamical phenomenon can occur in such mod&wever, by adding an
extra saturating treatment term to this simple 2-dimeradioriection model, the resulting sys-
tem (4.7) considered in [51] can exhibit backward bifur@atiwhich increases the parameter
range for Hopf bifurcation, which in turn leads to recurtdnistable and regular oscillating
behaviors.

Instead of adding an extra term, a 2-dimensional infectiod@hwith a convex incidence
function can likewise show rich dynamics due to the occureest backward bifurcation, giv-
ing rise to two types of Hopf bifurcation. Biologically, a agx incidence rate implies that
existing infection makes the host more vulnerable to furthection, showing a cooperative
effect in disease progression. From the view point of mathes\atie convex incidence func-
tion enables backward bifurcation to occur on the positkanbh of the disease equilibrium
solution, which further generates Hopf bifurcation. Thedtion and direction of Hopf bifurca-
tion(s), determined by parameter values, can further gbeeto bistable, recurrent, and regular
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oscillating behaviors.

Cooperative ffects also occur during the progression of autoimmune desédmvever, for
an autoimmune model with negative backward bifurcatiomhirch the turning point is located
on the negative state variable space, the biologicallyibeaparameter range in which Hopf
bifurcation may occur is limited. By introducing an additedstate variable to the autoimmune
model, recurrent phenomenon are once again observed.
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Chapter 5

Dynamical Analysis of a 2-dimensional
Disease Model with Convex Incidence

5.1 Introduction

Mathematical models in epidemiology and in-host diseaseesbommon features, dividing a
population of individuals (epidemiology) or cells (in-lpsto discrete classes relevant to the
disease dynamics, and typically describing their dynamitisa system of ordinary élierential
equations (ODESs). A key feature of such systems is the incieléunction, which defines the
spread of the infection to susceptibles.
For example, in classical epidemiological models, thedeoce rate is often assumed to
take the form%, where S(t) is the number of susceptible individual}) is the number
of infectives an@3 is a constant, the transmission rate [3]. Whénthe population size, is
constant, this incidence function is also simply writter3&d. Similarly, for in-host models,
the rate at which uninfected cells become infected is ofemstdbed agxy, wherex(t) reflects
the uninfected cell density aryft) denotes the density of infected cells [23].
Bilinear incidence functions of this form have been usedresitely and are well-studied
in the mathematical literature. As described in greateailetsewhere [17], a number of
possibilities for non-linear incidence functions haveodisen studied in some detalil, including
the general forn®l PSY, wherep andq are positive constants [21, 20, 14, 15, 8, 19], and several
more complex forms [21, 6].
Because of physical limitations on the number of new infexgipossible as disease preva-
lence increases, a common feature of many incidence furgcisatheir concavity with respect
to the number of infectives. In particular, the incidencergS, I, N) typically satisfies the
condition
0*f(S,1,N)
_— <
012 B
Taking advantage of this common feature, Korobeinikov araii[17] derived elegant results
for all concave incidence functions, showing the globahastptic stability of the disease-free
equilibrium when the basic reproduction numBgr< 1, and global asymptotic stability of the
endemic equilibrium wheRy > 1, for the standard SIRS model [3] with a constant population
size. In other words, the concavity of the incidence rategpiaes the uniqueness and stability

0.
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of the endemic equilibrium in these models, and these palvezfults apply to any concave
incidence function.

In contrast, we have recently analyzed a number of ODE masig¢fsconvex incidence
functions. If incidence is convex, or “synergistic”, theaat which new infections occur can
increase supralinearly with disease prevalence. Thiatgin can arise in a number of real-
istic scenarios. For example, in in-host models of the hummamunodeficiency virus (HIV),
increasing the extent of the infection involves greater agento the immune system, and can
thus increase the incidence rate [25]. Similarly, in autoime disease, increases to the au-
toimmune response against self tissue can cause a posielbdck loop which will further in-
crease the incidence rate [1]. While these two examples bisthia in-host disease modelling,
catastrophic outbreak or pandemic conditions could alsaltren convex epidemiological inci-
dence. In particular, an outbreak that is severe enoughmprmmise health care infrastructure
(increasing hospital crowding and front-line worker exjpresrates, for example) could involve
a supralinear increase in incidence rates with diseasalprae.

In this contribution, we analyze in detail the possible dwieal behaviors of a simple 2-
dimensional disease model with a convex, or synergist@dence function. The system we
analyze is a standard non-dimensionalized SI model whigesin both epidemiology and
in-host modelling: it assumes a birth rate into the susbéppopulation, death rates for both
populations, and an incidence rate between the two. Thdance function we study has an
analytical form which has arisen in a number of models presipanalyzed [25, 1, 27, 28, 29].
Its behavior is such that when the infective populatiaa small, incidence increases linearly
with I; whenl is large, incidence also increases linearly, but with apseslope. A convex
region of the function connects these limiting behaviors.

In marked contrast to the powerful general conclusionsinbthfor concave incidence
functions [17], we find that a wide range of dynamical behes/iare possible when inci-
dence is synergistic. In particular, as previously analyinerelated higher-dimensional mod-
els [27, 28, 29], we note the appearancesaiurrent infectionthat is, cycles consisting of long
periods close to the disease free equilibrium, punctuatdmtibf bursts of disease. This pattern
of recurrence occurs in many diseases, including the uitrggpattern of “viral blips” in HIV,
as well as the recurrent episodes characteristic of autamendiseases, such as multiple scle-
rosis [7], multifocal osteomyelitis [12, 16], lupus [22];zma [11], and psoriasis [10]. In this
contribution, we explore several mechanisms which cannytieese physiologically relevant
patterns of infection, finding that when the incidence fiorcis convex, bistable equilibrium
solutions, Hopf and generalized Hopf bifurcations and,artipular, homoclinic bifurcations
may all contribute to disease recurrence.

In related work, Ruan and Wang [24] analyzed a reduced S| moedgth has a zero
disease-free equilibrium and a positive endemic equiliariln this modelR, = 0, although it
can be shown that the disease can still persist. In [24], ukigoas also considered Hopf bifur-
cation, Bogdanov-Takens bifurcation and homoclinic orbitse structure of the model in [24]
is mathematically appealing, such that the authors coaltsform the model to a enard sys-
tem and then prove the uniqueness of the limit cycle from Hufefrcation. Moreover, their
analysis of the homoclinic orbit takes the standard form.(see [13]). In contrast, the model
we study in this contribution has been derived from physicaisiderations and has known
realistic parameter ranges, however this model cannotbsftsrmed to a l&nard system, and
the analysis of homoclinic orbits does not follow the staddarm.
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The rest of the paper is organized as follows. In next sectiengive a detailed dynam-
ical analysis of the simple 2-dimensional disease modeEdction 3, Hopf and generalized
Hopf bifurcations are studied in detail, which may be themfaatures underlying complex
dynamical behaviors. Then, in Section 4, Bogdanov-Takemnsdaition and homclinic bifurca-
tion are investigated, giving rise to another scenarechanism for generating blips. Finally,
conclusions and discussion are given in Section 5.

5.2 Dynamics of the 2-D disease model

Consider the 2-dimensional system:

X bx-@+ AV Xy

dT Y+C (51)
OI—Y—(B+ AY)XY—Y '
dr Y+C ’

where all parameterd), B, C and D take positive real values. This system was originally
derived as an in-host model of HIV dynamics [25], but has besluced in dimension and
non-dimensionalized using quasi-steady state assunspai®aescribed in [27, 28]. Although
arising from in-host disease modeling, the reduced 2-Desys$ also equivalent to the SIRS
model studied in [17], taking the recovery rateof [17], to be zero. At appropriate parameter
values, system (1) thus represents either an in-host iafe¢tusceptible and infected cells),
or an SIR epidemiological model (susceptible and infectetividuals). The key dierence
between system (1) and the class of models studied in [1Haisthe incidence function in
system (1) XY(B+ AY/(Y + C)), is convex. Our goal is to understand the dynamical bemavi
made possible by this convexity.

In[27, 28], this 2-dimensional model is not analyzed in dekor example, well-posedness
of solutions of this system and the global stability of theedise-free equilibrium were not
considered; and a trapping region was proved only for fixedrpater values wheB > D. In
the following subsections, we will provide general proads the above mentioned problems
with no additional restriction on the positive parametduga.

5.2.1 Well-posedness of solutions

We first prove the positiveness and boundedness of solutibegstem (5.1). We have the
following result.

Theorem 5.2.1 Solutions of system (5.1) are non-negative provided thmlimionditions are
non-negative, and further these solutions are eventudifg@ed to a bounded region.

Proof Using the first equation of system (5.1), with the formulagzafiation of parameters,
we obtain

X(7) = X(0)e b [O+E+Lvelds | f e [ [oresivolug (52)
0
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which clearly indicates thaX(r) > 0 for = > 0 if X(0) > 0. Next, we rewrite the second
equation of (5.1) as

dy A XY?

— = (BX-1)Y .

dr ( Y+ Y+C

We have showiX = X(r) > 0 forr > 0. Suppose(0) > 0. Then, by continuity of solutions,
there exists; > 0 such that
AX(T)Y?(71)
Y(r)+C

>0 for 7 €[0,7q].

Hence, the solution of must be non-negative fare (0, r1], and soY(r;) > 0. Now, starting
from v = 7,1, we apply the above argument to ensure that there existsr; such that

AX(1)Y?3(1)

—r - 72>0 for .

Yo +C - 7 € [11, 7]

Repeating the process, we have shown ¥{aj > 0 for r > 0 as long a(r) > 0 (r > 0) and
Y(0) > O.
To prove the boundedness of the solutions, we choose (Lyapdumnction

L(X,Y) = X+, (5.3)

which is positive definite for positive solutions. fBarentiatingL with respect to timer, along
the trajectory of system (5.1) yields

E(s.l)_E+E:1_DX_Y >0 if DX+Y<1,

which indicates thaX andY are bounded.

drj  dx dY {<o if DX+Y>1,

5.2.2 Construction of generic trapping region

More precisely, we can construct a trapping region for adigilule positive parameter values, to
which all solutions are attracted. Before stating the theoree first note that system (5.1) has
two equilibrium solutions obtained by settil%é = ‘j'j—j = 0: one is the disease-free equilibrium,
E = (%, 0), which is a boundary equilibrium, and other is the endeegjuilibrium, =
(X1, Y1), which is an interior equilibrium, where

Y, = 1- DXy, (5.4)

andX; is determined from the quadratic polynomial equation:

QX)=D(A+BX?-(A+B+D+BCO)X+C+1
= I[(A+ B)(1- DX)? (5.5)
—-(A+B-D-BC)(1-DX)-C(B-D)|
= 0.

The existence of Edepends on the values of the parameters.
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Theorem 5.2.2 There exists a trapping region G, in the shape of a right tgien bounded by
the X-axis, the Y-axis and the line+XY = max1, £} + & (0 < &£ < 1).

Proof First, consider theX-axis. Note that k = (%,O) is located on theX-axis, with two
eigenvaluest; = —D andé, = g — 1, and their corresponding eigenvectors\are (1, 0) and
v, = (1, 2(1 - D) - 1), respectively. Moreovey; is in the direction of théX-axis, which can
be shown to be a solution trajectory of the system. With a tiegaigenvalue, the trajectory
along theX-axis converges to the poinyEThus, theX-axis is a separator (invariant manifold)
of the dynamical system, and so no trajectory can cross itatiee uniqueness of solutions.
Hence, every trajectory entering the reg®mrannot escape from this boundary — Maxis.

On theY-axis, it is easy to obtai%é =1 andf‘j—f = -Y, showing that all trajectories cross
theY-axis from left to right.

Next, we want to prove that all trajectories which cross the L actually move into the
regionG. To achieve this, note that the direction of the linés (1, -1), and so the normal
direction of the line in its gradient direction is, (). Define

dX dy, dX dY
S() = (L Do (5 3

T4 T ar
where the dot denotes inner product (or dot product). We tesdowS(Y) < 0forO< Y <
max1, 1} + &. Simplifying S(Y) yields

dX  dy AY AY
S(Y) = g, + g7 = [1-DX=(B+5g) X ]+(B+y ¢

:1—DX—Y:1—DX—hm4L%%w—X]

)XY—Y

= —s+1- max{l, %} +(1-D)X

—e+(1-3)+(1-D)X, D<1 1
—]_¢ D=1} for O<X<max{1,5}+s
—e—(D - 1)X, D>1

< -emin{1,D} < 0.

Note that one may set= 0 for D # 1. Hence, for all positive parameter values, there always
exists a trapping regioB, bounded by th&-axis, theY-axis, and the lin&, and all trajectories
move intoG when crossing th¥-axis and the lind., and once they ent&, they cannot escape
from the X-axis.

In the following, we consider the dynamical behaviour ofteys (5.1) according to the
conditions:B < D, B > D andB = D. Note that system (5.1) is actually equivalent to the
model studied in [17] whelY is small so thaly? ~ 0. In this case, system (5.1) has bilinear
incidence, which is concave, and the local R %. Thus, we expect that the disease-free
equilibrium, B, whenY is in fact small, is locally stable whed < D, and becomes a saddle
point whenB > D.
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5.2.3 Dynamical behavior of (5.1) wherB < D

First, we study the dynamical behavior of system (5.1) wBenD. In particular, we want to
investigate the global stability of the disease-free doilm E,. For convenience, define

Hi2A+B-D-BC-2C(A+B)D-B), (B<D). (5.6)

We have the following result.

Theorem 5.2.3When B < D, the disease-free equilibriurg, of system (5.1) is globally
asymptotically stable i, < O, under which the endemic equilibriuBy does not exist. Oth-
erwise, there exist two disease equilibria — one of them is dlsgabint while the other may
be a stable (or an unstable) node or focus — and no definitelgsion can be made regarding
the global stability of,.

Proof First, it is easy to see that whdh < D, the disease-free equilibriumy ks a stable
node since both eigenvalues are negative. In order to ptosgheorem, we also need the
information about the disease equilibrium olving equation (5.5) yields two roots:

_(A+B+D+BC)+ VA

X = 2D(A + B) ’ -7
where
A =(A+B+D+BC)?-4(C+1)D(A+B) (5.8)
= (A+B-D-BC)>-4C(A+ B)(D - B), '
which implies that the existence condition #&r whenB < D is given by
A=(A+B-D-BC)?-4C(A+B)D-B
(A+ )~ 4C(A+B)(D - B) 5.9

=|[A+B-D-BC+2+C(A+B)(D-B)|H;>0.
Now, based on I we discuss the existence condition of biologically meghihsolutionsX..

(i) When H, > 0, it yieldsA > 0, for which 0< X_ < X, < £, implying that the disease
equilibrium E has two solutions E: (X,,Y,) and B_: (X_,Y.). In particular, when
H, = 0,0 < X_ = X, < &, indicating a saddle-node bifurcation to occur from the

B!
equilibrium E.

(i) When H; < 0, there are two cases.

(iia) If -2+/C(A+B)(D-B) < A+B-D-BC < 2+/C(A+B)(D-B), thenA < 0, and so
there is no real solution foX.. Thus, equilibrium E does not exist.

(iib) If A+ B—- D - BC < -2+/C(A+ B)(D — B) under whichA > 0, we then have
Xp > X 2 %, showing that there do not exist biologically meaningful iiqua
E;.
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The above discussions show that a biologically meaningfulldrium E; does not exist if

H, < 0 (with B < D), and in this case, there exists only one stable equilibriignon the
boundary of the trapping regida. By index theory, this means that all trajectories of system
(5.1) must converge to the stable nodg &d so the disease-free equilibrium iE globally
asymptotically stable if i< 0 whenB < D.

Remark The conditionB > D guarantees the existence of unique disease equilibriyrfoE
which the disease-free equilibriung 5 a saddle point. (WheB = D, Ey is a degenerate saddle
point, which will be proved later in Section 5.2.5.) WhBrk D, the disease equilibrium;E
may or may not exist. The additional conditibli > O (with B < D) guarantees the existence
of two disease equilibria & (E;- = E;, whenB = D). It can be easily seen from (5.6) that
whenB < D, H; > OimpliesA+ B-D -BC > 0, i.e.,A > (D - B) + BC, indicating that
A must pass through a threshold value to generate the disgaibrdum solution . This is
clear from the second equation of (5. 1) which can be reswrigs®* = [(BX - 1) + £XY]Y,
that the first termBX -1 < 0 for X < = andB < D. Thus, dZ < 0 with small values oA
for all values ofX, implying thatY will dle out. When the value of\ exceeds its thresholql(
becomes positive at least for some valueXpivhich makesy gain a steady state and thus the
disease equilibrium £exists. Biologically, the threshold value of the contacerdt means
that the interaction betweetfiandY produces sfiicient infection such that persists.

In the remainder of the proof, we assume tBakk D and H > 0. If H; > O, then
O< X <X, < %, which implies that two biologically meaningful equilibirn solutions exist
for E;. When H = 0, we have O< X_ = X, < % = Xo, Which means that there is only one
solution for equilibrium E. To find the stability of the equilibrium £ evaluating the Jacobian
matrix of system (5.1) at Fesults in

[ -D-(B+ Y+C)Y ~(B+ Y+C) X - (/\fé;

J(Ey) = ACXY
| B+yp)Y B+ X+ i -1 (X¥)=(%1,Y2)

(5.10)

1 1 _ ACX1 Y1
Xl (Y1+C)2
i D ACX1 Y1

[ Xp (Y1+C)?

Then, the characteristic equation of i§ given by
£ —Tr(J) & + detQ) = 0, (5.11)

where

AC X1 Y1 )

det)) = — 2% + (L - D)(1+ &4%
C

T (Y1+C)2 X (
D AY; X

=1 _pD-
_X]_ D CY1+C

1
=+-D-£2(£-B)X,

Xl Y1+C

1[(D + BC)(1 - DXy)? (5.12)

+2C(D - B)(1 - DX;) + C(B - D)]

= %[(A+ B+D+BC)X;-2(1+C)] (by using (55))

= s o[ VA(VA + (A+ B+ D + BO)],

- - DX1+C)X1
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in whichY; = 1 - DX; and (5.7) have been used. Since it is assumed that H, i.e.
A =(A+B+D+BC)?>-4(C + 1)D(A+ B) > 0, we have

detd) <0 for Xy =X,, and detd)>0 for X;=X_. (5.13)

When det{) < 0, the two eigenvalues of the characteristic polynomial{pare real with
opposite signs, and thus the equilibrium poiat £ (X,, Y,) is a saddle point.

To consider the property of another equilibrium point E (X_, Y_), we need to calculate
Tr(J) as follows:

ACXY:
Tr(J) = - + A%y

= - + 7ok (i—B)

Y1+C X]_
_ —(1-DX;)-C+CX1(1-BX4)
- Xl(Y1+C)

X1(Y1+C) [BCX2 — (C + D)X; + C + 1] (5.14)
= - 559 +C) [(BC - DA-DB)X_ + (A+ B+ BC-C)]

= m [AD(A + B-C) + BC(DA + DB + BC)

—(D - B)(A+ B)(C + D) + (DA + DB - BC) VA],

which can be positive or negative, depending upon the valigsrameters. Therefore, the
equilibrium point E_ may be a stable (or an unstable) node or focus.

Summarizing the above results, we have shown that viherD, the boundary equilibrium
Eo is a stable node. Moreover, when H 0, a biologically meaningful disease equilibrium E
does not exist andfs the unique equilibrium solution, so it is globally asywiptally stable
by applying Theorem 5.2.2. When &t 0, there exist two disease equilibria,,iand &_ (E;_
coincides k. if H; = 0, giving rise to a saddle-node bifurcation), and 5 a saddle point,
while E;- may be a stable (or an unstable) node or focus. In this casepmmusion can be
made regarding for the global stability of the disease-ég@ilibrium E.

When det() > 0, we may use Tt]) and det{) to further classify the equilibrium point,E
For convenience, let

£ (D-B)(A+B)(C+D) — AD(A+B-C) - BC(DA+DB+BC)

—~(DA+DB-BC)VA, (A+B+D+C- VA>0), (5.15)

and
Hs £ Tr’(J) — 4 det(), (A+B+D+C— VA >0). (5.16)

Thus, TrQ) has the same sign ofHand det{) has the same sign &+ B+ D + C — VA, but
H, andA + B+ D + C — VA only depends upon the parametérsB, C andD.

Then, B_ can be classified according to the signs efdhd H;, as shown in Table 5.1,
where SF, UF, SN, UN, DSN and DUN stand for Stable Focus, biesteocus, Stable Node,
Unstable Node, Degenerate Stable Node and DegeneratebléniStade, respectively.

Now, we consider the numerical values of the parameters ing@d, 28] to demonstrate
different dynamical behaviors of system (5.1) Box D. The typical values used [27, 28] are

A=0364 C=0823 D=0.057 B=0.060 (5.17)
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Table 5.1: Classification of E (H; > 0).

H,<0|H,>0 H,=0
H3<0| SF UF Center
H;>0| SN UN —
H;=0| DSN | DUN | Double-zero

for which viral blips occur. Note thaB = D = 0.057 is the transcritical point between the
equilibrium solutions Eand &, and the oscillating behavior (blips) shown in [27, 28] is fo
B > D. Here, we want to change the parameter values near the abovEwvalues foB < D

to demonstrate more interesting dynamical behaviors, itiqodar, the bistable equilibrium
solutions, Hopf and generalized Hopf bifurcations, and Bogy-Takens (BT) bifurcation. It
is not easy to see the relation betweenH, and H; in a 4-dimensional parameter space. Thus,
we fix B = 0.054, and choose two values fBr= 0.057, 0.087, and then plot the three curves
H; = H, = H3 = 0 on theA-C plane, as shown in Figures 5.1 and 5.2, where the red cunve, bl
curve and green curve correspond tp-HO, H, = 0 and K = 0, respectively. We should point
out that in [27, 28] the paramet& (B > D) is treated as a bifurcation parameter to explore
the blips phenomenon. In this paper, we want to take the pateasA andC as bifurcation
parameters and investigate theffeets on dynamical behavior, since these two parameters
involved in theB(X, Y) function play a very important role in the modelling. Figai5.1 and 5.2
clearly indicate the regions corresponding to the clasgibio shown in Table 5.1. If we vary
the parameterB andD, we will obtain more such figures, showing rich patterns afatyical
behaviors. It should be noted from Figure 5.1(a) that thg marrow region bounded by the red
curve and green curve corresponds to>H0, H, > 0 and K > 0, and thus taking parameter
values from this region generate an unstable nadefEach point on the curve T3] = 0 yields

a Hopf critical point, leading to bifurcation of limit cycde At the intersection point of the blue
curve (H = 0) and the green curve ¢4 0), as shown in Figures 5.1(b) and Figure 5.2(b),
Tr(J) = det() = 0, giving rise to a BT bifurcation, characterized by a douts#es eigenvalue.
Thus, by using Figures 5.1 and 5.2, we can easily fifi@dint values oA andC to get diterent
types of the equilibrium E. Also note from these two figures that the BT bifurcation point
marked by a circle, is actually the intersection point oftltee curves Id= H, = Hz = 0. A
number of sets of these parameter values and their corrésypelassification of E are given

in Table 5.2. In this section, we present the results for the-degenerate cases,(Hs # 0),
and leave the degenerate cases, leading to Hopf and geedr&lppf bifurcations, and BT
bifurcation, to be considered later in Sections 5.3 and 5.4.

Hence, wherB < D and H > O, for positive parameter values, there may exist bistable
equilibrium solutions Eand g, and bifurcation of limit cycles or even homoclinic orbitsiin
the BT bifurcation.

In the following, we will further investigate the bistablgwelibrium solutions in more de-
tails using simulation, and then try to provide some biatagiexplanation. For complete-
ness, we also show the results for the cades< 0 andH; = 0, see Table 5.2, where
AY = 0.09559649 A® = 0.26302225. Note that the results for the two sets of values in
rows three and eight (see Table 5.2) are obtained by takingird from the narrow region
of Figure 5.1(a) and a point from the narrow region of Figurg(h), respectively. We shall
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Figure 5.1: (a) Plot of the three curveg HO (in red), H = 0 (in blue) and H = 0 (in green),
on theA-C plane forB = 0.054,D = 0.057, with signs of H, H, and H; indicated; and (b) a
zoomed in region near the origin.

Table 5.2: Classification of E for given parameter value®(> B = 0.054).

A C D Ei_ Eigenvalues H; | Class
0.100| 1.050| 0.057| No Ey, Eyexist | —0.057Q -0.0526 | <0 | SN

A® | 0.950| 0.057| (15.1220.1380) 0.094Q 0 =0 | DUN
0.100| 0.950| 0.057]| (13.901,0.2076)| 0.0999 0.0327 | >0 | UN
0.364| 0.823| 0.057| (4.39590.7494)| 0.0858+0.3744 | >0 | UF
0.464| 0.523| 0.057]| (2.95090.8318)| -0.0072:05132 | >0 | SF
0.260| 0.823| 0.087| No Ej, Ejexist | —0.087Q -0.3793 | <0 | SN

A® | 0.823| 0.087| (8.130Q0.2927) 0.2908 0 =0 | DUN
0.264| 0.823| 0.087| (7.83260.3186)| 0.2719 0.0165 | >0 | UN
0.364| 0.823| 0.087| (4.92020.5719)| 0.1150+0.2556 | >0 | UF
0.364| 0.250| 0.087| (3.07320.7326) | —0.0566+ 0.4655 | >0 | SF
5.200| 0.223| 0.087| (0.2331,0.9797)| -1.8817—2.2251 | >0 | SN

present the simulations for the sets of values in Table 5thenrows 4, 5, 6, 7, 8 and 11,
and the corresponding points in th& C) parameter space are marked by the black points in
Figures 5.1 and 5.2. Also, in Figures 5.1(b) and 5.2(b), #uglke-node (SD) bifurcation, de-
termined by H = 0, and the Hopf (HF) bifurcation, determined by H 0, are indicated, and
the BT bifurcation is marked by a circle.

5.2.3.1 A=0.364 C=0.823 D =0.057, B=0.054

For this set of parameter values, system (5.1) has threélegun solutions: i = (Xo, Yo) =
(17.54390), B, = (X14, Y14) = (174056 0.0079) and E = (X3, Y1-) = (4.39590.7494).
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Figure 5.2: (a) Plot of the three curveg HO (in red), B = 0 (in blue) and H = 0 (in green),
on theA-C plane forB = 0.054,D = 0.087, with signs of H, H, and H; indicated; and (b) a
zoomed in region near the origin.

It can be shown thatfs a stable node, | is a saddle point, while £ is an unstable focus.
The phase portrait is shown in Figure 5.3, indicating thatéhdo not exist limit cycles, and
the disease-free equilibriumy s actually globally asymptotically stable.
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Figure 5.3: Simulated phase portrait of system (5.1fer 0.364 C = 0.823 D = 0.057, B =
0.054, showing the global stability ofsE(a) depicting three equilibrium pointgEE; ., E;_;
and (b) showing E, E;, in a zoomed in region.

5.2.3.2 A=0.464 C=0.523 D =0.057, B=0.054

For this set of parameter values, system (5.1) still hasetleguilibrium solutions: E =

(X0, Yo) = (17.54390), remains unchanged from the previous case sihdg not changed,
and is a stable node; E = (X4, Y1,) = (17.480Q0.0036) is still a saddle point, but now
Ei- = (X2, Y1) = (29509 0.8318) becomes a stable focus. The phase portrait for thes cas
is depicted in Figure 5.4, which shows an unstable limit eyaiclosing the stable focus E
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Figure 5.4: Simulated phase portrait of system (5.1Ner0.464 C = 0.523 D = 0.057, B=
0.054, showing the bistable equilibrigy Bnd E_- and an unstable limit cycle: (a) depicting

three equilibrium points & E;,, E;_; and (b) showing k E;, in a zoomed in region.

Thus, for this set of parameter values, there exist bistagiglibrium solutions Eand E_.
The attracting region for £ is the region inside the limit cycle, while the area outslueltmit
cycle is the attracting region forpE

To view the bistable equilibrium solutions, we plot the bdation diagram in thé-X plane
for fixed valuesC = 0.523 D = 0.057, B = 0.054, as shown in Figure 5.5, where the solid red
line and blue curve denote the stable equilibrgaaBd E_, respectively, while the dashed blue
line represents the unstable equilibrium EA saddle-node bifurcation point is seen between
E,_ and E&,, which is actually the underlying cause for the existencbistable equilibrium
solutions. In fact, the saddle-node bifurcation point i tilrning point on the solution curve

E;.
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Figure 5.5: (a) Bifurcation diagram for the bistable equilin solutions forB = 0.054,C =
0.823,D = 0.057; and (b) a zoomed in region near the equilibriugn E
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5.2.3.3 A=0.264 C=0.823 D =0.087, B=0.054

For this set of parameter values, system (5.1) has threél@gun solutions: i = (Xo, Yo) =
(114943 0), a stable node; & = (X1, Y1) = (8.4127,0.2681), a saddle point; and, E=
(X1-,Y1.) = (7.8326 0.3186), an unstable node. The phase portrait for this casees i
Figure 5.6, showing that there do not exist limit cycles, dradisease-free equilibrium ks
actually globally asymptotically stable.

2.0

15¢

1.0+

05}

o

0 o 6 T8 10 g2

Figure 5.6: Simulated phase portrait of system (5.17fer0.264 C = 0.823 D = 0.087, B =
0.054, showing the global stability ofsE(a) depicting three equilibrium pointgEE;,, E;_;
and (b) showing E, E;, in a zoomed in region.
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Figure 5.7: Simulated phase portrait of system (5.1)Xecf 5.2, C=0.223 D=0.097,B=
0.064, showing the bistable equilibriaggEand E_: (a) depicting three equilibrium points
Eo, E1., E1_; and (b) showing E, E;, in a zoomed in region.

5.2.3.4 A=5.200 C=0.223 D =0.087, B=0.054

For this set of parameter values, system (5.1) still hasetleguilibrium solutions: g =
(Xo, Yo) = (114943 0), a stable node; & = (X4, Y1.) = (114778 0.0014), a saddle point;
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and B. = (Xi_,Y1.) = (0.23310.9797), a stable node. The phase portrait for this case is
depicted in Figure 5.7, which shows no limit cycles to exsit, there still exist bistable equi-
librium solutions i and E_. The attracting regions forgeand E_ are separated by the two
trajectories passing through the saddle point B similar bifurcation diagram like that given

in Figure 5.5 can be obtained.

5.2.3.5 A=0.26302225C = 0.823 D = 0.087, B = 0.054 (H, = 0)

For this set of parameter valudd; = 0 under which &, = E;. = E; = (8.130Q 0.2927),
which is an unstable node, and thus the disease-free equitilie; = (114943 0) is globally
asymptotically stable, as shown in Figure 5.8.
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Figure 5.8: Simulated phase portrait of system (5.1)Aot 0.26302225C = 0.823 D =
0.087, B = 0.054, showing the global stability ofoE (a) depicting two equilibrium points
Eo, E1; and (b) showing E E; in a zoomed in region.

5.2.3.6 A=0.260 C =0.823 D =0.087, B =0.054 H; < 0)

For this set of parameter valuds; = —0.002136< 0 under which E does not exist, and so
the disease-free equilibriumyE (114943 0) is globally asymptotically stable. The simulated
phase portrait is similar to Figure 5.8(a) but without thestence of E.

The mostinteresting phenomenon found in this sectioBfarD is the bistable equilibrium
solutions i and k. E; is always a stable node, whilg Emay be a stable focus (see Figure 5.4)
or a stable node (see Figure 5.7). The separator betweewdhatracting regions of the two
stable equilibria is either an unstable limit cycle (seeuFég5.4) or the saddle trajectories.
Dynamically, this bistable phenomenon is due to the exc&eri a saddle-node bifurcation on
the equilibrium solution | which has two branches, one of them is stable and the other is
unstable. Biologically, this phenomenon is not fully undeosl. System (5.1) was developed
from an in-host model of HIV infection, and there has beerence of possible bistability in
this disease. In particular, the equilibrium viral load,"airal set point” can difer by orders
of magnitude among patients. Several authors have prdyisuggested bistable equilibrium
solutions as an explanation for the phenomenon [2, 18].
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Itis also noted from Figures 5.3, 5.6 and 5.8 that when&unstable (either focus or node),
the equilibrium B seems globally asymptotically stable. This may be expthize follows:
first, it can be seen from Figure 5.1 that when the paraméteand C are varied to cross
the blue curve, defined by 0, from the botton-right to the top-left (e.g., in the negati
direction of theA-axis), the equilibrium E changes from a stable focus (SF) to an unstable
focus (UF). Hopf bifurcation occurs when the parametersvareged to cross the blue curve.
The simulations shown in Figures 5.4 and 5.3 corresponcetovth points chosen from the SF
region and UF region, respectively, implying that the Hopéitzation is subcritical. This is
why an unstable limit cycle is shown in Figure 5.4, while #hées no limit cycle in Figure 5.3
and so all trajectories converge to the stable nogle &milarly, the simulations shown in
Figures 5.6 and 5.8 imply that when the paramefeasidC are varied to cross the blue curve
(H2 = 0 in Figure 5.2) from the bottom-right to the top-left, a sutical Hopf bifurcation
occurs. The proof for the two subcritical Hopf bifurcatiom#l be given in Section 5.3.

5.2.4 Dynamical behavior of (5.1) wherB > D

Now, we discuss the dynamical behavior of system (5.1BforD. In this case, Ebecomes a
saddle point, while Ealways exists, since equation (5.5) always has two roots for

A= (A+B+D+BC)>-4(C+1)D(A+B)
(A+B—D - BC)? + 4C(A + B)(B - D)
> (A+B-D-BC)? (duetoB> D)
> 0,

and thus O< X_ < X,. Further, noticing from (5.5) thaD(0) = C+1 > 0 andQ(%) =
—-C(2-1)<0(B> D), we have

1
0<X_<5<X+.

Thus,
(A+B+D+BC)- VA
2D(A + B)
which guarantees that0Y; = 1 - DX; < 1.
Since kg is a saddle point (unstable), akg, > = (WhICh yieldsY;, < 0) is not biologically
meaningful, bistable equilibria cannot exist blstablelkﬂn;ua for this caseB > D. To find the

stability of &, (i.e., E_) whenB > D, we first show that defi) > 0. This can be obtained using
(5.12) as follows:

X=X = , since X; € [O,

5)

det(d) =

(BX - 1)
(DX, —1) (B> D)

Y+C

<D+
1
> D+

Y1+C
1_p SPA) (0<DX <1, 0<VYi<1)
- (£ -D)(L-52)
> (%~ D)~ o)

(1 - DX,)? > 0.

=1
X
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Therefore, all the formulae derived in the previous secfamE;_ (whenB < D) and the
results shown in Table 5.1 can be applied here to classiftypeeof the equilibrium E (when

B > D). Similarly, we may fixB andD and then plot the two curves,H= H; = 0 on the
A-C plane to identify the possible parameter values which yagfiérent qualitative behavior
of system (5.1). Note that now fd& > D we do not need the condition;H> 0 sinceA > 0

is guaranteed wheB > D. Two sets of values forg, D) = (0.057,0.060), (0.087,0.090) are
chosen to plot the figures. However, itis found that thesefigures are quite similar, implying
that, unlike the casB < D, here slightly varying@ andD does not change the behavior of the
system. Hence, we only present the result #¥) = (0.057,0.060), as shown in Figure 5.9.
It can be seen that for this case, there is no saddle-nodeséifon, nor BT bifurcation, since

H, > O for all parameter values.
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Figure 5.9: (a) Plot of two curvesH= O (in blue) and H = 0 (in green), on thé\-C plane for
B = 0.060,D = 0.057, with signs of Hand H; indicated; and (b) a zoomed in region near the

origin.

Itis also seen from Figure 5.9 that for most of the parametkras, H < 0, in particular for
not very large values d&. This means that for most of parameter valugssik& focus. Further,
it can be shown that for the points bounded by the blue curge{H), i.e. Tr@) = 0) the
equilibrium E is an unstable focus. Therefore, for these parameter ydiyesheorem 5.2.2,
we can conclude that there exists at least one stable liroié égside the trapping regioB.
When the parameter values are taken from the region outsédetfion bounded by the blue
curve, the equilibrium Eis the unique equilibrium inside the trapping regi@nand thus the
equilibrium E is globally asymptotically stable.

Now, we are ready to prove the following theorem.

Theorem 5.2.4When B> D andH, > 0, system (5.1) has at least one stable limit cycle, and
the limit cycle must not bifurcate from a homoclinic orbit.

Proof First, we show that the positive equilibrium E E;_ = (X, Y1) is inside the trapping
regionG, defined in Theorem 5.2.2. That is, the pointdhould be below the link: X +Y =
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max(1, £) + . Note thatY; = 1 - DX, for 0 < X; < £, implying that the pointXy, Y1) is on
the line, defined bypX + Y = 1, which is obviously below the link.

To prove that limit cycles do not bifurcate from a homoclioibit, first note that the only
possible homoclinic orbit comes from the saddle poigptnhenB > D. Thus, it sdfices to
show that there do not exist homoclinic orbits passing tghotlis singular point. Otherwise,
suppose there exists a homoclinic orbit passing throughpbint, then the homoclinic orbit
must leave this point along the direction of the eigenvegter (1, 2(1 - D) — 1) and return to
this point along the direction of the eigenvectgr= (1, 0), that is, the direction of th¥-axis.
In other words, the homoclinic orbit must return to the saduint along theX-axis. But we
have already shown that theaxis itself is a solution trajectory, and thus other tregeies, in
particular, the one leaving the saddle point along#héirection, cannot connect to théaxis
due to the uniqueness of solutions.

The proof of Theorem 5.2.4 is complete.
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Figure 5.10: Simulated blips of system (5.1) foe 0.364, C = 0.823 D = 0.057, B = 0.060:
(a) time history showing blips; and (b) phase portrait simgaa limit cycle.

To end this section, we present three simulations for thensomparameter value® =
0.057, B = 0.060; but for @,C) = (0.364,0.823) (0.364,0.350) and (22, 0.2), respectively.
The first simulation is shown in Figure 5.10, which yields gtike oscillation, as has been
discussed in [27, 28]. The simulations for the second amdl ttases are depicted in Fig-
ures 5.11(a) and (b), respectively. Figure 5.11(a) shoasEhis asymptotically stable and
all trajectories starting from the initial points inside anstable limit cycle converge to this
equilibrium E; while trajectories outside the unstable limit cycle cageesto a separator of
the saddle point & Figure 5.11(b) indicates that ks globally asymptotically stable without
the existence of limit cycles.

The results shown in Figures 5.10 and 5.11 clearly indidetethe Hopf bifurcation which
occurs on the left branch of the blue curve in Figure 5.9 iestnitical (when, sayAis increas-
ing to cross the blue curve), generating the stable limitecfialips) shown in Figure 5.10, and
the bifurcation which occurs on the right branch of the blueve (see Figure 5.9) is subcritical
(when, sayA is decreasing to cross the blue curve), leading to the ullesliatit cycle shown
in figure 5.11(a). The proof for the supercritical and suizal Hopf bifurcations will be given
in Section 5.3.
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Figure 5.11: Simulated phase portrait of system (5.1) wiig) = (0.060Q, 0.057): (a) for
(A,C) = (0.364,0.352) showing the trajectories inside an unstable limit eyanvergent to
the stable equilibrium £ and (b) for &, C) = (5.2,0.2) showing the global stability of £
without existence of limit cycles.

5.2.5 Dynamical behavior of (5.1) wherB = D

We now turn to the casB = D. First note that whem = D, the equilibrium &, = (X,,Y,)
coincides with the disease-free equilibriurg, ®hile the other equilibrium E = (X_,Y.) =
2L, £B8). Inorder to haveX_ < £, we requireA+ D > D + DC, or A > DC. Note that
whenA < DC, the equilibrium E_ does not exist; and wheh = DC, the equilibrium E_ also
coincides with 5. So for the generic case, we assufe DC in this subsection.
To find the stability of k for this case, we note that the two eigenvalues associatidd wi
this equilibrium now becomeD and 0, which is a critical case and the application of center

manifold theory is required to determine its stability. Taheve this, we introduce arffae

transformation, given by
X\ (3 1 1 Uy
[)-(8)+[o o ](3) 619

into (5.1) to obtain a system, expanded around,) = (0, 0), as

du
d—l = —Du; + D(D - 1)ust + (A - DC)(1 - D)2
+22(1 - D)ugti2 + - - -, (5.19)
c;_uz = Duilp, - 2(A-DC)u3 - L2 u3 + -+,
-

whose linear part is now in the Jordan canonical form witleeiglues-D and 0. To find the
center manifold, lety = h(u,) = a,u2 + O(U3) and then use (5.19) to firah = T-2XA-LA),
Therefore, the center manifold up to second order is given by

_ (1-D)A-DC)

WO = {(un, ) |y = == U5 + O},
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and the diferential equation describing the dynamics on the centeifoldis

dw, 1 (1-D)(A-DC)
= = —E(A— DC) u3 + c us + O(U3). (5.20)
SinceY = -Du, > 0, we only consideu, < 0. Note that the leading term in (5.20) is

—é(A — DC) u3 with a negative coicient, implying thatu, is decreasing from a negative
initial value (and so is increasing from a positive initial value). Hence, theigguum Eg is
a degenerate saddle point, similar to the case véherD.

Next, we consider the stability of;E Evaluating the Jacobian (5.10) at this equilibrium
yields

_ A+D _ A+2AC-DC?
_ 1+C A(l+C
JE) = A-DC C(A(—Dcf ’
1+C A(1+C)

which in turn results in two eigenvalues, given by

_ —[C(A-DC)-A(A+D)]+ V[C(A-DC)—A(A+D)J2—4A(L+C)(A-DC)?
&r = 2AL+C) :

(5.21)

Hence, under the conditioh > DC, the equilibrium E_ is asymptotically stable (unstable) if
C(A-DC) — A(A+ D) < 0 (> 0), which is a node (focus) whe@({A — DC) — A(A + D)]? —
4A(1 + C)(A - DC)? > 0 (< 0). In order to find parameter values for these four categpiét

H: = H3=® = A~ DC,
H; = H8=P = C(A- DC) - A(A+ D),
Hy; = HE=P = [C(A - DC) — A(A + D)]? - 4A(1 + C)(A - DC)2.

Then choosindd = 0.057, we plot the three curves H H; = H; = 0 on theA-C plane, as
shown in Figure 5.12, from which it is easy to find the paramesdues which correspond to
different classifications of the equilibrium_E Since the equilibrium gis a degenerate saddle
node and only one solution exists fof,Ehis caseB = D is similar to the cas® > D. Thus,
in general, if i is unstable (either a focus or a node), then there must daistedimit cycles;

if E; is stable, then it is globally asymptotically stable. Whea plarameter values éfandC
are chosen from the blue curve (see Figure 5.12) defined;by 6] Hopf bifurcation occurs,
leading to limit cycles. This will be further discussed ir thext section.

5.3 Hopf and generalized Hopf bifurcations

In this section, we consider bifurcation of limit cycles dweHopf and generalized Hopf bi-

furcations. There are three types of Hopf bifurcations,cllaccur from the critical blue line

H, = 0 for B < D (see Figures 5.1 and 5.2) aBd> D (see Figures 5.9), and from the critical
blue line H, = 0 for B = D (see Figure 5.12). First we give a detailed analysis for teec

B = D, and then summarize the results for other cases with remase simulations.
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Figure 5.12: (a) Plot of the three curve$ HO (inred), H, = 0 (in blue) and B = 0 (in green),
on theA-C plane forB = D = 0.057, with the regions indicated for the classifications SF, U
SN and UN; and (b) a zoomed in region near the turning point.

5.3.1 Hopf bifurcation

We first consider Hopf bifurcation, starting from the caBex D = 0.057, for which the Hopf
critical points are located on the blue curve defined By=H0 (see Figure 5.12) is determined
from the equatioA(A + D) — C(A - DC) = 0, from which we solve fo€ to obtain

500+ A(193008 — 3249) (A> 3249

C. = 57A 193000

(5.22)

where we usd3 = D = %) to facilitate symbolic computation. Note that the leftmpsint

on the blue curve is given byA(C) = (3282 27). The solutionsC_ andC, correspond to
the points (see Figure 5.12(b)) on the upper and lower besohthe H = 0 curve, respec-
tively. In order to apply normal form theory to calculate thrst-order focus value (or the first

Lyapunov constant), we introduce affiae transformation, given by

1000(1C)
(X) _ ( 1000A+57 ]+

Y 1000A-57C
1000A+57

1 0 U
—A(1000A+57) ~1000A(1+C)we w )
1000+2000AC-57C?  1000+2000AC-57C? 2

wherew, = % > 0 (since 1008-57C > 0 due toY > 0), into (5.1) to yield a system to
be expanded around(, u,) = (0, 0) up to third-order terms, and then apply the Maple program
for computing the normal forms associated with Hopf and gaieed Hop bifurcations [26] to

this system to obtain the normal form in polar coordinatesoupird-order terms as follows:

dr_ r[Vou + vir?+o(rh], 4 _ we + top +t1r% + o(r?), (5.23)
dr dr
whereu is a perturbation parameter to measure the distance fromi@tpoint on the blue
curve H, = 0 along the positive direction of th&-axis. v, andv; are the zero-order and the
first-order focus values. The first equation of (5.23) candeluo perform bifurcation analysis
and the sign of/; determines whether the Hopf bifurcation is supercriticadwbcritical. The
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valuesvp andty can be found from a linear analysis, whilgandt; are obtained by applying
the Maple program. The calculation shows that

_ 57C?-1000A2 _ _1000A+57C
Vo = 200082(1+C) ’ o= 40008 VA(Z+C)’ (5.24)

and the output of the Maple program giwas andvy,, corresponding t&€_ andC,, respec-
tively, as

— 3249(100@\+57)
8000000008(500A+An)(500A+57—An)3(557000\+60249-1000A,)3

x[(386499928503500000000080+ 86140825778098500000080
+7051942944965614500080+ 223356947766097675588
—-3214238968494000000-38317671392498001)

+(879676636999000000080 + 203371596920829000088
+17848597867145253088 + 7599054886952618@V
+2485934013099600@Y,].

Vie =

whereA, = vA(I9300(A — 3249). It can be shown that. < 0 for A > 3232 ~ 0.0168. For
Vi, it has two real rootsA = 0.0184 andA = 0.9210 such that; . > 0 VA € (0.0184 0.9210)
andv,. < 0 YA € (0.01680.0184)( J(0.921Q ). Moreover, it can be shown thag > 0
whenC = C, for any values ofA > 0.0168, and there is a critical point d@., defined
by A = 0.0260, such that whe@ = C_, vop > 0 for A € (0.0168 0.0260) butv, < O for
A > 0.0260. Therefore, we can combine the information on the sifjng andv; to precisely
determine whether a Hopf bifurcation is supercritical dy@itical. In fact, on the upper branch
C. of the blue curve El= 0, all Hopf bifurcations are supercritical, while on the Evbranch
C_, the Hopf bifurcation is supercritical f&gk € (0.0168 0.0184)J (0.921Q ), and subcritical
for A € (0.0184 0.9210), as shown in Figure 5.12, where the two points on the tluves, at
A = 0.0184 andA = 0.9210 are marked by, where ‘supH’ and ‘subH’ represent supercritical
and subcritical Hopf bifurcations, respectively.

It should be pointed out that since 5 a degenerate saddle point, for any point inside
the region bounded by the blue curve, there must exist stabiecycles due to Poincér
Bendixson theory no matter whether i§ an unstable focus or node. This seems to imply a
contradiction for the subcritical Hopf bifurcation fromettower branch of the blue curve for
A € (0.0184 0.9210), giving rise to unstable limit cycles below the cuBet on the other side,
there exist stable limit cycles. This is because the unstioit cycle is from a local (Hopf)
bifurcation, while the stable limit cycle comes from a glbbidurcation. Several representative
parameter setgy C) are chosen for this case whBn= D = 0.057 as follows:

(A,C) = (0.1, 1.55), (0.3,35), (0.42 0.50), (0.39,0.50)

which are marked on Figure 5.12 by black points (the last tvecahthe same place), and the
corresponding simulations are shown in Figures 5.13 antl Bbte that all of them show the
existence of limit cycles. The first two cases confirm thatHlopf bifurcations emerging from
the upper branch of the blue curve are indeed supercritigti (he focus value;, < 0), and
so the bifurcating limit cycles are stable (see Figure 5.1Bp last two points are very close,
with one below the curve and one above the curve. The thirdyaids a typical subcritical
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Hopf bifurcation and the bifurcating limit cycle is unstal{see Figure 5.14(a)). The last one
is not generated by Hopf bifurcation though the criticalrpaos near the blue curve. Itis a
big limit cycle, generated due to PoinéaBendixon theory, and it is stable since it encloses an
unstable focus (see Figure 5.14(b)).
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Figure 5.13: Simulations of system (5.1) wHes D = 0.057, showing stable limit cycles: (a)
(A,C) = (0.1, 1.55) with E; being an unstable focus; and (8, C) = (0.3, 3.5) with E; being
an unstable node.

2 \ \ 12

15} ] 9t

05¢ i
ol &

0

2 3 4 5 0 3 6 9 12 15 1

X X
Figure 5.14: Simulations of system (5.1) whBn= D = 0.057, showing (a) an unstable limit
cycle for (A,C) = (0.42 0.50) with E; being a stable focus; and (b) a stable limit cycle for
(A, C) = (0.39,0.50) with E; being an unstable focus.

Similarly, we can consider the casBs< D andB > D and determine whether the Hopf
bifurcations are supercritical or subcritical. Withouvigg detailed calculations, we sum-
marize the results as follows. For the case wBth= 0.054 < D = 0.057, the blue curve
actually has a turning point #& = ;222 ~ 0.014878 while the BT bifurcation point is above
this point atA = 0.014881, as shown in Figure 5.16(a) in the next section. Oriaher
branch of the blue curve, the focus value for the Hopf biftioca(see the blue curve in Fig-

ure 5.1) is shown to have the property tlvat> 0 for A € (0.0149810.9455) andv; < O
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for A € (0.0148780.014981)uU (0.9455 =0). On the upper branch of the blue curve,< 0
for A € (0.0148780.014881). Hence, wherA(C) = (0.364,0.823), the Hopf bifurcation is
subcritical, and the bifurcating limit cycle is unstabls,the example shown in Figure 5.4. We
expect that a Hopf bifurcation is supercritical when chogs point withA > 0.9455. For the
case withB = 0.054 < D = 0.087 (see Figure 5.2), only the upper branch of the blue curve
is the solution, which does not contain the turning pointslaswn in Figure 5.16(b) (in the
next section). It is found that the focus valae> 0 for A € (0.03931.1708) andv; < O for
A > 1.1708. But for this case, the BT bifurcation point isAat= 0.0529, and the portion for
A < 0.0529 yields H < 0. Therefore, for this case; > 0 for A € (0.05291.1708). Several
typical simulations can be seen in Figures 5.3, 5.4, 5.6-5.8

Finally, we consider the cag® = 0.060 > D = 0.057 and confirm the conclusion that we
made at the end of Section 5.2.4. Note that for this case-H for all positive parameter
values. Compared to the caBe< D, now there are two branches on the blue curve (see
Figure 5.9). For the upper branch, it can be shown that< 0 for A > 0.0189, and the
Hopf bifurcation emerging from the upper branch of the blueve is supercritical and so the
bifurcating limit cycles are stable (see the blips examplEigure 5.10). For the lower branch
of the blue curve, it can be shown that the focus value> 0 for A € (0.0214 0.8964) and
vi_ < 0 for A € (0.01890.0214)U (0.8964 ). Hence, the Hopf bifurcation from the lower
branch of the blue curve is subcritical f8re (0.0214 0.8964), giving rise to unstable limit
cycles (an example is shown in Figure 5.11). Whenr (0.01890.0214)U (0.8964 ), the
Hopf bifurcation becomes supercritical and so the bifungalimit cycles are stable. This is
similar to the cas® = D (see Figure 5.12 where supercritical and subcritical Hdpf@ations
are indicated), and thus we omit the details.

By comparing the Figures 5.1, 5.2, 5.9 and 5.12, we have obdenv important dierence
between the diierent cases: although all the blue curves are defined by aajicpolynomial
in A andC, the caseB < D shows no turning point on the blue curve, while the cdesD
do have a turning point on the blue curve. As a matter of fdoye zoomed in the area
around the BT point in Figures 5.1 and 5.2 (see Figure 5.16am#xt section), we will see
the turning point for the casB = 0.054 D = 0.057 since the blue curve contains the turning
point, while the blue curve for the cag= 0.054 D = 0.087 does not include the turning
point. Summarizing the above results, we have the follovieprem.

Theorem 5.3.1 For system (5.1), there always exists Hopf bifurcation whictues from the
disease equilibriunt;, for suitable positive parameter values. The bifurcatiomsy be su-
percritical or subcritical, and a limit cycle bifurcatingdm a supercritical (subcritical) Hopf
critical point is stable (unstable), which encloses an ubkda stable) focus point — the equi-
librium E;.

5.3.2 Generalized Hopf bifurcation

Now we consider possible generalized Hopf bifurcationsciwimay occur from system (5.1),
leading to bifurcation of multiple (two) limit cycles fromkopf bifurcation point. The con-
dition for generalized Hopf bifurcation is that the firsder focus value vanishes, i.g;,= 0.

In other words, on the Hopf bifurcation curve (the blue csrue Figures 5.1, 5.2, 5.9 and
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5.12), such a critical point is identified when the Hopf bdation changes from supercritical
to subcritical, or vice versa.

Again, we first consider the cag= D = 25, for which there are two generalized Hopf
critical points located on the lower branch of the blue cusee Figure 5.12) (1,3 = 0.0184

and (2& = 0.9210, where the subscript ‘gH’ denotes ‘generalized Hagbte that in computa-
tion we take the accuracy up to 30 decimal poﬂﬁ& =0.0184128746264075106899349611404,
A = 0.921012043225272084984762668632, but only present thutgas to 4 decimal

points for brevity. The corresponding critical values®are given byC_(A) in Eq. (5.22) as
Cll) = C_(A}) = 0.1199 andC} = C_(A%) = 1.0456. Then the first equation of the normal

form (5.23) associated with the critical poik}), C';)) is given by

ﬂ
dr

wherev; = 0 andv, = —0.1076x 1073, called the second-order focus value, is obtained by
using the Maple program [26]. Note that we now take the umfgiderm from perturbing the
parametelC asC = C_(A) + u. Thus, we can perturi from A(l,j to getv; > 0 such that

Vi < |5, and then findiou < 0 satisfying|vou| < vi. This gives two limit cycles bifurcating
from the critical point A}, CY). For this case, by perturbir@we have

=1 [Vou +Vvir?+vrt+o(r%], (5.25)

Vo = AL057+10008)-57C(2+C)
0= 2000A(1+C)?

To obtainv; > 0, we perturbA = Al to A* = All) + 0.00005= 0.01846287, for whictC* =
C_(A") = 0.11969100 and sw, = 0.11653286. Now for the Hopf bifurcation associated with
the critical values&*, C*), we obtainv; ~ 0.13257095x 104 andv, ~ —0.10838198« 1073,
Further, we choose = -107° < 0, i.e.C is decreased to pass through the critical pokitC*),
yielding vou ~ —0.11653286x 10°6. Finally, we obtain the normal form for this generalized
Hopf bifurcation, up to 5th-order terms, in the form of

g—r[
dr

giving two real positive roots;,; ~ 0.09763824 and, ~ 0.33583483, which approximate the
amplitudes of the two limit cycles. Sincge < 0, the larger limit cycle is stable while the
smaller limit cycle is unstable, and the equilibrium saduatiat this critical point is a stable
focus.

In order to show the existence of the two limit cycles prestichbove, first note that at the
parameter valueB = D = 0.057,A = A", C = C* — 1078, the Jacobin matrix evaluated at the
fixed point E =(14.83762810.1542552) has eigenvalue$.11918442 107+ 0.08096071,
confirming that this fixed point is a stable focus. But the cogeace speed of nearby trajec-
tories to this stable focus is very very slow. Next, we onlgdé¢o show that there exists a
stable limit cycle around this point sineg < 0, and expect that the convergence speed is also
very slow. Therefore, there exists one unstable limit cyideveen the stable focus and the
stable limit cycle, as shown in Figure 5.15. It can be seemfilois figure that the analytical
predictionsy; ~ 0.10 andr, ~ 0.34, give very good approximations for the amplitudes of the
two simulated limit cycles, see Figure 5.15(b).

0.11653286¢(-10°) + 0.13257096x 10 “r? — 0.10838198« 10°°r*],
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Figure 5.15: Simulation of two limit cycles for system (5dhenB = D = 0.057, A =
0.01846287C = 0.11969000: (a) three trajectories with moving directiordicated; and (b)
two limit cycles with the inner unstable and outer stable.

0.14}+

Following the above procedure, we can also obtained twad tyales bifurcating from the
other critical poin (Z,j. We give the normal form for this case below without givingadls for

brevity. TakingA = A" = Aéz,j -107°,C =C* = C_(A") yields

dr

Fall [0.2127828k(~10"°) + 0.93716102x 10 "r* — 0.87730535x 107°r*],
-

which has two real positive roots, ~ 0.05721775 and, ~ 0.08607204, approximating the
amplitudes of the two limit cycles bifurcating from thistacal point (A = A*,C = C*). Again,
sincev, < 0, the larger limit cycle is stable and the smaller limit @& unstable, and the
equilibrium point is a stable focus. For simulation, we dddake A = A" = 0.9210120422,
C = C* - 10" = 1.0456736673, which yields the eigenvalues at the equilibqoint E. =
(2.091665110.88077509) as-0.22645814x 107° + 0.62756454, and a similar figure to Fig-
ure 5.15.

Similarly, we can obtain the five normal forms correspondmthe two critical points for
the case 0B = 0.054 < D = 0.057, one critical point for the case Bf= 0.054 < D = 0.087,
and two critical points for the case 8 = 0.060 > B = 0.057. We first define the five cases
followed by the corresponding five normal forms.

(a) B = 0.054< D = 0.057 withA = A" = 0.0149805591
(b) B=0.054< D = 0.057 withA = A} = 0.9454739030
(c) B=0.054< D = 0.087 withA = Ay = 1.1708464105
(d) B = 0.060> D = 0.057 withA = A% = 0.0213860900
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(e) B = 0.060> D = 0.057 withA = A% = 0.8963921091

(@) & = r[0.20278804(~107%)+0.8916932% 10-~0.1490085% 102
=0 = r;=004866092 (US)r, = 0.23973712 (S):

(b) & = r[0.2151567%(-10"19)+0.9458878% 108-0.2214210% 10°¢]
=0 = r;=004909881 (US)r, = 0.20076919 (S);

(c) & = r[0.2152111%10°-0.9376555510%+0.1217736&10°?]
=0 = r,=001538841(S)r, = 0.08638971 (US):

(d) & = r[ - 0.0482574%10°9+0.15893286 106~ 05816691 10|
=0 = r;=001865320 (US)r, = 0.04883049 (S):

(e) & = r[ - 0.0023627%10°88! +0.92766615107~0.1689762%10*|
=0 = r,=001636337 (US)r, = 0.07226452 (S)

where US and S denote unstable limit cycle and stable lintlegyespectively.
Summarizing the above results we have the following result.

Theorem 5.3.2 For system (5.1), there always exists generalized Hopfdation leading to
two limit cycles bifurcating from the disease equilibridty, for suitable positive parameter
values. One of the two limit cycles is stable while the othengable.

This theorem indicates that regardless whetBet D or B = D or B > D, the system
can always exhibit complex dynamics includingfedient types of bistability or even tristablity.
More precisely, for Cases (a) and (b) (for whiBh< D), the disease-free equilibriumyks a
stable node, the disease equilibrium & a stable focus (another disease equilibrium i
a saddle point), and there exist a stable limit cycle, as aslin unstable limit cycle between
the stable limit cycle and the stable focus. This indeed shiowstability involving two stable
equilibrium solutions and one stable periodic solutionefEfore, the first quadrant of theY
plane can be divided into three trapping regions, each sporeding to one of the three stable
solutions. Case (c) (agald < D) shows a bistable situation, since for this case the disease
equilibrium E_ is an unstable focus, and there exist two limit cycles emotpthis unstable
focus, with the inner one stable. The disease-free equitibiE, is still a stable node. For
Cases (d) and (e) (for whicB > D) and the two cases whd® = D, we can see that the
disease-free equilibriumghow becomes a saddle point (a degenerate saddle poiBt$dD)
and there is only one disease equilibriugwvihich is a stable focus. There are two limit cycles
enclosing the stable focus and the outer one is stable. Sagain shows a bistability but it
involves one stable equilibrium solution and one stableogér solution, diferent from the
Hopf bifurcation case.

The above discussion implies that the real situation coelddry complex, showing the
co-existence of a stable disease-free equilibrium, stdisiease equilibria, and even stable
oscillating motion, all of which are possible depending miwe initial conditions. Moreover,
note that the above seven cases (five cases plus two cas®s=fdD) are obtained for fixed
parameter values & andD. Hence, such phenomena are not uncommon, but quite ricé if th
parameter® andD are also allowed to be varied.
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5.4 Bogdanov-Takens bifurcation

Finally, we consider possible Bogdanov-Takens (BT) bifuoret in system (5.1), character-
ized by a critical point with a double-zero eigenvalue. fivge have noticed that it is not
possible to have a double-zero singularity at:E(%, 0) since it has eigenvalués = —D and

&H = % — 1, implying that it can have at most one zero eigenvalue whenD. Secondly, for
the caseB > D, on the equilibrium solution £, det) > 0 which cannot have a double-zero
eigenvalue. Thirdly, for the cad® = D, again the equilibrium solutionE cannot have a
double-zero critical point since when Tj(= 0, det() = w > 0. Thus, the only pos-
sibility comes from the casB < D on the equilibrium E_, which is observed from Figures 5.1
and 5.2. In fact, it can be seen from (5.12) that de¥ O requiresA = 0, together with (5.15)

to solveA andC to obtain the solutions foB = 2, D = 2L as
_ 3078507 61731
BT1 = (B1, D1, A1,C1) = (500’ m’ 206879500 82751 (5.26)
which is marked as a circle on Figure 5.1, andBot 2%, D = 27 as
_ 118428267 219501
BT, = (Bz, D2, A2, C3) = (500’ m’ 2237439500 894975 (5.27)

which is marked by a circle on Figure 5.2. For a clear view,zbemed areas around the two
BT bifurcation points in Figures 5.1 and 5.2 are shown in Fegs.16(a) and (b), respectively.
As has been discussed in Section 5.3 that near the BT bifangadiints, the Hopf bifurcation is
supercritical wherB = 0.054 D = 0.057; while it is subcritical whe® = 0.054 D = 0.087,
which result in stable and unstable limit cycles, respetfivThus, we will present the results
for both cases.

0.074657 0.071
(a)
0.06
0.07460/]
BT,
0.051

0.07455+

H; <0

C \ c
1 UF 0.03
0.07450 \\supH BT,
N 0.02] SF
0.074454 \\
SF \\\ 0.01
0.07440- T T r T T T ) 0-r T - - -
0.01487 0.01489 0.01491 0.01493 0.04 0.05 0.06 0.07
A A
Figure 5.16: The BT bifurcation diagram around the criticaings: (a) 6,D,AC) =
27 57 3078507 61731 87 118428267 219501
500’ 1000’ 206879500 827518) and (b) B D A C) W)’ 1000’ 2237439500 894975

5.4.1 CaseB=0.054 D = 0.057

We first consider the cade = 0.054 D = 0.057. We will derive the normal form associated
with the BT; bifurcation, and then use the normal form to carry out biitian analysis. To
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achieve this, we introduce the following transformations:
943 1000 3078507
GREI HENCERG S HANNE
1000 943 2 827518 H2

into (5.1) and expanding the resulting system around thetgoi, u,, u1, u>) = (0,0,0,0) up
to second order terms yields the system:

% = U + (U, Up, p1, o),
V7
ar = f(U, Up, 1, po)
= 01300000611 ~ 350000042 — Saav1c3000 142 + SIT2r2a85082 (5.29)
+(3 308450611 — eonorsrosob2)U + (Ssoiosaoods — Gesasgle)le
~ 500809231 * so0s0923H1lz + Gssa5ets-

Next, we apply the near-identity nonlinear transformatigmto second order), given by

U = yp + 2685896925 n (27741365073911151690737_9 _ 562455792759188§ )y
1= 19000000/°1 225290794891170000000001 ~ "413759000000000°2/ Y1

25731225Q,2 + 1923882263(3, + 68686136709613797
900809237'1 286577700 1Y2 72599684000000000"2

— v _ ;. _ 7391462606097622324%2 , 6014732664591883 o
Uz = Yo —f1 25148272020000000001 T 41375900000000@1!82 (5.30)

17614322633 57 o 739146260609762232437  60147326645918
+( 032)y1+( 2514827202000000000°1 413759000000008(’32)y2

+

2865777000°1 " 100

1624500 2 , 541500 17614322633 2

* 5008002371 T 955250Y1Y2 T S8657770002°

and the parametrization,

_ 55157609919181+ 55157609919 _ 883699740367 1+

_ _ 9755764036715
H1 = ~717119651008 171196510081 H2 = ~—734739302016

342393020162°2°

to (5.29) to obtain the normal form:

dy;
- = VY2
&£ - (5.31)
o =Bt aBeyitBeye - a1 Y? + ap y1Yo,
where
o= 51 g, — _1624500 a, = 741000
— 1000 1 — 900809237 2 — 900809237

In order to further simplify system (5.31), we introduce fokowing scalings:

Yi=Mg X1, Y2=MpXp, 7T1=0NRKT,

into (5.31) to obtain

dX]_
= X2,

dry (5.32)

dx 2
d_Tl :ﬁ1+aﬁ2X1+ﬁZX2—X1+X1X2.
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Here,
2
— & _ 900809237 _ & _ 51346126509 a5 _ 57
ml_aﬁ_ 338000 © M2 = 2 = Tg7es000 ¢+ BT 5 T 26
&, _ 292672921101 - 57 i (5.33)
3 =apg =2 o
’31 - = 228488000 o B, B2 = wP2= 3P a=Fa=g

Thus, the relation between the original perturbation patens i1, 1) and the new perturba-
tion parameterssg, 82) is given by

— _ 161431388150507602837047 | 314308376538
H1 = 39116348195387528000 4451109262106 2’ (5.34)

_ _ 258634984380609552098287a3 | 55607855009247
H2 = 78232696390775056000 ©1 T 890221852421

It should be noted that due to the large valuesnpfandm,, very small values ofxy, x;) can
resultin very large values of{, y,) and so (i, U,), which are perturbations from the BT critical
point (Ar, Cr). Therefore, we should take small valuesxpbindx, when solving system (5.31).
Also note in (5.34) that the céigcients of$3; are large, so we should choose very small values
for the perturbation parametgy. Moreover, since in generab should take negative values
(see Figure 5.16(a)), we will show in the following tigatmust take positive values.

Now, we use the normal form (5.32) to analyze the BT bifurcatiBirst, we note that in
almost all existing articles or books, the unfolding terme. (the terms with the cdicient
1 or B,) are usually taken as in a generic form with no direct refatethe original physical
system parameters, which may caus@dilty in bifurcation analysis when solving practical
problems. Here, we involve perturbation parameters in trdimear transformation to obtain
the explicit unfolding terms (in terms @f andg,), which have a direct relation to the original
system parametes andC, and thus facilitate a realistic dynamical study. It shdaugdnoted
that our system (5.32) is not in the standard normal form forbBiircations, given by (e.g.
see [13)])

X1 = X,
5(2 = ,81 +ﬂ2X2 + Xi + X1 Xo.

However, we will show in the following that our system (5.32) the original system (5.1))
does exhibit interesting dynamics that system (5.35) dimeggealistic parameter values, in-
cluding Hopf bifurcation and homoclinic loops.

The two equilibrium solutions of (5.32) are given by

E. = (X,0), where xu. = i[aB+ /(B2 +4B1)]. (5.36)

i i 4 1000000
Since we requires3 + 48, > 0, we haves; > 0 orp; < -3 = —1%89% Thus, for|gy| < 1,

we only considep; > 0. In fact, with (5.5) and (5.34), we obtain

(5.35)

H. ~ 3063807 173223 _ 963255946826679308,
~ 206879506!1 ~ 1034397562 = T1955817409769376

and thus the condition H> 0 yieldsp; > 0. Therefore, in the following analysis we assume
B1 = 0. Itis easy to see that whgn > 0, x;,. > 0 andx;_ < 0.

To find the stability of the two equilibrium solutions, we uke Jacobian of (5.32) to obtain
the characteristic polynomiaf — Tr A + det, where

Tr=6+X% and det—-af,+2X;.
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DefiningA = Tr? — 4 det, we have

Tr' =B+ X = (1+ 32)B8 + 3 \/a/zﬁz + 484,
? 2N (5.37)
det = —CL’,BZ + 2 X4 = 1’“2,8% +4;81 > 0,

implying that the equilibrium E (xy,, 0) is either a focus or node, which is stable (unstable)
whenA* = (Tr*)?2 — 4det < 0 (> 0). Similarly, for the equilibrium E: (x;_, 0) we have

Tr =B+ % = (1+ )8 — 1 \[a?B2 + 46,4,
2 1 2 2 2 2 1 (538)
det = —af, + 2% = — Ja?B5 + 4B, < O,

indicating that E is always a saddle point. The bifurcation set (only fer> 0) and corre-
sponding phase portraits are shown in Figure 5.17. NotethigaHopf bifurcation near the
critical point (denoted by the dashed blue curve in Figut& bis obtained from Tr= 0 as

Bi=(1+a)ps=32p2 (5.39)

There is another curve in Figure 5.17, shown in red, whichoteemnthe bifurcation of homo-
clinic loop (see [13]).

B2

0

\ B1
\
\ >@
\

. . g 4902

N Homo: B1=3p65

\\\
Tl L —

-
-~ -

Figure 5.17: Bifurcation set and phase portraits of systeB2(5

Before we derive the equation for the bifurcation of the holnexrloop, we consider the
Hopf bifurcation which occurs from the dashed blue curvee Hopf critical point on this
curve can be defined as

Bon =-10 %



5.4. BoGDANOV-TAKENS BIFURCATION 129

and then introducing the transformation: = X1, X, = w¢ X, into (5.32) results in the system:

dX, - S o

— =wc ¥ = (X, %),

d7,:1

dXy S 192 oo — &S
—— = —wc Xy — = X7 + X Ko = §(%e, X)),
dTl ¢

where
we = %(3)\/285,81.
Thus, the first focus value is given by

1 1 2 1

- 1&)3( - g)?l)?lgf(lf(z) = X — = — < O’

Vi =
! 16we  we  8w?

indicating that the Hopf bifurcation is supercritical, apiflurcating limit cycles are stable, as
shown in Figure 5.17 (see the ellipse in green). The Hoptb#tion near the BT critical point
is not surprising since the original system does have Hdpfdations which occur from the
blue curve, as shown in Figure 5.16. In fact, as discusseddtich 5.3, we can similarly use
the original system to show that the Hopf bifurcations frowva blue curve (see Figure 5.16) are
indeed supercritical, which agrees with the conclusioraioled above, and so the bifurcating
limit cycles are stable.

Next, we consider homoclinic loops which may bifurcate rtbarBT critical point. Here,
we apply the technique of rescaling, as used in [13] to findettpgation for the homoclinic
curve. Set

X1 =W, X =&W, pr=eYvi, Po=e"vy, a=ed, (0<e<), (5.40)

and rescale time= er4, so that (5.32) can be rewritten (upd@rder) as

dWl
Ny — W2,
dt (5.41)
dw, .
W = v1 + EavoWy + evoWo + EWIWH — \N21
Now, lettinge = 0in (5.41) yields an integrable Hamiltonian system:
dW]_
E - 25
dw (5.42)
d — *+ F
with Hamiltonian 1 1
HWwy, W) = —viws + 3 w3 + é‘“’g' (5.43)

Takingv; = 1, which corresponds i > 0, we have two fixed pointswg, w,) = (+1, 0), with
(1, 0) being a center and-(, 0) a saddle point, as shown in Figure 5.18.
The solution on the saddle lodpbased at the pointg, w,) = (2, 0) is given by

t

(W (t), Wa(t)) = (3 sech( 75

)-1.3 \/Esecﬁ(%/_z(tanr(%/_z)). (5.44)
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Figure 5.18: The phase portrait of (5.42) with= 1, showing a homoclinic loop.

Thus, the first-order Melnikov functioM(tg) on the vector filed: (@vow; + vow, + WiW,) 6%2
is independent of time, and can be calculated as

M(Vz) = f: ) Wz(t) [&Vle(t) + V2W2(t) + Wl(t)Wz(t)] dt

- i[vzf 18 secht’ tanitt’ dt’
\2 _

(%Y

—f (3sechr — 1) 18 secfit’ tantft’ dt'|,

wheret’ = t/ V2. Note that the first termsw; (t)wa(t) yields zero after integration due to
the Hamiltonian being symmetric with respect to thgaxis, and the negative sign for the
integration of the third termwv;(t)wa(t) comes from the definition of the homoclinic lodp
which takest’ from +co to O along the positivev; direction while from 0 to—co along the
negativew; direction. Then, solving/l = 0 for the saddle connection yields

[ (3secht’ - 1) sechit’ tantft’ dt
e a [ secht tantft dv
[ secht'(2tanfft’ — 5tanift’ + 3tanift’) dt’
[* secht (tanift’ — tantft’) dt

2

S
7
where the formula;
o0 tanH*1(t)|” 3
H ’ H( ’ ’ —
Imsecttan t’ dt a1 ) 1

(o)

has been used. Finally, noticing = 1, andg; = &%, B> = £%v,, we obtain the approximate
bifurcation curve for the homoclinic loop as

49
Homo: p;= 2—5[3%, B> < 0. (5.45)
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The true bifurcation curve is tangent to the semi-parabbjg a= 8, = 0. Combining this
with equation (5.39) for Hopf bifurcation, we indeed see thaecond bifurcation curve, de-
noted as ‘Homo’, is located above the Hopf bifurcation ciamd tangent to it (and {6, = 0)

at (81,82) = (0,0), and the phase portrait on this bifurcation set has a edddp, as shown
in Figure 5.17. The sign taken by the Melnikov functibhfor g, < ‘Zﬁ’ > (or > ‘Zﬁ’ 2, re-
spectively) gives the relative position of the stable angtalble manifolds (separators of the
saddle). Moreover, note that the trace of the “saddle qydngiven by (5.38),

Tmomo = (1 + %a)ﬁZ - % a? + % B2l (B2 < 0),

is negative on the ‘Homo’ curve (5.45). Hence, the homoclorbit is stable (am-limit set)
attracting the nearby points. Further, it can be shown (58p fhat in the region between the
Hopf bifurcation curve ‘supH’ and the Homoclinic bifurcati curve ‘Homo’ (see Figure 5.17)
the system has a unique attracting limit cycle for each ggmacameter valueg(, 3,).

To demonstrate the bifurcation phenomena discussed ab@ehow simulations using
the original system (5.1), rather than the normal form dquaf5.32), which gives a more
realistic observation. We take seven sets of perturbaborthe parameter& andC near the
BT, critical point (see Figure 5.16(a)) &s= A; + u1, C = C; + up, whereA; andC, are given
in (5.26). These seven sets of perturbations denote sevats po the bifurcation diagram
(see Figure 5.16) on a same vertical line (see the greenrlifkgure 5.16(a)) with the same
coordinateA = A; — 0.000001, and dierent coordinate€ = C; + u, with u, given from top
to the bottom as follows:

u2 = —0.0000094 —-0.000098 -0.0000106 —-0.00003
—-0.0000414239 -0.0000875 -0.0001

It is noted that the equilibrium E is a stable focus at the top and the bottom points, but is
an unstable focus at the other five points. Here, we have famnihteresting phenomenon
that since the Hopf bifurcation curve has a turning point alichearby points can lead to
stable limit cycles in the region where the equilibrium E an unstable focus, there exist two
homoclinic loops when one goes through the five points albageértical line starting with the
second point from the top. However, the above normal forrarthéor the BT bifurcation and
the result given in Figure 5.17 only show one homoclinic lo®pis is not surprising since the
normal form for the BT bifurcation is only applicable for the study of dynamicsward the
BT, point and thus it only predicts the top homoclinic loop. Doghe perturbations being very
small, the convergence of the simulating trajectoriesiig skow. Moreover, the direction of the
trajectories near the saddle point is hard to distinguisteré@fore, in order to give a clear view,
we, based on the simulating phase portraits which have tmtated by a angle of;, present
seven schematic diagrams with exaggerated convergened gpe the part near the saddle
point. Since the simulations for the top and bottom poingssimilar, we will only present one
figure for these two points (see Figure 5.19(a)). Of coutssy are diferent quantitatively and
the simulation for the bottom point is much clearer than tithe top one. The Figures 5.19(b)
to 5.19(f) correspond to the other five points from top to tbdm. The relation between the
original coordinatesX, Y) and the new coordinateX(Y) shown in Figure 5.19 is given by

X = cos(&) X —sin(&)Y, Y =sin(&)X+cos(&)Y.
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Figure 5.19: Simulations of system (5.1) whgr= 0.054, D = 0.057, A = 0.01487968 for (a)

C =0.07458837 oC = 0.07449777, showing stable focug E(b) C = 0.07458797, showing
unstable focus E and a stable limit cycle, (¢F = 0.07458717, showing unstable focug E

and a stable homoclinic loop, (€ = 0.07456777, showing unstable focug Eand a stable

limit cycle, (e)C = 0.0745563461, showing unstable focus Bnd a stable homoclinic loop,
(f) C =0.07449777, showing unstable focus EBnd a stable limit cycle.

In the next example foB = 0.054, D = 0.087, we will see true simulating phase portraits,
which clearly show the Hopf bifurcation and homoclinic dation.

5.4.2 CaseB=0.054 D = 0.087

Now we turn to study the ca€® = 0.054 D = 0.087. As we have discussed, a particular
difference between this case and previous case is that now tHeéllapation near the BT
critical point is subcritical, and thus the bifurcating limycles are unstable. Thisfterence
can cause dramaticallyftierent meanings in the biological explanation of this phesoom.
Since the solution procedure is similar to the previous ,cagewill skip some detailed
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steps and only present the main results in the following.ntysi series of transformations,
similar to (5.28), (5.30) and (5.33), we obtain the follog/imormal form:

Xm

dr ¥

dn 2 (5.46)
d_Tl :ﬁ1+a’ﬁ2X]_ +ﬁ2X2—X1_ X1 X2,

wherea = %g, and the transformation for the parameters:

_ 654433537002130875303101069% 4 _3000793340668563
H1 = ~ 7930783330587037176699617088860b T 188911529837823194 2> (5.47)
_ 75442551294885497031160682012@3 4 12645552328645797 :

H2 = ~ 158515666611740743533992341776030 " 377823059675646398 2"

The solution formulae are the same as that given in (5.36airAgve can similarly argue that
B1 > 0, and as a matter of fact,;H> 0 impliesB; > 0, for whichx;, > 0 andx;_ < 0. The
stability of these two equilibrium solutions are deternairsy

T =pfr— % =(1-2a)B- 3 \/azﬁz + 461,
: 2 2N (5.48)
det” = —a’ﬁz + 2%, = ,la/zﬁg + 4;81 > 0,

Tr =B —Xi_ = (1- 2a)Bo + L \Ja?B2 + 4B,,
= SR SC (5.49)
def:—01,82+2X1_:—,/a/2,8%+4,81<0.

These results indicate that,(, 0) is a saddle point, whilex(,, 0) is either a focus or node. The
Hopf bifurcation near the Bjcritical point is determined from Tr= 0 as

Br=(1-a)B;= 2252, (5.50)

and the bifurcation is subcritical, since the first focusugatan be obtained as = a% > 0.
Similarly we can obtain the homoclinic bifurcation whichcoics from the curve:

and

49
Homo: pB;= 2—5,35, B2 > 0. (5.51)

The bifurcation set and corresponding phase portraits epectid in Figure 5.20, which is
quite diferent from the casB = 0.054 D = 0.057 (see Figure 5.17). Simulations based on
the original system (5.1) for this case are shown in Figu2é Svhere the perturbatiopd, u»),

on the parameter& andC, take the following values:

(0.004,0.0085) (0.004,0.00807) (0.004 0.0073813) (0.0040.007)

which represent four points on the same vertical green tirtee bifurcation diagram, shown
in Figure 5.16(b).

Itis seen from Figure 5.21(a) that the phase portrait fofiteeperturbation, corresponding
to a point above the Hopf bifurcation curve (see the blueeur¥igure 5.20), shows a unstable
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B2

,,,,, SUbH: B1= 265

Figure 5.20: Bifurcation set and phase portraits of systed6(5

focus E_ and there exists one trajectory starting from the saddletjifi and converging to
this focus ag — — . Figure 5.21(b) shows the phase portrait for the secondiietion,
corresponding to a point between the Hopf bifurcation cytlie blue curve in Figure 5.20)
and the homoclinic bifurcation curve (the red curve in Fegb6r20), shows an unstable limit
cycle (see the green curve in Figure 5.20) and trajectotéatirgy near this limit cycle either
converge to the stable focus_Eor to the stable nodeHwhich is not shown in Figures 5.20
and 5.21) ag — +oo. Figure 5.21(c) shows a homoclinic loop under the third yéstion,
corresponding to a point on the homoclinic bifurcation eymvhich encloses the stable focus
E;_, and all trajectories inside this homoclinic loop covertmgthe focus ag — +oo. In fact,

it can be shown that the saddle quantity, given in (5.49),

— _ 1 1 2 196
TrHomo—[1—§a+§ a“ + ]

25 )
is positive forg, > 0, implying that the homoclinic loop is unstable. Finallygére 5.21(d)
shows a phase portrait for the fourth perturbation, cooedmg to a point below the homo-
clinic bifurcation curve, which encloses the stable focys H is seen from Figure 5.21 that
the saddle connection before and after the homoclinic I&agufe 5.21(c)) change the way to
connect the focus or the limit cycle. Note that unlike thaitwhtion shown in Figure 5.16(a)
where there are two homoclinic loops which occur from thesgrine, here there is only one
homoclinic loop since no more Hopf bifurcation happens wthenparamete€ is decreased
to cross the Hopf critical line along the green line (see Fedgu16(b)).

Summarizing the results obtained in this section we havédlmving theorem.

Theorem 5.4.1 For system (5.1), when B D andH; > O, there always exists Bogdanov-
Takens bifurcation, which occurs from the precritical disedifurcation solution, leading to

homoclinic bifurcation near a Hopf bifurcation, with hommit loop being either stable or

unstable.



5.4. BoGDANOV-TAKENS BIFURCATION 135

0.14 0.16

0.14}

0.12}

0.1t

0.1t

0.08+

. . 0.06 . . .
10 10.2 104 10.6 9.9 10.1 10.3 105 10.7

0.15}

0.12}

0.09}+

0.06 . ! 0.06 : !
9.6 10 104 10.8 9.6 10 104 10.8

X X

Figure 5.21: Simulations of system (5.1) whénh = 0.054 D = 0.087 for (a) A =
0.0569302656C = 0.0330259146, showing an unstable focys #ith one trajectory diver-
gent to the saddle pointE (b) A = 0.0569302656C = 0.0325959146, showing stable focus
E;_ enclosed by an unstable limit cycle, &)= 0.0569302656C = 0.0319072146, showing
a homoclinic loop enclosing a stable focus, andAdy 0.0569302656C = 0.0315259146,
showing convergence of the trajectory starting from thedagoint &, to the stable focus
E; .

5.4.3 A new mechanism for generating blips

A detailed study for a 4-dimensional system has been givgRa7n28], shows a mechanism
for generating the blips phenomenon, and four conditioagparposed in a hypothesis, which
guarantee the existence of blips. In [27, 28], blips are sifgwvn to exist in two 3-dimensional
models as well as in the 2-dimensional model (5.1). An imguadrtondition for the existence of
blips is Hopf bifurcation, which is the source of oscillatiovery recently, another mechanism
has been identified in [29], which is also related to Hopf tm&tion. These two mechanisms
have a common property that both of them generate oscitatiath large changes in both
amplitude and frequency, and they both appear on the pibsiatdisease bifurcation solution.
It has also been noted that these two mechanisms have a fentirditference: the former
guarantees blips to occur near a transcritical bifurcgpioint; while the later yields blips far
away from a transcritical bifurcation point, which are naaganteed. The second mechanism
needs further investigation.
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In order to discuss a new mechanism of generating blipseifaffowing we list Hypothesis
1 from [27, 28], and propose a second Hypothesis based oeshés obtained in [29].

Hypothesis 1 [27, 28] The following four conditions are needed for an wstinfection model
to generate viral blips:

() there exist at least two equilibrium solutions;
(i) there exists a transcritical bifurcation at an intetsen of the two equilibrium solutions;
(i) there is a Hopf bifurcation which occurs from one of tlguilibrium solutions; and

(iv) large oscillations (or, more generally, global, pstsnt motions) can occur near the tran-
scritical critical point.

Hypothesis 2 [29] The following four conditions are needed for an in-hio$éction model to
generate viral blips: the conditions (i), (ii) and (iii) aiitee same as that given in Hypothesis 1;
and

(iv) large oscillations (or, more generally, global, pstsnt motions) can occur far away from
the transcritical and Hopf critical points.

We use the bifurcation diagrams shown in Figures 5.22(a)%ad(b) (which are Fig-
ures 3.3(a) and 3.3(b) in [28]) to illustrate Hypothesis rid ¢he bifurcation diagram in Fig-
ure 5.22(c) (which is Figure 3.1(a) in [29]) to explain Hybpesis 2, wher® and A are state
variables,B anda are parameters.gand & denote the disease-free and disease equilibrium
solutions. The green lines indicate where the blip-likaltzdmons occur. It is clear from Fig-
ures 5.22(a) and 5.22(b) that the blips appear near thectiical point, and may or may not
appear near the Hopf critical point, where bothdhd E are unstable, illustrating condition
(iv) in Hypothesis 1. Figure 5.22(c) (where the second Hopfcal point “Hopf,” is out-
side the figure) shows that the blips occur far away from theseritical and Hopf bifurcation
points.

Through the study given in this section on the BT bifurcatiwa,have found a third mech-
anism for generating blips, due to the BT bifurcation, expdali as follows. First of all, note
that the trajectory starting from a point on the homoclioiep will reach the saddle point either
ast — +oo0 Or T — —oo. Therefore, it can be seen from Figure 5.17 that near the blomo
bifurcation curve, for certain parameter values, the loditing stable limit cycles can be large
close to the saddle separators and thus such a stable lioh& wyll move extremely slowly
near the saddle point but will move fast when it is away fromshddle point — giving rise to
the blips phenomenon. A schematic bifurcation diagramtferdase, which is depicted in Fig-
ure 5.19 wherB = 0.054 D = 0.057, A = 0.01487968, is shown in Figure 5.22(d). Also note
from Figures 5.20 and 5.21 that when the limit cycle inside ¢hddle separators is unstable,
the trajectories starting near the unstable limit cycle o@mywerge to the stable focusg Eor to
the stable node Fbut will take very long time since the solution will go thrdug route close
to the saddle point though not generating blips in this case.

The big diference between the first two mechanisms and the new mechanteat the
first two mechanisms result in very large oscillations inhbamplitude and frequency, while
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Figure 5.22: Bifurcation diagrams illustrating Hypothegesg and (b) for Hypothesis 1, (c) for
Hypothesis 2 and (c) Hypothesis 3.

the new mechanism only causes significant changes in freguaut very little variation in the
amplitude. The biological implication of the new mechanisnnteresting and may explain
some real situations, namely, in some situations a patieryt mot feel obvious changes nor
will measurable changes in disease progression be apphoénbnetheless the patient may be
experiencing recurrent disease without any significaneéoiadion. In other situations, neither
the infected individual nor the clinician may be able to detehether the infection has been
cured, since complete recovery may take an extremely long.tin both cases, the patient is
in an uncertain situation. To describe these scenarios awe the following hypothesis.

Hypothesis 3 The following four conditions are needed for an in-host atiten model to gen-
erate viral blips or to take an extremely long time to recofgamverge to the disease-free
equilibrium): conditions (i), (ii) and (iii) are the same st given in Hypothesis 1; and

(iv) there exists Bogdanov-Takens bifurcation, leadingdmbclinic loops near a Hopf bi-
furcation, which may yield blips with very small changes mglitude, or extremely
slow convergence to the disease-free equilibrium.
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5.5 Conclusion and discussion

In this paper, we have given a detailed dynamical study ofdininsional disease model,
which can be used not only for in-host disease modellingalsatfor epidemiologic modelling.
We have shown that when the reproduction numbgr,=RE, is varied near R = 1, the
system exhibits rich dynamical behaviors, including efudim solutions which exchange
their stability at the transcritical pointoR= 1. Both Hopf and generalized Hopf bifurcations
can occur regardless whetheg R 1 or Ry > 1, which lead to bistability or even tristability.
In particular, our study has indicated that when<R1, the system can have Bogdanov-Takens
bifurcation leading to more complex dynamical behaviornsas homoclic orbit bifurcation.
This special bifurcation may provide a new scenanechanism for generating recurrence or
the viral blips phenomenon, summarized in Hypothesis 3.

Hypothesis 3 is completely fllerent from Hypotheses 1 and 2, and may provide an ex-
planation for interesting clinical phenomena. In many dssemodels, the concept of B
straightforward, i.e. if R < 1, the disease cannot invade or persist, and the diseaseasiy
for Ry > 1. In reality, disease dynamics are more complex, and oureinadeed reflects
this complexity. Hypothesis 3 allows for the possibilitytieven if control or therapy reduces
Ro below one, a disease may persist indefinitely with low lesil@ations, or may die out,
but with an extremely slow time course of decay. The possilof disease persistence when
Ry < 1 is a feature of backward bifurcation [9, 30, 5, 4], an issirctv we are investigating
for this model and related disease models as well [30].

Mathematically, the most interesting dynamical behavioowr model is the Bogdanov-
Takens bifurcation leading to homoclinic loops, which imtgprovides a new mechanism for
explaining a very dferent blips phenomenon. In particular, this phenomenos doé have
obvious changes in the amplitude of the oscillating motidms can only happen whe® < D
(i.,e. Ry < 1). However, this conditiorB < D, is not enough, the additional condition B 0,
which guarantees the existence of disease equilibriummigst also be satisfied. Intuitively,
if B < D, then the epidemic cannot get started because near theselsea equilibrium, F
the behavior of the model is similar to that studied in [1fiddhus no oscillation can occur
with Ry < 1. However, H > 0, as mentioned in Remark 5.2.3, implies that the contact rate
A exceeds its threshold such that the infected cells, dermted are stficiently infectious
such that the epidemic can sustain itself once started évBn«i D. Therefore, this leads,
after getting over an initial threshold, to potential bideaequilibrium solutions and even more
complex dynamical behavior.

The ideas and methodologies presented in this paper caredaaianalyze other types of
in-host disease models as well as epidemiologic models. &fye that they can also be gener-
alized to study functional ffierential systems (e.g. with time delays), or even otheriphi/er
engineering systems which exhibit similar “blips-like”gaiomenon.
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Chapter 6

Conclusion

In this thesis, the problem of recurrent disease in infeciind autoimmune models is studied
via the qualitative analysis of dynamical systems usingrbdtion theory. Although previous
models with triggers such as stochastic components omigiteirms can simulate the cycle of
long remission and brief relapse, simple deterministic e®dlso exhibit recurrence.

Recurrence in HIV infection is referred to as “viral blips”.4Adimensional HIV antioxidant-
therapy model, which exhibits viral blips, is analysed. Tin&t hypothesis consisting of four
conditions for the emergence of viral blips is proposed,chtguides the derivation of the
simplest (2- and 3-dimensional) infection model produonr@l blips. A complete parame-
ter region for the 3-dimensional infection model exhilgtiviral blips is identified. Further
dynamical study is conducted on the simplest 2-dimensiori@ttion model, and gives rise
to two more blips-generating mechanisms: hypothesis 2 ait8 first hypothesis describes
the scenario in which two equilibrium solutions intersecaaranscritical bifurcation point,
and a Hopf bifurcation occurs at the upper branch of the deseguilibrium. Blips appear
when the bifurcation parameter is close to the transctitidarcation point, and located in the
parameter region where both equilibrium solutions areabist The second hypothesis adds
another blips-generating mechanism, i.e. that large latois (or, more generally, global,
persistent motions) can occur far away from the transatisnd Hopf ciritical points. In the
third hypothesis, the existence of a Bogdanov-Takens lafioe is proposed, which leads to a
homoclinic loop near a Hopf bifurcation. This scenario mastd/blips with very little change
in amplitude, or extremely slow convergence to the disdéase-equilibrium. The relapse-
remission cycle is also characteristic of many autoimmugeeases. An autoimmune model
which includes the role of regulatory T cells is modified bgiag) the terminally dferentiated
regulatory T cell subclass. The dynamical behavior is attehus, recurrence is displayed in
the modified autoimmune model and can be explained by thenddtgpothesis. Recurrence
in infection and autoimmune models can arise naturally ftbendynamical behavior of the
system, without stochastic stimulation or exogenous éiigg

From the viewpoint of mathematical modelling, the occuceeof blips in the (2- and 3-
and 4-dimensional) infection model is attributed to theweonincidence rate, which is formed
by an increasing and saturating infectivity function. Thewex incidence rate represents a co-
operative #ect in infection progression, that is, the existing infestenhances the ability for
new infection to become established. The convex incideastesalso induces backward bifurca-
tion, which facilitates the appearance of Hopf bifurcatiand rich dynamical behaviors, such
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as bistability, recurrence, and regular oscillation. Coafree dfects in autoimmune disease
occur during the T cell regulation process, since HLA-DBgulatory T cells dferentiate and
proliferate, forming the terminally éfierentiated HLA-DR class, which shows morefient
regulating capability. The autoimmune model investigdiede displays negative backward
bifurcation, in which the turning point is located in the atige state variable space. With the
help of additional state variable, the modified autoimmureleh shows Hopf bifurcation and
exhibits recurrence.

We note that the amplitudes and frequencies in the obsesaliating and recurrent mo-
tions are all constant, because all parameter values arefbreleterministic systems. How-
ever, in reality parameters should be time-varying, rathan constant. Time-varying pa-
rameter values in deterministic systems can generatdaigmils with varying amplitudes and
phases, called “amplitude modulation” and “frequency mation”, which are analogous to
the variation from random perturbations in stochastic nedehis is demonstrated in Figure
2.12 of Chapter 2.

Clearly, the models analysed in this thesis are extreme #iogpions of the mechanisms
considered, and more precise mechanisms and accuratesncodéd be considered in future.
Nevertheless, the main insight of this thesis is to dematesthat recurrence in disease can
be generated from the cooperative interplay of dynamic [atioms. Hypotheses proposed in
this thesis will serve as a starting point for further resbayn recurrent phenomena in other
physical systems.

Other mechanisms for recurrence also exist, such as thereetwactivation of latently-
infected lymphocytes. The delay which is characteristitatént infection can be modelled
using delay dterential equations (DDESs), which could also generate latioih and even re-
current patterns. A study of recurrent disease using DDEddvbe a clear possibility for
future work.
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