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Abstract 

In an effort to dissect the mechanism of interaction of IDPs, in this thesis we focus on 

Prothymosin α (ProTα) and nuclear factor erythroid 2-related factor 2 (Nrf2), intrinsically 

disordered proteins, in the Nrf2 mediated oxidative stress response. Kelch-like ECH-

associated protein 1 (Keap1) is an inhibitor of Nrf2, a key transcription factor of 

cytoprotective genes. Under unstressed conditions, Keap1 interacts with Nrf2 in the 

cytoplasm via its Kelch domain and suppresses Nrf2 activity. During oxidative stress, Nrf2 is 

released from Keap1 and is shuttled to the nucleus, where it initiates pro cell survival gene 

transcription.   ProTα also interacts with the Kelch domain and mediates the import of Keap1 

into the nucleus to inhibit Nrf2 activity.  

To gain a molecular basis understanding of the oxidative stress response mechanism, 

the interaction between ProTα and the Kelch domain of Keap1 has been delineated using 

nuclear magnetic resonance spectroscopy (NMR), isothermal titration calorimetry (ITC), 

peptide array analysis, and site-directed mutagenesis.  The results revealed that ProTα retains 

a high level of flexibility, even in the Kelch-bound state.  Mutational analysis pinpointed that 

the region 38NANEENGE45 of ProTα is crucial for the interaction with the Kelch domain, 

while the flanking residues play relatively minor roles in the affinity of binding.  

A high yield purification protocol with complete backbone NMR resonance 

assignment lays the foundation for structural and biophysical studies of the full length-Neh2 

domain of the human Nrf2.  In this work the full-length Neh2 domain was used to investigate 

binding to Kelch in the presence of cancer causing somatic mutations. 
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To understand the mechanistic links between Keap1 mutations and cancer 

pathogenesis, the molecular effects of a series of mutations (G333C, G364C, G379D, G350S, 

R413L, R415G, A427V, G430C, and G476R on the structural and target recognition 

properties of Keap1 are investigated.  These mutations are found to exert differential effects 

on the protein stability and target binding. Together with the proposed Hinge-and-Latch 

mechanism of Nrf2/Keap1 binding, these results provide important insight into the molecular 

impact of different somatic mutations on Keap1’s function as an Nrf2 repressor.  

 

Keywords: oxidative stress response; Nrf2; Prothymosin α; Keap1; intrinsically  disordered 

proteins, nuclear magnetic resonance; protein dynamics; protein-protein interactions; 

isothermal titration calorimetry 
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Chapter 1  

 Introduction 1
 

 Intrinsically Disordered Proteins 1.1

Intrinsically disordered proteins (IDPs) are functional proteins that lack a well-

defined three dimensional structure (Dunker, Lawson et al. 2001; Garza, Ahmad et al. 

2009).  The discovery of these unstructured proteins challenged the long accepted protein 

structure-function paradigm, which states that the three dimensional structure is a pre-

requisite for a protein to perform its biological activity.  While there is no doubt that for 

some proteins structure and function are related, it is now widely accepted that many 

biologically active proteins do not conform to a well folded structure.  These disordered 

proteins generally lack sufficient hydrophobic residues required for a protein to form a 

three-dimensional organized entity.  In fact, it has been reported that on average typical 

disordered proteins have a lower composition of Phe, Ile, Trp, Tyr , Cys, Val and Leu 

residues (Romero, Obradovic et al. 2001; Dunker, Brown et al. 2002a; Vucetic, Brown et 

al. 2003).  These proteins are found to be rich in prolines and charged residues, especially 

Lys, Glu, and Arg amino acids (Romero, Obradovic et al. 2001; Dunker, Brown et al. 

2002a; Vucetic, Brown et al. 2003).  A few examples of disordered proteins with these 

properties include Prothymosin α, α-synuclein, non-Aβ component of AD amyloid 

precursor protein (NACP), and Apo-cytochrome c (Stellwagen, Rysavy et al. 1972; Gast, 

Damaschun et al. 1995; Weinreb, Zhen et al. 1996; Uversky, Gillespie et al. 2000a).   

Because of differential amino acid composition of ordered and disordered proteins, many 

predictors have been developed that allow determining unstructured proteins/regions with 
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high accuracy.  Some of these bioinformatics programs used for protein structural 

analysis are PONDR, GLOBPLOT, DIOPRED2 and DisEMBLE (Romero, Obradovic et 

al. 1997; Uversky, Gillespie et al. 2000a; Dunker, Brown et al. 2002b; Linding, Russell et 

al. 2003; Ward, Sodhi et al. 2004).   

Structural analyses of disordered proteins/domains have revealed that many IDPs 

do not behave as true random coils, rather these proteins span several conformations that 

interconvert and contain local elements of secondary structure (Dyson and Wright 2002; 

Dyson and Wright 2005).   The backbone bonds and angles of such proteins fluctuate 

over time, with no definite values, thus, resulting in ensembles of various structures, 

referred to as “protein clouds” (Dunker and Uversky 2010).   Extended regions, regions 

with residual secondary structure, domains with secondary structure, and domains with 

poorly packed side chains have all been observed in many proteins lacking structure 

(Uversky 2011; Uversky 2013a).  The SH3 domain of the Drosophila signal transduction 

drk protein illustrates this phenomenon best as it exists between folded and unfolded 

states in aqueous buffer and experiences multiple conformations in the unfolded state 

(Zhang and Forman-Kay 1995; Choy and Forman-Kay 2001). Similarly, FG-

nucleoporins contain long disordered regions that adopt different conformations (from a 

molten globule to a fully extended-coil) under physiological conditions (Milles and 

Lemke 2011).   

 Intrinsic disorder is not just restricted to full-length proteins; in fact, unstructured 

regions are part of many well folded proteins and are associated with crucial biological 

functions (Wright and Dyson 1999).  Analyses of genome sequences using disorder 

predictors have identified about 35-51% of proteins in eukaryote that contain disordered 
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regions of 40 or more consecutive residues (Dunker, Obradovic et al. 2000).  41% of 

human plasma membrane proteins are reported to contain ID regions of 30 or more 

residues (Minezaki, Homma et al. 2007).  An example of a protein with ordered and 

disordered regions is p53.  It is a structured homo-tetramer, the core domains of which 

are linked by the disordered N and C-terminal domains, responsible for transcriptional 

activation and regulation, respectively, (Bell, Klein et al. 2002; Dawson, Muller et al. 

2003).   

The prevalence of IDPs and intrinsically disordered regions (IDPRs) and their 

significance in cellular tasks necessitated revision of the structure-function paradigm to 

include these proteins and regions (Uversky 2002). The new view describing protein 

structure and function includes proteins with well folded structure, pre-molten globules, 

molten globules, and native coils; and is referred by the “The Protein Quartet model,” 

(Figure 1.1) (Uversky 2002; Uversky 2013a).  According to this new model, biological 

functions can be performed by proteins in any of the four conformations and under the 

course of their biological activity these proteins can transition between various structural 

rearrangements (Uversky 2013a).   For example, the 50S ribosomal proteins, L22 and 

L27, and 30S ribosomal protein S19 are unfolded in solution; however, they exist as well-

folded rigid structures in the functional ribosomes (Venyaminov, Gudkov et al. 1981; 

Yusupov, Yusupova et al. 2001; Uversky 2002).  Additionally, Prothymosin α is a highly 

flexible protein but transforms into a compact structure in the presence of zinc ions; this 

transition in structure facilitates its interaction with targets (Uversky, Gillespie et al. 

2000b; Yi, Boys et al. 2007).  
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Figure 1.1. The Protein Quartet Model. This new model takes into 
account protein function from any of the four conformations (Ordered, 
pre-molten globule, molten globule, and random coil) and proteins can 
switch conformations between any of these four states (figure adapted 
from Uversky 2002). 
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The discovery of IDPs raises the question as how these proteins avoid the cellular 

degradation machinery? Hochstrasser explains that proteolytic degradation is tightly 

regulated in eukaryotic cells and is only initiated in when a protein undergoes 

ubiquitination (Hochstrasser 1996).  In this case, unfolded proteins can carry out their 

specific roles but experience rapid turnover (Wright and Dyson 1999).  Comprehensive 

analyses of IDP regulation inside the cell has shown that mRNA encoding IDPs have 

higher decay rates, and these proteins are modulated by post-translational modifications 

to have shorter half-lives (Gsponer, Futschik et al. 2008; Uversky 2011).  It has also been 

suggested that evolution in sequence allows disordered proteins to perhaps avoid the 

unfolded protein response altogether (Uversky and Dunker 2013b).    

1.1.1  IDP Characterization  

 The lack of a well-defined structure complicates structural studies of IDPs.  In 

fact, since IDPs do not conform to a true random coil, a stable unique structure is not 

attainable for an IDP of interest.  The aim of IDP structural studies is to determine 

conformational propensities, transient long range interactions and regions of restricted or 

high mobility.  Such information can always be beneficial in determining the biological 

function of the protein under study (Eliezer 2007).  Several methods such as X-ray 

crystallography, Circular Dichroism (CD) spectropolarimetry, protease digestion, small 

angle X-ray scattering (SAXS), disorder predictors (listed above), and Nuclear Magnetic 

Resonance (NMR) spectroscopy can be used in characterizing intrinsic disorder in a 

protein (Dunker, Lawson et al. 2001; Uversky and Longhi 2011).  Crystallography, CD, 

and other methods only indicate the presence of disorder in a protein.  For example, in 

crystallography, a disordered region is indicated by missing electron density.  A 
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downside to identifying disorder by this method is that whether the missing region is due 

to intrinsic disorder in a protein or a result of experimental error cannot be known 

without performing further experiments (Dunker, Lawson et al. 2001).  Similarly, CD 

provides semi-quantitative data allowing to distinguish between ordered, molten globule 

and random coil structures (Dunker, Lawson et al. 2001).  It cannot provide residue 

specific information with regards to what regions of the protein are ordered and 

disordered.  NMR on the other hand can detect structure, provides motional information 

per residue, and can be used to map the binding interface of IDPs with targets (Choy and 

Forman-Kay 2001; Paci, Vendruscolo et al. 2002; Juneja and Udgaonkar 2003; Dyson 

and Wright 2004; Kay 2005).   

1.1.2 IDP Functions 

The structural flexibility that arises due to intrinsic disorder in proteins plays a 

significant functional role in biological processes.  The vast functions of IDPs include 

regulation of transcription and translation, cellular signal transduction, the storage of 

small molecules, and membrane transport (Dunker, Lawson et al. 2001; Dunker, Cortese 

et al. 2005; Garza, Ahmad et al. 2009).  A well characterized example of disordered 

transcriptional activation domain is the kinase-inducible activation (KID) domain of 

CREB, which interacts with the KIX domain of CBP (Radhakrishnan, Perez-Alvarado et 

al. 1998; Dunker, Oldfield et al. 2008).  Similarly, in the eukaryotic translation initiation 

pathway the eIF4G in the large multi subunit protein-RNA complex, required for 

recruitment of the ribosomes, is devoid of structure in the absence of its target (Hershey, 

McWhirter et al. 1999; Uversky 2002).    
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Intrinsic disorder is also found within molecular chaperones, proteins that assist 

RNA or other misfolded proteins in attaining their ordered structure (Todd, Lorimer et al. 

1996; Tompa and Csermely 2004).  The disorder segments in chaperones are believed to 

help adopt well folded structures by either loosening the unfolded/misfolded structure or 

function as recognition elements (Tompa and Csermely 2004).  The A1 protein of 

heteronuclear ribonucleoprotein (hnRNP) has a disordered Gly-rich C-terminal domain 

that is involved in renaturation and facilitates assembly of the RNP complex (Pontius and 

Berg 1990).  Another chaperone with structural disorder is the p23, a co-chaperone of 

Hsp90 (Weikl, Abelmann et al. 1999).  

Structural adaptability of IDPs allows them to interact with multiple partners and 

perform various functions, thus classifying IDPs as moonlighting proteins (Tompa, Szasz 

et al. 2005).  Moonlighting is the ability of a protein to perform a number of unrelated 

tasks (Jeffery 1999; Jeffery 2004).  Examples of IDPs involved in moonlighting are the, 

p21Cip1/WAF1 and p27, IDPs that regulate cell proliferation through activating or inhibiting 

cyclin dependent kinases (Cheng, Olivier et al. 1999; Olashaw, Bagui et al. 2004; 

Dunker, Oldfield et al. 2008).  Likewise, p53, which is a tumor suppressor, is involved in 

gene expression, apoptosis induction, DNA repair, and response to cellular stress (Cheng, 

LeGall et al. 2006).  

1.1.3  IDP Advantages 

Although flexibility is observed in all states of protein conformation, the extreme 

dynamic nature of IDPs is more advantageous than folded and molten globular proteins 

in carrying out certain cellular functions (Mittag, Kay et al. 2009).   A detailed analysis of 
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IDP functional advantages is recently published by Uversky (Uversky 2013a).  Some 

functional advantages of IDPs include the presence of a large interactive surface, 

promoting fast and easy recognition of a binding partner (Dunker, Lawson et al. 2001; 

Dyson and Wright 2005).  The large surface area facilitates specific binding and allows 

for easy dissociation from partners when required (Dunker, Lawson et al. 2001; Dyson 

and Wright 2005).  This type of behavior is observed in regulatory signaling proteins 

which form protein complexes rapidly to target specific gene expression and have high 

turnover rate ensuring the proteins are not present for a long period of time (Sugase, 

Dyson et al. 2007).  

Due to lower steric hindrance compared to natively structured proteins, IDPs 

often behave as hub proteins, proteins that are involved in a large number of distinct 

interactions (Dunker, Cortese et al. 2005).  This property of IDPs allows them to take part 

in multiple biological processes.  For example, p53 uses the flexibility in its disordered 

regions to bind to multiple targets (Oldfield, Meng et al. 2008).  More so, it adopts 

different conformations upon interaction with different partners, allowing the protein to 

take part in many cellular functions some of which are stated earlier (Cheng, LeGall et al. 

2006; Oldfield, Meng et al. 2008).  

IDPs are solvent exposed, thus, posttranslational modification sites (PTMs) are a 

common occurrence in IDP sequences (Dunker, Brown et al. 2002a; Dunker, Brown et al. 

2002b; Xie, Vucetic et al. 2007).  Several types of post-translational modifications that 

can include acetylation, ADP-ribosylation, ubiquitination, prenylation, carboxylation, 

glycosylation, methylation, ubiquitination, and SUMOylation are found within disordered 

regions (Iakoucheva, Radivojac et al. 2004; Radivojac, Iakoucheva et al. 2007; Xie, 
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Vucetic et al. 2007).  These modifications are usually reversible and are associated with 

signaling and regulation (Xie, Vucetic et al. 2007).  An illustrative example is the p53 

protein, in which most known PTM sites occur within the disordered N and C terminal 

domains, and modifications of these sites determine the function, localization and 

turnover rate of p53 (Bode and Dong 2004).  

1.1.4 IDPs in Disease 

IDPs are involved in many diverse biological roles, therefore, it is apparent that 

malfunction of these proteins can play a vital role in various health disorders.  Causes 

leading to aberrant function of these proteins rises due to misfolding of partially folded 

regions, point mutations, exposure to internal or external toxins, impaired post-

translational modifications, impaired trafficking, loss of binding partner, oxidative 

damage or an increased chance of degradation (Dunker, Oldfield et al. 2008).  IDPs are 

found in several pathological conditions, such as, cardiovascular diseases, diabetes, 

cancer, and neurodegenerative disorders (Dunker, Oldfield et al. 2008). Sequence 

analyses of proteins by disorder predictors have shown approximately 79% and 61% of 

cancer and cardiovascular associated proteins, respectively, to contain regions of disorder 

(Iakoucheva, Brown et al. 2002; Uversky, Oldfield et al. 2008).  This high prevalence of 

IDPs in human diseases has given rise to the ‘disorder in disorder’ concept, referred to as 

the D2 concept (Uversky, Oldfield et al. 2008).  Some examples illustrating the D2 

concept include the  Aβ-peptides in Alzheimer’s disease and α-synuclein in Parkinson’s 

disease, which are in a partially folded states pre-amyloid formation (Tompa 2009; 

Frimpong, Abzalimov et al. 2010), and myelin basic protein (MBP), dysregulations of 
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which are linked to human autoimmune demyelinating disease multiple sclerosis 

(Homchaudhuri, De Avila et al. 2010).  

1.1.5 IDPs as potential drug targets 

The abundance of IDPs in cell signaling and regulatory roles and their frequency 

in human pathogenesis makes them unique drug targets.  However traditional drug 

design, which relies on well-defined structures of proteins/regions, is an ineffective 

means to target IDPs in health disorders (Cheng, LeGall et al. 2006).  In order to target 

IDPs, new approaches, accounting for the lack of structure in IDPs need to be considered 

(Cheng, LeGall et al. 2006).  Two approaches have been put forward to target IDPs in 

disease.  The first method takes into account the ability of IDPs to fold upon target 

binding (Cheng, LeGall et al. 2006).  The drug target mimics the bound state ordered 

structure of the targeted IDP and competes for interaction with the binding partner.  The 

successful design of ‘Nutlins’ targeting the p53-Mdm2 interaction is a great example of 

targeting disordered regions with small molecules in cancer prevention (Vassilev 2004; 

Vassilev, Vu et al. 2004; Cheng, LeGall et al. 2006; Uversky 2013a).  The ‘Nutlins’ 

mimic the bound state structure of the disordered N-terminal region of p53, which forms 

a helix upon binding to Mdm2,  and binds to target with higher affinity.  Oral treatment 

of mice with ‘nutlins’ resulted in 90% inhibition of tumor growth (Klein and Vassilev 

2004; Vassilev 2004; Vassilev, Vu et al. 2004).   

An alternative practical method to block IDP protein-protein interaction is to 

target IDP binding sites with small molecules (Cheng, LeGall et al. 2006).  This method 

has been effectively applied to the transcription factor c-Myc, which forms a complex 
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with its heterodimerization partner Max, and is associated with various types of cancers 

(Hammoudeh, Follis et al. 2009; Uversky 2013a).  The small molecule upon complex 

formation induces conformational changes in the binding site of c-Myc and prevents its 

interaction with Max (Hammoudeh, Follis et al. 2009).  This technique can also be 

applied to disordered proteins that experience “functional misfolding.”  That is, some 

disordered proteins adopt non-native conformations that result in protein-protein 

interactions and consequently unwanted cellular activity  (Uversky 2012).  Binding of 

small molecules to these misfolded regions can stabilize these states in IDPs, therefore, 

preventing the occurrence of non-native interactions (Uversky 2012; Uversky 2013a).  

1.1.6 Functional Related Folding of IDPs 

Structural studies of IDPs in protein-protein interaction has established that a 

coupled folding process occurs when an IDP interacts with a globular protein or another 

IDP (Wright and Dyson 2009).  As stated formerly, some disordered proteins are 

completely devoid of structure under physiological conditions, while others contain 

residual structure or short amphipathic motifs called ‘molecular recognition features’, 

more commonly known as MoRFs (Oldfield, Cheng et al. 2005; Mohan, Oldfield et al. 

2006).  These MoRFs consist of approximately 20 residues and are proposed to function 

in signaling and recognition of protein or nucleic acid partners (Oldfield, Cheng et al. 

2005).  Alpha-helix, β, irregular, and complex MoRFs are recognized and these short 

disordered segments are observed to undergo a disorder-to-order transition upon target 

binding (Oldfield, Cheng et al. 2005; Vacic, Oldfield et al. 2007).   The coupled folding  

results in stable formation of helices, β-strands or other irregular structures in target 

bound state (Vacic, Oldfield et al. 2007).  The C-terminal domain of the p21 protein 
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contains a β-MoRF, which interacts with the proliferating cell nuclear antigen (PCNA) 

and blocks DNA replication (Gulbis, Kelman et al. 1996; Vacic, Oldfield et al. 2007).  

Another well characterized example of a protein that undergoes transition to an ordered 

state is that of the kinase-inducible transcriptional-activation domain (KID) of CREB 

mentioned earlier.  The KID domain exists as a disordered region both in the full length 

and in isolation (Dyson and Wright 2005).  Upon binding to its target, the KIX domain of 

CREB-binding protein (CBP), adopts a helix-turn-helix conformation (Radhakrishnan, 

Perez-Alvarado et al. 1998; Dyson and Wright 2005; Sugase, Dyson et al. 2007).  

Another example that best illustrates a protein that can bind to multiple partners and 

adopt different structure is of p53, which can form a helix, a sheet, and two different 

irregular structures when binding to four different partners (Dunker, Oldfield et al. 2008).   

1.1.7 IDPs and Fuzzy Complexes 

The couple folding of IDPs revived the classical structure-function paradigm, 

suggesting that upon binding IDPs behaved as “traditional” folded proteins (Dunker, 

Oldfield et al. 2008).  Detailed analyses of IDPs in complex states recognized that 

coupled folding is not applicable to all IDPs.  Several examples of unstructured proteins 

in ligand-bound state have made it evident that disorder can exist even in complex states 

and has important implications in cellular functions (Tompa and Fuxreiter 2008). The 

term “fuzziness” has been suggested by Tompa et al. to emphasize the importance of this 

structural obscurity that rises in protein-protein interactions.  Structural fuzziness in the 

ligand bound state has been categorized into five distinct models; polymorphic, clamp, 

flanking, random coil, or the sequence independent model (Tompa and Fuxreiter 2008).   
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 In polymorphic complexes, single or multiple well-defined conformations are 

observed in the target-bound states and these structures can be resolved (Tompa and 

Fuxreiter 2008).  Interestingly, these multiple conformations are able to perform discrete 

biological functions.  Fox example, the human pancreatic ribonuclease (RNase 1), which 

is responsible for many cellular functions including cleavage of single stranded RNA, 

double stranded RNA and double stranded RNA-DNA hybrids. Several conformations 

are observed for the loop regions, involved in various enzymatic activities, and for side 

chains of critical residues on the surface, implicated in membrane binding, translocation, 

and RNA hydrolysis (Kover, Bruix et al. 2008).  Similarly, depending on the binding 

affinity, disordered loop of dihydropyridine receptor (DHPR) binds ryanodine receptor 

(RyR) and can result in activation or inhibition of the RyR channel opening (Haarmann, 

Green et al. 2003; Fuxreiter and Tompa 2012).  It has been implied that these different 

activities result from different interactions between the disordered loop and gating 

residues of the RyR channel (Fuxreiter and Tompa 2012). 

The clamp model describes a protein with two ordered regions connected by a 

segment or linker that remains disordered in the complex state (Tompa and Fuxreiter 

2008; Fuxreiter and Tompa 2012). The ordered regions serve as a clamp and are  

conformationally restricted by the linker, which  is not involved in direct protein-protein 

interactions  (Fuxreiter and Tompa 2012).  A great example illustrating the clamp model 

is the myosin VI protein, which interacts with actin polymer via its two heads that are 

separated by an 80 residue disordered region (Rock, Ramamurthy et al. 2005; Fuxreiter 

and Tompa 2012).   
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The flanking model takes into consideration the disordered regions around 

MoRFs or other recognition elements such as linear motifs (Tompa and Fuxreiter 2008; 

Fuxreiter and Tompa 2012).  Deleting these flanking regions can impact target binding 

(Zor, Mayr et al. 2002; Fuxreiter and Tompa 2012).  As observed in the case of KID 

binding to the KIX domain of CBP, in which only a segment of 29 residues adopts helical 

structure, deletion or extension in the surrounding disordered region can decrease the Kd 

of the complex formation.  A recently reported example of flanking model is a small 

chloroplast protein CP-12 in the complex state with the glyceraldehyde-3-phosphate 

dehydrogenase, GAPDH, involved in light/dark regulation of Calvin cycle (Mileo, 

Lorenzi et al. 2013).  The binding site of CP-12 forms an α-helix in GAPDH bound state, 

while the remaining flanking regions remain unstructured. 

When the entire or most of the IDP remains unstructured in the bound state, a 

random model complex is formed (Fuxreiter and Tompa 2012).  Biophysical studies of 

these IDPs suggest that such proteins behave similarly in the free and target-bound states, 

thus they show absence of ordered structure in all states (Fuxreiter and Tompa 2012).  

The single-stranded DNA binding protein  samples several unstructured conformations in 

the bound state with the DNA (Savvides, Raghunathan et al. 2004).   Sic1, a disordered 

protein, inhibits cyclin-dependent kinase (CDK) activity by binding to CDK via multiple 

sites. Interestingly, it retains its dynamic structure in the target bound state (Mittag, 

Orlicky et al. 2008).  

The fifth group classifying fuzzy complexes are proteins that interact in a 

sequence independent manner (Fuxreiter and Tompa 2012).  Structural differences in the 

bound state are ascribed to the variation in amino acid contacts.  Interchanges of residues 
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in the binding site do not affect target recognition, as witnessed for Ewing’s sarcoma 

fusion proteins (Ng, Potikyan et al. 2007; Fuxreiter and Tompa 2012).  The dynamic 

interaction between the acidic transcription activator Gcn4 and one activator-binding 

domain of the mediator subunit Gal11/Med15 (Brzovic, Heikaus et al. 2011) is another 

great example for sequence independent model.  In the bound state the Gcn4 forms a 

helix, which adopts multiple orientations in the binding cleft of Gal11 (Brzovic, Heikaus 

et al. 2011). 

1.1.8 Ligand binding studies of IDPs 

Several techniques are available for studying interactions of intrinsically 

disordered proteins with targets.  Some of these include crystallography, CD, surface 

plasmon resonance (Gerothanassis., Anastassios et al. 2002), isothermal titration 

calorimetry (ITC), and NMR.   NMR spectroscopy is by far the most suitable tool for 

investigating details of IDPs in their target bound state.  Many parameters in NMR, such 

as chemical shifts, line widths and relaxation rates are atom specific and contain 

information about the local conformation and dynamics of IDPs (Uversky and Longhi 

2011).   Like NMR, Isothermal titration calorimetry is another unique method that allows 

the study of molecular interactions of IDPs with proteins, nucleic acids, small organic 

molecules, metals, and ions (Pierce, Raman et al. 1999).   Both these methods are the 

main experimental techniques used to study IDP interactions with targets in the work 

presented here. 
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 Oxidative Stress 1.2

Reactive oxygen species (ROS) and free radicals are present in all aerobic 

organisms (Martindale and Holbrook 2002; Fulda, Gorman et al. 2010).  These ROS 

species are either generated within the cell through signal transduction pathways, in the 

process of metabolism, or by exposure to an external insult (Martindale and Holbrook 

2002).  Normally, the cell maintains equilibrium between the production of ROS and the 

antioxidant species, and under these normal conditions the ROS can play important role 

in regulatory functions (Martindale and Holbrook 2002).  However, when this balance is 

disrupted, the cell experiences oxidative stress.  The increase in ROS can jeopardize cell 

survival by causing damage to nucleic acids, proteins, carbohydrates and lipids (Finkel 

and Holbrook 2000).  Hence, the cell initiates a defense response in order to return to 

homeostasis by combating the ROS.  Alternatively, if the severity of the insult is high, 

signaling pathways for cell death are activated (Finkel and Holbrook 2000; Martindale 

and Holbrook 2002).   

The signaling pathways activated to combat ROS include the extracellular signal-

regulated kinase (ERK), c-Jun amino-terminal kinase (JNK) and p38 mitogen-activated 

protein kinase (MAPK) signaling cascades, the phosphoinositide 3-kinase (PI(3)K)/Akt 

pathway, the nuclear factor (NF)-ƙB signaling system, p53 activation, and the heat shock 

response pathways (Finkel and Holbrook 2000; Martindale and Holbrook 2002).  The 

heat shock response, ERK, PI(3)K/Akt and NF-ƙB signaling pathways encourage cell 

survival, whereas activation of p53, JNK and p38 are associated with cell death (Finkel 

and Holbrook 2000).   
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Oxidative stress is the most accepted etiopathological factor in many diseases 

including cancers, atherosclerosis, diabetes mellitus, rheumatic diseases, autoimmune 

disorders and neurodegenerative disorders (Figure 1.2) (Calabrese, Lodi et al. 2005; 

Mihaela Ilie 2012).  Because of its important role in major diseases, the oxidative stress 

has gained significant consideration in research with over 3000 publications in the last 

five years in PubMed alone.  One major pathway activated in response to oxidative stress 

is the Nuclear (erthyroid 2-like) related factor 2 (Nrf2) pathway.  The Nrf2 mediated 

oxidative stress response plays a major role in xenobiotic detoxification and is the main 

focus of the work presented in this thesis. 

 Key players in the Nrf2 mediated Oxidative Stress Response 1.3

The signalling and regulatory pathways in the cell are highly complex processes 

with many proteins/enzymes taking part to perform distinct functions.  Correspondingly, 

the Nrf2 mediated response  to oxidative stress involves many players.  For the purpose 

of this work, following is a brief description of a few of the key players involved in this 

pathway.  

1.3.1  Nrf2  

The nuclear factor erythroid 2 (NFE-2)-related factor 2, more commonly known 

as Nrf2, was first discovered during studies of the β-globins.  In these works, targets for 

the DNase I hypersensitive site 2, also known as AP1-NFE2 (activating protein 1 and 

nuclear factor erythroid 2) motif, in β-globins were being cloned (Moi, Chan et al. 1994).  

The hunt for transcription factors that bind to the  AP1-NFE2 site led to the discovery of  
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Figure 1.2. Implications of oxidative stress in pathology.  Oxidative stress is 
associated with many different diseases involving different organs of the human 
body as illustrated in this diagram.  This wheel diagram was adapted and modified 
from (Mihaela Ilie 2012) 
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several targets from the cap ‘n’ collar (CNC) subfamily of the basic leucine zipper (bZIP) 

transcription factors which include the p45-NFE2 (Andrews, Erdjument-Bromage et al. 

1993), Nrf1 (Chan, Han et al. 1993),  Nrf2 (Moi, Chan et al. 1994) Nrf3 (Kobayashi, Ito 

et al. 1999) as well as BACH1(Oyake, Itoh et al. 1996) and BACH2 (Muto, Hoshino et 

al. 1998).  

 The CNC family of transcription factors are characterized by the presence of the 

CNC domain composed of a 43 amino acid region that is conserved amongst mammals, 

birds, fish and insects and is located at the N-terminus of the DNA binding domain 

(Sykiotis and Bohmann 2010).  The DNA-binding domain includes a nuclear localization 

signal, which has been shown to be functional in p45, Nrf2 and BACH2 (Hoshino, 

Kobayashi et al. 2000; Theodore, Kawai et al. 2008; Perdomo, Fock et al. 2010).  

BACH1 and BACH2 proteins are defined by the presence of a BTB (Broad complex, 

Tramtrack, Bric-a-brac) domain required for protein–protein interaction (Oyake, Itoh et 

al. 1996).  Additionally, most CNC factors are known as transcriptional activators; 

however, BACH1 and BACH2 function as transcription repressors (Sykiotis and 

Bohmann 2010).  Interestingly, none of the CNC based transcriptional factors bind to 

DNA independently, rather each first forms a complex with a small MAF protein, another 

bZIP protein (Igarashi, Kataoka et al. 1994).  The resulting obligate heterodimeric 

complexes bind to NFE2 (Nuclear Factor-Erythroid 2), MARE (Maf recognition 

element), ARE (antioxidant response element) and StreB (stress-response element)/EpRE 

(electrophile response element) type DNA binding sites (Chevillard and Blank 2011).   

Of the many CNC proteins, the role and regulation of the Nrf2 has been most 

extensively studied.  The important role for the Nrf2 in the protection from xenobiotic 
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and oxidative stresses was first shown in the analyses of Nrf2-null mice (Itoh, Chiba et al. 

1997).  Although, these mice were viable and displayed no phenotypic defects, they were 

sensitive to extrinsic and intrinsic oxidative assaults.  For instance, Nrf2-null mice exhibit 

an increased formation of DNA adducts in the lung when exposed to diesel exhaust 

(Aoki, Sato et al. 2001), severe form of liver toxicity is developed after administration of 

acetaminophen (Enomoto, Itoh et al. 2001), an increased susceptibility to cigarette 

smoke-induced emphysema (Iizuka, Ishii et al. 2005) and an aggravated bleomycin-

induced pulmonary fibrosis is developed (Kikuchi, Ishii et al. 2010).  Additionally, Nrf2 

knockout mice unexpectedly develop various inflammatory disorders, including 

glomerulonephritis and immune-mediated hemolytic anemia, multi-organ autoimmune 

inflammation (Lee, Chan et al. 2004; Ma, Battelli et al. 2006; Yoh, Itoh et al. 2001). 

Structural analysis has revealed six evolutionary conserved domains in the Nrf2 

protein that are named Neh1 through Neh6 (Itoh, Wakabayashi et al. 1999).  Figure 1.3 

depicts these six domains including their roles and functions.  Neh1, in the c-terminal half 

of Nrf2, constitutes the basic DNA binding domain and the leucine zipper for 

dimerization with targets (Itoh, Wakabayashi et al. 1999; Sun, Chin et al. 2009). 

Acetylation of the Neh1 domain by p300/CBP results in promoter-specific DNA binding 

of Nrf2 (Sun, Chin et al. 2009).  The carboxy-terminal Neh3 domain of Nrf2 is important 

for the transcriptional activity of Nrf2 and may play role in recruiting components of the 

transcriptional complex (Nioi, Nguyen et al. 2005).  The Neh4 and Neh5 regions are 

transactivation domains which synergistically regulate transcriptional activation of 

cytoprotective genes (Itoh, Wakabayashi et al. 1999; Zhang, Hosoya et al. 2007).  The 

Neh2 and Neh6 are involved in mediating Nrf2 degradation (McMahon, Thomas et al.  
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Figure 1.3. Structural topology of the Neh2 domain of human Nrf2. 

There are six highly conserved domains (Neh1 to Neh6) in the Nrf2 transcription 

factor. Neh2 is located in the N-terminus and is found to interact with the Keap1to 

negatively regulate the Nrf2 protein. Neh1 and Neh3 are the C-terminal basic 

leucine zipper containing domains that dimerize with the small Mafs and bind to 

ARE sequences in DNA. Neh4 and Neh5 are transactivation domains that are 

identified to interact with the co-activator CBP/p300 during transcriptional 

activation in the nucleus.  The Neh6 interacts with E3 ligases thus mediates Nrf2 

degradation.  Diagram based on the review by Kansanen et al. 2013 (Kansanen., 

Kuosmanen et al. 2013).   
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2004).  The Neh2 domain of the Nrf2 protein has been structurally characterized and has 

been shown to be intrinsically disordered containing little secondary structural content 

(Tong, Katoh et al. 2006).  This N-terminal domain is involved in the negative regulation 

of Nrf2.  It has been shown that the absence of this domain leads to increase in the 

transcription activity of the Nrf2 protein (Itoh, Wakabayashi et al. 1999). 

1.3.2 Keap1 

The Keap1 (Kelch-like ECH-associated protein1) protein was identified as an 

Nrf2 regulating protein using a yeast two-hybrid system (Itoh, Wakabayashi et al. 1999).  

The human Keap1 is composed of 624 amino acids containing high density of cysteine 

residues and has five distinct domains: the N-terminal region, the Bric-a-Brac, tramtrack, 

broad-complex (BTB), a cysteine rich intervening region (IVR), Kelch domain or the 

double glycine repeat region (DGR), and the C-terminal domain.   A structural topology 

of the Keap1 domains and their biological roles is provided in Figure 1.4a along with a 

box identifying the cysteine rich regions (Figure 1.4b).   Based on Figure 1.4b it is clear 

that Keap1 is a cysteine rich protein with the mouse and human Keap1 containing 25 and 

27 cysteine residues respectively (Dinkova-Kostova, Holtzclaw et al. 2002).  The 

presence of high number of cysteine residues suggests that these cysteines may be 

involved in sensing changes in the cellular redox status (Dinkova-Kostova, Holtzclaw et 

al. 2002).  Various studies have demonstrated that the sulfhydryl groups of various Keap1 

cysteine residues can be directly altered by oxidation, reduction and alkylation. Of these 

151, 273 and 288 (Figure 1.4b, residues in red) appear to be critical for the dissociation of 

Nrf2 from the Keap1-Nrf2 complex (Dinkova-Kostova, Holtzclaw et al. 2002;  
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Figure 1.4. Structural topology of the Keap1 and a schematic diagram of the 

Keap1 bound to Nrf2. (a) Structural topology of the Keap1 highlighting the five 

distinct domains of the protein. The BTB domain is responsible for the 

homodimerization of the Keap1 protein. The BTB and the IVR regions are responsible 

for proteasome dependent degradation of Nrf2. The Kelch domain interacts with the 

Neh2 domain anchoring Nrf2 to the actin cytoskeleton. (b) Cysteine residues localized 

in the five distinct domains of the Keap1 protein.   Cys residues that play crucial role in 

the regulation of Nrf2 are highlighted in red. (c) Schematic diagram of the Keap1-Nrf2 

complex displaying the hinge and latch mechanism of interaction between the Neh2 

domain of Nrf2 and the Kelch domain of Keap1. Figure is adapted and modified from 

(Kansanen., Kuosmanen et al. 2013). 
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Wakabayashi, Dinkova-Kostova et al. 2004; Kobayashi and Yamamoto 2006).  

Additionally, the involvement of BTB and IVR domains (where these critical cysteine 

residues reside) of Keap1 in Nrf2 degradation has been shown to be crucial in recruiting 

ubiquitin-proteasome factors (Kobayashi, Kang et al. 2004).  

The Kelch and C-terminal regions of the Keap1 are responsible for anchoring the 

Nrf2 in place, allowing its ubiquitination (Kang, Kobayashi et al. 2004).  The crystal 

structure of the Kelch domain has revealed a six bladed β-propeller conformation with 

several conserved amino acids that are important for maintaining the hydrogen bond 

network, linking the propeller blades and forming the hydrophobic core of the protein 

(Li, Zhang et al. 2004).   In particular, there is a conserved glycine doublet found in each 

blade of the Kelch domain (Li, Zhang et al. 2004).  These two glycine residues are 

involved in an intrablade hydrogen bond network that may be instrumental in the folding 

of individual blade structures.  As demonstrated in Figure 1.4c, two motifs, namely the 

DLG (latch) and the ETGE (hinge), in the Neh2 domain of Nrf2 independently associate 

with the Kelch domain of Keap1 (Padmanabhan, Tong et al. 2006; Tong, Katoh et al. 

2006). 

1.3.3 Keap1-Cul3-RBX1 Ligase Complex 

Keap1 serves as a substrate linker protein for Cul3-RBX1 ligase complex to 

ubiquitinate proteins and subsequently target them for degradation by the 26S proteasome 

(Furukawa and Xiong 2005).  An illustrative diagram of the Keap1 in complex with the 

Cul3-RBX1 ligase complex is presented in Figure 1.5.  This figure 1.5 demonstrates how 

Keap1 anchors the Nrf2 for ubiquitination.  The ubiquitination of a substrate protein such 

as Nrf2 is normally accomplished by consecutive reactions initiated by ubiquitin  
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Figure 1.5. Keap1 as a substrate adaptor for the cullin3-RBX1 ligase complex. 

Nrf2 interacts with two Keap1 proteins via its DLG and EETGE motifs to the Kelch 

domains.   The Keap1 protein forms a homodimer via the BTB domain and interacts 

with the Cul3-RBX1 complex.  The RBX1-E2 synthesizes a polyubiquitin chain that 

is transferred to the Nrf2 by the Ub-E3.  Figure  is made based on the works of 

Taguchi, 2011 (Taguchi, Motohashi et al. 2011).    
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activating enzymes and involves three steps.  First step is the ubiquitin activation, 

performed by E1; second step involves conjugation of the ubiquitin to the protein and this  

is completed by the E2 enzyme; the third step, performed by the E3 enzyme, is the 

ubiquitin ligation (Hochstrasser 1996).  The E3 consists of scaffold Cullin protein that is 

bound to the Ring box protein-1 (RBX1) (Deshaies 1999) (Figure 1.5).  The RBX1 is a 

small 108 residue protein with a RING finger domain (Ohta, Michel et al. 1999).  The 

RING proteins are capable of activating E2 enzymes to synthesize polyubiquitin chains in 

the presence of E1 (Furukawa, Ohta et al. 2002).   

The Cullin proteins are evolutionary conserved scaffold proteins that play a 

critical role in post-translation modification of proteins involving ubiquitin.  There are 

eight Cullin proteins that have been identified to date, Cul1 to Cul7 and PARC (p53-

associated, parkin-like cytoplasmic protein) (Sarikas, Hartmann et al. 2011).   Keap1 has 

been found to associate favorably with the Cul3 protein (Figure 1.5) (Kobayashi, Kang et 

al. 2004; Zhang, Lo et al. 2004).   Cul3 assemble E3 ligases by bringing the RING-E2 

and substrates together (Furukawa, Ohta et al. 2002; Furukawa and Xiong 2005).   

1.3.4 Antioxidant Response Element 

The antioxidant response element (ARE) was discovered by Rushmore et al as a 

cis-acting regulatory enhancer sequence in the upstream region of the rat glutathione S- 

transferase Ya (GST Ya) subunit (Rushmore and Pickett 1990).   Characterization of the 

ARE sequence in the rat GST Ya by mutational analysis delineated the ARE core 

sequence to 5’-TGACnnnGC-3’, which is essential for both basal and inducible activity 

of the GST Ya (Rushmore, Morton et al. 1991).   In addition to the rat GST Ya gene, the 
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ARE is responsible for activation and induction of several other genes, including the rat 

and human NAD(P)H:quinone oxidoreductase 1 (NQO-1) protein, γ-glutamylcysteine 

catalytic (γ-GCSh) and regulatory (γ-GCSl) subunits, and heme oxygenase (HO-1) 

(Favreau and Pickett 1991; Jaiswal 1991; Inamdar, Ahn et al. 1996; Mulcahy, Wartman 

et al. 1997; Moinova and Mulcahy 1998; Wild, Gipp et al. 1998).  

Venugopal et al established Nrf2 as a critical regulator of the ARE sequences 

(Venugopal and Jaiswal 1996).  In their works, Venugopal et al discovered increased 

CAT activity from an ARE-CAT construct upon expression of transfected Nrf2.  The 

CAT activity was found to diminish in the presence of a mutant ARE-CAT construct.  In 

vivo studies using gene knockout mice demonstrated Nrf2 as a regulator for the 

transcription activation of ARE-responsive genes (Itoh, Chiba et al. 1997).  Expression 

levels of γ-GCSh and NQO-1 were reduced in Nrf2-null mice when compared with the 

heterozygous mice (Itoh, Chiba et al. 1997; Chanas, Jiang et al. 2002).   

1.3.5 Role of stress mediated cell signaling kinases 

Stress-related signaling kinases, mitogen-activated protein kinase (MAPK), p38 

MAPK, phosphatidylinositol 3-kinase (PI3K), c-Jun-N-terminal kinase (JNK), 

endoplasmic reticulum (ER)-resident kinase (PERK), and protein kinase C (PKC) have 

been reported to mediate Nrf2 regulation of ARE-responsive genes (Alam, Wicks et al. 

2000; Yu, Chen et al. 2000; Zipper and Mulcahy 2000; Huang and Ingber 2002; Balogun, 

Hoque et al. 2003; Cullinan, Zhang et al. 2003; Keum, Yu et al. 2006; Xu, Yuan et al. 

2006).  Many of these kinases directly phosphorylate Nrf2 and activate the transcription 

of ARE-regulated genes.  Interestingly, both positive and negative regulation of Nrf2 has 

been associated with the p38 and the JNK kinases (Alam, Wicks et al. 2000; Yu, Chen et 
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al. 2000; Zipper and Mulcahy 2000; Huang and Ingber 2002; Balogun, Hoque et al. 2003; 

Cullinan, Zhang et al. 2003; Keum, Yu et al. 2006; Xu, Yuan et al. 2006).    

1.3.6 Prothymosin alpha  

Prothymosin-alpha (ProTα), a precursor to thymosin α, is a well-studied protein 

with diverse roles in the cells ranging from protecting cells from apoptosis to cell 

proliferation (Gomez-Marquez, Segade et al. 1989; Evstafieva, Belov et al. 2003).  The 

natural abundance of ProTα and its evolutionary conservancy implies its importance to 

biological activity (Haritos, Tsolas et al. 1984; Hannappel and Huff 2003).   Due to the 

nature of tasks it participates in, a dual role has been associated with ProTα (Ioannou, 

Samara et al. 2012).  Intracellularly, ProTα controls the cell cycle by inhibiting apoptosis, 

regulates DNA remodeling during cell proliferation, and controls gene expression by 

interacting with the histone H1(Szabo, Ehleiter et al. 1992; Wu, Shiau et al. 1997; 

Karetsou, Kretsovali et al. 2002).  Extracellularly, ProTα has been shown to stimulate 

immune response (Ioannou, Samara et al. 2012).  For instance, treatment of mice with 

ProTα resulted in their protection from infections associated with Candida albicans (Pan, 

Haritos et al. 1986).  In lymphocytes, it has been demonstrated that ProTα increased 

antigen induced T cell proliferation, production of interleukins and T cell receptors 

(Baxevanis, Frillingos et al. 1990; Ioannou, Samara et al. 2012).  Amongst its vast 

functions, in 2005 the Karapetian group ascribed an additional important role for ProTα 

in the Nrf2-Keap1 signaling pathway (Karapetian, Evstafieva et al. 2005).  This group 

discovered that the Keap1-Cul3-RBX1 ligase complex, required for the ubiquitination of 

Nrf2, is deviant of a nuclear localization signal (Karapetian, Evstafieva et al. 2005).  The 

Keap1-Cul3-RBX1 ligase complex binds to ProTα and passes the nuclear membrane 
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using ProTα nuclear localization signal (Niture and Jaiswal 2009).   Since ProTα is one of 

the major focuses of this study, it is discussed in further detail in Chapter 2. 

 Mechanism of Nrf2 transcription Regulation 1.4

Over the last decade scientific research has answered many questions relating to 

the mechanism by which Nrf2 mediated gene transcription is regulated (Taguchi, 

Motohashi et al. 2011; Tkachev, Menshchikova et al. 2011; Baird, Lleres et al. 2013).   

Based on scientific reports, Keap1 appears to be a key negative regulator of the Nrf2 

protein involving physical entrapment of the inactive Nrf2 to the cytoplasmic actin 

filaments under unstressed conditions (Itoh, Wakabayashi et al. 1999; Kang, Kobayashi 

et al. 2004).  During oxidative or electrophilic stress, the Nrf2 liberates from the Keap1 

anchorage complex and newly synthesized Nrf2 accumulates in the nucleus leading to 

Nrf2-ARE transcription of cytoprotective genes (Kobayashi, Kang et al. 2004; Jain and 

Jaiswal 2006; Kobayashi and Yamamoto 2006).  A detailed schematic diagram of the 

pathway is presented in Figure 1.6.   

The current mode of Keap1-Nrf2 interaction is described as a “hinge and latch” 

model, where two distinct motifs in the Neh2 domain of Nrf2, the DLG and ETGE 

motifs, are shown to interact with the Kelch domain of Keap1 (Tong, Katoh et al. 2006; 

Tong, Kobayashi et al. 2006; Tong, Padmanabhan et al. 2007).  It has been determined 

that the immobilization of the Nrf2 by Keap1 occurs in a sequential manner where the 

high affinity site, ETGE motif, binds first, followed by the docking of the DLG motif 

onto a second Kelch domain of the homodimer Keap1 (Li, Zhang et al. 2004; 

Padmanabhan, Tong et al. 2006; Tong, Kobayashi et al. 2006; Tong, Padmanabhan et al. 

2007).  The ETGE motif locks the Nrf2 in place, whereas, the DLG motif is responsible  
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Figure 1.6. Schematic diagram of the Keap1-Nrf2 mediated gene transcription. 

(a) In a regular cell environment, two Keap1 molecules bind to the N-terminal Neh2 domain of 

the Nrf2 via the DLG and ETGE motif.  Nrf2 is polyubiquitinated by the Cul3-based E3 ligase 

complex and targeted for degradation by the 26S proteasome. (b) During stress conditions, the 

Nrf2-Keap1 complex is disrupted, leading to accumulation of Nrf2 in the nucleus. (c) The Nrf2 

forms a complex with the small Maf proteins and binds to the ARE sequences of target DNA, 

initiating transcription of Phase II enzymes.  Once the cellular environment returns to normal 

conditions, the nuclear Nrf2 is sequestered by the Keap1 to return Nrf2 concentrations also to 

normal levels.  The Keap1 lacks a nuclear localization signal, and thus is exported to the nucleus 

in complex with the ProTα.  The schematic diagram is based on the work presented in (Taguchi, 

Motohashi et al. 2011) 
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for orienting the N-terminal lysine residues of Nrf2 for ubiquitination (Kobayashi, Kang 

et al. 2004).  The presence of stressors triggers conformational changes in the Keap1 

(Dinkova-Kostova, Holtzclaw et al. 2002).  These structural changes in the Keap1 cause 

release of the DLG motif; however, the ETGE remains bound.  The Nrf2 binds to the 

Keap1 in this manner until Keap1 is saturated.  This results in free cytoplasmic Nrf2 

which is transported to the nucleus for the transcription of cytoprotective gene expression 

(Tong, Katoh et al. 2006).   

An alternative manner of Nrf2 regulation by Keap1 has been recently proposed 

and is called the cyclic model.  Based on this model the Nrf2 is not released from the 

Keap1-Cul3-RBX1 ligase complex; rather, the orientation of the DLG motif is shifted 

such that the lysine residues required for ubiquitination are no longer accessible by the 

E2-ubiquitin conjugating enzyme (Baird, Leres et al. 2013). Thus Nrf2 proteosomal 

degradation is disrupted and newly synthesized Nrf2 escapes into nucleus and 

transcription of enzymes that allow restoration of cellular environment is initiated (Itoh, 

Chiba et al. 1997; Itoh, Wakabayashi et al. 1999).   

Once the cellular environment is restored, the Nrf2 concentrations in the nucleus 

need to be regulated (Niture and Jaiswal 2009).  Interestingly, the Keap1 lacks a nuclear 

localization signal and is shuttled to the nucleus in complex with ProTα, where, ProTα 

dissociates and Nrf2 degradation is initiated again to reestablish homeostatic conditions 

(Niture and Jaiswal 2009).  

 Positive and Negative Regulators of Nrf2  1.5

Many cellular mechanisms are in place to regulate Keap1 or Nrf2 in a manner that 

increases or abolishes the expression of ARE-dependent genes (Tkachev, Menshchikova 
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et al. 2011).  Several proteins stabilizing the Nrf2 transcriptional activity have been 

reported in literature, including the DJ-1, p21Cip1/WAF1, p62 (sequestosome 1), CR6-

interacting factor 1 (CRIF1), and PALB2 (Clements, McNally et al. 2006; Chen, Sun et 

al. 2009; Kang, Hong et al. 2010; Ma, Cai et al. 2012).   

The disordered p62 is an adapter protein that carries multiple functions within the 

cell.  It is involved in carrying ubiquitinated proteins to the proteasome, and by products 

of degradation to the lysozymes (Seibenhener, Geetha et al. 2007).  The protein is also 

required for carrying aggregated, damaged or unfolded/misfolded proteins to the 

lysozyme (Tkachev, Menshchikova et al. 2011;Seibenhener, Geetha et al. 2007).   

Intriguingly, p62 contains a sequence similar to the ETGE motif of Neh2 and competes 

for Keap1 binding with the DLG site of Neh2 (Jain and Jaiswal 2006; Cino, Killoran et 

al. 2013). The p62 is known to target Keap1 for degradation (Taguchi, Fujikawa et al. 

2012). As a result, the Nrf2 degradation is halted, and an increase in cytoprotective 

enzyme expression is observed (Jain and Jaiswal 2006).  The Kelch domain is a hub for 

many other disordered proteins and its interaction with other targets liberates Nrf2 to 

carry transcriptional activity.  

Another alternative mode of Nrf2 stability is adopted by the disordered 

p21Cip1/WAF1.  However this disordered protein competes with the Keap1 for binding to 

the DLG motif of Neh2 domain (Chen, Sun et al. 2009; Tkachev, Menshchikova et al. 

2011).  By inhibiting Nrf2 ubiquitination, p21 increases the activation of antioxidant 

defense pathway.  p21 is also known to increase cell survival by its involvement in cell 

cycle arrest and cellular repair processes (Chen, Sun et al. 2009; Taguchi, Motohashi et 

al. 2011).  
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Many other mechanisms are in place that regulate the transcriptional activity of 

Nrf2.  Few of these methods include phosphorylation of the Y568 residue of Nrf2 by 

Tyrosine kinase Fyn in the nucleus resulting translocation of Nrf2 from nucleus to the 

cytoplasm where it is degraded by Keap1 (Jain and Jaiswal 2007; Tkachev, 

Menshchikova et al. 2011).  Other negative regulators of the pathway compete for 

binding to the DNA instead. For example, the association of BACH1 with ARE 

sequences prevents Nrf2 mediated gene expression (Sun, Brand et al. 2004; MacLeod, 

McMahon et al. 2009).   

 Dual Nature of Nrf2 in Cancer 1.6

The Keap1-Nrf2 pathway is considered to behave as a “double-edged sword” 

(Hayes and McMahon 2006).  On one side, the expression of detoxifying enzymes helps 

eliminate ROS, prevents DNA damage and can repress cancer metastasis (Satoh, 

Moriguchi et al. 2010; Taguchi, Motohashi et al. 2011).  On the other hand, constitutive 

Nrf2 activity in cancer cells provides advantages for tumour cell proliferation (Taguchi, 

Motohashi et al. 2011).  The constitutive cellular activity of Nrf2 arises when it escapes 

Keap1 facilitated degradation.  Many somatic mutations in Nrf2 and Keap1 have been 

reported in tumor derived cell lines or cancer tissues that results in the disruption of Nrf2 

regulation (Padmanabhan, Tong et al. 2006; Hayes and McMahon 2009; Hast, Cloer et al. 

2014).  Mutations in the Neh2 domain of Nrf2 have been mostly discovered within the 

ETGE and DLG motifs of the Neh2 domain, resulting in the disruption of Keap1-Nrf2 

complex formation (Shibata, Kokubu et al. 2008; Kim, Oh et al. 2010).   

Mutations within the Keap1, although reported in all three domains, are 

predominant in the Kelch domain of Keap1 (Singh, Misra et al. 2006; Ohta, Iijima et al. 



34 

 

 

2008; Shibata, Kokubu et al. 2008; Network 2012; Yoo, Kim et al. 2012; Hast, Cloer et 

al. 2014).  Unlike the Nrf2, many of the mutations reported in the Kelch domain of 

Keap1 are away from the binding interface with targets, yet are shown to inhibit Nrf2  

regulation. Thus somatic mutations in Keap1 are linked to conformational changes that 

compromise its ability to ubiquitinate Nrf2 (Lo, Li et al. 2006; Hayes and McMahon 

2009).  Table 1.1 lists few mutations, the type of cancers they associated with and their 

location in the Kelch domain.   

 IDPs in the Nrf2 mediated Oxidative Stress Response 1.7

ProTα and Nrf2 are both intrinsically disordered proteins that play critical roles in 

the oxidative stress response (Itoh, Chiba et al. 1997; Uversky, Gillespie et al. 1999; 

Karapetian, Evstafieva et al. 2005; Tong, Katoh et al. 2006; Niture and Jaiswal 2009).   

As depicted in the crystal structures presented in Figure 1.7 both of these proteins interact 

with the positively charged loop regions located at the bottom vicinity of the Kelch 

domain (Lo, Li et al. 2006; Tong, Padmanabhan et al. 2007; Padmanabhan, Nakamura et 

al. 2008).  

As illustrated by several examples, the biophysics of protein-protein interactions is 

quite unique for individual systems.  Many IDPs undergo disorder to order transitions 

upon binding to targets, while others remain flexible even in the ligand bound states. 

Characterizing the binding interface of IDPs in protein-protein interaction can have 

important implication in drug discovery (Cheng, LeGall et al. 2006).  Since a protein-

protein interaction involving one structured and one disordered partner seems more  
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Table 1.1. A list of somatic mutations identified within the Kelch domain of 
Keap1 (Forbes, Bindal et al. 2011). * mutations studied in this work 

Residue  Amino Acid Mutation Reoccurrence Type          Tissue  
Mutations in the binding interface  

334 Y334H Substitution - Missense Lung 
336 R336 Substitution - Nonsense Lung 
364 G364S Substitution - Missense Lung 
364 G364C* Substitution - Missense Lung 
413 R413L* Substitution - Missense Lung 
415 R415G* Substitution - Missense Lung 
415 R415C Substitution - Missense Lung 
460 R460G Substitution - Missense Lung 
460 R460S Substitution - Missense Lung 
461 I461V Substitution - Missense Lung 
479 D479G Substitution - Missense Lung 
480 G480W Substitution - Missense Lung 
483 R483C Substitution - Missense Lung 
509 G509W Substitution - Missense Lung 
524 G524C Substitution - Missense Lung 
527 G527F Substitution - Missense Lung 
554 R554Q Substitution - Missense Lung 
555 S555C Substitution - Missense Lung 
556 A556S Substitution - Missense Lung 
572 Y572C Substitution - Missense Lung 
601 R601W Substitution - Missense Lung 
603 G603W Substitution - Missense Lung 

 
Mutations in the double GG repeats 

333 G333S Substitution - Missense Lung 
333 G333C* Substitution - Missense Lung 
369 V369L Substitution - Missense Lung 
379 G379D* Substitution - Missense Billary tract  
428 V428V Substitution - coding silent Pancreas 
430 G430C* Substitution-Missense Lung 
475 V475L Substitution - Missense Skin 
476 G476R* Substitution - Missense Lung 
522 A522V Substitution - Missense Breast 
524 G524C Substitution - Missense Lung 
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Residue Amino Acid Mutation Type  Tissue 
Other mutations 

324 V324M Substitution – Missense Oesophagus 
326 R326H Substitution – Missense Endometrium 
350 G350S* Substitution-Missense Gastric, AD 
362 R362Q Substitution – Missense Lung 
389 D389Y Substitution – Missense Lung 
397 N397 Deletion - In frame Lung 
407 A407V Substitution - Missense Prostate 
409 M409T Substitution - Missense Kidney 
417 G417R Substitution - Missense Lung 
417 G417E Substitution - Missense Lung 
418 V418M Substitution - Missense Lung 
418 V418L Substitution - Missense Lung 
419 G419W Substitution - Missense Lung 
427 A427V* Substitution-Missense Lung 
444 E444 Substitution-Nonsense Kidney 
449 E449 Substitution - Nonsense Breast 
452 L452 Deletion - Frameshift Breast 
453 V453 Insertion - Frameshift Breast 
459 R459Q Substitution - Missense Skin 
470 R470S Substitution - Missense Lung 
470 R470C Substitution - Missense Lung 
470 R470H Substitution - Missense Lung 
471 L471L Substitution - coding silent Stomach 
488 E488D Substitution - Missense Endometrium 
493 E493D Substitution - Missense Lung 
497 W497L Substitution - Missense Lung 
503 M503K Substitution - Missense Lung 
506 I506V Substitution - Missense Lung 
519 I519 Insertion - Frame shift Endometrium 
544 W544R Substitution - Missense Kidney 
544 W544C Substitution - Missense Lung 

558 G558G Substitution - coding silent 
Large 
Intestine 

559 I559I Substitution - coding silent Lung 
563 Q563E Substitution - Missense Lung 
572 Y572C Substitution - Missense Lung 
579 D579Y Substitution - Missense Kidney 
584 Y584 Deletion - Frameshift Kidney 
588 T588 Insertion - Frameshift Lung 
593 E593 Substitution - Nonsense Liver 



37 

 

 

 

Figure 1.7. Crystal structures of the ProTα and Neh2 peptides bound to the Kelch domain of Keap1.  

(a) peptides mimicking binding motifs of ProTα (red) (PDB id: 2Z32) and the high affinity ETGE motif of 

Neh2 domain (green) (PDB id: 2FLU) bound to the Kelch propeller (Lo, Li et al. 2006; Padmanabhan, 

Nakamura et al. 2008).  (b) The DLG motif of Neh2 bound to the Kelch domain of Keap1 (PDB id: 2DYH) 

(Tong, Padmanabhan et al. 2007).  All three peptides interact with the same surface of the Kelch domain.  

(b) (a) 
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promising in therapeutic intervention (Cheng, LeGall et al. 2006; Dunker, Oldfield et al. 

2008), understanding the mechanism of binding, structural and dynamic characterization 

of IDPs in their free and target-bound states is necessary for successful drug design.  

Nrf2 and ProTα are great examples to understand the part IDPs play in biological 

processes as these two proteins have vital roles in cellular maintenance.  Their activity in 

oxidative stress response pathway, especially, the dual nature of Nrf2 in cancers, makes 

them interesting candidates for delineating the mechanisms by which IDPs function in the 

cell and thus great drug targets.  In this work the nature of Nrf2 and ProTα interactions in 

full length have been investigated with Keap1.  Additionally, target binding with Keap1 

has been scrutinized in the presence of somatic mutations associated with cancers (listed 

in Table 1.1).  

 Scope of thesis 1.8

The main objectives that are investigated in this work include: 

I. Determining the underlying mechanism of interaction of full length 

ProTα and Neh2 domain of Nrf2 with Keap1.   

II. A new high yield purification protocol for the Neh2 domain of human 

Nrf2 is presented and allows studying full length target binding with 

the Kelch domain of human Keap1 

III. Investigation of the role of selected disease associated mutations, 

reported in Keap1, on target binding to ProTα and Nrf2 
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In chapter 1, the interaction occurring between the disordered ProTα and the 

Kelch domain of human Keap1 has been extensively characterized.  ITC, NMR and 

peptide array techniques were used to delineate the amino acids in ProTα involved in 

affecting binding to the Kelch domain of human Keap1.  Additionally, spin relaxation 

and amide exchange experiments helped elucidate that the nature of disordered ProTα 

interaction with the Keap1 as a fuzzy one, where ProTα retains its disordered nature even 

in target bound states.  

 A new high yield purification protocol, in chapter 2, provided pure Neh2 sample 

used for the structural characterization of the full length Neh2 domain of human Nrf2 and 

for binding studies with the Kelch domain of human Keap1.  Higher content of residual 

structures including α-helical and β-turn propensities were observed at the N and C-

terminals, respectively, in the Neh2 domain.  Additionally, NMR studies of the DLG and 

ETGE motifs in full-length context suggested possible contacts between the N and C 

terminal residues.   

Nine somatic mutations occurring in the Kelch domain of the human Keap1 

(highlighted in Table 1.1) were selected and their effects on the structural integrity of 

Kelch domain and binding to ProTα and Nrf2 were scrutinized.  Mutations in the double 

glycine repeat regions destabilized the Kelch domain and resulted in protein aggregation.  

Amino acid substitutions in the interface and in other regions did not affect the secondary 

structural content of the Kelch domain.  Nonetheless, mutations in the binding interface 

compromised complex formation with targets, especially to the DLG motif of Neh2.  

These results provide new insights into IDP protein-protein interaction and their roles in 

diseases.    
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Chapter 2  

 Fuzzy complex formation between Prothymosin α and the 2
Kelch domain of Keap1 

. 

 Introduction 2.1

Prothymosin α (ProTα) is a 12-kDa acidic protein with multiple biological 

functions (Haritos, Goodall et al. 1984; Pan, Haritos et al. 1986; Frillingos, Frangou-

Lazaridis et al. 1991).  It is highly conserved in mammals, is widely distributed in various 

tissues, and has a distinct amino acid composition (Haritos, Goodall et al. 1984; Pan, 

Haritos et al. 1986; Frillingos, Frangou-Lazaridis et al. 1991).  Its protein sequence lacks 

aromatic and Cys residues, and about 50% of the sequence is composed of either Glu or 

Asp. These acidic residues are mostly localized in the center of the protein sequence 

(Haritos, Goodall et al. 1984; Pan, Haritos et al. 1986; Frillingos, Frangou-Lazaridis et al. 

1991; Diaz-Jullien, Perez-Estevez et al. 1996; Segade and Gomez-Marquez 1999).  A 

nuclear localization signal, TKKQK, exists in the C-terminal region (Rubtsov, 

Zolotukhin et al. 1997; Trumbore, Wang et al. 1997).  Early studies of ProTα had shown 

that the protein is unstructured under non-denaturing conditions but can adopt a partially 

folded conformation at acidic pH (Gast, Damaschun et al. 1995; Uversky, Gillespie et al. 

1999).  We have extensively characterized the structural and dynamic properties of this 

protein under physiological buffer conditions by using nuclear magnetic resonance 

(NMR) spectroscopy and electrospray ionization mass spectrometry (ESI-MS) (Yi, Boys 

et al. 2007). The results clearly demonstrated that ProTα is largely disordered and 

extremely dynamic, with only a slight propensity for β-strand structure. However, the 
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protein can adopt more compact conformations upon binding to zinc ions (Yi, Boys et al. 

2007). 

ProTα is an oncoprotein expressed at high levels in proliferating cells. It increases 

cell proliferation by shortening the G1 phase of the cell cycle (Rodriguez, Vinuela et al. 

1998). Studies have shown that in the absence of ProTα, cells undergo apoptosis or are 

unable to divide (Sburlati, Manrow et al. 1991; Rodriguez, Vinuela et al. 1999; 

Evstafieva, Belov et al. 2000).  ProTα also binds histones (Papamarcaki and Tsolas 1994; 

Diaz-Jullien, Perez-Estevez et al. 1996; Karetsou, Sandaltzopoulos et al. 1998; Martic, 

Karetsou et al. 2005), plays a role in chromatin remodeling (Karetsou, Sandaltzopoulos et 

al. 1998; Karetsou, Martic et al. 2004), acts as a transcription activator through CREB 

binding protein (Karetsou, Kretsovali et al. 2002; Subramanian, Hasan et al. 2002), 

prevents formation of the apoptosome (Qi, Wang et al. 2010; Jiang, Kim et al. 2003; 

Piacentini, Evangelisti et al. 2003; Malicet, Giroux et al. 2006), and facilitates movement 

of charged particles within the nucleus and surrounding environment (Enkemann, Ward 

et al. 2000). Further, the protein suppresses HIV-1 by inducing production of type 1 

interferon (Mosoian, Teixeira et al. 2010; Kubota, Adachi et al. 1995; Mosoian, Teixeira 

et al. 2007), plays a neuroprotective role after ischemic events (Ueda, Fujita et al. 2007; 

Fujita, Ueda et al. 2009), and functions as a tumor-associated protein in human colon 

cancer, lung cancer, urinary tract cancer, and breast cancer (Dominguez, Magdalena et al. 

1993; Tsitsiloni, Stiakakis et al. 1993; Traub, Jost et al. 2006; Gou, Tong et al. 2009; 

Tsai, Jou et al. 2009). Recent studies have shown that ProTα also has an important role in 

the oxidative stress response (Karapetian, Evstafieva et al. 2005; Niture and Jaiswal 

2009).  
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Cells are constantly attacked by reactive oxygen species, electrophiles, 

carcinogens, and xenobiotics (Itoh, Chiba et al. 1997; Primiano, Sutter et al. 1997). 

Pathological conditions, such as neurodegenerative diseases, arthritis, cancer, and 

cardiovascular diseases, can arise if cells fail to counteract oxidative stress by inducing 

cytoprotective gene expression (Itoh, Chiba et al. 1997; Primiano, Sutter et al. 1997; 

Pratico, Rokach et al. 2004; Kim and Guengerich 2005; Schulze and Lee 2005).  Nuclear 

factor erythroid 2-related factor 2 (Nrf2) is one of the key regulators of the cellular 

responses to oxidative stress (Venugopal and Jaiswal 1996; Itoh, Chiba et al. 1997; Itoh, 

Tong et al. 2004). Nrf2 is a bZIP transcription activator of cytoprotective genes 

(Venugopal and Jaiswal 1996; Itoh, Chiba et al. 1997). The protein consists of six 

domains, Neh1 to Neh6 (Itoh, Wakabayashi et al. 1999).  The N-terminal Neh2 domain, 

which is intrinsically disordered (Tong, Katoh et al. 2006), is involved in maintaining 

homeostatic levels of Nrf2 through binding to Keap1 (Kelch-like ECH-associated protein 

1) (Itoh, Wakabayashi et al. 1999).  

ProTα plays a crucial role in the Nrf2 signaling pathway by mediating the nuclear 

import of Keap1/Cul3-RBX1 ligase complex in order to lower Nrf2 levels in the nucleus, 

allowing the cell to return to normal conditions (Niture, Kaspar et al.2010 ; Niture and 

Jaiswal 2009). Once in the nucleus, ProTα dissociates from the Keap1/Cul3-RBX1 ligase 

complex, allowing Nrf2 to bind to the complex for degradation (Niture, Kaspar et al. 

2010; Niture and Jaiswal 2009). 

The interaction between mouse ProTα and Keap1 has been studied previously. 

Using the yeast two hybrid system and different protein constructs, amino acids 32 to 52 
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in the mouse ProTα have been identified to be crucial for the interaction with the Kelch 

domain of Keap1 (Karapetian, Evstafieva et al. 2005).  Padmanabhan et al. expanded on 

these findings by structurally analyzing the mouse ProTα-Kelch complex (Padmanabhan, 

Nakamura et al. 2008).  A 16-mer peptide composed of 39AQNEENGEQEADNEVD54 of 

mouse ProTα was crystallized with the Kelch domain (Padmanabhan, Nakamura et al. 

2008).  The structure reveals that the negatively charged ProTα peptide binds to the basic 

bottom face of the β-propeller structure of Kelch, forming many electrostatic interactions, 

especially via the ENGE motif of ProTα.  It is noteworthy that the electron density 

corresponding to residues 49-54 of the ProTα peptide was missing, suggesting this part 

of the peptide may not adopt a stable conformation upon binding to Kelch 

(Padmanabhan, Nakamura et al. 2008).  Compared to the structures of Neh2-Kelch (Lo, 

Li et al. 2006; Padmanabhan, Tong et al. 2006; Padmanabhan, Nakamura et al. 2008), the 

EENGE motif of ProTα and the EETGE motif in the Neh2 domain bind to the same site 

on the Kelch domain (Padmanabhan, Nakamura et al. 2008).  

Although ProTα has multiple biological functions and many targets, very limited 

structural information about this disordered protein is available, especially concerning its 

target interactions.  The crystallographic study of ProTα-Kelch peptide-protein complex 

is the only detailed structural characterization of ProTα in a target bound-state form 

(Padmanabhan, Nakamura et al. 2008).  However, the molecular mechanism by which 

full-length ProTα binds to Kelch remains unclear. Many disordered proteins undergo 

disorder-to-order transition upon binding to their targets (Wright and Dyson 1999;Dyson 

and Wright 2005; Wright and Dyson 2009). These protein-protein interactions are 
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frequently enthalpy driven because the loss of conformational freedom of an intrinsically 

disordered protein (IDP) upon target binding is usually significant, with a resulting 

unfavorable entropy change (Wright and Dyson 1999; Bordelon, Montegudo et al. 2004; 

Fink 2005; Meszaros, Tompa et al. 2007; Sugase, Dyson et al. 2007). IDPs can also 

interact with targets via preformed structural elements, perhaps lessening the entropy loss 

and modulating the affinity of binding (Kumar, Ma et al. 2000; Tsai, Ma et al. 2001; 

Fuxreiter, Simon et al. 2004). Intriguingly, some IDPs remain disordered even in 

complexes with targets (Fuxreiter 2012 ; Fuxreiter and Tompa 2008; Zhuo, Ilangovan et 

al. 2010).  Due to the crucial roles ProTα and Keap1 have in the oxidative stress 

response, in this study, experimental approaches were employed to delineate the 

molecular basis of their binding. The result will not only lead to a better understanding 

how these two proteins function in the Nrf2 pathway, it will also provide insight into 

designing drugs that specifically target the interactions between Keap1 and its disordered 

partners (Cino, Fan et al. 2013; Uversky 2012 ; Wang, Cao et al. 2011 ; Cheng, LeGall et 

al. 2006; Hammoudeh, Follis et al. 2009).  

 Materials and Methods 2.2

2.2.1 Protein Expression and Purification  

The expression and purification of human ProTα was reported previously (Yi, 

Brickenden et al. 2008). The pET15b plasmid carrying the human Kelch cDNA, a kind 

gift from Dr. Mark Hannink at the University of Missouri-Columbia, was transformed 

into E. coli BL21 (DE3) cells (Novagen). The protein was overexpressed in M9 minimal 

media and induced by adding 0.5 mM isopropyl-β-D-thiogalactopyranoside (IPTG; 
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Bioshop). After 18 h induction at 16 °C, the bacteria were harvested and stored at -20 °C. 

The his-tagged protein was purified by affinity chromatography using Ni-Sepharose 6 FF 

beads (Amersham Biosciences). The eluted protein was dialyzed against TE buffer (20 

mM Tris-HCl, 1 mM EDTA, 1 mM DTT, 100 mM NaCl). The His-tag was cleaved with 

human alpha-thrombin (Haematologic Technologies), and protein was further purified 

with HiLoad Superdex 75 column (GE Healthcare). The final protein sample was 

dialyzed in 50 mM sodium phosphate buffer, 100 mM NaCl, 1 mM DTT, pH 7.   

2.2.2 Peptide synthesis   

The ProTα peptide (98% in purity), 38NANEENGEQEA48 was ordered from 

GenScript USA Inc. The lyophilized peptide was dissolved in 50 mM Sodium phosphate 

buffer, 100 mM NaCl, 1 mM DTT for ITC and NMR experiments.   

2.2.3 Site-directed mutagenesis of wild-type ProTα 

Wild-type ProTα in pET15b plasmid was subjected to point mutagenesis using 

the Stratagene Quikchange II site-directed mutagenesis kit. The primers used for each 

point mutation are included in Supplemental data. Over expression and purification of 

mutant variants of ProTα were carried out with the similar procedure used for the wild-

type ProTα (Yi, Brickenden et al. 2008).  

2.2.4 Primers used for point mutations. 

E41P: 5’ CCCTGCTAACGGGAATGCTAATCCGGAAAATGGGGAGC 3’ 

E45G: 5’ TAATGAGGAAAATGGGGGGCAGGAGGCTGACAATG 3’ 
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E45A: 5’ TAATGAGGAAAATGGGGCGCAGGAGGCTGACAATG 3’ 

E51A: 5’ CAGGAGGCTGACAATGCGGTAGACGAAGAAGAG 3’ 

E51G: 5' CAGGAGGCTGACAATGGGGTAGACGAAGAAGAG 3' 

E51Y: 5'GGGGAGCAGGAGGCTGACAATTACGTAGACGAAGAA 3' 

E47A: 5' GAAAATGGGGAGCAGGCGGCTGACAATGAGGTA 3' 

E47R: 5' GAGGAAAATGGGGAGCAGCGCGCTGACAATGAGGTAGAC 3' 

D49A: 5' GGAGCAGGAGGCTGCCAATGAGGTAGACG 3' 

N36A: 5' ATGGAAGAGACGCCCCTGCTGCCGGGAATGCTAATG 3' 

G44A: 5' GGAATGCTAATGAGGAAAATGCGGAGCAGGAGGCTG 3' 

2.2.5 NMR spectroscopy 

All NMR experiments (except the amide hydrogen exchange experiments) were 

performed on a Varian Inova 600MHz spectrometer equipped with xyz-gradient triple 

resonance probe at 25 °C in buffer containing 50 mM sodium phosphate, 100 mM NaCl, 

1 mM DTT, and 10% (v/v) D2O (Cambridge Isotope Laboratories). 1 mM of sodium 2, 2-

dimethyl-2-silapentane-5-sulfonate (DSS, Sigma) was added to each NMR sample as an 

internal standard for the chemical shift referencing (Wishart, Bigam et al. 1995). All 

NMR data were analyzed with NMRPipe (Delaglio, Grzesiek et al. 1995), and the spectra 

were analyzed with NMRView (Johnson 2004).  
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For the NMR titration experiments, unlabeled Kelch was titrated into 600 µL of 

150 µM 15N-labeled ProTα until a 1:2 molar ratio (ProTα : Kelch) point was reached.  

1H-15N HSQC spectra were collected for each titration point.  

Backbone 15N longitudinal relaxation rates (R1), relaxation rates in rotating frame 

(R1ρ), and steady-state 1H-15N NOE relaxation parameters of 150 µM 15N-labeled ProTα 

were measured in both the free state and the Kelch bound state (unlabeled 300 µM Kelch) 

using identical parameters as described previously (Yi, Boys et al. 2007).  

Amide hydrogen exchange (HX) rate measurements were performed at 25 oC on a 

Bruker Avance 800 MHz spectrometer equipped with cryogenic probe (National 

University of Singapore) using the method recently proposed by Fan et al (Fan, Lim et 

al.). The HX rates of 15N-labeled ProTα (180 µM) were measured in both the free state 

and the Kelch-bound state (unlabeled 450 µM Kelch) using the following mixing times: 

20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 190, 220, 260, and 300 ms. For each 

mixing time, data sets with and without the suppression of radiation damping were 

collected in interleaved manner and each FID was acquired with 6 scans.  A reference 

spectrum was collected for each sample using a long interscan delay (10 s) and by 

removing the first 1H pulse and the mixing period in the pulse sequence as mentioned in 

the reference (Fan, Lim et al. 2011). The data were processed using NMRPipe (Delaglio, 

Grzesiek et al. 1995). For each isolated peak, signal intensities were fitted to Equation 1 

(Equation 9 in the reference (Fan, Lim et al. 2011) in order to determine the exchange 

rates. 
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 (1) 

where f is the fractional steady-state water magnetization; R1H is the relaxation rate of an 

amide proton; Iref is the equilibrium magnetization of the amide proton, which is equal to 

two times of the peak intensity of the amide in the reference spectrum when it is recorded 

with the same number of scans as the other spectra; IEX(t) is the peak intensity of the 

amide correlation at mixing time t, which is obtained from the difference spectrum of two 

interleaved data sets;  t0 is the latency interval; and R1w is the longitudinal relaxation rate 

of water. In the data fitting, f, t0, and R1w were set to 0.90, 17.4 ms, and 0.3 s-1, 

respectively. The protection factor (P) of the backbone amide proton of each amino acid 

was calculated as the ratio of the intrinsic HX rate (kint) of random coil to the 

experimentally determined HX rate. The kint values were estimated with SPHERE web 

server (http://www.fccc.edu/research/labs/roder/sphere/sphere.html) (Bai, Milne et al. 

1993; Connelly, Bai et al. 1993).  

2.2.6 Analytical ultracentrifugation 

Analytical ultracentrifugation technique was employed to determine the binding 

stoichiometry of ProTα to the Kelch domain of Keap1.  Sedimentation equilibrium 

experiments were performed in a Beckman-Coulter Optima XL-A analytical 

ultracentrifuge (Beckman Coulter, Palo Alto, CA) with an AN60Ti rotor.  Six-sector 

Epon-charcoal centerpieces with quartz windows were used.  Protein samples were 

dialyzed in 50 mM phosphate, 100 mM NaCl, 1 mM DTT, at pH 7.0.  Data were 

collected at 22,000 rpm following 24 h equilibration period at 4°C.  Kelch absorbance at 

280 nm was measured with 10 replicates with a step size of 0.002 cm.   Data were fitted 

http://www.fccc.edu/research/labs/roder/sphere/sphere.html
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to a single species model using Microsoft Origin 7.0 software.  Partial specific volume 

for Kelch was calculated to be 0.7219 mL/g based on the amino acid composition.  The 

solvent density was measured to be 1.008 g/mL.  Protein concentrations were calculated 

by protein quantification methods, Lowry for ProTα and Bradford assay for Kelch, as 

well as by amino acid analysis (Advanced Protein Technology Centre, The Hospital for 

Sick Children, Toronto, ON).  

2.2.7 Isothermal titration calorimetry (ITC) 

ITC experiments were carried out on a MicroCalTM VP-ITC.  All purified protein 

samples were dialyzed into 50 mM sodium phosphate, 100 mM NaCl, 1 mM DTT at pH 

7.0.  For titrations, purified Kelch and ProTα were prepared to 60 µM and 790 µM, 

respectively, in dialysis buffer, and each was degassed prior to titration.  Kelch was 

loaded into the 1.42 mL cell, and ProTα was loaded into the syringe (300 µL).  Titrations 

were performed at 25 °C starting with initial injection of 3 µL, followed by 59 larger 

injections of 5 µL, with spacing of 360 s (except for the ProTα peptide with spacing of 

120 s).  The sample cell was stirred at 300 rpm throughout the experiment. The buffer 

blank was performed under the same conditions and showed negligible heats of binding.  

The dissociation constant (Kd), stoichiometry of binding (N), binding enthalpy (∆H), and 

entropy (∆S) were obtained by non-linear least squares fitting of the data to a single-site 

binding model provided with the data analysis software (Origin 7).  Baselines were 

subtracted from final data using Origin software.  All protein concentrations were 

determined using Lowry (for ProTα) and Bradford (for Kelch) assays. Protein 
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concentrations were confirmed by amino acid analysis (Advanced Protein Technology 

Centre, The Hospital for Sick Children, Toronto, ON).    

2.2.8 Peptide array 

A twenty-residue, 38NANEENGEQEADNEVDEEEE57, ProTα peptide spot array 

was ordered from the Peptide and Peptide Array Synthesis Facility at the University of 

Western Ontario. The peptide membrane was hydrated, blocked with 5% skim milk, and 

then probed with the Kelch domain of Keap1. His Probe-HRP was used to detect the 

ProTα peptide-Kelch interaction. The peptide array membrane was developed with the 

ECL Lightening Plus kit (Perkin Elmer, Mississauga, ON) before exposing to film.   

 Results 2.3

2.3.1 Mapping the Kelch-binding region on ProTα by NMR spectroscopy 

The Keap1-binding region on the full-length human ProTα was identified by 

using NMR spectroscopy. A two-dimensional 1H-15N heteronuclear single quantum 

coherence (HSQC) spectrum of 15N-labeled ProTα was collected (Figure. 2.1a). The lack 

of chemical shift dispersion in the 1H dimension of the spectrum indicates that the protein 

was intrinsically disordered in the absence of Kelch.  This result is consistent with our 

previous structural characterization of ProTα carried out in a buffer with lower ionic 

strength (Yi, Boys et al. 2007). 

Changes in the chemical environment of ProTα upon binding to the Kelch 

domain were then probed by a series of 1H-15N HSQC experiments acquired with 
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increasing concentrations of unlabeled Kelch (Figure 2.1a). Additions of Kelch led to the 

perturbations of several ProTα backbone 1H/15N resonances. Significant chemical shift 

changes or attenuations in peak intensity were observed for N36, G37, N38, A39, N40, 

N43, G44, D49, and N50, as well as several unassigned residues (Yi, Boys et al. 2007). 

Notably, the dispersion of NMR signals in the 1H dimension remained very narrow, 

indicating that ProTα did not undergo global disorder-to-order transition upon binding to 

the Kelch domain of Keap1. Aside from the resonance changes mentioned above, most of 

the peaks in the 1H-15N HSQC spectra remain unchanged in position. This result strongly 

suggests that the dynamic nature of the rest of ProTα was retained upon target binding. 

To identify the conformational changes of ProTα induced by the binding of 

Kelch, backbone 13Cα/β chemical shifts were analyzed using the residue-specific 

secondary structure propensity (SSP) program developed by Forman-Kay and co-workers 

(Marsh, Singh et al. 2006).  This method combines different chemical shifts and 

generates a single score for each residue between 1 and -1, indicative of fully formed α-

helical structure and β-strand structure, respectively.  SSP scores of ProTα in the absence 

and presence of Kelch were compared. The result (Figure 2.1b) shows that moderate 

changes occurred in SSPs of ProTα in the segment spanning residues 36-52; however, 

the rest of the protein had similar SSP scores in the absence and presence of Kelch. 

Notably, in the bound state, amino acids in region 35-53 had SSP scores ranging only 

from -0.34 to 0.17, indicating a lack of stable secondary structure in this region.  
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Figure 2.1.  NMR titration experiments of ProTα with Kelch. 1H-15N HSQC 
spectra of ProTα alone (blue) and with 2 equivalents of Kelch domain. Close-up 
views of the 1H-15N HSQC spectra, showing selected chemical shift changes 
during the titration, are shown. (b) SSP scores for ProTα in the free (blue) and 
bound state with Kelch, calculated using 13Cα and 13Cβ chemical shifts. Residues 
for which SSP scores were not calculated are represented by a tick mark. The 
regions showing significant changes in SSP correspond to peaks on the HSQC 
spectrum that undergo large chemical shift changes. 
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2.3.2 Disordered ProTα forms a fuzzy complex with the Kelch domain of Keap1 

To further characterize the dynamic properties of the ProTα-Kelch complex, 

backbone 15N spin relaxation and steady-state 1H-15N NOE experiments were performed 

on the free and Kelch-bound states of ProTα. These experiments are commonly used in 

studying protein dynamics and are particularly valuable for probing motions on the ps-ns 

timescale (Kay 1998). Figure 2.2 shows the 15N R1, R2, and steady-state 1H-15N NOEs 

measured for 15N-labeled ProTα (150 µM) in the absence and presence of 300 µM of 

unlabeled Kelch.  Forty-three assigned residues (out of the 110 ProTα residues) with well 

resolved peaks were included in the data analysis. In the absence of Kelch, all of these 43 

residues have R1 values within a narrow range of 0.87 to 3.13 s-1 (2.45 s-1 in average) 

(Figure 2.2a).  Interestingly, addition of Kelch led to insignificant changes in the R1 

values of ProTα (0.85 – 3.06 s-1, average = 2.47 s-1).  In the absence of Kelch, the R2 

values ranged from 0.5 to 5.3 s-1. Notably, for a globular protein with similar molecular 

weight of ProTα, residues in structured regions are expected to have R2 ~ 10 s-1 (Walma, 

Aelen et al. 2004). Upon addition of Kelch, small, yet significant, increases in R2 values 

were observed for most of the residues (Figure 2.2b). Larger increases were noted for 

residues in the region 30-53, which are involved in the interaction with Kelch, as 

identified by the chemical shift mapping result mentioned in the previous section.  

The steady-state 1H-15N NOE is sensitive to fast internal motion, a good indicator 

of protein mobility on the ps-ns timescale (Peng and Wagner 1992; Kay 1998). 

Generally, large negative NOE values are observed in flexible regions of a protein(Peng 

and Wagner 1992).  In the free state, NOE values of ProTα were mostly negative, which  
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Figure 2.2. Backbone 15N relaxation experiments of ProTα in the free 

(blue) and bound state with 2 equivalents of Kelch. (a) R1 (longitudinal) 

relaxation rate.  (b) R2 (transverse) relaxation rate. (c) steady-state 1H-15N 

NOE. 



70 

 

 

is consistent with the disordered nature of this protein (Figure 2.2c).  In the Kelch-bound 

state, increases in the NOE values were observed for residues 30 to 59 (-0.49 to 0.17), 

indicating that this region became more restricted in motion (Figure 2.2c).  Notably, for 

residues in a structured complex of size ~46 kDa, the NOE values are expected to be 

~0.8. Note that the errors of the measurements are significant for those peaks with NOEs 

close to zero.  

To further investigate the nature of the ProTα-Kelch interaction, we conducted 

NMR amide hydrogen exchange experiments to probe the changes in solvent 

accessibility of ProTα upon binding to Kelch (Fan, Lim et al. 2011).  Protection factor, 

which is defined as the ratio of the intrinsic to the measured exchange rate, was 

determined for backbone amides of ProTα (with isolated signals) in the absence and 

presence of Kelch (Figure 2.3). The low protection factor values of ProTα (0.3 – 5.5; 

average of 1.6) in the absence of Kelch indicate that the backbone amides were largely 

exposed to solvent, as expected for a highly unstructured protein like ProTα. 

Interestingly, no dramatic increases in protection factor values were observed upon 

addition of Kelch. Even though moderate increases in protection factor values for N38, 

E45, N50, and G60, were observed, these values were significantly smaller than those 

observed in folded proteins. For instance, residues located in the secondary structure 

elements of lysozyme have amide protection factors of 103-108 (Radford, Buck et al. 

1992).  
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Figure 2.3.  Protection factor (P) of backbone amides in ProTα in the 
absence (blue bars) and presence of Kelch (red *).  

The P value of each amino acid was calculated as the ratio of the intrinsic HX 

rate (kint) of random coil to the experimentally determined HX rate. The kint 

values were estimated using the SPHERE web server 

(http://www.fccc.edu/research/labs/roder/sphere/sphere.html) (Bai, Milne et al. 

1993; Connelly, Bai et al. 1993) 

http://www.fccc.edu/research/labs/roder/sphere/sphere.html
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2.3.3 Identifying crucial residues of ProTα for Kelch binding 

Permutation peptide arrays were used to examine the roles that individual residues 

in ProTα play in the interaction with the Kelch domain. A series of 20-mer peptides, 

spanning residues 38-57 of human ProTα, were synthesized on a functionalized cellulose 

membrane and then probed with the Kelch protein. Each of the wild-type residues 38-57 

was substituted with any of the 19 amino acids (Figure 2.4).  Cys residues were excluded 

in the permutations to avoid formation of covalent linkages to Kelch during probing, 

which would result in false positives. Based on the signal intensities observed in the 

peptide array experiments, mutations that significantly attenuated the binding of the 

ProTα peptides to Kelch were identified.  Many mutations in the 38NANEENGE45 region 

were found to be detrimental to Kelch binding, whereas replacing other residues outside 

this region had negligible effects on protein-peptide interactions.  In particular, mutations 

of residues E42, G44, and E45 resulted in loss of interaction with Kelch, indicating that 

these three amino acids are critical for the binding.  On the other hand, mutation of N43 

in the 42ENGE45 motif to a Thr or Ser enhanced the binding to Kelch.  

In the peptide array experiment, the E41P mutation also resulted in a higher 

affinity of binding between Kelch and the ProTα peptide. The side chain of E41 forms 

hydrogen bonds across the binding interface with Kelch (Padmanabhan, Nakamura et al. 

2008).  Replacing the glutamate in this position with a non-polar proline was expected to 

lead to loss of favorable interactions.  Therefore, based on the peptide array result, it was 

unclear why the E41 P mutant of ProTα displayed a higher affinity to Kelch.   
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Figure 2.4. Permutation peptide array experiments.  

20-mer peptides of ProTα (residues 38-57) were immobilized on a cellulose membrane and then probed with the Kelch 
domain of Keap1. The left column shows the wild-type sequence and positions of the amino acids that were permutated 
(mutations specified at the top of second column). The ‘+’ in the second column indicates wt 20-mer sequence and is used 
as a positive control.  Array was repeated twice. Intensity of each permutation was qualitatively measured and compared to 
wild-type, and results reported are based on what was observed consistently in the two arrays.  Columns, on the right side 
indicate amino acid residues that weaken, strengthen, or have no effect on the binding affinity between the 20-mers and 
Kelch. As shown in the array, mutations in the EENGE motif are poorly tolerated.  AA, amino acid; X, every amino acid 
except Cys and those mentioned as weaker or stronger; wt, wild-type. 
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2.3.4 Quantitative analysis of ProTα and Kelch interaction 

To obtain quantitative information for the ProTα-Kelch interaction, isothermal titration 

calorimetry (ITC) was used to measure the thermodynamic parameters of binding. 

Parameters, including the binding stoichiometry (n), dissociation constant (Kd), enthalpy 

change (ΔH), and entropy change (ΔS) of binding, were obtained for the wild-type and a 

series of mutational variants of full-length ProTα. The results are summarized in Table 

2.1. To evaluate the contributions of ProTα residues distant from the Kelch binding motif 

to the affinity of binding, we first compared the affinity of Kelch to the full-length ProTα 

and an 11-mer peptide spanning residues 38-48 (Padmanabhan, Nakamura et al. 2008).  

Figure 2.5a & b show the integrated isotherms exhibiting a single-phase curve, which 

were fitted best to a single-site binding model. The binding stoichiometry obtained for 

both the peptide and full-length protein are close to 1, indicating 1:1 binding between 

ProTα and Kelch protein. The result is also in agreement with the stoichiometry derived 

from sedimentation equilibrium experiments (Figure 2.6 and Table 2.3).  

The dissociation constant of the full-length ProTα-Kelch complex was 

determined to be 2.6 ± 0.4 µM by ITC. Interestingly, the 11-mer ProTα peptide bound 

slightly tighter (Kd = 1.79 ± 0.09 µM) to Kelch compared to full-length ProTα. Despite 

the similar Kd values, the ∆H and ∆S of these two binding processes were very different. 

The results (Table 2.1) indicate a larger entropy loss when the ProTα peptide bound to 

Kelch. The more negative ∆S value was compensated for by the more favorable ∆H, 

resulting in similar Kd values for both full-length ProTα and its peptide.  
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Table 2.1. Thermodynamic parameters for binding of the full-length ProTα, ProTα peptide, and ProTα mutants 
to Kelch domain of Keap1 at 25 °C (first set) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*n is the stoichiometry, Ka, and Kd are the association and dissociation constants, respectively. ∆G = -RTlnKa,  
where T is the temperature in Kelvin, R is the gas constant.  ∆H and ∆S are the enthalpy and entropy  
changes, respectively. Each experiment was repeated twice; the values obtained between the two runs were 
similar. Values listed in the tables are based on one run, and the data for the duplicate run is provided in the 
supplementary data (Table 2.2).  

  

 
WT Kelch 

 

 
n 

 
Ka 

(105 M-1) 

 
Kd  

(µM) 

 
∆H 

(kcal/mol) 

  
 T∆S 

(kcal/mol) 

∆G 
(kcal/mol) 

Full length 
ProTα 

1.06 ± 0.02 3.8 ± 0.6 2.6 ± 0.4 -14.8 ± 0.4 -7.19 -7.61 ± 0.09 

ProTα Peptide 
EENGE 

0.93 ± 0.00(4) 5.6 ± 0.3 1.79 ± 0.09 -22.6 ± 0.1 -14.76 -7.84 ± 0.03 

N36A 0.95 ± 0.00(5) 1.53 ± 0.05 6.5 ± 0.2 -10.1 ± 0.6 -3.03 -7.07 ± 0.02 
E41P 1.10 ± 0.00(2) 19.2 ± 0.8 0.52 ± 0.02 -14.17 ± 0.04 -5.60 -8.57 ± 0.02 
E47A 1.08 ± 0.16 0.069 ± 0.006 145 ± 13 -15.2 ± 0.3 -9.96 -5.24 ± 0.05 
E47R 0.93 ± 0.09 0.33 ±0.03 30 ± 3 -13.1 ± 0.2 -6.94 -6.16 ± 0.05 
D49A 1.04 ± 0.02 1.5 ± 0.2 6.7 ± 0.9 -12.6 ± 0.3 -5.53 -7.07 ± 0.08 
E51A 1.06 ± 0.01 1.14 ± 0.05 8.8 ± 0.4 -12.7 ± 0.2 -5.80 -6.90 ± 0.03 
E51G 1.04 ± 0.01 1.40 ± 0.06 7.1 ± 0.3 -15.23 ± 0.02 -8.21 -7.02 ± 0.02 
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Table 2.2. Thermodynamic parameters for binding of the ProTα peptide, full-length ProTα and its mutants to 
Kelch domain of Keap1 at 25 °C (second set) 

WT Kelch n Ka 
(105 M-1) 

Kd  
(µM) 

∆H 
(kcal/mol) 

  T∆S 
(kcal/mol) 

∆G 
(kcal/mol) 

Full length 
ProTα 

1.04 ± 0.02 3.3 ± 0.3 3.04 ± 0.2 -15.5 ± 0.4 -7.97 -7.53 ± 0.05 

ProTα Peptide 
EENGE 

1.13 ± 0.004 5.7 ± 0.3 1.74 ± 0.08 -23.1 ± 0.1 -15.24  -7.86 ± 0.03 

N36A 0.95 ± 0.04 1.6 ± 0.5 6.1 ± 1.8 -9.9 ± -0.5 -2.8 7.1 ± 0.2 
E41P 1.16 ± 0.002 20.3 ± 0.8 0.49 ± 0.02 -15.05 ± 0.05 -6.45  -8.60 ± 0.02 
E47A 1.10 ± 0.12 0.061 ± 0.002 164± 5 -15.9 ± 0.2 -10.74 -5.16  ± 0.02 
E47R 0.91 ± 0.04 0.303 ± 0.02 33 ± 2 -13.20 ± 0.08 -7.09 -6.11 ± 0.03 
D49A 1.06 ± 0.05 2.2 ± 0.8 4.5 ± 1.6 -12.0 ± 0.7 -4.7 -7.3  ± 0.2 
E51A 0.95 ± 0.01 1.18 ± 0.06 8.5 ± 0.4 -13.2 ± 0.2 -6.28 -6.92 ± 0.03 
E51G 1.05 ± 0.01 1.49 ± 0.05 6.7 ± 0.2 -15.63 ± 0.02 -8.57 -7.06 ± 0.02 

 

* n is the stoichiometry, Ka, and Kd are the association and dissociation constants, respectively. 
 ∆G =-RTlnKa=∆H-T∆S, where T is the temperature and R is the gas constant.∆H and ∆S are the 
 enthalpy and entropy changes, respectively.   
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Figure 2.5. ITC profiles of Keap1 with full length ProTα and its mutant variants. 
(a) Full length wild-type ProTα (b) EENGE ProTα 11-mer peptide (c) N36A (d) 
E41P (e) G44A (f) E45G (g) E47A (h) E47R (i) E51G 
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Figure 2.6. Sedimentation equilibrium analysis of Kelch and ProTα binding. 
Pure Kelch protein at a concentration of 10 µM was centrifuged with various 
concentrations of ProTα (to achieve a ratio of 1:0.5, 1:1, and 1:2 with the Kelch 
domain) at 4°C at 22 000 rpm. The upper panel represents the residual values for 
the fits.   
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Table 2.3. Molecular weight values of Kelch calculated from the sedimentation 
equilibrium experiment. 

Protein Concentration 
(µM) 

Calculated MW 
(Da) 

Observed MW  
(Da) 

Kelch 10 33915.85 34565 ± 338 

Kelch 
 

ProT α 

10 
 
5 

 
39952.76 

 
41551 ± 331 

Kelch 
 

ProT α 

10 
 

10 

 
45989.67 

 
44978 ± 396 

Kelch 
 

ProT α 

10 
 

20 

 
45989.67 

 
46793 ± 379 
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The charge complementarity between ProTα and Kelch is crucial for their 

interaction. The highly acidic Kelch-binding motif of ProTα binds to the positively 

charged bottom face of the β-propeller structure of Kelch, forming multiple salt bridges 

and hydrogen bonds across the interface (Padmanabhan, Nakamura et al. 2008). As 

aforementioned, Karapetian et al. demonstrated that the E45G/E51G double mutant of 

ProTα is not capable of binding to Kelch (Karapetian, Evstafieva et al. 2005). To further 

delineate the roles that E45 and E51 play in the interface, binding affinities of the E45G, 

E45A, E51A, and E51G full-length ProTα mutants to Kelch were measured. The results 

show that E45 is critical for the interaction with Kelch, as the mutation of this residue to 

Ala or Gly completely abolished the binding to Kelch (Table 2.1 and Figure 2.5f).  This 

observation is consistent with the peptide array result and is in agreement with the 

crystallographic data (Padmanabhan, Nakamura et al. 2008), which illustrate that the 

side-chain of E45 forms hydrogen bonds with multiple amino acids on Kelch. Mutations 

of E51 (Table 2.1 and Figure 2.5i), on the other hand, had little effect on the binding 

affinity to Kelch, indicating that this acidic residue plays only a minor role in mediating 

the interaction of these two proteins.  The peptide array result clarifies that E45, but not 

E51, is indispensable for the protein-protein interaction. 

The peptide array result also indicates that the mutation of E47, which is located 

close to the 42ENGE45 motif, to any other amino acid (except for R, D, and W) leads to a 

decrease in binding affinity to Kelch. Based on the charge complementarity at the ProTα 

and Kelch interaction sites, the result of the E47R mutation is unexpected. To validate 

this finding, binding affinities of E47R and E47A to Kelch were determined by ITC 

(Table 1 and Figure 2.5g & 2.5h).  Results show that while the Ala mutation caused a 55-
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fold decrease in the binding affinity to Kelch, the increase in Kd for E47R was less 

significant (Kd = 30 µM compared to 2.6 µM for the wild-type).  

E41 is another acidic residue that showed an interesting result in the peptide array 

experiment. The crystal structure of the mouse ProTα-Kelch peptide-protein complex 

reveals that the side-chain of E41 is involved in hydrogen bonding with Kelch 

(Padmanabhan, Nakamura et al. 2008).  However, mutation of this acidic amino acid to a 

non-polar proline residue increased the binding affinity to Kelch (Table 2.1 & Figure 

2.5d).  ITC measurements confirmed that the E41P mutant has a more favorable ∆Gbind 

compared to the wild-type ProTα (-8.57 kcal/mol vs. -7.61 kcal/mol; Table 2.1), mainly 

due to the less negative value of the ∆S component.  

Based upon the peptide array result, G44 is another residue that is essential for 

binding Kelch. To confirm this finding, the binding affinity of the G44A mutant to the 

Kelch domain was determined. As expected, no interaction of this mutant with Kelch was 

detected by ITC (Figure 2.5e).  Nevertheless, this specific mutation was very helpful in 

validating the backbone assignments around this amino acid.  The other two mutants that 

were constructed for the same purpose were N36A and D49A.  Both mutational variants 

bound to Kelch with moderately lower binding affinities (with Kd of 6.5 and 6.7 µM, 

respectively), compared to wild-type ProTα (Table 2.1 & Figure 2.5c).  Although the 

N36 was excluded from the crystallographic study of the peptide-protein complex of 

ProTα and Kelch, and the electron density of D49 was absent in the crystal structure 

solved (Padmanabhan, Nakamura et al. 2008), both the NMR chemical shift perturbations 
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and ITC results indicate that these two flanking residues also contribute moderately to the 

binding of ProTα and Kelch. 

 Discussion 2.4

To better understand the molecular mechanism underlying the oxidative stress 

response, the intrinsically disordered ProTα interaction with the Kelch domain of 

Keap1was extensively studied.  Many examples of IDPs are provided in literatures that 

undergo disorder-to-order transition upon binding to their targets through the coupled 

binding and folding process (Sugase, Dyson et al. 2007; Wright and Dyson 2009). 

Remarkably, our studies of the ProTα-Kelch complex have revealed that ProTα retains 

its disordered nature, even in the bound state.  This finding is supported by the 

observations that the resonance signals of ProTα in the 1H-15N HSQC experiments were 

clustered in a narrow range from 7.9 ppm to 8.6 ppm, both in the free and bound states 

(Figure 2.1a). Significant chemical shift changes were observed only for amino acids 35-

50. Most of these residues have also been identified as crucial in mediating the 

interaction between the mouse homologs of ProTα and Kelch (Karapetian, Evstafieva et 

al. 2005; Padmanabhan, Nakamura et al. 2008).  The crystal structure of mouse Kelch in 

complex with a ProTα peptide spanning amino acids 39-54 (corresponding to residues 

38-53 in human) reveals that this particular segment of ProTα forms a β-turn 

conformation upon binding to the bottom side of the β-propeller structure of Kelch 

(Padmanabhan, Nakamura et al. 2008). The binding interface is found to be highly 

complementary in charge, with the acidic amino acids in ProTα playing crucial roles in 

interacting with multiple Arg residues located on the binding surface of Kelch 
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(Padmanabhan, Nakamura et al. 2008). In particular, the EENGE motif in ProTα 

(residues 41-45 in human ProTα) was shown to be essential for the Kelch binding 

(Padmanabhan, Nakamura et al. 2008).  Our NMR titration results are in agreement with 

these previous findings, and importantly, we show that several other residues flanking the 

EENGE motif also display attenuation in resonance signals, indicating they may also be 

involved in Kelch binding.  

Compared to the changes in the 1H-15N HSQC of 15N-labeled Neh2 upon binding 

to Kelch, the spectral changes observed for free and bound ProTα were less dramatic. 

Tong et al. have demonstrated that sharp resonance signals of disordered Neh2 were 

severely broadened out upon addition of Kelch (Tong, Katoh et al. 2006).  In the presence 

of a two molar ratio of Kelch, most of the resonance signals of Neh2 disappeared, likely 

due to the significant increase in molecular tumbling time through the formation of a 

large molecular weight complex or as the result of intermediate conformational exchange 

between the free and bound states. In contrast, the sharpness of resonance signals 

prevailed throughout the NMR titration experiments for the majority of residues in 

ProTα. Moreover, spin relaxation experiments showed that addition of Kelch led to 

insignificant changes in the R1 values of ProTα (0.85 – 3.06 s-1, average = 2.47 s-1). 

These observed R1 values are systematically larger than expected for a folded protein 

with similar molecular weight of ProTα (van Ingen, Baltussen et al. 2006; Kim, Fuzery et 

al. 2009).  For instance, the D39A mutant of the128-residue apo-IscU has an averaged R1 

value of 1.64 s-1 measured under the same magnetic field strength and temperature (i.e., 

600 MHz; 298 K), while the averaged R1 value of the 105-residue PAH2B domain of 

mSin3B is 1.45 s-1 (at 293 K) (van Ingen, Baltussen et al. 2006; Kim, Fuzery et al. 2009). 
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The higher R1 values for ProTα are the result of a large amplitude of internal motion on 

the ps-ns timescale in the protein. Meanwhile, small, yet significant, increases in R2 

values were observed for most of the residues (Figure 2.2b) upon addition of Kelch, 

particularly in the region 30-53. The increases in R2 suggest that this particular region 

became more restricted in motion upon binding to Kelch (Kay 1998). However, the 

observed R2 values are still significantly smaller than expected for a 46 kDa (the sum of 

molecular weights of ProTα and Kelch) complex (Walma, Aelen et al. 2004).  Further, 

the NOE values of ProTα remained predominantly negative upon binding to Kelch, 

indicative of a flexible protein lacking secondary structure (Figure 2.2c). NOEs of 

residues in the region directly involved in forming the binding interface with Kelch 

became positive (increases up to 0.17), but these positive values were still significantly 

lower than expected for a 46-kDa complex with well-defined structure. Moreover, the 

small protection factors determined in the amide exchange experiments are in agreement 

with the low R2 and small NOE values observed, suggesting that ProTα forms a dynamic 

complex with Kelch.  

Peptide array and ITC experiments were conducted to elucidate further the roles 

individual amino acids in the binding region of ProTα play in the ‘fuzzy’ interaction with 

the Kelch domain. The results are compared to the Neh2-Kelch binding. The binding of 

Nrf2 to Keap1 has been described as a “hinge and latch” mechanism (Tong, Kobayashi et 

al. 2006).  The disordered Neh2 domain binds to two Kelch domains of a Keap1 dimer 

via the N-terminal DLG and the C-terminal ETGE motifs, respectively. It has been 

proposed that the complex formation facilitates the ubiquitination of a Lys residue 

located between the DLG and ETGE motifs in sequence, leading to the degradation of 
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Nrf2 (Tong, Katoh et al. 2006; Tong, Kobayashi et al. 2006). Previous studies have 

demonstrated that the ETGE motif of Nrf2 has a higher binding affinity (Ka, ETGE = 12.4 x 

107 M-1) compared to the DLG (Ka, DLG = 2 x 106 M-1) motif for the Kelch domain (Tong, 

Katoh et al. 2006; Tong, Kobayashi et al. 2006). Our ITC results revealed that the 

binding affinity of ProTα (Ka = (3.8 ± 0.6) x 105 M-1) was also significantly weaker than 

that of the Neh2 ETGE motif. Tong et al. reported that the ∆H and T∆S of binding 

between Kelch and mouse Neh2 [∆1-33] with the low affinity DLG motif deleted were -

21.2 and -10.2 kcal/mol, respectively (Tong, Katoh et al. 2006). Large and negative 

values of ∆S are frequently observed for binding involving IDPs mainly due to the 

significant reduction in the conformational entropy (Meszaros, Tompa et al. 2007). 

Interestingly, compared to the thermodynamic parameters obtained in this study, the 

entropic penalty was lower for the dynamic ProTα-Kelch complex formation (Table 2.1). 

On the other hand, the interaction between ProTα and Kelch was weaker based on the 

values of the enthalpy changes. 

Our peptide array result showed evidently that the 42ENGE45 motif is critical for 

binding, since mutations in this region were disruptive. However, exceptions were seen. 

Mutation of N43 to a Thr or Ser enhanced the binding to Kelch. Intriguingly, with the 

ETGE motif, the Neh2 domain of Nrf2 has been shown to have a greater affinity for the 

Kelch domain (Tong, Katoh et al. 2006). Therefore, conversion of the ENGE to an ETGE 

motif in ProTα resulting in a higher binding affinity is not unexpected.  Based on the 

crystal structures of ProTα-Kelch and Neh2-Kelch peptide-protein complexes, both the 

Asn in ProTα and the Thr in Neh2 are not directly involved in the interaction with Kelch. 
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Instead, the side-chains of each of these two amino acids play important roles in 

stabilizing the β-turn conformation of the binding motif by forming hydrogen bonds with 

the peptide backbone (Tong, Katoh et al. 2006; Padmanabhan, Nakamura et al. 2008).  

This finding explains why the N43S mutant of ProTα also showed Kelch binding affinity 

that is similar to N43T, as the hydroxyl group of Ser may still participate in the intra-

molecular hydrogen bonding (Tong, Katoh et al. 2006; Padmanabhan, Nakamura et al. 

2008).  Notably, hydrogen bonds between the N/N and D/T pairs in the 40NEEN43 and 

77DEET80 motifs of ProTα and Neh2, respectively, also contribute to stabilization of the 

β-turn conformation of these proteins in their free states (Cino, Choy et al. 2012; Cino, 

Wong-ekkabut et al. 2011). 

Meanwhile, the binding affinity between ProTα and Kelch increased by 5-fold 

when E41, the residue N-terminal to the ENGE motif, of ProTα was mutated to a Pro 

residue (Ka = 19.2 ± 0.8 x 105 M-1). One possible explanation for the higher affinity of the 

ProTα E41P mutant is that the conformational entropy of the free state is reduced, 

lowering the amount of entropic penalty upon binding. The 40NEENGE45 region of 

ProTα adopts β-turn conformations when bound to the Kelch domain (Komatsu, 

Kurokawa et al. 2010; Padmanabhan, Nakamura et al. 2008).  Pro residues are commonly 

found in position i+1 of β-turns in proteins (Hutchinson and Thornton 1994). The cyclic 

side chain of Pro leads to drastic restriction in the sampling of backbone dihedral angles. 

MD simulation of the E41P peptide (in its free state) showed that it has a high tendency 

to form the bound-state-like β-turn structure (Khan, 2013). Therefore, it seems plausible 

that the incorporation of a Pro at this position leads to a less severe conformational 



87 

 

 

entropy loss upon binding, resulting in a higher binding affinity. Indeed, lowered free 

state conformational entropy is thought to play an important role in the high affinity of 

the Neh2-Kelch domain interaction (Cino, Wong-ekkabut et al 2011. ; Tong, Kobayashi 

et al. 2006).  Another possible explanation is that, since E41 is involved in forming salt 

bridges and hydrogen bonds across the binding interface with Kelch, mutating this 

residue to a non-polar Pro would result in loss of these interactions. The change would 

render this region of the protein more flexible, thus lowering the reduction in 

conformational entropy of the system upon binding.  

Intriguingly, p62, a protein involved in regulation of autophagy, was recently 

found to bind to the Kelch domain of Keap1(Lau, Wang et al. 2010). Crystal structures 

show that ProTα, p62, and Neh2 all interact with the same site on the Kelch domain 

(Lau, Wang et al. 2010; Tong, Katoh et al. 2006; Padmanabhan, Nakamura et al. 2008). 

Even though the Kelch-binding motif in p62, 350PSTGE354, differs from the 41EENGE45 

and 78EETGE82 motifs of ProTα and Neh2, respectively, the Gly and Glu residues at the 

4th and 5th positions are conserved. This observation is consistent with our results that 

these two residues are crucial for the interaction with Kelch (Lau, Wang et al.2010; Tong, 

Katoh et al. 2006; Padmanabhan, Nakamura et al. 2008). Interestingly, the corresponding 

E41 in ProTα is replaced with a Pro residue in p62 (Lau, Wang et al. 2010). ITC 

experiments performed by Komatsu et al. show that the binding affinity of p62 for Kelch 

is Ka = 5.4 ± 0.3 x 105 M-1, (Lau, Wang et al. 2010) which is slightly higher than what 

was determined for ProTα and Kelch (Ka = 3.8 ± 0.6 x 105 M-1).  
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E47 is another residue in ProTα that may help to stabilize the bound-state β-

hairpin structure. Our ITC results (Table 2.1) revealed that mutation of this residue to an 

Ala or Arg decreased the binding affinity to Kelch by 55 fold, and ~10 fold, respectively.  

Since the side-chain of the corresponding Glu was invisible in the crystal structure of 

mouse ProTα-Kelch peptide-protein complex (Padmanabhan, Nakamura et al. 2008), it is 

unclear whether this residue was involved in any intra- or intermolecular interactions. We 

speculate that the side-chain of E47 may be involved in intra-molecular hydrogen 

bonding with N38, and the interaction can still be retained in the E47R mutant. The 

transient interaction between these two residues may also help to stabilize the bound-

state-like β-hairpin structure in the free state of ProTα. 

The NMR and ITC experiments show that even though peptides can be used to 

mimic specific regions of a protein when studying binding, the target recognition 

mechanisms of peptides can differ from that of the full-length protein. As seen in Table 1, 

although the ProTα peptide and protein had similar binding affinities to Kelch, their ∆H 

and ∆S values differed. Based on the observed chemical shift changes of ProTα upon 

target binding and the spin relaxation parameters determined in both the free and bound-

states, only residues around the binding motif were involved in the interaction with Kelch 

while the rest of the protein remained highly disordered. One possible explanation for the 

significant differences in the ∆H and ∆S values is that a greater loss in the conformational 

entropy of the peptide occurred upon binding to Kelch.  This idea is in agreement with 

our earlier computational study of the free-state structure of full-length ProTα and 

peptide using MD simulations(Cino, Wong-ekkabut et al.2011).  In that work, we had 

demonstrated that the full-length ProTα has a higher propensity than the peptide in 
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forming the bound-state-like β-hairpin structure, which can result in a less entropic 

penalty upon coupled binding and folding for the full-length protein. On the other hand, 

the enthalpy change of the ProTα peptide is more negative compared to the full-length 

protein. Since the measured ∆H is the sum of the enthalpy changes due to the binding and 

folding processes, the larger ∆H value of the peptide is likely due to the folding from the 

less bound-state-like conformations. 

Despite the highly dynamic nature of disordered proteins, it has been generally 

accepted that they will adopt a well-defined structure once bound to the target, at least in 

the regions that are directly involved in the interaction.  Several recent examples, 

however, challenge this view and suggest that disordered proteins can still be flexible 

even in the bound states (Fuxreiter 2012; Fuxreiter and Tompa 2008 ; Zhuo, Ilangovan et 

al.2010). For instance, the disordered cyclin-dependent kinase inhibitor Sic1 does not 

undergo a disorder-to-order transition upon binding to Cdc4 (Mittag, Orlicky et al. 2008). 

Instead, NMR studies showed that the multiple and dispersed phosphorylated motifs on 

Sic1 interact with a single binding site on Cdc4 in a dynamic equilibrium manner. This 

unusual binding mechanism has been proposed to lead to the ultrasensitivity to 

phosphorylation, which is crucial for the function of Sic1 in cell cycle regulation (Mittag, 

Orlicky et al. 2008).   Another example of a fuzzy complex is the dynamic interaction 

between clathrin assembly protein AP180 and clathrin (Zhuo, Ilangovan et al.2010). 

NMR studies demonstrated that a large fragment of the clathrin binding domain (CBD) of 

AP180 is disordered.  Interestingly, this protein fragment remains unstructured even in 

the bound form with clathrin.  This dynamic binding mode was speculated to be 

important for the assembly of the clathrin lattice (Zhuo, Ilangovan et al.2010).  
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In summary, the results presented in this chapter show that even though ProTα 

binds to the Kelch domain of Keap1 with low affinity, the interaction is highly specific. 

Only a small region of ProTα is involved in the interaction with the Kelch domain, and 

the protein does not undergo large conformational change upon binding. These properties 

may allow ProTα to also interact with other targets simultaneously. In addition, the fuzzy 

complex formed between the two proteins is probably what allows ProTα to quickly 

dissociate from Keap1 after the latter is translocated into the nucleus (Niture and Jaiswal 

2009).  
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Chapter 3  

 Structural characterization of the full-length Neh2 domain 3
of human Nrf2 and its interaction with the Kelch domain of 

human Keap1 
. 

 Introduction 3.1

The Nrf2 protein belongs to the Cap ‘n’ Collar (CNC) group of transcription 

factors that contain a conserved basic -leucine zipper region (Moi, Chan et al. 1994).  The 

protein contains six domains, and the Neh2 domain at the N-terminal region of Nrf2 is 

responsible for the regulation of the antioxidant pathway (Itoh, Wakabayashi et al. 1999).   

Mouse and human Neh2 domains are typically comprised of 98 residues and the two 

homologs have about 94 % sequence homology (Figure 3.1).   The structure of the human 

and mouse Neh2 domain was simulated using secondary structure predictor PrDOS 

software (Ishida and Kinoshita 2007).  Figure 3.2 shows that there is no difference in the 

disordered nature of the human and mouse Neh2 domain.  Because of the high similarity 

in sequence and the similar structure prediction, differences in structure or function 

between the human and mouse Neh2 homologs are highly unlikely.   

Most Nrf2/Keap1 binding studies have been performed with peptides encoding 

the ETGE and DLG motifs (Lo, Li et al. 2006; Tong, Katoh et al. 2006; Tong, 

Padmanabhan et al. 2007).   It is costly to use synthetic peptides mimicking regions of 

interest.  Moreover, peptides do not always allow proper elucidation of the mechanism of 

interaction with targets as noted for ProTα/Keap1 binding in full-length and peptide  
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Figure 3.1. Sequence alignment of the mouse and human Neh2 domains of Nrf2.  

The Neh2 domain of the human and mouse are composed of 98 residues. The amino 

acid sequence is well conserved between the human and mouse with differences in 

six amino acids (highlighted in red).   
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Figure 3.2. Disorder prediction for the human and mouse Neh2.   

The overlay of the human Neh2 domain (blue) with the mouse Neh2 domain (red) 

shows very minor differences in secondary structure prediction.  A score below 0.5 is 

indicative of structured regions, and above 0.5 is indicative of disordered regions. 

Disorder was predicted by PrDOS (Ishida and Kinoshita 2007) 
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(Khan, Cino et al. 2013).  Tong et al. have reported a purification protocol for the Neh2 

domain of mouse Nrf2 in which 4.0 mg of recombinant Neh2 was obtained.  This method 

was used to extract the recombinant full-length Neh2 domain for binding studies.  

However, the low yield and purity of the sample using the method by Tong et al. were 

not suitable for the human Nrf2.  In this work, an alternative high yield protocol, free 

from impurities, is established for the recombinant Neh2 domain, Neh2ΔETGE and 

Neh2ΔDLG of human Nrf2.  The method described here is not only time and cost 

effective, but importantly, allowed investigation of the full-length Neh2 interaction with 

Kelch in presence of cancer causing mutations (discussed in Chapter 4).  

Structural characterization of the full length Neh2 demonstrated that it is a 

disordered protein with high secondary structure content, thereby, limiting its flexibility 

unlike ProTα (Tong, Katoh et al. 2006; Yi, Boys et al. 2007; Khan, Cino et al. 2013).   

Additionally, hydrodynamic radius of the Neh2 domain indicates a more compact 

structure than the disordered ProTα (Yi, Boys et al. 2007).  The Neh2ΔDLG and 

Neh2ΔETGE NMR HSQC in the free and Kelch bound state implicated presence of long 

range interactions between the N and C terminal regions of the Neh2 domain.   

 Materials and Methods  3.2

3.2.1 Construction of Neh2, Neh2 ΔETGE and Neh2 ΔDLG in E. coli Expression 

Vectors  

The pENTR ™221 vector containing the gene for the full length human Nrf2 

(NM_006164) was purchased from Invitrogen.  Using Gateway cloning, the Neh2 

domain of the human Nrf2 was transferred to a pDEST17 vector containing a his-tag and 
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a TEV cleavage sequence.  The Quickchange Multi site directed mutagenesis kit 

(Strategene) was used to delete the 79ETGE82 region in full length Neh2 domain thus 

creating the Neh2ΔETGE construct using the Neh2 in pDEST17 vector as a template.  

The Neh2ΔDLG, in which the first thirty-three residues of the Neh2 domain are deleted, 

was constructed using the full length Nrf2 in pENTR ™221 as a template.  Using 

Gateway cloning methods, the Neh2ΔDLG construct was transferred to a pDEST17 

vector containing a his-tag and a TEV cleavage sequence.  The Neh2ΔETGE and 

Neh2ΔDLG constructs were first prepared by Tong et al to study the DLG and ETGE 

interaction with the Kelch domain of mouse Keap1 (Tong, Katoh et al. 2006).  

3.2.2 Expression of the Neh2, Neh2ΔETGE and Neh2ΔDLG protein 

Neh2, Neh2ΔETGE and Neh2ΔDLG were over-expressed in the Rosetta 2(DE3) 

pLysS E. coli strain in M9 minimal medium.  The cultures were grown at 37 ºC in the 

presence of Carbenicillin (50 µg/mL) to a density of (A 600) 0.8 AU and then induced 

with 0.5 mM IPTG.   The cultures were allowed to grow over night at 22 ºC in a shaking 

incubator at 250 rpm.  Bacterial cells were harvested by centrifugation at 6,000 x g for 15 

minutes.   The bacterial pellets were resuspended in 40 mL of 1 x Phosphate buffered 

saline (PBS) and centrifuged at 6,000 x g for 15 minutes at 4 ºC in 50 mL centrifuge 

tubes.  Bacterial wet pellets weighing between 2.0 to 2.5 g were routinely obtained.  For 

NMR experiments, the media was prepared with 1 g of 15NH4Cl as the nitrogen source 

for uniformly 15N-labeled protein samples.   For the Neh2 protein backbone assignment, 

the media was prepared with 1 g of 15NH4Cl and 3 g of   13C6-glucose as the sole nitrogen 

and carbon sources, respectively. Analysis of bacterial lysate on SDS-PAGE showed that 
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Neh2, Neh2ΔETGE and Neh2ΔDLG are present in both the soluble and insoluble 

fractions.  

3.2.3 Purification of the Soluble Neh2, Neh2ΔETGE and Neh2ΔDLG protein  

The bacterial pellet of Neh2 was resuspended in lysis buffer (20 mM Tris-HCl, 1 

mM EDTA, pH 8.0).   The resuspension was incubated at 37 ºC for 15 minutes and then 

sonicated 3 x 10 second bursts on ice.  Cell debris was removed by centrifugation at 40, 

000 x g for 30 min at 4 ºC.  The supernatant was applied to Ni-Sepharose 6FF column 

equilibrated with binding buffer (20 mM Tris-HCl, 1 mM EDTA, 10 mM imidazole, 500 

mM NaCl, 10% glycerol, pH 8.0) and was incubated for 2 hours at room temperature.  

The Neh2 protein was eluted in 5 x 5 mL fractions with elution buffer (20 mM Tris-HCl, 

300 mM NaCl, 750 mM imidazole, 10% glycerol, pH 8.0).  Protein fractions were 

dialyzed over night at 4 ºC against 2 L of dialysis buffer (20 mM Tris-HCl, 1 mM EDTA, 

100 mM NaCl, 10% glycerol, pH 8.0 and 1 mM DTT).   After a second dialysis step, the 

protein sample was centrifuged at 40,000 x g for 15 min to remove aggregates.  Protein 

concentration was determined with the Bio-Rad assay (Bradford 1976).  The his-tag of 

Neh2 was removed with TEV protease (1 mg per 15 mg of protein).  The TEV cleaved 

protein sample was applied to equilibrated Ni-sepharose column and incubated for 30 

min at room temperature.  The unbound protein fraction containing the Neh2 domain was 

collected and its concentration was determined by Bio-Rad protein assay (Bradford 

1976).   Protein samples were analyzed on SDS-PAGE for purity.  For experimental 

work, the Neh2 was dialyzed in 50 mM sodium phosphate, 100 mM NaCl, 1 mM DTT, 

5% glycerol, pH 7.0.   The same purification procedure was applied to the Neh2ΔETGE 

and Neh2ΔDLG pellets to obtain soluble protein.   
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3.2.4 Purification of Neh2 and Neh2 ΔETGE protein from Inclusion bodies 

An insoluble bacterial pellet for the full-length recombinant Neh2 domain was 

resuspended in lysis buffer (50 mM Tris-HCl, 1.0% Triton X-100, 100 mM NaCl, 1 mM 

EDTA, 5 mM DTT, pH 8.0).   An equal volume of wash buffer (50 mM Tris-HCl, 0.5% 

Triton X-100, 100 mM NaCl, 1 mM DTT, 1 mM EDTA, pH 8.0) was added to 

homogenize the inclusion body suspension and then centrifuged at 25 000 x g for 30 min 

at 4 ºC.  The pellet was resuspended in solubilization buffer (25 mM Tris-HCl, 300 mM 

NaCl, 1mM EDTA, 8 M Urea, pH 7.8) and then centrifuged at 16 000 x g for 30 min at 

20 ºC. The supernatant was applied to Ni-Sepharose beads that were equilibrated with 

solubilization buffer (no EDTA added) and incubated at room temperature for 2 hours.   

The Neh2 protein was eluted in 5 x 5 mL volume fractions with elution buffer (25 mM 

Tris-HCl, 8 M Urea, 300 mM NaCl, 1 M imidazole, pH 7.8).  The eluted fractions were 

dialyzed in buffer I (25 mM Tris-HCl, 8 M Urea, pH 7.8) over night at room temperature.    

The next day, protein was dialyzed out of urea into buffer II (25 mM Tris-HCl pH 7.8, 

10% glycerol) at 4 ºC.  The his-tag of the Neh2 was removed with TEV protease.  The 

TEV cleaved protein sample was applied to equilibrated Ni-Sepharose beads and 

incubated for 30 min at room temperature.  Unbound protein was collected, protein 

concentration was determined by Bio-Rad protein assay,  and protein samples were 

analyzed on SDS-PAGE (Bradford 1976).   The same purification procedure was applied 

to the Neh2ΔETGE insoluble pellet.    
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3.2.5 Purification of Neh2, Neh2ΔETGE, and Neh2ΔDLG protein with 8 M Urea  

A 2.6 g wet pellet from 1 L of bacterial growth was resuspended in solubilization 

buffer (25 mM Tris-HCl, 8 M Urea, 5 mM imidazole, 300 mM NaCl, and 1 mM EDTA, 

pH 7.5).   The cell lysate was then sonicated for 3 x 10 seconds and centrifuged at 40 000 

x g for 30 min at 20 ºC.  The supernatant was incubated with Ni-Sepharose beads 

equilibrated with solubilization buffer (without EDTA) at room temperature for 2 hours.  

Protein was eluted in 6 x 5 mL volume fractions with Elution buffer (25 mM Tris-HCl, 8 

M Urea, 750 mM imidazole, 300 mM NaCl, pH 7.5).  The eluted protein fractions were 

dialyzed in buffer I (25 mM Tris-HCl, 8 M Urea, 1 mM EDTA, 100 mM NaCl) overnight 

at room temperature.  The following day, the protein was refolded by exchanging the 

protein into dialysis buffer II (25 mM Tris-HCl, 100 mM NaCl, pH 7.5).  Next, his-tag 

was removed from Neh2 by adding 1 mg of his-tagged TEV protease per 15 mg of 

protein and incubated over night at room temperature.   Sample was centrifuged at 40 000 

x g for 30 min at 4 ºC to remove aggregates and precipitate.  Protein was unfolded again 

by adjusting the final urea concentration of the protein sample to 8 M.  The TEV cleaved 

protein sample was then incubated with Ni-Sepharose beads.  Unbound protein was 

collected and dialyzed against buffer I.  The protein was refolded using dialysis buffer II 

at 4 ºC.   For experimental work, the Neh2 sample was dialyzed in 50 mM sodium 

phosphate buffer, 100 mM NaCl, 1 mM DTT, pH 7.0.  The protein concentrations were 

confirmed by Bio-Rad assay (Bradford 1976).  Protein samples were examined on SDS-

PAGE for purity, and samples were sent for Mass spectrometry analysis to ensure the 

protein band corresponded to the correct molecular weight.   
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3.2.6 Analytical Ultracentrifugation Experiments 

Sedimentation velocity and equilibrium experiments were conducted on a 

Beckman Optima XL-A Analytical Ultracentrifuge (Bimolecular Interactions and 

Conformations Facility,University of Western Ontario).  For sedimentation equilibrium, 

the Neh2 sample was run in 6-channel cells with epon-charcoal centerpieces, at a rotor 

speed of 35,000 rpm at 4 °C in an An60Ti rotor.  Absorbance was measured at 280 nm, 

using 0.002-cm radial steps and averaging over 10 readings.  Samples were allowed to 

equilibrate for 16 hours at the desired speed.  Apparent molecular weights of the Neh2 

domain of Nrf2 was calculated using ideal single species model in GraphPad Prism 

program (Briere and Dunn 2006).  For sedimentation velocity, two-channel cell with 

Epon-charcoal centerpieces were used for Neh2 in an An60Ti rotor.  Absorbance was 

monitored at 280 nm at rotor speed of 60,000 rpm (4 °C).  Scans were collected at 10-min 

intervals in 0.003-cm radial steps, averaged over three replicates. Data was analyzed with 

the SEDFIT software (Brown and Schuck 2006). The partial specific volume of the 

protein was calculated from the amino acid composition, using the freeware program 

SEDNTERP (Tom Laue, University of New Hampshire). 

3.2.7 Circular Dichroism  

Secondary structure contents of Neh2, Neh2ΔETGE, Neh2ΔDLG were examined 

by Circular Dichroism (CD) spectropolarimetry using a Jasco J-810 instrument 

(Biomolecular Interactions and Conformations Facility, University of Western Ontario).   

For each protein, ten scans from 260 – 190 nm (100 nm/min at 0.5 increments) were 

recorded using a 1 mm path-length cell at 20 ˚C, averaged and the buffer background was 
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subtracted.  Protein concentrations were quantified by Bio-Rad protein quantification 

assay (Bradford 1976).  The CDSSTR method along with reference set SP175 available 

on the Dichroweb was used to deconvolute the CD data (Lees, Miles et al. 2006).  Protein 

denaturation was followed in the CD at 222 nm.  The temperature was increased at a rate 

of 1 °C/min.  

3.2.8 NMR Spectroscopy  

All NMR experiments were acquired on a Varian INOVA 600 MHz spectrometer 

equipped with a pulsed field gradient triple resonance probe at 25 °C.  All samples 

contained 10% (v/v) D2O (Cambridge Isotope Laboratories), and 1 mM DSS (Sigma) as 

an internal standard for chemical shift referencing.  Protein samples were in buffer 

containing 50 mM sodium phosphate, 100 mM NaCl, 1 mM DTT, pH 7.0.  All data were 

processed with NMR Pipe and NMRDraw (Delaglio, Grzesiek et al. 1995).  Spectra were 

analyzed with NMRView (Johnson 2004).   

The 1H-15N HSQC spectra of the Neh2, Neh2ΔETGE and Neh2ΔDLG were 

collected with protein concentrations ranging from 100 µM to 200 µM.  A 0.4 mM 

uniformly 15N, 13C-labeled sample was used to acquire CBCA(CO)NH and HNCACB for 

the backbone resonance assignment of the full-length Neh2 domain of human Nrf2 

(Sattler 1999).   The Cara software was used for the backbone assignment of the human 

Neh2 domain (Keller 2004). Secondary structure propensity (SSP) scores were calculated 

using the 13Cα/β chemical shifts extracted from the HNCACB experiment (Marsh, Singh 

et al. 2006).  For the NMR titration experiments, a 100 µM 15N-labeled samples with and 

without 200 µM unlabeled Kelch were prepared for Neh2, Neh2ΔETGE and Neh2ΔDLG.  
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1H-15N HSQC NMR experiments were recorded to monitor spectral changes induced 

upon the addition of Kelch protein.    

Backbone 15N longitudinal relaxation rates (R1), relaxation rates in rotating frame 

(R1ρ), and steady-state 1H-15N NOE relaxation parameters of 400 µM 15N-labeled Neh2 

and Neh2ΔDLG were measured. Spectra were collected as 128 x 1072 complex points in 

the t1 and t2 dimensions with spectral widths of 8384.9 and 1458.4 Hz for 1H and 15N 

dimensions, respectively.  The R1, R1ρ relaxation rates and the steady-state 1H-15N NOE 

were calculated using the method described previously (Yi, Boys et al. 2007).   

 Results 3.3

3.3.1 Purification of the Neh2 domain 

The initial method used for the purification of the Neh2 domain involved isolating 

the protein from the soluble fraction of the cell lysate (Tong, Yamamoto et al. 2008).   In 

this method, a large amount of the protein is lost in the unbound and wash fractions 

(Figure 3.3a, lane 4 &5).   The loss of protein in the unbound fraction and wash step 

suggested that the His-tag is not accessible to interact with the Ni-beads.  In this 

purification procedure, more than 50% of the protein is lost in the dialysis, and the His-

tag cleavage step combined.  Additionally, when concentrating the protein to the desired 

volume, protein precipitation was observed leading to further loss in the overall protein 

yield.   

A 10 g wet bacterial pellet obtained from four liters of M9 minimal medium 

prepared with 15N-NH4Cl as the sole ammonium source was used to obtain a 100 µM 
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15N-labeled Neh2 sample to acquire an NMR HSQC of the Neh2 domain.  This 

purification yielded ~3 mg of Neh2 and included contaminants (Lanes 7 and 8 in Figure 

3.3a).    A 1H-15N HSQC of the Neh2 domain obtained from this impure sample is shown 

in Figure 3.4.   The narrow dispersion of the amide proton chemical shifts confirms that 

the human Neh2 domain is also disordered like the mouse Neh2 domain of Nrf2 (Tong, 

Katoh et al. 2006).  Although an NMR HSQC of the Neh2 domain was acquired, 

nonetheless, the Neh2 stability was compromised with this purification method, and due 

to presence of impurities, target binding studies could not be performed.  Alternatively, 

the recombinant Neh2 domain was purified from inclusion bodies in an attempt to 

increase its purity and the final yield.  The purification from the inclusion bodies resulted 

in an even lower yield of 0.6 mg, however, the sample appeared free of contaminants 

(Figure 3.3b, lane 8). 

An alternative strategy was adopted to obtain a pure sample of the recombinant 

Neh2 domain of human Nrf2 for target binding studies.  A 2.5 g pellet obtained from 1 L 

of M9 minimal media growth was suspended in 8M urea and purified under denaturing 

conditions.   The sample was refolded and then subjected to TEV protease to cleave off 

the his-tag.  The Neh2 and TEV mixture was denatured in 8M urea a second time and 

incubated wtih Ni-sepharose beads  to remove the TEV protease as well as any uncleaved 

Neh2.  This method not only resulted in pure Neh2 sample (as depicted in lane 3 of 

Figure 3.5b), but also the overall yield was improved from 0.8 mg to 35 mg, an over 40 

fold increase.   

Overlay of the NMR HSQC spectra of the refolded Neh2 and the soluble Neh2 

(Figure 3.6) confirms that the protein sample obtained by the urea denaturation technique 
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does not result in misfolding of this domain.  The Neh2 sample of 15N-labeled Neh2 

acquired from the urea denaturation process was sent for Mass spectrometry to assess its 

molecular weight.  Figure 3.7a shows a mass spectrum of one specie with a molecular 

weight of 11 810 Da.  The peak at 11 810 Da is in good agreement with the calculated 

molecular weight for the full-length Neh2 domain (MWcal = 11 812Da).   

Another useful analytical method for determining protein molecular weight as 

well as protein oligomeric state in solution is sedimentation equilibrium.  This method 

measures the equilibrium concentration distribution in the presence of a centrifugal field 

(Lewis 1994).  Equilibrium is reached when the effect of centrifugal force on the samples 

is balanced by diffusion (Lewis 1994).  The distribution is dependent on the molecular 

weight of the macromolecule and not its shape (Lewis 1994).  The molecular weight and 

oligomer state of the Neh2 domain were assessed by carrying out sedimentation 

equilibrium experiment at 35 000 rpm.  The results revealed that the Neh2 domain exists 

in the monomeric form in solution corresponding to an average molecular weight of 11 

700 Da (Figure 3.7b).  This observed molecular weight is on par with the expected 

molecular weight of 11 812 Da.  

The Neh2ΔETGE and Neh2ΔDLG constructs of the Neh2 domain were purified 

by denaturing the cell lysate from 1 L of bacterial culture in 8 M urea.   Table 3.1 

presents the Neh2, Neh2ΔETGE and Neh2ΔDLG yields obtained by the different 

purification procedures.  The solubilization of the cell lysate in 8 M urea significantly 

increased the final yield for all three constructs and the resulting protein was of high 

purity.   
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(a) 

(b) 

Figure 3.3. SDS-PAGE (12%) analysis of the overexpression and purification 
of the human Neh2 domain. Purification of Neh2 (a) from soluble fraction. 
Lanes 1 and 9 contain the protein molecular weight markers, with molecular 
weights labeled on the left of the gel. Lane 2 is the post-induction sample. Lanes 
3 and 4 contain soluble and unbound fractions, respectively.  Lane 5 is the wash 
step.  Lane 6 is the dialysis precipitate fraction. Lanes 7 and 8 represent 5 µg and 
10 µg of the final Neh2 protein, respectively. The Neh2 protein runs lower in 
lanes 6, 7 and 8 as the Neh2 was subjected to TEV protease cleavage to remove 
the his-tag present on the N-terminus of the Neh2 domain.  (b) Purification from 
inclusion bodies. Lane 1, molecular weight marker ; Lane 2, post-induction 
sample ; Lane 3, cell lysate ; Lane 4, urea soluble : Lane 5, urea-insoluble ; Lane 
6, unbound ; Lane 7, bound to beads ; Lane 8,his-tagged Neh2 ; Lane 9, his-tag 
free Neh2. 
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Figure 3.4. 1H-15N HSQC of the human Neh2 domain of Nrf2.  

1H-15N HSQC NMR spectrum of the 0.1 mM human Neh2 domain of 
Nrf2.  The spectrum was collected in 50 mM sodium phosphate, 100 
mM NaCl, 1 mM DTT, pH 7.0 at 25 ºC.   
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Figure 3.5.  Purification of Neh2 by denaturation in 8M Urea. 

SDS–PAGE (12% gel) (a) analysis of the protein sample during the first step 
of purification.   Lane 1, molecular weight markers; lane 2, cell lysate; lane 3, 
unbound fraction; lane 4, dialysis precipitate; lanes 5, his-tagged Neh2; lanes 
6, his-tagged cleaved Neh2 protein.  (b) analysis of Neh2 samples after 
second denaturation step.  Lane 1, molecular weight markers; lane 2, Neh2 
sample pre Ni-bead binding; Lane 3, the unbound fraction of Neh2 post Ni-
bead binding. 
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Figure 3.6. 1H-15N HSQC of the Neh2 domain of human Nrf2. 

100 µM of 15N-labeled Neh2 obtained from the soluble fraction of the cell 
lysate (black) is overlaid with 100 µM of 15N-labeled Neh2 obtained from urea 
denaturation method (red). 
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Figure 3.7. Neh2 Mass spectrum and Stoichiometry. (a) Mass spectrum of 15N-labeled Neh2 domain of human Nrf2.   The 
resulting mass spectrum revealed a peak at 11 810, which is in close agreement with the 11 812 calculated molecular weight of 
the Neh2 domain. (b) Sedimentation equilibrium analysis of the Neh2 domain revealed that Neh2 exists as a monomer in 
solution and corresponds to MW of 11 700 Da, in close agreement with 11 812 calculated molecular weight for the domain. 
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Table 3.1. Protein yield in mg per liter of culture media from different purification 

methods 

 

*ND (Not determined).  The Neh2ΔDLG was not purified from the inclusion bodies as enough 

protein was obtained from the soluble fraction and from urea denaturation protocol. The urea 

denaturation protocol was preferred as the final sample from this procedure was free of 

impurities.  

  

 Neh2wt Neh2ΔETGE Neh2ΔDLG 

Soluble 0.8 mg 0.95 mg 4.0 mg 

 

Inclusion bodies 0.6 mg 2.9 mg ND * 

 

8 M Urea 35 mg 12 mg 30 mg 
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3.3.2 Backbone Assignment of the human Neh2 domain of Nrf2 

The backbone assignment of the human Neh2 domain was completed in order to 

identify amino acids that are involved in forming the binding interface with targets and to 

characterize the structural changes the protein undergoes in the presence of binding 

targets.  Using the HNCACB and CBCA(CO)NH three-dimensional NMR experiments, 

the backbone resonance assignment of the Neh2 domain was completed.  Figure 3.8 

shows a representative 1H-15N HSQC spectrum of the disordered Neh2 domain that is 

narrow in the proton dimension.   Because the Neh2 domain appears to be a disordered 

protein, extensive overlap of resonances is observed making it challenging to complete 

the backbone assignment of this domain. The backbone assignment was further 

complicated by the presence of glutamine, glutamic acid and lysine residues (amino acids 

with similar carbon chemical shifts) in the central region of the Neh2 domain.  

Regardless of the high spectral degeneracy ~ 84 % of the 1HN and 15N resonances of non-

proline residues, 83 % of all Cα and ~ 79 % of all Cβ resonances of the Neh2 domain of 

human Nrf2 were successfully completed (Table 3.2). The assignment of the Neh2 

domain in this work is comparable to the backbone resonance assignment of the Neh2 

domain of the mouse Nrf2 (Tong, Yamamoto et al. 2008).  

Figure 3.9 shows the residue specific secondary structure propensity scores (SSP) 

calculated using the assigned 13Cα/β chemical shifts with the SSP software developed by 

Marsh et al (Marsh, Singh et al. 2006).  Positive values indicate an α-helical secondary 

structural propensity, and negative values indicate a β-strand structural propensity.  The 

SSP scores calculated for the Neh2 domain show that most residues from 17 to 40 in the 

N-terminal region have a tendency to form an α-helical structure.  The center, residues 45  
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Figure 3.8. Backbone resonance assignment of the Neh2 domain of the 
human Nrf2 protein. (a) 1H-15N-HSQC spectrum and backbone resonance 
assignment of the 1H/13C/15N-labeled Neh2 domain of Nrf2. (b) Neh2 protein 
sequence with unassigned residues colored in red and the center region of high 
degeneracy is boxed. 
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Table 3.2. 15N, 13C and 1H resonance assignments for the human Neh2 domain 

Residue HN N Cα Cβ 
2 8.3 120.36 54.74 29.47 
3 8.15 121.23 54.71 41.05 
4 8.08 121.89 55.03 42.44 
5 8.3 121.56 56.12 30.34 
6 8.19 124.84 52.84 41.74 
10 8.35 108.55 44.99 

 11 8.07 122.87 53.06 41.91 
13 8.45 115.76 58.15 64.06 
14 8.5 122.11 56.41 29.28 
15 8.34 120.3 56.4 29.41 
16 8.25 121.01 54.97 40.96 
17 8.21 120.36 56.17 32.75 
19 7.91 121.12 55.72 42.06 
20 7.86 119.7 62.3 38.26 
21 8.09 122.11 55.34 41.43 
22 7.84 119.48 62.44 38.57 
23 8.11 122.65 56.12 41.82 
24 7.96 120.16 57.81 29.3 
25 7.75 120.9 56.56 30.82 
26 8.15 119.92 58.58 29.5 
27 8.3 120.25 54.65 40.82 
28 7.8 119.81 61.4 38.86 
29 8.28 123.31 54.43 41.13 
30 8.23 122.34 55.62 42.22 
31 8.42 108.55 45.71 

 32 7.78 118.39 62.09 32.99 
33 8.35 118.83 58.32 63.71 
34 8.45 123.31 56.62 30.6 
35 8.4 120.47 57.28 30.34 
36 7.92 119.98 62.93 32.48 
37 8.18 123.31 58.28 39.78 
38 8.23 121.78 54.16 40.88 
39 8.3 122.22 59.59 39.07 
40 8.38 115.98 60.51 63.01 
43 8.58 120.03 55.66 32.53 
44 8.16 121.03 54.81 38.77 
45 8.18 120.8 58.11 29.9 
46 8.13 120.58 60.13 38.21 
47 8.34 119.94 58.82 29.33 
48 8.06 120.8 57.49 41.81 
49 8.08 119.26 58.11 28.37 
52 8.26 119.7 58.96 29.48 
53 7.98 121.01 59.05 32.51 
54 8 120.53 57.72 41.88 
62 8.06 121.12 57.65 41.83 
63 8.09 119.92 58.79 29.07 
64 8.05 120.58 58.78 32.36 
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65 8.19 119.15 58.55 28.36 
66 8.15 120.3 54.71 41.09 
69 7.96 122.55 53.51 18.74 
70 8.02 119.05 59.03 39.24 
71 8.03 119.81 58.79 39.23 
72 8 123.53 53.12 19 
73 7.97 117.95 56.13 29.17 
74 7.93 121.89 55.27 42.99 
75 8.43 120.22 57.66 30.09 
76 8.28 124.3 55.31 42.59 
77 8.49 123.2 54.4 41.72 
78 8.54 123.09 57.68 30.17 
79 8.42 120.03 57.53 30.19 
80 8.03 111.28 61.94 70.31 
81 8.42 111.17 45.5 

 82 7.93 119.7 55.96 31.02 
83 8.42 120.8 57.48 39.59 
84 8.3 125.72 52.52 42.39 
86 8.16 121.79 61.01 38.81 
87 8.46 125.72 53.43 28.95 
89 8.4 124.08 52.48 19.2 
90 8.32 119.15 55.73 29.69 
92 8.1 123.09 60.94 38.69 
93 8.53 125.17 55.79 29.45 
94 8.41 117.84 58.36 63.82 
95 8.59 122.98 56.72 30.35 
96 8.23 114.45 61.5 69.74 
97 8.33 118.39 58.32 63.86 
98 8.08 117.08 46.32 
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Figure 3.9. Secondary structure propensity of the Neh2 domain of Nrf2.   

A score of 1 represents a fully helical structure and -1 represents a β-sheet structure.  

The score was calculated based on the Cα and Cβ chemical shifts obtained from the 

HNCACB and CBCA(CO)NH experiments. 
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to 65, of the Neh2 domain appear to be an extended helix, whereas, the C-terminus of the 

domain has a β-structure like propensity based on the assigned residues. 

3.3.3  Neh2 binding to the Kelch domain of the human Keap1 

To ensure that the purified recombinant Neh2 domain was folded properly, the 

binding of Neh2 to the Kelch domain of human Keap1 was examined.  The overlay of the 

1H-15N HSQC spectra of the Neh2 domain in the free and Kelch bound states is shown in 

Figure 3.10.  A significant amount of signal broadening is observed in the Kelch bound 

state spectrum suggesting that the Neh2 protein is able to interact with the Kelch domain 

of Keap1.  Since it is known that the mouse Neh2 domain interacts with two independent 

Kelch domains, the complex formed is almost 80 kDa in size (Tong, Katoh et al. 2006).   

Assuming that the human Neh2 interacts with the Kelch domain in a 2:1 ratio similar to 

the mouse Neh2-Kelch binding, the formation of such a large complex can result in 

slowing the tumbling time of the Neh2 protein, thus providing an explanation for the 

observed disappearance of the resonance signals in the Neh2-Kelch bound state HSQC 

spectrum (Figure 3.10).    

The Neh2ΔETGE and Neh2ΔDLG, low affinity binding motif and high affinity 

binding motif, respectively, were created to study their binding properties with the Kelch 

domain of the human Keap1 (Tong, Katoh et al. 2006) .  An overlay of the two-

dimensional 1H–15N HSQC spectra of the wild-type Neh2 with the Neh2ΔDLG and the 

Neh2ΔETGE is shown in Figure 3.11a&b.  In the 1H–15N HSQC of the Neh2ΔDLG, we 

observe that the first 33 residues deleted in the construct disappear in the HSQC 

spectrum.  Additionally, peak broadening is observed for residues in the surrounding  
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Figure 3.10. An overlay of 1H-15N HSQC spectrum of Neh2 domain 
(black) and in complex with the Kelch domain of Keap1 (red).  

0.1 mM of 15N-labeled Neh2 full length protein was used to collect the Neh2 

spectrum in the absence of Kelch.  In the Kelch bound state, 0.2 mM of 

unlabeled Kelch domain of Keap1 was added to achieve a 1:2 ratio of Neh2 to 

Kelch 
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Figure 3.11. 1H-15N HSQC of Neh2 variants. (a) overlay of Neh2ΔDLG spectrum (orange) with Neh2 full-length 
(black); (b) overlay of Neh2ΔETGE spectrum (orange) with Neh2 full-length (black).  The backbone resonance 
assignments were transferred from the full length Neh2.  The crowded regions have been enlarged.  Schematic 
diagrams showing the deleted regions have also been shown for each of the Neh2ΔDLG and Neh2ΔETGE. 
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environment including R34, F37, D38 and R43. Interestingly, chemical shift attenuations 

for the C-terminal residues A69, F70, A72, Q73, L74, Q75, and L76 are also seen.  The 

remaining residues that appear in the wild-type and the Neh2ΔDLG spectra align well.  

The proton dimension of the Neh2ΔDLG is also narrow like the wild-type Neh2 domain, 

representative of a disordered protein.   This indicates that the deletion of the first thirty-

three residues in the Neh2 domain does not alter the disorder nature of the Neh2 domain.     

The 1H–15N HSQC overlay of the full length wild type Neh2 domain with the 

Neh2ΔETGE in Figure 3.11b reveals that peaks corresponding to the deleted residues 

E79, T80, G81, E82 disappear confirming that the backbone resonance assignment is 

accurate for these residues.  Additional resonance signal loss is detected for residues Q75, 

L76, D77 and E78.  Chemicals shift changes are also observed in the C-terminal region 

for residues A69, A72, Q73, Q87, S97 and S94.  Minimal signal perturbations are 

observed for N-terminal residues L11, D28, I28, I22, R25, S33 and S40.  Like the 

Neh2ΔDLG deletion, the ETGE deletion also has no impact on the disordered nature of 

the Neh2 domain as most of the protein peaks align well with the wild type spectrum in a 

narrow proton dimension.  Therefore, the Neh2ΔETGE also retains the disordered 

structure of the wild-type Neh2 domain. 

3.3.4 Two site substrate recognition of the human Nrf2-Keap1 system 

The Neh2ΔDLG and Neh2ΔETGE binding to the Kelch domain of the Keap1 

protein were studied by NMR to ensure that the human Neh2 domain indeed interacts via 

the ETGE and DLG motifs with the Keap1 protein as observed for the mouse Nrf2- 
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Figure 3.12. 1H-15N HSQC of Neh2 variants in free and Kelch bound states at 25 ºC and 30ºC.  

(a) Neh2ΔDLG (black), Neh2 ΔDLG and Kelch at 25 ºC (orange), and Neh2ΔDLG and Kelch at 30 ºC (cyan). (b) 

Neh2ΔETGE (black), Neh2ΔETGE and Kelch at 25 ºC (orange), and Neh2ΔETGE and Kelch at 30 ºC (cyan).  

The bound state of Neh2 variants with Kelch was in a 1:2 molar ratio, respectively.   
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Keap1 system (Tong, Katoh et al. 2006).  1H–15N HSQC overlay of the free and Kelch 

bound states of Neh2ΔDLG and Neh2ΔETGE are depicted in Figure 3.11a&b.   The 

Neh2ΔDLG bound to Kelch at 25 ºC shows that the resonance signals for L74, L76, D77, 

E78, E79, T80, G81, E82, L84 residues in the C-terminal region of the Neh2 domain 

undergo line broadening.  This suggests that the ETGE motif of the Neh2 domain 

interacts with the human Kelch domain.  In an attempt to minimize the line broadening 

effect, the temperature was increased by 5 ºC.  1H–15N HSQC of the Neh2ΔDLG bound 

to Kelch obtained at 30 ºC  (Figure 3.12a in cyan) indicates that the resonance signals are 

still not recovered for peaks that undergo line broadening at 25 ºC.  The temperature was 

not increased significantly as the Kelch domain is unstable and aggregates at higher 

temperatures.    

Similarly, the 1H–15N HSQC of the Neh2ΔETGE-Kelch complex displays 

resonance signal loss for  residues Q14, D16, I20, W24, I28, D29, L30, G31, V32, S33, 

R34, F37, F39 and S40.  Chemical shift changes are also observed for L6, L11, S13, Q14, 

L23, and R25.  Increasing the temperature to 30 ºC reduced peak broadening.  The indole 

ring of the tryptophan as well as a weak peak for Q14 is detected at 30 ºC (Figure 3.12b 

in cyan).  Remarkably, both the Neh2ΔDLG and Neh2ΔETGE retain their signature 

spectra of a disordered protein, a narrow proton dimension, in the bound state with the 

Kelch domain.  This indicates that both Neh2ΔDLG and Neh2ΔETGE do not undergo a 

large structural transition, from a disordered to ordered state, in the target bound state.  
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3.3.5  Secondary structure analysis of the Neh2 domain, Neh2ΔDLG and 

Neh2ΔETGE 

Upon the deletion of the first thirty-three residues of the N-terminal, chemical 

shift changes were observed in the C-terminal region of the Neh2 domain.  Similarly, 

deletion of the ETGE region led to minor changes in the N-terminal region as observed in 

the NMR HSQCs in Figure 3.11b.   The data suggested that the N-terminal region maybe 

interacting with the C-terminal region of the protein.  To study if there is any secondary 

structural elements in the Neh2 domain that maybe leading to this weak interaction 

between the two termini of the domain, the secondary structure of the Neh2 and its 

variants were studied by CD spectroscopy.  The far-UV CD spectra of the Neh2, 

Neh2ΔDLG and Neh2ΔETGE in Figure 3.13a,b&c indicate that the Neh2 domain is 

helical in nature.  The secondary structure content of the Neh2 and its variants were 

quantitatively determined by CDSSTR analysis program available on the Dichroweb 

website (Whitmore and Wallace 2008).  The results indicate that the Neh2 domain has 

76% helical, 7% β-strand, 17% disordered/turn structure in 50 mM sodium phosphate 

buffer at pH 7.0.  Based on the CD spectra the Neh2ΔDLG contains 78% helical, 4% β-

strand and 17% disordered/turn structure.   The Neh2ΔETGE CD data analysis revealed 

65% helical, 6% β-strand and 17% disordered/turn structure in 50 mM sodium phosphate 

buffer at pH 7.0.    When a protein contains a region of α-helical content, the spectral 

contribution from the helix may swamp the signal of other secondary structure content 

(Whitmore. and Wallace. 2007) .  This is because, firstly the ϕ/ψ angles of helices are 

well defined, and secondly, helical components produce very intense CD signals.  Thus 
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Figure 3.13.  Secondary structure of the Neh2 protein and its variants measured by far-UV CD 
spectropolarimetry. The figure displays the spectra of (a) Neh2 FL (full length), (b) Neh2ΔETGE, (c) Neh2ΔDLG.  The 
far-UV CD spectra of Neh2 and its variants show a high degree of α-helical structure. 
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the accuracy of the disordered content by CD is compromised (Whitmore and Wallace 

2008). Hence, the observed high helical content in Neh2 and its variants could be 

resulting from the intense signal of the central helix.  Interestingly, the θ222/208 for the full 

length Neh2 is 0.72, 0.78 for NehΔETGE, and 0.80 for Neh2ΔDLG indicative of isolated 

non-interacting helices (Lavigne, Kondejewski et al. 1995).  

The stability of the helical structure for Neh2, Neh2ΔDLG and Neh2ΔETGE was 

tested by thermal unfolding experiments.  The protein was properly refolded after the 

thermal denaturation as shown in the overlay of the post melt CD spectra with the pre 

melt CD spectra in Figure 3.13a,b&c.  Remarkably, the Neh2 domain and its two variants 

did not show a clear cooperative sigmoidal melt with the increase in solution temperature 

(Figure 3.14).  The lack of a cooperative unfolding indicates the absence of a stable 

structure and thereby confirms the disordered nature of Neh2, Neh2ΔETGE and 

Neh2ΔDLG. 

3.3.6 Hydrodynamic radius of Neh2 protein 

Sedimentation velocity, an analytical ultra-centrifugation (AUC) technique, is an 

alternative method to determine the molecular weight and hydrodynamic (Stokes) radius 

of proteins in solution.  For the purpose of this study, sedimentation velocity technique 

was used to further enhance our understanding of the intrinsic nature of the Neh2 domain.  

Although the NMR data and the CD data agree that the Neh2 is a disordered protein with 

some helical structure, understanding of the hydrodynamic radius would provide further 

information about the compactness of the Neh2 domain.  In the sedimentation velocity 

run, a 0.2 mg/mL concentration of the Neh2 domain was used. The data was fitted using  
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Figure 3.14. Thermal melting of Neh2 FL and its variants Neh2ΔETGE and 
Neh2ΔDLG at 222 nm. Unfolding is monitored by the increase of [Θ] as a 
function of temperature.   
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Figure 3.15.  Analytical ultracentrifugation experiment of  

Neh2 domain.  The sedimentation of Neh2 (40 µM) was analyzed 
with a Beckman Coulter XL-I analytical ultracentrifuge at 4°C and at 
60,000 rpm. 
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a size distribution analysis in a program called SEDFIT (Brown and Schuck 2006).  The 

presence of more rapidly sedimenting peaks in Figure 3.15, corresponding to a molecular 

mass of 63 kDa, indicates the existence of aggregates in the sample.  A peak with 

molecular mass of 13.9 kDa is also observed and this peak corresponds to the Neh2 

domain. The SEDFIT program calculated the sw to be 0.7795, sw (20, w) to be 0.8005 and 

a stokes radius of 2.55 nm (25.5 Å).   

3.3.7  Backbone Dynamics of the Neh2 protein 

The lack of chemical shift dispersion in the 1H-15N HSQC spectrum of the human 

Neh2 domain is typical of an unstructured protein.  However, the SSP scores and the CD 

data indicate the presence of a pronounced helical as well as a β-sheet structure in the 

Neh2 domain.  This suggests that Neh2 domain is amongst the biologically active 

disordered proteins that retain some secondary structure (Eliezer, Kutluay et al. 2001; 

Bienkiewicz, Adkins et al. 2002; Mark, Liao et al. 2005).  To relate the average 

secondary structure with Neh2 dynamics, the amide backbone dynamics of the Neh2 

domain and the Neh2ΔDLG construct were studied by NMR relaxation experiments. The 

R1, R2, and the steady-state heteronuclear NOE values provide information of motion on 

the picosecond-to-microsecond timescale thus helping identify regions restricted in 

motion and regions with high flexibility (Kay, Torchia et al. 1989).  For the Neh2 

domain, of the 84 assigned resonances, 74 were used for the measurement of the R1, R2 

and the heteronuclear NOE values (Figures 3.16). The R1 values range from 0.77 ± 0.01 

s-1 to 1.88 ± 0.03 s-1 with an average of 1.56 ± 0.03 s-1.  The R2 values range from 1.25 ± 

0.03 s-1 to 17.71 ± 0.68 s-1 with an average of 8.27 ± 0.23 s-1.  The steady-state NOE 

values range from -1.87 ± 0.02 s-1 to 0.61 ± 0.03 s-1 with an average of 0.10 ± 0.02s-1.   
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Figure 3.16.  Backbone 15N NMR relaxation data for Neh2 full-length 
(red) and Neh2 ΔDLG (blue). (a) Longitudinal relaxation rate (R1); (b) 
transverse relaxation rate (R2); 1H-15N heteronuclear NOE.   
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The R1 values, of the 24 resonances of the Neh2ΔDLG, range from 0.78 ± 0.003 s-

1 to 1.88 ± 0.01 s-1 with an average of 1.62 ± 0.01 s-1.  The R2 values range from 1.12 ± 

0.024 s-1 to 12.47 ± 0.17 s-1 with an average of 7.07 ± 0.17 s-1.  The steady-state NOE 

values range from -1.54 ± 0.001 s-1 to 0.7 ± 0.01 s-1 with an average of 0.004 ± 0.003s-1.   

 Discussion 3.4

The human Nrf2 protein is a major regulator of the oxidative stress response 

pathway.  Limited number of studies have examined the Kelch-Nrf2 interaction in full-

length context (Lo, Li et al. 2006; Tong, Katoh et al. 2006; Tong, Padmanabhan et al. 

2007).   In this work, a new high yield purification method for Neh2 domain of human 

Nrf2 allowed investigation of the Keap1-Nrf2 in full-length context.    

Purification of the Neh2 domain from the soluble fraction yielded about ~0.8 mg 

of impure protein from 1 L of M9 bacterial culture (Figure 3.3a), therefore, not suitable 

for structural and binding experimental studies.  One of the main objectives achieved in 

this part of the project was the increase in the final yield of Neh2 by more than 40 fold.  

The purity of the Neh2 in the final sample was also enhanced significantly (Figure 3.5b 

line 3).  Identical NMR HSQC spectra were obtained through the different protein 

purification methods, suggesting that the final structure of the Neh2 is not compromised 

with the high yield purification procedure. Additionally, the Neh2 obtained with the 

revised purification method is functional as it is capable of binding to the Kelch domain 

of Keap1 (Figure 3.10).  

Structural properties of the Neh2 domain were also assessed to ensure that it 

behaves similarly to the mouse Neh2 domain of Nrf2 (Tong, Katoh et al. 2006).  NMR 
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data revealed that the human Neh2 domain is intrinsically disordered.  However, analyses 

of the secondary structure propensity (SSP) scores show the N-terminal region with an α-

helical tendency, and central region to be helical in structure.  It has been recently 

reported that the N-terminal region forms a helical structure upon binding to Keap1 

(Fukutomi, Takagi et al. 2014).  The C-terminal region shows a tendency to form β-sheet 

like structure.  This data is consistent with what has been observed for the mouse Neh2 

domain (Tong, Katoh et al. 2006) and also with the PrDOS prediction (Figure 3.2).  

Residues 39 to 71 of the mouse Neh2 domain have been shown to form a central helix 

(Tong, Katoh et al. 2006).  Residues between 10 to 30 also have CSI values close to 1 for 

the mouse Neh2 domain indicating a tendency towards forming an α-helical structure 

(Tong, Katoh et al. 2006).  It has also been known from the crystal structures of the Neh2 

domain bound to the Kelch domain of Keap1 that both the mouse and human ETGE 

regions form a β-hairpin loop (Lo, Li et al. 2006; Padmanabhan, Tong et al. 2006).  The 

ETGE motif of the Neh2 domain of human Nrf2 has also been shown to have a tendency 

to form a β-turn structure in its free form (Cino, Wong-ekkabut et al. 2011).  Thus the 

SSP scores obtained for the full-length Neh2 domain of human Nrf2 are in a good 

agreement with previously published data and confirm that the Neh2 domain has a partial 

secondary structure.  

Two constructs corresponding to the low binding affinity motif, Neh2ΔETGE, 

and the high binding affinity motif, Neh2ΔDLG, were constructed to study the two site 

binding of the Neh2 domain with the Kelch domain of Keap1 (Tong, Katoh et al. 2006).  

Binding of the full-length Neh2 domain to Kelch undergoes substantial line broadening 

which could be attributed to the increase in molecular tumbling time due to the formation 
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of a large complex (~80 kDa) and to the intermediate conformational exchange between 

the free and bound states (Tong, Katoh et al. 2006).  However, the two constructs, form a 

complex of approximately 44 kDa each when bound to the Kelch domain individually.  

ProTα in the bound state to Kelch forms a complex of 46 kDa.  The bound state 1H-15N 

HSQC spectrum of the ProTα shows no resonance broadening (Khan, Cino et al. 2013).   

When compared to ProTα, the bound sate 1H-15N HSQC spectra of the Neh2ΔDLG and 

NehΔETGE (Figure 3.12 a&b) show dramatic signal broadening, even at higher 

temperatures. The observed line broadening effect can mostly be ascribed to the 

intermediate chemical exchange effects of the bound and the unbound forms of the Neh2 

variants.   

The Neh2ΔETGE-Kelch bound HSQC spectrum shows peak attenuations in 

flanking residues of the previously identified DLG motif (Tong, Katoh et al. 2006; Tong, 

Padmanabhan et al. 2007).  Recently, it was reported that residues M17 to Y46 are part of 

the DLG motif and crucial for interaction with the Keap1 protein (Fukutomi, Takagi et al. 

2014).   The observed chemical shift changes for the Neh2ΔETGE-Kelch are in par with 

this recent finding and emphasize the study of ligand binding in full-length proteins.  

Interestingly, NMR HSQC of the Neh2ΔDLG and Neh2ΔETGE reveal that upon 

introducing these deletions, the Neh2 domain retains its intrinsic disordered structure 

(Figure 3.11).  A narrow spectra in the proton dimension is also observed in the Kelch 

bound state for both Neh2 constructs (Figure 3.12) suggesting that Neh2 does not 

undergo a substantial structural transition in the target bound state similar to ProTα 

(Khan, Cino et al. 2013).   Moreover, the HSQC spectra of the two Neh2 variants in the 

free and the Kelch bound state revealed the possibility that the N and C termini of the 
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Neh2 domain maybe involved in interactions.  The CD data of the Neh2 domain indicates 

the presence of a pronounced helical structure in the Neh2 domain and its variants.  

However, the θ222/208 ratios below 1 indicate that the observed helical spectra are of a 

protein containing independent non-interacting helices (Lavigne, Kondejewski et al. 

1995).    

The compactness and the flexibility of the Neh2 domain were examined to 

explain the relation between the N and C termini.  Sedimentation velocity experiments 

revealed that the Neh2 has a hydrodynamic radius of around 25.5 Å.  For a structured 

protein with similar number of residues as that of the Neh2 domain, the hydrodynamic 

radius of the folded state is calculated to be 19 Å and for the fully denatured state the 

hydrodynamic radius of the same protein is around 32 Å (Wilkins, Grimshaw et al. 

1999).  ProTα is also similar in size as the Neh2 domain and has a hydrodynamic radius 

of around 34 Å (Yi, Boys et al. 2007).  The fact that the hydrodynamic radius of the Neh2 

domain is less than that of the ProTα and other denatured proteins of similar size strongly 

suggests that it is more compact in shape than the average unstructured protein of the 

same size.  Based on this it is possible that the N and C terminal residues maybe involved 

in long range interactions.   

The relaxation rates and the heteronuclear NOEs shed further light on the 

flexibility and compactness of the human Neh2 domain.   The average R1 rate observed 

for the Neh2 domain is 1.56 ± 0.03 s-1.  R1 values for Neh2 domain fall within the 

expected range of a folded protein of the same size.  For instance, the average R1 rate for 

the globular 89 amino acid Barstar is close to 2 s-1, obtained at 300 K, under 600 MHz 
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magnetic field (Sahu, Bhuyan et al. 2000).  When compared to ProTα (average R1 value 

of 2.45 s-1), Neh2 domain is more restricted in motion (Khan, Cino et al. 2013).   

For a globular protein with the same size as the Neh2 domain, the average R2 

values are approximately 10 s-1 (Walma, Aelen et al. 2004).  The high R2 rates of the 

Neh2 (average ~8 s-1) suggest that this domain is structured.  However, the N and C 

termini of the Neh2 domain have R2 values ranging from 1.25 s-1 to 6.0 s-1 and are 

comparable to ProTα (Khan, Cino et al. 2013).  Whereas, residues 19 to 80 (with the 

exception of residue 30, 43 and 44) have R2 values that range from 7 s-1 to 17.7 s-1.   The 

high R2 values for this helical region imply that it is dynamically restricted or experiences 

conformational exchange, or both.  

 The average R2 values for  the 99 residue β2-microglobulin, obtained under same 

magnetic field strength and temperature, are also very high, ranging from 7 s-1 to 18 s-1 

(Platt, McParland et al. 2005).  Experimental evidence suggests that these high R2 values 

for β2-microglobulin are a result of long range and non-native interactions between the 

aromatic residues found in the central region of the protein (Platt, McParland et al. 2005).  

In the Neh2 domain, we do not observe large cluster of aromatic residues; however, the 

phenylalanine residues, F37, F39, F70 and F71, and one Tyr 46 could possibly be 

involved in long range interactions.  These long range interactions, if any, would provide 

an explanation for the observed motional restriction of the central helical region as well 

as the lower hydrodynamic radius of the Neh2 domain.  

The steady-state 1H–15N NOE values are also in agreement with the R2 rates.  The 

negative NOE values of the N and C termini indicate these regions to be lacking 
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structure, therefore, are highly flexible.  Whereas the positive NOE values of the central 

region confirm the motional restriction of the helix.  

The relaxation rates reveal no significant difference between the R1 values of the 

full-length Neh2 domain and the Neh2ΔDLG.  The R2 values for residues 38 to 80 of the 

Neh2ΔDLG are higher than what is expected of a globular protein with the same size, 

confirming the lack of flexibility in this region or conformation exchange (Sahu, Bhuyan 

et al. 2000).  The NOE values of the central region increase slightly, making this region 

more restricted in motion, whereas, the C-terminal region remains disordered as observed 

for the wild type Neh2. The relaxation data also confirms that deleting the first thirty-

three residues does not lead to folding of the Neh2 domain.     

The work completed in this chapter allowed us to directly investigate the 

interaction of the full-length Neh2 domain of human Nrf2 with the Kelch domain in 

chapter 4.  Recently, there has been great interest in drug therapies using the Neh2 

domain as a target (Suzuki, Motohashi et al. 2013).  Binding studies with the full-length 

Neh2 domain can be used to study the effect of potential drug targets on the Nrf2-Keap1 

system.  Additionally, in Chapter 1, positive and negative regulators such as p62 and p21 

Cip1/WAF1 of the Nrf2 been mentioned.  This work lays the foundation for direct binding 

studies with p21Cip1/WAF1, which competes for Keap1 binding with Nrf2 (Taguchi, 

Motohashi et al. 2011).  
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Chapter 4  

 Molecular effects of cancer-associated somatic mutations on 4
the structural and target recognition properties of Keap1 

 

 Introduction 4.1

The Nrf2/Keap1 antioxidant pathway plays critical roles both in chemoprevention 

and cancer pathogenesis (Kwak and Kensler 2010; Müller and Hengstermann 2012; 

Jaramillo and Zhang 2013; Suzuki, Motohashi et al. 2013).  The transcription factor 

Nuclear factor erythroid 2-related factor-2 (Nrf2) induces the cellular defenses against 

reactive oxygen species and toxic substances by initiating the transcription of an array of 

cytoprotective genes, which are essential for the elimination of electrophilic and 

oxidative stresses before damage is caused to the cellular macromolecules (Itoh, Chiba et 

al. 1997; Itoh, Wakabayashi et al. 1999). Under normal conditions, its activity is 

suppressed by Keap1 (Kelch-like ECH-associated protein 1) in conjunction with the 

Cullin 3 (Cul3) E3 ubiquitin ligase complex via ubiquitin-mediated proteasomal 

degradation (Itoh, Wakabayashi et al. 1999; Kobayashi, Kang et al. 2004; Zhang, Lo et 

al. 2004; McMahon, Thomas et al. 2006).  In the presence of oxidative stress, however, 

specific cysteine residues in Keap1 are subjected to modifications by the oxidants (Zhang 

and Hannink 2003). The modified Keap1 is incapable of targeting Nrf2 for 

ubiquitination, allowing Nrf2 to translocate into the nucleus to initiate gene transcription 

(Itoh, Chiba et al. 1997).    
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Accumulation of Nrf2 in the nucleus however, can lead to aberrant cytoprotective 

gene expression if not regulated (McMahon, Itoh et al. 2003; Singh, Misra et al. 2006; 

Hayes and McMahon 2009).  Keap1 is a cytosolic protein that lacks a nuclear localization 

signal and cannot enter the nucleus on its own to regulate Nrf2 levels (Niture and Jaiswal 

2009).  Recent studies have revealed that the Keap1 protein can be shuttled to the nucleus 

in complex with ProTα, an intrinsically disordered protein that contains a nuclear 

localization signal (Niture and Jaiswal 2009).  Once in the nucleus, Keap1 mediates 

ubiquitination and proteasomal degradation of Nrf2, causing Nrf2 to return to its basal 

level. This regulatory mechanism is essential as the continuous expression of 

cytoprotective proteins can promote cell proliferation leading to tumorigenesis (Ohta, 

Iijima et al. 2008; Shibata, Kokubu et al. 2008; Jaramillo and Zhang 2013).   

As mentioned in chapter 1, the three main functional domains of Keap1, called 

the Broad complex, Tramtrack and Bric-a-Brac (BTB) domain, the intervening region 

(IVR), and the Kelch domain, all contribute to Nrf2 repression.  The N-terminal BTB 

domain is responsible for Keap1 dimerization.  This domain, together with the IVR 

domain, mediates the Keap1 interaction with the Cul3-E3 ligase complex required for the 

ubiquitination of Nrf2 (Cullinan, Gordan et al. 2004; Kobayashi, Kang et al. 2004; 

Zhang, Lo et al. 2004).  The C-terminal Kelch domain is responsible for target 

recognition.  Besides Nrf2 and ProTα, this domain has also been shown to interact with 

WTX (Camp, James et al. 2012), p62 (Komatsu, Kurokawa et al. 2010), PGAM5 (Lo and 

Hannink 2006), PALB2 (Ma, Cai et al. 2012), FAC1 (Strachan, Morgan et al. 2004), and 

IKKβ (Kim, You et al. 2010) to name a few (Hast, Goldfarb et al. 2013).  In the case of 

Nrf2, the N-terminal Neh2 domain of the protein harbors two Kelch-binding motifs via 
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the ETGE and DLG motifs (Tong, Katoh et al. 2006; Tong, Kobayashi et al. 2006).  This 

binding mechanism allows the lysine residues located in between these two motifs in the 

Neh2 domain to be properly positioned for ubiquitination (McMahon, Thomas et al. 

2006; Tong, Katoh et al. 2006; Tong, Kobayashi et al. 2006).  On the other hand, other 

targets of Keap1 like ProTα form a complex with the Kelch domain in a one to one 

stoichiometry (Khan, Cino et al. 2013).  

Over 200 somatic mutations within Keap1 have been reported in various types of 

cancer tissues and cancer-derived cell lines (Singh, Misra et al. 2006; Ohta, Iijima et al. 

2008; Shibata, Kokubu et al. 2008; Network 2012; Yoo, Kim et al. 2012; Hast, Cloer et 

al. 2014).   Several of them have been shown to be defective in inhibiting Nrf2 activity 

(Ohta, Iijima et al. 2008; Shibata, Kokubu et al. 2008; Suzuki, Maher et al. 2011), 

resulting in constitutive expression of cytoprotective enzymes in cancer cells thus 

promoting cell survival (Hayes and McMahon 2009).  It has been speculated that these 

mutations compromise Keap1’s structural integrity, rendering it incapable of promoting 

the ubiquitination of Nrf2 (Lo, Li et al. 2006; Hayes and McMahon 2009).  However, 

only a few studies of the structural and target-binding properties of these mutants have 

been carried out to date (Lo, Li et al. 2006; Hast, Cloer et al. 2014).  Therefore, the 

molecular links between these mutations and the diseases remain poorly understood.  

To address this problem, we set out to elucidate the effects of disease-associating 

missense mutations on the structural integrity and target recognition of Keap1 by using 

nuclear magnetic resonance (NMR) spectroscopy, CD spectropolarimetry and ITC.  We 

have chosen to focus on the Kelch domain of Keap1 in this study.  Importantly, close to 

50% of the missense somatic mutations identified in Keap1 so far are found to reside in 
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this domain (based on the data in the database of the Catalogue of Somatic Mutations in 

Cancer-COSMIC (Forbes, Bindal et al. 2011).  Crystallographic studies show that the 

Kelch domain adopts a six-bladed β-propeller conformation with several conserved 

amino acids that are important for maintaining the hydrogen bond network, linking the 

propeller blades and forming the hydrophobic core of the protein (Li, Zhang et al. 2004; 

Lo, Li et al. 2006; Padmanabhan, Tong et al. 2006).  In particular, there is a conserved 

glycine doublet found in each blade of the Kelch domain.  These two glycine residues are 

involved in an intrablade hydrogen bond network that may be instrumental in the folding 

of individual blade structures.  Both the ETGE and DLG motifs of Nrf2, as well as ProTα 

are found to bind to the same positively charged pocket located at the mouth of the 

central tunnel of the Kelch β-propeller (Lo, Li et al. 2006; Padmanabhan, Nakamura et al. 

2008).  

We have selected nine cancer-associated somatic mutations, G333C, G350S, 

G364C, G379D, R413L, R415G, A427V, G430C, G476R, to investigate their effects on 

the target recognition and structural integrity of the Kelch domain of Keap1 (Table 4.1) 

(Padmanabhan, Tong et al. 2006; Singh, Misra et al. 2006; Ohta, Iijima et al. 2008; 

Shibata, Kokubu et al. 2008; Hayes and McMahon 2009; Suzuki, Maher et al. 2011; Yoo, 

Kim et al. 2012). These mutants can be divided into three categories based on their 

location in the Kelch domain.  The R415 residue is one of the conserved Arg residues 

located in the positively charged vicinity in the bottom face of the propeller (Figure 4.1a)  
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Table 4.1. Somatic mutations included in this study. 

 

 

Abbreviations: ADC: Adenocarcinoma, SCC: Small cell carcinoma, LCC: Large cell 
carcinoma. References: Lo et al (2006) EMBO J, 25, 3605-3617; Hayes & McMahon 
(2009) Trends Biochem Sci, 34, 176-188. 

 

 

 

Type Location in 

Kelch 

Specimen Cancer 

Type 

G364C Blade II Cell line    

H1648 

Lung (ADC) 

R415G Blade III Patient Lung (ADC) 

R413L Blade III Patient Lung 

G350S Blade I Cell lines and  

Patient 

Lung 

A427V Blade III Patient Lung (SCC) 

G333C Blade I Cell line A549 Lung 

G379D Blade II Patient Gall Bladder  

(ADC) 

G430C Blade III Patient Lung (ADC) 

G476R Blade IV Patient Lung (LCC) 
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and it is directly involved in the interface formation with ProTα and Nrf2 (Lo, Li et al. 

2006; Padmanabhan, Tong et al. 2006; Padmanabhan, Nakamura et al. 2008).  The 

G364C and R413L mutants are also included in the same category as the R415G.  Even 

though these two residues do not directly participate in target binding, they are both next 

to residues that are involved in the ProTα and Nrf2 interactions (Figure 4.1a) (Lo, Li et 

al. 2006; Padmanabhan, Tong et al. 2006; Padmanabhan, Nakamura et al. 2008).  

Conversely, the second set of mutations, G350S and A427V, are distant from the binding 

interface.  The G350S as shown in Figure 4.1b is at the opposite side of the basic pocket, 

and the A427V is found within a β-strand of blade III of the propeller.  The last group, 

containing G333C, G379D, G430C, and G476R, are mutations that occur in the 

conserved double glycine repeats located in different blades (Figure 4.1c) (Li, Zhang et 

al. 2004).  Three of these four mutations, G333C, G379D and G430C, occur in the 

second position of the GG repeat while the G476R occurs in the first position of the 

doublet.  Since these glycine residues are expected to play an important structural role in 

the Kelch domain, it is important to assess the impacts of these mutations on the 

domain’s structural integrity and function.    

NMR and ITC were used to examine the interactions between Nrf2/ProTα and the 

Kelch mutants.  Nrf2 and ProTα have been shown to have the strongest and the weakest 

binding affinity, respectively, to the wild-type Kelch domain among all the known 

partners (Cino, Killoran et al. 2013).  Additionally, we have completed the backbone 

NMR chemical shift assignment of the 34 kDa Kelch domain of human Keap1 (Cino, 

Killoran et al. 2013).  This affords an effective way to probe the conformational changes  
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Figure 4.1. Mutation sites located in the Kelch domain of Keap1 (PDB: 1U6D (Li, Zhang et al. 2004)). 

(a) Somatic mutations occurring in the binding interface. (b) Mutations found outside the binding interface. 

(c) Mutations in the conserved double glycine repeats 
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induced upon mutating specific residues in the Kelch domain and provides a manner to 

observe regions important for target binding. Our results show that these somatic 

mutations exert differential effects on the structural integrity and target recognition 

properties of Keap1, implying that their molecular links to the cancer pathogenesis can be 

very distinct.      

 Materials and Methods 4.2

4.2.1 Cloning, expression and purification of Keap1-Kelch variants 

Mutant constructs of the Kelch domain were generated using the QuikChange II 

site-directed mutagenesis kit (Stratagene) with the wild-type human Kelch domain in the 

prokaryote expression vector pDEST17 (Life Technologies).  The following are the 

primers used for the mutations: 

G333C-5'-ctacaccgcgggctgctacttccgaca-3';  

G350S-5'-caaccccagtgacagcacctggctccg-3'; 

G364C-5'-aggtgccgcggagctgcctggccggctgcg-3';  

G379D-5'-gtacgccgtgggcgacaggaacaactcgcc-3';  

R413L-5'-atgagcgtgccccttaaccgcatcggg-3'; 

R415G-5'-agcgtgccccgtaacggcatcggggtgg-3'; 

A427V-5'-gatggccacatctatgtcgtcggcggct-3';  
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G430C-5'-atatgccgtcggctgctcccacggctg-3';  

G476R-5'-tgctttatgccgtgaggggctttgacggg-3'.  

Wild-type and mutational variants were expressed and purified following the 

protocols described in (Khan, Cino et al. 2013).  

4.2.2 Neh2 constructs, expression and purification 

The gene fragment of human Neh2 domain of Nrf2 (amino acid residues M1-

G98) and Neh2∆DLG (deletion of residues 1-33 from Neh2) were cloned out from the 

full length Nrf2 (purchased from Invitrogen; NM_006164) and then inserted into the 

Gateway pDEST17 vector.  The Neh2∆ETGE mutant (deletion of 79ETGE82 from Neh2) 

was constructed from the full-length Neh2 fragment using the QuikChange II site-

directed mutagenesis kit (Stratagene).  For each construct, a Tobacco Etch virus (Diaz-

Jullien, Perez-Estevez et al.) cleavage recognition site, ENLYFQG, was inserted between 

the histidine tag and the Neh2 fragment.  All three constructs were transformed into the 

Rosetta 2 (DE3)pLysS (Novagen) strain of Escherichia coli (E. coli) for protein 

expression in M9 media.  Cells were grown at 37°C and protein over-expression was 

induced at an OD600 of 0.6 with 0.5 mM of isopropyl β-D-thiogalactopyranoside (IPTG, 

BioShop).  The cells were allowed to grow overnight at 25°C before harvesting.  The 

Neh2 protein and its variants were purified batch wise by Nickel-Sepharose (GE 

Healthcare) affinity chromatography, followed by his-tag removal using TEV protease at 

25°C for 21 hours.  Uncleaved Neh2 and the his-tagged TEV protease were then removed 

by Nickel-Sepharose affinity chromatography.  The final protein sample was analyzed on 
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SDS-PAGE for purity and dialyzed into 50 mM sodium phosphate buffer, 100 mM NaCl, 

1 mM DTT, pH 7.0 for NMR and ITC experiments.  

4.2.3 Peptides 

The ProTα-ENGE peptide (> 98% purity), APANGNANEENGEQEADNEV, and 

the Neh2-ETGE peptide (> 98% purity), AFFAQLQLDEETGEFL, were ordered from 

GenScript USA Inc.  The Neh2-DLG peptide, IDILWRQDIDLGVSREVFDF, was 

ordered from the Tufts University Core Facility with a purity level above 95%.  The 

lyophilized peptides were dissolved and dialyzed into 50 mM sodium phosphate buffer, 

100 mM NaCl, and 1 mM DTT for ITC and NMR experiments. 

4.2.4 Nuclear magnetic resonance (NMR) experiments 

For the backbone resonance assignment of the Kelch domain of human Keap1, 

NMR experiments were performed at 25 °C on a Bruker Avance 800 MHz (National 

University of Singapore) spectrometer equipped with a cryogenic probe.  A 600 µM 2H-

15N-13C labeled sample of the Kelch domain was used to acquire 1H-15N-HSQC, 

HN(CO)CACB, HNCACB, and 15N-NOESY-HSQC spectra for sequential assignment of 

the protein.  The data was processed with NMRPipe (Delaglio, Grzesiek et al. 1995) and 

analyzed using CARA (http://cara.nmr.ch).  The chemical shifts were deposited in the 

Biological Magnetic Resonance Bank (accession number 19992).  

15N-labeled samples of the Kelch domain were prepared at a 200 µM 

concentration for the ligand-binding NMR experiments.  1H-15N HSQC experiments were 

performed on a Varian INOVA 600 MHz spectrometer with a cryogenic probe (UWO 
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Biomolecular NMR facility) at 25 °C.  Data was analyzed using NMRPipe (Delaglio, 

Grzesiek et al. 1995) and NMRView (Johnson 2004).   

4.2.5 Circular Dichroism (CD) Spectropolarimetry 

Wild-type and Kelch mutant protein solutions (~2.2  mg/mL) were each prepared 

in 50 mM sodium phosphate buffer, 100 mM NaCl, 1 mM DTT, pH 7.0.  Far-UV CD 

spectra were obtained in a 0.1 mm cuvette using a Jasco J-810 spectropolarimeter 

(Easton, MD), at 25 °C for wavelengths ranging from 190-260 nm.  The final curves for 

each sample represent the mean of twenty separate scans. The CD data (θ, in 

millidegrees) were converted to mean residue ellipticity ([θ]) using standard formula and 

the software supplied by the manufacturer.  The programs SELCON3, CDSSTR, and 

CONTIN provided by the DichroWeb were used to deconvolute the CD spectra 

(Whitmore and Wallace 2008). 

4.2.6 Isothermal Titration Calorimetry 

ITC experiments were carried out on a MicroCal™ VP-ITC.  All purified protein 

samples were dialyzed into 50 mM phosphate buffer with 100 mM NaCl and 1 mM DTT 

at pH 7.0.  In typical experiments, wild-type Kelch and mutational variants were prepared 

to a concentration of ~15 μM for the Neh2-ETGE peptide (~150 μM) titrations and ~60 

μM for the ProTα peptide (~800 μM) and Neh2-DLG peptide (~1-1.5 mM) titrations.  

Kelch or its mutational variants were loaded into the 1.42-mL cell, and ligands were 

loaded into the syringe (300 μL).  For the full-length Neh2 and Neh2∆ETGE experiments 

with the wild-type and mutants of Kelch, the Kelch was loaded into the syringe and the 

specified otherwise) starting with initial injection of 3 μL, followed by 59 injections of 
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5 μL, with spacing of 240 seconds to 300 seconds.  For the Neh2∆ETGE construct, 

titrations were performed at 25 °C, 20 °C, 15 °C, 10 °C and 5 °C.  The buffer blank was 

performed under the same conditions and showed negligible heats of binding.  The 

dissociation constant (Kd), stoichiometry of binding (n), binding enthalpy (ΔH), and 

entropy (ΔS) were obtained by fitting the data to a single-site binding model with the data 

analysis software (Origin 7) provided by the manufacturer.  Baselines were subtracted 

from final data using the Origin software.  For the full-length Neh2 experiments, the data 

were fitted either to a two-site binding model (wild-type Kelch, G350S, and A427V) or a 

one-site-binding model (G364C and R415G).  Protein concentrations were confirmed by 

amino acid analysis (Advanced Protein Technology Centre, The Hospital for Sick 

Children, Toronto, ON). 

  Results 4.3

4.3.1 Mutations exert differential effects on the solubility of the Kelch domain of 

Keap1 

The wild-type Kelch domain of human Keap1 was over-expressed in E. coli and 

purified by the procedure described previously (Khan, Cino et al. 2013).  Four of the 

Kelch mutants, G350S, G364C, R415G and A427V, were found to have similar solubility 

as the wild-type and were purified with comparable yields (Figure 4.2a).  The R413L, 

G333C, G379D, G430C and G476R mutants, on the other hand, were found almost 

exclusively in the insoluble fractions under various over-expression conditions tested.  

We selected to purify the G333C, G379D, and the R413L proteins from inclusion bodies 

using 8 M Urea and subjected to refolding.  Severe protein aggregation occurred upon  
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Figure 4.2. Coomassie-stained SDS-PAGE depicting the purification of Kelch 

and its mutational variants.  (a) Insoluble (insol) and soluble (sol) fractions of wild 

type Kelch, G350S, G364C, R415G and A427V mutants. (b) Insoluble (insol) and 

soluble (sol) fractions of G333C, G379D, R413L, G430C and G476R mutants of the 

Kelch domain.  The MW lanes are the molecular weight markers with molecular 

weights labeled on the left.  Arrow is drawn identifying the band corresponding to 

Kelch and its mutational variants. 
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refolding and only a small amount of soluble protein was obtained for the three mutants.  

The signals observed in the 1H-15N HSQC spectra (Figures 4.3a &b) of G333C and 

G379D proteins were broad and poorly dispersed in the proton dimension, suggesting 

that both mutants were aggregated.  While the 1H-15N HSQC spectrum of R413L (Figure 

4.3c) resembles that of a folded protein; however, we were unable to obtain a stable (even 

at 4 ºC) high purity protein sample.  

4.3.2 Effects of mutations on the target recognition of the Kelch domain 

To assess the effects of mutations on the target recognition of the Kelch domain 

of Keap1, we employed ITC to determine the binding affinities of the wild-type Kelch 

domain and the soluble mutants (G350S, G364C, R415G and A427V) to ProTα and the 

Neh2 domain of Nrf2.  Peptides Neh2 proteins were loaded into the cell.  Titrations were 

performed at 25 °C (unless encoding the Neh2-ETGE, Neh2-DLG, and ProTα-ENGE 

Kelch-binding motifs were used in the studies.  Table 4.2 lists the binding parameters of 

the wild-type and mutants of the Kelch domain to the ProTα-ENGE and Neh2-ETGE 

peptides.  Results of duplicate runs are shown in Table 4.3.    

The dissociation constant (Kd) of the wild-type Kelch/ProTα-ENGE and 

Kelch/Neh2-ETGE complexes were determined to be 2.7 ± 0.1 µM and 31 ± 2 nM, 

respectively.  These values are on par with the values of ~2.6 µM and ~20 nM for Kelch 

complex formation with full-length ProTα and with a 16-mer Neh2-ETGE peptide as 

reported in the literature (Lo, Li et al. 2006; Khan, Cino et al. 2013).  The binding 

affinities of the mutants to ProTα and Neh2-ETGE peptides varied.  While the G350S 

mutation has only minor effects on the target binding (3.0 ± 0.1 µM for the ProTα and to  
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Figure 4.3.  1H-15N HSQC NMR spectra of G333C (a), G379D (b), and R413L (c) mutants of the Kelch 
domain. 
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Table 4.2. Thermodynamic parameters for the binding of the Neh2 and ProTα peptides to the Kelch domain of human 
Keap1 at 25 ºC. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*n is the stoichiometry, Ka, and Kd are the association and dissociation constants, respectively.  ΔG = ΔH-TΔS = -RTln Ka, where T is 
the temperature in Kelvin, R is the gas constant. ΔH and ΔS are the enthalpy and entropy changes, respectively. The corresponding 
ITC isotherms are shown in Figure 4.4. Values listed in the table are based on one run, and the data for the duplicate run is provided in 
Table 4.3. ** The binding observed was very weak; therefore, values for n, Ka, Kd,  ΔH, ΔS, and ΔG could not be determined accurately.  
 

ENGE peptide 
of ProTα 

n* Ka
* 

(105 M-1) 
Kd 

* 

(µM) 
∆H* 

(kcal/mol) 
T∆S* 

(kcal/mol) 
∆G* 

(kcal/mol) 
Wild-type 
Kelch 

1.07 ± 0.004 3.78 ± 0.15 2.65 ± 0.11 -17.1 ± 0.2  -9.50 -7.60 ± 0.02 

G350S 0.92 ± 0.02   3.33 ± 0. 07 3.00 ± 0.06 -18.1 ± 0.6 - 10.58 -7.52 ± 0.01 
G364C 0.98 ± 0.01 0.32 ± 0.02 31.3 ± 2.0 -14.17 ± 0.2 -8.03 -6.14 ± 0.04 
R415G** - - - - - - 
A427V 1.06 ± 0.003 5.25 ± 0.1  1.90 ± 0.04 -22.4 ± 0.1 -14.60 -7.80 ± 0.02 
ETGE peptide 
of Neh2 

n* Ka
* 

(107 M-1) 
Kd 

* 

(nM) 
∆H* 

(kcal/mol) 
T∆S* 

(kcal/mol) 
∆G* 

(kcal/mol) 
Wild-type 
Kelch 

1.03 ± 0.007 3.18 ± 0.23 31.4 ± 2.3 -20.4 ± 0.09 -10.17 -10.23 ± 0.04 

G350S 1.01 ± 0.005 2.65 ± 0.3 37.7 ± 4.3 -18.9 ± 0.17 -8.78 -10.12 ± 0.06 
G364C 1.07 ± 0.03 0.29 ± 0.01 345 ± 12 -11.53 ± 0.4 -2.72 -8.81 ± 0.02 
R415G** - - - - - - 
A427V 1.11 ± 0.002 6.44 ± 0.67 15.5 ± 1.6 -19.6 ± 0.13 -8.95 -10.65 ± 0.06 
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Table 4.3. Thermodynamic parameters for the binding of the Neh2 and ProT α peptides to the human Kelch domain of Keap1 
at 25 °C (duplicate run). 

ENGE peptide 
of ProTα 

n* Ka
* 

(105 M-1) 
Kd 

* 

(µM) 
∆H* 

(kcal/mol) 
  T∆S* 

(kcal/mol) 
∆G* 

(kcal/mol) 
Wild-type 
Kelch 

1.03 ± 0.005 4.01  ± 0.2 2.49 ± 0.12 -17.7 ± 0.12 -10.07 -7.64 ± 0.03  

G350S 0.96 ± 0.003 2.73 ± 0.05 3.66 ± 0.07 -19.2 ± 0.11 -11.79 -7.41 ± 0.01 
G364C 1.06 ± 0.2 0.29 ± 0.01 34.5 ± 1.2 -15.9 ± 0.03 -9.82 -6.08 ± 0.02 
R415G** - - - - - - 
A427V 1.04 ± 0.004 5.24 ± 0.2 1.91 ± 0.07 -22.3 ± 0.15 -14.50 -7.80 ± 0.02 
ETGE peptide 
of Neh2 

n* Ka
* 

(107 M-1) 
Kd 

* 

(nM) 
∆H* 

(kcal/mol) 
  T∆S* 

(kcal/mol) 
∆G* 

(kcal/mol) 
Wild-type 
Kelch 

1.01 ± 0.002 3.43 ± 0.5  29.2 ± 4.4 -21.0 ± 0.18 -10.73 -10.27 ± 0.09 

G350S 1.0 ± 0.003 2.62 ± 0.3 38.2 ± 4.3 -19.2 ± 0.11 -9.09 -10.11 ± 0.06 
G364C 1.08 ± 0.03 0.4 ± 0.02 250 ± 13  -10.63 ± 0.04 -1.63 -9.0 ± 0.03 
R415G** - - - - - - 
A427V 1.05 ± 0.003 4.33 ± 0.5 23.1 ± 2.7 -19.7 ± 0.19 -9.29 -10.41 ± 0.07 

 
 

*n is the stoichiometry, Ka, and Kd are the association and dissociation constants, respectively.  ΔG = ΔH-TΔS = -RTlnKa, where T 

is the temperature in Kelvin, R is the gas constant. ΔH and ΔS are the enthalpy and entropy changes, respectively. Values listed in 

the table are based on one run, and the data for the duplicate run is provided in Table 4.2. ** The binding observed was very weak, 

therefore, accurate values for n, Ka, Kd, ΔH, ΔS, and ΔG could not be calculated.  
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38 ± 4 nM for the Neh2-ETGE peptides), the G364C mutation lowered the binding 

affinity for both Neh2-ETGE and ProTα by >10 fold compared to the wild-type complex 

(31 ± 2 µM for the ProTα and to 345 ± 12 nM for the Neh2-ETGE peptides).  Our ITC 

data show that the interactions of G364C with targets are enthalpically less favorable 

compared to the wild-type interactions.  Replacement of the Gly residue with a Cys may 

restrict the conformational freedom of the neighboring region and/or possibly disrupt the 

wild-type hydrogen bond network.    

The binding affinities of Kelch to both the ProTα and Neh2-ETGE peptides were 

severely impaired by the R415G mutation to an extent that the affinities could not be 

accurately determined by ITC (Figures 4.4d & i).  Intriguingly, in contrast to G350S, 

G364C and R415G, the interactions with ProTα and Neh2–ETGE peptides were 

modestly strengthened with the A427V mutation.  The Kd values are 1.90 ± 0.04 µM and 

16 ± 2 nM, respectively. Interestingly, the A427V-ProTα complex formation was 

enthalpically more favorable, while the entropy change is more negative in comparison 

with the wild-type.   

We have also attempted to measure the binding affinities of a 20-residue Neh2-

DLG peptide (encoding the sequence of I20-F39 of Nrf2) to the wild-type Kelch (Figure 

4.4 k) and the four mutants; however, no binding was detected by ITC at 25°C in any 

case.  Our results suggest that either the interaction between the Kelch domain and the 

Neh2-DLG peptide is very weak or the ∆H of the binding is close to zero. This 

observation is in good agreement with results obtained very recently by Fukutomi et al. 

(Fukutomi, Takagi et al. 2014) showing that the binding of the Kelch domain with a 16- 
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Figure 4.4.  ITC profiles of titrating ProTα-ENGE peptide to wild-type Kelch. (a), G350S (b), 

G364C (c), R415G (d), and A427V (e), respectively; (f-j) show the ITC profiles of titrating Neh2-

ETGE peptide to wild-type Kelch (f), G350S (g),G364C (h), R415G (i), and A427V (j), respectively; 

(k) ITC profile of titrating Neh2-DLG peptide to wild-type Kelch.   
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mer peptide containing the previously defined DLG motif of Nrf2 (I22-V36) (Tong, 

Padmanabhan et al. 2007) was too weak to be detected by the differential scanning 

fluorimetry.  

The Neh2∆ETGE (deletion of 79ETGE82 from full-length Neh2) construct was 

then used to investigate the Kelch-binding of the DLG motif in the context of full-length 

Neh2.  Figures 4.5a-e show the isotherms for the binding of the Neh2∆ETGE protein to 

the Kelch domain at 25 °C, 20 °C, 15 °C, 10 °C and 5 °C, respectively.  From the ITC 

isotherms in Figure 4.5 it is apparent that the complex formation is endothermic at low 

temperatures and as the temperature is increased, the enthalpy change becomes smaller.  

Table 4.4 lists the thermodynamic parameters for the Neh2∆ETGE-Kelch complex at 5 

°C and 10 °C.  With the buffer conditions used in this study, the Ka of the human 

Neh2∆ETGE/Kelch complex was determined to be ~2.8×106 M-1 at 10 oC. The value is 

similar to what was determined for the mouse Neh2∆ETGE/Kelch complex formation at 

25 oC (2.0 ×106 M-1) (Tong, Katoh et al. 2006).  We then estimated the ∆Cp value based 

on the ∆H values at the 5 °C and 10 °C.  Based on the calculated ∆Cp value of -0.47 kcal 

mol-1 K-1, the ∆H at 25 oC was estimated to be ~ -1.2 kcal/mol. This small value of 

enthalpy change explains why binding between the Neh2∆ETGE and the Kelch domain 

could not be observed at 25 oC by ITC.  

4.3.3 Somatic mutations in the Kelch domain affect its interaction with the full-

length Neh2 domain 

To examine how the somatic mutations in the Kelch domain affect its interactions   
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Figure 4.5. ITC profiles of titrating wild-type Kelch to Neh2ΔETGE at 25 oC (a), 20 oC (b), 15 oC (c), 10 oC (d), and 
5 ºC, respectively. 
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Table 4.4. Thermodynamic parameters for the binding of the Kelch domain of 
Keap1 to Neh2ΔETGE at different temperatures. 

 

*n is the stoichiometry, Ka, and Kd are the association and dissociation constants, 
respectively.  ΔG = ΔH – TΔS = -RTlnKa, where T is the temperature in Kelvin, R is the 
gas constant. ΔH and ΔS are the enthalpy and entropy changes, respectively.  
  

Temp (° C) n* Ka
* 

(106 M-1) 
Kd 

* 

(nM) 
∆H* 

(kcal/mol) 
T∆S* 

(kcal/mol) 
∆G* 

(kcal/mol) 
Titration set 1       

5 0.90 ± 0.03 3.03 ± 0.14 330 ± 15 8.13 ± 0.11 16.37 -8.24 ± 0.03 
10 1.02 ± 0.17 2.85 ± 0.13 351 ± 16 5.80 ± 0.06 14.16 -8.36 ± 0.03 

       
Titration set 2       

5 1.10 ± 0.02 3.13 ± 0.18 319 ± 18 8.70 ± 0.15 16.96 -8.26 ± 0.03 
10 0.97 ± 0.02 2.66 ± 0.11 376 ± 16 5.64 ± 0.04 13.96 -8.32 ± 0.02 
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with the DLG and ETGE motifs in the context of full-length Neh2, ITC experiments were 

carried out at 5 °C to determine the binding parameters of the wild-type Kelch and four 

mutational variants with the Neh2 domain (residues 1-98) of Nrf2.  Kelch proteins were 

titrated to the full-length Neh2 and the isotherms were fit to either a two-site or one-site 

binding model.  The results are listed in Table 4.5 (Figures 4.6 a-e) shows the ITC 

isotherms and the results of the duplicate runs are listed in Table 4.6). Similar to what 

was observed for the binding of the Kelch domain to the Neh2-ETGE peptide, both 

R415G and G364C mutations dramatically weakened Kelch’s interaction with the ETGE 

motif of the full-length Neh2. Compared to the wild-type Kelch, which binds to the 

ETGE motif with a Kd of 1.26 ± 0.03 nM, G364C and R415G have binding affinities that 

are 37 and 870 fold lower, respectively. On the other hand, the G350S and A427V 

mutations show no significant impact on the ETGE binding. It is noteworthy that the 

binding affinities of the Neh2-ETGE motif to the wild-type and mutational variants of 

Kelch are tighter when present in the full-length Neh2 protein as opposed to a peptide.  

For instance, the Kelch R145G provided a measurable affinity of ~1.1 µM when titrated 

to full-length Neh2 but could not be accurately determined for the ETGE peptide (Figure 

4.6d).  

As observed for the mouse Kelch-DLG complex (Tong, Katoh et al. 2006), the 

DLG motif in the human Neh2 also binds significantly weaker to the Kelch domain 

compared to the ETGE motif (Kd of 179 nM vs 1.26 nM).  For the mutants, the binding
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Table 4.5. Thermodynamic parameters for the binding of the wild-type and mutational variants of Kelch to the full length 

Neh2 at 5° C. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The isotherms of wild-type Kelch, G350S and A427V mutants were fit to a two-site-binding model, assuming that the binding 

affinities of the ETGE motif are higher than that of the DLG motif.  The isotherms of G364C and R415G mutants were fit to a 

one-site-binding model.  n is the stoichiometry, Ka, and Kd are the association and dissociation constants, respectively.  ΔG = ΔH – 

TΔS = -RTlnKa, where T is the temperature in Kelvin, R is the gas constant, ΔH and ΔS are the enthalpy and entropy changes, 

respectively. Values listed in the table are based on one run, the data for the duplicate run is provided in Table 4.6 

 

Protein n Ka
 

(107 M-1) 
Kd 

 

(nM) 
∆H 

(kcal/mol) 
T∆S 

(kcal/mol) 
∆G 

(kcal/mol) 
Kelch ETGE 0.90 ± 

0.00(3) 
79.2 ± 2.07 1.26 ± 0.03  -20.34 ± 0.12 -9.02 -11.32 ± 0.01 

DLG 0.93 ± 0.02 0.56 ± 0.012 179 ± 4  9.04 ± 0.03 17.62 -8.58 ± 0.01 

G350S ETGE 0.91± 0.01 60.9 ± 2.99 1.64 ± 0.08 -20.13 ± 0.07 -8.96 -11.17 ± 0.03 
DLG 0.93 ± 0.01 0.35 ± 0.014 286 ± 11 10.61 ± 0.12 18.93 -8.32 ± 0.02 

G364C ETGE 0.92 ± 0.01 2.15 ± 0.18 46.5 ± 3.9  -15.09 ± 0.06 -5.77 -9.32 ± 0.04 
DLG - - - - - - 

R415G ETGE 1.03 ± 0.01 0.091 ± 0.008 1099 ± 97 -13.35 ± 0.12 -5.77 -7.58 ± 0.05  
DLG - - - - - - 

A427V ETGE 0.91 ± 0.01 79.1 ± 4.9 1.26 ± 0.08 -20.17 ± 0.17 -8.85 -11.32 ± 0.03 
DLG 1.00 ± 0.03 0.56 ± 0.021 179 ± 7 9.44 ± 0.10 18.02 -8.58 ± 0.02 
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Table  4.6. Thermodynamic parameters for the binding of the Kelch and Kelch mutational variants to full length Neh2 at 

5° C (duplicate runs). 

Protein n* Ka
* 

(107 M-1) 
Kd 

* 

(nM) 
∆H* 

(kcal/mol) 
T∆S* 

(kcal/mol) 
∆G* 

(kcal/mol) 
Kelch ETGE 1.06 ± 0.04 73.3 ± 1.84 1.36 ± 0.03  -19.02 ± 0.08 -7.74 -11.28 ± 0.01 

DLG 1.12 ± 0.02 0.46 ± 0.010 217 ± 5 8.46 ± 0.10 16.93 -8.47 ± 0.01 
G350S ETGE 1.07± 0.01 51.8 ± 1.79 1.93 ± 0.07 -19.83 ± 0.13 -8.74 -11.08 ± 0.02 

DLG 1.1 ± 0.03 0.36 ± 0.011 278 ± 8 9.52 ± 0.09 17.86 -8.34 ± 0.02 
G364C ETGE 0.92 ± 0.01 2.34 ± 0.12 42.7 ± 2.2  -15.0 ± 0.12 -5.63 -9.37 ± 0.03 

DLG - - - - - - 
R415G ETGE 1.0 ± 0.01 0.089 ± 0.008 1124 ± 101  -13.40 ± 0.05 -5.83 -7.57 ± 0.05 

DLG - - - - - - 
A427V ETGE 0.91 ± 0.00(3) 68.4 ± 1.95 1.46 ± 0.04 -20.69 ± 0.14 -9.45 -11.24 ± 0.02 

DLG 1.00 ± 0.01 0.53 ± 0.014 189 ± 5 9.52 ± 0.02 18.07 -8.55 ± 0.01 
 

The isotherms of wild-type Kelch, G350S and A427V mutants were fit to a two-site-binding model, assuming that the binding 

affinities of the ETGE motif are higher than that of the DLG motif.  The isotherms of G364C and R415G mutants were fit to a 

one-site-binding model. n is the stoichiometry, Ka, and Kd are the association and dissociation constants, respectively.  ΔG = ΔH – 

TΔS = -RTlnKa, where T is the temperature in Kelvin, R is the gas constant, ΔH and ΔS are the enthalpy and entropy changes, 

respectively.  
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Figure 4.6.  ITC profiles of titrating wild-type Kelch and mutational variants to full length Neh2 5 ºC   

(a) wild-type Kelch (b), G350S (c), G464C (d), R415G (e), and A427V  respectively. 
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affinity of the G350S to the DLG motif decreased by less than two-fold while the A427V 

mutant has the same affinity (Kd of 179 ± 4 nM) as compared to the wild-type.  The 

binding parameters indicate that in the presence of either of these two somatic mutations, 

the Kelch domain should still be able to interact effectively with both the ETGE and 

DLG motifs of Nrf2.  On the other hand, the interactions of the DLG motif with G364C 

and R415G could not be detected by ITC (Figures 4.6 c & d).  

4.3.4 Probing structural changes of Kelch and its mutational variants by CD and 

NMR 

CD and NMR were used to identify the effects of missense mutations on the 

overall folding and local conformation of the Kelch domain.  The CD results revealed 

that the β-sheet secondary structure content, observed in the wild-type Kelch domain, is 

preserved in G364C, G350S, R415G and A427V (Figure 4.7).  The percentages of β-

sheet and disordered regions estimated from the deconvolution CD spectra are almost 

identical to the wild-type protein (Table 4.7), strongly suggesting that these four 

mutations do not have a significant effect on the overall fold of the Kelch domain.  

We then used NMR spectroscopy to investigate the effects of somatic mutations 

on the local structural changes and ligand-binding of the Kelch domain.  To be able to 

monitor the site-specific conformational changes upon mutation and target binding, 

backbone chemical shift assignment of the 34-kDa human Kelch domain was performed.   
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Figure 4.7. CD spectra of Kelch and mutational variants.  The spectra of the 
mutants appears similar to the wild type Kelch domain suggesting no significant 
changes occur in the secondary structure content of the mutational variants of the Kelch 
domain listed.  
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Table 4.7. Deconvulated CD data for the WT Kelch and mutational variants 

 

Protein Helix β-sheet Turn Unordered 
WT-Kelch 0.063 0.432 0.120 0.385 
G350S 0.063 0.433 0.120 0.384 
G364C 0.063 0.432 0.118 0.386 
R415G 0.062 0.415 0.120 0.394 
A427V 0.061 0.436 0.119 0.384 



173 

 

 

1HN, 15N, 13Cα, 13Cβ resonance signals were assigned using the HNCACB, 

HN(CO)CACB, and 15N NOESY- HSQC experiments.  The assigned 1H–15N TROSY–

HSQC spectrum is showed in Figure 4.8.  Although the Kelch amino acid sequence 

contains regions of degeneracy (Figure 4.8), we were able to assign 92 % of the 1HN and 

15N resonances of the non-proline residues, 91.6 % of 13Cα and 90.7 % of 13Cβ of all 

residues.  The chemical shift assignments of the human Kelch domain are comparable to 

the assignments of the Kelch domain of mouse Keap1 that we have completed previously 

(Cino, Killoran et al. 2013).  

To probe the conformational changes of Kelch upon mutations, 1H-15N TROSY-

HSQCs of G364C, R415G, G350S, and A427V were collected and compared to the wild-

type Kelch spectrum (Figures 4.9).  The dispersion of the amide peaks for all four 

mutants is similar to that of the wild-type Kelch.  Further analysis of the chemical shift 

perturbations (Figure 4.10) revealed that A427V displayed the largest amplitude of peak 

shifts followed by G364C, R415G and G350S.  It is noteworthy that large chemical shift 

changes are observed for some residues that are located far from the mutation sites in the 

protein sequence for A427V, G364C and R415G mutants.  For instance, A427 is located 

in the middle of the second β-strand of Blade III.  Mutating of this residue to a valine 

caused peak shifts of a significant number of residues clustered in Blade II (residues 

V360-M409) and Blade III (S410-L457), in particular, S363, G379, E446 and A466 

residues (Figure 4.10c).   The S363 and G379 residues also undergo a substantial change 

in the G364C spectrum (Figure 4.10b).  
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Figure 4.8. Backbone resonance assignments of the Kelch domain of human 

Keap1. (a) 1H-15N HSQC spectrum of 2H/15N/13C labeled Kelch domain of Keap1. 

(b) Amino acid sequence of the Kelch domain, unassigned residues are colored in 

red. Amino acids appearing in grey are residual residues from the affinity tag 
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Figure 4.9. Overlay of the 1H-15N TROSY-HSQC NMR spectra of wild-type Kelch (black) and mutants  

(a) G364C, (b) R415G (c) G350S, and (d) A427V. 
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Figure 4.10. 1HN and 15N chemical shift changes of the Kelch mutants. Residues with traceable assigned 
resonances are colored based on composite 1HN and 15N chemical shift changes (∆δ=[(∆δHN)2+(∆δN/5)2]1/2  in ppm). 
(a) G350S, (b) G364C, (c) A427V and (d) R415G.   
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4.3.5 NMR analysis of the interactions of Kelch with Neh2 and ProTα peptides  

Figures 4.11a-c show the 1H-15N HSQC spectra of the wild-type Kelch domain in 

the presence of 5 molar equivalents of unlabeled Neh2-ETGE, Neh2-DLG and ProTα-

ENGE peptides, respectively.  Quantitative analysis of the Kelch chemical shift 

perturbations revealed large changes in S363, G417, G462, S508, G527, and T576 in the 

ETGE and ProTα bound state (Figures 4.11 a & c).  Some of these residues are directly 

involved in complex formation with targets, whereas the peak shift of others may be due 

to the changes in their local chemical environment (Lo, Li et al. 2006; Padmanabhan, 

Nakamura et al. 2008).  For example, S363 was found to form a hydrogen bond with the 

E46 of ProTα in the complex (Padmanabhan, Nakamura et al. 2008).  Meanwhile, the 

G462 residue does not interact with ProTα directly, rather it forms a intramolecular 

hydrogen bond with R415 which is involved in a salt bridge with E43 of ProTα 

(Padmanabhan, Nakamura et al. 2008).   

The amplitudes and pattern of chemical shift changes of G350S upon binding to 

the Neh2-ETGE and ProTα-ENGE peptides were comparable to those of the wild-type 

(Figure 4.12c, Figure 4.13c, Figures 4.15a&c).  G364C and R415G displayed smaller 

amplitudes of chemical shift changes upon binding to the Neh2-ETGE and ProTα-ENGE 

peptides (Figures 4.12 a&b, Figures 4.13 a&b, Figures 4.15b&d). Despite the difference 

in the amplitudes of changes, the overall chemical shift perturbation pattern is similar to 

the wild-type, suggesting that in the presence of either one of these two mutations, Kelch 

can still bind to the Neh2-ETGE and ProTα-ENGE peptides in similar modes.  This is in 
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agreement with our ITC data showing that both R415G and G364C were able to interact 

with the ETGE motif in the full-length Neh2 but with lower affinities.  

Titration of the Neh2-DLG peptide to the wild-type Kelch domain (Figures 4.11b 

& 4.15e) results in large resonance shifts of R354, D385, H436 and A607.  The H436 

residue was found to interact with the conserved G430 residue. The chemical 

environment of the G430 is influenced by the R415 residue, which takes part in hydrogen 

bonding with the targets (Tong, Padmanabhan et al. 2007).  Similarly, the chemical 

environment of other Kelch residues undergoing large peak shifts are affected by amino 

acids involved in hydrogen bonding with targets.  Figures 4.14a-d show the 1H-15N 

HSQC spectra of G364C, R415G, G350S, and A427V in the absence and presence of 

five molar equivalents of the Neh2-DLG peptides.  For the G350S and A427V mutants, 

while many resonance signals broaden out in the ligand-bound state, both mutants display 

similar chemical shift attenuation patterns as the wild-type Kelch.  Our NMR data is in 

accordance with the ITC data, indicating that both A427V and G350S mutants can bind 

to the Neh2-DLG motif. 

On the other hand, the relatively minor chemical shift changes observed for the 

G364C and R415G upon addition of DLG peptides indicate that the complex formation is 

disrupted by the mutations (Figure 4.15 and Figures 4.14a & b).  In fact, for the G364C, 

we observe no significant peak broadening and only minor resonance perturbations 

across the whole spectrum. The minor shifts observed in the bound state NMR spectra of 

G364C-DLG complex and R415G-DLG complex together with our ITC data suggest that 

the presence of either one of these two somatic mutations in the Kelch domain can 

depress the ability of Keap1 to interact with the DLG motif of Neh2.   
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Figure 4.11. 1H-15N HSQC NMR spectra of the wild-type Kelch domain in the absence (black) and presence of five molar 
equivalents of (a) Neh2-ETGE peptide, (b) Neh2-DLG peptide,  and (c) ProTα peptide.  
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Figure 4.12. Overlay of the 1H-15N HSQC NMR spectra of the (a) G364C, (b) R415G, (c) G350S, and 
(d) A427V Kelch mutations in the absence (black) and presence (orange) of a two molar equivalent 
the Neh2-ETGE peptide. 
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Figure 4.13. Overlay of the 1H-15N HSQC NMR spectra of the (a) G364C, (b) R415G, (c) G350S, and (d) 
A427V Kelch mutations in the absence (black) and presence (orange) of a two molar equivalent of the 
ProTα-ENGE peptide. 
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Figure 4.13. Overlay of the 1H-15N HSQC NMR spectra of the Kelch (a) G364C, (b) R415G, (c) G350S, 
and (d) A427V mutations in the absence (black) and presence (orange) of a five molar equivalent of the 
Neh2-DLG peptide. 
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Figure 4.14. Composite 1HN and 15N chemical shift perturbation (∆δ=[(∆δHN)2+(∆δN/5)2]1/2) analysis of the 
wild type and the four mutants in the presence of two molar equivalents of ProTα peptide. (a, b), two molar 
equivalents of Neh2-ETGE peptide (c, d), and five molar equivalents of Neh2-DLG peptide (e, f). The boundaries 
of the propeller blades are defined based on (Li, Zhang et al. 2004). 
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 DISCUSSION 4.4

In this work, we have characterized the effects of cancer-associated somatic 

mutations on structure and target recognition of Keap1.  Nine mutations identified in lung 

cancer patients or cancer cell lines, were selected based on their structural importance in 

the Kelch domain (Table 4.1).   ITC, CD and NMR techniques were used to quantify the 

binding parameters of these mutational variants with two of the binding targets of Keap1 

and to assess the conformational changes these mutations induce on the Kelch structure.  

Our results indicated that the disease-linked somatic mutations have differential effects 

on the structural integrity and the target recognition of Keap1.  

The G333, G379, G430, G476 and R413 residues are conserved in the Kelch 

domain.  Our protein expression, purification and NMR data (Figures 4.3) suggest that 

mutating these residues can result in the unfolding/misfolding of the Kelch domain.  

Further in vivo experiments are required to verify these findings.  As mentioned earlier, 

the G333, G379, G430 and G476 all play key roles in the folding of the Kelch domain 

(Li, Zhang et al. 2004).  The crystal structure of the human Kelch domain (PDB: 1U6D) 

shows that the backbone torsion angles of these four glycines are generally located in 

disallowed regions. Therefore, mutating these residues to any other amino acid with a β-

carbon side chain may induce severe conformational strain in the structure, causing the 

protein to unfold/misfold.  Previous studies using immunoprecipitation and luciferase 

assays have demonstrated that the G333C, G379D, and G430C mutants are defective in 

repressing Nrf2-mediated transcription of cytoprotective genes (Singh, Misra et al. 2006; 

Ohta, Iijima et al. 2008; Shibata, Kokubu et al. 2008).  In agreement with these findings, 
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our results suggest that reduction in protein stability is the cause of the loss-of-function of 

these mutants.  We speculate that any other mutations occurring in the double glycine 

repeats (e.g. G333S and G524C listed in the COSMIC database) will be detrimental to 

Kelch’s structural integrity (Singh, Misra et al. 2006; Ohta, Iijima et al. 2008; Shibata, 

Kokubu et al. 2008).  

Although the 1H-15N HSQC spectrum of Kelch R413L resembled that of a folded 

protein (Figure 4.3), the mutant is not stable compared to the wild-type Kelch.  R413, 

located in Blade III, is one of the conserved Arg residues found in all six blades of the β-

propeller structure (Li, Zhang et al. 2004).  The side-chain of this residue is involved in 

inter-blade hydrogen bonding with G379, the first residue of the glycine doublet in Blade 

II (Li, Zhang et al. 2004).  It has been suggested that the inter-blade hydrogen bonding 

between these conserved Arg and Gly residues are important for maintaining the Kelch 

structure (Li, Zhang et al. 2004).  Our results demonstrated that a single point mutation in 

the R413 position is sufficient to destabilize the protein, and probably leads to the loss of 

function.  The impacts of mutations of other conserved Arg residues (e.g. R362Q, 

R460G, R460S, R554Q, and R601W listed in COSMIC) on the protein stability remain to 

be elucidated.   

Unlike the G333C, G379D, R413L, G430C, and G476R mutants, G350S, G364C, 

R415G, and A427V have comparable solubility to the wild-type protein.  CD analysis of 

these four mutational variants illustrated that they all possess similar secondary structure 

contents as the wild-type (Figure 4.7).  On the other hand, our ITC results clearly 

demonstrated that, depending on their locations in the protein, these four mutations exert 

differential impacts on the target binding of the Kelch domain.  The G350 residue is 
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located in a loop region at the opposite face of the ligand-binding pocket of the β-

propeller structure, forming a hydrogen bond with the neighboring N346 residue (Li, 

Zhang et al. 2004). Crystal structures of the Kelch domain in complex with the Neh2-

ETGE, Neh2-DLG, and ProTα peptides revealed that this residue was not directly 

involved in the interactions with targets (Lo, Li et al. 2006; Tong, Padmanabhan et al. 

2007; Padmanabhan, Nakamura et al. 2008).  Even though the G350S mutation has been 

identified in non-small-cell lung cancer cell lines (Singh, Misra et al. 2006) and gastric 

cancer tissue (Yoo, Kim et al. 2012), the mutation appears to cause no substantial 

changes to the binding of ProTα or the Neh2 domain of Nrf2: only a 1-2 fold decrease in 

the binding affinity to ProTα, Neh2-ETGE, and Neh2-DLG motifs compared to the wild-

type Kelch were observed.  Our NMR data demonstrate that the G350S mutation does not 

lead to any significant change in the protein structure. Together, our results suggest that 

this particular mutation does not hamper the complex formation of Keap1 with Nrf2 and 

ProTα.  Effects of this mutation on Keap1’s interactions with other targets, however, 

remain to be investigated (Cino, Killoran et al. 2013; Hast, Cloer et al. 2014). 

The Kelch A427V is another cancer-linked mutation (identified in cancer tissue of 

a patient with small cell carcinoma (Ohta, Iijima et al. 2008)) that was observed to 

interact with Nrf2 and ProTα with similar affinities to wild-type Kelch.  In fact, this 

particular Ala to Val substitution resulted in modest increases (~ 2 fold) in the binding 

affinity of Kelch to ProTα-ENGE and Neh2-ETGE peptides (Table 4.2).  Our NMR 

results further confirm that the binding of this mutant to ProTα, Neh2-ETGE and Neh2-

DLG motifs are similar to the wild-type interactions with targets.  Intriguingly, while the 

G350S mutation resulted in subtle chemical shift changes to residues around the mutation 
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site (Figure 4.10a), the A427V mutation, found in the β2 strand of blade III, leads to local 

structural changes in blades II and III, which are reflected by the substantial chemical 

shift changes observed (Figure 4.10c).  However, these local structural changes do not 

impair the binding of Kelch to either Neh2 or ProTα.  Since the Kelch domain of Keap1 

also mediates the interaction with WTX (Camp, James et al. 2012), p62 (Komatsu, 

Kurokawa et al. 2010), PGAM5 (Lo and Hannink 2006), PALB2 (Ma, Cai et al. 2012), 

FAC1 (Strachan, Morgan et al. 2004), IKKβ (Kim, You et al. 2010) and Bcl2 (Niture and 

Jaiswal 2011), characterizing the effect of the A427V mutation on the binding of these 

targets will provide further insight into the links of this particular somatic mutation to the 

associated disease.  It is noteworthy that Hast et al. (Hast, Cloer et al. 2014) recently 

reported that the R470C, D422N, and G423V mutations also increase the binding to Nrf2 

compared to the wild-type Keap1 based on their immunoprecipitation and Western blot 

analysis.  However, the molecular effects of these cancer-associated mutations on the 

structure of Kelch remain unknown. 

Meanwhile, our ITC and NMR results show that both the G364C and R415G 

mutations impair Kelch’s ability to interact with Nrf2 and ProTα, albeit to different 

extents.  The G364C substitution resulted in significantly lower affinity for both Neh2-

ETGE and ProTα peptides (Kd(Neh2-ETGE) = 345 nM and Kd(ProTα) = 31 µM vs 

Kd(Neh2-ETGE) = 31 nM  and Kd(ProTα) = 2.7 µM for the wild-type Kelch).  The 

substantial decrease in affinity for the ETGE motif was also observed in the context of 

full-length Neh2 domain (Kd = 47 nM vs Kd = 1.26 nM for wild-type Kelch).  The crystal 

structure of the human Kelch domain in complex with the ETGE peptide illustrates that 

G364 has ψ/ϕ torsion angles of left-handed helix and is not involved in hydrogen bonding 
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with the target.  However, this Gly residue is located next to S363, which forms hydrogen 

bonds with E82 of the ETGE peptides (Lo, Li et al. 2006; Padmanabhan, Nakamura et al. 

2008).   Replacing the Gly with a Cys residue may restrict the orientation of the S363 

side chain from forming hydrogen bonds with E82.  Additionally, the G364C mutation 

may also affect the intra-molecular hydrogen bonding with the G603 residue (Li, Zhang 

et al. 2004).  It is noteworthy that even though the G364C and R415G mutations 

significantly weaken the interactions of Kelch with ProTα and the ETGE motif of Neh2, 

low binding affinities with these two targets could still be measured.  On the other hand, 

no interaction between the DLG motif and these two mutants could be detected by ITC. 

The R415 residue of Kelch is directly involved in the binding with targets (Lo, Li 

et al. 2006; Padmanabhan, Nakamura et al. 2008; Komatsu, Kurokawa et al. 2010).  In 

the mouse Keap1-ProTα peptide complex, R415 is involved in electrostatic interactions 

with the E43 residue of ProTα (Padmanabhan, Nakamura et al. 2008).  This Arg residue 

also forms salt bridges with the E79 residue in the binding interface with the Neh2-ETGE 

peptide (Lo, Li et al. 2006).  As such, it is not a surprise that replacing this critical Arg 

residue in the positively charged pocket with a non-polar Gly can significantly weaken 

the interactions of the Kelch domain with its targets, and this was observed in our ITC 

and NMR binding studies with ProTα and Neh2.  In agreement with this, a study by 

Tong et al (Tong, Katoh et al. 2006), which replaced R415 with a Lys also attenuated the 

binding of Kelch to the ETGE motif of Neh2 domain.  Similarly, Lo et al (Lo, Li et al. 

2006) detected no Nrf2 repressive activity for the R415A mutant.  We speculate that 

mutations of other residues that are in direct contact with the ETGE and DLG motifs of 

Neh2 (e.g. Y334H, R483C, S555C, and Y572C) will ultimately impair the interaction of 
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Keap1 with Nrf2.  Further in vivo and in vitro experiments will allow correlating the 

molecular effects of different categories of mutations with their impacts on the Nrf2-

repression function systematically. 
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Chapter 5 

 Summary 5

  Introduction 5.1

The last decade of structural studies led to the discovery of proteins that lack a 

stable tertiary structure yet are part of vital biological functions.  These proteins, now 

widely referred to as, intrinsically disordered proteins (IDPs), have altered the long 

believed protein-function paradigm, which hypothesized that cellular processes were only 

performed by proteins with definite static structure.  Nevertheless, it has been established 

that over one third of eukaryotic proteins have intrinsically disordered regions that are 

thirty residues or longer in length (Ward, Sodhi et al. 2004).  Furthermore, with the 

advances in experimental technology, conformational flexibility of folded proteins has 

also been brought into light (Uversky 2013).  Structural studies of IDPs have also 

enhanced our understanding of their conformational plasticity.  It has been noted that 

IDPs do not exist as true random coils as the name suggests (Uversky 2013).  Rather 

these proteins contain residual structure that is significant to executing biological activity.   

The new model defining the structure of functional proteins can be viewed as a 

continuous spectrum of differently disordered conformations extending from fully 

ordered to completely structure-less proteins (Uversky 2013).   

The lack of structure provides several functional advantages to IDPs compared to 

ordered proteins and domains.  Some of these advantages include the existence of a large 

interaction surface area, the presence of short linear motifs as well as structural motifs 

provide IDPs with the advantage to scaffold and interact with numerous targets, and the 
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diverse post-translational modifications of IDPs facilitate regulation of their function and 

stability with in a cell (Gunasekaran, Tsai et al. 2003; Diella, Haslam et al. 2008; 

Fuxreiter, Tompa et al. 2008; Galea, Wang et al. 2008).  IDPs interact with other proteins 

with high specificity and low affinity.  Such binding mechanism allows fast association 

with targets and rapid dissociation after the signaling process is completed (Wright and 

Dyson 2009).   Intriguingly, proteins that participate in binding, regulatory, and signaling 

functions such as transcription factors are enriched in intrinsically disordered regions, for 

the reason that the structural and biochemical properties of IDPs are well suited to carry 

out these tasks (Fuxreiter, Tompa et al. 2008; Galea, Wang et al. 2008; Wright and Dyson 

2009) .  

Because IDPs play key roles in cellular processes, many diseases are a result of 

abnormal functions of IDPs, reviewed in (Uversky, Oldfield et al. 2008).  Therefore, 

elucidating the means by which these proteins function is central to the design of 

therapeutic agents.  In this thesis, the role of two intrinsically disordered proteins, Nrf2, a 

bZIP transcription factor, and Prothymosin α (ProTα), a protein with wide range of 

cellular functions, has been investigated in the oxidative stress response.   The oxidative 

stress response regulated by Nrf2 is one of the cells’ approach by which it eliminates 

electrophilic and oxidative toxins.  

 Previous Work 5.2

The Nrf2 (nuclear factor erythroid 2-related factor 2) mediated signaling pathway 

is an adaptive response to environmental and endogenous stress stimuli whose goal is to 

retain a normal cellular environment by eliminating the stress factors (Itoh, Chiba et al. 
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1997).  The Kelch-like ECH-associated protein 1 (Keap1) plays a central role in the 

regulation of Nrf2.  The Keap1 protein was discovered as an inhibitor of the Nrf2 protein 

by the yeast two hybrid screening (Itoh, Wakabayashi et al. 1999).  Keap1 anchors the 

Nrf2 in the cytoplasmic environment of the cell by binding to the N-terminal Neh2 

domain of Nrf2.  During normal cellular conditions, a single Nrf2 protein is bound to a 

Keap1 homo dimer. The Keap1 is a Nrf2 linker protein for interaction with the Cul3-

based E2-ubiquitin ligase complex, leading to continuous ubiquitination of Nrf2 followed 

by proteosomal degradation (Kobayashi, Kang et al. 2004).  High levels of Nrf2 and Nrf2 

regulated genes have been observed in Keap1 disrupted mice, thus, demonstrating the 

important role Keap1 plays in the negative regulation of Nrf2 (Wakabayashi, Itoh et al. 

2003).  

The structure of the mouse and human Kelch domain has been crystalized in the 

free and bound state with the ETGE motif of the Neh2 domain (Li, Zhang et al. 2004; Lo, 

Li et al. 2006; Padmanabhan, Tong et al. 2006).  Crystal structures of the mouse Kelch 

domain with the mouse ProTα peptide and DLG-Neh2 peptide are also reported in 

literature (Tong, Padmanabhan et al. 2007; Padmanabhan, Nakamura et al. 2008).  It has 

been determined that the immobilization of the Nrf2 by Keap1 occurs in a sequential 

manner where the high affinity site, ETGE motif, binds first, followed by the docking of 

the DLG motif onto a second Kelch domain of the homo dimer Keap1 protein (Tong, 

Kobayashi et al. 2006).   The Keap1-ProTα complex has been shown to shipped into the 

nucleus, where, ProTα dissociates and Nrf2 degradation is initiated again to reestablish 

homeostatic conditions (Niture and Jaiswal 2009).    
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Structural analysis of the ProTα and Nrf2 to the Keap1 protein have also been 

performed using molecular dynamic studies (Cino, Wong-ekkabut et al. 2011).   It has 

been proposed that the binding of ProTα and the Neh2 domain to the Keap1 protein 

occurs via preformed bound-state-like β-turns, and that the residues outside of the motifs 

may also contribute to the stability of the structural elements (Cino, Wong-ekkabut et al. 

2011).  Preformed structural elements of other Kelch binding targets, PGAM5 (Lo and 

Hannink 2006), p62 (Komatsu, Kurokawa et al. 2010), WTX (Camp, James et al. 2012), 

FAC1 (Strachan, Morgan et al. 2004), PALB2 (Ma, Cai et al. 2012), and IKKβ (Kim, 

You et al. 2010) have also been examined and it has been suggested that their binding 

affinity to the Keap1 protein is dependent on the extent of preformed bound-state like 

conformation in the free structure (Cino, Killoran et al. 2013).   

Mutations in Nrf2 and Keap1 in human cancers have been also reported in 

literature (Shibata, Kokubu et al. 2008; Hast, Cloer et al. 2014).  Such mutations have 

been linked with constitutive expression of pro-survival enzymes in tumors, thus 

displaying resistance to chemotherapy and providing advantageous growth to tumor cells 

(Padmanabhan, Tong et al. 2006).   Cancer therapy of patients with mutations in Keap1 

and Nrf2 have shown poorer prognosis than cancer patients lacking mutations in the two 

proteins (Shibata, Kokubu et al. 2008).  Effects of many of these somatic mutations on 

Keap1’s ability to repress Nrf2 activity have been established.  For example, 

Padmanabhan, et al. have demonstrated in cell studies that the G430C and G364C 

mutations are unable to suppress Nrf2 mediated transcription.  Hast et al recently 

examined the R320 mutation in the Kelch domain of Keap1 and showed that it has a 

stronger affinity for Keap1 targets, Nrf2 and Cul3 (Hast, Cloer et al. 2014) and has 
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proposed the presence of “super binding” mutations.  Moreover, a Keap1 protein with the 

R320 mutation was able to ubiquitinate Nrf2 but could not promote its degradation (Hast, 

Cloer et al. 2014).    

 Studies of the Keap1 and Nrf2 mutations have made it evident that inhibition of 

Nrf2 can repress tumor cell proliferation and enhance apoptosis (Shibata, Kokubu et al. 

2008).  It has been also demonstrated experimentally that introduction of Nrf2-specific 

small interfering RNA into cancer cells showed decreased in the growth rate of the cells, 

making it a great drug target (Shibata, Kokubu et al. 2008). 

 Fuzzy complex between the flexible ProTα and Kelch domain of human 5.3

Keap1 

The protein structure-function paradigm was believed to be still applicable to 

disordered proteins in the target bound state, as it was observed that IDPs adopt a 

structure upon complex formation.  This view was challenged by the discovery of IDPs 

that retained their flexible nature in the ligand bound states. Investigation of the ProTα 

complex formation with the Kelch domain of the human Keap1 in chapter 2 revealed that 

the ProTα-Kelch complex falls into this “fuzzy” category of disordered proteins. A 

narrow proton dimension in the HSQC spectra is hallmark of disordered proteins.  The 

1H-15N HSQC of ProTα in the free and bound states exhibited a narrow proton dimension 

signifying that the protein remained disordered upon complex formation. The R1, R2, and 

steady state NOE parameters obtained through the spin relaxation experiments further 

strengthened the presence of a flexible state of ProTα in the ligand bound state.  The R1 

values averaged to be 2.47 s-1 in the bound state, larger than what is observed for a 
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protein with the same size as ProTα.  Such high R1 values result from internal motions on 

a picosecond-to-nanosecond timescale. Significant increases in the R2 values for the 

binding region of the ProTα were observed in the bound state, however, these high values 

in the bound state are still smaller than what is expected for a 46-kDa folded protein.  

Additionally, the small NOE and amide exchange values reinforced that ProTα falls into 

the fuzzy complex category upon complex formation with the Kelch domain of the 

human Keap1.   

 Binding interface of human ProTα with the Kelch domain of human Keap1 5.4

Karapetian et al. were the first to identify the binding interface of the mouse 

ProTα to the Kelch domain (Karapetian, Evstafieva et al. 2005).  A static image of the 

bound ProTα to the Kelch domain of the mouse Keap1 protein is also available (PDB id: 

2Z32).  In this crystal structure, a 16 residue ProTα peptide containing the ENGE motif is 

bound to the Kelch propeller structure (Padmanabhan, Nakamura et al. 2008).  In chapter 

2 of this work, binding region of the human ProTα to the Kelch domain of Keap1 is 

further investigated.  NMR, peptide array, and ITC experimental work added to our 

understanding of the Keap1 interaction with the ProTα protein.   The results indicated 

that the region in human ProTα, which binds to the bottom face of the Kelch domain 

involves more critical residues than previously probed in the mouse ProTα (Karapetian, 

Evstafieva et al. 2005).  The peptide array clearly demonstrated that mutations in the 

38NANEENGE45 region were damaging to the binding of the Kelch. Mutations of the 

E51, which had been previously shown to be important for the interaction with the Kelch 

domain, appeared to have no effect on the binding to target (Karapetian, Evstafieva et al. 

2005). Thermodynamic parameters of mutational variants of ProTα and chemical shift 
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perturbations in the ProTα HSQC spectrum upon Kelch binding also confirmed that 

flanking residues surrounding the ENGE motif are essential for ProTα-Kelch complex 

formation.  

Another important point experimental work presented in chapter 2 demonstrated 

is that although peptides are able to mimic binding motifs of proteins, their mechanism of 

association with targets can vary from the full length protein.  The binding enthalpy and 

entropy of the ProTα peptide differed from that of the full length protein upon forming a 

complex with Kelch.  MD simulation studies have revealed that the ProTα peptide has a 

greater loss of enthalpy due to the folding from a structure-less state to the bound-state β-

hairpin like structure (Cino, Wong-ekkabut et al. 2011). Additionally, because the peptide 

has a lower propensity than the full-length ProTα protein in forming the bound-state β-

hairpin like structure, the entropy loss associated with forming the bound state structure 

will be higher for the peptide as observed in this work (Cino, Wong-ekkabut et al. 2011). 

Thus it is important where possible to study ligand binding in full-length proteins as 

understanding the mechanism of interaction in full-length protein may aid in the proper 

design of drug agents.  

  The Neh2 domain of human Nrf2 5.5

The purification of the Neh2 domain of the Nrf2 has been discovered to be 

challenging as demonstrated for the mouse system (Tong, Yamamoto et al. 2008).  In this 

work, a new protocol for the purification of the human Neh2 domain of Nrf2 is 

established, which yields high quantity of pure protein allowing studying the role of the 

full-length Neh2 domain in the oxidative stress response.  The amide backbone resonance 
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assignment of the human Neh2 domain has laid the foundation for future ligand binding 

work with the Kelch domain or other binding targets that interact with the Neh2 domain, 

such as the p21 protein (Chen, Sun et al. 2009).   

Structural analysis of the Neh2 domain of human Nrf2 revealed that Neh2 has 

greater residual structure, compare to the flexible ProTα.  The central region of the 

human Neh2 domain is helical in nature and the C-terminal end has a β-turn propensity as 

observed for the mouse Neh2 (Tong, Katoh et al. 2006).  Based on the relaxation data, the 

N-terminal region of the Neh2 domain, residues 14 to 31, appears to possess residual 

structure, NOE values increase up to 0.4 indicating that the region is less flexible.  

Resonances of residues involved in complex formation undergo line broadening and 

cannot be observed even when temperature is increased by 5 ºC.   Nevertheless, the 1H-

15N HSQC spectra of the Neh2ΔDLG and Neh2ΔETGE in the Kelch bound state reveal a 

narrow proton dimension of the Neh2 protein.   Additionally, relaxation data of the Neh2-

Kelch complex is not available, yet, based on the 1H-15N HSQC spectra one can conclude 

that the Neh2 regions not involved in forming binding interface predominantly remain 

unchanged in structure.    

 Interaction between the Neh2 and Kelch domain 5.6

NMR and ITC studies of the complex formation between the Neh2 domain of 

mouse Nrf2 and the Kelch domain of mouse Keap1 demonstrated that the process is 

exothermic for both the DLG and ETGE motifs with a ΔH of  ~ -7 for the DLG-Kelch 

complex formation (Tong, Katoh et al. 2006).  Upon titration of the Neh2 to the Kelch 

domain of human Keap1 at room temperature and vice versa, a two site binding profile, 
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as seen in the mouse system was not observed for  the binding of the Neh2 and Kelch 

domains  (Tong, Katoh et al. 2006). Lowering the temperature revealed that the ΔH 

associated with the DLG-Kelch binding is close to -1.2 kcal/mol providing an 

explanation why a two site model could not be detected at room temperature.   ITC 

experiments performed at 5 ºC exhibit a two site binding for the Kelch-Neh2 complex 

using human derived constructs.  These results suggest that the mechanism of binding of 

the DLG motif of Neh2 to the Kelch domain of the human Keap1 maybe different than 

what is observed in the mouse system.   

 Order in disorder and its implication in target binding 5.7

The Neh2 domain of Nrf2 and ProTα are great examples for studying target 

binding of IDPs.  In this work, the binding of ProTα and Nrf2 with the Kelch domain has 

delineated the underlying mechanism of their differential binding to the Kelch domain.   

As stated earlier, IDPs are not true random coils (Uversky 2013).  Some IDPS have 

secondary structures and preformed structural elements that have important implications 

in target binding.  Previous studies of the Neh2 domain and ProTα combined with this 

work emphasize that ProTα and the Neh2 domain behave differently structurally in the 

free and target bound states with Kelch (Padmanabhan, Tong et al. 2006; Tong, 

Padmanabhan et al. 2007; Padmanabhan, Nakamura et al. 2008; Cino, Wong-ekkabut et 

al. 2011).  It has been demonstrated that the full length ProTα is highly flexible and less 

compact compare to the Neh2 domain of Nrf2 in the free and target bound.  A high 

entropic penalty is associated with attaining the β-turn structure required for 
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ProTα interaction with the Kelch domain resulting in a higher dissociation constant 

compare to the Neh2-ETGE –Kelch complex (Khan  2013).   

The data presented in chapter 3 shows presence of secondary structure content 

and a compact Neh2 domain of the Nrf2 protein compare to ProTα.   The Neh2 -ETGE 

motif has preformed β-turn like structure in the free state which allows less energy spent 

on adopting a bound state like structure and thus  binds tighter to the Kelch domain 

(Cino, Wong-ekkabut et al. 2011).   Additionally, the SSP scores of the N-terminal region 

of the Neh2 domain in chapter 3 displays an α-helical propensity (Figure 5.1a).  Recently, 

Fukutomi et al, showed that the Neh2-DLG motif under goes a disorder to order 

transition by adopting a stable helix in the target bound state (Fukutomi, Takagi et al. 

2014).    

These differences in the presence of preformed structural elements and the overall 

compactness between ProTα and the Neh2 domain of Nrf2 have important implication in 

their differential binding affinity to the Kelch domain of human Keap1.  A detail list of 

differences that contribute to the binding affinity of these two disordered proteins to the 

Kelch domain is presented in table 5.1.  

 Somatic mutations in the Kelch domain and its impact on target recognition 5.8

The G364C and G430C were amongst the first somatic mutations, isolated from 

lung cancer tissue of a patient and lung cancer-derived cell lines, respectively, exposed in 

the Kelch domain of Keap1 (Padmanabhan, Tong et al. 2006).  Luciferase assays of the 

G430C and G364C had revealed that in the presence of these mutations, Keap1 could not  
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Table 5.1.  A table listing structural differences between Neh2 and ProTα.  The presence of 
preformed structural elements allows Neh2 to form a tighter complex with the Kelch domain of 
Keap1 compare to ProTα.  



205 

 

 

perform its Nrf2 repression role, leading to constitutive Nrf2 mediated enzyme 

expression. This continuous presence of cytoprotective enzymes aided tumor cell 

proliferation (Padmanabhan, Tong et al. 2006).  Since the initial discovery of these 

mutations, numerous other somatic alterations within the Keap1 protein have been 

revealed.   In this thesis, nine somatic mutations, in the Kelch domain of human Keap1, 

discovered either in patient tissues or cancer cell lines, were created and their impact on 

Kelch structural integrity and Kelch target recognition was elucidated.  

 The purification procedure applied to obtain pure soluble samples for G333C, 

G379D, G430C, and G476R mutants resulted in aggregation of the protein samples and 

could not be used for ligand binding studies.  These glycine residues, occur as doublets in 

the β-propeller and are found to be critical for the structural integrity of the Kelch domain 

(Li, Zhang et al. 2004), thus, introduction of other amino acids with β-carbon side chain 

will result in misfolding or unfolding of the Kelch domain.  Since ProTα and Nrf2 are the 

weakest and strongest binding partners of the Kelch domain, respectively, (Cino, Killoran 

et al. 2013), we speculate that the Keap1 protein containing mutations within this double 

glycine region of the Kelch domain will also be incapable of interacting with other 

known targets such as p62, PALB2,  (Komatsu, Kurokawa et al. 2010).   

Another mutation that rendered the overall structural stability of the Kelch 

propeller is the R413L mutation.  It is a conserved arginine residue detected in all six 

blades of the Kelch domain and its side chain hydrogen bonds with the conserved G379 

residue. The 1H-15N HSQC obtained from the soluble fraction of this mutant resulted in a 

spectrum that resembled a folded protein but could not be compared to the wild-type 
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spectrum of the Kelch domain. Additionally, the protein sample and purity were 

compromised even at low temperatures.  Based on the experimental evidence presented 

in chapter 4, it can be concluded that a mutation in this conserved Arg residue has an 

impact on the β-propeller structure and is not able to maintain wild-type interactions with 

targets. 

The G350S, G364C, R415G, and A427V mutations were also studied.  It has been 

shown through CD and NMR that the secondary structure content of the wild-type is not 

disrupted in these mutants and these mutations do not undergo aggregation. Binding 

studies with ProTα and Neh2 revealed that the G350S and A427V are able to maintain 

wild-type interactions.  In fact the comparatively stronger binding of the A427V mutant 

to ProTα and Neh2 suggests that it may fall into the “super binder” category as observed 

with some other mutants (Hast, Cloer et al. 2014).  The G364C and R415G mutations that 

occur on the binding interface are unable to interact with the DLG motif of the Neh2 

domain.   

 Conclusion 5.9

The work in this thesis has added valuable information to the understanding of the 

underlying mechanism by which the Kelch domain of the human Keap1 interacts with its 

targets.  A new purification protocol of the Neh2 domain of the human Nrf2 protein has 

opened doors for future studies of the oxidative stress response in the human system.   

Details on the binding affinity of Kelch mutational variants affirm that the double 

glycines  and the conserved Arg residues are critical for the structural integrity of the 
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Kelch domain.   Other mutations studied in this work did not affect the overall stability of 

the β-propeller but did result in differential binding to targets.   

 Future Work 5.10

The data presented in this thesis demonstrate that some mutations occurring 

within the Kelch domain of the Keap1 protein in cancer patients or derived from cancer 

cells lines are able to maintain wild-type target binding.  Since poorer prognosis of cancer 

patients with mutations in Keap1 has been noted (Shibata, Kokubu et al. 2008), it will be 

of great interest to analyze the binding of these mutant proteins in in vivo functional 

assays such as luciferase assays and determine whether they are still able to carry out 

Nrf2 degradation in normal and tumor cells.   Additionally, this work provides the NMR 

backbone resonance assignment of the Kelch domain allowing studying the impact of 

these mutations on binding to other targets such as p62 (Komatsu, Kurokawa et al. 2010), 

PGAM5(Lo and Hannink 2006),  PALB2(Ma, Cai et al. 2012), WTX(Camp, James et al. 

2012), IKKβ (Kim, You et al. 2010) or FAC1(Strachan, Morgan et al. 2004).   Such 

studies can shed further light on how these mutations are pro cell survival in tumor cells.  

The binding studies can also aid in understanding the underlying mechanism of 

interaction between Keap1 and other targets.  

Many proteins have been reported in literature that are in competition with Nrf2 

for Keap1 binding and promote the activation of the Nrf2 signaling pathway.   Recently, 

p21Cip1/WAF1 has been shown to compete Keap1 for Nrf2 binding (Chen, Sun et al. 2009).   

Immunoprecipitation assays indicated that the C-terminal region of the p21 binds to the 

DLG motif of the Neh2 domain and thus prevents Nrf2 ubiquitination (Chen, Sun et al. 
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2009).   The C-terminal of the p21is disordered in conformation and adopts a helical 

structure in CaM bound state, and remains extended when interacting with the PCNA 

(Gulbis, Kelman et al. 1996; Yoon, Venkatachalam et al. 2009).  Binding studies of the 

C-terminal region of the p21 to the Neh2 domain can add further to our understanding of 

how disordered proteins interact with other unstructured partners.  Whether the Neh2 

domain or the p21 adopt a structured state upon binding to a structure-less protein is also 

exciting to examine.  Such studies show the structural flexibility of disordered proteins 

upon ligand binding, that is, the disorderd protein can adopt diverse conformations upon 

binding different targets via the same binding site.  This information is crucial to 

understanding the binding mechanism of Nrf2 with its partners and the information is 

crucial to designing drug agents that are used to repress Nrf2 activity in chemotherapy. 
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