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Abstract
We present sampling-based methods to treat work-conserving queueing systems. A vari-

ety of models are studied. Besides the First Come First Served (FCFS) queues, many efforts
are putted on the accumulating priority queue (APQ), where a customer accumulates priority
linearly while waiting. APQs have Poisson arrivals, multi-class customers with corresponding
service durations, and single or multiple servers.

Perfect sampling is an approach to draw a sample directly from the steady-state distribu-
tion of a Markov chain without explicitly solving for it. Statistical inference can be conducted
without initialization bias. If an error can be tolerated within some limit, i.e. the total varia-
tion distance between the simulated draw and the stationary distribution can be bounded by a
specified number, then we get a so called “nearly” perfect sampling.

Coupling from the past (CFTP) is one approach to perfect sampling, but it usually requires
a bounded state space. One strategy for perfect sampling on unbounded state spaces relies on
construction of a reversible dominating process. If only the dominating property is guaranteed,
then regenerative method (RM) becomes an alternative choice. In the case where neither the
reversibility nor dominance hold, a nearly perfect sampling method will be proposed. It is a
variant of dominated CFTP that we call the CFTP Block Absorption (CFTP-BA) method.

Time-varying queues with periodic Poisson arrivals are being considered in this thesis. It
has been shown that a particular limiting distribution can be obtained for each point in time
in the periodic cycle. Because there are no analytical solutions in closed forms, we explore
perfect (or nearly perfect) sampling of these systems.

Keywords: Perfect sampling, Nearly perfect sampling, Work-conserving queues, Priori-
ties, Homogeneous and time-varying queues
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Chapter 1

Introduction

This thesis presents perfect (or nearly perfect) sampling of some work-conserving queueing
systems with homogeneous or time-varying inputs. For the homogeneous queues, we focus
on the analysis of accumulating priority queues (APQ) to demonstrate our methods concretely.
For the time-varying queues, we study the quasi-birth and death processes and periodic Poisson
arrival queues under the First Come First Served (FCFS) discipline.

In this chapter, background and motivation are introduced, key methods mentioned and
contents of this thesis outlined.

1.1 Accumulating priority queue

The accumulating priority queue was introduced as the “time-dependent priority queue” by
Kleinrock [31]. It is a queue in which customers accumulate priority as a linear function of
their time in the queue: the higher the priority class of a customer, the greater the rate at
which that customer accumulates priority. When the server becomes free, the customer with
the highest priority accumulated to that instant, if any, is the one that is selected by the server.

Whereas Kleinrock [31] derived a set of recursive formulae for the average waiting time for
the different classes, Stanford et al. [54] extended Kleinrock’s analysis to derive the Laplace-
Stieltjes Transform (LST) of the stationary waiting time distribution for each class in the Pois-
son arrival, general service duration and single-server case.

In [54], the APQ was motivated by applications in health care. Generally, patients are
classified according to some acuity rating system, such as the Canadian Triage and Acuity
Scale (CTAS) [11], as shown in Table 1.1 with some Key Performance Indicators (KPIs). It is
not reasonable to assign absolute priorities to patients with relatively different service require-
ments, where a patient of lower priority classes can be overtaken many times by those of higher
priority, without any priority being accrued while the patient waits with possibly deteriorating

1



2 Chapter 1. Introduction

Category Classification Access Performance level (%)
1 Resuscitation Immediate 98
2 Emergency 15min 95
3 Urgent 30min 90
4 Less urgent 60min 85
5 Not urgent 120min 80

Table 1.1: CTAS key performance indicators. Performance level (in percentage) is the compli-
ance target for the proportion of that class’s patients that need to meet that standard.

health. The APQ rectifies this weakness by allowing waiting customers to earn priority while
waiting, at a rate that depends upon their priority class. In this way, low priority customers
eventually earn enough credit to be served ahead of recently-arrived high priority ones.

Based on Stanford et al. [54], Sharif et al. [50] considered the multi-server case, with
the additional requirement that the service durations be identically and exponentially dis-
tributed. Then numerical inversions of Laplace transforms are performed with the Gaver-
Stehfest method (c.f. Abate and Whitt [3], Gaver [16] and Stehfest [55]) to calculate the
probabilities of waiting times exceeding some limits. At present, no equivalent analytical re-
sult exists for more general cases, therefore sampling-based methods are strong candidates.

1.2 Perfect sampling

In Markov Chain Monte Carlo (MCMC), a common approach to generate draws from a “steady-
state” distribution of a Markov chain is to sample from an arbitrary starting point, then discard
the first so many draws. This discarding is done in order to remove any possible bias due to the
initial conditions at the start of the simulation; such bias is sometimes referred to as “initial-
ization bias” [37, p. 287] and the period of time discarded is referred to as the “burn in”. The
burn-in period is chosen to be long enough that the remaining draws are close to the steady-
state distribution. Steady-state properties are estimated using the remaining draws. A practical
difficulty is that for most chains the appropriate burn-in time is unknown.

Perfect sampling is an approach to draw a sample directly from the steady-state distribution
without explicitly solving for it. It is also called “exact sampling”, “perfect simulation” or
“exact simulation”. With perfect sampling, the burn-in time is not an issue.

The first well-known perfect sampling algorithm is commonly referred to as Coupling From
The Past (CFTP), proposed by Propp and Wilson [45]. Actually, Asmussen et al. [9] had
achieved similar results with different methods several years before, but it was prohibitively
inefficient in terms of computer time as Asmussen and Glynn [6, p. 121] have mentioned.



1.2. Perfect sampling 3

1.2.1 Coupling from the past

Conceptually, an infinitely long run of the chain is simulated as starting in the indefinite past,
so that the draw at time 0 is in steady state. The original CFTP by Propp and Wilson [45]
mainly considers sampling steady-state draw for finite-state Markov chains. If one were to run
coupled chains from all possible states at a finite time in the past, and if all of them result in the
same output at time 0 (i.e., they coalesce by time 0), then this value will be identical to what
would be achieved in any longer run, so its distribution must be the steady-state distribution.

To facilitate the implementation of algorithms, Read Once Coupling From The Past (ROCFTP)
was presented by Wilson [58], where the random variables which drive the coupled Markov
chains are used only once.

People might give up when encountering a long run of CFTP, and introduce “user-impatience
bias” (named by Fill [15]). Fill invented a “rejection sampling” algorithm for perfect sampling.
Starting from a given time in the future, firstly it performs simulation backwards from an arbi-
trary state and ends at time 0. Then it goes forward running chains from all possible states with
the random numbers generated in the first step until the originally given time. Finally it accepts
(or rejects) the state at time 0 if all chains coalesce (or do not). This method is nice since it
avoids impatience bias, but it requires simulation of the time-reversal of the chain which is hard
to achieve.

Wilson [57] proposed Multishift Coupling for families of location shifted distributions,
which allows efficient coupling of Markov chains with continuous state spaces. This allows
coalescence to be detected by the coalescence of minimal and maximal states. It is a “mono-
tone” coupling, in the sense that the ordering of states is preserved in each transition.

“Dominating coupling” by Kendall and Møller [29] is an important extension of CFTP.
We call this extended version as dominated CFTP. It enables coupling Markov chains with
unbounded state spaces by reducing the number of past chains that need to be simulated. For
situations with a natural (partial) ordering on the state space, simpler chains that dominate the
target ones are constructed and simulated backwards from time zero. When going forward, the
target chain only need to be simulated from values lying below the dominators. The construc-
tion of the reversible dominating chain is the key in this method.

1.2.2 Regenerative method

The workload or queue length of a stable queueing system can be treated as a regenerative
process. The regenerative points are the instants with a customer entering an empty system.
The stopping time is the length of a conventional busy cycle (a busy period followed by an idle
one) as noted by Asmussen and Glynn [6, p. 112].
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As shown by Sigman [52], Asmussen et al. [9] and Asmussen and Glynn [6, p. 420], we
can simulate exactly from the stationary distribution of the queueing system if we can simulate
exactly from the equilibrium distribution of a busy cycle length, i.e. the distribution of the
residual of a randomly selected busy cycle.

The outstanding advantage of this method is quite appealing: it does not need a reversible
chain. But its drawback is that the expected runtime is infinite (see Proposition 2.4.2). In
practice, this algorithm will always finish in finite time, but occasionally will take a very long
time to do so.

1.2.3 Nearly perfect sampling

Truly perfect sampling is hard to achieve due to high dimensions or the difficulty in reversible
dominating chain construction. Fortunately, in the queueing context, when the stable queue can
be treated as a stochastic process with unfinished workload (or queue length) as the variable,
the high dimension issues can be avoided.

Nearly perfect sampling can be considered as an asymptotic perfect sampling with well
specified distance to the target distribution. The quantitative assessment of it makes this method
valuable. As shown by Asmussen and Glynn [6, p. 100], and Zeifman et al. [60], the upper
bound of differences between the first moments of the transient distributed samples and the
stationary ones can be controlled to be guaranteed to be within an arbitrary distance.

In this thesis, we define the difference as the total variation distance [37, p. 47] between the
simulated draw and the stationary distribution. Using our CFTP Block Absorption (CFTP-BA)
method (Section 3.5), we can simulate samples guaranteed to be within a 10−10 total variation
distance of the stationary distribution in a few seconds of computing time.

1.3 Time-varying queues

Time-varying queueing models are more realistic, but they are not usually mathematically
tractable (Ross [49, p. 697]). As noted by Margolius [41], computational methods and approx-
imation techniques involved in time-varying queueing problems have long been regarded as
challenging. The time-varying ingredients can exist in the arrival processes, service durations,
or the number of servers, as mentioned by Alfa and Margolius [4].

Generally, it is acceptable that the time-dependent stochastic processes take some periodic
patterns. As for the periodic Poisson arrival single-server queue with general service duration,
Hasofer [22] showed that the LST of its virtual waiting time (i.e. unfinished workload) is
asymptotically periodic in time. Harrison and Lemoine [21] proved that the virtual waiting
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time at a given time does have a limiting distribution and has the same period length as the
arrival rate does.

Asmussen and Thorisson [8] extended the context to more general cases, where the inter-
arrival times and service durations both depend on the arrival instant with some periodic pat-
tern. They proved that with more conditions (such as Harris ergodicity of the phase parame-
ter which the inter-arrival time and service duration depend on), the virtual waiting time and
queue length also have time dependent limiting distributions in periodic patterns. Due to the
complexity of time-varying systems, only asymptotic solutions have been developed, and this
has happened gradually over recent decades.

Time-varying quasi-birth and death processes have been frequently studied for the tran-
sient or periodic solutions. By assuming some state (generally idle) at time 0, Zhang [61]
and Margolius [40] figured out the transient distributions of queue length in the single-server
and multi-server cases respectively. Zeifman et al. [60] approximated the limiting mean value
(expected queue length at some given time) of the single-server model with the transient dis-
tribution by restricting their difference to some controllable extent. The asymptotic periodic
solutions for single-server and multi-server models were achieved in Margolius [41], where
distributions and moments were presented in terms of integral equations.

In this thesis, queueing systems are generally presumed to be homogeneous ones unless
they are specifically pointed out as time-varying.

1.4 Problems to be solved

Analytically intractable models, such as Poisson arrival, multi-server multi-class APQs with
differently distributed service durations, and time-varying APQs with periodic Poisson arrivals,
are good candidates to apply perfect (or nearly perfect) sampling.

For partly solved models (e.g. results of the time-varying queues with periodic Poisson
arrivals by Lemoine [36] only present the moments of some statistics such as workload and
waiting time), the perfect sampling method provides direct solutions for the probability mass of
the queue length and tail probabilities in a simulation based way without having to approximate
based upon moment-based methods (c.f. Provost et al. [46]).

For problems with solutions in LST forms (like Hasofer [22], Stanford et al. [54] and Sharif
et al. [50]), applications of these methods are also validated in the sense that they provide
alternative and comparable solutions to the numerically inverted LST ones. As noted by Abate
and Whitt [3], the commonly used inversion, by Gaver [16] and Stehfest [55], only has limited
accuracy, restricted by the number of transform evaluations and computer system precision
limits.
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In the work-conserving context, these methods are adaptive automatically to any priority
disciplines specified, because they do not affect the computation of the tail of the infinitely
long run. More specifically, as for the work-conserving single server queue, the unfinished
workload path stays invariant no matter what priority disciplines are applied.

1.5 Outline of this thesis

As noted earlier, the dominated CFTP achieves perfect sampling of the Markov chains with
unbounded state within finite expected runtime, so it is the the preferred choice in what follows.
But when the reversible dominating process is hard to construct, we resort to the regenerative
method or nearly perfect sampling by CFTP Block Absorption (CFTP-BA).

In Chapter 2, notations and models are specified, and related existing algorithms are intro-
duced as components for addressing new problems.

These algorithms are: 1) CFTP related (original CFTP, multishift coupler, and reversion
of single-server queue with Poisson arrivals); 2) other perfect sampling methods (regenerative
method and a special case for general single-server queue); 3) miscellaneous ones (ordinary
simulation of multi-server queue with Random Assignment (RA), time-varying Poisson pro-
cess simulation, and Gaver-Stehfest algorithm for numerical inverse of LST).

Chapter 3 deals with homogeneous queues with single or multiple servers. After applying
the CFTP to a single-server queue with heavy tail inter-arrival time and service duration, we
go to APQs. Perfect sampling methods are applied to various queueing models with Poisson
arrivals and general service durations. When the service distributions differ among different
classes, the reordering of service durations will affect the distribution of the busy period in the
multi-server case. The new method we call CFTP-BA will be introduced and applied.

Chapter 4 explores time-varying queueing systems. Periodic Poisson arrivals are assumed,
and the service durations could be periodically time-dependent exponential or homogeneous
general ones. We focus on the FCFS discipline and briefly describe quick extensions to some
APQ models.

Results and contributions are summarized in Chapter 5. Some related new topics will be
pointed out as possible future work.



Chapter 2

Preliminaries

2.1 Notation and terminology

For the sake of clearness and consistency, abbreviations and miscellaneous mathematical nota-
tions are shown in Tables 2.1 and 2.2 respectively.

For different queueing systems, Kendall’s notation (c.f. [28]) is used as the standard classi-
fier. Since we assume an unlimited waiting room and infinitely large population of customers,
and specify the discipline additionally, the three-part code (a/b/c) is enough. When it is not
explicitly specified, it is presumed there are infinite waiting room and population of customers.
The first letter indicates inter-arrival time distribution, the second one service duration distribu-
tion, and the third one the number of servers. Conventionally, “M” stands for the exponential
distribution, and “G” for an unspecified “general” distribution.

In this thesis, it is assumed that the inter-arrival times are independent (corresponding to
notation “GI”), service durations independent, and the service durations are also independent
of the inter-arrival times.

In the priority queueing systems, in the light of Stanford [53], we introduce notation “ΣK”
pointing out that the arrival process is a superposition of K independent streams. If the classes
of customers might have different distributions of service durations, subscript K is added to the
service code. E.g. ΣKM/MK/1 stands for a single-server priority queue with K (≥ 2) classes
of customers arriving in Poisson processes, and each class has its own exponential service
duration distribution.

As for the time-varying queues, as noted in some recent papers (c.f. Margolius [40] and
Zeifman et al. [60]), subscript t implies that the inter-arrival time or service duration’s distribu-
tions are time dependent. For instance, the notation Mt/Mt/1 indicates that it is a single-server
queue with time-varying Poisson arrival and the service duration is exponential with time vary-
ing rate.

7
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APQ Accumulating priority queue
c.d.f. Cumulative distribution function
CFTP Coupling from the past
CFTP-BA CFTP with block absorption
ECM Exponential change of measure
e.c.d.f Empirical cumulative distribution function
FCFS First come first served
i.i.d. Independent and identically distributed
LST Laplace-Stieltjes Transform
p.d.f. Probability density function
p.g.f. Probability generating function
PS Processor sharing
RA Random assignment
RM Regenerative method
r.v. Random variable
WCQ Work-Conserving Queue

Table 2.1: Abbreviations

Z Integers: 0, ±1,±2, . . .
N Positive integers: 1,2,. . .
R Real numbers

D
= Identically distributed
D
≥ Large or equal statistically
=so Stochastically equal
≥so Stochastically larger or equal
⊥ Independent
∃ Exists
∀ For all
3−− Such that
dxe The smallest integer which is no less than x
bxc The largest integer which is no greater than x
(x)+ The non-negative truncated value of x, i.e. x if x > 0 or 0 if x ≤ 0
Exp(λ) Exponential distribution with rate of λ
Geom(p) Geometric distribution with success probability of p,
Poi(λ) Poisson distribution with arrival rate of λ
Unif(0, 1) Uniform distribution on (0, 1)
NB(r, p) Negative binomial distribution with number of successes r and success probability p

Table 2.2: Miscellaneous mathematical notations
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Busy period in multi-server queues The busy period in multi-server queues is defined as a
duration started at the arrival instant when the arriving customer finds an empty system, and
after that for the first time terminated at the departure instant, when the departing customer
leaves behind no busy servers. See Wiens [56] and Ghahramani [17]. The latter called it
“partial busy period”.

Totally idle period in multi-server queues It is the duration in the multi-server system when
all servers are idle.

Reversibility A stochastic process X(t) is reversible [27, p. 5] if (X(t1), X(t2), . . . , X(tn)) has
the same distribution as (X(τ − t1), X(τ − t2), . . . , X(τ − tn)) for all t1, t2, . . . , tn, τ ∈ R.

In a word, when going forward or backwards along this process in time, what we see are
statistically equivalent. So we also call it time reversible.

Light/Heavy tail distributions We define light tail distribution as those which decay at an
exponential rate or faster (c.f. Asmussen and Glynn [6, p. 163]). In queueing studies, usually
the distributions of interest have positive support (0,∞). So a distribution G(·) of light tail
requires that there exists ε > 0 such that∫ ∞

0
eεxdG(x) < ∞.

We consider heavy tail distributions as those which have super-exponential tails, i.e.
∫ ∞

0
eεxdG(x) =

∞ for all ε > 0 [5, p. 412].

Total variation distance The total variation distance between two probability distributions ν1

and ν2 on Ω is defined by

||ν1 − ν2||TV = max
E⊂Ω
|ν1(E) − ν2(E)|.

It can be computed as

||ν1 − ν2||TV =
1
2

∑
x∈Ω

|ν1(x) − ν2(x)|. (2.1)

A brief explanation is presented as follows. Let E = {x : ν1(x) ≥ ν2(x)}, then ||ν1 − ν2||TV =∑
x∈E(ν1(x) − ν2(x)). Please note that

∑
x∈E

(ν1(x) − ν2(x)) =
∑
x∈Ec

(ν2(x) − ν1(x)) =
1
2

∑
x∈Ω

|ν1(x) − ν2(x)|,

since ν1(Ω) = ν2(Ω) = 1. Therefore equation (2.1) holds.
For more details please refer to [37, p. 47-48].
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2.2 Model specifications

Non-preemptive work-conserving queue We define a non-preemptive work-conserving queue
discipline (NPWCQ) to be one in which the work requirements of customers are unaltered by
the passage of time and the server never idles when there is work to be done. Customers that
enter service remain in service until completion. This definition adds the lack of preemption to
the definitions given by Gross and Harris [19, p. 299], and Kleinrock [33, p. 113]. This means,
in particular, that customers do not renege. When there exists an idle server, a customer’s ser-
vice startes upon arrival. Otherwise, the customer joins a pooled queue and will be selected to
go into service according to some discipline when any server becomes available.

For writing convenience, in this thesis we use “work-conserving queue” (WCQ) to stand
for NPWCQ.

2.2.1 Accumulating priority queue

This discipline was first proposed by Kleinrock [31] and was termed as “time-dependent prior-
ity queue”. According to Stanford et al. [54], the specification of the APQ is described below.

Assume there are K ∈ N (K ≥ 2) classes of customers, and one or c (≥ 2) servers in the
system. Each class of customers arrives independently in a Poisson process with rate λi, i =

1, . . . ,K.

For class i customers, the priority accumulates linearly at rate bi, i.e. if a customer of class
i arrived at time t and is still in the system at time t′, then its priority at time t′ is bi(t′ − t), and
b1 > b2 > · · · > bK . When any server is available, the next customer to be served is the one
with the greatest priority at that instant. This is a non-preemptive system.

Let A be the inter-arrival time, whose c.d.f. is A(x), of two successive customers, and A(i)

be that of class i customers. According to the aggregation and branching property (c.f. Conway
et al. [13, p. 143]) of the Poisson process, it follows

A ∼ Exp(λ), A(i) ∼ Exp(λi), and A = min{A(i), i = 1, . . . ,K}

where λ =
∑K

i=1 λi. And a customer is classified as class i with probability of λi
λ

.

Let B(i) be the service duration of class i customers with c.d.f. Gi(x), and B be the generic
service duration with c.d.f. G(x) under the FCFS discipline, then G is a mixture of Gi, i.e.

G(x) =

K∑
i=1

λi

λ
Gi(x). (2.2)

To ensure some important statistics (e.g. the first moment of the stationary residual length
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of a randomly selected busy period of the M/G/1 FCFS queue) do exist, we assume

E
((

B(i)
)2
)
< ∞.

It follows that E
(
B(i)

)
< ∞, and E

(
B2

)
< ∞. Denote the corresponding service rates as

µi =
1

E
(
B(i)) , and µ =

1
E(B)

.

In the single-server scenario, the occupancies are

ρi =
λi

µi
, and ρ =

λ

µ
.

In the multi-server scenario

ρi =
λi

cµi
, and ρ =

λ

cµ
.

It is easy to verify that

ρ =

K∑
i=1

ρi,

since the mean service duration is the weighted average of those of all classes

1
µ

=

K∑
i=1

λi

λ

1
µi
⇒

λ

µ
=

K∑
i=1

λi

µi
⇔ ρ =

K∑
i=1

ρi.

To ensure the system is stable [32, p. 19], it must be assumed that

ρ < 1,

which guarantees that the system empties occasionally, with probability 1.

2.2.2 Time-varying queues

In this thesis we also consider some time-varying queues, specifically those with periodic ar-
rival and service processes. Without loss of generality, we assume the period length is 1.

According to Asmussen and Thorisson [8], the periodic single-server queue can be defined
as follows: at the arrival instant of the nth customer, say at time t, the service duration Bn and
the inter-arrival time, An, to the next arrival, are drawn according to distributions with c.d.f. Gθ

andAθ, which depend on the phase θ = (t mod 1) at the arrival instant.
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Model to be treated Description
GI/G/1 FCFS queue Inter-arrival time and service duration are both heavy tailed.
ΣKM/GK/1 and Poisson arrivals, K classes customers with
ΣKM/GK/c APQs corresponding service duration distributions.
Mt/Mt/1 and Periodic Poisson arrival and
Mt/Mt/c FCFS queues time-dependent exponential service rate.
Mt/G/1, Mt/GK/1 and Periodic Poisson arrival and
Mt/G/c FCFS and APQs general service duration distributions.

Table 2.3: Queueing models to be treated with perfect (or nearly perfect) sampling

For the time-varying quasi-birth and death processes (denoted as Mt/Mt/1 or Mt/Mt/c

FCFS queues), they have time-dependent Poisson arrival rates and “time-dependent exponen-
tial service rates” [40]. Let λ(t) ≥ 0 and µ(t) ≥ 0 be the arrival and service rates, which have
period length of 1, i.e.

λ(t) = λ(t + 1) and µ(t) = µ(t + 1),∀t ∈ R.

Both λ(t) > 0 and µ(t) > 0 except at discrete points, so their integrals are strictly increasing.
Then

Aθ1(x) = 1 − e−
∫ x

0 λ(θ1+s)ds,

Gθ2(x) = 1 − e−
∫ x

0 µ(θ2+s)ds,

where θ1 is the instant of arrival, and θ2 the instant of entry into service. Under the FCFS
discipline, θ2 can be determined with the unfinished workload seen at θ1.

In the priority systems, we assume all classes of customers arrive as independent periodic
Poisson processes with

λ(t) =

K∑
i=1

λi(t), ∀t ∈ R.

Service durations have homogeneous distributions, because the entry into service times are
affected by the priority discipline, it is hard to determine them at the arrival instants. So these
models are denoted as ΣKMt/GK/1 or ΣKMt/G/c.

2.2.3 Queueing models to be treated

With notations and models being specified above, we summarize the models to be treated with
perfect (or nearly perfect) sampling methods in Table 2.3.
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2.3 CFTP related algorithms

2.3.1 CFTP

The CFTP algorithm was introduced by Propp and Wilson [45]. It allows perfect sampling of
an ergodic Markov chain. It can be applied to bounded and continuous state space chains.

For the refined algorithms and brief proofs of CFTP, see Murdoch and Takahara [43] and
Asmussen and Glynn [6, p. 120].

We will describe it for the case of a finite state space labelled as 1, 2, . . . , n. Denote by Xt

the ergodic Markov chain. Suppose that it can be simulated using a recursive formulation

Xt+1 = φ(Xt,Ut+1), t ∈ Z, (2.3)

where Ut+1 are i.i.d. from some known distribution, and φ is a deterministic function.

In the CFTP context, let X(τm, j)
t be the Markov chain starting from time τm with state j,

where τm < 0, m = 0, 1, . . ., and j = 1, 2, . . . , n. We will usually set τm = −2mT0, where T0 ∈ N

is a constant.

The algorithm can be performed in the following way:

(1) Run the initial trial (i.e. m = 0 and τ0 = −T0) to detect the coalescence.

Generate i.i.d. Ut (t = τ0 + 1, τ0 + 2, . . . , 0). Then update X(τ0, j)
t ( j = 1, 2, . . . , n) with

formula (2.3) and these random numbers.

If X(τ0, j)
0 = X(τ0)

0 ,∀ j = 1, 2, . . . , n, i.e. they have coalesced by time 0, then output X(τ0)
0 as

the steady-state draw. Otherwise, go to step (2).

(2) Conduct extra trials (i.e. m ≥ 1 and τm = −2mT0) starting with m = 1:

Generate extra i.i.d. Ut (t = τm + 1, τm + 2, . . . , τm−1). Then update X(τm, j)
t ( j = 1, 2, . . . , n)

with formula (2.3) and Ut (t = τm + 1, τm + 2, . . . , 0).

If X(τm, j)
0 = X(τm)

0 ,∀ j = 1, 2, . . . , n, then stop repeating and output X(τm)
0 as the steady-state

draw. Or else increase m by 1 and repeat this step.

Remark

(1) In the extra trials of detecting coalescence, the random variables generated in previous trials
must be reused.

(2) The choice of T0 depends on the characteristics of the system. E.g. in the queueing system,
if the occupancy rate is close to 1, which means the stationary queue length is likely to be large
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and it tends to take a long run to return zero, so we prefer a relatively large T0, which allows a
greater chance of coalescence to occur.

(3) τm could take −2mT0 (m ≥ 1), −2mT0, or other values. The geometric scheme accelerates
coalescence in the extra trials.

(4) The runtime is finite due to the “geometric trial argument” (see proposition 8.1 by Asmussen
and Glynn [6, p. 122]).

2.3.2 Multishift coupling

Before explaining this algorithm, we state the concept of monotonicity (see Murdoch and Taka-
hara [43] and Propp and Wilson [45]). An update function is said to be monotonic if it preserves
the partial order in the state space, i.e. X � Y implies φ(X, u) � φ(Y, u) for all u. With mono-
tonicity, only maximal and minimal elements need to be followed, as all others are sandwiched
between them.

Here “�” represents the partial order relation. If X and Y are scalar values, then the partial
order could be the usual numerical order. When they are vectors, we can define a component-
wise partial order as X � Y if X(i) ≤ Y (i) for all i.

The choice of update function φ(·, ·) is crucial. It must be chosen so that updates coalesce
and coalescence can be detected, which is not always easy. For example, we need to simulate
shifted exponential completion instants W when simulating the completion of service for an
individual who starts service at time s(Xt). A simple choice would be to simulate E ∼ Exp(µ),
whose c.d.f. has the form 1 − e−µx, x > 0, and set W(Xt) = s(Xt) + E, but then different s(Xt)
values would always lead to different W(Xt) values.

Wilson [57] proposed Multishift Coupling for families of location shifted distributions,
and we can use this coupling to handle unimodal distributions. Continuing with the example
above, for s(Xt) = 0 we set W = E, but use the following construction (see Figure 2.1) for
other values. After obtaining E, we sample U ∼ Unif(0, 1) and multiply it by the density at
E to obtain D = Uµ exp(−µE) and the point C0 = (E,D). We then compute H by setting
D = µ exp(−µH), and replicate C0 as Cn = (E + nH,D), n ∈ Z (shown as asterisks in the plot).
For any value of s(Xt), exactly one of these points lies under the shifted density; we use that
point’s horizontal coordinate as W(Xt).

By construction, W(Xt) takes on a discrete lattice of values as s(Xt) varies. This is a mono-
tone coupling, i.e. it preserves monotonicity, in the sense that the ordering of s(Xt) values is
preserved in the corresponding W(Xt) values, and our simulations from multiple starting val-
ues will result in coalescence when s(Xt) falls in a sufficiently small interval. E.g. as shown in
Figure 2.1, for any s(Xt) lying between C1 and C2, they are updated to W(Xt).
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0 x

y

s(Xt)E

C0 C1 C2 C3D

H W(Xt)

Figure 2.1: An illustration of multishift coupling. The solid black line is the standard Exp(µ)
density; the red line is the density after shifting to an origin of s(Xt). The values E and D are
selected at random as described in the text; points Ci and the value W(Xt) are derived.

With this method, we can perform coupling in a continuous state space. Uncountably many
chains will coalesce to a finite number of different states at the first transition.

2.3.3 Dominated CFTP

As mentioned in Section 2.3.1, ordinary CFTP is only easily applied to bounded state chains.
However, in queueing models, the state space (e.g. unfinished workload or queue length) is
usually unbounded, so we need to upgrade our method. The dominated CFTP was introduced
by Kendall and Møller [29]. Its basic idea is to reduce the number of chains to be simulated.
We want to sample a steady-state draw from {Xt}t∈R, but it is too complex to implement. Sup-
pose we can construct a dominating process {Yt}t∈R, which dominates our target process in the
following sense. Let � be a partial order on the common state space of Xt and Yt. We say Yt

dominates Xt if for any t0 where Xt0 � Yt0 we have Xt � Yt for all t ≥ t0 with probability one, i.e.
sample paths of Xt are caught below sample paths of Yt. Assume we know how to sample from
the dominating process and achieve the backward simulation. So we can use it as an upper
bound to conduct the ordinary CFTP, and the unbounded problem is solved.

It is quite appealing to apply dominated CFTP for queueing systems, because in many
stable queues the process state can be represented as a scalar and the empty state can be reached
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within finite time.

Proposition 2.3.1 Suppose we have a coupled simulation of two stable queues, denoted by

{Xt}t∈R and {Yt}t∈R. We assume the following:

1. Both are real-valued, with 0 as a minimal state.

2. Y0 is a draw from the steady-state distribution of Yt.

3. We can simulate Yt backwards in time, and find an instant T a ≤ 0 at which YT a = 0.

4. Yt dominates Xt in the usual ordering for real numbers.

Then in the coupled simulation of Xt started from XT a = 0, X0 will be a draw from the steady-

state distribution of Xt.

Proof Start both chains in state 0 at time t0 < 0. Then Yt ≥ Xt for all t ≥ t0 by dominance.
Let t0 → −∞; then both X0 and Y0 tend to their steady-state distributions. The coupling only
allows one possible path for Xt on [T a, 0], so X0 as constructed above must be a steady-state
draw. �

Figure 2.2 illustrates the dominated CFTP in a queueing system.

2.3.4 Backward simulation of M/G/1 FCFS queue

As mentioned before, the key of dominated CFTP is to find a dominating chain and we are able
to simulate the reversal. Generally, the reversibility is harder to achieve than dominance. One
feasible way is to construct a coupled time reversible chain.

It is well-known that the output process of an ergodic M/M/1 FCFS queue is time reversible
(Ross [49, p. 399]), since it is a birth and death process, which is time reversible. But the
M/G/1 FCFS queue is not.

Sigman [51] presented a method to simulate the M/G/1 FCFS queue backwards, based on
Theorem 5.7.6 by Ross [48, p. 280]. The coupled M/G/1 Processor Sharing (PS) queue was
introduced, whose output is also a Poisson process with the same rate as the arrivals.

Solutions of M/G/1 FCFS queue

Recall that, in the M/G/1 FCFS queue, according to the Pollaczek-Khintchine formula (see
Kleinrock [32, p. 200]), the stationary unfinished workload has LST as

W̃(s) =
s(1 − ρ)

s − λ + λB̃(s)
,
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Time

−T 0

0

Figure 2.2: An illustration of dominated CFTP in a queueing system. These paths are the
number of customers in the system. The black one is the dominator and the cross indicates a
stationary draw of it at time 0. The red path belongs to the target chain and the point at time 0
is outputted as the steady-state draw of the system of interest.

where ρ = λ/µ is the occupancy rate, and B̃(s) the LST of service duration B. It can be written
as

W̃(s) =
1 − ρ

1 − ρ
[

1−B̃(s)
s/µ

] =
1 − ρ

1 − ρB̃∗(s)
,

where

B̃∗(s) =
1 − B̃(s)

s/µ
. (2.4)

Equation (2.4) is the LST of the equilibrium distribution of the service duration.

It is clear that
p

1 − (1 − p)z

is the p.g.f. of Geometric distribution with success probability of p. Therefore the stationary
unfinished workload is a compound Geometric distribution, and it can be represented as

W =

Q∑
i=1

Yi, (2.5)

where Q ∼ Geom(1 − ρ), Q = 0, 1, . . ., and Yi are governed by the equilibrium distribution of
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the service duration and they are i.i.d.’s. If Q = 0, then W = 0.

Let T be the length of busy period of M/G/1 queue, and T̃ (s) its LST. It is well known (e.g.
Kleinrock [32, p. 213-214]) that

T̃ (s) = B̃
(
s + λ − λT̃ (s)

)
, (2.6)

E(T ) =
E(B)
1 − ρ

, and E(T 2) =
E(B2)

(1 − ρ)3 . (2.7)

Coupled processor sharing queue

The Processor Sharing (PS) discipline referred in this thesis is the round-robin scheduling
algorithm (Kleinrock [33, p. 166] ), with all quanta of the service capacity shrinking to zero.
It is a single-server system. Any customer’s service starts immediately at the arriving instant,
and all of them sojourning in the system share the capacity of the server equally.

The M/G/1 PS model and the M/G/1 FCFS queue are coupled in the way that they are
fed with the same arrival instants and service requirements. Since workload in a single-server
queue is invariant under all work-conserving disciplines, the sample paths of unfinished work-
load in the coupled PS model and the FCFS queue are exactly the same.

Let Q(t) be the number of customers in the PS model, and Y1(t), . . . ,YQ(t)(t) the correspond-
ing completed (or unfinished) workloads of the customers. It is shown by Ross [48, p. 280]
that it has stationary distribution in the form as

(Q,Y1, . . . ,YQ),

where Q and Yi are the same as those in equation (2.5), and its departure process is also a
Poisson process with rate of the arrival one (λ). Define ~Y(t) = (Y(1)(t), . . . ,Y(Q(t))(t)) as the
ascending ordered vector of completed workloads, then {Q(t), ~Y(t)} is time reversible. When
looking forward, they are completed workloads. If looking backwards in time, they become
unfinished workloads, as illustrated in Figure 2.3.

Randomly selected service duration

For a stationary M/G/1 PS queue, we check its state at time 0. Due to stationarity, the state at
time 0 has the same distribution as the state at a randomly selected point in time, assuming the
selection is independent of the process. Let X denote the length of a selected service duration,
Y the remaining time and Z the age.

Let G(x) be the tail probability and g(x) the p.d.f. (assuming it exists) of the service dura-
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Figure 2.3: Illustration of the time reversibility of the M/G/1 PS model. Denote by (Com-
pleted, Unfinished) the workload pair. When t = 0 there are 2 customers (C1 and C2) with the
pairs of (1,2) and (2,3). A new arrival (C3) at t = 2 having workload pair (0,4).

tion. As shown by Kleinrock [32, p. 171-172], the p.d.f.’s of X and Y are

fX(x) = µxg(x) (2.8)

fY(y) = µG(y).

Let U ∼ Unif(0, 1) be independent of X, then due to the randomness of the inspection time, we
have

Y = UX and Z = (1 − U)X. (2.9)

Because U and 1 − U both have standard uniform distributions, Y and Z are identically dis-
tributed. But note that they are not independent. Recall that Y represents the remaining (or
unfinished) workload, and Z the completed workload. Their identical distributions support the
time reversibility of the M/G/1 PS model.

Sigman [51] calls the distribution of X the spread distribution and Y having equilibrium
distribution of the service duration (denoted by B). Their c.d.f.’s are denoted as

FX(x) = H(x) = 1 − µxG(x) −Ge(x), (2.10)

FY(y) = Ge(y) = µ

∫ y

0
G(s)ds,
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where Ge(x) = 1 − Ge(x). Equation (2.10) provides a more general form than equation (2.8)
does.

Let T e be the residual of a randomly selected M/G/1 busy period. Then its p.d.f. is fT e(x) =

FT (x)/E(T ), where FT (x) is the c.d.f. of the busy period length. So we have

E(T e) =

∫ ∞

0
x

FT (x)
E(T )

dx =
E(T 2)
2E(T )

=
E(B2)

2E(B)(1 − ρ)2 , (2.11)

by using results in equation (2.7). To ensure E(T e) < ∞, it requires that E(B2) < ∞. It is one
of the reasons why the assumption is made for this thesis. This is not generally considered a
strict condition.

Algorithm for backward simulation of M/G/1 FCFS queue

Based on the results shown above, the algorithm can be described as follows. It implements
the descriptions in Step 1 of Algorithm 1.1 by Sigman [51]. Assume the stationary busy period
of a M/G/1 FCFS queue starting at time T a ≤ 0.

(1) Generate a r.v. Q ∼ Geom(1 − ρ). If Q = 0, then return T a = 0. Or else, go to step (2).

(2) Simulate forward in time the M/G/1 PS model.

Let ~τ and ~β be vectors with variable lengths for the storage of departure instants and
associated service durations, with initial length of zero.

Let ti > 0, i = 1, 2, . . . denote the event (arrival or departure) instants, with t0 = 0, and
Qi, i = 1, 2, . . . , the number of customers in the system at ti+, with Q0 = Q.

Denote by ~Y(i) = (Y1(ti+), . . . ,YQi(ti+)), i = 1, 2, . . . , the residual service requirements of
customers in the system just after the instant of ith event, with ~Y(0) = (Y1(0+), . . . ,YQ(0+)).
Each component in ~Y(0) and ~Y(i), i = 1, 2, . . . has its associated invariant service require-
ment.

Denote by ai the time to next arrival event, and di to next departure event starting from
ti+, i = 0, 1, 2, . . ..

– Initializations at time 0+.

Based on equations (2.10) and (2.9), we have

Yk(0+) = UkXk, k = 1, . . . ,Q,

where Uk ∼ Unif(0, 1) are i.i.d., and Xk also i.i.d. with its c.d.f. defined in equation
(2.10). The service requirement associated with this entry is Xk.
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The time to next arrival a0 = E, where E ∼ Exp(λ) is generated independently for
each new arrival. Time to next departure

d0 = min
k
{QYk(0+), k = 1, . . . ,Q}.

– When Qi > 0, do the follows for i = 0, 1, . . ..

If di < ai then the next event is a departure. The updated values are as follows:

ti+1 = ti + di;

Yk(ti+1+) = Yk(ti+) − di/Qi, k = 1, . . . ,Qi,

add ti+1 to ~τ,

and as for the entry of value 0, add the associated

service requirement to ~β, then delete this entry;

Qi+1 = Qi − 1;

di+1 = min
k
{Qi+1Yk(ti+1+), k = 1, . . . ,Qi+1};

ai+1 = ai − di.

Otherwise, the next event is an arrival. Then update as

ti+1 = ti + ai;

Qi+1 = Qi + 1; (add a new entry)

Yk(ti+1+) = Yk(ti+) − ai/Qi, k = 1, . . . ,Qi,

YQi+1 ∼ G(·), is generated independently,

and associated with this entry as a service requirement;

di+1 = min
k
{Qi+1Yk(ti+1+), k = 1, . . . ,Qi+1};

ai+1 ∼ Exp(λ) is generated independently.

Assume there are N components in ~τ, i.e. N departures have been generated. Since the
departure events were added chronologically, the components in ~τ satisfy τ1 < τ2 < . . . <

τN , and the corresponding service requirements are β1, β2, . . . , βN which were recorded
in ~β.

Output T a = −τN , and (−τN ,−τN−1, . . . ,−τ1) as the arrival instants of the stationary busy
period’s age which ends at time 0. The corresponding service durations are (βN , βN−1, . . . , β1).

The coupled M/G/1 FCFS queue is constructed with these generated random variables
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and it has exactly the same unfinished workload as that in the M/G/1 PS model.

2.4 Other perfect sampling algorithms

2.4.1 Regenerative method of perfect sampling

Let Xn, n = 0, 1, . . . denote the number of customers in a stable queue just before the nth arrival,
with X0 = 0. Then {Xn : n ≥ 0} is a positive recurrent non-delayed discrete-time regenerative
process with x∗ = 0 as the regenerative setting. Denote by T ∈ N its cycle length, so E(T ) < ∞
[5, p. 9, Theorem 2.2], since the probability of renewal at state 0 is strictly positive. The cycle
length is the number of customers served in a busy period. Explicitly, a generic cycle with
length T can be defined as

C = {Xn : 0 ≤ n < T }.

It is easy to simulate i.i.d. cycles and the sequentially generated ones are denoted by

C( j) =
{
X( j)

n : 0 ≤ n < T ( j)
}
, j ≥ 1, (2.12)

with corresponding cycle lengths T ( j).
It is known (see Asmussen and Glynn [6, p. 111]) that

πx =
1
E(T )

E

T−1∑
n=0

1{Xn = x}

 =
1
E(T )

E

 T∑
n=1

1{Xn = x}

 ,
where x = 0, 1, . . ..

Denote by T e the residual length of a randomly selected cycle. Explicitly, suppose X0 is
sampled from the limiting distribution, then

T e = min{n ≥ 1 : Xn = 0}, (2.13)

It is clear that
Pr(T e = n) =

Pr(T ≥ n)
E(T )

, where n = 1, 2, . . . . (2.14)

Let
J = min{ j ≥ 1 : T ( j) ≥ T e}, (2.15)

then
X(J)

T e ,

which is the number of customers in the system found by the T eth arrival, has the stationary
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distribution. See Sigman [52] for the proof.

Proposition 2.4.1 Denote by {Xn}n≥0 and {Yn}n≥0, n = 0, 1, . . ., two stationary queues. They

are coupled such that Xn ≥ Yn,∀n ≥ 0, if Y0 = X0. Let C( j), T e and J be as defined in

equations (2.12), (2.13) and (2.15) respectively. We map the r.v.’s generated in C(J), so that the

dominance coupling is preserved, and we simulate forward from empty state with the mapped

r.v.’s to construct {Yn}n≥0. So YT e is a steady-state draw from the limiting distribution of {Yn}n≥0.

Proof As described above, the dominating process {Xn}n≥0 is in steady state at the T eth step,
so the coupled chain is also in steady state at this time. �

Remark If T (J) = T e, then the waiting time is 0, since the T (J)th customer finds an empty
system.

To apply this method, we need to find a dominating chain for which we can simulate from
its limiting distribution. Assume {Yn} is the stochastic process of interest and {Xn} is such a
coupled dominating process. Suppose we can sample T e of the cycle of {Xn}, and let J be
defined as above, then Y (J)

T e is a steady-state draw we need.
Based on the above results, we can describe the general algorithm of perfect sampling of

the WCQ, which has common service duration distributions among (possibly) different classes
of customer. It proceeds as follows:

(1) Sample T e of a coupled chain which dominates the WCQ in workload. Set n = T e.

(2) Independently and sequentially simulate the coupled dominator (FCFS) cycles C( j), j ≥

1, until we get T (J), where J = min{ j ≥ 1 : T ( j) ≥ T e}. In C(J), artificially set the class
number of the nth arrival as K, which is the class of interest.

(3) Restore the WCQ with the generated inputs of C(J), output the waiting time of the nth

arrival as a steady-state draw for class K customers’ waiting time.

This algorithm is quite appealing, since it does not require the reversibility of the dom-
inating chain. We will see that, in the following chapters, it is much easier to achieve the
dominance than reversibility.

However its drawback is (Proposition 2.4.2) that the expected runtime is infinite. In prac-
tice, this algorithm might take a very long time to stop.

Proposition 2.4.2 Let T ( j) be i.i.d. realizations from the distribution of T (i.e. a discrete

distribution on 1, 2, . . .), with T e drawn from a distribution as described above. Let J be the

smallest value with T (J) ≥ T e. Then E(J) is finite if and only if T has finite support.
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Proof It is clear that
Pr(T e = n) =

Pr(T ≥ n)
E(T )

,

which is shown in equation (2.14). Given T e = n, J is a geometric random variable with
success probability of Pr(T ≥ n). Therefore

E(J|T e = n) =
1

Pr(T ≥ n)
=

1
Pr(T e = n)E(T )

.

Unconditionally, we obtain

E(J) =
∑

n

E(J|T e = n) Pr(T e = n) =
∑

n

1
E(T )

,

which is 1/E(T ) times the count of n, and the result follows. �

2.4.2 Special method of GI/G/1 FCFS queue perfect sampling

This method was proposed by Ensor and Glynn [14] based on the fact that the stationary wait-
ing times in a GI/G/1 FCFS queue have the same distribution as the maximum value of an
underlying random walk. Since an Exponential Change of Measure (ECM) (c.f. Asmussen
and Glynn [6, p. 129]) is involved, it implies that the service duration should have light tail
distribution.

Stationary waiting time in GI/G/1 FCFS queue

Let Wn be the waiting time and Bn the service duration of the nth (n = 0, 1, 2, . . .) customer, and
An the inter-arrival time between the nth and (n + 1)st one. Bn are i.i.d, An i.i.d., and they are
independent.

Lindley’s formula shows that

Wn+1 = max{0,Wn + Bn − An}, (2.16)
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with W0 = 0. Let Xn+1 = Bn − An, then we have

W1 = max{0, X1}

W2 = max{0,W1 + X2} = max{0, X2, X2 + X1}

W3 = max{0,W2 + X3} = max{0, X3, X3 + X2, X3 + X2 + X1}

· · ·

Wn = max{0, Xn, Xn + Xn−1, . . . , Xn + . . . + X1}.

Since Xn are i.i.d. , so
(X1, . . . , Xn) D

= (Xn, . . . , X1),

i.e. {Xn, n ≥ 1} is time-reversible. Thus we have

Wn
D
= max{0, X1, X1 + X2, . . . , X1 + . . . + Xn}.

Define S n =
∑n

i=1 Xi, with S 0 = 0, then {S n, n ≥ 0} is a random walk. And it yields

Wn
D
= max

k=0,...,n
{S k},

and the stationary waiting time is
W∞

D
= max

n≥0
{S n},

which is the maximum value of a random walk. Since this is a stable queue, therefore E(An) >
E(Bn), so E(Xn) < 0. See also Asmussen and Glynn [6, p. 3] or Grimmett and Stirzaker [18, p.
456] for more details.

Algorithm description

(1) Perform ECM.

Let MX(t) be the m.g.f. and fX(x) be the p.d.f. of X as noted above. Solve MX(γ) = 1 for
γ > 0. Let Pγ be the measure with p.d.f. eγx fX(x). This is called the ECM.

(2) Construct an increasing process.

Under Pγ, it is easy to see that, Eγ(X) > 0. Define a strictly increasing process with
ladder heights S τ(n), where

τ(0) = 0, τ(n + 1) = inf{k > τ(n) : S k > S τ(n)},
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Figure 2.4: RA model is not the sample path upper bound of the simply coupled FCFS queue.
There are 4 customers (C1 through C4) arriving at times 0, 0.5, 1.5, and 1.6, whose service
durations are 1.8, 2.5, 3, and 1.3 respectively. In the RA model, C1 and C4 are assigned to one
server, and C2 and C3 to another. It is obvious that Q(5) > QRA(5).

(3) Generate W∞.

Generate V ∼ Exp(γ). Let Z = sup{S τ(n) : S τ(n) ≤ V}. Then Z is a stationary draw of W∞.

For proofs and more details, see Asmussen and Glynn [6, p. 164 and 438].

2.5 Miscellaneous algorithms

2.5.1 Ordinary simulation of GI/G/c FCFS queue with random assign-
ment

This algorithm is introduced because the Random Assignment (RA) model serves as a stochas-
tic upper bound (in unfinished workload) of the coupled FCFS multi-server queue (Wolff [59]).
As noted by Wolff [59], it is not the sample path upper bound, which is illustrated in Figure
2.4.
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Stochastic upper bound in unfinished workload of multi-server queue

Let V(t) be the unfinished workload at instant t in the FCFS multi-server system, VRA(t) be
that in the coupled RA model, and VRO(t) in the coupled RA model with service duration re-
ordered according to their arrival order. The “coupled” means these systems are fed with the
same arrival instants and associated service durations, and they are both initially empty.

In the RA system, each server has its own queue. A customer is assigned randomly to a sub-
queue upon arrival, and the customer has to wait if the designated server is busy, even if there
are existing any other free servers. In the RA model, FCFS is violated from the view of whole
system, i.e. the order of initiations of service durations could be different to that of the arrivals.
But since all customers share the same service duration distribution, by adjusting the order of
service, it can be in accordance with that of the arrivals without affecting the distribution of
VRA, i.e.

VRO(t) =so VRA(t).

It is shown (c.f. Asmussen [5, p. 343]) that VRO(t) ≥ V(t). So we have the stochastic upper
bound as

VRA(t) ≥so V(t).

With this coupling scheme, it also holds true that

QRA(t) ≥ Q(t),

where QRA(t) is the number of customers at time t in the RA model, and Q(t) that in the FCFS
queue.

Kiefer-Wolfowitz recursion

As noted by Asmussen [5, p. 341], the ordered unfinished workload at the instant of the
nth (n ≥ 0) arrival is named as Kiefer-Wolfowitz vector. It is denoted as ~Wn = (W (1)

n , . . . ,W (c)
n ),

with W (1)
n ≤ W (2)

n ≤ . . . ≤ W (c)
n .

Let An be the inter-arrival time from the nth to the (n + 1)st, and Bn the service duration of
the nth arrival. So

~Wn+1 = R

((
W (1)

n + Bn − An

)+
,
(
W (2)

n − An

)+
, . . . ,

(
W (c)

n − An

)+
)
,

where (x)+ = max{0, x}, and R is an operator on Rc which orders the coordinates in ascending
order. This equation is called Kiefer-Wolfowitz recursion. It details the FCFS rule in the way
that, the first available server is chosen for the earliest arrival waiting in the queue or to come.
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Furthermore, { ~Wn} is a Markov chain, and it is used to describe the limiting distribution of the
multi-server system.

Simulation algorithm for the RA model

Label servers with 1 through c, and denote ~Vn = (V (1)
n , . . . ,V (c)

n ) the unfinished workload vector
seen by the nth arrival, where V (k)

n , k = 1, . . . , c, is the unfinished workload in server k.

Let ln be the label number of the server being chosen for the (n + 1)st arrival. In the RA
model,

ln ∼ Unif{1, 2, . . . , c},

and ~Vn+1 is updated as V (ln)
n+1 = max

{
0,V (ln)

n + Bn − An

}
,

V (k)
n+1 = max

{
0,V (k)

n − An

}
, k ∈ {1, . . . , c}, k , ln.

Essentially, this is another form of the Kiefer-Wolfowitz recursion with RA discipline. In terms
of computation efficiency, it is preferable.

With this recursive formula, the algorithm of ordinary simulation of the RA model is quite
simple:

(1) Initialize ~V0 = 0, which is an all-zero vector,

(2) Repeat the recursive formula with independently generated An and Bn until ~VN = 0,
found by the N th arrival.

2.5.2 Time-varying Poisson process simulation

Definition

The time-varying (also referred to as “non-homogeneous” or “time-inhomogeneous”) process
is defined as follows (c.f. Ross [48, p. 78]).

A counting process {N(t), t ≥ 0} is said to be a non-stationary or non-homogeneous Poisson
process with intensity function λ(t), t ≥ 0 if

(i) N(0) = 0.

(ii) {N(t), t ≥ 0} has independent increments.

(iii) P{N(t + h) − N(t) ≥ 2} = o(h).

(iv) P{N(t + h) − N(t) = 1} = λ(t)h + o(h).
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where limh→0
o(h)

h = 0.

Let
Λ(t) =

∫ t

0
λ(s)ds,

and let ∆Λ(t) = Λ(t + ∆t) − Λ(t), and ∆N(t) = N(t + ∆t) − N(t) then it can be shown that

P{∆N(t) = n} =
[∆Λ(t)]n

n!
e−∆Λ(t), n ≥ 0.

Denote by Ni (i ∈ Z) the number of events on the consecutive unit intervals (i − 1, i). With
the periodic assumption for this thesis, it follows that Ni are i.i.d. Poisson random variable with
rate Λ(1).

The commonly used methods for generating time-varying Poisson processes are listed be-
low (see Ross [49, p. 697-703]).

Simulation: Thinning method

Let λ∗ = sup{λ(t), t ∈ R}, and assume λ∗ exists and is finite. Generate i.i.d. En ∼ Exp(λ∗), and
i.i.d. Un ∼ Unif(0, 1) (n ≥ 0). Let tn be the instants of events of the homogeneous Poisson
process, with t0 = 0. The algorithm is quite simple.

Repeat this step until getting desired number of time-varying events:

• Assign tn+1 = tn + En.

If
Un+1 ≤

λ(tn+1)
λ∗

,

then output tn+1 as the instant of the time-varying event.

Otherwise, output nothing and continue the loop.

Simulation: Order statistics method

This algorithm is used to generate time-varying events on an interval with given length. With-
out loss of generality, assume the interval be (0,T ), and define c.d.f.

F(x) =
Λ(x)
Λ(T )

, x ∈ (0,T ),

which has inverse function as F−1(y), y ∈ (0, 1).

(1) Generate r.v. N ∼ Poi(Λ(T )).
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(2) Generate N uniform r.v. on (0,T ) independently and arrange them in ascending order.
I.e.

U(1) < . . . < U(N).

(3) Output F−1(U(k)), k = 1, . . . ,N as the sequential instants of the time-varying events.

For the periodic Poisson process with cycle length 1, the time-varying event instants can
be constructed straightforwardly from a coupled homogeneous Poisson process, whose rate is
a constant Λ(1). Let tN ∈ R and tH ∈ R be the coupled time-varying and homogeneous instants
in the same unit interval respectively. Then

btNc = btHc

tN − btNc ∼ F(·)

tH − btHc ∼ Unif(0, 1),

where
F(x) =

Λ(x)
Λ(1)

, x ∈ (0, 1).

So
tN = btHc + F−1(tH − btHc) (2.17)

Simulation: Inter-event time method

Assume an event occurs at at time x and the time to next event is denoted as Tx. According to
the independent increments property, we have the tail probability of Tx as

F x(t) = P(Tx > t) = P[no events in (x, x + t)]

= e−
∫ x+t

x λ(s)ds = e−
∫ t

0 λ(x+s)ds.

So

Fx(t) = 1 − e−
∫ t

0 λ(x+s)ds. (2.18)

Let tn(n ≥ 0) be the instants of the time-varying events, with t0 = 0, then the algorithm can be
specified as repetitions of these steps until the desired number of events are achieved.

(1) Simulate Ttn according to the c.d.f. shown in equation (2.18).

(2) Assign tn+1 = tn + Ttn .
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2.5.3 Gaver-Stehfest inversion of LST

As what the name implies, this method is attributed to two people. Gaver [16] proposed the
approximation in a recursive form, and Stehfest [55] refined it by accelerating the convergence.

Assume function f (x) (which could stand for a p.d.f. or c.d.f.) has LST as f̃ (s). Then the
approximation of the inversion is

fg(t,M) =
ln(2)

t

2M∑
k=1

ζk f̃
(
k ln(2)

t

)
,

where

ζk = (−1)M+k
min{k,M}∑

j=b(k+1)/2c

jM+1

M!

 M

j

  2 j

j

  j

k − j

 ,
M ∈ N, and bxc is the floor function.

This formula was presented in Abate and Whitt [3], with 2M corresponding to the number
of transform evaluations. Significant digits of this method is around 0.9M, with requirement
for system precision of 2.2M digits.

If we use 8-byte floating point numbers, then the system precision is 15. It implies that
max{M} = 6, which is computed as

⌊
15
2.2

⌋
, and the significant digits of inversion is around

5 (= b0.9 × 6c).
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Sampling homogeneous queues

In this chapter, we will treat homogeneous WCQs with single or multiple servers. First, we
demonstrate an application of CFTP on the GI/G/1 FCFS queue to achieve nearly perfect
sampling. Then for the WCQs with non-FCFS disciplines, by taking APQs as examples, we
1) present ordinary simulation methods as elementary tools for perfect sampling algorithms;
2) apply perfect sampling algorithms to the single-server or multi-server queues with common
general service distributions; 3) introduce a nearly perfect sampling algorithm, called CFTP
Block Absorption, when the service duration distributions vary among different classes of cus-
tomers.

3.1 Nearly perfect sampling of the GI/G/1 FCFS queue with
heavy tail distribution inputs

Before analyzing the WCQs with non-FCFS disciplines, we would like to show an application
of CFTP to implement nearly perfect sampling of the GI/G/1 FCFS queue. We know how
to simulate the steady-state draw of the GI/G/1 FCFS queues with light tail service duration
distributions (see Section 2.4.2), but the heavy tail case is still quite challenging, especially
when the inter-arrival time and service duration both have heavy tail distributions.

Let Wt be the unfinished workload at time t. The states just before and after an arrival
instant are of interest, denoted by Wn− and Wn+, where n ∈ Z. It is clear that Wn− is the actual
waiting time. As for a transition from Wn− to W(n+1)−, it can be separated into two stages: 1) the
unfinished workload gets a jump due to the service requirement introduced by the arrival; 2) it
decreases by 1 per unit time before the next arrival or before the system becomes idle. These

32
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t n tn+1

Bn
An

Wn−

Wn+

W(n+1)−

W(n+1)+

Figure 3.1: One transition of the unfinished workload from Wn− to W(n+1)− in the GI/G/1 FCFS
queue, where tn is the arrival instant of the nth customer.

two stages are represented as follows.

Wn+ = Wn− + Bn (3.1)

W(n+1)− = (Wn+ − An)+ , (3.2)

where Bn is the service duration of the nth arrival and An the inter-arrival time from the nth to
the (n + 1)st arrival, as illustrated in Figure 3.1.

The Multishift Coupling (Section 2.3.2) will be used in these two stages of transition. In
the first stage of transition (equation (3.1)),

Wn+ = E +

⌈Wn− − E
d

⌉
d, (3.3)

where E is simulated from the service duration distribution (G(·)) and d is the length of the
horizontal line segment intersected with the area under the p.d.f.’s curve (c.f. Figure 2.1) of
G(·).

As for the second stage (equation (3.2)),

W(n+1)− =

(
−E′ +

⌊
Wn+ + E′

d′

⌋
d′

)+

, (3.4)
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where E′ is sampled from the inter-arrival time distribution (A(·)) and d′ is the length of the
horizontal line segment intersected with the area under the p.d.f.’s curve ofA(·). Please see the
coming example for details of this coupling method.

Since the Multishift Coupling is monotone, our coupling scheme is also monotone, i.e.
Wn− ≤ W ′

n− ensures that W(n+1)− ≤ W ′
(n+1)−, where the superscript is used to identify the different

chain. So we only need to follow the maximum and minimum states of all possible chains.

With regard to the heavy tail queues, the tail probability of the waiting time has this property
(see Theorem 9.1 by Asmussen [5, p. 296])

Pr(W > x)
ρ

1−ρ B̄0(x)
→ 1, as x→ ∞, (3.5)

where W is the steady-state waiting time, B0(x) stands for the equilibrium distribution of the
service duration, and B̄0(x) = 1 − B0(x).

Although the waiting time is unbounded, if we start from states (of the waiting time) 0
through x0 (which is quite large such that ρ

1−ρ B̄0(x0) = ε), we can come within ε of stationary
draws (in the total variation sense, see Definition 2.1), if the coalescence happens in the first
trial.

3.1.1 An example

We consider a GI/G/1 FCFS queue, whose inter-arrival times and service durations have Pareto
(type II) distributions. We choose the Pareto distribution because it is often the benchmark
indicator of heavy-tailed behaviour. The c.d.f.’s are:

A(x) = 1 −
(

5
x + 5

)10

, x > 0,

and G(x) = 1 −
(

1
x + 1

)3

, x > 0,

for the inter-arrival time and service duration respectively. Denote by fA(x) and fB(x) the p.d.f.’s
of distributions ofA and G respectively. Therefore we have

fA(x) = 2
(

5
x + 5

)11

, x > 0,

and fB(x) =
3

(x + 1)4 , x > 0,

It is easy to see that ρ = 0.9, E(A) = 0.5556, and E(B) = 0.5, and the equilibrium distribu-
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tion of the service duration distribution has c.d.f. as

B0(x) = 1 −
(

1
x + 1

)2

, x > 0,

which is also Pareto.

In the first stage of transition, we couple the service durations of all possible chains. As
shown in Figure 3.2, there are two curves. One is y = fB(x), and another is the shifted p.d.f.
y = fB(x − Wn−). Uniformly draw a point (denoted by C0) under curve y = fB(x): sample
E ∼ G(·) and U ∼ Unif(0, 1), then let

D = fB(E)U. (3.6)

Thus (E,D) is the coordinate of point C0. Draw a horizontal line (y = D) across point C0. It
intersects with the area under curve y = fB(x). The width of the intersected line segment is d,
and d = H, which is the x-coordinate of the intersection of curve y = fB(x) and line y = D.

It is clear that fB(H) = D. Combining with equation 3.6, we have

fB(E)U = fB(H) ⇒ H = (E + 1)U−1/4 − 1

⇒ d = (E + 1)U−1/4 − 1.

Starting from point C0 draw points Ci, i = 0, 1, . . ., with interval of d. It is easy to see that there
is exactly one of such points under each of the shifted p.d.f.’s curve. For any Wn− ∈ (xi−1, xi),
where xi is the x-coordinate of point Ci and we define x−1 = 0, the coupled service duration is

Bn = xi −Wn−.

Therefore Wn+ = xi = E +
⌈

Wn−−E
d

⌉
d, as shown in equation (3.3).

In the second stage of transition, we couple the inter-arrival times of all possible chains.
The procedure is quite similar to what we did above and we have

d′ = (E′ + 5)U′−1/11 − 5,

where E′ ∼ A(·) and U′ ∼ Unif(0, 1).

The differences are those: we turn over the p.d.f. curves horizontally, and the unfinished
workload will be truncated to 0 when W(n+1)− is updated to be negative.

For any Wn+ ∈ (xi−1, xi), i = 1, 2, . . ., where xi is the x-coordinate of point Ci, the coupled
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0 x

y

Wn−E

C0 C1 C2 C3 C4 C5D

H Wn+

Figure 3.2: Coupling the service durations in the first stage of transition with the Multishift
Coupling method.

inter-arrival time is
An = Wn+ − xi−1.

So W(n+1)− = (xi−1)+ =
(
−E′ +

⌊
Wn++E′

d′

⌋
d′

)+
, as demonstrated by equation (3.4). This procedure

is illustrated in Figure 3.3.

Because the coupled chains might not coalesce in each trial, we need to consider the bias
introduced by ignoring this possibility. Let

ε1 = Pr(Not capturing the stationary chain with range (0, x0) at −T0);

ε2 = Pr(No coalescence happens in the first trial).

According to equation (3.5), we have

ε1 ≈
ρ

1 − ρ
B̄0(x0). (3.7)

Let ε = 10−10 be the total variation distance, then it should be that

3ε1 + ε3
2 < ε, (3.8)
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0 x
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Wn+− E'

C0C−1 C1 C2 C3D'

− H' W(n+1)−

Figure 3.3: Coupling the inter-arrival times in the second stage of transition with the Multishift
Coupling method.

by considering a worse case that the coalescence happens in the third trial. Given we have
captured the stationary chain at time −Tm,m = 0, 1, with range (0, x0), then the probability of
not capturing it at time −Tm+1 with the same range is less than ε1, because the unfinished
workload in this chain is positively correlated. This argument leads to the term of 3ε1 in
inequality (3.8).

For the second or third trial, the probability of no coalescence occurring is less than ε2.
Since these three trials are independent, we obtain the term of ε3

2 in inequality (3.8). The value
of ε2 is estimated with the simulated data by using Chebyshev’s inequality [49, p. 78]. It is
a loose estimation, so if we want to control the probability of bias occurring less than ε with
one trial, i.e. ε1 + ε2 < ε, then T0 will become quite large (with order of 1010). So we consider
the multiple trials situation to estimate the upper bound of the bias probability, as illustrated in
Figure 3.4.

Since the system evacuates the unfinished workload by E(A) − E(B) = 0.0556 in each
transition, the expected number of transitions for Wn− to return the average level is around
x0/0.0556). By tuning the value of x0 and T0 to accommodate inequality (3.8), we have

x0 = 5.6 × 105 and T0 = 1.41 × 107.
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Time

− 3T0 − 2T0 − T0 0

0
x 0

Figure 3.4: A worse case of applying CFTP to the GI/G/1 FCFS queue which has Pareto
inter-arrival time and service duration distributions. The coalescence occurs in the third trial.

So with equation (3.7), it follows ε1 ≈ 2.87 × 10−11.

After driving back the extreme large state (x0) to a normal size with around 10 million steps,
the remaining 4 million transitions are enough to ensure these chains with “close” distance to
coalesce with high probability. Note that we only need to follow two chains which were started
from states 0 and x0, due to the monotonicity of this coupling.

By repeating the single-trial simulations for 1,000 times, we obtain the numbers of steps
till coalescence Xi, i = 1, . . . , 1000. It follows that

ε2 = Pr(X > T0) ≤
Var(X)

(T0 − E(X))2 ≈ 2.2867 × 10−4

3ε1 + ε3
2 = 9.81 × 10−11 < ε.

Because the coalescence is a large probability event, all these 1,000 simulations coalesced
in the first trial. Table 3.1 demonstrates some statistical results of Xi, i = 1, . . . , 1000 and
sampled waiting times. With the sampled waiting times, the e.c.d.f. and its 95% confidence
band are plotted in Figure 3.5. For t > 0, the standard deviation of Pr(W ≤ t) is estimated

by σ̂ =

√
p̂(1−p̂)
√

N
, where p̂ =

∑N
i=1 1(Wi≤t)

N and N = 1000. Therefore the confidence band is
approximately (p̂ − 1.96σ̂, p̂ + 1.96σ̂). Other point-wise confidence bands in this thesis are
constructed in the same way.
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Figure 3.5: The e.c.d.f. from simulations of 1,000 independent draws of waiting times in the
GI/G/1 FCFS queue using the CFTP algorithm. Inter-arrival time and service duration both
have Pareto distributions. Shaded areas are point-wise 95% confidence bands.

Transitions for coalescence (X) Waiting times
Min. 9,885,290 0
Max. 10,318,845 335

Average 10,077,061 9.28
Variance 3,700,868,963 250
95% C.I. (10,073,290, 10,080,831) (8.29, 10.26)

Table 3.1: Numerical results of the 1,000 simulations of the GI/G/1 FCFS queue
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3.2 Ordinary simulation of APQ

Ordinary queueing simulations are implemented by running queues initialized from arbitrarily
selected (usually empty) states with specified disciplines for appropriate steps (which is also
referred as “burn-in” time) to decrease the impact of the initial states. They are used to verify
the analytic solutions or restore the target priority queues in the coupling methods.

3.2.1 ΣKM/GK/1 APQ

Denote by Ci (i ∈ N) the customer who has the ith entry into service. As for Ci, let ξi be the
service initiation instant, Bi the service duration, τi the departure instant, Wi the waiting time
and κi the class number. It is clear that

τi = ξi + Bi.

Introduce a K−length vector ~ti, whose kth (k = 1, 2, . . . ,K) entry, t(k)
i , denotes the earliest

arrival instant of class k customers who have not entered into service by ξi+ (just after ξi).

So the waiting times of the earliest arrivals at τi are

τi − t(k)
i , k = 1, 2, . . . ,K.

The system is initialized with τ0 = 0 and t(k)
0 ∼ Exp(λk), k = 1, . . . ,K. For i = 1, 2, . . .,

repeat the following.

1. One needs to determine the customer to be selected. There are two possible scenarios as
follows.

• If the server is idle, which means

max
k

{
τi−1 − t(k)

i−1, k = 1, 2, . . . ,K
}
< 0,

then the earliest arrival to occur is selected for service. So

κi = arg max
k

{
τi−1 − t(k)

i−1, k = 1, 2, . . . ,K
}
,

and

ξi = t(κi)
i−1.



3.2. Ordinary simulation of APQ 41

• Otherwise, the server is not idle, and the customer with the maximum accumulated
priority is selected, i.e.

κi = arg max
k

{
bk

(
τi−1 − t(k)

i−1

)
, k = 1, 2, . . . ,K

}
,

and

ξi = τi−1.

In both scenarios, simulate Bi ∼ Gκi(·), and update τi = ξi + Bi.

2. After determining the customer to be selected, its waiting time equals

Wi = ξi − t(κi)
i−1.

3. Update vector ~ti, with  t(κi)
i = t(κi)

i−1 + A(κi),

t(k)
i = t(k)

i−1, k , κi,

where A(κi) is the inter-arrival time of class κi, and A(κi) ∼ Exp(λκi).

Record the pair of (Wi, κi) as the waiting time and corresponding class number of customer Ci.

3.2.2 ΣKM/GK/c APQ

In the multi-server cases, each server is labeled as 1 through c. Upon a new arrival instant, if
more than one server is free, the one who became idle earliest is chosen to provide service.

Before customer Ci+1 is selected for service, the earliest instants of all servers becoming
available after accommodating Ci are represented by a c-length vector ~si =

(
s(1)

i , . . . , s(c)
i

)
. Let

li, i ≥ 1, be the label of the server chosen to provide service to customer Ci.
The system is initialized with s( j)

0 = 0, j = 1, . . . , c, and t(k)
0 ∼ Exp(λk), k = 1, . . . ,K. Repeat

recursively as follows for i = 1, 2, . . ..

1. Firstly, choose the server with label

li = arg min
j

{
s( j)

i−1, j = 1, 2, . . . , c
}
,

taking the smallest index if there is any tie.
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2. Then select the customer entering into service and determine the service initiation instant
ξi.

If maxk

{
s(li)

i−1 − t(k)
i−1, k = 1, 2, . . . ,K

}
< 0, which means the server being chosen is idle,

then

κi = arg max
k

{
s(li)

i−1 − t(k)
i−1, k = 1, 2, . . . ,K

}
,

ξi = t(κi)
i−1.

Otherwise

κi = arg max
k

{
bk

[
s(li)

i−1 − t(k)
i−1

]
, k = 1, 2, . . . ,K

}
,

ξi = s(li)
i−1.

The waiting time of customer Ci is

Wi = ξi − t(κi)
i−1.

3. Update ~si and ~ti as

s(li)
i = ξi + Bi, and s( j)

i = s( j)
i−1, j , li,

t(κi)
i = t(κi)

i−1 + A(κi), and t(k)
i = t(k)

i−1, k , κi,

where Bi ∼ Gκi(·) and A(κi) ∼ Exp(λκi).

Record the pair of (Wi, κi) as the waiting time and corresponding class number of customer
Ci.

3.3 Perfect sampling of ΣKM/GK/1 APQ

In this variant of the APQ, there are K classes of customers, whose arrival processes are Pois-
son, whereas service duration distributions of the various classes are allowed to differ. We
are able to couple it with a FCFS queue by feeding both with the same arrival instants and
associated service durations.

The coupled queue is actually an M/G/1 queue under the FCFS discipline. The generic
service distribution (B) is a mixture of all classes’ (B(i), i = 1, . . . ,K). As noted in equation
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(2.2), c.d.f. of the generic service distribution is

G(x) =

K∑
i=1

λi

λ
Gi(x).

Since workload in a single-server queue is invariant under all work-conserving disciplines,
the sample paths of unfinished workload in the coupled APQ and the FCFS queue are exactly
the same. As a result, the latter is used as the dominator.

As presented in Section 2.3.4, the M/G/1 FCFS queue can be simulated backwards, and
we know its stationary distribution. Thus the basic idea for perfect sampling of the ΣKM/GK/1
APQ is quite straight-forward: generate a stationary state of the dominator at time 0, simulate
it backwards until the system become idle, then restore the APQ moving forward in time with
inputs generated during the backward simulation. The resulting output, the state at 0, is a
steady-state draw of the APQ. Since the service duration distributions differ according to the
class numbers, the class numbers need to be generated and their distributions are also different
for the customers found at time 0 and those coming afterwards.

3.3.1 Class numbers of the randomly selected service durations

Proposition 3.3.1 For a randomly selected service duration in the ΣKM/GK/1 PS model, the

class number is determined with probability proportional to ρi, where ρi = λi/µi, i = 1, . . . ,K.

Proof Let H(x) be the c.d.f. of the randomly selected service duration of B, and Hi(x) of B(i).

According to equation (2.10), we have

H(x) = µ

∫ x

0
G(y)dy − µxG(x), and

Hi(x) = µi

∫ x

0
Gi(y)dy − µixGi(x).

Based on the definition of G(x) , it follows that its tail probability has the form of

G(x) = 1 −
K∑

i=1

λi

λ
Gi(x) =

K∑
i=1

(
λi

λ
−
λi

λ
Gi(x)

)
=

K∑
i=1

λi

λ
(1 −Gi(x)) =

K∑
i=1

λi

λ
Gi(x).
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So

H(x) = µ

∫ x

0

K∑
i=1

λi

λ
Gi(y)dy − µx

K∑
i=1

λi

λ
Gi(x)

=

K∑
i=1

[∫ x

0

λi

λ/µ
Gi(y)dy − x

λi

λ/µ
Gi(x)

]

=

K∑
i=1

ρi

ρ

[∫ x

0
µiGi(y)dy − xµiGi(x)

]

=

K∑
i=1

ρi

ρ
Hi(x),∀x > 0. (3.9)

On the other hand, H(·) is a mixture of Hi(·), i = 1, . . . ,K, so

H(x) =

K∑
i=1

piHi(x),∀x > 0, (3.10)

where pi is the probability of the randomly selected service duration bearing class number
i, i = 1, . . . ,K. Because equations (3.9) and (3.10) hold for all x > 0, and Hi(·), i = 1, . . . ,K,
are different distributions (any ties can be merged to one class), it is easy to construct linear
equations

K∑
i=1

Hi(x j)pi = H(x j), j = 1, . . . ,K,

which have a unique solution w.r.t. (p1, . . . , pK) by choosing different values of x j, j = 1, . . . ,K.
Equation (3.9) implies that (ρ1/ρ, . . . , ρK/ρ) is a solution of the linear equations constructed
above. So pi = ρi/ρ, i = 1, . . . ,K. Thus the result holds. �

3.3.2 Simulating backwards the coupled ΣKM/GK/1 FCFS queue

This algorithm follows the framework described in Section 2.3.4. The class numbers of all
customers will be identified and recorded. When simulating the PS model forward, at time
0, the class number of a randomly selected service duration is determined with probability
proportional to ρi. For the following new arrivals, the probability of taking class j is λ j/λ.

Based on the algorithm description shown in Section 2.3.4, pseudocode of simulating back-
wards the coupled ΣKM/GK/1 FCFS queue is illustrated in Algorithm 1. To make it more
readable, some variables are explained in Table 3.2 in the order of occurrence. More details
can be found in the algorithm description in Section 2.3.4.
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Algorithm 1 Backward simulation of ΣKM/GK/1 FCFS queue
1: Initialize Instants, Services and Classes to be empty.
2: Simulate Q ∼ Geom(1 − ρ)
3: if Q = 0 then
4: return ζ ← 0
5: else
6: for i = 1 to Q do
7: Simulate Ki from {1, . . . ,K} with Pr(Ki = k) = ρk/ρ
8: Simulate Ui ∼ Unif(0, 1); Simulate Xi ∼ HKi(·)
9: Yi ← UiXi

10: end for
11: t ← 0
12: Simulate a ∼ Exp(λ)
13: while Q > 0 do
14: j← arg mini{Yi, i = 1, . . . ,Q}
15: d ← QY j

16: if d < a then
17: t ← t + d; a← a − d # departure event
18: for i = 1 to Q do
19: Yi ← Yi − d/Q
20: end for
21: Append t to Instants, X j to Services, and K j to Classes
22: Remove the jth entries in Y , X and K
23: Q← Q − 1
24: else
25: t ← t + a # arrival event
26: for i = 1 to Q do
27: Yi ← Yi − a/Q
28: end for
29: Q← Q + 1
30: Simulate KQ from {1, . . . ,K} with Pr(KQ = k) = λk/λ
31: Simulate XQ ∼ GKQ(·)
32: YQ ← XQ

33: Simulate a ∼ Exp(λ)
34: end if
35: end while
36: ζ ← the last element of Instants
37: Change signs of Instants and reverse orders of Instants, Services and Classes
38: return -ζ, Instants, Services and Classes
39: end if
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Variable Explanation
Q Number of customers in the system
ζ Stationary age of the busy period of M/G/1 FCFS queue
K Class numbers of customers in the system
X Service requirements of corresponding customers in the system
Y Residual service requirements of corresponding customers in the system
t Event instant
d Time to next departure event from t+
a Time to next arrival event from t+
Instants Departure instants when running forward,

arrival instants when signs changed and order reversed
Services Corresponding service requirements
Classes Corresponding class numbers

Table 3.2: Variable definitions for Algorithm 1

3.3.3 Restoring the APQ

Based on the algorithm of ordinary simulation of ΣKM/GK/1 APQ described in Section 3.2.1,
and with inputs provided by Algorithm 1 (ζ, Instants, Services and Classes), the stationary
draw of the APQ is the state at time 0 of the restored APQ.

Group Instants and Services by class numbers into K sequences of arrival instants:
{
t(k)( j)

}
,

and service durations:
{
B(k)( j)

}
, k = 1, . . . ,K.

Since we are interested in the waiting time of each class of customers, a pseudo-customer
of specified class (K) is assumed to arrive at time 0 with corresponding service duration. So
the waiting time equals to the instant of its entry into service.

To facilitate computing, generate one more arrival after time 0 for each class with k ,

K, whose arrival instant is simulated from Exp(λk), due to the memoryless property of the
exponential distribution. Its service duration is simulated from Gk(·).

For class k, append these newly generated arrival instant and service duration to
{
t(k)( j)

}
and

{
B(k)( j)

}
respectively, where j = 1, . . . ,N(k), and N(k) ≥ 1.

Introduce a K-length vector ~ni =
(
n(1)

i , . . . , n(K)
i

)
to record indices of the earliest arrivals of

all classes who have not entered into service by ξi+, where ξi is the service initiation instant of
customer Ci, i = 1, 2, . . ..

It may happen that for some i: n(k)
i > N(k). This means that higher priority customers who

arrive after time 0 have “cut in” under the APQ discipline and been served before the pseudo-
customer. In such a case additional customers (having arrival instants and associated service
durations) will be generated.

The loop terminates when Ci∗ is the pseudo-arrival, i.e. n(K)
i∗−1 = N(K) and κi∗ = K. We
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output ξi∗ as the stationary draw from the waiting time distribution for class K. Based on
Proposition 2.3.1 we know that the state at time 0 in the ΣKM/GK/1 APQ is a draw from the
stationary distribution. The PASTA (Poisson arrivals see time averages) property allows adding
a pseudo-customer at time 0. Since it arrives at a steady state, the statistic related to it (i.e. the
waiting time) is also stationary.

Pseudocode of this part is shown in Algorithm 2. In this code, ω(k), k = 1, . . . ,K, stand
for the earliest arrival instants (of customers who is still waiting) found just before the service
completion of some customer.

3.3.4 Examples

To validate this sampling based method, we will first compare them with existing analytical
results. Theoretical results for the ΣKM/GK/1 classical (absolute) priority queue can be found
in Conway et al. [13, p. 163]. Stanford et al. [54] presented the solutions of the waiting time
distributions of the ΣKM/GK/1 accumulating priority queue.

To achieve this goal, consider a 2-class priority queue (Σ2M/M2/1) with parameters

(λ1, λ2) = (0.1, 0.5), (µ1, µ2) = (0.2, 1.1). (3.11)

For the APQ

(b1, b2) = (1, 0.5). (3.12)

With the dominated CFTP method, we generated 1,000 independent draws from the limit-
ing distribution of the APQ. We have superimposed the plot of the e.c.d.f.’s to compare them
with the theoretical ones, which are computed with the Gaver-Stehfest algorithm (see Section
2.5.3). As illustrated in Figure 3.6, they match very well, as the theoretical lines lie well within
the 95% confidence interval of estimation.

By changing Line 21 in Algorithm 2 as

κ ← min
{
i : τ − ω(i) ≥ 0, i = 1, . . . ,K

}
,

the classical priority discipline is implemented. As shown in Figure 3.7, similar comparisons
are illustrated between the e.c.d.f.’s and theoretical c.d.f.’s, and the result is also satisfactory.

Remark The priority accumulation function can be defined arbitrarily, e.g. a positive initial
value plus the linearly (or quadratically) in time accumulated priority. Our algorithm is indif-
ferent to this setting.
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Algorithm 2 Restoring ΣKM/GK/1 APQ
1: if ζ = 0 then
2: W ← 0
3: else
4: for i = 1 to K do
5: Get sequence

{
t(i)( j)

}
and

{
B(i)( j)

}
by class number i

6: Simulate X ∼ Gi(·)
7: if i , K then
8: Simulate E ∼ Exp(λi)
9: else

10: E ← 0
11: end if
12: Append E to

{
t(i)( j)

}
and X to

{
B(i)( j)

}
13: n(i) ← 1; N(i) ← the number of records in

{
t(i)( j)

}
14: end for
15: τ← −ζ; ω(i) ← t(i)(n(i)), i = 1, . . . ,K # earliest arrival instants
16: loop
17: if maxi

{
τ − ω(i), i = 1, ..,K

}
< 0 then

18: κ ← arg maxi

{
τ − ω(i), i = 1, ..,K

}
19: ξ ← ω(κ)

20: else
21: κ ← arg maxi

{
bi

[
τ − ω(i)

]
, i = 1, ..,K

}
22: ξ ← τ
23: end if
24: if κ = K and n(K) = N(K) then
25: W ← ξ; break
26: end if
27: if n(κ) ≤ N(κ) then
28: X ← B(κ)(n(κ))
29: else
30: Simulate X ∼ Gκ(·)
31: end if
32: τ← ξ + X; n(κ) ← n(κ) + 1
33: if n(κ) ≤ N(κ) then
34: ω(κ) ← t(κ)(n(κ))
35: else
36: Simulate A ∼ Exp(λκ); ω(κ) ← ω(κ) + A
37: end if
38: end loop
39: end if
40: return W
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Figure 3.6: The e.c.d.f.’s from simulations of 1,000 independent draws of waiting times in
the APQ using the dominated CFTP algorithm, compared with the theoretical c.d.f.’s. Shaded
areas are pointwise 95% confidence bands.
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Figure 3.7: The e.c.d.f.’s from simulations of 1,000 independent draws of waiting times in the
classical priority queue using the dominated CFTP algorithm, compared with the theoretical
c.d.f.’s. Shaded areas are pointwise 95% confidence bands.
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3.4 Perfect sampling of ΣKM/G/c APQ

In this section we consider the case where all classes of customers share a common general
distribution.

Sigman [51] presented a perfect sampling algorithm for the M/G/c FCFS queue under
a very lightly loaded condition (i.e. ρ < 1

c ). A coupling single-server PS model (which is
reversible, see Section 2.3.4) was used as the dominator, then the dominated CFTP followed.

We discuss less restrictive condition ρ < 1, and implement perfect sampling with two meth-
ods: the regenerative method (RM) and dominated CFTP. Actually, the former is an extended
version of that by Sigman [52] with minor changes.

As mentioned before (Section 2.5.1), if the service durations are used in the same order,
the RA model dominates the coupled FCFS queue in the numbers of customers in the systems.
With the same coupling scheme, it is shown in Proposition 3.4.1 that the same dominance holds
between the M/G/c RA model and M/G/c WCQ.

Proposition 3.4.1 Assume an M/G/c WCQ and an M/G/c RA model are initially (i.e. t0 = 0)

empty. They are coupled as follows:

• Both are driven by the same arrival instants {An, n = 1, 2, . . .} and i.i.d. service durations

{Bn, n = 1, 2, . . .}.

• Let {tWCQ
n > t0, n = 1, 2, . . .} and {tRA

n > t0, n = 1, 2, . . .} be the chronological service

initiation instants in the M/G/c WCQ and M/G/c RA model respectively. For both

queues the customers of the nth chronological service initiation are assigned the same

service duration Bn.

Let QWCQ
t and QRA

t be the numbers of customers at time t > t0 in the M/G/c WCQ and

M/G/c RA model respectively, then

QWCQ
t ≤ QRA

t for all t ≥ t0.

Proof We construct a coupled M/G/c FCFS queue with the same arrival instants and service
durations as the other two queues. Let {tF

n > t0, n = 1, 2, . . .} be its service initiation instants in
ascending order, with service duration Bn assigned to the customer entering into service at tF

n .
Let QF

t be the number of customers in the FCFS queue.

According to Sigman [52, Lemma 3.1] or Asmussen [5, Lemma 1.3, p. 342], it follows that

QF
t ≤ QRA

t for all t ≥ t0. (3.13)
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With our construction which ensures the same sequence of service initiations at the same
instants, the FCFS rule may differ from the WCQ only in which customer is chosen to enter
into service, and not in the instants at which some other customer enters into service. Due to
our coupling, the residual workloads of the customers in service and the numbers of customers
in these systems will be identical, i.e. QF

t = QWCQ
t . Result (3.13) establishes our proposition.

�

3.4.1 Using the regenerative method

Based on the algorithm outlines of RM shown in Section 2.4.1, and RA model in Section 2.5.1,
the pseudocode is developed as follows.

Firstly, we simulate the stationary excess (T e ∈ N) of the cycle of RA model. As shown by
Sigman [52], because the arrivals are Poisson processes, according to PASTA (Poisson arrival
see time average), at time 0, the stationary unfinished workload in each server can be simulated
as in an independent M/G/1 FCFS queue. See Algorithm 3 for details. Please note that if
V = ~0 at time 0, we still run it forward.

Algorithm 3 Simulation of the stationary excess of M/G/c RA model’s cycle
1: T e ← 0
2: for l = 1 to c do
3: Vl ← 0 # V is a vector of unfinished workload
4: Simulate Q ∼ Geom (1 − ρ)
5: if Q > 0 then
6: for j = 1 to Q do
7: Simulate X ∼ Ge(·) # Equilibrium distribution of service duration
8: Vl ← Vl + X
9: end for

10: end if
11: end for
12: repeat
13: T e ← T e + 1
14: Simulate U ∼ Unif{1, . . . , c}
15: Simulate B ∼ G(·)
16: Simulate A ∼ Exp(λ)
17: VU ← max{0,VU + B − A}
18: for l = 1 to c and l , U do
19: Vl ← max{0,Vl − A}
20: end for
21: until V = ~0
22: return T e

Then we independently simulate the generic cycles of the RA model, as implemented in
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Algorithm 4, which is similar to Algorithm 3, but vector V is initially a vector of zeros. As for
the T eth arrival (the first arrival is denoted as the 0th), we set its class number as K. Note that
T e ≥ 1 according to the definition (equation 2.13). Let J = min{ j ≥ 1 : T ( j) ≥ T e}, then cycle
C(J) and its corresponding outcomes (consisting of te, Instants, Services, Classes and Servers)
will be used in next step, where te is the arrival instant after time 0 of the earliest customer who
finds the system is idle. It is used as a sentinel.

Algorithm 4 Simulation of generic busy cycle of the M/G/c RA model
1: Initialize Instants, Services, Classes and Servers to be empty.
2: t ← 0 # Arrival instant
3: T ← 0 # Length of cycle
4: V ← ~0 # Unfinished workload vector
5: repeat
6: Simulate U ∼ Unif(1, . . . , c)
7: Simulate B ∼ G(·)
8: Simulate A ∼ Exp(λ)
9: if T = T e then

10: K ← K
11: else
12: Simulate K from {1, . . . ,K} with Pr(K = k) = λk/λ
13: end if
14: Append t to Instants, B to Services, K to Classes and U to Servers
15: t ← t + A
16: T ← T + 1
17: VU ← max{0,VU + B − A}
18: for l = 1 to c and l , U do
19: Vl ← max{0,Vl − A}
20: end for
21: until V = ~0
22: return T , te ← t, Instants, Services, Classes and Servers

To apply the coupling scheme specified in Proposition 3.4.1, we need to figure out the ser-
vice initiation instants of the RA model. Group the arrival instants and corresponding service
durations and class numbers by the server labels (l, l = 1, . . . , c). In server l, apply the FCFS
discipline to compute the service initiation instants as Initiations. Assume there are N ≥ 1 cus-
tomers in this server. As for customer Ci, i = 1, . . . ,N, the arrival instants is ti, corresponding
service duration Bi, service initialization instant ξi, and the departure instant τi. It is clear that

τi = ξi + Bi, i = 1, . . . ,N.

The algorithm of simulating the initiation instants of the M/G/1 FCFS queue is presented in
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Algorithm 5. Aggregate Initiations(l), l = 1, . . . , c, and sort them in ascending order, associated

Algorithm 5 Simulating the initiation instants of the M/G/1 FCFS queue
1: Initialize Initiations to be empty.
2: τ0 = 0
3: for i = 1 to N do
4: if τi−1 − ti ≤ 0 then
5: ξi = ti

6: else
7: ξi = τi−1

8: end if
9: τi = ξi + Bi

10: Append ξi to Initiations
11: end for
12: return Initiations

with corresponding service durations. Then we have reordered vector of Services′. Arrival
instants Instants still keep their order and are associated with corresponding class numbers.

Finally, restore the ΣKM/G/c APQ with the detailed information to compute the waiting of
the T eth arrival of specified class number K. According to Proposition 2.4.1, the T eth customer
arrives at a steady state, so the related statistic is also stationary.

For writing convenience, service durations (Services′) are recorded in a sequence {Bi},
and arrival instants are grouped into K sequences:

{
t(k)( j)

}
, k = 1, . . . ,K by associated class

numbers. Similar to what has been done in restoring the ΣKM/GK/1 APQ in Algorithm 2, extra
customers of class k, k , K, are generated to facilitate computation. But the arrival instants
are simulated after time te, and the K − 1 service durations are appended to {Bi}. Let N(k) be
the number of arrival instants for class k, and N the number of service durations in {Bi}, then
N(k) ≥ 1, and N =

∑K
k=1 N(k). Besides ~ni and ξi (see Algorithm 2), we introduce a c-length

vector ~si =
(
s(1)

i , . . . , s(c)
i

)
, which is the earliest instants of all servers becoming available after

accommodating Ci and before Ci+1 being selected for service.
Because the pseudo customer of class K will enter into service in this generic RA cycle, so

we need not to simulate customers any more. The pseudocode is available in Algorithm 6.

3.4.2 Using the dominated CFTP

In order to apply the dominated CFTP algorithm to the ΣKM/G/c APQ, we use the M/G/c
RA model as a dominator. Conceptually, we start both models infinitely long ago (t0 = −∞),
coupled as described in Proposition 3.4.1. At time 0, they will both be in steady state. By
Proposition 3.4.1, we have QRA

t ≥ QA
t for all t, where QA

t is the number of customers in the
APQ at time t.
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Algorithm 6 Restoring ΣKM/G/c APQ in the Regenerative Method
1: if T e = T then # T is one of the outputs of Algorithm 4
2: W ← 0
3: else
4: for k = 1 to K do
5: Get sequence

{
t(k)( j)

}
by class number k

6: if k , K then
7: Simulate E ∼ Exp(λk); Simulate X ∼ G(·)
8: Append te + E to

{
t(k)( j)

}
and X to {Bi}

9: end if
10: end for
11: N ← the number of elements in {Bi}

12: Initialize s( j) ← 0, j = 1, . . . , c
13: n(k) ← 1; and ω(k) ← t(k)(n(k)), k = 1, . . . ,K
14: for i = 1 to N do
15: l← arg min j

{
s( j), j = 1, 2, . . . , c

}
(taking the smallest index if there is any tie)

16: if maxk

{
s(l) − ω(k), k = 1, 2, . . . ,K

}
< 0 then

17: K ← arg maxk

{
s(l) − ω(k), k = 1, ..,K

}
18: ξ ← ω(K)

19: else
20: K ← arg maxk

{
bk

[
s(l) − ω(k)

]
, k = 1, ..,K

}
21: ξ ← s(l)

22: end if
23: if K = K and n(K) = N(K) then
24: W ← ξ − t(K)(n(K)); break
25: end if
26: s(l) ← ξ + Bi

27: n(K) ← n(K) + 1
28: ω(K) ← t(K)(n(K))
29: end for
30: end if
31: return W
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The backward simulation of the M/G/c RA model is quite similar to what has been de-
scribed in Algorithm 2.3.4. Since each class has the same service duration distribution, sim-
ulating class numbers can be deferred to the step when the APQ is restored. To satisfy the
coupling scheme, the service durations are rearranged according to service initiation instants
of the reversed RA model when looking forward in time. Please refer to Algorithm 7 for the
pseudocode, where the outcomes of Instants are the arrival instants and Services the rear-
ranged service durations. Notice that the pairing between Instants and Services may differ
between the two queues. In order to figure out the initiation instant of each customer, an extra
vector named Servers is introduced to record the corresponding server labels (denoted by l and
l = 1, . . . , c).

Another output of Algorithm 7 is the most recent empty time of the backwards simulated
RA system: −T ∈ R. The coupled ΣKM/G/c APQ must also be empty at −T . We restore the
APQ by running forward from the empty state at −T , using the outcomes of Algorithm 7, and
simulating the class number for each arrival with probability proportional to λk, k = 1, . . . ,K.
We output the state at time 0 as the steady-state draw from the ΣKM/G/c APQ.

Let K denote the class number whose waiting time is of interest. The procedure to sample
a stationary draw from WK are summarized as below.

1. Simulate the M/G/c RA model backwards as specified in Algorithm 7, and get outputs
−T , Instants and Services. If T = 0 then output WK = 0. Otherwise, continue.

2. Generate a pseudo-arrival of class K arriving at time 0. Simulate forward from empty
state at −T with Instants and Services as described in Section 3.4.3 below. Output the
service initiation instant of the pseudo-arrival as a stationary draw from the waiting time
distribution for class K in the ΣKM/G/c APQ.

Remark According to Proposition 2.3.1, X0 (which is the state of the ΣKM/G/c APQ at time
0) is in steady state. Similar argument in Section 3.3.3 supports that the output is a steady-state
draw.

3.4.3 Algorithm to restore the ΣKM/G/c APQ

At time −T Algorithm 7 tells us that the RA queue is empty. By Proposition 3.4.1 we know
that the coupled WCQ is also empty. We know the arrival instants of all customers who will
arrive before time 0, and a corresponding number of service durations (though we do not yet
know the pairing of the customers and service durations). We need to use that information to
simulate the WCQ forward in time to find the steady-state draw at time zero. This part of the
simulation depends on the particular protocol used; we illustrate in this section using the APQ.
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Algorithm 7 M/G/c RA model backward simulation
1: Initialize vectors Instants, Services and Servers to empty.
2: for l = 1 to c do
3: Simulate Ql ∼ Geom(1 − ρ)
4: if Ql , 0 then
5: for i = 1 to Ql do
6: Simulate Ul,i ∼ Unif(0, 1); Simulate Xl,i ∼ H(·); Yl,i ← Ul,iXl,i

7: end for
8: end if
9: end for

10: t ← 0; Simulate a ∼ Exp(λ)
11: if Ql = 0 for all l = 1, . . . , c then
12: return T = 0
13: else
14: while Exists Ql > 0, l = 1, . . . , c, do
15: (l∗, i∗)← arg minl,i{QlYl,i, l = 1, . . . , c; Ql > 0; i = 1, . . . ,Ql}

16: d ← Ql∗Yl∗,i∗

17: if d < a then
18: t ← t + d; a← a − d # departure event
19: for l = 1, . . . , c and i = 1, . . . ,Ql, where Ql > 0 do
20: Yl,i ← Yl,i − d/Ql

21: end for
22: Append t to Instants, Xl∗,i∗ to Services and l∗ to Servers
23: Remove the i∗th entries from Yl∗ and Xl∗

24: Ql∗ ← Ql∗ − 1
25: else
26: t ← t + a # arrival event
27: for l = 1, . . . , c and i = 1, . . . ,Ql, where Ql > 0 do
28: Yl,i ← Yl,i − a/Ql

29: end for
30: Simulate l′ ∼ Unif{1, . . . , c} # randomly choose a server
31: Ql′ ← Ql′ + 1; Simulate Xl′,Ql′ ∼ G(·); Yl′,Ql′ ← Xl′,Ql′

32: Simulate a ∼ Exp(λ)
33: end if
34: end while
35: T ← the last element in Instants
36: Change signs of Instants
37: Reverse orders of Instants, Services and Servers
38: Group Instants and Services by server labels as Instantsl and Servicesl, l = 1, . . . , c.
39: Apply the FCFS discipline to Instantsl and Servicesl, then get Initiationsl, l = 1, . . . , c.
40: Merge Initiationsl and Servicesl back into Initiations and Services. Sort the pairs in

ascending order of Initiations.
41: return −T , Instants and Services.
42: end if
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First we allocate the customers to the various priority classes independently in proportion
to their arrival rates, i.e. assign class k with probability λk/λ. Break the arrivals up by class into
K sequences of arrival instants: {t(k)( j)}, where ascending orders are preserved for all classes.
Let {B j} stand for Services.

In addition to the pseudo-arrival of class K at time 0, to facilitate computing, generate
one more arrival after time 0 for each class with k , K, whose arrival instant is simulated
from Exp(λk), due to the memoryless property of the exponential distribution. Independently
simulate K service durations, governed by G(·), and append them to {B j}.

Denote by N(k) the number of arrivals of class k, and note that N(k) ≥ 1. So the K arrival
sequences become {t(k)( j), j = 1, . . . ,N(k)}, k = 1, . . . ,K, and the service sequence {B j, j =

1, . . . ,N}, where N =
∑K

k=1 N(k).

Denote by Ci, i = 1, 2, . . ., the customer who is the ith to enter service, by li ∈ {1, . . . , c} the
corresponding label of the server chosen to provide service, by κi the class number and by ξi the
instant of service initiation. The values of li, κi and ξi will be determined in the loop described
below.

Introduce a K-length vector ~ni =
(
n(1)

i , . . . , n(K)
i

)
to record indices of the earliest arrivals of

all classes who have not entered into service by ξi+. By construction ~ni exists for all ξi ≤ 0.

Prior to Ci+1 being selected for service, the earliest instants of all servers becoming available
after accommodating Ci are represented by a c-length vector ~si =

(
s(1)

i , . . . , s(c)
i

)
.

The system is initialized at −T with s( j)
0 = −T, j = 1, . . . , c and ~n0 = (1, . . . , 1).

Repeat the following loop for i = 1, 2, . . ..

1. Choose the server with label

li = arg min
j

{
s( j)

i−1, j = 1, 2, . . . , c
}
,

taking the smallest index in the event of a tie.

2. Select the customer entering into service and determine ξi.

If maxk

{
s(li)

i−1 − t(k)
(
n(k)

i−1

)
, k = 1, 2, . . . ,K

}
< 0, i.e. the server being chosen is idle, then

choose the next arrival, i.e.

κi = arg max
k

{
s(li)

i−1 − t(k)
(
n(k)

i−1

)
, k = 1, 2, . . . ,K

}
,

ξi = t(κi)
(
n(κi)

i−1

)
.
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Otherwise choose the customer with the highest accumulated priority at this instant, i.e.

κi = arg max
k

{
bk

[
s(li)

i−1 − t(k)
(
n(k)

i−1

)]
, k = 1, 2, . . . ,K

}
,

ξi = s(li)
i−1.

3. Update ~si and ~ni as

s(li)
i = ξi + Bi, and s( j)

i = s( j)
i−1, j , li,

n(κi)
i = n(κi)

i−1 + 1, and n(k)
i = n(k)

i−1, k , κi.

It may happen for some i that n(k)
i > N(k). This means that higher priority customers who

arrive after time 0 have “cut in” under the APQ discipline and been served before the pseudo-
arrival. In such a case additional arrivals and new service durations will be generated. The loop
terminates when Ci∗ is the pseudo-arrival, i.e. n(K)

i∗−1 = N(K) and κi∗ = K. We output ξi∗ as the
stationary draw from the waiting time distribution for class K. Corresponding pseudocode can
be found in Algorithm 8.
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Algorithm 8 Restoring ΣKM/G/c APQ in the dominated CFTP
1: if T = 0 then
2: W ← 0
3: else
4: for k = 1 to K do
5: Get sequence

{
t(k)( j)

}
by class number k

6: if k , K then
7: Simulate E ∼ Exp(λk)
8: else
9: E ← 0

10: end if
11: Simulate X ∼ G(·)
12: Append E to

{
t(k)( j)

}
and X to

{
B j

}
13: end for
14: N ← the number of elements in

{
B j

}
15: N(k) ← the number of elements in

{
t(k)( j)

}
, k = 1, . . . ,K

16: Initialize s( j) ← 0, j = 1, . . . , c
17: n(k) ← 1; ω(k) ← t(k)(n(k)), k = 1, . . . ,K;
18: m← 1 # counter of the service durations being used
19: loop
20: l← arg min j

{
s( j), j = 1, 2, . . . , c

}
# taking the smallest index if there is any tie

21: if maxk

{
s(l) − ω(k), k = 1, 2, . . . ,K

}
< 0 then

22: K ← arg maxk

{
s(l) − ω(k), k = 1, ..,K

}
23: ξ ← ω(K)

24: else
25: K ← arg maxk

{
bk

[
s(l) − ω(k)

]
, k = 1, ..,K

}
26: ξ ← s(l)

27: end if
28: if K = K and n(K) = N(K) then
29: W ← ξ; break
30: end if
31: if m ≤ N then
32: X ← Bm

33: else
34: Simulate X ∼ G(·)
35: end if
36: s(l) ← ξ + X; m← m + 1; n(K) ← n(K) + 1
37: if n(K) ≤ N(K) then
38: ω(K) ← t(K)(n(K))
39: else
40: Simulate A ∼ Exp(λK ); ω(K) ← ω(K) + A
41: end if
42: end loop
43: end if
44: return W
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Figure 3.8: Totally idle periods of the coupled M/G/c FCFS and ΣKM/GK/c APQ, which do
not match in this sample realization. The horizontal bars are service durations associated with
customers. The gray bar corresponds to a class 1 customer and the black bar a class 2 customer.
The upward arrows indicate the arrival instants. The class 2 customer arrives at time 1.5, and
the class 1 customer at 1.6. The first departure occurs at 1.8. Under the FCFS discipline, the
first busy cycle ends at τ1 = 5. After applying the APQ discipline (b1 = 1, b2 = 0.5), the
workload excess (unfinished workload at τ1) interferes the second busy cycle.

3.5 Nearly Perfect sampling of ΣKM/GK/c APQ

When the service duration distributions for various classes of customers differ, the order in
which they enter into service can affect the distribution of the totally idle period. In fact the
totally idle periods of the FCFS queue and APQ might not match. As illustrated in Figure 3.8,
the unfinished workload at the end of the first busy cycle of the FCFS queue is no longer 0 after
applying the APQ discipline. We call the APQ remaining workload the “workload excess”
from previous busy cycles. It is easy to see that the paths of the M/GK/c RA model also do
not dominate those of the coupled ΣKM/GK/c APQ under our coupling; this means the Section
3.4 algorithm will not work in this model. We still share arrival instants, but now we assign the
service duration to the customer upon arrival. We do not achieve perfect sampling, but using
the algorithm described below we can come within ε of the true limit (in the total variation
sense) for any pre-specified ε.
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Let −T0 ∈ R be the most recent time in the past when the FCFS queue was totally idle. The
coupled ΣKM/GK/c APQ might not be idle then, if its previous busy period extended across
the totally idle period of the M/G/c FCFS queue, so we can’t assume that our coupled queue is
idle. Since we don’t start from an empty system, we can’t predict exactly what the state will be
at time zero. Fortunately, the potential workload excess is not large (it is likely to be absorbed
by subsequent totally idle periods), and in fact, we can compute probabilistic bounds on its
size. We will construct our coupling so that the probability of the sample being affected is less
than ε; if it is not affected, the usual CFTP argument shows that our draw is from the limiting
distribution.

This result can be explicitly presented as below by extending Proposition 2.3.1.

Proposition 3.5.1 Suppose two queues, denoted by {Xt}t∈R and {Yt}t∈R, are stable and they are

coupled such that the upper bound of Xt can be determined with Yt at some time points. {Yt}t∈R

is stationary in time and can be simulated backwards. Assume at a past time −T, X−T ≤ Y−T +∆,

where T > 0, T ∈ R and 0 ≤ ∆ < ∞. We run forward {Xt}t≥−T with X−T = Y−T and the r.v.’s

(denoted by {Ui, i ∈ N} which consists of arrival and service events) generated in the backward

simulation of {Yt}−T≤t≤0. If ∆ can be absorbed completely by the extra work capacity (e.g.

the idle periods) in {Xt}−T≤t≤0, then X0 is a steady-state draw from the limiting distribution of

{Xt}t∈R.

Proof Assume these two queues are run from infinitely long ago, so at time 0 both are in steady
state. Denote by {Xx

t }t∈R all possible chains with values of x at time −T , where x ∈ [0,Y−T + ∆].
They are driven by a common sequence of r.v.’s {Ui, i ∈ N}. It is easy to verify this coupling is
monotone. So if there is empty instant in {XY−T +∆

t }−T≤t<0, i.e.∃t ∈ [−T, 0), 3−− XY−T +∆
t = 0, then

these chains coalesce by time 0, because {XY−T +∆
t }−T≤t<0 is the upper bound and 0 the intrinsic

lower bound. So the unique-valued X0 = XY−T +∆

0 must be the steady-state draw since the chain
has been run from infinitely long ago.

Because of the coalescence, XY−T
0 = XY−T +∆

0 . Therefore we can start with X−T = Y−T and
{Ui, i ∈ N} to construct {XY−T

t }−T≤t≤0, and output XY−T
0 as the steady-state draw. �

Remark (1) We allow {Xt}t∈R to be non-stationary in time, e.g. the time-varying queue. In
this case, we get a steady-state draw from the time dependent limiting distribution. So
this claim also works in Chapter 4.

(2) Unlike most CFTP implementations, our algorithm allows direct calculation of the (ran-
dom) starting time in the past, rather than the usual trial and error approach.
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Figure 3.9: Blocks in the M/G/c FCFS queue. The gray rectangles are busy periods and blank
ones are totally idle periods. A gray rectangle and a following blank one form a busy cycle. In
this case, there are two busy cycles in block C−1 and two ore more busy cycles in C−2.

3.5.1 Workload excess and carryover probability

In the coupled FCFS queue (which can be still treated as an M/G/c FCFS queue with common
mixture service duration distribution, see equation (2.2)), we group mi (i ∈ Z) consecutive busy
cycles together as block Ci, with C−1 being the most recent block before time 0 such that there
are m−1 totally idle periods between the beginning of C−1 and 0 (note: if one of these periods
contains time 0, it is still counted). We will specify mi below. Assume block Ci ends at time τi

with the first arrival starting block Ci+1, so τ−1 < 0 < τ0 if the system is not empty at time 0.
Please refer to Figure 3.9 for an illustration.

We now consider the coupled APQ. We call the workload excess generated within Ci at τi

the individual workload excess and it is denoted by Ωi ≥ 0.

Notice that in Ci there are mi totally idle periods, which could absorb the workload ex-
cess from previous blocks. Let Gi denote the summation of the durations of these totally idle
periods, then

Gi ∼ Gamma(mi, λ), (3.14)

where mi is the shape and λ =
∑K

k=1 λk the rate parameter of the Gamma distribution.

The basic idea of this algorithm is that, with the inputs generated in the coupled FCFS
queue, we construct the coupled APQ starting from the empty state at time τ−2 (i.e. the be-
ginning of block C−1), run it forward and output the state at time 0 as if it was a steady-state
draw.
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Let E be the event that Ω−2 > G−1 with m−2 = ∞, i.e. there might be carryover of
the workload excess traversing through the interval (τ−2, 0) after applying the APQ discipline.
When E occurs the simulated workload at time 0 would possibly underestimate the stationary
value, whereas in the complementary case it definitely matches it.

For finite m− j ( j = 1, 2, . . .), we let E− j be the event Ω−( j+1) > G− j, i.e. the individual
workload excess from block C−( j+1) exceeds the summed time fractions of totally idle periods
in C− j. If none of E− j, j = 1, 2, . . . , occur then there is no carryover. So we have

∞⋂
j=1

Ec
− j ⊂ E

c ⇒

 ∞⋃
j=1

E− j

 ⊃ E

⇒ Pr(E) ≤ Pr

 ∞⋃
j=1

E− j


≤

∞∑
j=1

Pr(E− j)

=

∞∑
j=1

Pr
[
Ω−( j+1) > G− j

]
. (3.15)

In the following sections we will establish that items of the summation in equation (3.15) decay
in a geometric form, so the sum is finite. We will choose m− j to bound this sum.

3.5.2 Upper bound of individual workload excess

Proposition 3.5.2 The individual workload excess of Ci after applying the APQ rule is less

than (c − 1) times the maximum service duration (B∗i ) in Ci:

Ωi < (c − 1)B∗i . (3.16)

Proof At time t, let Vt be the unfinished workload function, with V f
t and Va

t being those in the
coupled FCFS and APQ respectively. Then

Ωi = Va
τi
.

Define the slope of Vt at time t as

β(t) =

 dVt/dt, at differentiable points,
min{β(t−), β(t+)}, at non-differentiable points.
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It is clear that β(t) ∈ {−c,−(c−1), . . . ,−1, 0}. Similarly, β f (t) and βa(t) correspond to the FCFS
and APQ respectively.

After applying the APQ rule, there are two possible cases at time τi:

(1) βa(τi) > −c, which means there is at least one server idle at this time, and there are at
most (c − 1) jobs remaining in process, thus inequality (3.16).

(2) βa(τi) = −c, i.e. all servers are busy at τi. Since it cannot be that all servers keep
simultaneously busy throughout (τi−1, τi) (as the total work done will match that of the
FCFS queue), so ∃ t∗ ∈ (τi−1, τi) : βa (t∗−) = −(c − 1), and βa(t) = −c,∀ t ∈ (t∗, τi), i.e.
there are exactly (c − 1) unfinished jobs at t∗−. So

Va
t∗− < (c − 1)B∗i .

Assume there are N′ arrivals on (t∗−, τi), and their service durations are B′l , l = 1, . . . ,N′.

According to the definition of Ci, it is clear that V f
τi = 0, as this is the end of the block.

Therefore

Va
τi

= Va
t∗− +

N′∑
l=1

B′l + (−c)(τi − t∗),

< (c − 1)B∗i +

N′∑
l=1

B′l +

∫ τi

t∗
β f (t)dt,

= (c − 1)B∗i − V f
t∗− + V f

t∗− +

N′∑
l=1

B′l +

∫ τi

t∗
β f (t)dt,

= (c − 1)B∗i − V f
t∗− + V f

τi

= (c − 1)B∗i − V f
t∗−

≤ (c − 1)B∗i .

This establishes the result. �

Remark: Proposition 3.5.2 also holds true for other WCQs.
Since the maximum service duration in a block relies on the maxima of the busy cycles in

it, we would like to analyze the latter further.

Proposition 3.5.3 In a busy period of an M/G/c FCFS queue, denote the service durations

chronologically according to their arrival instants by B0, B1, . . . , BN−1, where N is the number

of customers served in this busy period. Let

B∗ = max
k
{Bk, k = 0, . . . ,N − 1} .
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Then

Pr (B∗ > x) ≤ E(N)G(x),

where G(x) is the tail probability of the generic service duration.

Proof Boxma [10] stated a result equivalent to this proposition. We use renewal theory to give
an explicit proof.

If the distributions of the Bi’s did not depend on N, the result would obviously follow, but
the distribution of the Bi’s will generally depend on N. Denote by ti, i = 0, 1, . . . , the chrono-
logical arrival instants of customers, which have corresponding service durations B0, B1, . . ..

Construct a regenerative process {Xt}t∈T, where T = [0,∞), as:

Xt = Bi, t ∈ [ti, ti+1),

and let Xi = Xti . The embedded renewal process is the sequence of initial instants of the busy
cycles.

According to Asmussen [5, Corollary 1.4, p. 171], we have

Ee( f (Xi)) =
1
E(N)

E
N−1∑
k=0

f (Xk)⇔ Ee( f (Bi)) =
1
E(N)

E
N−1∑
k=0

f (Bk)

for any measurable f (·) where Ee corresponds to the stationary (or marginal) measure.

Let f (y) = 1(y > x) be the standard indicator function of an event, then it follows that

Ee(1(Bi > x)) =
1
E(N)

E
N−1∑
k=0

1(Bk > x). (3.17)

It is clear that

N−1∑
k=0

1(Bk > x) ≥ 1(B∗ > x)

⇒ E
N−1∑
k=0

1(Bk > x) ≥ E1(B∗ > x) = Pr (B∗ > x) .

Notice that the LHS of equation (3.17) is G(x). So we have

G(x) ≥
1
E(N)

Pr (B∗ > x) ,

which is the result desired. �
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Proposition 3.5.4 Let N be the number of customers served in an M/G/c FCFS busy period,

then

E(N) ≤ (1 − ρ)−c.

Proof It is well known (e.g. Wolff [59] and Asmussen [5, p. 342]) that the M/G/c RA model is
a stochastic upper bound of the M/G/c FCFS queue in the number of customers in the system.
Let NRA be the number of customers served in a busy period of the coupled RA model, then

E(N) ≤ E(NRA).

The M/G/c RA model is a combination of c independent M/G/1 FCFS queues, any of
which is empty a fraction 1 − ρ of the time. So the fraction of time when all c servers of the
RA model are simultaneously idle is (1 − ρ)c.

Due to the Poisson Arrivals See Time Averages (PASTA) property, this means that one
expects the M/G/c RA model to be found empty by (1 − ρ)c of the arrivals. It means

lim
m→∞

m∑m
i=1 NRA

i

= (1 − ρ)c ⇒ lim
m→∞

∑m
i=1 NRA

i

m
= (1 − ρ)−c,

so by ergodicity of the stable M/G/c FCFS queue, so long as ρ < 1, E(NRA) = (1 − ρ)−c and
the result holds true. �

3.5.3 Upper bound of carryover probability

As defined before, the number of busy cycles in block C− j, j = 1, 2, . . ., is specified by m− j.
Denote the maximum service duration in the ith busy cycle in this block as B∗(i), i = 1, . . . ,m− j,
so

B∗− j = max{B∗(i), i = 1, . . . ,m− j}.

Because the B∗(i)’s are identically distributed, and m− j is deterministic, it is easy to verify that

Pr
[
B∗− j > x

]
≤ m− j Pr(B∗ > x), (3.18)

where B∗ is the generic one of B∗(i)’s.
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Thus the upper bound of Pr(E− j) (as shown in inequality (3.15)) becomes

Pr(E− j) = Pr
[
Ω−( j+1) > G− j

]
< Pr

[
(c − 1)B∗−( j+1) > G− j

]
, (see Proposition 3.5.2)

=

∫ ∞

0
Pr

[
(c − 1)B∗−( j+1) > x

∣∣∣G− j = x
]

dFG− j(x)

≤ E

(
m−( j+1) Pr

[
B∗ >

G− j

c − 1

])
, (by inequality (3.18) and B∗−( j+1) ⊥ G− j)

≤ m−( j+1)E(N)E
[
G

(
G− j

c − 1

)]
, (see Proposition 3.5.3)

≤ (1 − ρ)−cm−( j+1)E

[
G

(
G− j

c − 1

)]
, (see Proposition 3.5.4)

where ⊥ indicates the relationship of being independent.

Therefore the upper bound of the carryover probability can be represented as

Pr(E) ≤
∞∑
j=1

Pr(E− j) < (1 − ρ)−c
∞∑
j=1

m−( j+1)E
[
G

(
G∗− j

)]
, (3.19)

where we let G∗
− j =

G− j

c−1 .

We are going to discuss the upper bound shown in inequality (3.19) in separate implemen-
tations for the cases of light tail or heavy tail service duration distributions. We define the term
“light tail distribution” in the sense of Asmussen and Glynn [6, p. 163], i.e. those which decay
at an exponential rate or faster. Heavy tail distributions as those which have superexponential
tails.

The case of light tail service duration distributions

It is easy to verify (see equation (3.14)) that

G∗− j ∼ Gamma(m− j, (c − 1)λ),

and its Laplace-Stieltjes Transform (LST)

E
(
e−sG∗

− j
)

=

[
(c − 1)λ

(c − 1)λ + s

]m− j

, s > 0.

Employing ideas shown in the proof of Chernoff’s inequality in [25], for some appropriate
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t > 0, we have

E
[
G

(
G∗− j

)]
= E

(
Pr

[
B > G∗− j

∣∣∣G∗− j

])
= E

(
Pr

[
etB > etG∗

− j
∣∣∣G∗− j

])
≤ E

(
E(etB)

etG∗
− j

)
(due to Markov’s inequality)

= E
(
etB

)
E

(
e−tG∗

− j
)

= MB(t)
[

(c − 1)λ
(c − 1)λ + t

]m− j

,

where MB(t) is the moment generating function (m.g.f.) of the generic service duration B.

As a result, inequality (3.19) becomes

Pr(E) < (1 − ρ)−cMB(t)
∞∑
j=1

m−( j+1)

[
(c − 1)λ

(c − 1)λ + t

]m− j

. (3.20)

To provide the required upper bound ε on Pr(E), the right hand side of (3.20) should be small.
Many choices of t and sequences m− j will achieve this; in particular if m− j = jm−1 we need
only choose t > 0 and m−1 large enough. For example, for large enough m−1 the ratios of two
consecutive terms in the sum will be less than 1/2, and the inequality can be simplified further
as

Pr(E) < 4(1 − ρ)−cMB(t)m−1

[
(c − 1)λ

(c − 1)λ + t

]m−1

.

With a specified error tolerance ε and fixed t, the value of m−1 is determined as

m−1(t) = min
{

m : m ∈ N, 2
[

(c − 1)λ
(c − 1)λ + t

]m

< 1/2,

4(1 − ρ)−cMB(t)m
[

(c − 1)λ
(c − 1)λ + t

]m

< ε

}
(3.21)

In practice, we will choose t so that it does not inflate MB(t) too much and m−1 need not be
too large. See Section 3.5.5 for examples. Usually, m−1(t) is a convex function in t on its valid
interval (allowing the existence of the m.g.f.). So we can find the value of t which minimizes
m−1(t).



3.5. Nearly Perfect sampling of ΣKM/GK/c APQ 69

The case of heavy tail service duration distributions

Since (G∗
− j)
−1 has the inverse Gamma distribution, it follows [34, p. 710] that

E
[(
G∗− j

)−k
]

=
(c − 1)kλk

(m− j − 1)(m− j − 2) · · · (m− j − k)
, k = 1, . . . ,m− j − 1.

Assume there exist at least two moments of the service duration distribution, E(Bn), n ≥ 2.
Similar to the calculation above, we have

E
[
G

(
G∗− j

)]
= E

(
Pr

[
B > G∗− j

∣∣∣G∗− j

])
= E

(
Pr

[
Bn > (G∗− j)

n
∣∣∣G∗− j

])
≤ E

 E(Bn)
(G∗
− j)n

 , (due to Markov’s inequality)

= E (Bn)E
(
(G∗− j)

−n
)

=
(c − 1)nλnE (Bn)

(m− j − 1)(m− j − 2) · · · (m− j − n)
,

and

Pr(E) < (1 − ρ)−c
∞∑
j=1

m−( j+1)
(c − 1)nλnE (Bn)

(m− j − 1)(m− j − 2) · · · (m− j − n)

= (1 − ρ)−c(c − 1)nλnE (Bn)
∞∑
j=1

m−( j+1)

(m− j − 1)(m− j − 2) · · · (m− j − n)
.

To accelerate the convergence of the series in the RHS of the inequality shown above, we set
m− j = 2 j−1m−1, j = 1, 2, . . .. Therefore

Pr(E) <
4m−1(1 − ρ)−c(c − 1)nλnE (Bn)

(m−1 − 1)(m−1 − 2) · · · (m−1 − n)
< 4(1 − ρ)−c(c − 1)nλnE (Bn) m−1(m−1 − n)−n

and the calculation of the value of m−1 proceeds in two steps. For fixed n set

m−1(n) = min
{
m : m ∈ N,m > n, 4(1 − ρ)−c(c − 1)nλnE (Bn) m(m − n)−n < ε

}
. (3.22)

and choose m−1 from among these. To minimize m−1(n), we do not always choose larger n.
For example, all moments exist for Lognormal and Weibull distributions. But E(Bn) → ∞ as
n → ∞. So we can optimize m−1(n) on a finite discrete set {2, . . . , n∗}, as there will eventually
be a point n∗ beyond which the moments grow very quickly, causing m−1 to do likewise.
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Remark: Equation (3.22) is also applicable to the light tail case, and may be easier to work
with than (3.21) if MB(t) is difficult to evaluate.

3.5.4 Algorithm description

Our algorithm is similar to that of the ΣKM/G/c APQ with extra busy cycles to control the
probability of carryover.

1. Simulate the M/GK/c RA model backwards. Based on Algorithm 7, class numbers need
to be generated and paired with the service durations.

When running the M/GK/c RA model forward, the class numbers of customers found
at time 0, if any, are simulated with probabilities proportional to ρk, k = 1, . . . ,K. See
Proposition 3.3.1 for details. For others, they are proportional to λk, k = 1, . . . ,K. Service
durations are simulated according to corresponding class numbers. Let Classes be the
class numbers paired with the individual service durations in Services (see Algorithm 7).

After adjusting the service duration orders according to the service initiation instants in
the reversed M/GK/c RA model looking forward in time, we reassign arrivals to the
service durations. The outputs of the simulation run are −T (the most recent empty time
in the past of the coupled M/GK/c RA model), and sequences of Instants, Services and
Classes, with corresponding entries being paired.

2. Compute m−1 according to equations (3.21) or (3.22). Then generate m−1 consecutive
busy cycles ending at −T , recording arrival instant and associated service duration and
class number for each customer. The class number is generated with probabilities pro-
portional to λk, k = 1, . . . ,K, then the service duration is simulated accordingly.

These m−1 busy cycles are generated from the coupled RA model. Starting from the
empty state at time 0, we simulate the M/GK/c RA model forward for one cycle. Then
we adjust the service duration orders as in the previous step to construct the coupled
M/GK/c FCFS queue and count the number of busy cycles in it. If the number is less
than m−1, simulate additional RA cycles until the summed number of FCFS cycles is
at least m−1. These busy cycles are all shifted backwards so that they end at time −T .
Denote by −T1 the starting time of these extra busy cycles after the shifting, and insert
the detailed records (arrival instants, associated service durations and class numbers) to
the beginnings of Instants, Services and Classes respectively.

3. Generate a pseudo-customer of classK arriving at time 0. From time −T1, apply the APQ
discipline to the outcomes in Step 2 of this algorithm (the augmented Instants, Services
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and Classes) and restore the ΣKM/GK/c APQ. Output the service initiation instant of the
pseudo-customer. With probability no less than 1 − ε the output will be a draw from the
stationary waiting time of class K in this system.

This step is implemented with small changes to the algorithm of restoring the ΣKM/G/c
APQ (Section 3.4.3). The differences are follows.

• Because the distributions of service durations are different for various classes of
customers, service durations are also grouped into K sequences: B(k)( j), where
k = 1, . . . ,K, j = 1, . . . ,N(k), and N(k) ≥ 1, corresponding to the K-class arrival
instants {t(k)( j)}.

• We initialize with s( j)
0 = −T1, j = 1, . . . , c, where −T1 is the beginning of the extra

m−1 busy cycles.

• In the last step of the loop, replace Bi with B(κi)
(
n(κi)

i−1

)
, i.e. for a customer being

selected for service with class number κi, the paired service duration will be used.
Whenever n(k)

i > N(k), another class k customer will be simulated using the class-
specific arrival rate and service duration.

Remarks about this algorithm:

(1) If there is no carryover, Proposition 3.5.1 shows that the target queue is in steady state at
time 0. The pseudo-customer is allowed due to the PASTA property. See the argument
of the remark in Section 3.4.2.

(2) The −T1 mentioned above was generated as the empty time in the past of the M/GK/c

RA model. Since it is a upper bound of the coupled (as described in Proposition 3.4.1)
M/GK/c FCFS queue, when the FCFS system is empty the RA model need not be so,
thus there would be more totally idle periods during (−T1, 0) than what we need (m−1).
However, this will have no effect on the validity of the algorithm.

(3) Since we use the totally idle periods in the successive block to absorb the potential work-
load excess from the previous one and apply CFTP to conduct the nearly perfect sam-
pling, we would like to call it as CFTP Block Absorption method.

Also note that, if the potential workload excess could be absorbed completely, then the
perfect sampling is achieved. In Section 4.3.2 we will see a variant of this method.
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3.5.5 Examples

In this section we present some examples to illustrate the nearly perfect sampling of the
ΣKM/GK/c APQ under different service duration distribution assumptions. The computation
of m−1 is the key.

We consider 2-class and 2-server systems, and the common parameters are specified as
follows:

λ1 = 1.08, λ2 = 0.72, µ1 = 1.2, µ2 = 0.8, b1 = 1, b2 = 0.5 and ε = 10−10.

The corresponding occupancy is ρ = 0.9, and overall average service duration is 1.

• Gamma distributions

Assume the distribution of class k has shape parameter αk. The rate parameters are
determined as

θk = αkµk, k = 1, 2

so the m.g.f. of the mixed service duration distribution is

MB(t) =

2∑
k=1

λk

λ

(
θk

θk − t

)αk

,

where 0 < t < min{θ1, θ2}.

Given t, the required value of m−1 can be found with equation (3.21). Then minimizing
m−1 with regard to t yields the optimal m−1.

When α1 = α2 = 1, the service distributions become exponential. We have m−1 = 102
when t = 0.7772.

If α1 = α2 = 3, then m−1 = 50 when t = 2.1636.

• Weibull distributions

The c.d.f. of service durations are specified as

Gk(x) = 1 − e−(x/θk)αk
, k = 1, 2.

To match the service rates, we have

θk =
1

µkΓ(1 + 1/αk)
,
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where Γ(x) stands for the standard Gamma function. For light tailed Weibull distribu-
tions, we still choose equation (3.22), because it is a general solution regardless of the
tail behaviors of service durations, and it avoids the tricky computation of the moment
generating function in (3.21). The nth moment of the service distribution is

E(Bn) =

2∑
k=1

λk

λ
θn

kΓ(1 + n/αk).

Let α1 = α2 = 2, which corresponds to a light tail case. We have the optimal m−1 = 46
when n = 23.

If α1 = α2 = 0.5, then we have a heavy tail case. It follows that m−1 = 1666 when
n = 19.

• Lognormal distributions

In this case, log(B(k)) ∼ N(νk, α
2
k), k = 1, 2. To match the service rates, we have

νk = log
(

1
µk

)
−
α2

k

2
.

The nth moment of service distribution becomes

E(Bn) =

2∑
k=1

λk

λ
enνk+n2α2

k/2.

Let α1 = α2 = 2, then m−1 = 7.14 × 107 when n = 5.

If α1 = α2 = 1, then m−1 = 7564 when n = 9.

If α1 = α2 = 0.5, then m−1 = 132 when n = 16.

• Pareto distributions

The service durations have Pareto distributions given as below:

Gk(x) = 1 −
(

θk

x + θk

)αk

, k = 1, 2.

The nth moment of service distribution is

E(Bn) =

2∑
k=1

λk

λ

θn
kΓ(n + 1)Γ(αk − n)

Γ(αk)
.
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Distribution Abbr. α1 α2 m−1 m−1 m−1

(ε = 10−5) (ε = 10−10) (ε = 10−15)
Exponential EXP 1 1 69 102 135
Erlang ERL 3 3 35 50 65
Weibull-light WBL 2 2 34 46 58
Weibull-heavy WBH 0.5 0.5 760 1666 2890
Lognormal LGN 1 1 1381 7564 29906
Pareto PRT 6 6 1370 24247 431071

Table 3.3: Values of m−1 with different service distribution assumptions.

Distribution Var(B) ̂E(W1) sd( ̂E(W1)) C.I. of E(W1)
Exponential 1.08 3.17 0.11 (2.96, 3.38)
Erlang 0.39 2.23 0.08 (2.08, 2.39)
Weibull-light 0.33 2.07 0.07 (1.93, 2.21)
Weibull-heavy 5.25 9.26 0.34 (8.59, 9.94)
Lognormal 1.83 4.04 0.15 (3.75, 4.33)
Pareto 1.60 3.62 0.14 (3.34, 3.89)

Table 3.4: Estimates and 95% confidence interval of waiting times of class 1 customers with
1,000 samples, where ε = 10−10.

It is clear that
θk =

αk − 1
µk

, k = 1, 2,

and only moments E(Bn), n = 1, . . . , bαk − 1c, exist.

Let α1 = α2 = 3, then m−1 = 5.4 × 1013 when n = 2.

If α1 = α2 = 6, then m−1 = 24247 when n = 5.

If α1 = α2 = 20, then m−1 = 244 when n = 16.

Typical results are summarized in Table 3.3. The values of m−1 are not very sensitive to ε,
especially for the light tail distributions. By generating 1,000 samples for each case of service
duration distribution, with ε = 10−10, the estimates (means and standard deviations) of waiting
times of class 1 and 2 are listed in Tables 3.4 and 3.5. Corresponding e.c.d.f.’s are plotted in
Figure 3.10.

3.5.6 Algorithmic analysis of the nearly perfect sampling

In this section, we will analyze the distance to the target distribution and expected runtime of
the nearly perfect sampling algorithm.
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Distribution Var(B) ̂E(W2) sd( ̂E(W2)) C.I. of E(W2)
Exponential 1.08 5.02 0.18 (4.66, 5.37)
Erlang 0.39 3.66 0.12 (3.41, 3.90)
Weibull-light 0.33 3.34 0.12 (3.11, 3.57)
Weibull-heavy 5.25 15.24 0.59 (14.07, 16.41)
Lognormal 1.83 7.32 0.27 (6.78, 7.86)
Pareto 1.60 5.86 0.22 (5.43, 6.29)

Table 3.5: Estimates and 95% confidence interval of waiting times of class 2 customers with
1,000 samples, where ε = 10−10.
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Figure 3.10: The e.c.d.f.’s built of simulations of 1,000 independent draws of waiting times for
each class in the APQ using the nearly perfect sampling method, where ε = 10−10. The legends
of distributions correspond to the abbreviations assigned in Table 3.3.
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We will establish that the expected runtime depends upon the occupancy of the queue, the
number of servers, and, in the heavy-tailed case, the number of finite moments of the service
duration distribution.

Distance to the target distribution

As shown in Section 3.5.3, by simulating extra (m−1) busy cycles of the coupling FCFS queue,
we can get steady-state draw of the ΣKM/GK/c APQ with probability more than 1 − ε. When
there is carryover of workload excess, the sample at time 0 would underestimate the stationary
value, i.e. we are sampling from a statistically smaller distribution with probability less than ε.

Proposition 3.5.5 Let Y be the sample draw of the nearly perfect sampling of the ΣKM/GK/c

APQ in Section 3.5.3, X the steady-state draw of the target system. Then the total variation (ν)

distance between their distributions is less than ε (specified in the algorithm).

Proof Let C be the event of carryover of workload excess, i.e. given C, Y
D
≤ X, while in the

complement, Y D
= X. Let p = Pr(C). Clearly p < ε.

Due to how the algorithm has been defined, FY(·) is a mixture of FX|Cc(·) and FY |C(·):

FY(x) = (1 − p)FX|Cc(x) + pFY |C(x), x ∈ E
de f
= [0,∞), 0 < p < ε.

It is obvious that
FX(x) = (1 − p)FX|Cc(x) + pFX|C(x).

Therefore according to the definition of total variation (Section 2.1), we obtain

ν =
1
2

∫
E
|dFY(x) − dFX(x)| =

1
2

∫
E
|pdFY |C(x) − pdFX|C(x)|

≤
p
2

(∫
E

dFY |C(x) +

∫
E

dFX|C(x)
)

= p < ε.

�

Expected runtime

We use the number of customers being generated to quantify the cost in the nearly perfect
sampling of the M/GK/c WCQ. By setting the average service duration as 1, it becomes the
expected total runtime in the whole system.

There are two procedures that we need to count. The first one is simulating T , the stationary
age of the M/G/c RA model. In this procedure, there are two steps.
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• Simulating the stationary age (ζ) of the M/G/1 FCFS queue in each of these c servers.
As mentioned in equation (2.11), E(ζ) =

E(B2)
2E(B)(1−ρ)2 . So the expected runtime counted

here has the order of c(1 − ρ)−2.

• Running c independent M/G/1 FCFS queues until they are idle simultaneously for the
first time. As proven in Proposition 3.5.4, E(NRA) = (1 − ρ)−c.

The other procedure is generating m−1 generic busy cycles of the M/G/c FCFS queue.
Based on Proposition 3.5.4, it has upper bound of m−1(1 − ρ)−c.

The cost of the upper bound in the second procedure is dominant, so we take the expected
runtime (upper bound) of this method as

m−1(1 − ρ)−c. (3.23)

In the case of a light tail service duration distribution, based on equation (3.21), it is easy
to see that

m−1 ≈
(c − 1)λ
µm

[
log

(
1
ε

)
+ c log

(
1

1 − ρ

)]
,

where µm = min{µk, k = 1, . . . ,K}. Under certain queueing parameter settings, m−1 increases
linearly with regard to log( 1

ε
), i.e. ε ∝ e−α0m−1 , where α0 is a constant. It is analogue that the

distance limit (ε) decays exponentially as m−1 increases.

When the service duration distributions are heavy tailed, m−1 can be approximated (based
on equation (3.22)) as:

m−1 ≈ min

(c − 1)λ
(
1
ε

) 1
n−1

(
1

1 − ρ

) c
n−1

(E(Bn))
1

n−1 , n ≥ 2

 ,
where n = 2, 3, . . . , takes appropriate value such that E(Bn) exists and 1

n−1 can be fully exerted
to depress the value of m−1. As illustrated in the Pareto example in Section 3.5.5, when the
service duration distributions have only a finite number n of moments, m−1 can be quite large.

If we fix the parameters and only allow ε varying, based on the analysis above, the upper
bound of the expected runtime has order:

log
(
1
ε

)
(1 − ρ)−c, in the light tail case, and(

1
ε

) 1
n−1

(1 − ρ)−c, in the heavy tail case,

where n ∈ N is chosen appropriately such that E(Bn) is not inflated too much.
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Comparison with ordinary simulation

Another way to approach the limiting distribution is performing ordinary simulation: simu-
lating forward from an arbitrarily chosen state, then outputting a draw after some “burn-in”
time.

The burn-in time is usually hard to compute. As for the Markov chains mixing exponen-
tially fast, like the GI/G/1 queue with light tail service duration distribution, the relaxation
time (γ−1) has been estimated by Asmussen and Glynn [6, p. 101]

γ = arg min
s>0

E
(
es(B−A)

)
,

where B is the service duration and A inter-arrival time. Therefore the burn-in time is roughly

t(ε) ∼ γ−1 log(1/ε) as ε → 0.

Taking the M/M/1 FCFS queue as an example, more precise results were presented by
Asmussen [5, p. 107] which controlled the difference of between p.m.f.’s, and by Abate and
Whitt [1] which decayed the difference between some of the moments.

However, when the service duration distributions are heavy tailed, these chains could not
mix at exponential rates. Abate and Whitt [2] analyzed the transient behavior of the M/G/1
FCFS queue workload process (W(t)).

They defined

mk(t, x) = E
[
W(t)k|W(0) = x

]
,

Hk(t) =
mk(t, 0)
mk(∞)

,
(

where mk(∞) = W(∞)k
)

and proved (see Theorem 2 in Abate and Whitt [2]) that Hk(·) is a proper c.d.f. if the (k + 1)st

moment of the service distribution exist.

The corollary of Theorem 6 in Abate and Whitt [2] showed

h11 =
1

1 − ρ
v2

2v1

h12 =
1

(1 − ρ)2

(
v3

3v1
+ v2

)
,

where h11 and h12 are the first and second moments of distribution H1, and vk the kth moment
of the stationary unfinished workload.
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It is easy to verify that

h11 =
E(B3)

3(1 − ρ)E(B2)
+

ρE(B2)
2(1 − ρ)2E(B)

.

Consider the case of a Pareto service time distribution with shape parameter α = 3. Such a
distribution would have a mean and a variance, but no third moment. Hence h11 does not exist.
Therefore, H1(t) will be a well-defined c.d.f. without a well-defined mean, and the convergence
rate of m1(t, 0) to m1(∞) cannot be exponential, and therefore results similar to [1] cannot be
achieved.

So if the service duration distributions only have limit moments, H1 could not be light
tailed, thus the mixing rate is no longer exponentially rapid. Furthermore, in the multi-server
case, the analysis will become more complicated, and the mixing rate is likely to be slower.

Therefore, the advantage of the nearly perfect sampling algorithm is that it achieves sample
distribution having clearly specified distance to the target one with one finite runtime, which
can be estimated by equations (3.21), (3.22) and (3.23). Specifically, in the light tail case, the
distance to the target distribution is also decayed at exponential rate (see equation (3.23) with
light tail settings).

Another merit of the nearly perfect sampling is that it can perform equivalently well or
even better than the analytical solutions in practical use. For example, many analytical results
are provided in LST forms. To get the final results in the time domain, numerical inversions
are needed. As mentioned in Section 2.5.3, the commonly used Gaver-Stehfest method can
only achieve at most 5 effective digits under currently common computing resources. But with
nearly perfect sampling, we can increase the significant digits by generating more samples
while specifying an appropriate total variation bound ε.



Chapter 4

Sampling time-varying queues

Most classical queueing models are assumed to be time homogeneous. But in the real world,
the distributions of inter-arrival times and service durations are generally time dependent. At
service stations such as restaurants, bank counters and telecommunication switches, the arrival
rates are higher during rush hours than at slack periods. Another possible illustration of time-
varying queues comes from the world of transplant queues, since one source of deceased donor
organs is due to traffic accidents leading to death. [35] provides some evidence of seasonality
in the donor rate, with a notable peak in the summer when there is more traffic on the roads,
whereas the tendency in this regard in [47] is much reduced. Usually, these time-varying pat-
terns are repeated daily, weekly, monthly or yearly, due to cyclic human life styles or seasonal
environmental conditions. Therefore queues featuring periodically varying arrival or service
rates are both realistic and deserving of effective modeling tools to study them.

In this chapter we present algorithms for perfect and nearly perfect samplings of single-
server or multi-server queues with periodic Poisson arrivals. The service durations have pe-
riodically time-dependent exponential (e.g. Mt/Mt/1 and Mt/Mt/c) or homogeneous general
(e.g. Mt/G/1 and Mt/G/c) distributions. Assuming the cyclic period has length of 1, we
construct discrete dominating processes at instant n ∈ {0,±1, . . .} by coupling the number of
arrivals in the cyclic periods.

With regard to the Mt/Mt/1 FCFS queue, perfect sampling is obtained with the regenerative
method [52]. Once again, since the regenerative method has an infinite expected runtime,
a nearly perfect sampling algorithm is proposed by using the Block Absorption method as
introduced in the previous chapter. Its distance to the target distribution is less than ε in the
sense of total variation.

As for the Mt/G/1 FCFS queue, perfect sampling is achieved with dominated CFTP [29].
Since the unfinished workload is invariant under any work-conserving disciplines in the single-
server scenario, the perfect sampling of ΣKMt/GK/1 APQ is readily implemented. As for the
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Mt/G/c FCFS and APQ, by using the coupled RA model as the upper bound, their perfect
samplings are also available.

In the multi-server case, when the service distributions are different for various classes of
customers, i.e. ΣKMt/GK/c APQ, we do not achieve nearly perfect sampling, because it is hard
to estimate the upper bound of the tail probability of the longest service duration in a busy cycle
of the Mt/G/c FCFS queue, where the G in this case represents the aggregate of the various
Gk’s above, taken as a single class of customers.

Recall that Proposition 3.5.3 claims Pr (B∗ > x) ≤ E(N)G(x), where B∗ is the the longest
service duration, and N the number of customers served in a busy cycle of the M/G/c FCFS
queue. The proof relies on the regenerative structure of the homogeneous queue, which does
not depend on the time. But in the time-varying system, it is time dependent. Only the time
points with integral length intervals, at which the system is empty, constitute a sequence of
regeneration points for unfinished workload or waiting times [21]. So the starting points of busy
cycles of the Mt/G/c FCFS queue do not constitute a regenerative process. Considering that
the service durations in such a busy cycle are still correlated, and that classical renewal theory
cannot be applied, it is hard to figure out the upper bound of the tail probability: Pr (B∗ > x).

Before going further into the details, we would like to extend the notations based on the
definitions in Section 2.2.2.

• Define

λ̄ =

∫ 1

0
λ(t)dt, and µ̄ =

∫ 1

0
µ(t)dt.

To ensure the stability of the Mt/Mt/1 FCFS queue, the occupancy is given by

ρ =
λ̄

µ̄
< 1.

As for the Mt/Mt/c FCFS queue (c ≥ 2), this condition becomes

ρ =
λ̄

cµ̄
< 1.

We distinguish the case c ≥ 2 to underscore that the multi-server queue analysis is usually
quite different to that of the single-server case.

As for the Mt/G/1 and Mt/G/c FCFS queue, we define:

ρ =
λ̄

µ
and ρ =

λ̄

cµ
,

where µ = 1/E(B). To keep the systems stable, it should be that the occupancy is strictly
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less than 1.

• Define

Fλ(t) =

∫ t

0
λ(s)ds

λ̄
, and Fµ(t) =

∫ t

0
µ(s)ds

µ̄
(4.1)

for t ∈ (0, 1). These functions are strictly increasing on the defined interval, since λ(t) and
µ(t) are both positive except at some discrete points (see Section 2.2.2). Therefore their
inverse functions do exist, and are denoted by F−1

λ (x), and F−1
µ (x), x ∈ (0, 1) respectively.

• As for the time-varying queues, let NA
k be the number of arrivals on interval (k−1, k], k ∈

Z, so
NA

k ∼ Poi(λ̄).

The NA
k ’s constitute an i.i.d. sequence of r.v.’s.

• In the Mt/Mt/1 and Mt/Mt/c FCFS systems, let ND
k be the number of “potential depar-

tures” on interval (k − 1, k], k ∈ Z, assuming the system keeps busy. In the single-server
system

ND
k ∼ Poi(µ̄).

In the multi-server case, ND
k represents the number of potential departures on interval

(k − 1, k], k ∈ Z, assuming all c servers are kept continually busy. So

ND
k ∼ Poi(cµ̄).

ND
k ’s also constitute an i.i.d. sequence of r.v.’s and they are independent of NA

k ’s.

When any server is idle, we ignore the occurrence of the potential departure events in
that server.

• In the algorithms that follow we will couple homogeneous queues to the time-varying
queues that we are studying. Denote by QN

t and QH
t the numbers of customers at time t

in the time-varying and homogeneous queues respectively. They are defined to be right
continuous. At the arrival or departure instants, Qt = Qt+.
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4.1 Perfect and nearly perfect sampling of Mt/Mt/1 FCFS
queue

Since the perfect and nearly perfect sampling of the Mt/Mt/1 FCFS queue relies on the back-
ward simulation of the M/M/1 FCFS queue, we start by presenting this algorithm.

4.1.1 Backwards simulating the M/M/1 FCFS queue with a specified
number of busy cycles

Assume the arrival and service rates of the M/M/1 FCFS queue are constants λ0 and µ0 respec-
tively. Since it is time reversible, as mentioned in Section 2.3.4, conceptually this algorithm
is quite straightforward. Multiple busy cycles are simulated for the use by the CFTP Block
Absorption method.

In the forward simulation procedure: let E indicate the event of arrival (E = 1) or potential
departure (E = −1) and Q the number of customers in the system. For the record of (t, E,Q),
t is the event instant, E the event type and Q the number of customers just before this event.
The unused potential departure events are identified by Q = 0 and E = −1, as these would
correspond to the potential departures from an idle queue.

Just before a potential departure event (E = −1) occurs, if Q = 1, then this departure
instant is the end of a busy cycle when simulating forward. To achieve m idle periods after
being reversed, these events should be counted for m times after the queue becomes idle for the
first time.

When reversing the event instants generated in the forward simulation, usually we only treat
the (forward) departures as arrivals and (forward) arrivals as departures. But for the coupling
of time-varying queue, since we need the potential departure events, the unused ones will be
kept, and they are still treated as unused potential departure events after the reversing.

Algorithm 9 below presents the corresponding pseudocode, where −T is the initial instant
of m consecutive busy cycles before time 0 of the backwards simulated M/M/1 FCFS queue,
Instants and Events are the event information. Instants stands for the vector of event instants
and Events the event types: 1 for arrival and −1 potential departure.

4.1.2 Perfect sampling of Mt/Mt/1 FCFS queue with inf µ(t) > sup λ(s)

Let µl = inf µ(t) and λu = sup λ(t). Assume

µl > λu.
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Algorithm 9 M/M/1 FCFS queue backward simulation with m busy cycles
1: Initialize vectors Instants, Events and Qlengths to empty.
2: t ← 0 # event instant, initialized as zero
3: Simulate Q ∼ Geom(1 − ρ0), where ρ0 = λ0/µ0

4: while Q > 0 do
5: Simulate X ∼ Exp(λ0 + µ0)
6: t ← t + X
7: Simulate E from {1,−1} with Pr(E = 1) = λ0/(λ0 + µ0)
8: Append t to Instants, E to Events and Q to Qlengths
9: Q← (Q + E)+

10: end while
11: M ← 0 # counter of the busy cycles
12: while M < m do
13: Simulate X ∼ Exp(λ0 + µ0)
14: t ← t + X
15: Simulate E from {1,−1} with Pr(E = 1) = λ0/(λ0 + µ0)
16: Append t to Instants, E to Events and Q to Qlengths
17: if Q = 1 and E = −1 then
18: M ← M + 1
19: T ← t
20: end if
21: Q← (Q + E)+

22: end while
23: Bind Instants,Events and Qlengths
24: Change the signs of Events except those having Qlengths = 0 and Events = −1
25: Change the signs of Instants and reverse the orders of Instants and Events
26: return −T , Instants and Events
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A stable M/M/1 FCFS queue can be generated with arrival and service rates of µl and λu

respectively, since µl > λu. Based on its homogeneous arrival and potential departure events,
the time-varying inputs of the coupled Mt/Mt/1 queue are simulated as follows:

• The time-varying arrival events are filtered from the homogeneous arrivals by using the
thinning method (Section 2.5.2), because we have used too high an arrival rate.

• Time-varying potential departure events are reproduced based on the homogeneous ones
by inserting the time-varying potential departure events, because we have used too low a
departure rate. The extra time-varying process, which has rate of µ(t) − µl, is generated
with the inter-event time method (Section 2.5.2). Therefore the whole potential departure
process is a superposition of the homogeneous and the time-varying ones, due to the
aggregation property of independent Poisson processes.

Under the coupling scheme described above, it is easy to see that the coupled M/M/1 FCFS
queue dominates the time-varying one in Qt (the number of customers in the system), because
the arrivals in the time-varying queue are a subset and the potential departures a superset of the
M/M/1 FCFS queue.

Conceptually, we start the homogeneous queue (dominator) and the coupled time-varying
queue infinitely long ago. At time 0, both of them are in steady state. In a past time −T ∈ R, if
QH
−T = 0, it means the coupled time-varying queue must be empty at this time and coalescence

is achieved. By running it forward with the time-varying events generated as above, we get a
steady-state draw of the time-varying queue at time 0. Actually, the argument of Proposition
2.3.1 can be applied here by allowing the target system ({Xt}t∈R) to be a time-varying queue.

This algorithm is described as follows:

1. We simulate backwards the M/M/1 FCFS queue with parameters of λu and µl until it
becomes idle at time τ ∈ R, where τ = sup{t : t ∈ R, t ≤ 0,QH

t = 0}. See Algorithm 9
for reference, with the adjustment that we can stop when the system becomes idle for the
first time. We have the homogeneous events recorded in Instants and Events on interval
[τ, 0).

If τ = 0, return QN
0 = 0. Otherwise, continue.

2. Select from Instants where Events = 1 as Arrivals. Filter the arrival instants with the
thinning method and get the time-varying arrival instants as ArrivalsN .

3. Select from Instants where Events = −1 as FullDepartures. Then add potential extra
departures according to the specified µ(t) as follows.
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Let t0 = τ, and repeat the two sub-steps below for n = 0, 1, . . . ,N, where N satisfies
tN = max{tk : tk < 0, k ∈ Z}.

(1) Simulate ξtn from the distribution with c.d.f.

Ftn(x) = 1 − e−
∫ x

0 [µ(tn+s)−µl]ds,

where the subscript of F indicates that it depends on tn.

(2) Assign tn+1 = tn + ξtn .

If N > 0, then append {t1, . . . , tN} to FullDepartures′; otherwise, nothing would be
added. Sort all the elements in FullDepartures′ in ascending order as the time-varying
events FullDeparturesN .

4. Starting from empty state at time τ with inputs ArrivalsN and FullDeparturesN , we run
the time-varying system forward until time 0 and output the state QN

0 as a steady-state
draw at the integral times for the Mt/Mt/1 FCFS queue.

4.1.3 Perfect sampling of the Mt/Mt/1 FCFS queue

In this section, we use the regenerative method to perform perfect sampling of the Mt/Mt/1
FCFS queue with general stationary condition, i.e. λ̄ < µ̄.

The key is to construct a dominating process. Based on the time-varying system, if we
concentrate all arrivals to the end of the interval (k − 1, k], k ∈ N, and all potential departures
to the beginning of it, the modified process would dominate the original one. Intuitively, since
more potential departure events might be “wasted” due to the postponing of arrival events, so
there would be more customers remaining in the system. This idea is explicitly stated by the
following proposition.

Proposition 4.1.1 Construct a process by modifying a stable Mt/Mt/1 FCFS queue as follows.

On each interval of (k − 1, k], k ∈ Z, let the number of arrivals in the Mt/Mt/1 queue be NA
k ,

and the number of potential departures be ND
k . In the modified queue, let NA

k customers arrive

as a batch just before time k, and let ND
k+1 potential departures occur just after time k. Denote

by Lk the number of customers counted at time k of the modified process, and by QN
k that in

the corresponding Mt/Mt/1 FCFS queue. If Lk0 = QN
k0

= 0 for some k0 ∈ Z, then the modified

system dominates the original one in the number of customers at all integer times after k0:

Lk ≥ QN
k , ∀k ≥ k0.
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Proof At the non-integer points, we define

Lt =
(
Lk−1 − ND

k

)+
,∀t ∈ (k − 1, k). (4.2)

It is obvious that
Lk ≥ NA

k ,∀k ∈ Z,

since no matter what the system’s state is, the NA
k arrivals are guaranteed.

It is clear that when k = k0 the inequality is true. Assume when k = m,m ≥ k0,m ∈ Z, the
inequality holds, then when k = m + 1 we have:

1. If ∃t ∈ (m,m + 1), 3−− QN
t = 0, then QN

m+1 ≤ NA
m+1 ≤ Lm+1.

2. Otherwise, QN
t > 0,∀t ∈ (m,m + 1), i.e. the time-varying queue keeps busy on this

interval, then
QN

m+1 = QN
m − ND

m+1 + NA
m+1.

(1) If Lt > 0,∀t ∈ (m,m + 1), then

Lm+1 = Lm − ND
m+1 + NA

m+1,

and it follows that
Lm+1 − QN

m+1 = Lm − QN
m ≥ 0.

(2) Otherwise ∃t ∈ (m,m + 1), 3−− Lt = 0, then it must be that

Lm ≤ ND
m+1 ⇒ QN

m ≤ ND
m+1.

So
QN

m+1 = QN
m − ND

m+1 + NA
m+1 ≤ NA

m+1 ≤ Lm+1.

The mathematical induction principle establishes the result. �

It is clear that {Lk}k≥0 is a non-delayed regenerative process with Lk = 0 as the regenerative
setting. So its cycle length can be defined as

T = min{k : k ≥ 1, Lk = 0}, (4.3)

where the initial state L0 = 0. The associated cycle of queue lengths during the busy period is
given by

C = {Lk : k = 0, . . . ,T − 1}. (4.4)
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Figure 4.1: Construction of the dominating process of the Mt/Mt/1 queue.

According to the definition of Lt (see equation (4.2)), let

Wk = Lk−0.5, (4.5)

we have  Wk =
(
Wk−1 + NA

k−1 − ND
k

)+

Lk = Wk + NA
k

, (4.6)

where x+ means non-negative truncation of x. It is clear that NA
k is independent of Wk, since

Wk is determined by NA
i (i < k) and ND

i (i ≤ k), and NA
k is independent of these r.v.’s as defined

at the beginning of this chapter. A segment path of the dominating process is shown in Figure
4.1. It has some similarity to the discrete queue of LAS (Late Arrival System) [12], but the
differences preclude us from using the LAS model directly.

Sampling from the steady-state of the dominating process

The upper formula in Equation (4.6) has the exact form of Lindley’s equation of waiting time
in a GI/G/1 queue, and it leads to a special perfect sampling algorithm as shown by Asmussen
and Glynn [6, p. 437] and Ensor and Glynn [14]; we reproduce the algorithm below.

Let Xk = NA
k−1 − ND

k , k ∈ N. These differences Xk constitute an i.i.d. sequence, which we
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generically denote by X = NA − ND. In light of Equation (4.6) we find

Wk = (Wk−1 + Xk)+ .

Starting from W0 = 0, S 0 = 0 and defining S k =
∑k

i=1 Xi, k ∈ N. Then {S k}k≥0 is a random walk
with negative drift (as E(X) < 0), since E(NA

k−1) < E(ND
k ). It is shown in [6, p. 3] that

Wk
D
= max

i=0,1,...,k
S i.

So the limiting r.v. W∞, defined by limk→∞Wk, satisfies

W∞
D
= max

k≥0
S k.

To perform Exponential Change of Measure (ECM) (see Section 2.4.2), solve

MX(γ) = 1 (4.7)

for γ > 0, where
MX(t) = E(etX) = eλ̄et+µ̄e−t−λ̄−µ̄,

so equation (4.7) becomes
λ̄eγ + µ̄e−γ − λ̄ − µ̄ = 0.

Denote g(θ) = λ̄eθ + µ̄e−θ − λ̄ − µ̄. Since g(0) = 0, g′(0) = λ̄ − µ̄ < 0, so ∃θ∗ > 0, 3−− g(θ∗) < 0.
Notice that limθ→∞ g(θ) = ∞, it follows that g(θ) = 0 has positive root on interval (θ∗,∞).
Furthermore, g′′(θ) = λ̄eθ + µ̄e−θ, and g′′(θ) > 0,∀θ ∈ R, so it is convex. Therefore the root (γ)
of g(θ) = 0 is unique on (θ∗,∞).

Assume a and d are the observations of NA and ND respectively, which are non-negative
integers. Let n = a − d, so it is an observation of X. Since NA and ND are independent, for
n ∈ Z, we have

Pγ(X = n) =
eγnP(X = n)

MX(γ)

=
1

MX(γ)

∑
a,d:a−d=n

eγ(a−d)P(NA = a)P(ND = d)

=
∑

a,d:a−d=n

eγ(a−d)

eλ̄eγ+µ̄e−γ−λ̄−µ̄

λ̄ae−λ̄

a!
µ̄de−µ̄

d!

=
∑

a,d:a−d=n

(λ̄eγ)ae−λ̄eγ

a!
(µ̄e−γ)de−µ̄e−γ

d!
,
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which means under the measure Pγ, X can be treated as the difference of two Poisson r.v.’s:
NA∗ and ND∗, which satisfy

NA∗ ∼ Poi(λ̄eγ) and ND∗ ∼ Poi(µ̄e−γ).

So under the measure Pγ,

Eγ(X) = E(NA∗) − E(ND∗)

= λ̄eγ − µ̄e−γ

= g′(γ).

It is clear that g′(γ) > 0, due to the convexity of g(θ) as shown above.
So X (under the measure Pγ) can be simulated as below:

• Simulate NA∗ ∼ Poi(λ̄eγ) and ND∗ ∼ Poi(µ̄e−γ);

• Output NA∗ − ND∗.

Under Pγ, define a strictly increasing process with ladder heights S τ(n), n = 0, 1, . . ., where

τ(0) = 0, τ(n + 1) = inf{k > τ(n) : S k > S τ(n)},

with S 0 = 0.
Let W = sup{S τ(n) : S τ(n) ≤ V}, where V ∼ Exp(γ). Then W is a stationary draw of W∞.

Thus the stationary draw of L∞ is
L∞ = W + NA,

where NA ∼ Poi(λ̄), and NA is independent of W.

Algorithm for perfect sampling of the Mt/Mt/1 FCFS queue

Based on the constructed dominating process, whose stationary state can be simulated, the
perfect sampling of the Mt/Mt/1 queue is available by using the regenerative method, which
can be found in [52], [6, p. 420] and [9].

1. Simulate a random variable (denoted as T e) from the equilibrium distribution of the cycle
length (equation 4.3) of the regenerative process of {Lk}k≥0, which dominates the time-
varying queue in queue length at the integer time points.

As shown in the previous subsection, at time 0, sample a stationary draw of the dominat-
ing process, denoted as L0. Continue simulating it forward until it becomes 0. According
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to equation (4.6) we have Lk = (Lk−1 − ND
k )+ + NA

k , k ∈ N. So

T e = min{k ≥ 1, Lk = 0}.

2. Sequentially simulate generic cycles C( j) = {L( j)
k : 0 ≤ k < T ( j)}, j = 1, 2, . . ., of the

dominating process, where T ( j) is the length of the jth cycle. Record NA
k and ND

k (1 ≤ k ≤

T ( j)). Stop it when T (J) ≥ T e, where

J = min{ j : T ( j) ≥ T e}.

3. Using the Order Statistics Method of simulating the time-varying Poisson process (Sec-
tion 2.5.2) construct time-varying events (arrival and potential departure instants) ac-
cording to NA

k and ND
k (1 ≤ k ≤ TJ) generated in cycle CJ. Since the cycle length is 1,

the corresponding time-varying instant can be computed as (see equation 2.17)

tN = btHc + F−1(tH − btHc),

where tN and tH stand for the instants in the time-varying and homogeneous systems
respectively, and F−1 corresponds to the inverse of functions Fλ(t) or Fµ(t) defined in
equation (4.1).

From time 0, where the system is empty, simulate forward with these inputs to restore
the time-varying queue. Output QN

T e as the stationary draw of the number of customers
in the Mt/Mt/1 queue at time n ∈ Z.

Remark (1) Proposition 2.4.1 supports that the output QN
T e is a steady-state draw.

(2) At time 0, if the stationary draw of L0 equals zero, we still continue simulating forward.

(3) Since {Lk}k≥0 is the dominating process, we can also directly output QN
0 = 0 if L0 = 0.

But in this case, the condition of stopping the generic cycle simulation becomes:

J = min{ j : T ( j) > T e}.

(4) As shown by Proposition 2.4.2, the expected run time of this algorithm is infinite. In
the following section, we present a “nearly perfect” sampling algorithm of the Mt/Mt/1
queue, which has finite expected runtime.
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An example

Let

λ(t) = 1 + sin(2πt), µ(t) = 4 + 2 cos(2πt).

These parameters are the same as those used by Margolius [41], and have λ̄ = 1 and µ̄ = 4.

The regenerative method described in the previous subsection is applied for the simulation.
On a unit cycle, we choose 100 points at equal spacing from 0 to 1 and generate 10,000 samples
for each point. Since only QN

0 is generated in each trial, to get the samples at different points,
we only need to change the phases of the sinusoid functions in each run. So for every point we
repeat the algorithm 10,000 times. Although it is time consuming, it shows that our method
works quite well.

For a more efficient simulation, we could repeat the algorithm 10,000 times for some fixed
phase which is designated as the origin of the clock. Then we could continue simulating the
process through a whole cycle. In this case, samples in the simulation would be correlated.

Let us now consider the case where one is interested in the stationary distribution at sev-
eral time points within one periodic cycle. One alternative, which we have employed here, is
that one can repeatedly solve the system of equations for each of the time points of interest
corresponding to the reference time 0. An alternative to this approach would be to obtain a
stationary draw for the earliest time point of interest, and then continue the simulation forward
to the other time point(s) of interest. Thus, a stationary draw at each time point would be ob-
tained, as the queue had already reached stationarity in the first place. Of course, the set of
stationary draws thus obtained at the various time points within the cycle would be correlated.
For instance, if the initial draw were from a heavily congested queue, then it is likely the later
ones would be as well.

The idle probability and expected number of customers at some time t ∈ (0, 1) of the
time-varying queue are illustrated in Figure 4.2. The grey areas indicate the 95% confidence
intervals. The time average of QN

t is around 0.38288. They match pretty well with the analytical
results derived by [41, Section 3], which involve solving a Volterra equation of the second kind
numerically.

4.1.4 Nearly perfect sampling of Mt/Mt/1 FCFS queue

This algorithm is a variant of CFTP. The difficulty of backwards simulation of the dominating
process (denoted by {Lk}k∈Z, which is the number of customers in it) leads us to resort to a
“nearly perfect sampling”. A homogeneous queue (M/M/1 FCFS, with {QH

k }k∈Z denoting the
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Figure 4.2: Idle probabilities and expected numbers in the Mt/Mt/1 queue for one period. 100
points were chosen on it with equal intervals. 10,000 samples were drawn for each point.

number of customers in it) is coupled with the same numbers of arrivals and potential depar-
tures on each interval (k−1, k], k ∈ Z, as that which the time-varying queue has. If {QH

k }k∈Z and
{Lk}k∈Z are initially empty, QH

k and Lk would be close for all k ∈ Z, because when both systems
keep busy on (k−1, k], the updates (i.e. NA

k −ND
k ) of the numbers of customers in both systems

are the same. Thus {QH
k }k∈Z can be used to approximate the tail of {Lk}k∈Z which was started

infinitely long ago.

With regard to consecutive “unit intervals” (which are intervals of (k − 1, k], k ∈ Z) in the
homogeneous queue, the coupled time-varying queue might have more customers to be served
at the end of these intervals. We call the number of these the “job excess”. We can compute the
upper bound of the job excess when the number of consecutive unit intervals is finite, so it is
likely to be consumed by the unused potential departure events in the successive unit intervals.
Therefore, if we go backwards sufficiently far and the job excess is consumed completely, then
the usual CFTP argument shows that our draw at time 0 is from the limiting distribution. If
the job excess goes beyond the number of unused potential departure events, which we refer
to as the “carryover” of the job excess, the sample would underestimate the steady state. But
we can control the probability of carryover to be less than ε > 0 by choosing the appropriate
number of busy cycles in the homogeneous queue to go backwards.
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Figure 4.3: Illustrations of the block scheme in the coupled M/M/1 FCFS queue. The gray
rectangles are busy periods and blank ones are idle periods. k is an integer. Plot (a) is the usual
case. Plot (b) is a possible scenario, where there are some busy cycles between two successive
blocks.

Job excess and carryover probability

Denote by Cn, n ∈ Z, the block of consecutive mn busy cycles of the homogeneous queue. It
starts at time τ(0)

n ∈ R and ends at τ(1)
n ∈ R. We set bτ(1)

n c = bτ(0)
n+1c,

bτ(1)
n c is contained in the last busy cycle of Cn.

(4.8)

The first condition means that the ending of block Cn and the beginning of Cn+1 are located in
the same unit interval. The second is set to facilitate the counting of busy cycles in Cn, and it
implies that bτ(0)

n c < bτ
(1)
n c.

It is quite likely that τ(1)
n = τ(0)

n+1. But in an M/M/1 FCFS queue it could happen that one
or more busy cycles are contained in a unit interval. When constructing the blocks, it does
not matter if we ignore the busy cycles of this type, because they will provide extra unused
potential departure events. Please check Figure 4.3 for the illustrations.

Furthermore, let
τ(1)
−1 = sup

{
t : t ≤ 0,QH

t = 0
}
,
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Figure 4.4: The upper bound of individual job excess introduced by constructing the dominat-
ing process. Let CI

1 = (0, 1], QH
0 = 3, QH

1 = 4 and assume there are 5 arrival events (NA
1 ) and 4

potential departure events (ND
1 ). After rearranging the instants of event occurrence according

to the dominating process’ construction rule, L1 = 5. So the upper bound of job excess for this
interval is Ω1 = L1 − QH

1 = 1.

i.e. if the coupled homogeneous queue is idle at time 0, then block C−1 ends at 0; otherwise, it
ends at the most recent idle time before 0.

Define the “involved integral interval” of block Cn as

(bτ(0)
n c, bτ

(1)
n c],

and denote by CI
n this interval. Based on what we specified in equation (4.8), it is clear that the

length of CI
n takes the natural number (1, 2, . . .), and CI

n, n ∈ Z, partition the time axis.

The dominating process specified in Proposition 4.1.1 performs as the upper bound of the
time-varying queue at integral times. So it is also used to estimate the upper bound of QN

k −

QH
k , k ∈ Z, which is the job excess at time k.

With L
bτ(0)

n c
= QH

bτ(0)
n c

and the arrival and potential departure events on interval of CI
n, we can

construct the dominating process as specified in Proposition 4.1.1. The upper bound of the
“individual job excess” (which is generated from one block) at the end of CI

n is defined as

Ωn = L
bτ(1)

n c
− QH

bτ(1)
n c
, (4.9)

which is illustrated in Figure 4.4, assuming n = 1, bτ(0)
n c = 0 and bτ(1)

n c = 1.

Since there are mn idle periods in block Cn, the potential departure events in these periods
can be used to absorb the job excess from the previous block. We call the number of these
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events the “extra capacity” of Cn, and let Gn denote it. We have the following proposition
about the distribution of the extra capacity of Cn.

Proposition 4.1.2 The extra capacity in block Cn has negative binomial distribution with p.m.f

as

Pr(Gn = k) =

 k + mn − 1
k

 pmn(1 − p)k, k = 0, 1, 2, ...

where p = λ̄
λ̄+µ̄

.

Proof Let ζi, i = 1, 2, ...,mn, be the lengths of these idle periods, ηi the numbers of potential
departures in the corresponding idle periods in the coupled homogeneous queue. So

Gn =

mn∑
i=1

ηi.

Obviously ηi’s are i.i.d.’s and ζi ∼ Exp(λ̄), ηi|ζi ∼ Poi(µ̄ζi). Therefore we have

Pr(ηi = k) = E(Pr(ηi = k|ζi)) = E

(
(µ̄ζi)k

k!
e−µ̄ζi

)
=

∫ ∞

x=0

(µ̄x)k

k!
e−µ̄xλ̄e−λ̄xdx =

λ̄

λ̄ + µ̄

(
µ̄

λ̄ + µ̄

)k

,

where k = 0, 1, 2, . . . . It means that

ηi ∼ Geom (p) , where p =
λ̄

λ̄ + µ̄
.

Since ηi, i = 1, 2, ...,mn, are independent, their summation has negative binomial distribu-
tion, i.e.

Gn ∼ NB(mn, p).

�

Remark In the proof of Proposition 4.1.2, showing ηi has geometric distribution is trivial
[18, p. 162, Exercise 8]. We provide this proof to identify the parameter of the geometric
distribution clearly.

With Algorithm 9, we can get the arrival and potential departure instants in specified number
of busy cycles of the M/M/1 FCFS queue. With these inputs, on each unit interval, (k − 1, k],
the time-varying inputs can be generated with equation (2.17). We start constructing the time-
varying queue with

QN
bτ(0)
−1c

= QH
bτ(0)
−1c
,
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which is the beginning of the involved integral intervalCI
−1, run it forward with the time-varying

inputs and output QN
0 as a steady-state draw of the time-varying queue.

Let E be the event that Ω−2 > G−1 with m−2 = ∞, i.e. there might be carryover of the job
excess traversing through interval (bτ(0)

−1c, 0) after constructing the time-varying queue. When E
occurs the draw at time time 0 would possibly underestimate the stationary value (because the
unabsorbed job excess will increase the queue length at time 0), whereas in the complement it
definitely matches it.

For finite m− j ( j ∈ N), we let E− j be the event Ω−( j+1) > G− j, i.e. the upper bound of
individual job excess from block C−( j+1) goes beyond the extra capacity in C− j. If none of E− j,
j = 1, 2, . . ., occurs then there is no carryover. So exactly as what we did in Section 3.5.1, it
follows

Pr(E) ≤
∞∑
j=1

Pr(E− j)

=

∞∑
j=1

Pr
[
Ω−( j+1) > G− j

]
. (4.10)

About the upper bound of individual job excess we have the following proposition.

Proposition 4.1.3 The upper bound of individual job excess of the involved integral interval

CI
n after constructing the time-varying queue is less than the maximum number of arrivals in

the unit intervals included in CI
n, i.e.

Ωn ≤ An,

where An = max
{
NA

k , k = bτ(0)
n c + 1, . . . , bτ(1)

n c
}
.

Proof By observing Wk, which has been defined in equation (4.5), there are two possible cases:

• Wk > 0,∀k = bτ(0)
n c+ 1, . . . , bτ(1)

n c, which means process {Lt}, t ∈ R, does not become idle
on (bτ(0)

n c, bτ
(1)
n c]. So we have

L
bτ(1)

n c
= QH

bτ(0)
n c

+

bτ(1)
n c∑

k=bτ(0)
n c+1

(NA
k − ND

k ).

Note that

QH
bτ(1)

n c
= QH

bτ(0)
n c

+

bτ(1)
n c∑

k=bτ(0)
n c+1

(NA
k − ND∗

k ),



98 Chapter 4. Sampling time-varying queues

where ND∗
k is the number of departures on (k − 1, k]. It is obvious that

ND∗
k ≤ ND

k .

According to the definition of the upper bound of individual job excess (equation (4.9)),
it follows that

Ωn = L
bτ(1)

n c
− QH

bτ(1)
n c

= −

bτ(1)
n c∑

k=bτ(0)
n c+1

(ND
k − ND∗

k ) ≤ 0 ≤ An.

• The complementary situation is that ∃k ∈ {bτ(0)
n c + 1, . . . , bτ(1)

n c}, 3−− Wk = 0, i.e. there
exists an unit interval where process {Lt}, t ∈ R, becomes idle on (bτ(0)

n c, bτ
(1)
n c].

– If W
bτ(1)

n c
= 0, which means there exists an idle instant in the last unit interval of

process {Lt}, t ∈ R, then the number of customers of it at time bτ(1)
n c is exactly the

number of arrivals on this interval, i.e. L
bτ(1)

n c
= NA

bτ(1)
n c

. So

Ωn = L
bτ(1)

n c
− QH

bτ(1)
n c
≤ L

bτ(1)
n c

= NA
bτ(1)

n c
≤ An.

– Otherwise, there exists an idle interval (assuming it is (k′−1, k′]) of process {Lt}, t ∈

R, on (bτ(0)
n c, bτ

(1)
n c − 1], which is the nearest one prior to bτ(1)

n c − 1. Explicitly:
∃k′ ∈ {bτ(0)

n c + 1, . . . , bτ(1)
n c − 1}, 3−− Wk′ = 0 and Wk > 0,∀k = k′ + 1, . . . , bτ(1)

n c. So

Lk′ = NA
k′ .

Because process {Lt}, t ∈ R, keeps busy on (k′, bτ(1)
n c], it follows

L
bτ(1)

n c
= Lk′ +

bτ(1)
n c∑

k=k′+1

(
NA

k − ND
k

)
.

As for the homogeneous queue, we have

QH
bτ(1)

n c
= QH

k′ +

bτ(1)
n c∑

k=k′+1

(
NA

k − ND∗
k

)
,

where ND∗
k is the actual number of departures on (k − 1, k] as specified before.
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Therefore we have

Ωn = L
bτ(1)

n c
− QH

bτ(1)
n c

= Lk′ − QH
k′ −

bτ(1)
n c∑

k=k′+1

(ND
k − ND∗

k ) ≤ Lk′ ,

⇒ Ωn ≤ Lk′ = NA
k′ ≤ An.

Our claim holds true in both cases. It establishes the result. �

Upper bound of the carryover probability

The involved integral interval, CI
n, contains bτ(1)

n c − bτ
(0)
n c unit intervals. It is clear that NA

k , k =

1, . . . , bτ(1)
n c − bτ

(0)
n c, are not independent any more since they come from the mn busy cycles of

the homogeneous queue, and their distributions also depend on bτ(1)
n c−bτ

(0)
n c, which is a random

variable and is not easy to analyze. So the usual way of estimating the tail probability’s upper
bound, e.g. using the inequality Pr(An > x) ≤ E(bτ(1)

n c − bτ
(0)
n c) Pr(NA > x), does not hold.

Similar to what we did in Proposition 3.5.3, the upper bound can be figured out with renewal
theory.

Proposition 4.1.4 Let An be the maximum number of arrivals in the involved integral interval

CI
n, as specified in Proposition 4.1.3. Let N be the number of arrivals in block Cn. Then the

upper bound of the tail probability of the distribution of An is

Pr(An > x) ≤ E(N)
FNA(x)
1 − e−λ̄

, (4.11)

where x ≥ 0, mn is the number of busy cycles in block Cn, NA is the number of arrivals on the

unit interval and FNA(x) = Pr(NA > x).

Proof Denote by ti, i = 0, 1, . . . , the chronological arrival instants of customers. Construct a
regenerative process {Xi}i≥0 as:

Xi = NA
k , for ti ∈ (k − 1, k], k ∈ Z.

The embedded renewal process is the sequence of initial instants of every mn busy cycles of
the M/M/1 FCFS queue.

Only when NA
k > 0, does there exist an arrival on the interval of (k−1, k] to record the infor-

mation of arrivals’ number. So it implies that Xi = NA
k |(N

A
k > 0). For the writing convenience,

let NA+ denote NA
k |(N

A
k > 0), k ∈ Z.
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According to Asmussen [5, Corollary 1.4, p. 171], we have

Ee( f (Xi)) =
1
E(N)

E
N−1∑
j=0

f (X j)⇔ Ee( f (NA+)) =
1
E(N)

E
N−1∑
j=0

f (X j)

for any measurable f (·) where Ee corresponds to the stationary (or marginal) measure.

Let f (y) = 1(y > x) be the standard indicator function of an event, then it follows that

Ee(1(NA+ > x)) =
1
E(N)

E
N−1∑
j=0

1(X j > x). (4.12)

Denote by S the integer set of
{
bτ(0)

n c + 1, . . . , bτ(1)
n c

}
. It is clear that

An = max{NA
k : k ∈ S} = max{NA

k , k ∈ S and NA
k > 0}

= max{X j, j = 0, . . . ,N − 1}.

So we have

1(An > x) = 1(max{X j, j = 0, . . . ,N − 1} > x)

≤

N−1∑
j=0

1(X j > x)

After taking expected values of both sides of the inequality shown above and combining equa-
tion (4.12), we have

Pr(An > x) = E(1(An > x))

≤ E
N−1∑
j=0

1(X j > x) = E(N)Ee(1(NA+ > x))

= E(N) Pr(NA+ > x).

Obviously, Pr(NA+ = k) =
Pr(NA=k)

1−Pr(NA=0) , k = 1, 2, . . ., and Pr(NA = 0) = e−λ̄. So

Pr(NA+ > x) =
FNA(x)
1 − e−λ̄

.

Therefore

Pr(An > x) ≤ E(N)
FNA(x)
1 − e−λ̄

.

�



4.1. Perfect and nearly perfect sampling ofMt/Mt/1 FCFS queue 101

Based on Propositions of 4.1.2, 4.1.3 and 4.1.4, we continue to analyze the upper bound
of carryover probability specified in inequality (4.10). As for E− j, j = 1, 2, . . ., which is event
Ω−( j+1) > G− j, we know that

Ω−( j+1) ≤ A−( j+1) and G− j ∼ NB(m− j, p),

where p = λ̄
λ̄+µ̄

. Since A−( j+1) ⊥ G− j, we have

Pr(E− j) = Pr
[
Ω−( j+1) > G− j

]
≤ Pr

[
A−( j+1) > G− j

]
= E

E(N)
FNA(G− j)
1 − e−λ̄


=
E(N)

1 − e−λ̄
E

[
FNA(G− j)

]
,

where N is the number of arrivals in block C−( j+1). It is well known (e.g. Kleinrock [32, p.
217]) that the expected number of customers served in a busy cycle of the M/G/1 FCFS queue
is 1/(1 − ρ). Since there are m−( j+1) busy cycles in C−( j+1), it follows that E(N) =

m−( j+1)

1−ρ . So

Pr(E− j) ≤
m−( j+1)

(1 − e−λ̄)(1 − ρ)
E

[
FNA(G− j)

]
. (4.13)

By employing ideas shown in the proof of Chernoff’s inequality (c.f. Hoeffding [25]), for
some appropriate t > 0, we have

E
[
FNA(G− j)

]
= E

[
Pr(NA > G− j|G− j)

]
= E

[
Pr(etNA

> etG− j |G− j)
]

≤ E

E(etNA
)

etG− j

 ( due to Markov’s inequality)

= E(etNA
)E(e−tG− j).

It is easy to see that the m.g.f. of Poisson r.v. NA is

E(etNA
) = eλ̄(et−1).
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The LST of negative binomial r.v. G− j is

E(e−tG− j) =

(
p

1 − (1 − p)e−t

)m− j

=

(
ρ

ρ + 1 − e−t

)m− j

.

Therefore we have

Pr(E− j) ≤
m−( j+1)

(1 − e−λ̄)(1 − ρ)
eλ̄(et−1)

(
ρ

ρ + 1 − e−t

)m− j

. (4.14)

So inequality (4.10) becomes

Pr(E) ≤
∞∑
j=1

Pr(E− j)

≤
eλ̄(et−1)

(1 − e−λ̄)(1 − ρ)

∞∑
j=1

m−( j+1)

(
ρ

ρ + 1 − e−t

)m− j

,

where t > 0.
Similar to the argument as we used to simplify inequality (3.20), we choose m− j = jm−1,

and ensure that (
ρ

ρ + 1 − e−t

)m−1

<
1
4
.

by adjusting the value of m−1. Then it follows that

Pr(E) ≤
4eλ̄(et−1)m−1

(1 − e−λ̄)(1 − ρ)

(
ρ

ρ + 1 − e−t

)m−1

.

With a specified total variation tolerance ε and fixed t, the value of m−1 is determined as

m−1(t) = min
{

m :
4eλ̄(et−1)m

(1 − e−λ̄)(1 − ρ)

(
ρ

ρ + 1 − e−t

)m

< ε,

(
ρ

ρ + 1 − e−t

)m

<
1
4
,m ∈ N

}
(4.15)

In practice, we will choose t such that m−1 is an acceptable number, i.e. it would not consume
an unreasonably long runtime based on the available computing resources.

Algorithm for nearly perfect sampling of the Mt/Mt/1 FCFS queue

Based on the analysis above, this algorithm can be described as follows.

1. Compute m−1 according to equation (4.15).

2. Starting from time 0, simulate backwards an M/M/1 FCFS queue (Algorithm 9) with
arrival rate λ̄ and service rate µ̄ for m−1 busy cycles, whose initial instant is −T . It is



4.2. Nearly perfect sampling ofMt/Mt/c FCFS queue 103

obvious that −T = τ(0)
−1, which is the beginning of block C−1. Record the arrival and

potential departure instants in this procedure.

3. Continue simulating backwards the M/M/1 FCFS queue to time b−T c. Keep recording
the arrival and potential departure events and QH

b−T c.

4. With equation (2.17), construct the coupled time-varying arrival and potential departure
events with the generated homogeneous events in Steps 2 and 3 on each unit interval
from b−T c to 0.

5. Starting from b−T c with QN
b−T c = QH

b−T c and the coupled time-varying events, run the
time-varying queue forward and output QN

0 as a stationary draw at time 0 of the Mt/Mt/1
FCFS queue.

Remark (1) Proposition 3.5.1 supports that QN
0 is a steady-state draw at time 0 if there is

no carryover.

(2) Since we do not implement the backward simulation of the dominating process, we only
use it to estimate the upper bound of the time-varying queue at some time in the past.

An example

The parameters are the same as those used by Margolius [41] and Zeifman et al. [60]:

λ(t) = 1 + sin(2πt), µ(t) = 4 + 2 cos(2πt). (4.16)

So λ̄ = 1 and µ̄ = 4. With equation (4.15), specifying ε = 10−10 we have m−1 = 23, when
t = 1.5387.

Since only QN
0 is generated in each trial, to get the samples at different times in a periodic

cycle (whose length is 1), we only need to change the phases of the sinusoid functions in each
run.

The idle probability and expected number of customers at some time t ∈ (0, 1) of the
Mt/Mt/1 queue are illustrated in Figure 4.5. The gray area indicates the 95% confidence inter-
vals of QN

t , t ∈ (0, 1). They match pretty well with the analytical results derived by Margolius
[41].

4.2 Nearly perfect sampling of Mt/Mt/c FCFS queue

In the multi-server case, Proposition 4.1.1 can be generalized as follows.
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Figure 4.5: Idle probabilities and expected numbers in the Mt/Mt/1 queue for one period. 100
points were chosen on it with equal intervals. 10,000 samples were drawn for each point.

Proposition 4.2.1 Construct {Lk}k∈Z as was done in Proposition 4.1.1. Note that ND
k ∼ Poi(cµ̄)

in the multi-server case. If Lk0 = QN
k0

= 0 for some k0 ∈ Z, then

Lk + c − 1 ≥ QN
k , ∀k ≥ k0.

Proof The proof follows exactly the same way as that of Proposition 4.1.1. It is obvious that

Lk ≥ NA
k ,∀k ∈ Z,

since no matter what the system’s state is, the NA
k arrivals are guaranteed.

It is clear that when k = k0 the inequality is true. Assume when k = m,m ≥ k0,m ∈ Z, the
inequality holds, then when k = m + 1 we have:

1. If ∃t ∈ (m,m + 1), 3−− QN
t ≤ c − 1, then QN

m+1 ≤ NA
m+1 + c − 1 ≤ Lm+1 + c − 1.

2. Otherwise, QN
t ≥ c − 1,∀t ∈ (m,m + 1), i.e. all servers in the time-varying queue keep

busy on this interval, then

QN
m+1 = QN

m − ND
m+1 + NA

m+1.
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(1) If Lt > 0,∀t ∈ (m,m + 1), then

Lm+1 = Lm − ND
m+1 + NA

m+1,

and it follows that

Lm+1 − QN
m+1 = Lm − QN

m ≥ −(c − 1)⇒ Lm+1 + c − 1 ≥ QN
m+1.

(2) Otherwise ∃t ∈ (m,m + 1), 3−− Lt = 0, then it must be that

Lm ≤ ND
m+1 ⇒ QN

m ≤ ND
m+1 + c − 1.

So
QN

m+1 = QN
m − ND

m+1 + NA
m+1 ≤ NA

m+1 + c − 1 ≤ Lm+1 + c − 1.

The mathematical induction principle establishes the result. �

Remark:

(1) The extra number of c − 1, compared to the upper bound in the single-server system,
appearing as part of the dominating process, is caused by the “partly busy” (the number
of busy servers is less than c) behaviour of the multi-server system. E.g. there are c − 1
customers remaining in the system, which have been assigned to some servers. Unfor-
tunately, after the assignment there are no potential departure events in these servers,
while there are quite a lot (no less than c− 1) in the remaining one idle server on interval
(k − 1, k]. So these potential departures are wasted and the upper bound is inflated by
c − 1.

(2) Because the dominating process constructed by Proposition 4.2.1 does not return to zero,
we cannot apply the regenerative method to perform the perfect sampling of the Mt/Mt/c

FCFS queue. But the CFTP Block Absorption method still works.

4.2.1 Backwards simulating the M/M/c FCFS queue with specified num-
ber of busy cycles

Similar to what we did in Section 3.5, we use the M/M/c FCFS queue to couple the time-
varying one by ensuring they share the same numbers of arrivals and potential departures on
interval (k − 1, k], k ∈ Z.
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It is well known that M/M/c FCFS queue is time reversible [49, p. 399]. So this algorithm
is similar to what has been done in Algorithm 9. Please check Algorithm 10 for the pseudocode.

Note that in Algorithm 9, we achieved all potential departure events. But the outputted
departure events of Algorithm 10 are actual departures. The unused potential departure events
will be generated when restoring the Mt/Mt/c FCFS queue through simulating forward.

Assume the arrival and service rates are constants λ0 and µ0, which satisfies

ρ =
λ0

cµ0
< 1.

Denote pi = Pr(Q = i), i = 0, 1, . . ., as shown by Kleinrock [32, p. 102]:

pi =

 p0
(cρ)i

i! , i ≤ c

p0
ρicc

c! , i > c,
(4.17)

where

p0 =

 c−1∑
j=0

(cρ) j

j!
+

(cρ)c

c!
1

1 − ρ


−1

.

4.2.2 Simulating the potential departure events in each server

By applying Algorithm 10, we get a past time −T ∈ R, which is the beginning of m busy cycles
of the M/M/c FCFS queue such that there are m totally idle periods on interval (−T, 0). Keep
going backwards from time −T to simulate the homogeneous queue until time b−T c. Append
the event instants and types to Instants and Events (which are outputted by Algorithm 10)
respectively, and record the number of customers at time b−T c as QH

b−T c. Thus the algorithm of
simulating the potential departure events has the inputs as: QH

b−T c, Instants (assuming it has n

elements) and Events (“1” for arrival and “−1” for departure).

To tell in which server the potential departure events happen, we introduce a vector ~s =(
s(1), . . . , s(c)

)
, where s(l), l = 1, . . . , c, is an indicator variable for the event that the lth server is

busy. When any server becomes idle or changes from idle to busy, we record the correspond-
ing server label. Therefore we can identify the idle periods in each server, and generate the
corresponding unused potential departure events.

We still use Q (the number of customers in the system) as the indicator of all servers being
busy (Q ≥ c) or not (Q < c).

As for the arrivals, when Q < c, they are assigned to server l = min{ j : s( j) = 0} directly.
Otherwise, they wait in the queue. The entrance into an idle server initiates a busy period in
the corresponding server.
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Algorithm 10 M/M/c FCFS queue backward simulation with m busy cycles
1: Initialize vectors Instants and Events to empty.
2: Simulate Q according to the p.m.f. of equation (4.17)
3: while Q > 0 do
4: Simulate X ∼ Exp(λ0 + (Q ∧ c)µ0)
5: t ← t + X
6: Simulate E from {1,−1} with Pr(E = 1) = λ0/(λ0 + (Q ∧ c)µ0)
7: Append t to Instants, E to Events and Q to Qlengths
8: Q← (Q + E)+

9: end while
10: M ← 0 # counter of the busy cycles
11: while M < m do
12: Simulate X ∼ Exp(λ0 + (Q ∧ c)µ0)
13: t ← t + X
14: Simulate E from {1,−1} with Pr(E = 1) = λ0/(λ0 + (Q ∧ c)µ0)
15: Append t to Instants and E to Events
16: if Q = 1 and E = −1 then
17: M ← M + 1
18: T ← t
19: end if
20: Q← (Q + E)+

21: end while
22: Bind Instants and Events
23: Change the signs of Events
24: Change the signs of Instants and reverse the orders of Instants and Events
25: return −T , Instants and Events
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For the departure, it occurs in server l ∼ Unif{ j : s( j) = 1}, i.e. the server completing
service at this instant is chosen randomly among all those busy, because the service durations
share the same exponential distribution.

In server l, record the arrival instants which initiate a busy period, and the departure instants.
These information are stored in fields of Instants′ and Servers. An extra field of States is used
to indicate the occupation states (“0” for being idle and “1” for being occupied) of the server
found by the recorded events. E.g. a record of these three fields (Instants′,Servers,States) is
(12.6, 1, 0). It indicates that an arrival event occurred at time 12.6. This arrival was assigned to
server 1, and it found that this server was idle. Another example of record is (24.7, 2, 1), which
indicates a departure happened at time 24.7 in server 2.

As for server l, l = 1, . . . , c, in each idle period (assuming its length is ζ ∈ R), which is
identified by consecutive values of “1” and “0” stored in States, simulate N ∼ Poi(ζµ̄), then
generate N ordered uniform numbers on it as the unused potential departure instants.

The pseudocode of this algorithm is illustrated in Algorithm 11.

Note that if there are any idle servers at the two ends of interval (b−T c, 0), we mark them
with States = 1 at time b−T c, and States = 0 at time 0. They act as facilitating marks and will
be deleted before outputting the results.

4.2.3 Upper bound of the carryover probability

In the coupled M/M/c FCFS queue, on interval (k − 1, k], k ∈ Z, the number of arrivals is NA
k

and that of potential departures ND
k . Let QH

t be the number of customers in the M/M/c FCFS
queue at time t. Block Cn and the individual job excess’ upper bound have the same definitions
as those in equations (4.8) and (4.9) respectively.

Proposition 4.2.2 In the Mt/Mt/c FCFS queue, the individual job excess’ upper bound of

blockCn after constructing the time-varying queue is less than the maximum number of arrivals

in the unit intervals included in Cn plus c − 1, i.e.

Ωn ≤ An + c − 1,

where An = max
{
NA

k , i = bτ(0)
n c + 1, . . . , bτ(1)

n c
}
.

Proof Based on Proposition 4.2.1, we know that at the integral time points the dominating
process of the Mt/Mt/c FCFS queue is Lk + c − 1, k ∈ Z. Since the dominating one is a
single-server system, so the proof of Proposition 4.1.3 still holds in this scenario with the
augmentation of constant c − 1. �
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Algorithm 11 Simulating the potential departure events in the M/M/c FCFS queue
1: Q← QH

b−T c
2: if Q ≥ c then
3: Initialize ~s as ~1 # Q−length vector of 1’s
4: Initialize Instants′, Servers and States as empty
5: else
6: Initialize ~s as (1, . . . , 1, 0, . . . , 0) # The first Q elements are 1’s, and the rest 0’s.
7: Initialize (Instants′, Servers, States) with c−Q records of (b−T c, l, 1), l = Q + 1, . . . , c.
8: end if
9: for i = 1 to n do

10: if Eventsi=1 then
11: if Q < c then
12: l← min{ j : s( j) = 0} # Choose the server for the arrival
13: s(l) ← 1 # Indicate it is occupied
14: Append Instantsi to Instants′, l to Servers and 0 to States
15: end if
16: Q← Q + 1
17: else
18: l ∼ Unif{ j : s( j) = 1} # Determine the server where the departure will occur
19: Append Instantsi to Instants′, l to Servers and 1 to States
20: if Q ≤ c then
21: s(l) ← 0
22: end if
23: Q← Q − 1
24: end if
25: end for
26: for i ∈ { j : s( j) = 0} do
27: Append 0 to Instants′, i to Servers and 0 to States # To mark the idle servers at time 0
28: end for
29: for l = 1 to c do
30: Take the subgroup of Instants′ and States with Servers = l
31: for i ∈ { j : States j = 1,States j+1 = 0} do
32: Simulate N ∼ Poi(µ̄(Instantsi+1 − Instantsi))
33: Generate ordered uniform r.v.’s between Instantsi and Instantsi+1, then append them

to Instants′ with corresponding Servers = l and States = 1.
34: Eliminate records in server l where States = 0
35: end for
36: end for
37: Merge and save the potential departure events in all servers back into Instants′ and Servers
38: Eliminate records of (Instants′,Servers) with Instants′ = b−T c # Delete the marks
39: return Instants′ and Servers
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The bound of An (as defined in Proposition 4.2.2) has exactly the same form as shown in
inequality (4.11), because the M/M/c FCFS queue is also a regenerative process and its arrival
rate is denoted by λ̄ too. The difference lies on the estimation of E(N). In the multi-server
case, it has upper bound as (1 − ρ)−c as shown in Proposition 3.5.4. Therefore we have

Pr(An > x) ≤ mn(1 − ρ)−c FNA(x)
1 − e−λ̄

. (4.18)

Let NA
k,l and ND

k,l, l ∈ {1, . . . , c}, be the numbers of arrival events and potential departure
events respectively in server l on the interval (k − 1, k]. It is clear that they are independent and

NA
k =

c∑
l=1

NA
k,l, ND

k =

c∑
l=1

ND
k,l;

NA
k,l ∼ Poi(λ̄/c), ND

k,l ∼ Poi(µ̄).

Since there are mn totally idle periods in block Cn, the extra capacity in it still has negative
binomial distribution as we have shown in Proposition 4.1.2. Let Gn,l be the extra capacity in
server l, l ∈ {1, . . . , c} for block Cn. It is easy to see that

Gn,l ∼ NB(mn, p), (4.19)

where p = λ̄
λ̄+µ̄

=
cρ

cρ+1 . The total extra capacity in block Cn is Gn =
∑c

l=1Gn,l.

Now, we define E as the event that there is carryover, i.e. the job excess from all the
blocks prior to bτ(0)

−1c cannot be absorbed completely by the extra capacity in block C−1. Let
E− j, j = 1, 2, . . ., be the event that the individual job excess from block C−( j+1) cannot be
absorbed completely by the extra capacity in block C− j. We do not reuse the definition about
these concepts introduced in the single-server case (Section 4.1.4), because of the different
behaviour of the multi-server queues. But, if none of events E− j occurs, then E does not either.
So the derivation is the same as that shown in Section 4.1.4, and we have

Pr(E) ≤
∞∑
j=1

Pr(E− j).

As for the upper bound of the individual job excess from block C−( j+1) as show in Proposi-
tion 4.2.2, which is A−( j+1) + c − 1, it is hopefully absorbed by the extra capacity in block C− j.
Denote by ηl ≥ 0, l ∈ {1, . . . , c}, the number of parts of the job excess consumed by server l in
the successive block. So

Pr(E− j) =

c∑
l=1

Pr(ηl > G− j,l),
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where
∑c

l=1 ηl ≤ A−( j+1) + c − 1.
To reduce Pr(E− j) to be less than a tiny number (ε), we generate multiple totally idle periods

so that the mode of the distribution of G− j,l (the extra capacity in each server) is very likely to
be larger than the possible job excess. Therefore by considering the worst case where all of the
job excess is allocated to only one server, we get the upper bound of

Pr(E− j) =

c∑
l=1

Pr(ηl > G− j,l)

≤ Pr(A−( j+1) + c − 1 > G− j,1), (4.20)

where we choose server 1 since all servers are identical.
Similar to the derivation of inequality (4.14), based on inequalities (4.18) and (4.20), and

the distribution specified in (4.19), we have

Pr(E− j) <
(1 − ρ)−cm−( j+1)

1 − e−λ̄
eλ̄(et−1)+t(c−1)

(
cρ

cρ + 1 − e−t

)m− j

. (4.21)

When c = 1, it is exactly the corresponding inequality shown in the single-server case (equation
4.15).

Therefore the upper bound of the carryover probability becomes

Pr(E) ≤
∞∑
j=1

Pr(E− j)

≤
(1 − ρ)−ceλ̄(et−1)+t(c−1)

1 − e−λ̄

∞∑
j=1

m−( j+1)

(
cρ

cρ + 1 − e−t

)m− j

.

Let m− j = jm−1, similar to equation (4.15), with specified ε and fixed t, the value of m−1 can be
determined as

m−1(t) = min
{

m :
4(1 − ρ)−ceλ̄(et−1)+t(c−1)m

1 − e−λ̄

(
cρ

cρ + 1 − e−t

)m

< ε,(
cρ

cρ + 1 − e−t

)m

<
1
4
,m ∈ N

}
(4.22)

In practice, we will choose t such that m−1 is an acceptable number.

4.2.4 Algorithm for nearly perfect sampling of the Mt/Mt/c FCFS queue

The algorithm of nearly perfect sampling of the Mt/Mt/c FCFS queue is similar to that of the
Mt/Mt/1 case as shown in Section 4.1.4.
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1. Compute m−1 according to equation (4.22).

2. Starting from time 0, simulate backwards an M/M/c FCFS queue (Algorithm 10) with
arrival rate λ̄ and service rate µ̄ for m−1 busy cycles, whose initial instant is −T . It is
obvious that −T = τ(0)

−1, which is the beginning of block C−1. Record the arrival and
departure instants in this procedure.

3. Continue simulating backwards the M/M/c FCFS queue to time b−T c. Keep recording
the arrival and departure events and QH

b−T c.

4. Get the potential departure events according to Algorithm 11 with inputs of QH
b−T c and

the events generated in Steps 2 and 3.

5. On each unit interval from b−T c to 0, according to equation (2.17) construct the coupled
time-varying arrival instants with the homogeneous arrival instants generated in Steps 2
and 3. The time-varying potential departure instants (still bearing the association with
server labels) are constructed from the homogeneous ones generated in Step 4.

6. Starting from b−T c with QN
b−T c = QH

b−T c and the coupled time-varying events, run the
time-varying queue forward and output QN

0 as a stationary draw at time 0 of the Mt/Mt/c

FCFS queue.

Remark Proposition 3.5.1 supports that QN
0 is a steady-state draw at time 0 if there is no

carryover.

4.3 Perfect sampling of Mt/G/1 queue

In this model, the arrival process is still a periodic Poisson process, but service durations (de-
noted by B) are homogeneous in time, and drawn from some general distribution (G(·)). At an
arrival instant, the service requirement of the customer can be simulated, thus we can follow
the traditional way of analyzing the unfinished workload to explore this time-varying system.
Since there is less uncertainty, i.e. the service duration distribution is not time dependent, it
seems easier to handle compared with the Mt/Mt/1 queue.

As mentioned before, the first step is to find the dominating process. In the coming sub-
section we construct it as {VH

k + 1}k∈Z, where VH
k is the unfinished workload in the coupled

homogeneous queue. It dominates the unfinished workload of the time-varying queue. Based
on Proposition 3.5.1 we can get perfect sampling of the Mt/G/1 queue.
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In the time-varying systems, the “unfinished workload” can be defined as the sum of the
residual service durations of customers being presently served and the customers awaiting ser-
vice. It comes from the definition of “workload” by Asmussen [5, p. 64]. Since there are jumps
of the unfinished workload at the arrival instants, it is not continuous at these time points.

For two instants (denoted as Yi and Yi+1 ∈ R), which initiate two successive busy periods of
a queueing system, we define the unfinished workload as

Vt =

NA(Yi,t−Yi)∑
j=1

B j −

∫ t−Yi

0
(Qs ∧ c)ds, t ∈ [Yi,Yi+1), i ∈ Z,

where NA(x, s), s ≥ 0, is the number of arrivals on interval [x, x + s], B j ( j = 1, . . . ,NA(x, s))
the corresponding service durations, Qt the number of customers in the system at time t, and
c ∈ N. In the single-server case, c = 1. With this definition, Vt is right continuous, i.e. Vt = Vt+.
Note that {Yi} is no longer a renewal process.

4.3.1 The dominating process and its upper bound

Proposition 4.3.1 Construct a coupled homogeneous queue (M/G/1) by modifying a stable

Mt/G/1 queue as follows. On each interval of (k − 1, k], k ∈ Z, let the number of arrivals in

the Mt/G/1 queue be NA
k . In the homogeneous queue let NA

k customers arrive uniformly on this

interval. Let the service durations in the homogeneous queue be the same values in the same

order as those in the time-varying queue. Denote by VH
k the unfinished workload at time k in

the homogeneous queue, and by VN
k that in the time-varying queue. Assume both of them are

initially idle at time t0 ∈ Z, then

VN
k ≤ VH

k + 1, ∀k ∈ Z, k ≥ t0.

Proof Clearly VN
k ≤ VH

k + 1 for k = t0, since both are 0. For larger k, let Bk be the additional
workload that arrives during the interval (the same for both queues). Let WN

k be the amount
of work done on these new customers during the interval in the time-varying queue; WH

k the
counterpart in the homogeneous queue.

It is obvious that

VN
k = (VN

k−1 − 1)+ + Bk −WN
k ,

VH
k = (VH

k−1 − 1)+ + Bk −WH
k .
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Note that WN
k ∈ [0, 1), WN

k = 0 if VN
k−1 > 1, and VN

k + WN
k ≤ 1 if VN

k−1 ≤ 1. Similar constraints
hold for WH

k .
So

VN
k − VH

k = (VN
k−1 − 1)+ − (VH

k−1 − 1)+ + WH
k −WN

k

We check all the possible cases:

1. If VN
k−1 ≤ 1, then VN

k − VH
k ≤ WH

k < 1, which is our result.

2. Otherwise VN
k−1 > 1, then WN

k = 0.

(1) If VH
k−1 ≤ 1, then

VN
k − VH

k = VN
k−1 − 1 + WH

k ≤ VH
k−1 + WH

k ≤ 1

⇒ VN
k ≤ VH

k + 1.

(2) If VH
k−1 > 1, then WH

k = 0 and

VN
k − VH

k = VN
k−1 − VH

k−1 ≤ 1

⇒ VN
k ≤ VH

k + 1.

Based on the mathematical induction principle, our result holds. �

4.3.2 Algorithm for perfect sampling of Mt/G/1 FCFS queue

The perfect sampling of Mt/G/1 queue is performed by using the CFTP Block Absorption
method (see Proposition 3.5.1). Since the coupled M/G/1 FCFS queue can be simulated back-
wards (see Algorithm 1, where the class numbers need not to be generated), this algorithm can
be described as follows.

1. Starting from time 0, we simulate backwards the M/G/1 FCFS queue until it becomes
idle for the first time, assuming at time −T ∈ R.

2. Continue simulating backwards the M/G/1 FCFS queue until time −T1, determined as
follows. It should be the start of a busy cycle and the summation of the lengths of the
idle periods exceeds 2 on the interval (d−T1e, b−T c).

Record the homogeneous arrival instants on (d−T1e, 0) as Instants, corresponding service
durations as Services, and unfinished workload at d−T1e as VH

d−T1e
.
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3. Generate the time-varying arrival instants by mapping the Instants on interval (d−T1e, 0)
with equation (2.17). Denote the mapped instants as InstantsN . The corresponding
individual service durations remain the same.

4. Starting from d−T1ewith unfinished workload VN
d−T1e

= VH
d−T1e

, run the time-varying queue
forward with InstantsN and Services, and output VN

0 as a stationary draw of the unfin-
ished workload at time 0 of the Mt/G/1 queue.

Proposition 4.3.2 By following the algorithm for simulating the Mt/G/1 queue specified in

Section 4.3.2, the output of VN
0 is a stationary draw of the unfinished workload at time 0.

Proof Assume an Mt/G/1 queue and an M/G/1 queue were started infinitely long ago and
coupled in the way described in Proposition 4.3.1. So VN

k ≤ VH
k + 1,∀k ∈ Z, hence VN

d−T1e
≤

VH
d−T1e

+ 1.
Since VH

t becomes zero on the interval (b−T c, b−T c + 1), it must be that VH
b−T c < 1. When

mapping the homogeneous arrivals to be time-varying ones, the unfinished workload at time
b−T c being arranged into the interval prior to b−T c must be less than 1. Because there are at
least 2 units of idle time on the interval (d−T1e, b−T c) in the homogeneous queue, there must be
at least 1 unit of idle time in the coupled time-varying queue (starting at time d−T1e with value
VH
d−T1e

) on this interval. It can absorb the maximum difference (the extra single unit workload)
completely.

Therefore conditions of Proposition 3.5.1 are fulfilled. Thus the result holds. �

4.3.3 Examples

Here we illustrate sampling the stationary unfinished workload in the Mt/G/1 FCFS queue
with Erlang and Pareto distributions of the service durations. In both cases, the arrival rates are
the same and they have the following form with periodic pattern.

λ(t) = 3 + 3 sin(2πt).

The service rates are µ = 4 = 1/E(B).

• As for the Erlang case
B ∼ Γ(2, θ),

where Γ(α, θ) stands for the standard Gamma distribution with shape parameter α and
rate θ. Here we have

θ = αµ = 8.
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Figure 4.6: Average unfinished workloads and 95% confidence intervals (areas in gray shadow)
in two Mt/G/1 FCFS queues with Erlang and Pareto distributions of the service durations.
They involve 2 cycles and 100 points are drawn in each cycle. For each point we generate
10,000 samples.

• In the Pareto case the c.d.f. of service distribution has this form

G(x) = 1 −
(

θ

x + θ

)α
, x > 0.

Assume
α = 5⇒ θ =

α − 1
µ

= 1.

The average unfinished workload and 95% confidence intervals are illustrated in Figure 4.6.
It is clear that they behave in periodic patterns with the same periodic lengths as the arrival
processes have.

4.4 Quick extensions to other models

Based on the algorithms developed before, it is easy to extend them to the queueing systems
with multi-server or non-FCFS disciplines.
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4.4.1 Perfect sampling of ΣKMt/G/1 or ΣKMt/GK/1 APQ

Because the workload paths are invariant under any work-conserving disciplines in the single-
server queueing systems, the perfect sampling algorithm of the Mt/G/1 FCFS queue developed
in Section 4.3 leads to that of the ΣKMt/G/1 APQ in a straightforward fashion. Under the FCFS
discipline, the ΣKMt/GK/1 and Mt/G/1 queues are equivalent. Thus also leads to the solution
of ΣKMt/GK/1 APQ.

Assume τ is the most recent idle time in the Mt/G/1 FCFS queue, i.e. τ = sup{t : QN
t =

0, t ≤ 0, t ∈ R}. Then by applying the APQ discipline to the arrival instants and associated
service durations between τ and 0, starting from the empty state, we can get the steady-state
draw of the coupled APQ at time 0.

4.4.2 Perfect sampling of Mt/G/c FCFS queue

In the multi-server scenario, the FCFS allocation rule is the most efficient in the sense it has
the smallest queue length. The “allocation rule” means the way to determine which server a
customer should join in ([5, p. 341]). If the systems are initially empty, and they are fed with
the same arrivals and the service durations which are used in the same order (see Lemma 1.3
by Asmussen [5, p. 342]), we can still use the RA model to dominate the Mt/G/c FCFS queue,
as we did in Section 3.4.

Since we can simulate the stationary idle time of the Mt/G/1 FCFS queue (Section 4.3),
it is doable to find the most recent empty time of the Mt/G/c RA model. Assume it is τ ∈ R.
We sort the service durations according to their initiations in the RA model (see Section 3.4.2)
and get a common sequence. Then we start from empty state at time τ, with the arrival instants
simulated in the RA model, and the aligned service durations to construct the Mt/G/c FCFS
queue. Its state at time 0 is a steady-state draw.

4.4.3 Perfect sampling of ΣKMt/G/c APQ

Under the common service distribution assumption, Proposition 3.4.1 can be extended to the
time-varying case, because this dominance does not rely on the distribution of the inter-arrival
times.

As described above, when restoring the Mt/G/c FCFS queue forward, if we replace the
FCFS with the APQ discipline, we get the steady-state draw of the ΣKMt/G/c APQ at time 0.
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Conclusions and future work

Perfect sampling is an approach to directly sample from the steady state of an ergodic Markov
chain without explicitly solving for it. In this thesis, we have achieved perfect samplings of
a variety of non-preemptive work-conserving queues. Coupling From The Past (CFTP) and
dominated CFTP were used in a variety of situations. Unlike the Regenerative Method (see
Section 2.4.1), they both have finite expected run-time.

Coupling is the essential philosophy of the CFTP method. The key to dominated CFTP is to
construct a dominating and reversible Markov chain. CFTP is quite appealing and practicable
to treat queueing systems, because the stationary queues are deemed to become empty withing
finite time, and many cases can be transformed into one-dimensional problems, where the
workload or queue length are used to represent the system state. In the homogeneous scenarios,
it is equivalent to find the regenerative time in the past. As for the time-varying systems,
although the regenerative settings are restricted to certain epochs, the classical CFTP argument
still supports the claim of steady-state draw at time 0, thus greatly simplified the algorithms.

5.1 Main contributions

The main contributions of this thesis are follows:

1. Nearly perfect sampling with well specified distance.

In the homogeneous settings, as for the multi-server, multi-class and varying service
distribution WCQs, since it hard to find the dominating process, we use the FCFS system
to couple them. Because their workload paths are close, we can estimate the upper bound
of the discrepancy and introduce extra blocks of busy cycles to absorb the workload
excess. Thus leads to the so called CFTP “Block Absorption” method.

118
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In the time-varying cases, such as Mt/Mt/1 FCFS queues, although we succeeded in
constructing the dominating process, it hard to accomplish the backward simulation.
Similarly, we use blocks of unused potential departure events to absorb the job excess.

The merit of this method lies in the well specified distance between the sample distribu-
tion and the target one. As shown in Proposition 3.5.5, the total variation is less than ε,
which is the specified tolerance. To some extent, this method can be thought as an alter-
native way to get the transient sample. But since we start from a past time, it is easier to
specify the distance more accurately compared to the ordinary simulation, which starts
from an arbitrarily selected state and runs forward for a “burn-in” time.

2. Perfect and nearly perfect sampling of the time-varying queues with periodic Poisson
arrival process.

We design the coupling scheme by setting the numbers of arrivals the same on a com-
plete cycle in the homogeneous and time-varying queues. The dominating processes are
constructed by concentrating the arrivals of the complete cycle at the end of it.

For the Mt/Mt/1 and Mt/Mt/c FCFS queues, potential departure events are also concen-
trated at the beginning of these intervals in the dominating processes. Since it is hard to
perform backward simulation of these dominating processes, the Regenerative Method
is applied to achieve perfect sampling of the Mt/Mt/1 FCFS queue and CFTP Block
Absorption for the nearly perfect sampling. As for the Mt/Mt/c FCFS queue, we only
implement nearly perfect sampling with CFTP Block Absorption, because the dominat-
ing process does not return to 0 thus we could not detect the regenerative point of the
Mt/Mt/c FCFS queue. Therefore we only obtain nearly perfect sampling of it with CFTP
method.

In the Mt/G/1 FCFS queues, compared to the coupled M/G/1 FCFS system, since the
workload excess would not exceed the length of a complete cycle, and it can be absorbed
by finite number of idle periods, this ensures that perfect sampling can be achieved. Fur-
thermore, by using the RA model as the upper bound and keeping the service durations
are used in the same order, we obtained perfect sampling of the Mt/G/c FCFS queue.

Because the workload paths are invariant for the Mt/G/1 FCFS and ΣKMt/G/1 WCQ, it
is quite straightforward to extend the solution to the other work-conserving disciplines.
Similarly, we can achieve the perfect sampling of the ΣKMt/G/c WCQ, keeping in mind
that the service durations should be used in the same order.
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5.2 Future work

Since simulation based methods is a strong candidate for theoretically intractable problems,
we can explore the following areas with perfect or nearly perfect sampling methods.

1. Queues with dependence.

Firstly, we could explore the queueing system with Markovian Arrival Process (MAP)
[44] [23, p. 98]. It models the dependence between successive inter-arrival times, while
the service durations are usually i.i.d.’s and independent of the arrival process.

Then we can extend the dependence to considering the autocorrelations of the inter-
arrival times or service durations. They are likely to occur in the telecommunication net-
works or computer systems. Without counting these factors, models can predict overly
optimistic performance measures. Livny et al. [39] presented some interesting results of
the M/M/1 FCFS queue with these autocorrelations through a simulation study. Two
methods (TES [42] and Minification / Maxification [38]) were introduced to generate the
autocorrelated inter-arrival times and service durations, but the initialization bias was not
considered, where the perfect sampling methods outperforms the ordinary simulation.

Correlations between the inter-arrival time and service duration were also studied ana-
lytically, see [26] and [20]. This type of correlation can be applied to the ruin model,
where the claim sizes and random incomes are correlated [62]. It is also a good chance
to practice the perfect sampling methods, especially when the claim sizes (corresponding
to the service durations) have heavy tail distributions.

2. Rare event simulation.

Challenge arises when we are asked to figure out the probability of rare events (e.g.
10−9), like the overflow of the buffer of some devices. The crude Monte Carlo does not
work, because the relative error goes to infinity when the estimator of interest approaches
zero [6, p. 158].

Importance sampling is the commonly used method to deal with rare event simulation,
see [7] and [24]. By tilting the original distribution, occurrences of the rare events are
increased. Then we use a likelihood ratio to adjust the estimate under the new measure
to recover the original one.

A new method named “time reversal approach” to perform rare event simulation was
proposed by Khanchi and Lamotheb [30]. Firstly, it estimates the “frequent event” with
crude Monte Carlo method. Then it starts from the rare event to do simulation and uses
the output to modify the probability estimated before.
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Since we do not have the closed form of the target distribution, to combine the perfect
sampling and the rare event simulation should be a non-trivial work.
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