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ABSTRACT

Many problems that ocenr in Artificial Intelligence and Operations Research can
be naturally represented as Constraint Satisfaction Problems (CSPs). One of the most
popular backtracking search algorithms nsed to solve CSPs is called Forward Checking
(FC). FC performs a limited amount of lookanead during its search attempting to
deteet futnre inconsistencies thereby avoiding inconsistent parts of the search tree. In
this thesis we deseribe a new backtracking search algorithm called Minimal Forward
Checking (MFC) which maintains FC's ability to detect inconsistencies but which is
lazy in its method of doing so. We prove that MFC is sound and complete. We also
prove that MFC and FC visit the same nodes in the search tree. Most significantly.
we prove that MFC's worst case performance in terms of number of constraint checks
performed (the common measure of performance of these algorithms) is the number
of constraint checks performed by FC. We then describe how the MFC algorithm can
be seen as one algorithm in a family of lazy CSP search algorithms.

As theoretical results on the average case complexity for CSP search algorithms
are extremely difficult to derive, empirical comparisons need to be performed. A
commonly used testbed is randomly generated problems drawn from a standard model
of binary CSPs at a specific location known to contain problems that are relatively
hard to solve. We generalize the standard model of binary CSPs and show how to
find problems in this model that are relatively hard to solve. We also show that these
“hard problems” are of similar hardness or harder than hard problems drawn from the
standard model especially as the problem size grows and the problem has a relatively
sparse structure. We perform large empirical studies of many CSP search algorithms
including variants of MFC and FC with non-chronological backtracking and variants

of the Fail First heuristic on two testbeds of hard random problems. each drawn from

iii



one of the two models. Our empirical comparisons on both testbeds indicate that the
average case performance of algorithms based on MEFC are better that all the other

algorithms in the comparison in terms of the number of constraint checks performed.

Kevwords: constraint satisfaction problems. search algorvithms. forward checking al-

gorithm. minimal forward checking algorithm. hard random problemns
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Chapter 1

Introduction

“The author once waited all night for the output from such a (backtrack-
ing) program. only to discover that the answers would not be forthcoming

for about 10° centuries.” Donald Knuth

1.1 Introduction

Many problems in Artificial Intelligence and Operations Research can be expressed as
Constraint Satisfaction Problems (CSPs)[22. 69. 74. 76, 82. 108]. A CSP is represented
bv a set of variables, a set of finite discrete domains for those variables. and a set
of constraints over those variables. A solution to a CSP is an assignment of values
to variables which satisfies all the given constraints. In this thesis we study CSPs in
their binary form where all constraiuts have arity 2, that is each constraint is between
two variables.

A simple example of a CSP is the graph colouring problem. One is given a graph
and a set of colours. The objective is to colour the graph such that no adjacent
node has the same colour. In terms of a CSP. the variables represent the nodes of
the graph. the domains are the available colours. and the constraints ensure that no
adjacent nodes (variables) are assigned the same colour. Graph colouring is a known
NP-complete problem[46].  As this example suggests. CSPs are also NP-complete

problems|46. 60].



CSPs (or a close relative) are a natural representation for problems in domains
as diverse as vision[73. 117]. software diagnosis{98]. music composition|83}. lexical
acquisition[100]. scheduling[12. 38. 78. 95, 101, 121]. planning[107]. antomotive trans-
mission design[83. 84]. temporal reasoning[26. 110]. belief maintenance[23. 20]. graph
problems[77]. and puzzles[34. 61. 90]. Good surveys of the area can be found in
(22, 69. 76. 108].

CSPs are also an integral part of the Constraint Logic Programming (CLP) lan-
guages[64]. In the CLP framework. unification is replaced by the more general concept
of constraint solving over some computational domain[112] (for example. Booleans.
rational numbers. infinite lists, finite domains. or real numbers). Many of the hasic
ideas underlving logic programming and CLP have their roots in a programming
language called ABSYS[14, 37] which performed equational constraint solving over
“assertions”. Modern examples of CLP languages are CHIP[111]. CLP(R)[65]. and
Prolog 11I[15]. These languages have been successfully applied to a number of real
life problems. for example, the cutting-stock problem[36. 111]. option trading{72], and
digital circuit design and testing[15, 62. 99]. A general overview of CLP can be found
in {14, 111, 114].

One of the simplest methods of solving a CSP is chronological Back'Tracking (BT)
search([10, 55]. However, it is well known that backtracking search suffers from a patho-
logical phenomenon called “thrashing™[74] in which the backtracking search explores
subtrees that cannot possibly contain a solution. In the worst case, chronological
backtracking search algorithms perform an exponential number of steps.

A number of backtracking search algorithins have been developed to solve CSPs
(called CSP search algorithms) which attempt to avoid this thrashing behavior, For ex-
ample. BackJumping(BJ), Conflict-Directed Backjumping (CI13.J)[90], Forward Check-
ing (FC)[55. 61, 77}, and maintaining arc-consistency (MAC)[47, 82, 97]. One of the
most successful of these CSP search algorithms is FC. Theoretically, the worst case
behavior of FC is the same as BT. However, many empirical studies have shown that
FC can on average dramatically outperformn BT{61, 77, 82, 90, 113].

e

Although the FC algorithmn has been known since the mid 1960°s[5%) and redis-



covered in the late 1970's{61, 77] there have been few improvements made to it. One
reason for this may have been the belief in the research community that FC performed
the least amount of extra work necessary to avoid some of the thrashing behavior and
still get fairly efficient behavior. In this thesis we re-examine this belief and derive a
new algorithin called Minimal Forward Checking (MFC) which substantially outper-
forms FC. The first part of our thesis describes the MFC algorithm and investigates
the relationship of this new algorithin to a number of well known search algorithms.
We derive theoretical relationships and show empirically on “hard” randomly gener-
ated problems that MFC performs substantially better than FC.

As theoretical results on the average case complexity for CSP search algorithms are
extremely difficult to obtain, empirical studies need to be performed to compare the
general performance of the algorithms[25, 82]. Previous empirical studies using specific
problems, such as the n-queens problem(2, 47, 61, 115] or the zebra problem([90]. are not
convincing as the results are only representative for one problem. Previous empirical
studies using randomly generated problems|28, 29, 47, 61, 115] are unconvincing as
the “random problems” generated were usually easy to solve and therefore unable to
convincingly differentiate between the different algorithms. Only recently has it been
understood how to create random problems that are relatively hard to solve. The
second part of our thesis investigates how these “hard random problems™ are created.
We generalize the current method used to create these hard random problems and
derive a new class of random problems that are empirically shown to be as hard
or harder to solve by the best algorithms than those previously known. We use the
current snethod of generating hard random problems and our new class of hard random
problems to empirically compare the algorithms described in this thesis.

We begin our thesis by describing the algorithms which are the foundation of
the MFC algorithm. Section 1.2 gives a formal definition of a binary CSP and the
terminology used to describe a chronological backtracking search. Section 1.3 gives
the formal definition and example executions of the algorithms underlying the MFC
algorithm. Section 1.4 describes consis.ency enforcing algorithms and the notion of

a hybrid search algorithm. Section 1.5 discusses past theoretical and experimental



comparisons. Finally, Section 1.6 gives a sunumary for this introductory chapter.
The rest of the thesis is divided into two parts. In the first part we describe the
MFC algorithm and give a number of theoretical results (Chapter 2): we discuss hard
random problems and empirically compare MFC with previously known algorithms
using these hard random problems (Chapter 3); and we discuss a number of extensions
that can be made to MFC to increase its performance and give a comprehensive
empirical comparison of all the algorithms derived in this thesis (Chapter 4). In the
second part of our thesis we describe our new model of hard random problems and
empirically compare the new model with the old model (Chapter 5): we then use the
new model to empirically compare some of the algorithms discussed in this thesis

(Chapter 6): finally. we give our conclusions and future work (Chapter 7).
1.2 Constraimt Satisfaction Problems

In this thesis we study CSPs in their binary form where all constraints have arity 2,
that is each constraint is between two variables. Most CSP search algorithms have
been developed within the framework of binary CSPs aud we continue this tradition.
This restriction on each constraints arity is only a restriction on the formulation of a
problem. Although it is true that non-binary CSPs can be translated into equivalent!
binary CSPs[96] the translated CSP may not be an appropriate representatic Ve
leave exploration of CSP search algorithms tailored to non-binary CSPs for future

work.

Definition 1.1 A binary CSPis represented with a set of variables, V = {vy.... v, },
a set of finite discrete domains D = {d;....,d,} where each d; = {vl.v?... . v},
m = max(m;), and a set of symmetric constraints C = {¢;;|]1 < i < j < n} where
each ¢;; is a subset of d; x d;. If (vf.v}]) € ¢;j then the assignment {v; « vi v« vi}
is consistent. If ¢;; contains all elements of d; x d; the constraint is called a trivial

constraint as all possible assignments are consistent. A solution is an assighment

| Equivalent in the sense that it i» possible to obtain the solution of one from the other and viee

versa.



fvi ¢« viva V3L Vo ¢- v} where for alli.j. 1 <i<j<n {v, « Vi v « vj"}
is consistent. If the CSP has a solution we say that it is soluble. If the CSP has no

solution we say that it is insoluble.

Definition 1.2 It is sometimes convenient to picture a binary CSP as a constraint
graph where a variable in the CSP is represented by a node in the graph. and a non-
trivial constraint between two variables is an edge between the nodes corresponding

to the variables.

There are two basic questions that can be asked about a CSP. Does the CSP have
a solution and how many solutions does the CSP have© We are only interested in the
first question, that of finding a solution if it exists. A systematic backtracking search

depends on the notion of extending a partial solution:

Definition 1.3 A partial solulion is a partial assignment {vy « v{* vy < v3.. ... VK
vi*} where for all i.j, 1 < i <j <k, {v; « vi'.v; « v]'} is consistent. A partial solu-
tion {v; « vi'.vy « v¥...., v « vi*} can be cxtended to a new partial solution
{vi = ve.va V2. .. v = v vt Y iffor all i < ko {vi e vELvi vt}

is consistent. If k = n then the partial assignment is a solution to the CSP.

Although the definition of a CSP does not enforce an ordering on the domains,
in order to fairlv compare implementations of search algorithms we must have an

ordering.

Definition 1.4 An ordered domain is a domain which is in the original order given

in a problems definition.

We assume that all domains are ordered domains.

Consider a graph colouring problem where you are given 4 nodes that are adjacent
to cach other and are told that the first node can only be coloured red, the second
node with green or orange, the third node with blue or green, and the fourth node
with green. blue or red. Does this problem have a solution in which adjacent nodes

are coloured differently? To represent this problemn as a CSP, we first define four



variables. {v;.vy.v3.v4} which represent the four nodes. The domains of the four

variables are
d; = {f}.dz = {gO}d; = {bg}d.; = {g bl‘}

where we just use the first letter of each colour to represent the domain elements.
Finally we define a set of constraints which enforce the general constraint that adjacent

nodes (variables) cannot be assigned the same colour.

€12 = {(r.g){r.0)}

a3 = {(r.b)(r.g)}
cia = {(r.g}{r.b)}
23 = {(g.b)(o.b)(0.g)}
24 = {(g.b)(g.r)(0.g)(0.b)(0.1)}

¢34 = {(b.g)(b.r)(g.b)(g. 1)}

Constrzints are symmetric so for example ¢ = {(g.r)(0.r)}. A solution to this ('SP
is {vi ¢« r.v2 « 0.v3 « b,vq « g}. We will use this trivial example to illustrate the
execution of the algorithms described in the following sections.

Chronological backtracking tree search algorithms perform a systematic search
of the possible partial assignments until a solution is found or all possible partial
assignments have been searched and no solution is found. The following definitions
give terminology we use to describe parts of the search and the assumptions that we
make about the search. We assume in these definitions. for reasons of clarity, that
the order of instantiation is static, that is the order that the algorithms will seleet

variables to assign themn values is vy.va. .. .. Vi ...V,

Definition 1.5 The variable that is to be assigned a value, say v,. is called the current

variable. The domain of the current variable is called the current domain.

Definition 1.6 The variables in the partial assignment {vy < v}'... .v; 1 < v '},

are called the past variables, where each v, « v}* is called the instantiation of v, and




the variables {vi,,..... Vo} are called the future variables. The domains of the past
and future vanables are called the past domains and future domains respectively. The
past variables are also called the past instantietions. When the current variable is

instantiated it is called the current instantiation.

Definition 1.7 A future-connected variable v; is a future variable v; that is connected
by a non-trivial constraint to the current variable. A future-connected domain is a
domain d; for which v; is a future-connected variable. A past-connected variable is a

past variable v that is connected by a non-trivial constraint to the current variable.

Definition 1.8 A backtracking search is a search tree traversal. The nodes of the
search tree cover all possible partial assignments. The root of the search tree is the
empty partial assignment €. The first level of the tree consists of all sets containing a
possible assignment for vi. The second level consists of all possible sets containing a
possible partial assignment for v; and v, where a node on the second level is a child of
a node on the first level if it has the same assignment for v;. This process continues
until the last level n which contains the sets of all possible complete assignments. The
size of this search tree is O(m") nodes. The levels closer to the top are called the
shallower levels and the levels closer to the bottom are called the deeper levels, The
partial assignments that are partial solutions are called the consistent nodes. The
search tree that is made up of consistent nodes is called a backtrack tree. We adopt
the notational convention that nodes of the search tree are labeled by the partial

assignment associated with that node.

Definition 1.9 A backtracking search algorithm visits a node if at some point in
the search the instantiation of the current variable and the instantiations of the past

variable form the set that identifies the node.

Definition 1.10 Given that v, is the current variable, we say a value v} €d;(j=i)is
past-consistent if the assignment {v, « vi*.v; « vl} is consistent for all past variables

Vk.



Definition 1.11 A constraint check is performed whenever an assignment pair {v; «-

vE.vi «— vi} is checked to see if it is an element of ¢; ;.
[ | 3 4

Constraint checks are considered a fair measure of the performance of CSP search
algorithms. There are two reasons for this. The first reason is timing results are not
considered as a reliable measure as it is very hard to evaluate whether the performance
of an algorithm is due to the implementation, the programming language. the operating
system. the hardware. or to the algorithm itself. Irrespective of the implementation of
an algorithm the number of constraint checks is invariant. The second reason is that
constraint checks may involve some unknown amount of computation (although the
results of a performed constraint check can be cached at which point it becomes a table
lookup). The caveat of using constraint checks as a performance measure is that it
gives no indication of the amount of overhead an algorithm incurs manipulating data
structures during its search?. The cost of manipulating data structures is problem

dependent.

1.3 Backtracking Algorithms

In this section we describe a number of chronological backtracking tree search al-
gorithms for CSPs. These algorithms work by generating partial assignments, back-
tracking when a partial assignment is not a partial solution, or barktracking when the
partial assignment is a partial solution but it is somehow discovered that the partial
solution can not be extended to a solution. The difference between the algorithins is
at what point in the search tree they decide to backtrack and how many constraint
checks they perform tryving to discover that a partial solution cannot be extended to
a solution.

Usually, CSP search algorithms are presented in a recursive style. However some
authors(82, 90] have found that it is clearer to present these algorithis in terms of

two functions, a forward labeling function used to find an instantiation for the current

If by the problem definition there is a trivial constraint between v, and v, then constraint checks
between these variables are not counted.



function solve-csp(label-fcn,uniabel-fcn, selection-fcn)

direction < “forwards” 1
status < “unknown” 2
i1 3
consistent «— True 4
loop while status = “unknown” 5
if consistent then 6

if direction = “forwards” 7
select-fen(ii) 8
label-fcn(ii) 9

if consistent then 10

i ii+1 11

direction «— “forwards” 12

else 13

it < unlabel-fcn(ii) 14
direction «— “backwards” 15

if ii > n then status «— “soluble” 16

if ii = 1 and (not consistent) then status < “insoluble” 17
return(status) 18

Figure 1.1: Pseudo-code for the solve-csp function.

variable and a backward unlabeling function used to uninstantiate (that is, undo) a
formerly successful instantiation. This unraveling of the recursive call corresponding
to a forward move and the return corresponding to the backward move makes explicit
search knowledge that may be hidden in the procedure stack[90].

Figure 1.1 shows pseudo-code for the solve-csp function which is used to call an
algorithm’s forward and backward labeling functions repeatedly until a solution is
found. Function solve-csp takes as input a labeling function, an unlabeling function
and a selection function. The selection function is used to select a new variable to
instantiate. Up to this point we have assumed that the order of instantiation is static.

That is, the variables are selected for instantiation in the order vy.v,. .. .. vo. However



this is an unnecessary restriction as it does not matter in which order the variables
are instantiated. The selection function allows one to use a dynamic variable selection
heuristic which we will show later to be quite useful. In function solve-csp the variables

direction, status, consistent and ii have the following meanings:

direction is assigned the value “forwards™ or “backwards™ to indicate whether the search
is moving forward (that is. moving deeper in the search tree) to select a new
variable or it is moving backwards (that is, moving shallower in the search tree)

to give a new value to a variable whose instantiation is no longer consistent.

status is assigned the value “unknown” or “soluble” or “insoluble” to indicate respect-
ively whether the CSP is still being searched. a solution has been found, or no

solution exists.

consistent is a global variable that is assigned the Boolean value True or False. In the
labeling function it is used to indicate whether or not the current variable has
been successfully instantiated. In the unlabeling function it is used to indicate

whether or not there are more values to be tried in the current variable’s domain.

ii is the index of the current instantiation. In order to allow for a dyvnamic variable
selection heuristic we must use an indirection array called refv;; where the vari-
able ii refers to the current instantiation (in the instantiation order) and refy;; is
the variable that has been chosen to be the ii’th instantiation. For example, if
the 3rd variable to be instantiated was vg then refvy = 5. Future variables are
kept in refv;;,; to refv,. Past variables are kept in refv; to refv;, ;. The explicit

indirection array for instantiations that we use here was suggested in |2, 115).

Function solve-csp loops calling the labeling and unlabeling functions until either a
solution is found by the underlving algorithm or it is exhaustively proven that no
solution exists. The selection function (line 8) is used only when the algorithm is
performing a forward move to try instantiating a new variable, It chooses one of the
future variables for instantiation and notifies solve-csp of its decision by setting refv;

equal to that chosen variable. If a variable is uninstantiated and there are values

10



remaining in its domain, the variable direction will be equal to “backwards” and the
selection function will not be called. solve-csp expects that the labeling function will
set consistent equal to True if it finds an instantiation for the current variable and set
consistent to False otherwise. solve-csp expects that the unlabeling function returns
an index which indicates the new current variable. The value ii is returned if the
domain of the variable referenced by refv; still has values left to choose from (and
consistent is set to True) or it can be ii-1 otherwise (and consistent is set to False)3.
If the value of ii is greater than n then the underlying algorithm is signaling that a
solution has been found (line 16) as every variable has been assigned a value, If ii
is equal to 1 and there are no further values left in d; (that is consistent is False)
then the underlying algorithm is signaling that a complete search has been performed
and no solution has been found. It should be obvious that the correctness (that is
the soundness and completeness of the underlying algorithm) of solve-csp depends on
the actions of the labeling and unlabeling functions. For example, if the labeling and
unlabeling functions are those for the Generate and Test algorithm (¢f. Section 1.3.1)
then solve-csp will explore the whole search tree if no solution exists and will find a
solution if one exists.

To make the exposition of the algorithms presented in this thesis easier to under-
stand and to make certain relationships between algorithms obvious we have chosen a

simple array data structure that will be used throughout the algorithm descriptions?.

3This is not entirely true as otherwise we wouldn’t need the unlabeling function to return the next
instantiation index. If the algorithm uses an intelligent form of backtracking (non-chronological back-
tracking). one form of which we will discuss later in the thesis (called Conflict-directed BackJumping
or CBJ), the value returned may be an index of any one of the past instantiations.

4This data structure may not be the best one for some of the algorithms we describe. For some
algorithms it uses more space O{nm) than is required. For others, its lack of sophistication may
increase the amount of overhead (but not the number of constraint checks) when an instantiation is
attempted or undone. One common practice is to loop over a variable’s current domain rather than
the whole domain. This requires another array which keeps track of the values that have been deleted
and introduces the problem of efficiently updating the current domain. In this thesis we are more
concerned with a clear and understandable introduction to our algorithms rather than implementation
details and efficiency considerations. We discuss alternative data structures for the MFC algorithm
in the next chapter. Alternative data structures for the other algorithms can be found in the papers
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Definition 1.12 The values of the array domain! will have the following meanings:

domain! = 0 means v} has not been checked against any past instantiation.

domain! = —kk means the instantiation of a past variable indexed by kk (refvy) is
inconsistent with value vl. The negative value is used to indicate that the value
vl has been marked as deleted from the domain of d;. If the algorithm being
described does not keep track of which past instantiation caused the deletion of

vl we use the value —oc to show that the value has been deleted.

domain! = kk means the instantiation of a past variable indexed by kk (refvy) is con-

sistent with value v!.
The initial value for each element in domain! is 0.

The interpretation of the domain! array we will use in our algorithms is, if the value
domain! is negative then the absolute value of domain! is the index of the shallowest
instantiation with which the value v! is inconsistent, and if the value of domain! is
positive then the value of domain! is the index of the deepest instantiation which is
consistent with vl. The implication of a positive value for domain! is that v; is consistent.

with all past instantiations up to the instantiation indexed by domain!.

Definition 1.13 The pruned domain of a variable v; is the subset of d; which is not
marked as deleted in the domain! array. The pruned domain size is the number of
elements in the pruned domain. A completely pruned domain is a pruned domain
which has no elements (that is, its pruned domain size is 0). A completely pruned
variable is a variable whose domain is completely pruned. The true domain size of
a variable v; is the pruned domain size of the variable when cach undeleted value is

past-consistent.

1.3.1 Generate and Test

The simplest tree search algorithm is called Generate and Test (GT). In G'T system-

atically chosen assignments from dy x d; x ... < d, are tested to see if they are a

referenced.
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function gt-label(ii)
i «— refv;;
consistent < False
for ~ach v! € d; while (not consistent)
i. domain = 0 then

consistent < True

v, — V!

if ii=n then

for jj = 1 to n — 1 while consisient

© 00 ~N OO b WN -

for kk = jj + 1 to n while consistent

foy
(=)

j « refyv;;

[
-t

k « reru‘
if (Vj.Vu) g Cjk then
consistent < False

gt
w N

Figure 1.2: Pseudo-code for the GT labeling function.

function gt-unlabel(ii)
i refv;;
hh «ii—1
h « refvp,
for each v! € d

domain! = 0

domaint!™  _
if 3k domain} = 0

then consistent «— True

©O© 0 N O O & W N =

else consistent < Faise
return(hh)

[
L=

Figure 1.3: Pseudo-code for the GT unlabeling function.
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St(‘p d] d2 d3 d. Checks
0 r g b g B 0|
o g b
r
1 Vie—Tr|Vv—glvieb|lveg ;‘»~
2 Vi=Tr | Vp=g | v3 = ve ¢t b 6
3 vi=rjva=givi=blver *-‘ o
4 Vi=r | va=g | V3 g|Vsa<c g lﬂ
) vi=r|v=g|lvi=g|ve«Db 1
6 Vi=Fr | V=g | Vi=g | Vg1 3
T i=rivyeo|lviebivieg 6 ;
Total 31

Figure 1.4: Sample execution of GT.

solution to the CSP. The algorithm stops when it has found a solution or all possible
assignments have been exhausted. In the worst case it must evaluate adl possible as-
signments (that is the complete search tree) giving a worst case time complexity of
O(m"). The labeling and unlabeling functions for the GT algorithin ~ve displaved in
Figures 1.2 and 1.3.

The labeling function gt-label first dereferences the instantiation index n finding
which variable to instantiate (line 1). It then loops through the domain of the eurrem
variable v; until it finds a non-deleted value (line 3-13)". If it finds a non-deleted valoe
(line 1) it assigns v; to that value. If it # n no consistency checking is performed
(line 7) and the function immediately returns with consistent set to True. If there is
no non-deleted value in the current domain the function returns with consistent set
to False. If ii = n then all the constraints are tested (lines 7 13) to see if the total
assignment is a solution to the CSP. If it is a solution they consistent will be True

otherwise it is False.

The semantics of a for/while loop is that the loop will be executed unless the while condition
is false or becotnes false in the loop. The while condition is tested immediately on entry into the for
loop.
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‘The unlabeling function gt-unlabel first dereferences the instantiation index ii find-
ing the variable (line 1) that it is to move back from in the instantiation order (as it
has no more values left in its domain to be instantiated). It then finds the variable
that is to be uninstantiated (h = i — 1) by dereferencing hh (lines 2 3). To move back
it resets the deleted flag in domain for every element in d; (lines 4 5). The function
el(vn) used in line 6 returns a number indicating which value in dy v, has been as-
signed to. It uses this function as an index to domain in order to delete the current
assignment for v, from dy (line 6). Finally. gt-unlabel returns hh as the index to the
current. variable with consistent equal to True if there are more values to try in dy
otherwise False (lines 7 9).

In this algorithm the domain array is used to simply mark off alternatives in the
search tree whose subtrees have been fully explored. There is no specific information
stored about the results of constraint checks.

A sample . xecution of GT is given in Figure 1.1 using our small graph colour-
ing problem. We assume for all the sample executions that the variable ordering is
static, that is variables are chosen for instantiation in the order {vy.vi.vi.vq}. New
variable instantiations are shown with a arrow pointing left («) while past variable
instantiations are shown with an equal sign (=). GT begins at step 0 with the initial
domains as given in the problem definition. To save space we have collapsed mul-
tiple calls to the labeling and unlabeling functions until the consistency checks are
perforined at the bottom of the search tree (otherwise there would be 14 steps which
would go bevond a page). The algorithm generates the first (complete) assighment
{vi & r.vy « g.vz « b.vg « g} in Step 1. Only after generating the first complete
assignment does GT check to see if the assignment is consistent. The algorithm finds
that the assignment is not consistent as vy and v4 cannot both be coloured green
and backtracks to the next total assignment. GT eventually finds a solution using 31

constraint checks.
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function bt-label(ii)
i — refv;
consistent « False
for each v! € d; while (not consistent)
if domain| = 0 then
consistent «— True
v, & V!
for kk = 1 to ii-1 while consistent
k «— refvy
if (vi.v;) € ¢; then
consistent < False

O 0 ~N O 0N & W N e

[
o

domain| = —x

b
b

Figure 1.5: Pseudo-code for the BT labeling function.

function bt-unlabel(ii)
i « refv;
hh «ii—-1
h « refv,,
for each v} € d;

domain} = 0

domaint!™  _x
if 3k domain} =0

then consistent « True

O 0 ~N G 0 &b W N =

else consistent « False
return(hh)

[y
(=

Figure 1.6: Pseudo-code for the BT unlabeling function.
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Step d; d; d3 de Checks
0 r g b g 0
o b
r
1 Vi & g g 0
o b
r
2 |wvi=r|vegiv} g 1
b
r
3 vi=r| va=g{wu} |vieb{wW. W)} € 2
b
r
4 vi=r| va=g{wn} | va=b {vi.vz} v4+-g{v}/,v;} 2
5 |vi=r|va=g{v} | va=b {vi.va} |veb{v.vy.vi} 3
6 [vi=r|lva=g{w} | vs=b{v.v} va 1 {vi} 1
7 |vi=r|v=g{w} |vig{wW. v} g 2
b
r
8 |wvi=r{vaeo{vw) g 1
g b
r
9 [vi=r|{va=0{wn} |vseb{w.w} g 2
b
r
10 [vi=r| va=0{w} | va=b{vi.va} |vag{W.vw. v} 3
Total 17

Figure 1.7: Sample execution of BT.
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1.3.2 Backtracking

It is not hard to see that GT is very inefficient. Imagine that the fiist value in d,
is inconsistent with all values in v, for a problem with 25 variables each variable
having 9 values. Then in the worst case. GT will test 9% complete assignments be-
fore it changes the assignment of v;. This is a very simple example of a pathological
phenomenon called “thrashing”[74] which occurs in all CSP backtracking search al-
gorithms. Thrashing occurs when a CSP search algorithm cannot detect that there
is some inconsistency between a set of variables that have been instantiated and a
variable that has no consistent value given the instantiations of those variables. This
failure to detect the inconsistency can cause the needless exploration of subtrees until
one of the conflicting variables is assigned a new value.

Backtracking (BT) is a tree search algorithm much like GT except that 1t assigns
values to variables one at a time and immediately tests to see if the assignment is
past-consistent. That is, BT only searches through the set of consistent nodes in
the search tree. BT extends a partial solution only when a past-consistent value is
found for the current variable avoiding needless thrashing caused by an inconsistency
between the current instantiation and one of the past variables (as in GT). If a partial
solution cannot be extended the algorithin chronologically backtracks to the deepest
previous variable and tries to give it a new value. This incremental instantiation of
variables on average prunes out many subtrees. Howaver, it does not improve on the
worst case performance of GT, that is BT's worse case performance is still O(m").

BT is a well known search algorithin. One early description of BT is given in
[73} which uses the algorithmn to thread mazes. More recent deseriptions of the BT
algorithm and its susceptibility to thrashing can be found in [10, 55, 66, 74, 116].

The BT algorithm is displaved in Figures 1.5 and 1.6. The labeling funetion bt-label
is very similar to the labeling function for GT. The difference between the algorithms
occurs in lines 7- 11. Instead of waiting until all n assignments have been made before
performing consistency checking, the BT algorithm checks cach instantiation with the

past variables. If a value is not consistent with one of the past variables it is marked
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as being deleted (line 11) and the outer loop (line 3) moves on to the next possible
value. If no value is found that is past-consistent the variable consistent is False and
the function returns. If a value is found that is past-consistent, v; is set to that value,
consistent is True (lines 7-11) and the function immediately returns.

The unlabeling function for BT is exactly the same as for GT. In addition to
deleting a value that leads to a failed subtree as in GT. BT marks off a value if it
cannot possibly be part of a solution as it is inconsistent with one of the past variables.
Effectively BT is recording the same information as GT except that it learns earlier
not to go down a subtree because of an inconsistency with one of the past variables.

A sample execution of the BT algorithm is given in Figure 1.7 using our small
graph colouring problem. BT begins at step 0 with the initial domains as given in the
problem definition. It then assigns vy to red without performing any past consistency
checks (as there are no past variables). In step 2. BT successfully instantiates v, to
green after checking the value with the past variable vy. The current action of the
algorithm and its current knowledge are reflected in a set following the value which
shows the past variables that were checked with each superscripted with either a / if
the constraint check was successful. a x if the constraint check was unsuccessful, or
nothing if a constraint check was not performed because the algorithm already knew
that the copstraint check would be successful. The algorithm continues until it tries
to instantiate vq where it finds that all the colours for that variable are inconsistent
with the past variables (steps 4 6). When the algorithm backtracks (step 7) to v3 one
can see that all the domain values for v4 are returned to dy. No attempt is made to
retain the fact that the value green in dg is inconsistent with the instantiation of v,
and that the colour red is inconsistent with the instantiation of v;. These two values
will be needlessly re-checked until vo and v, are assigned new values. Eventually the
algorithm finds a solution after 10 steps with only 17 constraint checks which is much

better than GT.
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function bm-label(ii)

i + refv; 1
consistent «— False 2
for each v! € d; while (not consistent) 3
if domain! > 0 then 4
consistent < True 5
Vi — v 6
for kk = domain! + 1 to ii-1 while consistent 7
k < refvy, 8
if (vi.v;) € ¢;; then 9
consistent < False 10
domain, = —kk 11
else 12
domain] = kk 13

Figure 1.8: Pseudo-code for the BN labeling function.
function bm-uniabel(ii) 1
i « refv;; 1
hh «ii—1 2
h « refv,, 3
for jj=iiton 4
j « refvy 5
for each v} € d; 6
if abs(domain;) == hh then 7
domain; = hh — 1 8
domain:'(""’ — —(hh — 1) 9
if 3k domain} > 0 10
then consistent «— True 11
else consistent < False 12

return(hh)

Figure 1.9: Pseudo-code for the BM unlabeling funetion.
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Step d; d, ds d, Checks
0 r g b 0
o
r
1 vy & r g b g 0
o b
r
2 vi=r|vsg{v} g 1
g b
r
3 |vi=r|va=g{wu} [vaeb{w.W} g 2
b
r
4 |wi=r|va=g{wn} | va=b{viva} | veeg{vW.v} 2
5 vi=r|va=g{wu} | va=b{v, v} v.«—b{v}/.vi/,vi‘} 3
6 vi=r|va=g{wn} | va=b {v;.va} ve —r {vy} 1
7 |vi=r|v=g{wu} |vieg{v v} b {vi.v;} 2
8 |vi=r|v2eo{w) b {vi} g {vi) 1
g {»1} b{v}
9 |{vi=r|va=0{vn} |vsieb{v.v} g {1} 1
b {vi}
10 [vi=r|va=0{wi} | va=b{vi.va} | va ¢ g {v1.vy.v}} 2
Total 15

Figure 1.10: Sample execution of BM.

21



1.3.3 Backmarking

The BT algorithm can easily be improved upon. Gaschnig [17} noticed that BT was
needlessly performing constraint checks that it had already performed. Imagine that
during the course of a BT search. the variables {vy.va..... v;} are instantiated, at
which point no extension to the partial solution is found and the search backtracks
to a variable v, at which point the scarch starts moving forward again. Those con-
sistency checks (both successful and unsuccessful) that were performed for values in
the domains of the variables {vp....,v;} with respect to the variables {v,.. ... Va 1}
need not be repeated as the instantiations of {v,..... vh 1} have not changed. The
BackMarking (BM){47] is a form of the BT algorithin which avoids these redundant
constraint checks. In Gaschnig's original description of BM the variable ordering was
static. However. this is an unnecessary restriction as what should be remembered is
which past instantiations have changed and not which variables. As an interesting
aside, we should note that Prosser[90] stated that the BM algorithin could not be
used with a dynamic variable ordering due to Gaschnig’s original description. Bac-
chus and Van Runf2, 115} took that as a challenge and showed that BM can be used
with a dvnamic variable ordering providing one uses an indirection array to differenti-
ate between variables and instantiations. We also indirectly showed this result in the
development of our algorithm Minimal Forward Checking{28, 30] which we will show
later incorporates BM and allows for a dvnamic variable selection.

The BM algorithm is shown in Figures 1.8 and 1.9. The BM algorithmn displayed
here uses the domain array rather than Gaschnig’s original data strisctures in order to
compare the difference between the algorithins described in this thesis. Deseriptions
of BM using Gaschnig’s data structures can be found in [47, 82. 90]. The BM labeling
function bm-label is very similar to the BT labeling function in Figure 1.5, The
differences are in lines 4, 7, and 10 13. At line 4 the test is now > as the function
needs to find a domain element in d; that is at least not deleted. The value it finds
may have been successfully checked against some of the past variables and domain!

may therefore be positive. In line 7 the lower index of the loop is now the index of the



last instantiation plus one that successfully checked against the value v!. Finally, in
lines 10 13 the result of a constraint check is now recorded.

The BM unlabeling function bm-unlabel is more complicated than the unlabeling
function for the BT algorithm. Lines 4 8 have now been added and line 9 has been
changed. In lines 4 8 the function looks through the future domains (including ii)
resetting the array domain to reflect the uninstantiation of v,,. The abs function in line
7 is the absolute value function. Whether a value in a future domain was deleted by,
or successfully checked with, the instantiation of vy, the flag for this value is changed
to hh — 1. This is correct behavior as either the value of domain} is the deepest
past instantiation that was successfully checked against v} which implies that vj! must
be consistent with instantiation hh — 1, or the value of domain} is the shallowest
past instantiation that deleted v} which also implies that v} must be consistent with
instantiation hh — 1. Line 9 has been changed to reflect that the current value of v,
leads to a dead end and should remain deleted until the instantiation previous to hh
is uninstantiated.

A sample execution of the BM algorithm is given in Figure 1.10 using our small
graph colouring problem. Steps 0 -6 are the same as in BT. In line 7, when BM back-
tracks to v3 there are two differences to note in dg. The first is the values green and
red are now deleted because the value green is inconsistent with the current value of
vy and the value red is inconsistent with the current value of v;. The second is that
BM remembers that blue has been successfullv checked against the values of v, and
indirectly v;. In Step 8 the value green is undeleted in d4 as variable v, has been unin-
stantiated and BM remembers that green is consistent with the current instantiation
of v;. In steps 9 and 10 the successful consistency checks that BM remembered are
not performed and the algorithm terminates with a solution performing a total of 15
constraint checks.

Although the BM algorithm now avoids the redundant checks performed by BT,
it does not improve on the worst case performance. However, the algorithm is useful

in practice as it does help avoid many redundant checks[61. 82].
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1.3.4 Forward Checking

Imagine that during the course of a backtracking search. the variables {vy.va.. ... v}
are instantiated and that the instantiation of variable v; is inconsistent with every
value in some future domain d;. BT will completely explore the subtree from v; oy to v,
before it uninstantiates v;. BM will also explore the same subtree, avoiding redundant
checks, even though it has enough information to jump out of this tree onee it reaches
v; and finds that d; is completely pruned®. This needless thrashing could be avoided if
the algorithm could somehow look ahead and find out that the current instantiations
are inconsistent with some future variable. The Forward Checking (FC) algorithm is
based on this idea.

FC is a backtracking algorithm that performs a limited amount of lookahead dar-
ing its search to detect inconsistencies between the current instantiation and the future
variables. When the current variable is instantiated, a forward check is performed that
deletes all values inconsistent with the current instantiation from the future domains®.
If the forward check is successful (that is, every future domain has at least one value
remaining), the search continues by attempting to instantiate one of the future vari-
ables. Every value in these future domains is consistent with the past variables. If
the forward check is unsuccessful, some future variable is completely pruned because
no value in its domain is consistent with the current instantiation. At that point the
forward check is undone by replacing the values deleted because of the current instan-
tiation and the search goes on to another value in the current domain. If there are

no more values the search moves back to the previous variable instantiated, andoes

Sif d; is completely pruned then the algorithm can jump back to the deepest instantiation (marked
in the domain array) that deleted a value out of the domain. Until this instantiation is undone ihe
search has no chance of finding a solution. A non-chronological backtracking algorithm that analyzes
the cause of an inconsistency and jumps back in this manner is called BackJutnping (BJ)[47). The hy-
brid algorithm BM with BJ (BM.) is described in{88. 89, 90]. A more refined version of B4 is called
Conflict-directed BackJumping (CB.J)[90] whick is described in more detail in Section 4.1.2. A sim-
pler version of BJ called Graph-based BackJumping (GBJ){21] is a non-chronological backtracking
algorithm which jumps back to the deepest past-connected variable,

7FC only needs to delete inconsistent values from future-connected dotnains.



function fc-labei(ii)

i — refy;

consistent < False

for each v} € d; while (not consistent)

if domain = 0 then
consistent «— True
v, < v
for jj = ii + 1 to n while consistent
consistent <— forward-check(ii,jj)

O O ~N O Ut & W N ==

if not consistent then

ey
(=

domain| = —(ii — 1)
undo-reductions(ii)

[y
—

Figure 1.11: Pseudo-code for the FC labeling function.

the forward check associated with that instantiation and tries another value in that
domain.

The FC algorithin is shown in Figures 1.11 to 1.14. To understand the labeling
function fc-label we first explain what the functions forward-check and undo-reductions
do. In forward-check a iorward check is performed between the current instantiation
indexed by i and a future domain indexed by jj. forward-check loops through the ele-
ments of d; (lines 3 6) that have not been deleted (line 4) and deletes any value that
is inconsistent with the current instantiation (lines 5 6). If d; has been completely
pruned the function returns False otherwise it returns True. Function undo-reductions
is used to undelete values that were deleted from future domains because of an in-
consistency with the instantiation of the variable indexed by ii. It loops thorough
each’ future domain (lines 2 6) undeleting values that were deleted because of the
instantiation of the variable indexed by ii.

The labeling function fc-label is quite different in lines 7-11 from the previous

algorithms. Instead of checking the current instantiation against the past variables it



function forward-check(ii.jj)
i — refv;
j « refy
for each v] € d;
if domain, = 0 then
if (vi.v}) € ¢ then
domain] = —ii
if 3k domain} = 0 then
return{ True)
else
return(False)

O 0 ~N O O &S W N

-
(=]

Figure 1.12: Pseudo-code for the forward-check function.

function undo-reductions(ii)
i « refv;
forjj=ii+1ton
j « refy;
for each v} € d;
if domain] = —ii then
domain, = 0

D N Ea W N e

Figure 1.13: Pseudo-code for the undo-reductions function.
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function fc-unlabel(ii)
i « refv;
hh —ii—1
h < refvn,
undo-reductions(hh)

domaint™  _(hh - 1)

if 3k domain; = 0

then consistent «— True

else consistent «— False

return(hh)

Figure 1.14: Pseudo-code for the FC unlabeling function.

Step d; d> dy de Checks
0 r g b g 0
o b
1 jwerig{w}| b{w} g {vw} 7
o{w}| s{w} | b{vw)}
ri{vi}
2 vi=r|vae—g|b{vivw}| g{v.vi} 14
g {vi.vi}! b{vi.v}}
3 vi=r|vy=g| vaeb |[b{v.vavs} 1
1 vi=r|vaeo|b{v.w}| g{vu.vw} 4
g {vi.vy} | b {vi. v}
5 {vi=r|va=0] vseb |g{v.vav} 2
b {vi.v2.v5'}
6 vi=r|v=0 vi=b Ve —§ 0
Total 18

Figure 1.15: Sample execution of FC.

O 0 ~N O U & W N =
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checks the current i stantiation against every future domain using forward-check. If at
least one consistent value is found in each future domain the search can go forwards
and the function returns with consistent equal to True. If the current instantiation
causes one of the future domains to be completely pruned then it can immediately be
discarded (line 10) and the reductions performed undone (line 11). The function then
goes on to the next non-deleted domain value and attempts another instantintion. If
no instantiation is found the function returns with consistent equal to False. There is
an important property enforced by fc-label. Only values that are consistent with the
past instantiations will be in the future domains. This has two important implications
(which will become more obvious in the next chapter). The first is that a forward
check never needs to repeat constraint checks with past variables as it already knows
the result. The second is that fc-label never has to check a value in the current domain
against the past variables as it already knows that they are past-consistent.

The unlabeling function fc-unlabel is quite simple. It undoes the previous instanti-
ation indexed by hh using undo-reductions (line 1) and deletes the assignment from dy,
(line 5). It returns the index hh as the new current variable and consistent equal True
if there are any remaining values in dy. otherwise it returns with consistent cqual to
False.

At this point is it convenient to give two seemingly obvious lemmas about FC. We

will use these two lemmas to discuss FC's relationship to BM in the next chapter.

Lemma 1.1 Given that variables {v,.....v;} have been instantiated by the FO al-

gorithm. every non-deleted future domain value v} (i +1 < k < n) 18 consestent wth

each past variable vj and the constraint checks on v, have been performed in the order

of instantiation.

Proof of Lemma 1.1 Everv futare domain value must be past-consistent, For every
instantiation of v;. (1 < j <i). FC (Figure 1.11) deletes all inconsistent futiure valnes
(lines 7-8) using the forward-check function (Figure 1.12). Therefore every non-deleted
future domain value vi (i + 1 < k < n) is consistent with cach past variable v,.

As forward checks are performed at each level of the search tree from the cusrent



instantiation against the future domains (that is. deeper in the tree) the constraint
checks against the future domain values are performed in the order of instantiation.

]

Although this lemma may seem obvious. in the usual deseription of the FC algorithm

the fact that each future value is past-consistent with each past instantiation is implicit.

Lemma 1.2 Given that varables {vy.. ... v;} have been mstantiated by the FC al-
gorhm. cacl. future doman value v (i+1 < k < n) that is deleted as a result of the
wstantiation of v; @s past-consistent with each instantiation in {vy. . . .. vi1} and it is

undeleted when the FC algorithm backtracks and uninstantiates v;.

Proof of Lemma 1.2 The first part of the lemma is a direet consequence of

Lemma 1.1, For the second part of the lemma consider Figure 1.12 lines 4-6. If
a future value vL is inconsistent with the value of v; it is marked as deleted in the
domain} array as a result of the instantiation of v;. If the search goes deeper. this
value is never considered again as it is marked as deleted. When v; is backtracked
to. function fc-unlabel (Figure 1.1.1. line 1) calls function undo-reductions (Figure 1.13)

which undeletes all values deleted becanse of the instantiation of v;. O

We now give a sample execution of the FC algorithm in Figure 1.15 using our
small graph colouring problem. In step 1. vy is assigned the value red and FC goes
through the inture domains looking for inconsistent values. The value red in dg is
found to be inconsistent and is deleted. The search now moves forward as there are
consistent values in every future domain (step 2). Variable v, is assigned the value
green and a forward check is performed for each future variable. The values green
in both d3 and dgq are inconsistent and are deleted. Variable vy is assigned the value
blue and a forward check is performed for variable vq. FC finds that the value blue
it dg is in. msistent with the value chosen for v3. As there are no further clements
in d¢ and d3 FC backtracks to va2. The value blue is undeleted in dq. and the value
preen is undeleted in d3 and dg. Variable v, is then assigned the value orange (step

1). FC checks the future domains and finds no inconsistent values. In wep 5. v; is
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assigned the value blue and FC deletes the value blue from dg. Finally, step 6 shows
the solution found with a total of 18 constraint checks.

Up to this point in the thesis we have only mentioned that CSP search algorithms
may benefit from a dyvnamic variable ordering heuristic. FC is the first algorithm
mentioned whose performance can often be greatly improved through the addition
of such a heuristic called the Fail First (FF)[61] (the addition of FF to FC is called
FC-FF). The FF heuristic as defined in [61. p. 266] is: “pick the variable that has the
fewest remaining values in its domain as the next variable to instantiate™. A\ stronger
version of the FF heuristic which is also (accidently) defined in [61. p. 302 is: “pick the

variable that has the fewest remaining consistent values in its domain™

. This stronger
heuristic causes no difficulty when used with FC as all values inconsistent with the
past instantiations have aiready been deleted before the next variable to instantiate is
chosen. However, the distinction is important as not all “forward checking™ algorithins
know exactly how many past-consistent values there are in cach future domain as we
shall see in the next chapter.

Intuitively, the FF heuristic improves performance by dvnamically rearranging the
sea~ch tree so that lower branching factor  les (smaller domains) are shallower in the
search tree and higher branching factor nodes (larger domains) are deeper in the search
tree. Since all variations of the BT algorithim prune subtrees when an inconsistent
instantiation is found, if the larger domains are deeper in the search tree, then more
of the search tree would be pruned by an inconsistent instantiation than if the sialler
domains are deeper in the search tree. The FF heuristic is particularly appropriate
for FC as FC deletes values from the future domains that are inconsistent with the
current instantiation thereby changing the bushiness of the part of the search tree that
it may visit. The FF heuristic dvnamically minimizes the buyshiness of the tree by

bringing the variable with the fewest past-consistent values to the “top”™. Haralick and

8The FF heuristic is a heuristic for picking the next variable (o instantiate which can e uoed by
any CSP backtracking scarch algorithm. Haralick and Elliot were improcise in their definition of FF
as they relied on the fact that FC removes all values inconsistent with the past variables froms the

future domains. Only in that sense are their two definitions equivalent.
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Elliot{61] use a probabilistic argument to show that the FF heuristic minimizes the
“oxpected branch depth™ thereby reducing the expected number of nodes that need
to be searched.

The dynamic optimization of the search tree hy FC-FF also has the side effect of
bringing variables that are “related”™ by constraints closer together in the instantiation
order. There are two senses of “relatedness” here that are quite similar but distinct
in effect. The first “relatedness” is governed by the tightness of the constraints, that
is how few consistent assignments are allowed. If a constraint is tight between the
current variable and some future variable then more than likely that future variable
will be picked fairly soon in the instantiation order as it will be pruned to a small
domain size by the forward check. The second “relatedness™ is governed by how many
constraints a variable participates in. If a future variable is highly connected to the
past variables then it will be pruned more than other future variables and will therefore
be picked fairly closely to the past variables that it is related to by a constraint. FC-
FF will bring variables that are related in these two senses closer together in the
instantiation order, more for one sense than another for different types of CSPs. This
“relatedness of variables™ side effect has implications for the use of non-chronological
backtracking with FC-FF which we discuss in Chapter 4.

Although the FF heuristic is quite effective for some types of CSPs (for example,
randomly generated problems), it is not appropriate for all types of problems. Soine
problems benefit frotn a preliminary static ordering of the variables before search
(for example the minimal width ordering[25, 10}) while others benefit from dynamic
variable ordering heuristies that depend on factors other than domain size{87, 101].
Therefore it is important to find improvements for both the FC algorithm and the
FC-FF algorithin.

Whether or not the FF heuristic is used. the FC algorithm or a hybrid FC al-
gorithm with non-chronological backtracking is considered the most effective general
('SP backtracking search algorithm[2, 61, 77. 82, 90, 111]. That is. if the FF heur-

istic is not suitable for a particular problem. then a FC algorithm (or hybrid) with

“Read “expected branch depth™ as “expected path length”.
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function bc-label(ii)

i < refv; 1
consistent < False 2
for each v! € d; while (not consistent) 3
if domain| = 0 then 4
consistent « True 5

v & v 6

for kk = 1 to ii-1 while consistent 7

k « refvy, 8

if (vk.vi) € ci; then 9
consistent < False 10

domain! = —kk 11

Figure 1.16: Pseudo-code for the BC labeling funetion.

or without some static pre-ordering of the variables is the most effective backtracking
search algorithm for solving CSPs. I the FF heuristic is suitable for a particular
problem then FC-FF or a FC-FF hybrid is the most effective algorithin for solving
the CSP.

The FC algorithm is in fact quite old. It is first mentioned in [55, pg. 521] where
it is called preclusion. However (believe it or not} the authors, Golomb and Bawmert,
rejected the idea as being too expensive to use on “todayv’s digital computers™. Not
only did Golomb and Baumert accurately describe FC they also deseribed the FF
heuristic. Again they rejected the idea as being too expensive. The FC algorithm
made another appearance in [77] before finally being given the name by which it is

currently known [61].

1.3.5 BackChecking

Finally. the last CSP search algorithm that we describe in this chapter is ealled
BackChecking (BC)[61]. BC is an algorithm like FC except that it looks backwards

instead of forwards. BC is BT with the the ability to delete vatues from the current
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function bc-unlabel(ii)

i + refv; 1
hh «ii — 1 2
h < refvp, 3
forjj=iiton 4
j « refv; 5
for each v] c d; 6

if domain, = —hh then 7
domain} =0 8
domain!™ « _(hh — 1) 9
if 3k domain} > 0 10
then consistent «— True 11
else consistent < False 12
return(hh) 13

Figure 1.17: Pseudo-code for the BC unlabeling function.

domain if they are past inconsistent and not return them until the past variable that
the value is inconsistent with is uninstantiated. The difference between BC and BM
is that BM also remembers past successful checks.

The BC algorithm is shown in Figures 1.16 and 1.17. The labeling function bc-
label is the same as bt-label except for line 11 where the instantiation that deleted a
value is recorded. The unlabeling function 1.17 is quite similar to bm-unlabel except
in lines 7 8. In line 7, BC only checks for values that have been deleted by hh
(unsuccessful checks) and resets them to indicate that they are no longer deleted (line
8). The difference between BC and BM is that BM both successful and unsuccessful
constraint checks while BC only records unsuccessful constraint checks.

A sample execution of the BC algorithm is given in Figure 1.18 using our small
graph colouring problem. The execution of the algorithm is quite similar to BT
(Figuare 1.7} until step 7 at which point BC remembers that the colours green and red

in dq are inconsistent with vy and vy respectively. The rest of the execution is the



same as in BT.

1.4 Consistency Enforcing Algorithms

Thrashing occurs when a CSP search algorithm cannot detect that there is some
inconsistency between a set of variables that have been instantiated and a variabie that
has no consistent value given the instantiations of those variables. It seems reasonable
that one might want to eliminate some sources of thrashing as a preprocessing step
before a CSP is searched for a solution. That is, it mayv be beneficial to the search if
a preprocessing step is performed to remove some of the inconsistencies. reducing the
given CSP into one which has a smaller search space but is equivalent to the original in
the sense that the reduced CSP has the same set of solutions. For example, one might
want to ensure that for every value in evervy domain there exists a coasistent value in
every other domain. If no such consistent value exists the value under consideration
may be deleted. Or. for every consistent pair of values for v; and v; ensure that there
exists a third consistent value in v (1 < k < n.k # i.k # j). If no such consistent
value is found then disallow the consistent pair in ¢;;. The “level of consisteney™
being enforced in the first example is called Are Consistency (AC) also known as
2-consistency. The level of consistency being enforced in the second example is called
PATH consistency (PATH) also known as 3-consisteney|[74, 81]. In general, the level
of consistency of a general CSP can be extended to k-consistency[39] where the idea
is that given a consistent labeling of k — 1 variables ensure that there exists a k'th
consistent value in the domains of the rest of the variables. If one enforces strong
n-consistency on a CSP (that is the CSP is k-consistent for all k < n) then the set of
all solutions is formed[39]. Descriptions of the k-consistency algorithms can be found
in [16, 27, 39, 41, 40]. Although this approach does offer another avenue for finding all
solutions to a CSP it does not improve on the worst case time complexity of O(m®).
Consistency enforcing algorithms are usually not used bevond path consistency as
they are not considered worthwhile.

There are many algorithms available to perform AC. The simplest (brute foree



Step d; d, ds d, Checks
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r
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r
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r
BE vi=r|va=g{wn} |vieb{vw.wW} g 2
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r
4 vi=r|v=g{wn} | va=b{v.v2} ve — g {vY.v}} 2
5 vi=r| va=g{wn} | va=b{viva} |vab{vW. vy v} 3
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b
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Total 17

Figure 1.18: Sample execution of BC.
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method) is called AC-1 and is described in [74]. Basically, the algorithm loops through
every value in every domain checking every other domain for a consistent value match-
ing the value under consideration. If the algorithm successfully finishes one complete
pass over every value in every domain without deleting one value then the CSI® is are
consistent. The algorithm has been further improved upon in [74] (AC-2.AC-3),[80]
(AC-4).in [7] (AC-6). in [9] (AC-6++). and in [8] (AC-7). A recently proposed version
of AC, called LAC;[18]. is strongly related to the MFC algorithm (¢f. Section 2.8).
The best arc consistency algorithm has a worst case time complexity of O(m?2e) where
e is the number of edges (non-trivial constraints) in the graph.

Algorithmns that ensure path consistency are described in [74] (PC-1.1°C-2), [81]
(PC-1, called Algorithm C). [80] (PC-3) which had minor mistakes which led to [59)
(PC-4). The best path consistency algorithin has a worst case time complexity of
O(m3n?). A comprehensive overview of many of these algorithmms and their time and
space complexities can be found in [108].

Usually the amor+t of preprocessing performed is restricted to are consisteney (if
at a.., due to the cost of these algorithms. It is still an open question (which is not
addressed in this thesis) that causes much debate on when it is useful to perform even
arc consistency before performing a search. We introduce these consisteney algorithins
here. as CSP search algorithms can be seen as tree search with the addition of (partial)
consistency processing (usually a partial amount of are consistency processing)[82].
For example, BT. BM and BC all enforce a :© .ctial amount of are consistency between
the current variable and the past variables. FC enforces a partial amount of are

consistency between the current variable and the future variables.

1.4.1 Hybrid Algorithms

The term hybrid algorithm is used in two different senses in the literature, In the
first sense, a hybrid algorithin is a backtracking scarch algorithm with the addition
of a partial amount of consistency processing performed during the search{®2]. In
the second sense, a hybrid algorithim is a algorithm which melds the forward labeling

move of one known CSP secarch algorithin with the backward labeling move of an-
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other. Nadel has identified a number of algorithms as being hybrid algorithms of
the first type including BT. BM. FC. BJ, Full and Partial Lookahead (FL and PL
respectively) and Really Full Lookahead (RFL)[61]. FL is a CSP backtracking search
algorithm which performs not only FC on the future domains but also makes one pass
over all the values in every future domain ensuring that there is a consistent value
matching it in every other future domain. PL is the same as FL except that the pass
over the values in the future domains only ensures that there is a matching value in
the domains that are in the future of the value being checked. Neither FL nor PL
enforce full AC. RFL is a backtracking search algorithm which performs full AC on
the future domains at every instantiation. A version of this algorithm was actually
developed in Gaschnig's thesis[47] (called DEEB for “Domain Element Elimination
with Backtracking™). This algorithm has not been used because of its perceived cost
but has recently been recalied to life by Sabin and Freuder[97](who have now renamed
it MAC for Maintaining Arc Consistency).

Prosser[90] has introduced a number of hybrid algorithms in the second sense that
combine the attributes of BM and FC with BJ and CBJ giving BM with BJ (BMJ),
BM-CBJ, FC-BJ. and FC-CBJ. As we have developed and use many hybrid algorithms
(in both senses) in this thesic we need a standard notation to identify an algorithm.
We will use the notation “FOR-BAC-EXT-DVO” where FOR is the forward labeling
function, BAC is the backward labeling function (chronological backtracking if omit-
ted). EXT is anyv extra processing performed after the forward lateling is successful
and before the selection of the next variable (omitted if no extra processing is used),
and DVO is the type of variable ordering heuristic used (omitted if the ordering is
static).

In [82]. Nadel proposed a notation for hybrid algorithms which makes explicit the
relative amount of partial are consistency performed by the algorithm. For example.
he suggested that FC could be referred to as TS+AC(1/4) which means that FC
performs Tree Search with approximately 1/4 are consistency processing. Nadel's
proposed notation has never been used as the old names are so well known in the

literature. The important contribution that Nadel made is that he identified a relative
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ordering by the approximate amount of are consistency performed at a node for the
then known algorithms. BT performed the least amount of are consisteney processing,
followed by BJ. BM. FC. PL. FL and RFL. Although his experimental evidence is
weak (which we will desceribe in the next section) he ordered the algorithms from
best to worst in terms of average number of constraint checks performed as FC', BAL
PL. FL. RFL. BJ. and BT. He noted that FC is the best algorithm according to his
experiments and that perhaps a better algorithm could be found somewhere Between
BT and FC or between FC and PL. This comment is somewhat responsible for our
focus on the FC algorithm and the development of Minimal Forward Checking. We

will discuss this point further in the next chapter.
1.5 Previous Theoretical and Empirical Comparisons

In general, the worst case time complexity of CSP search algorithms ts O@mn").
This worst case time complexity is not represemtative of the tvpical performance of
CSP search algorithms in practice. Although it is highly desirable to have average
case complexity results for these algorithms, such results are extremety difficult 1o
derive[25, 76. 82]. An analvsis of the average time complexity for CSP search algor-
ithms needs to make overly simplifving assumptions about the distribution of problems
in order to make the analvsis somewhat tractable. However, it turns out that the av-
erage case time analysis is highly sensitive to these simplifving assumptions[25, 68).
Knuth[58, 66] has developed a Monte Carlo method of estimating the scarch tree size
for a backtracking algorithm but only for a particular problem under consideration.
The difficulty in deriving analvtical average time complexity results leaves two
avenues of approach in comparing CSP search algorithms. The first approach is to
show dominance relationships between algorithins, that is, show that one algorithim is
always the same or better than another algorithm by the munber of constraimt checks
performed or by the number of search tree nodes visited on any given problem{30.
34. 33. 67, 68]. The second approach is to empirically compare algorithms by their

performance on randomly generated problem instances[1. 2, 5. 7. 8, 9. 24, 25, 28, 29,
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Figure 1.19: A hierarchy of CSP search algorithms with respect to the

number of nodes visited.

30, 34, 33, 42, 43, 44, 17. 19. 61, 71. 93, 97. 109. 115] or specific problem instances(1.
2,24, 25, 47, 77. 82, 90, 113, 115).

1.5.1 Previous Theoretical Comparisons

A significant paper that follows the first avenue of approach of showing dominance
relations is that of Kondrak and van Beek[67. 68]. They prove a number of interesting
theorems about the algorithms we have seen so far. The basis of their proofs lie on
necessary and sufficient conditions for a node to be visited (called the characterizing
condition) by BT, BJ. BM. CBJ, and FC given a static ordering of the variables. Thev

prove the following theorem: [68]:

Theorem 1.1 A backtracking search algorithm is correct if it is sound. that is it only
finds solutions, and it is complete, that is it finds all solutions, and it terminates. BT,

BM, B.I. CBJ. and FC are correct.

They also present two hierarchies, displayed in Figures 1.19 and 1.20 for the number of
nodes visited and the number of constraint checks performed by a particular algorithm.
In Figure 1.19. algorithins that visit the same nodes have an equal sign between

them. If an algorithm visits a subset (possibly equal) of the nodes of another then it
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Figure 1.20: A hierarchy of C'SP search algorithms with respect to the

number of constraint checks performed.

is displayved lower than that algorithm and there is a connection between them. There
is a minor difference between Figure 1.19 and Kondrak and van Beek's hierarchy. We
have BM visiting a subset of the nodes visited by BT whercas they have BN and 3T
visiting the same nodes. The cause of the difference is the point at which a variable is
instantiated. We check the domain! arrav before attempting to instantiate v; to v! to see
if it has already been deletcd. They check for deletion after instantiating the variable.
In Figure 1.20 algorithms which perform the same or less constraint checks than
another algorithm are displayed lower than that algorithm and there is a connection
between them. We use the above results later in the thesis for the algorithms that we

develop.

1.5.2 Previous Empirical Comparisons

There are many papers that follow the second approach of performing empirical tests
to compare the performance of different CSP search algorithins. As there are so many,
we limit our discussion of previous comparisons to those that are most relevant to
our thesis. Basically, there have been two types of empirical comparisons performed.
The first type of comparison uses a specific problem such as the well known n-queens
problem. The n-queens problem is: given a n x n chesshoard, find a placement of
n queens such that no queen can take another. An example solution to the 6-queens

problem is shown in Figure 1.21. The first thing to notice about this problem is
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Figure 1.21: A solution to the 6-queens problem.
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checks on the n-queens Problem.



that everv queen must be in a distinet row (alternatively column). This makes the
representation of the problem easy. Let a variable v; represent the i'th queen which is
in the i'th row. The domain of v;is {1..... n} which are the possible column positions.
The constraint between every pair of variables v; and v; is that the queens are not in
the same column and that they are not on the same diagonal. To keep up with a
long standing tradition we perform a small empirical comparison of BT, BAL. FC and
FC-FF using the n-queens problem.

To perform the experiment we run the BT. BM and FC algorithms on the n-queens
problem for n € {4..29} and for the FC-FF algorithm we use n ¢ {4..75}. For cach
algorithm we count the number of constraint checks performed in finding, the first
solution. The results of this experiment are displayed in Figure 1.22. Clearly FC-FF
is far superior to the other three algorithins. Of the three algorithms that do not use
FF the ordering from best to worst is roughly BN > FC' > BT. These resalts are
sitnilar to past empirical comparisons of these algorithms{l, 2, 17, 61, 82, 113, 115}
using the n-queens problem. Some of these past comparisons have not looked only
at the above mentioned algorithms but also BC. BJ. FC, PL. FL. and RFL with and
without BJ or CBJ. The general conclusion reached by all of these past comparisons is
that algorithms that look ahead such as FC. PL. FL and RFL explore fewer nodes i
the search space (in the order RFL. FL. PL and then FC) than past looking algorithins
such as BT. BM. Bl. and BC. Of the lookahead algorithins FC (or FOC with CBJ or
BJ) explores ihe wrost nodes but perforins the least number of constraint checks. Of
all the algorithms. a FC hyvbrid or BN performs the best without FE and of all the
algorithms using FF. FC-FF (or FC-CBJ-FF) performs the best!®,

The results of these empirical comparisons should not be taken too seriously, The
n-queens problem is not at ail representative of a general CSP? problem. The domain
size is uniformn. the constraint grapn is complete (completely connected hy non-trivial
constraints). and all the constraints are the same. Even worse the constraints beiween

variables get easier to satisfy as n grows as there are fewer pairs ruled out between

10This is not exactly true. The comparisons in [1. 2] also include the MEC algosithin bat we defer

commenting on their results until the next chapter.



variables[82. 108]. This fact allows local search algorithms (that is non-svstematic
hill elitbing search algorithms) to find a solution to the three million queen problem
in less than a minute[57. 105, 106}, Actually. finding one solution to the n-queens
problem is not really a problem as there are deterministic algorithms for constructing
one solution[6]. However. if one wants all solutions then the problem is still quite
challenging as a benchmark problem.

Other comparisons using specific problems can be found in [90] which uses a logic
puzzle called the Zebra problem {problem definition given in [21]). in [82] which uses
the confused n-queens problem. and in [77] which ases the subgraph isomorphism
problem. FC or a FC hybrid algorithm is found to be the best algorithm of those
tested given a static ordering (they do not investigate FC-FF).

The second tvpe of empirical comparison uses randomly generated problems in-
stead of speetfie problems in order to classifv the performance of CSP algorithins on
a range of differemt problems. CSP’s are modeled using 4 parameters (n.m. p;. p2)
where nis the number of variables. m is the domain size for each variable, p; is the
probability that a non-trivial constraint exists between two variables (called the con-
straint density). and p; is the probability. conditional on the existence of a non-trivial
constraint. that a pair of values between the two variables is inconsistent (called t
constraint tightness). These comparisons mayv use a shtly different parameterization
for these 4 parameters but there is no overall difference from the above parameteriz-
ation [92]. These comparisons can be broken into two categories. those before it was
discovered how to create “hard” randomly generated preblems(28. 29, 47. 61, 115),
and those afterward(1. 2. 30. 34. 33, 43. 49. 71, 93. 97. 109]. As hard problems are
explained in Chapter 3 we defer an explanation of what a ~“hard” problem is and the
deseriptions of empirical comparisons using hard problems (c¢f. Section 3.2.3).

Many comparisons in the first categorv use randomly generated problems that

were relatively easy to solve. are limited in the number of instances generated. and use

"Smith [103) points out that for problems such as n-queens. wi L completely connected constraint
graphs, the constraints must become casier to satisfv as the nutnber of variables increases in order

for the problem to retnain seiuble.
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relatively small problems. One of the carliest comparisons using randomily generated
problems is in Gaschnig{47]. Gaschnig creates random problems that are very similar
to the n-queens problem forn € {4.5..... 14} with the number of instances generated
ranging from 50 for n = 4 to 250 for n = 14. A total of 1.100 instances were
generated. Gaschnig compared the performance of BT. BM. BJ and DEEB. He found
that BM performed the best. Haralick and Elliot{61] also performed comparisons
with randomly generated problems that are similar to the n-queens problem for n €
{4.5..... 10} with 5 random instances being generated for cach value of n. Of the
algorithms they tested. including BT. BM., BC. FC. FC-FF. PL and FL they found
that FC is the best of the algorithms not using FF and FC-FF is the best overall.
We also compared our MFC algorithm and FC algorithm using randomly generated
problems in the first category[29, 28]. We performed two experiments. In the first
experiment we vary p; and py in {0.1.0.3.0.5.0.7.0.9.1.0}. m in {5.10.15,30}. and n
in {5.10}, generating 15 instances for each setting of the 4 parameters givin:, o total
of 4,320 random instances. In the second experiment p; and pp are allowed to vary
in {0.1.0.2..... 1.0}. m in {5.10.15.30}. and n in {5.10}, generating 15 instances
for cach setting of the 4 parameters giving a total of 12.000 random instances, A
more complete set of values for py and p; were used in the second experiment as more
computational resources were available for this experiment. The empirical results
from these preiiminary papers implied that MFC was a much better algorithm than

FC. However, we found that many of the problems generated were very easy to solve

except for a few exceptional cases which were extremely hard (by many orders of

magnitude) to solve. We believe our experience with random problems up to this
point was very similar to many other authors.

In general, unless some heuristic was used (for examples see {25, 115]) to generate
harder problems, niost randomly generated binary CSPs ereated with the above 4
parameters were not very satisfactory to compare search algorithims as most problesm

instances were easy to prove soluble or insoluble.

44



1.6  Summary

In this chapter we have given a formal definition of a binary ('SP and described in
detail a mamber of algorithms which are directly related to our work on MFC and
lazy constraint satisfaction algorithms. We have taken the approach of making the
algorithms as simple as possible to understand at the cost of making the algorithms
slightly less efficient (in terms of overhead. not constraint checks) than thev could be.
Many of the algorithms described in this chapter have been described in other papers
in detail which tends to obscure the basic ingredients of the algorithms. We have also
deseribed the past theoretical and empirical results that directly affect our thesis. In
the rest of the thesis we build on this foundation. We describe a promising new search
algorithm called Minimal Forward Checking which uses the idea that a CSP search
algorithm shouldn’t perform any extra arc consistency processing that it doesn’t need
to in order to move deeper in a search. We show that this idea is actually quite
robust, applying not only to FC but also to RFL leading to the concept of a lazy
CSP search algorithm. We also describe and investigate hard randerlyv generated
problems which are used as the basis of empirical comparisons in this thesis. We
show that the current model of randomly generating hard problems can actually be
generalized so that it applies to individual problems instead of a class of problems.
We show empirically that this generalization produces random problems that are on
average of similar hardness or harder than random problems generated with the old

method. Finally, we perform a large and extensive comparison using both the hard

random problems described by others and by ourself,
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Chapter 2

Minimal Forward Checking,

“We are to admit no more causes of natural things than such as are both
true and sufficient to explain their appearances. To this purpose the philo-
sophers say that Nature does nothing in vain, and more is in vain when
less will serve: for Nature is pleased with simplicity, and affects not the

pomp of superuous causes.”  Isaac Newton
2.1 Introduction

In the last chapter we described in detail a number of constraint satisfaction back-
tracking search algorithms, namely Generate and Test (GT), Backtracking (131),
Backmarking (BM), Forward Checking (FC), and BackChecking (BC). Of those algor-
ithms, FC is thought to be one of the best algorithms for solving C'SPs. FFC performs
a limited amount of lookahead during its search to deteet inconsistencies between the
current instantiation and the future variables thereby avoiding unnecessary search.
When FC instantiates a variable it filters all values inconsistent with the instantiation
from the future domains. If a future domain is completely pruned then the current
instantiation is an inconsistent choice and the filtered values are returned (undeleted)
to their respective domains. FC's efficiency is attributed to its ability of detecting
inconsistencies higher in the search tree with less are consisteney cheeking per node
than other more complicated are consistency algorithms such as Partial Lookahead
(PL). Full Lookahead (FL) and Really Full Lookahead (RFL, also known as MAC for
Maintaining Are Consistency)[61, 82].

In this chapter we describe a new constraint satisfaction backtracking algorithm.
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called Minimal Forward Checking (MFC) which is a “lazy™ version of the FC al-
gorithm. Originally. the discovery of the MFC algorithm{28. 29. 30} was motivated
by the observation that FC allows the instantiation of a variable only when there is at
least one value in every future domain that is past-consistent. FC not only finds one
consistent value in every future domain but continues to prune out all values in the
future domains inconsistent with the current instantiation. This extra pruning is unne-
cessary when a forward check fails, that is some future domain is completely pruned. a
phenomenon which obviously happens quite often. Many useless constraint checks are
performed while searching for a solution especially for problems with larger domain
sizes and for problems with a large number of variables. Useless constraint checks are
also performed for problems that have loose constraints, that is the constraints are
easy to satisfv. The MFC algorithm finds and maintains one consistent value in every
future domain. “suspending” forward checks until they are required by the search.
This lazy approach of performing FC avoids many constraint checks which need not
be performed because a future domain is completely pruned. Effectively, MFC mimics
the search of FC avoiding constraint checks until they are needed.

We begin this chapter. in Section 2.2, with another look at the FC algorithmn.
The relationship between FC and BM is made explicit and we discuss how the MFC
algorithm can be derived from this relationship. The MFC algorithm is then described
in Section 2.3 followed by an example execution of the algorithin in Section 2.4.
Seetion 2.5 gives a number of theoretical results. We then revisit the n-queens problem
giving a small empirical comparison of FC, MFC, FC-FF and MFC-FF. Section 2.7
discusses work related to the MFC algorithin. Finally, we describe in Section 2.8
what makes a CSP search algorithm lazy and discuss whether other lazy CSP search

algorithins exist.

2.2 The Relationship of FC to BM

The usual deseription of FC is that it is a forward looking search algorithm that deletes

all values inconsistent with the current instantiation before moving deeper into the
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function fc-label(ii)

i — refv;; 1
consistent « False 2
for each v! € d; while (not consistent) 3
if domain! > 0 then 14
consistent < True 5

v vl 6

for jj = ii + 1 to n while consistent 7
consistent « forward-check(ii,jj) 8

if not consistent then 9
domain} = —(ii — 1) 10
undo-reductions(ii) 11

Figure 2.1: Pseudo-code for the FC labeling function with explicit BAM.

search tree. This description hides two basic properties of the FC' algorithm for which
we gave two lemnmas in Chapter 1, namely Lemma 1.1 and Lemma 1.2, Lemnma 1.1
states that all future domain values are past-consistent and the order of constraint
checks performed on a future domain value is in the order of instantiation. Lemma 1.2
states that values remain deleted from domains until the algorithm backtracks and
uninstantiates the past variable that caused the deletion of the value, and that this
past variable is the shallowest variable whose instantiation is in conflict with the
value. FC maintains information about constraint checks for cach domain value in
the same way as BM. During the search, constraint checks that have been performed
(both successful and unsuccessful) between inture values and past instantistions are
not repeated. Figures 2.1 to 2.4 give a version of the FC algorithm that explicitly
remembers its past successful and unsuccessful checks using the domain! array in the
same way that BM uses it.

Differences between this new version of FC and the old version (Figure 111 to

Figure 1.14) are marked with an exclamation mark beside the line number.  One



function forward-check(ii,jj)

i + refy;
j « refyj;
for each v] € d; 3
if domain} > 0 then 4
if (vi.v}) € ¢ij then 5
domain} = —ii 6
else 17
domain; = i 8
if 3k domain| > 0 then 9
return(True) 10
else 11
return(False) 12

Figure 2.2: Pseudo-code for the forward-check function with explicit BM.

function undo-reductions(ii)

i « refv;; 1
fory=i+1ton 2
j - refv; 3
for each v} € d; 4

if abs(domain}) = ii then 15
domain} =i-1 16

Figure 2.3: Pscudo-code for the undo-reductions function with explicit BM.
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function fc-unlabel(ii)

i — refv;; 1
hh i — 1 2
h < refvpp 3
undo-reductions(hh) 4
domaint! ™« _(hh — 1) 5
if 3k domain}, > 0 16
then consistent « True 7
else consistent « False
return(hh) 9

Figure 2.4: Pseudo-code for the FC unlabeling function with explicit 13\,

minor difference to note is that the tests to see if a domain value is not deleted (that
is, domain] = 0) have been changed to a test to see if the value is past-consistent
(that is, domain! > 0). This difference does change the underlving algorithm. Other
minor changes have been made in forward-check (lines 7 8 are added) and in undo-
reductions (lines 5-6). In forward-check a successful past check is now recorded and in
undo-reductions both past successful and past unsuccessful checks are now forgotten
when a forward check is undone. Effectively these modifications do not change the
FC algorithin although they make explicit the information that FC (implicitly) keeps
about each domain value. That is, it keeps information in the same manner as BM.
FC not only has the information of BM but also information of the future domains.
At the time we developed the MFC algorithm we noted MECs velationship to BM
in terms of FC using the same data structure as BM but did not explore the issue
further[28. 29]. Kondrak and van Beek[67. 68] have shown that ['C visits a subset
(not necessarily pioper) of the nodes that BM visits (see Section 1.5.1). Bacehus and
Grove[2] have shown that BM with a forward looking “oracle™ that detects completely

pruned fature domains visits the same nodes as FC (¢f. Section 2.7).
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2.3 The Minimal Forward Checking Algorithm

The goal of MFC is to be a lazy version of FC which mimics FC’s search but avoids
unnecessary constraint checks, performing them only if they are needed. The FC
algorithin only moves forward (deeper in the search tree) when there is at least one
past-consistent value in cach future domain. It ensures that this is true by pruning out
all values inconsistent with the current instantiation, failing immediately if any future
domain becomes completely pruned. The MFC algorithm minimizes the number of
constraint checks performed by a forward check finding only the first value in each
future (ordered) domain that is past-consistent. In order to maintain its relationship
with FC it must remember all constraint checks with past variables in exactly the
same manner as FC and it must perform constraint checks only when FC would need
a value to be past-consistent. In order to remember all necessary constraint checks in
exactly the same way as FC it must use the domain! array as used in Section 1.3.3 for
BM. The MFC algorithm must also have a function which ensures that a value is past-
consistent (where constraint checks are done in the order variables are instantiated)
and a call to this finction must be placed in the algorithin in places where the FC
algorithin needs a value to be past-consistent in order to continue the search and
maintain the properties of the FC algorithm. We present in Figures 2.5-2.9 the MFC
algorithm which uses these two ingredients to perform a lazy forward checking search.

The MFC algorithm is very similar to the version of FC, shown in Figures 2.1-
2.4. which uses the domain! array as used by BM. Differences between the two sets
of figures for functions they have in common are marked with an exclamation mark
on the MFC algorithm (beside the line numbers). One major difference between the
two algorithins is the addition of a new function past-consistent. This function is the
one mentioned above which ensures that a value is past-consistent. We begin our
desceription of MFC by first explaining what the functions past-consistent and min-
forward-check do.

The past-consistent function takes as input a value v‘! in dj and the index of the

current instantiation i. If the domain value v}. has not been deleted (line 2), it checks



function mfc-label(ii)
i «— refv;;
consistent < False
for each v! € d; while (not consistent)
if past-consistent(v!,ii) then
consistent < True
Vi — V!
for jj = ii + 1 to n while consistent
consistent < min-forward-check(ii,jj)
if not consistent then
domain} = —(ii — 1)
min-undo-reductions(ii)

Figure 2.5: Pseudo-code for the MFC labeling function.

function past-consistent(v},ii)
ok < False
if domain > 0 then
ok « True
for kk = domain] + 1 to ii-1 while ok
k « refvy,
if (vi.v}) € ci; then
domain] = kk
else
domain] = —kk
ok « False
return{ok)

Figure 2.6: Pscudo-code for the past-consistent function.
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function min-forward-check(ii.jj)

i — refv,, 1
j « refvj; 2
found « alse 13
for each v} € d; while not found 14
if past-consistent(v, i) then 15

if (V;.V‘!) € Ci; then 6
domain; = —i} 7

else 8
domain; =i 9

found < True 110
return(Found) 11

Figure 2.7: Pseudo-code for the min-forward-check function.

function min-undo-reductions(ii)
i « refv;
forjj=i+1ton
J « refy;
for each v} € d;
if abs(domain;) = ii then
domain; = ii — 1

S N W N

Figure 2.8: Pscudo-code for the min-undo-reductions function.



function mfc-nnlabel(ii)
| refv;;
hh —ii -1
h « refvp,
min-undo-reductions(hh)
u-c.'lomain:""" « —(hh - 1)
if 3k domain} > 0
then consistent «— True
else consistent < False
return(hh)

O 0 ~N O N &S W N

Figure 2.9: Pseudo-code for the MFC unlabeling function.

the domain vitlue against every past instantiation that it has not already been checked
against (line 1) recording the result of the checks in domain}. This “past checking” s
performed in the order variables were instantiated. If the result of any past constraint
check is false no further checking is performed and the function returns False. If every
past check succeeds, the function returns True.

The min-forward-check function in Figure 2.7 is quite different from the forward-
check function in Figure 2.2. The purpose of the forward-check function is to delete all
values in a future domain that are inconsistent with the current instantiation, returning
True if a value remains, and False otherwise. The purpose of the min-forward-check
function is to find the first past-consistent value in a future domain, return True if i
finds one, and False otherwise. The min-forward-check function is passed the index to
the current instantiat.. 2 ii and the index to some future variable jj. It loops through the
future domain indexed by jj until it exhausts the domam or it finds a past-consistent
value (line 1-10). As it is looping through the future domain values, it first checks
each value to make sure that FC would be examining this value. It does this by calling
the past-consistent function in line 5. If the value is past-consistert a forward check s
performed (lines 5-10) otherwise the value is skipped. Notice that the funetion past-

consistent records the deepest instantiation which successfully checked against that
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value or the shallowest value which unsuccessfully checked against that value. That
is. past-consistent records the same information about successful and unsuccessful
constraint checks for the value as FC does. If the forward check is successful. found
is set to True. the loop exits and the function returns True. If all values in the future
domain have been examined and no value is past-consistent the function returns False.

We now look at the labeling function mfc-label. This function is quite similar to the
fc-label function in Figure 2.1. ThLe only major difference between the two (except for
calling min-forward-check instead of forward-check) is that mfc-label no longer assumes
that every value in the domain of the current instantiation is past-consistent (line
4). To see why this is necessary consider how MFC is avoiding constraint checks.
When the MFC algorithin is moving forward to instantiate a variable that isn’t being
revisited because of a backtrack, the first non-deleted value in every future domain is
past-consistent. The call to past-consistent in this case is just a test to see whether a
value has been deleted’. However, if the call to mfc-label is to relabel a variable which
has been backtracked to then there is no guarantee that any value in the domain is
past-¢ msistent (the first past-consistent value was used in the forward move). The
call to past-consistent must be performed at this point. Altogether there are only
two points where past-consistent must be called. in mfc-label and in min-forward-check.
The function min-undo-reductions in Figure 2.8 which undoes the effect of a minimal
forward check is exactly the same as the function undo-reductions for FC shown in

0

Figure 2.3. The function mfc-uniabel in Figure 2.9 is exactly the same as the function

fc-unlabel for FC' shown in Figure 2.4.

2.4 A Sample Execution of the MFC Algorithm

In order for the reader to compare the e - . n of MFC to the previously described
algorithms we continue to use the same example graph colouring problem as before:
Consider a graph colouring problem where vou are given 4 nodes that are adjacent to

cach other and are told that the first node can only be coloured red. the second node

'This call can easily be avoided if one is willing to maintain an array which points to the first

non-deleted value in every future domain.

(41}
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with green or orange. the third node with blus or green, and the fourth node with
green. blue or red. Does this problem have a solution in which all adjacent nodes
are coloured differentlyv? To represent this as a CSP, we first define four variables,

{v1.v2.v3.vq} which represent the four nodes. The domains of the four variables are

dy = {r}.d; = {g.0}.d3 = {b.g}.ds == {g.b.r}

where we just use the first letter of each colour to represent the domain elements.
Finally we define a set of constraints which enforcee the general constraint that adjacent

nodes (variables) cannot be assigned the same colour.

€12 = {(r.g)(r.0)}

3 = {(r.-b)(r.g)}
¢14 = {(r.-g)(r.b)}
c23 = {(g.b)(e.b)(o.g)}
c24 = {(g.b)(g.r)(o.g)(0.b)(0.r)}

c34 = {(b.g)(b.r)(g.b)(g.r)}

Constraints are svmmetric so for example ¢, = {(g.r)(o0.r)}.

Figure 2.10 outlines the search performed by MEFC on this graph colouring problem.
As before. domain values are shown with lists | instantiated variables with which
they have been checked. Some variables in the lists have superseripts (/) and ()
denoting respectively successful and unsuceessful constraint checks performed in the
current scarch step. If the variable in the list has no superseript then it represents a
past successful check. If a domain value has not been checked. no list is shown. In
step 1. vy is assigned the value red and a mivimal forward chieck is performed. “Fhe
first consistent value in cach future domain is found (in this case the first value
- ach of the domains). In step 2. vy is assigned the value green and another minimal
forward check is perforined. The value blue in domain d; is consistent with v, but the

value green in domain dg 1= inconsistent. Min-forward-check searches through dg (by
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Figure 2.10: Sample execution of MFC.



performing previously avoided forward checks) searching for a past-consistent value
(in this case blue) doing the constraint checks in the instantiation order.  As there
are still consistent values in each future dotnain. the search moves forward and v;
is assigned the value blue. However. a minimal forward check shows that no vilue
in domain dg is consistent. The value blue is inconsistent with vy and the value red
is inconsistent with vi. The search backtracks to vy and attempts to find another
consistent value but the performance of previously avoided forward checks for the
value green shows it to be inconsistent with v; (step 1), Also in this step notice that
domain value blue is undeleted in domain dq as it is no longer inconsistent with v
(and domain value red remains deleted as it is inconsistent with the instantiation of
vi). In step 5. the value orange in domain d; is found to be past-consistent with vy, In
steps 6 and 7 the search moves forward as MEFC finds the first value consistent in cach
future domain. Step 8 shows the solution to the CSP fouxd by MEFC. MEFC performed

15 constraint checks compared to the 18 that FC performs on the same problem.

2.5 Theoretical Results

Many CSP search algorithms have been presented in the past without a formal proof
of correctness. Recently. Kondrak and van Beek[67, 68] have given a methodology
for proving CSP search algorithms sound and complete (¢f. Section 1.5.1). A CSP
search algorithm is sonnd if all solutions claimed by the algorithin really are solutions
(that is. the set of assignments satisfies all the constraints). A CSP search algorithm
‘s complete if it is able 1o find all possible solutions. Kondrak and van Beek's meth-
odology rests on the charactcrization of the neeessary and sufficient conditions (calle
the characterizing conditions) for a search tree node to be visited by a partienlar
scarch algorithm. From the proofs that the scarch algorithm under question satisfies
those necessary and sufficient conditions one can show the correctness (soundness and
completeness) of the algorithm, One can also use the characterizing conditions to
give partial orders of the algorithms according to the numnber of nodes visited. and

give partial orders of the aigorithims according to the namber of constraint checks



performed. The following proofs assume that the order of instantiation is fixed.
Before proving the sonndness and completeness of MEFC we first clarify when MFC
visits a node. In the following proofs we first need a lemma that shows that MFC
does not extend a branch in the search tree for a value in the current domain that
is not past-consistent (that is. MFC does not visit a node for a value that is not

past-consistent).

Lemma 2.1 MFC will not visit a node {vy <= vi'. vy ¢~ v, . ... vk — V' } if the value

v is mconsistent with the assegnnent of any past variable {vy. . ... Vk-1}-

Proof of Lemma 2.1 In Figure 2.5, before attempting an instantiation of a non-
deleted value (lines 3 1), mfc-label calls the function past-consistent (Figure 2.6). past-
consistent checks the value vi* against cach past variable that it has not already been

checked against in the order of instantiation. If the value vi*

is inconsistent with anyv
past variable it is marked as deleted because of that instantiation and the node is not
visited (lines 4 6. mfc-label) as the value returned by past-consistent is False (lines

8 10). O

As in the case for FC[67, 68]. MFC has only one characterizing condition for a search

tree node to be visited, namely.,
A node is consistent and s parent is consistent with all variables.

This condition states that the set of assigniments associated with the node must be a
partial sohution and that the set of assignments for the nodes” parent must be consistent
with at least one value in evervy future (with respect to the parent) domain. We now
prove the sufficient and necessary conditions for MFC. These proofs are based on

Al
a

similar proofs given for FC' in [67] with appropriate modifications marle for MFC

Theorem 2.1 MEFC vistts « node if it is consistent and its parent is consistent with

all vartables.

Proof of Theorem 2.1 Assume that the node {vy « vPvg « V¥, v & v}

is consisient with all variables and that its child p = {v; & v'.va « vZ. .. .. Vi  V;



is consistent but not visited by MFC. We derive a contradiction. First, tind the
deepest node in the search tree p' = {vy « vi'.vo « V¥ L. Vi« v‘s'}. )~ 1
which is visited by MEFC but its child {v; « vi'.va « V3., v, & v:’.v,,l . vjs‘,"'
is not visited by MFC. (At least {v; < vi'} is visited by MFC). Node p’ is consistent
with all variables as {v; <« vi'.vp « V3. .. v, ¢ v]s‘} is along the path of {v; «

vitovp = v vi1 « vi '} Therefore when MEC visits p’ it does not delete all
values from any future domain. A branch is therefore extended for variable v, for each
past-consistent value in its filtered domain. As {vy - vi'ova < v om0 v ) s
consistent its subtuple {vy; < vi'.vy « V2. ... Vj v]s’. Vi1 e v:',’,'} I8 atlso consistent
and therefore the partially filtered domain of v;,; must still contain v;"*','. Therefore

S S . . . . . e e
{vi —vi'vp VP vj & Vv v s visited whicl is a contradiction, 1]

Theorem 2.2 MFC msuts a node only of ot 1s consestent and ds parent s consistent

with all variables.

Proof cof Theorem 2.2 We first prove the first conjunct. Assume that MEFC visits
anode p = {v; «— vi'. vy « v¥.. ... vi < v} and that p is inconsistent. Then there

exists a pair of values in p which are inconsistent®. Find the node p' = {vy ¢ v’ v, ¢

V2., vk <= vi¥} such that v « vi* is the shallowest assignment inconsistent with
. . S . v
an assignment v « V' in {w «— v i v e v ki L We

have three nmtually exclusive sitnations. (i) When MEFC visits node {vy ¢ v’ vy <
V.. .ov - vt b the value vy s deleted from the current domain of vy and is not
undeleted until the instantiation of vy is changed. (ii) When MEFC visits one of the
nodes {vi ¢ vi'.vp « vF... .. vi = vi'hok < j 71 1 ahe value v s deleted
from the current domain of v and is not undeleted antil the instantiation of v is
changed. Or (iii) when MFC tries to label v, the value v is deleted from the ensent
domain of v; anrd is not undeleted until the instantiation of v is changed. Therefore
{vi —viovp v vi = v} and its descendant p are not visited by MEFC

To prove the second conjunet, assume that MEC visits a node p {vy ¢ v} v, «

vy v; & vi'} although its parent is inconsistent with some future variable  Find

*Kondrak{67] mistakenly assumes that v, & v¥ is inconsistent with sote past vagiable
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S$: . . . . .
the deepest node {v; « vit.vy « v .. vi — vi'} j €i—2 which is consistent
with all variables. If no such node exists then the instantiation of vy < v§* must have
deleted all values ont of a future domain and MFC never visits p. Otherwise. the child
s [y S 41 e viet b A - A TN ‘s, '
pr= vy ¢ Vitivp e VR Vi1 < vy | is visited by MEFC. When MFC is at p’ it
must delete ont one of the future domains and this branch is abandoned. Therefore

no descendant of p' is visited by MFC which is a contradiction. O
The following two theorems are proven with similar proofs in [67].

Theorem 2.3 FC visits a node if w0 is consistent and its purent is consistent with all

variables, (Kondrak and van Beek[67])

Theorem 2.4 FC visits a node only of it s consistent and its parent is consistent

unth all varables. (Kondrak and van Beek[67])

We can now show the correctness of the MFC algorithm.

Theorem 2.5 The MFC algorithm is sound.

Proof of Theorem 2.5 A solution is claimed by MFC when it visits the node {v; «

vi'.vp « v . v « v} Theorem 2.2 guarantees that the node is consistent. O
Theorem 2.6 The MFC algorithm is complete.

Proof of Theorem 2.6 Assume that there isanodep = {v; - vi'.vy « v2.. ... Vo —
vir} which is consistent. Then its parent {vy < vi'.vy < v2.....vo_1 < v }is also
consistent and the parent is conusistent with v,. Therefore the parent is consistent with
all variables. Theorem 2.1 guarantees that MFC will visit the node. As p is a node

with all n variables assigned it will be claimed as a solution by MFC. O
We can now state a few theorems on the relationship between FC and MFC.

Theorem 2.7 The FC algorithn and the MFC algorithm visit the same nodes in the

same order.



Proof of Theorem 2.7 That they visit the same nodes is a direet consequence of
Theorems 2.1 2.4, They visit nodes in the same order as both algorithms are per-

forming backtracking tree search. O

Theorem 2.8 The worst case performance of MFC i termns of the number of con-

straint checks performed is the number of constramt cheeks performed by FC.

Proof of Theorem 2.8 From Theorem 2.7 we know that both algorithms visit the
same nodes in the same order. We also know from the deseription of the algorithm
(Section 2.3) that MFC ren. 'mbers past consisteney checks in order to avoid redundant
constraint checks. Therefore MFC performs no more constraint checks than FC. In
order to show the worst case results we need to show that the MFC algorithm cither
performs the same number of constraint checks as FC or fewer constraint checks.
We do so by two simple examples.  First, assume we are given a CSI* with two
ariables where each domain has only one value. Whether or not the two variables are
consistent when assigned those values, the FC and MFC algorithm perform the same
number of constraint checks. Therefore MEC and FC can perform the same nnber
of constraint checks. We now show that MFC can perform fewer constraint checks
than FC. Assume that we are again given a CSP with two variables vp and v,. The
first domain is dy = {a} and the second domain is dy = {b.c}. Assume the constraint
12 allows {v; ¢- a.vy « b}. MFC will perform only one constraint cheek while 1FC

will perform 2. Therefore MFC' can perform better than FC. U

These proofs rely on a fixed instantiation ordering. We conjecture that the soundness
and completeness results hold for both MFC and FC under a dvnamic variable order-
ing. We also conjecture that Theorem 2.8 holds for dvnamic variable orderings that
depend on the (sub)structure of the constraint graph. A proof of these results are loft
as future work. What is easily provable is that the MEFC algorithm can perform worse
in terms of the number of constraint checks than the FC algorithm if they are using

the FF heuristic.

Theorem 2.9 MFC-FF can perform worse than FC-FF e terins of the nwnber of

constraint checks performed.
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Proof of Theorem 2.9 We prove this theorem by a simple example. Assume that

we are given the following CSP. There are four variables {v;.v,.v3. v¢} with domains
d] = {a}.dz = {bC}d3 = {d}d4 = {E}

and the constraints are

12 = {(a.b)}
13 = {(a.d)}
cis = {(a.e}}
C23 = {(b.d)(c.d)}
c24 = {(c.e)}
c3q = {{d.e)} .

A search by FC-FF is outlined in Figure 2.11 and a search by MFC-FF is outlined in
Figure 2.12. In Figure 2.11, after instantiating vy, FC-FF picks d; as the next variable
(in lexical order) to instantiate as it has the smallest domain £+ After instantiating
vy, FC-FF finds that there i« no consistent value left in dg and the search terminates
with no solution found. A total of 6 constraint checks performed. In Figure 2.12,
after instantiating v; . MFC-FF picks d3 as the next variable to instantiate as it has
the smallest known domain size. After instantiating v MFC-FF finds that the first
undeleted values in d; and dg are past-consistent and it then picks vg to instantiate.
Only then does it find that there is no consistent value in d; and the search terminates.

MFEC-FF performs 7 constraint checks.. O

Finally, we note where MFC belongs in Nadel's relative ordering of CSP algorithins
by approximate amount of are cousistency performed (¢f. Section 1.4.1}. MFC can
perform in the worst case the same amount of are consistency performed by FC. MFC
performs more are consistency processing than BM as it prunes the future domains.
Therefore the the proper place in Nadel's relative ur:jloring for MFC is between BM

and FC.
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Figure 2.11: The execution of FC-FF on a problem for the proof of ‘Theorem 2.9
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Figure 2.12: The execution of MFC-FF on a problem for the proof of ‘Theorem 2.9
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2.6 The n-queens Problem Revisited

We now continue our previous empirical comparison (¢f Section 1.5.2) using, the
n-gqueens problem. We run the FC and MFC algorithms on the n-queens problem
for n € {4..29} and for the MFC-FF algorithmn we use n « {4..32}. \s before. for
each algorithm we count the mupher of constraint checks performed in finding, the
first solution. A comparison of FC. MFC and MEFC-FF is displaved in Figure 2.13.
As expected by theory MEFC is better than FC at every point. On average MPC
performs only 75% of the constraint checks that FC performs. However, we could
only run MFC-FF for n € {4..32} as it began to perform badiy. Figure 2.1 1 contrasts
the performance of MFC-FF with that of FC-FF. Clearly FC-FF is much better than
MFC-FF. The FF heuristic obviously interacts badly with MEFCS lack of knowledge
of the true domain size of the future domains (at least for the n-queens problem). The
n-queens problem is the one well known problem we found that shows just how poorly

MFC-FF can perform. In Chapter 1 we discuss improvements to MFC-FI.
2.7 Related Work

The MFC algorithm has been rediscovered since our original papers|28, 29, 30]. Bac-
chus and Grove[l] rediscovered MFC by extending BM with a forward looking “oracle”
that detects completely pruned future domains. They prove that BM with such an
oracle explores exactly the same nodes as FC and MFC. The algorithm they deserilwe
is equivalent to MFC. However, they do use a more simplified data structure than we
described in [30). Our data structure uses O(nm?) space while Bacchus and Grove's
use the domain! data structure which uses O(nm) space. Although this reduction in
space seems to be an improvement it is actually a tradeoff of time for space. Our
data structure has information indicating exactly which future values to remine past
constraint checks from (while uninstantiating a variable) while Bacehus and Grove's,
data structure does not have that information and the algorithin has to search all the
future domains in order to remove past constraint checks. In this thesis we nse Bae-

chus and Grove's data structure as it greatly simplifies the presemation of the M€
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algorithin. Many minor implementation details can be ignored.

Kwan and Tsang{71] have created a version of MFC with the addition of a small
improvement that we had left for future work in [30]. The small improvement is the
addition of Prosser’s “*BM" to FC[93] which in turn can be added to MFC. An example
of Prosser’s BM savings for F'C or MFC is the following. If a value. v!. for the curvent
variable v; causes some future domain dj to become empty, instead of recording that
vi is inconsistent with instantiation i — 1, record it as inconsistent with the decpest
instantiation that can change d; (that is. the deepest variable whose uninstantiation
could undelete a value in d;). This would ensure that FC or MEFC never instantiates
vi to v! as long as v! would empty the future-connected domain d;. In this thesis, we
do not explore the addition of this improvement to MEFC.

Finally. Zweben{121] loosely describes a “lazy™ version of FC in the context of a
scheduling system. Zweben describes the necessity of finding only one past-consistent
value in each future (in their case possibly infinite) domain. However, they do not give
a concrete description of their algorithm and the data they prosent for the a-queens
problem leads us to believe that they did not implement the MEFC algorithim.  The
MFC algorithm’s performance is much better on the n-queens instances they report
constraint checks for. From their results we infer that the algorithm they deseribe

does not have the backmarking component to avoid repeated cheeks,
2.8 Are There Other Lazy CSP Search Algorithins?
“Look. I came here for an argument.”

“No vou didn't!”  The argument sketch, Monty Python.

In this section we discuss whether it is possible that there are other CSI? search
algorithms that can be made lazy in the same way that MEFC is lazy. The MEFC ai-
gorithm is minimal in the sense that it performs the fewest constraint checks necessary
in order to satisfv the requirement of FC that there be at least one past-consistent
value in every future domain. The MFC algorithmn is a lazy CSP search algorithin as

it is minimal and it mimics FC's search preserving the results of all constraint checks



s0 that no redundant checks are performed. Are there other lazy CSP search algor-
ithins where one can minimally preserve the are consisteney property that the original
algorithm establishes while preserving the knowledge of the work that has been done
in case more are consistency processing is needed at a later stage in the search” Im-
mediate candidates for possible lazy algorithms are PL. FL and RFL. These three
algorithms all establish some degree of are consistency in the future domains before
allowing the search to move ahead. As the PL and FL algorithms do not really estao-
lish any nice theoretical property in the future domains (and any argument based on
RFL will also apply to them) we focus only on whether or not a lazy RFL algorithm
CeXists.

We begin by giving the following definition of a sub-CSP.

Definition 2,1 For a given binary CSP as in Definition 1.1. V = {v,..... Vo}. a
set of finite discrete domains D = {d,..... dn} and a set of symmetric constraints
C = {c;|1 < i< j< n}. asub-CSP is the above CSP. with the following changes. The
set of variables V remains the same. the domains are now D' = {d}.....d!} where
cach domain d! is allowed to be any subset of d;. and the set of symmetric constraints

C' = {d;|1 <i<j< n} are now limited to those values in D',

During a backtracking search., the set of future domains can be seen as a CSP (which
we will call the future CSP). The FC algorithin at every instantiation step ensures that
every value in the future CSP is consistent with the current instantiation. The MFC
algorithm however finds a partitioning of the future CSP into two mutually exclusive
sub-CSPs 2t ~very stantiation step. In one sub-CSP. every value is past-consistent,
and in the other the values are in some intermediate state of past consistency. To
the FC algorithin only the first sub-CSP matters to establish the property of finding
one past-consistent value ahead in every future domain. The necessary ingredients
to creating the MFC algorithm is finding out which sub-CSP must be found at every
instantiation step and creating a data structure that can remember the partial inform-
ation the search will have of coustraint checks being performed on the future domains.

The RFL algorithm establishes full are - onsistency in the future domains at every
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step. The full arc consistency algorithm is quite expensive to use every time a value
is instantiated (¢f Section 1.4) although some preliminary cesults show that RFL
(MAC) can be very effective on large problems with sparse graphs[97]. It appears
that it may be possible to create a lazy version of RFL. The necessary sub-CSP that
must be found is one in which every value is fully are consistent. This sub-CSI® will
not necessarily have to consist of the entire future CSP, For example. if the CSP only
consists of two variables where the first variable has one domain value and the second
variable has two and the value in the first domain is consistent with the tirst vadue in
the second domain. then a lazy RFL would only have to establish full are consistency
between the first values in ecach domain. They wmtually support each other.  The
other value in the second domain can be ignored until the scarch actually needs it
We envisage a lazy RFL would begin by attempting to tind supporting values for every
first value in each future domain. That is the initiai sub-CSP wonld consist of the
first value of every future domain. The algorithin to ereate the appropriate sub-C'SP?
would .oop over the values in the sub-CSP ensaring that each value has a support
that is also in the sub-CSP. f no such support is found in a particular domain then a
new value must be brought in from the the rest of the future CSP which is a support.
If no supporting value is found then the algorithm can safely delete the value at that
level in the search tree. The algorithm would finish when every value in the sub-C'SP?
is supported by a value that is in the sub-CSP.

After investigating the MFC algorithm we left the design. implementation and
empirical evaluation of a lazy RFL as future work. Receatly, Gaspin et all 18] have
developed a lazy RFL which they call LAC; (which has made the point of this s.ction
moot). The authors follow our idea of a lazy CSP search algorithm to develo, theis
algorithm which is very similar to the way we envisage a lazy RFL. Carrently they
use LAC; as a preprocessing algorithin to tell if any domain would be completely
pruned by full arc consisteney preprocessing. However, from the deseription they give
of their algorithm it is obvious that it can immediately be put into the comtext of a

backtracking search to be a lazy RFL.
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2.9 Summary

In this chapter we have motivated the development of the MFC algorithm and given
a formal description of the algorithm. We have also shown that the MEFC algorithm
is sound and complete, and that its worst case performance in terms of the number
of constraint checks performed is the number of constraint checks performed by the
FC algorithm. We have also shown that MFC-FF can be expected to occasionally
perform worsie than FC-FF. We have also discussed the existence of other fazy 'SP
search algorithms. In the next chapter we discuss what “hard”™ randomly generated
problems are and present an empirical comparison of MFC. MFC-FF, FC, FC-FF,

BM. and BT on these random problems.
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Chapter 3

An Empirical Comparison on Hard Randomly Generated Problems

“The fundamental principal of science. the definition almost, is this: the

sole test of the validity of any idea is experiment” - Richard P. Feynman

3.1 Introduction

As theoretical results on the average case complexity for CSP search algorithms are ex-
tremely difficult to derive, empirical studies need to be performed in order to compare
the general performance of CSP search algorithms|25, 82] (¢f. section 1.5). Previous
empirical studies using specific problems, such as the n-queens problem or the zebra
problem, are not convincing as the results are only representative for one problem.
In order to alleviate this problem researchers have focused on comparisons of search
algorithms using randomly generated problems. Unfortunately, past comparisons us-
ing randomly generated problems are unconvincing as the problems generated are
usually easv to solve (that is, easy to determine their solubility or insolubility) and
are therefore unable to differentiate between the different algorithms in a convincing
manner. Only recently, through the discovery that NP-complete problems exhibit a
phase transition phenomenon in which problems in the phase transition peak are on
average hardest to solve, has it been understood how to create randomly generated
problems that are hard to solve. These hard randomly generated problems are now
used to compare CSP search algorithms for two reasons. The first is that because
they are much harder on average to solve they will bring out significant performance
differences between search algorithms. That is, poorly designed search algorithms

will perform worse for these problems. The second reason is that these hard randomly



generated problems are more structured than other randomly generated problems in
the sense that they have long chains of partial solutions within them and structure
is a characteristic of real problems. We begin this chapter with a description of the
phase transition exhibited by NP-complete problems and more specifically the phase
transition exhibited by CSPs. This is followed by a large empirical comparison. using
hard randomly generated CSPs. of many of the algorithins introduced so far in this

thesis.

3.2 Hard Constraint Satisfaction Problems

It is common in statistical mechanics to model the properties of complex svstesus by a
few “order” parameters which summarize the properties of the svstem|13, 45). Recent
empirical and theoretical work [13, 17, 18, 19. 31, 35. 50. 52, 51. 63. 79, 91, 94, 102,
104, 103, 118, 119, 120] has studied the propertics of NP-complete problems using this
approach. The major result of these studies is that NP-complete problems appear to
have a phase transition which occurs as one of the order parameters is varied causing
problems to go from being soluble to being insoluble. The highest average cost (the
phase transition peak) for solving these problems oceurs where 50% of the problems
are soluble [17, 18, 79}'. For finite discrete problems, the phase transition occurs over
a range of values of the order parameter. In the limit, as the size of the problem
grows large, the phase transition becomes an instantaneous transition from soluble to
insoluble problems. We follow the popular convention that problems in the transition
peak are called “hard problems’?.

One possible use of the phase transition is to exploit the knowledge of its existence
to avoid exponential behavior by algorithims attempting to solve a problem. If one

could accurately predict for a particular problem that it lay near the location of

"This is also known as the crossover point.

?The term “hard problems” is used as it is conjectured that on average many of the problems
in the phase transition peak are relatively hard to solve by any CSP search algorithis. There are
problems that are in the phase transition peak which are relatively easy to solve but they are in the
minority.
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the phase transition peak, it may then be reasonable to modify or reformulate the
problem so that it would lie away from the phase transition peak. Such predictors
of the location of the phase transition peak have been found. The most famous
example is the ratio of clauses to variables for randomly generated 3-SAT problems
being approximately 4.2{79]. The use of the phase transition phenomenon that is of
interest here is the use of a predictor for the location of phase transitions in binary
CSPs to randomly generate problems that are near the phase transition peak. We
call these randomly gencrated binary C'SPs that are near the phase transition peak
“hard random problems’. These hard random problems can be used as a testbed to
differentiate the capabilities of CSP search algorithms.

Recent studies by Smith[102], Smith & Dyer[103], and Prosser[91, 94}, have looked
at the phase transition phenomenon exhibited by binary CSPs. They model binary
CSP’s using the 4-tuple {n, m. p;. p2) where n is the number of variables, m is the domain
size for all variables, p; is the probability that a non-trivial constraint exists between
two variables (called the constraint density), and p; is the probability, conditional on
the existence of a non-trivial constraint, that a pair of values between two variables
is inconsistent (called the constraint tighiness). To observe whether CSPs exhibit
a phase transition they perform a series of experiments where they fix three of the
parameters, namely n, m, and p;, and vary the fourth parameter p; in small increments.
The parameter p, partially determines how constrained a problem is and therefore
seems to be a natural order parameter to vary?. For each setting of p,, a large number
of randomly generated CSPs were created and either the FC-FF or the FC-CBJ-FF
algorithms were run on each problem instance counting the number of constraint
checks performned as the measure of the complexity of the problem. We display a
graph in Figure 3.1 which shows the result of a similar experiment. To create the
graph in Figure 3.1 we first randomly generate 50 binary CSPs for each setting of

n =10, m = 6, and py = 0.5 varying p; in increments of 0.01 from 0.01 and 0.99 (cf.

*One could also try to observe phase transitions by varying p;. An example of such a phase
transition occurs for graph colouring problems which exhibit a phase transition at a particular
degree of graph connectivity([13, 63).
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Section 3.3 for a detailed explanation of how random problems are created). On each
problem generated we run the FC algorithm counting the number of constraint checks
performed. Along the x-axis of Figure 3.1 are the values of p, and along the y-axis
on the left are the geometric mean number of constraint checks performed for each
set of 50 problems (ef. the discussion in Section 3.2.1 for an explanation of why the
geometric mean is used). The v-axis on the right represents the percentage of soluble
problems in each set of 50 problems.

As expected, the graph in Figure 3.1 shows a rapid transition in the average
cost of solving a binary CSP. The shape of the phase transition appears to begin
at approximately p; = 0.45 and finishes at approximately 0.7 peaking between 0.52
and 0.54. The percentage solubility graph drops rapidly from all problems soluble to
all problems insoluble starting at p, = 0.45 and finishing at 0.6. The 50% point of
solubility occurs nearest to the points 0.52 to 0.54 (actually the closest we get to a
50% point is 58% for the 3 data points and then it suddenly drops to 26%). The points
where the hardest problems on average are observed coincide with the approximate
location of the 50% point of solubility. Smith calls the range of p, values over which
the solubility graph drops from at least 99%. soluble to less than 1% soluble the mushy
region to emphasize that the phase transition occurs over a range of values of p; for
these finite problems. The mushy region overlaps to a great extent the set of values
of p2 for which the phase transition is observed.

It would seem that a reasonable way of creating a predictor of the phase transition
peak is to use the fact that the crossover point co-occurs with the peak. However,
it is not casy to formulate such a predictor. In {102, 103], Smith observes that the
phase transition peak for binary CSPs also appears to co-occur very near the point
where the number of solutions to a problem is one. Intuitively, this seems reasonable
as problems which have no solution are over-constrained and conversely, problems
with more than one solution are under-constrained. Problems with just one solution

are the intuitive “break even point”4. For random problems parameterized with the

10f course intuition doesn’t always match reality. There are problems, for example graph col-

ouring. which have many solutions when they have one solution. Smith’s intuition is valid only for
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above 4-tuple. Haralick and Elliot{61]. give an expected number of solutions formula

for binary CSPs parameterized using the 4-tuple given above:
v-gn»l\
E(Soln) = m"(1 —py)" =z ™ (3.1)

where the expected number of solutions is the number of possible instantiations in a
CSP multiplied by the probability of satisfving all the constraints. Smith conjectures
that Equation 3.2

-2
Pacrt = 1 — min=Der (3.2)

which is derived from Equation 3.1 by setting E(Soln) = 1 can be used to predict the
location of a phase transition peak for binary CSPs®. Smith uses the notation pa.,, to
emphasize that this is a predictor of the “critical point™, that is. the crossover point.

Looking again at Figure 3.1, the value of pay for the values of n, m, and p; used
to generate graph is 0.55 which is a reasonably good predictor of the 50% point of sol-
ubility (a little towards the insoluble side) and is within the mushy region. Smith{102],
Smith & Dver{103], and Prosser[91, 94] show empirically that pa,, is a reasonably
good predictor of the location of a phase transition peak for randomly generated binary
CSPs, especially as n grows. The predictor gives an over-estimation of the location of
the phase transition peak, that is towards the right (insoluble) side. The one exception
for Smith’s predictor is for sparse graphs, that is, those CSPs with small values of py.
Smith & Dyer[103] show that each individual constraint graph (given domain sizes
for each variable) has its own location of the phase transition peak. The location of
the phase transition peak is highly variable for constraint graphs which are sparse.
Smith & Dyer argue that the local graph topology needs to be incorporated into any
predictor of the location of the phase transition peak for these problems. The local
graph topology is defined to be the degree distribution of the constraint graph, that

is, the degree of each individual node (variable) in the constraint graph.

problems which don’t have this “feature”.

5As mentioned, graph colouring problems are a type of problem for which Smith’s predict or i
inappropriate as typicilly when a graph colouring problem is soluble, it has many solutions wnich
are simple permutaticns of the colours.



The model that Smith[102], Smith & Dyer[103!, and Prosser[91, 94] use to para-
meterize binary CSPs assumes that every domain has the same size and that every
constraint has the same tightness. After [102, 91] were published, we decided to
investigate a generalization of this model which allows for some variation in each con-
straint’s tightness. Any generalization of Smith’s model is useful as the new model
will then be closer to a “real” CSP. The results of our investigation are in Chapter 5.
It turns out that a predictor of a phase transition for the new model of binary CSPs
includes local graph topology and better predicts the location of the phase transition
peak. We believe that our new model provides the foundation for a new model that
allows varying domain sizes but we leave that as future work.

Smith, Smith & Dyer, and Prosser do not show that the predictor .. predicts
the location of phase transition peaks for “real” problems. It is conjectured that if a
real problem can be modeled using the given parameterization then Smith’s predictor
will predict the location of the phase transition peak. We also do not investigate the
appropriateness of Smith’s predictor or the predictor of our new model. Such a task

is left for future work.

3.2.1 Statistical Measurements of the Average

There is some question as to which statisticai measurement is most appropriate to
calculate an “average” number of constraint checks performed to solve a sample of
hard random problems. Problems in the phase t.ansition peak do not appear to
be drawn from a normal distribution[70]®. Figure 3.2 shows the same graph as in
Figure 3.1 together with similar plots using the average, the median, and the minimum
(min). The maximum values, being about an order of magnitude higher, are shown in
Figure 3.3. The phase transition phenomenon appears to happen for all the statistical
measurements used. The average gives a taller phase transition peak than the median
and the geometric mean. The geometric mean appears to be similar to the median
in many cases, occasionally being a little higher (to the right of the phase transitions

peak). In past studies using hard random problems the median or average has been

®This may be a symptom of not being able to take an adequately large sample size.
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formed solving each problem by the BT, FC. and MFC
algorithms in the set of 50 problems randomly generated
from (10,6, 0.5) as p; is varied from 0.01 to 0.99 in incre-
ments of 0.01.

used(1, 2, 30, 34, 33, 43, 49, 71, 91, 93, 94, 97, 102, 103, 109]. However, we have found
through experience that the geometric mean’ appears to give the fairest measurement
of how hard a sev of problems really is “on average”. The average gives too much
weight to outliers and the median completely ignores themn. The geometric mean
appears to be a fair comproinise between the two and is what we use predominantly
throughout this thesis. (We do give the other measurements for comparison in tables).
Recent work by Kwan[70}] assumes that the distribution of problems in the transition
peak is not normal and begins an investigation of the use of non-parametric statistical

techniques.

"The geometric mean &g of a set of positive numbers {x;,x2...., %} i8 (37 .. e
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3.2.2 Using Different Algorithms to Map the Phase Transition

Finally, we look at how the shape of the phase transition changes when using the
BT, FC, and MFC algorithms. Figure 3.4 displays a comparison of BT, FC, and
MFC over the random problems generated for the previous figures. Although it is
conjectured that the phase transition phenomenon is independent of the algorithm
used[l(ﬁ], there is a clear difference in the performance of each algorithm. The MFC
algorithm is clearly superior to FC, and the two forward looking algorithms, MFC and
FC, perform about 5 times better than BT on the hardest problems. Interestingly, BT
as well as MFC performs better than FC on the easiest problems to solve, that is, on
the problems with the loosest constraints. For these problems the non-lazv forward
checking of FC is wasted as the probability of finding future inconsistencies is low.
MFC looks forwar(;‘.only enough to know that there are consistent values ahead and
therefore its performance is quite similar to that of BT on these easy problems.

In this thesis we investigate the performance of the search algorithms on hard
random problems cnly. We do not have the computational resources necessary to
investigate the performance of MFC ac ss all constraint tightnesses on a wide enough
range of problems. Tsaug et al[109] have begun a mapping project in which they are
attempting to find which algorithm/heuristic combination performs best for different
classes of random CSPs. Their eventual goal is to have a map which can be used to
select an appropriate algorithm and heuristic given a real problem’s structure. This
idea can be extended further to using different algorithms after every instantiation as
the future domains are effectively a new CSP to solve.

Although we have used hard random problems as ou: westbed to compare algor-
ithms in this thesis, we make no claim that these results can be carried over to all
types of real problems. Real problems that arise in practice may not fit the para-
meterization used. That is all domain sizes equal, randomly generated edges, and
randomly generated constraints. However, our comparisons do show that there are
clear differences between the algorithms in their ability to solve relatively hard CSP

problems over a wide range of problems.
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3.2.3 Previous Comparisons Using Hard Random CSPs

Recently, a number of empirical comparisons{1, 2, 30, 34, 33, 43, 49, 71, 93. 97, 109]
have been performed on CSP search algorithms usiag hard random problems. We
briefly describe only those that are directly related to this thesis.

Bacchus and Van Run|2, 115} compare 12 algorithms, including a number of hybrid
algorithms using BJ or CBJ, with and without FF (24 combinations in total) on a
sample of 500 hard problems (a total of 5 settings for n, m and p; with 100 samples
drawn from each setting). Their results show that FC-CBJ-FF is the best algorithm.
However, when they published [2], they had also tested MFC-FF with a heuristic®
similar to the one we describe® in Chapter 4 and found it to be the best algorithm
of the 24 tested. Although no results were given in [2] they state that MFC-FF with
their heuristic is better than all 24 algorithms.

Sabin and Freuder{97] have compared MAC (RFL) and FC-FF using a small
sample of hard random problems consisting of only 20 problems at 4 settings of n,
m and p;. Their results suggest that MAC-FF may be better than FC-FF for some
classes of problems, notably CSPs with sparse graphs and a large number of variables
(n = 50 in their case).

Finally, we have reported some preliminary results of this thesis in [30, 34, 33].

3.3 An Empirical Comparison

To begin our comparison we first produce a large testbed of 50 hard random problems
for each possible setting of n € {10, 15,20,25}, m € {3,6,9}, p; € {0.2,0.25,...,1.0}
and p; calculated according to Equation 3.2 giviug a total of 10, 200 problems. These
particular settings are chosen to give as wide a range of problems as possible. We are
interested in the performance of the search algorithms over all graph densities and
as n and m increase. Larger values of n, m and the sample size (50) are not feasible

given our limited computational resources.

8The INC-FF heuristic discussed in Chapter 4.
*The EXP-FF heuristic discussed in Chapter 4.



One way to create random CSPs treats p; and p; as probabilities (similar to
Paliner’s Model A for constructing random graphs{86]). However. we treat p and g2
as percentages for two reasons'®. The first is that we want our results to be able to
prediet how a search algorithm will perform on a specific problem instance which has
an observable number of edges and number of inconsistent pairs in its constraints.
The second reason is that phase transition peaks are more well defined (that is. taller)
when p; and py are treated as percentages. Using Palmer’s Model B[86] we construct
a constraint graph by randomizing an enumeration of all possible edges and taking
the first pin{(n — 3)/2 as edges. Unconnected graphs are rejected as the disconnected
subgraphs can br solved separately and are therefore not representative of a problem
with n variables.

Given the underlving constraint graph. we generate a random CSP as follows. For
cach edge in the random graph a non-trivial constraint is produced oy randomizing
the crossproduct of the domains and taking the first pp.;m? as unacceptable pairs.

To perform a comparison we run each algorithm on each problem instance counting
the number of constraint checks performed. (c¢f. Section 1.2 for a discussion why
constraint checks are used.) All algorithms begin their search with the first variable
in the ordering given by the CSP definition. That is, we do not use any preliminary
re-ordering of the variables. Domains are ordered to prevent any possible bias caused
by different domain orderings. And, the order of the future variables are memorized
and reset at every instantiation/uninstantiation in order to prevent bias from the

algorithin’s method of choosing the smallest domain ahead!!.

3.3.1 A Comparison of BT, BM, FC, and MFC

Initially, we attempted to perforin a comparison of BT, BM, FC. MFC. FC-FF and
MFC-FF on the whole testbed. However, the runs of BT and BM were stopped part

1°Smith{102), Smith & Dyer[103] and Prosser[91, 94] also treat py and p2 as percentages.

"This methodology is significant only for the algorithms that include CBJ. As we use the same
random problems to test algorithms that include CBJ in Chapter 4 we mention this point here and
will explain further in the next chapter.
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BETTER | BT | BM | FC | MFC
THAN

BT 00 | 12 | 01

0.4) | (0.1) | (0.4)

BN | 996 201 | 5.2

04) | (0.8)

FC 988|705 0.0

(0.0)

MFC | 995 | 93.9 | 100.0 -

Table 3.1: Percentage of times one algorithm performs better than
another by number of constraint checks. for problems with
n€ {10.15}, m € {3.6.9}, p1 € {0.2.0.25... .. 1.0}. Per-
centage of times that the algorithms perform the same
number of constraint checks are in brackets. (5,100 prob-

lems).

way through the random problems with n = 20 and m = 6 as it became infeasible to
continue. This subsection gives an initial comparison of BT, BM, FC, and MFC on
the random problems in n € {10.15}.m € {3.6.9}.p, € {0.2,0.25,. .., 1.0} with the
primary focus being on BT and BM. We compare FC, MFC, FC-FF and MFC-FF
on the whole testbed in Section 3.3.2. Due to the cost of runming the BT and BM
aigorithm they are not used in any further comparisons.

We begin the comparison by displaying in Table 3.1 the percentage of times one
algorithm was better than another in terms of constraint checks over the 5,100 random
problems generated. The numbers in brackets indicate the percentage of problems for
which both algorithms performed the same number of constraint checks. The results
in Table 3.1 indicate that the ordering of algorithins from best to worst is MFC > FC
> BM > BT with BT performing much worse than the other algorithms. The BM
algorithm performs better or the same as BT on all problems as expected by theory,

however it performs better than FC in only 29.1% of the cases and better than MFC



Alg Ave | Std Dev | Med | Geo Mean Max Min | % BT
BT | 252919 | 1270013 | 10622 13375 42609438 | 24 | 100.0
BM | 26302 | 83684 | 2364 3051 1844898 | 15 | 228
FC | 12058 | 30077 | 1760 2124 422693 15 | 159
MFC | 8833 20105 | 1317 1574 286738 12 | 118

Table 3.2: Average, standard deviation, median, geometric mean,
maximum and minimum number of constraint checks per-
formed by the BT, BM, FC, and MFC algorithms for
problems with n € {10.15}, m € {3.6.9} and p; €
{0.2.0.25....,1.0}. (5.100 problems).

in only 5.2% of the cases. FC performns much better than BT and BM, and MFC
performs better than FC on 100% of the problems (as expected given Theorem 2.8).

We next examine the data in a number of ways in order to find how much better one
algorithm is than another and to see if the performance of the algorithms is consistent
over different graph densities. We begin by displaying in Table 3.2 an overall picture
of the “average” number of constraint checks performed. Table 3.2 gives the average
(Ave) with standard deviation (Std Dev), the median (Med) and the geometric mean
(Geo ilean). The maximum {Max) and minimum (Min) number of constraint checks
for each problem are also displayed. In the last column is the percentage of the number
of BT's geometric mean number of constraint checks each algorithm performed. Again
the same ordering is observed between the algorithms across all averages as well as by
the standard deviation, the maximum and the minimum. The FC algorithm performs
much better than BM which performs much better than BT. The MFC algorithm is
the best performer with only 11.8% of the number of constraint checks of BT and only
74.1% of the number of constraint checks of FC.

We next look at how the algorithms perform over the values of p;. Figure 3.5 shows
a comparison of BT, BM, FC, and MFC by geometric mean numnber of constraint

checks varied by p; for problems with n = 15, m = 3 and p; € {0.2.0.25..... 1.0}.
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Figure 3.5: Comparison of BT, BM, FC, and MFC by geometric
mean number of constraint checks varied by p; for proh-
lems with n =15, m =3 and p; € {0.2.0.25,...,1.0}.

Figure 3.6 shows a similar comparison except that m = 9.  Figures 3.5 and 3.6
show the same ordering for the algorithms across all the values of p;. There is a
significant difference in performance between BM and BT which grows as m increases,
Interestingly, BM appears to perforin nearly as well as FC for small values of m with
denser constraint graphs {(p, > 0.75). However, looking at Figure 3.6 we see that the
relative performance of BM degrades as m grows larger. We can also see that MFC
performs better than all the other algorithms and it appears that it performs uniformly
better than FC for all values of p; with the relative performance difference growing as
m increases.

Finally. we look at the raw data itself to compare the algorithms. We display scatter
plots for BT versus BM in Figure 3.7 and for BM versus FC in Figure 3.8.  We do

not compare MFC with FC here, leaving that comparison for Section 3.3.2. Figure 3.7
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shows that BM is clearly superior to BT. B\ performs fewer constraint checks than
BT evervwhere (as expected) and BM becomes increasingly better as the difficulty of
the problem increases (that is, moving to the top right of the graph). Figure 3.8 shows
that FC is better than BM for most of the problems. From Table 3.1 we know that
BM performs better than FC for 29.1% of the problems. However, Figure 3.5 shows
that most of those problems are solved by both BM and FC with feweyr than 10,000
constraint checks and that the performance of BM on those problems is close to that
of FC. What is interesting to note is that there appears to be many problems for
which FC performs much better than BM (lower right corner of Figure 3.8). On these
problems the forward looking property of FC is critical to avoiding poor performance.
We can also conclude from Figure 3.8 that we were not able to run BM on the whole
testbed because of the existence of these problems which are really hard for BM.

In this subsection we have compared BT, BM, FC, and MI'C along inany different
dimensions. By far the worst algorithm in the comparison is BT. We find that BM
is clearly superior to BT and in some relatively easy cases can be better than FC.
However, BM can perform very badly on many problems as it does not have the ability
to look ahead and avoid future inconsistencies. FC is c¢learly a superior algorithm
performing better or nearly the same as BM on many problems. Finally, we have
found that MFC performs uniformly better than FC (performing approximately 74%
of the constraint checks performed by FC) across all values of py and it appears that
it performs much better than FC as m increases. The ordering of algorithmns from
best to worst, according to the empirical results in this subsection, is MFC > FC >
BM > BT. We save a detailed comparison of FC and MFC until the next subsection
where the experiments are performed over the whole testhed.

For the record, a total of 20,400 problems are used in the comparisons reported.
The total CPU time used for these comparisons on a Sun Sparc 10 and a Sun Sparc 5
is 381,137 CPU-seconds. A total of 1.535. 166, 189 constraint checks were performed.

We have implemented all programs in this thesis in CMU-Lisp.
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BETTER | FC | MFC | FC-FF | MFC-FF
THAN
FC 00 | 25 12
00) | 05 | (0.0)
MFC | 100.0 75 39 |
©1) | (05)
FC-FF | 97.0 | 924 2228
(0.2)
MFC-FF | 988 | 956 | 57.0

Table 3.3: Percentage of times one algorithin performs better than
another by number of constraint checks, for prob-
lems with n € {10.15.20.25}, m € {3.6.9}, p, €
{0.2,0.25,...,1.0}. Percentage of times that the algor-
ithins perforin the same number of constraint checks are
in brackets. (10.200 problems).

3.3.2 A Comparison of FC, MFC. FC-FF, and MFC-FF

In the last section we compared BT, BM, FC and MFC on problems in n € {10. 15},
me€ {3.6.9}, and p; € {0.2,0.25...., 1.0}. In this section we compare FC, MFC. FC-
FF. and MFC-FF on a wider range of problems, namely those with n € {10, 15. 20, 25},
m € {3.6.9}. and p; € {0.2,0.25,....1.0}. The BT and BM algorithms are no longer
inclided in our comparison due to their inefficiency.

We begin our comparison by displayving in Table 3.3 the percentage of times one
algorithm is better than arother in terms of the number of constraint checks over
the 10.200 random problems. The numbers in brackets indicate the percentage of
problems for which both algorithis performed the same number of constraint checks.
The results in Table 3.3 indicate that the ordering of algorithms from best to worst
is MFC-FF > FC-FF > MFC > FC. Of the algorithms not using FF, MFC performs
better than FC for all of the problems in the testbed (as expected by theory). Of the



Alg Ave | Std Dev | Med | Geo Mean Max Min | % FC
FC 710168 | 2637242 | 8626 13539 58051198 | 15 | 100.0
MFC | 433021 | 1603276 | 6170 9483 35677917 ; 12 | 70.0
FC-FF | 33450 | 109181 | 1872 2538 1254426 | 15 | 18.7
MFC-FF | 35608 | 117645 | 1768 2439 1334088 | 12 | 18.0

Table 3.4: Average, standard deviation, median, geometric mean,
maximum and minimum number of constraint checks per-
formed by the FC. MFC, FC-FF, and MFC-FF algor-
ithms for problems with n € {10.15.20.25}, m € {3.6.9}
and p; € {0.2.0.25..... 1.0}. (10,200 problems).

algorithms using FF, MFC-FF is slightly better than FC-FF but the result is not as
conclusive.

We next examine the data in a number of ways to determine how much better one
algorithm is than another and to see if the performance of the algorithms is consistent
over different graph densities. We begin by displaying in Table 3.4 an overall picture
of the “average” number of constraint checks performed. Table 3.4 shows that MFC
performs roughly 70% of the number of constraint checks that FC performs. By the
geometric mean and median number of constraint checks the same ordering as above
is again observed. However, by the average and its standard deviation, and by the
maximum number of constraint checks, FC-FF is better than MFC-FF. In Chapter 2,
Theorem 2.9 indicates that the MFC-FF algorithm may occasionally perform worse
than FC-FF as it does not know the true domain size of the future domains. In [30]
a smaller comparison of MFC-FF and FC-FF using a different set of hard random
problems found that MFC-FF could occasionally do much worse than FC-FF. Similar
findings are reported in [1, 71].

We next look at how the algorithms perform over the values of py tested. Fig-
ures 3.9 to 3.12 show comparisons of FC and MFC by geometric mean nutaber of

constraint checks varied by p; for problems with n = 10, n = 15, n = 20, amd n = 25
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Figure 3.9: Comparison of FC and MFC by geometric mean number
of constraint checks varied by p; for problems with n =
10, m € {3,6.9} and p, € {0.2,0.25....,1.0}.

with m € {3.6,9}. It is evident that MFC performs uniformly better than FC over all
values of p; and it appears that the separation between the graphs is growing larger
as n increases and as m increases.

Next, we compare FC-FF and MFC-FF over the values of p; tested. Figures 3.13
to 3.16 show comparisons of FC-FF and MFC-FF by geometric mean number of
constraint checks varied by py for problems with n = 10, n = 15, n = 20, n = 25 with
m € {3.6,9}. For the smallest value of n, MFC-FF appears to be better than FC-FF.
However, for n > 15 the perforinance of FC-FF and MFC-FF are very close with
FC-FF becoming clightly better than MFC-FF for n = 25, m = 9. The closeness of
the graphs may indicate that MFC-FF is fairly consistent in making poor instantiation

choices across all values of p; especially for larger values of n and m.

We next look at the raw data itself to compare the algorithms. We display scatter
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Figure 3.17: The number of constraint checks performed by FC versus
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plots for FC versus MFC in Figure 3.17, for FC-FF versus MFC-FF in Figure 3.18,
for FC versus FC-FF in Figure 3.19, and for MFC versus MFC-FF in Figure 3.20.

Figure 3.17 shows that MFC’s performance relative to FC becomes increasingly
better as the difficulty of the problem increases. In Figure 3.18 it appears, roughly,
that FC-FF and MFC-FF perform worse than the other on about half of the problems.
However. on the hardest problems at the top right of the graph, MFC-FF performs
worse than FC-FF. Figures 3.19 and 3.20 are quite similar. The FF versions of the
algorithins are much better especially for the harder problems. However, the relative
difference between FC and FC-FF appears to be greater than the relative difference
between MFC and MFC-FF.

Finally, we investigate the trend in relative performance for MFC, FC-FF and
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MFC 821 | 766 | 730 { 789 | 706 | 669 | 764 | 670 | 629 | 739 | 644 | 60.3
FC
FF
MFC
FF

637 | 459 | 382 | 403 | 236 | 184 [ 225 | 115 | 86 | 131 | 55 4.0

67.1 | 416 | 341 | 376 (229 | 179 | 225 | 118 | 88 | 136 | 6.0 43

Table 3.5: Percentage of FC’s constraint checks performed by MFC,
FC-FF and MFC-FF broken down by n and m.

MFC-FF as n and m increase. Table 3.5 displays the percentage of FC’s constraint
checks performed by the algorithms broken down by n and m. Table 3.5 verifies our
previous observation. MFC performs increasingly fewer constraint checks relative to
FC as n increases and as m increases. FC-FF and MFC-FF both become increas-
ingly better than FC as n increases and as m increases. However, although MFC-FF
performs betier on the problems with small n and m, its relative performance edge
lessens as n and m increase.

In this subsection we have compared FC, MFC, FC-FF, MFC-FF on a wide range
of problems and along many different dimensions. Of the two algerithms not using
FF, FC is the worst algorithm. MFC is clearly much better than FC over all problems
tested. It is uniformly better than FC over all constraint tightnesses and its perform-
ance is better as n and m increase. At its worst MFC performs 82.1% of the average
number of constraint checks performed by FC and at its best it performs only 60.3%.
Of the two algorithms using FF the result is not as clear. FC-FF performs better than
MFC-FF on 42.8% of the problems while MFC-FF performs better than FC-FF on
57.0% of the problems. It appears that although MFC-FF is better on more problems
than FC-FF, its relative performance worsens as n and m increase. Overall, the best
algorithm for these hard random problems is either MFC-FF or FC-FF followed by
MFC and then FC.

For tire record, a total of 40,800 random problems were generated for this section.

The total CPU time used for the runs of the algorithms in these comparisons is
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2,998. 689 CPU-seconds. A total of 12. 364.971. 972 constraint checks were performed.

3.4 Summary

In this chapter we have introduced the phase transition phenomenon in NP-complete
problems focusing on CSPs and Smith’s model of hard binary CSPs. We have used
Smith’s model to generate a large testbed of hard random problems on which to
compare many of the algorithms discussed so far in this thesis. We have shown
that the BT and BM algorithms are inefficient and that FC is clearly a superior
algorithm. We have also shown that the MFC algorithm is clearly superior to the FC
algorithm. For problems for which the FF heuristic is inappropriate MFC is clearly
the best algorithm described so far in this thesis. Finally, we have shown that although
the MFC-FF algorithm's performance can be better than FC-FF it suffers from its
inability to pick the future variable which has the fewest values consistent with the

current instantiation. In the next chapter we address this problemn.
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Chapter 4

Improvements to Minimal Forward Checking

A great deal of empirical evidence[2, 34, 33, 49, 61, 94, 115] including that in Chapter 3
indicates that FC’s performance on some problems can be greatly improved with the
addition of the FF heuristic which picks the future variable with the smallest pruned
domain size as the next variable to be instantiated. As the performance of FC is
greatly improved by this heuristic for some problems it is important that MFC show a
similar improvement with FF. Unfortunately, MFC’s laziness can defeat the perform-
ance improvements provide by the FF heuristic. Intuitively, the FF heuristic improves
performance by dynamically rearranging the search tree so that lower branching factor
nodes (smaller domains) are shallower in the search tree and higher branching factor
nodes (larger domains) are deeper in the search tree. Since all variations of the BT
algorithm prune subtrees when an inconsistent instantiation is found, if the larger
domains are deeper in the search tree, then more of the search tree is pruned by an
inconsistent instantiation than if the smaller domains are deeper in the search tree.
The FF heuristic is particularly appropriate for FC as FC deletes values from the
future domains that are inconsistent with the current instantiation thereby changing
the bushiness of the part of the search tree that it inay visit. The FF heuristic dy-
namically minimizes the bushiness of the tree by bringing the variable with the fewest
past-consistent values to the “top”. MFC does not know the true domain size of the
future variables and therefor has a different view of the “part of the search tree that
it may visit". FC sees only the part of the search tree that is past-consistent while
MFC sees that part plus the part that has not yet been pruned because of MFC’s

laziness. The FF heuristic with MFC then minimizes bushiness over this larger part



of the search tree, that is, the FF heuristic can be effective but not as effective as
FF with FC. The FF heuristic may be misled by MFC into bringing a variable which
has a larger pruned domain size than the variable with the smallest true domain size
(which it doesn’t know but FC does know) to the “top”. This can cause MFC-FF to
search a larger part of the search tree than FC-FF searrhes and cause MFC-FF to
have relatively poorer performance. The poorer relative performance of MFC com-
pared to FC starts to appear as n increases (the search tree gets deeper) and is most
striking for the hardest problem in our testbed.

In this chapter we explore two extensions to the MFC algorithm that help to over-
come this conflict between FF and MFC's lazy forward checking. The first extension
is a new heuristic, called EXtra Pruning with Fail First (EXP-FF), which, by forcing
the evaluation of some constraint checks avoided by the laziness of MFC, identifies a
future-connected variable which has the smallest pruned domain size. The addition
of this new heuristic to MFC (MFC-EXP-FF) helps MFC make a better instantiation
choice. That is, MFC-EXP-FF will take a greater advantage of the FF heuristic’s abil-
ity to minimize the expected branch depth than MFC-FF will. The second extension is
the addition of non-chronological backtracking, namely Conflict-directed BackJuinp-
ing (CBJ)[90] to MFC (which is an interesting extension regardless of wheth:er FF is
used). The MFC-CBJ algorithm performs much better than MFC as cach backjump
saves substantially more constraint checks than a similar backjump by the FC-CB.J
algorithm. The addition of CBJ to MFC-FF (MFC-CBJ-FF) is also beneficial (but
not as beneficial as the addition of CBJ to MFC).

In Section 4.1 we describe two heuristics, the EXP-FF heuristic mentioned eartlier
and a second heuristic, which we denote by INC-FF (for INCretnental MFC with Fail
First) developed independertly by Bacchus and Grove{l]. Both heuristics have been
designed to help MFC make a better instantiation choice by identifying a variable
that has in some sense (explained below) the smallest current domain size. We then
describe the addition of CBJ to the MFC algorithm and outline a number of theoretical
and conjectured relationships between different hybrid combinations of MFC and FC
with CBJ and FF, EXP-FF, and INC-FF. Finally, we give a comprehensive empirical
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comparison in Section 4.2 of MFC and FC with CBJ, and FF, EXP-FF and INC-FF.
The results of this chapter have been published in [33, 34].

4.1 Improvements to the MFC algorithm

In Section 4.1.1 we describe the EXP-FF heuristic and Bacchus and Grove’s INC-FF
heuristic[1]. In Section .1.2 we describe the addition of CBJ to MFC. Finally in

Section 4.1.3 we outline a number of theoretical relationships between different hybrid
combinations of MFC and FC with CBJ and FF, EXP-FF, and INC-FF.

4.1.1 The EXP-FF and INC-FF Heuristics

The FF heuristic as defined in [61, p. 266] is: pick the variable that has the fewest
remaining values in its domain as the next variable to instantiate. A stronger version
of the FF heuristic which is also defined in [61, p. 302] is: pick the variable that has
the fewest remaining consistent values in its domain. This stronger heuristic causes
no difficuity when used with FC as all values inconsistent with the past instantiati:
have already been removed. However, the MFC algorithm must use the weaker form
of the FF heuristic as it does not know the true domain size of the future domains.
The EXP-FF and INC-FF heuristics are designed to help a search algorithm pick a
variable that has in some sense the fewest past-consistent values in it.

Figure 4.1 and Figure 4.2 give pseudo-code for the EXP-FF and INC-FF beuristics,
respectively. The pseudo-code for both heuristics assumes that {v;....,v;_;} are the
past variables, {Vi;1....,va} are the future variables and v; is the current variable
which has just been successfully instantiated by the search algorithm and that the
search algorithm now wants to select a future variable for instantiation.

The EXP-FF heuristic given in Figure 4.1 uses the notation ||dj|| to mean the
pruned domain size of d;. The EXP-FF heuristic first sets each element in the array
size-d; to be the pruned domain size of each future variable v; (i + 1 < j < n) (lines
1-2). 1t then sets a “pruning factor” k to be the smallest pruned domain size of the
future variables (line 3). The variable that has the domain with this smallest size is
the variable that would be picked by the FF heuristic if it was used at this point.
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forj=i+1ton
size-d; « ||d;|
k « min(size-d;) i+1<j<n)
forj=i+1ton
if ¢;; is non-trivial then
Find k values in d; consistent with each element of {v,,.... v;} if possible
if the number of consistent values found < k then
k « the number of consistent values found
size-d; «— k
return(j for the smallest size-d;) (i+1 < j < n)

Figure 4.1: Pseudo-code for the EXP-FF heuristic.

k0
while (True)
ke—k+1
forj=i+1ton
Find k values in d; consistent with each element of {v,....,v;} if possible
if the number of consistent values found < k then return(j)

Figure 4.2: Pseudo-code for the INC-FF heuristic.
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The heuristic then loops through each future-connected variable v; (lines 4-9) trving to
find k past-consistent (past-consistent including the successfully instantiated current
variable) values in d;. If there are less than k past-consistent values in some v; (that
is, this is the smallest domain the heuristic currently knows of) the pruning factor is
reset to the new smaller size. Whether or not the variable has the smallest known
size, the number of past-consistent values that are found in that variable’s domain is
recorded in the array size-d;. After the loop through the future domains, the heuristic
returns the variable that has the “smallest domain™! that it knows of in line 10.

The EXP-FF heuristic attempts to identify a future variable (with special emphasis
on the future-connected variables) that would have a reasonably sinall past-consistent
pruned domain size. It uses the knowledge that the search algorithm has of the pruned
size of the future domains to set its initial pruning factor and it attempts to find a
future-connected variable that has a smaller past-consisteni pruned domain size. The
EXP-FF heuristic does does n.  always fis- 1 the future variable with the fewest past-
consistent values (as it only examines the future-connected domains). However, it
does try to pick the variable, with the smallest domain that is closely associated to
the variable just instantiated.

The INC-FF heuristic given in Figure 4.2 can be seen as an inciemental version of
MEC. It first attempts to find one past-consistent (inctuding the instantiated current
variable) element in each future domain (lines 2-7). This is MFC without the record-
ing. If one of the future domains has no past-consistent values in it, the corresponding
variable is returned (which is correct behavior as the search algorithm will then try to
instantiate thai variable, find no consistent values in it and immediately backtrack).
If there is one past-consistent value in each future domain then the heuristic looks
for two and so on. The while loop beginning on line 2 is guaranteed to terminate as

the domeains are finite. The heuristic immediately returns with the variable for which

"The EXP-FF heuristic can be seen as a black box that just returns the variable that has the
fewest past-consistent values that it knows of but doesn't actually do any pruring. Of course, using
the heuristic this way would be illogical and a Lt of a cheat (since the constraint checks would not
count). The algorithins using EXP-FF and INC-FF do tally the extra constraint checks performed
and do record the results of those extra constraint checks in the domain] array.
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it cannot find the number of past-consistent values that it is looking for. The INC-
FF heuristic identifies the first future variable (in the order that the future variables
are in) that has the smallest pruned domain size[l]. That is, the INC-FF heuristic
identifies the future variable that FF will pick with FC (given that FF picks the first
variable which has the domain with the smallest pruned domain size rather than pick-
ing randomly when many variables have domains with the smallest pruned domain
size).

Bacchus and Grove's INC-FF heuristic allows MFC-FF to follow the same dynamie
instantiation order as FC-FF thereby receiving all the benefits of the FF heuristic and
assures less cost in terms of number of constraint checks performed than FC-FF. The
principle underlying our design of the EXP-FF heuristic is to maintain as much of
FF's benefits as possible but to expend as few constraint checks as possible in order
to identify an appropriate variable to instantiate. The EXP-FF heuristic attempts to
maintain FF’'s property of bringing together highly related variables by looking only
at the domains of variables that have been pruned by the instantiation of the current
variable. As mentioned earlier. Bacchus and Grove(l] independently developed the

INC-FF heuristic at the same time as we developed the EXP-FF heuristic?,

4.1.2 Conflict-Directed Backjumping

A weakness in chronological backtracking algorithms is that they backtrack to the pre-
viously instantiated variable even if it is not the “cause of failure”. Non-chronological
backtracking algorithms, also called intelligent backtracking algorithms, identify past
variables whose instantiations may be the reason that a scarch cannot go deeper (at the
time a backtrack is about to occur). The non-chronological backtracking algoritinn
moves back to the deepest such variable (reason) uninstantiating the intermediate
variables and the variable which is the deepest possible reason®.  Prosser[90] has

introduced a form of non-chronological backtracking, called Conflict-Directed Back-

?Personal communication.
3 A form of non-chronological backtracking which does not uninstantiate the intertnediate variables
is called dynamic backtracking(3, 4, 53).

113



Jumping (CBJ), which allows backtracking search to jump back to a variable that
may be the cause of failure. CBJ is a stronger version of the BJ algorithm mentioned
in Section 1.3 as it allows the search to jump back (over tnore than one intermediate
variable) multiple times when the variables jumped back to have no past-consistent
values loft in their domains. In this case, the BJ algorithm can onlyv jump back once,
say to vy, at which point it finds no past-consistent value in d,, and then backtracks
to the variable instantiated previous to v,. CBJ maintains a conflict set (conf-set;)
for every variable v; which records the index of the past instantiations that deleted a
value from the variables’ domain. Each conflict set is initially set to {0}. Every time a
constraint check fails between a value in d; and the instantiation of some past variable
vy the index of the instantiation is added to the conflict set of v;. Wheu there are
no more values to be tried for the current variable v;, CBJ backtracks to the deepest
instantiation in the search tree v, whose index is in the conflict set of v;. That is it
jumps back to the deepest variable in the search which caused a conflict. This is the
deepest variable whose uninstantiation can “undelete” a value in d;. As the search
backtracks, the conflict set of v, is set to the union of the conflict set of v; and the
conflict set of vy, (removing the reference to v,) so that no information about conflicts
is lost. Soundness and completeness results for CBJ can be found in [67).

To add CBJ to FC, another set (past-fc;) is included which records the indices of
the past instantiations which have deleted a value from d; by a forward check. This
set can be calculated from the domain! array. The conflict set conf-set; in FC-CBJ is
updated in only three places. The first place is when a forward check fails, that is, the
instantiation of the current variable v; completely prunes a future domain d;. Then,
the conflict set conf-set; is updated to the union of conf-set; and past-fc;. In Figure 4.3,
the labeling function for mfc-label (from Figure 2.5) is updated with one extra line
(line 13) which updates the conflict set for this case. At line 13, FC and MFC have
exactly the same information abouv which past variables deleted values from d; as they
both completely prune the future domain. The second and third place that conf-set;
is updated is in backtracking. To backtrack. the deepest instantiation, say vy, which

is in the union of conf-set; and past-fc; is chosen. The conflict conf-sety, is updated to
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function mfc-cbj-label(ii)

i « refv; 1
consistent < False 2
for each v! € d; while (not consistent) 3
if past-consistent(v!,ii) then 14
consistent < True 5

v — v 6

for jj = ii + 1 to n while consistent 7
consistent « min-forward-check(ii,jj) 8

if not consistent then 9
domain! = —(ii — 1) 10
min-undo-reductions(ii) 11

j  refv? 12

conf-set; « union(conf-set;,past-fc,-) 13

Figure 4.3: Pseudo-code for the MFC-CBJ labeling function.

the union of conf-sety. conf-set;, and past-fc, minus the index of the iustantiation of
vh. A backtrack is then performed by undoing all constraint checks performed for the
instantiations indexed by hh + 1 to ii updating the conflict set for each intermediate
variable to {0}. Figure 4.4, updates the mfc-unlabel function (from Figure 2.9) with
extra lines (lines 2 — 8) to update the conflict set and to jump back. A complete
description of the CBJ and FC-CBJ algorithms can be found in [67, 90]. Soundness
and completeness results can be found in [67)].

In Section 4.2 we empirically compare on our testbed eight hybrid algorithms
that combine FC and MFC with CBJ and FF, or EXP-FF, or INC-FF, namely, FC-
CBJ, MFC-CBJ, FC-CBJ-FF, MFC-CBIJ-FF, MFC-EXP-FF, MFC-CBJ-EXP-FF,
MFC-INC-FF. and MFC-CBJ-INC-FF. We also include the comparisons reported in
Section 3.3.2 for FC, MFC, FC-FF and MFC-FF.
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function mfc-cbj-unlabel(ii)
i « refv;
hh + max(conf-set;, past-fc,)
h « refv,,
conf-set, « union(conf-set, conf-set; past-fc;) - hh
for jj = ii downto hh + 1
min-undo-reductions(jj)
j « refy;;
conf-set; «— {0}
domam:""" « —(hh - 1)
if 3k domain} > 0
then consistent «— True

O 0O ~N O 0 b W N =

g
N - O

else consistent < False
return(hh)

[
w

Figure 4.4: Pscudo-code for the MFC-CB.J unlabeling function.

MFC-CBJ MFC-CBJ-INC-FF
MFC FC-CBJ FC-CBJ-FF MFC-INC-FF

/

Figure 4.5: The theoretical (left) and conjectured (right) constraint

FC

(hc-ck relationship between some of the algorithms.



4.1.3 Theoretical and Conjectured Relationships

The theoretical and conjectured constraint check relationships between the algorithms
we investigate in this chapter are displaved in Figure 14.5. The ares connecting the
algorithms represent the relationship that the algorithim above performs the same or
fewer constraint checks than the one below. Some of the relationships have been
demonstrated in previous papers. The theoretical relationship between FC-CBUI aud
FC in [68]. and between FC and MFC in [30. 1] and in this thesis, and the conjectured
relationship between FC-FF and MFC-INC-FF in [1].

We first look at the algorithms that do not use FF. As in Chapter 2, the follow-
ing theorems rely on a lixed instantiation order. We informally prove the following
theorems. We do not usc Kondrak and Van Beek’s method of proving the following

theorems leaving such detailed proofs as future work.

Theorem 4.1 The FC-CBJ algorithm and the MFC-CB.J algorithin visit the same

nodes in the same order.

Proof of Theorem 4.1 The FC-CBJ algorithin uses the information regarding the
deepest past variables that deleted a value out of a future domain that was completely
pruned as the basis of jumping back to a past variable. From Theorem 2.7 we know
that the FC and MFC algorithms visit the same nodes in the same order which means
that MFC completely prunes a future domain whenever FC would completely prune
a future domain. Therefore both algorithms when using CBJ would have the same
information for backjumping needed by CBJ and therefore FC-CRBJ and MFC-CH3.

visit the same nodes in the same order. O

Theorem 4.2 The worst case performance of MFC-CBJ in terms of the number of

constraint checks performed is the number of constraint checks performed by FOC-CB.J.
Proof of Theorem 4.2 A direct consequence of Theorems 2.8 and 1.1,

Theorem 4.3 The MFC-CBJ algorithin wvisits a (not necessarily proper) subset of
the nodes visited by MFC.
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Proof of Theorem 4.3 The only change in the order of MFC's search caused by
CBJ is the algorithm can now jump back to previously visited nodes at which point it
acts as MFC until the next backjump. Therefore MFC-CBJ visits a {not necessarily

proper) subset of the nodes visited by MFC. O

Theorem 4.4 The worst case performance of MFC-CBJ in terins of the number of

constraint checks performed is the number of constraint checks performed by MFC.
Proof of Theorem 4.4 Direct consequence of Theorem 4.3.

The conjectured relationships between the algorithms with FF are more interesting.
It is important to define exactly how the FF heuristic is implemented in order to arrive
at the relationships shown in Figure 4.5. In this thesis we assume that the instantiation
indirection array refy;; is used. The indices of the array refer to the instantiation level
while the value of the array is the instantiated variable. The FF heuristic by its
nature causes some reordering of the instantiation array i.e. it places the variable with
the smallest domain in the position of the next instantiation. In our implementation
we memorize the order of the future variables immediately after finding the smallest
domain ahead. If a search backtracks to the same variable, the future variables are
put back into that order. This ensures that the effect of finding the smallest domain
for other variables deeper in the search tree will not cause a different ordering of the
future variables the next time the variable is instantiated. For example, the relationship
between FC-CBJ-FF and FC-FF would not be true if we didn’t memorize the order
of the future variables. Assume that instantiation i is inconsistent and FC-CBJ-FF
can backjump (more than one instantiation) to instantiation h while FC-FF can only
move back to i — 1. By the time FC.FI's search moves back to h, its view of the
order of the future variables can change from that of FC-CBJ-FF's as it performed
more search. However, if the order is returned to what it was before the search moved
forward from h then both algorithms have the same ordering of the future variables.
Therefore FC-CBJ-FF performs the same or fewer constraint checks than FC-FF as
it scarches only a subset of the nodes that FC-FF does. The relationship between

118



MFC-CBJ-INC-FF and FC-CBJ-FF and MFC-INC-FF can be shown by arguing that
they have the same future variables at each level and that they pick the same variables
because of the definition of the INC-FF heuristic.

It is interesting to note that MFC-CBJ-FF is not alwayvs better than MFC-FF.
Although at each level they have the same future variables to choose from, the nature
of MFC can cause FF to pick a different variable. Using the example from above,
say MFC-CBJ-FF has backjumped to instantiation h while MFC-FF has moved back
to instantiation i — 1. While MFC-FF is performing extra scarch until it moves back
to h. it may be performing extra constraint checks with past variables (that is, it is
performing avoided constraint checks). When MFC-FF moves back to h it will then
have a different idea of what is the smallest current domain leading to a different

search order.

1.2  An Empirical Comparison that Includes the New Hybrid Algorithms

In this section we empirically compare the 12 algorithms, FC, MFC, FC-CB.J, MF('-
CBJ, FC-CBJ-FF, MFC-CBJ-FF, MFC-EXP-FF, MFC-CBJ-EXP-FF, MFC-INC-
FF, and MFC-CBJ-INC-FF. As before, we run each algorithm on each problem in our
testbed counting the number of constraint checks performed in solving cach problem.

We begin by showing the overall results of the experiments in Tables 4.1 and 1.2,
The first table shows the percentage of times one algorithimn performs better than
another by constraint checks for the entire testhed. For example, MFC is better than
MFC-FF for 3.9% of the problems (the same for 0.5%). Of the algorithms not using
fail first, MFC-CBJ is the best, as expected. Of the algorithins using fail first, MFC-
CBJ-EXP-FF is the best. Of the algorithms not using CBJ and fail first, MFC is the
best. as expected, and for algorithms not using CB.J and using fail first MFC-EX-
FF is best. In every casc. the minimal forward checking version of an algorithm is
better than the forward checking version. Of the algorithms using the EXP-FF and
INC-FF heuristic, MFC-EXP-FF is better than MFC-INC-FF 65%. of the time and
MFC-CBJ-EXP-FF is better than MFC-CBJ-INC-FF 65.2% of the time. With and
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FC MFC | FC | MFC | FC | MFC FC MFC | MFC | MFC | MFC | MFC
BETTER cus | cag FF FF Bl CBJ EXP | ol INC Bl
THAN FF FF FF EXP FF INC
FF FF
Fe R 00 Y] 0.0 25 12 2.8 0.9 1.7 1.7 18 18
@0 | 78, | wo) | (os) | 0.0; | 0.8 0o; { (01) | 01) | 0.1y | 0.1
MF 100.0 - 778 00 78 39 7.4 3.4 3.9 38 ) 39
o2 | oy @y | 05 | 1) ©8%) | ©3) | ©3 | ©3 | ©3)
FC "Te22 | 224 0.0 30 17 29 1.2 2.0 1e 2.1 20
B2 (0.0) 04) 0 9) 0 48) {0 0) (0 1) (0.1) ©.1) {0.1)
MFC 1000 | 939 | 100.0 -- 104 62 10 49 $3 51 33 5.1
Chd | 01 | %) | 01 ©s) | ©3 | 09 | 08 | ©4 |
FC 970 | 924 | 966 | 898 | - 428 0.0 8.7 a3 16 0.0 0.0
FF w2) | me ] on | 06 | 08 | @29 | a9
MFC %88 | 956 | 962 | 933 | 870 - 55.8 17 176 16.8 200 193
FF oy Jovey | an | a2 | o8 | w8
FC-CBY 97.1 | 925 | 967 | o8 | 286 | 439 — 35.7 51 3 1.1 0.0
PP w2 | 06 | 06 | @29 ] @9
MFC-CB) | 991 %2 | o8 %48 | es1 | 793 66.1 - 219 20.8 26.4 23.4
F¥ 13 | an | 09 ] ©09
MFC.EXP | 982 | 957 | o790 | 943 | 981 | 812 9.3 768 - 0.1 6.9 625
FF o) | an 1 v
MFC-CBS | 96.2 | 968 | 980 | 946 | 958 | 820 5.4 79 358 — 618 6%.2
EXP-FF 32 | a9
MFC-INC | 981 | 95.7 | 978 | 343 | 971 .1 96.0 747 ETI) 290 - 0.0
FF 71.4)
MFC-.CBS | 98.1 058 | 9790 | eas | o712 %9 97.1 ™7 343 318 286 =
INC.FF

Table 4.1: Percentage of times one algorithm performs better than
another by number of constraint checks, for prob-
lems with n € {10.15,20.25}, m € {3.6,9}, ;» €
{0.2,0.25,....1.0}. Percentage of times algorithms per-
form the same number of constraint checks are in brack-
ets. (10.200 problems).

without CBJ the EXP-FF version of MFC is better than the INC-FF version.

The second table gives the average, the standard deviation for the average, the
median, the geometric mean, the maximum, the minimum, and the percentage of
constraint checks by geometric mean performed relative to FC by the 12 algorithms
on the entire testbed. These measures indicate that MFC-CBJ-EXP-FF is the best
algorithm. followed closely by MFC-EXP-FF, MFC-CBJ-INC-FF, and then MFC-
INC-FF. These algorithms are then followed by either MFC-CBJ-FF, MFC-FF, FC-
CBJ-FF, and FC-FF, or FC-CBJ-FF, FC-FF, MFC-CBJ-FF, and MFC-FF depending
on whether the median and geometric mean are used or the average and the maximum

number of constraint checks, respectively. Finally, these algorithms are followed by
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Alg Ave | Std Dev | Med | Geo Mean Max Min | % FC

FC 710168 | 2637242 | 8626 13539 58051198 | 15 | 100.0

MFC 433021 | 1603277 | 6170 9483 356771917 | 12 | 70.0
FC-CBJ 564618 | 2131850 | 6592 10552 47140736 | 15 | 779
MFC-CBJ 342290 | 1290070 | 4594 7283 28510271 | 12 | 538

[ FCFF [ 33450 | 109181 [1872] 2538 | 1254426 | 15 | 187
MFC-FF 35608 | 117645 | 1768 2439 1334088 | 12 18.0
FC-CBJ-FF 33358 | 109038 | 1846 2515 1251805 | 15 18.6
MFC-CBJ-FF 34575 | 114808 | 1668 2324 1295503 | 12 17.2
MFC-EXP-FF 22600 | 72605 | 1391 1914 847274 12 14.1
MFC-CBJ-EXP-FF | 22535 72499 | 1377 1896 846036 12 14.0
MFC-INC-FF 23474 | 75872 | 1439 1958 884719 12 14.5
MFC-CBJ-INC-FF | 23414 | 75784 | 1423 1941 883040 12 143

Table 4.2: Average, standard deviation, median, geometric mean,

maximum and minimum number of constraint checks
for the FC, MFC, FC-CBJ, MFC-CBJ, FC-FF, MFC-
FF, FC-CBIJ-FF, MFC-CBJ-FF, MFC-EXP-FF, MFC-
CBJ-EXP-FF, MFC-INC-FF, and MFC-CBJ-INC-FF al-
gorithms for problems with n € {10,15,20,25}, m €

{3.6.9}, and p; € {0.2,0.25,....1.0}.

lems).

(10,200 prob-
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the algorithms without the fail first heuristic in the order MFC-CBJ, MFC. FC-CBJ.
and FC.

It is evident that the algorithms based on MFC are the best. MFC performs 30%
fewer constraint checks than FC. Without the fail first heuristic. NIFC-CBJ reduces
the number of constraint checks performed by half. MFC-CBJ performs only 69.0%
of the constraint checks performed by FC-CBJ. With the fail first heuristic, MFC-
EXP-FF is able to reduce the number of constraint checks to only 14.1% of FC’s
constraint checks, 75.4% of FC-FF’s, and 76.1% of FC-CBJ-FF’s. Of the two new fail
first heuristics for MFC, EXP-FF and INC-FF, MFC-EXP-FF is only slightly better
than MFC-INC-FF performing 97.8% of the constraint checks and MFC-CBJ-EXP-
FF is only slightly better than MFC-CBJ-INC-FF performing 97.7% of the constraint
checks.

We next look at a few selected scatter plots to compare visually the performance
of algorithms over the whole testbed. A scatter plot for MFC versus MFC-CBJ is
displaved in Figure 1.6. MFC-CBJ appears to offer large savings in the number of
constraint checks performed for quite a few of the problems. As expected MFC-CBJ
performs better than MFC for all problems. Figures 4.7 and 4.8 show that MFC-EXP-
FF is clearly superior to FC and FC-FF except for a few relatively easy problems. The
MFC-EXP-FF algorithms performance is much better for the hardest problems (that
is, to the right of the figures). Comparing Figure 3.18, which shows a scatter plot for
FC-FF versus MFC-FF, to Figure 4.8, which shows the scatter plot for FC-FF versus
MFC-EXP-FF. it is evident that the problem which MFC has with the FF heuristic
has been overcome for almost all of the hard problems (there is one minor exception).
Figures 4.9 and 1.10 show that the performances of MFC-EXP-FF versus MFC-INC-
FF, and MFC-CBJ-EXP-FF versus MFC-CBJ-INC-FF are about the same, in both
figures the two algorithms perform (equally) worse than the other on about half of the
problems.

CBJ is a valuable addition to the forward checking algorithms that do not use
FF. FC-CBJ performs fewer constraint checks than FC for 92.2% of the problems
and MFC-CBJ performs fewer constraint checks than MFC for 93.9% of the problems
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Figure 4.6: The number of constraint checks performed by MFC

versus the number of constraint checks performed by
MFC-CBJ on the same problem for problems with
n € {10.15.20.25}, m € {3.6,9} and p; €
{0.2.0.25.. ... 1.0}. (10.200 problems).
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Figure 4.7: The number of constraint checks performed by FC

versus the number of constraint checks performed
by MFC-EXP-FF on the same problem for problems
with n € {10.15.20.26}. m € {3.6.9} and p; €
{0.2.0.25..... 1.0}. (10.200 problems).

124



1e+07

1¢+08

100000

10000

1000

MFC-EXP-FF constrant checks (log scale)}

100

10

' oy S S —
. FC-FF vs. MFCEXPFF - 1
. 1
f 1
3 1
1 7
. . " " "
10 100 1000 10000 100000 10+06 16407

FC-FF constramt checks (log scale)

Figure 4.8: The number of constraint checks perfoomed by FC-

FF versus the number of constraint checks performed
by MFC-EXP-FF on the same problem for problems
with n € {10.15.20.25}, m € {3.6.9} and p; ¢
{0.2.0.25. ... 1.0}. (10.200 problems).



18+06 vy T T T '
MFC-EXP-FF vs MFC-INC-FF
=Y -----n-
. 100000 | -
2 3
< ]
E 10000 | -
€
g ]
v 1000 | -i
u_. 3
£
100 | 4
- 1
d )
10 L— . L R
10 100 100000 16+06

1000 10000
MFC-EXP-FF constraint checks (log scaie)

Figure 1.9: The nutaber of constraint checks performed by MFC-
EXP-FF versus the number of constraint checks per-
formed by MFC-INC-FF on the same problem for prob-
lems with n € {10.15.20.25}. m € {3.6.9} and p, €
{0.2.0.25..... 1.0}. (10.200 problems).

126



127

18406 Y T Y Yy ey ————rr vy ey
MFC-CBJ-EXP-FF vs. MFC-CBJ-INC-FF

g 100000 | -
- F

b
§ 10000 E
£ 1000} 4
§
Y

10 - i i o
10 1e+06

1000 10000 1
MFC-CBJ-EXP-FF constraim checks (log scale)

Figure 4.10: The number of constraint checks performed by MEFC-
CBJ-EXP-FF versus the number of constraint checks per-
formed by MFC-CBIJ-INC-FF on the same problem for
problems with n € {10.15.20,25}, m € {3.6.9} and
p1 € {0.2.0.25....,1.0}. (10.200 problems).



resulting in a 22.1% reduction in the number of constraint checks performed in the
first case and 16.2% in the second. However CBJ is not as valuable an addition to
the forward checking algorithms that use FF. FC-CBJ-FF performs fewer constraint
checks than FC-FF for 28.6% of the problems with 71.4% being the same. giving a
reduction of 0.9% in the number of constraint checks. MFC-CBJ-FF performs fewer
constraint checks than MFC-FF for 79.3% of the problems with 19% being the same.
giving a reduction of 4.7% in the number of constraint checks. MFC-CBJ-EXP-
FF performs fewer constraint checks than MFC-EXP-FF for 35.5% of the problems
with 64.4% being the same, giving a reduction of 0.9% in the number of constraint
checks. And finally, MFC-CBJ-INC-FF is better than MFC-INC-FF for 28.6% of the
problems, with 71.4% being the same, giving a reduction of 0.9% in the number of
constraint checks. The only algorithm that seems to gain from having CBJ added
(although the gain is marginal) is MFC-FF. We expected that the addition of CBJ
to MFC-FF would help MFC-FF to back out of poor instantiation choices quickly.
However, adding CBJ does not seem to be as useful for any of the other algorithms
that use FF.

Past comparisons[2, 104] have also found that adding CBJ is for the most part
ineffective when an algorithm is using FF. The only exception to this is CSPs with very
sparse graphs and on what are called by Smith “exceptionally hard problems” 56, 104].
Our experiments confirm that the addition of CBJ is useful only for sparse graphs.
We examine our testbed (as above) at the two extremes, with sparse graphs having
p1 = 0.2 (Tables 4.3 and 4.4) and for dense graphs with p; = 1.0 (Tables 4.5 and
4.6). For the sparse graphs, the “percentage better than™ for the algorithms with CBJ
remains basically the same as in Table 4.1 but the reduction in constraint checks is
about 4.2% for FC-CBJ-FF. MFC-CBJ-EXP-FF. and MFC-CBJ-INC-FF, and about
11.9% for MFC-CBJ-FF. For the dense graphs, the “percentage better than” for the

algorithms with CBJ is lower than in Table 1.1 and there are almost no savings in

constraint checks for any of the algorithms with fail first. The savings for FC-CBJ-
FF. MFC-CBJ-EXP-FF. and MFC-CBIJ-INC-FF is only 0.2% and about 2.3% for
MEC-CBIJ-FF.
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BETTER By By FF FF ) cps boexe | oo INe )
THAN vF FF KK AP Kt NG
K FE
FC 00 o0 Y 28 Z0 23 to 18 vy 72 T e T
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MFC 9.8 368 00 85 47 82 28 48 38 50 "
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FC 872 | 625 Y 45 .7 37 27 28 17 30 [ 2%
Bl {0.2) 18) {1 )] 2 oo 02y o (1 Jp4] {0 2)
MFC %90 | 887 | 998 138 | 102 12 3 60 75 63 Y 0
CBJ w2 lan | on | 2o | ae | asy | as) | as
FC %2 ] 912 | 937 86 3 453 00 135 132 88 | oo o0 ]
FF o8 Jwosy | ae f an | an | an } an
MFC 978 | 938 | 950 882 | s38 a7 07 278 238 292 267
FF aoy laen | s | e | e | @2
FC-CBJ | 957 | 915 | 943 873 | 295 | 93 367 185 110 57 o0
FF an Janf asy | ae | an
MFC-CRJ | 986 | 955 | 973 920 | 655 | 747 | 622 397 332 ) 332
FF {65) 16 3) 45) 45) B
MFC-EXP | 978 | 935 | 970 907 | 855 | 670 | 803 538 oo a7 377
F¥ srgy b 3w | azs)
MFC.CBS | 986 | 946 | 982 918 | 89s | 707 | 87s 60 5 ITE] 18 s |
EXP-FF 4l?_§_} 32
MFCINC | 977 | 938 | 968 917 | 963 | 665 | 905 58 5 430 35 7 00 |
FF Ly
MFC-CB) | 980 | 945 | 973 925 | 963 | 712 96 3 62 3 Y 4313 | 298
INC FF

Table 4.3: Percentage of timnes one algorithm is better than another

by number of constraint checks, for problems with n ¢
{10.15.20.25}, m € {3.6.9} and p; = 0.2. Percentage

of times algorithins perform same number of constraint

checks are in brackets. (600 problems).
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Alg Ave | Std Dev | Med | Geo Mean Max Min | % FC
FC 208806 | 1691698 | 2255 3254 20386648 | 18 | 1000
MFC 126078 | 1064043 | 1672 2341 20976509 | 12 71.9
FC-CBJ 70741 | 706482 | 1143 1664 15665537 | 18 51.1
MFC-CBJ 44896 | 497224 | 830 1178 11399517 | 12 36.2
FC-FF 1313 2954 305 379 34431 18 11.6
MFC-FF 1338 2906 352 387 27584 12 119
FC-CBJ-FF 1199 2640 300 363 29003 18 11.2
MFC-CBIJ-FF 1117 2363 315 341 25279 12 10.5
MFC-EXP-FF 949 1804 256 308 16300 12 9.5
MFC-CBJ-EXP-FF 886 1762 244 295 15545 12 9.1
MFC-INC-FF 945 2036 244 302 22978 12 9.3
MFC-CBJ-INC-FF 866 1828 239 289 19444 12 8.9

Table 4.4: Average, standard deviation. median, geometric mean,

maximum and minimum number of constraint checks for
the FC, MFC, FC-CBJ. MFC-CBJ, FC-FF, MFC-FF,
FC-CBIJ-FF, MFC-CBIJ-FF, MFC-EXP-FF, MFC-CBJ-
EXP-FF, MFC-INC-FF, MFC-CBJ-INC-FF algorithms
for problems with n € {10.15.20.25}, m € {3.6.9} and
p1 = 0.2. (600 problems).
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FC MFC FC AMEFC FC AMEC FC MEC M AP AEC M
BETTER Bl OBl FF FF CBJ Bl EXP CH) INC (8N
THAN F¥ F¥ ¥ FAY FF INC
FF FE
FC 00 0.0 00 17 07 17 o7 18 18 15 15 |
(0 0) (5.7) (@ 0) (0 2) 00 (0 2} (0 0) 10 0y 100) (00 (0 0y
MFC 1000 - 93.3 0.0 53 25 53 23 32 32 32 32 )
(0 0) an (0 0} (0 0) {00) (0 0) 00 (0 0y {0 0y (0 0)
FC 043 67 00 20 12 20 12 20 20 17 17
CBJ 00) | (0.0) 0.0} (1] [CX] (0 0) 00 10 0) 00)
MFC 100.0 9.3 100.0 - 82 35 80 30 40 40 37 37
Bl (0 2y 0 0) 02 (0 2) [ X+1] 100 o i02)
FC 982 947 98.0 97 4438 00 30 28 28 00 00
FF 00) (74 3 {0.3) 08) {08 (R ] 1) (38)
MFC 993 (241 98.8 9% 5 56 2 56 0 28 18 tt 7 162 158
FF (0 0) (arn 0 02) [CX:D) (003
FC.cBJ 982 47 8.0 W | %7 4“0 35 30 28 02 oo
FF (0.3) (0 8) (0 8) (38) (38
MFC-CBJ %3 7.7 o8 8 [} ] 637 798 632 133 132 183 180
FF (07) won (00) o2
MFC-EXP 98 2 [} ] 90 96.0 96.3 878 96 2 86 0 ooc 815 810
FF (73 0) t» (R 3 1]
MFC-CBJ 98 2 0% 8 98 0 96 0 96 3 88 2 96 3 86 2 270 axo 813
EXP-FF (13 AU
MFC-INC 9835 96.8 933 962 9 2 838 9 0 87 172 167 00
FF (78 3)
MFC-CBJ °8.5 9 8 98 3 962 9 2 842 96 2 ase 177 173 %7
INC-FF

Table 4.5:

Percentage of times one algorithm is better than another

by number of constraint checks, for problems with n
{10.15,20.25}, m € {3.6.9} and p; = 1.0. Percentage of

times algorithms perforin the same number of constraint

checks are in brackets. (600 probletns).
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Alg Ave Std Dev | Med | Geo Mean Max Min | % FC

FC 1058191 | 2851042 | 9795 28570 14043395 | 134 | 100.0
MFC 658462 | 1755111 | 7578 20393 8781418 | 103 | 71.4
FC-CBJ 931043 | 2508626 | 8858 25492 12272659 | 134 | 89.2
MFC-CBJ 573896 | 1530216 | 6686 17931 7501832 | 103 | 62.8
FC-FF 82758 189760 | 4697 7544 843905 | 133 | 264
MFC-FF 87737 | 202927 | 4478 7154 885469 93 25.0
FC-CBJ-FF 82681 189605 | 4697 7530 842263 | 133 | 264
MFC-CBIJ-FF 85988 198949 | 4477 6989 867546 93 245
MFC-EXP-FF 55740 125615 | 3706 5599 552540 94 19.6
MFC-CBJ-EXP-FF | 55684 125498 | 3706 5589 552011 094 19.6
MFC-INC-FF 58230 131482 | 3763 5855 587167 | 108 | 205
MFC-CBJ-INC-FF | 58181 131386 | 3763 5845 586665 | 108 | 205

Table 4.6: Average, standard deviation, median, geometric mean,

maximum and minimum number of constraint checks for
the FC, MFC, FC-CBJ. MFC-CBJ, FC-FF, MFC-FF,
FC-CBIJ-FF, MFC-CBIJ-FF, MFC-EXP-FF, MFC-CBJ-
EXP-FF, MFC-INC-FF, MFC-CBJ-INC-FF algorithms
for problems with n € {10.15.20,25}, m € {3.6,9} and
p1 = 1.0. (600 problems).
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Bacchus and Van Run{2] and Smith{104] reason that the FF heuristic tends to
cluster highly related variables® together thereby reducing the probability of large
backjumps. Our experiments show that although there is a large reduction in the
number of backjumps. there is also a significant reduction in the average savings
for each backjump. On average, FC-CBJ performs 0.11 backjumps per attempted
labeling® searched while FC-CBJ-FF performs 0.04 backjumps per attempted labeling
searched. This reduction in backjumps per attempted labeling does not fully account
for the poorer relative performance of FC-CBJ-FF to FC-FF. as compared to FC-CBJ
to FC. There is also a large reduction in the average number of constraint checks saved
per backjump. FC-CBJ on average saves 76 constraint checks per backjump while
FC-CBJ-FF saves only 3 constraint checks per backjump. It is casy to see why this is
s0. The FF heuristic picks a future variable with the smallest pruned domain size as
the next variable to instantiate. This implies that even if an algorithm with FF could
jump back over these “smallest pruned domains™ there would be very few constraint
checks avoided as the smallest pruned domain sizes are probably very close to one.
There would be no part of the search 1.ee avoided or a relatively small part of it.

We next look at how much the number of constraint checks is reduced by MFC,
MFC-CBJ, FC-FF, and MFC-EXP-FF versus FC. Fignre 4.11 shows the number of
constraint checks performed versus the percentage of problems solved at or before that
number of constraint checks. There is a clear difference between the algorithins that
use FF and those that do not. The FF algorithms have a much more rapid climb with
a growing separation between the two sets of algorithms implying that many more
problems are being solved with fewer constraint checks. For the algorithms that do
not use FF, MFC-CBJ is the best, followed by MFC and then FC. For the algorithms
that use FF, MFC-EXP-FF is best followed by FC-FF.

Finally, we look at the percentage of FC's constraint checks performed by the 12
algorithms broken down by n and m (Table 4.7). Clearly, across n and m, MFC-CBJ

is the best algorithm without FF and MFC-CBJ-EXP-FF is the best algorithin with

5¢f. the discussion on FF with FC bringing together highly related variables in Section 1.3.4.
SWe count the nummber of calls to the labeling function.
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Table 4.7: Percentage of FC's constraint checks performed by
MFC, FC-CBIJ, MFC-CBJ, FC-FF, MFC-FF, FC-CBJ-
FF, MFC-CBJ-FF, MFC-EXP-FF, MFC-CBJ-EXP-FF.
MFC-INC-FF, and MFC-CBJ-INC-FF broken down by
n and m.

FF. Without CBJ, MFC is the best algorithm without FF, and MFC-EXP-FF is the
best with FF. The improvement of almost all algorithimns become better as n and m
increase. The exceptions are FC-CBJ and MFC-CB.J which tend to perforin worse as
m increases for larger n but do perform better as n increases with fixed m. We believe
that this phenomenon is being caused by a decrease in the ability to backjuimnp. We find
that our data confirms this hypothesis when we calculate the trend of average number
of backjumps per attempted labeling. There is a decrease in the average number of
backjumps per attempted labeling as m grows larger and there is an increase in the
average number of backjumps per attempted labeling as n increases.

We expected that the addition of CBJ to MFC would save more constraint checks
relative to the addition of CBJ to FC. Table 4.7 indicates some extra savings although
it a slim relative increase in savings.

The experiments in this comparison are fairly extensive. The total nunber of
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Figure 4.12: Comparison of FC-FF and MFC-EXP-FF by number of
constraint checks performed on the n-queens problem.

problems solved by the algorithms without FF is 40.800. The total number of con-
straint checks performed was 20.911,132. 413 with 5.031. 340 seconds of CPU time.
The total number of problems solved by the algorithms with FF is 81.600. The total
number of constraint checks is 2,335,928.131 with 631,597 of CPU time. No valid
comparisons can be drawn from these CPU times as the experiments were performed

over 3 different machines (a Sun Sparc 5, 10, and 20).

4.3 A Final Look at the n-queens Problem

As mentioned in Section 2.6. the n-queens problem is the one well-known class of
problems that we found on which MFC-FF can perform very poorly. Figure 4.12
provides a comparison of FC-FF and MFC-EXP-FF on the n-queens problem. This
comparison shows that for the most part, MFC-EXP-FF overcotnes the problem MFC-

FF has with the FF heuristic on this particular class of problems. For all values of n
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Figure 4.13: The best algorithms as indicated by our experiments.

the two algorithms perform almost the same number of constraint checks except for a

few points in which MFC-EXP-FF performs worse than FC-FF.
4.4 Conclusions

Figure 4.13 presents a svnopsis of our results. Averaged over all problems in the
testbed, MFC-CBJ-EXP-FF is the best of the 12 algorithins tested closely followed
by MFC-EXP-FF. These two algorithms reduce the average number of constraint
checks performed to just 14.1% of the constraint checks performed by FC and 75.4%
of the constraint checks performed by FC-FF over the testbed. Bacchus and Grove's
INC-FF heuristic (with and without CBJ) is a close third and fourth in terms of
the average number of constraint checks performed. However, MFC-EXP-FF and
MFC-CBJ-EXP-FF perform better than MFC-INC-FF and MFC-CBIJ-INC-FF on
approximately two thirds of the testbed problems. Given that the overhead involved
in both heuristics is about the same we conclude that the EXP-FF heuristic is on
average better than the INC-FF heuristic.

Of the algorithms not using FF, MFC-CBJ is the best. MFC-CBJ reduces the
average number of constraint checks performed to just 53.8% of the constraint checks
performed by FC. Without CBJ and FF, MFC is best, performing 30% fewer con-
strai.t checks than FC. Our results also imply that CBJ is useful for both the FC
and MFC algorithms when not using the FF heuristic reducing the average number
of constraint checks by 22.1% and 16.2%. respectively. Finally, adding CBJ to the
algorithms with FF is apparently not as useful except in a few cases. Overall, we
observe only a small change in the average number of constraint checks performed

when adding CBJ to the algorithins using FF. The largest change oceurs for MFC-FF
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giving a 4.6% decrease in the average number of constraint checks. For sparse prob-
lemns there is a larger change in the average number of constraint checks of 11.9%.
Although our empirical comparison shows that CBJ is not very useful when the FF
heuristic is used, we have been told informally” that CBJ can be critical in making a
real world problem feasible to sulve. We give a different comparison, of the algorithms

compared in this chapter, in Chapter 6 using a different testbed.

"Private comnunication
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Chapter 5

A New Model of Hard Binary Constraint Satisfaction Problems

"Re-make/Re-model™  Bryvan Ferryv, Roxy Music

As discussed in Section 3.2, recent studies by Smith{102]. Smith & Dyer|[103]. and
Prosser{91, 94]. have looked at the phase transition phenomenon exhibited by hinary
CSPs. They model binary CSPs using the 4-tuple (n, m. py. p2) where a is the number
of variables. m is the domain size for all variables. p; is the probability that a non-
trivial constraint exists between two variables, and p, is the “global™! probability,
conditional on the existence of a non-tcivial constraint, that a pair of values between
the two variables is inconsistent. 5mith{102] and Prosser[91] observe that the point
where on average the hardest problems occur (the phase transition peak) co-occeurs
with the 50% point of solubility. Smith{102] also observes that this peak appears to
co-occur very near to the point where the mimber of solutions to a problem is one.
Using an expected number of solutions formula, developed by Haralick and Elliot[61]
for CSPs using the above parameterization, Smith creates a predictor of the phase
transition peak for binary CSPs by «etting the formula to one. Smith{102], Smith
& Dver[103]. and Prosser[%1. 94] show empirically that the predictor, called Py, is
a reasonably good predictor of the location of a phase transition peak for randomly
generated binary CSPs, especially as n grows. The predictor gives an over-estimation
of the location of the phase transition peak, that is towards the right (insoluble) side.
The one exception for Smith’s predictor is for sparse graphs, that is, those CSPs with
small values of py. Smith & Dver{103] show that each individual constraint graph

(given domain sizes for each variable) has its own location of the phase transition

1Called global here to emphasize that each constraint is created with the susne constraint tightness.
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peak. The location of the phase transition peak is highly variable for constraint
graphs which are sparse. Smith & Dver argue t.at the local graph topology needs to
be incorporated into any predictor of the location of the phase transition peak for
these problems.  The local graph topology is defined to be the degree distribution
of the constraint graph. that is, the degree of cach individual node (variable) in the
constraint graph.

The model that Smith{102}, Smith & Dver{103]. and Prosser[91. 94] use for bin-
ary CSPs assumes that every domain has the same size and that everv constraint
has the same tightness.  After [102. 91] were published, we decided to investigate
a generalization of this model which allows for some variation in each constraint’s
tightness. Any generalization of Smith’s model is useful as the new model will then
be closer to a “real” CSP. In this chapter, the binary CSP parameterization given
above is generalized to allow for a set of local constraint tightness values. \We give
a more refined version of Smith's predictor of the phase transition peak which is a
set of constraint tightness values that incorporates the local graph topology around
cach constraint. Experiments show that there is a similar phase transition in which
constraint tightness does not have to be a global value and that the refined predictor
better predicts the location of the peik in this phase transition. We show that this
phase transition peak which has CSPs with varving constraint tightn <<es contains
harder problems on average than the phase transition peak with global tightness val-
ues given a good algorithm for solving CSPs. We also show that random problems
generated with the refined predictor are of similar or increased hardness to search by
a good CSP algorithin than problems generated with the old predictor. We also show
that the refined predictor better predicts the location of the phase transition peak for
CSPs with sparse constraint graphs. Our results indicate that harder phase transition
peaks can be found for NP-complete problems if the parameterizations used to model
the problem are appropriately generalized to include the structure of an individual
problem. The results of this chapter have been published in [31, 32, 35).

In Section 5.1 we review Smith's predictor of the phase transition peak. We then

diseuss our generalization of the binary CSP parameterization in Section 5.2 and give a
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predictor of the phase transition peak for this generalization. In Section 5.3 we discuss

how experiments were performed and in Section 5.4 we compare the two maodels.

5.1 The Global Constraint Tightness Predictor

In this section we give a short review of Smith’s predictor of the location of the phase
transition peak for binary CSPs. The intuition behind Smith’s predictor is that prob-
lems which do not have a solution are over-constrained and that problems which have
more than one solution are under-constrained. Problems that have one solution appear
to be in the “middle ground™ between solubility and insolubility. Smith conjectures
that a phase transition peak for binarvy CSPs occurs near the region where the ex-
nected number of solutions for a problem is one. An expected number of solutions
formula. Equation 5.1, derived by Haralick an Elliot [61]. can be used to caleulate
the expected number of solutions of a CSP modeled with the above 4-tuple.

nin - 1)

E(Soln) =m"(1 —py) 2z ™ (5.1)

The expected number of solutions is the number of possible tuples in a CSP multiplied
by the probability of satisfving all the constraints.

The parameter p, partially determines how constrained a problem is and therefore
seems to be a natural order parameter to varv. As mentioned in Section 3.2 there are
phase transitions in binary CSPs for which it is appropriate to vary py instead. Smith
conjectures that a predictor of the phase transition, denoted gy, can be derived from
(5.1) using E(Soln) = 1.

Pacru =1 - m™ T (5.2)
Smith[102], Smith & Dyer{103], and Prosser[91, 94] show empirically that pz,,, is a
good predictor of the phase transition peak in randoin binary CSPs with the given
parameterization especially as n grows larger. The on» exception for Smith’s predictor
is for sparse graph-, that is, those CSPs with small valuc: of py. Henceforth, we call
the model of binary CSPs used here and Smith's predict r of the phase transition
peak for binary CSPs the global constraint tightness model (global model) of hard

binary CSPs.
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5.2 The Local Constraint Tightness Predictor

A model of binary CSPs using local constraint tightness is parameterized by a 4-
taple (n.m.p,.P) where n is the number of variables. m is the global domain size,
p1 is the probability that a constraint exists between two variables, and P is a set
{p2,,/1 < i < j < n} of local constraint tightness probabilities conditional on the
existence of the corresponding constraint. That is. pa; is the probability that any
nair of values between variables v; and v; is inconsistent given that a constraint exists
between v; and v;. An expected number of solutions formula for a binary CSP using
the new parameterization is:
E(Soln)=m" J[ (1-p2,) - (5.3)
1<i<j<n
Again, the expected number of solutions is the number of possible tuples in a CSP
miultiplied by the probability of satisfving all the constraints. Here, each constraint
is considered independently. One would like a predictor similar tv Smith’s for this
model of binary CSPs. In the global constraint tightness model, the predictor gives
the looseness of cach coustraint that exists as:

1

1 _1
m (n—1)pg m(nnl)P]

1= Poy =m0 = (5.4)

An important observation is that the expected degree of each variable (node in the
constraint graph) is (n — 1)p;. Smith’s predictor assumes that the looseness of each
constraint is a proportion of the (fixed) domain sizes of the two variables according to
their expected degree. We suggest that one can refine Smith’s predictor of the phase
transition peak for each problem by replacing the expected degree with the actual
degree of each variable. That is, the predictor of a phase transition peak for a binary

CSP under the new mode! is the set

0 if there is no constraint betweei i and j

2, = .
P, 1 - —L—+ otherwise

me:m®
where 3; and a; are the degrees of variables v; and v;. That this setting preserves

the expected number of solutions being one is not immediately obvious. To show

142



that it does. we give the following general theorem which allows not ounly for varving
constraint tightnesses but also for different sizes of domain values (where m, is the

domain size ol variable v;).

Theorem 5.1 If a; is the degree of v; und a; is the degree of v; then if

0 tf there 1s no constraint between v and
P2, =% 1- —tT  otherwise
m m, 4
then
E(Son)= [ mi J] (1-p2,)=1. (5.6)

1<i<n 1<i<j<n

Proof of Theorem 5.1 We first note that

—
?—‘
-}

—

for the constraints that exist given that we are proportioning the domains m; and m;
g 4 i

1

a

for variables v; and v;. We then note that cach m;* oceurs a; times in
1

J
II —
1<i<j<n m;- mjl

(5.8)

as v; participates in a; constraints (1 < i < n). This implies the product in (5.8) is

1

nxgign m;

(5.9)
Therefore E(Soln) = 1. O

We conjecture that the settings of py, | given by (5.5) are a predictor of a phase
transition peak for the new model as Pac.y is a predictor for the global maodel (although
now we have a set of predictors instead of just one). We also conjecture that if the
global model’s predictor accurately predicts the location of a phase transition for a
real problem, then the local model’s predictor would also predict the location of a
phase transition. Henceforth, we call this model and predictor of the phase transition
peak for binary CSPs the local constraint tightness model (local model) of hard binary

CSPs. Although Theorem 5.1 is proven for a more general case where domain sizes
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are allowed to be different. we focus on binary CSPs that have domain sizes all the
same. At this time whether or not a phase transition exist for a problem with varving
m;'s and whether or not this model is adequate to predict phase transition peaks are
left as future work.

The global model and the local model (of hard random problems)? are closely
related. When all variables (nodes) have the same degree. for instance a complete
graph, the two models are the same. Many of the results presented in this chapter
have this special case removed from the data because the two models do not differ.
The global model and the local model also have counterparts for n-ary CSPs which

we intend to explore in the future.

53 Experiments

In the experiments that are describe- below we use the FC-CBJ-FF algorithm?. We
use FC-CBIJ-FF, instead of FC-FF as in [102, 103], as its performance seems to be
better than FC-FF for problems with sparse graphs. Otherwise FC-CBJ-FF's per-
formance is nearly the same as FC-FF. If there is a real difference between the two
models we expect that FC-CBJ-FF will show this difference. Backtracking algorithms
not using some type of lookahead and the FF heuristic may not show a real difference
between the models as they are easily fooled into poor performance. As before, a gen-
erated problem’s difficulty is measured by the number of constraint checks performed
by FC-CBJ-FF in attemmpting to solve the problem.

Our experiments use a testbed of 12,750 connected randomly generated graphs
consisting of 50 connected graphs for each combination of n, m, and p; with n €
{10.15.20.25.30}, m € {3.6.9} and p, € {0.2.0.25..... 1.0}. This testbed of ran-

domly generated graphs is an extension of the testbed described in Section 3.3 by

*Henceforth the phrase “of hard random problems™ is omitted from now on if the context allows
it. References to the global or local model refer to random problems generated under the model using
its respective predictor.

YThese experiments were performed before the experiments comparing the different algorithms in
Chapters 3 aid 4. We used the best known algorithm that we knew of at that time.
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adding problems with n = 30.

Three comparisons are made: a comparison between the phase transitions un-
der the two models of binary CSPs, the respective comparisons between the phase
transition and how well the model’s respective predictor predicted the phase trans-
ition peak. and a comparison of problems randomly generated under the two models
of hard problems. It is essential that the difference in comparisons be caused only
by the values chosen for the constraint tightnesses. With that in mind, throughout
the various comparisons, we record for each set of 50 randomly generated graphs a
random start-seed that is used as a starting point in creating all CSPs from that set.
We only use the random number generator for randomizing the enumeration of the
cross-product of two domains connected by a constraint. To create a constraint, we
take the first pam? as unacceptable pairs for the global model, the first pzum2 for the
local model, and the respective amounts needed to find the phase transition under the
two models of binary CSPs (described below). All CSPs created in this manner are
very similar in that they only differ in the number of unacceptable pairs chosen from
the same randomized enumerations.

The experiments to find the phase tramsition for problems under the two bin-
ary CSP models are Fmited to the graphs generated for n = 20, m = 9, and
p1 € {0.2,0.25.....0.9}. This subset should be large enough to be representative
of the rest of the graphs. We are limited in what we can do as it is computationally
expensive to find the phase transitions. To find the phase transition for binary CSPs
with a global constraint tightness we vary p; from 0.01 to 0.99 and create a CSP in-
stance from each graph 1 the set of 50. A finer resolution for p; is not possible as the
largest domain size is 9 meaning that a difference of 0.01 for p; changes the number of
of inconsistent tuples by at most one. Finding the ph#sv transition for binary C'SPs
with local constraint tightness values is more difficult. There are many settings for
the initial values of all the py,.’s that may lead to a phase transition, one of which is
all zeros which would just lead to the phase transition for binary CSPs with a global
tightness. However, we would like to show that there is a phase trausition similar to

the phase transition for binary CSPs with the global constraint tightness values. For
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Figure 5.1: Comparison of the transition phases under the two models

forn =20, m=9, and p; = 0.3.

cach set of 80 graphs the smallest py, . is found. We then subtract this sinallest value
from every py, | created and add an increment which varies from 0.01 to 0.99. If there
is a phase transition peak at the point that the predictor suggests, this should show
it.

For the experiments comparing the two models of hard binary CSPs, CSPs us-
ing, the py (py,;) values as given by the two predictors are used to create randomly

generated problems.

5.4 Comparison of the Global and Local Model

We begin our comparison by showing in Fig. 5.1 the phase transition for the two
binary ('SP models for n = 20, m = 9. and p; = 0.3. The graph for the global
parameterization is labeled “Varving p2” and the graph for the local parameteriza-

tion is labeled “Varving p2ij”. As it is necessary to compare the two graphs along
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Figure 5.2: Comparison of the transition peaks and the global
and local models for n = 20, m = 9, and p; ¢
{0.2.0.3.....09}.

the same axis we use the average of the py | values as a “global” average py for the
local parameterization. The graph shows that both parameterizations lead to a phase
transition, the local parameterization having a higher peak. We cannot show all the
phase transition graphs but a summary of their peaks is presented in Fig. 5.2. Four
lines are displaved in Fig. 5.2. The first line labeled “Varving p2” shows the geometric
mean of the transition peaks of the global parameterization for p; € {0.2,0.3....,0.9}.
the second line labeled “Varving p2ij” shows the transition peaks for the local para-
meterization. the third line labeled “Global Model™ shows the peaks predicted by the
global model. and the fourth line labeled “Local Model™ shows the peaks predicted by
the local model. The x-axis is the average py,, value for the local model and for the
phase transition peaks of the local parameterization, the value of pa,, for the global

model. and the location of the phase transition peaks of the global parameterization.
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The points for p; = 0.2 begin at the far right and move left for increasing p, as sparse
problems are much easier to solve than more connected problems. The peaks for the
local parameterization are much higher than those of the global parameterization, that
is. random problems generated with local constraint tightness values are much harder
than those generated with a global constraint tightness value. All the lines join to-
gether around p; = 0.7 and above which is to be expected as the two models become
more similar as the graphs become more connected (there is less variation in local
graph topology). The local model better predicts the peak of the phase transition for
the local parameterization, effectively becoming the same after py = 0.3. The global
model does not accurately predict the peak of the phase transition for the global para-
meterization until p; = 0.5. For the sparser graphs with p; = 0.2 and 0.3 the local
maodel predicts the phase transition better than the global model although there is still
a gap for p; = 0.2.

Next. the global and local models are compared to see if there is a real difference
in the hardness of problems randomly generated using the two models. Fig 5.3 shows
a comparison of the global model and the local model for n € {20.25.30} and m =9
broken down by p;. For increasingly larger problems, the local model produces much
harder problems than the global model. The separation is especially large for lower
values of py. Fig. 5.4 shows a scatter plot of the same problems. Although there are a
few outliers favouring the global model, the majority of the problems (75%) are harder
when generated with the local model. Fig. 5.5 shows a comparison of the global model
and the local model for n = 30 and m € {3,6.9} broken down by p;. It appears that
the loeal inodel produces much harder problems than the global model for increasing
m especially for problems with lower values of p;. These observations continue to hold
if one uses the average or the median.

Next we display in Figure 5.6 an overall scatter plot for all the problems (problems
with p; = 1 are omitted). The local model produces a majority of the hard problems.
Excluding those problems with p; = 1. the global model produces a problem harder
than the local model 31% of the time, the local model produces a problem harder than

the global model 58% of the time. and 11% of the time the problems have the same
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n | the global model | the local model | Same
harder harder

10 43'% 57% 0.4%

15 36% 64% 0.0%

20 34 66"/ 0.0%

25 22% 78% 0.0%

30 18% 82% 0.0%

Table 5.1: Percentage of times one wodel produces harder problems
than the other for problems with n € {10, 15, 20. 25. 30}
and m = 9. Problems with p; = 1 are omitted.

hardness.

Table 5.1 shows the percentage of times one model is harder than the other for
problems with m = 9. As n increases, the local model becomes much better than the
global model at producing hard problems.

Next we investigate the trends observed between the models for increasing o and
m and for lower values of py. Table 5.2 shows by geometric mean how mwnch harder the
problems generated by the local model are than those generated by the global model.
The local model is producing on average much harder problems as a increases, and
for problems with p; < 0.5 the local model produces much harder problems especially
for large m. The local model’s use of local graph topology beco.aes increasingly
important as n and m grow larger. The separation of the two models as n grows lareer
is contrary to Smith & Dver's[103] assertion that for larger values of n the effect of
different constraint graph topologics will be less important.

Table 5.2 shows the ¥ rgest percent increase 1n geometric mean constraint checks
for the problems with large m and p; < 0.5. In Figure 5.7 we display a scatter plot
comparing the random problems generated under the two models for all vilues of o
in the testbed, m - 9, and p; < 0.5. The local model is clearly superior for these

problems which have large domain sizes and sparser constraint graphs.
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- ey

p: < 0.95 p1< 05
m=3|m=6|m=9allm | |m=3m=6|m=9] allm
n=10| 46% | —0.4% | —21% | 0.7% || 52% | ~2.3% | ~1.5% | 0.4%
n=15| 73% | 52% | 58% | 6.1% | 34% | 40% | 78% | 51%
0= 20 | 1407 | 209% | 205% | 186% | 7.0% | 18.4% | 20.8% | 18.0% |
n=25]10.6% | 25.0% | 28.9% | 21.6% | 13.9% | 16.8% | 45.4% | 24.6% |
n=130 | 12.4% | 47.6% | 44.0% | 33.7% || 31.1% | 68.7% | 66.4% | 54.4%
alln | 0.8% | 18.7% | 183% | 155% || 11.7% | 188% | 27.2% | 19.1%

Table 5.2: Percent increase in geometrice mean nuireber of constraint
checks performed by FC-CBIJ-FF for the loeal model over
the global model broken down by m € {3.6.9} for prob-
lems with p; < 0.95 and for problems with p; < 0.5.

The phase trans.. on peak is associated with the 50% point in solubility. However,
the global model usually gives a prediction that is a little to the right (that is, towards
the insoluble side) of the actual phase transition peak. We find that both models pro-
duce similar proportions of soluble to insoluble problems (229% soluble, 78 insoluble),
agreeing with Smith and Prosser’s results which show the global model’s prediction
is to the right of the transition point.

The global and local model predict that a phase transition peak oceurs near to the
point where the expected number of solutions is one. To see if randomly generated
problems created using the local and global models have close to one solution we
calculate the average number of solutions by running FC-FF to find all solttions on
the problems with n € {10.15.20}. We do not consider the larger problems as finding,
all solutions would be too costly in terms of time. A table of the average number of
solutions broken down by n and m is displayed in Table 5.3, The titles G-soln and
L-soln stand for the global model and the local model with soluble problems only,

and the title All-3 stands for the average number of soletions for ali of the problems

disregarding those with m = 3. The title std stands for the standard deviation. In




most instances, randomly generated problems using both models have more than the
expected number of soliions although problems generated with the local model have
fewer average number of solutions and a smaller standard deviation than problems
generated with the global model.  Both models produce probiems with too many
solutions for m = 3 although the local model is much closer to the expected number
of solutions. For soluble problems with larger values of m. the local model is closer
to the expected number of solutions with a smaller standard deviation. Over all the
problems examined in Table 5.3, the global model produces problems with an average
number of solutions of 15.89 (65.31 for soluble problems) versus 3.33 (13.18 for soluble
problems) for the local model. However, if we remove the problems with m = 3 which
both models seem to have difficulty with. the global model produces problems with
an average number of solutions of 1.49 {6.95 for soluble problems) versus 1.31 (5.25
for soluble problems) for the local model. The local model overall produces problems
that are slightly closer to the expected number of solutions for larger values of m.

We next count how often a particular number of solutions occurs for the problems
examined in Table 5.3. We do not include insoluble problems  the global model has
5789 insoluble problems and the local model has 5715 insoluble problems. Figures 5.8
and 5.9 show a comparison of the frequency of a particular number of solutions. The
x-axis represents the number of solutions, and the yv-axis, the number of problems
that have that number of sclutions. The local model has more problems with 1 to
10 solutions. The global model has more problems with 100 to 1000 solutions. The
global model has some problems with more than 1000 solutions whereas the local
model has only one. The global model has 69.7% of of its soluble problems with 10
or fewer solutions and the local model has 84.7% of its soluble problems with 10 or
fewer solutions. We also include a point on each graph showing the average number
of solutions versus the average number of problems. The local model produces on
average more problems with fewer number of solutions than the global model and it
produces far fewer “outliers™.

Finally, we calculate how varied the values of pz,; arc. We are most interested in

how different are the values of the pz,, in the local model from the value of pac, for

156



Global Local N (:-sﬁ. e h—l:snvln

n m ave std ave std ave std ave std
] 3 | 188 | 560 | 133 | 365 | 650 | 887 | 444 | 556
10| 6 | 142 | 460 | 142 | 382 | 507 | 755 | 430 | 5.65
0 | 141 | 424 | 160 | 470 | 482 | 672 | 464 | 7.08

All | 157 | 485 | 145 | 408 | 547 | 7.79 | 446 | 6.16

3 | 17.46 | 56.67 | 7.26 | 28.77 | 58.88 | 91.74 | 29.24 | 51.97

15| 6 | 109 | 609 | 1.11 | 386 | 6.46 | 13.60 | 492 | 689
9 | 114 | 583 | 113 | 424 | 547 | 1182 | 450 | 7.52

All | 656 | 3395 | 317 | 1718 2021 | 66.89 | 13.09 | 33.02 |

3 | 114.70 | 517.71 | 13.59 | 83.38 | 362.45 | 871.18 | 57.19 | 163.89

20| 6 | 28 | 2011 | 164 11501 | 1761 | 47.37 | 11.24 | 40.47
9 | 103 | 443 | 093 | 358 | 58 | 010 | 481 | 6.92

All | 3053 | 30371 539 | 49.37 | 18162 | 631.31 | 28.03 | 109.87

3 | 44.68 | 304.70 | 7.30 | 51.19 | 148,55 | 541.76 | 28.26 | 97.16

All| 6 | 179 | 1244 | 130 | 970 | 877 | 2630 | 594 | 19.38
90 | 119 | 488 | 122|421 | 530 | 910 | 464 | 717

All | 1589 | 177.24 | 333 | 30.31 | 65.31 | 354.91 | 13.18 | 59.20
Al-3| 149 | 945 | 131|748 | 695 | 19.46 | 525 | 14.30 |

Table 5.3: Average number of solutions and the standard deviation

for various problem sets. Colummn Global is the global
model. column Local is the local model. Columns G-soln
and L-soln describe the average number of solutions for

soluble problems only.
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the global model. For each problem, the deviation of py,; from pacris is calculated. The
deviation is then normalized by dividing by P to give the percentage of deviation
over the mean. These averages are then averaged for each value of p;. Figure 5.10
shows the average normalized deviation of py, | for the problems in n € {10.20.30} and
m € {3.6.9} broker down by p; and a scatter plot of all the normalized deviations.
As an example of the variation between the values of py and Poc. consider the
problems at n = 20. m = 9. p; == 0.2 which appear to be in the middle of the
normalized deviations shown in the graph. The normalized deviation is 0.1539, and
the value of Pz, = 0.6854. Therefore the deviation is 0.1539 = 0.6854 = 0.1055.
Assuming that the values are normally distributed. values of py,; will fall in the range
0.6854 + 2 « 0.1055 = 0.6854 + 0.211 (0.4744 ...0.8964) 95% of the time.

Figure 5.10 shows that the highest variation in py; occurs for small values of py,
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gradually approaching no variation at p; = 1. Between py = 0.2 and py - 0.6 the
average normalized deviation seems to we 10% or more from the value of pa . The
normalized deviation is at best around 23% from the value of P, At no point is
the average normalized deviation equal to 0 except at p; = 1. It is interesting to note
that even at p; = 0.95. there is still a 3% average normalized deviation which implies
that even for nearly complete graphs the local graph topology is still important.
These experiments have been performed on a Sun Sparc-10 using code written in
CMU-Lisp. FC-CBJ-FF uses a total of 291.088 CPU seconds to perforin a total of
1.533,685.080 constraint checl:s for the global model and a total of 363.231 C'PU
seconds to perform a total of 1.803.542.793 constraint checks for the local model. A
substantial amount of unreported time is used for the comparison of phase transitions

under the two models of binary CSPs.

5.0 Summary

In this chapter we give a generalization of the standard model for binary CSPs which
allows for local constraint tightness values. Our experiments show that there is a
phase transition in thi. new generalization. A predictor of the phase transition peak
is derived for this new generalization that includes the local graph topology of an
individual problem. We have empirically shown that the new predictor acearately
predicts the phase transition peak for this new generalization except for very sparse
problems. Although the new predictor does not accurately predict the phase tr msition
peak for very sparse problems with py < 0.3, its prediction appears to he much
better than Smith’s predictor. Finally. we have compared random problems generated
with the two predictors. The problems generated using the new local model are
of similar or increased hardness than problems generated using the global model. it
would seem reasonable that harder phase transition peaks may be found for other NP-
complete problems by generalizing the parameterizations used to model the problems

in appropriate ways to include the structure of an individual problem.

There are two main benefits of the work prosented in this chapter. The first is that
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we have derived a new predictor of a phase transition peak for a new more general
model of binary CSPs that allows some variation in each constraint tightness. The
second is that the new predictor ean be used to create a testbed of problems that
are of similar or increased hardness and have more variation in constraint tightness
than those ereated using the global predictor. These problems may be more like real
problems as they have a more complex structure.

We believe that our new model provides the foundation for a new model that allows

arving domain sizes but we leave that as future work.

Smith, Smith & Dcer. and Prosser do not show that the predictor py e accurately
predicts the location of phase transition peaks for “real” problems. It is conjectured
that if a real problem can be modeled using the given parameterization then Smith's
predictor will accurately predict whether that problem will be near a phase transition
peak. We also do not investigate the accuracy of Smith’s predictor or the predictor

for our new model for real problems. Such a task is left for future work.
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Chapter 6

An Empirical Comparison Using the Local Model of Hard Random Problems

In Chapter 4 a large empirical comparison of a number of algorithins is presented
using the global model of hard random problems. 1t is shown that the bhest alporithims
are all based on MFC. namely MFC-CBJ-EXP-FF. MFC-EXP-FF. MFC-CR). and
MFC. Each algorithm is best under a different set of circumstances, namely, whether
or not the problem lends itself to the use of the FEF heuristic and whether or not it
is considered worthwhile to add non-chronological backtracking (CBJ). Tu Chapter 5
a new model of binary CSPs is proposed which generalizes the current model by al-
lowing constraint tightness to vary. We develop a predictor of the location of phase
transition peaks in the new model and show empirically that the new predictor accnr-
ately predicts the location of phase transition peaks for randomly generated problems,
Problems randomly generated under the new model of binary CSPs at the predicted
location of the phase transition peak (called the local model of hard random prob-
lems) are harder to solve “on average” then probleias randomly generated under the
old model (called the global model of hard random problems'). The local maodel of
hard random problems produces harder problems for larger values of nand m espe-
cially for sparser graphs with p; < 0.5.

In : ais chapter we further test the algorithms in order to assess the robustness of om
clairas in Chapter 4. We revisit the empirical comparison perforined in Chapter Hasing,
the local model instead of the global model. In addition to comparing the algorithms

over the complete testbed, we focus on problems with sparser graphs (py © 0.5) and

We shorten “local/global model of hard random problems™ to the “local/global model™. -
spectively. when the context implies that we are discassing probiems sandomly generated under the

specified model using the respective predictor of phase transition peaks.



larger values of n and m, the region of problems which can best exhibit any new
differences between algorithms brought to light by the local model. These empirical
comparisons of algorithis over both models also allows us to compare the two models
of hard random problems over many algorithms. The comparison is presented in

Section 6.1 below, followed by a summary of the comparison in Section 6.2.

6.1 An Empirical Comparison Using the Local Model

In this section we empirically compare the 12 algorithms, FC, MFC. FC-CBJ, MFC-
CBJ, FC-CBJ-FF. MFC-CBJ-FF, MFC-EXP-FF, MFC-CBJ-EXP-FF, MFC-INC-
FF, and MFC-CBJ-INC-FF using the local model of hard random problems. To
perform this comparison we reuse the constraint graphs randemly generated for he
testbed in Section 3.3. We create 50 randomly generated CSPs using the local model’s
predictor for each combination of n, m, and p, with n € {10.15.20.25}. m € {3.6.9}
and py € {0.2.0.25.....1.0}. Each specific problem in the “local model testbed”
differs from its counterpart in the “global model testbed™ only by the predictor used
and not by any other external factors such as different randomizations®. Therefore,
any differences in the performance of algorithms is caused only by the difference in
the models of hard random problems and not by any other effect.

As in Section 4.2, we run cach algorithm on each problem in our testbed counting
the number of constraint checks performed in solving each random problem.

We begin by showing the overall results of the experiments in Tables 6.1 and 6.3.
Tables 6.2 and 6.4 which show the results of the exvoriments using the global model are
repeated from Chapter 4 (Tables 4.1 and 4.2) for comparison. Tables 6.1 and 6.2 show
the percentage of times one algorithm performs better than another by the number of
constraimt checks for the local and global testbeds. respectively. Tables 6.3 and 6.4
give the average. the standard deviation for the average, the median. the geometric
mean, the maximum, the minimum, and the percentage of the number of constraint

checks by geometric mean performed relative to FC by the 12 algorithms for the local

*See the discussion in Section 5.3 for an explanation of how the local model testbed is generated.
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and global testbeds. respectively.

The results displaved in Table 6.1 and 6.2 are very similar. The general ordering
of the best 4 algorithms using FF remains the same as in the experiments using
the global model. that is, from best to worst MFC-CBJ-EXP-FF > MFC-EXP-FF
> MFC-CBJ-INC-FF > MFC-INC-FF. However, the poor performance of MEC-FF
becomes more pronounced in Table 6.1. In the global model, MFC-FF performs better
than FC-CBJ-FF and FC-FF. In the local model the ordering is changed and MEFC-
FF is the worst of the algorithms using FF. There is a similar decline in performance
for MFC-CBJ-FF as compared to FC-FF and FC-CBJ-FF, however MFC-CBJ-FF
remains a better algorithm. The ordering of the algorithms not using FF is the same in
the experiments using the local model as the experiments using the global mwodel. That
is, the algorithms performance from best to worst is MFC-CBJ > MFC > FC-CBJ
> FC.

A comparison of Tables 6.3 and 6.4 gives a similar picture. The ordering of the best
4 algorithms using FF remains the same when using the local model. The ordering of
the algorithms not using FF also remains the same. Again in the local model M¥FC FF
and MFC-CBJ-FF perform worse than in the global model.

Tables 6.3 and 6.4 also show something interesting about the two models. The local
model perf rms increasingly better than the global model “on average™ as a better
algorithm is used. Table 6.5 shows the percent increase in the geometric mean number
of constraint checks of the local madel over the global model for the inereasingly better
algorithms (according to our experiments), MFC, MFC-CBJ, MFC-EXP-FF, and
MFC-EXP-CBJ-FF. As a better algorithm is used, the number of constrai... checks
performed decreases, but the relative difference in the hardness of the problems, as
seen by the algorithm, increases in favour of the local model. That is, problems
generated with the local model are more difficult 1o search than problems generated
with the global model for the best algorithms. Tables 6.3 and 6.4 also show that the
global model produces outliers more often than the local model. That is, for every
algorithm, the global model gives the largest maximum. For the algorithins not using

FF the local model has the least standard deviation. For the algorithins using FF, the
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Table 6.1: Percentage of times one algorithin performs better than
another by number of constraint checks, for problems
generated with the local model, n € {10.15.20.25}.
m € {3.6.9}, p; € {0.2.0.25..... 1.0}. Percentage of
times algorithms perform the same number of constraint

checks are in brackets. (10.200 problems).

local model has the highest standard deviation. This difference in standard deviation
appears to be cansed by FF.

We now turn our attention to the region where the two models of hard random
problems differ the most, .« is, for larger n, larger m, and sparse p;. We focus
our comparison on the problems with n = 25. m = 9, and p; < 0.5 as the results in
Section 5.4 indicate that this is the region in which the two models differ the most in
hardness of random problems generated.

We display in Tables 6.6 and 6.7 the percentage of times one algorithm performs
better than another by the number of constraint checks performed for the local and

global model testbeds, repectively. Tables 6 8 and €.9 giv the average. the standard
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Percentage of times one algorithm performs better than

another by constraint checks, for problems generated with
the global model with n € {10.15.20.25}, m ¢ {3.6.9}.
p1 € {0.2,0.25.....1.0}. Percentage of times algorithins

perforin the same number of constraint checks are in
brackets. (10.200 problems).
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Alg Ave | Std Dev | Med | Geo Mean Max Min | % FC

FC 675490 | 2330710 | 8460 | 13981 | 35206934 | 15 | 1000

MFC 417021 | 1427487 | 6154 | 9943 | 22441085 | 12 | 71.1
FC-CBJ 550374 | 1973626 | 6766 | 11320 | 30667461 | 15 | 81.0
MFC-CBJ 342786 | 1204005 [ 4820 | 7934 | 19385318 | 12 | 56.7
FC-FF 37475 | 110827 | 1980 | 2774 1131018 | 15 | 198
MFC-FF 40923 | 130621 | 1976 | 2803 1170366 | 12 | 200

FC-CBJ-FF 37388 | 119668 | 1961 | 2753 1120560 | 15 | 19.7

MFC-CBJ-FF 39705 | 127345 | 1840 | 2673 1138132 | 12 | 19.1 |
MFC-EXP-FF 25739 | 80506 | 1520 | 2151 765981 | 12 | 154

MFC-CBJ-EXP-FF | 25671 | 80382 | 1503 | 2133 764843 _1? 15.37:
MFC-INC-FF 26632 | 83005 | 1552 | 2187 792313 | 12 | 156
MFC-CBJ-INC-FF | 26573 | 83804 | 1544 2171 701377 | 12 | 155

Table 6.3: Average, standard deviation, median. geometrie mean,

maximnin and minimam number of constraint checks
for the FC. MFC, FC:CBJ. MFC-CBJ, FC-FF, MFC-
FF. FC-CBJ-FF, MFC-CBJ-FF, MFC-EXP-FF, MF(C-
CBJ-EXP-FF. MFC-INC-FF, MFC-CBJ-INC-FF algor-
ithms for problems generated with the local model
with n € {10.15.20.25}, m € {3.6.9} and p,

{0.2.0.25

.....

1.0}. (10.200 problems).

P
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Alg Ave | Std Dev | Med | Geo Mean Max Min | % FC

FC 710168 | 2637242 | 8626 | 13530 | 58051108 | 15 | 100.0

MFC 433021 | 1603277 | 6170 | 9483 | 35677917 | 12 | 70.0
FC-CBJ 564618 | 2131850 | 6502 | 10552 | 47140736 | 15 | 77.9
MFC-CBJ 342290 | 1200070 | 4504 | 7283 | 28510271 | 12 | 53.8
FC-FF 33450 | 100181 | 1872 | 2538 | 1254426 | 15 | 18.7
MFC-FF 35608 | 117645 | 1768 | 2439 | 1334088 | 12 | 18.0
FC-CBJ-FF 33358 | 100038 | 1846 | 2515 | 1251805 | 15 | 18.6
MFC-CBJ-FF | 34575 | 114808 | 1668 | 2324 | 1295503 | 12 | 17.2
MFC-EXP-FF | 72600 | 72605 | 1391 | 1914 847274 | 12 | 141
MFC-CBJ-EXP-FF | 22535 | 72499 | 1377 | 1896 846036 | 12 | 140
MFC-INC-FF | 23474 | 75872 | 1439 | 1958 884719 | 12 | 145
MFC-CBJ-INC-FF | 23414 | 75784 | 1423 | 1941 883040 | 12 | 143

Table 6.4: Average, standard deviation, median, geometric mean,

maximum and minimum number of constraint checks
for the FC, MFC, FC-CBJ. MFC-CBJ, FC-FF, MFC-
FF. FC-CBJ-FF, MFC-CBJ-FF. MFC-EXP-FF, MFC-
CBIJ-EXP-FF. MFC-INC-FF, MFC-CBJ-INC-FF algor-
ithins for problems generated with the global model
with n € {10.15.20.25}, m € {3.6.9} and p; €

{0.2.0.25

1.0}. (10,200 problems).
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Algorithm Percent increase in the geometrie mean |
\MFC 19 o
\IFC-CBI .9 o
MFC-EXP-FF 12.4 N
AFC-CBJ-EXP-FF 12.5 ”

Table 6.5: Percent increase of the geometric mean numbv r of con-
straint checks performed using the local model over the
geometric mean number of constraint checks performed
using the global model for the specified algorithm. for
the problems with n € {10.15.20.25}. m € {3.6.9}. and
p1 € {0.2.0.25....,1.0}. (10.200 problems).

deviation for the average. the median, the geometric mean. the maximum, the min-
imum. and the percentage of constraint checks by geometric mean performed relative
to FC by the 12 algorithms for the local and global testheds respectively.

The ordering of algorithms for these larze problems with sparse graphs from best
to worst is the same as for Table 6.1. However, Table 6.9 gives a slightly different
ordering with MFC-CBJ-INC-FF being better than MFC-EXP-FF by geometric mean
and median for the global model. The MFC-CBJ-EXP-FF algorithm is still the best
algorithm.

Table 6.6 shows that MFC-CBJ-INC-FF is the best algorithm for these large prob-
lems with sparse graphs generated by the local model, being better than MFC-CBJ-
EXP-FF and much better than MFC-EXP-FF. Scatter graphs of MFC-CBJ-EXP-FF
versus MFC-CBJ-INC-FF for the global and local models (displaved in Figures 6.1
and 6.2 respectively) show almost no real difference in performance between the al-
gorithms under both models. There are a few outliers in the global model where
MFC-EXP-CBJ-FF perforins better. Table 6.6 also indicates that MFC-INC-FF is
better than MFC-EXP-FF. Scatter graphs of MFC-EXP-FF versus MFC-INC-FF for

the global and local model (displayed in Figures 6.3 and 6.4 respectively) again show
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Table 6.6: Percentage of times one algorithm performs better than
another by constraint checks, for problems generated with
the local model. n =25, m =9, p; € {0.2.0.25.....0.5}.

Percentage of times algorithms perform the same number

of constraint checks are in brackets. (350 problems).
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Table 6.7:

Percentage of times one algorithm performs better than

another by constraint checks, for problems generated with
the global model, n = 25, m = 9, p; € {0.2,0.25....,0.5}.

Percentage of times algorithms perform the same number

of constraint checks are in brackets. (350 problems).



Alg Ave Std Dev Med Geo Mean Max Min | % FC

FC 2958410 | 2568973 | 2289544 | 1880200 | 14754851 | 12977 | 100.0

MFC 1774454 | 1530444 | 1378744 | 1127571 7914159 | 8263 | 60.0
FC-CBJ 2161974 | 1953434 | 1610420 | :200927 | 10020111 | 8345 | 68.7
MFC-CBJ 1204767 | 1170570 | 955211 7731359 5852651 | 5334 | 41.1
FC-FF 77770 | 64212 | 61062 50537 323935 | 2865 | 2.7
MFC-FF 92904 73746 72281 61941 381053 | 2058 [ 3.3
FC-CBIJ-FF 77152 64094 60325 49733 322034 | 2865 26
MFC-CBJ-FF 87745 70993 67379 57392 365090 | 1818 31
MFC-EXP-FF 55092 44500 42682 36596 231360 | 1713 19
MFC-CBJ-EXP-FF | 54606 44384 42268 36019 229972 | 1713 19
MFC-INC-FF 55190 45235 44108 36232 229288 | 2145 19
MFC-CBJ-INC-FF | 54768 45165 43122 35680 228061 | 2145 1.9

Table 6.8: Average, standard deviation, median, geometric mean,

maximum and minimum number of constraint checks for
the FC, MFC, FC-CBJ, MFC-CBJ, FC-FF, MFC-FF.
FC-CBJ-FF, MFC-CBJ-FF, MFC-EXP-FF, MFC-CBJJ-
EXP-FF, MFC-INC-FF, MFC-CBJ-INC-FF algorithms
for problems generated with the local model, n

m=9and p; € {0.2.0.25..... 5.0}. (350 problems).

25,
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Alg Ave Std Dev Med Geo Mean Max Min | % FC
FC 3680112 | 4532671 | 2226298 | 1810012 | 33552581 | 11528 | 100.0
MFC 2155573 | 2680986 | 1257608 | 1043480 | 20976509 | 6825 | 57.7
FC-CBJ 2361452 | 2044184 | 1428119 | 1100006 | 26956306 | 7100 | 60.8
MFC-CBJ 1381046 | 1761025 | 818433 | 632111 | 15475314 | 4288 | 349
FC-FF 60835 | 54665 | 43015 | 37164 | 263536 | 2107 | 21 |
MFC-FF 65710 | 61299 | 46180 | 38745 306448 | 1487 | 2.1
FC-CBJ-FF 60120 | 54520 | 43843 | 36316 | 263019 | 2098 | 2.0
MFC-CBJ-FF 62000 | 58875 | 42441 | 35806 | 203636 | 1302 | 20 |
MFC-EXP-FF 40572 | 36788 | 20171 | 24815 180758 | 1148 | 1.4
MFC-CBJ-EXP-FF | 40111 | 36679 | 28938 24270 180304 | 1148 | 13 |
MFC-INC-FF 41287 | 37389 | 20394 | 25168 170882 | 1284 | 1.4
MFC-CBJ-INC-FF | 40846 | 37316 | 28068 | 24631 179596 | 1284 | 14

Table 6.9: Average, standard deviation, median, geomeiric mean,

maximum and minimum number of constraint checks for
the FC, MFC, FC-CBJ, MFC-CBJ, FC-FF¥, MFC-FF,
FC-CBIJ-FF, MFC-CBJ-FF, MFC-EXTI'-FF, MFC-CB.I-
EXP-FF, MFC-INC-FF, MFC-CBJ-INC-FF algorithms

for problems generated with the global model with n = 25,

m =9 and p; € {0.2,0.25..... 5.0}. (350 problems).
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Algorithmn percent increase in the geometric mean
MFC 8.1
MFC-CBIJ 223
MFC-EXP-FF 17.5
MFC-CBJ-EXP-FF 18.4

Table 6.10: Percent increase of geometric mean number of constraint
checks performed using the local model over the geometric
mean number of constraint checks performed using the
global model for the specified algorithm, for the problems
inn=25m=29 and p; € {0.2.0.25....,1.0}. (350
problems).

no real difference in performance. Table 6.6 also shows FC-CBJ-FF ard FC-FF per-
forming much better than MFC-FF and MFC-CBJ-FF respectively. Scatter graphs
comparing FC-FF with MFC-FF for the global and local model are displayed in Fig-
ures 6.5 and 6.6 respectivelv. The local model shows that nearly all problems are
searched by the FC-FF algorithm with fewer constraint checks performed.

Table 6.9 gives the usual ordering for the algorithins not using FF. For the al-
gorithms asing FF, MFC-CBJ-INC-FF is best by geometric mean followed by MFC-
CBJ-EXP-FF, MFC-INC-FF, MFC-EXP-FF, FC-CBIJ-FF, FC-FF, MFC-CBJ-FF,
and finally MFC-FF. However, by average and median MFC-CBJ-EXP-FF is bet-
ter than MFC-CBJ-INC-FF followed by MFC-EXP-FF and MFC-INC-FF. As in
Tables 6.3 and 6.4, Tables 6.8 and 6.9 show the same trend that the local model
performs increasingly better than the global model “on average” as a better algorithm
is used. Table 6.10 shows the percent increase in the geometric mean number of
constraint checks of the local model over the global model for the increasingly better
algorithms MFC, MFC-CBJ. MFC-EXP-FF, and MFC-EXP-CBJ-FF. The percent
increase shown in Table 6.10 is much higher than in Table 6.5 as the local model

produces harder problems for these sparse graphs.
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Figure 6.1:

te+06
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The number of constraint checks performed by MFC-

CBJ-EXP-FF versus the number of constraint checks per-
formed by MFC-CBJ-INC-FF on the same problem using
the global model for problems with n = 25 m = 9 and
p1 € {0.2.0.25....,0.5}. (350 problems).
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Figure 6.2: The number of constraint checks performed bv MFC-

CBJ-EXP-FF versus the number of constraint checks per-
formed by MFC-CBJ-INC-FF on the same problem using
the local model for problems with n = 25, m = 9 and
p: € {0.2,0.25.....0.5}. (350 problems).
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Figure 6.3: The number of constraint checks performed by MEC-

EXP-FF versus the number of constraint checks per-
formed by MFC-INC-FF on the same problem using the
global model for problems with n = 25, m = 9 and
p; € {0.2.0.25.....0.5}. (350 problems).
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Figure 6.4: The number of constraint checks performed by MFC-
EXP-FF versus the number of constraint checks per-
formed by MFC-INC-FF on the same problem using the

local model for problems with n = 25, m = 9 and
p; € {0.2.0.25..... 0.5}. (350 problems).
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Figure 6.5:

FC-FF

The number of constraint checks performed by FCO-
FF versus the mmamber of constraint checks performed
by MFC-FF on the same problem using the global
model for problems with n = 25, m = 9 and p; -

{0.2.0.25.....0.5}. (350 problems).
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Figure 6.6: The mumber of constraint checks performed by FC-
FF versus the number of constraint checks performed

by MFC-FF on the same problem using the local

model for problems with n = 25, m = 9 and p; €
{0.2.0.25.....0.5}. (350 problems).




It this comparison. the total number of problems solved by the algorithins without
FF for the local model is 40.800. The total number of consta.int checks performed was
20.345.785.271 with 4.502. 875 seconds of CPU time. The total number of problems
solved by the algorithms with FF is 81.600. The total number of constraint checks is
2.653.076.362 with 711. 724 seconds of CPU time. No valid comparisons can be drawn
from these CPU times as the experiments were performed on 3 different machines (a

Sun Spare 5. 10. and 20).

6.2 Summary

In this chapter we empirically compare the 12 algorithms. FC. NMFC. FC-CBJ, MFC-
CBlJ. FC-CBJ-FF. MFC-CBJ-FF. MFC-EXP-FF. MFC-CBJ-EXP-FF, MFC-INC-
FF. and MFC-CBJ-INC-FF using the local model of hard random problems. QOver
the whole testbed of problems generated with the local model, the ranking of the
algorithms remains the same as found in Chapter 4. That is. averaged over all problems
in the testhed. MFC-CBJ-EXP-FF is the best of the 12 algorithins tested closely
followed by MFC-EXP-FF. Bacchus and Grove's INC-FF heuristic {with and without
CBl) is a close third and fourth in terms of the average mumber of constraint checks
performed. Of the algorithms using FF but not CBJ, MFC-EXP-FF is the best
algorithm. Of the algorithms not using FF, MFC-CBJ is the best. Without CB.J and
without FF, MFC is best.

However, when we use probletns with sparser graphs and larger values of n and
m. namely those with n = 26. m = 9. and p; < 0.5, it is unclear which algorithin is
the best. Problems generated via the global model suggest that MFC-CBJ-EXP-FF
is the best algorithm by the average, the median, and the geometric mean, whereas
problems generated using the local model indicate that MFC-CBJ-INC-FF is the best.
by the geometric mean and MFC-CBJ-EXP-FF is the best by the average and the
median. The local model indicates that the MFC-CBJ-INC-FF algorithm is slightly
better than the MFC-CBJ-EXP-FF by percentage of times one algorithim performs

better than the other by number of constraint checks performed. However, scatter




plots of MFC-CBJ-EXP-FF versus MFC-CBJ-INC-FF under the local model do not
show any significant difference. Both algorithms appear to be e ually good on these
large sparse problems.

The comparison with the large sparse problems generated with the local model
also makes the poor performnance of MFC-FF more obvious. The FC-FF algorithm
performs fewer constraint checks than the MFC-FF algorithm on almost all the large
sparse problems.

Finally, the comparison of algorithms under the two models also gives us the op-
portunity to compare the hardness of problems randomly generated under the two
models across algorithms. The problems generated under the local model are increas-
ingly harder to search relative to problems generated under the global model the better

the algorithm used.
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Chapter 7

Conclusions

7.1 Contributions

In this thesis we have developed and empirically compared several n'('w CSP search
algorithms.

In Chapter 2 we describe a promising new CSP search algorithm called Minimal
Fo:ward Checking (MFC) which is an improved version of the best known CSP search
algorithm called Forward Checking (FC)[55, 61. 77]. We motivate the development of
MFC by showing that FC which is a “forward looking” search algorithm has a strong
relationship to BackMarking (BM)[47] which is a ~"backward looking” algorithm. We
theoretically prove that MFC is sound and complete. We also prove that MFC and FC
visit the same nodes in the search tree and that MFC's worst case performance in terins
of number of constraint checks performed is the number of constraint checks performed
by FC. We also show the negative result that MFC with the popular dynamic variable
reordering heuristic called Fail First (FF)[61] can perform worse than FC with the
same heuristic. Finally, we describe how MFC can be considered a lazy CSP search
algorithm and discuss the existence of other lazy CSP search algorithms.

In Chapter 3 we make an empirical comparison of the BT, BM, ¥C, MFC, FC-
FF, and MFC-FF algorithms on a large set of hard randomly generated CSPs. Hard
randomly generated CSPs are on average much harder to solve than most randomly
gencrated CSPs and are used for the empirical comparison as they are considered
likely to bring out significant performance differences between search algorithis. The
results of our empirical comparison indicate that the BT and BM algorithms are

inefficient and that FC is clearly superior to both of these algorithins. The average



case performance of the MFC algorithm is clearly superior to that of the FC algorithm
across all dimensions of the testbed resulting in savings ranging from 20% to 40%
of the number of constraint checks performed by FC. We also find that the search
algorithms using the FF heuristic clearly outperforin the search algorithms not using
the FF heuristic. The performance of MFC-FF is slightly better than FC-FF but
it clearlv suffers from its inability to use the FF heuristic to its fullest advantage.
Overall the ranking of the algorithms as indicated by our experiments from worst to
best is BT < BM < FC < MFC < FC-FF < MFC-FF. The MFC algorithm is the
best algorithm not using the FF heuristic (the FF heuristic is not appropriate for all
problems) and the MFC-FF algorithm is the best algorithm using FF although the
comparison is not as conclusive as between MFC and FC.

In Chapter 4 improvements are made to the MFC algorithm. One improvement is
the addition of non-chronological backtracking. called Conflict-Directed Backjumping
(CBJ)[90], to the MFC algorithm which allows it to save substantially more constraint
checks with every backjump than FC-CBJ. The second improvement is the creation
of a new heuristic, called “Extra Pruning with Fail First” (EXP-FF). designed to
help solve MFC-FF’s inability to exploit the full power of the FF' heuristic. We then
discuss conjectured dominance relationships between some of the hybrid algorithms
followed by a comprehensive empirical comparison using hard random problems of the
new hybrid algorithms. Our comparisons also include hybrid algorithms that use a
heuristic designed by Bacchus and Grove[1] to serve the same purpose as the EXP-FF
heuristic, which we call INC-FF. Altogether the algorithms compared are FC, MFC,
FC-CBJ, MFC-CBJ, FC-FF, MFC-FF, FC-CBJ-FF, MFC-CBJ-FF, MFC-CBJ-EXP-
FF, MFC-INC-FF, and MFC-CBJ. "NC-FF. As in Chapter 3, the performance of the
algorithms using FF is much better thar the performance of algorithins not using FF.
Averaged over all problems. the 4 best algorithms are from worst to best MFC-INC-FF
< MFC-CBJ-INC-FF < MFC-EXP-FF < MFC-CBJ-EXP-FF. Of the algorithms not
using FF, the ordering of algorithms by average performance from worst to best is FC
2 FC-CBJ < MFC < MFC-CBJ. Whether the EXP-FF heuristic is used and/or CBJ

iy used. algorithms based on MFC perform much better on average than algorithms
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based on FC.

In Chapter 5 we give a generalization of the standard model for binary CSPs
which allows for local constraint tightness values. Our experiments show that there
is a phase transition in this new model similar to the phase transition observed in
the standard model. A predictor of the phase transition peak is derived for this new
model that includes the local graph topology of an individual problem. We empirically
show that the new predictor accurately predicts the phase transition peak for this new
model except for very sparse problems with p; < 0.3. Although the new predictor
does not accurately predict the phase transition peak for verv sparse problems its
prediction appears to be much better than Smith’s predictor{102, 103]. Finally, we
have compared random problems generated with the two predictors. The problems
generated under the new model are of similar or increased hardness than problems
generated using the old model especially for problems with larger values of n and m
and sparser graphs (p; < 0.5). These hard random probleins generated under the
new model can be used to create a new testbed of problems with which CSI® search
algorithms can be compared.

Finally, in Chapter 6 we empirically compare the 12 algorithms, FC, MFC, FC-
CBJ, MFC-CBJ, FC-CBJ-FF, MFC-CBJ-FF, MFC-EXP-FF, MFC-CBJ-EXP-FF,
MFC-INC-FF, and MFC-CBJ-INC-FF using hard random problems generated with
the new (local) model. Over the whole testbed, the ranking of the algorithins remains
the same as found in Chapter 4. However, when we use problems with sparser graphs
and larger values of n and m, namely those with n =25, m = 9, and p; < 0.5 there is
some doubt as to which algorithm is the best. The MFC-CBJ-INC-FF appears to be
more appropriate for this region of problems although the difference in performance
between MFC-CBJ-INC-FF and MFC-CBJ-EXP-FF is negligible when compared hy
scatter plots. The comparison with the large sparse problems generated with the
local mode! also makes the poor performance of MFC-FF more obvious. The FC-FF
algorithm performs fewer constraint checks than the MFC-FF algorithm on almost all
the large sparse problems. Finally, the comparison of algorithms under the two models

gives us the opportunity to compare the hardness of problems randomly generated
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under the two maodels across algorithms. As a better algorithimn is used. the numixt of
constraint checks performed decreases, but the relative difference in the hardness of
the problems, as seen by the algorithun. increases in favour of the local model. That
is. problems generated with the local model are more difficult to search than problems
generated with the global model for the best algorithms.

in conclusion, we develop a new CSP search algorithm, called MFC, that is a
lazy version of FC. The MFC algorithm is shown theoretically to perform no worse
than FC, and using two testbeds of hard random problems drawn from two models
it is shown empirically that MFC's average case performance is significantly better
than FC's. With the addition of CBJ, the MFC-CBJ algorithm is the best algorithm
that we test that does not use the FF heuristic. Overall, the best algorithm tested
is the MFC-CBJ-EXP-FF algorithm followed closely by either MFC-CBJ-INC-FF or
MFC-EXP-FF. We have argued that the MFC algorithm is one instance of a lazy CSP
search algorithm and that other lazy CSP search algorithms are possible.

We also develop a new model of binary CSPs. We show that this new model of
binary CSPs exhibits the phase transition phenomenon, and we develop a predictor of
the phase transition peak for this new model. Randomly generated problems created
using this new model are of similar hardness or harder than randomlv generated
problems created using the standard (previous) model of binary CSPs. These new

hard problems are used as a testbed for CSP search algorithms.

7.2  Future Work

There are a number of directions in which to extend this thesis.

Theoreticallv, a number of conjectured dominance relationships between algor-
ithms that use the FF heuristic are left open. Also, our formal dominance relationships
and soundness and completeness results for MFC depend on a fixed instantiation order.
Any proof involving FF (or any dynamic variable reordering heuristic) will depend on
an accurate description of the set of search trees possible under the fail first heuristic.

It will also involve specifving exactly how the FF heuristic should be implemented.

18




It would also be interesting to develop new lazy algorithms from Partial Lookahead
(PL) and Full Lookahead (FL)[61] and compare these algorithms to MFC and MAC
over a wider range of problems than examined in this thesis. The empirical results
in this thesis are valid only for problems that are in the phase transition peak. The
empirical testbed should be enlarged to include problems across ali values of p; in a
systematic way.

The new model developed in Chapter 5 is only a si»p in the right direction for
modeling CSPs. The old model of binary CSPs is restricted to problems with global
values of p; and m. We have generalized this model by allowing for some variation
in the constraint tightnesses and given a predictor of a phase transition peak in this
model. Our predictor can be further generalized to allow for varying domain sizes but
it is unknown if it would continue to predict the location of a phase transition. We
would like to find a richer model of binary CSPs that hopefully will be applicable to
a wider range of real CSPs. We would also like to extend our work into finding phase
transitions in non-binary CSPs.

Finally, it is conjectured that if a real problem can be modeled using the standard
(global) model then Smith's predictor will accurately predict whether that problem
will be near a phase transition peak. We also conjecture that if a real problem can be
modeled using the local model then our predictor will accurately predict whether the
problem will be near a phase transition peak. The task of finding out whether this is
true or not is left as future work.

The global model and the local model also have counterparts for n-ary CSPs which

we intend to explore in the future.
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Appendix A

Glossary of Terms and Symbols

CLP Constraint Logic Programming p. 2
binary CSP p. 4

CSP Constraint Satisfaction Problem p. 4
V Set of variables p. 4

D Set of domains p. 4

C Set of constraints p. 4

c;; Constraint between v; and v; p. 4

v; The i’th variable p. 4

d; The i’th domain p. 4

n The number of variables in a CSP p. 4
m; The number of values in domain d; p. 4
m The size of the largest domain p. 4
soluble problem p. 4

insoluble problem p. 4

constraint graph p. 5

partial solution p. 5
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backward unlabeling function p. 9
refv;, instantiation indirection array p. 10
domain! p. 11
pruned domain p. 12
pruned domain size p. 12
completely pruned domain p. 12
truce domain size p. 12
<GT Generate and Test p. 12
el{vy) domain element function p. 15
BT Backtracking p. 18
BM backmarking p. 22
FC Forward Checking p. 24
forward check p. 24
BC BackChecking p. 32
AC are consistency p. 34
2-consistency see AC p. 34
PATH path consistency p. 34
3-consistency see PATH p. 34
k-consistency p. 34
AC-X Arc consistency algorithms p. 36

hybrid algorithm p. 36



FL Full Lookahead p. 37

PL Partial Lookahead p. 37

RFL Really Full Lookahead p. 37

DEEB Domain Element Elimination with Backtracking p. 37
MAC Maintaining Are Consistency p. 37
characterizing condition p. 39

p1 constraint density p. 43

constraint density p. 13

p2 constraint tightness p. 43

constraint tightness p. 43

MFC Minimal Forward Checking p. 51
hard problems p. 73

hard random problems p. 74

local graph topology p. 77

degree distribution p. 77

geometric mean p. 81
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