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Abstract

Ordered labelled trees are trees where each node has a label and the left-to-right
order among siblings is significant. Ordered labelled forests are sequences of ordered
labelled trees. Ordered labelled trees and forests are useful structures for hierarchical
data representation.

Given two ordered labelled forests [’ and G, the local forest similarity is to compute
two sub-forests F’ and G’ of F' and G respectively such that they are the most similar
over all the possible I and G’. Given a target forest I’ and a pattern forest GG, the
forest pattern matching problem is to compute a sub-forest F’ of F' which is the most
similar to G over all the possible F”.

This thesis presents novel efficient algorithms for the local forest similarity problem
and forest pattern matching problem for sub-forest. An application of the algorithms
is that it can be used to locate the structural regions in RNA secondary structures
which is the important data in RNA secondary structure comparison and function
investigation. RNA is a chain of nucleotide, mathematically it is a string over a four
letter alphabet; in computational molecular biology, ordered labelled trees are used

to represent RNA secondary structures.

Keywords: trees , sub-trees , forests, sub-forests, forest edit similarity, forest
removing similarity, local forest similarity, forest pattern matching, RNA secondary

structure comparison
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Chapter 1

Introduction

1.1 Motivation and research objective

Ordered labelled trees are rooted trees where each node has a label and the left-to-
right order among siblings is significant. An ordered labelled forest is a sequence of
ordered labelled trees. Ordered labelled trees and forests are used to represent hi-
erarchically structured information in many areas such as image processing, pattern
recognition, natural language and structured document management [1, 211 [0, [18]. It
is quite often a necessity to measure the similarity between two or more such trees
and forests to determine the similarity between them and identify parts of the trees
and forests that are similar.

Throughout this thesis, we refer to ordered labelled trees and ordered labelled forests
as trees and forests respectively. Since trees and forests are useful object representa-
tions, the need for trees and forests comparison frequently arises. The RNA secondary
structure comparison problem is among which a typical example. RNA is one of the
major macromolecules essential for all known forms of life. In computational biology,
RNA secondary structure can be represented as a tree or a forest. It is a challenging
task to develop the efficient algorithms in order to reveal RNA secondary structure
similarity and difference. The problem of RNA secondary structures comparison has

attracted much attention in recent research.
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The primary structure of a RNA molecule is a sequence of nucleotides and it folds
back onto itself into a shape that is topologically a forest [Il, 21} 16 18], which we
call the secondary structure. Figure 1.1 shows an example of the RNA GI:2347024
structure: (a) is a segment of the RNA sequence, (b) is its secondary structure and
(c) is the corresponding tree representation. All the bonded pairs are treated as units
and they are bold in (a), (b) and (c¢). Algorithms for the edit distance between two

forests (trees) [I7, [7] can be used to measure the global similarity of forests (trees).

=UGAUAAAGCAGAAAACUGAGCAGUCAUCCCUGUGUGUAGGGGUAUAUCG-

(a)
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CG
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Figure 1.1: RNA structure and tree representation.[24]
(a) A segment of the RNA GI: 2347024 primary structure [9], (b) its secondary
structure, (c) its tree representation.



CHAPTER 1. INTRODUCTION 3

1.2 Preliminaries and notation

We first present the definitions and notations used throughout the thesis.

Let T be a rooted ordered labelled tree of n nodes. Each node is labelled by a symbol
from a given alphabet. Given any two nodes, they are either in an ancestor-descendant
relationship, or in a left-right relationship. All the nodes in T" are numbered with a
left-to-right post-order numbering from 1 to n. The left most leaf will be numbered
with one and the root will be numbered with n. Let F' be an ordered labelled forest. It
is defined as a sequence of ordered trees. Note that all the trees and forests mentioned
in this thesis are ordered labelled trees and ordered labelled forests. A sub-tree of F
is any connected sub-graph of F. Since each tree in F' is a rooted tree, a sub-tree
has a root. A sub-forest of F'is a sub-sequence of sub-trees of F'. The order of the
roots of the sub-trees in F' is consistent with the order of nodes in F. A complete
sub-tree of F' is a sub-tree consisting of a root and all of its descendants in F'. A
complete sub-forest of F' is a sub-sequence of complete sub-trees of F. A sibling
sub-forest is a sequence of sub-trees such that their roots are siblings. A closed sub-
forest is a sequence of sub-trees such that their roots are consecutive siblings. Let
fli] denotes the ith node in F. We also use f[i] to represent the label of the ith
node if there is no confusion. Let [(i) denote the post-order number of the leftmost
leaf descendant of f[i]. F[i] denotes the complete sub-tree rooted at f[i]. F[i..j] will
generally be an ordered sub-forest of F in the post-order numbering, induced by the
nodes numbered from ¢ to j inclusively. Dr and Lg denote the depth and the number
of leaves of F' respectively. Let |F'| be the number of nodes in F. Let subf(F') be
the set of sub-forests of F'. Let subcf(F) be the set of complete sub-forests of F' and
subcf(F,node_set) be the set of complete sub-forests of F' such that nodes in node_set
are not in any of the sub-forests. subcf(F) is actually equal to subcf(F, (). Let F'\ f
represent the sub-forest resulting from the deletion of sub-forest f from F.

As illustrated, Figure 1.2 shows the forest F in Figure 1.1(c) with these notations.
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Figure 1.2: Forest F with notations. [10]
Examples of the forest F in Figure 1.1(c) and its sub-forests with notations.

1.3 Previous work

Given two trees F and G, the global tree edit distance problem is to compute the
edit distance between them. Tai [3] presented an algorithm using O(|F| - |G| - Dg? -
D¢?) time. Later, Zhang and Shasha [7] developed an algorithm which improved the
running time to O(|F| - |G| - min{Dp, Ly} - min{ D¢, Ls}). A better algorithm from
Demaine et al. runs in O(|F|-|G|*- (1 + log }g})) time [I7]. Both distance metric and
similarity metric can be applied to these algorithms. These algorithms can also be
used to solve forest distance problem.

Given a target forest I’ and a pattern forest G, the forest pattern matching(FPM)
problem is to determine a sub-forest F” of F' which is the most similar (having the

maximum similarity score) to G over all the possible F”. Jansson and Peng [20] gave

an algorithm for the special case of FPM for closed complete sub-forests that runs in
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O(|F|-|G|- Ly -min{Dg, Lg}) time and O(|F|-|G|+ Lp-Lp-|G|+|F|-LrLc-LeDg)
space. Later, Zhang and Zhu [§] designed a more efficient algorithm which runs in
O(|F| - |G| - min{Dp, Lr} - min{ D¢, Lg}) time and O(|F| - |G|) space.

Given two ordered labelled forests F' and G, the local forest similarity problem is to
determine a sub-forest F’ and a G’ of F' and G respectively such that they are the most
similar over all the possible F” and G’. Two special cases of this problem, when the
sub-trees are a sibling sub-forest and closed sub-forest respectively, have been studied
which are local forest similarity for sibling sub-forest and closed sub-forest. Liang [10]
presented two efficient algorithms that run in O(|F|-|G|-min{Dp, Lr}-min{ D¢, Lg})
time and O(|F| - |G|) space. Peng [24] gave an algorithm for LFS on closed complete
sub-forests using distance metrics that runs in O(|F|-|G|-Lp-D¢) time and O(|F|-|G|)
space.

Both the distance metric [I7, [7] and similarity metric [I5 [10] can be used for the
global similarity problem and pattern matching problem between two trees or two
forests. However the distance metric is not suitable for the local similarity problem.
For distance metrics, the goal is to compute the minimum score; so it is quite a
possible scenario that the local similarity may end up with two identical leaves, one
from each tree, matching and producing an optimal distance score zero. Therefore,
the similarity metric defined in [I5] is used for the local forest similarity algorithms

to be investigated here.

1.4 Thesis organization

The organization of the thesis is as follows:

Chapter 2 introduces forest edit similarity (FES) which serves as the basis of the
algorithms developed; the related essential concepts and definitions are also covered.
Chapter 3 presents the algorithm for the local forest similarity (LFS) problem for
sub-forests which can be used to compute local similar regions between two forests.
We first introduce the forest removing similarity (FRS) for sub-forest algorithm which

computes the similarity scores between two sub-trees. Then, we introduce our algo-
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rithm to solve the LE'S for sub-forest problem which is based on FRS for the sub-forest
algorithm.

Chapter 4 presents the algorithm for forest pattern matching (FPM) problem for
sub-forest. We first introduce the forest removing similarity (FRS) for forest pattern
matching which can be used to compute the tree pattern matching scores between two
sub-trees. Then, we introduce our algorithm to solve the LFS for sub-forest problem
which is based on the FRS for forest pattern matching algorithm.

Chapter 5 depicts the implementation of our algorithms for the LFS problem and
FPM problem. We also present some implementation by using RNA examples.

Chapter 6 contains conclusions and suggestions for future research.



Chapter 2

Tree Edit Distance and Similarity

Computing the distance or similarity between trees or forests under various measures
has been accepted in the comparison of two forests or trees. Note that all the trees
mentioned in this thesis are ordered labelled trees. Forest edit similarity uses both the
similarity metric and forest edit mapping [10]; it serves as the basis to solve the forest
removing similarity (FRS) problem, local forest similarity (LFS) and forest pattern
matching (FPM).

2.1 Edit operations

Edit distance is based on edit operations on tree nodes. For an ordered labelled forest

F, as Figure 2.1 shows, there are three edit operations:

(a) Change: to change one node label into another in F'.

(b) Delete: to delete a non-root node Iy from T with parent /;, making the children
of I, become the children of [;. The children are inserted in the place of I, as
a subsequence in the left-to-right order of the children of /;. To delete a root

node [, from F', the children of [ become roots of rooted trees.

(c) Insert: on the complement of deletion, inserting a node Iy as a child of {1 in F

making [, the parent of a consecutive subsequence of the children of [;.
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(a) zl - @
(b) h —i h
!

(C) ll S o

2

Figure 2.1: Forest edit operations [9].

We use A to present an empty label. An edit operation is a pair (a,b) # (A, A) [3],

where a is either A or a label of a node in forest ' and b is either A or a label of a

node in forest G; a change operation if a # A and b # A; a delete operation if b #£ A;
and an insert operation if @ # A. Let Y. be a label alphabet and Y = >_"UA. Each

edit operation is associated with a cost. We use a distance metric on ) .

In mathematics, a distance metric on a set X is a function that a real-valued non-

negative function d(a, b) on the Cartesian product X x X which satisfies the following

conditions:

(1) d(a, b) > 0, d(a, b) = 0 only if a = b;

(2) d(a, b) = d(b, a);

(3) d(a, b) < d(b, ¢)+ d(a, ¢);
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2.2 Edit distance

In this section, we introduce edit distance metric on trees and forests based on the
distance metric on labels introduced in Section 2.1.

Edit distance is a way of quantifying how dissimilar two forests are by counting the
minimum cost of a sequence of edit operations required to transform one into the
other. If the costs of edit operations equal to 1, the distance between two ordered
trees is considered to be the number of operations such as insert, delete and modify
to transform one tree to another. If we want to know how to use a minimum cost to
transform one tree to another, both cost and the sequence of operations have to be
computed.

The tree edit distance problem is to compute the edit distance and a sequence of edit
operations turning 77 to T5. The cost is the sum of the costs of the operations; an
optimal edit distance between T} and T5 is a sequence of operations between 17 and

T, of minimum cost.

2.3 Edit mappings and edit similarity

An edit mapping (or just a mapping) between T and Ty is a representation of the
edit operations to transform 77 to 75, which is used in many of the algorithms for
the tree edit distance problem. An edit mapping is a way to transform one tree to
another. Given two forests F' and G, let f[i] and g[j] be the nodes and corresponding
labels in F' and G, respectively. Note that both F' and G have numbering. We use
"—7in place of "A’ to represent an empty label.

Formally, define the M to be a mapping from F to G, where M is any set of pairs of
integers (i, j) satisfying:

(1) 1<i<[F[1<j<|G[;

(2) for any pair (i1,j1) and (i2,j2) in M,
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(a) i1 = iy if and only if j; = js (one-to-one condition);

(b) f[i1] is an ancestor of f[is] if and only if g[41] is an ancestor of g[js] (ancestor

condition);

(c) f[i1] is to the left of f[is] if and only if g[j;] is to the left of g[js] (sibling

condition).

Figure 2.2: A forest edit mapping from F to G.

As shown in Figure 2.2, a mapping from F to G which consists of (1,1), (4,3), (5,4),
(6,5). If a pair of nodes is in the mapping, they are connected by a dot line. If a node
is not in the mapping(not touched by any line), it will be deleted or inserted. Later
in this thesis, if a pair of nodes is in the mapping, we say they are touched by a line.
Let I and J be the sets of nodes in F and G, respectively, not touched by any line in
M. Then the distance D of an edit mapping M is given by:

DOM)= 3 dfilali) + SA0T] )+ Sl wher
" I={ i | there is no j that (i,j)e M }

J={j | there is no i that (i,j)e M }

From all possible mappings, we define minimum cost mapping between F and G as

follows:
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o(F, G) =min { D(M) | M is a mapping between F and G }.

As mentioned above, we used a distance metric in the mapping. A similarity metric
also can be used in mapping. In this thesis, we use an edit similarity to replace the
edit distance and we use similarity scores instead of distance costs. The similarity
metric definition is described as: given a set A, a real-valued function s(a, b) on the
Cartesian product A x A is a similarity score if, for any a, b, ¢ € A, it satisfies the

following conditions:
(1) s(a, a) > 0;
(2) s(a, b)=s(b, a);
(3) s(a, a) > s(a, b);
(4) s(a, b)+ s(b, ¢) < s(b, b)+ s(a, ¢);
(5) s(a, a)=s(b, b)= s(a, b) if and only if a = b. [I5]

Let the M to be a mapping from F to G. Let I and J be the sets of nodes in F and G,
respectively, not touched by any line in M. Then the similarity S of an edit mapping
M is given by:
S(M)= >_ s(ffil.gli) + 2os(tli’],—)+ X2 s(—.g[j’]), where
(4,5)eM i'el j'ed
I={ i | there is no j that (i,j)e M }
J={j | there is no i that (i,j)e M }

The similarity metric can be extended to edit mapping from an alphabet. We use
¢(F, G) to represent the edit similarity between two forests throughout this thesis.
The definition of S making ¢(F, G) a similarity metric between forests, is called a
forest edit similarity. To compute the forest edit similarity means to compute the

maximum score mapping which is denoted by ¢(F, G).

o(F, G) = max { S(M) | M is a mapping between F and G }.
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Based on the five properties listed above, s(a, a)>0 and ¢(F, F')>0. We usually set
s(-,-)=0 because there would be neither bonus nor penalty when mapping two nodes

with empty labels and set ¢(0), #)=0. So that s(a, -)<0 and ¢(F, 0)<0.[10]

2.4 Edit distance and edit similarity

The ordered edit distance metric was introduced by Tai [3]. Given two forests F' and
G, Tai presented an algorithm for the forest edit distance problem using O(|F| - |G| -
Dg? - Dg?) time and O(|F| - |G|) space by using pre-order numbering. Zhang and
Shasha then presented a much simpler algorithm [7] which improved the running time
to O(|F| - |G| - min{Dp, Lr} - min{ D¢, Ls}) by using post order numbering. In this

thesis, we use edit similarity with some modifications of edit distance.
Lemma 2.1 Let F', G be defined as above, (i) is the leftmost descendent node of
£(i)
(1) (0,0) =0
(2) Vi e F\¥i' € {l(i), ..,i},
(F[1(i)..7],0) = ¢(F[I(2)..«' — 1],0) + s(f['], —).

(3) Vj € G,Vj" €{l(j), .7},
¢(0,GlL(G)-3) = o0, GlI(5)--5" = 1]) + (=, gli"])-

Proof This is directly from Lemma 3 in [7]. O

We consider mapping from F[l()..i'] to G[l(j)..5'] and that mapping must respect
ancestor and sibling orders. If it includes a line from f[i'] to g[j’] and (¢, 5') is in the

mapping, the mapping will consist of

(1) a mapping from the complete sub-tree F'[i'] to the complete sub-tree G[j'].

(2) a mapping from the forest of F with the complete sub-tree F'[i'] removed to the

forest of G with the complete sub-tree G[j'] removed.
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So we can have Lemma 2.2.

Lemma 2.2 [7]V(i,j) € (F,G), Vi’ € {I(4), ...,i} and ¥j' € {I(j),...,5},
[ o(FlIG)..7 — 1], GUG). 5 + s(FIi), —),
S(FII().-7), GllG)..7' — 1)) + (= gli']).

O(Fl(3)..7], G[L(j)-.7']) = max O(F(2)..1(") — 1], G[I(5)..L(7") — 1))

(FL(3")..7" = 1], GL(5")..7" — 1])

Proof This is directly from Lemma 4 in [7]. O

To simplify the calculation of ¢(F[I(i)..i'], G[l(7)..5']), consider two cases of ¢(F[l(i)..i'], G[l(j)..5'])
(1)F[i(2)..7'] and G[I(j)..j'] are both trees.

(2)F[i(3)..7'] or G[l(j)..5] is a forest.

So that let i, j, F' and G be defined as above, (i) < <iand I(j) < j <j

Y(i,j) € (F,G), Vi’ € {l(i), ..., i} and Vj" € {I(4),..., 7}

I 1(7) = 1(3) and 1(7) = 1(j),

P(F[I(0).i" = 1], GlU(7)--5']) + s(f1i'], —),
P(F[1(2)..'], GI(7)--']) = max § - o(F[U(2)..¢'], G[U(5)--5" = 1]) + s(=, g[i"]),

If 1(i') # 1(3) and 1(j") # 1(5),

)+
S(F(I(0)-1'), GU(j)--f]) = max ¢ G(F[1(3)..¢'], Gli(5)..7' — 1]) +
l

This is directly from Lemma 5 in [7].
Based on Lemma 2.1 and Lemma 2.2, we have Algorithm 1 and Algorithms 3 shown

below



CHAPTER 2. TREE EDIT DISTANCE AND SIMILARITY 14
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Figure 2.3: Lemma 2.2[7]

Algorithm 1: T'S(F, G)

Input: Forest F' and G.

Output: ¢(F[i],G[j]), where 1 <i < |F|and 1 <j <|G|.
1 for i :=1 to |F| do
2 for j :=1to |G| do

3 ‘ TreeSimilarity(i, j)
4 end
5 end

Zhang-Shasha’s algorithm also used the concept of key root [23]. Define k is a key

root node and the key root node set K of forest F' as follows:
K(F) = {k|there exists no k' > k such that I(k) = [(K')}.

That is, if k is in K then either k is the root of F or k has a left sibling. Intuitively, this
set will be the roots of all the sub-trees of tree F that need separate computations. In
array K, the order of the elements is in increasing order. With the introduction of the
key roots [7] concept, we only need to compute TreeSimilarity(i, j) with i € K(F)
and j € K(G), instead of all ¢ and j.
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Algorithm 2: TreeSimilarity(i, j)

1 ¢(0,0)=0
2 for i’ := (i) to i do

s | @(F[I(i).4],0) = ¢(F[I(i)..i' — 1],0) + s(f[¢'], —)

4 end

8 for i’ :== (i) to i do

9 for j/ :=1(j) to j do
10 if [(i') =1(i) and I(j') = (j) then
11 o(F[U(d).7'], GlL(4)-5']) =
Q(F[I(2)..1" — 1], GU(4)--4"]) + s(f[¢'], —),
max ¢ O(F[I(2)..7], G[l(5)..j" — 1)) + s(—, gls']),
Q(F[I(2)..t" = 1], Gll(7)-.5" — 1)) + s(f[7'], g[J"])
12 o(F[i'], G[j']) = o(F[1(3)..¢'], G[1(4)--5'])
13 else
14 O(FIL(). &', GII(H). 7)) =
P(F[I(2)..1" — 1], GU(4)--4"]) + s(f[¢'], —),
max ¢ (F[I(2)..7], Gll(7)..5" — 1]) + s(—, g[J']),
S(PIIG0)..L(#') — 11, GG)-AG) — 1)) + 6(FI7), GI7))
15 end
16 end
17 end

Algorithm 3: SZS(F,G)

Input: Forest F' and G.
Output: ¢(F[i],G[j]), where 1 <i < |F| and 1 < j <|G]|.

1 compute K (F') and K(G) and sort them in increasing order into arrays K; and

K, respectively
2 for i’ :==1 to |K;| do
3 for j/:=1 to |K,| do
4 i= K[
5 J = IKalj]
6 TreeSimilarity(i, j)
7 end
8




Chapter 3

Local Forest Similarity For

Sub-forests

Local forest similarity (LFS) aims at computing locally similar regions in two forests.
In this Chapter, we consider the LFS problem for forests which are sequences of sub-
trees. The roots of the sub-trees are nodes of the forests. Given two ordered labelled
forests F' and G, the local forest similarity problem is to determine sub-forests F”’ and
G’ of F' and G respectively such that they are the most similar over the all possible
F" and G'.

The algorithm of LFS is to compute the maximum score of the following formula,

LFS(F, G):F/aégqﬁ(F’,G’)
F' e subf(F)
G’ € subf(G).

3.1 The algorithm for local sequence similarity and
longest common sub-sequence

Sequences are a special case of trees/forests. A sequence can be considered as a linear
tree or a forest so that all the trees in it have only one node. For sequence, the LFS

problem becomes a local sequence similarity problem when we consider it as a linear

16
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tree and weighted longest common sub-sequence problem when we consider it as a
forest of singleton trees.

Local sequence similarity (LSS) problem [2] is to determine two sub-sequences from
two given sequences such that they are most similar. Figure 3.1 shows the local
sequence alignment.

The problem is defined below.

51

S2
Figure 3.1: Local sequence similarity alignment.

Given two sequences Si[1..m], Sa[1..n], SMS computes the maximum score using the

following the formula
SMS(Sy, So)=max{¢p(S[i..j], So[k..l])|1 <i<j<m,1<k<I<n}

Dynamic programming was used to solve this problem by Smith and Waterman [2].
They also give another interpretation of the LSS problem. The SMS(i,j) is the

maximum similarity score of two segments ending at S[i], S2[j]
SMS(i, f)=masc{0; (1 [1".i], Sl DI < ¥ <i,1 < f < j}
z/7j/
The SMS(S7,.55) is defined as follow:

SMS(S1, Sa)=max{SMS(i,5)}
[2¥}
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Algorithm 4: Local sequence similarity
Input: S;, Sy, All the s(i, —) ,s(—,7), s(i,7) where i,57 >0
Output: max¢(Sy[i'..4], Sa[l..1]), where 1 < i’ < < |[S1],1 <5 <j <|[S,.

1 for i =0 to |Sy| do

2 | 1,00 =0

3 end

4 for j =0 to |S,| do

5 | 6l0,5] =0

6 end

7 for i =1 to |S;| do

8 for j =1 to |S3| do
0,

o o(i — 1,5 — 1) + (i, j),

PRI E AN GG 1) s,
¢(Z>] - 1) + S(_7j)'

10 end

11 end

As Algorithm 4 shows, consider the optimal solution, there are two segments ending
at (7,7). In the dynamic program matrix, initial deletions of S, are set at ¢[0, j] = 0.
Initial insertions of S are set at ¢[¢, 0] = 0. Think of the all possible segments ending
at(i,7), if o(i — 1,7 — 1)+ s(i,5),0(i — 1,5) + s(i, =), ¢(i,j — 1) + s(—, j) ends with
all negative values, then there is no positive scoring segment ending at (7, j) and the
value is 0 since the optimal solution is two empty segments. If there is one or more
positive scoring segments ending at (i,7), (i,7) is in the alignment. We pick the
largest positive score as an optimal path.

The longest common subsequence (LCS) problem is to compute the longest sub-
sequence common between two sequences. Figure 3.2 shows the longest common
sub-sequence. Given two sequences Si[1..m| and Sy[1..n], Algorithm 5 computes the
maximum length of the LCS by using dynamic programming. From Algorithm 5,
to compute the longest common sub-sequences to C[i, j|, compare the elements S [i]
and Sy[j]. If they are equal, then the sequence C[i — 1,5 — 1] is extended by that
element. If they are not equal, then the longer of the two sequences, C[i — 1, j] and

Cli,j — 1], will be retained.
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S2

Figure 3.2: Longest common sub-sequence

Algorithm 5: Longest common sub-sequence
Input: Sl, 52, CHSl”HSQ” =0
Output: LCS
for i =0 to |S;| do

| Cli,0]=0
end

for j =0 to |S3| do

| Cl0.5] =0

end

for i =1 to |S;| do
for j =1 to |Sy| do

if Sl[l]:SQ[j]7 then

| Cli,j]=Cli—1,j—1]+1
end

if Sl[l]#Sﬂj], then

Cli, j| = max{ g%,j i’ﬂ

© 00 N O A W N o=

- e
(O )

=
w

14 end

15 end
16 end

3.2 Forest removing similarity for sub-forests

From the definition, we want to compute sub-forests F’ and G’. An ordered labelled
forest is a sequence of ordered labelled trees. The unit of the sequence is a sub-tree.

In the computation, we actually need to determine a sequence of nodes, i1, 2, ...ip,

from F and G respectively such that they are not of ancestor-descendant relationship.
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Lemma 3.1 Given the forests F and G, let 11,19, ...i,, be sequence of nodes of F. let

1,72, ---Jm be a sequence of nodes of G, then

LFS(F.G)= max 5 maxo(Flin]\ £.GLid \ o)
f € subcf(Fliy),ix), g € subcf(Gljxl, jr)
1 < m < min(|F|,|Gl)

1<ip <|F|, 1< <G|

Proof Suppose F” and G’ are the optimal solution such that they can make maximum

LFS(F,G).

LES(F, G)=max ¢(F", G)
F' € subf(F)
G’ € subf(G)

Both sub-forests F’ and G’ are sequence of sub-trees. Each sub-tree has a root.
¢(F',G") is a mapping from F’ to G'. Assume all the roots are in the mapping and
roots of F’ map with roots of G’. If not, there is one or more roots not in the mapping,
then they could be deleted. Situations like this will cost score penalty which is non-
positive. So removing of these nodes will not make the score worse. F’ and G’ are
ordered labelled forests. The root of the first sub-tree in F’ must map with the root
of the first sub-tree in G’, and the rest of the roots map with each other according
to the order. Consider all roots are in the mapping and map according to the order,
the number of sub-trees of F’ should be equal with the number of sub-trees of G'.
Consider a pair nodes iy and jj from ¢(F’, G') mapping with each other, the score is
o(Flik)\ £, Gljk) \ 9). ¢(F',G") should be the sum of each pair of sub-tree’s maximum
edit similarity score. Normally, max ¢(F’, G') will be larger than 0. If not, the best
mapping is empty tree.

Suppose there are m sub-trees in F’ and G’ respectively.

B(F, G)=3 max 6(F[i \ £.GLix] \ o)
f € subcef(Fli],ix), g € subcf(G[jkl, Jx)

So that
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m

LES(F,G)=,  max > max(Fli]\ f, Gl \ )
f € subcf(Flix],ix), g € subcf(Gjx]. jr)
1 < m < min(|FJ,|G])
1 <ip <|F[, 1 <jr <|G]

[

From Lemma 3.1, in order to compute LFS(F,G), two steps are necessary. First
step, compute all the ¢(F[ix] \ f, G[jk] \ g). Second step, select several(m) ¢(F'[ix] \
f, G[jr]\ g) such that the sum of the scores are optimal. For the first step, to calculate
o(Flie)\ f, Gljr] \ 9), we extend Smith and Waterman’s LSS algorithm from sequences
to trees. In their LSS algorithm, they removed prefix of the sub-sequence. In our
algorithm, complete sub-trees can be removed without penalty. In this section, we
propose forest removing similarity(FRS) for sub-forests algorithm to calculate the
maximum similarity scores of all F'[i] and G[j] when some sub-forests can be removed
from both of F[i] and G[j].

The problem is defined as follows:

Given two forests F and G, FRS for sub-forests

@, (F[i], Glj]) = H}gW(F[i] \ .Gl 9)
| € subcf(F1i],1)
g € subcf(Gljl,7)

The subscript “rr” represents that sub-forests or children nodes of both F and G can

be removed.

We use the formula from [7]

For ®,,.(F[l(i)..7'], G[I())..j']), where [(i) < ¢ <iand [(j) < j < j.

(a) @,..(0,0) = 0.

(b) @y (F[I(i)..i"],0) =
d

. 0.
(c) @,.(0,G[I(j).-51) = 0.
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@, (F[1(2)-1(¢") = 1], GlU(5)--5"]),
O, (FU(E).. '], GlL()-1(5") = 1]),

(d) (IDTT(F[Z(i)..’i,],G[l(j)..j/]) — max (P’I‘T(F[Z(Z‘) i’ — 1]’ G[l(]) ]I]) + s(f[z’], _)a
@, (F[1(2).4'], G[1()--5" — 1]) + s(—, g[i"]),
O, (F[1(2)-1(") = 1], GlI(5)--1(5") = 1])

For case(a), edit operation is not required. For case(b), F[i(i)..i'] can be removed
so that no edit operation required. For case(c), G[I(j)..j'] can be removed so that no
edit operation required .

For case(d), five cases should be considered

For the ®,,(F[l(7)..7'], G[l(j)..7']), five cases should be considered

Case 1: whether or not the sub-tree F[[(i)..i'] is removed.

Case 2: whether or not the sub-tree G[I(j)..5'] is removed.

If it is not one of the cases above, consider the optimal mapping M between F'[[()..7']and
GI[l(7)..7'] after we perform an optimal removal of sub-trees of F[I(7)..7'] and G[l(7)..5'].
The mapping can be extended tof[i'], and g[j'] in three ways

Case 3: f[i'] is not touched by a line in M, then (¢, —) € M.

Case 4: g[j'] is not touched by a line in M, then (—,j’) € M.

Case 5: f['] and g[j’] are both touched by lines in M, then (¢',j") € M.

This is directly from[7].

To simplify the calculation of ¢(F[I(i)..i'], G[l(7)..5']), consider two cases of ¢p(F[l()..i'], G[l(j)..5'])

(1) F[i(:)..7'] and G[I(j)..j'] are both trees.

(2) F[l(i)..i'] or G[I(j)..j'] is a forest.

Let i, j, F and G be defined as above, [(i) < <iand I(j) < j <j
V(i,j) € (F,G), Vi’ € {l(i),...,i} and V' € {I(y),..., ]}
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I£ 1(7) = 1(3) and 1(j') = 1(j),

If 1(i') # 1(3) and I(j') # 1(5),

\

0

q)rr(F[l(Z)Zl - 1]7 GU(.])J/D + S(f[ﬂ? _)7

@, (F[I(2)-7'], G[1(5)--5" — 1)) + (=, g[s"]),

@, (F[I(2)-i" = 1], GlI(5)..5" — 1]) + s(f[¢'], gl3'])-

(4)..1(") = 1], G[U(5).-4"]),
(0).4'], G[1(5)-1(5") — 1)),

(0).4" = 1], GU(5).-5"]) + s(f[i'], -),

(0)..i'), G[L(§)..7 = 1]) + s(—, g[5']),

(i)..1(7) — 1], GL()..1(j") = 1]) + @, (F[i'], G[}']).

This algorithm can be implemented to run in O(|F|-|G|-min{Dp, Ly} -min{ D¢, Lg})

time and O(|F| - |G|) space by using the Zhang-Shasha algorithm.

Zhang-Shasha-RemovingSimilarity is an efficient method to solve tree removing simi-

larity problem. ®,.(F[i'], G[j']) is the key data of LF'S problem and is needed in next

section.

Algorithm 6: RemovingSimilarity(F, Q)

[y

® NI o oA WN

Input: Forest F' and G.

Output: ®,.(F[i], G[j]), where 1 <i < |F|and 1 < j <|G|.
compute K (F') and K(G) and sort them in increasing order into arrays K; and

K5 respectively.
for i/ :=1 to |K;| do
for j/ :=1 to |K3| do
i:= Ki[i']
J = Ka[j']
TreeRemovingSimi(i, j)
end

end
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Algorithm 7: Tree RemovingSimi(i, j)

13

17 end
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3.3 Our algorithms for local forest similarity

In this section, we modify the weighted longest common sub-sequence algorithm and
use it on trees to calculate LF'S(F,G), the second step mentioned in Lemma 3.1. A
matrix DP[|F|][|G|] is designed to calculate LF'S(F,G) by using dynamic program-

ming.

Lemma 3.2 Define ¢ is ith node in F, j is jth node in G,
DP(i,j) = LFS(F[1...i], G[1...5]), DPi, ] = 0, DP[}, 5] = 0 then

DP(i—1,7)
DP(i,j) = max{ DP(i,j — 1)
DP(l(i) = 1,1(7) = 1) + & (Fli], G[j])

Proof Consider the optimal solution mapping of F[1...i] and G[1...j], suppose iy, ...ip,
J1---Jm are the optimal sub-tree’s roots of optimal solution mapping. Compute DP(%, j),
to determine whether or not node i is i,, and whether or not node j is j,,. Case 1,
node i is not i,,. The maximum similarity score is from F[1...; — 1], G[1...j]. Case 2,
node j is not j,,. The maximum similarity score is from F[1...i],G[1...j — 1]. Case
3, node i is i,, and node j is j,,. Both f[i] and g¢[j] are in the mapping so that they
are the last pair till (i,j). From definitions above, F[i] and G[j] should be mapping
with each other. The optimal edit similarity mapping score is ®,..(F[i], G[j]) so that
DP(i,§) = DP(I(i) — 1L,1(j) — 1) + @, (F[i}, Gj)).

L]

Figure 3.3 shows three cases of computation for local forest similarity of F[1...i], G[1...j].

Based on Lemma 3.2, we design Algorithm 8 as follows
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Figure 3.3: Local forest similarity operations

Algorithm 8: Local forest similarity for sub-forest

w N O oA W N R

10
11

Input: forest F' and G ®,,(Fi], G[j]) where 1 <i < |F|and 1 <j <|G|
Output: DPI[|F|][|G]]
for i =0 to |F| do
| DP[i,0] =0
end
for j =0 to |G| do
| DP[0,j]=0
end
for i =1 to |F| do
for j =1 to |G| do
DP(i—1,j)
DP(i,j) =max<{ DP(i,j—1)
DP(() - 1,1(7) = 1) + B,,(F[i}, GLj)

end
end

The local forest similarity for sub-forest algorithm shows how similar F' and G are.

The value of DP[|F|][|G]] is the maximum similarity score. The detail of sub-forests
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is needed and the mapping can be calculated by Algorithm 9.

T RStraceback is a procedure used in Algorithm 9. The main idea of T'RStraceback
algorithm is to calculate ®,..(F'[i], G[j]) by using T'ree RemovingSimilarity algorithm
and using a matrix which is large enough (|F| % |G|) for storing intermediate results.
Then, use the matrix to determine the optimal result. When tracebacked to i and
j, the algorithm determines whether or not they are involved. If so , T'RStraceback
algorithm calculates how F[i] and GJj] are mapped with each other by calculating
the sequence of mapping operations (insertion\deletion\mapping) so that the optimal

solution can be achieved.

Algorithm 9: Traceback
Input: Matrix DP[|F|][|G]]
Output: max¢(F \ f,G \ g)

1 i=|F|

2 j=[G

3 while ¢ # 0 and j # 0 do

a | if DP[i][j] == DPIJi][j — 1] then
5 J— =

6 Continue;

7 end

8 if DPJi][j] == DP[i — 1][j] then
9 1 — —

10 Continue;

11 end

12 | if DPJi|[j] == DP{li] - [Ilj] - 1] + @, (F[i]. G[j]) then
13 if ©,,(F[i],G[j]) > 0 then

14 | TRStraceback(i, j);

15 end

16 i=1i] — 1,

17 j=1j-1

18 Continue;

19 end

20 end

In this Chapter, we have introduced our algorithm for forest removing similarity

problem. The implementation and experimental results are described in Chapter 5.



Chapter 4

Forest Pattern Matching For

Sub-forests

Forest pattern matching (FPM) aims at computing regions of forest ' which are most
similar to another forest GG. Generally, F' is much larger than G. In this chapter, we
consider the FPM problem. Given two ordered labelled forests F' and G, the forest
pattern matching for sub-forest problem is to determine sub-forest F’ of F' such that
it is the most similar to G over all the possible F’ .

The goal of FPM for sub-forests is to compute the maximum score of the following

formula,

FPM(F, G):sz}X¢(F’,G)
F' € subf(F)

4.1 The algorithm for sequence pattern matching

It is known from section 3.1 that a sequence is a special case of a tree/forest. In this
section, we introduce the pattern matching problem on sequences.

Sequence pattern matching (SPM) is to compute the best fit of a “short” sequence
into a “longer” sequence. The SPM algorithm computes where the short pattern ap-

proximately appears in the longer sequence. Consider the problem of fitting sequence

28
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A = ay...a, into B = b;...b,, where n is much smaller than m. The problem is to

compute

SPM(A, B)= max{d(A,bgbgy1..bi_1b) : 1 <k <1 <m}

Figure 4.1: Sequence pattern matching

From Figure 4.1, we take another approach. Note that deletions of the beginning and
the end of B are without penalty. Define

SPM(Z,]) = n}fax{qﬁ(alag..ai_lai, bkbk+1...bj_1bj) 01 S k S] S m,i = 77,}
7]

Deletions of the beginning of B without penalty can be encoded when a dynamic
programming matrix is set up. The score of the initial deletion of B ,b1bs...b;, is set
at ¢[0,7] = 0. Each letter of A must be accounted for so that ¢[i,0]=—i x s(i, —).
After initial matching, deletion at the end of B as well as A must be accounted for.
Choose the best score of SPM (i, j) from ¢(i — 1,5 — 1) + s(i,7), ¢(i — 1, 5) + s(i, —)

and ¢(i,7 — 1)+ s(—,7) [1].

Two sequences are given as examples, and set s(a,a) = 1,s(a,b) = —1,s(a,—) =
s(—,a) = —2. Figure 4.2 shows the result of sequence pattern matching compued by
Algorithm 10.
A=TATAAT

B=GACACCATCGAATGGCGCAAAACCTT
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Algorithm 10: Sequence Pattern Matching

© 000 N O Ok W N

10

11
12

Input: sequence A and B, All the s(i, —) ,s(—,7), s(i,j) where i, j >0
Output: max{¢(aias...a;_1a;, bpbgi1...b_1b;)}
¢[0,0) =0
for i =1 to |A| do
| 9[i, 0] = oli — 1,0] + s(i, —)
end
for j =1 to |B| do
| o[0,5]=0
end
for i =1 to |S;| do
for j =1 to |S3| do
o(i — 1,5 — 1) + (i, ),
(b(ihj):max ¢(i_17j)+8(i7_)7
¢(Z>] - 1) + S(_7j)'

end
end

e - -

GACACCATCGAAT GGCGCAAAA
0|00 0 O0)0OO0D* 000 O 0000 0000000
11 -1-1-1-1-A1*-1-1-1-11-1-1-1-1-1-1-1-1-1
-2 0/-1(0*|-2/ 0 01|02 -2-2-2 0000
52 -1-2-1-3-2 129421 1-1-1-3-3-3-2-1-1-1
-fi4 3 0-2-2-2-1 0-=200%-1|-1 0-=2-2-4|4-2-1 00
-9 6 H-2-1-3-1-3-2-111-1-241-3-3-5-3-101

o & koo
2
=
R
=
P

Figure 4.2: Result of sequence pattern matching
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4.2 Forest pattern matching for sub-forests

Given two forests I and G where F' is larger than GG, we use two steps to compute
FPM. Step 1, we compute the the forest pattern matching for each pair of sub-trees
between F' and (. Step 2, we extend sequence pattern matching algorithm from
sequences to forests.

In sequence pattern matching, the deletion of the short sequence will cost a penalty.
In forest pattern matching, given two forests F' and G where F is larger than G, the
deletion of any node in G will cost a penalty. The prefix of the larger sequence’s
sub-sequence can be removed in SPM. In our algorithm, complete sub-trees can be

removed from F' without penalty. Define FPMSS as follows

FPMSS(F[i], G[j ])zm?X¢(F[ik] \ [ Gljix])
f € subcf(Fig]).

In this section, we propose the forest pattern matching (FPM) for sub-forests algo-
rithm to calculate FPMSS(F[i], G[j]) of all F[i] and G[j] when some sub-forests can
be removed from Fi].

The problem is defined as follows:

Given two forests F' and G, F' is larger than GG, FPM for sub-forests

Sr(Fi], Gljl) = max o(F[i] \ f, Gl1))
| € subcf(Fi])

The subscript “R” represents that only sub-forests or child nodes of F' can be removed.

To simplify the calculation of ®r(F[i], G[j]), consider two cases of p(F[l(3)..i'], G[L(7)..7'])
(1) F[i(:)..7'] and G[I(])..j'] are both trees.
(2) Fi(i)..7'] or G[I(j)..j'] is a forest.

Let 4,5 F and G be defined as above, [(i) <’ <iand [(j) < j <j
V(i,j) € (F,G), Vi’ € {i(i),...,i} and V5" € {I(4),..., ]}
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I£ 1(7) = 1(3) and 1(j') = 1(j),

OR(FI(i)..'], GlI(5)..5"]) = max

If 1(#') # () and (j') # 1(j),

Op(F[I(3)..i"), G[L(j)..5]) = max

\

r(F[I(i).1" = 1], GlI(5)-5") + s(f1I], -),
R(F[I(i).7], GlI(j)--5" = 1)) + s(=, gli"]),
r(F[I(i).4" =1}, G[1(j)-.g" — 1)) + s(f[i'], g[3"])-

KA

Fll(i

r(F[I).1(") = 1], GlL()--")

1(@).4" =1}, GlI(5)--5") + s(F1], -),

1(2)-2'], GIL(5)--5" = 1)) + s(=, gl5"]),

1@)-1(") = 1], GlU(G)-A(G") = 1)) + e (F], GII])-

K
b

(
R(
R(

(

R

K
T

[
[
[
[

K

F

In the local similarity calculations, prefix of the sub-sequence can be deleted without

penalty. If the two sub-forests or sub-sequences are not quite similar (negative), their

scores are set to 0. But in pattern matching, it can be negative because the deletion

of the smaller forest costs penalty.

This algorithm can be implemented to run in O(|F|-|G|-min{Dg, Ly} -min{ D¢, Lg})

time and O(|F| - |G|) space by using Zhang-Shasha algorithm.

Algorithm 11: FPMSS(F,G)

=

o N O oA W N

Input: Forest F' and G.

Output: ®r(F[i],G[j]), where 1 <i < |F|and 1 < j <|G].
compute K (F) and K(G) and sort them in increasing order into arrays K; and

K, respectively.

for i/ :=1 to |K;| do

for j/:=1 to |K,| do
1= Kl{ll]
j = Ka[j']
FPMSSProcedue(i, j)

end

end
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CHAPTER 4. FOREST PATTERN MATCHING FOR SUB-FORESTS

Algorithm 12: FPMSSProcedue(i, j)
o | Pr(0.G()..5)

4 end
5 for j'
7 end
8 for ¢

9

10
11
12
13
14

17 end



CHAPTER 4. FOREST PATTERN MATCHING FOR SUB-FORESTS 34

4.3 QOur algorithms for forest pattern matching

In this section, we design an algorithm to compute the FFPM. A matrix DP[|F||[|G|]

is used to calculate FFPM(F,G) by using dynamic programming.

Lemma 4.1 Define ¢ is ith node in F, j is jth node in G,
DP(i,j) = FPM(F[1...4),G[1...j]), DP[i,0] = 0, DP[D, j] = DP[D, j—1])+s(—, gl]).
then

DP(i — 1,5)
DP(i,j) =max{ DP(i,j — 1) + s(—, g[j])
DP(I(i) — 1,1(j) — 1) + @r(F[i], G[j])

Proof Consider the optimal solution mapping of F[1...i] and GI1...j], suppose ji...Jm
are optimal solutions mapping sub-tree’s roots in G and they have no parent node in
the mapping. iy, ...i,, are corresponding nodes in F. Compute DP(i, j), to determine
whether or not node i is ,, and whether or not node j is j,,. Case 1, node 7 is not i,,.
The maximum pattern matching score is from F[1...i — 1], G[1...j]. Case 2, node j is
not j,,. The maximum pattern matching score is from F[1...i], G[1...j — 1] plus the
penalty of deleting j. Case 3, node i is i,, and node j is j,,. Both f[i] and g[j] are
in the mapping so that they are the last pair till (i,j). From definitions above, F[i]
and G[j]| should be mapped with each other. The optimal pattern matching score is
®(Fli], G1j]) 0 that DP(i, j) = DP(I(i) — 1,1(j) — 1) + ®(Fli], GLj])

[

Figure 4.3 shows three cases of computation for forest pattern matching of F'[1...i], G[1...5].

Based on Lemma 4.1, we design Algorithm 13 as follow:
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Case 1

Case 3

Figure 4.3: Forest pattern matching operations

The traceback method is the same as for LFS problem. In this Chapter, we intro-
duce our algorithm for forest pattern matching problem. The implementation and

experimental results are in Chapter 5.

Algorithm 13: Forest pattern matching
Input: forest F' and G ®g,(F[i], G[j]) where 1 <i < |F|and 1 < j < |G|
Output: DP[|F|][|G]]

1 for i =0 to |F| do

2 | DP[i,0]=0

3 end

4 for j =0 to |G| do

5 | DP[),j] = DP[),j —1]) + s(—, g[j])

6 end

7 for i =1 to |F| do

8 for j =1 to |G| do
DP(i — 1,7)

9 DP(27]>:maX DP(17J_1)+S(_79[J/])
DP(i) - 1,1(5) — 1) + B, (F[i], CLj)

10 end

11 end




Chapter 5

Implementation and Experimental

Results

In this Chapter, we present the implementation of the algorithms of LF'S and FPM

for sub-forests and experimental results.

5.1 Implementation

A CH+ program is written for the algorithms. First, user needs to choose either LFS
or FPM for the calculation. Second, user has to type in the names of score matrix
file and forest data file. The program will begin the calculation automatically if the
two files can be found successfully. At last, user has to type in a file name. All the

results will be written in the file. Figure 5.1 shows the flowchart of the program.

36
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I: LF5 calculation
2: FPM calculation

3: Exit

—7/ Choose 1. Zord /
/3

Twpe in the file name
of score matrix

Type in the file name of
RMNA data

© ©

Load data

L

(]

Type in the file name
of score matrix

Type in the file name
of RNA data

FS\./FP

Load data

M

/ Type in the file name /

L

Write in

the result

L

M
// Leave 'Y or ‘N’ /

Figure 5.1: Flowchart of program.

L

EID‘
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5.2 Experimental results and discussion

Five experiments are designed to test the algorithm. Experiment 1, 2 and 5 are for
LFS and experiment 3 and 4 are for FPM.

Pseudoknot-free RNA can be represented as forests. Our forest data are taken from
RNA cupriavidus metallidurans and streptomyces bikiniensis. Cupriavidus metal-
lidurans and streptomyces bikiniensis, the RNase P RNA structures of bacteria, are
pseudoknot-free. Cupriavidus metallidurans are renamed from ralstonia metallidu-
rans and previously known as ralstonia eutropha and alcaligenes eutrophus. The
images are taken from the website http://www.mbio.ncsu.edu/RNaseP/.

A forest data file has two sections. The first section represents the forest which is
also the primary structure of forest. The second section contains all the information
of forest’s secondary structure such as the start bases, end bases, stem size etc.. A
‘<’ sign alone on a line separates the two sections.

The score matrix file is significant such that results can be different by using different
score matrix for the same forests. In our experiments, we use the same score matrix
to test our algorithm. As shown in figure 5.2, the scores are set that match is 2,
mismatch is -1, insertion and deletion is -2 for each single base. For a base pair,
match is 4, mismatch is -2, insertion and deletion is -4. The penalty of matching
a single base to a base pair is -9 since it is not reasonable. A high penalty score
setting up can avoid this situation during the computation. Note that the scores are
3 when AU matches UA, CG matches GC and GU matches UG since these kinds of
matches are treated as the good cases in RNA computing although the base pairs
are not exactly the same. When the other reasonable base pairs match with each
other, we set the score to 1 because they are common situations in regard of RNA
secondary structures. ‘ - 7 represents insertion and deletion and ‘ ’ represents the
base is removed.

In the result file, the bases marked with ‘*’ are the regions determined.
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FN& Score Matrix — similarity
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Figure 5.2: Score matrix file.
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Experiment 1

Forest file:
Tree 1
187 UCCC AAATTAGGCAG
201 GCGAUGAAGD GOOCCGCUGA GUCUGCGEGU AGGGA
>
G 4 187 235 i -17.0
L 2 197 226 & -17.0
& B 206 291 5 -2.1
p
5
Tree 2
297 GGUC AAGAGGGEAC ACCCCGGUGT
951 EECHGERCAG AIGHICEAGE CENGENERESE CRAGICEREE GRUARARE
P
{  17) Elrad 299 il -3.1
(18 235 254 g 6. 2
{ 19) 257 289 6 6.9
¢ = 267 283 6 3.7
>
p
Figure 5.3: forest file for experiment 1.
Result file:
Tree 1
(187 :235)
Tree 2
(227:298)

Similarity Score 1s 65. 000000

(CC( 44944 ikt 1=3)33333))) 2300
UCCCAA AUA G GCAGGCGA U GAAG-CG GCC CG-CUGAGUCUGCGGGUAGGGA
FAkdE ok * * R
GGUCAAGA  GGOGACACCCCGGUGUCCCUGCGCGRAUG UUCGAGGEE USC UCGLCCEAGUCCGCGGGUAGACT
4944 COCLCCCT 2203202)  (CC(d] 44844 33303333300 2303

Figure 5.4: Result file for experiment 1.
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CcC GCAGGC
1 IR N

CGUCUG

| | c L]
AT
GGUC \L‘é
c

cac S el
u cd.’ Phy
G560, '»

e T
&\E\g’
Figure 5.5: Result of experiment 1.

In experiment 1, we use two small trees to test the program. Figure 5.5 shows the
result. The program determines one sub-forest from each tree and the maximum
similarity score is 70. 5 sub-trees with one single base are removed from Tree 1 and
6 from Tree 2. One base pair of Tree 1 maps to insertion/deletion. One complete
sub-tree of Tree 2 is totally removed. As the graph shows, the program determines

large areas from the two trees which are most similar.
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Experiment 2

Forest file:

Cupriavridus—sestallidurans—pb—b

AAATCATFILT ATFCAALTHS TEOLUGTALT
ACGUCOCGACY CCACAGCECA CERCUGULGET
GUGCEGAAVA GEEFCCACAGA GACGAGLCUL
GLAAGHEFICA AACGOGCGUAA CCUCCACCUG
COCAUCARCC CCOCCCCUCA CUCUGOOECU
VAACACCOOMS COUAGAGGAA UECLUUCLUCAC
GEOGGGEOE ACAGAALUCCE GCULALCGEEC

Streptomyoez—bikinienciz—mpb—h

GoGCEGOCGE CUCGEECUCT
ACAGAGCAGSE CUGCUGECUA
COCACAGAAA ACACACCECOC
SEUGEDEUAL SACACCACCA
ACCCCACUCG GAGCAAGEUC
AUCUUCCAGCE SOUCCUCEOT
CCCCARDTOC CoOOCUACAL
CCOGEGGACA GAACCCGEOS

>

sl alalalalalalalalalalalalalalalale Rl

Falalelalalalalalalalalalalalalalalalalalalala]

i

1
101
151
201
=21
301

1)
)
)
%)
%)
&)

&)

@)
100
11)
1=)
iz)
140
15)
16)
i7)
ig)
1)
)

1

1
A0
i5i
201
251
201
351

1)
Z)
)
&)
5)
(3
7
=)
@)
1)
11)
1z}
1%}
140
i5)
16)
i7)
1g)
19)
o)
=21)
o)
=3)

1

21
iz
20
23
59
T1
T
21
22
106
111
127
132
i87
197
206
242
281
x84

CCAGOCHET
[i{mlmlterclm i ale
GO TACALL
ACCEUGAARS
GCUAFFUAA
COCUCCTOCC
ACCACCOTEC
ACOGOGAGGL

1
21
1z
20
=3
57
(=)

=

20
104
109
126
g=2-)
161
182
227
238
=37
267
305
42
350

337
326
78

45

42
183
179

g9
105
103
174
172
136
131
235
26
220
261
108
303

394
383
3d1

43

40
233
219

as
103
101
214
212
153
149
179
201
298
54
289
283
324
367
261

Mk L B e O e BF OB e e e DR e B3 B s s

1

=1 B3 =1 sa O3

B B3 e w0 A de

da A8 0O Oh N D de S0 0 AD 1D

UCECACTUCC
ACEHFCCACTTC
CoEGACTCC
GEECCUSAGE
AAFAGHFFFAC
CCACUCOECC
[t et sl et
UVACAGCTCGA

Figure 5.6: forest file for experiment 2.

UCGCCCGHCG
ARAUAGGCAG
AGCCCLCUCE
COCCAAGECG

COAGEAACT

CErEUCAC T
CLCCUCGEUA
CEACUCAGGE
ACCOCEGUGL
CEUACACCOGT
CECCoCCALG
CUCEFUCLG

42
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Result file:

Similarity Score is 467. 000000

COCCOCOOooooed Of  COrooed ] IDDDRDDENDY 4444
AAAGCAGGCCAGGCAACCGCUG CCUGCACCGCAAG GUGCAGGG GGAGGAMN GUCCGGA CUCCACAGS GCA
=S
CGAGCCGGGOGGGCGGCCGCG UGGGEEUT TUCGGACCUCC CCGAGGAA CGUCCGE GUUCCACAS AGCA
COCCOCOOOOoCooooed 00 Cooooed IRDIRDIENDY Coce

LD —000] 13 =000 1330 K 0 COO0 QOO
GOGUGUI-UGGCUAACA GUCAU-CCACGGCA  ACGUGCGGAAU AGGGUCACAC AG AC GAGUCUUGCCGCOCOGGGT
F R T R T T e
GEGUE GUGGCUAAC GGCCA CCCGGGG  UCACCCOGCGGGA CAGUSCCACAGAN AACAGA CCG— CCOGGGGAC
OO0 000 13 0000 130 0 CO0= QOO0

JRRDDEDDERD DY
UCGIOCGEOGGEAS GGEUGAAMT GC  GGUAACCT
ok dok deokkkokokokok
CUCGGUOCUCGE —UTAAGGGUGAAACGGUGGUGUAAGAGACCACCAGOGOC UG AGGOGACUC AGGCGGCUAGGUAANDT
JRRDDEDDEES DY oo Py OOl 23333330 i)

IRRDDRDY. 4944 52444 COC(=o S DIRIRY.
CCACCUGGAGCAATCCCAL ATTA G GUAGGCGA U GAAG-CG GCC CG-CUGAGUCT
* * * E=3

CCACUCGGAGCAAGGUCALAGSE  GOGGACACCCCGGUGUCCCUGCGEGGAUG UUCGAGEGC UGC UCGCCOCGAGUCC
IRBRIDIRDY. cecd oo I3 (000K oo II33330)

1 1) CCCCCCce J333330) 133333 00 (00 Qo]
GCGOCUAGGGAGCUG  GAGCCGGCUGGU AACAGCCGGCCUAGA COAMUGCUUGUCAC GCACCG  ULNIGCCGCA

ook B R S =
GCOOOUAGACCGC  ACGAGGCCGGOGE CAACGOCGGCCCUAGALIGG AUGGCCOUC  GCC CCOACGA-—CCGC G
D DN (e DM NI ((—(C

233333 330 00 SRR
AGGCGGE COGGGCGCACAGAAT CCGGCU UAUC GGCCUGCUULS CUU
P i e I S T R = = = e

AGG—ICCCGG GG ACAGAA COCGGC GUAC AGCCCGACUCG UCU G
1==02 01 1 JEERDBRRID D]

Figure 5.7: Result file for experiment 2.
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Cupriavidus metallidurans i)
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Figure 5.8: Result of experiment 2.
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In experiment 2, we input two whole large RNAs, cupriavidus metallidurans and
streptomyces bikiniensis.

The result is shown in Figure 5.8. Three sub-trees are determined from each RNA.
Two of them are sub-trees which have only one single base. The other ones are large
trees with some of its sub-trees removed.

From the detail, we can see there are other solutions, especially at loop structure
(multiple loop, hairpin loop etc.). In fact, for all kinds of similarity calculation, the
optimal solution may not be unique. To LSS, the maximum score may appear more
than once in the matrix. In LFS, for each point in the matrix, operations may get the
same score. But all these solutions are correct at the algorithm level. Our algorithm

just offers one of the solutions.
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Experiment 3

Forest file:
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Al caliszenes—eutrophus—pb-b

1
|
1m
151
201
251
3m

e

e
T e N e L e T T Lo o
[y
)
.—

3]

o

AAAGUAGGCT AGGCAACCGT UGCCUGCACC GCAAGGUGCA GGGGGAGT
AGUCOGGACT CCACAGGGCA GGGUSUUGGC UAACAGCCAD CCACGGCHA
GUGDGEAATA GGGCCACAGA GACGAGUCII GCCGCCGGGU UCGOOCGE
GUAAGGGUGA AACGCGGUAA CCUCCACCIG GAGCAAUCCT AAATAGGT
GOGAUGAAGC GGCCCGCUGA GUCUGOGGGU AGGGAGCUGG AGCOGGCU
UAACAGCCGE CCUAGAGGAA UGGUUGUCAC GCACCGUUUG COGCAAGT
GGOGGGECGE ACAGAADCCS GCUUAUCGGC CUSCUUUGCU U

1 33T 10 —6. 0
11 326 1 =l
12 278 T —i3
20 45 2 —8. 6
23 42 8 =3id
59 183 4 =1:.3
Tl 173 5 =40
T 89 4 =2
91 105 1 vl
92 103 4 =117

106 174 2 -1.8
111 172 2 —8. 8
127 156 4 —8. 8
132 151 8 =i
187 235 4 -17. 0
197 226 & -17.0
206 220 5 el
242 261 8 =54
281 308 2 =69
284 305 9 =3
50 324 3

54 321 5

EE 215 4

Streptomyces—hikiniensis—-zpk—h

T4

GUGGCUA ACGGCCACCC GGGGUGACCT GCG

Td 858 & =]
29 103 1 =t
20 101 4 Sl
43 381 3
52 373 5
£d 27T 4

Figure 5.9: forest file for experiment 3.
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Result file:

Alcalizenes—eutrophus—rph—t
(1:341)
Streptomyvces—hikiniensis—gpb—h
(T4:103)

Similarity Score is 44, 000000

COCCOCC OOl (0 Cooo(l 13333330 00 4444 OO0 o0
AAACCACGOCAGGC AACCGCUGCCUGCACCOCAAGGUIGCAGGEGGACCAMAAGTICCOGACTUCCAC AGCGCACGGUGC UGG
*

G UGG
€l

L I3 000K 33y 200 (] OO0 COOe00od 13333333 0907
CUAACAGCCANCC ACGGCAACGUGCHGAATAGGGCCACAGAGACGAGUCTIUGCCGOOGGEUUCGICCGGOGEGAAGGET
sk

CUAMOGGCCA

4 JRRY

IDPRIDDDIDED I 4 COCCCT 000 103333330 1330
GAAACGCGGUAACCUCCACCUGG AGCAATCCCAMATAGGCAGGCOG AUGAAGCGGCCCGCUGAGUCTGCGGEUAGGGAGT
+

C
J

COCerC IDRRESERY 23333 0 OOl DI 3
UGGAGCCGGCUGEUAATAGT -CEGCTUAG AGGAATGGUIGUC ACGCACCGUIUGCOGC AAGGEGEGCGEEROGTACAGA
skt koo
COGGGEEUGACCOGOG
Lol IR

D 2332333300
AUCCGGCUUALCGGCCUGCIIIGCUL

Figure 5.10: Result file for experiment 3.
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Alcaligenes eutrophus

RNase P RNA
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Gn ® T 11 ] VT \|||o\.GA
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Figure 5.11: Result of experiment 3.
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In experiment 3, we pick up two complete sub-forests and combine them to a forest.

Then fit it to alcaligenes eutrophus. Figure 5.11 shows the result of experiment 3.

Two parts of the structure are determined. One single base from the first part is

removed. One single base from the pattern is deleted.
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Experiment 4

Forest file:

Alcaligenes-eutrophus—ph-b

1 AMAGCAGGCC AGGCAACCGC UGCCUGCACC GCAAGGUGCA GGGGGAGGAA
51  AGUCCGGACU CCACAGGGCA GGGUGUUGGC UAACAGCCAL CCACGGCAAC
101  GUGCGGAAUA GGGCCACAGA GACGAGUCUU GCCGCCGGGU UCGCCCGGCG
151 GGAAGGGUCA AACGOGGUAA CCUCCACCUG GAGCAAUCCC AAATTAGGCAG
201  GCOGAUGAAGC GGCCCGCUGA GUCUGCGGGU AGGGAGCUGG AGCCGGCUGG
251 UAACAGCCGG CCUAGAGGAA UGGUUGUCAC GCACCGUUUG COGCAAGGCG
201 GECGGGGCGC ACAGAAICCG GCUUADCGGC CUGCUIUGCT U

>
( 1) 1 337 10 6.0
( 2) 11 226 1 -7.9
( 3) 12 378 7 -5. 3
( 4) 20 45 7 -8.6
( 5) 23 42 8 -3.4
( 6) 59 183 4 -1.3
( 7) 71 179 5 -2, 9
( g) 7 89 4 -2.1
( a) a1 105 1 -8.1
{ 10) 92 103 4 -11.7
( 11} 106 174 2 -1.8
( 12) 111 172 2 -8. 8
( 13) 127 156 4 -8.8
( 14) 132 151 8 -2.1
( 15) 187 235 g -17.0
( 16) 197 296 3 -17.0
( 17) 206 220 5 8.1
( 18) 2472 261 8 -6, 9
( 19) 281 308 2 -6, 9
( 20) 284 305 G -3, 7

>

>

Streptomvees—bikiniensis-zpb-h
19 GO GUSGGEGUCU UCGGACCUCC COGAGGAACG

h)
( 4) 20 43 2 -8.6
( 5) 23 40 7 -3.4
b
>

Figure 5.12: forest file for experiment 4.
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Result file:

Alcalizgenes—eutrophus—rhb-b
(1:341)
Streptomyces—bikiniensis—spb—h
(19:50)

Similarity Score is 43, 000000

COCCCCCCCOOOCOCO €0 CoCOooCe RDDIRDIIIDY] coce (00 (0
ABAGCAGEOCAGGCAACCGCUGCCUGCACCGCAAGGUGCAGGEGEAGGAAAGUCCGEACTICCACAGSGC AGGCUCTIUGG
*

&

[ 1333 00K IED DD R G COCC (=000 INEDERDESERDEY
CUAACAGCCAUCCACGGCAACGUGCGGAATAGGGCCACAGAGACGAGTCTUGC -CGOCEGEIUCGOCCGGOG -GG AMGG
* *
C GUGGGGEUCTIICGEACCUCCCC G
0 Cooooe IDRDDDD NI

323330300700 gy qqqqqt Crece DERRR DR 1
GUGAAACGCGEUAACCUCCACCUSGAGC AATCCC AAATAGGCAGGCGATG AAGCGGCCCGCUGAGUCUGC GGG UAGGGA
* * ko * *

A GG AA C G

O] ERRDID DD 1200030y 00 COoroCoe 133332033 3]
GCUGGAGCCGGOUGGUAACAGCCGGCCTAGAGGAAIGGUUGUCACGCACCGUIIGOOGC AMGGOGGGOGGGGOGCACAG

D 2333333003
ANICCGGCUTATCGGCCUSCULIGCUL

Figure 5.13: Result file for experiment 4.
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Alcaligenes eutrophus
RNase P RNA

Cupriavidus metallidurans

RNase P RNA
R sAce
G Ag ¢
U.
CA A
G
A
u
= G
c @‘160
100 GG
ACGUGC A c UG@c@c
GGCAcc AU 200
CAcc I .lAA a? i A,
A\ uG UGGAG uccc GCAGGC
[N GG.III VI TrirTey .Gy
C. G ccuc GGG cGuUCUG
AC<C A A l\’A & ,A °/ﬁ
C~go c c 60 c UGgG 220 U, ,CG
c G G C
u G _A ] G ¢cC
AA G G c
c G—240 e u C
us Scceocuct
I3 TTT T Tn ” 8] G
GCCGAC 5 =
Al NEX o & —G
A T 260
e—A u—A
40 g A C
G -
AGGUGCAGGGGG G c G =
TTTTTIITT el A S G ==
CsccAcGUCCgU A COGA
05— e G—U
c-6 Yoo
A-U G ® 8 300 G—C
1 é_g 280 O e
_ N N
II\AAGCAG b I é\ ¢ G—C
IIIIIIII?(fll\G CACG\CGG U G
UuUUCGUCCGGU GCAc,
g CAUUCG(‘;CCUAAG G—C
U-340 “ < .
u A G C—G A GG AA

Figure 5.14: Result of experiment 4.

c

G
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In experiment 4, we fit a closed sub-forest from streptomyces bikiniensis to alcaligenes

eutrophus. Figure 5.14 shows the result of experiment 4. 9 sub-trees are determined.

Two single bases from the sub-trees are removed. Two single bases from the pattern

are deleted.
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Experiment 5

Forest file:

4lcalizenes—eutrophus—pb-h
113 GCCACAGA GACGAGUCUU GCCGCCGGGU UDGCCCGGCG
151  GGAAGGGUGA AMCGCGGUAL

b
¢ 13) 127 156 il -2, 8
{  14) 152 151 2 -2.1

>

p

Streptomyces—bikiniensis—gpb-h
154 GUGASAC GGUSGUGUALA GAGACCACCA GCGOCUGAGG CGACUCAGGT
201 GGCUAGGUAL

el
( 15) 161 179 6 8.7
G 1B) 182 201 g -17.0
3
e
Figure 5.15: forest file for experiment 5.
Result file:

Alcaligenes—eutrophus—pbh-b
(113:170)
Streptomyces—hikinliensis—sph-h
(154:210)

Similarity Score is 64. 000000

LU0 Qoo I3 M
GCC ACA G A GACG AGUCTIGCCGCCGGEUT O COOGGRUGGEEAAGGE UGAAACGCGGUAA
* * * * ok Fk * . Hk * * k & dokk
G UGA AACGGUGGUGUAAGA GACCACCAG COOCUGAG  GUGACTICAGGCGSE CoT A G G UAA
0 13330 CCCooo( I3

Figure 5.16: Result file for experiment 5.
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Figure 5.17: Result of experiment 5.

Experiment 5 is for LFS problem. We pick a small sub-forest from Alcaligenes eu-
trophus and Streptomyces bikiniensis respectively. 19 sub-trees are found out of each
sub-forest.

As Figure 5.17 shows, the 1st to 10th sub-trees are siblings in the first sub-forest. But
the 1st to 10th sub-trees are not siblings in the second sub-forest. The mapping of
the 4th to 8th sub-trees may not make sense in RNA structure. And also, the similar
situation also appears in Experiment 4 that the first ‘G’ is located far away from oth-
ers. All these solutions are correct at the algorithm level. The result of Experiment
5 is a typical solution that is correct in algorithm but may not be reasonable in RNA

structure which is worth further research.



Chapter 6

Conclusion

In this thesis, we studied local forest similarity and forest pattern matching problems.
We developed efficient algorithms for general cases of these two problems.

For the local forest similarity problem, based on the well known Smith-Waterman
method for local sequence similarity and longest common sub-sequence algorithm, we
designed new algorithms to extend them from sequence to forest. Many algorithm
techniques can be used for the tree removing similarity algorithm and we chose the
Zhang-Shasha method in our algorithms. Our algorithm can identify locally similar
regions in two forests.

For the forest pattern matching, based on sequence pattern matching we designed
new algorithms to extend it from sequence to forest. Our algorithm can identify
regions from one large forest which are most similar to another small forest.

Both the local forest similarity algorithm and the forest pattern matching algorithm
can be applied to RNA structure comparison since pseudoknot-free RNA can be
represented as forests.

Our algorithm can determine the general case of local forest similarity and forest
pattern matching problems. In some cases, as the experiments showed, sub-forest
determination is split over the forest. But a compact result may be more reasonable
in RNA structure comparison. A possible way is to add the gap penalty during the

computation. We will continue to improve our algorithm in the future research.
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