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Abstract

In ruin theory, the surplus process of an insurance company is usually modeled by

the classical compound Poisson risk model and the Sparre-Andersen risk model. Under

these models, the claim amounts and inter-claim times are assumed to be independently

distributed, which is not always appropriate in practice. In recent years, risk models

relaxing the independence assumption have drawn intensive research attention. However,

previous research mostly considers the so call dependent Sparre-Andersen risk model under

which the pairwise events containing inter-claim time and the next claim amount remain

independent of each other. In this thesis, we aim to examine the opposite case. Namely,

the distribution of time until next claim depends on the size of previous claim amount.

Explicit solutions for the Gerber-Shiu function are provided for arbitrary claim sizes and

various ruin-related quantities are obtained as special cases. Numerical examples are also

presented. The dependent insurance risk is further generalized to a perturbed version

to incorporate small fluctuations of the underlying surplus process. Explicit solutions

for the Gerber-Shiu function are deduced along with applications and examples. Lastly,

we introduce the perturbed dependence structure into the dual risk model and study the

ruin time problem. Exact solutions for the Laplace transform and the first moment of

the time to ruin with an arbitrary gain-size distribution are obtained. Applications with

numerical examples are provided to illustrate the impact of the dependence structure and

the perturbation.

Keywords: non Sparre-Andersen dependence, diffusion, risk model, dual model, ruin time,

Gerber-Shiu function.
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Chapter 1

Introduction

Consider the continuous-time surplus process for an insurer

U(t) = u + ct −
N(t)∑
i=1

Xi, t ≥ 0, (1.1)

with initial surplus level u ≥ 0 and constant premium rate c > 0, where {Xi, i = 1, 2, . . . }

are claim-size random variables and the claim counting process N(t) is a renewal process

with interclaim times {Vi, i = 1, 2, . . . }. When both {Xi} and {Vi} are sequences of

independent and identically distributed (i.i.d.) random variables and their distributions

are independent, process (1.1) is the Sparre-Andersen risk model. In addition, when

{Vi, i = 1, 2, . . . } follows an exponential distribution, then N(t) is a Poisson process

and model (1.1) represents the classical compound Poisson risk model. Also, the linear

component ct in model (1.1) may be generalized to a function h(t) as long as h−1 is

well defined. Sparre-Andersen risk model and classical compound Poisson risk model

are widely studied in risk theory and ruin theory, however the i.i.d. assumption among

individual claim sizes and inter-claim times, and the independence assumption between

claim size and inter-claim time are usually inappropriate in practice.

Risk models involving various dependence structures have been studied intensively

in the literature. One popular topic is assuming dependency among individual claims,

1



Chapter 1. Introduction 2

for example, Müller and Pflug (2001) considered asymptotic ruin probabilities for risk

models with dependent claim increments, Denuit et al. (2002) examined the impact of

dependence between claim occurrences, and Cossette et al. (2002) constructed models

allowing dependence among claims using risk classifying and copulas techniques. Risk

processes with Markovian arrivals are also widely studied to model dependence, see for

example, in Badescu et al. (2005), Ahn et al. (2007) and Badescu et al. (2007). A

rising research interest in recent years is to relax the independence assumption between

claim sizes and inter-claim times, among which the most persuasive works are articles by

Albrecher and Teugels (2006), Boudreault et al. (2006), Cossette et al. (2008), Meng et

al. (2008), Ambagaspitiya (2009), Badescu et al. (2009) and so on. However, previous

research mostly concentrated on the dependence structure where the pairs of events

(V j, X j) remain independent of each other, which allows the risk model preserves the

independent increment assumption of the Sparre-Andersen risk model and is referred to

as the dependent Sparre-Andersen risk model. For instance, Boudreault et al. (2006)

studied a risk model with claim sizes depending on elapse time motivated by a natural

catastrophe context. Cheung et al. (2010) summarized some general properties of the

dependent Sparre-Andersen risk model. In this thesis, we aim to examine the opposite case

when the distribution of the time until the next claim depends on the amount of the previous

claim and generalize the dependence risk model to a perturbed version. More precisely, V j

and X j are independent, but the next event of V j+1 depends on the previous pair (V j, X j).

Consequently, the surplus process is no longer a dependent Spaarre-Andersen model. This

kind of causal dependence model was first introduced by Albrecher and Boxma (2004)

where the ultimate-survival probabilities are considered. Under the dependence setting, the

amount of an individual claim may be viewed as a risk classifier for the insured, and we

make different assumptions for the distribution of next inter-event time when the insured is

classified to different group. Take car insurance for example, Gschlößl and Czado (2007)
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show there are empirical evidence that claim frequency and claim severity are negatively

correlated in auto insurance. Then it is reasonable to assume that when a claim size is large,

we expect the waiting time until next claim to be large as well. In addition to the causal

dependence structure, we further assume that the premium rate also varies depending on

claim sizes where claim sizes follow an arbitrary distribution, and analyze the Gerber-Shiu

discounted penalty function that was proposed first in the paper by Gerber and Shiu (1998).

The Gerber-Shiu expected discounted penalty function is defined as

m(u) = E
{
e−δτ w(U(τ−), |U(τ)|) I{τ<∞}

∣∣∣∣ U(0) = u
}
, u ≥ 0, (1.2)

where δ ≥ 0 is the discount factor, w(x1, x2), x1 ≥ 0, x2 > 0 is a penalty function, τ is the

infinite time to ruin random variable and I{τ<∞} is an indicator function taking value 1 when

τ < ∞ and 0 otherwise, given that the initial surplus level is at u ≥ 0. The Gerber-Shiu

function is widely studied since it recovers a number of quantities of special interest in ruin

theory, such as the probability of ultimate ruin, the Laplace transform of time to ruin, the

joint and marginal distributions and moments of the surplus and the deficit r.v. U(τ−), |U(τ)|

and so on. We illustrate this by the following examples.

Example 1.1 Probability of ultimate ruin. Let δ = 0 and w(x1, x2) = 1 for all x1 ≥ 0,

x2 > 0, then the Gerber-Shiu function (1.2) reduces to

ψ(u) = E
{
I{τ<∞}

∣∣∣ U(0) = u
}

= P
{
τ < ∞

∣∣∣ U(0) = u
}
,

which is the probability of ultimate ruin. �

Example 1.2 Laplace transform of time to ruin. Let w(x1, x2) = 1 for all x1 ≥ 0, x2 > 0,

then the Gerber-Shiu function reduces to the Laplace transform of the time to ruin random

variable, denoted by

ϕ(u) = E
{
e−δτI{τ<∞}

∣∣∣ U(0) = u
}

=

∫ ∞

0
e−δt fτ (t|u) dt.

From the Laplace transform, we may compute the moments of time to ruin. �
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Example 1.3 Defective joint and marginal moments of the surplus and the deficit. Let

δ = 0 and w(x1, x2) = xk
1 xl

2 for all x1 ≥ 0, x2 > 0, where k and l are nonnegative integers,

then the Gerber-Shiu function presents the joint moments of the surplus and the deficit.

With k = 0 or l = 0, we obtain the marginal moments. �

Example 1.4 Joint defective distribution of the surplus and the deficit. Let δ = 0 and

w(x1, x2) = I{x1≤x} I{x2≤y}, for all x1 ≥ 0, x2 > 0, then the Gerber-Shiu function presents the

joint defective distribution of the surplus and the deficit. With either x→ ∞ or y→ ∞, we

obtain the marginal distributions. �

Example 1.5 Defective distribution of the claim causing ruin. Let δ = 0 and w(x1, x2) =

I{x1+x2≤z}, for all x1 ≥ 0, x2 > 0, then the Gerber-Shiu function produces the distribution of

the size of the claim causing ruin. �

Another direction for generalizing the classical ruin model is adding a diffusion process

to account for the fluctuations of aggregate premiums and aggregate claims. In actuarial

science, risk models perturbed by Brownian motion are widely used when the underlying

process is assumed to be subject to small changes at any point in time. For instance, when

the surplus process incorporates some risky investment. This idea was first introduced by

Gerber (1970) and modeled by

UD(t) = u + ct −
N(t)∑
i=1

Xi + σW(t), t ≥ 0,

where σ > 0 is a constant and W(t) is a standard Brownian motion. The perturbed

risk models have been studied extensively, see for example, Dufresne and Gerber (1991),

Gerber and Landry (1998), Tsai and Willmot (2002), Li and Garrido (2005) and Sarkar

and Sen (2005) for the perturbed classical compound Poisson model and Sparre-Andersen

model. Besides, Wan (2007), Li et al. (2009) and Mitric et al. (2010) consider a perturbed

Sparre-Andersen model with threshold dividend strategy. In the above papers, various
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quantities of interest are analyzed under the perturbed risk model where it is assumed that

the claim-size distribution and the inter-claim time distribution are independent.

A generalized Gerber-Shiu function for perturbed risk models was introduced by Tsai

and Willmot (2002) based on the idea of Gerber and Landry (1998), and is defined as

mD(u) = w0 φd(u) + φw(u), u ≥ 0, (1.3)

where w0 is a constant representing the penalty at ruin due to oscillation and

φd(u) = E
{
e−δτ I{τ<∞,U(τ)=0}

∣∣∣∣ U(0) = u
}
,

φw(u) = E
{
e−δτ w(U(τ−), |U(τ)|) I{τ<∞,U(τ)<0}

∣∣∣∣ U(0) = u
}
.

The component φd(u) represents the Laplace transform of the time of ruin random variable

τ if ruin is due to oscillation, while the summand φw(u) corresponds to the penalty at ruin

if caused by a claim. Here δ ≥ 0 is the discount factor, w(x1, x2), x1, x2 ≥ 0, is a penalty

function for ruin caused by a claim with w(0, 0) = w0. At zero initial surplus u = 0, it

implies φw(0) = 0, φd(0) = 1.

In recent years, insurance risk models with dependence structure and perturbed by

diffusion have drawn substantial attention. For instance, Lu and Tsai (2007) analyze

a Markov-modulated perturbed risk process where the distributions of interclaim times

and claims sizes depend on an environmental Markov process. Also, Li and Ren (2013)

consider the maximum severity of ruin under a perturbed risk process with Markovian

arrivals. In Chapter 3, we study a perturbed risk model with interclaim-times depending on

claim sizes following the dependence structure proposed by Albrecher and Boxma (2004).

This perturbed risk model was studied previously by Zhou and Cai (2009). However, the

authors considered only the ultimate-survival probabilities and derive a recursive solution

for exponential claim sizes. We substantially extend the analysis to an explicit solution of

the widely studied Gerber-Shiu function along with examples and clarify an open question

formulated in Remark 3.2 of Zhou and Cai (2009). The advantage of our approach is
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that there are no constraints on the claim-size distribution and that our results are in

terms of functions that are explicitly known. Another relevant recent contribution on the

subject is Cheung and Landriault (2009) where the risk model with dependence structure

of Albrecher and Boxma (2004) is considered as a special case of the Markov additive

process and optimal dividend problem under a barrier strategy is studied. Here we focus

on the solution for the generalized Gerber-Shiu function and its applications.

The idea of perturbed dependence structure may also be applied to the dual risk model.

A dual risk model is suitable to analyze a revenue process for a line of business with steady

expenses and occasional gains. An annuity business, an invention or mining company are

examples of such businesses. This type of a setup may be modeled by the dual risk process

R(t) = u − ct +

N(t)∑
i=1

Xi, t ≥ 0, (1.4)

where u > 0 is the initial surplus, c > 0 represents the expense rate of the company, N(t)

is an event-counting process with inter-event times {Vi, i = 1, 2, . . . }, and {Xi, i = 1, 2, . . . }

are the amounts of the occasional gains. When N(t) is a compound Poisson process, model

(1.4) is called the compound Poisson dual model. When {Vi, i = 1, 2, . . . } and {Xi, i =

1, 2, . . . } are two sets of i.i.d. random variables and independent of each other, model

(1.4) is the Sparre-Andersen dual model. The name of dual risk model is related to a

duality between (1.4) and (1.4). The ruin model (1.1) with an absorbing barrier b > u

where ruin occurs at U(t) = b instead of u(t) = 0 is equivalent to the dual model with

initial capital b − u. To illustrate this, see Figure 1.1 for a sample path of such U(t).

Research on dual risk models has drawn rising interest in recent years. Avanzi et al. (2007),

Afonso et al. (2013) and Bayraktar et al. (2013) study optimal dividend problems under the

compound Poisson dual model with a barrier strategy. Ng (2009) considers the compound

Poisson dual model with a threshold dividend strategy. Other articles related to dividend

problems include Albrecher et.al (2008) who study a dual model with tax payments, Avanzi

et al. (2013) who consider a dual model with periodic observation times, Bayraktar et al.
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Figure 1.1: A sample path of U(t) equivalent to the dual model

(2014) who introduce a dual model with transaction cost, etc. Ruin-time problems under

the Sparre-Andersen dual model with Erlang-n inter-gain times are studied in Landriault

and Sendova (2011) and Rodrı́guez et al. (2013). Yang and Sendova (2014) further extend

the analysis to the Sparre-Andersen dual model with generalized Erlang-n inter-gain times.

More recently, a dependence structure is implemented into a dual risk model in

Albrecher et al. (2014) where the distribution of inter-gain times is assumed to depend on

the size of the previous gain by comparing it to a fix threshold. We consider an extension of

Albrecher et al. (2014) where the fixed threshold is generalized to random thresholds which

is the dependence structure introduced by Albrecher and Boxma (2004) and we examine

the ruin time. The dependence structure may describe a revenue process of a research

company, when a certain research gain is large (or small), resources and talent will be

drawn into (or out of) the company and that will affect the distribution of time until next

gain. In addition, it is assumed that the expense rates also depend on the previous gain

amount and the underlying surplus process is perturbed by a diffusion process.
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Dual risk model with diffusion is given by

RD(t) = u − ct +

N(t)∑
i=1

Xi + σW(t), t ≥ 0, σ > 0, (1.5)

where W(t) is a standard Brownian motion, was first introduced by Avanzi and Gerber

(2008). More recent works on dual risk models perturbed by diffusion include Avanzi et.al.

(2011), Avanzi et al. (2014) and Liu and Chen (2014). As pointed out by Remark 2.2 in

Avanzi and Gerber (2008), although model (1.4) is a limiting case of model (1.5) as σ→ 0,

no formula under model (1.4) may be obtained as a limiting case of the respective formula

under model (1.5) when dividend problems are concerned. Instead, under the perturbed

dependent dual risk model that we consider, the convergence preserves very neatly for all

ruin-related results (see Remark 4.2).

The rest of this thesis is structured as follows. Chapter 2 studies a ruin model with both

inter-claim time and premium rating depending on claim sizes, where we derive the explicit

solutions for the Gerber-Shiu function and its various applications. Chapter 3 considers a

perturbed version of the ruin model with dependence between inter-claim time and claim

sizes. In Chapter 4, a perturbed dual risk model with inter-gain distribution and expense

rates depending on the size of previous gain is studied. Exact solutions for the Laplace

transform of the ruin time with arbitrary gain-size distribution are obtained and the impacts

of the dependence structure and perturbation are examined. Chapter 5 gives the conclusions

and future research goals.



Chapter 2

An insurance risk model with

dependence structure

In this chapter, we consider a continuous-time insurance risk process where both the

interclaim-time distribution and premium rate both depend on the size of the previous

claim. Explicit solution for the Gerber-Shiu discounted penalty function with arbitrary

claim size distribution is derived utilizing the roots of a generalized Lundberg’s equation.

Lastly, applications with exponential thresholds are presented and a numerical example is

provided.

2.1 Model description and notation

Suppose that the surplus process of an insurance company is modeled by

U(t) = u + C(t) −
N(t)∑
i=1

Xi

= u + c1

∫ t

0
I{J(s)=1} ds + c2

∫ t

0
I{J(s)=2} ds −

N(t)∑
i=1

Xi, t ≥ 0, (2.1)

9



Chapter 2. An insurance risk model with dependence structure 10

where the initial surplus is U(0) = u ≥ 0, the premium received up to time t is C(t),

N(t) is the claim-counting process and the claim amounts {Xi, i = 1, 2, . . . } are positive

i.i.d random variables with cumulative distribution function B(·), density function b(·) and

mean µ. Assume that the distribution of the waiting time until the next claim depends on

the size of the previous claim by comparing it to random thresholds {Qi, i = 1, 2, . . . }.

Suppose the thresholds {Qi, i = 1, 2, . . . } are i.i.d. with c.d.f. H(·) and are independent

of the claim sizes {Xi}. If the size of the claim X j is larger than Q j, then the time until

next claim will follow an exponential distribution with mean 1/λ1 > 0; if X j is smaller

than Q j, then the time until the next claim will follow another exponential distribution

with mean 1/λ2 > 0 (λ1 , λ2). This causal dependence structure was first introduced

by Albrecher and Boxma (2004). Under model (2.1), the thresholds {Qi} may be viewed

as a risk indicator that governs the distribution of the waiting time until the next claim

and may be deduced through, for example, the general population, a control group or

past experience. In addition, the premium charged also varies depending on the same risk

indicator, in response to the possible change in the distribution of interclaim time. If a claim

X j is larger than Q j, we classify the insured as Class 1 and charge continuous premium at

rate c1 > 0; if X j is smaller than Q j, then we classify the insured as Class 2 and charge

continuous premium at rate c2 > 0. At any given time t, denote the class of the insured

by J(t). The premium collecting process C(t) is a piecewise linear process. Notice that

when c1 = c2, model (2.1) reduces to the semi-Markov dependent model in Albrecher and

Boxma (2004). Assume that the positive-security-loading condition holds for model (2.1).

Namely,

c1

λ1
P{X > Q} +

c2

λ2
P{X < Q} > µ, (2.2)

which means in a probabilistic view, the insurance company charges a premium that is

higher than the expected loss amount.

Given that the initial class of the insured is i, i = 1, 2, and the initial surplus is u, we
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analyze the Gerber-Shiu expected discounted penalty function

mi(u) = E
{
e−δτi w(U(τi−), |U(τi)|) I{τi<∞}

∣∣∣∣ U(0) = u
}
, u ≥ 0, i = 1, 2, (2.3)

where δ ≥ 0 is the discount factor, w(x1, x2), x1, x2 ≥ 0, is a penalty function, and τi, i =

1, 2, is the time to ruin random variable for Class i. Lastly, we introduce some notation and

properties that are used throughout the chapter. Denote by

ζ(u) =

∫ ∞

u
w(u, y − u) b(y) dy. (2.4)

Suppose that the Laplace transforms of b(·), H(·) and ζ(·) exist for all Re(s) ≥ 0. The

Laplace transform of a real-valued function f (·) is denoted by

f̃ (s) =

∫ ∞

0
e−sy f (y) dy, s ∈ C.

Define the Translation operator Ts, s ≥ 0, of a function f (·) as

Ts f (x) =

∫ ∞

x
e−s(y−x) f (y) dy, x ≥ 0 , (2.5)

which was first employed by Dickson and Hipp (2001), and has the following properties

Ts f (0) = f̃ (s), s ≥ 0,

Ts1Ts2 f (x) = Ts2Ts1 f (x) =
Ts1 f (x) − Ts2 f (x)

s2 − s1
, s1, s2 ≥ 0, s1 , s2,

Ts1Ts2 f (0) = Ts2Ts1 f (0) =
f̃ (s1) − f̃ (s2)

s2 − s1
, s1, s2 ≥ 0, s1 , s2. (2.6)

See also Li and Garrido (2004) for the properties of the Translation operator T .

2.2 Generalized Lundberg’s equation

First, we derive a system of integro-differential equations for the Gerber-Shiu function

mi(u), i = 1, 2, introduced by identity (2.3). Given the initial class is i, i = 1, 2, conditioning

on the time and the amount of the first claim, we deduce

m1(u) =

∫ ∞

0
e−δtλ1e−λ1t

{∫ u+c1t

0

[
P{y > Q1}m1(u + c1t − y) + P{y < Q1}m2(u + c1t − y)

]
b(y) dy
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+

∫ ∞

u+c1t
w(u + c1t, y − u − c1t) b(y) dy

}
dt, (2.7)

m2(u) =

∫ ∞

0
e−δtλ2e−λ2t

{∫ u+c2t

0

[
P{y > Q1}m1(u + c2t − y) + P{y < Q1}m2(u + c2t − y)

]
b(y) dy

+

∫ ∞

u+c2t
w(u + c2t, y − u − c2t) b(y) dy

}
dt, (2.8)

where

P {y > Q1} = H(y) ,

P {y < Q1} = 1 − H(y) = H(y) .

For simplicity, the following notation is introduced

χ(y) := H(y) b(y), (2.9)

ξ(y) := H(y) b(y) = b(y) − χ(y). (2.10)

Changing the variable of integration t to v = u + c1t in (2.7) and utilizing identities (2.4),

(2.9) and (2.10), yields

m1(u) =

∫ ∞

u

λ1

c1
e−

(
λ1+δ

c1

)
(v−u)

{∫ v

0

[
m1(v − y)ξ(y) + m2(v − y)χ(y)

]
dy + ζ(v)

}
dv. (2.11)

Denote by

γ(t) :=
∫ t

0

[
m1(t − y)ξ(y) + m2(t − y)χ(y)

]
dy + ζ(t) ,

then we may rewrite equation (2.11) by the definition of Translation Operator in (2.5) to

m1(u) =
λ1

c1
T λ1+δ

c1
γ(u) , u ≥ 0, (2.12)

which implies

m1(0) =
λ1

c1
T λ1+δ

c1
γ(0) =

λ1

c1
γ̃

(
λ1 + δ

c1

)
.

Applying Laplace transforms to (2.12) and utilizing identity (2.6), we obtain

m̃1(s) =
λ1

c1
TsT λ1+δ

c1
γ(0)
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=
λ1

c1
·
γ̃
(
λ1+δ

c1

)
− γ̃(s)

s −
λ1 + δ

c1

=
λ1

c1
·
γ̃
(
λ1+δ

c1

)
− ξ̃(s) m̃1(s) − χ̃(s) m̃2(s) − ζ̃(s)

s −
λ1 + δ

c1

=

m1(0) −
λ1

c1
ξ̃(s) m̃1(s) −

λ1

c1
χ̃(s) m̃2(s) −

λ1

c1
ζ̃(s)

s −
λ1 + δ

c1

.

Further rearrangement of the terms produces[
s −

λ1 + δ

c1
+
λ1

c1
ξ̃(s)

]
m̃1(s) +

λ1

c1
χ̃(s) m̃2(s) = m1(0) −

λ1

c1
ζ̃(s) . (2.13)

Similarly, we deduce from (2.8) that

m2(u) =
λ2

c2
T λ2+δ

c2
γ(u) , u ≥ 0 .

Applying Laplace transforms yields[
s −

λ2 + δ

c2
+
λ2

c2
χ̃(s)

]
m̃2(s) +

λ2

c2
ξ̃(s) m̃1(s) = m2(0) −

λ2

c2
ζ̃(s) . (2.14)

Together equations (2.13) and (2.14) provides a system of equations which m̃1(s) and m̃2(s)

satisfy.

Multiply equation (2.13) by
[
s −

λ2 + δ

c2
+
λ2

c2
χ̃(s)

]
produces

[
s −

λ1 + δ

c1
+
λ1

c1
ξ̃(s)

] [
s −

λ2 + δ

c2
+
λ2

c2
χ̃(s)

]
m̃1(s) +

λ1

c1

[
s −

λ2 + δ

c2
+
λ2

c2
χ̃(s)

]
χ̃(s) m̃2(s)

=

[
s −

λ2 + δ

c2
+
λ2

c2
χ̃(s)

]
m1(0) −

λ1

c1

[
s −

λ2 + δ

c2
+
λ2

c2
χ̃(s)

]
ζ̃(s) ,

in which replacing
[
s −

λ2 + δ

c2
+
λ2

c2
χ̃(s)

]
m̃2(s) by the expressions in (2.14) yields

[
s −

λ1 + δ

c1
+
λ1

c1
ξ̃(s)

] [
s −

λ2 + δ

c2
+
λ2

c2
χ̃(s)

]
m̃1(s) +

λ1

c1
χ̃(s)

[
m2(0) −

λ2

c2
ζ̃(s) −

λ2

c2
ξ̃(s) m̃1(s)

]
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=

[
s −

λ2 + δ

c2
+
λ2

c2
χ̃(s)

]
m1(0) −

λ1

c1

[
s −

λ2 + δ

c2
+
λ2

c2
χ̃(s)

]
ζ̃(s) ,

Then grouping all terms with m̃1(s) to the left-hand side of the equation leads to{[
s −

λ1 + δ

c1
+
λ1

c1
ξ̃(s)

] [
s −

λ2 + δ

c2
+
λ2

c2
χ̃(s)

]
−
λ1λ2

c1c2
ξ̃(s) χ̃(s)

}
m̃1(s)

=

[
s −

λ2 + δ

c2
+
λ2

c2
χ̃(s)

]
m1(0) −

λ1

c1
χ̃(s) m2(0) −

λ1

c1

(
s −

λ2 + δ

c2

)
ζ̃(s) . (2.15)

Similarly, we multiply (2.14) by
[
s − λ1+δ

c1
+ λ1

c1
ξ̃(s)

]
and then replace

[
s− λ1+δ

c1
+ λ1

c1
ξ̃(s)

]
m̃1(s)

by the expressions in (2.13), after rearranging it yields{[
s −

λ1 + δ

c1
+
λ1

c1
ξ̃(s)

] [
s −

λ2 + δ

c2
+
λ2

c2
χ̃(s)

]
−
λ1λ2

c1c2
ξ̃(s) χ̃(s)

}
m̃2(s)

=

[
s −

λ1 + δ

c1
+
λ1

c1
ξ̃(s)

]
m2(0) −

λ2

c2
ξ̃(s) m1(0) −

λ2

c2

(
s −

λ1 + δ

c1

)
ζ̃(s) . (2.16)

The terms in front of m̃i(s), i = 1, 2, in equations (2.15) and (2.16) are identical. Setting

them to zero, produces the generalized Lundberg’s equation for model (2.1),[
s −

λ1 + δ

c1
+
λ1

c1
ξ̃(s)

] [
s −

λ2 + δ

c2
+
λ2

c2
χ̃(s)

]
−
λ1λ2

c1c2
ξ̃(s) χ̃(s) = 0 ,

or equivalently(
s −

λ1 + δ

c1

) (
s −

λ2 + δ

c2

)
−
λ1

c1

(
λ2 + δ

c2
− s

)
ξ̃(s) −

λ2

c2

(
λ1 + δ

c1
− s

)
χ̃(s) = 0 . (2.17)

We analyze the roots of Lundberg’s equation in Lemma 2.1 and Lemma 2.2.

Lemma 2.1 When δ = 0, the generalized Lundberg’s equation (2.17) has exactly two roots

with nonnegative real parts. These roots are distinct, real and one of them equals zero.

Proof When δ = 0, equation (2.17) reduces to(
s −

λ1

c1

) (
s −

λ2

c2

)
−
λ1

c1

(
λ2

c2
− s

)
ξ̃(s) −

λ2

c2

(
λ1

c1
− s

)
χ̃(s) = 0. (2.18)

One may verify easily that s = 0 is a root of (2.18) utilizing the relation ξ̃(0) + χ̃(0) =

b̃(0) = 1 from the Laplace-transformed identity (2.10).
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For s , 0, equation (2.18) may be rearranged to

s2 −
λ1

c1
s −

λ2

c2
s +

λ1λ2

c1c2

[
1 − ξ̃(s) − χ̃(s)

]
+
λ1

c1
s ξ̃(s) +

λ2

c2
s χ̃(s) = 0

s
s −

λ1

c1
−
λ2

c2
+
λ1

c1
ξ̃(s) +

λ2

c2
χ̃(s) +

λ1λ2

c1c2
·

1 − b̃(s)
s

 = 0 .

We rewrite equation (2.18)as

s
[
g1(s) − g2(s)

]
= 0 ,

where

g1(s) = s −
λ1

c1
−
λ2

c2
,

g2(s) = −
λ1

c1
ξ̃(s) −

λ2

c2
χ̃(s) −

λ1λ2

c1c2
B̃(s) .

The nonzero roots of equation (2.18) coincide with those of g1(s) − g2(s) = 0.

We analyze the roots of g1(s) − g2(s) = 0 by applying Rouché’s theorem to a closed

contour C, formed by the semi-circle {s : |s| = d, Re(s) > 0} in the right half plane and

the imaginary axis, where d is a large enough constant. The functions g1(s) and g2(s) are

analytic inside C and g1(s) has exactly one zero inside C. On the semi-circle part of the

boundary of C, since Re(s) > 0, we have

∣∣∣ χ̃(s)
∣∣∣ < χ̃(0) ≤ 1 ,∣∣∣ ξ̃(s)
∣∣∣ < ξ̃(0) ≤ 1 ,∣∣∣∣∣B̃(s)
∣∣∣∣∣ < B̃(0) = µ .

Thus, comparing

|g1(s)| ≥ |s| −
∣∣∣∣∣λ1

c1
+
λ2

c2

∣∣∣∣∣ = d −
(
λ1

c1
+
λ2

c2

)
and

|g2(s)| ≤
λ1

c1

∣∣∣ ξ̃(s)
∣∣∣ +

λ2

c2

∣∣∣ χ̃(s)
∣∣∣ +

λ1λ2

c1c2

∣∣∣∣∣B̃(s)
∣∣∣∣∣ < λ1

c1
+
λ2

c2
+
λ1λ2

c1c2
µ,
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we obtain that |g2(s)| < |g1(s)| on the semi-circle part of the boundary of C, for a sufficiently

large d.

On the imaginary axis part of the boundary of C, we have Re(s) = 0, which implies

∣∣∣ χ̃(s)
∣∣∣ ≤ χ̃(0) ,∣∣∣ ξ̃(s)
∣∣∣ ≤ ξ̃(0) ,∣∣∣∣∣B̃(s)
∣∣∣∣∣ ≤ B̃(0) = µ .

On one hand, utilizing the positive-security-loading condition (2.2) with relations P{X >

Q} = ξ̃(0) and P{X < Q} = χ̃(0) which is

µ <
c1

λ1
ξ̃(0) +

c2

λ2
χ̃(0) ,

we obtain

|g2(s)| ≤
λ1

c1

∣∣∣̃ξ(s)
∣∣∣ +

λ2

c2

∣∣∣∣̃χ(s)
∣∣∣∣ +

λ1λ2

c1c2

∣∣∣∣∣B̃(s)
∣∣∣∣∣

≤
λ1

c1
ξ̃(0) +

λ2

c2
χ̃(0) +

λ1λ2

c1c2
µ

<
λ1

c1
ξ̃(0) +

λ2

c2
χ̃(0) +

λ1λ2

c1c2
·

c1

λ1
ξ̃(0) +

λ1λ2

c1c2
·

c2

λ2
χ̃(0)

=
λ1

c1
+
λ2

c2
,

noting that ξ̃(0) + χ̃(0) = 1. On the other hand, since Re(s) = 0, we have

|g1(s)| ≥
λ1

c1
+
λ2

c2
,

thus |g2(s)| < |g1(s)| holds on the imaginary axis part of the contour C as well. Applying

Rouché’s theorem to the contour C and letting the radius d → ∞, we conclude that equation

g1(s) − g2(s) = 0 has exactly one root in the positive half plane, which indicates that

equation (2.18) has exactly one root in the positive half plane. Moreover, the root is real,

since the complex roots of analytic functions that are presented in series form with only real

coefficients come in conjugate pairs. Recall that zero is also a root of (2.18). Therefore,
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Lundberg’s equation with δ = 0 has exactly two roots with nonnegative real parts, where

both are real roots and one of them is zero. �

Lemma 2.2 When δ > 0, the generalized Lundberg’s equation (2.17) has exactly two roots

with nonnegative real parts. Moreover, they are distinct, positive and real.

Proof We rewrite Lundberg’s equation (2.17) as follows:

h̃1(s) − h̃2(s) = 0,

where

h̃1(s) =

(
s −

λ1 + δ

c1

) (
s −

λ2 + δ

c2

)
, (2.19)

h̃2(s) =
λ1

c1

(
λ2 + δ

c2
− s

)
ξ̃(s) +

λ2

c2

(
λ1 + δ

c1
− s

)
χ̃(s). (2.20)

We analyze the roots of Lundberg’s equation h̃1(s) − h̃2(s) = 0 by applying Rouché’s

theorem to the same contour C as in the proof of Lemma 2.1. The equation h̃1(s) = 0

has exactly two roots inside the contour C, and h̃1(s) and h̃2(s) are analytic inside of C. On

the semi-circle part of the boundary of C, we have∣∣∣∣∣s − λ1 + δ

c1

∣∣∣∣∣ ≥ |s| − ∣∣∣∣∣λ1 + δ

c1

∣∣∣∣∣ = d −
∣∣∣∣∣λ1 + δ

c1

∣∣∣∣∣ > λ1

c1
,∣∣∣∣∣s − λ2 + δ

c2

∣∣∣∣∣ ≥ |s| − ∣∣∣∣∣λ2 + δ

c2

∣∣∣∣∣ = d −
∣∣∣∣∣λ2 + δ

c2

∣∣∣∣∣ > λ2

c2
,

for a sufficiently large radius d. Hence, the above inequalities together with
∣∣∣̃ξ(s)

∣∣∣ < ξ̃(0)

and |̃χ(s)| < χ̃(0) yield∣∣∣∣̃h2(s)
∣∣∣∣ ≤ λ1

c1

∣∣∣∣∣s − λ2 + δ

c2

∣∣∣∣∣ ∣∣∣̃ξ(s)
∣∣∣ +

λ2

c2

∣∣∣∣∣s − λ1 + δ

c1

∣∣∣∣∣ ∣∣∣∣̃χ(s)
∣∣∣∣

<

∣∣∣∣∣s − λ1 + δ

c1

∣∣∣∣∣ ∣∣∣∣∣s − λ2 + δ

c2

∣∣∣∣∣ ξ̃(0) +

∣∣∣∣∣s − λ2 + δ

c2

∣∣∣∣∣ ∣∣∣∣∣s − λ1 + δ

c1

∣∣∣∣∣ χ̃(0)

=

∣∣∣∣∣s − λ2 + δ

c2

∣∣∣∣∣ ∣∣∣∣∣s − λ1 + δ

c1

∣∣∣∣∣
=

∣∣∣∣̃h1(s)
∣∣∣∣ ,
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since ξ̃(0) + χ̃(0) = 1. Consider now the part of the contour C on the imaginary axis. Since

Re(s) = 0 and δ > 0, we have∣∣∣∣̃h1(s)
∣∣∣∣ =

∣∣∣∣∣s − λ2 + δ

c2

∣∣∣∣∣ ∣∣∣∣∣s − λ1 + δ

c1

∣∣∣∣∣
=

∣∣∣∣∣s − λ2 + δ

c2

∣∣∣∣∣ ∣∣∣∣∣s − λ1 + δ

c1

∣∣∣∣∣ ξ̃(0) +

∣∣∣∣∣s − λ2 + δ

c2

∣∣∣∣∣ ∣∣∣∣∣s − λ1 + δ

c1

∣∣∣∣∣ χ̃(0)

≥

∣∣∣∣∣s − λ2 + δ

c2

∣∣∣∣∣ (λ1 + δ

c1

)
ξ̃(0) +

(
λ2 + δ

c2

) ∣∣∣∣∣s − λ1 + δ

c1

∣∣∣∣∣ χ̃(0)

>
λ1

c1

∣∣∣∣∣s − λ2 + δ

c2

∣∣∣∣∣ ξ̃(0) +
λ2

c2

∣∣∣∣∣s − λ1 + δ

c1

∣∣∣∣∣ χ̃(0)

≥
λ1

c1

∣∣∣∣∣s − λ2 + δ

c2

∣∣∣∣∣ ∣∣∣∣̃ξ(s)
∣∣∣∣ +

λ2

c2

∣∣∣∣∣s − λ1 + δ

c1

∣∣∣∣∣ ∣∣∣∣̃χ(s)
∣∣∣∣

≥

∣∣∣∣̃h2(s)
∣∣∣∣ .

Thus,
∣∣∣∣̃h2(s)

∣∣∣∣ < ∣∣∣∣̃h1(s)
∣∣∣∣ holds on the boundary of the closed contour C and we may conclude

that h̃1(s) − h̃2(s) = 0 has two roots inside of C, denoted by r and ρ. Letting d → ∞ shows

that r and ρ are the only two roots in the nonnegative half plane.

It remains to show that when δ > 0, r and ρ are distinct and real. We know that as δ

converges to 0, r and ρ converge to the roots of the simpler equation (2.18). Then, as δ

converges to zero, one of r and ρ converges to zero and the other one converges to a strictly

positive number, hence they are distinct. Moreover, we prove by contradiction that r and ρ

are real numbers. Suppose r and ρ are complex roots of the analytic function g1(s) − g2(s),

then they must be a conjugated pair, i.e. r = a + bi and ρ = a − bi for some real numbers

a, b > 0. When δ converges to zero, we know that one of the roots converges to zero, which

indicates that a and b converge to 0 simultaneously. Then, the other root also converges

to 0, which contradicts the fact that the other root converges to a strictly positive number.

Thus, r and ρ are both real.

In addition, without lose of generality, we let ρ < r. Then, it follows that ρ ∈(
0,min

{
λ1+δ

c1
, λ2+δ

c2

})
and r ∈

(
min

{
λ1+δ

c1
, λ2+δ

c2

}
,max

{
λ1+δ

c1
, λ2+δ

c2

})
, since at s = 0, h̃1(s) > h̃2(s);

at s = min
{
λ1+δ

c1
, λ2+δ

c2

}
, h̃1(s) < h̃2(s); and at s = max

{
λ1+δ

c1
, λ2+δ

c2

}
, h̃1(s) > h̃2(s). �
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2.3 Gerber-Shiu expected discounted penalty function

In order to invert the Laplace transforms of (2.15) and (2.16) for mi(u), i = 1, 2, we need to

solve for the values of mi(0), i = 1, 2, first. Lemmas 2.1 and 2.2 indicate that Lundberg’s

equation (2.17) has exactly two nonnegative roots for all δ ≥ 0. Denote these roots by r and

ρ, for an arbitrary δ ≥ 0. When s takes the value of r or ρ, the right-hand sides of (2.15)

and (2.16) also equal to zero. Moreover, when s = r (or s = ρ), the right-hand sides of

(2.15) and (2.16) are identical due to Lundberg’s equation (2.17). Thus, only two equations

are obtained

c1
[
c2r − λ2 − δ + λ2χ̃(r)

]
m1(0) − λ1c2m2(0)χ̃(r) − λ1(c2r − λ2 − δ)̃ζ(r) = 0 ,

c1
[
c2ρ − λ2 − δ + λ2χ̃(ρ)

]
m1(0) − λ1c2m2(0)χ̃(ρ) − λ1(c2ρ − λ2 − δ)̃ζ(ρ) = 0 .

Solving this system of equations yields

m1(0) =
λ1χ̃(ρ)(c2r − λ2 − δ)̃ζ(r) − λ1χ̃(r)(c2ρ − λ2 − δ)̃ζ(ρ)

c1

[
(c2r − λ2 − δ)χ̃(ρ) − (c2ρ − λ2 − δ)χ̃(r)

] , (2.21)

m2(0) =

[
c2ρ − λ2 − δ + λ2χ̃(ρ)

]
(c2r − λ2 − δ)̃ζ(r) −

[
c2r − λ2 − δ + λ2χ̃(r)

]
(c2ρ − λ2 − δ)̃ζ(ρ)

c2

[
(c2r − λ2 − δ)χ̃(ρ) − (c2ρ − λ2 − δ)χ̃(r)

] .

(2.22)

We rearrange (2.22) as

m2(0) =
(c2ρ − λ2 − δ)(c2r − λ2 − δ)

[̃
ζ(r) − ζ̃(ρ)

]
c2

[
(c2r − λ2 − δ)χ̃(ρ) − (c2ρ − λ2 − δ)χ̃(r)

] +
c1λ2

c2λ1
m1(0),

multiplying by λ1/c1 leads to a useful relation for some later results,

λ2

c2
m1(0) −

λ1

c1
m2(0) =

λ1(c2ρ − λ2 − δ)(c2r − λ2 − δ)
[̃
ζ(ρ) − ζ̃(r)

]
c1c2

[
(c2r − λ2 − δ)χ̃(ρ) − (c2ρ − λ2 − δ)χ̃(r)

] . (2.23)

Substituting the solutions for mi(0), i = 1, 2, into (2.15) and (2.16), and inverting the

Laplace transforms with respect to s results in the following theorem.
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Theorem 2.3 The Gerber-Shiu discounted penalty functions m1(u) and m2(u) defined in

(2.3) satisfy the following system of defective-renewal equations,

m1(u) = κδ

∫ u

0
m1(u − y)η(y) dy + σ1(u), (2.24)

m2(u) = κδ

∫ u

0
m2(u − y)η(y) dy + σ2(u), (2.25)

where

κδ =
λ1

c1
·
λ2 + δ

c2
T0TrTρξ(0) +

λ1

c1
·

r
r − ρ

T0Trξ(0) −
λ1

c1
·

ρ

r − ρ
T0Tρξ(0)

+
λ2

c2
·
λ1 + δ

c1
T0TrTρχ(0) +

λ2

c2
·

r
r − ρ

T0Trχ(0) −
λ2

c2
·

ρ

r − ρ
T0Tρχ(0), (2.26)

q1 =

λ1
c1
·
λ2+δ

c2
T0TrTρξ(0)

κδ
, q2 =

λ1
c1
· r

r−ρT0Trξ(0)

κδ
, q3 =

−
λ1
c1
·

ρ

r−ρT0Tρξ(0)

κδ
,

q4 =

λ2
c2
·
λ1+δ

c1
T0TrTρχ(0)

κδ
, q5 =

λ2
c2
· r

r−ρT0Trχ(0)

κδ
, q6 =

−
λ2
c2
·

ρ

r−ρT0Tρχ(0)

κδ
,

η(y) = q1
TrTρξ(y)

T0TrTρξ(0)
+q2

Trξ(y)
T0Trξ(0)

+q3
Tρξ(y)

T0Tρξ(0)
+q4

TrTρχ(y)
T0TrTρχ(0)

+q5
Trχ(y)

T0Trχ(0)
+q6

Tρχ(y)
T0Tρχ(0)

,

(2.27)

with r, ρ denoting the nonnegative roots of Lundberg’s equation (2.17), and

σ1(u) =
λ1

c1

[
λ2 + δ

c2
TrTρζ(u) +

rTrζ(u) − ρTρζ(u)
r − ρ

]
+

[
λ2

c2
m1(0) −

λ1

c1
m2(0)

]
TrTρχ(u),

(2.28)

σ2(u) =
λ2

c2

[
λ1 + δ

c1
TrTρζ(u) +

rTrζ(u) − ρTρζ(u)
r − ρ

]
−

[
λ2

c2
m1(0) −

λ1

c1
m2(0)

]
TrTρξ(u),

(2.29)

with
[
λ2
c2

m1(0) − λ1
c1

m2(0)
]

expressed in (2.23). Also, η(y), y ≥ 0, is a probability density

function and κδ is a constant satisfying 0 < κδ < 1.

Proof For all s ≥ 0 (except for r and ρ), we rearrange equations (2.15) and (2.16) as

follows,

m̃1(s) =
α̃1(s) + β̃1(s)

h̃1(s) − h̃2(s)
, (2.30)
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m̃2(s) =
α̃2(s) + β̃2(s)

h̃1(s) − h̃2(s)
, (2.31)

with h̃1(s), h̃2(s) defined in (2.19), (2.20), and

α̃1(s) =

(
s −

λ2 + δ

c2

)
m1(0), (2.32)

β̃1(s) =
λ1

c1

(
λ2 + δ

c2
− s

)
ζ̃(s) +

[
λ2

c2
m1(0) −

λ1

c1
m2(0)

]
χ̃(s), (2.33)

α̃2(s) =

(
s −

λ1 + δ

c1

)
m2(0),

β̃2(s) =
λ2

c2

(
λ1 + δ

c1
− s

)
ζ̃(s) −

[
λ2

c2
m1(0) −

λ1

c1
m2(0)

]
ξ̃(s). (2.34)

The transforms α̃1(s) and h̃1(s) are polynomials in s of degree one and degree two,

respectively. Implementing the Lagrange interpolation theorem, the following results are

reached (a detailed derivation may be found in Boudreault et al., 2006, for example),

α̃1(s) + β̃1(s) = (s − r)(s − ρ) TsTrTρβ1(0), (2.35)

h̃1(s) − h̃2(s) = (s − r)(s − ρ)
[
T0TrTρh1(0) − TsTrTρh2(0)

]
= (s − r)(s − ρ)

[
1 − TsTrTρh2(0)

]
,

(2.36)

where r and ρ are the two positive roots of Lundberg’s equation. Inserting (2.35) and (2.36)

into (2.30) yields

m̃1(s) =
TsTrTρβ1(0)

1 − TsTrTρh2(0)

or equivalently,

m̃1(s) = m̃1(s) TsTrTρh2(0) + TsTrTρβ1(0). (2.37)

Similarly for (2.31), we obtain

m̃2(s) = m̃2(s) TsTrTρh2(0) + TsTrTρβ2(0). (2.38)

In order to invert the Laplace transforms in (2.37) and (2.38), we need to derive the

Laplace inversion for TsTrTρh2(0), TsTrTρβ1(0) and TsTrTρβ2(0). Utilizing equation (2.6)
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repeatedly, we deduce from (2.20) that

TsTrTρh2(0) =
1

r − ρ

 h̃2(ρ) − h̃2(s)
s − ρ

−
h̃2(r) − h̃2(s)

s − r


=

h̃2(ρ) − h̃2(s)
(s − ρ)(r − ρ)

−
h̃2(r) − h̃2(s)
(s − r)(r − ρ)

=
λ1

c1
·
λ2 + δ

c2
TsTrTρξ(0) −

λ1

c1

 ρξ̃(ρ) − s̃ξ(s)
(s − ρ)(r − ρ)

−
rξ̃(r) − s̃ξ(s)
(s − r)(r − ρ)


+
λ2

c2
·
λ1 + δ

c1
TsTrTρχ(0) −

λ2

c2

[
ρχ̃(ρ) − sχ̃(s)
(s − ρ)(r − ρ)

−
rχ̃(r) − sχ̃(s)
(s − r)(r − ρ)

]
=
λ1

c1
·
λ2 + δ

c2
TsTrTρξ(0) −

λ1

c1
·

1
r − ρ

ρξ̃(ρ) − s̃ξ(s)
s − ρ

−
rξ̃(r) − s̃ξ(s)

s − r


+
λ2

c2
·
λ1 + δ

c1
TsTrTρχ(0) −

λ2

c2
·

1
r − ρ

[
ρχ̃(ρ) − sχ̃(s)

s − ρ
−

rχ̃(r) − sχ̃(s)
s − r

]
=
λ1

c1
·
λ2 + δ

c2
TsTrTρξ(0)

−
λ1

c1
·

1
r − ρ

ρξ̃(ρ) − ρξ̃(s) + ρξ̃(s) − s̃ξ(s)
s − ρ

−
rξ̃(r) − rξ̃(s) + rξ̃(s) − s̃ξ(s)

s − r


+
λ2

c2
·
λ1 + δ

c1
TsTrTρχ(0)

−
λ2

c2
·

1
r − ρ

[
ρχ̃(ρ) − ρχ̃(s) + ρχ̃(s) − sχ̃(s)

s − ρ
−

rχ̃(r) − rχ̃(s) + rχ̃(s) − sχ̃(s)
s − r

]

=
λ1

c1
·
λ2 + δ

c2
TsTrTρξ(0) −

λ1

c1

−ξ̃(s) + ρTsTρξ(0) −
[
−ξ̃(s) + rTsTrξ(0)

]
r − ρ


+
λ2

c2
·
λ1 + δ

c1
TsTrTρχ(0) −

λ2

c2

{
−χ̃(s) + ρTsTρχ(0) −

[
−χ̃(s) + rTsTrχ(0)

]
r − ρ

}
=
λ1

c1
·
λ2 + δ

c2
TsTrTρξ(0) +

λ1

c1

[
rTsTrξ(0) − ρTsTρξ(0)

r − ρ

]
+
λ2

c2
·
λ1 + δ

c1
TsTrTρχ(0) +

λ2

c2

[
rTsTrχ(0) − ρTsTρχ(0)

r − ρ

]
. (2.39)

Therefore, the Laplace transform may be inverted to

TrTρh2(u) =
λ1

c1

[
λ2 + δ

c2
TrTρξ(u) +

rTrξ(u) − ρTρξ(u)
r − ρ

]
+
λ2

c2

[
λ1 + δ

c1
TrTρχ(u) +

rTrχ(u) − ρTρχ(u)
r − ρ

]
. (2.40)
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Following a similar procedure, from (2.33) and (2.34) we obtain

TsTrTρβ1(0) =
λ1

c1

[
λ2 + δ

c2
TsTrTρζ(0) +

rTsTrζ(0) − ρTsTρζ(0)
r − ρ

]
+

[
λ2

c2
m1(0) −

λ1

c1
m2(0)

]
TsTrTρχ(0), (2.41)

TsTrTρβ2(0) =
λ2

c2

[
λ1 + δ

c1
TsTrTρζ(0) +

rTsTrζ(0) − ρTsTρζ(0)
r − ρ

]
−

[
λ2

c2
m1(0) −

λ1

c1
m2(0)

]
TsTrTρξ(0), (2.42)

and the inversion of these Laplace transforms yields

TrTρβ1(u) =
λ1

c1

[
λ2 + δ

c2
TrTρζ(u) +

rTrζ(u) − ρTρζ(u)
r − ρ

]
+

[
λ2

c2
m1(0) −

λ1

c1
m2(0)

]
TrTρχ(u), (2.43)

TrTρβ2(u) =
λ2

c2

[
λ1 + δ

c1
TrTρζ(u) +

rTrζ(u) − ρTρζ(u)
r − ρ

]
−

[
λ2

c2
m1(0) −

λ1

c1
m2(0)

]
TrTρξ(u). (2.44)

Utilizing (2.40), (2.43) and (2.44), we invert the Laplace transforms in (2.37) and (2.38) to

m1(u) =

∫ u

0
m1(u − y)Tr Tρh2(y) dy + TrTρβ1(u),

m2(u) =

∫ u

0
m2(u − y)Tr Tρh2(y) dy + TrTρβ2(u).

Employing the definitions of κδ, η(y), σ1(u) and σ2(u) provided by equations (2.26) to

(2.29) respectively, we obtain

m1(u) = κδ

∫ u

0
m1(u − y) η(y) dy + σ1(u),

m2(u) = κδ

∫ u

0
m2(u − y) η(y) dy + σ2(u),

which yields the system of renewal equations (2.24) and (2.25).

To demonstrate η(y) is a proper p.d.f., we notice by comparing equalities (2.26) and

(2.39) that

κδ = T0TrTρh2(0) , (2.45)
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hence

η(y) =
TrTρh2(y)

κδ
=

TrTρh2(y)
T0TrTρh2(0)

=
TrTρh2(y)∫ ∞

0
TrTρh2(y) dy

. (2.46)

Rearranging (2.40) yields

TrTρh2(u) =
λ1

c1

[
λ2 + δ

c2
TrTρξ(u) +

rTrξ(u) − ρTrξ(u) + ρTrξ(u) − ρTρξ(u)
r − ρ

]
+
λ2

c2

[
λ1 + δ

c1
TrTρχ(u) +

rTrχ(u) − ρTrχ(u) + ρTrχ(u) − ρTρχ(u)
r − ρ

]
=
λ1

c1

[(
λ2 + δ

c2
− ρ

)
TrTρξ(u) + Trξ(u)

]
+
λ2

c2

[(
λ1 + δ

c1
− ρ

)
TrTρχ(u) + Trχ(u)

]
.

(2.47)

With loss of generality, let the two nonnegative roots of Lundberg’s equation be ρ < r.

From Lemmas 2.1 and 2.2, we have for arbitrary δ ≥ 0 that ρ < min
{
λ1+δ

c1
, λ2+δ

c2

}
. Then, all

terms in (2.47) is positive for all u ≥ 0, which implies TrTρh2(u) > 0 for all u ≥ 0. Recall

(2.46) where

η(y) =
TrTρh2(y)∫ ∞

0
TrTρh2(y) dy

.

Thus, η(y) is positive for all y ≥ 0. Moreover,
∫ ∞

0
η(y) dy = 1, which confirms that η(y) is a

proper p.d.f.

To verify that (2.24) and (2.25) are defective renewal equations, it remains to show that

κδ < 1. We consider the cases δ > 0 and δ = 0 separately. When δ > 0, recall (2.45) that

κδ = T0TrTρh2(0). Inserting s = 0 into (2.36) leads to

κδ = T0TrTρh2(0) = 1 −
h̃1(0) − h̃2(0)

rρ
.

Utilizing (2.19), (2.20) and the Laplace-transformed relationship (2.10) at s = 0, we obtain

κδ = 1 −

λ1 + δ

c1
·
λ2 + δ

c2
−
λ1

c1
·
λ2 + δ

c2
ξ̃(0) −

λ2

c2
·
λ1 + δ

c1
χ̃(0)

rρ
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= 1 −

λ1δ

c1c2

[
1 − ξ̃(0)

]
+
λ2δ

c1c2

[
1 − χ̃(0)

]
+

δ2

c1c2

rρ

= 1 −

λ1δ

c1c2
χ̃(0) +

λ2δ

c1c2
ξ̃(0) +

δ2

c1c2

rρ

< 1 ,

since λ1, λ2, δ, c1, c2, r, ρ > 0, ξ̃(0) = P{X > Q} ≥ 0 and χ̃(0) = P{X < Q} ≥ 0. Therefore,

we conclude that 0 < κδ < 1 when δ > 0.

When δ = 0, without loss of generality, let the two nonnegative roots of Lundberg’s

equation be r > 0 and ρ = 0. Denote κδ as κ0 to suggest that δ = 0. Then, identity (2.26)

reduces to

κ0 =
λ1λ2

c1c2
T0T0Trξ(0) +

λ1

c1
T0Trξ(0) +

λ1λ2

c1c2
T0T0Trχ(0) +

λ2

c2
T0Trχ(0)

=
λ1λ2

c1c2
T0T0Tr b(0) +

λ1

c1
T0Trξ(0) +

λ2

c2
T0Trχ(0) , (2.48)

by equation (2.10). To prove that κ0 < 1, utilizing Property 4 of Translation Operator T in

Li and Garrido (2004) where

T0T0Tr b(0) =

∫ ∞

0
u · b(u) du = µ ,

we rewrite (2.48) as follows

κ0 =
λ1λ2

c1c2
T0T0Tr b(0) +

λ1

c1
T0Trξ(0) +

λ2

c2
T0Trχ(0)

=
λ1λ2

c1c2

[T0T0b(0) − T0Trb(0)
r

]
+
λ1

c1

[
ξ̃(0) − ξ̃(r)

r

]
+
λ2

c2

[
χ̃(0) − χ̃(r)

r

]
=
λ1λ2

c1c2r

[
µ −

1 − b̃(r)
r

]
+
λ1

c1r

[
ξ̃(0) − ξ̃(r)

]
+
λ2

c2r

[
χ̃(0) − χ̃(r)

]
=

1
r

[
λ1λ2

c1c2
µ +

λ1

c1
ξ̃(0) +

λ2

c1
χ̃(0)

]
+

1
r2

[
−
λ1λ2

c1c2
+
λ1λ2

c1c2
b̃(r) −

λ1

c1
rξ̃(r) −

λ2

c2
rχ̃(r)

]
.

(2.49)
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Since r is a root of Lundberg’s equation (2.18) when δ = 0, we have(
λ1

c1
− r

) (
λ2

c2
− r

)
=
λ1λ2

c1c2
b̃(r) −

λ1

c1
rξ̃(r) −

λ2

c2
rχ̃(r).

Inserting this identity into (2.49) produces

κ0 =
1
r

[
λ1λ2

c1c2
µ +

λ1

c1
ξ̃(0) +

λ2

c1
χ̃(0)

]
+

1
r2

[
−
λ1λ2

c1c2
+

(
λ1

c1
− r

) (
λ2

c2
− r

)]
=

1
r

[
λ1λ2

c1c2
µ +

λ1

c1
ξ̃(0) +

λ2

c1
χ̃(0)

]
+

1
r2

[
−r

(
λ1

c1
+
λ2

c2

)]
+ 1

= 1 +
1
r

{
λ1λ2

c1c2
µ +

λ1

c1

[̃
ξ(0) − 1

]
+
λ2

c1

[
χ̃(0) − 1

]}
= 1 +

1
r

[
λ1λ2

c1c2
µ −

λ1

c1
χ̃(0) −

λ2

c2
ξ̃(0)

]
.

Utilizing the positive-security-loading condition (2.2) that

λ1λ2

c1c2
µ <

λ2

c2
ξ̃(0) +

λ1

c1
χ̃(0),

which indicates
[
λ1λ2
c1c2

µ − λ1
c1
χ̃(0) − λ2

c2
ξ̃(0)

]
< 0, hence κ0 < 1. As a result, the proof that

0 < κδ < 1 is completed for both δ > 0 and δ = 0. �

Remark 2.1 When c1 = c2, model (2.1) reduces to the model considered by Albrecher and

Boxma (2004). Expressions (2.21) and (2.22) for mi(0), i = 1, 2, complement the system of

equations (8) and (11) in Albrecher and Boxma (2004) where δ = 0 and w(x1, x2) = 1 for all

x1, x2 ≥ 0. Moreover, (2.24) and (2.25) provide the explicit solutions for the Gerber-Shiu

function mi(u), i = 1, 2. �

Remark 2.2 If premium rates c1 and c2 are set so that λ1
c1

= λ2
c2

, then we deduce from

(2.21), (2.22), (2.24) and (2.25) that m1(0) = m2(0) and m1(u) = m2(u), which means that

the effect of the dependence structure between interclaim times and claim sizes is offset

and the model reduces to the classical compound Poisson model. �
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2.4 Applications with exponential thresholds

The thresholds may be viewed as a criterion for classifying claims as large or small. Thus,

it is natural to assume that the distribution of the thresholds is exponential. In this section,

we assume that the random thresholds {Qi, i = 1, 2, . . . } follow an exponential distribution

with c.d.f. H(y) = 1 − e−νy, y ≥ 0, and derive the explicit expressions for the Gerber-Shiu

function under consider some special cases. A numerical example is provided in section

2.4.3

2.4.1 Gerber-Shiu function with Kn-family claim sizes

Assume that the claim amounts {Xi, i = 1, 2, . . . } follow a distribution from the Kn family,

i.e., the Laplace transform of the density function b(·) has the following form

b̃(s) =
p?k−1(s)
pk(s)

, k ∈ N+

where pk(s) is a polynomial in s of degree k with only negative zeros, p?k−1(s) is a

polynomial in s of degree k−1 or less, both with leading constant 1 and pk(0) = p?k−1(0). The

Kn family is a general family of distributions that contains Erlang, Coxian, some phase-type

distributions and their mixtures, which are common choices for modeling the claim-size

random variables. The Kn family is also widely considered in applied probability areas

(see Cohen, 1982, and Tijms, 1994).

By (2.9) with H(y) = 1 − eνy, y ≥ 0, we may write

χ̃(s) = b̃(s + ν) =
q?k−1(s)
qk(s)

,

where qk(s) = pk(s + ν) is a polynomial in s of degree k with only negative zeros, q?k−1(s) =

p?k−1(s + ν) is a polynomial in s of degree k − 1 or less, both with leading constant 1, since

ν > 0 is a constant. We rewrite the left-hand side of Lundberg’s equation (2.17) utilizing
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identity (2.10) to

h̃1(s) − h̃2(s) =

(
s −

λ1 + δ

c1

) (
s −

λ2 + δ

c2

)
+
λ1

c1

(
s −

λ2 + δ

c2

)
b̃(s) +

[(
λ2

c2
−
λ1

c1

)
s +

λ1δ − λ2δ

c1c2

]
χ̃(s).

Then Lundberg’s equation becomes(
s −

λ1 + δ

c1

) (
s −

λ2 + δ

c2

)
+
λ1

c1

(
s −

λ2 + δ

c2

)
p?k−1(s)
pk(s)

+

[(
λ2

c2
−
λ1

c1

)
s +

λ1δ − λ2δ

c1c2

]
q?k−1(s)
qk(s)

= 0,

which may be rearranged as(
s −

λ1 + δ

c1

) (
s −

λ2 + δ

c2

)
pk(s) qk(s) +

λ1

c1

(
s −

λ2 + δ

c2

)
p?k−1(s) qk(s)

+

[(
λ2

c2
−
λ1

c1

)
s +

λ1δ − λ2δ

c1c2

]
q?k−1(s) pk(s) = 0,

(2.50)

without changing the roots of the equation. The left-hand side of equation (2.50) is a

polynomial in s of degree 2k + 2 with leading coefficient 1. Hence, it has 2k + 2 roots in

total. Among these roots, exactly two are nonnegative by Lemmas 2.1 and 2.2, denoted

as r and ρ. Therefore, the other 2k roots are in the left-hand complex plane, denoted as

R1, . . . ,R2k. From now on, we assume that these roots are distinct. When this is not the

case, the calculations may still be carried through but are more complex. In addition,

the left-hand side of (2.50) equals pk(s) qk(s)
[̃
h1(s) − h̃2(s)

]
and has leading coefficient 1,

which in turn implies that

pk(s) qk(s)
[̃
h1(s) − h̃2(s)

]
= (s − r)(s − ρ)

2k∏
l=1

(s − Rl). (2.51)

Notice that the polynomials pk(s) and qk(s) might share common terms, the negative roots

will be reduced by number of shared terms. Suppose pk(s) and qk(s) have x terms in

common, then the number of negative roots of Lundberg’s equation reduces to 2k − x,

in which case we may simply replace the terms 2k by 2k − x in equation (2.51) and the

following derivations.
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Implementing (2.35) and (2.51) in (2.30), we have for all s ≥ 0 (except for r and ρ),

m̃1(s) =
α̃1(s) + β̃1(s)

h̃1(s) − h̃2(s)

=
pk(s) qk(s)

[
α̃1(s) + β̃1(s)

]
pk(s) qk(s)

[̃
h1(s) − h̃2(s)

]
=

pk(s) qk(s)(s − r)(s − ρ)TsTrTρβ1(0)

(s − r)(s − ρ)
∏2k

l=1(s − Rl)

=
pk(s) qk(s)∏2k

l=1(s − Rl)
TsTrTρβ1(0). (2.52)

Denote by

z(s) := pk(s) qk(s) −
2k∏
l=1

(s − Rl). (2.53)

Since both pk(s) qk(s) and
∏2k

l=1(s − Rl) are polynomials in s of degree 2k with leading

coefficient 1, z(s) is a polynomial of s of degree 2k − 1 or less. Further, denote by

D(s) :=
2k∏
l=1

(s − Rl).

Then (2.52) may be rewritten as

m̃1(s) =

[
1 +

z(s)
D(s)

]
TsTrTρβ1(0). (2.54)

Observe that
z(s)
D(s)

is a rational function in s, which implies that it is the Laplace transform

of some function `(·) with respect to s, i.e., ˜̀(s) =
z(s)
D(s)

. Applying the Heaviside expansion

theorem, ˜̀(s) may be inverted to

`(u) =

2k∑
j=1

z(R j)
D′(R j)

eR ju,

where by definition (2.53)

z(R j) = pk(R j) qk(R j) = pk(R j) pk(R j + ν).
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DifferentiatingD(s) yieldsD′(R j) =

2k∏
l=1, l, j

(R j − Rl) for j = 1, . . . , 2k. Thus,

`(u) =

2k∑
j=1

pk(R j) pk(R j + ν)∏2k
l=1, l, j(R j − Rl)

eR ju. (2.55)

Then, we may invert the Laplace transform in (2.54) to

m1(u) = TrTρβ1(u) + `(u) ∗ TrTρβ1(u),

where ∗ denotes the convolution and TrTρβ1(u) and `(u) are expressed in (2.43) and (2.55).

Similarly, from (2.31) we deduce that

m2(u) = TrTρβ2(u) + `(u) ∗ TrTρβ2(u),

with TrTρβ2(u) and `(u) expressed in (2.44) and (2.55).

2.4.2 Laplace transform of the time to ruin under exponential claim

sizes

The Laplace transform of the time to ruin is one of the quantities of particular interest for

insurance risk analysis. As shown in Example 1.2, let the penalty function w(x1, x2) = 1

for all x1, x2 ≥ 0, then the Gerber-Shiu function (2.3) reduces to

ϕi(u) = E
[
e−δτi I{τi<∞} |U(0) = u

]
, u ≥ 0, i = 1, 2,

which is the Laplace transform of the time to ruin with respect to δ, given that the initial

class of the insured is i = 1, 2 and the initial surplus is u. The transforms ϕi(u), i = 1, 2,

are useful for computing the moments of the time-to-ruin random variables τi, i = 1, 2.

Moreover, by letting δ = 0, ϕi(u), i = 1, 2, yield the ultimate-ruin probabilities ψi(u), i =

1, 2.
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Assume the claim sizes {Xi} are exponentially distributed with p.d.f. b(y) = εe−εy, y ≥ 0,

which has Laplace transform b̃(s) =
ε

s + ε
and µ = E{X1} = 1

ε
. Employing (2.4) yields

ζ(u) =
∫ ∞

u
b(y)dy = e−εu. Then for all s ≥ 0,

Tsζ(0) = ζ̃(s) =
1

s + ε
. (2.56)

Utilizing (2.9) and (2.10), we obtain

χ̃(s) =
ε

s + ν + ε
, (2.57)

ξ̃(s) = b̃(s) − χ̃(s) =
εν

(s + ε)(s + ν + ε)
, (2.58)

and we may further derive utilizing (2.6) that

TsTρTrχ(0) =
ε

(s + ν + ε) (ρ + ν + ε) (r + ν + ε)
, (2.59)

TsTρTrξ(0) =
ε

(s + ε) (ρ + ε) (r + ε)
−

ε

(s + ν + ε) (ρ + ν + ε) (r + ν + ε)
,

(2.60)

TsTρTrζ(0) =
1

(s + ε) (ρ + ε) (r + ε)
, (2.61)

rTsTrχ(0) − ρTsTρχ(0)
r − ρ

=
ε (ν + ε)

(s + ν + ε) (ρ + ν + ε) (r + ν + ε)
. (2.62)

Implementing (2.57) and (2.58), Lundberg’s equation (2.17) reduces to(
s −

λ1 + δ

c1

) (
s −

λ2 + δ

c2

)
+
λ1

c1

(
s −

λ2 + δ

c2

)
εν

(s + ε)(s + ν + ε)
+
λ2

c2

(
s −

λ1 + δ

c1

)
ε

s + ν + ε
= 0,

which may be rearranged to the following equation without change in the roots,(
s −

λ1 + δ

c1

) (
s −

λ2 + δ

c2

)
(s + ε)(s + ν + ε) + εν

λ1

c1

(
s −

λ2 + δ

c2

)
+ ε

λ2

c2

(
s −

λ1 + δ

c1

)
(s + ε) = 0.

(2.63)

The roots do not change because neither s = −ε nor s = −ε − ν solves (2.63). Equation

(2.63) is a fourth-order polynomial equation in s,which has four roots in the complex plane,

among which exactly two are nonnegative by Lemmas 2.1 and 2.2, denoted by r and ρ as
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before. Then (2.63) has exactly two other roots with negative real part, denoted by R1,R2.

The leading coefficient of the left-hand side of (2.63) is 1, which implies

(s + ε)(s + ν + ε)
[̃
h1(s) − h̃2(s)

]
= (s − r)(s − ρ)(s − R1)(s − R2). (2.64)

Inserting (2.35) and (2.64) into (2.30), we obtain that for all s ≥ 0 (except for r and ρ),

ϕ̃1(s) =
α̃1(s) + β̃1(s)

h̃1(s) − h̃2(s)

=
[α̃(s) + β̃1(s)](s + ε)(s + ν + ε)

[̃h1(s) − h̃2(s)](s + ε)(s + ν + ε)

=
(s + ε)(s + ν + ε)(s − ρ)(s − r)TsTρTrβ1(0)

(s − ρ)(s − r)(s − R1)(s − R2)

=
(s + ε)(s + ν + ε)TsTrTρβ1(0)

(s − R1)(s − R2)
.

Denote the numerator by

G(s) := (s + ε)(s + ν + ε) TsTrTρβ1(0) ,

then

ϕ̃1(s) =
G(s)

(s − R1)(s − R2)
. (2.65)

Employing (2.41) with auxiliary results (2.59) to (2.62) , we simplify G(s) to

G(s) = (s + ε)(s + ν + ε) TsTrTρβ1(0)

= (s + ε)(s + ν + ε)

λ1

c1

(
λ2 + δ

c2

)
TsTρTrζ(0)

+

(
λ1

c1

)
rTsTrζ(0) − ρTsTρζ(0)

r − ρ
+

[
λ2

c2
ϕ1(0) −

λ1

c1
ϕ2(0)

]
TsTρTrχ(0)


= (s + ε)(s + ν + ε)


λ1
c1

(
λ2+δ

c2

)
(r + ε)(ρ + ε)(s + ε)

+

(
λ1
c1

)
ε

(r + ε)(ρ + ε)(s + ε)
+

[
λ2
c2
ϕ1(0) − λ1

c1
ϕ2(0)

]
ε

(r + ε + ν)(ρ + ε + ν)(s + ε + ν)
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=

λ1
c1

(
λ2+δ

c2
+ ε

)
(ρ + ε)(r + ε)

(s + ε + ν) +

[
λ2
c2
ϕ1(0) − λ1

c1
ϕ2(0)

]
ε

(ρ + ε + ν)(r + ε + ν)
(s + ε) , (2.66)

which is a polynomial of degree 1 in s. Moreover, inserting (2.56) and (2.57) into (2.23)

produces

λ2

c2
ϕ1(0) −

λ1

c1
ϕ2(0) =

λ1(r + ε + ν)(ρ + ε + ν)(c2ρ − λ2 − δ)(c2r − λ2 − δ)
c1c2ε(r + ε)(ρ + ε)(c2r + c2ρ + c2ε + c2ν − λ2 − δ)

. (2.67)

Since G(s) is a polynomial of degree 1 and R1, R2 are in the left-half of the complex

plane, applying the Heaviside expansion theorem to (2.65), the inversion of the Laplace

transforms yields

ϕ1(u) =
G(R1)

R1 − R2
eR1u +

G(R2)
R2 − R1

eR2u, u ≥ 0, (2.68)

where G(·) is expressed in (2.66), and R1,R2 are the only two roots of Lundberg’s equation

(2.63) with negative real parts.

Similarly for ϕ̃2(s), denote by

J(s) := (s + ε)(s + ν + ε)TsTrTρβ2(0) ,

it follows from (2.31) that

ϕ̃2(s) =
J(s)

(s − R1)(s − R2)
.

We deduce from (2.42), utilizing results (2.59) to (2.62), that J(s) is also a polynomial of

degree one in s, where

J(s) = (s + ε) (s + ν + ε) TsTrTρβ2(0)

= (s + ε) (s + ν + ε)

λ2

c2

[
λ1 + δ

c1
TsTrTρζ(0) +

rTsTrζ(0) − ρTsTρζ(0)
r − ρ

]

−

[
λ2

c2
m1(0) −

λ1

c1
m2(0)

]
TsTrTρξ(0)
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=

λ2
c2

(
λ1+δ

c1
+ ε

)
−

[
λ2
c2
ϕ1(0) − λ1

c1
ϕ2(0)

]
ε

(ρ + ε)(r + ε)
(s + ε + ν) +

[
λ2
c2
ϕ1(0) − λ1

c1
ϕ2(0)

]
ε

(ρ + ε + ν)(r + ε + ν)
(s + ε) ,

(2.69)

with
[
λ2
c2
ϕ1(0) − λ1

c1
ϕ2(0)

]
expressed in (2.67). Applying the Heaviside expansion theorem

again yields

ϕ2(u) =
J(R1)

R1 − R2
eR1u +

J(R2)
R2 − R1

eR2u, u ≥ 0, (2.70)

where J(·) is defined in (2.69), and R1,R2 are the two roots of Lundberg’s equation (2.63)

with negative real parts.

Together (2.68) and (2.70) give us the explicit expressions for the Laplace transform

of the time to ruin ϕi(u), i = 1, 2, under the exponential setting. Furthermore, if we insert

δ = 0 (which implies ρ = 0) into the expressions for ϕi(u), i = 1, 2, the ultimate ruin

probabilities ψi(u), i = 1, 2 are obtained.

In addition, we derive the first moment of the time to ruin τi for i = 1, 2. In order to

differentiate ϕi(u), i = 1, 2 with respect to δ, we introduce the following notation. Denote

the four roots r, ρ,R1 and R2 of the Lundberg’s equation (2.63) as A1(δ),A2(δ),A3(δ) and

A4(δ) respectively, whereA1(δ) andA2(δ) are interchangeable, as well asA3(δ) andA4(δ).

Let

Ω1(δ) :=
1[

A1(δ) + ε
][
A2(δ) + ε

] ,
Ω2(δ) :=

1[
A1(δ) + ε + ν

][
A2(δ) + ε + ν

] ,
∇(δ) :=

λ1
[
c2A1(δ) − δ − λ2

][
c2A2(δ) − δ − λ2

]
c1c2ε

[
c2A1(δ) + c2A2(δ) − δ − λ2 + c2ε + c2ν

] ,
V(δ) :=

[
λ2

c2
ϕ1(0) −

λ1

c1
ϕ2(0)

]
=

Ω1(δ)
Ω2(δ)

∇(δ) ,

by equation (2.67). Then (2.66) and (2.69) may be expressed as

G(A j(δ)) =
λ1

c1c2

(
δ + λ2 + c2ε

)[
A j(δ) + ε + ν

]
Ω1(δ) + ε

[
A j(δ) + ε

]
∇(δ) Ω1(δ) , j = 3, 4,
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J(A j(δ)) =

[
λ2

c1c2

(
δ + λ1 + c1ε

)
− εV(δ)

] [
A j(δ) + ε + ν

]
Ω1(δ) − ε

[
A j(δ) + ε

]
∇(δ) Ω1(δ) , j = 3, 4.

Differentiation of Lundberg’s equation (2.63) with respect to δ yields

A′i(δ) =

[
Λ1,i + Λ2,i

]
(Ai + ε) (Ai + ε + ν) + λ2ε (Ai + ε) + λ1εν[

c2Λ1,i + c1Λ2,i
]

(Ai + ε) (Ai + ε + ν) + Λ1,iΛ2,i (2Ai + 2ε + ν) + λ2ε
(
Λ1,i + c1Ai + c1ε

)
+ c2λ1εν

,

for i = 1, 2, 3, 4, whereAi stands forAi(δ) and

Λ1,i = c1Ai(δ) − λ1 − δ , Λ2,i = c2Ai(δ) − λ2 − δ .

WithA′i(δ) known, we are able to derive the following first-order derivatives, Ω′1(δ), Ω′2(δ),

∇′(δ), V ′(δ), ∂
∂δ

G(Ai(δ)) and ∂
∂δ

J(Ai(δ)), assuming that these derivatives exist when δ is

close to 0. Then, differentiating (2.68) and (2.70) with respect to δ produces

∂

∂δ
ϕ1(u) =

A′3(δ)G(A3(δ))
A3(δ) −A4(δ)

u +

∂
∂δ

G(A3(δ))
A3(δ) −A4(δ)

−
G(A3(δ))(A′3(δ) −A′4(δ))

A3(δ) −A4(δ)

 eA3(δ)u

+

A′4(δ)G(A4(δ))
A4(δ) −A3(δ)

u +

∂
∂δ

G(A4(δ))
A4(δ) −A3(δ)

−
G(A4(δ))(A′4(δ) −A′3(δ))

A4(δ) −A3(δ)

 eA4(δ)u,

∂

∂δ
ϕ2(u) =

A′3(δ)J(A3(δ))
A3(δ) −A4(δ)

u +

∂
∂δ

J(A3(δ))
A3(δ) −A4(δ)

−
J(A3(δ))(A′3(δ) −A′4(δ))

A3(δ) −A4(δ)

 eA3(δ)u

+

A′4(δ)J(A4(δ))
A4(δ) −A3(δ)

u +

∂
∂δ

J(A4(δ))
A4(δ) −A3(δ)

−
J(A4(δ))(A′4(δ) −A′3(δ))

A4(δ) −A3(δ)

 eA4(δ)u.

Hence, the first moment of the time to ruin τi, i = 1, 2, when the initial class is i and the

initial surplus is u, may be obtained as

E
{
τi

∣∣∣ τi < ∞,U(0) = u
}

=
E

{
τi I{Ti<∞}|U(0) = u

}
P {τi < ∞|U(0) = u}

=
− ∂
∂δ
ϕi(u)

∣∣∣
δ=0

ψi(u)
, i = 1, 2. (2.71)

2.4.3 Numerical Example

Assume that thresholds Qi ∼ Exp(2), claim sizes Xi ∼ Exp(1), c1 = c2 = 2, λ1 = 3, λ2 = 1

and δ = 0. Then, Lundberg’s equation is

4s4 + 8s3 − 15s2 − s = 0,
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which has four roots, yielding r = 1.22575, ρ = 0, R1 = −0.06452 and R2 = −3.16124.

Since δ = 0, the ultimate ruin probabilities may be calculated from (2.68) and (2.70) as

ψ1(u) = 0.9384 e−0.0645u + 0.0068 e−3.1612u,

ψ2(u) = 0.8669 e−0.0645u + 0.0029 e−3.1612u.

To compute the first moment of finite ruin time τi, i = 1, 2, we first derive some constants

A′1(0) = 0.602416 A′2(0) = 5

A′3(0) = −4.614023 A′4(0) = 0.01141974

Ω′1(0) = −2.368031 Ω′2(0) = −0.1427141

∇′(0) = 1.494321 V ′(0) = 11.39155

∂
∂δ

G(A3(δ))
∣∣∣
δ=0

= −18.06103 ∂
∂δ

G(A4(δ))
∣∣∣
δ=0

= −1.383135

∂
∂δ

J(A3(δ))
∣∣∣
δ=0

= −32.22943 ∂
∂δ

J(A4(δ))
∣∣∣
δ=0

= −0.586625

Then, plugging the above into (2.71), we obtain

E
{
τ1 I{τ1<∞}|U(0) = u

}
= (4.43061 + 4.32993u) e−0.0645u − (0.45684 + 0.00008u) e−3.1612u,

E
{
τ2 I{τ2<∞}|U(0) = u

}
= (9.11269 + 4.00003u) e−0.0645u − (0.19376 + 0.00003u) e−3.1612u,

and consequently, the expected time of ruin given that ruin occurs in finite time is

E
{
τ1

∣∣∣ τ1 < ∞,U(0) = u
}

=
(4.43061 + 4.32993u) e−0.0645u − (0.45684 + 0.00008u) e−3.1612u

0.9384 e−0.0645u + 0.0068 e−3.1612u ,

E
{
τ2

∣∣∣ τ2 < ∞,U(0) = u
}

=
(9.11269 + 4.00003u) e−0.0645u − (0.19376 + 0.00003u) e−3.1612u

0.8669 e−0.0645u + 0.0029 e−3.1612u .



Chapter 3

An insurance risk model with

dependence and diffusion

In this chapter, we consider a perturbed version of an insurance risk model with

interclaim-time distribution depends on the size of the previous claim. We assume that

the surplus process of the insurer is perturbed by a Brownian motion to account for small

fluctuations. Explicit solutions for the Gerber-Shiu discounted penalty function are derived

for arbitrary claim sizes. Special cases of the Gerber-Shiu function when claim sizes come

from the Kn-family are deduced. A numerical example is provided to illustrative the impact

of the perturbation.

3.1 Model description and preliminary results

Suppose that the surplus process of an insurance company is modeled by

U(t) = u + ct −
N(t)∑
i=1

Xi + σW(t), t ≥ 0, (3.1)

with initial surplus u ≥ 0 and constant premium rate c. Claims occur with a dependence

structure described in Albrecher and Boxma (2004). Namely, claim sizes {X1, X2, . . . }

37
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are i.i.d random variables with cumulative distribution function B(·), probability density

function b(·) and mean µ. If a claim Xi is larger than some threshold Qi, then the process is

classified to class 1 and the time until next claim follows an exponential distribution with

rate λ1; if Xi is smaller than Qi, then the process is classified to class 2 and the time until

next claim follows an exponential distribution with rate λ2. Suppose that thresholds Qi

are i.i.d random variable with distribution function H(·) and are independent from Xi. In

addition, σ > 0 is a parameter and W(t) is a standard Brownian motion with W(0) = 0

and W(t) ∼ N(0, t) for any fixed t > 0. The diffusion process may also represent the

insurer’s investment, where the parameter σ indicates how the risky investments affect the

underlying surplus process. Assume that the positive-security-loading condition

µ <
c
λ1
P{X > Q} +

c
λ2
P{X ≤ Q} (3.2)

holds for the model.

Given the initial claim occurs at rate of λi, the generalized expected discounted penalty

function introduced by (1.3) is denoted as

mD,i(u) = w0 φd,i(u) + φw,i(u), u > 0, i = 1, 2, (3.3)

where

φd,i(u) = E
{
e−δτi I{τi<∞,U(τ)=0}

∣∣∣∣ U(0) = u
}
, i = 1, 2 ,

φw,i(u) = E
{
e−δτi w(U(τ−), |U(τ)|) I{τ<∞,U(τ)<0}

∣∣∣∣ U(0) = u
}
, i = 1, 2 .

The summand φw(u) corresponds to the penalty at ruin if caused by a claim, while the

component φd,i(u) represents the Laplace transform of the time of ruin random variable τi

due to oscillation. At zero initial surplus u = 0, by definition

φd,i(0) = 1, φw,i(0) = 1.
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Recall the notation introduced in Chapter 2. The Laplace transform of a function f (·) is

denoted by

f̃ (s) =

∫ ∞

0
e−sy f (y) dy, s ∈ C.

The Translation operator Ts, s ≥ 0, of a real-valued function f (·) is defined by

Ts f (x) =

∫ ∞

x
e−s(y−x) f (y) dy,

and has the following properties

Ts f (0) = f̃ (s), s ≥ 0,

Ts1Ts2 f (x) = Ts2Ts1 f (x) =
Ts1 f (x) − Ts2 f (x)

s2 − s1
, s1, s2 ≥ 0, s1 , s2.

Ts1Ts2 f (0) = Ts2Ts1 f (0) =
f̃ (s1) − f̃ (s2)

s2 − s1
, s1, s2 ≥ 0, s1 , s2.

3.2 Integro-differential equations and Lundberg’s

equation

In this section, we will derive a system of integro-differential equations for φw,i(u), i = 1, 2

and φd,i(u), i = 1, 2 respectively and analyze the generalized Lundberg’s equation under

model (3.1).

Proposition 3.1 Functions φw,i(u), i = 1, 2 in (3.3) satisfy the following systems of integro-

differential equations

(λ1 + δ) φw,1(u) = cφ′w,1(u) + Dφ′′w,1(u) + λ1

∫ u

0

[
φw,1(u − y)ξ(y) + φw,2(u − y)χ(y)

]
dy + λ1ζ(u) ,

(3.4)

(λ2 + δ) φw,2(u) = cφ′w,2(u) + Dφ′′w,2(u) + λ2

∫ u

0

[
φw,1(u − y)ξ(y) + φw,2(u − y)χ(y)

]
dy + λ2ζ(u) ;

(3.5)
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and φd,i(u), i = 1, 2 satisfy the following systems of integro-differential equations

(λ1 + δ) φd,1(u) = cφ′d,1(u) + Dφ′′d,1(u) + λ1

∫ u

0

[
ξ(y)φd,1(u − y) + χ(y)φd,2(u − y)

]
dy, (3.6)

(λ2 + δ) φd,2(u) = cφ′d,1(u) + Dφ′′d,2(u) + λ2

∫ u

0

[
ξ(y)φd,1(u − y) + χ(y)φd,2(u − y)

]
dy, (3.7)

where

χ(y) = H(y)b(y), (3.8)

ξ(y) = H(y)b(y) = b(y) − χ(y), (3.9)

ζ(u) =

∫ ∞

u
w(u, y − u)b(y) dy, u > 0. (3.10)

and D = 1
2σ

2.

Proof For φw,i(u), i = 1, 2, considering a small time interval of length dt and conditioning

on the amount of the first claim that might have occurred in that interval, we obtain

φw,1(u) = (1 − λ1dt)e−δdt E
{
φw,1(u + cdt + σW(dt))

}
+ λ1dte−δdt E

{∫ u+cdt+σW(dt)

0

[
P{y > Q1}φw,1(u + cdt + σW(dt) − y)

+ P{y < Q1}φw,2(u + cdt + σW(dt) − y)
]

b(y) dy

+

∫ ∞

u+cdt+σW(dt)
w(u + cdt + σW(dt), y − u − cdt − σW(dt))b(y) dy

}
+ o(dt),

(3.11)

φw,2(u) = (1 − λ2dt)e−δdt E
{
φw,2(u + cdt + σW(dt))

}
+ λ2dte−δdt E

{∫ u+cdt+σW(dt)

0

[
P{y > Q1}φw,1(u + cdt + σW(dt) − y)

+ P{y < Q1}φw,2(u + cdt + σW(dt) − y)
]

b(y) dy

+

∫ ∞

u+cdt+σW(dt)
w(u + cdt + σW(dt), y − u − cdt − σW(dt))b(y) dy

}
+ o(dt),

(3.12)
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where P {y > Q1} = H(y) and P {y < Q1} = 1−H(y) = H(y). Applying Taylor expansion to

φw,i(u+cdt+σW(dt)), i = 1, 2, and utilizing the facts that E{W(dt)} = 0 and E{W2(dt)} = dt

results in (see Tsai and Willmot, 2002)

E
{
φw,1(u + cdt + σW(dt))

}
= φw,1(u) + cφ′w,1(u)dt +

1
2
σ2φ′′w,1(u)dt + o(dt).

Hence, identity (3.11) is simplified to

φw,1(u) =(1 − λ1dt)e−δdt

[
φw,1(u) + cφ′w,1(u)dt +

1
2
σ2φ′′w,1(u)dt

]
+ λ1dte−δdt

{∫ u+cdt

0

[
H(y)φw,1(u + cdt − y) + H(y)φw,2(u + cdt − y)

]
b(y) dy

+

∫ ∞

u+cdt
w(u + cdt, y − u − cdt)b(y) dy

}
+ o(dt).

Dividing both sides by dt, denoting D = 1
2σ

2 and letting dt → 0 yields

(λ1 + δ)φw,1(u) = cφ′w,1(u) + Dφ′′w,1(u) + λ1

∫ u

0

[
H(y)φw,1(u − y) + H(y)φw,2(u − y)

]
b(y) dy + λ1ζ(u).

Introducing the notation (3.8), (3.9) and (3.10), we obtain

(λ1 + δ)φw,1(u) = cφ′w,1(u) + Dφ′′w,1(u) + λ1

∫ u

0

[
φw,1(u − y)ξ(y) + φw,2(u − y)χ(y)

]
dy + λ1ζ(u),

which is equation (3.4). Similarly, we deduce from (3.12) that

(λ2 + δ)φw,2(u) = cφ′w,2(u) + Dφ′′w,2(u) + λ2

∫ u

0

[
φw,1(u − y)ξ(y) + φw,2(u − y)χ(y)

]
dy + λ2ζ(u),

which is equation (3.5). Together (3.4) with (3.5) provide a system of integro-differential

equations that φw,1(u) and φw,2(u) satisfy.

To find a system of integro-differential equations for φd,1(u) and φd,2(u), we follow

similar arguments as for the derivation of equation (6) in Gerber and Landry (1998).

Namely, we deduce

(λ1 + δ)φd,1(u) = cφ′d,1(u) + Dφ′′d,1(u) + λ1

∫ u

0

[
H(y)φd,1(u − y) + H(y)φd,2(u − y)

]
b(y) dy,

(λ2 + δ)φd,2(u) = cφ′d,1(u) + Dφ′′d,2(u) + λ2

∫ u

0

[
H(y)φd,1(u − y) + H(y)φd,2(u − y)

]
b(y) dy,

which are equations (3.6) and (3.7). �
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Applying Laplace transforms to equations (3.4), (3.5), (3.6) and (3.7), we reach the

following proposition.

Proposition 3.2 The Laplace transforms φ̃w,i(s), i = 1, 2 satisfy the following equations{ [
s2 +

c
D

s −
λ1 + δ

D
+
λ1

D
ξ̃(s)

] [
s2 +

c
D

s −
λ2 + δ

D
+
λ2

D
χ̃(s)

]
−
λ1λ2

D2 ξ̃(s)χ̃(s)
}
φ̃w,1(s)

=

[
s2 +

c
D

s −
λ2 + δ

D
+
λ2

D
χ̃(s)

]
φ′w,1(0) −

λ1

D
χ̃(s)φ′w,2(0) −

λ1

D

[
s2 +

c
D

s −
λ2 + δ

D

]
ζ̃(s) ,

(3.13){ [
s2 +

c
D

s −
λ1 + δ

D
+
λ1

D
ξ̃(s)

] [
s2 +

c
D

s −
λ2 + δ

D
+
λ2

D
χ̃(s)

]
−
λ1λ2

D2 ξ̃(s)χ̃(s)
}
φ̃w,2(s)

=

[
s2 +

c
D

s −
λ1 + δ

D
+
λ1

D
ξ̃(s)

]
φ′w,2(0) −

λ2

D
ξ̃(s)φ′w,1(0) −

λ2

D

[
s2 +

c
D

s −
λ1 + δ

D

]
ζ̃(s) .

(3.14)

and Laplace transforms φ̃d,i(s), i = 1, 2 satisfy the following equations{ [
s2 +

c
D

s −
λ1 + δ

D
+
λ1

D
ξ̃(s)

] [
s2 +

c
D

s −
λ2 + δ

D
+
λ2

D
χ̃(s)

]
−
λ1λ2

D2 ξ̃(s)χ̃(s)
}
φ̃d,1(s)

=

(
s2 +

c
D

s −
λ2 + δ

D

) [
s +

c
D

+ φ′d,1(0)
]

+

[
λ2

D
φ′d,1(0) −

λ1

D
φ′d,2(0) +

c
D
·
λ2 − λ1

D

]
χ̃(s) +

λ2 − λ1

D
sχ̃(s) , (3.15){ [

s2 +
c
D

s −
λ1 + δ

D
+
λ1

D
ξ̃(s)

] [
s2 +

c
D

s −
λ2 + δ

D
+
λ2

D
χ̃(s)

]
−
λ1λ2

D2 ξ̃(s)χ̃(s)
}
φ̃d,2(s)

=

(
s2 +

c
D

s −
λ1 + δ

D

) [
s +

c
D

+ φ′d,2(0)
]

−

[
λ2

D
φ′d,1(0) −

λ1

D
φ′d,2(0) +

c
D
·
λ2 − λ1

D

]
ξ̃(s) −

λ2 − λ1

D
s̃ξ(s). (3.16)

Proof Applying Laplace transforms to (3.4) and (3.5), assuming that lim
u→∞

e−suφw,i(u) = 0

and lim
u→∞

e−suφ′w,i(u) = 0 hold for i = 1, 2, yields

(λ1 + δ)
∫ ∞

0
e−suφw,1(u)du = (λ1 + δ) φ̃w,1(s)

= c
[
sφ̃w,1(s) − φw,1(0)

]
+ D

[
s2φ̃w,1(s) − sφw,1(0) − φ′w,1(0)

]
+ λ1ξ̃(s)φ̃w,1(s) + λ1χ̃(s)φ̃w,2(s) + λ1ζ̃(s),



Chapter 3. An insurance risk model with dependence and diffusion 43

(λ1 + δ)
∫ ∞

0
e−suφw,2(u)du = (λ2 + δ) φ̃w,2(s)

= c
[
sφ̃w,2(s) − φw,2(0)

]
+ D

[
s2φ̃w,2(s) − sφw,2(0) − φ′w,2(0)

]
+ λ2ξ̃(s)φ̃w,1(s) + λ2χ̃(s)φ̃w,2(s) + λ2ζ̃(s).

Implementing φw,1(0) = φw,2(0) = 0 produces

[
Ds2 + cs − λ1 − δ + λ1ξ̃(s)

]
φ̃w,1(s) = Dφ′w,1(0) − λ1χ̃(s)φ̃w,2(s) − λ1ζ̃(s), (3.17)[

Ds2 + cs − λ2 − δ + λ2χ̃(s)
]
φ̃w,2(s) = Dφ′w,2(0) − λ2ξ̃(s)φ̃w,1(s) − λ2ζ̃(s). (3.18)

We multiply (3.17) by
[
Ds2 + cs − λ2 − δ + λ2χ̃(s)

]
and substitute

[
Ds2 + cs − λ2 − δ +

λ2χ̃(s)
]
φ̃w,2(s) by the right-hand side of (3.18), and grouping the terms with φ̃w,1(s) leads

to

{[
Ds2 + cs − λ1 − δ + λ1ξ̃(s)

] [
Ds2 + cs − λ2 − δ + λ2χ̃(s)

]
− λ1λ2ξ̃(s)χ̃(s)

}
φ̃w,1(s)

= D
[
Ds2 + cs − λ2 − δ + λ2χ̃(s)

]
φ′w,1(0) − Dλ1χ̃(s)φ′w,2(0) − λ1

[
Ds2 + cs − λ2 − δ

]
ζ̃(s).

Similarly, multiplying (3.18) by
[
Ds2 + cs − λ1 − δ + λ1ξ̃(s)

]
and substituting

[
Ds2 + cs −

λ1 − δ + λ1ξ̃(s)
]
φ̃w,1(s) by the right-hand side of (3.17) produces

{[
Ds2 + cs − λ1 − δ + λ1ξ̃(s)

] [
Ds2 + cs − λ2 − δ + λ2χ̃(s)

]
− λ1λ2ξ̃(s)χ̃(s)

}
φ̃w,2(s)

= D
[
Ds2 + cs − λ1 − δ + λ1ξ̃(s)

]
φ′w,2(0) − Dλ2ξ̃(s)φ′w,1(0) − λ2

[
Ds2 + cs − λ1 − δ

]
ζ̃(s).

Dividing the above equations by D2 yields equations (3.13) and (3.14) representing the

Laplace transforms of φw,1(u) and φw,2(u) respectively.

For equations (3.6) and (3.7), assume that lim
u→∞

e−suφd,i(u) = 0 and lim
u→∞

e−suφ′d,i(u) = 0

hold for i = 1, 2, applying Laplace transforms produces

(λ1 + δ) φ̃d,1(s)

= c
[
sφ̃d,1(s) − φd,1(0)

]
+ D

[
s2φ̃d,1(s) − sφd,1(0) − φ′d,1(0)

]
+ λ1ξ̃(s)φ̃d,1(s) + λ1χ̃(s)φ̃d,2(s),
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(λ2 + δ) φ̃d,2(s)

= c
[
sφ̃d,2(s) − φd,2(0)

]
+ D

[
s2φ̃d,2(s) − sφd,2(0) − φ′d,2(0)

]
+ λ2ξ̃(s)φ̃d,1(s) + λ2χ̃(s)φ̃d,2(s).

It follows from the definition of φd,i(u), i = 1, 2 that φd,1(0) = φd,2(0) = 1. Thus, the above

equations may be simplified to

[
Ds2 + cs − λ1 − δ + λ1ξ̃(s)

]
φ̃d,1(s) = Dφ′d,1(0) + c + Ds − λ1χ̃(s)φ̃d,2(s), (3.19)[

Ds2 + cs − λ2 − δ + λ2χ̃(s)
]
φ̃d,2(s) = Dφ′d,2(0) + c + Ds − λ2ξ̃(s)φ̃d,1(s).

Similarly to the rearranging procedure of (3.17) and (3.18), we obtain

{[
Ds2 + cs − λ1 − δ + λ1ξ̃(s)

] [
Ds2 + cs − λ2 − δ + λ2χ̃(s)

]
− λ1λ2ξ̃(s)χ̃(s)

}
φ̃d,1(s)

= D
[
Ds2 + cs − λ2 − δ + λ2χ̃(s)

]
φ′d,1(0) − Dλ1χ̃(s)φ′d,2(0) + c

[
Ds2 + cs − λ2 − δ + λ2χ̃(s)

]
+ Ds

[
Ds2 + cs − λ2 − δ + λ2χ̃(s)

]
− cλ1χ̃(s) − Dsλ1χ̃(s),{[

Ds2 + cs − λ1 − δ + λ1ξ̃(s)
] [

Ds2 + cs − λ2 − δ + λ2χ̃(s)
]
− λ1λ2ξ̃(s)χ̃(s)

}
φ̃d,2(s)

= D
[
Ds2 + cs − λ1 − δ + λ1ξ̃(s)

]
φ′d,2(0) − Dλ2ξ̃(s)φ′d,1(0) + c

[
Ds2 + cs − λ1 − δ + λ1ξ̃(s)

]
+ Ds

[
Ds2 + cs − λ1 − δ + λ1ξ̃(s)

]
− cλ2ξ̃(s) − Dsλ2ξ̃(s).

Dividing these by D2 and further rearranging yields equations (3.15) and (3.16). �

Observe that the terms in front of φ̃w,i(s) and φ̃d,i(s) in equations (3.13), (3.14), (3.15)

and (3.16) are identical. Setting them to be equal to zero, provides a generalized Lundberg’s

equation(
s2 +

c
D

s −
λ1 + δ

D

) (
s2 +

c
D

s −
λ2 + δ

D

)
+
λ1

D

(
s2 +

c
D

s −
λ2 + δ

D

)
ξ̃(s) +

λ2

D

(
s2 +

c
D

s −
λ1 + δ

D

)
χ̃(s) = 0. (3.20)

The roots of Lundberg’s equation play an important role in deducing the solutions for the

Gerber-Shiu functions. In the following Lemmas, we will show that equation (3.20) has

exactly two nonnegative roots. Moreover, these roots are distinct and real.
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Lemma 3.3 For δ = 0, Lundberg’s equation (3.20) has exactly two roots with non-negative

real parts, which are distinct, real and one of them equals zero.

Proof When δ = 0, Lundberg’s equation (3.20) reduces to(
s2 +

c
D

s −
λ1

D

) (
s2 +

c
D

s −
λ2

D

)
+
λ1

D

(
s2 +

c
D

s −
λ2

D

)
ξ̃(s) +

λ2

D

(
s2 +

c
D

s −
λ1

D

)
χ̃(s) = 0 . (3.21)

One may easily verify that s = 0 is a root of equation (3.21) utilizing the relation ξ̃(0) +

χ̃(0) = b̃(0) = 1. To analyze the nonzero roots, we rearrange equation (3.21) to(
s2 +

c
D

s
) [

gD,1(s) + gD,2(s)
]

= 0 ,

where

gD,1(s) = s2 +
c
D

s −
λ1 + λ2

D
,

gD,2(s) =
λ1

D
ξ̃(s) +

λ2

D
χ̃(s) +

λ1λ2
D2 B̃(s)
s + c

D

,

since

B̃(s) =
1 − b̃(s)

s
, s , 0 .

Observe that the roots of equation (3.21) in the positive half plane coincide with those of

gD,1(s) + gD,2(s) = 0. To analyze the zeros of gD,1(s) + gD,2(s), we consider a closed contour

C formed by the imaginary axis and the semi-circle {s : |s| = d, Re(s) ≥ 0}, where d is a

sufficiently large constant. The functions gD,1(s) and gD,2(s) are analytic inside and on C.

It is straightforward that quadratic function gD,1(s) has exactly one zero inside C. We will

show that
∣∣∣gD,2(s)

∣∣∣ < ∣∣∣gD,1(s)
∣∣∣ on the boundary of C and apply Rouché’s theorem.

On the semi-circle part of the boundary of C, utilizing Re(s) ≥ 0 and triangle inequality

yield that

|s| <
∣∣∣∣∣s +

c
D

∣∣∣∣∣ ,
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∣∣∣̃ξ(s)
∣∣∣ ≤ ξ̃(0) ≤ 1 ,∣∣∣̃χ(s)
∣∣∣ ≤ χ̃(0) ≤ 1 ,∣∣∣∣∣B̃(s)
∣∣∣∣∣ ≤ B̃(0) = µ .

Employing these inequalities, we compare∣∣∣gD,1(s)
∣∣∣ =

∣∣∣∣∣s2 +
c
D

s −
λ1 + λ2

D

∣∣∣∣∣
≥

∣∣∣∣∣s2 +
c
D

s
∣∣∣∣∣ − ∣∣∣∣∣λ1 + λ2

D

∣∣∣∣∣
> |s||s| −

(
λ1 + λ2

D

)
= d2 −

(
λ1 + λ2

D

)
to

∣∣∣gD,2(s)
∣∣∣ ≤ λ1

D

∣∣∣̃ξ(s)
∣∣∣ +

λ2

D

∣∣∣̃χ(s)
∣∣∣ +

λ1λ2

D2

∣∣∣∣∣B̃(s)
∣∣∣∣∣∣∣∣s + c

D

∣∣∣
≤
λ1

D
+
λ2

D
+
λ1λ2

D2 ·
µ

d

<
λ1

D
+
λ2

D
+
λ1λ2

D2 µ ,

which yields
∣∣∣gD,2(s)

∣∣∣ < ∣∣∣gD,1(s)
∣∣∣ on the semi-circle part of the contour C, since d is a large

constant.

On the imaginary axis part of the contour C, Re(s) = 0 implies
∣∣∣s + c

D

∣∣∣ ≥ c
D ,

∣∣∣̃ξ(s)
∣∣∣ ≤

ξ̃(0),
∣∣∣̃χ(s)

∣∣∣ ≤ χ̃(0) and
∣∣∣∣∣B̃(s)

∣∣∣∣∣ ≤ B̃(0) = µ, which leads to

∣∣∣gD,2(s)
∣∣∣ ≤ λ1

D

∣∣∣̃ξ(s)
∣∣∣ +

λ2

D

∣∣∣̃χ(s)
∣∣∣ +

λ1λ2

D2

∣∣∣∣∣B̃(s)
∣∣∣∣∣∣∣∣s + c

D

∣∣∣
≤
λ1

D
ξ̃(0) +

λ2

D
χ̃(0) +

λ1λ2

Dc
µ.

Utilizing the relations ξ̃(0) = P{X > Q} and χ̃(0) = P{X ≤ Q}, the positive-security-loading

condition (3.2) may be rewritten as

µ <
c
λ1
ξ̃(0) +

c
λ2
χ̃(0) , (3.22)
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and thus

∣∣∣gD,2(s)
∣∣∣ < λ1

D
ξ̃(0) +

λ2

D
χ̃(0) +

λ1λ2

Dc
·

c
λ1
ξ̃(0) +

λ1λ2

Dc
·

c
λ2
χ̃(0)

=
λ1

D
+
λ2

D
.

Meanwhile, since Re(s) = 0, Im(s2) = 0 and −s2 ≥ 0, we have

∣∣∣gD,1(s)
∣∣∣ =

∣∣∣∣∣ c
D

s −
(
λ1 + λ2

D
− s2

)∣∣∣∣∣
≥

∣∣∣∣∣Re
[ c
D

s −
(
λ1 + λ2

D
− s2

)]∣∣∣∣∣
=
λ1 + λ2

D
− s2

≥
λ1 + λ2

D
.

Comparing
∣∣∣gD,1(s)

∣∣∣ with
∣∣∣gD,2(s)

∣∣∣ shows that
∣∣∣gD,1(s)

∣∣∣ > ∣∣∣gD,2(s)
∣∣∣ also holds on the imaginary

axis part of the contour C.

Applying Rouché’s theorem on the closed contour C and letting d → ∞, we may

conclude that gD,1(s) + gD,2(s) = 0 has exactly one root in the positive half plane, which

implies that equation (3.21) also has exactly one root in the positive half plane. Moreover,

the root is real, since the complex roots of analytic functions that are presented in series

form with only real coefficients come in conjugate pairs. Recall that zero is also a root of

(3.21). Therefore, Lundberg’s equation with δ = 0 has exactly two roots with nonnegative

real parts, where both are real roots and one of them is zero. �

Lemma 3.4 For δ > 0, Lundberg’s equation (3.20) has exactly two roots with nonnegative

real parts, which are distinct, positive and real.

Proof We rewrite equation (3.20) as

f1(s) + f2(s) = 0 ,
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where

f1(s) =

(
s2 +

c
D

s −
λ1 + δ

D

) (
s2 +

c
D

s −
λ2 + δ

D

)
,

f2(s) =
λ1

D

(
s2 +

c
D

s −
λ2 + δ

D

)
ξ̃(s) +

λ2

D

(
s2 +

c
D

s −
λ1 + δ

D

)
χ̃(s) .

Rouché’s theorem states that if functions f1(s) and f2(s) are analytic inside and on some

closed contour C and | f2(s)| < | f1(s)| on the boundary of C, then f1(s) and f1(s) + f2(s)

have the same number of zeros inside C. Consider such a closed contour C in the complex

plane, formed by the semi-circle {s : |s| = d,Re(s) ≥ 0} and the imaginary axis, where d is

a sufficiently large constant. The functions f1(s) and f2(s) are analytic inside and on C, and

f1(s) has two zeros inside C. We will show that | f2(s)| < | f1(s)| on the boundary of C.

On the semi-circle part of the boundary of C, it follows from Re(s) ≥ 0 that
∣∣∣̃ξ(s)

∣∣∣ ≤ ξ̃(0)

and
∣∣∣̃χ(s)

∣∣∣ ≤ χ̃(0). By the triangle inequality, we obtain that∣∣∣∣∣s2 +
c
D

s −
λ1 + δ

D

∣∣∣∣∣ ≥ ∣∣∣∣∣s2 +
c
D

s
∣∣∣∣∣ − ∣∣∣∣∣λ1 + δ

D

∣∣∣∣∣ > |s||s| − (
λ1 + δ

D

)
= d2 −

(
λ1 + δ

D

)
>
λ1

D
,∣∣∣∣∣s2 +

c
D

s −
λ2 + δ

D

∣∣∣∣∣ ≥ ∣∣∣∣∣s2 +
c
D

s
∣∣∣∣∣ − ∣∣∣∣∣λ2 + δ

D

∣∣∣∣∣ > |s||s| − (
λ2 + δ

D

)
= d2 −

(
λ2 + δ

D

)
>
λ2

D
.

The above inequalities together with the fact that ξ̃(0) + χ̃(0) = 1 yield

| f2(s)| ≤
λ1

D

∣∣∣∣∣s2 +
c
D

s −
λ2 + δ

D

∣∣∣∣∣ ∣∣∣̃ξ(s)
∣∣∣ +

λ2

D

∣∣∣∣∣s2 +
c
D

s −
λ1 + δ

D

∣∣∣∣∣ ∣∣∣̃χ(s)
∣∣∣

<

∣∣∣∣∣s2 +
c
D

s −
λ1 + δ

D

∣∣∣∣∣ ∣∣∣∣∣s2 +
c
D

s −
λ2 + δ

D

∣∣∣∣∣ ξ̃(0) +

∣∣∣∣∣s2 +
c
D

s −
λ1 + δ

D

∣∣∣∣∣ ∣∣∣∣∣s2 +
c
D

s −
λ2 + δ

D

∣∣∣∣∣ χ̃(0)

=

∣∣∣∣∣s2 +
c
D

s −
λ1 + δ

D

∣∣∣∣∣ ∣∣∣∣∣s2 +
c
D

s −
λ2 + δ

D

∣∣∣∣∣
=

∣∣∣ f1(s)
∣∣∣ .

When s is on the imaginary axis part of the boundary of contour C, we have Re(s) = 0,

Im(s2) = 0 and −s2 ≥ 0, then∣∣∣∣∣s2 +
c
D

s −
λ1 + δ

D

∣∣∣∣∣ =

∣∣∣∣∣ c
D

s −
(
−s2 +

λ1 + δ

D

)∣∣∣∣∣ ≥ −s2 +
λ1 + δ

D
≥
λ1 + δ

D
,∣∣∣∣∣s2 +

c
D

s −
λ2 + δ

D

∣∣∣∣∣ =

∣∣∣∣∣ c
D

s −
(
−s2 +

λ2 + δ

D

)∣∣∣∣∣ ≥ −s2 +
λ2 + δ

D
≥
λ2 + δ

D
.
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Hence,

| f1(s)| =
∣∣∣∣∣s2 +

c
D

s −
λ1 + δ

D

∣∣∣∣∣ ∣∣∣∣∣s2 +
c
D

s −
λ2 + δ

D

∣∣∣∣∣
=

∣∣∣∣∣s2 +
c
D

s −
λ1 + δ

D

∣∣∣∣∣ ∣∣∣∣∣s2 +
c
D

s −
λ2 + δ

D

∣∣∣∣∣ ξ̃(0) +

∣∣∣∣∣s2 +
c
D

s −
λ1 + δ

D

∣∣∣∣∣ ∣∣∣∣∣s2 +
c
D

s −
λ2 + δ

D

∣∣∣∣∣ χ̃(0)

≥
λ1 + δ

D

∣∣∣∣∣s2 +
c
D

s −
λ2 + δ

D

∣∣∣∣∣ ξ̃(0) +
λ2 + δ

D

∣∣∣∣∣s2 +
c
D

s −
λ1 + δ

D

∣∣∣∣∣ χ̃(0)

>
λ1

D

∣∣∣∣∣s2 +
c
D

s −
λ2 + δ

D

∣∣∣∣∣ ξ̃(0) +
λ2

D

∣∣∣∣∣s2 +
c
D

s −
λ1 + δ

D

∣∣∣∣∣ χ̃(0)

≥
λ1

D

∣∣∣∣∣s2 +
c
D

s −
λ2 + δ

D

∣∣∣∣∣ ∣∣∣̃ξ(s)
∣∣∣ +

λ2

D

∣∣∣∣∣s2 +
c
D

s −
λ1 + δ

D

∣∣∣∣∣ |̃χ(s)|

≥ | f2(s)| .

Applying Rouché’s theorem on the closed contour C, we may conclude that f1(s)+ f2(s) has

two zeros insides the contour C.Denote these roots by % and r. Letting d → ∞ indicates that

% and r are the only roots of f1(s) + f2(s) = 0 in the right half plane. It remains to show that

they are real and distinct. As δ converges to 0, r and % converge to the roots of the simpler

equation (3.21), which means one of r and % converges to zero and the other one converges

to a strictly positive number, hence they are distinct. Moreover, we prove by contradiction

that r and % are real numbers. Suppose r and % are complex roots of the analytic function

f1(s)− f2(s), then they must be a conjugated pair, i.e. r = a+bi and % = a−bi for some real

numbers a, b > 0. When δ converges to zero, we know that one of the roots converges to

zero, which indicates that a and b converge to 0 simultaneously. Then, the other root also

converges to 0, which contradicts the fact that the other root converges to a strictly positive

number. Thus, r and % are both real. �

From Lemmas 3.3 and 3.4, we conclude that for any δ ≥ 0 Lundberg’s equation has

exactly two distinct nonnegative roots and one of them converges to zero as δ→ 0. For the

rest of the paper, these roots are denoted by % and r.
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3.3 Explicit solution for the Gerber-Shiu function

To find an explicit solution for the Gerber-Shiu function, we need to invert the Laplace

transforms in (3.13), (3.14), (3.15) and (3.16). First, we determine the unknowns constants

φ′w,1(0), φ′w,2(0), φ′d,1(0) and φ′d,2(0) in these equations, utilizing the nonnegative roots of

Lundberg’s equation % and r. When s takes the value % or r, the right-hands sides of (3.13)

and (3.14) also equal zero. Moreover, when s = % (or s = r), the right-hand sides of (3.13)

and (3.14) are identical. Thus, we may solve a system of linear equations for φ′w,1(0) and

φ′w,2(0) which is[
%2 +

c
D
% −

λ2 + δ

D
+
λ2

D
χ̃(%)

]
φ′w,1(0) −

λ1

D
χ̃(%) φ′w,2(0) =

λ1

D

[
%2 +

c
D
% −

λ2 + δ

D

]
ζ̃(%),[

r
2 +

c
D
r −

λ2 + δ

D
+
λ2

D
χ̃(r)

]
φ′w,1(0) −

λ1

D
χ̃(r) φ′w,2(0) =

λ1

D

[
r

2 +
c
D
r −

λ2 + δ

D

]
ζ̃(r).

The solution yields

φ′w,1(0) =
λ1

(
D%2 + c% − λ2 − δ

)
ζ̃(%)χ̃(r) − λ1

(
Dr2 + cr − λ2 − δ

)
ζ̃(r)χ̃(%)

D
(
D%2 + c% − λ2 − δ

)
χ̃(r) − D

(
Dr2 + cr − λ2 − δ

)
χ̃(%)

, (3.23)

φ′w,2(0) =

(
D%2 + c% − λ2 − δ

)
ζ̃(%)

[
Dr2 + cr − λ2 − δ + λ2χ̃(r)

]
D

(
D%2 + c% − λ2 − δ

)
χ̃(r) − D

(
Dr2 + cr − λ2 − δ

)
χ̃(%)

−

(
Dr2 + cr − λ2 − δ

)
ζ̃(r)

[
D%2 + c% − λ2 − δ + λ2χ̃(%)

]
D

(
D%2 + c% − λ2 − δ

)
χ̃(r) − D

(
Dr2 + cr − λ2 − δ

)
χ̃(%)

. (3.24)

Rearrange (3.24) to

φ′w,2(0) =

(
D%2 + c% − λ2 − δ

) (
Dr2 + cr − λ2 − δ

) [̃
ζ(%) − ζ̃(r)

]
D

(
D%2 + c% − λ2 − δ

)
χ̃(r) − D

(
Dr2 + cr − λ2 − δ

)
χ̃(%)

+
λ2

λ1
φ′w,1(0),

which leads to a useful quantity[
λ2

D
φ′w,1(0) −

λ1

D
φ′w,2(0)

]
=
−λ1

(
D%2 + c% − λ2 − δ

) (
Dr2 + cr − λ2 − δ

) [̃
ζ(%) − ζ̃(r)

]
D2 (

D%2 + c% − λ2 − δ
)
χ̃(r) − D2 (

Dr2 + cr − λ2 − δ
)
χ̃(%)

.

(3.25)

Similarly, from (3.15) and (3.16) we derive a system of linear equations and solve for φ′d,1(0)

and φ′d,2(0) yielding

φ′d,1(0) =
−

(
c
D + %

) [
D%2 + c% − λ2 − δ + (λ2 − λ1)χ̃(%)

]
λ1χ̃(r)[

D%2 + c% − λ2 − δ + λ2χ̃(%)
]
λ1χ̃(r) −

[
Dr2 + cr − λ2 − δ + λ2χ̃(r)

]
λ1χ̃(%)
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+

(
c
D + r

) [
Dr2 + cr − λ2 − δ + (λ2 − λ1)χ̃(r)

]
λ1χ̃(%)[

D%2 + c% − λ2 − δ + λ2χ̃(%)
]
λ1χ̃(r) −

[
Dr2 + cr − λ2 − δ + λ2χ̃(r)

]
λ1χ̃(%)

,

(3.26)

φ′d,2(0) =
−

(
c
D + %

) [
D%2 + c% − λ2 − δ + (λ2 − λ1)χ̃(%)

] [
Dr2 + cr − λ2 − δ + λ2χ̃(r)

][
D%2 + c% − λ2 − δ + λ2χ̃(%)

]
λ1χ̃(r) −

[
Dr2 + cr − λ2 − δ + λ2χ̃(r)

]
λ1χ̃(%)

+

(
c
D + r

) [
Dr2 + cr − λ2 − δ + (λ2 − λ1)χ̃(r)

] [
D%2 + c% − λ2 − δ + λ2χ̃(%)

][
D%2 + c% − λ2 − δ + λ2χ̃(%)

]
λ1χ̃(r) −

[
Dr2 + cr − λ2 − δ + λ2χ̃(r)

]
λ1χ̃(%)

,

(3.27)

[
λ2

D
φ′d,1(0) −

λ1

D
φ′d,2(0)

]
=

(
c
D + %

) [
D%2 + c% − λ2 − δ + (λ2 − λ1)χ̃(%)

] (
Dr2 + cr − λ2 − δ

)
D

[
D%2 + c% − λ2 − δ + λ2χ̃(%)

]
χ̃(r) − D

[
Dr2 + cr − λ2 − δ + λ2χ̃(r)

]
χ̃(%)

−

(
c
D + r

) [
Dr2 + cr − λ2 − δ + (λ2 − λ1)χ̃(r)

] (
D%2 + c% − λ2 − δ

)
D

[
D%2 + c% − λ2 − δ + λ2χ̃(%)

]
χ̃(r) − D

[
Dr2 + cr − λ2 − δ + λ2χ̃(r)

]
χ̃(%)

.

(3.28)

Denote the two real roots of equation s2 + c
D s− λi+δ

D = 0 by Ai and −ai such that Ai, ai > 0

for i = 1, 2, i.e.,

s2 +
c
D

s −
λ1 + δ

D
= (s − A1) (s + a1) , (3.29)

s2 +
c
D

s −
λ2 + δ

D
= (s − A2) (s + a2) . (3.30)

Notice that

ai =
c
D

+ Ai , for i = 1, 2.

Dividing equations (3.13) and (3.14) by (s + a1) (s + a2) produces[
(s − A1) (s − A2) +

λ1

D
·

s − A2

s + a1
ξ̃(s) +

λ2

D
·

s − A1

s + a2
χ̃(s)

]
φ̃w,1(s)

=
s − A2

s + a1
φ′w,1(0) +

[
λ2

D
φ′w,1(0) −

λ1

D
φ′w,2(0)

]
χ̃(s)

(s + a1) (s + a2)
−
λ1

D
·

s − A2

s + a1
ζ̃(s),[

(s − A1) (s − A2) +
λ1

D
·

s − A2

s + a1
ξ̃(s) +

λ2

D
·

s − A1

s + a2
χ̃(s)

]
φ̃w,2(s)

=
s − A1

s + a2
φ′w,2(0) −

[
λ2

D
φ′w,1(0) −

λ1

D
φ′w,2(0)

]
ξ̃(s)

(s + a1) (s + a2)
−
λ2

D
·

s − A1

s + a2
ζ̃(s).
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For all s ≥ 0 except for s = % or s = r, the above equations may be rewritten as

φ̃w,1(s) =
φ′w,1(0) + ϑ̃1(s)

h̃D,1(s) − h̃D,2(s)
, (3.31)

φ̃w,2(s) =
φ′w,2(0) + ϑ̃2(s)

h̃D,1(s) − h̃D,2(s)
, (3.32)

where

h̃D,1(s) = (s − A1) (s − A2) , (3.33)

h̃D,2(s) =
λ1

D
·

A2 + a1

s + a1
ξ̃(s) −

λ1

D
ξ̃(s) +

λ2

D
·

A1 + a2

s + a2
χ̃(s) −

λ2

D
χ̃(s), (3.34)

ϑ̃1(s) = −
A2 + a1

s + a1
φ′w,1(0) +

[
λ2

D
φ′w,1(0) −

λ1

D
φ′w,2(0)

]
χ̃(s)

(s + a1) (s + a2)

−
λ1

D
ζ̃(s) +

λ1

D
·

A2 + a1

s + a1
ζ̃(s), (3.35)

ϑ̃2(s) = −
A1 + a2

s + a2
φ′w,2(0) −

[
λ2

D
φ′w,1(0) −

λ1

D
φ′w,2(0)

]
ξ̃(s)

(s + a1) (s + a2)

−
λ2

D
ζ̃(s) +

λ2

D
·

A1 + a2

s + a2
ζ̃(s). (3.36)

From equations (3.31) and (3.32), we derive the following proposition.

Proposition 3.5 The Laplace transforms φ̃w,i(s), i = 1, 2, satisfy

φ̃w,1(s) =
TsT%Trϑ1(0)

1 − TsT%TrhD,2(0)
, (3.37)

φ̃w,2(s) =
TsT%Trϑ2(0)

1 − TsT%TrhD,2(0)
, (3.38)

where

hD,2(u) =
λ1(A2 + a1)

D

∫ u

0
e−a1(u−y)ξ(y) dy +

λ2(A1 + a2)
D

∫ u

0
e−a2(u−y)χ(y) dy −

λ1

D
ξ(u) −

λ2

D
χ(u),

(3.39)

ϑ1(u) = − (A2 + a1) φ′w,1(0) e−a1u +

[
λ2

D
φ′w,1(0) −

λ1

D
φ′w,2(0)

] ∫ u

0

e−a1(u−y) − e−a2(u−y)

a2 − a1
χ(y) dy

−
λ1

D
ζ(u) +

λ1 (A2 + a1)
D

∫ u

0
e−a1(u−y)ζ(y) dy, (3.40)
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ϑ2(u) = − (A1 + a2) φ′w,2(0) e−a2u −

[
λ2

D
φ′w,1(0) −

λ1

D
φ′w,2(0)

] ∫ u

0

e−a1(u−y) − e−a2(u−y)

a2 − a1
ξ(y) dy

−
λ2

D
ζ(u) +

λ2 (A1 + a2)
D

∫ u

0
e−a2(u−y)ζ(y) dy. (3.41)

Proof The two nonnegative roots of Lundberg’s equation are denoted by % and r, which

implies h̃D,1(%) = h̃D,2(%) and h̃D,1(r) = h̃D,2(r). Since h̃D,1(s) is a second-order polynomial

of s, an application of the Lagrange’s interpolation theorem with the properties of the

Translation operator yields that (see Boudreault et al., 2006, page 274-275, for more

detailed derivations),

h̃D,1(s) − h̃D,2(s) = (s − %)(s − r)
[
T0T%TrhD,1(0) − TsT%TrhD,2(0)

]
= (s − %)(s − r)

[
1 − TsT%TrhD,2(0)

]
. (3.42)

When s = % or s = r, the numerator of (3.31) also equals zero, which indicates that

ϑ̃1(%) = ϑ̃1(r) = −φ′w,1(0) ,

and thus

TrT%ϑ1(0) = 0 .

Hence, the numerator of (3.31) may be rewritten to

φ′w,1(0) + ϑ̃1(s) = (% − s)TsT%ϑ1(0)

= (% − s)(r − s)
TsT%ϑ1(0) − TrT%ϑ1(0)

(r − s)

= (s − %)(s − r)TsT%Trϑ1(0). (3.43)

Inserting equalities (3.42) and (3.43) into (3.31) produces the desired equation (3.37).

Utilizing a similar procedure, we obtain equation (3.38) from (3.32). In addition, applying

Laplace inversion to identities (3.34), (3.35) and (3.36) yields the functions hD,2(u), ϑ1(u)

and ϑ2(u) defined in (3.39), (3.40) and (3.41) respectively. �
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For the transforms φ̃d,1(s) and φ̃d,2(s), dividing both equations (3.15) and (3.16) by

(s + a1)(s + a2) produces that[
(s − A1) (s − A2) +

λ1

D
·

s − A2

s + a1
ξ̃(s) +

λ2

D
·

s − A1

s + a2
χ̃(s)

]
φ̃d,1(s)

=
s − A2

s + a1

[
s +

c
D

+ φ′d,1(0)
]

+

[
λ2

D
φ′d,1(0) −

λ1

D
φ′d,2(0) +

λ2 − λ1

D

( c
D

+ s
)]

χ̃(s)
(s + a1)(s + a2)

,

(3.44)[
(s − A1) (s − A2) +

λ1

D
·

s − A2

s + a1
ξ̃(s) +

λ2

D
·

s − A1

s + a2
χ̃(s)

]
φ̃d,2(s)

=
s − A1

s + a2

[
s +

c
D

+ φ′d,2(0)
]
−

[
λ2

D
φ′d,1(0) −

λ1

D
φ′d,2(0) +

λ2 − λ1

D

( c
D

+ s
)]

ξ̃(s)
(s + a1)(s + a2)

.

(3.45)

Substituting the terms

s − A2

s + a1

[
s +

c
D

+ φ′d,1(0)
]

=
s − A2

s + A1 + c
D

[
s +

c
D

+ A1 − A1 + φ′d,1(0)
]

= s − A2 +
s − A2

s + a1

[
φ′d,1(0) − A1

]
= s − A1 − A2 + φ′d,1(0) +

A2 + a1

s + a1

[
A1 − φ

′
d,1(0)

]
and

s − A1

s + a2

[
s +

c
D

+ φ′d,2(0)
]

= s − A1 − A2 + φ′d,2(0) +
A1 + a2

s + a2

[
A2 − φ

′
d,2(0)

]
into equations (3.44) and (3.45), we obtain for all s ≥ 0 (except for s = % or s = r),

φ̃d,1(s) =
ς̃1(s) + $̃1(s)

h̃D,1(s) − h̃D,2(s)
, (3.46)

φ̃d,2(s) =
ς̃2(s) + $̃2(s)

h̃D,1(s) − h̃D,2(s)
, (3.47)

where h̃D,1(s), h̃D,2(s) are defined in (3.33), (3.34) and

ς̃1(s) = s − A1 − A2 + φ′d,1(0) ,

$̃1(s) =
A2 + a1

s + a1

[
A1 − φ

′
d,1(0)

]
+

[
λ2

D
φ′d,1(0) −

λ1

D
φ′d,2(0) +

λ2 − λ1

D

( c
D

+ s
)]

χ̃(s)
(s + a1)(s + a2)

,

(3.48)
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ς̃2(s) = s − A1 − A2 + φ′d,2(0) ,

$̃2(s) =
A1 + a2

s + a2

[
A2 − φ

′
d,2(0)

]
−

[
λ2

D
φ′d,1(0) −

λ1

D
φ′d,2(0) +

λ2 − λ1

D

( c
D

+ s
)]

ξ̃(s)
(s + a1)(s + a2)

.

(3.49)

Rearranging (3.46) and (3.47) leads to the proposition below.

Proposition 3.6 When ruin is caused by oscillation, the Laplace transforms φ̃d,i(s), i =

1, 2, satisfy

φ̃d,1(s) =
TsT%Tr$1(0)

1 − TsT%TrhD,2(0)
, (3.50)

φ̃d,2(s) =
TsT%Tr$2(0)

1 − TsT%TrhD,2(0)
, (3.51)

where

$1(u) = (A2 + a1)
[
A1 − φ

′
d,1(0)

]
e−a1u +

λ2 − λ1

D

∫ u

0

a2e−a2(u−y) − a1e−a1(u−y)

a2 − a1
χ(y) dy,

+

[
λ2

D
φ′d,1(0) −

λ1

D
φ′d,2(0) +

c (λ2 − λ1)
D2

] ∫ u

0

e−a1(u−y) − e−a2(u−y)

a2 − a1
χ(y) dy, (3.52)

$2(u) = (A1 + a2)
[
A2 − φ

′
d,2(0)

]
e−a2u −

λ2 − λ1

D

∫ u

0

a2e−a2(u−y) − a1e−a1(u−y)

a2 − a1
ξ(y) dy

−

[
λ2

D
φ′d,1(0) −

λ1

D
φ′d,2(0) +

c (λ2 − λ1)
D2

] ∫ u

0

e−a1(u−y) − e−a2(u−y)

a2 − a1
ξ(y) dy, (3.53)

and hD,2(u) is defined in (3.39).

Proof For i = 1, 2, ς̃i(s) is a linear function of s with ς̃i(%) = −$̃i(%) and ς̃i(r) = −$̃i(r).

Utilizing the properties of the Translation operator that are listed in Li and Garrido (2004)

and applying Lagrange’s interpolation theorem (see Boudreault et al., 2006, page 274) leads

to

ς̃i(s) + $̃i(s) = (s − %)(s − r) TsT%Tr$i(0), i = 1, 2. (3.54)

Together with identity (3.42), we obtain from (3.46) and (3.47)

φ̃d,1(s) =
TsT%Tr$1(0)

1 − TsT%TrhD,2(0)
,
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φ̃d,2(s) =
TsT%Tr$2(0)

1 − TsT%TrhD,2(0)
.

Moreover, inverting the Laplace transforms in (3.48) and (3.49) yields $1(u) and $2(u). �

Utilizing Propositions 3.5 and 3.6, we reach the following theorem, which is the main

result of this chapter.

Theorem 3.7 The Gerber-Shiu function mD,i(u), i = 1, 2, defined in (3.3) satisfies the

following defective renewal equations

mD,1(u) = κD,δ

∫ u

0
mD,1(u − y)ηD(y) dy + σD,1(u), (3.55)

mD,2(u) = κD,δ

∫ u

0
mD,2(u − y)ηD(y) dy + σD,2(u), (3.56)

where

κD,δ =

∫ ∞

0
T%TrhD,2(y)dy, (3.57)

ηD(y) =
T%TrhD,2(y)

T0T%TrhD,2(0)
, (3.58)

σD,1(u) = T%Trϑ1(u) + w0T%Tr$1(u), (3.59)

σD,2(u) = T%Trϑ2(u) + w0T%Tr$2(u), (3.60)

with %, r denoting the nonnegative roots of Lundberg’s equation (3.20), and hD,2(u), ϑ1(u),

ϑ2(u),$1(u) and$2(u) defined in (3.39), (3.40), (3.41), (3.52) and (3.53). Moreover, ηD(y),

y ≥ 0 is a probability density function and κD,δ is a constant satisfying 0 < κD,δ < 1.

Proof Combining (3.37), (3.38), (3.50), (3.51) and (3.3), we obtain

m̃D,i(s) =
TsT%Trϑi(0) + w0TsT%Tr$i(0)

1 − TsT%TrhD,2(0)
, i = 1, 2.

Applying Laplace inversion yields

mD,1(u) = T0T%TrhD,2(0)
∫ u

0
mD,1(u − y)

T%TrhD,2(y)
T0T%TrhD,2(0)

dy + T%Trϑ1(u) + w0T%Tr$1(u),
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mD,2(u) = T0T%TrhD,2(0)
∫ u

0
mD,2(u − y)

T%TrhD,2(y)
T0T%TrhD,2(0)

dy + T%Trϑ2(u) + w0T%Tr$2(u).

Introducing notation (3.57), (3.58), (3.59) and (3.60), we reach the desired equations (3.55)

and (3.56). To verify equations (3.55) and (3.56) are of defective-renewal type, we still need

to show that ηD(y) is a proper probability density function and 0 < κD,δ < 1.

Let

ι̃1(s) =
ξ̃(s)

s + a1
, (3.61)

ι̃2(s) =
χ̃(s)

s + a2
, (3.62)

then

ι1(u) =

∫ u

0
e−a1(u−y) ξ(y)dy = e−a1u

∫ u

0
ea1y ξ(y)dy,

ι2(u) =

∫ u

0
e−a2(u−y)χ(y)dy = e−a2u

∫ u

0
ea2y χ(y)dy.

Recall (3.33) and rewrite (3.34) as

h̃D,1(s) = (s − A1) (s − A2) ,

h̃D,2(s) =
λ1

D
(A2 − s) ι̃1(s) +

λ2

D
(A1 − s) ι̃2(s).

The nonnegative roots of h̃D,1(s) − h̃D,2(s) = 0 coincide with the nonnegative roots of

Lundberg’s equation which are % and r in Lemma 3.3 and Lemma 3.4. Notice that h̃D,1(s)

and h̃D,2(s) have similar forms with equations (2.19) and (2.20) in Chapter 2 which are

h̃1(s) =

(
s −

λ1 + δ

c1

) (
s −

λ2 + δ

c2

)
,

h̃2(s) =
λ1

c1

(
λ2 + δ

c2
− s

)
ξ̃(s) +

λ2

c2

(
λ1 + δ

c1
− s

)
χ̃(s) .

By a similar argument to the one leading to equation (2.47), taking into account the

admissible rages of % and r, we may conclude that T%TrhD,2(u) > 0 for all u > 0. Hence,

ηD(y) =
T%TrhD,2(y)

T0T%TrhD,2(0) is a proper probability density function, and it follows that κD,δ > 0.
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It remains to show that κδ < 1, which we prove separately in the cases δ > 0 and δ = 0.

When δ > 0, it follows from Lemma 3.4 that % > 0 and r > 0. By definition of κD,δ in (3.57)

and letting s = 0 in (3.42) gives

κD,δ = T0T%TrhD,2(0) = 1 −
h̃D1(0) − h̃D,2(0)

%r
,

then inserting identities (3.33) and (3.34) with s = 0 yields

κD,δ = 1 −
A1A2 −

λ1A2

Da1
ξ̃(0) −

λ2A1

Da2
χ̃(0)

%r
.

Utilizing the relations A1a1 = λ1+δ
D , A2a2 = λ2+δ

D from (3.29), (3.30), and ξ̃(0) + χ̃(0) = 1,

we obtain

κD,δ = 1 −
A1A2a1a2 −

λ1
D A2a2ξ̃(0) − λ2

D A1a1χ̃(0)
a1a2%r

= 1 −
λ1+δ

D
λ2+δ

D

[̃
ξ(0) + χ̃(0)

]
−

λ1
D ·

λ2+δ
D ξ̃(0) − λ2

D ·
λ1+δ

D χ̃(0)

a1a2%r

= 1 −
δ

D
·

λ2+δ
D ξ̃(0) + λ1+δ

D χ̃(0)
a1a2%r

(3.63)

< 1,

since D, δ, λ1, λ2, a1, a2, %, r > 0, ξ̃(0) = P {X > Q} > 0 and χ̃(0) = P {X < Q} > 0.

When δ = 0, we let the unique positive root of Lundberg’s equation be r > 0 and let

% = 0. Observe that r and 0 are also zeros of h̃D,1(s)− h̃D,2(s). Denote κD,δ as κD,0 to suggest

that δ = 0. Then,

κD,0 = T0T0TrhD,2(0) =
T0T0hD,2(0) − T0TrhD,2(0)

r
. (3.64)

From Property 4 of Li and Garrido (2004), we have for any s ∈ C,

TsTshD,2(0) = −
d
ds

TshD,2(0)

= −
d
ds

[
λ1

D
·

A2 − s
s + a1

∫ ∞

0
e−syξ(y)dy +

λ2

D
·

A1 − s
s + a2

∫ ∞

0
e−syχ(y)dy

]
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=
λ1

D

[
a1 + A2

(s + a1)2 ξ̃(s) +
A2 − s
s + a1

∫ ∞

0
e−syy ξ(y)dy

]
+
λ2

D

[
a2 + A1

(s + a2)2 χ̃(s) +
A1 − s
s + a2

∫ ∞

0
e−syy χ(y)dy

]
.

Inserting s = 0 and utilizing λ1
D = A1a1, λ2

D = A2a2 and ξ(y) + χ(y) = b(y) produces

T0T0hD,2(0) =
λ1

D

[
a1 + A2

a2
1

ξ̃(0) +
A2

a1

∫ ∞

0
y ξ(y)dy

]
+
λ2

D

[
a2 + A1

a2
2

χ̃(0) +
A1

a2

∫ ∞

0
y χ(y)dy

]
=

A1a1 + A1A2

a1
ξ̃(0) +

A2a2 + A1A2

a2
χ̃(0) + A1A2 µ.

Substituting the above into (3.64) yields

κD,0 =
1
r

A1a1 + A1A2

a1
ξ̃(0) +

A2a2 + A1A2

a2
χ̃(0) + A1A2 µ −

h̃D,2(0) − h̃D,2(r)
r


=

1
r

A1a1 + A1A2

a1
ξ̃(0) +

A2a2 + A1A2

a2
χ̃(0) + A1A2 µ −

h̃D1(0) − h̃D1(r)
r


=

1
r

[
A1a1 + A1A2

a1
ξ̃(0) +

A2a2 + A1A2

a2
χ̃(0) + A1A2 µ −

−r2 + (A1 + A2) r
r

]
= 1 −

1
r

{
(A1 + A2) −

[
A1a1 + A1A2

a1
ξ̃(0) +

A2a2 + A1A2

a2
χ̃(0) + A1A2 µ

]}
. (3.65)

From the positive-security-loading condition (3.2), we have

µ <
c
λ1
ξ̃(0) +

c
λ2
χ̃(0),

λ1

D
·
λ2

D
µ <

c
D
·
λ2

D
ξ̃(0) +

c
D
·
λ1

D
χ̃(0),

A1a1A2a2 µ <
c
D
· A2a2ξ̃(0) +

c
D

A1a1χ̃(0)

A1A2 µ <
c
D · A2

a1
ξ̃(0) +

c
D · A1

a2
χ̃(0).

Then, utilizing the relations a1 = A1 + c
D and a2 = A2 + c

D , we deduce that

A1a1 + A1A2

a1
ξ̃(0) +

A2a2 + A1A2

a2
χ̃(0) + A1A2 µ

<
A1a1 + A1A2

a1
ξ̃(0) +

A2a2 + A1A2

a2
χ̃(0) +

c
D · A2

a1
ξ̃(0) +

c
D · A1

a2
χ̃(0)

=
A1a1 + A2

(
A1 + c

D

)
a1

ξ̃(0) +
A2a2 + A1

(
A2 + c

D

)
a2

χ̃(0)



Chapter 3. An insurance risk model with dependence and diffusion 60

=
A1a1 + A2a1

a1
ξ̃(0) +

A2a2 + A1a2

a2
χ̃(0)

= A1 + A2 .

Therefore, from (3.65) we may conclude that κD,0 < 1. �

3.4 Applications

3.4.1 Kn family claim sizes

In this section, we derive the explicit expressions for the Gerber-Shiu function under model

(3.1) when the Laplace transforms ξ̃(s) and χ̃(s) belong to the Kn family. One typical

example is when the thresholds are exponentially distributed and the claim amounts follow

a distribution from the Kn family. Assume that the random thresholds {Qi, i = 1, 2, . . . }

follow an exponential distribution with c.d.f. H(y) = 1− e−νy, y ≥ 0, and the claim amounts

{Xi, i = 1, 2, . . . } follow a distribution from the Kn family, i.e., the Laplace transform of the

density function b(·) has the following form

b̃(s) =
p?k−1(s)
pk(s)

, k ∈ N+,

where pk(s) is a polynomial in s of degree k with only negative zeros, p?k−1(s) is a

polynomial in s of degree k − 1 or less, both with leading coefficient 1 and pk(0) = p?k−1(0).

Then, by (2.9) with H(y) = 1 − eνy, y ≥ 0, we may write

χ̃(s) = b̃(s + ν) =
q?k−1(s)
qk(s)

, (3.66)

where qk(s) is another polynomial in s of degree k with only negative zeros, q?k−1(s) is

another polynomial in s of degree k − 1 or less, and both with leading coefficient 1 since

ν > 0 is a constant.

Implementing identities (3.29), (3.30), (3.9) and (3.66), the Lundberg’s equation (3.20)
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becomes

(s − A1) (s − A2) (s + a1) (s + a2)

+
λ1

D
(s − A2) (s + a2)

[
p?k−1(s)
pk(s)

−
q?k−1(s)
qk(s)

]
+
λ2

D
(s − A1) (s + a1)

q?k−1(s)
qk(s)

= 0 ,

which may be rearranged by multiplying by pk(s)qk(s) to

(s − A1) (s − A2) (s + a1) (s + a2) pk(s)qk(s)

+
λ1

D
(s − A2) (s + a2)

[
qk(s)p?k−1(s) − pk(s)q?k−1(s)

]
+
λ2

D
(s − A1) (s + a1) q?k−1(s) = 0 ,

(3.67)

without changing the positive roots of the equation. The left-hand side of equation (3.67)

is a polynomial in s of degree 2k + 4 with leading coefficient 1, which indicates that it

has 2k + 4 zeros in total. Among these roots, exactly two are nonnegative by Lemmas

3.3 and 3.4, denoted as % and r. Therefore, the other 2k + 2 roots have negative real

parts, denoted as R1, . . . ,R2k+2. From now on, we assume that these roots are distinct.

By comparing to (3.33) and (3.34), we see that the left-hand side of (3.67) equals

(s + a1) (s + a2) pk(s)qk(s)
[̃
hD,1(s) − h̃D,2(s)

]
, which implies

(s + a1) (s + a2) pk(s) qk(s)
[̃
hD,1(s) − h̃D,2(s)

]
= (s − %)(s − r)

2k+2∏
l=1

(s − Rl). (3.68)

Inserting (3.33) and (3.34) into (3.13) yields

φ̃w,1(s) =
(s − A2)(s + a2)φ′w,1(0) +

[
λ2
D φ
′
w,1(0) − λ1

D φ
′
w,2(0)

]
χ̃(s) − λ1

D (s − A2)(s + a2)̃ζ(s)

(s + a1) (s + a2)
[̃
hD,1(s) − h̃D,2(s)

] ,

(3.69)

and denote the latter part of the numerator by

ϑ̃K,1(s) =

[
λ2

D
φ′w,1(0) −

λ1

D
φ′w,2(0)

]
χ̃(s) −

λ1

D
(s − A2)(s + a2)̃ζ(s)

=

[
λ2

D
φ′w,1(0) −

λ1

D
φ′w,2(0)

]
χ̃(s) −

λ1

D

(
s2 +

c
D

s −
λ2 + δ

D

)
ζ̃(s). (3.70)
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Since (s − A2)(s + a2) φ′w,1(0) is a quadratic function in s and %, r are simple zeros of the

numerator of φ̃w,1(s), we deduce that the numerator of (3.69) satisfies

(s − A2)(s + a2) φ′w,1(0) + ϑ̃K,1(s) = (s − %)(s − r)
[
φ′w,1(0) + TsT%TrϑK,1(0)

]
. (3.71)

Employing relations (3.68) and (3.71) in (3.69) yields that

φ̃w,1(s) =
(s − %)(s − r)

[
φ′w,1(0) + TsT%TrϑK,1(0)

]
(s + a1) (s + a2)

[̃
hD,1(s) − h̃D,2(s)

]
=

pk(s) qk(s)(s − %)(s − r)
[
φ′w,1(0) + TsT%TrϑK,1(0)

]
pk(s) qk(s) (s + a1) (s + a2)

[̃
hD,1(s) − h̃D,2(s)

]
=

pk(s) qk(s)(s − %)(s − r)
[
φ′w,1(0) + TsT%TrϑK,1(0)

]
(s − %)(s − r)

∏2k+2
l=1 (s − Rl)

=
pk(s) qk(s)∏2k+2
l=1 (s − Rl)

[
φ′w,1(0) + TsT%TrϑK,1(0)

]
. (3.72)

To obtain an explicit expression for TsT%TrϑK,1(0) from (3.70), we deduce some general

results first. Let

z̃1(s) = s ζ̃(s) ,

z̃2(s) = s2 ζ̃(s) ,

then utilizing relation (2.6), we obtain

TsT%Tr z1(0) =
1
r − %

[̃
z1(%) − z̃1(s)

s − %
−
z̃1(r) − z̃1(s)

s − r

]
=

1
r − %

%ζ̃(%) − s̃ζ(s)
s − %

−
r̃ζ(r) − s̃ζ(s)

s − r


=

1
r − %

%ζ̃(%) − %ζ̃(s) + %ζ̃(s) − s̃ζ(s)
s − %

−
r̃ζ(r) − r̃ζ(s) + r̃ζ(s) − s̃ζ(s)

s − r


=

1
r − %

[
%TsT%ζ(0) − ζ̃(s) − rTsTrζ(0) + ζ̃(s)

]
=
%TsT%ζ(0) − rTsTrζ(0)

r − %
,
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TsT%Tr z2(0) =
1
r − %

[̃
z2(%) − z̃2(s)

s − %
−
z̃2(r) − z̃2(s)

s − r

]
=

1
r − %

%2ζ̃(%) − s2ζ̃(s)
s − %

−
r2ζ̃(r) − s2ζ̃(s)

s − r


=

1
r − %

%2ζ̃(%) − %2ζ̃(s) + %2ζ̃(s) − s2ζ̃(s)
s − %

−
r2ζ̃(r) − r2ζ̃(s) + r2ζ̃(s) − s2ζ̃(s)

s − r


=

1
r − %

[
%2TsT%ζ(0) − (% + s) ζ̃(s) − r2TsTrζ(0) + (r + s) ζ̃(s)

]
=
%2TsT%ζ(0) − r2TsTrζ(0)

r − %
+ ζ̃(s) .

Utilizing the above results, we obtain from (3.70) that

TsT%TrϑK,1(0) =

[
λ2

D
φ′w,1(0) −

λ1

D
φ′w,2(0)

]
TsTrT%χ(0) +

λ1

D

[
r2TsTrζ(0) − %2TsT%ζ(0)

r − %
− ζ̃(s)

]
+
λ1

D
·

c
D

[
rTsTrζ(0) − %TsT%ζ(0)

r − %

]
+
λ1

D
·
λ2 + δ

D
TsTrT%ζ(0) . (3.73)

Denote by ˜̀D(s) :=
pk(s) qk(s)∏2k+2
l=1 (s − Rl)

,

applying the Heaviside expansion theorem, ˜̀D(s) may be inverted to

`D(u) =

2k+2∑
j=1

pk(R j) qk(R j)
∂
∂s

[∏2k+2
l=1 (s − Rl)

]
s=R j

eR ju

=

2k+2∑
j=1

pk(R j) pk(R j + ε)∏2k+2
l=1, l, j(R j − Rl)

eR ju . (3.74)

Inverting the Laplace transform in (3.72), we obtain

φw,1(u) = φ′w,1(0) `D(u) + `D(u) ∗ T%TrϑK,1(u), (3.75)

where ∗ denotes the convolution of functions and inverting (3.73) yields

T%TrϑK,1(u) =

[
λ2

D
φ′w,1(0) −

λ1

D
φ′w,2(0)

]
TrT%χ(u) +

λ1

D

[
r2Trζ(u) − %2T%ζ(u)

r − %
− ζ(u)

]
+
λ1

D
·

c
D

[
rTrζ(u) − %T%ζ(u)

r − %

]
+
λ1

D
·
λ2 + δ

D
TrT%ζ(u).
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Similarly for φ̃w,2(s), rewrite (3.14) to

φ̃w,2(s) =
(s − A1)(s + a1) φ′w,2(0) + ϑ̃K,2(s)

(s + a1) (s + a2)
[̃
hD,1(s) − h̃D,2(s)

] , (3.76)

where

ϑ̃K,2(s) = −

[
λ2

D
φ′w,1(0) −

λ1

D
φ′w,2(0)

]
ξ̃(s) −

λ2

D
(s − A1)(s + a1)̃ζ(s)

= −

[
λ2

D
φ′w,1(0) −

λ1

D
φ′w,2(0)

]
ξ̃(s) −

λ2

D

(
s2 +

c
D

s −
λ1 + δ

D

)
ζ̃(s).

Rearranging (3.76) and applying Laplace inversion leads to

φw,2(u) = φ′w,2(0) `D(u) + `D(u) ∗ T%TrϑK,2(u), (3.77)

where

T%TrϑK,2(u) = −

[
λ2

D
φ′w,1(0) −

λ1

D
φ′w,2(0)

]
TrT%ξ(u) +

λ2

D

[
r2Trζ(u) − %2T%ζ(u)

r − %
− ζ(u)

]
+
λ2

D
·

c
D

[
rTrζ(u) − %T%ζ(u)

r − %

]
+
λ2

D
·
λ1 + δ

D
TrT%ζ(u).

and `D(u) is defined in (3.74).

For ruin caused by oscillation, substituting (3.33) and (3.34) into (3.15) yields

φ̃d,1(s) =

(s − A2)(s + a2)φ′d,1(0) + (s − A2)(s + a2)
(
s + c

D

)
+

[
λ2
D φ
′
d,1(0) − λ1

D φ
′
d,2(0) +

λ2−λ1
D

(
c
D + s

)]
χ̃(s)

(s + a1) (s + a2)
[̃
hD,1(s) − h̃D,2(s)

] .

(3.78)

Comparing (3.19) with (3.17), we introduce the following notation

ζ̃d(s) :=
(
s +

c
D

)
. (3.79)

We rewrite the numerator of (3.78) into

(s − A2)(s + a2) φ′d,1(0) + $̃K,1(s) ,
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where

$̃K,1(s) = (s − A2)(s + a2)
(
s +

c
D

)
+

[
λ2

D
φ′d,1(0) −

λ1

D
φ′d,2(0) +

λ2 − λ1

D

( c
D

+ s
)]
χ̃(s)

=

(
s2 +

c
D

s −
λ2 + δ

D

)
ζ̃d(s)

+

[
λ2

D
φ′d,1(0) −

λ1

D
φ′d,2(0) +

λ2 − λ1

D
·

c
D

]
χ̃(s) +

λ2 − λ1

D
s χ̃(s) . (3.80)

Since (s − A2)(s + a2) φ′d,1(0) is a polynomial in s of degree 2 and %, r are zeros of the

numerator of (3.78), we obtain

(s − A2)(s + a2) φ′d,1(0) + $̃K,1(s) = (s − %)(s − r)
[
φ′d,1(0) + TsT%Tr$K,1(0)

]
. (3.81)

Inserting relations (3.68) and (3.81) into the denominator and the numerator of identity

(3.78) respectively yields

φ̃d,1(s) =
(s − A2)(s + a2) φ′d,1(0) + $̃K,1(s)

(s + a1) (s + a2)
[̃
hD,1(s) − h̃D,2(s)

]
=

pk(s) qk(s)
[
(s − A2)(s + a2) φ′d,1(0) + $̃K,1(s)

]
pk(s) qk(s) (s + a1) (s + a2)

[̃
hD,1(s) − h̃D,2(s)

]
=

pk(s) qk(s)(s − %)(s − r)
[
φ′d,1(0) + TsT%Tr$K,1(0)

]
(s − %)(s − r)

∏2k+2
l=1 (s − Rl)

=
pk(s) qk(s)

[
φ′d,1(0) + TsT%Tr$K,1(0)

]
∏2k+2

l=1 (s − Rl)
. (3.82)

To obtain an explicit expression for TsT%Tr$K,1(0), we first derive some auxiliary

results. Utilizing relation (2.6), we deduce from identity (3.79) that

TsTrζd(0) =
ζ̃d(s) − ζ̃d(r)
r − s

=

r +
c
D
− s −

c
D

r − s
= −1 ,

TsT%ζd(0) =
ζ̃d(s) − ζ̃d(%)

% − s
=

% +
c
D
− s −

c
D

% − s
= −1 ,

TsT%Trζd(0) =
TsT%ζd(0) − TsTrζd(0)

r − %
= 0 .
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Let

P̃1(s) = s ζ̃d(s) ,

P̃2(s) = s2 ζ̃d(s) ,

Q̃(s) = s χ̃(s)

then

TsT%TrP1(0) =
1
r − %

P̃1(%) − P̃1(s)
s − %

−
P̃1(r) − P̃1(s)

s − r


=

1
r − %

%
(
% + c

D

)
− s

(
s + c

D

)
s − %

−
r
(
r + c

D

)
− s

(
s + c

D

)
s − r


=

1
r − %

[(
−% − s −

c
D

)
−

(
−r − s −

c
D

)]
= 1 ,

TsT%TrP2(0) =
1
r − %

P̃2(%) − P̃2(s)
s − %

−
P̃2(r) − P̃2(s)

s − r


=

1
r − %

%2
(
% + c

D

)
− s2

(
s + c

D

)
s − %

−
r2

(
r + c

D

)
− s2

(
s + c

D

)
s − r


=

1
r − %

[
−

(
%2 + %s + s2

)
− (% + s)

c
D

+
(
r

2 + rs + s2
)

+ (r + s)
c
D

]
= s + % + r +

c
D
,

TsT%TrQ(0) =
1
r − %

Q̃(%) − Q̃(s)
s − %

−
Q̃(r) − Q̃(s)

s − r


=

1
r − %

[
%χ̃(%) − sχ̃(s)

s − %
−
rχ̃(r) − sχ̃(s)

s − r

]
=

1
r − %

[
%χ̃(%) − %χ̃(s) + %χ̃(s) − sχ̃(s)

s − %
−
rχ̃(r) − rχ̃(s) + rχ̃(s) − sχ̃(s)

s − r

]
=

1
r − %

[
%TsT%χ(0) − χ̃(s) − %TsTrχ(0) + χ̃(s)

]
=
%TsT%χ(0) − rTsTrχ(0)

r − %
.
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Employing the above results, we derive TsT%Tr$K,1(0) from identity (3.80) that

TsT%Tr$K,1(0) =
$̃K,1(%) − $̃K,1(s)

(s − %)(r − %)
−
$̃K,1(r) − $̃K,1(s)

(s − r)(r − %)

= s + % + r +
c
D

+
c
D

+

[
λ2

D
φ′d,1(0) −

λ1

D
φ′d,2(0) +

λ2 − λ1

D
·

c
D

]
TsT%Trχ(0)

+
λ2 − λ1

D

[
%TsT%χ(0) − rTsTrχ(0)

r − %

]
.

Plugging the above into (3.82) gives

φ̃d,1(s) =
pk(s) qk(s)

[
s + % + r + c

D + c
D + φ′d,1(0)

]
∏2k+2

l=1 (s − Rl)

+
pk(s) qk(s)∏2k+2
l=1 (s − Rl)

{ [
λ2

D
φ′d,1(0) −

λ1

D
φ′d,2(0) +

λ2 − λ1

D
·

c
D

]
TsT%Trχ(0)

+
λ2 − λ1

D

[
%TsT%χ(0) − rTsTrχ(0)

r − %

] }
.

Applying Heavside expansion theorem to invert the Laplace transform yields

φd,1(u) =

2k+2∑
j=1

pk(R j) pk(R j + ε)
[
R j + % + r + c

D + c
D + φ′d,1(0)

]
∏2k+2

l=1, l, j(R j − Rl)
eR ju

+ `D(u) ∗
{[
λ2

D
φ′d,1(0) −

λ1

D
φ′d,2(0) +

λ2 − λ1

D
·

c
D

]
T%Trχ(u) +

λ2 − λ1

D

[
%T%χ(u) − rTrχ(u)

r − %

]}
,

(3.83)

with `D(u) defined in (3.74).

Similarly for φ̃d,2(s), inserting (3.33), (3.34) and (3.79) into (3.16) yields

φ̃d,2(s) =
(s − A1)(s + a1)φ′d,2(0) + $̃K,2(s)

(s + a1) (s + a2)
[̃
hD,1(s) − h̃D,2(s)

]
=

pk(s) qk(s)
[
φ′d,2(0) + TsT%Tr$K,2(0)

]
∏2k+2

l=1 (s − Rl)
,

in which

$̃K,2(s) =

(
s2 +

c
D

s −
λ1 + δ

D

)
ζ̃d(s)

−

[
λ2

D
φ′d,1(0) −

λ1

D
φ′d,2(0) +

λ2 − λ1

D
·

c
D

]
ξ̃(s) +

λ2 − λ1

D
s̃ξ(s) ,
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TsT%Tr$K,2(0) = s + % + r +
c
D

+
c
D
−

[
λ2

D
φ′d,1(0) −

λ1

D
φ′d,2(0) +

λ2 − λ1

D
·

c
D

]
TsT%Trξ(0)

+
λ2 − λ1

D

[
%TsT%ξ(0) − rTsTrξ(0)

r − %

]
,

and inverting the Laplace transform φ̃d,2(s) yields

φd,2(u) =

2k+2∑
j=1

pk(R j) pk(R j + ε)
[
R j + % + r + c

D + c
D + φ′d,2(0)

]
∏2k+2

l=1, l, j(R j − Rl)
eR ju

+ `D(u) ∗
{
−

[
λ2

D
φ′d,1(0) −

λ1

D
φ′d,2(0) +

λ2 − λ1

D
·

c
D

]
T%Trξ(u) +

λ2 − λ1

D

[
%T%ξ(u) − rTrξ(u)

r − %

]}
,

(3.84)

where `D(u) is defined in (3.74). The solutions for Gerber-Shiu functions φw,i(u) and φd,i(u)

for i = 1, 2 are complete by (3.75), (3.77), (3.83) and (3.84).

3.4.2 Exponential claim sizes and ruin time

The Laplace transform of the time to ruin is one of the quantities of particular interest for

insurance risk analysis. This is why we examine it separately. Let the penalty function

w(x1, x2) = 1 for all x1, x2 ≥ 0, which implies w0 = 1, then the Gerber-Shiu function (1.3)

reduces to

ϕ(u) = φd(u) + ϕw(u), u ≥ 0, u ≥ 0,

where

ϕw(u) = E
{
e−δτ I{τ<∞,U(τ)<0}

∣∣∣∣ U(0) = u
}
.

Given an initial state i, i = 1, 2,, we denote the Laplace transform of the time to ruin by

ϕi(u) = φd,i(u) + ϕw,i(u), u ≥ 0, i = 1, 2.

Assume that the random thresholds {Qi, i = 1, 2, . . . } follow an exponential distribution

with c.d.f. H(y) = 1 − e−νy, y ≥ 0, and the claim sizes {Xi, i = 1, 2, . . . } are exponentially
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distributed with p.d.f. b(y) = εe−εy, y ≥ 0, which has Laplace transform

b̃(s) =
ε

s + ε
,

and µ = E{X1} = 1
ε
. Employing (3.10) and (3.8) yields

ζ̃(s) =
1

s + ε
, s ≥ 0, (3.85)

χ̃(s) =
ε

s + ν + ε
, s ≥ 0, (3.86)

ξ̃(s) = b̃(s) − χ̃(s) =
ε

s + ε
−

ε

s + ν + ε
, s ≥ 0.

We derive the following auxiliary relations

TsT%Trb(0) =
ε

(s + ε) (% + ε) (r + ε)
,

TsT%Trχ(0) =
ε

(s + ν + ε) (% + ν + ε) (r + ν + ε)
,

TsT%Trξ(0) =
ε

(s + ε) (% + ε) (r + ε)
−

ε

(s + ν + ε) (% + ν + ε) (r + ν + ε)
,

TsT%Trζ(0) =
1

(s + ε) (% + ε) (r + ε)
,

rTsTrχ(0) − %TsT%χ(0)
r − %

=
ε (ν + ε)

(s + ν + ε) (% + ν + ε) (r + ν + ε)
,

rTsTrξ(0) − %TsT%ξ(0)
r − %

=
ε2

(s + ε) (% + ε) (r + ε)
−

ε (ν + ε)
(s + ν + ε) (% + ν + ε) (r + ν + ε)

,

rTsTrζ(0) − %TsT%ζ(0)
r − %

=
ε

(s + ε) (% + ε) (r + ε)
,

r2TsTrζ(0) − %2TsT%ζ(0)
r − %

− ζ̃(s) =
−ε2

(s + ε) (% + ε) (r + ε)
,

utilizing the property of T in (2.6) repeatedly.

The exponential distribution is a member of the Kn family of distributions with k = 1

where

pk(s) = s + ε ,

qk(s) = s + ν + ε .
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Inserting identities (3.85), (3.86) and (3.73) into (3.72) with the above quantities yields

ϕ̃w,1(s)

=

(s + ε) (s + ν + ε)

φ′w,1(0) +

[
λ2
D φ
′
w,1(0) − λ1

D φ
′
w,2(0)

]
ε

(s + ν + ε) (% + ν + ε) (r + ν + ε)
+
λ1

D
·
−ε2 + c

Dε + λ2+δ
D

(s + ε) (% + ε) (r + ε)

∏4
l=1(s − Rl)

=

(s + ε) (s + ν + ε) φ′w,1(0) + (s + ε)

[
λ2
D φ
′
w,1(0) − λ1

D φ
′
w,2(0)

]
ε

(% + ν + ε) (r + ν + ε)
+ (s + ν + ε)

λ1

D
·
−ε2 + c

Dε + λ2+δ
D

(% + ε) (r + ε)∏4
l=1(s − Rl)

,

where R1, . . . ,R4 are the negative roots of the Lundberg’s equation. Observe that the

numerator of ϕ̃w,1(s) is a quadratic function in s and we denote it by Pw,1(s). Therefore,

ϕ̃w,1(s) =
Pw,1(s)∏4

l=1(s − Rl)
.

Similarly, we deduce

ϕ̃w,2(s) =
Pw,2(s)∏4

l=1(s − Rl)
,

where

Pw,2(s) = (s + ε) (s + ν + ε) φ′w,2(0) − (s + ν + ε)

[
λ2
D φ
′
w,1(0) − λ1

D φ
′
w,2(0)

]
ε

(% + ε) (r + ε)

+ (s + ε)

[
λ2
D φ
′
w,1(0) − λ1

D φ
′
w,2(0)

]
ε

(% + ν + ε) (r + ν + ε)
+ (s + ν + ε)

λ2

D
·
−ε2 + c

Dε + λ1+δ
D

(% + ε) (r + ε)
.

Applying the Heaviside expansion theorem to invert the Laplace transforms yields

ϕw,1(u) =
Pw,1(R1)

(R1 − R2)(R1 − R3)(R1 − R4)
eR1u +

Pw,1(R2)
(R2 − R1)(R2 − R3)(R2 − R4)

eR2u

+
Pw,1(R3)

(R3 − R1)(R3 − R2)(R3 − R4)
eR3u +

Pw,1(R4)
(R4 − R1)(R4 − R2)(R4 − R3)

eR4u,

ϕw,2(u) =
Pw,2(R1)

(R1 − R2)(R1 − R3)(R1 − R4)
eR1u +

Pw,2(R2)
(R2 − R1)(R2 − R3)(R2 − R4)

eR2u

+
Pw,2(R3)

(R3 − R1)(R3 − R2)(R3 − R4)
eR3u +

Pw,2(R4)
(R4 − R1)(R4 − R2)(R4 − R3)

eR4u.
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Similar computation may be carried out for the case when is ruin due to oscillation,

which leads to

ϕ̃d,1(s) =
Pd,1(s)∏4

l=1(s − Rl)
,

ϕ̃d,2(s) =
Pd,2(s)∏4

l=1(s − Rl)
,

where Pd,1(s) and Pd,2(s) are polynomials with the following forms

Pd,1(s) = (s + ε) (s + ν + ε)
[
s + % + r +

c
D

+
c
D

+ φ′d,1(0)
]

+ (s + ε)

[
λ2
D φ
′
d,1(0) − λ1

D φ
′
d,2(0) + λ2−λ1

D · c
D

]
ε − λ2−λ1

D · ε (ν + ε)

(% + ν + ε) (r + ν + ε)
,

Pd,2(s) = (s + ε) (s + ν + ε)
[
s + % + r +

c
D

+
c
D

+ φ′d,2(0)
]

− (s + ν + ε)

[
λ2
D φ
′
d,1(0) − λ1

D φ
′
d,2(0) + λ2−λ1

D · c
D

]
ε

(% + ε) (r + ε)

+ (s + ε)

[
λ2
D φ
′
d,1(0) − λ1

D φ
′
d,2(0) + λ2−λ1

D · c
D

]
ε

(% + ν + ε) (r + ν + ε)

+ (s + ν + ε)
λ2−λ1

D · ε2

(% + ε) (r + ε)
− (s + ε)

λ2−λ1
D · ε (ν + ε)

(% + ν + ε) (r + ν + ε)
.

Inverting the Laplace transforms ϕ̃d,1(s) and ϕ̃d,2(s) produces

ϕd,1(u) =
Pd,1(R1)

(R1 − R2)(R1 − R3)(R1 − R4)
eR1u +

Pd,1(R2)
(R2 − R1)(R2 − R3)(R2 − R4)

eR2u

+
Pd,1(R3)

(R3 − R1)(R3 − R2)(R3 − R4)
eR3u +

Pd,1(R4)
(R4 − R1)(R4 − R2)(R4 − R3)

eR4u,

ϕd,2(u) =
Pd,2(R1)

(R1 − R2)(R1 − R3)(R1 − R4)
eR1u +

Pd,2(R2)
(R2 − R1)(R2 − R3)(R2 − R4)

eR2u

+
Pd,2(R3)

(R3 − R1)(R3 − R2)(R3 − R4)
eR3u +

Pd,2(R4)
(R4 − R1)(R4 − R2)(R4 − R3)

eR4u.

The moments of the time to ruin random variable may be computed from its Laplace

transform. Furthermore, if we let δ = 0 which implies % = 0, the Laplace transform of

the time to ruin ϕw,i(u), ϕd,i(u), i = 1, 2, reduce to the ultimate ruin probabilities, which we

illustrate by the following numerical example.
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3.4.3 Numerical Example

Assume that the thresholds Qi ∼ Exp(2), claim sizes Xi ∼ Exp(1), c = 2, λ1 = 3, λ2 = 1,

δ = 0 and σ = 1. Then, we find the Lundberg’s equation as

s
(
s5 + 12s4 + 43s2 + 26s2 − 70s − 4

)
= 0.

Lundberg’s equation has six roots in total that are % = 0, r = 0.947295, R1 = −0.056081,

R2 = −3.198969, R3 = −4.846122 − 0.22772i and R4 = −4.846122 + 0.22772i. Utilizing

the results from the previous section, we obtain

ψw,1(u) = 0.77420 e−0.05608u − 0.09450 e−3.19897u

− [0.67971 cos(0.22772u) − 2.56055 sin(0.22772u)] e−4.84612u,

ψw,2(u) = 0.72281 e−0.05608u − 0.05911 e−3.19897u

− [0.66369 cos(0.22772u) + 0.53646 sin(0.22772u)] e−4.84612u,

and

ψd,1(u) = 0.18431 e−0.05608u + 0.13906 e−3.19897u

+ [0.67663 cos(0.22772u) − 2.82182 sin(0.22772u)] e−4.84612u,

ψd,2(u) = 0.17208 e−0.05608u + 0.08699 e−3.19897u

+ [0.74093 cos(0.22772u) + 0.56990 sin(0.22772u)] e−4.84612u.

Combining the above gives us the ultimate-ruin probabilities

ψ1(u) = 0.95851 e−0.05608u + 0.04456 e−3.19897u

− [0.00308 cos(0.22772u) + 0.26127 sin(0.22772u)] e−4.84612u,

ψ2(u) = 0.89488 e−0.05608u + 0.02788 e−3.19897u

+ [0.07724 cos(0.22772u) + 0.03344 sin(0.22772u)] e−4.84612u.
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We may change the value of σ to examine the impact of perturbation under the dependent

insurance risk model. Notice that when σ = 0, this example reduces to the one in Section

2.4.3. Figure 3.1 shows the ultimate-ruin probabilities comparing to the non-perturbed case

as σ→ 0. The different initial conditions under σ = 0 and σ > 0 is the reason we treat the

perturbed and unperturbed version of the dependence model separately.
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Figure 3.1: Ruin probabilities under the dependent insurance risk model with diffusion



Chapter 4

A perturbed dual risk model with

dependence

Dual risk models may be used to model the revenue process of a company with constant

expense rate and occasional gains. In this chapter, we consider a dual risk model with

both inter-gain distribution and expense rate depending on the size of the previous gain.

In addition, we assume that the surplus process is perturbed by a Brownian motion. Exact

solutions for the Laplace transform and the first moment of the time to ruin with an arbitrary

gain-size distribution are obtained. Applications with numerical illustrations are provided

to examine the impact of the dependence structure and the perturbation.

4.1 Model description and notation

Consider the dual risk model

R(t) = u − c1

∫ t

0
I{J(s)=1} ds − c2

∫ t

0
I{J(s)=2} ds +

M(t)∑
i=1

Xi + σW(t), t ≥ 0, σ > 0, (4.1)

where u > 0 is the initial surplus, W(t) is a standard Brownian motion, and the gain-size

random variables {Xi, i = 1, 2, . . . } are i.i.d. with density function p(y), y > 0, and c.d.f.

75
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P(y), y > 0. The gain counting process M(t) is a renewal process with intergain times

{Zi, i = 1, 2, . . . }. Assume that the distribution of the time until the next gain depends on

the previous gain amount by comparing it to a random threshold, similar to Albrecher and

Boxma (2004). Suppose the thresholds {Qi, i = 1, 2, . . . } are i.i.d. with c.d.f. H(y), y > 0,

and are independent of the gain sizes. The thresholds {Qi}
∞
i=1 play the role of a classifier. If

the size of a gain X j is smaller than Q j, then the revenue process is in Class 1 where the

time until next gain follows an exponential distribution with mean 1/λ1 > 0 and expense

rate is c1 until the arrival of the next gain. If X j is larger than Q j, then the revenue process

is in Class 2 where the time until next gain follows another exponential distribution with

mean 1/λ2 > 0 (λ1 , λ2) and the expense rate is c2. At any given time t, J(t) represents

which class the process falls in. The model may describe the revenue process of a research

company, where the thresholds represent the competition or the industrial average. When

a certain research gain is larger (or smaller) than the average for the industry, resources

and talent will be drawn into (or out of) the company. This action will influence the

waiting-time distribution of the next gain and the company should adjust the expense rate

accordingly.

For comparison, a non-perturbed version of the dual model (4.1) is given by

R(t) = u − c1

∫ t

0
I{J(s)=1} ds − c2

∫ t

0
I{J(s)=2} ds +

M(t)∑
i=1

Xi, t ≥ 0, (4.2)

which is a limiting case of model (4.1) as σ→ 0.

Next, we introduce some notation that will be used in the rest of this chapter. Given

that the initial class of the revenue process is i, i = 1, 2, denote the Laplace transform of the

random time of ruin τi = inf {t : R(t) = 0} as

Φi(u) = E
[
e−δτi I(τi < ∞)

∣∣∣R(0) = u
]
, u > 0, δ ≥ 0, i = 1, 2, (4.3)

which implies

lim
u→0

Φi(u) = 1 , i = 1, 2.
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Assume further that the net-profit condition

c1

λ1

∫ ∞

0
p(y)H(y)dy +

c2

λ2

∫ ∞

0
p(y)H(y)dy < E{X1} (4.4)

holds. For simplicity, we denote by

χ(y) := p(y)H(y), (4.5)

ξ(y) := p(y)H(y), (4.6)

D :=
1
2
σ2 , (4.7)

and by

f̃ (s) =

∫ ∞

0
e−sy f (y) dy, s ∈ C,

the Laplace transform of a real-valued function f .

4.2 Laplace transform of the time to ruin

This section is dedicated to the explicit solutions to second order integro-differential

equations satisfied by the Laplace transform of the time to ruin. First, we derive these

equations in Proposition 4.1. Second, we provide their solutions in Theorem 4.2.

Proposition 4.1 The Laplace transforms of the time to ruin Φ1(u) and Φ2(u) defined in

(4.3) satisfy the system of integro-differential equations

−
D
c1

Φ′′1 (u) + Φ′1(u) +
λ1 + δ

c1
Φ1(u) =

λ1

c1

∫ ∞

0

[
Φ1 (u + y) χ(y) + Φ2 (u + y) ξ(y)

]
dy, (4.8)

−
D
c2

Φ′′2 (u) + Φ′2(u) +
λ2 + δ

c2
Φ2(u) =

λ2

c2

∫ ∞

0

[
Φ1 (u + y) χ(y) + Φ2 (u + y) ξ(y)

]
dy, (4.9)

with boundary condition lim
u→0

Φ1(u) = lim
u→0

Φ2(u) = 1.

Proof First we consider when the revenue process is initially in class 1, that is the fist gain

arrives at rate of λ1.
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Consider a sufficiently small time interval [0, dt) and condition on whether a gain occurs

in this time interval, we then obtain

Φ1(u) = (1 − λ1dt) Φ1(u|there is no gain in [0,dt)) + λ1dt Φ1(u|there is one gain in [0,dt)) + o(dt)

= (1 − λ1dt)E
[
e−δdtΦ1 (u − c1dt + σW(dt))

]
+ λ1dte−δdtE

[ ∫ ∞

0
Φ1 (u − c1dt + σW(dt) + y) p(y)P{Q > y} dy

+

∫ ∞

0
Φ2 (u − c1dt + σW(dt) + y) p(y)P{Q < y} dy

]
+ o(dt).

(4.10)

Applying Taylor expansion yields

E [Φ1(u − c1dt + σW(dt))] = Φ1(u) − c1Φ
′
1(u)dt +

1
2
σ2Φ′′1 (u)dt + o(dt) ,

since E[W(dt)] = E[W3(dt)] = 0 and E[W2(dt)] = 1
2σ

2. Implementing the above result in

equation (4.10) and dividing it by dt produces(
λ1e−δdt +

1 − e−δdt

dt

)
Φ1(u) = (1 − λ1dt) e−δdt

[
−c1Φ

′
1(u) +

1
2
σ2Φ′′1 (u)

]
+ λ1e−δdt E

{ ∫ ∞

0
Φ1 (u − c1dt + σW(dt) + y) p(y)H(y)dy

+

∫ ∞

0
Φ2 (u − c1dt + σW(dt) + y) p(y)H(y)dy

}
+

o(dt)
dt

.

Letting dt converge to zero gives

(λ1 + δ) Φ1(u) =
1
2
σ2Φ′′1 (u) − c1Φ

′
1(u) + λ1

[∫ ∞

0
Φ1 (u + y) p(y)H(y)dy +

∫ ∞

0
Φ2 (u + y) p(y)H(y)dy

]
.

Rearranging the above yields

−
D
c1

Φ′′1 (u) + Φ′1(u) +
λ1 + δ

c1
Φ1(u) =

λ1

c1

∫ ∞

0

[
Φ1 (u + y) χ(y) + Φ2 (u + y) ξ(y)

]
dy ,

where χ(y), ξ(y) and D are defined in (4.5), (4.6) and (4.7) respectively. Similarly, given

the revenue process is initially in Class 2, we may deduce the equation

−
D
c2

Φ′′2 (u) + Φ′2(u) +
λ2 + δ

c2
Φ2(u) =

λ2

c2

∫ ∞

0

[
Φ1 (u + y) χ(y) + Φ2 (u + y) ξ(y)

]
dy,

which completes the proof. �
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As seen in the following theorem, the solutions to equations (4.8) and (4.9) have a fairly

simple form. Moreover, it is straightforward to determine all relevant constants.

Theorem 4.2 A solution to the system of equations (4.8) and (4.9) is

Φ∗1(u) = `1e−ρ1u + ϑ1e−ρ2u, (4.11)

Φ∗2(u) = `2e−ρ1u + ϑ2e−ρ2u, (4.12)

where `1, `2, ϑ1, ϑ2, ρ1 and ρ2 are nonzero constants. Here ρ1 and ρ2 are the only two roots

with positive real parts to Lundberg’s fundamental equation

λ1
c1
χ̃(s)

λ1+δ
c1
− s − D

c1
s2

+

λ2
c2
ξ̃(s)

λ2+δ
c2
− s − D

c2
s2

= 1, (4.13)

The constants `1, `2, ϑ1 and ϑ2 are determined by the following system of linear equations

`1 + ϑ1 = 1 (4.14)

`2 + ϑ2 = 1 (4.15)

λ2

c2
·

λ1+δ
c1
− ρ1 −

D
c1
ρ2

1
λ2+δ

c2
− ρ1 −

D
c2
ρ2

1

`1 =
λ1

c1
`2 (4.16)

λ2

c2
·

λ1+δ
c1
− ρ2 −

D
c1
ρ2

2
λ2+δ

c2
− ρ2 −

D
c2
ρ2

2

ϑ1 =
λ1

c1
ϑ2. (4.17)

Proof We first show that Φ∗1(u) and Φ∗2(u) solve equation (4.8). Inserting Φ∗1(u) as defined

in identity (4.11) into the left-hand side of equation (4.8) yields

−
D
c1
·
∂2

∂2u
Φ∗1(u) +

∂

∂u
Φ∗1(u) +

λ1 + δ

c1
Φ∗1(u)

= −
D
c1

(
ρ2

1`1 e−ρ1u + ρ2
2ϑ1 e−ρ2u

)
+

(
−ρ1`1 e−ρ1u − ρ2ϑ1 e−ρ2u) +

λ1 + δ

c1

(
`1 e−ρ1u + ϑ1 e−ρ2u)

=

(
λ1 + δ

c1
− ρ1 −

D
c1
ρ2

1

)
`1e−ρ1u +

(
λ1 + δ

c1
− ρ2 −

D
c1
ρ2

2

)
ϑ1e−ρ2u. (4.18)

Then inserting Φ∗1(u) and Φ∗2(u) into the right-hand side of equation (4.8) which is

λ1

c1

∫ ∞

0

[
Φ∗1 (u + y) χ(y) + Φ∗2 (u + y) ξ(y)

]
dy
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=
λ1

c1

∫ ∞

0

[
`1 e−ρ1(u+y)χ(y) + ϑ1 e−ρ2(u+y)χ(y) + `2 e−ρ1(u+y)ξ(y) + ϑ2 e−ρ2(u+y)ξ(y)

]
dy ,

by the definition of Laplace transform we have

λ1

c1

∫ ∞

0

[
Φ∗1 (u + y) χ(y) + Φ∗2 (u + y) ξ(y)

]
dy

=
λ1`1

c1
e−ρ1u χ̃(ρ1) +

λ1ϑ1

c1
e−ρ2u χ̃(ρ2) +

λ1`2

c1
e−ρ1u ξ̃(ρ1) +

λ1ϑ2

c1
e−ρ2u ξ̃(ρ2)

=

[
λ1`1

c1
χ̃(ρ1) +

λ1`2

c1
ξ̃(ρ1)

]
e−ρ1u +

[
λ1ϑ1

c1
χ̃(ρ2) +

λ1ϑ2

c1
ξ̃(ρ2)

]
e−ρ2u

=

λ1

c1
χ̃(ρ1) +

λ2

c2
·

λ1+δ
c1
− ρ1 −

D
c1
ρ2

1
λ2+δ

c2
− ρ1 −

D
c2
ρ2

1

ξ̃(ρ1)

 `1e−ρ1u

+

λ1

c1
χ̃(ρ2) +

λ2

c2
·

λ1+δ
c1
− ρ2 −

D
c1
ρ2

2
λ2+δ

c2
− ρ2 −

D
c2
ρ2

2

ξ̃(ρ2)

ϑ1e−ρ2u

=

 λ1
c1
χ̃(ρ1)

λ1+δ
c1
− ρ1 −

D
c1
ρ2

1

+

λ2
c2
ξ̃(ρ1)

λ2+δ
c2
− ρ1 −

D
c2
ρ2

1

 (λ1 + δ

c1
− ρ1 −

D
c1
ρ2

1

)
`1e−ρ1u

+

 λ1
c1
χ̃(ρ2)

λ2+δ
c2
− ρ2 −

D
c2
ρ2

2

+

λ2
c2
ξ̃(ρ2)

λ2+δ
c2
− ρ2 −

D
c2
ρ2

2

 (λ2 + δ

c2
− ρ2 −

D
c2
ρ2

2

)
ϑ1e−ρ2u, (4.19)

utilizing equalities (4.16) and (4.17). The left-hand side expression (4.18) matches the

right-hand side expression (4.19), since both ρ1 and ρ2 satisfy Lundberg’s equation (4.13),

that is, λ1
c1
χ̃(ρ1)

λ1+δ
c1
− ρ1 −

D
c1
ρ2

1

+

λ2
c2
ξ̃(ρ1)

λ2+δ
c2
− ρ1 −

D
c2
ρ2

1

 =

 λ1
c1
χ̃(ρ2)

λ2+δ
c2
− ρ2 −

D
c2
ρ2

2

+

λ2
c2
ξ̃(ρ2)

λ2+δ
c2
− ρ2 −

D
c2
ρ2

2

 = 1 .

Thus, Φ∗1(u) and Φ∗2(u) solve equation (4.8).

Similarly, Φ∗1(u) and Φ∗2(u) also solve equation (4.9), which indicates together Φ∗1(u)

with Φ∗2(u) is a solution for the system of equations (4.8) and (4.9). Moreover, equations

(4.14) and (4.15) are obtained from the initial conditions Φ∗1(0) = Φ∗2(0) = 1. The four

linearly independent equations (4.14) to (4.17) uniquely determine constants `1, `2, ϑ1 and

ϑ2 in Φ∗1(u) and Φ∗2(u). �

We now need to demonstrate that the statement in Theorem 4.2 that there are only two

roots with positive real roots to the Lundberg’s equation.
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Lemma 4.3 For all δ ≥ 0, the generalized Lundberg’s equation (4.13) under model (4.1)

has exactly two roots with positive real parts.

Proof We separate the proof into two cases: δ > 0 and δ = 0. For δ > 0, the proof is same

as for Lemma 3.4 in Chapter 3.

For δ = 0, we rewrite the Lundberg’s equation (4.13) in the form

l1(s) − l2(s) = 0 ,

where

l1(s) =

(
s2 +

c1

D
s −

λ1

D

) (
s2 +

c2

D
s −

λ2

D

)
,

l2(s) =
λ1

D

(
s2 +

c2

D
s −

λ2

D

)
χ̃(s) +

λ2

D

(
s2 +

c1

D
s −

λ1

D

)
ξ̃(s) .

For i = 1, 2, denote the real roots to s2 +
ci

D
s −

λi

D
= 0 by αi and −βi with αi, βi > 0. Hence,

s2 +
c1

D
s −

λ1

D
= (s − α1) (s + β1) ,

s2 +
c2

D
s −

λ2

D
= (s − α2) (s + β2) ,

α1β1 =
λ1

D
,

α2β2 =
λ2

D
.

Let z =
κ − s
κ

, where κ > 0 is a sufficiently large number, and define C as the circle

{s : |z| = 1}. On the boundary of C except for the point s = 0, we have

|l1(s)| = |s − α1| |s + β1| |s − α2| |s + β2|

= |s − α1| |s + β1| |s − α2| |s + β2| χ̃(0) + |s − α1| |s + β1| |s − α2| |s + β2| ξ̃(0)

> (−α1β1) |s − α2| |s + β2|
∣∣∣̃χ(s)

∣∣∣ + (−α2β2) |s − α1| |s + β1|
∣∣∣̃ξ(s)

∣∣∣
≥ |l2(s)| ,

since |s| > 0 and Re(s) > 0. Also, |l1(s)| = |l2(s)| at s = 0.
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To apply Corollary 2 in Klimenok (2001), we still need to consider the first derivatives

of l1 and l2 with respect to z, where(
∂l1

∂z
+
∂l2

∂z

) ∣∣∣∣∣
z=1

=

(
∂l1

∂s
·
∂s
∂z

+
∂l2

∂s
·
∂s
∂z

) ∣∣∣∣∣
s=0

=

[
∂l1

∂s
· (−κ) +

∂l2

∂s
· (−κ)

] ∣∣∣∣∣
s=0

= (−κ)
{
−
λ1c2

D2 −
λ2c1

D2 +
λ1c2

D2 χ̃(0) +
λ2c1

D2 ξ̃(0) −
λ1λ2

D2 ·

[
∂

∂s
p̃(s)

∣∣∣∣∣
s=0

] }
= (−κ)

{
λ1c2

D2

[
χ̃(0) − 1

]
+
λ2c1

D2

[̃
ξ(0) − 1

]
+
λ1λ2

D2 E
{
X1

}}
= κ

[
λ1c2

D2 ξ̃(0) +
λ2c1

D2 χ̃(0) −
λ1λ2

D2 E
{
X1

}]
= κ ·

λ1λ2

D2

[
c2

λ2
ξ̃(0) +

c1

λ1
χ̃(0) − E

{
X1

}]
. (4.20)

Since κ, λ1, λ2, D > 0 and the net-profit condition (4.4) states

c1

λ1

∫ ∞

0
p(y)H(y)dy +

c2

λ2

∫ ∞

0
p(y)H(y)dy < E{X1}

c1

λ1
χ̃(0) +

c2

λ2
ξ̃(0) < E{X1} ,

we have in (4.20) that (
∂l1

∂z
+
∂l2

∂z

) ∣∣∣∣∣
z=1

< 0 .

In addition, l1(0) > 0. Applying Corollary 2 in Klimenok (2001) yields that l1(s) − l2(s)

has the same number of zeros as l1(s) does in the interior of the circle C. Inside C, function

l1(s) has exactly two zeros, and so does l1(s) − l2(s). Letting κ → ∞, we conclude that

l1(s) − l2(s) has exactly two zeros in the positive half plane. �

Utilizing the Laplace transform of the time to ruin, we may deduce the first moment of

the ruin time, given that ruin occurs in finite time, to be

E [τi|τi < ∞] =
− ∂
∂δ

Φ∗i (u)|δ=0

Φ∗i (u)|δ=0
, i = 1, 2. (4.21)
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Denote by

Λi(x) :=
λi + δ

ci
− x −

D
ci

x2, i = 1, 2,

Υ(x) :=
Λ1(x)
Λ2(x)

.

Taking derivatives of Λ1(ρ j), Λ2(ρ j) and Υ(ρ j) for j = 1, 2 with respect to δ yields

∂

∂δ
Λi(ρ j) =

1
ci
−

(
1 +

2D
ci
ρ j

)
∂ρ j

∂δ
, i = 1, 2, j = 1, 2,

∂

∂δ
Υ(ρ j) =

∂
∂δ

Λ1(ρ j) −
[
∂
∂δ

Λ2(ρ j)
]
Υ(ρ j)

Λ2(ρ j)
, j = 1, 2. (4.22)

The unknown functions
∂ρ j

∂δ
, j = 1, 2, may be derived from Lundberg’s equation (4.13),

where

λ1

c1
·

[
∂χ̃(ρ j)
∂ρ j
·
∂ρ j

∂δ

]
Λ1(ρ j) − χ̃(ρ j) · ∂∂δΛ1(ρ j)

Λ1(ρ j)2 +
λ2

c2
·

[
∂ξ̃(ρ j)
∂ρ j
·
∂ρ j

∂δ

]
Λ2(ρ j) − ξ̃(ρ j) · ∂∂δΛ2(ρ j)

Λ2(ρ j)2 = 0,

or equivalently,[
λ1

c1
·

1
Λ1(ρ j)

·
∂χ̃(ρ j)
∂ρ j

]
∂ρ j

∂δ
−
λ1

c1
·
χ̃(ρ j)

Λ1(ρ j)2

[
1
c1
−

(
1 +

2D
c1
ρ j

)
∂ρ j

∂δ

]
+

λ2

c2
·

1
Λ2(ρ j)

·
∂ξ̃(ρ j)
∂ρ j

 ∂ρ j

∂δ
−
λ2

c2
·
ξ̃(ρ j)

Λ2(ρ j)2

[
1
c2
−

(
1 +

2D
c2
ρ j

)
∂ρ j

∂δ

]
= 0,

which may also be restated asλ1

c1
·

1
Λ1(ρ j)

·
∂χ̃(ρ j)
∂ρ j

+
λ1

c1
·
χ̃(ρ j)

Λ1(ρ j)2

(
1 +

2D
c1
ρ j

)
+
λ2

c2
·

1
Λ2(ρ j)

·
∂ξ̃(ρ j)
∂ρ j

+
λ2

c2
·
ξ̃(ρ j)

Λ2(ρ j)2

(
1 +

2D
c2
ρ j

) ∂ρ j

∂δ

=
λ1

c2
1

·
χ̃(ρ j)

Λ1(ρ j)2 +
λ2

c2
2

·
ξ̃(ρ j)

Λ2(ρ j)2 ,

or as

∂ρ j

∂δ
=

λ1
c2

1
·

χ̃(ρ j)
Λ1(ρ j)2 + λ2

c2
2
·

ξ̃(ρ j)
Λ2(ρ j)2

λ1
c1
· 1

Λ1(ρ j)
·
∂χ̃(ρ j)
∂ρ j

+ λ1
c1
·

χ̃(ρ j)
Λ1(ρ j)2

(
1 + 2D

c1
ρ j

)
+ λ2

c2
· 1

Λ2(ρ j)
·
∂ξ̃(ρ j)
∂ρ j

+ λ2
c2
·

ξ̃(ρ j)
Λ2(ρ j)2

(
1 + 2D

c2
ρ j

) .
(4.23)
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To derive ∂
∂δ

Φ∗i (u)|δ=0 for i = 1, 2 in identity (4.21), we still need to express ∂`i
∂δ

and ∂ϑi
∂δ

.

Solving the system of linear equations (4.14) to (4.17) yields

`1 =
Υ(ρ2) − c2λ1

c1λ2

Υ(ρ2) − Υ(ρ1)
`2 =

c1λ2

c2λ1
Υ(ρ1) · `1 (4.24)

ϑ1 =1 − `1 ϑ2 =1 − `2 .

Also, summing (4.16) and (4.17) leads to

Υ(ρ1) · `1 + Υ(ρ2) (1 − `1) =
c2λ1

c1λ2
.

After differentiation with respect to δ, we obtain

∂`1

∂δ
=

(1 − `1) · ∂
∂δ

Υ(ρ2) + `1 ·
∂
∂δ

Υ(ρ1)
Υ(ρ2) − Υ(ρ1)

. (4.25)

Similarly, differentiating `2 in (4.24), we deduce

∂`2

∂δ
=

c1λ2

c2λ1

[
∂`1

∂δ
· Υ(ρ1) + `1 ·

∂

∂δ
Υ(ρ1)

]
, (4.26)

where ∂
∂δ

Υ(ρ j) for j = 1, 2, are given in (4.22). Differentiating Φ∗1(u) and Φ∗2(u) with respect

to δ yields

∂

∂δ
Φ∗i (u) =

(
∂`i

∂δ
− `i

∂ρ1

∂δ
· u

)
e−ρ1u −

[
∂`i

∂δ
+ (1 − `i)

∂ρ2

∂δ
· u

]
e−ρ2u, i = 1, 2,

where ∂ρ j

∂δ
for j = 1, 2, and ∂`i

∂δ
for i = 1, 2,may be found in (4.23), (4.25) and (4.26). Finally,

the mean of the time of ruin, given that ruin occurs in finite time, is

E [τi|τi < ∞] =
−

(
∂`i
∂δ
− `i

∂ρ1
∂δ
· u

)
e−ρ1u +

[
∂`i
∂δ

+ (1 − `i)
∂ρ2
∂δ
· u

]
e−ρ2u

∣∣∣
δ=0

`ie−ρ1u + (1 − `i) e−ρ2u
∣∣∣
δ=0

, i = 1, 2.

Remark 4.1 When λ1 = λ2 and c1 = c2, the model (4.1) reduces to the compound Poisson

dual model with diffusion in Avanzi and Gerber (2008). �

Remark 4.2 As σ → 0, model (4.1) converges to model (4.2). Under the non-perturbed

model (4.2), all results in Proposition 4.1, Theorem 4.2, Lemma 4.3 and the first moment
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of time to ruin still hold by letting D = 0. The reason is that in both cases of dual models —

the perturbed one and the unperturbed one — the initial conditions coincide: lim
u→0

Φi(u) = 1

and lim
u→∞

Φi(u) = 0, i = 1, 2. �

To demonstrate the results in Remark 4.2, we consider a non-perturbed version of the

dependent dual risk model as defined in (4.2). Denote by φ1(u), i = 1, 2 for the Laplace

transform of time to ruin under the non-perturbed model. Given that the first gain arrives at

the rate of λ1, conditioning on the time and amount of first gain that might occur, we have

φ1(u) =

∫ u
c1

0
λ1e−λ1te−δt

∫ ∞

0
φ1(u − c1t + y)p(y)P{Q > y} + φ2(u − c1t + y)p(y)P{Q < y} dydt + e

−

(
λ1+δ

c1

)
u
.

Changing the variable of integration t to v = u − c1t yields

φ1(u) =
λ1

c1

∫ u

0
e−

(
λ1+δ

c1

)
(u−v)

∫ ∞

0
φ1(v + y)p(y)H(y) + φ2(v + y)p(y)H(y) dydv + e−

(
λ1+δ

c1

)
u

=
λ1

c1
e−

(
λ1+δ

c1

)
u
∫ u

0
e
(
λ1+δ

c1

)
v
∫ ∞

0
φ1(v + y)χ(y) + φ2(v + y)ξ(y) dydv + e−

(
λ1+δ

c1

)
u
.

Similarly, given that the first gain arrives at the rate of λ2, we obtain

φ2(u) =
λ2

c2
e−

(
λ2+δ

c2

)
u
∫ u

0
e
(
λ2+δ

c2

)
v
∫ ∞

0
φ1(v + y)χ(y) + φ2(v + y)ξ(y) dydv + e−

(
λ2+δ

c2

)
u
.

Differentiating the above equations with respect to u, after some rearranging produces

φ′1(u) +
λ1 + δ

c1
φ1(u) =

λ1

c1

∫ ∞

0
φ1(u + y)χ(y)dy +

λ1

c1

∫ ∞

0
φ2(u + y)ξ(y)dy ,

φ′2(u) +
λ2 + δ

c2
φ2(u) =

λ2

c2

∫ ∞

0
φ1(u + y)χ(y)dy +

λ2

c2

∫ ∞

0
φ2(u + y)ξ(y)dy ,

which are equations (4.8) and (4.9) with D = 0. All the rest of the results follows

straightforwardly by letting D = 0.

Remark 4.3 When D = 0, rewriting the system of integro-differential equations (4.8) and

(4.9) by changing the variable of integration to z = u + y produces

φ′1(u) +
λ1 + δ

c1
φ1(u) =

λ1

c1

∫ ∞

0
k1(u − z)φ1(z) dz +

λ1

c1

∫ ∞

0
k2(u − z)φ2(z) dz,
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φ′2(u) +
λ2 + δ

c2
φ2(u) =

λ2

c2

∫ ∞

0
k1(u − z)φ1(z) dz +

λ2

c2

∫ ∞

0
k2(u − z)φ2(z) dz.

where the kernels k1(x) = χ(−x) I(x ≤ 0) and k2(x) = ξ(−x) I(x ≤ 0) are introduced.

This kind of convolution-type system of integro-differential equations is also of interest in

other areas such as applied physics, see for example equation (1.1) in Khachatryan and

Khachatryan (2009). Theorem 4.2 provides a possible solution to some of its special cases.

�

4.3 Numerical illustrations

In this section, numerical examples are provided to apply the results in the previous section.

Meanwhile, we examine the impact of the dependence structure and the perturbation to the

underlying risk respectively.

In Example 4.1, we compare the dependent dual model to one with an independent

setting, where the revenue process follows a perturbed compound Poisson dual model with

parameter λ1 with probability P{X < Q} and it follows another perturbed compound Poisson

dual model with parameter λ2 with probability P{X > Q}. All other parameters remain the

same. Let P{X < Q} = w, the Laplace transform of the time to ruin is

ϕ(u) = wϕ1(u) + (1 − w)ϕ2(u),

where ϕ1(u) and ϕ2(u) correspond to the two perturbed compound Poisson dual models

with net-profit conditions satisfied. For i = 1, 2, we have

ϕi(u) = e−riu,

where ri is the unique positive solution to

−
D
ci

s2 − s +
λi + δ

ci
=
λi

ci
p̃(s).
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The impact of the dependence structure is considered under different gain-size assumptions.

Example 4.2 is constructed to demonstrate how the change in the volatility of the

diffusion process affects the dependent dual risk model and shows the ruin-related results

converge to the unperturbed version of the model as D→ 0.

Example 4.1 Suppose that the gain sizes {Xi}
∞
i=1 are Coxian(3) distributed with Laplace

transform

p̃(s) =
3s + 2

(s + 1)2 (s + 2)

and E{X1} = 1. Let λ1 = 2.5, λ2 = 1.5, c1 = c2 = 1, D = 0.5, δ = 0 and the random

thresholds follow an exponential distribution with H(y) = 1 − e−1/3 y, y > 0. By definition,

we have χ̃(s) = p̃
(
s + 1

3

)
= 3s+3

(s+ 4
3 )2(s+ 7

3 )
and ξ̃(s) = p̃(s) − χ̃(s). Inserting these into

Lundberg’s equation (4.13), we obtain the only two positive roots to be ρ1 = 0.726401

and ρ2 = 1.199512. Given the initial class of the process, the ultimate-ruin probabilities are

Ψ1(u) = Φ1(u)
∣∣∣
δ=0

= 0.702211 e−0.726401u + 0.2977893 e−1.199512u,

Ψ2(u) = Φ2(u)
∣∣∣
δ=0

= 1.247830 e−0.726401u − 0.247830 e−1.199512u.

We may compare the ruin probabilities under the stationary state of the perturbed dependent

dual model

Ψs(u) = w Ψ1(u) + (1 − w) Ψ2(u) = 0.853230 e−0.726401u + 0.146770 e−1.199512u,

to the independent case, where

ψ(u) = ϕ(u)
∣∣∣
δ=0

= wϕ1(u) + (1 − w)ϕ2(u) = 0.723214 e−0.965404u + 0.276786 e−0.399137u.

The ruin probability results are shown in the left panel of Figure 4.1. These results indicate

the presence of the dependence structure reduces the underlying risk and failing to realize

the dependence will overestimate the risk.
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Similar computations and comparisons may be carried out for other distributions, such

as a heavy-tailed Pareto or an exponential distribution. Figure 4.1 shows the impact of the

dependence structure under different gain-size distributions with the same means where all

the other parameters in Example 4.1 remain unchanged. For comparison, a graph for the

case σ = 0 is provided in Figure 4.2. The impact of dependence structure is greater for

distributions with heavier tail. �

Example 4.2 Let λ1 = 2.5, λ2 = 0.5, c1 = c2 = 1 and D = 0. Assume that the gain

sizes {Xi, }
∞
i=1 are exponentially distributed with mean 1 and the random thresholds follow

another exponential distribution with H(y) = 1 − e−1/3 y, y > 0. The net profit condition

1
2.5 (3

4 ) + 1
0.5 ( 1

4 ) < 1 is satisfied. For ruin probabilities, let δ = 0 and Lundberg’s equation is

5
2
·

1(
5
2 − s

) (
s + 4

3

) +
1
6
·

1(
1
2 − s

)
(s + 1)

(
s + 4

3

) = 1 .

The only two positive roots are ρ1 = 0.166675, ρ2 = 1.686141. Ultimate-ruin probabilities

are

φ1(u) = 0.739776 e−0.166675u + 0.260224 e−1.686141u,

φ2(u) = 1.035710 e−0.166675u − 0.035710 e−1.686141u.

First moments of ruin time are

E [τ1|τ1 < ∞] =
(6.290285 + 3.418592 u) e−0.166675u + (−6.290285 + 0.350133 u) e−1.686141u

0.739776 e−0.166675u + 0.260224 e−1.686141u ,

E [τ2|τ2 < ∞] =
(−0.837642 + 4.786135 u) e−0.166675u + (0.837642 − 0.048048 u) e−1.686141u

1.035710 e−0.166675u − 0.035710 e−1.686141u .

Similar computations may be carried out for D taking various values. Figure 4.3 illustrates

how the perturbation increases the underlying risk by showing how the change in D affects

the ruin probabilities and the expected time to ruin under this example. �

Remark 4.4 According to arguments in Albrecher et al. (2014), by interchanging the

jumps and inter-event times, the event of ruin under dual model (4.2) when c1 = c2 = 1
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coincides with the ruin under the dependent Sparre-Andersen risk model in Boudreault et

al. (2006) with exponential claim sizes. More precisely, the Sparre-Andersen risk model

may be described by

U(t) = u + πt −
N(t)∑
j=1

Z j, t ≥ 0,

with i.i.d. inter-claim times {Xi}
∞
i=1 and claim sizes {Z1,Z2, . . . } depending on the claim

elapse time.

In Example 4.2, the parameters are set to be equivalent to model A in Boudreault et al.

(2006), Section 7. To obtain the ruin probabilities under model A utilizing the results from

the proposed dual dependence model, we have

ψA(u) = E
[
φ(u + πX1)

]
=

∫ ∞

0
φ1(u + t) e−te−1/3t + φ2(u + t) e−t

[
1 − e−1/3t

]
dt

= 0.690457 e−0.166675u + 0.084714 e−1.686141u,

which provides an alternative and simpler way to obtain the numerical results in Boudreault

et al. (2006), page 282, which coincide to the extent of a small rounding error. �
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Figure 4.1: Impact of the dependence structure under different gain-size distributions (σ = 1)
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Figure 4.2: Impact of the dependence structure under different gain-size distributions (σ = 0)
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Chapter 5

Concluding remark and further research

Under the classical compound Poisson risk model and the Sparre-Andersen risk model,

one crucial assumption is that the interclaim times and the claim sizes are independent.

However, this assumption might be inappropriate in practice. In this thesis, we consider

a dependent risk model where the assumption about independent increments, which is

fundamental for the Sparre-Andersen risk model, no longer holds. In addition, we assume

the underlying risk process is perturbed by a Brownian motion to account for small

fluctuations, which is also a more realistic assumption. Lastly, the idea of dependence

and diffusion combined is implemented to the dual risk model.

For the two insurance risk models, explicit solutions for the Gerber-Shiu function are

obtained for arbitrary claim sizes along with applications. Various applications under

special cases of the Gerber-Shiu function along with examples are provided. Exact solution

for the Laplace transform and first moment of time to ruin are deduced under the dual

risk model. Further research may include extending these risk models with dependence

and diffusion to more generalized settings. For instance, increasing the risk classifier to

higher dimensions or generalizing the underlying risk process to a more complex stochastic

process, such as Markovian arrival process.
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