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Abstract

In recent years, there has been a rapid emergence of complex insurance products such as con-

tract with option-embedded features. This thesis develops stochastic modelling frameworks

for the accurate pricing and risk management of these products. We propose stochastic mod-

els for the evolution of the two main risk factors, the interest rate and mortality rate, which

could also have a correlation structure. In particular, we focus on the analysis of a guaranteed

annuity option (GAO). For the valuation problem, a general framework is put forward where

correlated interest and mortality rates are modelled as affine-diffusion processes. A new con-

cept of endowment-risk-adjusted measure is introduced to facilitate the calculation of the GAO

value. The performance and computational efficiency of the proposed approach are examined

through numerical experiments. As a natural offshoot of addressing GAO valuation, we derive

the convex-order upper and lower bounds of GAO values by employing the comonotonicity

theory. The results via Monte Carlo methodology are used as benchmarks in assessing the

accuracy of the comonotonic-based approximated pricing results.

As an alternative to affine structure, we construct a more flexible modelling framework that

incorporate regime-switching dynamics of interest and mortality rates in which the switching

is governed by a continuous-time Markov chain. Three ways to embed the regime-switching

approach to mortality modelling are considered. The corresponding endowment-risk-adjusted

measures are constructed and employed to obtain more efficient GAO pricing formulae. An

extension of the previous modelling set-up is further developed by integrating the affine struc-

ture and regime-switching feature. Both interest and mortality risk factors follow a correlated

affine structure whilst their volatilities are modulated by a Markov chain process. The change

of probability measure technique is again utilised to generate pricing expressions capable of

significantly cutting down simulation and computing times.

Finally, the risk management aspect of GAO is investigated by evaluating various risk mea-

surement metrics. The bootstrap technique is used to quantify standard error for the estimates

of risk measures under a stochastic modelling framework in which death is the only decrement.

The moment-based density approximation methods are applied to obtain analytic approxima-

ii



tion of the distributions of the loss random variable that provide immediate solutions to the

risk measure determination. We also find the relation between the desired accuracy level of

risk measures and the required sample size through regression methodology. The sensitivity

analyses of risk measures with respect to key parameters are studied demonstrating the utmost

importance of reliable estimation and calibration of model parameters.

Keywords: change of probability measure, endowment-risk-adjusted measure, interest rate

risk, mortality risk, annuity-contingent derivative, risk measures, regime-switching, Markov

chain
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Chapter 1

Introduction

1.1 Background of stochastic modelling

Stochastic processes are sequences of random variables indexed with time. They are mathe-

matical tools to model and describe time-related random events and phenomena. Stochastic

models are utilised widely in the natural sciences, engineering, business and economics; see

for instance, Ross [34] and Solberg [35], amongst others. Finance and actuarial science, in

particular, have highly benefitted from stochastic methods especially in the valuation of deriva-

tives and insurance products, risk management, asset allocation and credit risk analysis.

Insurance valuation and risk management techniques have been traditionally deterministic. But

with the recent changes in the investment environments and insurance markets, the important

uncertainty element needs to be adequately modelled. For example, many insurance companies

have introduced new products with embedded options. These products have similar character-

istics to derivatives traded in the financial market. Thus, the pricing of these products requires

modern option pricing theory, which inevitably involves the use of stochastic calculus. Due to

today’s product sophistication, their value would depend on at least two risk factors, the most

important of which are the interest and mortality rates. The risk factors are deemed correlated.

Dealing with correlation represents a mathematical as well as a computational hurdle. This is

one reason why in previous works, financial and mortality risks are assumed independent.

1



Chapter 1. Introduction 2

Correlation between the two risk factors are nonetheless supported by economic observations.

On the one hand, a mortality decline or equivalently an increase in life expectancy can put a

huge stress on the country’s social programs and impacts its labour market. This in turn affects

local and global economy. An improvement in life expectancy impacts national savings and de-

mand on investments, which is directly linked to rate of returns. On the other hand, it is known

that interest rate levels directly affect the economy. A high interest rate, for example, implies

higher interest payments for debts, which could weaken the capacity of ordinary individuals,

especially those saddled with mortgages and borrowings, to afford the much needed medical

care and access to advancements in medicine thereby clearly impacting their longevity. It is

therefore valid to incorporate the correlation of mortality and interest rates when designing a

valuation model. This thesis proposes a stochastic framework to value and manage risks in-

volved in guaranteed annuity options (GAOs) by allowing a dependence structure between the

two most relevant risk factors.

1.2 Research objectives

To rectify the deficiency of traditional methods in valuation and setting of capital reserve for

option-embedded insurance products, we build various stochastic models under which results

of theoretical and numerical investigations constitute the contributions of this thesis. The main

research objectives are detailed as follows.

1.2.1 An affine pricing framework for GAO addressing correlated risks

Based on the work of Jalen and Mamon [24], we propose a general risk-neutral framework

to price a GAO. In this framework, the two risk factors follow affine diffusion dynamics, and

their dependence is explicitly modelled. A challenge that arises from this pricing framework

is the direct calculation of the price of GAO. Since the two risks are dependent, there is no

closed-form solution for the GAO value. The calculation can become complicated and time-

consuming. We address this problem via the change of measure technique and introduce the

concept of endowment-risk-adjusted measure under which an endowment contract acts as a

numéraire. Using both the forward measure, associated with the bond price as numéraire,
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and the endowment-risk-adjusted measure, an implementable expression for the GAO price is

derived. The development of this model setting, change of measure approach and numerical

results are presented in chapter 2. More details about the thesis structure is given in section

1.4.

1.2.2 A comonotonicity-based valuation method for GAO

Following the theme and set-up of the work described in subsection 1.2.1, we offer an alterna-

tive method to Monte Carlo simulation in determining the GAO price. As this work involves

comonotonicity theory, we deal with the sums of lognormal random variables. Methodolo-

gies and approaches in this area were previously developed to find the distribution of sums of

lognormal random variables to varying degrees of depth and treatment depending on certain

theoretical or practical considerations. Such advances are highlighted in Dufresne [14], Leip-

nik [27] and Wu et al. [37]. Our approach is motivated by the works of Dhaene et al. [12, 13],

and Liu et al. [28] that proposed the use of comonotonic bounds in approximating the sums

of lognormal random variables. Based on the above-mentioned papers, we derive the upper

and lower bounds of the price of GAO in convex order together with their quantile functions.

Moreover, we investigate the accuracy of our comonotonic bounds by benchmarking them to

simulated results generated from the previous work in subsection 1.2.1.

1.2.3 The pricing of GAO under a Markov regime-switching framework

In addition to affine model structures, regime-switching models are another type of models

that are gaining popularity in finance and actuarial science. Developments in the applications

of Markov regime-switching models to finance and economics can be found in Mamon and

Elliott [30], and more recently in Mamon and Elliott [31]. Milidonis et al. [32] adopted a

regime-switching approach in mortality modelling and made an extension to the original Lee-

Carter model. In their paper, the error term of mortality index is switching between regimes;

this set-up relaxes the normality assumption of the mortality index. So far, no research work

employs a regime-switching model to price annuity-linked options. We aim to construct a new

framework for the pricing of GAO in which both interest and mortality rates are functions of
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a continuous- or discrete-time Markov chain. In this work, we continue to apply the concept

of endowment-risk-adjusted measure and derive a new transition probability matrix under the

new measure. This emphasises the interplay of Girsanov and Bayes theorems.

1.2.4 Valuation of GAO under affine framework with regime-switching

volatilities

The term structure models of interest rates, based on diffusion processes with constant param-

eters, may reasonably support the pricing of financial derivatives. However, when we value

annuity-linked insurance products which often have long maturities, the constant volatility as-

sumption may not be adequate to capture changes in the economy. The same holds true for

mortality rates. Therefore, we relax the use of constant volatilities in the stochastic modelling

of interest and mortality rates in the affine framework described in section 1.2.1. We assume

volatilities of the risk factors evolve according to the dynamics of a continuous-time Markov

chain. A modelling framework mixing the affine and correlated structure with the regime-

switching feature will be constructed. The valuation process will still be carried out via the

change of measure technique but further new results are obtained given the extended frame-

work.

1.2.5 Risk measurement of GAO under one-decrement actuarial model

framework

To complement the pricing of insurance products, it is also important for insurers to consider

appropriate financial instruments in hedging risks to meet solvency requirements and main-

tain capital adequacy. Approaches in risk management and hedging of products with option-

embedded features were studied by several authors (e.g., Hardy [22]). But in these previous

works, the insurance risks are not all modelled stochastically. We aim to contribute to the

research ideas under the paradigm of stochastic and dependent risk factors. The distribution

of liabilities can be obtained by applying the moment-based density approximation approach.

Different kinds of risk measurement such as the quantile measure and conditional tail expecta-

tion risk measure can be calculated from both the Monte Carlo methodology and the analytic
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approximation of the loss distribution.

1.3 Review of modelling financial and mortality risks

The purpose of this section is to survey briefly the stochastic modelling of both the interest and

mortality rates with a view of employing them to price insurance contracts. We only mention

papers that are pertinent to the goals of this thesis as outlined above.

1.3.1 Stochastic modelling of interest rates

The first account of using stochastic processes to model the movement of financial variables

can be traced back to the work of Bachelier [1] who used Brownian motion to study the stock

and option markets. Since then, stochastic methods were applied to various financial mod-

elling endeavors and areas of finance. The field of interest rate theory hugely benefited from

the advances made in option pricing theory. Various approaches have been proposed for the

modelling of the term structure of interest rates in discrete and continuous time inspired by

the pioneering work of Black and Scholes [5] in stock option valuation. The first interest

rate model that has considerable impact and continues to permeate financial modelling is the

Ornstein-Uhlenbeck-based model for the short rate rt that was put forward by Vasiček [36].

Under any short-rate model, the goal is to calculate the zero-coupon bond price based on the

stochastic differential equation that specifies the rt process. The calculation is performed either

by direct evaluation of the conditional expectation under a risk-neutral measure of a discounted

pay-off or by solving a partial differential equation satisfied by the bond price. Cox et al. [11]

also proposed an interest rate model based on a Bessel process that ensures positive rates.

As an alternative to the short-rate approach, Heath, Jarrow and Morton (HJM) [23] proposed to

model the entire yield curve directly by specifying the dynamics of the forward-rate process.

Based on the no-arbitrage conditions of the HJM approach, the implementation only requires

the specification of the volatility function.

Since then various diffusion-based models for rt as well as for the forward rate process were
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developed; see Brigo and Mercurio [7], James and Webber [25], amongst others. As reviewed

below, starting in the 1990s, regime-switching term structure models began appearing and have

then enriched the short-rate and HJM-type models by the inclusion of hidden Markov chains

driving the evolution of parameters.

Elliott & Mamon [16] explored a Markov interest rate model giving a complete characteri-

sation of the entire term structure under the assumption that the short rate is a function of a

continuous-time Markov chain. In their paper, they proved the well-known Unbiased Expec-

tation Hypothesis in economics holds but demonstrated that such relation between the short

rate and forward rate holds, provided the expectation must be taken under a forward measure.

Their result was employed to obtain an explicit stochastic dynamics for the forward rate. The

analytical form of the bond price under the HJM pricing approach was presented as well. Pi-

oneering works to model economic variables as a regime-switching process can be found in

Hamilton [21]. Contributions from many authors to short-rate modelling then ensued. In these

contributions, the parameters are ensured to change over time and controlled by a Markov state

variable. Bekaert et al. [4], Evans and Lewis [19], Garcia and Perron [20] conducted empirical

studies to test the validity of regime switches in interest rates.

Elliott and Mamon [15] provided an extended model combining diffusion- and Markov-based

models. A two-factor Vasiček model was developed where the mean-reversion level changes

according to the evolution of a continuous-time finite-state Markov chain. In their work, the

analytical expression for the zero-coupon bond price was presented in terms of a fundamental

matrix solution of a linear matrix differential equation. The validity of their bond pricing

result was verified by checking consistency among the short-rate, forward-rate and yield rate

processes. Some extensions of regime-switching interest rate modelling include the papers of

Elliott and his research collaborators [17, 18].
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1.3.2 Stochastic modelling of mortality rates

Pricing calculations in life insurance contracts and pension plans make use of a mortality as-

sumption, commonly described as the annual probabilities of death rate or the force of mortal-

ity. In a traditional framework, these quantities are obtained using observed data. Given the

future uncertainty on mortality levels due to medical breakthroughs and discoveries in phar-

macology as well as the creation of insurance products with derivative features, researchers

began giving attention to stochastic mortality models that are also compatible and consistent

with stochastic models used in the pricing of financial products.

The beginning of stochastic modelling of mortality can be attributed to Lee and Carter (LC)

[26] who proposed to model central death rates representing age-specific mortality. An essen-

tial ingredient of their method is a univariate mortality index that describes the variation of

mortality patterns over time. Due to the absence of observable variable in their model, mak-

ing traditional regression method invalid, singular-value decomposition was employed in their

parameter estimation. A one-parameter life table was constructed and fitted to US mortality

patterns. Forecasts of rates and life expectancy were obtained under the assumption that future

trends would continue in the same way. The key feature of the LC methodology is that it gives

allowance to uncertainty in mortality rate by modelling it as a stochastic process. Subsequent

research works on stochastic mortality were built upon LC’s methodology. Brouhns et al. [8]

made some improvements to the LC model by using a Poisson random variation for the num-

ber of deaths instead of the additive error term in the original model. This is deemed more

reasonable since the mortality rate is much more variable at older ages than at younger ages.

Another popular stochastic model describing mortality evolution was proposed by Cairns,

Blake and Dowd [9], which exploited the relative simplicity of mortality curve at higher ages;

the model is not designed, however, for lower ages. It has attracted much attention in pension

plan valuation in the UK given its good performance in capturing mortality dynamics of older

age groups. In contrast with the LC model, it incorporates two factors in describing mortality

evolution. The first factor affects mortality rate dynamics at all ages in the same manner whilst
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the other one affects mortality rate dynamics at higher ages much more than at lower ages.

Empirical evidence supports that both factors are necessary to achieve a satisfactory fit over

the entire mortality term structure. One important advantage of their method is that it allows

different improvements at different ages and at different times which can not be achieved in LC

model.

In 2005, Luciano and Vigna [29] adopted affine processes to describe the evolution of mortality

rate and provided detailed calibration using UK data. In their paper, they suggested that a non-

mean-reverting process is more suitable to model mortality rate than a mean-reverting one. On

the other hand, the addition of negative jumps into the diffusion process performed better to fit

the real mortality data and forecast the mortality trend.

Research advances in modern finance have stimulated research developments in the field of in-

surance. Milidonis et al. [32] brought the concept of regime-switching approach into mortality

rate modelling. In their paper, the advantages of applying regime-switching models into mor-

tality rate modelling were highlighted. Through the investigation of the US population mortal-

ity index, they illustrated that there were structural changes in the underlying death probability

for all age cohorts from all death causes, which provided evidence in the adoption of regime-

switching models. Moreover, they applied the concept of regime-switching to model the error

term of mortality index in the LC model. This captures the disturbances introduced by extreme

observations over time and makes the error term non-normal.

1.3.3 Stochastic modelling in actuarial valuation

The booming market of sophisticated insurance products with benefits linked to financial vari-

ables along with various guarantees has provided impetus to the active use of stochastic mod-

elling of both interest and mortality rates in the valuation of annuity-related products. Boyle

and Hardy [6] discussed three major risks involved in GAOs. In their paper, interest rate risk

and equity risk followed correlated affine processes whilst mortality rate remained determinis-

tic and independent with the other two risks. They investigated to price GAOs via the change of
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measure technique assuming a swaption hedge. Ballotta and Haberman [3] examined the val-

uation of annuity-contingent options and extended the research results in Ballotta and Haber-

man [2], which assumed unsystematic mortality risk; they introduced an integrated framework

to value GAO using option pricing methodology of modern finance. In their frameworks, a

stochastic model for the evolution of mortality rate was considered whilst the term structure

of interest rate evolves according to a single-factor HJM model. A fair value for GAO was

derived through the change of measure technique. To make the estimation of the value of GAO

implementable, Monte-Carlo simulation technique was applied. Moreover, the sensitivity of

GAO prices with respect to key parameters was investigated. However, whilst the two types of

risks are stochastic in their valuation, they are still assumed independent.

In Chu and Kwok [10], three analytical approximation methods were proposed for GAO pric-

ing, namely, the stochastic duration approach, Edgeworth expansion and multi-factor affine

interest rate model setting. The stochastic duration approach is based on the minimisation of

the price error whilst the Edgeworth expansion method approximates the probability distribu-

tion of the annuity value at maturity of the contract. For the affine approximation, the concave

exercise boundary is approximated by a hyperplane in order to obtain the exercise probabil-

ity of the annuity option. The three analytic approximation methods were compared in terms

of both numerical accuracy and computational efficiency and a sensitivity of GAO prices was

performed.

Jalen and Mamon [24] proposed an integrated framework of stochastic mortality and interest

rates to price insurance claims. They relaxed the independence assumption of the two risk fac-

tors. In their framework, the mortality rate was modelled as an affine-type diffusion process just

like the short rate process. Through the change of measure technique, analytical expressions

in mortality-linked insurance products were presented. Their approach provided new perspec-

tives and methodology in the valuation of other insurance products under a more reasonable

assumption that risk factors are dependent.

The paper of Liu et al. [28] illustrated the evaluation of the annuity rate defined as the con-
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ditional expected present value random variable of the annuity’s future payments. The two

risk factors were modelled as stochastic processes; the mortality rate followed the LC model

and the short rate followed the Vasiček model. They applied the concept and properties of

comonotonicity in the derivation of the convex-order lower and upper order of the annuity

rate. The accuracy of the bounds was validated through numerical analysis. This approach has

the advantage of mathematical tractability in computing the distribution function for the sum

of comonotonic random variables, which could be adopted in the further calculation of other

annuity-linked products.

The valuation of a related product, called guaranteed lifelong withdrawal benefit options with

variable annuity, was described by Piscopo and Haberman [33]. In their paper, the equity risk

followed the geometric Brownian motion whilst the mortality rate was based on the standard

mortality tables with allowance for the possible perturbations having a regime-switching fea-

ture. They provided the fair value through Monte Carlo simulations under different scenarios

and conducted sensitivity analysis to show the relation between the variation of parameters and

the value of the product.

1.4 Structure of the thesis

This thesis consists of 7 chapters. The succeeding chapters are the compilation of related re-

search papers (2 published, 1 under review and 2 for submission) on the valuation and risk

measurement of GAOs with the stochastic modelling of risk factors.

In chapter 2 we propose a generalised pricing framework in which the dependence between

the two risks can be explicitly modelled. We also utilise the change of measure technique to

simplify the valuation expressions. We illustrate our methodology in the valuation of a GAO.

Using both forward measure associated with the bond price as numéraire and the newly in-

troduced concept of endowment-risk-adjusted measure, we derive a simplified formula for the

GAO price under the generalised framework. Numerical results show that the methodology

proposed in this work is highly efficient and accurate.
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Chapter 3 presents an alternative way to value GAO under the model framework in chapter 2.

Comonotonicity theory is applied to derive upper and lower bounds for the annuity rate in the

convex order sense. These bounds provide accurate approximations for the value of GAOs.

Numerical illustrations are included to show the accuracy and practical applicability of our

comonotonic approximations for the GAO values benchmarked by simulated results in chapter

2.

In chapter 4, we consider three ways of developing a regime-switching approach in modelling

the evolution of mortality rates for the purpose of pricing a GAO. This involves the extension of

the Gompertz and non-mean reverting models as well as the adoption of a pure Markov model

for the force of mortality. A continuous-time finite-state Markov chain is employed to describe

the evolution of mortality model parameters which are then estimated using the filtered-based

and least-squares methods. The adequacy of the regime-switching Gompertz model for the US

mortality data is demonstrated via the goodness-of-fit metrics and likelihood-based selection

criteria. A GAO is valued assuming the interest and mortality risk factors are switching regimes

in accordance with the dynamics of two independent Markov chains. To obtain closed-form

valuation formulae, we employ the change of measure technique with the pure endowment

price as the numéraire. Numerical implementations are included to compare the results of the

proposed approaches and those from the Monte Carlo simulations.

An extended modelling framework building from that in chapter 2 is proposed in chapter 5. The

volatilities of the interest rate and mortality rate are regime-switching driven by a finite-state

continuous time Markov chain. We derive the explicit solution to the endowment price which

involves solving the linear system of ordinary differential equations by employing the forward

measure. Utilising the endowment-risk-adjusted measure with endowment as the numéraire,

we provide an efficient formula for GAO price as supported by numerical experiments produc-

ing results that have smaller errors and with less computing time.

Chapter 6 addresses the problem of setting capital reserves for a GAO. A modelling framework
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for the gross loss random variable is developed. We consider a one-decrement actuarial model

for the gross loss in which death is the only decrement, and the financial and mortality risk

factors follow correlated affine structures. Risk measures are determined using the moment-

based density method and benchmarked with the Monte-Carlo simulation method. A bootstrap

technique is utilised to assess the variability of risk measure estimates. We establish the re-

lation between the level of desired risk measure accuracy and required sample size under the

constraints of computing time and memory. A test of GAO sensitivity to model parameters

demonstrates the need for accurate model estimation and calibration. Our numerical investiga-

tions should prove useful to insurers in adhering to certain regulatory requirements.

Lastly, we summarise the main findings and contributions of the thesis in chapter 7. The mod-

elling setups we introduce will provide researchers and practitioners alike more flexible model

choices in their quest of capturing the dynamics of real data relevant to actuarial valuation and

risk management. Moreover, possible works motivated by this research in the areas of cali-

bration, hedging of a GAO, and further improvement in the valuation process through Monte

Carlo methodology are briefly mentioned in the last chapter.



References

[1] Bachelier, L. (1990), “Theory of speculation,” Annales scientifiques de l’Ecole Normale

Superieure, 17, 21–86.

[2] Ballotta, L. and Haberman, S. (2003), “Valuation of guaranteed annuity conversion op-

tions,” Insurance: Mathematics and Economics, 33, 87–108.

[3] Ballotta, L. and Haberman, S. (2006), “The fair valuation problem of guaranteed annuity

options: the stochastic mortality environment case,” Insurance: Mathematics and Eco-

nomics, 38, 195–214.

[4] Bekaert, G., Hodrick, R. and Marshall, D. (2001), “Peso problem explanations for term

structure anomalies,” Journal of Financial Economics, 48, 241–270.

[5] Black, F. and Scholes, M. (1973), “The pricing of options and corporate liabilities,” Jour-

nal of Political Economy, 81, 637–659.

[6] Boyle, P. and Hardy, M. (2003), “Guaranteed annuity options,” ASTIN Bulletin, 33(2),

125–152.

[7] Brigo, D. and Mercurio, F. (2006), Interest Rate Models – Theory and Practice: With

Smile, Inflation and Credit, Springer Finance, Berlin.

[8] Brouhns, N., Denuit, M. and Vermunt, J. (2002), “A Poisson log-bilinear approach to

the construction of projected lifetables,” Insurance: Mathematics and Economics, 31,

373–393.

[9] Cairns, A., Blake, D. and Dowd, K. (2006), “Pricing death: frameworks for the valuation

and securitization of mortality risk,” ASTIN Bulletin, 36, 79–120.

13



REFERENCES 14

[10] Chu, C. and Kwok, Y. (2007), “Valuation of guaranteed annuity options in affine term

and structure models,” International Journal of Theoretical and Applied Finance, 10,

363–387.

[11] Cox, J., Ingersoll, J. and Ross, S. (1985), “A theory of the term structure of interest rates,”

Econometrica, 53, 385–407.

[12] Dhaene, J., Denuit, M., Goovaerts, M., Kaas, R. and Vyncke, D. (2002a), “The concept

of comonotonicity in actuarial science and finance: theory,” Insurance: Mathematics and

Economics, 31, 3–33.

[13] Dhaene, J., Denuit, M., Goovaerts, M., Kaas, R. and Vyncke, D. (2002b), “The concept of

comonotonicity in actuarial science and finance: applications,” Insurance: Mathematics

and Economics, 31, 133–161.

[14] Dufresne, D. (2004), “The log-normal approximation in financial and other applications,”

Advances and Applications of Probability, 36, 747–773.

[15] Elliott, R. and Mamon, R. (2002), “An interest rate model with a Markovian mean revert-

ing level,” Quantitative Finance, 2, 454–458.

[16] Elliott, R. and Mamon, R. (2003), “A complete yield curve description of a Markov inter-

est rate model,” International Journal of Theoretical and Applied Finance, 6, 317–326.

[17] Elliott, R., Siu, T. and Chan, L. (2007), “Pricing volatility swaps under Heston’s stochastic

volatility model with regime switching,” Applied Mathematical Finance, 14, 41–62.

[18] Elliott, R. and Siu, T. (2009), “On Markov-modulated exponential-affine bond price for-

mulae,” Applied Mathematical Finance, 16, 1–15.

[19] Evans, M. and Lewis, K. (1994), “Do expected shifts in inflation affect estimates of the

long-run Fisher relation?” Journal of Finance, 50, 225–253.

[20] Garcia, R. and Perron, P. (1996), “An analysis of the real interest rate under regime shifts,”

Review of Economics and Statistics, 78, 111–125.



REFERENCES 15

[21] Hamiton, J. (1989), “A new approach to the economics analysis of nonstationary time

series and the business cycle,” Econometrica, 57, 357–384.

[22] Hardy, M. (2003), Investment Guarantees: Modeling and Risk Management for Equity-

Linked Life Insurance, Wiley & Sons, New Jersey.

[23] Heath, D., Jarrow, R. and Morton, A. (1992), “Bond pricing and the term structure of

interest rates: a new methodology for contingent claims valuation,” Econometrica, 60,

77–105.

[24] Jalen, L. and Mamon, R. (2009), “Valuation of contingent claims with mortality and

interest rate risks,” Mathematical and Computer Modelling, 49, 1893–1904.

[25] James, J. and Webber, N. (2000), Interest Rate Modelling, Wiley, New York.

[26] Lee, R. and Carter, L. (1992), “Modeling and forecasting US mortality,” Journal of the

American Statistical Association, 87, 659–675.

[27] Leipnik, R. (1991), “On lognormal normal random variables: the characteristic function,”

Journal of the Australian Mathematical Society: Series B, 32, 327–347.

[28] Liu, X., Jang, J. and Kim, S. (2011), “An application of comonotonicity theory in a

stochastic life annuity framework,” Insurance: Mathematics and Economics, 48, 271–

279.

[29] Luciano, E. and Vigna, E. (2005), “Non mean reverting affine processes for stochastic

mortality,” Carlo Alberto Notebook 30/06 and ICER WP 4/05.

[30] Mamon, R. and Elliott, R. (2007), Hidden Markov Models in Finance, International Series

in Operations Research & Management Science, Volume 104, Springer, New York.

[31] Mamon, R. and Elliott, R. (2014), Hidden Markov Models in Finance: Further Devel-

opments and Applications, International Series in Operations Research & Management

Science, Volume 209, Springer, New York.

[32] Milidonis, A., Lin,Y. and Cox, S. (2011), “Mortality regimes and pricing,” North Ameri-

can Actuarial Journal, 15, 266–289.



REFERENCES 16

[33] Piscopo, G. and Haberman, S. (2012), “The valuation of guaranteed lifelong withdrawal

benefit options in variable annuity contracts and the impact of mortality risk,” North

American Actuarial Journal, 15(1), 59–76.

[34] Ross, S. (2010), Introduction to Probability Models, 10th edition, Academic Press, Mas-

sachusetts.

[35] Solberg, J. (2009), Modeling Random Processes for Engineers and Managers, John Wiley

& Sons, New Jersey.
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Chapter 2

A generalised pricing framework

addressing correlated mortality and

interest risks

2.1 Introduction

It is a well-accepted fact that annuity products are notably influenced by both interest and

mortality risks. However, the methodology for dealing with these two risks is fundamentally

oversimplified under the traditional actuarial approach. Mortality risk is usually regarded as

secondary in importance compared to the volatile nature of interest risk. In addition, mortality

risk is deemed diversifiable if the insurer holds a sufficiently large portfolio of similar con-

tracts. As a result, mortality is traditionally modelled deterministically, whilst interest risk is

modelled stochastically. Modern finance theory is then adopted for pricing and risk analysing

annuity-related insurance products; see for example, Ballotta and Haberman [1], Boyle and

Hardy [7], Lin and Tan [20], amongst others. Apparently, the deterministic modelling of mor-

tality rates has the advantage that it makes the valuation problem more manageable since this

implies mortality risk is independent from interest rate risk. Nonetheless, such framework as-

suming independence between the primary risk factors is too simplistic.

17
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The perspective of deterministic mortality has been challenged in the last few years. It has

been observed that recent mortality trends show some unprecedented improvement along with

a great deal of uncertainty. The insurance industry as well as pension fund companies are thus

exposed to substantial systematic mortality risk. Insurers underestimated the significance of

mortality risk which led to emerging insolvency issues for many insurance companies that sold

guaranteed annuity options (GAOs) between the late 70s and 80s. It caused the closure to new

business in 2000 of Equitable Life, one of oldest life insurance companies in the UK. This in-

surance mishap has stimulated discussions on mortality/longevity risk and has since called for

stochastic approach for mortality modelling; see Pitacco [30, 31] and the references therein.

Biffis [3] explored the parallelism between interest and mortality rates and proposed affine-type

stochastic models for mortality dynamics. In Luciano and Vigna [25], an empirical study found

that non-mean reverting OU process fits the historical data better than the mean-reverting pro-

cess.

This work contributes further to the methodology of affine mortality modelling. We put for-

ward a generalised risk-neutral framework in which both mortality and interest risks follow

affine dynamics and dependence between two risks is explicitly modelled. This chapter ex-

tends the paper of Jalen and Mamon [16] where only a specific form of dependence between

mortality and interest is considered. Arguably, mortality risk can affect the economy which in

turn affect interest rate movement. Therefore, it is desirable to have a mathematical framework

that allows a dependence structure between these two risks. We apply this modelling frame-

work to price a GAO, which is one of the most common and important life insurance products

that have been trading since the 70s. Its significance stems from its ubiquity as part of the suite

of products offered by insurance companies, pension funds and financial institutions to their

clients. Many modern insurance products now have option-embedded features such as equity-

linked annuities, variable annuities, equity-indexed annuities in addition to GAO. Thus, the

pricing framework for these instruments is always of considerable interest to both researchers

and practitioners; see for example, Cairns et al. [8], Cox et al. [10], Dahl and Moller [12],

Kogure and Kurachi [17], Lin and Cox [19], Lin et al. [21], Wills and Sherris [33], and Yang

et al. [35], amongst others.
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Nonetheless, the majority of the aforementioned papers concerning this problem do not prop-

erly treat the correlation between interest and mortality rates; in particular, only one factor

is considered stochastic and the other remaining factor is assumed deterministic. This work

presents a generalised set-up and approach under which the pricing solution is obtained with

great ease despite dependence between two stochastic factors. We demonstrate how to use the

change of measure technique in the pricing of an annuity-linked option. More specifically,

a new measure associated with the pure endowment as numéraire is constructed to solve the

GAO pricing problem. We note that Dahl et al. [11] also utilised the change of measure tech-

nique to facilitate the pricing of survivor swaps. Nevertheless, whilst the likelihood process is

constructed, the associated numéraire with the measure change is not categorically identified.

In this work, we lay down the groundwork to get a simplified expression for the conditional

expectation under the risk-neutral measure. By popularising this technique, which is not com-

monly used in actuarial science and insurance, it is hoped that its power and utility can be fully

explored for other contingent claim valuation problems.

The formulation of the pricing framework is presented in section 2.2; in particular, this sec-

tion outlines the assumptions for the models of interest and mortality rate processes and their

dependence. An integrated set-up is also developed. In section 2.3, we describe the change

of probability measure approach to aid the evaluation of conditional expectation necessary to

determine the value of a GAO. The forward measure is revisited and the pure endowment-

risk-adjusted measure is defined. Section 2.4 presents a numerical example illustrating the

applicability and benefits of our proposed approach. Finally, in section 2.5, we provide some

concluding remarks and further directions.

2.2 Valuation framework

The pricing of insurance and annuity products entails the inclusion of at least two types of un-

certainty, which are the financial factors linked to interest rate and the random residual lifetime

of insureds or annuitants linked to mortality or survival rates. To provide adequate and sound
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support to insurance and pension business, a coherent and integrated modelling framework

is necessary. We present in this section a brief theoretical background and considerations on

risk-neutral modelling of risk factors. A comprehensive discussion can be found in Biffis [3]

and Cairns et al. [8]. We give general descriptions for each interest rate process and mortality

rate process, and then form a combined modelling set-up. An important aspect of any valuation

model or modelling approach is the balance between complexity and computational tractability

of both pricing and parameter estimation. In the last subsection, we assume that both interest

rate and mortality rate dynamics are modulated by affine processes. This implies that we are

able to exploit the analytical tractability of these processes within the context of reflecting both

factors into the valuation approach.

2.2.1 Interest rate model

The modern approach to valuation of bonds and interest rate derivatives employs martingale

theory to obtain no-arbitrage price and hedging strategies. To value a contingent claim, we

need the risk-free cash account Bt which is governed by the differential equation

dBt = rtBtdt, or equivalently Bt = B0e
∫ t

0 rudu.

The process rt is called the continuously compounded rate of interest for a riskless investment.

We assume that a risk-neutral measure or the so-called martingale measure, Q, exists. Under

Q, the discounted price of a risky asset is a martingale using B−1
t as the discount factor or Bt

as the numéraire. Thus, the bond price at time t for a zero-coupon bond paying $1 at maturity

T > t is given by

B(t,T ) = EQ
[
e−

∫ T
t rudu

∣∣∣∣Rt

]
,

where Rt is the filtration generated by the rt process.

2.2.2 Mortality model

Let τ(t, x) be the future lifetime random variable attained at time t for an individual aged x at

the initial time 0. Assume µ(t, x + t) is the force of mortality of the same individual at time t
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with age x + t. Write

S (t, x) := e−
∫ t

0 µ(s, x+s) ds. (2.1)

Under the assumption of deterministic mortality, S (t, x) is the survival probability for a person

currently aged x surviving for the next t years. Under the stochastic approach, however, this

survival probability S (t, x) itself becomes a random variable, and its value can only be observed

at time t rather than at time 0. For the purpose of pricing, we need to calculate the expected

value of the random variable S (t, x). Thus,

P(0, t, x) : = E[I{τ≥t}|M0] = E
[
S (t, x)

∣∣∣∣M0

]
= E

[
e−

∫ t
0 µ(s, x+s)ds

∣∣∣∣M0

]
, (2.2)

where I is an indicator function. Furthermore,

P(t,T, x) : = E[I{τ≥T }|Mt] = I{τ≥t} E
[
S (T, x)
S (t, x)

∣∣∣∣∣∣Mt

]
= I{τ≥t} E

[
e−

∫ T
t µ(s, x+s)ds

∣∣∣∣Mt

]
(2.3)

= I{τ≥t} P(t,T, x). (2.4)

The distinction between P(0, t, x) and P(t,T, x) given in equations (2.2) and (2.4) must be

noted. Throughout the entire chapter, we employ the bold font to refer to the function that is

conditional on survival up to time t, otherwise the regular font is used. We call P(t,T, x) :=

E
[
e−

∫ T
t µ(s, x+s)ds

∣∣∣∣Mt

]
the survival function under the associated measure where the expectation

is taken. When it is calculated under the real measure, P(t,T, x) can be interpreted as the central

predicted survival function. When it is calculated under the risk-neutral measure, P(t,T, x)

can be interpreted as risk-adjusted survival function to account for the adverse selection or to

reflect the risk-premium adjustment on behalf of the insurance companies. In the succeeding

discussion, we shall omit the reference to age x in the survival function and simply write it as

P(t,T ).

2.2.3 Integrated model framework

We define the filtration Ft as Ft := Rt ∨Mt = σ(Rt ∪Mt), which refers to the joint filtration

generated by both the rt and µt processes. Under this generalised framework, we can value the
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survival benefit using no-arbitrage theory, with both interest and mortality rate being stochastic.

For instance, let M(t,T ; x) = M(t,T ) be the fair value of a survival benefit of $1 payable at

time T for a life aged x at time t < T. From the risk-neutral pricing principle, we have the

survival benefit value given by

M(t,T ) = EQ
[
e−

∫ T
t rudu · I{τ≥T }

∣∣∣∣Ft

]
= I{τ≥t} · EQ

[
e−

∫ T
t rudue−

∫ T
t µvdv

∣∣∣∣Ft

]
. (2.5)

For a general payoff function CT conditional on the survival at time T , the value of Ct can be

obtained as follows:

Ct = EQ
[
e−

∫ T
t rudu · I{τ≥T } ·CT

∣∣∣∣Ft

]
= I{τ≥t} · EQ

[
e−

∫ T
t rudue−

∫ T
t µvdv ·CT

∣∣∣∣Ft

]
. (2.6)

Remark: The use of bold M and C in equations (2.5) and (2.6), respectively, emphasises

the conditioning on survival through the indicator function. In particular,

M(t,T ) = I{τ≥t}M(t,T ), and Ct = I{τ≥t}Ct .

2.2.4 Affine dynamics for mortality and interest risks

We assume that under a filtered probability space (Ω,F , {Ft},Q), where Q is a risk-neutral

measure, the respective dynamics of the interest rate process rt and force of mortality µt for an

insured aged x at time 0 are given by

drt = a(b − rt)dt + σdW1
t (2.7)

and

dµt = cµtdt + ξdZt, (2.8)

where a, b, c, σ and ξ are positive constants, and Zt = ρW1
t +

√
1 − ρ2W2

t . Here, W1
t and

W2
t are independent standard Brownian motions. This means that Zt in equation (2.8) is also

a Brownian motion correlated with W1
t . Both the initial values r0 and µ0 are assumed to be

known at time 0.

The models specified in equations (2.7) and (2.8) indicate that the interest rate follows the well-

known Vasiček model whilst the mortality rate process has the non-mean reverting Ornstein-

Uhlenbeck (OU) specification proposed in Luciano and Vigna [25]. Such models have the
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drawback that theoretically it is possible to generate negative interest or mortality rates. The

issue of negative interest rates has been widely discussed in the literature; this problem can

be mitigated by appropriately choosing model parameter values or using the extended Vasiček

model, i.e. the Hull and White model [cf. page 45 of Pelsser [29]]. The use of mortality

model in (2.8) was justified by Luciano and Vigna [26] [cf. page 8], showing that the proba-

bility of negative mortality rates is negligible with the calibrated parameters. These particular

interest and mortality rate models are employed in this work due to their tractability. They

clearly facilitate the application of the change-of-measure approach in the evaluation of the

risk-neutral conditional expectation for purpose of valuation, similar to the canonical example

of Black-Scholes model in option pricing. Analytic expressions for the dynamics of the two

underlying risk factors under the new measure can be derived under this modelling set-up, lead-

ing to a more implementable formula for the valuation of guaranteed annuity options (GAOs),

as demonstrated in section 2.3.

The price B(t,T ) of a T−maturity zero-coupon bond at time t < T is known to be given by

B(t,T ) = EQ
[
e−

∫ T
t rudu

∣∣∣∣Ft

]
= e−A(t,T )rt+D(t,T ), (2.9)

where

A(t,T ) =
1 − e−a(T−t)

a
and (2.10)

D(t,T ) =

(
b −

σ2

2a2

)
[A(t,T ) − (T − t)] −

σ2A(t,T )2

4a
. (2.11)

See Björk [5] or Mamon [27] for details of the result in (2.9).

2.3 The price calculation

2.3.1 The forward measure

The survival benefit in equation (2.5) can be expressed as the product of two expectations

although one of the expectations is not necessarily under the same measure. In subsection

2.2.1, it was indicated that the risk-neutral measure Q is associated with the cash or money
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market account Bt as the numéraire. Now, we could also choose the bond price B(t,T ) as a

numéraire. Associated with B(t,T ), we define the forward measure Q̃ equivalent to the risk-

neutral measure Q via the Radon-Nikodŷm derivative ΛT by setting

dQ̃
dQ

∣∣∣∣∣∣
FT

= ΛT :=
e−

∫ T
0 rudu B(T,T )

B(0,T )
. (2.12)

Note that B(T,T ) = 1 in equation (2.12). Under measure Q, ΛT is a martingale, and for t ≤ T ,

Λt = EQ[ΛT |Ft] =
e−

∫ t
0 ruduB(t,T )
B(0,T )

.

From Bayes’ rule, we know that for any Ft−measurable random variable H,

EQ̃[H|Ft] =
EQ[ΛT H|Ft]
EQ[ΛT |Ft]

, (2.13)

which implies that

EQ̃[H|Ft] =

EQ
[
e−

∫ T
t ruduH

∣∣∣∣Ft

]
B(t,T )

.

Or equivalently,

EQ
[
e−

∫ T
t ruduH

∣∣∣∣Ft

]
= B(t,T )EQ̃[H|Ft]. (2.14)

Thus, equation (2.5) can be expressed as

M(t,T ) = B(t,T )EQ̃
[
I{τ≥T }

∣∣∣Ft

]
(2.15)

= I{τ≥t}B(t,T )EQ̃
[
e−

∫ T
t µvdv

∣∣∣∣Ft

]
. (2.16)

We note that the term EQ̃
[
e−

∫ T
t µvdv

∣∣∣∣Ft

]
:= P(t,T ) in equation (2.16) is the survival function

under Q̃. Therefore, if we have the dynamics of µt under Q̃ then the explicit solution for P(t,T )

follows.

Following the result given and established in Appendix of Mamon [27], we have

dW̃1
t = dW1

t + A(t,T )σdt and dW̃2
t = dW2

t ,
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where W̃1
t and W̃2

t are standard Brownian motions under Q̃, and the function A(t,T ) is specified

in equation (2.10). Hence, the respective dynamics under Q̃ of rt and µt are given by the

stochastic differential equations (SDEs)

drt =
[
ab − σ2A(t,T ) − art

]
dt + σdW̃1

t (2.17)

and

dµt = cµtdt + ρξdW1
t +

√
1 − ρ2 ξdW2

t

= (−ρσξA(t,T ) + cµt)dt + ρξdW̃1
t +

√
1 − ρ2 ξdW̃2

t

= (−ρσξA(t,T ) + cµt)dt + ξdZ̃t, (2.18)

where Z̃t = ρW̃1
t +

√
1 − ρ2 W̃2

t . From equation (2.18), we see that µt has an affine form with

time-dependent drift. Note that, if there is no correlation between the processes rt and µt, i.e.

ρ = 0, the dynamics of µt does not change under the forward measure Q̃. Formula (2.16) then

reduces to the case when rt and µt are independent.

Write α(t) := −ρσξA(t,T ) and b(t) :=
∫ t

0
(−c)du = −ct. Then

µt = e−b(t)
(
µ0 +

∫ t

0
eb(v)α(v)dv + eb(v)ξdZ̃v

)
.

By letting

γ(t) =

∫ T

t
e−b(v)dv =

ecT − ect

c
=

ect

c
(ec(T−t) − 1)

and employing the result in pp. 267-268 of Elliott and Kopp [15], we have

P(t,T ) = EQ̃
[
e−

∫ T
t µvdv

∣∣∣∣Ft

]
= EQ̃

[
e−

∫ T
t µvdv

∣∣∣∣ µt

]
by the Markov property

= e−µtG̃(t,T )+H̃(t,T ), (2.19)

where

G̃(t,T ) = eb(t)
∫ T

t
e−b(u)du = eb(t)γ(t) =

(ec(T−t) − 1)
c

(2.20)

and

H̃(t,T ) = −

∫ T

t

(
eb(u)α(u)γ(u) −

1
2

e2b(u)ξ2(u)γ2(u)
)

du

=

(
ρσξ

ac
−
ξ2

2c2

)
[G̃(t,T ) − (T − t)] +

ρσξ

ac
[A(t,T ) − φ(t,T )] +

ξ2

4c
G̃(t,T )

2
(2.21)



Chapter 2. A generalised pricing framework addressing correlated mortality and interest risks 26

with φ(t,T ) = 1−e−(a−c)(T−t)

a−c .

Combining equations (2.9)–(2.11), (2.16), and (2.19)–(2.21), we have

M(t,T ) = e−(A(t,T )rt+G̃(t,T )µt)+D(t,T )+H̃(t,T )

= β(t,T )e−V(t,T ), (2.22)

where β(t,T ) = eD(t,T )+H̃(t,T ) and V(t,T ) = A(t,T )rt + G̃(t,T )µt.

2.3.2 The GAO and its valuation

We now consider the GAO valuation problem. A GAO can be viewed as a contract that gives

the policyholder the right to convert the survival benefit into an annuity at a pre-specified con-

version rate. This type of option first gained popularity in UK pension policies during the late

70s and 80s. Since then it became a common feature of policies sold in many countries.

The guaranteed conversion rate, g, can be quoted as an annuity/cash value ratio. According

to Bolton et al. [6], the most commonly used guaranteed rate for males, aged 65 in UK in

the 80s, was g = 1
9 , meaning that a £1000 cash value can be turned into an annuity of £111

per annum. If the guaranteed conversion rate is higher than the prevailing conversion rate, the

GAO is of positive value; otherwise, the GAO is valueless since the policyholder could use the

cash to obtain higher value of annuity from the primary market. Therefore, the moneyness of

the GAO at maturity depends on the price of annuity available from the primary market at that

time, which are determined by the prevailing interest and mortality rates.

Let ax(T ) be the prevailing annuity rate in the primary market. Since the annuity payments can

be considered as a sequence of survival benefit $1 at the beginning of each year, we can use

equation (2.22) to get

ax(T ) =

∞∑
n=0

EQ
[
e−

∫ T+n
T rudue−

∫ T+n
T µvdv

∣∣∣∣FT

]
=

∞∑
n=0

M(T,T + n) =

∞∑
n=0

β(T,T + n)e−V(T,T+n), (2.23)
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where β(T,T + n) = eD(T,T+n)+H̃(T,T+n) and V(T,T + n) = A(T,T + n)rT + G̃(T,T + n)µT .

Then the payoff function of the GAO at time T , based on each one dollar cash amount, is

CT = I{τ≥T }[g · ax(T ) − 1]+ = g I{τ≥T }

[
ax(T ) −

1
g

]+

.

Our valuation problem is to determine the price of GAO at time 0, which is

PGAO = EQ
[
e−

∫ T
0 ruduCT

∣∣∣∣F0

]
= g EQ

[
e−

∫ T
0 rudue−

∫ T
0 µvdv(ax(T ) − K)+

∣∣∣∣F0

]
, (2.24)

where ax(T ) is defined in equation (2.23) and K is 1/g.

In the next subsection, we employ a change of numéraire technique to evaluate equation (2.24)

straightforwardly despite the dependence between rt and µt, and the complicated form of ax(T ).

We invoke the idea of change of probability measures in order to explicitly price contingent

claims; see Dahl et al. [11] and Jalen and Mamon [16]. We then show how to derive the

dynamics µt and rt under this new measure that will facilitate the GAO price calculation.

2.3.3 Endowment-risk-adjusted measure for GAOs

We introduce a new measure associated with the pure endowment M(t,T ) as the numéraire.

The new measure is then called the endowment-risk-adjusted measure Q̂. The measure is de-

fined via the Radon-Nikodŷm derivative

dQ̂
dQ

:= ηT =
e−

∫ T
0 ruduM(T,T )
M(0,T )

. (2.25)

Note that M(T,T ) = I{τ≥T } in equation (2.25). Since ηT is a martingale, then for t ≤ T ,

ηt = EQ[ηT |Ft] =
e−

∫ t
0 ruduM(t,T )
M(0,T )

. (2.26)

Utilising Q̂, equation (2.24) can be re-written as

PGAO = g EQ
[
e−

∫ T
0 rudue−

∫ T
0 µvdv

∣∣∣∣F0

]
EQ̂

[
(ax(T ) − K)+

∣∣∣F0

]
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based on the similar Bayes’ rule argument following equation (2.13).

From equations (2.5), (2.23) and (2.24), we have

PGAO = g M(0,T ) EQ̂
[
(ax(T ) − K)+

∣∣∣F0

]
= g M(0,T ) EQ̂

 ∞∑
n=0

β(T,T + n)e−V(T,T+n) − K

+
∣∣∣∣∣∣∣F0

 . (2.27)

To evaluate equation (2.27), we need the dynamics under Q̂ of the mortality and interest rate

processes. We consider the dynamics of e−
∫ t

0 ruduM(t,T ) = e−
∫ t

0 ruduB(t,T )P(t,T ) := Xt in (2.26).

Suppose X1
t := e−

∫ t
0 ruduB(t,T ) and X2

t := P(t,T ). We are interested to find dXt where Xt =

X1
t X2

t .

From equations (2.9) and (2.7), one may verify that

dX1
t = −σA(t,T )X1

t dW1
t . (2.28)

Let Y(t) := −G̃(t,T )µt + H̃(t,T ) in equation (2.19), i.e., X2
t := P(t,T ) = eY(t). Then we have

dY(t) =

∂H̃(t,T )
∂t

−
∂G̃(t,T )

∂t
µt − cµtG̃(t,T )

 dt − ξG̃(t,T )dZt

and therefore

dX2
t =

1
2

eY(t)
(
ξG̃(t,T )

)2
dt + eY(t)dY(t)

= eY(t)

1
2

(
ξG̃(t,T )

)2
dt +

∂H̃(t,T )
∂t

−

∂G̃(t,T )
∂t

+ cG̃(t,T )
 µt

 dt − ξG̃(t,T )dZt


= X2

t

∂H̃(t,T )
∂t

+
1
2

(ξG̃(t,T ))2 −

∂G̃(t,T )
∂t

+ cG̃(t,T )
 µt

 dt − ξG̃(t,T )dZt

 ,(2.29)

where dZt = ρdW1
t +

√
1 − ρ2dW2

t .
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Since Xt = X1
t X2

t , we have

dXt = X1
t dX2

t + X2
t dX1

t +
(
−X1

t σA(t,T )
) (
−X2

t ξG̃(t,T )
)
ρdt

= X1
t X2

t

(
∂H̃(t,T )

∂t
+

1
2

(ξG̃(t,T ))2 −

∂G̃(t,T )
∂t

+ cG̃(t,T )
 µtdt − ξG̃(t,T )dZt

−σA(t,T )dW1
t + ρσξA(t,T )G̃(t,T )dt

)
= Xt

∂H̃(t,T )
∂t

+ ρσξA(t,T )G̃(t,T ) +
1
2

(ξG̃(t,T ))2 −

∂G̃(t,T )
∂t

+ cG̃(t,T )
 µt

 dt


+Xt

[
−σA(t,T )dW1

t − ξG̃(t,T )(ρdW1
t +

√
1 − ρ2dW2

t )
]
. (2.30)

Note that the dt term of equation (2.30) must be identically zero since X(t) = e−
∫ t

0 ruduM(t,T ) is

a martingale process (being a discounted process) under Q. That is,

dXt

Xt
= −

(
σA(t,T )dW1

t + ξG̃(t,T )(ρdW1
t +

√
1 − ρ2dW2

t )
)
. (2.31)

Utilising equation (2.31), we find that

d(ln Xt) =
1
Xt

dXt −
1
2

1
(Xt)2 (dXt)2

=

[
−

1
2

(
σA(t,T ) + ρξG̃(t,T )

)2
−

1
2

(1 − ρ2)(ξG̃(t,T ))2
]

dt

−
[
σA(t,T ) + ρξG̃(t,T )

]
dW1

t −
√

1 − ρ2ξG̃(t,T )dW2
t . (2.32)

The dynamics specified in equation (2.32) allows us to identify the relations of the Q̂−standard

Brownian motions Ŵ1
t and Ŵ2

t to W1
t and W2

t , respectively. We find that to change measure

from Q to Q̂, the corresponding Brownian motions are given by

dŴ1
t = dW1

t +
(
σA(t,T ) + ρξG̃(t,T )

)
dt, (2.33)

dŴ2
t = dW2

t +
√

1 − ρ2 ξG̃(t,T )dt. (2.34)

Finally, under Q̂, the stochastic dynamics for rt and µt are easily obtained as

drt =
(
ab − σ(σA(t,T ) + ρξG̃(t,T )) − art

)
dt + σdŴ1

t , (2.35)

dµt =
(
cµt − ρσξA(t,T ) − ξ2G̃(t,T )

)
dt + ξdẐt, (2.36)
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where Ẑt = ρŴ1
t +

√
1 − ρ2 Ŵ2

t . From the above SDEs, both rt and µt processes have the form

of an extended Vasiček model and their distributions are immediate (see the result in pp. 267-

268 of Elliott and Kopp [15]). More precisely, under measure Q̂, (rt, µt) is a bivariate normal

random variable, with the following parameters:

EQ̂[rt] = e−atr0 + b(1 − e−at) −
σ2

2a2

[
(1 − e−at)(2 − e−aT (eat + 1))

]
−
ρσξ

c

[ecT (e−ct − e−at)
a − c

−
1 − e−at

a

]
, (2.37)

VarQ̂[rt] =
σ2

2a

[
1 − e−2at

]
, (2.38)

EQ̂[µt] = ectµ0 −
ξ2

c2

[ecT (ect − e−ct)
2

− ect + 1
]

+
ρσξ

a

[e−aT (eat − ect)
a − c

−
ect − 1

c

]
, (2.39)

VarQ̂[µt] =
ξ2

2c

[
e2ct − 1

]
, (2.40)

and

CovQ̂[rt, µt] =
ρσξ

a − c

[
1 − e−(a−c)t

]
. (2.41)

2.4 Numerical illustration

In this section, we provide a numerical experiment in calculating the price of GAO based on

both formulae (2.27) and (2.24). Direct implementation of formula (2.24) is a brute-force

method of coming up with a GAO price. On the other hand, the use of equation (2.27) is a

more efficient and accurate approach of getting a GAO value. We use Monte Carlo simulation

method to obtain the value of the GAO price in both formulae. In equation (2.27), the function

M(0,T ) is given explicitly in (2.22) assuming that r0 and µ0 are known. To calculate the expec-

tation component of equation (2.27), we note that V(T,T + n) = A(T,T + n)rT + G̃(T,T + n)µT .

Therefore the summation term depends only on the value of rt and µt at maturity time T . This

means that the simulated pair (rT , µT ) are all we need in the calculation of the GAO price using

formula (2.27). The bivariate normal distribution of (rt, µt) under measure Q̂ is specified by the

parameters given from equations (2.37) to (2.41).

To compute the price of the GAO based on equation (2.24), however, we would need to gen-
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erate the sample path under Q for each process rt and µt given in equations (2.7) and (2.8),

respectively. We subdivide the time period [0,T ] into m equal subintervals with fixed length

∆t =
T
m

and define ti = i∆t, i = 0, 1, . . . ,m. At each time step, we generate the sample paths of

rt and µt as follows:

rti = rti−1 + (ab − arti−1)∆t + σ
√

∆tε1
ti (2.42)

and

µti = µti−1 + cµti−1∆t + ξ
√

∆tZti

= µti−1 + cµti−1∆t + ξ
√

∆t(ρε1
ti +

√
(1 − ρ2)ε2

ti ), (2.43)

where {ε1
ti }i=1,...,m and {ε2

ti }i=1,...,m are two independent sequences of standard normal random vari-

ables.

The integrals in (2.24) are then approximated using the trapezoidal rule, i.e.,∫ t

0
ru du ≈

∆t
2

r0 + rm + 2
m−1∑
k=1

rk

 , (2.44)

and ∫ t

0
µv dv ≈

∆t
2

µ0 + µm + 2
m−1∑
k=1

µk

 . (2.45)

Consequently, we obtained numerical values for e−
∫ t

0 ru du and e−
∫ t

0 µv dv. The rm and µm values at

the end of each path are used to calculate ax(T ) in equation (2.24).

Our numerical results are obtained by generating 50,000 sample paths. The parameters em-

ployed for the interest rate model (2.7) and mortality model (2.8) are given in Table 2.1. The

mortality model parameters are based on the values provided in Luciano and Vigna [25]. In

Table 2.2, we display the price of the GAO based on a cohort born in 1935 assumed to hold

GAO contracts maturing at age 65. The GAO is evaluated at age 50, i.e. 15 years before matu-

rity. In our calculation, we also assumed that the maximum age is 100 so that there are at most

35 annuity payments.

In the first column of Table 2.2, we present the correlation coefficient between the interest and
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Table 2.1: Parameter values used in the numerical experiment in chapter 2.

Parameter set for numerical analysis

Contract specification

g = 11.1%, T = 15, n = 35;

Interest rate model

a = 0.15, b = 0.045, σ = 0.03, r0 = b;

Mortality model

c = 0.1, ξ = 0.0003, µ0 = 0.006.

mortality rates. The price calculated under the endowment-risk-adjusted measure approach

and under the risk-neutral measure direct approach are given in the second and third columns,

respectively. It is apparent that as the correlation between interest and mortality rates varies

from negative to positive, GAO prices increase. This is consistent with the fact that when

interest and mortality rates are negatively correlated, the two risk factors collectively act as

a “natural hedge” against the overall uncertainty of the GAOs, and consequently the price of

the GAO is reduced. Conversely, this “natural hedge” disappears as the two risk factors be-

come positively correlated leading to an increasing trend in the GAO values. The numbers

enclosed in parentheses are the standard errors of the price estimates, which indicate that the

results based on formula (2.27) are more accurate than the results based on formula (2.24).

Moreover, as previously mentioned above, our method that utilises both the forward measure

and endowment-risk-adjusted measure is efficient. This is supported by the highly significant

difference between times of completion in the price calculation, as exhibited in the last row

of Table 2.2, for the two methods. Clearly, there is so much to be gained in employing the

proposed approach.

2.5 Conclusions

We showed in this work how to price a GAO under a generalised framework of stochastic mor-

tality and interest risk factors where the dependence between two risks is explicitly modelled.
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Table 2.2: Actuarial prices for GAO under two different methods in chapter 2.

Numbers in parentheses are standard errors.

GAO value

ρ Using equation (2.27) Using equation (2.24)

-1.0 0.0904026 (0.0003836) 0.0903010 (0.0005953)

-0.9 0.0920624 (0.0003915) 0.0920976 (0.0006043)

-0.8 0.0943914 (0.0004018) 0.0944001 (0.0006373)

-0.7 0.0962496 (0.0004116) 0.0963117 (0.0006410)

-0.6 0.0986634 (0.0004217) 0.0986722 (0.0006737)

-0.5 0.1003584 (0.0004320) 0.1006036 (0.0006908)

-0.4 0.1023678 (0.0004412) 0.1024359 (0.0007232)

-0.3 0.1042501 (0.0004485) 0.1041982 (0.0007421)

-0.2 0.1067286 (0.0004587) 0.1066445 (0.0007556)

-0.1 0.1088653 (0.0004687) 0.1087849 (0.0007788)

0 0.1110679 (0.0004790) 0.1110713 (0.0007985)

0.1 0.1131000 (0.0004896) 0.1131335 (0.0008286)

0.2 0.1153378 (0.0005001) 0.1152761 (0.0008528)

0.3 0.1174438 (0.0005131) 0.1172690 (0.0008922)

0.4 0.1197348 (0.0005241) 0.1197303 (0.0009240)

0.5 0.1218968 (0.0005350) 0.1219112 (0.0009375)

0.6 0.1246585 (0.0005464) 0.1246414 (0.0009520)

0.7 0.1263725 (0.0005509) 0.1264038 (0.0009845)

0.8 0.1290466 (0.0005682) 0.1289118 (0.0010281)

0.9 0.1317430 (0.0005813) 0.1316604 (0.0010497)

1.0 0.1338156 (0.0005901) 0.1338989 (0.0010943)

time (in seconds) 3.25 955.37
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Both the forward measure associated with the bond price as numéraire and the newly intro-

duced concept of endowment-risk-adjusted measure are used to derive a simplified expression

for the GAO price, despite dependence between two stochastic factors. The advantages of our

approach are underscored by the following novelty highlights. Firstly, without a change of

numéraire, the direct calculation of the GAO value would be challenging due to the compli-

cated nature of the Ct process as well as the dependence between interest rate and mortality rate

processes. Secondly, simulating the valuation formula directly under the risk-neutral measure

would be time-consuming because one needs to deal with correlated random variables driving

the rt and µt dynamics. The discretisation involved in the simulation entails longer computation

time and magnifies simulation errors. In comparison, our proposed approach is both efficient

and accurate in calculating the numerical value for the price. Finally, the techniques used in

this work can certainly be applied and naturally extended to contingent claims with option-

embedded features and whose risk factors are assumed to follow any affine-type mortality and

interest rate processes.

It has to be noted that from the valuation formula for GAO in equation (2.27), we have to deal

with a sum of lognormal random variables. Whilst we have obtained explicitly the dynam-

ics for the interest and mortality risk factors in section 2.3 and their distributions under the

endowment-risk-adjusted measure can also be easily extracted from the SDEs, the evaluation

of the conditional expectation remains a hurdle. The problem of determining the distribution of

sums of lognormal random variables was tackled by several authors to varying degrees of depth

and treatment. Developments in this area are highlighted in the research results of Dufresne

[14], Leipnik [18] and Wu et al. [34]. Alternatively, one can use a comonotonicity-based ap-

proach to approximate the sum of lognormal random variables when the random variables in

the summation are highly correlated [cf. Liu et al. [22] and Liu et al. [23]]. Comonotonic

upper and lower bounds can then be used to obtain accurate approximations for the value of

GAOs.

The interest and mortality rate models used in this work are adopted mainly due to their com-

bined mathematical tractability. The negativity of interest rate in the Vasiček model can be
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fixed, for example, by the Cox-Ingersoll-Ross model. Mortality dynamics can be made more

realistic by using a continuous-time version of the Lee-Carter model [cf. Biffis et al. [4]],

which is well-accepted for its nice property in fitting empirical data. Needless to say, one

will have to circumvent new computational challenges and deal with an entirely different set

of calculations associated with the endowment-risk-adjusted measure considered in section 2.3.

The issue of hedging mortality derivatives is an important but challenging problem. A major

obstacle in constructing an effective hedging strategy for GAOs is the lack of a trading market

for mortality risk. In addition, the options written by insurance companies often have very long

maturities usually from 10 to 30 years, which makes the modelling of underlying risks difficult.

As a result, early research in hedging GAOs (e.g. Pelsser [29]) proposed the use of static option

replication as a partial solution for insurance companies to hedge their exposure to embedded

options in their portfolios. Recently, Luciano et al. [24] considered the delta-gamma hedging

of mortality and interest rate risks under the independence assumption of these risks. However,

as noted in Dhaene et al. [13], an independence relation that is observed in the real world

is not necessarily preserved in the pricing world. The EU’s Solvency II Directive strongly

recommends the testing of capital adequacy requirements based on the explicit assumption of

mutual dependence between financial markets and life/health insurance markets including the

dependence between interest and mortality risks; refer to QSI5 [32]. Therefore, our generalised

framework provides a plausible starting point for further research investigations towards this

direction.
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Chapter 3

A comonotonicity-based valuation method

for guaranteed annuity options

3.1 Introduction

There are many recent financial innovations featuring mortality-related guarantees in tradi-

tional life insurance and annuity products as well as mortality-linked securities in the capital

market. Examples of the former include guaranteed annuity option (GAO), guaranteed min-

imum death benefit (GMDB), guaranteed minimum income benefit (GMIB) whilst examples

of the latter include European Investment Bank longevity bonds, the Swiss Re mortality bond

and survivor swaps. The modelling and pricing issues of guarantees embedded in insurance

products, including GAO, GMIB, GMDB, etc., are discussed in Hardy [28]. Whilst the finan-

cial risks are the main concern in the valuation of GMIB and GMDB as shown in Kijima and

Wong [30], Lin and Tan [32], Lin et al. [33] and Milevsky and Salisbury [38], and the interplay

between financial risks and mortality risk plays an important role in pricing GAOs as pointed

out by Boyle and Hardy [12]. For an overview on the development of mortality risk-embedded

products, see Blake & Burrows [8], Blake et al. [9, 10], Wills & Sherris [47], and the references

therein. For recent progress on using capital market solutions to counterpoising longevity risk,

see the annual updates published by Pensions Institute and the references therein; for example,

the latest annual update by Black et al. [6].

40
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These innovations reflect the contemporaneous recognition of the stochastic nature of mor-

tality risk. Empirical studies of mortality changes and mortality predictions can be found in

Tuljapurkar and Boe [44], a series of working papers by the CMI (UK) (e.g., [15], [16], [17]),

and the review paper by Pitacco [42]. Consequently, stochastic mortality requires adequate

modelling and valuation methods. Pioneering research works in this area exploited the struc-

tural similarity between interest and mortality rates, and proposed to use diffusion models for

mortality; see Ballotta and Haberman [2], Biffis [3], Blackburn and Sherris [7], Cairns et al.

[13], Dahl [18], Dahl et al. [19], Milevsky and Promislow [37] and the references therein. It

is worth pointing out that there are some fundamental differences between the two rates; see

Norberg [41], therefore specification of the model for mortality needs to be addressed carefully.

Utilising modern finance theory, this approach can provide a sound and rich modelling frame-

work, capable of incorporating financial risk factors, for the fair valuation of mortality-linked

contracts of various kinds.

In the aforementioned works, mortality risks are often assumed independent from financial

risks, particularly interest risk, for convenience. As noted in Dhaene et al. [25], the real-world

independence between the two risk factors is not equivalent to the pricing-world independence:

it has been shown that an independence relation that is observed in the real-world often fails to

be maintained in the pricing-world. Therefore, it is more reasonable to have a pricing frame-

work that allows dependence between mortality and interest rates. On the other hand, the

manifestation of dependence between these two risk factors in the real-world has been stud-

ied, for instance, in the work of Nicolini [40], which demonstrated that the decline of adult

mortality at the end of the 17th century can be one of the causes driving the decline of interest

rate in pre-industrial England. In the past few years, we have witnessed how the decline of

mortality or equivalently increase in life expectancy puts a considerable stress on the social

programmes of various countries. It is viewed that fiscal crisis, which is the supposed inability

of the state to raise more tax revenues to fund its programmes, could ensue. With declining

mortality patterns, the state has to deal with an ageing population; this implies that social se-

curity and health expenditure per capita must rise considerably to maintain the same level of

service. The associated price for this predicament is sourced out from levies on the econom-
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ically active who are in a declining proportion of the population. A serious fiscal situation,

where government’s budget deficit is higher than expected, creates uncertainty and instability

in both the local and global economy. This in turn negatively affects the financial markets in-

cluding returns on investments. In a resolute response, EU’s Solvency II Directive created new

insurance risk management practices for capital adequacy requirements based on the explicit

assumption of mutual dependence between financial markets and life/health insurance markets

including the dependence between interest and mortality risks; cf. Quantitative Impact Study

5: Technical Specifications [43]. The consequential impact of such dependence is also under-

scored by Christiansen and Steffensen [14] in the context of stress testing.

This work contributes along this research direction of introducing a dependence structure be-

tween the dynamics of mortality and interest rates, following the approach of Jalen and Ma-

mon [29]. More precisely, under the generalised risk-neutral pricing set-up, both mortality and

interest risks are modelled by affine processes and are correlated. We illustrate that the well-

developed techniques in modern finance theory are applicable and allow for explicit expression

for the value of mortality-linked contracts, including fundamental pure endowments as well as

the more complicated GAOs. We employ the change of numéraire technique twice to derive

an efficiently implementable GAO valuation formula. We then use the comonotonicity theory

to provide analytic upper and lower bounds for the value of the GAOs.

We present the building blocks of the modelling framework in section 3.2 along with the nec-

essary changes of probability measures designed to tackle both stochastic and correlated risk

factors encountered in contingent claim valuation. Section 3.3 deals with the essential con-

cepts related to comonotonicity vital for pricing applications and presents the derivation of

comonotonicity-based upper and lower bounds. In section 3.4, we present a numerical imple-

mentation illustrating the applicability and accuracy of our proposed methodology. We provide

conclusions in section 3.5.
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3.2 The generalised valuation framework

Actuarial valuation of mortality-linked contracts involves at least two types of uncertainty: the

uncertainty related to interest risk and the uncertainty related to mortality risk. In this section,

we introduce a generalized modelling framework based on the short rate process rt and the

force of mortality rate process µt on the filtered probability space (Ω,F , {Ft},Q), where Q is a

risk-neutral measure and Ft is the joint filtration generated by rt and µt. The framework adopted

here follows those of Biffis [3], Cairns et al. [13], Dahl [18] and Milevsky and Promislow [37].

However, instead of assuming the independence of mortality evolution and financial market,

we explicitly introduce a dependence structure between the dynamics of mortality and interest

rates. As we have seen in the past, demographic factor interacts with economy and has financial

impact, whether it is caused by longevity risk and its associated financial burden or catastrophic

events such as those massive earthquakes in Kobe, 1995; China, 2008; Japan, 2011, etc.

3.2.1 The modelling assumptions

Under a risk-neutral measure Q, we assume that rt follows the well-known Vasiček model, i.e.,

rt has the dynamics given by

drt = a(b − rt)dt + σdW1
t , (3.1)

where a, b and σ are positive constants and W1
t is a standard Brownian motion.

Moreover, the force of mortality µt for an insured aged x at time 0 evolves according to

dµt = cµtdt + ξdZt, (3.2)

where c and ξ are positive constants and Zt is a standard Brownian motion correlated with W1
t

so that

dW1
t dZt = ρdt.

In other words, Zt = ρW1
t +

√
1 − ρ2W2

t , where W2
t is a standard Brownian motion independent

of W1
t . Under this model setting, the joint filtration Ft (= F rt

t ∨ F
µt

t ) is also generated by

F
W1

t ∨ F
W2

t , and both rt and µt are processes adapted to Ft.
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The interest rate process in equation (3.1) follows a Vasiček model and such model is used

for valuation tractability. On the other hand, the mortality rate model is a non-mean reverting

affine process, a feature that distinguishes it from interest rates. An empirical study by Luciano

and Vigna [35] confirmed and supported this general well-known observation, which found

that non-mean reverting OU process fits historical data better than the mean-reverting process.

This is the reason why we do not deem Cox-Ingersoll-Ross model, for example, to be appro-

priate even though it could produce positive mortality rates. The issue on the possibility of

negative mortality rates can be circumvented by choosing values for c and ξ properly, similar

to the use of Vasiček model for interest rates. The use of dynamics in equation (3.2) for the

force of mortality is definitely far from being perfect let alone ideal. Mortality dynamics can

be made more realistic by introducing, for example, regime-switching characteristics into the

model and we shall explore such extension in future works.

It is well known that the price at time t of a zero-coupon bond paying $1 at maturity T > t is

given by

B(t,T ) = EQ
[
e−

∫ T
t rudu

∣∣∣∣Ft

]
= e−A(t,T )rt+D(t,T ), (3.3)

where

A(t,T ) =
1 − e−a(T−t)

a
and (3.4)

D(t,T ) =

(
b −

σ2

2a2

)
[A(t,T ) − (T − t)] −

σ2A(t,T )2

4a
. (3.5)

For a life aged x, let M(t,T ; x) = M(t,T ) be the fair value at time t of a unit pure endow-

ment payment at time T (T > t), provided that (x) is alive at time t. From the risk-neutral

pricing principle, we have

M(t,T ) = EQ
[
e−

∫ T
t rudu · I{τ≥T }

∣∣∣∣Ft

]
= I{τ≥t} · EQ

[
e−

∫ T
t rudue−

∫ T
t µvdv

∣∣∣∣Ft

]
, (3.6)

where τ is the future lifetime random variable for (x). In the second equality of formula (3.6),

the indicator function I{τ≥t} is used to emphasize that the fair value of a pure endowment is

defined only conditionally, i.e. contingent on the survival of the insured. The pure endowment
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has a positive value at time t only if the insured survives to time t, a feature that is not present

in the pricing of default-free bonds, see Norberg [41]. In equation (3.6), we use bold M to

represent such conditional requirement on survival as reflected by the indicator function, and

plain M to just represent the value of the pure endowment given that (x) is alive at time t. That

is

M(t,T ) = EQ
[
e−

∫ T
t rudue−

∫ T
t µvdv

∣∣∣∣Ft

]
and M(t,T ) = I{τ≥t}M(t,T ). (3.7)

Similarly, let ax(T ) be the risk neutral value, evaluated at time T , of a life annuity contract

paying $1 to the insured (x) annually conditional on his/her survival at the moment of pay-

ments, provided that (x) is alive at the time of valuation. Since a life annuity can be viewed as

combinations of pure endowments, we can write

ax(T ) =

∞∑
n=0

EQ
[
e−

∫ T+n
T rudue−

∫ T+n
T µvdv

∣∣∣∣FT

]
. (3.8)

Following the same line of reasoning, the time t risk neutral value of a call option to acquire a

life annuity for (x) at time T (T > t) with strike price K can be calculated from

c(t,T ) = EQ
[
e−

∫ T
t rudu · I{τ≥T }(ax(T ) − K)+

∣∣∣∣Ft

]
(3.9)

= I{τ≥t}EQ
[
e−

∫ T
t rudue−

∫ T
t µvdv(ax(T ) − K)+

∣∣∣∣Ft

]
. (3.10)

As in (3.7), we can use c(t,T ) only for the value of this call option:

c(t,T ) = EQ
[
e−

∫ T
t rudue−

∫ T
t µvdv(ax(T ) − K)+

∣∣∣∣Ft

]
. (3.11)

Here we would like to remark that c(t,T ) can be used for the valuation of a particular type

of GAO. A GAO is a contract that gives the policyholder the right to convert his/her survival

benefit into an annuity at a pre-specified conversion rate, a feature first becoming popular in

UK pension policies during the late 70s and 80s. According to Bolton et al. [11], the most

commonly used guaranteed conversion rate g for males, aged 65 in UK in the 80s, was that

a £1000 cash value can be turned into an annuity of £111 per annum, i.e. g = 1
9 . If an
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annuity is sold at a rate higher than 1/g in the primary market, the GAO is of positive value;

otherwise, the GAO is valueless. Therefore, letting K = 1/g in equation (3.11), the price for

the aforementioned GAO at time 0 can be expressed as follows.

PGAO = EQ
[
e−

∫ T
0 rudue−

∫ T
0 µvdv(gax(T ) − 1)+

∣∣∣∣F0

]
= gEQ

[
e−

∫ T
0 rudue−

∫ T
0 µvdv(ax(T ) −

1
g

)+

∣∣∣∣∣F0

]
(3.12)

= gc(0,T ).

For general description of GAOs, see Bolton et al. [11] and Wilkie et al. [46].

We remark that, although one can write evaluation formulae (3.6)–(3.12), it is not easy to

get a closed-form solution for them as in the case of (3.3) because the dynamics of rt and µt

are correlated. Earlier works that valuate life insurance and annuity products under stochastic

mortality modelling frameworks [2, 4, 13, 37] usually assume independence condition between

mortality and interest rates. Under independence condition, M(t,T ) is equal to the product of

the bond price and survival function; i.e.,

M(t,T ) = EQ
[
e−

∫ T
t rudu

∣∣∣∣Ft

]
EQ

[
e−

∫ T
t µvdv

∣∣∣∣Ft

]
.

The separation of interest and mortality risk factors in the valuation of pure endowment as well

as life annuity greatly simplifies the calculation. However, this specific advantage does not

extend to equation (3.11) or (3.12) because the annuity term in equations (3.11) and (3.12) is

correlated with both µt and rt.

It is worth noting that we have chosen to use the risk-neutral approach for the fair valuation of

insurance products. This approach may be debatable because currently there is no transparent

market for the GAOs and their underlying variables. The rationale behind this approach is

that we can view a risk-neutral price as a natural benchmark in setting the initial price of

a derivative product that is still not trading and just being introduced in the market. This

approach is consistent with the methodology employed in the financial pricing of exotic and

structured products as well as over-the-counter derivatives where there is no liquid market for

such instruments. In this study, one may view that the risk-neutral value obtained for the GAO
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serves as a benchmark that can be adjusted by individual insurance companies in setting their

desired gross premiums.

3.2.2 Valuation formulae obtained via change of numéraire technique

Now we use the well-developed change of numéraire technique to derive more tractable valua-

tion formulae for mortality-linked contracts mentioned in the previous subsection. Consider the

bond price B(t,T ) as a numéraire. Associated with B(t,T ) is the forward measure Q̃ equivalent

to Q. Given that the theoretical underpinnings of forward measure can be found in standard

quantitative finance textbooks Björk [5], Musiela and Rutkowski [39], the pure endowment

price involving Q̃ is given, without derivation, as follows:

M(t,T ) = B(t,T )EQ̃
[
I{τ≥T }

∣∣∣Ft

]
= I{τ≥t}B(t,T )EQ̃

[
e−

∫ T
t µvdv

∣∣∣∣Ft

]
. (3.13)

The term EQ̃
[
e−

∫ T
t µvdv

∣∣∣∣Ft

]
in equation (3.13) is calculated under Q̃. The advantage of changing

to measure Q̃ is that two correlated risk factors in (3.6) could be dealt with separately. There-

fore, if we have the dynamics of µt then its explicit solution under Q̃ follows.

Following the result given and established in Appendix of Mamon [36], we derive the respec-

tive dynamics for rt and µt under Q̃ as follows:

drt =
[
ab − σ2A(t,T ) − art

]
dt + σdW̃1

t (3.14)

and

dµt = (−ρσξA(t,T ) + cµt)dt + ρξdW̃1
t +

√
1 − ρ2 ξdW̃2

t

= (−ρσξA(t,T ) + cµt)dt + ξdZ̃t, (3.15)

where

dW̃1
t = dW1

t + A(t,T )σdt,

dW̃2
t = dW2

t

and

Z̃t = ρW̃1
t +

√
1 − ρ2 W̃2

t .
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Note that W̃1
t , W̃2

t and Z̃t are standard Brownian motions under Q̃, and A(t,T ) is specified in

equation (3.4). From equation (3.15), we see that µt has an affine form with time-dependent

drift. Since ρ , 0, changing to the forward measure Q̃ alters the dynamics of µt under Q̃ as

expected.

Write α(t) := −ρσξA(t,T ) and b(t) :=
∫ t

0
(−c)du = −ct. Then

µt = e−b(t)
(
µ0 +

∫ t

0
eb(v)α(v)dv + eb(v)ξdZ̃v

)
.

By letting

γ(t) =

∫ T

t
e−b(v)dv =

ecT − ect

c
=

ect

c
(ec(T−t) − 1)

and employing the result in pp. 267-268 of Elliott and Kopp [27], we have

EQ̃
[
e−

∫ T
t µvdv

∣∣∣∣Ft

]
= e−µtG̃(t,T )+H̃(t,T ), (3.16)

where

G̃(t,T ) = eb(t)
∫ T

t
e−b(u)du = eb(t)γ(t) =

(ec(T−t) − 1)
c

(3.17)

and

H̃(t,T ) = −

∫ T

t

(
eb(u)α(u)γ(u) −

1
2

e2b(u)ξ2(u)γ2(u)
)

du

=

(
ρσξ

ac
−
ξ2

2c2

)
[G̃(t,T ) − (T − t)] +

ρσξ

ac
[A(t,T ) − φ(t,T )] +

ξ2

4c
G̃(t,T )

2
(3.18)

with φ(t,T ) = 1−e−(a−c)(T−t)

a−c . Combining equations (3.3)–(3.5), (3.7), (3.13), and (3.16)–(3.18),

we have

M(t,T ) = e−(A(t,T )rt+G̃(t,T )µt)+D(t,T )+H̃(t,T ) = β(t,T )e−V(t,T ), (3.19)

where β(t,T ) = eD(t,T )+H̃(t,T ) and V(t,T ) = A(t,T )rt + G̃(t,T )µt. Combining (3.7), (3.8) and

(3.19), an explicit expression for ax(T ) is given by

ax(T ) =

∞∑
n=0

β(T,T + n)e−V(T,T+n), (3.20)

with β(T,T + n) = eD(T,T+n)+H̃(T,T+n) and V(T,T + n) = A(T,T + n)rT + G̃(T,T + n)µT .
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We shall now perform a second change of measure to facilitate the evaluation of equation (3.11).

This new measure is associated with the pure endowment M(t,T ) as the numéraire and defined

via the Radon-Nikodŷm derivative

dQ̂
dQ

:= ηT =
e−

∫ T
0 ruduM(T,T )
M(0,T )

. (3.21)

Using Itô calculus, it can be shown that the stochastic dynamics for rt and µt under Q̂ are given

by

drt =
(
ab − σ(σA(t,T ) + ρξG̃(t,T )) − art

)
dt + σdŴ1

t , (3.22)

dµt =
(
cµt − ρσξA(t,T ) − ξ2G̃(t,T )

)
dt + ξdẐt, (3.23)

where

dŴ1
t = dW1

t +
(
σA(t,T ) + ρξG̃(t,T )

)
dt,

dŴ2
t = dW2

t +
√

1 − ρ2 ξG̃(t,T )dt,

and

Ẑt = ρŴ1
t +

√
1 − ρ2 Ŵ2

t .

Note that Ŵ1
t , Ŵ2

t and Ẑt are standard Brownian motions under Q̂. These tell us that both

rt and µt processes have the form of an extended Vasiček model and their distributions are

immediate. More precisely, under measure Q̂, (rt, µt) is a bivariate normal random variable

with the following parameters:

EQ̂[rt] = e−atr0 + b(1 − e−at) −
σ2

2a2

[
(1 − e−at)(2 − e−aT (eat + 1))

]
−
ρσξ

c

[ecT (e−ct − e−at)
a − c

−
1 − e−at

a

]
,

VarQ̂[rt] =
σ2

2a

[
1 − e−2at

]
,

EQ̂[µt] = ectµ0 −
ξ2

c2

[ecT (ect − e−ct)
2

− ect + 1
]

+
ρσξ

a

[e−aT (eat − ect)
a − c

−
ect − 1

c

]
,

VarQ̂[µt] =
ξ2

2c

[
e2ct − 1

]
,

and

CovQ̂[rt, µt] =
ρσξ

a − c

[
1 − e−(a−c)t

]
.
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It is worth mentioning that although the means of rt and µt are different under different mea-

sures, their variance and covariance were preserved under the change of measures, as must be

expected from the gist of Girsanov theorem in which under measure changes, only the pro-

cess’s drift changes but the volatility does not.

A similar change of numéraire argument based on equation (3.21) yields

c(t,T ) = M(t,T )EQ̂
[
(ax(T ) − K)+

∣∣∣Ft

]
,

where M(t,T ) and ax(T ) are given in (3.19) and (3.20), respectively. In particular, the GAO

price in (3.12) can now be written as

PGAO = gM(0,T )EQ̂

[
(ax(T ) −

1
g

)+

∣∣∣∣∣F0

]
. (3.24)

Remark: In the subsequent numerical calculation, the upper limit of the sum in the annuity

term ax(T ) (see equation (3.20)) is set to 35, which means the annuity payments start from age

65 and cease at age 100 or the time of death whichever occurs earlier.

3.3 Comonotonicity bounds for GAO values

From equation (3.24), the GAO is a European-style call option whose payoff is dependent on

the sum of correlated lognormal random variables. In general, an analytical expression for the

distribution of sums of lognormal random variables is not available. In this work, we offer an

alternative to Monte Carlo simulation in obtaining numerical results for the GAO price. Sums

of lognormal random variables frequently occur in many areas of the mathematical and en-

gineering sciences such as finance, actuarial science, signal theory and telecommunications,

economics, reliability, biology, ecology, atmospheric sciences and geology. Certain method-

ologies and approaches were developed to determine the distribution of sums of lognormal

random variables to varying degrees of depth and treatment depending on particular theoretical

interest or practical considerations. Advances in this field are highlighted in the research results

of Dufresne [26], Leipnik [31] and Wu et al. [48]. Nonetheless, many of these methods re-

quire the assumption of independence amongst the lognormal random variables, otherwise the
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accuracy of the approximation is compromised as the number of lognormal random variables

becomes very large. Our approach is motivated by the work of Dhaene et al. [23, 24] and Liu

et al. [34] that proposed the use of comonotonicity-based convex order bounds to approximate

the sums of lognormal random variables. An overview of comonotonicity and its applications

in finance and insurance can be found in Deelstra et al. [20].

3.3.1 Definition of comonotonicity and quantile additivity property

The random variables X1, X2, ..., Xn are said to be comonotonic if and only if there exist a

random variable Z and non-decreasing (or non-increasing) functions h1, h2, ..., hn such that

(X1, X2, ..., Xn) is distributed as (h1(Z), h2(Z), ..., hn(Z)). Comonotonicity means all random

variables move in the same direction so that any two of possible outcomes (x1, x2, ..., xn) and

(y1, y2, ..., yn) can be ordered componentwise.

For our purpose, the relevant mathematical property concerning the sum of comonotonic ran-

dom variables is the quantile additivity for S = α1X1 +α2X2 + · · ·+αnXn, αi ≥ 0. This property

states that

F−1
α1X1+α2X2+···+αnXn

(p) =

n∑
i=1

αiF−1
Xi

(p),

where F−1
X (p) is the inverse function of X and 0 < p < 1.

Let E[(X − d)+] represent the stop-loss premium of a random variable X with retention d. It

can be shown that if X1, X2, ..., Xn are comonotonic then

E[(S − d)+] =

n∑
i=1

E[(αiXi − di)+], for F−1
S (0) < d < F−1

S (1), (3.25)

where di is determined by

di = F−1
αiXi

(FS (d)), i = 1, 2, . . . , n.

Note that here we assume the Xi’s have strictly increasing distribution functions. In the gen-

eral situation, one may adopt the α-inverse function to define the di’s in (3.25), as described in

Dhaene et al. [23]. A proof of the additivity properties of quantiles and stop-loss premiums
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can be found in Dhaene et al. [23] as well.

The calculation of stop-loss premium is similar in nature to that required for the GAO price

given in equation (3.24). Therefore, we can make use of the additivity property of the stop-loss

premium to decompose the expectation in equation (3.24) into a sum of expectations based on

each random variable Xi assuming X1, X2, ..., Xn are comonotonic. When each Xi is lognormally

distributed, i.e. ln(Xi) ∼ N(µi, σ
2
i ), equation (3.25) becomes

EQ̂[(S − K)+] =

∞∑
i=1

αieµi+
1
2σ

2
i Φ

(
σi − Φ−1(FS (d)

))
− K

(
1 − FS (d)

)
. (3.26)

Equation (3.26) is an established result from Dhaene et al. [23] that provides a Black-Scholes-

type formula for the price of a call option written on the sum S , which only depends on the

marginal distribution of Xi’s and S . Since FXi’s are strictly increasing and continuous, FS (d)

can be uniquely determined from solving

n∑
i=1

αie−µi+σiΦ
−1(FS (d)) = d.

Consider the truncated sum S in equation (3.20) defined by

S :=
34∑

n=0

β(T,T + n)e−V(T,T+n). (3.27)

Equation (3.27) implies that S is a sum of highly correlated random variables although it is not

a comonotonic sum. Therefore, we need to find comonotonic approximations for S in order to

make use of the additive property.

3.3.2 Comonotonic upper and lower bounds for the GAO Price

We construct approximations under the notion of convex order relation. This type of relation

orders two random variables with the same mean in terms of their variability. More precisely,

X is said to be smaller than Y in convex order, symbolised by X �cx Y , if and only if

E[X] = E[Y], E[(X − d)+] ≤ E[(Y − d)+], for any d ∈ (−∞,∞). (3.28)
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To simplify the notation, write

α : = (α1, α2, . . .) = (β(T,T ), β(T,T + 1), . . .), (3.29)

Y : = (Y1,Y2, . . .) = (V(T,T ),V(T,T + 1), . . .), (3.30)

X : = (X1, X2, . . .) = (e−Y1 , e−Y2 , . . .). (3.31)

Then S =
∑34

n=0 β(T,T + n)e−V(T,T+n) = αX> = α1X1 + α2X2 + . . ., where αi ≥ 0 and > is the

transpose of a vector. Each Yi is normally distributed with parameters

µi := EQ̂[Yi] = EQ̂[V(T,T + i − 1)]

= EQ̂
[
A(T,T + i − 1)rT + G̃(T,T + i − 1)µT

]
= A(T,T + i − 1)EQ̂[rT ] + G̃(T,T + i − 1)EQ̂[µT ], (3.32)

σ2
i := VarQ̂[Yi] = VarQ̂[V(T,T + i − 1)]

= A2(T,T + i − 1)VarQ̂[rT ] + G̃2(T,T + i − 1)VarQ̂[µT ]

+2A(T,T + i − 1)G̃(T,T + i − 1)CovQ̂[rT , µT ], (3.33)

σi j := CovQ̂[Yi,Y j] = CovQ̂[V(T,T + i − 1),V(T,T + j − 1)]

= A(T,T + i − 1)A(T,T + j − 1)VarQ̂[rT ] + G̃(T,T + i − 1)G̃(T,T + j − 1)VarQ̂[µT ]

+
(
A(T,T + i − 1)G̃(T,T + j − 1) + A(T,T + j − 1)G̃(T,T + i − 1)

)
CovQ̂[rT , µT ],

(3.34)

for i, j = 1, 2, . . ., and functions A(T,T + i) and G̃(T,T + i) are specified in equations (3.4) and

(3.17).

Therefore, the marginal distribution of Xi is lognormal with respective mean and variance

EQ̂[Xi] = e−µi+
1
2σ

2
i ,

VarQ̂[Xi] = e−2µi+σ
2
i (eσ

2
i − 1).
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Now we look for the convex order upper and lower bounds for S , denoted by S c and S l,

respectively. Following Dhaene et al. [24], we define S c as

S c =

35∑
i=1

αie−µi+σiΦ
−1(U), (3.35)

where αi, µi, and σi are given in equations (3.29), (3.32) and (3.33), respectively. In equation

(3.35), U ∼ Uniform(0,1) and Φ−1(·) is the inverse function of the N(0, 1) distribution. This

upper bound is the convex-largest sum for S that one can obtain from any random vector

(X̃1, X̃2, . . . , X̃n) with the same marginal distributions as the components in equation (3.27). In

other words, for any random vector (X̃1, X̃2, . . . , X̃n) with the same marginal distributions as

(X1, X2, . . . , Xn), it is always the case that

α1X̃1 + α2X̃2 + · · · + αnX̃n �cx S c.

To construct the lower comonotonic bound for S , we first choose a random variable Λ (which

must be “close” to S ) and then use the conditional expectation E[S |Λ] as the comonotonic

lower bound. This construction is in accordance with Theorem 10 in Dhaene et al. [23]. We

choose Λ to be the first-order Taylor approximation of S . That is, Λ =
∑35

i=1 αiYi where Yi is

defined in equation (3.30) and Λ is normally distributed with parameters

µΛ := EQ̂[Λ] =

35∑
i=1

αiµi,

σ2
Λ := VarQ̂[Λ] =

35∑
i=1

35∑
j=1

αiα jσi j.

Moreover, (Yi,Λ) is a bivariate normal random variable and

CovQ̂[Yi,Λ] =

35∑
j=1

α jσi j.

We define the correlation coefficient between Yi and Λ as

ri :=
CovQ̂[Yi,Λ]
σi · σΛ

.
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Since Yi|Λ ∼ N
(
µi + ri

σi
σΛ

(Λ − µΛ), (1 − ri)2σ2
i

)
, we have

E[Xi|Λ] = e−µi−ri
σi
σΛ

(Λ−µΛ)+ 1
2 (1−ri)2σ2

i . (3.36)

Note that E[Xi|Λ] is a lognormal random variable being a function of Λ. We replace Λ−µΛ

σΛ
by

Φ−1(V), where Φ−1(·) is the inverse function of a standard normal random variable and V ∼

Uniform(0, 1). Hence, equation (3.36) can be rewritten as

E[Xi|Λ] = e−µi−riσiΦ
−1(V)+ 1

2 (1−ri)2σ2
i

so that the convex lower bound of S is

S l = E[S |Λ] =

35∑
i=1

αiE[Xi|Λ] =

35∑
i=1

αie−µi−riσiΦ
−1(V)+ 1

2 (1−ri)2σ2
i . (3.37)

To sum up, S c and S l defined in equations (3.35) and (3.37) are the convex order upper and

lower bounds for S , i.e., S l �cx S �cx S c. Since both S c and S l are comonotonic sum of

lognormal random variables, we can now apply formula (3.26) to them to derive upper and

lower bounds for the GAO price. We get

EQ̂[(S c − K)+] =

35∑
i=1

αie−µi+
1
2σ

2
i Φ(σi − Φ−1(FS c(K))) − K(1 − FS c(K)), (3.38)

where FS c(K) satisfies
35∑
i=1

αie−µi+σiΦ
−1(FS c (K)) = K.

Also,

EQ̂[(S l − K)+] =

35∑
i=1

αie−µi+
1
2 (1−ri)2σ2

i + 1
2 r2

i σ
2
i Φ(riσi − Φ−1(FS l(K))) − K(1 − FS l(K)), (3.39)

where FS l(K) satisfies
35∑
i=1

αie−µi+
1
2 (1−ri)2σ2

i −riσiΦ
−1(FS l (K)) = K.

The quantile functions for the upper and lower bounds, S c and S l, are then given by

F−1
S c (p) =

35∑
i=1

αie−µi+σiΦ
−1(p) (3.40)

and

F−1
S l (p) =

35∑
i=1

αie−νi+riσiΦ
−1(p)+ 1

2 (1−ri)2σ2
i , (3.41)

respectively. For more details on how to derive formulae (3.38)-(3.41), readers are referred to

section 3.4.2 of Dhaene et al. [24].
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3.4 Numerical illustration

We examine the reasonableness of our approximations to the sum of lognormal random vari-

ables. We shall also provide approximate bounds for the GAO price based on equations (3.38)

and (3.39) and compare them to the simulated “true” values based on formula (3.24). The

values of the model parameters used in the numerical implementation are given in Table 3.1.

Table 3.1: Parameter values used in the numerical experiment in chapter 3.

Parameter set for numerical analysis

Contract specification

g = 11.1%, T = 15, n = 35;

Interest rate model

a = 0.15, b = 0.045, σ = 0.03, r0 = b;

Mortality model

c = 0.1, ξ = 0.0003, µ0 = 0.006.

Figure 3.1: Quantile functions of S , S c and S l with ρ = 0.9, ρ = 0, and ρ = −0.9.

Figure 3.1 depicts the plots of quantile functions for S c and S l obtained using equations (3.40)

and (3.41). The quantile plots are accompanied by a middle plot for S generated using 50,000

simulations with ρ = 0.9, ρ = 0, and ρ = −0.9. With ρ = 0.9, we see that both the upper
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Figure 3.2: Relative differences between the approximated quantiles of S c (or S l) and the

simulated quantiles, with ρ = 0.9, ρ = 0, and ρ = −0.9.

Figure 3.3: Contour maps with ρ = 0.9, ρ = 0, and ρ = −0.9.

and lower bounds are very accurate, and the differences from the “true” values are negligible.

When ρ changes from positive to negative, the upper bound remains extremely accurate, whilst

the lower bound becomes less accurate although it is still a reasonably good approximation.

This is validated by Figure 3.2 where the relative differences between the approximated quan-

tile functions and the simulated quantiles are displayed.

In previous research works Denuit [21, 22], lower bounds generally give more accurate approx-
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imations. However, in our case, upper bounds are better than lower bounds when benchmarked

to simulated values. To find plausible rationale for this observation, we draw the contour map

based on the correlation coefficients amongst the individual random variables Xi’s contained

in the sum S in equation (3.27). The contour maps with different ρ’s are displayed in Figure 3.3.

From Figure 3.3, it appears that the good performance of the upper bounds could be attributed

to the fact that the Xi’s are highly positive correlated, particularly, when ρ > 0. When ρ = −0.9,

that is, when interest rate rt and mortality rate µt are negatively correlated, the correlation be-

tween Xi and X j goes to around 0 when i and j are far apart. This kind of dependency structure

may be addressed by selecting another Λ that could lead to improved lower bounds. Interested

readers are referred to Vanduffel et al. [45] for more details regarding optimal approximation.

The values of the GAO price based on the upper and lower comonotonic approximations S c

and S l can then be calculated analytically. In Table 3.2, we provide these calculated values

together with the GAO price utilising formula (3.24) with 50,000 simulations; the numbers

enclosed in parentheses are standard errors. Figure 3.4 is a plot of GAO prices versus the

parameter ρ. Indeed, the upper bounds based on S c are very close to the “true” values for any

ρ, −1 ≤ ρ ≤ +1. The accuracy of the lower bounds are more pronounced when ρ is positive.

Overall, our numerical experiments provide support for the highly adequate performance of

our proposed comonotonic approximations.

3.5 Conclusions

We presented a particular important application of comonotonicity theory in the valuation of

GAOs. This contributes to the available methods of pricing annuity-linked contracts by specifi-

cally circumventing the issue of dealing with the sums of a large number of lognormal random

variables. Using Monte Carlo simulated “true” values as our benchmark, we demonstrated

the accuracy of our lower and upper bound approximations to a notable degree. We designed

a valuation framework that incorporates the stochastic nature of both mortality and interest

rates as well as their correlation structure. Our approach made use of the change of probabil-
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Table 3.2: Actuarial prices for GAO under different methods in chapter 3.

Numbers in parentheses are standard errors.

GAO value

ρ Simulated values Lower bound Upper bound

-1.0 0.0904026 (0.0003836) 0.0878802 0.0905889

-0.9 0.0920624 (0.0003916) 0.0898968 0.0925702

-0.8 0.0943914 (0.0004018) 0.0919473 0.0945658

-0.7 0.0962496 (0.0004116) 0.0940276 0.0965768

-0.6 0.0986634 (0.0004217) 0.0961350 0.0986044

-0.5 0.1003584 (0.0004320) 0.0982680 0.1006494

-0.4 0.1023678 (0.0004412) 0.1004255 0.1027128

-0.3 0.1042501 (0.0004485) 0.1026068 0.1047953

-0.2 0.1067286 (0.0004587) 0.1048118 0.1068977

-0.1 0.1088653 (0.0004687) 0.1070402 0.1090209

0 0.1110679 (0.0004790) 0.1092922 0.1111654

0.1 0.1131000 (0.0004896) 0.1115679 0.1133321

0.2 0.1153378 (0.0005001) 0.1138677 0.1155216

0.3 0.1174438 (0.0005131) 0.1161919 0.1177346

0.4 0.1197348 (0.0005241) 0.118541 0.1199718

0.5 0.1218968 (0.0005350) 0.1209154 0.1222339

0.6 0.1246585 (0.0005464) 0.1233156 0.1245216

0.7 0.1263725 (0.0005509) 0.1257422 0.1268356

0.8 0.1290466 (0.0005682) 0.1281958 0.1291765

0.9 0.1317430 (0.0005813) 0.1306770 0.1315453

1.0 0.1338156 (0.0005901) 0.1339424 0.1331865
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Figure 3.4: The values of the GAO price with its upper and lower approximations.

ity measures technique with the appropriate choice of numéraire to considerably facilitate the

evaluation of conditional expectation for valuation. The proposed methodology here may be

adopted to value other insurance products with option-embedded features such as equity-linked

annuities, equity indexed annuities and variable annuities.
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Chapter 4

Mortality modelling with

regime-switching for the valuation of GAO

4.1 Introduction

Regime-switching (RS) models have gained popularity in modelling financial time series due

to their ability to capture dynamic changes exhibited by the stochastic behaviour of economic

and financial variables observed over time. Research works on RS models can be divided into

two kinds: threshold models and Markov RS models. The difference between these two lies

on the trigger of regime shifts, say, an observed variable for the former and a Markov chain for

the latter, see Meyers [39] for details. Goldfeld and Quandt [24] proposed the switching re-

gression model for housing markets data and this was viewed as one of the earliest applications

of Markov RS models in economics. Markov-switching models in discrete time setting were

extensively studied by Hamilton [26, 27] with special emphasis on economic and financial

modelling. Since then, various interest rate models were developed that incorporate regime-

switching characteristics either in the rate level itself or in the parameter dynamics. See Ang

and Bekaert [1], Elliott and Mamon [16, 17], Elliott and Siu [18], Garcia and Perron [21],

Lewis [32], Mamon [36], amongst others. Moreover, RS models have been widely used in

asset price modelling and pricing equity options, see for instance, Elliott et al. [19], Hardy [28]

and Yuen and Yang [52].

66
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The increasing utility of regime-switching models in finance has influenced research on their

applications in actuarial science. Milidonis et al. [40] introduced a regime-switching approach

to model mortality dynamics and highlighted favourable features of regime-switching models

in mortality modelling. The distinguishing features of RS models include the capacity to iden-

tify structural changes and the flexibility to make parameter estimates change as time evolves

depending on the dictates of the data. In their paper, they adopted a general RS model that

switches between two geometric Brownian motions to model the annual US mortality index.

In addition, they applied RS approach in modelling the time-varying mortality index under the

Lee-Carter mortality framework.

Prior to 2000, techniques of mortality modelling in practice have been traditionally determin-

istic. Since Gompertz [25] first proposed the law of mortality asserting that the person’s prob-

ability of dying increases at a constant exponential rate as age increases, many research works

were developed based upon it, see for instance Finch and Pike [20], Shklovskii [44] and Tra-

chtenber [46]. It is well-accepted that the Gompertz’s law holds between the ages of 30 and 90

over a wide time range of mortality data; see Spiegelman [43] and Wetterstrand [49]. Tenen-

bein and Vanderhoof [45] provided biophysical implications of the foundation of such a law.

In Wetterstrand [49], the ultimate mortality experience from life insurance for 1948-1977 was

examined and changes of parameters in the law were described. At higher ages, say 90, the

fluctuation of mortality is not easily dealt with by the Gompertz mortality law due to small sam-

ple sizes (cf. Bell and Miller [5]) and data aggregation problems (cf. Gavrilova and Gavrilov

[22]). But, as mortality keeps on improving so that more people survive longer than 90 years,

the small-sample size problem is mitigated, and it is reasonable to expect that the exponential

aging law for humans is sustained at these ages. Some works on the modelling of mortality at

higher ages include Beddington et al. [4] and Bongaarts [8].

In this chapter, the rationality of the Gompertz law is examined as our starting point using US

data from 1933-2009. The yearly mortality rates were found to follow an exponential increas-

ing trend or the logarithm of the mortality rates has a linear form, which is in agreement with

the Gompertz model; this result was determined using the regression method. Our analysis of
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the mortality patterns demonstrate dynamic changes in the parameters of the Gompertz model

as the years go by. We, therefore, enrich the Gompertz model by putting forward a regime-

switching model based on Gompertz law. We shall coin the term RS Gompertz model (RSGM)

for the first new model proposed in this work. Specifically, we employ a continuous-time

Markov chain to modulate the parameters of the Gompertz model. The Markov chain captures

the switching in the level of the rate governing the parameters’ movement.

To provide data-based evidence of the capability of the proposed mortality model, we include

an empirical study demonstrating the goodness-of-fit and likelihood-based measures support-

ing the superiority of the Markov-switching model compared to its one-regime counterpart. In

particular, the hidden Markov model filtering approach described in Mamon et al. [37] is em-

ployed and applied to US mortality data spanning a period of nearly eight decades to provide

dynamic estimates of model parameters.

The primary goal in developing a mortality model with good adequacy is to support the pricing

of insurance and annuity products. Many product innovations in recent times were introduced,

and their pricing and reserving present new challenges. It is now common for products to have

investment guarantees in them and therefore, they involve embedded options (cf. Bolton et

al. [7], and Boyle and Hardy [9]). The stochastic modelling of two key factors, namely, the

interest and mortality rates (see Ballota and Haberman [3], and Milevsky and Promislow [38])

is the most important consideration in valuation. Although there have been substantial research

achievements in insurance pricing under a stochastic environment as shown in Dahl [13] and

Hardy [29], progress is little to nil in the pricing of products especially those with long-dated

horizons under a consistent framework in which both interest and mortality rates are regime-

switching. This work constructs a new framework whereby the interest rate process follows

a pure Markov RS model whilst the mortality rates are deemed to follow a regime-switching

mortality model. The pricing, hedging and reserving problem for guaranteed annuity options

(GAOs) were studied in Liu et al. [33] and Wilkie et al. [50], amongst others. In this work, we

further propose two alternative RS mortality models motivated by the limitation of the RSGM,

which does not provide analytical solution to the survival probability. We then consider the
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GAO pricing along with a numerical implementation and investigation of price sensitivity to

parameters of a combined regime-switching models under the two alternatives. Aiming for an

analytic pricing solution for GAO as our target product, we develop a Gompertz model with

RS regression parameters as well as extend the methodology in Elliott and Mamon [17]. We

then derive the endowment price under the assumption that the two factors are driven by in-

dependent Markov chains under each alternative modelling set-up. Consequently, we use the

so-called endowment-risk-adjusted measure, which was first introduced in Liu et al. [33] and

show the significant benefits of the change of measure technique over Monte-Carlo-based im-

plementation. In addition, we show the flexibility of RS models in accommodating a range of

underlying states in our model framework by changing the states of each random factor.

The essence of this chapter is to offer three ways of formulating a regime-switching mortality

framework, where the first framework is well-supported by the data, and the other two are less

sophisticated than the first one but they are designed to produce GAO analytic pricing solutions.

To attain our objectives, this chapter is organised as follows. Section 4.2 presents the proposed

three regime-switching mortality models. An analysis of the mortality trend using the US data

for the period 1933-2009 validates the utility of the RSGM. Two alternative RS models are

provided along with their analytical solutions to the survival index. The pure Markov interest

rate model is described including the derivation of bond price in section 4.3. In section 4.4,

we formulate the RS framework to value a GAO by integrating a Markov interest rate model

and the alternative mortality models put forward in this work. Interest and mortality processes

are governed by two independent Markov chains for tractability. As will be illustrated, the

measure-change method facilitates efficiently the pricing implementation. Numerical results

are given in section 4.5. Some remarks and an indication of future works conclude this work

in section 4.6.
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4.2 Mortality models

4.2.1 Model 1 (M1): Gompertz model with BM- and Markov-switching

parameters

4.2.1.1 Mortality analysis

The stochasticity of the mortality rate is documented in Pitacco [41] and Tuljapurkar and Boe

[47]. A proposed model aimed to capture salient features of a mortality process must be sup-

ported by empirical evidence. So, before embarking on the full development of a mortality

model, we first examine the US mortality data from 1933 to 2009 available and downloadable

from the Human Mortality Database (URL: www.mortality.org). Since we are aiming at pric-

ing pension products, we focus on older ages, in particular, from 50 to 100.

To understand better the evolution of mortality rates, we plot in 3 dimensions the mortality

rates as a function of age and year as shown in Figures 4.1. Moreover, we display the log

mortality rates through age for certain specific years in Figure 4.2, and the graphs show an

approximately linear trend each year. This, consistent with the traditional Gompertz law, is

based on the model that for a life aged x at time t, the force of mortality model is given by

log µ(x, t) = a(t) + b(t) x. (4.1)

However, we find that for each year the log of mortality has different intercept and slope. This

leads us to find the patterns of these two regression parameters shown in Figure 4.3. We see

that in the long run, the intercept in the Gompertz model has a decreasing behaviour whilst the

slope has an increasing trend. This is in agreement with the consensus that the time series of

slopes and intercepts of mortality curves are negatively correlated, see Yashin et al. [51]. The

graphs also show that the movements of these parameters vary over time. The rate of increase

or decrease of model parameters in (4.1) is high for certain time periods and low in other time

periods. The ANOVA tests and the analysis of residuals illustrated by the contour map in Fig-

ure 4.4 show that the linear model fits the log of mortality rate well.
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The study of US mortality data above signifies that mortality rates can be described by an

exponential increasing functional form. We note that this phenomenon varies with time. This

serves as our inspiration in putting forward the RS approach for mortality modelling, which is

detailed in the next section.

Figure 4.1: 3-dimensional plot of mortality rates versus years and ages.

Figure 4.2: US mortality rate in different years for the period 1933–2009.
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(a) a(t)

(b) b(t)

Figure 4.3: Evolution of parameters in the Gompertz model based on 1933–2009 US data.
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Figure 4.4: Contour map of residuals.

4.2.1.2 Model description

From the mortality analysis above, it is observed that the regression parameters of the mortality

model in equation (4.1) exhibit varying levels with respect to time. Thus, for a life aged x at

time t, we propose that the force of mortality follows

log µ(x, t, yt) = a(yt) + b(yt)x, (4.2)

where yt, t ≥ 0 is a finite-state Markov chain with state space S y =
{
s1
y, s

2
y, . . . , s

m
y
}
. The points

in S y are also associated with the unit vectors
{
e1
y, e

2
y, . . . , e

m
y
}

where ei
y = (0, . . . , 0, 1, 0, . . . , 0)> ∈

Rm. The unconditional distribution of yt is

qt = E[yt] = (q1
t , q

2
t , . . . , q

m
t ),

where

qi
t = P

[
yt = ei

y
]

= E
[
〈ei

y, yt〉
]
,

with 〈·, ·〉 denotes the usual scalar product of two vectors in Rm and P is the probability measure

under which we observe the data. Here, yt is a semimartingale with representation

yt = y0 +

∫ t

0
Λyu du + nt,

where Λ is the intensity matrix of yt and nt is a (Jt, P) martingale. We assume that this mea-

sure P is equivalent to a pricing measure P̃ in GAO valuation. As noted in Mamon [36], any
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diffusion can be approximated by a Markov chain so that even without the white-noise driven

error term, the model in equation (4.2) is sufficient to capture the randomness in mortality-rate

behaviour.

The respective dynamics of the a(t) and b(t) processes are assumed to follow

da(t) = α(yt)dt + β(yt)dW1
t (4.3)

and

db(t) = γ(yt)dt + ζ(yt)dW2
t , (4.4)

where yt and W1
t as well as W2

t are independent processes defined under P. The dynamics in

(4.3) and (4.4) were discretised and have the respective representation

ξk := ak − ak−1 = α(yk) + β(yk)ε
1
k =

〈
α, yk

〉
+

〈
β, yk

〉
ε1

k , (4.5)

and

ηk := bk − bk−1 = γ(yk) + ζ(yk)ε
2
k =

〈
γ, yk

〉
+

〈
ζ, yk

〉
ε2

k , k = 1, 2, . . . , (4.6)

where ε i
k ∼ N(0, 1), for i = 1, 2.

The plot of the ξk process is depicted in Figure 4.5 which clearly shows regime switches

through time in the mean and volatility levels. Although we see that {ak} and {bk} are neg-

atively correlated from Figure 4.3, we assume that ε1
k and ε2

k are independent for the purpose

of filtering implementation. However, some dependence structure between the two series is

captured since both are functions of the same Markov chain yt.

Recursive filters derived using the change of probability measure technique described in Ma-

mon et al. [37] are then implemented to the ξk-data series. We obtain the maximum likelihood

estimates for the parameters, and their dynamic evolutions under the two-state setting are ex-

hibited in Figures 4.6 - 4.8 from 1933-2009.

When the entire data set is used without processing a window of data, i.e., static estimation is

considered, we get the parameter values for the 1-state, 2-state, and 3-state settings shown in
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Figure 4.5: ξk process.

Figure 4.6: Evolution of α̂ under the 2-state setting.
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Figure 4.7: Evolution of β̂ under the 2-state setting.

Figure 4.8: Evolution of the transition probabilities for ξk under the 2-state setting.
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Table 4.1: Estimated parameters of ξk for different state settings under static calibration.

Parameters 1-state 2-state 3-state

α1 -0.02893 -0.02371 -0.02703

α2 - - -0.03496 0.03201

α3 - - - - -0.06987

β1 0.12353 0.17798 0.18488

β2 - - 0.06071 0.04165

β3 - - - - 0.04029

p12(ξ) - - 0.06084 0.06038

p13(ξ) - - - - 0.00100

p21(ξ) - - 0.04164 0.00900

p23(ξ) - - - - 0.99000

p31(ξ) - - - - 0.05450

p32(ξ) - - - - 0.50948

Table 4.1.

From Table 4.2, we see that the 2-state Markov switching model provides the best fit for the

data in accordance with both the Akaike information criterion (AIC) and Bayes information

criterion (BIC). The second column also gives the calculated likelihood (LL) values.

Similarly, we show the plot of the ηk process depicted in Figure 4.9, which again exhibit regime

switches in means and volatility through time. The maximum likelihood estimates for ηk’s

model parameters, and their dynamic evolutions under the two-state setting are exhibited in

Figures 4.10 - 4.12.

With the entire data set as input (i.e., static estimation), we get the parameter values under the

1-state, 2-state, and 3-state settings shown in Table 4.3.
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Table 4.2: Goodness-of-fit test for different models of ξk.

State setting LL BIC AIC

1-state 64.0696 59.7389 62.0696

2-state 79.3603 66.36801 73.3603

3-state 81.0457 55.0613 69.0457

Figure 4.9: ηk process.
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Figure 4.10: Evolution of γ̂ under the 2-state setting.

Figure 4.11: Evolution of ζ̂ under the 2-state setting.
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Figure 4.12: Evolution of the transition probabilities for ηk under the 2-state setting.

From Table 4.4, we see that the 2-state Markov switching model provides the best fit for the

data in accordance with both the Akaike information criterion (AIC) and Bayes information

criterion (BIC). The estimated LL values are also displayed in the second column.

4.2.2 Model 2 (M2): Gompertz with pure Markov-switching parameters

The RSGM termed as M1 does not have an analytical solution to survival probability, and

therefore the GAO price does not also have an analytic representation. Analytic pricing so-

lutions are not only elegant, but useful and relevant in practice. In particular, they enable the

sensitivity analysis of model parameters and possible calibration of the model using market

data (if available and reliable). To keep the focus of this work on GAO pricing development

and the justification of the regime-switching framework, sensitivity analysis and calibration are

relegated as future directions of this research.

To strike a balance between the empirical analyses in the previous subsection and the ob-

jective of getting a closed-form solution for the survival index (and hence, of the GAO price),
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Table 4.3: Estimated parameters of ηk for different state settings under static calibration.

Parameters 1-state 2-state 3-state

γ1 0.00031 0.00030 -0.00373

γ2 - - 0.00026 0.00232

γ3 - - - - -0.000396

ζ1 0.00022 0.00130 0.00131

ζ2 - - 0.00308 0.00148

ζ3 - - - - 0.00010

p12(η) - - 0.05595 0.99000

p13(η) - - - - 0.00100

p21(η) - - 0.07528 0.12639

p23(η) - - - - 0.87261

p31(η) - - - - 0.02955

p32(η) - - - - 0.58343

Table 4.4: Goodness-of-fit test for different models of ηk.

State setting LL BIC AIC

1-state 343.0608 338.7301 341.0608

2-state 354.8772 341.8850 348.8772

3-state 355.3551 329.3707 343.3551
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we modify the specification of the model parameters as

a(yt) = α(yt)t + a(0) (4.7)

b(yt) = γ(yt)t + b(0) (4.8)

in the force of mortality model

log µ(x, t, yt) = a(yt) + b(yt)x.

The above formulation reflects the fact that empirical data support linear trends of the two

parameters in the long run, and both the time and age effects are still being modelled. Now,

define the random variable τ(x, t) as the future lifetime attained at time t for a life with initial

age x at time 0. Under the assumption of the force of mortality above, the survival function

giving the probability of surviving in the next t years for (x) is s(x, t) = e−
∫ t

0 µ(x+u,u,yu) du. For

the purpose of pricing, the survival index S (t,T ) is then the expected value, under a risk-

neutral measure P̃, of the survival probability to time T for an x-aged individual alive at time

t. Therefore, with χ(·) being the indicator function,

S (t,T ) = EP̃
[
χ{τ≥T }

∣∣∣Jt

]
= EP̃

[
s(x,T )
s(x, t)

∣∣∣∣∣Jt

]
= EP̃

[
e−

∫ T
t µ(x+u,u,yu) du

∣∣∣∣Jt

]
. (4.9)

Following the method in Elliott and Mamon [17], we have

S (t,T ) = EP̃
[
e−

∫ T
t µ(x+u,u,yt,u) du

∣∣∣∣Jt

]
=

〈
e(Λ(T−t)−D(T )+D(t))yt, 1

〉
=

〈
yt, e(Λ>(T−t)−D(T )+D(t))1

〉
, (4.10)

where D(t) is a diagonal matrix with representation

D(u) =



∞∑
0

δ1γ
n
1

(2n + 1)n!
(u + ν1)(2n+1)

∞∑
0

δ2γ
n
2

(2n + 1)n!
(u + ν2)(2n+1)

. . .
∞∑
0

δmγ
n
m

(2n + 1)n!
(u + νm)(2n+1)


.

See details of derivation in Appendix A.1.
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4.2.3 Model 3 (M3): Regime-switching Luciano-Vigna mortality model

Non-mean-reverting affine processes were justified to model mortality rate by Luciano and

Vigna [35]. The mortality for a life aged x is expressed as

dµt = cµtdt + σdW̃t, (4.11)

with c > 0 and σ > 0. Under this model, which was employed as well in Liu et al. [34], the

survival index S (t,T ) can be easily obtained as

S (t,T ) = EP̃
[
e−

∫ T
t µs ds|Ft

]
= e−H(t,T )µt+G(t,T ), (4.12)

where

H(t,T ) =
ec(T−t)−1

c

G(t,T ) =
σ2

2c
[H(t,T ) − (T − t)] +

σ2H(t,T )2

4c
.

To capture the changes of mortality rate as time goes by, we come up with a regime-switching

non-mean reverting mortality model, which under a risk-neutral measure has the representation

dµt = cµtdt + σtdW̃t. (4.13)

The volatility component σt is a stochastic process driven by an m-state pure Markov chain yt.

The semi-martingale representation of yt is

dyt = Λytdt + dnt.

Given the state-space association of yt with the canonical basis of Rm, the volatility can be

expressed as σt =
〈
σ, yt

〉
and σ = (σ1, σ2, . . . , σm). Applying first the results for the Hull-

White model with deterministic volatility, the survival index is then given by

S (t,T, yt) = e−H(t,T )µt+G(t,T,yt), (4.14)

where

G(t,T, yt) =
1
2

∫ T

t
H(t, u)2σ2

u du =
1
2

∫ T

t

〈
φu, yu

〉
du, (4.15)
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with the ith component of the vector φu being
[

1
c

(
ec(T−u) − 1

)
σi

]2
. Following Elliott and Ma-

mon [16] when the volatility is Markov-modulated, we obtain the survival index

S (t,T ) = e−H(t,T )µt
〈
Πt,T yt, 1

〉
=

〈
yt, e−H(t,T )µtΠ>t,T 1

〉
, (4.16)

where Πt,T is the fundamental solution to a linear system ordinary differential equations (ODEs)

involving the G(t,T, yt) function; see details in Appendix A.2.

4.2.4 Summary of mortality models

To compare present mortality models with our proposed model, we look at several features

highlighting certain advantages and limitations in Table 4.5. Clearly, our regime-switching

extensions provide more flexibility than the models in the current literature.

Table 4.5: Comparison of proposed regime-switching mortality models

versus current models.

Features

Model RS nontrivial correlation1 two factors2 tractability3 dynamic estimation4 No. of Yes’s

Gompertz No No No Yes No 1

Lee-Carter No No Yes No No 1

Cairn-Blake-Dowd No Yes Yes No No 2

Luciano-Vigna No No No Yes Yes 2

RS-GBM Yes No No No Yes 2

RSGM (M1) Yes Yes Yes No Yes 4

M2 Yes Yes Yes Yes Yes 5

M3 Yes No No Yes Yes 3

1: Allowance for different improvements at different ages and different times

2: Capacity to incorporate both age and time effects

3: Closed-form solution to the survival index (similar to bond price)

4: Dynamic parameter estimation
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4.3 Interest rate model

As previously mentioned, the two risk factors affecting the value of GAO are the interest and

mortality risks. In order to value a GAO, a dependable interest rate model is needed as well.

Within the last decade or so, there are several papers highlighting the applications of RS mod-

els to interest rate modelling. However, the current practice in mortality modelling as far as RS

models go still remains primordial. The Makov-modulated Gompertz model should contribute

to the enlargement of the collection of available models in the literature. In our framework, we

combine together the RS models for both risk factors. In other words, both interest and mor-

tality rates have regime-switching mechanisms via two independent continuous-time Markov

chains that are both defined on a stochastic basis (Ω,F , {Ft}, P̃), where P̃ is risk-neutral. The

filtration Ft is defined as the joint filtration generated by xt and yt, which are the respective

Markov chains driving the interest and mortality rates, i.e., Ft := Ht ∨ Jt, where Ht := σ(xt)

and Jt := σ(yt).

Note that in the previous section, we provided an empirical examination of mortality data to

back up the model choice and the functional form for the logarithm of the force of mortality.

For both the interest and mortality rates, risk-neutral estimates of parameters, which include

transition probabilities or intensity rates and states of the Markov chains are necessary to pro-

ceed with pricing. The issue of parameter estimation under risk-neutral measure, i.e., using

available market data is an inverse problem that is outside the scope of this work. We simply

assume that a calibration method (either formal or ad-hoc), such as a least-squares method, is

available that gives parameters consistent with the risk-neutral valuation principle. This en-

ables us to discuss pricing in the sequel under the proposed joint interest and mortality rate

models.

Furthermore, whilst the independence between the two risk factors limits the general applica-

bility of the proposed framework, this assumption renders mathematical tractability of pricing

results. It should also be viewed as a preliminary development where improvements to incor-

porate correlation structure can be made further in the future. However, the use of regime-
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switching for both factors that yield a consistent pricing framework merits its discussion. The

modelling pursuit in this work parallels the initial attempts of previous authors (e.g., Biffis

[6]) when the stochastic nature of both interest and mortality rates was factored into insurance

product valuation. But such attempts also started with the assumption of independence be-

tween the two rate processes. Only very recently that such a deficiency was addressed albeit

at a gradual pace using some advanced mathematical techniques and only for cases of models

with no-regime switching feature yet; see for example, Liu et al. [34].

4.3.1 Pure Markov interest rate model

The theory of term structure models of interest rates is well-developed and there are many

stochastic interest rate models to choose from depending on one’s objectives, sophistication

and preferences. An encyclopedic account of these models can be found in Brigo and Mercurio

[10], and James and Webber [31]. In this work, we choose an interest rate model with a simple

structure yet rich enough to include the important regime-switching feature. We follow the

interest rate model in Mamon [36] whereby the short-term interest rate process rt evolves as

a function of a continuous-time Markov chain. Define xt, t ≥ 0, as a finite-state Markov

chain with state space S x =
{
s1
x, s

2
x, . . . , s

n
x
}
. The points si

x can be points in Rn. For ease of

calculation, the points in S x are associated with the unit vectors
{
e1
x, e

2
x, . . . , e

n
x
}
. In particular,

ei
x = (0, . . . , 0, 1, 0, . . . , 0)> ∈ Rn, and > denotes the transpose of a vector or matrix. If rt is

assumed to be a function of xt and given its state space as the canonical basis of Rn, then rt can

be represented as

rt = r(xt) = 〈r, xt〉 , (4.17)

where r = (r1, r2, . . . , rn) is a vector in Rn.

The unconditional distribution of xt is

pt = EP̃[xt] = (p1
t , p2

t , . . . , pn
t ),

where

pi
t = P̃

[
xt = ei

x
]

= EP̃
[
〈ei

x, xt〉
]
.
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Let pi j(t) = P̃
[
xt+s = e j

x
∣∣∣ xs = ei

x
]

be the transition probability from state i to j over time period

[s, s+ t] and P(t) denote the matrix whose i, jth entry is pi j(t). From the Kolmogorov’s forward

equation, a homogeneous Markov chain satisfies

dP(t)
dt

= ΘP(t), P(0) = I

where I is the identity matrix and Θ = (θi j) is the intensity matrix. That is, θi j ≥ 0 if i ,

j with
∑n

j=1 θi j = 0 for 1 ≤ i, j ≤ n and

θi j = lim
t→0

pi j(t)
t

= p′i j(0).

This implies that the transition probability matrix is given by

P(t) = etΘ.

As stated in Mamon [36], xt is a semi-martingale with representation

xt = x0 +

∫ t

0
Θxu du + mt,

where {mt} is a sequence of martingale increments.

The Markov-switching interest rate model considered here gives rise to an analytic solution for

the zero-coupon bond price B(t,T ) (see details in [36]) expressed as

B(t,T ) = EP̃
[
e−

∫ T
t r(xu)du|Ft

]
=

〈
e(Θ−R)(T−t)xt, 1

〉
=

〈
xt, e(Θ−R)>(T−t)1

〉
, (4.18)

where R is a diagonal matrix, i.e., R = diag(r1, r2, . . . , rn) and 1 = (1, 1, . . . , 1)>.

4.4 Valuation of GAO

Guaranteed annuity options are options embedded in certain pension policies that afford the

policyholders the right to convert the proceeds into an annuity at a guaranteed rate. These were
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first issued in 1839 recorded in the report of the Insurance Institute of London [30] and gained

much popularity in the 1970’s through the 1980’s in the UK. Recent research works on this

area focus on developing efficient and accurate pricing and hedging approaches; see Ballotta

and Haberman [2, 3], Chu and Kwok [12], Liu et al. [33, 34], amongst others.

For a person aged x, the payoff function of a GAO at time T based on one dollar cash amount

is

CT = χ{τ≥T }[g ax(T ) − 1]+ = g χ{τ≥T }

[
ax(T ) −

1
g

]+

,

where ax(T ) denotes the annuity rate. Therefore, the value of a GAO for a life aged x is given

by

VGAO = EP̃
[
e−

∫ T
0 r(xu)duCT

∣∣∣∣F0

]
= g EP̃

[
e−

∫ T
0 r(xu)due−

∫ T
0 µ(x+v,v,yv)dv(ax(T ) − K)+

∣∣∣∣F0

]
, (4.19)

where K = 1
g .

4.4.1 Pure endowment price

With the modelling set-ups for the two key risk factors in the previous sections, we are now

ready to derive the value of a survival benefit of a unit amount payable at time T for a life aged

x at time t < T . By the risk-neutral pricing principle, assuming that the life is alive at time t,

we have the survival benefit value given by

M(t,T ) = EP̃
[
e−

∫ T
t r(xt,u) duχ{τ≥T }

∣∣∣∣Ft

]
= EP̃

[
e−

∫ T
t r(xt,u) due−

∫ T
t µ(x+v,v,yt,v) dv

∣∣∣∣Ft

]
. (4.20)

Under the assumption that the two Markov chains are independent, the price of the pure en-

dowment is then

M(t,T ) = EP̃
[
e−

∫ T
t r(xt,u) du

∣∣∣∣Ft

]
EP̃

[
e−

∫ T
t µ(x+v,v,yt,v) dv

∣∣∣∣Ft

]
. (4.21)
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4.4.1.1 Pure endowment price under M2

We obtained the bond price (4.18) in section 4.3 and the survival index (4.10) under M2 in

section 4.2.2. Therefore, the pure endowment price can be expressed as

M(t,T ) = B(t,T )S (t,T )

=
〈
e(Θ−R)(T−t)xt, 1

〉 〈
e(Λ(T−t)−D(T )+D(t))yt, 1

〉
=

〈
xt, e(Θ−R)>(T−t)1

〉〈
yt, e(Λ>(T−t)−D(T )+D(t))1

〉
. (4.22)

Since annuity rate can be viewed as the sum of pure endowments with different maturities, we

obtain the expression for ax(T ) as

ax(T ) =

∞∑
n=0

EP̃
[
e−

∫ T+n
T r(xu)due−

∫ T+n
T µ(x+v,v,yv)dv

∣∣∣∣FT

]
=

∞∑
n=0

M(T,T + n)

=

∞∑
n=1

〈
en(Θ−R)xT , 1

〉〈
e(nΛ−D(T+n)+D(T ))yT , 1

〉
=

∞∑
n=1

〈
xT , en(Θ−R)>1

〉〈
yT , e(nΛ>−D(T+n)+D(T ))1

〉
. (4.23)

4.4.1.2 Pure endowment price under M3

Similarly, given the respective analytical solutions of the bond price (4.18) and survival index

(4.16), we can get the price of the pure endowment as

M(t,T ) =
〈
xt, e(Θ−R)>(T−t)1

〉
e−H(t,T )µt

〈
Πt,T yt, 1

〉
. (4.24)

From equation (4.24), ax(T ) can be expressed as

ax(T ) =

∞∑
n=0

EP̃
[
e−

∫ T+n
T r(xu)due−

∫ T+n
T µ(yv)dv

∣∣∣∣FT

]
=

∞∑
n=0

M(T,T + n)

=

∞∑
n=0

〈
xT , en(Θ−R)>1

〉
e−H(t,T )µt

〈
ΠT,T+nyT , 1

〉
. (4.25)
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4.4.2 Endowment-risk-adjusted measure

The closed-form solutions of the endowment price in equations (4.22) and (4.24) will aid in

the simplification of the GAO value under M2 and M3, respectively. This can be accomplished

by using the change of measure technique pioneered in Geman et al. [23], and also utilised in

the work of Liu et al. [33]. In our case, we employ the concept of endowment-risk-adjusted

measure by choosing the pure endowment price as the numéraire. The Radon-Nikodŷm deriva-

tive of the endowment-risk-adjusted measure P̂ with respect to the risk-neutral measure P̃ is

defined as
dP̂

dP̃

∣∣∣∣∣∣
FT

:= Υ0,T =
e−

∫ T
0 r(x0,u) duM(T,T )

M(0,T )
.

From the Bayes’ rule, if ω is a contingent claim, we get

EP̂ [ω| Ft] =
EP̃

[
Υ0,Tω

∣∣∣Ft

]
EP̃

[
Υ0,T

∣∣∣Ft

] .
Consequently,

EP̃
[
(e−

∫ T
t r(xt,u) due−

∫ T
t µ

(
x+v,v,yt,v

)
dv)ω

∣∣∣∣∣Ft

]
= M(t,T )EP̂ [ω| Ft] . (4.26)

So, after changing measure and with ω = (ax(T ) − K)+, the price of GAO in equation (4.19)

becomes

VGAO = gM(0,T ) EP̂
[
(ax(T ) − K)+

∣∣∣FT

]
. (4.27)

4.4.2.1 GAO price under M2

Recall that under M2, the annuity rate is given as

ax(T ) =

∞∑
n=1

〈
xT , en(Θ−R)>1

〉〈
yT , e(nΛ>−D(T+n)+D(T ))1

〉
This implies that ax(T ) is a discrete random variable with n × m possible outcomes. Its proba-

bility mass function is

πi j = P̂(ax(T ) = vi j)

= p̂i
T q̂ j

T ,
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where

vi j =

∞∑
n=1

〈
ei
x, en(Θ−R)>1

〉 〈
e j
y, e(nΛ>−D(T+n)+D(T ))1

〉
, (4.28)

for i = 1, 2, . . . , n and j = 1, 2, . . . ,m.

Therefore, using equations (4.22) and (4.28), equation (4.27) becomes

V M2
GAO = gM(0,T ) EP̂

 ∞∑
n=1

M(T,T + n) − K

+
∣∣∣∣∣∣∣FT


= g

〈
x0, eT (Θ−R)>1

〉〈
y0, e(TΛ>−D(T )+D(0))1

〉∑
i

∑
j

πi j

(
vi j − K

)+
. (4.29)

In order to calculate the GAO value using the formula in equation (4.29), we require the tran-

sition probability matrix (or intensity matrix) of xT and yT under the endowment-risk-adjusted

measure. Given (4.26) which is obtained from the Bayes’ rule and the independence assump-

tion of xt and yt, we have

EP̂ [ xT | Ft] =
EP̃

[
Υ0,T xT

∣∣∣Ft

]
EP̃

[
Υ0,T

∣∣∣Ft

]
=

EP̃
[
e−

∫ T
t r(xt,u) due−

∫ T
t µ(x+v,v,yt,v) dvxT

∣∣∣∣Ft

]
M(t,T )

=

EP̃
[
e−

∫ T
t r(xt,u) duxT

∣∣∣∣Ft

]
S (t,T )

M(t,T )

=
e(Θ−R)(T−t)xt

〈e(Θ−R)(T−t)xt, 1〉
. (4.30)

Similarly,

EP̂
[
yT

∣∣∣Ft

]
=

EP̃
[
Υ0,T yT

∣∣∣Ft

]
EP̃

[
Υ0,T

∣∣∣Ft

]
=

B(t,T )EP̃
[
e−

∫ T
t µ(x+v,v,yt,v) dvyT

∣∣∣∣Ft

]
M(t,T )

=
e(Λ(T−t)−D(T )+D(t))yt

〈e(Λ(T−t)−D(T )+D(t))yt, 1〉
. (4.31)
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Thus, the unconditional distribution of xt under the endowment-risk-adjusted measure is

EP̂ [xt] = p̂t =
(
p̂1

t , p̂2
t , . . . , p̂n

t

)
, (4.32)

where

p̂i
t = P̂

(
xt = ei

x
)

= EP̂
[
〈ei

x, xt〉
]

= 〈EP̂ [xt] , ei
x〉

=

〈
et(Θ−R)x0〈

et(Θ−R)x0, 1
〉 , ei

x

〉
. (4.33)

On the other hand, the unconditional distribution of yt under the endowment-risk-adjusted

measure is

EP̂ [
yt
]

= q̂t =
(
q̂1

t , q̂
2
t , . . . , q̂

m
t

)
, (4.34)

where

q̂i
t = P̂

(
yt = ei

y
)

= EP̂
[
〈ei

y, yt

〉]
=

〈
e(tΛ−D(t)+D(0))y0〈

e(tΛ−D(t)+D(0))y0, 1
〉 , ei

y

〉
. (4.35)

Under the new measure, yt is a nonhomogeneous Markov chain. However, both the Chapman-

Kolmogorov equation and Kolmogorov forward equation still hold; see details in Ross [42].

4.4.2.2 GAO price under M3

Given the analytical solution to annuity rate by equation (4.25), the price of GAO becomes

V M3
GAO = gM(0,T ) EP̂


 ∞∑

n=1

M(T,T + n) − K

+∣∣∣∣∣∣∣FT


= g

〈
x0, eT (Θ−R)>

〉
e−H(0,T )µ0

〈
Π0,T y0, 1

〉
EP̂


 ∞∑

n=0

〈
xT , en(Θ−R)>

〉
e−H(T,T+n)µT

〈
ΠT,T+n yT , 1

〉
− K

+∣∣∣∣∣∣∣FT

 . (4.36)

To obtain the GAO price using (4.36), we need to obtain the transition probability matrices of

xt and yt and the dynamics of µt under the new measure P̂. The distribution of xt remains the

same as equation (4.32). Note that

EP̂ [
yT |Ft

]
=

EP̃
[
e−

∫ T
t µs dsyT |Ft

]
S (t,T )

. (4.37)
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Also, we have

S (t,T ) = EP̃
[
e−

∫ T
t µs ds|Ft

]
= EP̃

[
e−

∫ T
t µs ds 〈yT , 1

〉
|Ft

]
=

〈
EP̃

[
e−

∫ T
t µs dsyT |Ft

]
, 1

〉
. (4.38)

Therefore, we obtain

EP̃
[
e−

∫ T
t µs dsyT |Ft

]
= e−H(t,T )µtΠt,T yt . (4.39)

Consequently,

EP̂ [
yT |Ft

]
=

e−H(t,T )µtΠ(t,T )yt

e−H(t,T )µt
〈
Πt,T yt, 1

〉 =
Πt,T yt〈

Πt,T yt, 1
〉 . (4.40)

The unconditional distribution of yt under the new measure P̂ is then given as

EP̂ [
yt
]

= q̂t =
(
q̂1

t , q̂
2
t , . . . , q̂

m
t

)
, (4.41)

where

q̂i
t = P̂

(
yt = ei

y
)

= EP̂
[
〈ei

y, yt

〉]
=

〈
Π0,ty0〈

Π0,ty0, 1
〉 , ei

y

〉
. (4.42)

As indicated above and in connection with equation (4.36), besides the two Markov chains

xt and yt, the (affine) dynamics of µt under the new measure P̂ are needed to price a GAO.

Since e−
∫ t

0 rs dsM(t,T ) is an (Ft, P̃)-martingale, we have
dM(t,T )
M(t,T )

− rtdt = σM(t)dW̃t and Ŵt =

W̃t −

∫ t

0
σM(u) du by Girsanov theorem. Following the method in Mamon [36], we have

σM(u) = H(t,T )σu. Therefore, the dynamics of µt under the new measure P̂ is given as

dµt =
(
cµt − H(t,T )σ2

u

)
dt + σudŴu. (4.43)

Itô’s lemma shows that

µt = ect

[
µ0 +

∫ t

0
e−cu(−H(u,T )σ2

u) du +

∫ t

0
e−cuσu dŴu

]
(4.44)

is the solution to (4.43).
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4.5 Numerical illustration

This section contains a numerical experiment comparing the efficiency between formula (4.29),

(4.36) and formula (4.19) in pricing a GAO. Under direct calculation of GAO price using

(4.19), we discretise the time period to calculate the two integrals in the equation. We divide

each year period into 252 equal subintervals with fixed length ∆t = 1
252 , i.e., the total number of

subintervals over the period (0,T ) is N = 252T and generate sample paths of the two Markov

chains xt and yt given their transition probability matrices. By the trapezoidal rule, the two

integrals in equation (4.19) are then respectively approximated as∫ T

0
r(xu) du ≈

∆t
2

r(x0) + r(xT ) + 2
N−1∑
k=1

r(xk∆t)

 , (4.45)

and∫ T

0
µ(x + v, v, yv) dv ≈

∆t
2

µ(x, 0, y0) + µ(x + T,T, yT ) + 2
N−1∑
k=1

µ(x + k∆t, k∆t, yk∆t)

 . (4.46)

Under M2, apart from the two integrals that need to be approximated, we have to calculate

the annuity rate ax(T ). By equation (4.23), the simulated pair (xT , yT ) are all we need in the

calculation of the GAO price, which can be obtained as the final values of the sample path of

the two Markov chains. Using the measure-change technique proposed in this work, we can

obtain the exact value of GAO from equation (4.29). This is because M(0,T ) can be calculated

if we know the initial states of the two Markov chains x0 and y0 from equation (4.22) whilst

the component with the expectation term can be computed directly after obtaining the distribu-

tions of xT and yT under the new measure. Whilst under M3, the GAO price can be calculated

through (4.36) by generating xT , yT and µT via equations (4.33), (4.42) and (4.44), respectively.

All numerical results under direct calculation using the Monte-Carlo simulation method rely on

10,000 simulated sample paths. We assume the same rates of transition between the states for

both the Markov chains xt in the interest model and yt in the mortality model. To be more spe-

cific, θi j = λi j = 1, i , j. The parameters of the interest rate model, and mortality models M1,

M2 and M3 are given in Table 4.6. Systematic trial-and-error approach coupled with sensitivity
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analyses were employed to set the parameters in our numerical experiments. More specifically,

we start with the two-state model by setting each parameter correspond to one small and one

large value. In practice, this step is guided by the standard deviation of certain values (e.g.,

mean or volatility) calculated from the entire data set. The small and large values in the 2-state

model together with their midpoint provide a framework for the three-state model. Likewise,

for the four-state model we consider the small and large values as endpoints of an interval.

This interval is partitioned into three equally spaced sub-intervals to generate four points of the

partition that will support the four-state setting. We then evaluate the efficiency of our approach

and examine the sensitivity of prices to various regime pairs. This kind of price sensitivity is

straightforward and must be distinguished from the usual price sensitivity exercise mentioned

in subsection 4.2.2, which is more exhaustive as it entails varying of individual parameters for

the interest and mortality models.

In Tables 4.7 to 4.9, we display the GAO prices together with their standard errors based on

a cohort data aged 50 whose GAO contracts mature at age 65 under different combinations of

regime number pairs for the two risk factors. In our calculation, the maximum age is assumed

to be 100 which means that there are no more than 35 annual payments.

Each pair of values in the first column refers to the number of regimes we choose for the in-

terest rate and mortality rate models. Under each regime pair, we present the prices under the

three mortality models along with their standard and relative errors. We see that M1 is com-

putationally intensive; that is, it takes about 30 hours to obtain prices even with 56 parallel

processors. This is because under M1, there is no analytical solution to the survival probabil-

ity function and therefore we cannot employ the change of measure technique to obtain GAO

prices and resort instead to direct Monte Carlo method. Moreover, under each sample path, we

have to estimate the annuity rate using Monte Carlo simulation as well, which is an embedded

simulation resulting to an enormous computing endeavour. From Tables 4.8 to 4.9, we see that

the prices under both methods (i.e., our measure change-based method and direct Monte Carlo

method) are close to each other under M2 and M3. We notice as well that the results under

multi-regime set-ups are bounded by the results under the one-regime set-ups. The greater the
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number of regimes (i.e., comparison of cases with 2 or more regimes), the smaller the RSE

(relative standard error) and SEM (standard error of the mean). Such observation is consistent

with the fact that the randomness can be captured better with more regimes. Also, as the num-

ber of regimes rises, we find that the differences between prices from a multi-regime model and

price from the middle-point scenario under a one-regime model become smaller. This proves

the improvement in accuracy when we increase the number of regimes. Moreover, the prices

are highly sensitive to interest rates driven by a pure Markov model. Thus, careful and accurate

setting of parameters is necessary given the substantial impact of the interest rate model in the

GAO value.

Since we cannot apply the measure-change technique to M1 to get the GAO price, we can only

adopt the Monte Carlo methodology. Using parallel computing, it takes 28 hours and 30 hours

to accomplish the task of valuation under the single- and multi-regime settings, respectively.

For M2, however, the only computing hurdle involved is the calculation of the exponential

matrix in formula (4.29). This is handled very easily by the rooted function package of the

statistical software R. It takes less than 1 second to obtain pricing results using measure change

compared to 160 seconds using Monte Carlo method. In Table 4.9, the (1,1) setting under M2 is

a deterministic case and does not actually need either simulation or measure-change technique

at all. This is the reason why the prices under both methods are exactly the same, and there

are no RSEs and SEMs for them. The (1,1) setting prices are exhibited for comparison with

those under the (2,2), (3,3) and (4,4) settings. Apart from the calculation of the exponential

matrix, solving the system of ODEs in M3 is another challenge to obtain the GAO price. But,

once the model parameters are selected, the total computing times to obtain a numerical value

using the formulae derived from the measure-change technique, namely, (4.29) and (4.36) are

greatly reduced in contrast to the times of implementing formula (4.19).

4.6 Conclusions

In this chapter, we put forward three regime-switching mortality models. The empirical evi-

dence from the US mortality data supports the use of RSGM for mortality rates. That is, the
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Table 4.6: Parameter set for the numerical experiment in regime-switching model framework.

Contract specification

g = 11.1%, T = 15, n = 35;

Interest rate model: rt = r(xt) = 〈r, xt〉 . See equation (4.17).

2-state RS model: (r1, r2) = (0.02, 0.08)

3-state RS model: (r1, r2, r3) = (0.02, 0.05, 0.08)

4-state RS model: (r1, r2, r3, r4) = (0.02, 0.04, 0.06, 0.08)

θi j = 1 for i , j

RSGM: log µ(x, t, yt) = a(yt) + b(yt)x. See equations (4.2), (4.3) and (4.4).

a(0) = −8, b(0) = 0.07;

2-state RS model:

 α1 β1 γ1 ζ1

α2 β2 γ2 ζ2

 =

 −0.04 0.0008 0.008 0.0008

−0.01 0.0002 0.004 0.0004


3-state RS model:


α1 β1 γ1 ζ1

α2 β2 γ2 ζ2

α3 β3 γ3 ζ3

 =


−0.04 0.0008 0.008 0.0008

−0.025 0.005 0.006 0.0006

−0.01 0.002 0.004 0.0004



4-state RS model:



α1 β1 γ1 ζ1

α2 β2 γ2 ζ2

α3 β3 γ3 ζ3

α4 β4 γ4 ζ4


=



−0.04 0.008 0.008 0.0008

−0.03 0.006 0.0066 0.00066

−0.02 0.004 0.0055 0.00055

−0.01 0.002 0.004 0.0004


λi j = 1 for i , j

RSPMM: log µ(x, t, yt) = a(yt) + b(yt)x. See equations (4.2), (4.7) and (4.8).

a(0) = −8, b(0) = 0.07;

2-state RS model:

 α1 γ1

α2 γ2

 =

 −0.07 0.0005

−0.03 0.0001


3-state RS model:


α1 γ1

α2 γ2

α3 γ3

 =


−0.07 0.0005

−0.05 0.0003

−0.03 0.0001



4-state RS model:



α1 γ1

α2 γ2

α3 γ3

α4 γ4


=



−0.07 0.0005

−0.055 0.00035

−0.04 0.0002

−0.03 0.0001


RSNMRM: dµt = cµtdt + σtdW̃t . See equation (4.13).

c = 0.07, µ0 = 0.006;

2-state RS model: (σ1, σ2) = (0.0008, 0.0002)

3-state RS model: (σ1, σ2, σ3) = (0.0008, 0.0005, 0.0002)

4-state RS model: (σ1, σ2, σ3, σ4) = (0.0008, 0.0006, 0.0004, 0.0002)
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Table 4.7: Actuarial prices for GAO under RSGM (M1).

Regime Parameter set

Price (mean) RSE SEM Time (h)1

pair r (α, β) (γ, η)

(1,1) 0.02 (-0.01, 0.002) (0.002,0.0002) 0.6680910 0.00389% 0.0000260 28

(1,1) 0.02 (-0.04, 0.008) (0.008,0.0008) 0.1088857 0.13882% 0.0001512 28

(2,2) (0.02, 0.08)

(-0.04, 0.008) (0.008,0.0008)

0.0906555 0.17318% 0.0001570 30

(-0.01, 0.002) (0.002,0.0002)

(3,3) (0.02,0.05,0.08)

(-0.04, 0.008) (0.008,0.0008)

0.0891200 0.10862% 0.0000968 30(-0.025, 0.005) (0.005,0.0005)

(-0.01, 0.002) (0.002,0.0002)

(1,1) 0.05 (-0.04, 0.008) (0.008,0.0008) 0.0157539 0.16789% 0.0000264 28

(1,1) 0.05 (-0.025, 0.005) (0.005,0.0005) 0.0877859 0.02490% 0.0000219 28

(1,1) 0.05 (-0.01, 0.002) (0.002,0.0002) 0.1937441 0.00397% 0.0000077 28

(4,4) (0.02,0.04,0.06,0.08)

(-0.04, 0.008) (0.008,0.0008)

0.0866900 0.08638% 0.0000749 30

(-0.03,0.006) (0.06,0.0006)

(-0.02, 0.004) (0.004,0.0004)

(-0.01, 0.002) (0.002,0.0002)

(1,1) 0.08 (-0.01, 0.002) (0.002,0.0002) 0.0261796 0.00435% 0.0000011 28

(1,1) 0.08 (-0.04, 0.008) (0.008,0.0008) 0.0000000 28

1: Parallel computing using 56 CPUs
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Table 4.8: Actuarial prices for GAO under two different methods for M2.

Regime Parameter set Monte Carlo simulation (using eqn (4.19)) Proposed approach (using eqn (4.29))

pair r a γ Price (mean) RSE SEM Time (s) Price Time (s)

(1,1) 0.02 -0.07 0.0005 0.4591484 – – < 1 0.4591484 < 1

(1,1) 0.02 -0.03 0.0001 0.3603371 – – < 1 0.3603371 < 1

(2,2) (0.02, 0.08)

-0.07 0.0005

0.0880022 0.13938% 0.0001227 160 0.0878127 < 1

-0.03 0.0001

(3,3) (0.02,0.05,0.08)

-0.07 0.0005

0.0863534 0.08940% 0.0000772 160 0.0864020 < 1-0.05 0.0003

-0.03 0.0001

(1,1) 0.05 -0.07 0.0005 0.1020477 – – < 1 0.1020477 < 1

(1,1) 0.05 -0.05 0.0003 0.0849910 – – < 1 0.0849910 < 1

(1,1) 0.05 -0.03 0.0001 0.0675727 – – < 1 0.0675727 < 1

(4,4) (0.02,0.04,0.06,0.08)

-0.07 0.0005

0.0846000 0.06806% 0.0000576 160 0.0847391 < 1

-0.055 0.00035

-0.04 0.0002

-0.03 0.0001

(1,1) 0.08 -0.07 0.0005 0.0000000 – – < 1 0.0000000 < 1

(1,1) 0.08 -0.03 0.0001 0.0000000 – – < 1 0.0000000 < 1
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Table 4.9: Actuarial prices for GAO under two different methods for M3.

Regime Parameter set Monte Carlo simulation (using eqn (4.19)) Proposed approach (using eqn (4.36))

pair r σ Price (mean) RSE SEM Time (s) Price (mean) RSE SEM Time (s)

(1,1) 0.02 0.0008 0.4293627 0.39965% 0.0017159 70 0.4305314 0.35127% 0.0015123 9

(1,1) 0.02 0.0005 0.4104248 0.24128% 0.0009903 70 0.4112082 0.21358% 0.0008782 9

(1,1) 0.02 0.0002 0.4009524 0.09497% 0.0003808 70 0.4012513 0.08440% 0.0003387 9

(1,1) 0.05 0.0008 0.0901351 0.64169% 0.0005784 70 0.0905728 0.58687% 0.0005315 9

(1,1) 0.05 0.0005 0.0840867 0.40542% 0.0003409 70 0.0843770 0.35145% 0.0002965 9

(1,1) 0.05 0.0002 0.0811261 0.16283% 0.0001321 70 0.0812362 0.15162% 0.0001232 9

(2,2) (0.02,0.08) (0.0008, 0.0002) 0.0885169 0.47427% 0.0004198 1200 0.0889869 0.45300% 0.0004031 700

(3,3) (0.02,0.05,0.08) (0.0008,0.0005,0.0002) 0.0858787 0.43995% 0.0003778 1200 0.0858274 0.43648% 0.0003746 700

(4,4) (0.02,0.04,0.06,0.08) (0.0008,0.0004,0.0006,0.0002) 0.0855836 0.42361% 0.0003625 1200 0.0855506 0.41451% 0.0003546 700

(1,1) 0.08 0.0008 0.0027966 3.13173% 0.0000876 70 0.0027544 2.85321% 0.0000786 9

(1,1) 0.08 0.0005 0.0005446 4.95820% 0.0000270 70 0.0005185 4.39670% 0.0000228 9

(1,1) 0.08 0.0002 0.0000005 86.07199% 0.0000004 70 0.0000005 57.99959% 0.0000003 9

mortality rates follow a Gompertz model having parameters being driven by a Markov chain.

Such support for the proposed model based on US mortality data was established via the suc-

cessful application of HMM filtering technique. Two of our RS mortality models give closed-

form solutions to the survival index. Under these two RS mortality models, we developed a

regime-switching framework combining mortality and interest risk factors with the indepen-

dence assumption and priced a GAO accordingly. The analytical solution of a pure endowment

price was derived. This was employed to introduce the concept of an endowment-risk-adjusted

measure, which facilitated the derivation of the transition probability matrices under a mea-

sure change. We provided numerical results under different combinations of regimes for both

Markov chains driving the two risk factors. Our measure-change methodology offers a viable

approach to determine the price of a GAO. In particular, its efficiency is beyond question when

compared to that of the Monte-Carlo simulation method.

We acknowledge a few limitations of this work, but also recognised that such limitations are

opportunities to explore as part of future research directions. It should be noted that some
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empirical evidence was provided to justify the appropriateness of M1 but none for M2 and

M3. This is because the empirical justification for both M2 and M3 would also require imple-

mentation of pertinent HMM-based filtering equations. Such equations entail a separate and

comprehensive development, which is better left as another future research endeavour.

The performance of the proposed approach could be further assessed by looking at the ad-

equacy of capital requirements via the calculation of quantile risk measures for GAO. This

would entail calibration methods such as maximum likelihood method, hidden Markov filter-

ing techniques, etc to estimate the model parameters. In addition, analysis of the out-of-sample

forecasting capabilities could be another way to gauge the approach’s effectiveness. As men-

tioned above, it is necessary to obtain risk-neutral parameters compatible with risk-neutral

valuation. This poses several challenges including availability of data, market liquidity, and

mathematical tools that can provide market-consistent parameters. Development of approaches

that can circumvent these challenges would be valuable for researchers and practitioners alike.
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Chapter 5

Pricing a guaranteed annuity option

under correlated and regime-switching

risk factors

5.1 Introduction

New developments and innovations in the insurance market give rise to insurance products

with embedded options. These products have similar characteristics to financial derivatives but

whose values depend on at least two important risk factors, the most important of which are

the interest and mortality rates. The recent works by Liu et al. [16, 17] argue that correlation

between these two risk factors has significant pricing effects, and hence, it must be incorpo-

rated in a valuation modelling framework.

In [17], a generalised framework was constructed, whereby two correlated diffusion processes

were employed to model the dependence of interest and mortality rates but whose volatilities

are constant. However, due to the long-term maturities of insurance contracts, reliable math-

ematical models are needed for the long-term stochastic behaviour of interest and mortality

rates. Over a long time period, changes in macro-economic and social conditions may cause

economic structural changes. Thus, the one-factor term-structure models for interest and mor-

107
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tality rates with constant volatility are no longer adequate to capture random changes over

time. For interest rate modelling, multi-factor models emerged to describe the evolution of

interest rate’s term structure dependent on several factors; see Chen [4], Duffie and Kan [6],

Longstaff and Schwartz [18], amongst others. Alternatively, Elliott et al. (cf. [8], [10] and

[11]) proposed a series of Markov-modulated affine models for interest rate and presented ex-

plicit solution to the bond price. In this work, we follow the modelling set-up in Elliott and

Siu [11] but keep the interest rate’s mean-reverting level constant for simplicity and tractability.

It has to be noted as well that over the past 50 years, many countries have experienced sig-

nificant mortality improvement. So, longevity risk is now a well-acknowledged issue affecting

annuity and insurance products. Life expectancies have been improving at an accelerating and

faster pace than anticipated. Historical data, however, show that such improvement in mortality

still exhibits random patterns, and therefore flexible stochastic models must be built to respond

to this development. On the one hand continued advancements and discoveries in medical

care and healthy lifestyle awareness will greatly contribute to the population’s longevity but

on the other hand, there is also evidence showing that some other factors may hinder mortality

improvement. For example, there are various situations in the present society and current en-

vironments that cause epidemic obesity and coronary heart diseases. There are also pandemics

happening from time to time, and viruses and bacteria developing resistance to antibiotics and

other treatments. Severe air pollution and consequences from acts of terrorism are extreme

instances that further curb mortality improvements. Therefore, a stochastic volatility model of

mortality evolution is necessary to capture this stylised fact in the long run.

Our contribution in this work is the extension of model setting in Liu et al. [17] by allow-

ing for the interest and mortality rates’ volatilities to be regime-switching according to the

dictates of a continuous-time finite-state Markov chain. The forward measure is introduced

with the bond price as the numéraire, which is determined following the idea in Elliott and Ma-

mon [8]. We derive the survival probability under the forward measure and in turn, the explicit

solution to the pure endowment price is obtained. The valuation of GAO, an option-embedded

insurance product with an emerging popularity, is examined. We provide an efficient pricing
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method under the endowment-risk-adjusted measure associated with the price of pure endow-

ment. We conduct numerical experiments to show that our approach is more efficient than the

Monte-Carlo method.

This chapter is organised as follows. In section 5.2, we formulate the framework to price

the GAO under which the interest and mortality rates follow correlated affine structures and

their volatilities are regime-switching driven by a Markov chain. Section 5.3 presents the ex-

plicit solutions to the zero-coupon bond price, survival index and the pure endowment price by

utilising the forward measure. We find the GAO price by employing the new measure called

endowment-risk-adjusted measure. Numerical illustrations in section 5.4 demonstrate the ef-

ficiency in pricing GAO via the technique of changing reference probability measures. In the

last section, we give some concluding remarks.

5.2 Modelling set-up

Assume a filtered probability space (Ω,F , {Ft},Q) supporting all stochastic processes consid-

ered in the valuation of GAO. The probability measure Q is a risk-neutral measure, and the

interest and mortality rates follow affine structures. We modify the Vasiček model for the

interest rate rt through the stochastic differential equation (SDE)

drt = a(b − rt)dt + σt dWt, (5.1)

where Wt is a standard Brownian motion under Q whilst a and b are constants. Calibration

for the purpose of valuation implementation of the Vasiček model using bond prices from the

market is discussed in Rodrigo and Mamon [22].

The Ornstein-Uhlenbeck (OU) process, in which the Vasiček model is a special case, was

also justified for modelling the mortality rate µt; see details in Milevsky and Promislow [21].

For the µt process, our model is given by

dµt = cµt dt + ξt dZt. (5.2)
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Here, c is a constant whilst Zt is another standard Brownian motion correlated with Wt, and

satisfies dZt = ρ dWt +
√

1 − ρ2dW ′
t , where W ′

t is a standard Brownian motion independent

from Wt.

Under this framework, we suppose that the respective volatilities σt and ξt in the models (5.1)

and (5.2) are driven by the same finite-state Markov chain yt in continuous time. For the rt

process, the volatility dynamics is

σt = σ(yt) =
〈
σ, yt

〉
.

Similarly, the volatility for the mortality rate follows

ξt = ξ(yt) =
〈
ξ, yt

〉
, (5.3)

where σ = (σ1, σ2, . . . , σn) and ξ = (ξ1, ξ2, . . . , ξn). This representation describes the dif-

ferent levels of volatilities that the processes could attain at time t. We assume that yt is a

homogeneous Markov chain and the state space of yt takes one of the unit vectors in the set

{e1, e2, . . . , en} belonging to Rn, where ei = (0, . . . , 1, . . . , 0)>, i.e., the ith element is 1 and 0

elsewhere. The unconditional distribution of yt is expressed as pt = EQ[yt] = (p1
t , p2

t , . . . , pn
t )

and pi
t = EQ[〈ei, yt〉]. Moreover, yt is a semimartingale process satisfying

dyt = Γtytdt + dnt, (5.4)

where nt is a martingale increment and Γt = Γ is the intensity matrix. By the Kolmogorov

forward equation,

d pt = Γ pt dt (5.5)

with initial value p0.

5.3 Derivation of the endowment price

A pure endowment is contract that promises to pay the holder a stated sum if he survives a

specified period but nothing in case of prior death. Given the models for interest and mortality

rates, we can price the pure endowment as

M(t,T ) = EQ
[
e−

∫ T
t ru due−

∫ T
t µv dv|Ft

]
. (5.6)
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Due to the dependence relation between these rates, we can not separate the expectation into

a product of two expectations. To facilitate the valuation of pure endowment, we employ the

forward measure associated with bond price as the numéraire.

5.3.1 Bond price

From standard interest-rate theory, the price of a zero-coupon bond with maturity T at time t

(T > t) is

B(t,T ) = EQ
[
e−

∫ T
t ru(yt) du|Ft

]
.

If we know the trajectory of yt then from Elliott and Kopp [9]

B(t,T, yt) = e−A(t,T )rt+D(t,T,yt), (5.7)

where A(t,T ) and D(t,T, yt) are deterministic functions independent of rt. When yt is random,

we take another condition expectation with respect to {Ft} and obtain

A(t,T ) =
1 − e−a(T−t)

a
. (5.8)

and

D(t,T, yt) =

∫ T

t
(−abA(u,T ) +

1
2

A2(u,T )σ2
u) du

= −b(T − t) + bA(t,T ) +

∫ T

t
〈φu, yu〉 du. (5.9)

Here, φu = 1
2 A2(u,T )σ2 =

(
1
2 A2(u,T )σ2

1, . . . ,
1
2 A2(u,T )σ2

n

)
. Therefore, the bond price repre-

sentation can be written as

B(t,T, yt) = e−A(t,T )rt−b(T−t)+bA(t,T ) e
∫ T

t 〈φu,yu〉 du.

To further evaluate the bond price, it remains to evaluate the expectation of e
∫ T

t 〈φu,yu〉 du. Fol-

lowing Elliott and Mamon [8], we get

B(t,T ) = e−A(t,T )rt−b(T−t)+bA(t,T )〈Πt,T yt, 1〉

=
〈
e−A(t,T )rt−b(T−t)+bA(t,T )Πt,T yt, 1

〉
, (5.10)
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where Πt,T is the fundamental matrix solution to the linear matrix differential equation

dΠt,s = H(t, s)Πt,s ds

with initial value Πt,t = I, the identity matrix. The matrix H(t, s) is an n × n. It has the form

H(t, s) = J(t, s) + Γ>, where J(t, s) is a time-varying diagonal matrix with the elements φs in

the diagonal, i.e.,

J(t, s) =



1
2 A2(t, s)σ2

1

1
2 A2(t, s)σ2

2

. . .

1
2 A2(t, s)σ2

n



.

5.3.2 Survival index

With the analytic solution of the bond price (5.10), we can use it as the numéraire associated

with the forward measure to calculate the pure endowment price. Define the Radon-Nikodŷm

derivative as
dQ̃
dQ

∣∣∣∣∣∣
FT

= ΛT :=
e−

∫ T
0 rudu B(T,T )

B(0,T )
. (5.11)

Under measure Q, ΛT is a martingale and for t ≤ T ,

Λt = EQ[ΛT |Ft] =
e−

∫ t
0 ruduB(t,T )
B(0,T )

.

From the Bayes’ rule for conditional expectation, we know that for any Ft−measurable random

variable ζ,

EQ̃[ζ |Ft] =
EQ [

ΛTζ |Ft
]

EQ [ΛT |Ft]

=

EQ
[
e−

∫ T
t ru duζ |Ft

]
B(t,T )

. (5.12)
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This implies that

M(t,T ) = EQ
[
e−

∫ T
t rudue−

∫ T
t µv dv

∣∣∣∣Ft

]
= B(t,T )EQ̃[e−

∫ T
t µv dv|Ft]

= B(t,T )S̃ (t,T ), (5.13)

where S̃ (t,T ) := EQ̃
[
e−

∫ T
t µvdv

∣∣∣∣Ft

]
is the survival function under Q̃. To find its explicit solution,

we require the dynamics of µt and yt under the forward measure Q̃.

Following the procedure in the Appendix of Mamon [20], the corresponding Brownian mo-

tion W̃t under Q̃ is given by

dW̃t = dWt + A(t,T )σtdt and dW̃ ′
t = dW ′

t ,

where W̃t and W̃ ′
t are independent standard Brownian motions under Q̃. Hence, the dynamics

of rt and µt under Q̃ are given by the respective SDEs

drt =
[
ab − σ2

t A(t,T ) − art

]
dt + σtdW̃t (5.14)

and

dµt = (−ρσtξtA(t,T ) + cµt)dt + ρξtdW̃t +
√

1 − ρ2 ξtdW̃ ′
t

= (−ρσtξtA(t,T ) + cµt)dt + ξtdZ̃t, (5.15)

where Z̃t = ρW̃t +
√

1 − ρ2 W̃ ′
t .

The distribution of the process yt changes as well under Q̃. To obtain the transition proba-

bility matrix under Q̃, we set ζ = yT in equation (5.12) so that

EQ̃ [
yT |Ft

]
=

EQ
[
e
∫ T

t ru duyT |Ft

]
B(t,T )

. (5.16)

Note that

B(t,T ) = EQ
[
e−

∫ T
t ru du|Ft

]
= EQ

[
e−

∫ T
t ru du〈yT , 1〉|Ft

]
=

〈
EQ

[
e−

∫ T
t ru duyT |Ft

]
, 1

〉
. (5.17)
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Comparing equations (5.10) and (5.17), we obtain

EQ
[
e−

∫ T
t ru duyT |Ft

]
= e−A(t,T )rt−b(T−t)+bA(t,T )Πt,T yt. (5.18)

Substituting equations (5.18) and (5.10) into equation (5.16), we have

EQ̃ [
yT |Ft

]
=

Πt,T yt

〈Πt,T yt, 1〉
. (5.19)

Equation (5.15) shows that µt still has an affine form with a regime-switching volatility under

Q̃. Therefore, we can reapply the results in Elliott and Mamon [8] to calculate the survival

function S̃ (t,T ). The only difficulty in this process is solving for the intensity matrix of the

Markov chain ỹt under Q̃. Equation (5.19) implies that under the forward measure Q̃ the

Markov chain ỹt is no longer homogeneous. However, the Kolmogorov forward differential

equation still holds, that is,
∂

∂t
p̃v,t = p̃v,tΓ̃t , (5.20)

subject to p̃v,v = I. Here, Γ̃t for t ≥ 0 is a one-parameter family of matrices whose off-diagonal

entries are the transition rates and p̃v,t is the vector of conditional probabilities given the starting

point v under Q̃, which can be obtained from (5.19) as p̃v,t = EQ̃[̃yt|Fv] . This means

p̃i
v,t = EQ̃ [

〈ei, yt〉|Fv
]

=

〈
Πv,tyv

〈Πv,tyv, 1〉
, ei

〉
. (5.21)

The survival function is then given by

S̃ (t,T ) = e−G̃(t,T )µt〈Π̃t,T ỹt, 1〉

= 〈e−G̃(t,T )µtΠ̃t,T ỹt, 1〉 (5.22)

with G̃(t,T ) = ec(T−t)−1
c . In equation (5.22), Π̃t,T is the fundamental matrix solution to the linear

differential system

dΠ̃t,s = H̃(t, s)Π̃t,s ds

at time s = T , where H̃(t, s) = J̃(t, s) + Γ̃
>

s and J̃(t, s) is the diagonal matrix

J̃(t, s) =



ρA(s,T )G̃(s,T )σ1ξ1 + 1
2 G̃(s,T )2ξ2

1

ρA(s,T )G̃(s,T )σ2ξ2 + 1
2 G̃(s,T )2ξ2

2

.
.
.

ρA(s,T )G̃(s,T )σnξn + 1
2 G̃(s,T )2ξ2

n



.
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Therefore, combining equations (5.10) and (5.22), the pure endowment price can be expressed

as

M(t,T ) = EQ
[
e−

∫ T
t ru due−

∫ T
t µv dv|Ft

]
= B(t,T )S̃ (t,T )

= e−A(t,T )rt−b(T−t)+bA(t,T )−G̃(t,T )µt〈Πt,T yt, 1〉〈Π̃t,T ỹt, 1〉

= e−A(t,T )rt−b(T−t)+bA(t,T )−G̃(t,T )µt〈Πt,T Yt + Π̃t,T ỹt, 1〉 . (5.23)

5.4 GAO valuation

As previously indicated, GAO provides the insured the right to choose between a fund value

and a life annuity with guaranteed annual payments. Although its first issue dates back to 1839,

it only became popular starting in the United Kingdom in the 1970-80s. Its option-embedded

feature makes it attractive giving rise to higher demand. Nonetheless, the unpredictable nature

of interest and mortality rates, heavily affecting the GAO value, caused solvency problems to

some companies offering this product. Research on GAO valuation and its risk management

continues to grow; see Ballotta et al. [1, 2] and Wilkie et al. [23]. This is largely motivated

by the advent of insurance products with similar features and are currently being traded in the

market such as the guaranteed minimum income benefit (GMIB) type products.

For simplicity, we do not consider choices in investing the fund but assume that a cash amount

for the fund is attained at the maturity date of the contract. Applying the risk-neutral pricing

theory, the GAO price is defined as the expected value of its discounted payoff. In particular,

the payoff function is CT = (gax(T ) − 1)+, where ax(T ) denotes the whole life annuity with

unit annual payment for a life aged x at time 0 and g is the guaranteed rate determined by the
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insurance company. The price of GAO can then be expressed as

PGAO = EQ
[
e−

∫ T
0 ru due−

∫ T
0 µv dvCT

]
= EQ

[
e−

∫ T
0 ru due−

∫ T
0 µv dv (g ax(T ) − 1)+

]
= gEQ

[
e−

∫ T
0 ru due−

∫ T
0 µv dv (ax(T ) − K)+

]
, (5.24)

with K = 1
g .

To facilitate the pricing of a GAO, we employ a different measure called endowment-risk-

adjusted measure Q̂, which first appeared in Liu et al. [16]. The introduction of a regime-

switching framework is new in this work. Choosing the pure endowment price as the numéraire,

we define the Radon-Nikodŷm derivative Q̂ with respect to Q by setting

dQ̂
dQ

:= ΘT =
e−

∫ T
0 ruduM(T,T )
M(0,T )

. (5.25)

Applying the Bayes’ rule for conditional expectation similar to what was done in the construc-

tion of the forward measure Q̃, the price of GAO is given by

PGAO = gM(0,T )EQ̂ [
(ax(T ) − K)+] . (5.26)

Recall by definition that the annuity ax(T ) is the summation of prices for pure endowments

with different maturities. Therefore, given the pure endowment price in equation (5.23), the

annuity ax(T ) is represented by

ax(T ) =

∞∑
n=1

EQ
[
e−

∫ T+n
T ru due−

∫ T+n
T µv dv|FT

]
=

∞∑
n=1

M(T,T + n)

=

∞∑
n=1

e−A(T,T+n)rT−bn+bA(T,T+n)−G̃(T,T+n)µT 〈ΠT,T+nyT + Π̃T,T+n ỹT , 1〉 . (5.27)

From equations (5.26) and (5.27), we see that in order to value GAO, the dynamics of rt, µt

and yt under the new measure Q̂ must be calculated. These can be obtained by applying the

martingale property.
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Write

Xt := e−
∫ t

0 ru duM(t,T ) = e−
∫ t

0 ru duB(t,T )S̃ (t,T ) = X1
t X2

t ,

where X1
t = e−

∫ t
0 ru duB(t,T ) and X2

t = S̃ (t,T ). By the martingale property, we know that

dX1
t = X1

t

[
−A(t,T )σt dWt +

〈Πt,T dnt, 1〉
〈Πt,T yt, 1〉

]
. (5.28)

From Itô’s lemma,

dX2
t = X2

t

1
2

G̃(t,T )2ξ2
t −

∂G̃(t,T )
∂t

µt − cG̃(t,T )µt +
〈H̃(t,T )Π̃t,T ỹt, 1〉
〈Π̃t,T ỹt, 1〉

 dt

+
〈Π̃t,T d ỹt, 1〉
〈Π̃t,T ỹt, 1〉

− G̃(t,T )ξt dZt


= X2

t

1
2

G̃(t,T )2ξ2
t −

∂G̃(t,T )
∂t

µt − cG̃(t,T )µt +
〈H̃(t,T )Π̃t,T ỹt, 1〉
〈Π̃t,T ỹt, 1〉

+
〈Π̃t,T Γ̃t̃yt, 1〉
〈Π̃t,T ỹt, 1〉

 dt +
〈Π̃t,T dñt, 1〉
〈Π̃t,T ỹt, 1〉

− G̃(t,T )ξt dZt

 . (5.29)

Combining equations (5.28) and (5.29), we have

dXt = X1
t dX2

t + X2
t dX1

t

= X1
t X2

t

1
2

G̃(t,T )2ξ2
t −

∂G̃(t,T )
∂t

µt − cG̃(t,T )µt +
〈H̃(t,T )Π̃t,T ỹt, 1〉
〈Π̃t,T ỹt, 1〉

+
〈Π̃t,T Γ̃t ỹt, 1〉
〈Π̃t,T ỹt, 1〉

 dt +
〈Πt,T dnt, 1〉
〈Πt,T yt, 1〉

+
〈Π̃t,T dñt, 1〉
〈Π̃t,T ỹt, 1〉

− A(t,T )σt dWt − G̃(t,T )ξt dZt


= −Xt

A(t,T )σt dWt + G̃(t,T )ξt dZt −
〈Πt,T dnt, 1〉
〈Πt,T yt, 1〉

−
〈Π̃t,T dñt, 1〉
〈Π̃t,T ỹt, 1〉

 (5.30)

= −Xt

[
(A(t,T )σt + ρG̃(t,T )ξt) dWt +

√
1 − ρ2G̃(t,T )ξt dW′t

−
〈Πt,T dnt, 1〉
〈Πt,T yt, 1〉

−
〈Π̃t,T dñt, 1〉
〈Π̃t,T ỹt, 1〉

 . (5.31)

Equation (5.30) is justified by the martingale property. So by Girsanov theorem, the dynamics

of Wt and W ′
t are

dŴt = (A(t,T )σt + ρG̃(t,T )ξt)dt + dWt (5.32)

dŴ ′
t =

√
1 − ρ2G̃(t,T )ξt dt + dW ′

t . (5.33)
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Consequently, the dynamics of rt and µt under Q̂ become

drt = a(b − rt)dt + σt

[
dŴt − (A(t,T )σt + ρG̃(t,T )ξt)dt

]
= (ab − art − A(t,T )σ2

t − ρG̃(t,T )σtξt)dt + σtdŴt (5.34)

dµt = cµtdt + ξt

[
ρ(dŴt − (A(t,T )σt + ρG̃(t,T )ξt)dt) +

√
1 − ρ2(dŴ ′

t −
√

1 − ρ2ξt dt)
]

=
(
cµt − ρA(t,T )σtξt − G̃(t,T )2ξ2

t

)
dt + ξt dẐt. (5.35)

The change of measure brings about a corresponding transformation to the distribution of the

Markov chain yt. Such transformed distribution is necessary to calculate the GAO price using

equation (5.26) along with rt and µt. To keep it distinct from yt under the original measure Q,

we denote the Markov chain under Q̂ as ŷt. Following the similar idea to that in getting the

distribution of yt under the forward measure Q̃, we have

EQ̂ [̂
yT |Ft

]
=

Πt,T yt + Π̃t,T ỹt〈
Πt,T yt + Π̃t,T ỹt, 1

〉 . (5.36)

Equation (5.36) tells us that ŷt is also a non-homogeneous Markov chain. Therefore, the vector

of conditional probabilities of ŷt given a starting point v can be obtained in a way similar to

that of getting ỹt. So,

p̂v,t = EQ̂ [̂
yt|Fv

]
= (̂p1

v,t, p̂2
v,t, . . . , p̂n

v,t)

with p̂i
v,t =

〈
ei,

Πv,t yv+Π̃v,t ỹv〈
Πv,t yv+Π̃v,t ỹv,1

〉
〉

for i = 1, 2, . . . , n. Given the dynamics of the interest and

mortality rates under different probability measures, we can price GAO using our proposed

change of measure technique described in equation (5.26), and the result can be compared with

the usual Monte-Carlo method using equation (5.24).

5.5 Numerical illustrations

In this section, we present the results of a numerical experiment to assess the efficiency of for-

mula (5.26). We show that it is superior to (5.24) in computing times. Under direct calculation

of GAO price using (5.24), we need to generate sample paths of the Markov chain yt through
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its transition probability matrix and the diffusion processes for rt and µt given by equations

(5.1) and (5.2). To do this, we discretise each year time period into N = 252 subintervals, each

of which has the fixed length ∆t = 1
N . We apply the Euler discretisation scheme to approximate

the evolutions of rt and µt over the time period [0,T ]. The discretisations are

r(i+1)∆t = ri∆t + (ab − ari∆t)∆t + σi∆t

√
∆tεi∆t (5.37)

µ(i+1)∆t = µi∆t + cµi∆t∆t + ξi∆t

√
∆t(ρεi∆t +

√
(1 − ρ2)ε′i∆t), (5.38)

where {εi∆t}i=1,...,NT and {ε′i∆t}i=1,...,NT are two independent sequences of standard normal random

variables and σi∆t = 〈σ, yi∆t〉, ξi∆t = 〈ξ, yi∆t〉 with {yi∆t}i=1,2,...,NT forming a path of the Markov

chain yt. The integrals in equation (5.24) can be approximated using the Trapezoidal Rule

expressed as ∫ T

0
ru du ≈

∆t
2

r0 + rT + 2
NT−1∑
k=1

rk

 , (5.39)

and ∫ T

0
µv dv ≈

∆t
2

µ0 + µT + 2
NT−1∑
k=1

µk

 . (5.40)

Numerical values of e−
∫ T

0 ru du and e−
∫ T

0 µv dv can then be obtained. The terminal values rT , µT

and yT of each path are used to calculate ax(T ) in equation (5.27). Additionally, sample paths

of ỹt are also needed for the annuity valuation in equation (5.27).

With our proposed approach in calculating the GAO price using equation (5.26), we do not

need to obtain the entire evolution of rt and µt during the time period [0,T ]. The values rT and

µT are determined by the equations

rT = e−aT

[
r0 +

∫ T

0
eau

(
ab − A(u,T )σ2

u − ρG̃(u,T )σuξu

)
du +

∫ T

0
eauσu dŴu

]
(5.41)

µT = ecT

[
µ0 −

∫ T

0
e−cu

(
ρA(u,T )σuξu + G̃(u,T )2ξ2

u

)
du +

∫ T

0
e−cuξu dŴu

]
. (5.42)

This greatly reduces the calculation time and improve the accuracy of the pricing results.

Our numerical results are obtained from 50, 000 samples generated through Monte-Carlo method-

ology. The parameters we use are based on Jalen and Mamon [14] and Luciano and Vigna [19]
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which are given in Table 5.1. Tables 5.2 - 5.6 exhibit the prices of GAO based on a cohort born

in 1935 and assumed to hold GAO contracts with maturity at age 65. The maximum survival

age is assumed to be 100. This implies that the annuity pays out at most 35 annual payments.

The first two columns provide the number of regimes and the corresponding volatility levels in

interest rate and mortality rate models. The prices calculated from equations (5.24) and (5.26)

under each regime pair along with the standard errors of the mean (SEM) and computing time

are shown in the succeeding columns.

From Tables 5.2 to 5.6, the prices under both methods are close to each other. In addition,

the prices under multiple regimes are bounded by those under one regime. The SEMs go down

as more regimes are chosen supporting the fact that randomness can be captured better and

thus results become more accurate by increasing the number of regimes. Moreover, we also

find that as ρ varies from negative to positive, the prices of GAO increases; this is consistent

with the fact that when two risk factors are negatively correlated there is an offsetting of un-

certainties, a mechanism that serves like a natural hedge. A particular hurdle in the implemen-

tation of the numerical experiments is the approximation of the transition probability matrices

and the intensity matrices of non-homogeneous Markov chain under the forward measure and

endowment-risk-adjusted measure. This step is time-consuming because when generating the

non-homogeneous Markov chains we have to discretise the time period and obtain the transi-

tion probability matrices during each time subinterval by solving quantities of linear ordinary

differential equations.

5.6 Conclusions

We proposed a modelling framework, where the interest and mortality rates are correlated and

the dynamics of each risk factor have regime-switching affine structures, to support the GAO

valuation. The correlation introduced through the diffusion components of the risk factors and

the underlying Markov chain driving the switching of regimes adequately describes the rates’

relation and dynamics. The change of measure technique was employed to obtain the explicit

solution to the pure endowment price. In particular, we utilised the forward measure associ-
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Table 5.1: Parameter set for the numerical experiment in chapter 5.

Contract specification

g = 11.1%, T = 15, n = 35;

Interest rate model: drt = a(b − rt)dt + σt dWt . See equation (5.1).

a = 0.09, b = 0.045, r0 = b;

Mortality model: dµt = cµtdt + ξt dZt . See equation (5.2).

c = 0.07, µ0 = 0.006;

Regime-switching volatilities (σ, ξ):

2-state RS model:


σ1 ξ1

σ2 ξ2


=


0.008 0.0008

0.002 0.0002



3-state RS model:



σ1 ξ1

σ2 ξ2

σ3 ξ3


=



0.008 0.0008

0.005 0.0005

0.002 0.0002



4-state RS model:



σ1 ξ1

σ2 ξ2

σ3 ξ3

σ4 ξ4



=



0.008 0.0008

0.006 0.0006

0.004 0.0004

0.002 0.0002


γi j = 1 for i , j.
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Table 5.2: Actuarial prices for GAO under two different methods given ρ = 0.9.

Regime Parameter set Monte Carlo simulation (using eqn (5.24)) Proposed approach (using eqn (5.26))

pair σ ξ Price (mean) SEM Time (m) Price (mean) SEM Time (m)

(1,1) 0.008 0.0008 0.1684685 0.00082 15 0.1687068 0.00059 0.25

(2,2) (0.008,0.002) (0.0008, 0.0002) 0.1415551 0.00051 50 0.1411626 0.00035 26

(3,3) (0.008,0.005,0.002) (0.0008,0.0005,0.0002) 0.1386103 0.00048 50 0.1386492 0.00034 26

(4,4) (0.008,0.006,0.004,0.002) (0.0008,0.0006,0.0004,0.0002) 0.1365523 0.00046 50 0.1367995 0.00033 26

(1,1) 0.005 0.0005 0.1319101 0.00061 15 0.1320392 0.00032 0.25

(1,1) 0.002 0.0002 0.1152363 0.00022 15 0.1152269 0.00012 0.25

Table 5.3: Actuarial prices for GAO under two different methods given ρ = 0.5.

Regime Parameter set Monte Carlo simulation (using eqn (5.24)) Proposed approach (using eqn (5.26))

pair σ ξ Price (mean) SEM Time (m) Price (mean) SEM Time (m)

(1,1) 0.008 0.0008 0.1564501 0.00078 15 0.1568094 0.00051 0.25

(2,2) (0.008,0.002) (0.0008, 0.0002) 0.1356113 0.00044 50 0.1353042 0.00023 26

(3,3) (0.008,0.005,0.002) (0.0008,0.0005,0.0002) 0.1323058 0.00041 50 0.1327754 0.00021 26

(4,4) (0.008,0.006,0.004,0.002) (0.0008,0.0006,0.0004,0.0002) 0.1315971 0.00039 50 0.1318359 0.00020 26

(1,1) 0.005 0.0005 0.1280335 0.00049 15 0.1286647 0.00028 0.25

(1,1) 0.002 0.0002 0.1147828 0.00021 15 0.1145978 0.00011 0.25

Table 5.4: Actuarial prices for GAO under two different methods given ρ = 0.

Regime Parameter set Monte Carlo simulation (using eqn (5.24)) Proposed approach (using eqn (5.26))

pair σ ξ Price (mean) SEM Time (m) Price (mean) SEM Time (m)

(1,1) 0.008 0.0008 0.1427846 0.00066 15 0.1430349 0.00041 0.25

(2,2) (0.008,0.002) (0.0008, 0.0002) 0.1284802 0.00035 50 0.1282701 0.00018 26

(3,3) (0.008,0.005,0.002) (0.0008,0.0005,0.0002) 0.1269821 0.00033 50 0.1265669 0.00017 26

(4,4) (0.008,0.006,0.004,0.002) (0.0008,0.0006,0.0004,0.0002) 0.1257165 0.00032 50 0.1258862 0.00016 26

(1,1) 0.005 0.0005 0.1235888 0.00039 15 0.1233202 0.00023 0.25

(1,1) 0.002 0.0002 0.1140863 0.00017 15 0.1140126 0.00009 0.25
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Table 5.5: Actuarial prices for GAO under two different methods given ρ = −0.5.

Regime Parameter set Monte Carlo simulation (using eqn (5.24)) Proposed approach (using eqn (5.26))

pair σ ξ Price (mean) SEM Time (m) Price (mean) SEM Time (m)

(1,1) 0.008 0.0008 0.1298425 0.00053 15 0.1295196 0.00030 0.25

(2,2) (0.008,0.002) (0.0008, 0.0002) 0.1217010 0.00025 50 0.1215940 0.00014 26

(3,3) (0.008,0.005,0.002) (0.0008,0.0005,0.0002) 0.1209566 0.00023 50 0.1207913 0.00013 26

(4,4) (0.008,0.006,0.004,0.002) (0.0008,0.0006,0.0004,0.0002) 0.1201273 0.00022 50 0.1201987 0.00012 26

(1,1) 0.005 0.0005 0.1187349 0.00029 15 0.1189467 0.00018 0.25

(1,1) 0.002 0.0002 0.1133012 0.00016 15 0.1133344 0.00007 0.25

Table 5.6: Actuarial prices for GAO under two different methods given ρ = −0.9.

Regime Parameter set Monte Carlo simulation (using eqn (5.24)) Proposed approach (using eqn (5.26))

pair σ ξ Price (mean) SEM Time (m) Price (mean) SEM Time (m)

(1,1) 0.008 0.0008 0.1200346 0.00038 15 0.1197627 0.00020 0.25

(2,2) (0.008,0.002) (0.0008, 0.0002) 0.1165428 0.00015 50 0.1164483 0.00010 26

(3,3) (0.008,0.005,0.002) (0.0008,0.0005,0.0002) 0.1162165 0.00014 50 0.1160103 0.00009 26

(4,4) (0.008,0.006,0.004,0.002) (0.0008,0.0006,0.0004,0.0002) 0.1158628 0.00013 50 0.1158934 0.00009 26

(1,1) 0.005 0.0005 0.1151399 0.00022 15 0.1152547 0.00012 0.25

(1,1) 0.002 0.0002 0.1128203 0.00009 15 0.1127606 0.00005 0.25
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ated with the bond price as a numéraire and solved two linear systems of ordinary differential

equations. The Kolmogorov forward equation was applied to get the intensity matrices of non-

homogeneous Markov chains, which are rarely considered in the implementation based on our

literature search. The employment of the newly constructed measure called endowment-risk-

adjusted measure by choosing the endowment price as the numéraire enables efficient valuation

of GAO. This was demonstrated by the numerical experiments under different correlation struc-

tures and regime-switching settings.

This work concentrated on the aspect of pricing an insurance product with option-embedded

characteristics. In practice, calibration of model parameters is necessary to price and manage

risks of long-term contracts. These could be achieved by least-square and maximum likelihood

methods. For dynamic calibration, a natural choice for our set-up is the hidden Markov model

(HMM) filtering technique, but must be tailored to correlated OU processes. This is a future

research direction that could be explored further.

An extension of our modelling framework to provide greater flexibility may be accomplished

by imposing that every parameter in the mortality and interest rates’ SDEs is regime switching.

The correlation parameter could also depend on the Markov chain; having a regime-switching

correlation matrix from the point of view of model calibration and HMM filtering methodology

requires extensive work.

Within our proposed model setting, there are other types of option-embedded benefits that

could be priced and analysed as they gain popularity and their demands increase. Two exam-

ples are the guaranteed minimum death benefit and guaranteed minimum withdrawal benefit

products. Finally, we note that we adopted the OU process to model the cohort mortality,

which ignores the age pattern. This deficiency can be rectified by incorporating the age factor

into the mortality model. The most popular models that contain both age and time effects are

the Lee-Carter [15] and Cairns-Blake-Dowd [3] models, but such models must also be modi-

fied to incorporate a regime-switching volatility feature for accurate pricing of annuity-linked

insurance products.
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Chapter 6

Risk measurement of a guaranteed

annuity option under a stochastic

modelling framework

6.1 Introduction

Risk measurement is an important component of business insurance and examines the insurer’s

capability in fulfilling its future obligation once a product is sold. Various kinds of risk mea-

sures have emerged in the last few decades, each with certain desirable features; see Balbas et

al. [5], Sereda et al. [40], and Wirch and Hardy [47], amongst others. Value at risk (VaR),

first introduced by Markowitz [32] and Roy [39], stands out amongst many competing risk

measures due to its simple implementation in practice. But, its inability to preserve the sub-

additivity property is its major drawback. The concept of a “coherent” risk measure was then

proposed by Artzner et al. [4] to rectify the deficiency of VaR. A representative of coherent risk

measures, conditional tail expectation (CTE) has been commonly used in recent years as the

alternative to VaR. In Canada’s life insurance regulatory framework, the Office of the Superin-

tendent of Financial Institutions requires insurers to use CTE over one year for the supervisory

target level (cf. [33]).
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Denneberg [12] and Wang et al. [46] developed a class of risk measures called distortion

risk measures which demonstrate the theoretical results of coherent risk measures. These mea-

sures are defined by distortion functions such as the proportional hazard (PH) function [44],

lookback function (LB) [21] and Wang Transform (WT) function [43]. Wirch and Hardy [47]

proved that the distortion risk measures are coherent if and only if the distortion function is

concave for positive losses; then, came the introduction of the Beta function as a distortion

function. The theory of spectral risk measure (SRM) was developed by Acerbi [1, 2] in which

this type of risk measure is linked to the user’s risk aversion.

Although many risk measures were put forward, there is no consensus which one is the best for

risk management. Sortino and Satchell [41] concluded that there is no single risk measure that

is universally acceptable because any proposed risk measure would have its own limitations.

Rachev et al. [37] argued that an ideal measure does not exist but it is reasonable to search for

risk measures ideal for the specific problem under investigation.

The insurance industry standard keeps evolving in response to new economic conditions and in

an effort to set high levels of safety and effectiveness. Given growing uncertainties nowadays,

regulatory authorities and entities with oversight functions require higher levels of safety via

capital requirements to address companies’ insolvency issues. The emergence of contracts like

unit-linked life insurance contingencies with guaranteed minimum payoffs entails cautious risk

assessment given the interaction of several risk factors.

When option-embedded insurance products began appearing in the market, various papers im-

mediately dealt with its valuation; for example, Ballotta and Haberman [6], Boyle and Hardy

[9], Liu et al. [29], amongst others. The focus of this chapter is the estimation of extreme

losses that may cause solvency problem for companies. Equitable Life taught us a valuable

lesson on the importance of assessing solvency capital adequately. For a long time Equitable

Life held small reserves to cover against adverse events due to high interest rates. However,

when interest rates fell along with the unanticipated mortality improvement Equitable had to

put itself up for sale and close new businesses in 2000. Many insurance companies still use
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classical methods to evaluate their risks, which cannot offer provisions against capital solvency.

In this work, we aim to evaluate the capital requirement of a guaranteed annuity option (GAO)

through the above-mentioned risk measures and construct a relationship among these risk mea-

sures. To attain these objectives, we develop a framework to model the loss (profit is viewed as

negative loss) of GAO in which the risk factors are stochastic and correlated with each other.

Since it is not easy to identify the underlying distribution of the loss exactly, we adopt the

Monte-Carlo simulation to get the approximate empirical distribution and obtain the estimates

of the risk measures. However, it is known that the sample variability limits the applications

of Monte-Carlo method. That is, different values are obtained under different sample paths. To

address the accuracy and credibility of the estimated risk measures, we employ the bootstrap

method to estimate the variation. Through regression, we also determine in advance the num-

ber of sample replicates needed to achieve the target sampling error and vice versa.

As an alternative approach, we employ the methodology of density approximation to estimate

the distribution of the loss random variable. We address the problem of finding the underly-

ing unknown probability distribution function (PDF) and the corresponding cumulative density

function (CDF) of the population given samples drawn from a population. Various techniques

can be utilised for density approximation; see for instance, Baron and Sheu [7], Devroye and

Györfy [14], amongst others. Traditionally, there are two principal approaches for density es-

timation: parametric, which makes stringent assumptions about the density; and nonparamet-

ric, which is essentially a distribution-free approach. Kernel density estimation is one of the

most widely-used non-parametric techniques to model densities because it provides a flexible

framework to represent multi-modal densities. However, the requirements of high memory and

computational complexity limit its applicability in practice. Moment-based density approxi-

mation, on the other hand, is an easier way to approximate the density when the moments of

a given distribution are available; see Provost [36]. In this work, we utilise the moment-based

method to approximate the distribution of the GAO losses given the samples generated from

the expression of the loss random variable. We compare this approach with the commonly

used non-parametric kernel density estimation, which is executed using the function density
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provided in the software R with a Gaussian kernel and the bandwidth is the standard deviation

of the smoothing kernel.

This chapter is structured as follows. We construct the modelling framework of the corre-

lated risk factors and evaluate the loss of a GAO in section 6.2 under the assumption of no

charges. Section 6.3 presents some well-known risk measures with an elaboration of their at-

tractive properties and limitations. In section 6.4, we illustrate numerical results covering three

related aspects. Firstly, we provide numerical risk measures from empirical CDF and from

approximated distributions through moment-based density approximation method. Secondly,

the accuracy of the risk measures is examined through the bootstrap method. The byproduct of

this process is that we could obtain the number of replicates for a given desired standard error

according to a relation derived using a regression method. Finally, a sensitivity analysis pro-

vides an examination of the impact of each parameter on various risk measures, which could

be useful for parameter control and calibration. Finally, section 6.5 concludes.

6.2 The loss random variable associated with a GAO

6.2.1 Description of a GAO contract

GAOs were designed to make pension contracts more attractive. For policyholders who plan to

receive annuities upon retirement, they offer protection against poor market performance dur-

ing the accumulation phase and adverse interest rate experience at annuitisation. The single or

regular premiums are invested into a mutual or separate fund managed by the insurance com-

pany. For simplicity, we assume an insured purchases the GAO contract at a single premium

F(0) = $1 paid at time 0.

At retirement time T , the policyholder aged x has the option to choose from the greater of

the fund value denoted as F(T ) and a life annuity converted from maturity proceeds of the fund

with annual payment g F(T ) where g is referred to as the guaranteed rate determined by the

insurance company. Thus, the life annuity has the value of g F(T ) ax(T ), where ax(T ) is the
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whole life annuity-immediate defined as the expected present value of the future unit annual

payments. The payoff function of GAO is then

CT = [g F(T ) ax(T ) − F(T )]+ = g F(T )
[
ax(T ) −

1
g

]+

. (6.1)

With the assumptions and framework above, we define the gross loss of GAO as the present

value of future payments that the insurance company needs to make without charges. Charges

are amounts that a policyholder must pay when investing in a fund. In practice, these may

include surrender charge, mortality and expense risk charge, administrative fees, and other

expenses that reduce the value of the account and consequently the return of the original in-

vestment. From equation (6.1), we see that at maturity time T , the better the performance of

the fund, the more payments the insurance company will have to incur. Therefore, it is reason-

able to invest the solvency capital in the same asset as the fund, as described in Hardy [19].

We write t px as the probability of life aged (x) surviving after t years. Consequently, the loss

L per F(0) premium can be obtained by discounting the payoff function CT using the financial

discounting factor
F(T )
F(0)

and actuarial discounting factor T px. So,

L =
F(0)
F(T ) T px CT = g T px

[
ax(T ) −

1
g

]+

. (6.2)

Intuitively, equation (6.2) says that for a pool of GAO contracts with large enough size, approx-

imately T px proportion contracts are still in force at time T . We may average the remaining

losses at time T out of all original contracts and treat them as if every contract reduces to the

portion T px at time T of its original size by the strong law of large numbers.

6.2.2 Modelling framework

From equation (6.2), it is apparent that there are two key risk factors in a GAO contract: the

interest rate rt and mortality rate µt. We do not model the asset F(t) that the fund is invested in

but rather assume simply that the fund will accumulate to F(T ) at time T ready to be annuitise
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if the GAO is exercised at time T . We follow the framework in [28] in modelling the two risk

factors whose dynamics under a filtered probability space (Ω,F , {Ft}, P) are given by

drt = a(b − rt)dt + σdXt (6.3)

and

dµt = cµtdt + ξdYt, (6.4)

where a, b, c, σ and ξ are positive constants. Here Yt = θXt +
√

1 − θ2X1
t and Xt, X1

t are

independent standard Brownian motions. So, θ is the correlation between Xt and Yt. All the

initial values r0 and µ0 are assumed to be known at time 0.

Remarks: The probability measure P denotes the objective measure since we are interested

in the capital allocation under the real world. As stated in Hardy [19], the projection of true

distributions of outcomes for equity-linked product or portfolio should be under the real-world

measure, whilst the risk-neutral measure equivalent to real-world measure, is just a device to

simplify the price of an option as an expected value and only relevant to pricing and replica-

tion. Moreover, when modelling guaranteed maturity benefits, current market statistics, which

are used to back out risk-neutral measure, may not provide sufficient market information since

the guaranteed maturity benefits often have longer maturities than the traded options. They

vary with term to maturity so that it is hard to assert that current market conditions can pro-

vide an appropriate assumption when analysing future cash flows.

Following Liu et al. [28], the annuity ax(T ) is defined as the sum of pure endowments with

different maturities and can be expressed as

ax(T ) =

∞∑
n=0

EP
[
e−

∫ T+n
T ru due−

∫ T+n
T µv dv

∣∣∣∣FT

]
=

∞∑
n=0

M(T,T + n)

=

∞∑
n=0

β(T,T + n)e−V(T,T+n), (6.5)
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with β(T,T + n) = eD(T,T+n)+H̃(T,T+n) and V(T,T + n) = A(T,T + n)rT + G̃(T,T + n)µT .

Here,

A(T,T + n) =
1 − e−an

a

D(T,T + n) =

(
b −

σ2

2a2

)
[A(T,T + n) − n] −

σ2A(T,T + n)2

4a

G̃(T,T + n) =
(ecn − 1)

c

H̃(T,T + n) =

(
ρσξ

ac
−
ξ2

2c2

)
[G̃(T,T + n) − n] +

ρσξ

ac
[A(T,T + n) − φ(T,T + n)] +

ξ2

4c
G̃(T,T + n)

2

with φ(T,T + n) = 1−e−(a−c)n

a−c .

Substituting equation (6.5) into equation (6.2), the gross loss of GAO becomes

L = g e−
∫ T

0 µv dv

 ∞∑
n=0

β(T,T + n)e−V(T,T+n) − K

+

(6.6)

with K = 1
g .

6.3 Description of risk measures

A risk measure is defined as a functional mapping from a loss random variable to the set of

real numbers. In particular, ρ : X → R is called a risk measure if it satisfies the following

conditions:

P1. Translation invariance: for any a ∈ R and a fixed X ∈X , ρ(X + a) = ρ(X) + a;

P2. Monotonicity: for X , Y, X, Y ∈X , ρ(X) , ρ(Y).

6.3.1 Quantile-based risk measures

VaR gained greater acceptance to measure risk in financial and actuarial fields due to its ease

of implementation. It is a quantile-based risk measure defined as the loss in market value that

can only be exceeded with a probability of at most 1−α, i.e., VaR is the 100α percentile of the

loss distribution. Specifically, for a risk X over a given period [0, T] and 0 < α < 1, the 100α%

VaR, denoted as VaRα(X), is

VaRα(X) = inf{x : P(X ≤ x) ≥ α}. (6.7)
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However, VaR fails to satisfy the sub-additivity property and ignores the potential loss beyond

the confidence level, which limits its use in reporting to regulators or clients. Artzner et al.

[4] introduce the concept of coherent risk measures. In addition to properties P1 and P2, a

coherent risk measure satisfies:

P3. Sub-additivity: for any X, Y ∈X , ρ(X + Y) ≤ ρ(X) + ρ(Y);

P4. Positive homogeneity: for any X ∈X , λ ≥ 0, ρ(λX) = λρ(X).

As an alternative to VaR, the conditional tail expectation (CTE), which is employed in prac-

tice, is a coherent risk measure and rectifies the shortcoming of VaR. Moreover, it takes into

account what the loss will be when the worst event occurs with probability of 1 − α. The CTE

is defined as the expected loss given that the loss values fall into the worst (1 − α) part of the

loss distribution. In other words,

CT Eα = E[X|X > VaRα]. (6.8)

Compared with VaR, CTE considers the entire tail of the loss distribution but ignores usable

information at the opposite side of the distribution. Wang [43] saw opportunity in the drawback

of the CTE and proposed a new coherent measure, which adjusts accordingly extreme low

frequency and high severity loss. This is further described in the next subsection.

6.3.2 Distortion risk measures

There are two ways of introducing distortion measures, viz. by axiomatic definition and via

definition motivated by the economic theory of choice under uncertainty. The distortion risk

measures under the second approach are mostly based on dual utility theory. In the second

approach, a distortion measure is defined by a distortion function; the risk is valued under the

distortion probability measure and not under the original probability measure; see Yaari [49].

Through the axiomatic definition approach, Wang et al. [46] developed axioms on law invari-

ance, monotonicity, comonotonic additivity, and continuity to investigate the price of insurance

risks. It is shown that risk measures meet those such axiomatic properties if and only if the risk
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measures have the Choquet integral representation under the distortion probability measure.

A distortion risk measure is defined as the distorted expectation of any loss random variable

X related to a distortion function χ : [0, 1] → [0, 1], which is a non-decreasing function with

χ(0) = 0 and χ(1) = 1. If S X(x) denotes the decumulative function of the loss random variable,

χ(S X(x)) can be viewed as a distorted decumulative distribution function. When the loss ran-

dom variable X can take any real number, the distortion risk measure can be expressed as the

Choquet integral

ρχ(x) = −

∫ 0

−∞

[1 − χ(S X(x))] dx +

∫ ∞

0
χ(S X(x)) dx. (6.9)

In addition to the basic properties of risk measures, the distortion risk measure also satisfies

the following:

P5. Conditional state independence: If X and Y have the same distribution, ρ(X) = ρ(Y);

P6. Continuity:

lim
d→0

ρ((X − d)+) = ρ(X+); lim
d→∞

ρ(min{X; d}) = ρ(X); lim
d→−∞

ρ(max{X; d}) = ρ(X). (6.10)

Note that the VaR and CTE fall into the class of distortion risk measures with χ functions

defined below. The distortion function defining the quantile risk measure is

χ(S X(x)) =


0 if 0 ≤ S X(x) < 1 − α,

1 if 1 − α ≤ S X(x) ≤ 1.

On the other hand, the distortion function for CTE risk measure is

χ(S X(x)) =


S X(x)
1−α if 0 ≤ S X(x) < 1 − α,

1 if 1 − α ≤ S X(x) ≤ 1.

There are other well-known distortion risk measures. The proportional hazard (PH) transform
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proposed by Wang [42] is a special subclass of coherent distortion functions which preserves a

larger set of properties and useful in calculating insurance premiums. The distortion function

χ for PH transform is given by

χ(S X(x)) = (S X(x))γ f or γ ∈ (0, 1], (6.11)

where γ is a risk aversion parameter and lower γ corresponds to a higher security level.

Another well-known distortion risk measure is the Wang transform (WT) [43]. The distor-

tion transform is expressed as

χ(S X(x)) = Φ(Φ−1(S X(x)) + Φ−1(ι)) (6.12)

where the parameter ι ∈ [0, 1].

An alternative transform to PH is the lookback (LB) transform introduced by Hürlimann [21]

with the associated distortion function

χ(S X(x)) = S X(x)η(1 − η log(S X(x))) (6.13)

where η ∈ (0, 1].

As discussed in Hürlimann [22], a coherent distortion risk measure follows the usual stochas-

tic order and the usual stop-loss order, which is a desirable property since more risks should

be penalised with a higher risk measure value. However, counterexamples in Hürlimann [22]

demonstrated that some distortion risk measures, such as CTE or WT, failed to gain capital

relief when reducing the risks due to the absence of degree-two tail-preserving feature. It was

further pointed out in [22] that a sound coherent distortion risk measure must preserve some

higher degree stop-loss orders, and conditions on the distortion functions of PH and LB were

derived in order to guarantee that such risk measures are degree-two tail-preserving coherent.

Convexity is another desired property as it captures the idea that diversification should not

increase the risk. Formally, this means
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P7. Convexity: given β ∈ [0, 1], ρ(λX + (1 − λ)Y) , λρ(X) + (1 − λ)ρ(Y).

It was shown in Wirch and Hardy [47] that for positive losses, a distortion risk measure is

coherent if and only if the distortion function is concave.

6.3.3 Spectral risk measures

Spectral risk measures (SRMs) are closely related to coherent risk measures. The SRM pre-

serve the subadditivity property as well as the coherence property, and it is a weighted average

of the quantiles of a loss distribution. The weights reflect the users risk aversion. As Acerbi

[2] suggested, SRM can be used to evaluate capital requirement whilst Overbeck [34] demon-

strated how it can be applied for capital allocation. The difficulty of using SRM comes from

the choice of the risk aversion function, i.e., the weighting function. The commonly used risk

aversion functions are exponential and power functions, the respective risk measures are called

the exponential spectral risk measure (ESRM) and power spectral risk measure (PSRM); see

Dowd et, al. [16].

An SRM is defined as

ρw =

∫ 1

0
w(p)q(p) dp (6.14)

where w(p) is a weighing function representing the attitude to risk and qp is the p-quantile.

In this work, we adopt the ESRM and PSRM with the corresponding weighting functions

wES (p) =
κe−κ(1−p)

(1 − e−κ)
(6.15)

and

wPS (p) = δpδ−1. (6.16)

SRMs benefit from the free choice of weighting functions based on the risk tolerance of the

user.

Related to the previous subsection, Wirch and Hardy [47] proved that if the distortion func-

tion χ is concave, the resulting distortion risk measure is spectral.
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6.4 Numerical illustrations

6.4.1 Valuation of risk measures

6.4.1.1 Monte Carlo method

Since it is not possible to identify the exact distribution of the loss of GAO defined in section

6.2, we first use the Monte Carlo methodology to evaluate the risk measures. We generate

N replicates of the loss random variable L given by equation (6.6). The replicates are then

arranged in ascending order, i.e., L(0) ≤ L(1) ≤ . . . ≤ L(N). Three candidates can be chosen as

an estimate of the VaRα: L(Nα), L(Nα+1) and the interpolated value between L(Nα) and L(Nα+1);

this assumes that we use the simulated sample as the empirical distribution of L. There is no

guarantee that one of the three estimates is better than the other two. Each is liable to be biased

though the bias tends to be very small for a large sample size. Hardy [20] indicated that the

latter two estimates provide lower bias for the right tail of the loss distribution.

Here, we use L(Nα+1) as the estimate of the VaRα. That is,

V̂aRα(L) = L(Nα+1). (6.17)

If Nα is not an integer, we round it off the usual way.

As defined above, the estimate of CTE is the mean of the worst losses in the 1 − α of the

loss distribution. Thus, the estimate of the CTE, assuming Nα is an integer, is given by

ĈT Eα(L) =

∑N
Nα+1 L( j)

N(1 − α)
. (6.18)

When estimating the distortion risk measures, we apply the Choquet integral in equation (6.9).

Given the ordered samples L(1), L(2), . . . , L(N) of L, we know that the decumulative function is

S L(L(i)) = 1 −
i
N
, i = 1, 2, . . . , N (6.19)

as the probability that each element occurs is
1
N

. Hence, the decumulative function of risk

measures under the distortion probability measure χ ◦ P can be obtained as χ(S L(L(i))).
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We obtain the approximation of the distortion risk measure by approximating the Choquet

integral using the left Riemann sum, i.e.,

ρχ(L) = −

∫ 0

−∞

[1 − χ(S L(l))] dl +

∫ ∞

0
χ(S L(l)) dl

≈

N−1∑
0

χ(S L(L(i)))(L(i+1) − L(i)), (6.20)

assuming L(0) = 0. Applying the distortion functions χ given in section 6.3 in conjunction with

equation (6.20), we get the approximate value of the distortion risk measure. The SRM can

be approximated by getting the quantiles through the empirical cumulative density function

(ECDF) of L.

6.4.1.2 Moment-based density approximation

As described above, the risk measures depend on the cumulative density function (or decumu-

lative probability function) of the loss random variable. A natural alternative to evaluate risk

measures is to provide an analytical approximation of the distribution of the loss random vari-

able. We adopt the moment-based density approximation method proposed by Provost [36].

This method requires the moments of the loss random variable. Although these are not avail-

able, we can use the sample moments derived from a relatively large sample size of replicates

for implementation.

The underlying theory of moment-based density approximation states that given the moments

of a random variable, the density of such a random variable is approximated as a product of (i)

a polynomial of degree n and (ii) a base density function whose tail behaviour is congruent to

that of the density to be approximated. The parameters of the base distribution are obtained by

equating the moments of the random variable to those of the base distribution. The polynomial

coefficients are determined by equating the first n moments of the random variable to those of

the density that needs to be approximated. This method is detailed in Provost [36].

The histogram of the generated samples shows that there is an apparent difficulty in estimating
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the distribution of L due to the truncation occurring at 0. From equation (6.6), we have

L =


Lp = g e−

∫ T
0 µv dv

[∑∞
n=0 β(T,T + n)e−V(T,T+n) − K

]
if Lp > 0,

0 if Lp ≤ 0.

Knowing the CDF of Lp, denoted as FLp , the respective CDF and PDF of L are given by the

expressions

FL(l) =


FLp(0) if l ≤ 0,

Pr[Lp ≤ l|Lp > 0] = FLp(l) if l > 0,

(6.21)

and

fL(l) =


FLp(0) if l ≤ 0,

fLp(l) if l > 0.

(6.22)

From the preliminary examination of the characteristics of the distribution of LP and with the

aid of calculated moments, we choose the t and normal distributions as base densities and as-

sume a polynomial degree of n = 10. The choice of the polynomial degree is justified by:

(i) the availability of maximum moments constraint by the base distribution itself and (ii) the

influence (or the lack thereof) of the higher degree terms of the polynomial. From Table 6.1,

we see that as the degree n increases, the magnitude of the parameters decreases. As n goes up

to 10, they become very close to 0. This tells us that degrees beyond 10 is not necessary as the

higher-order terms have very little effect on the distribution.

Under the assumption of a t-base density, we make the transformation Xt :=
Lp − u

q
. We cal-

culate from the samples the first 10 moments of LP denoted by µLp( j), j = 1, , 2, . . . , 10 and

of Xt denoted by µXt( j), j = 1, , 2, . . . , 10. Here, the transformation is employed to facilitate

the establishment of the density approximants identical to those obtained in terms of certain

orthogonal polynomials. The random variable Xt follows a t distribution whose density is de-

noted by ΨXt(x) and its first 2n = 20 theoretical moments denoted by mXt( j), j = 1, 2, . . . , 20
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can be obtained. The parameters u, q and d (degrees of freedom of a t distribution) are deter-

mined by setting µXt(i) = mXt(i) (in terms of the µLp(i) expressions) for i = 1, 2, 3, 4. That

is,

u = µLP(1)

d = 4 +

2
(
3
(
µLp (3)−u3

3u

)2
− 1

)
(
µLp(4) − u4 −

6u2(µLp (3)−u3)
3u

)
q =

√(
µLp(3) − u3

)
(d − 2)

3ud
.

The approximated density of Xt is then

fXt(x) = ΨXt(x)
10∑

m=0

ht(m) xm,

where ht(i), i = 0, 1, . . . , 10 are the polynomial coefficients determined by (ht(0), ht(1), . . . , ht(n))> =

M−1
t (µXt(0), . . . , µXt(n))> and Mt is an (n+1)× (n+1) matrix whose (i+1)th row has the entries

(mXt(i), mXt(i + 1), . . . ,mXt(i + n)). Therefore, the density of Lp using the t distribution as the

base density is approximated as

fLp(l) =
Γ(d+1

2 )

q Γ(d
2 )
√
πd

1 +
1
d

(
l − u

q

)2− d+1
2 n∑

m=0

ht(m)
q

(
l − u

q

)m

. (6.23)

When we choose the normal distribution as the base density, the transformation is Xn :=
Lp − θ

ν
.

The density of the standard normal random variable is given as ΦXn(x) and its first 20 theoret-

ical moments denoted by mXn(i), i = 1, 2, . . . , 10 can be obtained. The parameters θ and ν

are

θ = µLp(1)

ν =

√
µLp(2) − µLp(1)2
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The approximated density of Lp can be similarly derived as

fLp(l) =
1
√

2πν
e−

(l−θ)2

2ν2

n∑
m=0

hn(m)
ν

(
l − u
ν

)m

, (6.24)

where hn(i), i = 0, 1, . . . , 10 are polynomial coefficients obtained from (hn(0), hn(1), . . . , hn(n))> =

M−1
n (µXn(0), µXn(1), . . . , µXn(n))> and the (i + 1)th row of the (n + 1) × (n + 1) matrix Mn is

(mXn(i), mXn(i + 1), . . . , mXn(i + n)). The calculated coefficients of the polynomials in the ap-

proximated distributions under both the t and normal base densities are exhibited in Table 6.1

for different N number of replicates.

Table 6.1: Estimated polynomial coefficients in the density approximants under t and normal

base densities.

Degree t base normal base

N = 10000 N = 100000 N = 1000000 N = 10000 N = 100000 N = 1000000

0 1.046344e+00 1.014913e+00 1.011061e+00 1.006584e+00 1.005781e+00 9.993913e-01

1 -1.373447e-01 -1.436735e-01 -1.359162e-01 -1.053166e-01 -1.241525e-01 -1.166146e-01

2 -2.947464e-02 6.543860e-03 1.447174e-02 -3.582583e-04 -6.825984e-03 1.911297e-02

3 5.868048e-02 5.916338e-02 5.535582e-02 3.160496e-02 3.652886e-02 3.104721e-02

4 -5.023485e-03 -8.354558e-03 -1.029980e-02 -6.549157e-03 3.521606e-05 -1.477202e-02

5 -3.731151e-03 -3.410847e-03 -3.122710e-03 5.008525e-04 2.140068e-03 3.732859e-03

6 3.263180e-04 4.784531e-04 6.115308e-04 9.469542e-04 -2.736820e-04 2.497891e-03

7 7.202648e-05 5.965667e-05 5.571442e-05 7.176375e-06 -2.328274e-04 -4.676521e-04

8 -5.439679e-06 -8.358958e-06 -1.084437e-05 -9.062617e-06 5.991452e-05 -1.466368e-04

9 -3.681676e-07 -2.792040e-07 -2.741076e-07 2.365550e-06 7.314094e-06 1.754877e-05

10 2.161631e-08 3.738611e-08 4.873466e-08 1.791662e-07 -1.319306e-06 3.957992e-06

With the determination of the approximated density of Lp in equations (6.23) and (6.24), the

calculation of the CDF of Lp denoted by FLp is immediate. Consequently, the approximated

distribution of L can be derived via equations (6.21) and (6.22). The results are depicted in

Figures 6.1 - 6.2.
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(a) Histogram of Lp

(b) Histogram of L

Figure 6.1: Histogram approximation.
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Figure 6.2: CDF approximation.

The Kolmogorov-Smirnov test is used to assess the goodness of fit of the approximated densi-

ties. In order to illustrate that the sample we used to estimate the distributions is not a special

case and prove that other samples also fit very well to the approximated distributions, we

generate 3 other sets of samples (labelled samples 2, 3 and 4), and perform the Kolmogorov-

Smirnov test. The test is conducted under three sample sizes: N = 10, 000, N = 100, 000

and N = 1, 000, 000. In each sample size, we investigate the goodness of fit under both the

t and normal density bases, and provide the p-values together with the Kolmogorov-Smirnov

distance statistic presented in brackets.

Table 6.2 exhibits that the approximated distributions under the t base and normal base den-

sities both fit well the other sets of data. However, the normal base density does a better job

than the t base density. Moreover, as we increase the sample size, the approximants has better

fit. This result is consistent with the Glivenko-Cantelli theorem in which the distance statistic

converges to 0 almost surely whenever the sample size goes to infinity and the sample obser-
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vations comes from the distribution.

Table 6.2: Goodness-of-fit (Kolmogorov-Smirnov) test.

Sample N = 10,000 N = 100,000 N = 1,000,000

Number t-base normal-base t-base normal-base t-base normal-base

1. 0.4676 (0.0082) 0.9986 (0.0064) 0.9489 (0.0023) 0.9923 (0.0019) 0.9022 (0.0015) 0.9983 (0.0005)

2. 0.9349 (0.0076) 0.9283 (0.0077) 0.5433 (0.0036) 0.7002 (0.0032) 0.3001 (0.0016) 0.3677 (0.0013)

3. 0.5806 (0.0110) 0.9139 (0.0079) 0.8114 (0.0028) 0.9738 (0.0022) 0.5608 (0.0011) 0.7644 (0.0009)

4. 0.7346 (0.0097) 0.8232 (0.0089) 0.9524 (0.0023) 0.9854 (0.0019) 0.5888 (0.0014) 0.8180 (0.0010)

Note: Sample 1 was used to approximate the distribution of the GAO’s loss random variable.

Parameter values used in the computation of the risk measures are displayed in Table 6.3. The

numerical values for the risk measures under different numbers of replicates through ECDF,

moment-driven CDF with t density base function (MCDF-t) and moment-driven CDF with

normal base density function (MCDF-n) are given in Table 6.4. On the one hand, in this ta-

ble we present the risk measures we have introduced above under different parameters. On

the other hand, the difference between the simulated results and those from moment-based ap-

proach decreases as the number of sample paths increases, showing that moment-based density

approximation method provides a better fit for a large sample size.

6.4.2 Analysis of accuracy

Our results are based on the samples generated through Monte Carlo simulation without know-

ing the exact distribution of the loss random variable. Monte Carlo method is widely used in

statistical and other sciences when the underlying processes are too complicated to yield ana-

lytic solutions for certain statistics. The method offers the good features of simplicity, indepen-

dence from the dimension of random variables, and easy parallelisation. The main drawback

is that its implementation is time-consuming. Other limitations are the effect of sampling vari-

ability and difficulty in error calculation. That is, different simulations yield different results.

Note that the risk measures above are based on a particular simulation. Hence, results will
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Table 6.3: Parameter values used in the numerical experiment in chapter 6.

Parameter set for numerical analysis

Contract specification

g = 11.1%, T = 15, n = 35;

Interest rate model

a = 0.15, b = 0.045, σ = 0.01, r0 = b;

Mortality model

c = 0.1, ξ = 0.0005, µ0 = 0.006;
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Table 6.4: Risk measures of gross loss for GAO under different sample sizes.

Numbers refer to percentage of the premium.

Risk N = 10,000 N = 100,000 N = 1,000,000

measures Empirical CDF MCDF-t MCDF-n Empirical CDF MCDF-t MCDF-n Empirical CDF MCDF-t MCDF-n

VaR(α = 0.90) 13.8286 13.6450 13.8750 13.8646 13.8750 13.8550 13.8199 13.8350 13.8150

VaR(α = 0.95) 16.1527 16.8250 16.1550 16.1000 16.1450 16.1350 16.0568 16.0750 16.0550

VaR(α = 0.99) 20.9684 20.8150 20.7450 20.5446 20.5450 20.5550 20.4372 20.4150 20.4550

CTE(α = 0.90) 16.9309 16.4152 16.9370 16.8693 16.8727 16.8665 16.7901 16.8001 16.7913

CTE(α = 0.95) 18.9558 18.1954 18.9662 18.8494 18.8421 18.8453 18.7486 18.7485 18.7546

CTE(α = 0.99) 22.7461 22.3502 22.7482 22.8205 22.7814 22.7959 22.7263 22.6820 22.7125

WT(ι = 0.10) 14.1938 14.6033 14.2045 14.1073 14.1062 14.1060 14.0781 14.0790 14.0781

WT(ι = 0.05) 16.4716 16.5204 16.4915 16.3337 16.3313 16.3300 16.3093 16.3132 16.3093

WT(ι = 0.01) 20.8677 20.7574 20.9565 20.5992 20.5918 20.5814 20.6739 20.7040 20.6733

PH(γ = 0.90) 7.4506 7.3539 7.4512 7.4461 7.4472 7.4462 7.4456 7.4472 7.4454

PH(γ = 0.50) 10.9552 10.5228 10.9546 10.9015 10.9012 10.8997 10.8997 10.9037 10.8994

PH(γ = 0.10) 23.5293 23.0479 23.5345 23.3422 23.3612 23.3413 25.2823 25.4283 25.2912

LB(η = 0.90) 12.6122 12.2383 12.6193 12.5585 12.5581 12.5581 12.5327 12.5329 12.5327

LB(η = 0.50) 17.7672 17.3185 17.8507 17.5889 17.5844 17.5879 17.6509 17.6729 17.6498

LB(η = 0.10) 30.4555 30.8563 30.5028 30.3099 30.3715 30.3505 34.7219 34.9579 34.7775

ESRM(κ = 1) 8.3689 8.2509 8.3704 8.3592 8.3596 8.3595 8.3556 8.3572 8.3555

ESRM(κ = 20) 17.6068 17.9456 17.6215 17.5224 17.5182 17.5195 17.4470 17.4483 17.4453

ESRM(κ = 100) 21.9289 21.4146 22.0203 21.7378 21.7126 21.7283 21.6692 21.6266 21.6486

PSRM(δ = 1) 6.9204 6.8505 6.9215 6.9207 6.9217 6.9210 6.9228 6.9250 6.9225

PSRM(δ = 20) 17.6921 17.2066 17.7067 17.6073 17.6031 17.6044 17.5307 17.5322 17.5300

PSRM(δ = 100) 21.9429 21.4259 22.0341 21.7501 21.7256 21.7415 21.6823 21.6370 21.6617
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change due to sample variation inherent in simulation methodology. Figure 6.3 shows varia-

tion of risk measures with respect to several simulations and sample sizes. As the sample size

is increased to N = 100, 000, the values of risk measures fluctuate but converge albeit at a low

speed. This motivates us to analyse the sampling errors which determines the accuracy and

credibility of the calculated risk measures.

Figure 6.3: Risk measures under different samples.

We employ the bootstrap approach to quantify the standard errors. Bootstrap is a simulation-

based statistical analysis too that provides measures of accuracy to sample estimates. The law

of bootstrap comes from the plug-in principle, that is, the statistic calculated from the sample

can be used to estimate the parameter in the population. For common estimators and under

general distribution assumptions, the bootstrap distribution can be useful in describing the be-

haviour of quantities being estimated, such as standard error, skewness, bias and quantities for

confidence interval construction; see Chihara and Hestergerg [11].
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More sophisticated applications of the bootstrap method to risk measurement can also be found

in Kim [24], Kim and Hardy [25, 26], and Manistre and Hancock [31]. For our application, we

choose CT E(0.99) as the subject of our study. We generate M = 10, 000 samples, each with

N = 10, 000 replicates and calculate the sampling distribution of CT E(0.99). The bootstrap

distribution is obtained by resampling B = 10, 000 times from the sample paths chosen ran-

domly. The comparison of the sampling distribution with the bootstrap distribution is shown

in Figure 6.4 from which we observe that the bootstrap distribution closely resembles with the

sampling distribution.
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Figure 6.4: Sampling distribution versus bootstrap distribution.

The indispensable advantage of using bootstrap methodology to evaluate the accuracy of risk

measures over the classical Monte Carlo method lies in the time savings and computer mem-

ory. For example, M = 10, 000 times of sampling each with a sample size of N = 10, 000

consumes around 1000 hours whilst B = 10, 000 times of bootstrap from a sample size of

N = 10, 000 only needs around 30 seconds. The bootstrap standard errors of the risk measures

given in Table 6.4 are calculated under B = 100, B = 1000 and B = 10, 000 which are shown

in Table 6.5. We see that there is not much difference in the results under these three numbers
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of bootstrap replicates. Hence, B = 100 should be enough for the assessment of risk measures

accuracy considering time and computer storage constraints (cf. Chernick and LaBudde, [10]).

Table 6.5: Bootstrap standard error of loss for GAO under different sample sizes (percentage).

Bootstrap N = 10000 N = 100000 N = 1000000

standard errors B = 100 B = 1000 B = 10000 B = 100 B = 1000 B = 10000 B = 100 B = 1000 B = 10000

VaR(α = 0.90) 0.091994 0.097163 0.093352 0.033562 0.032422 0.033472 0.010494 0.010025 0.010178

VaR(α = 0.95) 0.012773 0.012578 0.012192 0.042815 0.041874 0.041412 0.013021 0.012896 0.011960

VaR(α = 0.99) 0.345039 0.341920 0.332964 0.099950 0.091801 0.091007 0.024658 0.023541 0.023700

CTE(α = 0.90) 0.119333 0.124479 0.127527 0.040905 0.038329 0.039061 0.011961 0.012251 0.012355

CTE(α = 0.95) 0.167521 0.165146 0.165443 0.054229 0.051183 0.050375 0.016315 0.016028 0.016222

CTE(α = 0.99) 0.324589 0.309199 0.308211 0.103793 0.095824 0.094474 0.031056 0.030897 0.031059

WT(ε = 0.10) 0.106533 0.101247 0.104336 0.033638 0.031386 0.031162 0.010355 0.010379 0.010364

WT(ε = 0.05) 0.154435 0.146169 0.149173 0.046112 0.044414 0.044320 0.015446 0.015380 0.015439

WT(ε = 0.01) 0.323941 0.322814 0.319924 0.090342 0.089635 0.086748 0.042117 0.041973 0.041652

PH(γ = 0.90) 0.051485 0.052217 0.052723 0.016534 0.016594 0.016502 0.005524 0.005219 0.005213

PH(γ = 0.50) 0.081997 0.079770 0.080238 0.025079 0.023898 0.024040 0.008621 0.008651 0.008597

PH(γ = 0.10) 0.833469 0.818151 0.794971 0.374531 0.394621 0.383049 0.109264 0.107965 0.108267

LB(η = 0.90) 0.080972 0.079486 0.078125 0.026719 0.025326 0.024849 0.008102 0.008097 0.007992

LB(η = 0.50) 0.221471 0.219490 0.216308 0.059959 0.059593 0.058768 0.031038 0.030970 0.030610

LB(η = 0.10) 1.507544 1.477509 1.436696 0.884943 0.874943 0.854648 0.153169 0.151289 0.149468

ESRM(κ = 1) 0.056407 0.055677 0.054389 0.017582 0.017415 0.017753 0.005878 0.005571 0.005584

ESRM(κ = 20) 0.138879 0.137562 0.138985 0.046772 0.041886 0.042579 0.013510 0.013454 0.013500

ESRM(κ = 100) 0.284437 0.267147 0.267433 0.086535 0.079620 0.078859 0.026085 0.025978 0.026085

PSRM(δ = 1) 0.051145 0.050922 0.049919 0.015935 0.015124 0.015534 0.005107 0.005046 0.005063

PSRM(δ = 20) 0.140097 0.139868 0.140277 0.046734 0.042276 0.042977 0.013644 0.013575 0.013723

PSRM(δ = 100) 0.284677 0.267644 0.267915 0.086703 0.079765 0.078998 0.026131 0.026024 0.026132

Clearly from Table 6.5, increasing the number of replicates reduces the standard error within

a certain range but this achieved at the expense of greater time and machine computation re-

source. In practice, we have to strike a balance between computational expense and result
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accuracy. We demonstrate how to obtain the needed number of replicates for a given target

sampling error referred to as bootstrap standard errors. If a quantity ϕ can be expressed as

ϕ =

∫
ϕ(x) fX(x) dx, then given a sample of N replicates X1, X2, . . . , XN generated from the

density fX(x), the estimate of ϕ is given by ϕ̂ =
1
N

N∑
i=1

ϕ(Xi). The variance of the estimate is

proportional to the square root of the sample size N by the Central Limit Theorem.

For distortion risk measures we know that for non-negative loss, if χ is continuous and dif-

ferentiable, by the chain rule of derivatives and from equation (6.9) we have

ρχ(L) =

∫ ∞

0
χ(S L(l)) dl

= l χ(S L(l))
∣∣∣∞
0
−

∫ ∞

0
l χ′ fL(l) dl

=

∫ ∞

0
h(l) fL(l) dl, (6.25)

where χ′ is the derivative of χ and h(l) = −l χ′. We use the fact that χ(S L(∞)) = χ(0) = 0 to get

equation (6.25). For non-continuous distortion risk measures such as CTE, we could construct

a function h(l) so that the CTE could be described as the integral of the product of h(l) and

the density function. By definition and in accordance with equation (6.8), the CTE could be

written as

CT Eα(l) = E [L|L > VaRα] =

∫
h(l) fL(l) dl,

where

h(l) =


l if l ≤ VaRα,

0 otherwise.

In the succeeding experimental investigation, we choose CT E(0.99) as our object of study.

Given samples generated by the Monte Carlo method, the estimate of CT Eα is ĈT Eα =

1
N

∑N
n=1 h(Ln). By the Strong Law of Large Numbers, ĈT Eα(L) → CT Eα as N → ∞. The

Central Limit Theorem also tells us that the standard error of ĈT Eα is proportional to
√

N for
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a large enough sample size N. That is,

S E(CT Eα) =
ε
√

(N)
. (6.26)

Therefore, if we set a desired value for ε, we could find out how many replicates are needed to

achieve the target sampling error. That is,

N =

(
ε

S E(CT Eα)

)2

. (6.27)

Having N replicates generated from L, we choose a sequence of m subsets, each with Ni ele-

ments, Ni ≤ N, i = 1, 2, . . . , m, and apply B times bootstrap sampling to each subset. The

standard error of the B number of CT E(0.99)s can be used as an approximation of the sampling

error. In total, we have m pairs of sampling errors S Ei with respect to the number of replicates

Ni, i = 1, 2, . . . , m. In our experiment, we examine the relation between the standard errors of

CT E(0.99) and the sample size through 1000 times of bootstrap under two different replicates

N = 50, 000 and N = 100, 000. Since a small sample size has high variation affecting the

reliability of the regression results, we choose two minimum replicates, say 1000 and 5000 for

comparison. The results are shown in Figures 6.5 – 6.6. The estimated sample size given a

sampling error and the estimated sampling error given the sample size are depicted as diamond

points in these graphs. Moreover, when we remove the effect of fluctuation that a small sample

size brings on the regression results, we get a better fit and consequently, better approximations

are attained.

Conversely, with computing time and memory as constraints in generating N replicates, we

can get the approximated sampling error from equation (6.26). Figures 6.7 and 6.8 show the

results of sampling errors given the number of replicates. Clearly, a better fit is obtained under

the setting of 5000 minimum sample size.
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(a) S E = 0.05

(b) S E = 0.10

Figure 6.5: Sample size estimate with 5000 as minimum sample size.
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(a) S E = 0.05

(b) S E = 0.10

Figure 6.6: Sample size estimate with 1000 as minimum sample size.
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(a) N = 100000

(b) N = 50000

Figure 6.7: Sampling error estimate with 5000 as minimum sample size.
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(a) N = 100000

(b) N = 50000

Figure 6.8: Sampling error estimate with 1000 as minimum sample size.
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6.4.3 Sensitivity analysis

From Table 6.4, we find substantial variation in risk measures given different parameters. We

are therefore interested in finding how parameters in our modelling framework influence the

risk measures. This leads to examining the sensitivity of risk measures with respect to various

parameters with the values in Table 6.3 used as benchmarks.

6.4.3.1 Impact of interest rate assumptions

The Vasiček model is employed to describe the evolution of the interest rate process. The three

parameters in this model are the mean-reverting rate a, mean level b, and volatility σ. Figure

6.9 shows that a has a negative influence on the risk measures, that is, the greater a is, the

smaller the risk measures are. Also, as a increases, the rate at which the risk measures decline

slows down. There is a workable range of a in the assessment risk measures; when it is large,

the risk measures go close to 0. The mean level b has a similar effect to a in so far as the

behaviour of risk measures goes. That is, if b is increased, the risk measures will decrease to 0

although at a faster speed. The relationship between b and the risk measures is approximately

linear. A valid range of b in this experiment is roughly the interval [0, 0.1]. Intuitively, higher

volatility will produce greater risk measure value and this is confirmed by the numerical results

as we perturb σ. The impact of parameters in the interest rate model is graphically shown in

Figures 6.9.

6.4.3.2 Impact of mortality rate assumptions

Figure 6.10 demonstrates the impact of parameters in the mortality rate model on the risk mea-

sures. From the left plot, the parameter c shows similar pattern of influence to the parameter a

on risk measures. The valid range for c is about (0, 0.14). The risk measures are more sensitive

to the volatility ξ of the mortality rate model than the volatility σ of the interest rate model.

This is due to the fact that mortality rate influence both the discounting and annuity factors in

the gross loss whilst the interest rate only affects the annuity factor. When ξ is greater than

0.0075, the risk measures go beyond 100% of the loss and increase at an extremely faster rate.
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Figure 6.9: The impact of parameters in the interest rate model on risk measures.

Figure 6.10: The impact of parameters in the mortality rate model on risk measures.

The above sensitivity analysis suggests that when evaluating risk measures, we need to calibrate

accurately the parameters. Otherwise, risk assessment becomes problematic and could lead to

a wrong determination of capital solvency.
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6.4.3.3 Final remark

Previously, we note that the prices of GAO in chapter 4 are highly sensitive to interest rates

driven by a pure Markov chain (cf. page 95). However, in this particular contribution (cf.

subsection 6.4.3.1), risk measures are less sensitive to interest rates than to mortality rates.

This is coming from the fact that when we were doing pricing, we assumed a dollar cash

payment (i.e., F(T ) = 1). In the risk-measurement setting, we take the stochastic nature of

F(T ) which “acts” as the discounting factor. More specifically, we observe in equation (6.2)

the double effect of µt through the loss function L.

6.5 Conclusions

In this work, we demonstrated the evaluation of risk measures on the gross loss of GAO un-

der a stochastic modelling framework. The interest and mortality rates have correlated affine

structures. We employed the moment-based density approximation method to estimate the loss

distribution and calculated risk measures with Monte-Carlo results as benchmark. To address

the accuracy of these estimates, we adopted bootstrap method to calculate their standard errors,

the so-called sampling errors. By establishing the relation between sample size and standard

error of risk measures, the required number of replicates is known for a desired standard er-

ror and vice versa. Furthermore, we conducted local sensitivity analyses (that is, we varied

one parameter at a time by a small amount around a fixed value and gauged the effect of in-

dividual perturbations on risk measures) to study the impact of interest and mortality models’

parameters on risk measures. Our analyses provided insights on how risk measures behave as

parameters are changed, and affirmed the importance of having accurate parameter estimates

for risk management implementation.

It has to be noted that our evaluation of risk measures are under the gross loss assumption

and charges were not considered. In practice, there are various charges affecting the insurance

business such as administrative fees and surrender charges. To compute risk measures with

charges included, we need to make correct and realistic assumptions on fees. For example, the

probability of withdrawal before maturity causing surrender charges is often assumed to be a
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constant. However, the likelihood of withdrawal depends on economic and social conditions,

and it is typically correlated with interest and mortality rates. Such withdrawal probability

clearly also requires mathematical modelling and any model needs to be calibrated to pertinent

data. Therefore, we may extend our work to measure risks of GAO under a two-decrement

actuarial model by incorporating stochastic withdrawal probability.
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Chapter 7

Concluding remarks

7.1 Summary and commentaries

In this thesis, we put forward various stochastic models for the evolution of financial and mor-

tality risk factors in the context of pricing and risk management of GAOs. Compared to the

current literature, we heavily emphasised the need to accommodate for a dependence struc-

ture between financial risk and mortality risk. Our framework developments contribute to the

widening of available technology in dealing with option-embedded insurance products that are

becoming more popular these days. Throughout this entire research work, we took advantage

of the power of change of measure technique in GAO valuation leading to substantial reduction

in computing time and standard errors. Our proposed methodologies demonstrated the bene-

fits that can be gained, and such can further be applied to other products with both financial

and insurance features. We introduced the applications of comonotonicity theory, and for risk

measurement, the moment-based density approximation method is advanced as an alternative

to the Monte Carlo simulation method. Both techniques outperform the Monte Carlo method

with respect to both computing time and accuracy. Certainly, they have the potential for greater

development and applications that could eventually solve efficiently some relatively challeng-

ing actuarial and financial valuation problems that are currently in existence.

In chapter 2, we built a framework based on interest rate and mortality models admitting a

dependence assumption between two risk factors. The employment of the forward measure

167
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and our newly constructed endowment-risk-adjusted measure notably aided the procedure of

pricing GAOs as shown by the comparison results with the usual Monte Carlo simulation with

respect to computing time and errors.

Explicit pricing solutions are desired and preferred to simulation-based results because the

former is exact and has important implications to implement hedging and sensitivity analy-

ses. Nonetheless, analytic pricing solutions are not easily obtainable for complicated financial

products under stochastic models. We applied comonotonicity concepts and generated explicit

bounds to GAO price as an alternative to Monte Carlo method in chapter 3. The upper and

lower bounds of the GAO prices under the framework in chapter 2 were obtained together with

their distributions and quantile functions. The principles of the methodology proposed in this

chapter may benefit the valuation of other option-embedded insurance products.

In chapter 4, a regime-switching approach was developed owing to its ability to capture struc-

tural changes in financial and insurance risks. The regime-switching feature was reflected in

three ways, namely, (i) through a Gompertz model with BM- and Markov-switching parame-

ters, (ii) via a Gompertz with pure Markov-switching parameters, and (iii) through a regime-

switching Luciano-Vigna mortality model. Along with the pure Markov interest rate model, we

provided comprehensive derivations of implementable GAO pricing expressions using again

the concept of endowment-risk-adjusted measure. The numerical results corroborated the ben-

efit of the change of measure technique under the three regime-switching frameworks.

The extension of the modelling framework in chapter 2 was considered in chapter 5. We main-

tained the dependent affine structures but relaxed the constant volatility assumptions by having

a regime-switching volatility dictated by the movement of a Markov chain. The pricing of

GAOs was facilitated again using the change of measure methodology.

In chapter 6, we turned our focus on the risk measurement of GAOs. We followed the frame-

work in chapter 2 in modelling the gross loss random variable. For simplicity, charges and

related fees were excluded. The moment-based density approximation approach was employed
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to find analytic approximation of the distribution of the GAO’s loss random variable. Different

kinds of risk measures were calculated through both Monte Carlo simulation and using the ap-

proximated distributions. A bootstrap technique was applied to get standard errors of the risk

measure results. A particular contribution, obtained from regression method, that is important

in efficiently carrying out numerical calculations is the establishment of the relation between

the sample size and the required accuracy of risk measure values.

7.2 Future research directions

The utility of the change of measure technique under various stochastic modelling frameworks

for the valuation of GAOs is ubiquitous in this thesis. Related works may be further explored

in relation to this endeavour and technique for the purpose of dealing with insurance products

having option-embedded characteristics. Such opportunities for future research investigations,

as elaborated below, arise from various limitations of this thesis and certain aspects not exten-

sively treated in the course of our modelling and analyses.

Mortality rate is more complicated than interest rate to model due to stylised facts concern-

ing the former. In our framework, the evolution of mortality rate is modelled under the simple

assumption that each cohort has the same pattern of evolution. But, a further improvement

could be attained by incorporating the age effect, similar to some well-known mortality models

proposed by Cairns et al. [1] and Lee & Carter [5] although these models lack regime-switching

capacity. We may modify our modelling framework by adopting these mortality models and

utilise the change of measure technique to price annuity-linked insurance products.

In this thesis, we also adopt parameter estimates from previous research for the purpose of ease

of comparison and exploiting what already worked in the past. But assuming the availability of

relevant real data from the market sooner or later, it is important to develop efficient and robust

estimation algorithms for all stochastic models developed in this thesis. These could include

the methods of maximum likelihood estimate (MLE), least squares (LS), and hidden Markov

model (HMM) filtering; see Elliott et al. [4] for HMM. The associated statistical inference
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questions arising after estimation of these models are rich sources of problems in continuing

this kind of research.

Hedging risks for insurance companies is more difficult than hedging financial risks due to

insurance market being less mature and less liquid in terms of trading insurance products

with derivative components. Traditionally, hedging mortality risks is achieved by coupling

life insurance and annuity products. However, the advent of new type insurance contracts,

especially finsurance products, requires new advanced hedging methodology. The newly intro-

duced hedging methods proposed by Luciano et al. [6] and Melnikov and Romaniuk [7] may

be aptly tweaked and applied into our modelling framework to hedge insurance products with

option-embedded features.

Monte Carlo methodology is frequently used in our work to obtain numerical results. How-

ever, the sample variability and the cost of time and computer memory limit its applications

when dealing with complex models. Instead of increasing the number of replicates to reduce

result uncertainties, several variance reduction methods could be used, for example, antithetic

variate, control variable, and importance sampling. We may employ one or a combination of

several such methods to reduce the computing time and errors in our valuation process and

especially for risk measurement given the apparent need for simulation.

The characterisation of the underlying distribution of the loss random variable is not straight-

forward when we incorporate dependence structure into the modelling framework of complex

insurance products. An alternative way to Monte Carlo methodology in pricing such products

is to approximate the distribution via density approximation methods such as moment-based

density and kernel density approximation. We may adopt these methods to approximate the

distribution of loss variable in the model framework of chapter 2 and chapter 5 to value GAOs

and other guaranteed maturity contracts.

To culminate this research direction, we note that in our work on GAO pricing, we only con-

sider two risks: interest rate and mortality rate, and we are assuming that the proceeds at
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maturity from the single premium paid end up to a dollar cash amount. However, as we know

the attractiveness of option-embedded insurance products stems from not only their function

as a pension plan but also as a financial investment vehicle. Therefore, the incorporation of in-

vestment risk, which must be correlated with interest rate, into our modelling framework would

be more realistic. We may employ the change of measure technique and conditional comono-

tonicity detailed in Cheung [2, 3] to price GAOs or other insurance products with guarantees

under the presence of investment risk.
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Appendix A

Derivation of survival probability in

chapter 4

The following two appendices are devoted to the derivation of the survival probability S (t,T )

under the two regime-switching mortality models M2 and M3.

A.1 Derivation of survival probability under M2

Under the mortality model M2, the dynamics of a(t) and b(t) are given by

a(t) = α(yt)t + a(0)

b(t) = γ(yt)t + b(0)

where

α(yt) =
〈
α, yt

〉
γ(yt) =

〈
γ, yt

〉
and α = (α1, α2, . . . , αm), γ = (γ1, γ2, . . . , γm), a(0) and b(0) are the initial values of a and b.

Let Ψt,u = e−
∫ u

t µ(x+v,v,yt,v) dv. We then get the dynamics

d(Ψt,uyt,u) = Ψt,u

[
Λyt,udu + dnu

]
+ yt,u

[
−µ(x + u, u, yt,u)Ψt,udu

]
.
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In integral form,

Ψt,T yt,T = yt +

∫ T

t
Ψt,uΛyt,u du +

∫ T

t
Ψt,u dnu −

∫ T

t
µ(x + u, u, yt,u)Ψt,uyt,u du.

This implies that

E
[
Ψt,T yt,T

∣∣∣ yt

]
= yt +

∫ T

t
ΛE

[
Ψt,uyt,u

∣∣∣ yt

]
du −

∫ T

t
E

[
µ(x + u, u, yt,u)Ψt,uyt,u

∣∣∣ yt

]
du. (A.1)

Note that

µ(x + u, u, yt,u)Ψt,uyt,u = G(u)Ψt,uyt,u,

where

G(u) =



δ1eγ1(u+ν1)2

δ2eγ2(u+ν2)2

. . .

δmeγm(u+νm)2


is a diagonal matrix with

δi = ea(0)+b(0)x− (αi+γi x+b(0))2

4γi

νi =
αi + γix + b(0)

2γi
,

for i = 1, 2, . . . ,m.

Define ψt,T := E
[
Ψt,T yt,T

∣∣∣ yt

]
. Thus, equation (A.1) becomes

ψt,T = yt +

∫ T

t
Λψt,u du −

∫ T

t
G(u)ψt,u du

= yt +

∫ T

t
(Λ −G(u))ψt,u du.

Differentiating the above equation with respect to T , we have

dψt,T = ψt,T (Λ −G(T ))dT. (A.2)
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When solving equation (A.2), we have to calculate the integral which has the form like
∫

ex2
dx.

Although ex2
does not have an elementary antiderivative, we can provide a Taylor series repre-

sentation for it. It is known that

ex2
=

∞∑
n=0

x2n

n!
= 1 + x2 +

x4

2!
+ . . . +

x2n

n!
+ . . .

and so,

∫
ex2

dx =

∫ ∞∑
n=0

x2n

n!
dx =

∞∑
n=0

∫
x2n

n!
dx =

∞∑
n=0

x2n+1

(2n + 1)n!
.

Therefore, the solution of the differential equation is

ψt,T = e(Λ(T−t)−D(T )+D(t))yt,

where

D(u) =



∞∑
n=0

δ1γ
n
1

(2n + 1)n!
(u + ν1)(2n+1)

∞∑
n=0

δ2γ
n
2

(2n + 1)n!
(u + ν2)(2n+1)

. . .

∞∑
n=0

δmγ
n
m

(2n + 1)n!
(u + νm)(2n+1)



.
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Integrating the matrix G(u), we have

∫ T

t
G(u) du

=



∫ T
t δ1eγ1(u+ν1)2

du

∫ T
t δ2eγ2(u+ν2)2

du

. . .

∫ T
t δmeγm(u+νm)2

du



=



∫ √|γ1 |(T+ν1)
√
|γ1 |(t+ν1)

δ1√
|γ1 |

eg1v2
dv

∫ √|γ2 |(T+ν2)
√
|γ2 |(t+ν2)

δ2√
|γ2 |

eg2v2
dv

. . .

∫ √|γm |(T+νm)
√
|γm |(t+νm)

δm√
|γm |

egmv2
dv



=



∫ √|γ1 |(T+ν1)
√
|γ1 |(t+ν1)

δ1√
|γ1 |

∞∑
n=0

gn
1v2n

n!
dv

∫ √|γ2 |(T+ν2)
√
|γ2 |(t+ν2)

δ2√
|γ2 |

∞∑
n=0

gn
2v2n

n!
dv

. . .

∫ √|γm |(T+νm)
√
|γm |(t+νm)

δm√
|γm |

∞∑
n=0

gn
mv2n

n!
dv



=



∑∞
n=0

δ1γ
n
1

(
(T+ν1)2n+1−(t+ν1)2n+1

)
(2n+1)n!

∑∞
n=0

δ2γ
n
2

(
(T+ν2)2n+1−(t+ν2)2n+1

)
(2n+1)n!

. . .

∑∞
n=0

δmγ
n
m
(
(T+νm)2n+1−(t+νm)2n+1

)
(2n+1)n!


= D(T ) − D(t),

where gi = sgn(γi) and sgn is the sign function.

Write

S (t,T ) := E
[
e−

∫ T
t µ(x+u,u,yt,u) du

∣∣∣∣Jt

]
.
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Hence,

S (t,T ) = E
[
e−

∫ T
t µ(x+u,u,yt,u) du

∣∣∣∣ yt

]
= E

[
e−

∫ T
t µ(x+u,u,yt,u) du〈yT , 1〉

∣∣∣∣ yt

]
=

〈
E

[
e−

∫ T
t µ(x+u,u,yt,u) duyT

∣∣∣∣ yt

]
, 1

〉
= 〈e(Λ(T−t)−D(T )+D(t))yt, 1

〉
=

〈
yt, e(Λ>(T−t)−D(T )+D(t))1

〉
. (A.3)

A.2 Derivation of survival probability under M3

In order to obtain the survival index under M3, we need to find Eyt
[eG(t,T,yt)], i.e., the expecta-

tion of eG(t,T,yt). Define κt,s = e
1
2

∫ s
t

〈
φu,yu

〉
du, which has the differential form

dκt,s =
1
2

〈
φs, ys

〉
κt,s ds.

Therefore,

dκt,syt,s = κt,sdyt,s + yt,sdκt,s

= κt,s

[
Λyt,sds + dns

]
+ yt,s

[
1
2

〈
φs, ys

〉
κt,s

]
ds

=

[
Λκt,syt,s +

1
2

〈
φs, ys

〉
κt,syt,s

]
ds + κt,sdns. (A.4)

The integral form of (A.4) is then

κt,syt,s = yt +

∫ s

t
Λκt,vyt,v dv +

1
2

∫ s

t

〈
φv, yv

〉
κt,vyt,v dv +

∫ s

t
κt,v dnv. (A.5)

Taking expectations on both sides of (A.5), we obtain

κ̃t,s := E
[
κt,syt,s

]
= yt +

∫ s

t
ΛE

[
κt,vyt,v

]
dv +

1
2

∫ s

t
E

[〈
φv, yv

〉
κt,vyt,v

]
dv. (A.6)

Note that
〈
φv, yv

〉
κt,vyt,v = K(v)κt,vyt,v where K(v) is a time-varying diagonal matrix expressed
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as

K(v) =



( ec(T−v)−1
c σ1)2

( ec(T−v)−1
c σ2)2

. . .

( ec(T−v)−1
c σm)2



.

Therefore, κ̃t,s = yt +

∫ s

t

[
Λ> +

1
2

K(v)
]
κ̃t,v dv. This is equivalent to solving the differential

equation
d
ds
κt,s = K̃(s)κt,s,

with

κ̃t,t = yt

K̃(s) = Λ> +
1
2

K(s).

Let Πt,s be the fundamental matrix satisfying the first-order ODE d
dsΠt,s = K̃(s)Πt,s. Then

κt,s = Πt,syt so that

E
[
e

1
2

∫ T
t

〈
φv,yv

〉
dv
|Ft

]
= E

[
e

1
2

∫ T
t

〈
φv,yv

〉
dv 〈yT , 1

〉
|Ft

]
=

〈̃
κt,T , 1

〉
=

〈
Πt,T yt, 1

〉
.

It follows that the survival index is

S (t,T ) = e−H(t,T )µt
〈
Πt,T yt, 1

〉
=

〈
yt, e−H(t,T )µtΠ>t,T 1

〉
,

which reconciles with equation (4.16).
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