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Abstract 

The overall antibiotic resistance of a bacterial population results from the combination of 

a wide range of susceptibilities displayed by subsets of bacterial cells. Bacterial heteroresistance 

to antibiotics has been documented for several opportunistic Gram-negative bacteria, but the 

mechanism of heteroresistance is unclear. I use Burkholderia cenocepacia as a model 

opportunistic bacterium to investigate the implications of heterogeneity in the response to the 

antimicrobial peptide polymyxin B (PmB) and also other bactericidal antibiotics. Here, I report 

that B. cenocepacia is heteroresistant to PmB. Population analysis profiling identified B. 

cenocepacia subpopulations arising from a seemingly homogenous culture that are resistant to 

higher levels of PmB than the rest of the cells in the culture, and protect the more sensitive cells 

from killing, as well as sensitive bacteria from other species, such as Pseudomonas aeruginosa 

and Escherichia coli. Communication of resistance depended on upregulation of putrescine 

synthesis and YceI, a widely conserved low-molecular weight secreted protein. Deletion of genes 

for the synthesis of putrescine and YceI abrogate protection, while pharmacologic inhibition of 

putrescine synthesis reduced resistance to PmB. Polyamines and YceI were also required for 

heteroresistance of B. cenocepacia to various bactericidal antibiotics. I propose that putrescine 

and YceI resemble "danger" infochemicals whose increased production by a bacterial 

subpopulation, becoming more resistant to bactericidal antibiotics, communicates higher level of 

resistance to more sensitive members of the population of the same or different species. 

Putrescine protects from antibiotics through its ability to compete with PmB for surface 

binding and protection against antibiotic-induced oxidative stress. YceI proteins are conserved 

bacterial lipocalins or “bacteriocalins”. Bacteriocalins from different Gram-positive and Gram-

negative bacteria are involved in the response to hydrophobic or amphiphilic antibiotics (PmB, 

rifampicin, norfloxacin and ceftazidime) but not hydrophilic ones (such as gentamicin). This 

effect is achieved by their preferential binding affinity to hydrophobic moieties. Together, my 

findings uncover a novel, non-genetic and cooperative mechanism of transient increase in 

resistance chemically communicated from more resistant members of heterogeneous populations 

to less resistant bacteria of the same or other species. This multifactorial mechanism of 

communication of antibiotic resistance offers novel targets for antimicrobial intervention. 
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1.1. Introduction 

Infectious diseases are among the most aggressive killers worldwide claiming the lives of 

millions of people annually. Microbial infections in general constitute a major burden on the 

society and the healthcare systems. While immunization provides a preventative approach 

against infection with certain bacteria; this strategy does not provide protection against the 

increasing variety of microbial infections. Since the middle of the twentieth century, antibiotics 

helped eradicate infections saving lives. However, the rapid emergence of antibiotic resistance in 

addition to the severe decline in development of new antibiotics following the golden era of 

antibiotic discovery have often put patients and healthcare practitioners in the losing side of 

combating microbial infections. Furthermore, the individuality of response to antibiotics within a 

population of bacteria also known as antimicrobial heteroresistance may further complicate the 

clinical picture impeding the eradication of microbial infections. On the other hand, the ability of 

bacteria to transfer antibiotic resistance determinants by means of horizontal gene transfer 

mechanisms has led to the rapid spread of multi-drug resistance across various bacterial species. 

The ability of bacteria to communicate antibiotic resistance among each other via small 

molecules has recently drawn attention to the probability of the transient increase in antibiotic 

resistance and protection of bacteria, normally sensitive to an antibiotic, mediated by more 

resistant bacteria by non-genetic mechanisms leading to therapeutic failure. In this section, I will 

introduce different classes of antibiotics together with the mechanisms of response and resistance 

of bacteria to antibiotic exposure. In addition, I will discuss the phenomenon of antimicrobial 

heteroresistance, which has been poorly characterized in the literature despite its clinical 

importance, as well as the chemical communication of antibiotic resistance among different 

bacteria.  

1.2. Antibiotics and the dilemma of antibiotic resistance 

Common usage of the term antibiotics often extends to include synthetic antimicrobial 

chemotherapeutic agents, such as sulfonamides and quinolones (1). Antibiotics differ markedly 

in physical, chemical, and pharmacological properties, in antimicrobial spectra, and in 

mechanisms of action (1).  
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1.2.1. Classes of antibiotics 

Classically, antibiotics are classified into two broad classes; bacteriostatic and bactericidal 

agents. Bacteriostatic agents act by preventing the growth of bacteria, whereas bactericidal ones 

act by killing bacteria. A generally accepted definition of bactericidal activity is ~99.9% 

reduction in viable bacterial density in an 18–24-h period in a standard Minimum bactericidal 

concentration (MBC) assay according to the CLSI guidelines, whereas bacteriostatic activity has 

been defined as a ratio of MBC to MIC of >4 (2). Indeed, these 2 categories may overlap in that 

no category of antibiotics exclusively kills bacteria and another that only inhibits growth of 

bacteria; bacteriostatic and bactericidal categorizations in clinical practice are not absolute (2). 

Selected classes of antibiotics pertaining to the work of the present thesis will be discussed 

briefly in this section. 

1.2.1.1. Antimicrobial peptides 

Antimicrobial peptides (APs) are evolutionarily conserved molecules involved in the defense 

mechanisms of a wide range of organisms. Produced in bacteria, insects, plants and vertebrates, 

APs protect against a broad array of infectious agents (3). Moreover, APs are being tested in 

clinical trials as anti-infective agents while others are already in use, such as polymyxin B (PmB) 

(4). APs vary enormously in sequence and structure, but certain features are common. The 

natural APs are generally 12–50 amino acids in length, have a net positive charge, and contain 

around 50% hydrophobic amino acids. They fold into amphiphilic structures in which the 

positively charged and hydrophilic domain(s) are well separated from the hydrophobic domain(s) 

(4). Such molecules are well suited to interact with membranes, especially bacterial membranes 

with their negatively charged and hydrophilic head groups and hydrophobic cores (4). Based on 

their amino acid composition, size and conformational structures, APs can be divided into 

several categories, such as peptides with (i) α- helix structures, e.g. human cathelicidin; (ii) β-

sheet structures stabilized by disulfide bridges, e.g. human defensins; (iii) extended structures, 

e.g. indolicidin, a bovine AP; and (iv) loop structures, e.g. cyclic defensins found in rhesus 

macaques (3), and cyclic lipopeptides like polymyxin B (PmB) (4).  
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The exact mechanism by which APs exert their antimicrobial properties is continuously being 

investigated, but it is generally accepted that cationic APs interact by electrostatic forces with the 

negatively charged phospholipid headgroups on the bacterial membrane and cause disruption (3). 

The most widely accepted mechanisms of interaction are the “barrel stave” model, in which the 

peptides bind to the cell membrane, then the peptides themselves insert into the hydrophobic 

core of the membrane forming a pore, causing leakage of cytoplasmic material and death of the 

cell, and the “carpet model” in which peptides bind to the phospholipids at the outer surfaces of 

the cell membrane, followed by the alignment of the peptide monomers, then the peptides 

reorient themselves towards the hydrophobic core of the membrane causing the disintegration of 

the lipid bilayer (3). Permeabilization of bacterial membranes is a crucial step in the 

antimicrobial activity of APs, but evidence shows that they also inhibit a variety of essential 

microbial processes, such as protein, cell wall, and nucleic acid synthesis (5). 

Alteration of the surface charges by reducing the net negative charges is one of the major 

mechanisms that bacteria utilize to resist killing by antimicrobial peptides (5). Examples of this 

strategy of resistance are phosphoethanolamine or aminoarabinose modifications of lipid A, lysyl 

phosphatidylglycerol modification of membranes, and shielding of surface charges by capsular 

polysaccharides (5). Other mechanisms of resistance include degradation by extracellular 

proteases, reduced import and increased export by efflux pumps (5, 6). 

1.2.1.2. β- lactams 

Penicillin G (benzylpenicillin) was the first β-lactam antibiotic introduced into clinical practice. 

β-lactam antibiotics now include: penicillinase-resistant, amino-, carboxy- , indanyl-, and ureido-

penicillins; first- to fifth-generation cephalosporins; monobactams; and carbapenems. The 

distinctive structural feature of a β-lactam is the highly reactive four-membered ring (7). All β-

lactam antibiotics are bactericidal agents that inhibit cell wall synthesis through inhibition of 

bacterial transpeptidases known as penicillin-binding proteins (PBPs), which are essential 

enzymes that catalyze the final crosslinking step since the β-lactams are structurally similar to 

the penultimate D-Alanyl-D-Alanine of the pentapeptide that is attached to N-acetyl muramic 

acid. Subsequent steps in cell wall synthesis are hindered while autolysis by cell wall degrading 
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(autolytic) enzymes continues. Bacterial cells become permeable to water, rapidly take up fluid, 

and eventually lyse (7, 8). 

Bacteria tend to avoid the bactericidal effect of β-lactams through: production of beta-

lactamases, altered PBPs that exhibit low affinity for β-lactam antibiotics such as PBP 2' 

(PBP2a) of Staphylococcus aureus and lack or diminished expression of outer membrane 

proteins (OMPs) in Gram-negative bacteria which restricts the entry of certain β-lactams into the 

periplasmic space of Gram-negative bacteria and hence access to PBPs on the inner membrane 

(7). Furthermore, efflux mechanisms have been described in which bacteria pump out β-lactam 

antibiotics (9). 

1.2.1.3. Aminoglycosides 

The aminoglycosides are bactericidal antibiotics active against many Gram-negative aerobes and 

against some strains of staphylococci. They are taken up into sensitive bacterial cells by an active 

transport process that is inhibited in anaerobic, acidic, or hyperosmolar environments (10). An 

essential target of aminoglycoside antibiotics is the ribosome where they bind to the 16S 

ribosomal RNA and this binding interferes with protein synthesis. Low concentrations of 

aminoglycosides can cause misreading of the genetic code and higher concentrations will block 

translation (11). The bactericidal effect of aminoglycosides may be due to aberrant proteins 

resulting from misreading which form membrane channels or inhibition of other steps in 

metabolism (12). Aminoglycosides are also capable of directly disrupting the integrity of the 

outer membrane in Gram negative bacteria by displacing the divalent cations which bridge 

adjacent LPS molecules and are required to maintain integrity. This alteration in outer membrane 

results in the 'self-promoted' uptake into the cell (11, 12).  

The major mechanisms of resistance to aminoglycosides in pathogenic bacteria are: (i) 

deactivation of the drug, e.g. by N-acetylation, O-nucleotidylation, or O-phosphorylation, (ii) 

reduction of the intracellular concentration of the drug by alteration of outer membrane 

permeability, decreased inner membrane transport, or active efflux from the cell, and (iii) 

alteration of the target by mutation in ribosomal proteins or in 16S rRNA (13, 14). Methylation 

of 16S ribosomal RNA has emerged as a mechanism of resistance against aminoglycosides 

among Gram-negative pathogens belonging to the family Enterobacteriaceae and glucose-
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nonfermentative microbes, including Pseudomonas aeruginosa and Acinetobacter species. This 

event is mediated by a newly recognized group of 16S rRNA methylases, which share modest 

similarity to those produced by aminoglycoside-producing actinomycetes (15). 

1.2.1.4. Tetracyclines 

The tetracyclines are mainly bacteriostatic, with a broad spectrum of antimicrobial activity 

including many aerobic and anaerobic Gram-positive and Gram-negative pathogenic bacteria, 

Chlamydiaceae, Mycoplasma spp., Rickettsia spp., spirochaetes, and some protozoa (10). 

Tetracyclines are taken up into sensitive bacterial cells by an active transport process (11). Once 

within the cell they bind reversibly to the 30S subunit of the ribosome, preventing the binding of 

aminoacyl transfer RNA and inhibiting protein synthesis and hence cell growth (16). Although 

tetracyclines also inhibit protein synthesis in mammalian cells they are not actively taken up, 

permitting selective activity against the infecting organism (11). 

Resistance to the tetracyclines is usually plasmid-mediated and transferable (10). It is often 

inducible, and appears to be associated with the ability to prevent accumulation of the antibiotic 

within the bacterial cell, both by decreasing active transport of the drug into the cell and by 

increasing tetracycline efflux most commonly through the tetracycline resistant efflux proteins 

which belong to the major facilitator superfamily (MFS)(16, 17). 

1.2.1.5. Chloramphenicol 

Chloramphenicol is a naturally occurring compound discovered in a systematic screening of 

Streptomyces strains following the discovery of streptomycin in the 1940s (18). 

Chloramphenicol acts by inhibiting the peptidyl transferase reaction at which the peptide bond is 

formed on 70S ribosomes (18). It possesses a broad spectrum of activity by acting against Gram-

positive and Gram-negative bacteria, in addition to chlamydiae and rickettsiae; being mainly 

bacteriostatic in action especially against Gram-negative bacteria (18). Acetyltrasferases, 

bacterial enzymes that acetylate the hydroxyl groups of chloramphenicol hence inactivating it, 

are the most common mechanism of resistance against this antibiotic (19). In addition, efflux 

proteins specific for chloramphenicol has been described providing high-level resistance (19).  
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1.2.1.6. Rifampicin 

Rifampicin (known in the US as rifampin) is a semi-synthetic derivative of rifamycin B produced 

by Streptomyces mediterranei. It interferes with mRNA formation by binding to the β-subunit of 

DNA-dependent RNA polymerase (RpoB) (20). It exhibits potent bactericidal activity against a 

range of bacteria, notably staphylococci and legionellae; it is a useful antimycobacterial drug 

used for tuberculosis and leprosy (20). Resistance readily arises by point mutations in the 

rifampicin-binding region of rpoB (19).  

1.2.1.7. Quinolones 

Fluoroquinolones are bactericidal (10, 21). They inhibit bacterial DNA synthesis by inhibiting 

the A subunit of DNA gyrase and topoisomerase (10). DNA gyrase, encoded by gyrA and gyrB, 

is the enzyme responsible for inducing negative supercoils in DNA, whereas topoisomerase IV, 

encoded by parC and parE, is involved in DNA relaxation and separation (22). In general, 

fluoroquinolones have good in vitro activity against many Gram-positive and Gram-negative 

pathogens. These agents also are active against some drug resistant pathogens, including 

penicillin- or macrolide-resistant Streptococcus pneumoniae (21). 

Mutations in specific regions termed quinolone resistance-determining regions (QRDR) of the 

parC or gyrA genes of topoisomerase IV and DNA gyrase lead to development of resistance to 

quinolone antimicrobials (21). Active efflux, an alternate mechanism leading to fluoroquinolone 

resistance, prevents accumulation of the antimicrobial in the bacterial cell. Efflux typically 

results in low-level resistance and may or may not occur in conjunction with mutations in 

topoisomerase IV or DNA gyrase (21).There is complete cross-resistance between ciprofloxacin 

and the other fluoroquinolones (10, 23). 

1.2.1.8. Novobiocin 

Novobiocin is a bacteriostatic coumarin antibiotic that binds to the B subunit of DNA gyrase 

(GyrB) blocking the ATPase activity and hence inhibiting DNA supercoiling (24). It is active 

against Gram-positive organisms, with little activity against enteric Gram-negative bacilli (20). 

Resistance against novobiocin may be mediated by multi-drug efflux systems (19), or due to 
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mutation in gyrB (24). In 2009, FDA withdrew the approval for use of novobiocin capsules on 

the market (25). 

1.2.1.9. Trimethoprim 

Trimethoprim, a bacteriostatic agent (2), is a diaminopyrimidine that inhibits dihydrofolate 

reductase (DHFR), the enzyme that converts the metabolically inactive dihydrofolate into the 

active form tetrahydrofolate (20). Such inhibition leads to various effects, including failure to 

synthesize purine nucleotides and thymidine (20). The selective toxicity of trimethoprim stems 

from its greater affinity for the dihydrofolate reductase of bacteria than for the corresponding 

mammalian enzyme (20). Mutations of the chromosomal DHFR or plasmid-encoded, drug-

insusceptible DHFRs are the most common means of resistance against trimethoprim that also 

led to rapid dissemination of resistance in particular the insusceptible enzyme encoded by mobile 

genetic elements (26). 

1.2.2. Intrinsic versus acquired resistance to antibiotics 

Bacterial resistance to antibiotics can be achieved through intrinsic or acquired mechanisms (19). 

Intrinsic resistance to antibiotics is a natural trait independent of antibiotic selective pressure; 

whereas acquired resistance is induced upon exposure of previously susceptible bacteria to 

antibiotics. 

1.2.2.1. Intrinsic resistance to antibiotics 

Many bacteria display intrinsic resistance to different classes of antibiotics; a trait that is 

genetically encoded within their genome, and not accredited to horizontal gene transfer (27). 

Intrinsic resistance is conventionally attributed to impermeability of the bacterial cell envelope 

(mainly due to the outer membrane of Gram-negative bacteria) in conjunction with multidrug 

efflux pumps that effectively reduce the intracellular concentration of antibiotics (28). However, 

recent studies have revealed that intrinsic antibiotic resistance further involves a complex 

network of genetic loci; deletion of such genes renders bacteria hyper-susceptible to antibiotics 

(27). 
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Outer membrane (OM) impermeability acts as a barrier in Gram-negative bacteria that 

overcomes the large permeability threshold of the peptidoglycan layer (which renders Gram-

positive bacteria susceptible to various antibiotics). Moreover, porins, proteins channels within 

the OM for the uptake of key nutrients, restricts the influx of numerous antibiotics [references in 

(27)]. Alternatively, constitutive modification of the OM results in intrinsic resistance; for 

example, the decoration of Burkholderia cenocepacia OM with the positively charged 

aminoarabinose sugar prevents the essential initial binding of antimicrobial peptides to its 

surface rendering it highly resistant to APs (29). 

Efflux as a mechanism of antibiotic resistance was first reported for tetracyclines; since then, it 

has been documented as a mechanism of resistance against a wide range of antibiotics in many 

Gram-positive and Gram-negative bacteria [references in (19)]. Efflux pumps can either be 

substrate specific such as the Mef efflux transporters in streptococci which transport 14- and 15-

membered macrolides only, or they can be more broad-spectrum dealing with different antibiotic 

classes such as the Escherichia coli AcrAB efflux system (19). Most drug efflux proteins that 

span the bacterial membrane belong to five distinct families: the ATP binding cassette (ABC), 

the major facilitator (MF), the multidrug and toxic-compound efflux (MATE), the small 

multidrug resistance (SMR), and the resistance-nodulation-division family (RND) [references in 

(27)]. ATP hydrolysis drives efflux in the primary (ABC) transporters; whereas efflux by the 

other families is driven by proton (and sodium) motive force and is hence called secondary 

transport (19).  

Synergistic relationship between OM permeability barrier and active efflux systems results in 

high-level of intrinsic resistance in many Gram-negative bacteria (27); conceivably, certain 

porins and efflux systems are co-regulated (19). However, additional chromosomally encoded 

elements are involved in intrinsic resistance to antibiotics; such elements act in a concerted 

manner towards such resistance phenotype [references in (27)]. Evidences challenging the 

classical definition of intrinsic resistance demonstrate that such resistance is not merely due to 

protective shields, but rather encompass the action of numerous proteins from all functional 

categories forming a complex and dynamic network including proteins involved in amino acid 

biosynthesis and metabolism, protein secretion and export, and transport of small molecules (30). 
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1.2.2.2. Acquired resistance to antibiotics 

Acquired mechanisms of antibiotic resistance involve mutations in chromosomally located genes 

and the horizontal genetic transfer (HGT) of resistance determinants borne on plasmids, 

bacteriophages, transposons, and other mobile genetic material (19). HGT is generally 

accomplished through the processes of transduction (via bacteriophages), conjugation (via 

plasmids and conjugative transposons), and transformation (via incorporation of free DNA from 

dying organisms) (31).  

Alteration of the antibiotic target sites is one mechanism of acquired resistance. This can be 

mediated through mutation(s) of gene encoding these targets leading to non-susceptible variants; 

examples are discussed in previous sections about different classes of antibiotics. Alternatively, 

this can occur through chemical modifications such as the vanA gene cluster-mediated 

modification of peptidoglycan in response to glycopeptide antibiotics (32). Genomic duplication 

of antibiotic resistance genetic determinants is another means of acquired resistance leading to 

overexpression of the resistance mechanism (19). Other mechanisms of acquired resistance 

include enzymatic chemical modification of the antibiotic itself rendering it inactive. Antibiotic-

modifying enzymes may either degrade the antibiotics such as β-lactamases and extracellular 

proteases, or perform chemical transformations such as aminoglycoside-modifying proteins 

[references in (19)]. 

1.2.3. Antibiotic resistant bacteria 

The crisis of antibiotic resistance presents a unique clinical challenge due to the widespread of 

multi-drug resistant (MDR) organisms.These MDR organisms may be classified into at least two 

groups; well-known (or primary) pathogens, and opportunistic pathogens (33). 

1.2.3.1. Antibiotic resistant primary pathogens 

Primary pathogens are highly virulent microorganisms capable of causing a disease in an 

otherwise normal or healthy individual (34). These pathogens may also cause more drastic 

disease in a host with compromised immunity (34). Many of these pathogens are former non-

pathogenic commensal flora that acquired antibiotic resistance genes and increased virulence 

such as community-associated methicillin resistant Staphylococcus aureus (CA-MRSA), and 
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multi-drug resistant Escherichia coli (35). Mycobacterium tuberculosis is another serious 

pathogen specially that it mostly displays extensive drug-resistance (XDR) (19). Other important 

pathogens that may display MDR include Shigella spp. and Salmonella spp (36).   

1.2.3.2. Antibiotic resistant opportunistic pathogens 

Opportunistic pathogens are mostly environmental bacteria and may be normally in contact with 

the host; however, they only cause an infectious disease following an injury such as an open 

fracture; or immunosuppression whether due to a disease such as malaria or cystic fibrosis (CF), 

or a drug as cytotoxic chemotherapy (34). The bacterial opportunistic pathogens are frequently 

intrinsically resistant to multiple antibiotics (33). Examples of these pathogens include 

Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Acinetobacter baumannii and 

Burkholderia cepacia complex (33). 

In this thesis, I investigate novel mechanisms of high-level intrinsic multidrug resistance using 

Burkholderia cenocepacia as a model bacterium. B. cenocepacia is an environmental, 

opportunistic pathogen that belongs to the B. cepacia complex; it causes serious respiratory 

infections in CF patients and expresses high-level multidrug intrinsic resistance (37). These 

infections are associated with faster decline in lung function, debilitating exacerbations and 

ultimately death (38-40), and they also reduce the survival of CF patients after lung transplant 

(41). B. cenocepacia possesses an arsenal of virulence determinants resulting in such aggressive 

infections and poor prognosis of the infected patients [references in (37)]. 

 

1.3. Antimicrobial Heteroresistance: an emerging field in need of clarity 

Infections by multi-drug resistant bacteria impose a serious encumber on the society and 

economy worldwide and account for a soaring fraction of global morbidity and mortality. 

Variable responses to the antibiotic from bacterial cells within the same population, a 

phenomenon known as heteroresistance, further complicates the problem of antibiotic 

resistance.Heterogeneous resistance to antibiotics was first described in 1947 for the Gram-

negative bacterium Haemophilus influenzae (42), and almost 20 years later for Gram-positive 
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staphylococci (43), but the first reported use of the term „heteroresistance‟ was in 1970 (44). 

Clinical laboratory standards and recommendations for practices concerning antimicrobial 

resistance are developed by organizations such as the Clinical and Laboratory Standards Institute 

(CLSI), the British Society of Antimicrobial Chemotherapy (BSAC), and others. Therefore, 

antimicrobial susceptibility testing methods, such as the minimum inhibitory concentration 

(MIC) and disc-diffusion techniques, and standard guidelines to define isolates as susceptible, 

resistant or intermediately resistant to any antibiotic are generally agreed upon world-wide. In 

contrast, heteroresistance is poorly characterized and consensus-based standards to define and 

identify heteroresistant bacteria are lacking. 

The term „heteroresistance‟ is indiscriminately used in the literature to describe not only 

population-wide variation in antibiotic resistance phenotype but also other observations. 

Furthermore, methods to determine heteroresistance vary significantly among laboratories. 

Together, this increases the confusion regarding this phenomenon, precluding establishing its 

clinical significance and implementing proper therapeutic interventions and guidelines. Here, I 

review the available literature on heteroresistance, to expose the contradictions and variations in 

its definition.  

1.3.1. Multiple definitions of heteroresistance 

Heteroresistance broadly refers to a population-wide, variable response to antibiotics. Several 

reports, including the earliest studies describing the phenomenon in 1964 and 1970, used this 

definition without specifying a particular antibiotic concentration range (43-46). Figure 1 

illustrates the notion of heteroresistance (A) in contrast to a bacterial population homogeneously 

responding to an antibiotic (B). This phenomenon is distinct from bacterial persistence. Persisters 

neither die nor grow in the presence of antibiotic (Fig. 1C), suggesting they are dormant (47). 

These bacterial cells grow only after the antibiotic removal, and the progeny of persisters do not 

exhibit increased resistance to the antibiotic; they rather show the pattern of sensitivity to the 

antibiotic identical to that of the original bacterial population (48).  

In other reports describing heteroresistance, specific concentration ranges were indicated. For 

example, colistin heteroresistance in Acinetobacter baumannii was used to describe 

subpopulations (less than 0.1% from 10
8
 to 10

9
 CFU/ml) growing in the presence of 3 to 10 
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µg/ml colistin, while the MIC of the culture ranged from 0.25 to 2 µg/ml (49). In another report, 

heteroresistance was described when a subset of the microbial population was considered 

resistant to an antibiotic while the rest of the population was generally considered to be 

susceptible to that antibiotic based on the concentration breakpoints used for traditional in-vitro 

susceptibility testing (50). This definition does not encompass cases where the bacterial culture 

comprises subpopulations with varying levels of resistance, and therefore the entire population 

including the least resistant members is considered resistant to the antibiotic (Fig. 2). 

Other definitions for heteroresistance were also used, which further contributed to misconception 

about the nature of the phenomenon. Some of them were based on a single cut-off concentration, 

which did not describe the pattern of resistance among various members of a bacterial 

population. For example, heteroresistance was defined by growth of A. baumannii colonies on 

plates containing 8 µg/ml of colistin, with confirmation of an MIC of 8 µg/ml by subsequent 

broth microdilution test (51). Similarly, heterogeneously resistant staphylococci were defined as 

any culture containing subpopulations at a frequency of 1 in 10
6 
cfu/ml or higher with MIC > 4 

μg/ml for vancomycin or ≥ 16 μg/ml for teicoplanin (52) or simply above the CLSI breakpoints 

(53). A similar approach was adopted by setting a cut-off diameter of 10 mm in disc diffusion 

assays below which the strain was considered heteroresistant rather than merely resistant (54). 

While heteroresistance was properly recognized by population analysis profiling (PAP), the 

improper definition misrepresented the phenomenon, giving rise to ambiguity in its 

understanding at an early stage of its discovery (54). In another approach, high MIC of 

Enterococcus faecium against vancomycin (>256 mg/L) determined by broth dilution but low 

MIC (=1.8 mg/L) by Etest was suggestive of heteroresistance (55). 

Other forms of bacterial heterogeneous behaviour against antibiotics have been reported. Certain 

S. aureus strains displayed resistance to high concentrations of methicillin (64 to 512 mg/L) and 

susceptibility to low concentrations of methicillin (2 to 16 mg/L) (56). This phenomenon, termed 

"Eagle-type" resistance, was similar to the previously described Eagle killing by penicillin, in 

which the bactericidal action of penicillin was paradoxically reduced at high  
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Figure 1. Illustration of the phenomenon of heteroresistance to antibiotics. 

(A) heteroresistant population; (B) homogeneous population; and (C) the phenomenon of 

persistence. Bold cells denote alive cells, dotted cells denote dead cells, red bold cells denote 

dormant persisters. 
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Figure 2.Heteroresistant vs. homogenous response to antibiotics. 

Dotted lines represent the breakpoints for resistance. Homogenous bacterial cultures (A-C) can 

either be A, susceptible, B, of intermediate susceptibility, or C, resistant to an antibiotic 

according to the traditional in vitro susceptibility testing. Heteroresistant bacteria (D-F) may be: 

D, completely susceptible to an antibiotic, whereby all the different subpopulations respond to 

antibiotic concentrations extending below the breakpoints. This form is less likely to be detected 

and is probably the least clinically important (unless the least responsive subpopulations develop 

resistance to the antibiotic). E, the more classical form of heteroresistance in which the majority 

of the bacterial population is susceptible to an antibiotic with a highly resistant minority. 

Antibiotic treatment guided by the traditional susceptibility testing breakpoints would select for 

the resistant subpopulation, leading to therapeutic failure. F, the entire bacterial population, 

including the least resistant subpopulations, is resistant to the antibiotic. Chemical 

communication of antibiotic resistance from the more resistant members of the population 

protecting less resistant bacteria is the major concern of such bacterial populations. 
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concentrations (57). Similar pattern of 2-peaks of growth in population analysis profiles was 

observed in A. baumannii with cefepime (58). Other S. aureus strains displayed 'thermosensitive' 

heteroresistance (59), whereby cultures growing in the presence of high concentrations of 

methicillin at 30°C lost this ability within 30 min after shifting the growth temperature to 37°C. 

Shifting the temperature in the reverse direction resulted in an equally rapid expression of 

methicillin resistance (59). 

Adding to the confusion, 'heteroresistance' was often applied to describe incidences of infection 

with bacterial strains exhibiting different levels of resistance to an antibiotic. Amoxicillin-

resistant and -susceptible Helicobacter pylori isolates (with MICs of 2 mg/L and 0.06 mg/L, 

respectively) were observed in different biopsies from one patient, a case described as 'inter-

niche' heteroresistance (60). More recently, pairs of H. pylori isolated from the same patients 

showed different levels of resistance to levofloxacin, metronidazole and in only one case to 

clarithromycin; the antibiotic resistant strains were mostly derived from a pre-existing sensitive 

strain rather than from mixed infection (61). Similar cases were reported in Mycobacterium 

tuberculosis as heteroresistance, defined as the coexistence of bacteria susceptible and resistant 

to anti-tuberculosis drugs in the same patient (62, 63). More recently, heteroresistance in M. 

tuberculosis was defined as the coexistence of populations with different mutations at drug 

resistance locus within a sample of organisms (64).Therefore, it is clear that heteroresistance 

does not have a uniformly consistent definition, making it difficult to compare studies 

retrospectively to assess its clinical significance. 

 

1.3.2. Measuring heteroresistance 

1.3.2.1. Population analysis profiling (PAP). 

Population analysis profiling (PAP) is considered the gold standard method for determining 

heteroresistance. In this method, the bacterial population is subjected to a gradient of antibiotic 

concentrations and the bacterial growth at each of these concentrations is quantified. The PAP 

performed since the earliest description of the phenomenon adopted the format of standard MIC 

determination techniques with antibiotic increments following a 2-fold difference pattern. PAP 
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assays are mostly done by spread-plate techniques for cfu counting (43, 44, 46, 54, 56, 58, 59, 

65-81). Cfu counting by dropping smaller aliquots showed similar efficiency as spread-plate 

(82). Turbidimetric PAP assays are also performed using 2-fold antibiotic increments (83), and 

antibiotic increments wider than 2-fold steps were also used (42, 84). However, in most of the 

studies no criteria were set to define homogeneous vs. heterogeneous resistance. The lack of a 

standardized method to perform PAP, in particular the selection of increments of antibiotic 

concentration, has led to confounding observations. For example, several studies investigating 

the response to glycopeptide antibiotics used PAP assays with narrow increments in antibiotic 

concentrations, such as 1 µg/ml steps (49, 53, 85-105) and even as low as 0.1 µg/ml steps (106). 

In these cases, a homogeneous strain could be inaccurately considered heteroresistant, and 

sometimes the same strain appeared as homogenous in one curve and heterogeneous in another 

(52). 

A modified PAP assay comparing the area under the curve (PAP-AUC) of a given strain to that 

of a strain previously shown to be heterogeneous was used to determine the heterogeneous 

response of S. aureus to vancomycin (107-121). PAP-AUC ratios between test and control strain 

of <0.9, 0.9 to 1.3, and >1.3 were considered indicative of vancomycin susceptible S. aureus, 

heterogeneous vancomycin intermediate S. aureus (hVISA), and vancomycin intermediate S. 

aureus (VISA), respectively. The concern with this method is its comparative nature that relies 

on the response to vancomycin of the S. aureus control strain, whereby any instability in its 

antibiotic resistance phenotype would cause significant changes in the results. 

Another variation of PAP was used to screen clinical isolates for heteroresistance against 

glycopeptides. The typical PAP method is time-consuming and labor intensive, which may not 

be suitable for clinical laboratories that screen hundreds of isolates for heteroresistance. Thus, 

screening of clinical isolates was performed on plates containing only one concentration of either 

vancomycin or teicoplanin, hence called glycopeptides screening plates (96, 108-110, 115, 122-

124). The concentrations of glycopeptides and the medium type were slightly altered among 

different laboratories. However, some comparative studies proved these methods not reliable and 

showed poor performance in detection of heteroresistance (123, 125).  
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1.3.2.2. Disc diffusion and Etest assays. 

Disc diffusion assays were used early on to detect heteroresistance (43, 54, 58, 95, 126-132). 

Later, Etest strips were similarly used at the same inoculum size as that recommended for the 

traditional in vitro susceptibility testing (55, 58, 90, 103, 104, 106, 108, 111, 113, 116, 120, 126, 

128-131, 133-141). Special Etest strips were developed for glycopeptides resistance detection 

(GRD Etest) which are double-sided strips, one side contains vancomycin while the other 

contains teicoplanin (109, 114, 115, 121, 142). As with PAP, the lack of guidelines hampers the 

detection of heteroresistance using Etest and disc diffusion assays. The clear phenotype 

indicating heteroresistance is the appearance of distinct colonies growing at the otherwise clear 

zone of inhibition in the disc diffusion or Etest assays. However, many reports set cut-off 

concentrations or inhibition zone diameters to decide based on which the heterogeneity of the 

response of the bacterial population to antibiotics as discussed previously, but such cut-off values 

cannot sufficiently describe the population-wide characteristics.  

 

1.3.2.3. Additional methods to characterize heteroresistance. 

Gradient agar plates, containing a linear gradient of antibiotic, were used to determine the 

susceptibility of clinical isolates to antibiotics and identify antibiotic-resistant cells within 

bacterial populations (143). Flow cytometry using a fluorescent penicillin derivative is another 

approach employed to assess methicillin resistant S. aureus (MRSA) isolates with known 

heteroresistance (144). However, this method was not compared to others used for 

heteroresistance detection, thus its reliability cannot be assessed. Other methods to characterize 

heteroresistant bacteria have included bacterial re-growth at later time points in time-kill assays 

after an initial significant reduction in survivors (49, 80), and increase in MIC values of the same 

strain on prolonging the incubation time (67). In both cases, these strategies provide time to the 

less abundant more resistant members of the population to proliferate. On the other hand, 

uninterpretable and irreproducible MIC results featured mainly in the form of „skipwells‟ (wells 

exhibiting no growth although growth still occurs at higher concentrations of the antibiotic) 

could suggest heteroresistance which was further confirmed by PAP in some of the tested 

isolates of Enterobacter cloacae and Enterobacter aerogenes against polymyxin B (145). 
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1.3.3. Reports of heteroresistance in different bacteria 

Heteroresistance denotes the presence of subsets in the population of bacterial cells with higher 

levels of resistance to antibiotics. The more resistant bacterial cells were often isolated, but the 

stability of such high level of resistance differed among bacteria. After 5 to 10 serial passages in 

antibiotic-free medium some highly resistant cells reverted to the heterogeneous resistance 

phenotype displayed by their original population (43, 70, 80), whereas others retained their high 

level of resistance (68). On the other hand, bacteria exhibited a distinctive pattern of 

heteroresistance; cultures showed fixed strain-specific frequencies of more resistant 

subpopulations each time suggesting genetic control over this phenomenon (70). 

Heteroresistance has been reported in several Gram-positive and Gram-negative bacteria. Most 

of the reported incidences of heteroresistance involve bactericidal antibiotics including β-

lactams, glycopeptides, antimicrobial peptides, fluoroquinolones, aminoglycosides, and the 

nitroimidazole antibiotic metronidazole, which acts on anaerobic bacteria (Tables 1 and 2). This 

suggests that heteroresistance is more apparent with bactericidal antibiotics. However, no 

systematic comparisons of the response of heteroresistant bacteria to bacteriostatic versus 

bactericidal antibiotics have been reported. Only two studies report incidences of 

heteroresistance against bacteriostatic antibiotics. In one of them, S. aureus strains showing 

heteroresistance to fusidic acid were reported (85), but the PAP was performed using a narrow 

range of fusidic acid concentrations in small increments. In the other study, Bordetella pertussis 

showed heteroresistance to erythromycin (128), which could only be detected after 7 days of 

incubation using Etest and disc diffusion techniques, as indicated by the appearance of discrete 

colonies in the clear zones of inhibition.  

For Gram-positive bacteria, the majority of heteroresistance cases were reported in S. aureus 

although there are several reports concerning other Staphylococci, Enterococci and Clostridium 

difficile. The earliest reports of heteroresistance in S. aureus were on the response to methicillin 

(43, 44), but this extended to other β-lactams, which accounted for the majority of research 

related to heteroresistance until late 1990s (Table 1).  
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Table 1. Heteroresistance in Gram-positive bacteria 

Organism Antibiotic Method Year, Ref. 

S. aureus (MRSA 

isolates) 

Methicillin PAP by cfu (2 fold increments). 

Disc diffusion (colonies in inhibition zone) 

1964(43) 

S. aureus Cephalexin& oxacillin PAP by cfu (2-fold increments). 1970(44) 

S. aureus cephalothin, 

methicillin, 

and cephalexin 

PAP by cfu (2 fold increments). 

Disc diffusion. 

1972 (54) 

Staphylococcus 

epidermidis and S. 

haemolyticus 

methicillin PAP by cfu (2-fold increments). 1985 (66) 

S. aureus nafcillin PAP by cfu (2 fold increments). 

MIC (MICs at 48 h > at 24 h) 

1985 (67) 

S. aureus Methicillin 

“Thermosensitive”  

PAP by cfu (2 fold increments). 1986 (59) 

S. aureus Methicillin PAP by cfu 1993 (70); 1994 (46); 

1996 (71); 1996 (72); 

1997 (73); 2003 (74); 

2013 (146) 

S. aureus Methicillin 

"Eagle-type"  

PAP by cfu (2 fold increments). 2001 (56) 

S. epidermidis Methicillin/ oxacillin PAP 2005 (147) 

Streptococcus 

pneumoniae 

Penicillin Etest (complicated by zone of hemolysis); 

PAP by cfu (very small increments, as low as 

0.1 mg/L) 

2007 (106) 

S. aureus Oxacillin  2008 (45) 

S. aureus Cefazolin; Methicillin PAP by cfu (2 fold increments) 2008 (77) 

S. aureus Methicillin Flow cytometry using Bocillin FL, known 

heteroresistant MRSA used as reference. 

2009 (144) 

S. aureus Methicillin/ oxacillin PAP & selection of high resistance by 

growing at subinhibitory concentration of 

oxacillin.  

2009 (148) 

S. pneumoniae Penicillin PAP by cfu 2014 (149) 

S. aureus Ceftaroline PAP by cfu 2014 (150) 

S. epidermidis Methicillin; 

Vancomycin; 

Teicoplanin 

PAP by cfu (2 fold increments) 1999 (86) 

S. aureus Methicillin; 

Vancomycin 

PAP by cfu (compared spread-plate to spotting 

of 10 µl techniques):  

2001 (82) 

S. aureus Methicillin; 

Vancomycin 

PAP 2004 (91) 

S. aureus Vancomycin PAP (1 mg/L increments). 1997 (53); 2000 (87); 

2001 (88); 2008 (151) 

S. aureus Vancomycin PAP 

Disc diffusion: (Satellitism detected) 

1999 (127) 

S. aureus Vancomycin Cfu on Vancomycin (4 mg/L) plates. 1999 (125); 2000 

(122) 

Enterococcus 

faecium 

Vancomycin E-tests (growth in zone of inhibition). 2001 (133) 

S. aureus Vancomycin PAP by cfu (narrow increments). 2002 (89); 2005 (92); 

2005 (52); 2009 

(152); 2011 (102) 

Coagulase 

negative 

staphylococci 

Vancomycin; 

Teichoplanin 

PAP by cfu (narrow increments). 2006 (93) 

S. aureus Vancomycin Etest 2007 (135); 2009 

(140) 

Staphylococcus 

spp. 

Vancomycin; 

Teichoplanin 

BHI Agar screening method with 4 or 6 mg/L; 

PAP (narrow increments) 

2007 (96) 
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S. aureus Vancomycin and 

Teicoplanin 

BHI agar + 6 mg/L Vancomycin, Mueller 

Hinton agar (MH) + 5 mg/L Vancomycin and 

MH + 5 mg/L Teicoplanin); Etest 

macromethod (using a 2 McFarland) 

2007 (123) 

Enterococcus 

faecium 

Vancomycin  MIC by broth dilution; Etest (colonies in 

inhibition zone). 

2008 (55) 

S. aureus Vancomycin Modified PAP by cfu on BHI agar +0.25, 0.5, 

1, 1.5, 2, 4, 6 and 8 mg/L Vancomycin. The 

area under the curve (AUC) was calculated.  

2008 (107) 

Staphylococcus 

capitis 

Vancomycin  PAP (1 mg/L increments) and calculating  

(AUC test/AUC Mu3) ratios; Etest (colonies 

in inhibition zone); BHI agar +4 mg/L 

Vancomycin 

2008 (108) 

Enterococcus 

faecium  

Teicoplanin Etest 2008 (137) 

S. aureus Glycopeptides Etest GRD strips, with one incorporated with 

nutrients to enhance the growth of hGISA; 

BHI agar + 6 mg/L Vancomycin; 

MH agar + 5 mg/L Teicoplanin; PAP-AUC. 

2008 (109) 

S. aureus Vancomycin  PAP by cfu (2 fold increments)  2009 (78) 

S. aureus Vancomycin PAP-AUC; Screening cascade: BHI agar +5 

mg/L teicoplanin then MET for positive 

isolates. 

2009 (110) 

S. aureus Vancomycin  MET; PAP (narrow increments) 

 

2009 (98) 

S. aureus Vancomycin  Etest; PAP-AUC compared to Mu3. 2009 (111); 2011 

(113); 2011 (116); 

2012 (104); 2013 

(153) 

S. aureus Vancomycin PAP-AUC 2010 (112); 2011 

(118); 2011 (119) 

S. aureus Vancomycin, but not 

Telavancin 

(bactericidal 

lipoglycopeptide)  

PAP (narrow increments). 

 

2010 (99) 

S. aureus Vancomycin PAP by cfu compared to the Mu3 (hVISA) 

and Mu50 (VISA) 

2010 (100) 

S. aureus Vancomycin/ 

glycopeptides 

MET; PAP 2010 (101); 2011 

(117) 

S. aureus Vancomycin PAP-AUC; MET; GRD Etest; broth 

microdilution (MIC cutoff ≥ 2 mg/L); standard 

Vancomycin Etest (MIC cutoff ≥ 2 mg/L)  

2011 (114) 

S. aureus Vancomycin PAP/AUC; MET; GRD Etest; BHI agars + 3 

or 4 mg/L Vancomycin. 

2011 (115) 

S. aureus Vancomycin Broth microdilution; GRD Etest on 4,210 

clinically significant isolates from 43 U.S. 

centers; PAP-AUC for GRD-positive. 

2011 (142) 

S. aureus Vancomycin Broth microdilution; MET; Standard Etest on 

220 clinical isolates (121 MSSA, 99 MRSA) 

from bloodstream infections. 

PAP-AUC; BHI agar +4 mg/L Vancomycin 

2011 (124) 

S. aureus Vancomycin PAP on 750 MRSA clinical strains isolated 

from Japan in 1990, before the introduction of 

injectable Vancomycin into clinical use in 

Japan in 1991. 

2012 (154) 

S. aureus Vancomycin Etest; PAP-AUC on 288 MRSA isolates from 

a Connecticut Veterans Hospital. 

2012 (120) 

S. aureus Vancomycin PAP on 268 MRSA isolates from Seoul, 

Republic of Korea 

2012 (103) 

S. aureus Vancomycin GRD Etest; PAP-AUC on 43 MRSA isolates 

from Malaysia.  

2012 (121) 
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S. aureus MRSA Glycopeptides; 

Daptomycin 

Etest. 2009 (138) 

S. aureus Daptomycin PAP by cfu (narrow increments)  2006 (94) 

S. aureus Daptomycin PAP 2011 (155) 

Toxigenic 

Clostridium 

difficile  

Metronidazole Etest and disc diffusion 2008 (129) 

Clostridium 

difficile 

Metronidazole  2010 (156) 

Staphylococcus Ciprofloxacin but not 

nalidixic acid  

PAP & MIC 1986 (69) 

Streptococcus 

pneumoniae 

Fosfomycin PAP (wide scale of increments higher than 2-

fold) 

2013 (84) 

Bordetella 

pertussis 

Erythromycin Disc diffusion and Etest. 2002 (128) 

S. aureus Fucidic acid PAP by cfu (narrow increments).  1998 (85) 

MET (Macro-Etest): an Etest in which higher inoculum sizes are used to increase the probability of detection of more resistant 

members of the bacterial population. 
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Heteroresistance to vancomycin and other glycopeptides was first detected in Japanese 

vancomycin-resistant S. aureus (53). This also initiated a trend using the PAP format with a 

narrow range of antibiotic concentrations with minor increments. These findings geared 

heteroresistance studies towards glycopeptides and its clinical relevance and spread as 

vancomycin was used to eradicate the notorious MRSA infections. With focus on the clinical 

importance of the heterogeneous response to vancomycin, its prevalence was often assessed. 

However, controversial findings, originating from similar time range and geographical 

distribution, were reported with data showing that such heterogeneity in response to vancomycin 

is common among S. aureus strains (87, 90, 101, 103, 110, 119, 135). Others reported that 

heterogeneous response to vancomycin was not prevalent (91, 104, 112, 113, 120, 121, 142, 

157). These studies aimed at identifying the need to assess heteroresistance in clinical 

laboratories as a standard procedure. However, since they adopted different guidelines for 

heteroresistance determination and in many cases, used improper methods to detect 

heterogeneity, the results were conflicting. 

Much fewer reports described heteroresistance in Gram-negative bacteria. Table 2 describes the 

incidences of heteroresistance in Pseudomonas aeruginosa, Klebsiella, Acinetobacter, and B. 

cenocepacia.  

While antibiotic resistance in general could either be intrinsic or acquired (19), similar 

observations apply to heteroresistance. Intrinsic heteroresistance occurs without the need to 

previous exposure to the antibiotic; however, heteroresistance may be acquired or induced as a 

result of initial exposure to antibiotics. For example, repeated exposure of homogenously 

sensitive Staphylococci to methicillin resulted in mixed populations resembling the intrinsically 

heteroresistant strains (43). A similar selection method was conducted in MRSA involving step-

wise exposure to vancomycin leading to acquired heteroresistance (158). 

Molecules other than antibiotics can induce heteroresistance. For example, exogenous glycine 

led to heterogeneous response to methicillin in the highly homogeneous MRSA COL strain (71). 

Increasing concentrations of glycine in the medium resulted in replacement of the D-alanyl-D-

alanine terminus of the muropeptides with D-alanyl-glycine-terminating muropeptides of 

bacterial peptidoglycan leading to decreased methicillin resistance and the appearance of a  
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Table 2. Heteroresistance in Gram-negative bacteria 

Organism Antibiotic Method Year, Ref. 

Type b Hemophilus 

influenzae 

Streptomycin PAP by cfu count (concentrations <10-1000 U/ml) 1947(42) 

Enterobacter 

aerogenes; E. coli; 

other Enterobacteria 

Cefamandole;Cefoxitin, 

Carbenicillin; nalidixic 

acid. 

PAP by cfu (2-fold increments)  1979 (65) 

E. coli Cefamandole; 

Cefotaxime; Cefoxitin; 

imipenem 

Turbidimetric PAP (2 fold increments or more) 1985 (83) 

8 species of 

Enterobacteriaceae 

Cefotaxime PAP: E.coli and Proteus mirabilis: homogeneous; 

Klebsiella oxytoca and Citrobacter koseri: less 

homogeneous; Enterobacter cloacae, Citrobacter 

freundii, Proteus vulgaris, and Morganella morganii: 

heterogeneous. 

1985 (68) 

P. aeruginosa, and 7 

strains from 5 genera 

of Enterobacteriaceae 

Ciprofloxacin PAP & MIC 1986 (69) 

Helicobacter pylori Metronidazole Etest and disc diffusion 1996 (126) 

Acinetobacter 

baumannii 

Imipenem;Meropenem  Etest 2005 (134) 

A. baumannii Colistin PAP by cfu (narrow increments); Time kill curves. 2006 (49) 

P. aeruginosa  Carbapenems (Imipenem 

and Meropenem) 

Disc diffusion; PAP by cfu: (narrow increments and 

low initial inoculum) 

2007 (95) 

Invasive nontypeable 

H. influenzae 

Imipenem PAP by cfu (2 fold increments); Etest (for MIC 

determination) 

2007 (75) 

Enterobacter cloacae 

and A. baumannii 

Colistin Disk diffusion; Etest; agar dilution; broth microdilution 

 

2007 (51) 

A. baumannii-

calcoaceticus complex  

Colistin PAP by cfu (2 fold increments). 

 

2008 (76) 

P. aeruginosa  Carbapenems Agar dilution according to CLSI. Increments of 2 mg/L 

for concentrations ranging from 2 to 32mg /L and of 

8mg/L from 32 to 64 mg/L  

2008 (97) 

Bartonella sp. Ciprofloxacin Etest 2008 (136) 

A. baumannii  Ampicillin/Sulbactam Etest (incubation for ≥48 h)  2009 (139) 

A. baumannii Carbapenem Disk-diffusion; Etest. 2009 (130) 

E. aerogenes Carbapenem  Etest; automated MicroScan WalkAway system (failed 

to detect heteroresistance detected by Etest) 

2009 (159) 

A. baumannii Meropenem PAP by cfu (2 fold increments). 2009 (79) 

Klebsiella pneumoniae Meropenem  MIC & PAP (2 fold increments); Time kill assays 2010 (80) 

K. pneumonia Carbapenem Etest; PAP.  2010 (141) 

A. baumannii Imipenem Etest; disk diffusion (colonies in the inhibition zone) 2011 (131) 

Carbapenemase-

producing K. 

pneumoniae 

Colistin  PAP by cfu (2 fold increments) & MIC 2011 (81) 

A. baumannii Cefepime 

 

Etest, disc diffusion, PAP by cfu (2 fold increments). 2012 (58) 

A. baumannii Carbapenems Disc diffusion  2012 (132) 

P. aeruginosa Polymyxin B PAP by cfu (PmB concentrations from 0 to 8 mg/L).* 2013 (105) 

E. cloacae; E. 

aerogenes 

Polymyxin B PAP 2013 (145) 

H. pylori levofloxacin (5/19), 

clarithromycin (1/19) and 

metronidazole (16/19) 

MIC by Etest and agar dilution for 19 pairs of clinical 

isolates. Each pair was isolated from the same patient. 

Heteroresistance was reported when pairs showed 

difference in resistance. 

2014 (61) 

Providencia rettgeri Carbapenems PAP by cfu 2014 (160) 

*Isolates presenting subpopulations that exhibited growth at Polymyxin B concentrations ≥2 mg/L were considered 

heteroresistant. Isolates containing subpopulations that grew at Polymyxin B concentrations at least twice as high as the original 

MIC but <2 mg/L were considered heterogeneous. 
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heterogeneous resistance phenotype. On the other hand, heteroresistance may originate from 

genetic manipulation events such as transposition of resistance genes (161, 162) or conjugation 

(163). The generated progenies included cells having different MIC values due to differences in 

the number of copies of the inserted resistance genes or random disruption of genes involved in 

the bacterial response to antibiotics. 

 

1.3.4. Mechanisms of heteroresistance 

Non-genetic individuality in bacterial populations has been observed in a wide range of 

biological processes, including differentiation and cell division (164), chemotaxis (165), 

enzymatic activity (166), sporulation (167), stress response and antibiotic resistance (48, 168, 

169). However, the exact mechanism of heteroresistance is not clear and appears to be 

multifactorial. In several cases, increased resistance was due to mutations or differential 

expression of key resistance genes or regulatory systems. Long term infection was proposed to 

result in instability of genomic DNA of bacteria potentially leading to heteroresistance; for 

example, mutations in gene products having metronidazole nitroreductase activities, mainly 

oxygen-insensitive NAD(P)H nitroreductase (RdxA) and NAD(P)H flavin oxidoreductase 

(FrxA) occurred in H. pylori heteroresistant to metronidazole (61). 

 

1.3.5. Significance and relevance of heteroresistance 

The lack of standardized definition of heteroresistance, which may lead to misidentification of 

homogenous strains as heteroresistant, hinders the proper assessment of the clinical relevance of 

heteroresistance. While certain reports argued against the clinical significance of heteroresistance 

observing no differences in the clinical outcome between heterogeneous populations and their 

respective homogenously sensitive cultures (91, 103, 116, 152), others showed clear 

deterioration in the clinical outcome due to bacteria displaying a heterogeneous phenotype of 

resistance (86, 90, 104, 111, 117, 118, 170-173). Indeed, this controversy might be influenced by 

the lack of standardized definition of heteroresistance as outlined in a previous section, thus the 

lack of influence on the clinical outcome might reflect non-truly heteroresistant bacteria. 
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Heteroresistance presents a risk of possible misinterpretations when only a single colony, picked 

from the primary bacterial populations isolated from patients, is analyzed for its susceptibility to 

antibiotics (126). The clinical impact of heteroresistance range between recurrence of infections 

(86, 111), chronic infections (118) to increased mortality rates (104, 117, 171, 172). The 

perceived main cause of such deterioration of the clinical picture and therapeutic failure is the 

speculated selection of more resistant cells in the bacterial population by antimicrobial therapy; 

this was directly detected in one study (170). However, the chemical communication and transfer 

of resistance from the more resistant subpopulations to sensitive cells is another aspect that 

would impede the therapeutic efficiency of antibiotics.  

 

1.3.5.1. Selection of more resistant cells of the population 

Therapeutic dosing of antibiotics determined without taking into consideration the highly 

resistant subpopulations of a heteroresistant bacterial isolate would result in selection of such 

subpopulations. This is particularly the case when the majority of the population is sensitive to 

antibiotics while only a small subset, undetectable through the criteria set for the traditional in 

vitro antibiotic susceptibility testing, display resistance to the antibiotic above the clinical 

breakpoint (Fig. 2). In these situations, the net outcome of antibiotic therapy would be the 

eradication of the more sensitive members of the bacterial population while the more resistant 

cells proliferate and become predominant in the infection.  

Colistin treatment of a patient with postneurosurgical meningitis harboring a colistin-

heteroresistant A. baumannii isolate resulted in the selection of colistin-resistant strains (170). 

Moreover, A. baumannii isolates transitioned in vivo from susceptibility to full-resistance to 

carbapenems, with heteroresistance as an intermediate stage in the same intensive care unit due 

to administration of meropenem (130). Meropenem pressure can produce meropenem-

heteroresistant subpopulations of A. baumannii that could be selected for by the use of 

suboptimal therapeutic drug dosages giving rise to highly resistant strains (79). Similarly, 

evidence of in vivo development of heteroresistance as a result of antibiotic therapy was shown 

in a patient with MRSA (138). Initial treatment with glycopeptides led to the development of 

heterogeneous glycopeptide resistance, which transformed to full resistance following 



27 
 

daptomycin treatment. A similar observation of switching from susceptibility to heteroresistance 

occurred in A. baumannii in patients after prolonged exposure to imipenem (131). 

1.3.5.2. Chemical communication of antibiotic resistance 

Highly resistant subpopulations of heteroresistant bacteria could further complicate the clinical 

picture of polymicrobial infections by providing protection to normally sensitive bacteria 

through chemical signals. Although not truly heteroresistant owing to the lack of significant 

variation in concentrations tolerated by the members of an E. coli bacterial population, more 

resistant mutants arising from the continuous antibiotic treatment protected less resistant cells of 

the same population from norfloxacin and gentamicin (174). Such mutants could maintain the 

same level of indole production in the presence of antibiotic treatment, which could protect less 

resistant cells that produced lower concentration of indole under antibiotic stress. These mutants, 

although more resistant relative to the rest of the population, cannot be considered absolutely 

highly resistant as their MIC is at or slightly above the MIC breakpoint for sensitive bacteria 

especially for norfloxacin, hence questioning their survival in vivo at therapeutic doses of 

antibiotics. Interestingly, indole production is not common among bacteria (175); nevertheless, 

indole produced by E. coli was shown to confer antibiotic resistance to the indole-negative 

intestinal pathogen Salmonella enterica serovar Typhimurium (176). Other chemical signals 

normally produced by bacteria and that may modulate the antibiotic resistance profiles of 

bacteria can potentially be similarly implicated in the communication of resistance among 

different bacteria; hence, such signals will be further discussed in following sections.  

Protection from antibiotics also occurred through antibiotic degrading enzymes. Protection of 

sensitive bacteria was mediated by beta-lactamases produced from resistant E. coli cells against 

beta-lactamase sensitive agents as cefamandole, but not cefotaxime, cefoxitin or imipenem 

which are more resistant to beta-lactamases (83). 
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1.4. Non-genetic mechanisms communicating antibiotic resistance 

The alarming emergence of outbreaks by multidrug resistant clinical isolates pose a serious 

challenge to the treatment of infections, often turning a mild infection into a life threat, and has 

led to extensive worldwide studies on the mechanisms of antibiotic resistance and its genetic 

transfer across bacterial populations (177). Unveiling the various mechanisms of genetic transfer 

that contribute to the spread of antibiotic resistance has been a major breakthrough. However, 

these findings have overshadowed other potentially important mechanisms of resistance 

mediated by non-genetic factors. Indeed, the horizontal transfer of genetic determinants encoding 

antibiotic resistance markers has been considered as the only mechanism of transfer of antibiotic 

resistance across bacterial populations (178). However, bacteria possess signal transduction 

machineries that rely on chemical signals enabling cell-to-cell communication and coordinating 

multicellular behavior. The best examples are N-acyl-homoserine lactone and non-N-acyl-

homoserine lactone-based quorum sensing systems (179), which have been extensively reviewed 

and will not be discussed here. 

In this section, I will further challenge the traditional view of intrinsic resistance by focusing on 

the current understanding of the small molecules that are capable of altering the antibiotic 

susceptibility of bacterial cells by modulating cellular responses towards antibiotic stress. This 

does not include mechanisms involving physical elimination of the antibiotics through 

neutralization, or degradation, which would eventually lead to protection of other cells from the 

antibiotic effect. The small molecules discussed in this section can be secreted by bacterial cells 

or alternatively, by host cells in body fluids and tissues. They may also be secreted from plants 

into the soil and thus present in the bacterial milieu. The interactions of bacteria with these 

molecules occur in the context of intra-species, interspecies or interkingdom communication, and 

contribute to the mechanism of intrinsic resistance to antibiotics. A better understanding of how 

the small molecule-mediated interactions influence antibiotic resistance would eventually lead to 

designing more effective inhibitors of such mechanisms and provide better therapeutic solutions 

for combating multidrug resistant microbial infections. 
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1.4.1. Chemical signals modulating antibiotic resistance 

In this section, I will discuss various small molecules that act as infochemicals modulating the 

susceptibility of bacteria to antibiotics (Table 3) and their potential mechanisms of action (Fig. 

3). I will also attempt to expose new targets for developing lead compounds that could act as 

inhibitors of the action of infochemicals to prevent increased resistance to antibiotics.  

 

1.4.1.1. Indole 

Indole is an aromatic heterocyclic organic compound derived from the amino acid tryptophan in 

a reaction mediated by the TnaA tryptophanase. It is produced by around 85 species of Gram-

positive and Gram-negative bacteria (175). Indole has been recently recognized as an 

intercellular signal molecule that controls diverse aspects of bacterial physiology including 

biofilm formation (175). 

Lee et al.revealed that few antibiotic resistant mutant cells that arise in an Escherichia coli 

population in response to norfloxacin or gentamicin improved the overall response of the 

bacterial population towards the antibiotics in part due to indole production (174). Indole 

production was not induced in the more resistant mutant cells by the antibiotics but rather its 

level was unchanged regardless of antibiotic exposure, as opposed to wild type bacteria in which 

indole production was suppressed in response to the antibiotics (174).  

Exogenous indole conferred resistance against norfloxacin and gentamicin to the less resistant 

isolates (Table 3) (174). Moreover, E. coli cells treated with indole became rhodamine 6G and 

sodium dodecylsulfate (SDS) resistant (180). Similar findings were reported in E. coli cells 

exposed to ampicillin and kanamycin, in which a higher level of extracellular indole production 

protected bacterial cells from antibiotic damage (181). Indole was also shown to influence 

persister formation (182). Persisters neither die nor grow in the presence of antibiotic, as they are 

dormant during antibiotic exposure (47). These persister bacterial cells grow after the antibiotic 

removal, and their progeny does not exhibit increased resistance to the antibiotic. Therefore, their 

pattern of sensitivity to the antibiotic remains identical to that of the original bacterial population 

(48). 
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Table 3.Effect of different small molecules on the activity of antibiotics. 

Organism Molecule Conc. Antibiotic Method Effect Ref. 

Indole 

E. coli MG1655 

Indole 

300 

µM 

Norfloxacin and 

gentamicin 
MBC 

Increased 

resistance 
(174) 

E. coli MC4100 2 mM 
Rhodamine 6G 

and SDS 

Survival 

rate assay 

Increased 

resistance 
(180) 

E. coli K-12 BW25113 1 mM 
Ampicillin and 

kanamycin 

OD 

growth 

assay 

Increased 

resistance 
(181) 

Polyamines 

S. aureus strains Mu50 

and N315, S. aureus 

strain ATCC 35556.  

Spn 1mM 

15 different β-

lactams, 

chloramphenicol, 

polymyxin 

B, and 

tetracycline 

MIC 
Increased 

sensitivity 
(183) 

   

Vancomycin, 

ciprofloxacin, and 

gentamicin 

MIC No effect (183) 

P. aeruginosa PAO1and 

10 clinical isolates 

Spn 

Spd 

1 mM 

20 mM 

Carbenicillin, 

chloramphenicol 
MIC 

Increased 

Sensitivity 

(with few 

exceptions) 

(183) 

   

Imipenem, 

ciprofloxacin, and 

Polymyxin B 

MIC 

Increased 

resistance (with 

few exceptions) 

(183) 

E. coli K-10, K-12, 

C921-61 and S. enterica 

serovar 

Typhimurium LT2 

Spn 

Spd 

1 mM 

20 mM 

Chloramphenicol 

and 8 different β-

lactams 

MIC 
Increased 

sensitivity 
(183) 

P. aeruginosa PAO1 

Spn 

Spd 

Put 

Cad 

1 mM 

20 mM 

20 mM 

20 mM 

14 β-lactams, 

chloramphenicol, 

nalidixic acid and 

trimethoprim 

MIC 
Increased 

sensitivity 
(184) 

   

Erythromycin, 

novobiocin and 

fusidic acid 

MIC No effect (184) 

P. aeruginosa PAO1 

Spn 

Spd 

Put* 

Cad* 

1 mM 

20 mM 

20 mM 

20 mM 

Polymyxin B*, 

colistin*, 

kanamycin, 

gentamicin, 

ciprofloxacin, 

norfloxacin 

MIC 

Increased 

resistance (* 

combinations: 

no effect) 

(185) 

   Tetracycline MIC No effect (185) 

E. coli GGB2600 

Spd, 

Put, or 

their 

equimolar 

mix 

0.1, 1 

or 10 

mM 

Levofloxacin, 

netilmicin, 

cefotaxime 

MIC 
Increased 

resistance 

(186) 

E. coli RO91 Put 10 mM  
CFU 

assay 
(186) 

E. coli BL21, P. Spd 2 mM Tetracycline, Growth Increased (187) 
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aeruginosa Lm1, B. 

subtilis and S. aureus 

Xen36 

Put kanamycin on 

antibiotic

-

containin

g agar 

resistance to 

Tet, Increased 

sensitivity to 

Kan 

Volatile signals 

E. coli BL21, P. 

aeruginosa Lm1, B. 

subtilis  and S. aureus 

Xen36 

Volatile 

ammonia 

From 

5-50 

mM 

NH4
+ 

sol. 

Tetracycline 

Growth 

on 

antibiotic

-

containin

g agar 

Increased 

resistance 
(187) 

Kanamycin 
Increased 

sensitivity 

Serratia rubidaea and 

S. marcescens 

Volatile 

ammonia 

From 

0.1% 

sol. 

Ampicillin 
Increased 

resistance 
(188) 

E. coli TMA 

From 

0.5% 

Sol. 

Tetracycline 
Increased 

resistance 
(189) 

Aminoglycosodes

; chloramphenicol 

Increased 

sensitivity 

B. subtilis 
2,3-BD and 

glyoxylic acid 

Ampicillin and 

tetracycline 

Increased 

resistance 
(190) 

Burkholderia ambifaria 

sulfur compounds, 

ketones, aromatic 

compounds 

Gentamicin and 

kanamycin 

Disc-

diffusion 

assay 

Increased 

resistance 
(191) 

Pseudomonas Quinolone Signal (PQS) 

P. aeruginosa PAO1 PQS 
60 

µM 

Tetracycline, 

chloramphenicol, 

carbenicillin, 

spectinomycin and 

to a lesser extent 

kanamycin 

Filter-

disk 

assay 

Increased 

sensitivity 
(192) 

Indole Acetic Acid (IAA) 

E. coli K-12 IAA 
0.5 

mM 

Erythromycin, 

rifampicin, 

penicillin and 

novobiocin 

CFU 

assay  

Increased 

resistance 
(193) 

TMA: trimethylamine; 2,3-BD: 2,3-butanebione; Spn: spermine; Spd: spermidine; Put: 

putrescine; Cad: cadaverine; PQS: Pseudomonas quinolone signal; IAA: indole acetic acid. 
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The improved response to antibiotics mediated by indole was attributed to the stimulation of 

certain drug efflux pumps (174, 180, 194) and oxidative stress protective mechanisms (174) (Fig. 

3). Furthermore, indole is sensed in a heterogeneous manner across the bacterial population 

(182), causing induction of OxyR and phage-shock pathways via a periplasmic or membrane 

component, and triggering protective responses that result in the appearance of a persistent 

subpopulation.  

 

1.4.1.2. Polyamines 

Natural polyamines consist of diamines (putrescine and cadaverine) and oligoamines (spermidine 

and spermine) (195). The first description of a natural polyamine dates from more than 300 years 

ago when spermine crystals were discovered in human semen (196). Since then, natural 

polyamines were found in almost all living organisms. In plants, polyamines are involved in 

growth, development, and modulation of defense responses to diverse environmental stresses. In 

addition, polyamines have acid neutralizing and antioxidant properties, as well as membrane and 

cell wall stabilizing abilities (197). Like in plants, polyamines also regulate cell growth and 

proliferation in humans, as well as stabilize negative charges of DNA influencing RNA 

transcription, protein synthesis, apoptosis, and immune responses (198). Spermidine enhances 

autophagy, thus suppressing necrosis and enhancing cell longevity (199, 200). Spermine is 

produced at higher levels by regenerating tissues, while injured or dying cells release spermine 

into the extracellular milieu, so that tissue levels of spermine significantly increase at 

inflammatory sites of infection or injury (201). Also, polyamines have anti-inflammatory and 

immunosuppressive properties similar to those of glucocorticoid hormones (202). Spermine 

accumulates at sites of infections such as mycobacteria-infected sites and pneumonia (201, 203).  

Nearly all bacteria produce polyamines, with rare exceptions such as most Staphylococcus 

aureus strains; polyamines, namely spermidine and spermine, are toxic to such strains as they 

lack polyamines detoxifying enzymes (204). While polyamines play roles in growth and other 

physiological processes in bacteria including incorporation into the cell wall, biosynthesis of 

siderophores, acid resistance, scavenging free radical ion, signaling cellular differentiation and 

biofilm formation (205), they also contribute to the bacterial responses to antibiotics 
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demonstrated by the response of polyamine-deprived mutants and bacteria exposed to exogenous 

polyamines to antibiotics.The two most common bacterial polyamines are putrescine and 

spermidine (205). Cadaverine is usually synthesized only when putrescine synthesis is blocked 

or in cases where there is excess lysine, its amino acid precursor, under anaerobic conditions at 

low pH (206).  

Both the inhibition of polyamine biosynthesis (207-210) and excess of exogenous polyamines 

prevent bacterial growth (183, 211), as shown with certain strains of Staphylococcus aureus, E. 

coli and Salmonella enterica (Table 4). These effects vary for the same strain under different 

experimental conditions (183). On the other hand, Pseudomonas aeruginosa isolates are resistant 

to the effects of the tested polyamines (183). These opposite effects of polyamines on bacterial 

growth might indicate that a fine balance in their concentration within the cells is needed for the 

proper homeostasis of the bacteria. This is supported by the observation that the polyamine 

content of cells is highly regulated by biosynthesis, modification, uptake and excretion (212). 

 

1.4.1.2.1. Effect of polyamines on bacterial susceptibility to antibiotics 

Few studies reporting the effects of exogenous polyamines on the antibacterial activity of 

different antibiotics against a variety of organisms (183-187) are summarized in Table 3. Results 

vary from study to study depending on the polyamine used, its concentration, the strain tested, 

and the test conditions. Despite some contradictory observations and the lack of systematic 

studies on polyamine-antibiotic interactions, it appears that high concentrations of polyamines 

approaching their inhibitory range (Table 4) increase the sensitivity to antibiotics, whereas lower 

concentrations of polyamines increase resistance to antibiotics. Conversely, organisms that have 

higher level of resistance to polyamines, such as P. aeruginosa, usually show increased 

resistance to antibiotics in response to polyamines, whether at high or low concentration.  

 

1.4.1.2.2. The mechanism of alteration of antibiotic response by polyamines 
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It is not clear how polyamines mediate increased sensitivity to antibiotics. Polyamines do not 

apparently affect the outer membrane as their effects are not abolished by divalent ions like 

magnesium or calcium in contrast to the membrane-destabilizers polymyxin B and EDTA (184), 

and they do not increase outer membrane permeability (213). Moreover, polyamines do not 

inhibit efflux pumps, as for example they exert the same synergistic effects in AcrAB efflux 

pump defective mutants and wild-type E. coli (183). On the other hand, the induced sensitivity to 

aminoglycosides as a result of increased levels of intracellular polyamines is due to higher 

translation of the oligopeptide binding protein OppA (Fig. 3) (187). OppA is a periplasmic 

protein involved in aminoglycoside uptake and reduction in its level leads to aminoglycosides 

resistance (214). 

On the other hand, polyamines contribute to increasing the resistance to various antibiotics in 

different bacterial species through multiple mechanisms (Fig.3). One mechanism involves 

preventing the uptake of antibiotics by either blocking certain outer membrane porin channels or 

competing with antibiotics for uptake through certain porins. For example, spermine can block 

the porin OprD of P. aeruginosa resulting in increased resistance to imipenem (183, 215). 

Similarly, the interaction of polyamines with the porin OmpF, and to a lesser extent OmpC, 

resulted in reduced permeability to various antimicrobials (216-221). Tkachenko et al. (222) 

demonstrated that polyamines increased the resistance of E. coli to antibiotics transported 

through porin channels by decreasing the outer membrane permeability, and suggested three 

mechanisms: (i) direct inhibition of the transport activity of porin channels, (ii) activation of the 

transcription of micF whose product is an antisense RNA that inhibits the translation of porins, 

and (iii) increase in the cell content of the stress resistance regulator 
S 

that suppresses the 

transcription of ompF and induces cadaverine synthesis, thus leading to a decrease in the porin 

transport. 

Spermidine and other polyamines may also modulate efflux pump activity. In Burkholderia 

pseudomallei, spermidine upregulates efflux pumps such as BpeAB-OprB, AmrAB-OprB and 

BpeEF-OprC, contributing to aminoglycoside and macrolide resistance as well as biofilm 

formation through the increased efflux of N-acyl homoserine lactones (223). Furthermore, 

GeneChip experiments and promoter fusion studies have shown that spermidine induces the 

expression of the P. aeruginosa oprH-phoPQ and PA3552-PA3559 operons encoding enzymes  
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Table 4.Inhibitory effects of Polyamines. 

Organism Molecule Conc. Method Effect Ref. 

E. coli strain B Spd 390 µg/ml MIC Inhibition (211) 

 Spn 17 µg/ml MIC Inhibition (211) 

S. aureus Spd 12 µg/ml MIC Inhibition (211) 

 Spn 2 µg/ml MIC Inhibition (211) 

S. aureus strains Mu50 and N315, 

S. aureus ATCC 35556  

E. coli K-10 and K-12 and 

enterotoxigenic strain C912-61 

10 clinical isolates of P. 

aeruginosa, P. aeruginosa PAO1. 

S. enteric serovar Typhimurium 

LT2 

Spd Up to 16 

mM 

MIC No inhibition (183) 

P. aeruginosa PAO1, E. coli K-12, 

and E. coli C921-16 

Spn Up to 16 

mM 

MIC No inhibition (183) 

E. coli K-10 and Salmonella 

enterica serovar Typhimurium LT2 

Spn 1 to 2 mM MIC Inhibition (183) 

S. aureus ATCC 35556 

(MSSA/VSSA), N315, 

(MRSA/VSSA), and Mu50, 

(MRSA/VISA) 

Spn 4 mM MIC Inhibition (183) 

P. aeruginosa PAO1 Spn 10 mM OD 

growth 

curve 

No effect (183) 

S. aureus Mu50 Spn 1 mM OD 

growth 

curve 

Doubling time 

increased from 39 

min to 62 min 

(183) 

E. coliK-12, E. coli K-10 and S. 

enterica serovar Typhimurium LT2 

Spn 1, 2 and 4 

mM 

OD 

growth 

curve 

Concentration-

dependent inhibition 

(183) 

Spn: spermine; Spd: spermidine 
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for LPS modification and resulting in PhoPQ-mediated spermidine-induced resistance to cationic 

antimicrobial peptides and quinolones (185). This study also suggests a possible spermidine-

responsive sensor residing in the cytoplasmic membrane and modulating the phosphorylation 

status of PhoP (185). 

Another mechanism of polyamines to protect bacteria from antibiotic damage is preventing 

oxidative stress. E. coli cells respond to oxidative stress induction by sublethal concentrations of 

fluoroquinolones, aminoglycosides and cephalosporins with a 2-3 fold increase in cell polyamine 

content (putrescine, and spermidine) due to upregulation of the ornithine decarboxylase (186). 

Moreover, exogenous polyamines reduced intracellular reactive oxygen species production, 

thereby preventing the damage to proteins and DNA, eventually increasing cell viability, growth 

recovery and antibiotic resistance (186). This agrees with other studies showing the induction of 

polyamines biosynthesis by reactive oxygen species and the role of polyamines in modulating 

the cellular response to counter such stress (224, 225). Also, surface-localized spermidine is 

produced under Mg
2+

-limiting conditions as an organic polycation and is proposed to bind 

lipopolysaccharide (LPS) and to stabilize and protect the outer membrane against antibiotic and 

oxidative damage (226).  

 

1.4.1.3. Volatile signals 

Bacteria can produce various volatile compounds as complex as those of plants and fungi, but the 

ecological function of these compounds remains unknown (227). Volatile compounds may 

modulate interactions within the microbial communities that can potentially result in the creation 

of a favorable niche for some community members (228). The profiles of volatile compounds 

produced by microorganisms are consistent, within the same cultural conditions, environment 

and inputs (228), and have led to attempts to identify bacteria based on their volatile fingerprints 

(229).While volatile compounds constitute a large class of potential infochemicals, their role in 

bacteria–bacteria interactions remains unexplored. However, recent investigations have clearly 

demonstrated that bacteria employ their volatiles during interactions with other organisms to 

influence populations and communities (230). This phenomenon was considered to resemble 

olfaction, or the sensing of airborne volatile compounds, a property of higher eukaryotes (231). 
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Volatile-mediated transfer of antibiotic resistance to ampicillin in E. coli was first reported in 

2002; however, the nature of the airborne signal was unknown (232). A more recent study 

showed that exposure to gaseous ammonia, a catabolic product of L-aspartate, released from 

stationary phase E. coli K12 cultures alters the antibiotic resistance profile of several Gram-

negative and Gram-positive bacteria (187). Ammonia increased resistance to tetracycline in E. 

coli BL21, P. aeruginosa Lm1, Bacillus subtilis, and Staphylococcus aureus Xen36 whereas it 

increased sensitivity to the aminoglycoside kanamycin (Table 3). These effects resulted from 

ammonia-dependent increase in polyamine levels,which altered the membrane permeability to 

antibiotics and increased the resistance to oxidative stress (Fig.3); but whether or not the 

ammonia release was induced in response to antibiotics was not determined (187). Similar 

ammonia-mediated protection from ampicillin in Serratia rubidaea and S. marcescens was 

attributed to antibiotic inactivation by alkalinization of the medium (188). Interestingly, volatiles 

emitted from the tested Gram-positive and Gram-negative bacteria increased resistance of E. coli 

to tetracycline; however, volatiles emitted from E. coli did not alter resistance to ticarcillin, 

chloramphenicol, ofloxacin and vancomycin (187). 

Trimethylamine (TMA) is another volatile compound produced by E. coli that can alter antibiotic 

resistance patterns of E. coli, P. aeruginosa, S. aureus, and B. subtilis as a result of TMA-

mediated alkalinization of extracellular medium which would increase uptake of 

aminoglycosides and chloramphenicol and reduce uptake of tetracycline (189). On the other 

hand, 2,3-butanedione and glyoxylic acid emitted from B. subtilis increased resistance of E. coli 

to ampicillin and tetracycline, a phenotype regulated by the previously uncharacterized ypdB 

gene product through the downstream transcription factors soxS, rpoS or yjhU(190). 

Burkholderia ambifaria emitted highly bioactive volatile blend (not regulated by quorum-sensing 

systems) containing predominantly sulfur compounds, ketones, and aromatic compounds with 

dimethyl disulfide being the most abundant compound. These volatile blends, and their 

individual components, increased resistance to the aminoglycoside antibiotics gentamicin and 

kanamycin in E. coli and induced significant biomass increase in the model plant Arabidopsis 

thaliana as well as growth inhibition of two phytopathogenic fungi (Rhizoctonia solani and 

Alternaria alternata) (191). 
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1.4.1.4. Pseudomonas quinolone signal (PQS) 

The Pseudomonas quinolone signal (PQS; 2-heptyl-3-hydroxy-4-quinolone), like the well-

studied N-acyl homoserine lactones, functions as a quorum-sensing signal that controls genes 

required for virulence factor expression and biofilm formation (233, 234). Being hydrophobic, it 

is difficult to explain how the PQS acts as an extracellular signal. However, outer membrane 

vesicles can transport the PQS signal among P. aeruginosa cells (235). Furthermore, many of the 

P. aeruginosa quinolones/quinolines packed into these vesicles have antibiotic activity against 

Gram-positive cells such as S. aureus and B. subtilis, suggesting that the production of such 

molecules might provide P. aeruginosa with an advantage to gain a niche by inhibiting the 

growth of competing microorganisms (236). 

Indirect evidences suggest the possibility that PQS-dependent cell-to-cell communication in P. 

aeruginosa may be involved in controlling susceptibility to antimicrobial agents. For example, 

exogenous PQS increased the susceptibility of the wild type P. aeruginosa PAO1 strain to 

tetracycline, chloramphenicol, carbenicillin, spectinomycin, and to a lesser extent kanamycin 

(Table 3). This was suggested to be a consequence of the PQS-dependent repression of other 

multidrug efflux pumps, or direct regulation of genes involved in controlling cell envelope 

permeability by PQS (Fig.3) (192). Overexpression of the MexEF-OprN multidrug efflux system 

results in a delay in PQS production due to efflux of kynurenine, a PQS precursor, thus increased 

antibiotic resistance was accompanied with lower intracellular levels of PQS (237).Other studies 

also showed that overproduction of the MexEF-OprN pump results in increased resistance to 

quinolone antibiotics and chloramphenicol, but hypersusceptibility to most β lactams (238). 

Further work is still required to demonstrate a direct effect of PQS in modulation of antibiotic 

susceptibility and its mechanism. 

 

1.4.1.5. The phytohormone Indole-3-acetic acid 

Indole-3-acetic acid (IAA) is the primary auxin in plants that regulates many plant 

developmental and cellular processes and is capable of inducing changes in gene and protein  



39 
 

 

 

Figure 3. Mechanisms of alteration of antibiotic susceptibility mediated by small molecules and 

potential targets for drug design. 

For detailed mechanisms of action of each molecule and their corresponding references, please 

refer to the text. The potential targets for the design of novel therapeutics are marked by this sign 

( ). AHL: N-acyl-homoserine lactone; EPS: exopolysaccharide; IAA: Indole-3-acetic acid; 

LPS: lipopolysaccharide; OM: outer membrane; OMV: outer membrane vesicles; PQS: 

Pseudomonas quinolone signal; ROS: reactive oxygen species. 
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expressions, in prokaryotic and eukaryotic organisms, leading to different physiological 

alterations (239). Auxin biosynthesis is also widespread among soil- and plant-associated 

bacteria such as Streptomyces, Bacillus, Pseudomonas, Burkholderia, Erwinia, Flavobacterium, 

and Stenotrophomonas as part of a system to communicate with their plant host (240).  IAA 

treatment of E. coli K-12 cells enhanced their resistance to various stress conditions including 

exposure to antibiotics such as erythromycin, rifampicin, penicillin and novobiocin (Table 3) 

(193). It seemed that IAA activates different protective pathways to synergistically enhance 

stress tolerance. Treatment with IAA resulted in increased lipopolysaccharide (LPS) and 

exopolysaccharide production, and enhanced synthesis of the chemical and molecular 

chaperones, trehalose and DnaK respectively, which correlated with the higher resistance to 

stress conditions (Fig.3) (193). 

1.4.2. New targets for drug discovery 

The successful therapeutic outcome of bacterial infections is impeded by the continuous 

emergence of antibiotic resistant bacteria. This represents a major challenge that aggravates the 

problems posed by microbial infections, especially when these infections further complicate 

existing health-deteriorating conditions. The concept of using helper compounds that inhibit 

certain features of pathogenic bacteria provides an appealing approach to reverse bacterial 

resistance to antibiotics by targeting the bacterial membrane permeability to enhance penetration 

of antibiotics or by inhibition of efflux pumps (241-244). Given the advances in our 

understanding of the mechanisms of intrinsic resistance involving small molecular cues 

modulating resistance to antibiotics, I propose that another target for potential inhibitors is 

extracellular signaling, and various potential targets of this type for drug design are outlined in 

Fig. 3. Interfering with biosynthetic pathways of the signaling molecules could not only 

overcome increased antibiotic resistance (245), but also aid preventing the potential 

communication and spread of antibiotic resistance to other bacteria mediated by these small 

molecules. Such treatments would neither stop cellular division directly nor be toxic to the cells, 

thus reducing the selective pressure to evolve mechanisms of resistance. In addition, targeting 

small-molecule signaling pathways ensures that treatments will be directed specifically at the 

pathogenic organism, rather than the entire microbiome (245).Overall, this direction for drug 
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discovery could potentially expand further as our understanding of the mechanisms, biosynthetic 

pathways and uptake of the different small molecules continues to increase. 

 

1.5. Hypothesis and general objectives 

Microbial infections are becoming more refractory to antibiotic therapy. The clinical outcome of 

antibiotic treatment does not always correlate with the expectations based on in vitro 

susceptibility testing performed on individual clinical isolates (246). Owing to the polymicrobial 

nature of many infections (247), cross talk between the different bacterial species is probable 

during infection. Hence, I hypothesize that bacteria displaying high-level intrinsic antibiotic 

resistance, especially the more resistant members within a heteroresistant population, can 

communicate such high level of resistance to other less resistant bacteria through chemical cues, 

protecting them from the lethal action of antibiotics. To address this hypothesis, I will use B. 

cenocepacia as a model organism to determine: 

1. The population-wide response of B. cenocepacia to antibiotics whether it is a homogeneous 

response or it displays heteroresistance. 

2. If B. cenocepacia (the more resistant members of its population in case of heteroresistance) 

can communicate its high level of resistance to less resistant bacteria. 

3. The signals involved in the chemical communication of antibiotic resistance, in case B. 

cenocepacia cells are capable of protecting other less resistant cells. 

4. The mechanism by which the chemical signals involved in the phenomenon protects against 

the action of antibiotics. 
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2.1. Introduction 

Treating infection caused by multidrug resistant bacteria is challenging, especially in 

immunocompromised patients. These individuals often succumb from infections by opportunistic 

bacteria that display intrinsic, high-level resistance to virtually all antimicrobials available for 

clinical use. Reduced permeability of the bacterial cell envelope in conjunction with multidrug 

efflux pumps are considered major determinants of intrinsic multidrug resistance (1). However, 

the overall resistance of a bacterial population results from the combination of a wide range of 

susceptibilities displayed by subsets of bacterial cells. Bacterial heteroresistance to antibiotics 

has been documented for several pathogenic bacteria, but the mechanism of heteroresistance is 

not always clear. Here, I use Burkholderia cenocepacia as a model opportunistic bacterium to 

investigate the implications of heterogeneity in the response to the antimicrobial peptide 

polymyxin B (PmB) and also other antibiotics. B. cenocepacia is an environmental, opportunistic 

pathogen that causes serious infections in patients with cystic fibrosis and expresses high-level 

multidrug resistance (2). Using the prototypic B. cenocepacia K56-2 strain, I observed a 

population-wide variation in the response to PmB and more importantly, that the more resistant 

members communicate higher level of resistance to less resistant members of the same 

population, and to other bacterial species in co-culture, such as Pseudomonas aeruginosa and 

Escherichia coli. Communication of increased resistance depended on overproduction by the 

more resistant subpopulations of the polyamine putrescine and increased secretion of YceI, a 

highly conserved small protein of unknown function. This rather general multifactorial 

mechanism of communication of antibiotic resistance is distinct from previously reported 

population-based resistance involving production of indole (3, 4), biogenic ammonia (5), and 

intercellular nanotubes (6). My findings uncover a novel, non-genetic and cooperative 

mechanism of transient increase in resistance that can be chemically communicated from more 

resistant members of a heterogeneous population to less resistant bacterial cells of the same or 

other species. 
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2.2. Materials and Methods 

2.2.1. Strains and reagents 

 Table 5 lists bacteria and plasmids used in this work. Bacteria grew in LB at 37°C. 

Antibiotics (Sigma, St Louis, MO, USA) were diluted in water except for PmB, which was 

diluted in 0.2% bovine serum albumin/0.01% glacial acetic acid buffer. For growth analyses, 

overnight cultures were diluted to an optical density at 600 nm (OD600) of 0.0008 and incubated 

at 37°C with medium continuous shaking in a Bioscreen C automated growth curve analyzer 

(MTX Lab Systems, Vienna, VA, USA). Medium 121 containing 83 M phosphate was used to 

test low phosphate conditions (7). Extracellular protease production was determined on dialyzed 

Brain-Heart infusion milk agar plates (8). Lipopolysaccharide was extracted and visualized by 

silver staining (9). Etest strips (AB bioMérieux, Solna, Sweden) were applied to agar plates 

inoculated with test bacteria by swabbing overnight cultures diluted to OD600 of 0.04; plates were 

then incubated at 37
o
C for 24 h. Unmarked non-polar deletions were performed as described 

previously (10). Unmarked chromosomal single copy complementation of BCAL2641 was 

performed using pMH447 (11). Complementation of yceI (BCAL3310 and BCAL3311) was 

performed using pSCrhaB2 (12). 

 

2.2.2. Population analysis profiling (PAP) 

 This involved treating bacterial cultures with doubling increments of antibiotic 

concentrations and determining growth at each concentration by turbidimetry in LB broth (PAP 

by broth dilution) or by cfu counting on agar plates (PAP by agar dilution). Heteroresistance was 

considered when the antibiotic concentration exhibiting the highest inhibitory effects was 8-fold 

or more higher than the highest non-inhibitory concentration. 
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Table 5. Strains and plasmids used in Chapter 2 

Strain or plasmid Relevant characteristicsa Source and/or reference 
 
Strains 
   
Burkholderia cenocepacia 

CP706-J CF clinical isolate Cleveland 

K56-2 ET12 clone related to J2315, CF clinical Isolate bBCRRC,(13) 

cciI Deletion of cciI in K56-2 (14) 

cepI Deletion of cepI in K56-2 (14) 

rpfF Deletion of rpfF in K56-2 (14) 

rpoE SAL65, Deletion of rpoE in K56-2 S. Loutet 

hldA Deletion of hldA in K56-2 (10) 

arnBC K56-2Prha-arnTarnBCamrAB, suppressor strain (11) 

BCAL3390 OME2, Deletion of BCAL3390 in K56-2 This study 

BCAM2086 OME3, Deletion of BCAM2086 in K56-2 This study 

yceI OME4, Deletion of yceI (BCAL3310 and BCAL3311) in K56-2 This study 

BCAM1679 OME5, Deletion of BCAM1679 in K56-2 This study 

BCAL3390BCAM2086 OME7, Deletion of BCAM2086 in K56-2BCAL3390 This study 

BCAL1281 OME8, Deletion of BCAL1281 in K56-2 This study 

BCAL2641 OME11, Deletion of BCAL2641 in K56-2 This study 

BCAM1111BCAM1112 OME12, Deletion of BCAM1111 and BCAM1112 in K56-2 This study 

K56-2 pSCrhaB2 OME19, K56-2 carrying pSCrhaB2, TpR This study 

yceI pSCrhaB2 OME20, K56-2 yceI carrying pSCrhaB2, TpR This study 

yceIpyceI OME21, K56-2 yceI carrying yceI cloned into pSCrhaB2, TpR This study 

amrAB OME29, Deletion of amrAB in K56-2 This study 

BCAL2641amrAB OME30, Deletion of amrAB in K56-2BCAL2641 This study 

amrAB::BCAL2641+ OME31, Chromosomal BCAL2641 integration in amrAB This study 

 locus in K56-2BCAL2641 
 
Escherichia coli 

DH5α F-80lacZ M15 endA1 recA1 supE44 hsdR17(rK
- mK

+) 

 deoR thi-1 nupG supE44 gyrA96relA1 ∆(lacZYA-argF)U169, λ– Laboratory  

  stock 

GT115 F– mcrA∆(mrr-hsdRMS-mcrBC) 80∆lacZ∆M15 ∆lacX74 

 recA1rpsL (StrA) endA1∆dcm uidA(∆MluI)::pir-116 

 ∆sbcC-sbcD Invivogen, San Diego, CA 

HB101 F-mcrBmrrhsdS20(rB-mB-) recA13 leuB6 ara-14 proA2 

 lacY1 galK2xyl-5 mtl-1 rpsL20(SmR) glnV44 λ- Laboratory Stock 
 
SY327 araD Δ(lac pro) argE(Am) recA56 rifr nalA, λ pir (15) 

BL21 F−dcm ompT hsdS(rB
−mB

−) gal  Novagen 

 

Pseudomonas aeruginosa 

PAO1 Non-CF clinical isolate (16) 
 
Plasmids 

pDAI-SceI-SacB oripBBR1, TetR, Pdhfr, mob+, expressing I-SceI, SacB (17) 

pGPI-SceI oriR6K,  TpR , mob+, including an I-SceI restriction site (10) 

pMH447 pGPI-SceI derivative used for chromosomal complementation 

 allowing gene integration in the gentamicin efflux pump (11) 

pRK2013 oricolE1, RK2 derivative, KanR, mob+, tra+ (18) 

pDelBCAL3390 pOE2, pGPI-SceI with fragments flanking BCAL3390 This study 

pDelBCAM2086 pOE3, pGPI-SceI with fragments flanking BCAM2086 This study 

pDelyceI pOE4, pGPI-SceI with fragments flanking BCAL3310 This study 

 and BCAL3311 

pDelBCAL1281 pOE5, pGPI-SceI with fragments flanking BCAL1281 This study 

pDelBCAM1679 pGPI-SceI with fragments flanking BCAM1679 (19) 

pDelBCAL2641 pOE6, pGPI-SceI with fragments flanking BCAL2641 This study 

pDelBCAM1111 pOE7, pGPI-SceI with fragments flanking BCAM1111 This study 

 and BCAM112 
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pSCrhaB2 oripBBR1rhaR, rhaS, PrhaBTpRmob+ (12) 

pyceI pOE8, yceI cloned in pSCRha-B2 This study 

pBCAL2641 pOE9, BCAL2641 cloned in pMH447 for chromosomal 

 complementation This study 

pET28a(+)  Novagen 

pExpBCAL3310 pOE15, BCAL3310 without signal peptide encoding sequence  This study 

cloned in pET28a(+)  

pExpBCAL3311 pOE16, BCAL3311 without signal peptide encoding sequence  This study 

cloned in pET28a(+)  
   
aTpR, trimethoprim resistance, KanR, kanamycin resistance, TetR, tetracycline resistance. 
bBCRRC, B. cepacia Research and Referral Repository for Canadian CF Clinics. 
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2.2.3. Co-culture 

 Co-culture was performed by mixing overnight cultures of P. aeruginosa PAO1 and B. 

cenocepacia (treated with 500 g/ml PmB) diluted to OD600 of 0.004 at ratio 100:1 in LB broth 

with or without PmB. Controls with the pure cultures at the same inoculum size were included in 

the experiment. The mixtures were incubated at 37
o
C at 200 rpm and cfu of each species was 

determined by using differential antibiotic selection on LB agar plates at 6 and 24 h. B. 

cenocepacia was selected with PmB (50 g/ml) and PAO1 was selected with trimethoprim (100 

g/ml). The total count was determined on LB agar plates.  

 

2.2.4. Volatile-mediated protection 

 Overnight culture of B. cenocepacia was diluted 1 in 200 in LB containing 500 μg/ml 

PmB and incubated at 37
o
C for 17 h at 200 rpm. The supernatant was collected at 4

o
C, filtered 

using 0.2 m nylon membrane filters, and 10 ml aliquots were placed at one side of the septum 

in septate Petri dishes. MIC by agar dilution was performed on test bacteria (B. cenocepacia 

K56-2ΔarnBC, E. coli DH5α, HB101, and GT115) at the other side of the septum by spotting 

(10 l) of their overnight cultures diluted to OD600 of 0.004 on LB agar containing PmB at 

doubling increments. The plates were then incubated at 37
o
C for 24 h. 

 

2.2.5. RNA extraction 

 rpoE/500 and rpoE cells were grown overnight and then diluted to OD600 of 0.05 in 50 

ml of LB with 500 μg/ml PmB or vehicle control respectively. Cells were grown at 37
o
C for 30 

min at 200 rpm then collected by centrifugation at 39,000 Xg for 30 min at 4
o
C. RNA was 

prepared from approximately 5X10
8
 cfu using the RiboPure-Bacteria kit (Ambion, Inc., Austin, 

TX, USA) and treated with DNAse 1 (Ambion), followed by treatment with DNAse 1 (Qiagen 

Inc., Mississauga, ON, Canada) following the manufacturer‟s protocol. Integrity of the RNA was 
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assessed by agarose gel electrophoresis and by measuring the ratio of absorbance at 260 nm to 

280 nm (values obtained between 2.0 and 2.2). 

 

2.2.6. qRT-PCR 

 RNA was converted to cDNA and real-time PCR was performed as previously described 

(20). Fold changes in gene expression were calculated using the Pfaffl Method (21) relative to 

BCAS0175, an internal control used for microarray and real-time PCR analysis (22). Data were 

calculated from 3 independent experiments each done in triplicate. 

 

2.2.7. Ornithine decarboxylase (ODC) assay 

 Overnight cultures in LB broth were diluted to OD600 of 0.004 in the rapid ornithine broth 

medium described by Fay and Barry (23) with or without PmB or the polyamine synthesis 

inhibitors adjusted at pH 5.5. Aliquots (300 µl each) were transferred to 100-well Bioscreen C 

plates and overlaid with 100 µl of mineral oil. The plates were incubated in the Bioscreen C 

automated growth curve analyzer at 37
o
C without shaking and the color was monitored at 420 

nm. 

 

2.2.8. Thin-layer chromatography analyses of polyamines 

 Polyamine analysis was performed as previously described (24). Overnight cultures (~20 

h) in M9 medium with or without PmB were used. M9 medium was used to eliminate potential 

polyamine contamination in complex media such as LB medium. Supernatants, collected by 

centrifugation at 16,100g for 5 min, corresponding to cultures of OD600 of 0.1 were used. HClO4 

(4 N) was added to supernatants to reach a final normality of 0.4 N and incubated at 37
o
C for 1 h 

with shaking. HClO4 extracts were centrifuged at 16,100g for 5 min. Fifty microlitres of the 

supernatants were mixed with 50 µl of 2M Na2CO3 and 100 µl of 2.7 mg/ml dansyl chloride 

(Sigma, St Louis, MO, USA) solution in acetone and incubated in the dark at 37
o
C for 2h with 
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shaking. Standard solutions of putrescine, cadaverine, spermidine and spermine (0.2 mM each) 

were treated similarly. The mixtures were evaporated to dryness under Nitrogen gas and 

extracted with 200 µl benzene at 4
o
C for ~18 h with shaking. Fifty microlitres of the benzene 

extracts of each of the samples and 5 µl of each of the standards were applied onto TLC silica gel 

plates (20 × 20 cm, Merck, Darmstadt, Germany) and sequentially separated in two systems: I) 

benzene–triethylamine (20 : 2 v/v); II) benzene–methanol (10 : 0.45 v/v). The dried plates were 

photographed in ultraviolet light, which excites the green-blue fluorescence of dansyl polyamine 

spots. The size and intensity of these spots were proportional to the polyamine concentration, 

which was quantified using Image J 1.46r software. 

 

2.2.9. Competition between putrescine and fluorescent PmB on surface binding 

 Overnight culture of B. cenocepacia K56-2 was centrifuged at 16,100 g for 1 min, and 

cells were washed with PBS (3X) followed by dilution to OD600 of 1 in PBS. Polymyxin B 

Oregon Green 514 conjugate, PmB-OG (Invitrogen) was added to 100 µl diluted cells at final 

concentration of 25 µg/ml and incubated at 37
o
C for 10 min. Then, cells were washed with PBS 

(3X), resuspended in 100 µl of PBS, and placed into 96-well white plates. Fluorescence was 

measured at ex of 480 nm and em of 535 nm. Data was reported as a ratio of Fluorescence to 

OD600. 

 

2.2.10. Cloning, expression, and purification of YceI 

 Genes encoding the 2 YceI homologues (BCAL3310 and BCAL3311) were individually 

amplified by PCR from K56-2 genomic DNA without the sequences encoding the signal 

peptides. The constructs were cloned into the pET28a expression vector. The positive pET28a–

BCAL3310 or 3311 clones were verified by sequencing. The two YceI homologues were 

overexpressed in E. coli (BL21 strain) using 0.05 mM isopropyl thio-β-D-galactoside, and the 

expression was prolonged for 3 h at 25 
o
C. Bacterial cells were harvested and the cell pellet was 

resuspended in 50 mM phosphate buffer pH 7.8 and lysis was achieved using one shot cell 

disrupter (Constant Systems Ltd., Northants, UK) at 27 KPSI. The resulting supernatant was 
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isolated from the insoluble fraction by centrifugation at 16,100 g for 60 min at 4 
o
C. His-tag 

batch purification was performed using Ni
++

 coated beads. The purified proteins were detected 

by Coomassie blue staining following 16% SDS-PAGE and quantified by Bradford assay using 

bovine serum albumin (BSA) as standard. 

 

2.2.11. Binding assay of YceI to PmB 

 Purified BCAL3310 and BCAL3311 were diluted to 10 µg/ml concentration, treated with 

PmB-OG at final concentration of 1 µg/ml in a total volume of 100 µl and incubated at 37
o
C for 

10 min with rotation. The fluorescence was measured at ex of 480 nm and em of 535 nm. 

Background fluorescence of PmB-OG with the buffer control was subtracted. BSA was used as a 

control for non-specific binding.  

 

2.2.12. Statistical analyses 

 Unpaired student‟s t-tests were conducted with GraphPad Prism 5.0. 

 

2.3. Results and Discussion 

 

2.3.1. Heteroresistance of B. cenocepacia to PmB 

 The prototypic B. cenocepacia clinical strain K56-2 was assessed for heteroresistance by 

performing population analysis profiling (PAP) of cultures exposed to serial dilutions of PmB. 

The percent growth inhibition increased gradually at high concentrations of PmB but without 

reaching complete bacterial inhibition, revealing residual subpopulations of more resistant cells 

(Fig. 4A) and suggesting heteroresistance. However, the limited solubility of PmB in the culture 

medium at concentrations higher than 2,048 µg/ml precluded the determination of the exact 
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minimal inhibitory concentration (MIC) for PmB against K56-2. To investigate this phenomenon 

in more detail, I performed PAP in isogenic mutants with intermediate sensitivity to PmB. K56-

2ΔrpoE, which lacks an extracytoplasmic stress response regulator (25), showed evident 

heteroresistance to PmB (Fig. 4A). A fraction of bacteria from the same culture was inhibited at 

64 µg/ml despite that the MIC of PmB against the entire bacterial population was higher than 

1,024 µg/ml. Gradual reduction in the resistant subpopulation was observed upon increasing 

PmB concentrations over a 16-fold range. Heteroresistance to PmB was confirmed by E-test, 

which demonstrated small colonies growing within the zone of inhibition surrounding the highest 

concentrations of PmB on the E-test strips, both in K56-2 and K56-2∆rpoE (Fig. 4B and C 

respectively). A similar pattern of heteroresistance was also previously observed for the K56-

2ΔsuhB (26), which lacks an inositol monophosphatase and like K56-2∆rpoE, has intermediate 

sensitivity to PmB. Heteroresistance to PmB was also observed in the B. cenocepacia clinical 

isolate CP706-J, indicating that it is not a phenomenon unique to a single strain (Fig. 4D). In 

contrast, P. aeruginosa PAO1 did not show heteroresistance to PmB, as demonstrated by the 

abrupt drop in the bacterial growth on a two-fold increase of PmB concentration to reach 

complete growth inhibition (Fig. 4E).  

 Heteroresistance to PmB was not related to the level of PmB resistance since mutants 

displaying high sensitivity to PmB were also heteroresistant. K56-2ΔhldA, a strain lacking the 

ability to produce a complete lipopolysaccharide (LPS) molecule as a result of the loss of the 

hldA gene (27), demonstrated heteroresistance to PmB at concentrations ranging from 32 µg/ml 

to 256 µg/ml (Fig. 4F). Furthermore, K56-2ΔarnBC carrying a deletion of genes required for 4-

amino-4-deoxy-L-arabinose (Ara4N) synthesis displayed similar heterogeneity in the response to 

PmB despite its exquisite sensitivity to PmB (Fig. 4G). Since B. cenocepacia LPS modification 

with Ara4N is the major determinant for the extreme resistance to PmB (11) my results suggest 

that the heteroresistance of B. cenocepacia to PmB is not associated to LPS modifications and 

therefore depends on a different mechanism.  
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Figure 4.Heterogeneous response of B. cenocepacia to PmB. 

(A) Population analysis profiling (PAP) of B. cenocepacia strains K56-2, K56-2∆rpoE, K56-

2∆rpoE/500 by agar dilution at 24 h. (B) E-test of K56-2; and (C) E-test of K56-2∆rpoE 

showing discrete colonies at otherwise clear zones of inhibition, indicating heterogeneous 

response to PmB. (D) PAP of B. cenocepacia CF clinical isolate CP706-J by broth dilution at 18 

h. (E) PAP of P. aeruginosa PAO1; (F) PAP of K56-2∆hldA; and (G) PAP of K56-2∆arnBC by 

agar dilution at 24 h. n = 6. The shaded regions on the PAP graphs indicate ranges of antibiotic 

concentrations over which the bacterial population transitions from lack of inhibition to maximal 

inhibition by the antibiotic under the test conditions.  
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2.3.2. A more resistant subpopulation of B. cenocepacia protects naïve bacteria from PmB 

 I investigated whether the more resistant subpopulations of B. cenocepacia could 

influence the overall level of antibiotic resistance of naïve cells in mixed cultures. To test this 

hypothesis I chose to focus on the K56-2ΔrpoE mutant, as this bacterium has a PmB resistance 

profile that is similar to the parental strain but sufficiently less resistant to reach higher levels of 

growth inhibition at testable concentrations of PmB (Fig. 4A). Based on the K56-2ΔrpoE PAP, I 

selected the subpopulation of K56-2ΔrpoE exposed to 500 µg/ml (Fig. 4A, ∆rpoE/500), which 

arose at a frequency of 2.48 x 10
-4

 and demonstrated uniform high-level resistance when re-

exposed to PmB  (Fig. 4A). ∆rpoE/500 cells passaged for up to five days in the absence of PmB 

displayed PAP identical to that of cells grown overnight in the presence of 500 µg/ml PmB, 

indicating that the high-level resistance of ∆rpoE/500 was stable without selective pressure, 

likely as a result of one or more mutations that confer increased PmB resistance. No differences 

were found between ∆rpoE/500 and naïve ∆rpoE cells in LPS electrophoretic profiles (Fig. 5A). 

Furthermore, the increased resistance of ∆rpoE/500 was not due to an increase in the Ara4N LPS 

modification, since the differential expression of arnT and arnB genes, representing the 2 

transcriptional units of the arn cluster (28), was 1.08 (+/-0.09) and -1.73 (+/-0.04) respectively, 

as determined by qRT-PCR. This was expected since it was previously shown that the arn cluster 

in B. cenocepacia is not regulated by PmB challenge (28). ∆rpoE/500 cells treated with PmB 

also displayed reduced metabolic activity at 24 h relative to naïve ∆rpoE and K56-2 with or 

without exposure to PmB, as revealed in the resazurin metabolic assay (Fig. 5B), suggesting that 

increased PmB resistance in the ∆rpoE/500 subpopulation is associated with reduced metabolic 

fitness.  
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Figure 5.Characterization of the more resistant subpopulation ΔrpoE/500. 

(A) LPS profiles; (B) Metabolic activity. Overnight cultures were diluted to OD600 of 0.02, 

treated with PmB or vehicle control, incubated at 37°C with continuous medium shaking for 24 h 

in a Bioscreen C automated growth curve analyzer. Cells were then collected, washed, 

resuspended in PBS, transferred to white 96-well plate, and treated with resazurin at final 

concentration 2.5 µg/ml. The plates were incubated in the dark at 37
o
C for 90 min, and the 

fluorescence was measured at λex of 485 nm and λem of 600 nm, unpaired student‟s t-tests were 

conducted comparing each condition to the control K56-2; (C) Secreted protease activity.  
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Since ∆rpoE/500 represents ~1% of the ∆rpoE population in the turbidimetric PAP experiments 

(not shown), ∆rpoE/500 was co-cultured in a 1:100 ratio with P. aeruginosa in the presence of 2 

µg/ml of PmB. This concentration of PmB was based on the current clinical guidelines for P. 

aeruginosa therapeutic breakpoints of the closely related antibiotic polymyxin E (colistin), which 

is set at 2 µg/ml (29) and is equivalent to the MIC of PmB against P. aeruginosa. Co-culture 

under these conditions resulted in more than a 3- to 5-log survival of P. aeruginosa at 6 and 24 h, 

respectively, compared to P. aeruginosa grown alone (Fig. 6). There was no effect of P. 

aeruginosa on the growth of B. cenocepacia cells in co-culture (Fig. 7). Protection by ∆rpoE/500 

did not depend on secreted extracellular proteases since no differences were found between 

∆rpoE/500 and naïve ∆rpoE cells in the amount of these proteases (Fig. 5C). Similarly, 

protection did not depend on quorum sensing molecules, as mutants defective in the various 

quorum systems of B. cenocepacia also showed heteroresistance to PmB and could protect P. 

aeruginosa from PmB (Fig. 8A and B). Also, it could not be due to production of indole (3, 4) 

since B. cenocepacia and Burkholderia in general are indole negative (30). 

 Furthermore, the filtered supernatant of an overnight culture of ∆rpoE/500 in PmB 

communicated higher-level resistance in a volatile-mediated manner to physically separated 

K56-2ΔarnBC and several E. coli strains. The MIC of the PmB-sensitive strains doubled due to 

volatiles emitted from the supernatant of ∆rpoE/500 (Table 6), with the exception of E. coli 

GT115, which only showed slight enhancement in the growth in the presence of PmB (not 

shown). These results were consistent and reproducible. The protective effect of ∆rpoE/500 was 

therefore not limited to the same species and could be communicated by one or more volatile 

compounds in the bacterial supernatant.  
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Figure 6. Protective effects of B. cenocepacia ∆rpoE/500 on P. aeruginosa PAO1, exposed to 

PmB, in co-culture. 

The dotted line represents the limit of detection (50 cfu/ml). Three independent experiments each 

done in duplicate. 
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Figure 7. The growth of B. cenocepacia∆rpoE/500 subpopulation was not impaired in co-culture 

with P. aeruginosa PAO1except at 24 h in co-culture without PmB where its ratio relative to 

PAO1 dropped 10 fold probably due to limiting nutrients as a result of the increased biomass of 

both bacteria in the absence of PmB. 
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Figure 8. Quorum sensing systems of B. cenocepacia are neither involved in the heterogeneity of 

response to PmB nor in protection to naïve populations. 

(A) PAP by agar dilution of the quorum-sensing mutants. (B) Direct co-culture of P. aeruginosa 

PAO1 with subpopulations of the quorum-sensing mutants growing at 500 µg/ml in comparison 

to ∆rpoE/500 subpopulation. The co-cultures were treated with 2 µg/ml PmB for 24 h; the 

differences are not statistically significant based on unpaired student‟s t-tests. 
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Table 6.MIC by agar dilution technique to determine the volatile-mediated protective effect 

of the supernatant of ∆rpoE/500 from the effects of PmB on sensitive bacteria. 

 Sterile LB  

Control (n) 

Supernatant of 

∆rpoE/500 (n) 

Sensitive bacteria MIC, µg/ml 

B. cenocepacia K56-2ΔarnBC 0.25 (4) 0.5 (4) 

E. coli DH5α 0.25 (4) 0.5 (4) 

E. coli HB101 0.25 (3)/ 0.5 

(1) 

0.5 (4) 

E. coli GT115 0.25 (4) 0.25 (4) 
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2.3.3. The more resistant subpopulation releases higher amounts of a subset of proteins upon 

exposure to PmB 

 To gain clues on the secreted molecules mediating the protective effects of B. 

cenocepacia from PmB, I compared the profile of proteins released into the supernatant of PmB-

treated ∆rpoE/500 with naïve K56-2∆rpoE and parental K56-2 treated or untreated with 

PmB.The ∆rpoE/500 subpopulation and K56-2 treated with PmB showed a similar pattern of 

overexpression of several polypeptide bands (Fig. 9), which were identified by mass 

spectrometry. One of these bands corresponded to BCAM2827, which is a predicted periplasmic 

component of an ABC transporter involved in the biosynthesis of hopanoids. Hopanoids, 

bacterial substitutes of eukaryotic cholesterol that stabilize membranes and regulate membrane 

fluidity and permeability, have been recently shown to be required for PmB resistance in B. 

cenocepacia (31). Another protein band was identified as YceI, a conserved protein of unknown 

function proposed to bind amphiphilic molecules and sequester toxic fatty acids or amides (32). 

Two highly related YceI homologues, BCAL3310 and BCAL3311, are present in K56-2. Other 

polypeptides were identified as flagellin, in agreement with the reported effects of PmB on the 

flagellar assembly apparatus at the transcriptional level (33), and with the reduced motility in 

parental K56-2 and ∆rpoE/500 upon exposure to PmB (not shown). 

 Three other polypeptide bands were identified as lysine-arginine-ornithine-binding 

periplasmic proteins, which are involved in the import of these amino acids. I hypothesized that 

increased import of lysine, arginine and ornithine could be utilized in the modification of the 

membranes through the formation of lysylphosphatidylglycerol and ornithine-lipid derivatives, 

since modification of bacterial membranes with cationic molecules reducing their overall 

negative charge is one of the common mechanisms of increasing resistance to antimicrobial 

peptides (34). However, deletion of BCAM1679 encoding a putative lysylphosphatidylglycerol 

synthetase and olsB (BCAL1281), previously shown to render the cells incapable of synthesizing 

the ornithine-lipid under low phosphate conditions (35), did not affect the resistance to PmB 

when tested in LB medium or in low-phosphate containing medium in K56-2 background (not 

shown).  
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Figure 9. Proteins released into the supernatant of B. cenocepacia K56-2 and ∆rpoE/500 treated 

with 500 µg/ml of PmB compared to those released from untreated K56-2 and naïve ∆rpoE. 

Proteins were run on 14% SDS-PAGE and detected by silver staining and those that were 

differentially expressed were further identified by LC-MS. 
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2.3.4. A role for putrescine in PmB resistance 

 The increased import of lysine, arginine and ornithine suggested by the overexpression of 

their periplasmic binding proteins in ∆rpoE/500 exposed to PmB could be also utilized for 

synthesis of polyamines (Fig. 10A). Therefore, I tested the involvement of polyamines as 

possible candidate molecules conferring increased PmB resistance. Spermidine, at concentrations 

ranging from submicromolar to millimolar levels, had negligible effect on resistance of B. 

cenocepacia to PmB (not shown). However, treatment of the parental K56-2 with 50 mM 

putrescine increased the resistance to PmB since putrescine-treated cells survived better at 2,048 

µg/ml PmB compared to control cells (Fig. 10B). Putrescine treatment of K56-2∆arnBC also 

resulted in a 2-fold increase in the MIC of PmB, suggesting that putrescine plays a role in the 

increased resistance to PmB and its transfer among the bacterial population. 

 To test this notion, I deleted the genes encoding key enzymes for polyamines 

biosynthesis (Fig. 10A). Mutants with double deletions of both genes encoding spermidine 

synthases (BCAL3390 and BCAM2086) showed a slight reduction in resistance to PmB and no 

changes in growth rate (Fig. 11). However, the mutant lacking BCAL2641, which encodes an 

ornithine decarboxylase, had a marked reduction in resistance to PmB and no growth rate defects 

(Fig. 10C). PmB resistance was restored to parental level by single-copy complementation of 

BCAL2641 (Fig. 10D). To further confirm these findings I used two polyamines synthesis 

inhibitors, dicyclohexylamine and 3-(Methylthio)propylamine (Fig. 10E and Fig. 12). 

Dicyclohexylamine, originally reported as a spermidine synthase inhibitor but also capable of 

inhibiting the ornithine decarboxylase enzyme (Fig. 13), reduced resistance to PmB in K56-2 and 

∆rpoE/500 cells in a concentration dependent manner (Fig. 10E and Fig. 12, respectively). 

However, 3-(Methylthio)propylamine, which is more specific for spermidine synthase and lacks 

any detectable inhibitory effect on the ornithine decarboxylase reaction (Fig. 13) had no effect on 

resistance of ∆rpoE/500 (Fig. 12) and only caused a lower reduction of resistance of K56-2 to 

PmB (Fig. 10E). Exogenous putrescine increased the resistance of K56-2 ∆BCAL2641 to PmB in 

a concentration-dependent manner; full restoration of the level of resistance of the parental strain 

was achieved at 50 mM putrescine (Fig. 10B). A comparison of the level of transcription of 

BCAL2641 in both naïve ∆rpoE and ∆rpoE/500  
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(A) Polyamines biosynthetic pathway. (B) Exogenous putrescine increases the resistance of the 

parental K56-2 to PmB and ΔBCAL2641 shows significant reduction in resistance to PmB which 

was restored to the parental level using 50mM exogenous putrescine; n=6 (C) The deletion of 

BCAL2641 leads to reduced resistance to PmB relative to the parental K56-2. (D) Single-copy 

complementation of ∆BCAL2641. (E) The polyamine synthesis inhibitor dicyclohexylamine 

(blue) reduces the resistance of B. cenocepacia K56-2 to PmB, with little to no effect of 3-

(methylthio)propylamine (red), shown in a turbidimetric PAP at 24 h; n=5. (F) TLC analysis of 

polyamines released in the supernatants of 20 h old M9 cultures compared to standards 

visualized under UV after derivatization to their dansylated derivatives. (G) Relative amounts of 

putrescine released from the wild-type and mutants, n=4. Unpaired student‟s t-tests were 

conducted to determine significance of differences among different test conditions.  

  

Figure 10.Contribution of the polyamine putrescine in the response to PmB. 
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Figure 11.PmB resistance of the spermidine synthase double mutant, K56-2 

∆BCAL3390∆BCAM2086. 

(A) Growth curves in absence of PmB; (B) Effect of 2048 µg/ml PmB on growth.  
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Figure 12. The polyamine synthesis inhibitor dicyclohexylamine (blue) reduces the 

resistance of B. cenocepacia ∆rpoE/500 subpopulation to PmB, with no effect of 3-

(methylthio)propylamine (red), shown in a turbidimetric PAP at 18 h; n=5. 
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Figure 13. Ornithine decarboxylase (ODC) activity of B. cenocepacia K56-2 either untreated or 

treated with 1 mM of dicyclohexylamine or 3-(methylthio)propylamine at 24 h. 

This concentration of the polyamine synthesis inhibitors did not affect the growth of the bacteria. 

n=9. Unpaired student‟s t-tests were conducted comparing each condition with the control 

untreated group.  
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bacteria treated with PmB, demonstrated that the expression of this gene is upregulated by 2.9 

(+/- 0.9) in ∆rpoE/500 in response to PmB. Moreover, higher levels of putrescine released in the 

supernatant of ∆rpoE/500 treated with PmB were observed relative to ∆rpoE naïve population 

(Fig. 14).  

 Putrescine is the most abundant polyamine secreted from B. cenocepacia, while much 

less amounts of spermidine and cadaverine are secreted from K56-2 (Fig. 10F). The release of 

putrescine was significantly reduced in the ∆BCAL2641 compared to the wild type K56-2 (Fig. 

10G). However, B. cenocepacia possesses another predicted ornithine decarboxylase, 

BCAM1111 and a putative arginine decarboxylase, BCAM1112. Deletion of genes encoding 

both enzymes did not have an effect on resistance to PmB in K56-2 (not shown), and only a 

small effect in the release of putrescine (Fig. 10G). In contrast, cadaverine was not detected in 

the supernatant of ∆BCAL2641 and ∆BCAM1111∆BCAM1112 precluding the involvement of 

cadaverine in increased PmB resistance (Fig. 10F). By qRT-PCR, BCAM1111 and BCAM1112 

were 2000-fold less transcribed relative to BCAL2641 in naïve ∆rpoE and ∆rpoE/500 bacteria; 

they were also not differentially transcribed in the more resistant subpopulation (∆rpoE/500) 

relative to the naïve population, suggesting that their gene products are not preferentially used in 

polyamines biosynthesis. In agreement, the ornithine decarboxylase (ODC) activity of 

∆BCAL2641 was much more reduced relative to ∆BCAM1111∆BCAM1112 (Fig. 15). The 

pattern of ODC activity corresponded to the levels of secretion of putrescine in the different 

mutants relative to the wild type (Fig. 10G). Together, this shows that BCAL2641 is the primary 

contributor of putrescine in B. cenocepacia explaining the phenotype observed upon its deletion. 

K56-2 ∆BCAL2641 also lost the protective effects from PmB in co-culture with P. aeruginosa 

PAO1 (Fig. 16A).These results implicated putrescine as a critical polyamine conferring 

protection from PmB and communicating resistance to neighbouring bacterial cells. 

 The initial binding of antimicrobial peptides to the bacterial surfaces is crucial for their 

subsequent antibacterial effects (34). Putrescine competed with PmB for binding to the surface of 

B. cenocepacia K56-2, where treatment of cells with both putrescine and the fluorescent PmB- 

Oregon green 514 conjugate showed reduced binding of the fluorescent PmB derivative relative 

to control cells (Fig. 16B). Putrescine also replaced already bound fluorescent PmB conjugate 

(Fig. 16B). This agrees with previous findings showing that polyamines provide protection of  
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Figure 14. Increased release of putrescine in the supernatant of ∆rpoE/500 subpopulation 

treated with 500 µg/ml PmB relative to naïve ∆rpoE determined at 20 h from M9 cultures by 

TLC analysis. n=6. Unpaired student‟s t-test was conducted. 
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Figure 15. ODC assay of the parental strain K56-2 and different PAs biosynthetic mutants at 6 h. 

n=9. Unpaired student‟s t-tests were conducted. 
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Figure 16.Role of putrescine in the protective effects of B. cenocepacia against PmB. 

(A) Involvement of putrescine in the protective effects of B. cenocepacia on P. aeruginosa 

PAO1 shown by performing direct co-culture between PAO1 and K56-2 wild type or 

∆BCAL2641 mutant at 24 h. The dotted line represents the limit of detection (50 cfu/ml).  Three 

independent experiments each done in duplicate. (B) Putrescine protects the bacterial surface 

from binding to PmB; 50 mM of putrescine reduced binding of PmB-Oregon green 514 

conjugate (25 µg/ml) when both added together, whereas it could replace already bound PmB; 

n=6.  
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the outer membrane of P. aeruginosa from PmB damage (36). However, this does not preclude 

other mechanisms mediated by putrescine to protect against the effects of PmB. For example, 

polyamines can reduce oxidative stress in E. coli exposed to bactericidal antibiotics (37) and 

protect from membrane lipid peroxidation in P. aeruginosa (36). These additional mechanisms 

of protection by polyamines are consistent with the notion that bactericidal antibiotics at 

sublethal concentrations stimulate the production of hydroxyl radicals, which in turn may induce 

mutations leading to various levels of antibiotic resistance (38). 

 

2.3.5. The role of YceI protein 

 I also tested the involvement of YceI in heteroresistance. Mutants with a double deletion 

of BCAL3310 and BCAL3311 had increased sensitivity to PmB, but no differences in growth rate 

relative to K56-2 (Fig. 17A). Complementing the double deletion mutant 

∆BCAL3310∆BCAL3311 (K56-2∆yceI) with both genes restored resistance to PmB to the 

parental level (Fig. 17B). Moreover, YceI contributed to the protective effects of B. cenocepacia 

towards P. aeruginosa PAO1 cells exposed to 1.5 µg/ml PmB (Fig. 17C). The level of 

transcription of BCAL3310, determined by qRT-PCR in both naïve ∆rpoE and the more resistant 

subpopulation ∆rpoE/500 treated with PmB, indicated that this gene was upregulated by 2.5 (+/- 

0.6) in the more resistant subpopulation in response to PmB. Together, these experiments reveal 

that the YceI homologues contribute to the increased resistance to PmB in ∆rpoE/500 and the 

protective effects on other cells against PmB. Purified YceI BCAL3310 and BCAL3311 (Fig. 

17D), were both capable of binding PmB-Oregon green 514 conjugate, although BCAL3311 

being more potent than BCAL3310 (Fig. 17E). This supports their role in sequestering PmB thus 

protecting other cells from the toxic effects of the antibiotic.  

 

2.3.6. B. cenocepacia is heteroresistant to other bactericidal antibiotics 

 I determined whether heteroresistance in K56-2 is exclusive to PmB. Turbidimetric PAP 

using various antibiotics indicated that K56-2 is heteroresistant to gentamicin (protein synthesis 

inhibitor), norfloxacin (DNA replication inhibitor), rifampicin (mRNA transcription inhibitor)  
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Figure 17.Contribution of YceI in the response to PmB and its role in protection against 

PmB. 

(A) The deletion of BCAL3310 and BCAL3311 (∆yceI) leads to reduced resistance to PmB 

relative to the parental K56-2. (B) PAP by agar dilution showing complementation of the 

reduced resistance in ∆yceI mutant by yceI (using both BCAL3310 and BCAL3311) under 

the control of the rhamnose promoter on pSCrhaB2 to the parental level at 0.4% rhamnose. 

(C) Involvement of YceI in the protective effects of B. cenocepacia on P. aeruginosa PAO1 

shown after 24 h of direct co-culture of PAO1 and K56-2 wild type or ∆yceI. Three 

independent experiments each done in duplicate. (D) Purified YceI homologues, 

BCAL3310 and BCAL3311. (E) Binding of BCAL3310 and BCAL3311 to PmB-Oregon 

green 514 conjugate. BSA was used as a control for binding. n=6. 



94 
 

and ceftazidime (cell wall peptidoglycan synthesis inhibitor), all of which belong to different 

classes of bactericidal antibiotics (Fig. 18). In contrast, the response of K56-2 was homogeneous 

to tetracycline, chloramphenicol, novobiocin, trimethoprim, which are all bacteriostatic 

antibiotics (Fig. 19). Polyamines play a role in the heterogeneity of response to the bactericidal 

antibiotics. ∆BCAL2641 displayed a more homogeneous response to the different bactericidal 

antibiotics, except for gentamicin (Fig. 18). Similarly, YceI was involved in the heterogeneous 

response to the amphiphilic bactericidal antibiotics rifampicin and norfloxacin; however, the 

∆yceI mutant only showed minor reduction in the percentage of the more resistant fractions of 

the population in response to ceftazidime (Fig. 18). 

 

2.4. Conclusions 

 I show that (i) B. cenocepacia is heteroresistant to PmB and different classes of 

bactericidal antibiotics; (ii) a more resistant subpopulation of B. cenocepacia communicates 

high-level resistance to less resistant cells; (iii) the protection extends to other bacterial species 

and is chemically mediated by putrescine, a polyamine, and the secretion of YceI. Since 

putrescine is volatile (39), resistance can also be communicated to physically separated bacteria 

in a volatile-mediated manner. Natural polyamines, discovered more than 300 years ago, occur in 

almost all living organisms; they are involved in growth, development, and other important 

functions related to modulation of defence responses to diverse environmental stresses and 

modulation of immune responses in plants and humans respectively (40, 41). Polyamines are 

significantly increased at inflammatory sites of infection or injury (42, 43); they are also 

produced by a wide range of bacteria, playing roles in growth and other functions including 

incorporation into the cell wall, biosynthesis of siderophores, acid resistance, scavenging free 

radical ion, signaling cellular differentiation and biofilm formation (44). The two most common 

bacterial polyamines are putrescine and spermidine (44). I show here that the most abundant 

polyamine in B. cenocepacia is putrescine, while spermidine and cadaverine are produced in 

much lower amounts. Polyamines were previously shown to increase the resistance of P. 

aeruginosa to antimicrobial peptides (36, 45, 46). Heteroresistance of B. cenocepacia K56-2 was 

common to bactericidal antibiotics regardless of their site of action. I speculate that bacterial  
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Figure 18.Heterogeneous response of B. cenocepacia K56-2 to bactericidal antibiotics.n = 6. 
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Figure 19.Homogenous response of B. cenocepacia K56-2 to bacteriostatic antibiotics.n = 6. 
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cells may be exposed to greater stress in case of bactericidal agents, relative to bacteriostatic 

antibiotics, which might result in variation across the bacterial population in their capabilities to 

withstand and respond to such hostile insult. The involvement of polyamines in heteroresistance 

to the different classes of bactericidal antibiotics and of YceI in the response to amphiphilic 

bactericidal antimicrobials leads me to propose that these mediators serve as "danger" 

infochemicals. These chemical signals may be employed in the non-genetic communication of 

resistance among members of heteroresistant bacterial populations against the different 

bactericidal antibiotics. The action of YceI on amphiphilic antibiotics fits with its proposed 

mechanism sequestering toxic amphiphiles with acyl fatty chains, such as PmB, as I have shown 

in this study. However, this does not preclude other mechanisms in the response of B. 

cenocepacia to bactericidal antibiotics, especially the aminoglycoside gentamicin, which still 

requires further investigation.  

 The proposed danger infochemicals can serve as a general mechanism of protection of 

other bacterial species in a polymicrobial infection such as that found in patients with cystic 

fibrosis. YceI would reduce available amphiphilic antibiotics from the medium thus protecting 

any organism; whereas putrescine could interact with most of the bacterial species, since 

polyamines are produced by most bacteria, with rare exceptions such as Staphylococcus aureus 

strains, which do not tolerate polyamines as they lack the necessary detoxifying enzymes (47). 

 In conclusion, I show that antibiotic heteroresistance leads to a cooperative behaviour 

such that the more antibiotic-resistant members of the population protect the less resistant ones 

as well as less resistant members of other species. A similar observation has been made 

previously with indole production by E. coli strains (3). However, indole production in the more 

resistant cells was at the exact same level as in naive cells with no antibiotic treatment and unlike 

putrescine, indole was neither induced by antibiotics nor over-secreted by the more resistant 

cells. I believe my findings are relevant in the clinical setting, particularly for intrinsically 

resistant opportunistic Gram-negative bacteria.  Attempts to modulate these interactions using 

polyamine synthesis inhibitors may contribute to disrupting heteroresistance so the bacterial 

population will have a more uniform response to the antibiotic, reducing the window of 

therapeutic failure.  
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3.1. Introduction 

The relentless increase in multidrug resistance, particularly intrinsic, high-level resistance, 

undermines new treatments improving health and extending the life of patients especially of 

those with chronic conditions (1). For example, respiratory failure secondary to chronic 

pulmonary bacterial infection in patients with cystic fibrosis hinders the dramatic improvements 

in survival achieved over the last several decades and remains the primary cause of death (2). 

The emergence of growing numbers of cystic fibrosis pathogens with intrinsic, multidrug 

resistance such as Burkholderia cepacia complex, Stenotrophomonas maltophilia, 

Achromobacter xylosoxidans, and nontuberculous mycobacteria creates a further need for novel 

therapies (2). I investigate the mechanisms of high-level intrinsic multidrug resistance using 

Burkholderia cenocepacia as a model bacterium. B. cenocepacia is an environmental, 

opportunistic pathogen that belongs to the B. cepacia complex and causes serious respiratory 

infections in CF patients (3). These infections are associated with faster decline in lung function, 

debilitating exacerbations and ultimately death (4-6), and they also reduce the survival of CF 

patients after lung transplant (7). 

 While genetic mechanisms are considered the quintessential means of transfer of 

antibiotic resistance traits among bacteria, small molecules are also capable of modulating the 

antibiotic response of bacteria (8). The clinical outcome of antibiotic treatment does not always 

correlate with the expectations based on in vitro susceptibility testing performed on individual 

clinical isolates (9). Owing to the polymicrobial nature of many infections (10), cross-talk 

between the different bacterial species is likely to occur during infection. Such chemical 

communication of antibiotic resistance among bacteria may aggravate the problem of antibiotic 

resistance by potentially causing transient reduction in the susceptibility to antibiotics, 

potentially leading to therapeutic failures. For example, a transient increase in resistance to 

antimicrobial peptides by exposure to host polyamines was shown for the urogenital pathogen 

Neisseria gonorrhoeae (11). Identifying chemical communicators of antibiotic resistance and 

their mechanism of protection would provide another avenue for intervention to combat the 

increase and spread of antimicrobial resistance. Recently, we demonstrated that B. cenocepacia 

exhibits a non-genetic mechanism to reduce antibiotic susceptibility that is chemically mediated 
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by putrescine and YceI, a small secreted protein of unknown function that is highly conserved in 

bacteria (12). Putrescine is a polyamine produced by almost all living organisms (13). When 

released from B. cenocepacia, putrescine protects less resistant cells from the same and different 

species from the antimicrobial peptide polymyxin B (PmB) (12). 

 The mechanism of protection is partly due to the ability of putrescine to compete with 

PmB for binding to the surface of B. cenocepacia (12). However, polyamines can also quench 

oxidative species (14) and protect membranes from lipid peroxidation (15). Various classes of 

antibiotics induce oxidative stress and increased production of reactive oxygen species (ROS) 

(16-19). Although the specific lethal role of ROS generated in response to antibiotics remains 

under discussion (16, 20, 21), oxidative stress constitutes a burden on the bacterial cells (22).  

Therefore, it is conceivable that protection from oxidative stress accompanying antibiotic 

exposure would improve the bacterial response to antibiotics, thus increasing resistance. 

 Here I show that when present at sub-lethal concentrations, PmB and other bactericidal 

antibiotics induce oxidative stress in B. cenocepacia. My findings revealed that exogenous and 

endogenous putrescine protects against antibiotic-mediated oxidative stress. This work exposes 

another mechanism of putrescine-mediated protection from antibiotics alongside with protection 

of cell surface from binding of PmB previously described (12). By examining the expression 

patterns of the different putrescine synthesizing enzymes in response to antibiotics, I discovered 

that the ornithine decarboxylase BCAL2641 is a plausible target for designing inhibitors that 

would block putrescine-mediated communication of antibiotic resistance among different 

bacteria, ultimately reducing the window of therapeutic failure in treating bacterial infections. 
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3.2. Materials and Methods 

3.2.1. Strains and reagents. 

Table 7 lists bacteria and plasmids used in this study. Bacteria grew in LB at 37°C. Antibiotics 

(Sigma, St Louis, MO, USA) were diluted in water except for PmB, which was diluted in 0.2% 

bovine serum albumin/0.01% glacial acetic acid buffer. Rifampicin was dissolved in dimethyl 

sulphoxide (DMSO). 

3.2.2. General molecular techniques. 

DNA manipulations were performed as previously described (23). T4 DNA ligase (Roche 

Diagnostics, Laval, Quebec, Canada), Antarctic phosphatase (New England Biolabs, Pickering, 

Ontario, Canada) and restriction endonucleases (Roche or New England Biolabs) were used as 

recommended by the manufacturers. Transformation of Escherichia coli GT115 was performed 

using the calcium chloride method (24). Mobilization of plasmids into B. cenocepacia was 

conducted by triparental mating (25) using E. coli DH5α carrying the helper plasmid pRK2013 

(26). DNA amplification by polymerase chain reaction (PCR) was performed using a C1000 

Thermal cycler (Bio-Rad Laboratories Ltd., Mississauga, Ontario, Canada) with Taq or HotStar 

HiFidelity DNA polymerases (Qiagen, Mississauga, Ontario, Canada) and optimized for each 

primer pair. DNA sequencing was carried out at the DNA sequencing Facility of York 

University, Toronto, Canada or at Eurofins MWG Operon, Huntsville, Alabama, USA. The DNA 

sequences were analyzed with the BLAST computer program and compared to the sequenced 

genome of B. cenocepacia strain J2315. 

3.2.3. Fluorometric determination of ROS. 

Overnight cultures of the parental B. cenocepacia K56-2 and the appropriate mutants in LB 

medium were diluted to an optical density at 600 nm (OD600) of 0.1 in fresh medium. Five-ml 

aliquots were incubated at 37
o
C for 3 h at 200 rpm. Antibiotics and/or putrescine were added at 

the specified concentrations and the cultures were further incubated at 37
o
C for 2 h at 200 rpm. 

After incubation, the OD600 was measured and aliquots containing cells equivalent to an OD600 of 

0.4 were pelleted, washed with phosphate buffered saline (PBS), and resuspended in 1 ml of 
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PBS. Superoxide radicals and other ROS were determined by diluting the obtained suspension 

100 fold in 1 ml PBS and adding 2‟,7‟-dichlorofluorescein diacetate (DCF) to a final 

concentration of 2 µM. The reaction mixture was then incubated at 37
o
C for 30 min with 

rotation. After incubation, the fluorescence was measured in 200-µl aliquots placed into 96-well 

white plates (Microfluor-2 White, Thermo Scientific) at λex= 480 nm and λem= 521 nm, using 

Cary Eclipse fluorescence spectrophotometer (Varian, Inc., Mississauga, Ontario, Canada). In 

addition, the OD600 of the same suspensions were measured and used to normalize the 

fluorescence values. Hydroxyl radical production was determined in 600 µl bacterial suspensions 

without dilution using 3‟-(p-hydroxyphenyl) fluorescein (HPF) at a final concentration of 5 µM. 

Fluorescence was measured at λex= 495 nm and λem= 530 nm in 200 µl aliquots placed into 96-

well white plates. Background fluorescence of each probe in buffer control was subtracted. 

Autofluorescence of the bacterial suspensions, without adding the probes, was measured and 

corrected for by subtraction from the fluorescence signals. Data were normalized to the OD600 of 

the bacterial suspensions. The suspensions were protected from light throughout the assays to 

avoid photo-oxidation. 

3.2.4. Antibiotic susceptibility testing. 

Overnight cultures of the parental B. cenocepacia K56-2 and the appropriate mutants in LB 

medium were diluted to an optical density at 600 nm (OD600) of 0.0008 (low inoculum) or 0.04 

(high inoculum) in fresh LB medium and 0.04 in fresh M9 minimal medium with or without the 

antibiotic and incubated at 37°C with medium continuous shaking in a Bioscreen C automated 

growth curve analyzer (MTX Lab Systems, Vienna, VA, USA). Bacterial growth was assessed 

turbidimetrically at 600 nm. 

3.2.5. In vitro antioxidant activity assay. 

The ability of putrescine to scavenge free radicals was determined using a system of in vitro 

generation of superoxide radicals containing phenazine methosulfate (PMS)-NADH as 

previously described (27). Briefly, the reaction mixture consisted of 21 mM phosphate buffer 

(pH 8.3), 0.7 mM NADH, 17 µM nitro blue tetrazolium, and the corresponding quantity of 

putrescine.The reaction was initiated by adding 4 µM PMS. The reaction mixtures were mixed 

and the amount of formazan formation was measured immediately using the spectrophotometer  
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Table 7. Strains and Plasmids used in Chapter 3 

Strain    Relevant characteristics
a
     Source and/or  

or plasmid          reference 

 

Strains 

Burkholderia cenocepacia 

K56-2   ET12 clone related to J2315, CF clinical Isolate,  bBCRRC (28) 

OME11   K56-2, ∆BCAL2641      (12) 

OME12   K56-2, ∆BCAM1111-∆BCAM1112    (12) 

OME49   OME12 Prha::BCAL2641     This study 

OME50   K56-2, PBCAL2641::pGSVTp-luxCDABE; TpR   This study 

OME51   OME12, PBCAL2641::pGSVTp-luxCDABE; TpR   This study 

OME52   K56-2, PBCAM1111::pGSVTp-luxCDABE; TpR   This study 

OME53   OME11, PBCAM1111::pGSVTp-luxCDABE; TpR   This study 

OME54   K56-2, PBCAM1112::pGSVTp-luxCDABE; TpR   This study 

OME55   OME11, PBCAM1112::pGSVTp-luxCDABE; TpR   This study 

OME56   K56-2, PoxyR::pGSVTp-luxCDABE; TpR    This study 

OME57   OME11, PoxyR::pGSVTp-luxCDABE; TpR   This study 

OME58   OME12, PoxyR::pGSVTp-luxCDABE; TpR   This study 

 

Escherichia coli   

DH5α   F-80lacZ M15 endA1 recA1 supE44 hsdR17(rK
- mK

+)deoR  Laboratory 

   thi-1 nupG supE44 gyrA96relA1 ∆(lacZYA-argF)U169, λ-   stock 

GT115   F
– 
mcrA∆(mrr-hsdRMS-mcrBC) 80∆lacZ∆M15 ∆lacX74 Invivogen 

   recA1rpsL(StrA) endA1∆dcm uidA(∆MluI)::pir-116 ∆sbcC-sbcD   

  

 

Plasmids 

 

pRK2013  oricolE1, RK2 derivative, KanR, mob+, tra+    (26) 

pGSVTp-lux  Mobilizable suicide vector containing the lux operon, 

   derivative from pGSV3-lux(29); OriT; TpR   (30) 

pSC200   oriR6K, PRhaB rhamnose-inducible promoter, TpR, mob+  (31) 

pOE14   PBCAL2641::luxCDABE transcriptional fusion in pGSVTp-lux This study 

pOE17   Prha::BCAL2641 in pSC200     This study 

pOE18   PBCAM1111::luxCDABE transcriptional fusion in pGSVTp-lux This study 

pOE19   PBCAM1112::luxCDABE transcriptional fusion in pGSVTp-lux This study 

pOE20   PoxyR::luxCDABE transcriptional fusion in pGSVTp-lux  This study 

 
aTpR, trimethoprim resistance, KanR, kanamycin resistance, TetR, tetracycline resistance. 
bBCRRC, B. cepacia Research and Referral Repository for Canadian CF Clinics. 
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at 560 nm. The percentage of inhibition of formazan formation by putrescine was calculated 

relative to the control lacking putrescine. 

3.2.6. Transcriptional fusions to luxCDABE. 

The promoter regions from BCAL2641, BCAM1111, BCAM1112 and OxyR were PCR 

amplified. The PCR products were digested with EcoRI and cloned into the EcoRI digested and 

dephosphorylated pGSVTp-lux plasmid. The orientation of the promoter region was checked by 

PCR and luminescence of E. coli GT115 colonies carrying the plasmids. The resulting plasmids 

contained the promoter region of the genes of interest fused to the luxCDABE reporter system. 

The plasmids were mobilized into K56-2 and the appropriate mutants by triparental mating. 

Transconjugants (carrying the chromosomal promoter-reporter fusions) were selected on LB agar 

plates containing 100 µg/ml of trimethoprim (Tp), 200 µg/ml ampicillin and 10 µg/ml 

gentamicin. 

3.2.7. Luminescence expression assays. 

Overnight cultures in LB containing 100 µg/ml Tp were diluted into fresh LB medium to 

OD600=0.04. After addition of the antibiotics and/or putrescine, 300 µl of sample were loaded in 

triplicate, for each time-point, in a 100-well honeycomb microtitre plate. The plates were 

incubated at 37°C with medium continuous shaking in a Bioscreen C automated growth curve 

analyzer (MTX Lab Systems, Vienna, VA, USA). Growth was followed by measuring the OD600 

at 37°C every 30 min. At pre-determined time points post-inoculation, the Bioscreen was paused 

and three 200 µl aliquots for each condition tested were transferred into a flat bottom 96-well 

microtiter plate (Microfluor-2 White, Thermo Scientific) and luminescence (in relative light 

units, RLU) was measured using a Fluoroskan Ascent FL Microplate Fluorometer and 

Luminometer (Thermo Scientific, Ottawa, Ontario, Canada). Expression levels of each gene of 

interest in the different strain backgrounds were calculated as RLU/OD600 for each time-point. 

3.2.8. Construction of a conditional mutant. 

A fragment (~300-bp) spanning the 5′ region of BCAL2641 was PCR amplified, digested by 

NdeI and XbaI and cloned into the NdeI and XbaI digested and dephosphorylated pSC200 
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plasmid. The plasmids were mobilized into OME12 (∆BCAM1111-1112) by triparental mating. 

Transconjugants were selected on LB agar plates containing 100 µg/ml of trimethoprim (Tp), 

200 µg/ml ampicillin, 10 µg/ml gentamicin and 0.5% (wt/vol) rhamnose. This strategy creates 

conditional mutants in which the expression of the targeted gene depended on the rhamnose 

concentration in the medium (31).  

3.2.9. Thin-layer chromatography analyses of polyamines. 

The conditional mutant and the wild type were grown at 37°C in M9 minimal medium 

supplemented with final concentrations of Tp 100 μg/ml and rhamnose 0.4% (wt/vol), 

permissive condition of expression. An aliquot of an overnight culture in M9 medium with 

rhamnose was spun down and washed three times with sterile phosphate-buffered saline (PBS), 

resuspended in PBS, and adjusted to an OD600 of 1. Drops (10 μl) of undiluted suspension and 

10-fold serial dilutions were plated onto M9 agar plates supplemented with 0.4% (wt/vol) 

glucose and incubated at 37°C (non-permissive condition of expression). Bacteria growing on 

the plates were collected, suspended in sterile PBS, and the OD600 was adjusted to 0.1. 

Polyamines were extracted, derivatized to their dansyl derivatives, sequentially separated on 

TLC silica gel plates (20×20 cm, Merck, Darmstadt, Germany) in two solvent systems: I) 

benzene–triethylamine (20:2 v/v); II) benzene–methanol (10:0.45 v/v) and visualized under 

ultraviolet light as previously described (12). Standard solutions of putrescine, cadaverine, 

spermidine and spermine (0.2 mM each) were treated similarly and included as controls. 

3.2.10. Catalase enzyme activity assay. 

Overnight cultures of the wild type B. cenocepacia K56-2 in LB were diluted to OD600=0.04 into 

30 ml fresh LB medium, with or without antibiotics, and incubated at 37
o
C, 200 rpm for 16 h. 

Bacterial cells were pelleted, washed with sterile PBS and resuspended in 300 µl (or less if 

necessary depending on bacterial inhibition of growth by antibiotics) of PBS. The OD600 of the 

bacterial suspensions was measured. The catalase enzyme activity was evaluated using the 

method described by Iwase et al. (32). Briefly, 100 µl of bacterial suspension or bovine liver 

catalase solution at different concentrations were added in a glass tube followed by the addition 

of 100 µl of 1% Triton X-100. Finally, 100 µl of undiluted hydrogen peroxide (30%) were added 

to the solutions, mixed thoroughly and incubated at room temperature. The height of O2-forming 
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foam that remained constant for 15 min in the test tube was finally measured using a ruler. The 

catalase activity of bacterial suspensions was determined using calibration curves constructed 

using the standard catalase solutions with different concentrations and normalized to the OD600 

of the tested suspensions. 

3.2.11. Statistical Analyses. 

Unpaired student‟s t-tests were conducted with GraphPad Prism 5.0. 

 

3.3. Results And Discussion 

3.3.1. Putrescine reduces ROS production induced by PmB. 

Treatment of B. cenocepacia K56-2 with 1 mg/ml PmB led to significantly increased production 

of intracellular ROS, as detected by 2‟,7‟-dichlorofluorescein diacetate (DCF) (Fig. 20). DCF is 

a colorless, nonfluorescent fluorescein derivative which passively diffuses into cells where the 

two acetate groups are cleaved by intracellular esterases to yield the non-cell permeable 2‟, 7‟- 

dichlorofluorescein (33). This cleaved product becomes trapped within the cells and becomes 

oxidized by intracellular ROS resulting in the formation of a highly fluorescent product; hence it 

is a measure of generalized oxidant production rather than that of any particular reactive species 

(33). Lower concentrations of PmB (0.5 mg/ml or less) did not alter the intracellular DCF-

detectable ROS pool (data not shown), whereas due to its reduced solubility in the culture 

medium higher concentrations of PmB could not be reliably tested. Since putrescine protects B. 

cenocepacia from PmB (12), I assessed whether it also alleviates PmB-induced ROS production. 

Compared to control cells, exogenous putrescine reduced DCF-detectable ROS generation in 

PmB-treated bacteria (Fig. 20). This effect was assessed at 2 h incubation with PmB and/or 

putrescine to avoid potential interference from putrescine degradation or metabolic by-products 

at prolonged incubation times. It should be noted that putrescine did not decrease the background 

ROS levels produced by bacterial cells not exposed to PmB, but rather caused a slight but 

significant increase in DCF-detected ROS levels compared to control cells at 20 mM (Fig. 20, 

white bars). I attributed these results to polyamines catabolism, which also generate ROS (34). 
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Figure 20. Putrescine reduces ROS production induced by PmB in B. cenocepacia K56-2. 

ROS were detected by DCF.n= 6 from 2 independent experiments. Unpaired student‟s t-tests 

were conducted between each condition and its respective control. 
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 To assess whether endogenous putrescine also has the ability to reduce ROS levels in 

PmB-treated B. cenocepacia, I employed deletion mutants in the putrescine biosynthesis 

pathway. Putrescine can arise through the action of either ornithine decarboxylase or arginine 

decarboxylase (12). B. cenocepacia has two ornithine decarboxylase homologues, BCAL2641 

and BCAM1111, and one arginine decarboxylase protein, BCAM1112 (Fig. 21A). The ornithine 

decarboxylase BCAL2641 is encoded by a gene located on chromosome 1 of B. cenocepacia; 

whereas both the ornithine decarboxylase BCAM1111 and the arginine decarboxylase 

BCAM1112 are encoded by genes located adjacent to each other, but in opposite orientation, on 

chromosome 2. In a previous study, we have shown that ∆BCAL2641 had a greater reduction in 

the amount of secreted putrescine compared to wild type than ∆BCAM1111-BCAM1112 (12). 

Here, I confirmed that these three enzymes are the only contributors to putrescine production in 

B. cenocepacia. A conditional mutant of BCAL2641 in the ∆BCAM1111-BCAM1112 

background did not produce detectable levels of putrescine at the non-permissive conditions of 

expression compared to the wild type strain (Fig. 21B). With respect to the response to PmB, the 

ornithine decarboxylase BCAL2641 was the only enzyme, among the 3 putrescine synthesis 

enzymes, involved in resistance against PmB. ∆BCAL2641, but not ∆BCAM1111-BCAM1112, 

had increased susceptibility to PmB compared to wild type when tested in LB medium (Fig. 21C 

and 21D) or M9 medium (Fig. 21E). Although the growth of ∆BCAM1111-BCAM1112 was not 

impaired in LB medium regardless of the initial inoculum size (Fig. 21C and 21D), it exhibited 

significant reduction in growth compared to the wild type cells in M9 medium (Fig. 21E). 

Nevertheless, this mutant did not show increased susceptibility to PmB in M9 medium in which 

its growth was retarded (Fig. 21E). On the contrary, ∆BCAL2641 showed slight reduction in 

growth in LB medium only at low inoculum size (Fig. 21C) but not at high inoculum size (Fig. 

21D) or in M9 medium (Fig. 21E). This suggests that these genes involved in putrescine 

synthesis are not functionally redundant; they seem to be stimulated under different conditions 

and regulated differently with BCAL2641 only involved in resistance to antibiotics. Next, 

detection of ROS by DCF was assessed after incubation of ∆BCAL2641 and ∆BCAM1111-

BCAM1112 mutants with PmB for 16 h to allow the different enzymes to reach their maximum 

expression levels which occurred at about 12 h in the luminescence expression assays (not 

shown). No differences were observed in PmB-untreated cells between the wild type and the 

deletion mutants (Fig. 22, white bars). In contrast,  
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Figure 21. BCAL2641 is the only putrescine synthesis enzyme in B. cenocepacia involved in 

reduced susceptibility to PmB. 

A. Putrescine synthesis pathway in B. cenocepacia K56-2 together with the enzymes involved. 

ADC, arginine decarboxylase; ODC, ornithine decarboxylase. B. TLC plate showing the lack of 

production of putrescine in ∆BCAM1111-1112Prha-BCAL2641conditional mutant under non-

permissive conditions. Put, putrescine; Cad, cadaverine; Spd, spermidine; Spn, spermine. C-E. 

Sensitivity of wild type and putrescine synthesis mutants ∆BCAL2641 (OME11) and 

∆BCAM1111-1112 (OME12) to 2048 µg/ml PmB determined turbidimetrically. n=3 from a 

representative experiment. C, low initial inoculum in LB medium; D, high initial inoculum in 

LB medium; D, in M9 minimal medium. 



114 
 

 

Figure 22. BCAL2641 is the main ornithine decarboxylase responsible for reduction of ROS 

accumulation. 

ROS production in response to 1 mg/ml PmB in wild type K56-2, compared to putrescine 

synthesis mutants ∆BCAL2641 (OME11) and ∆BCAM1111-1112 (OME12) detected by 

DCF.n=6 from 2 independent experiments. Unpaired student‟s t-tests were conducted.  
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∆BCAL2641 exhibited a significant increase in levels of superoxide and other ROS detected by 

DCF in response to PmB compared to wild type, whereas ∆BCAM1111-BCAM1112 produced 

the same level as that in the parental strain (Fig. 22). Together, these results support the notion 

that putrescine reduces the level of PmB-induced ROS production and this reduction contributes 

to protection of bacteria from the bactericidal effects of PmB. 

 Hydroxyl radical is another ROS that may be produced upon oxidative stress. Others 

have used hydroxyphenyl fluorescein (HPF) to fluorometrically detect hydroxyl radicals upon 

antibiotic stress (16). Using HPF in similar experiments as above, I found a comparable pattern 

of reduction of PmB-induced ROS by putrescine (data not shown). However, the fluorescence 

signal detected by HPF was too low compared to that detected by DCF, and required 100-fold 

higher inoculum than that for the DCF experiments to detect signal above the background noise 

of fluorescence. Such high inoculum of cells led to high autofluorescence compared to the actual 

fluorescence signal detected upon adding HPF, which was not the case with the DCF assays (Fig. 

23). Thus, I disregarded the results of HPF assays. Similar criticism to the use of HPF was raised 

recently concerning the interference between the autofluorescence of cells with the actual 

fluorescence in the presence of the probe especially upon antibiotic treatment (35). 

Although the DCF fluorometric assay is a well established method and has many advantages 

over other techniques developed for measurement of intracellular ROS (33), the probe may be 

nonselective reacting with other oxidants such as hydroxyl radicals and lipid peroxides (36).  

Hence, to provide additional evidence supporting the DCF fluorometric assays results, I 

measured the expression of OxyR as an independent indicator of oxidative stress. OxyR belongs 

to the LysR family of transcription factors whose regulon is involved in the cellular response to 

oxidative stress (22). OxyR is very sensitive to ROS, and is activated at very low hydrogen 

peroxide concentrations, leading to upregulation to its regulon (37). Moreover, an oxyR::lacZ 

promoter fusion is also upregulated in response to hydrogen peroxide (38). Similarly, another 

LysR-type transcription regulator involved in the response to oxidative stress is also 

overexpressed in response to ROS (39). Therefore, I constructed derivatives of wild type and 

mutant strains carrying an oxyR::lux promoter fusion to measure oxyR gene expression at 

chromosomal levels. PmB stimulated the oxyR expression (Fig. 24A), which was consistent with 

the induction of intracellular ROS detected by DCF (Fig. 20 and 22). Likewise, catalase  
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Figure 23. Comparison of the autofluorescence of cells relative to fluorescence signals of 

fluorescent probes detecting reactive oxygen species in B. cenocepacia K56-2. 

(A) Emission signal following treatment with HPF without correction for autofluorescence 

background; (B) Autofluorescence of cells at the same inoculum size and under the same 

conditions used for HPF assay; (C) Emission signal following treatment with DCF without 

correction for autofluorescence background; (D) Autofluorescence of cells at the same inoculum 

size and under the same conditions used for DCF assay. n=3 from one representative 

experiment. 

A B 

C D 
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activity, regulated by OxyR (22), increased in response to PmB (Table 8). This further confirms 

the induction of intracellular ROS in response to PmB and validates the findings of DCF 

fluorometric and oxyR expression assays as measures of intracellular ROS.  oxyR expression was 

significantly higher in ∆BCAL2641 compared to the parental strain both in the presence or 

absence of PmB. In contrast, no difference in oxyR expression between the wild type and 

∆BCAM1111-BCAM1112 was detected in response to PmB (Fig. 24A). No differences in the 

growth rate of the different strains were noted in absence of PmB; whereas ∆BCAL2641 was 

more susceptible to PmB compared to the wild type and ∆BCAM1111-BCAM1112 (Fig. 25). 

These results follow the same pattern of ROS generated in response to PmB in the mutants 

compared to the wild type strain (Fig. 22).  

 Next, I investigated the mechanism by which putrescine protects from oxidative stress. 

Putrescine stimulated the expression of oxyR (Fig. 24A), probably as a result of a slight induction 

of ROS accumulation as detected by DCF (Fig. 20). However, putrescine alleviated the increase 

in oxyR expression in response to PmB (Fig. 24A), suggesting a protective effect against ROS. 

Nevertheless, putrescine did not induce a statistically significant difference in growth of the wild 

type in the presence or absence of PmB at this early time point of incubation (3 h) under the 

conditions of this test (Fig. 25). Supporting the protective role of putrescine from oxidative 

stress, I confirmed the antioxidant properties of putrescine by demonstrating that it could 

scavenge superoxide radicals generated in vitro from a phenazine methosulfate-NADH system in 

a concentration dependent manner (Fig. 24B). Together, the results of this section reveal a link 

between reduced susceptibility to PmB, induction of ROS production, and expression of OxyR 

with the intracellular level of putrescine, which can be attributed to the antioxidant properties of 

this polyamine. 

3.3.2. Expression of the putrescine synthesis enzymes in response to PmB. 

To better understand the role of the different putrescine synthesizing enzymes in response to 

oxidative stress and consequently to PmB, I investigated the expression profiles of their 

corresponding genes also using lux promoter fusions as before. BCAL2641::lux gene expression 

was stimulated by exposure to PmB (Fig. 26A); whereas neither BCAM1111::lux nor 

BCAM1112::lux fusions were responsive to PmB (Fig. 26B and 26C respectively). This agrees  
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Figure 24. A. Induction of OxyR expression as an indicator of ROS accumulation in the wild 

type (OME56) compared to putrescine synthesis mutants ∆BCAL2641 (OME57) and 

∆BCAM1111-1112 (OME58) in response to 500 µg/ml PmB with or without 10 mM Put 

determined by luciferase expression assay at 3 h. Results are shown as percentage of relative 

light units RLU/OD600 relative to the OME56 control (K56-2 background). The mean 

RLU/OD600 of the control is 0.09567. The percentages of OD600 are shown in Fig. 25. n=9 from 

3 different clones. * p<0.05, ** p<0.01 and *** p<0.001 from unpaired student‟s t-tests. B. In 

vitro antioxidant activity of putrescine. n=6 from 2 independent experiments. 

A 

B 
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Figure 25. The relative growth of cells in the luminescence expression assay for oxyR 

expression in the wild type (OME56) compared to putrescine synthesis mutants (ΔBCAL2641 

background, OME57; and ΔBCAM1111-1112 background, OME58) at 3 h shown in Figure 

24A. Results are shown as percentage of OD600 relative to the control (untreated K56-2 

background). The mean OD600 of the control is 0.1663. * p<0.05, ** p<0.01 and *** p<0.001 

from unpaired student‟s t-tests. 
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Table 8. Catalase enzyme activities. 

Antibiotic Concentration    Catalase Activity*  Difference from control 

(µg/ml)      % Units/OD600 (SEM)  (P-value) 

None      100 (1.3)   Not applicable 

Polymyxin B (500)    120.1 (4.2)    0.0002 

Norfloxacin (8)     110.6 (1.2)    0.0012 

Rifampicin (16)     134.5 (5.2)   <0.0001 

Ceftazidime (32)     99.8 (12. 4)   0.978 (Not significant) 

Gentamicin (1000)    48.0 (7.1)   <0.0001 

* Results from 2 independent experiments, n=6. r2 of calibration curves was: 0.9644 and 0.9544. 

Significance of differences from control was determined using unpaired student‟s t-tests. 
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Figure 26. Luciferase expression assay of the different putrescine synthesizing enzymes in 

response to 500 µg/ml PmB at 3 h. 

Results are shown as percentage of relative light units RLU/OD600 relative to the control 

(untreated K56-2 background). The percentages of OD600 are shown in Fig. 27. A, Expression of 

BCAL2641 in the wild type (OME50) and ∆BCAM1111-1112 (OME51) backgrounds.n=6 from 

2 different clones. The mean RLU/OD600 of the control is 1.4829. B, Expression of BCAM1111 

in the wild type (OME52) and ∆BCAL2641 (OME53) backgrounds.n= 6 from 2 different clones. 

The mean RLU/OD600 of the control is 1.5585. C, Expression of BCAM1112 in the wild type 

(OME54) and ∆BCAL2641 (OME55) backgrounds.n= 7 from 2 different clones. The mean 

RLU/OD600 of the control is 0.2423. * p<0.05, ** p<0.01 and *** p<0.001 from unpaired 

student‟s t-tests. 
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Figure 27.The relative growth of cells in the luminescence expression assay for the different 

putrescine synthesizing enzymes in response to 500 μg/ml PmB at 3 h shown in Figure 26. 

Results are shown as percentage of OD600 relative to the control (untreated K56-2 background). 

(A) Expression of BCAL2641 in the wild type (OME50) and ΔBCAM1111-1112 (OME51) 

backgrounds. n=6 from 2 different clones. The mean OD600 of the control is 0.1422. (B) 

Expression of BCAM1111 in the wild type (OME52) and ΔBCAL2641 (OME53) backgrounds. 

n= 6 from 2 different clones. The mean OD600 of the control is 0.1523. (C) Expression of 

BCAM1112 in the wild type (OME54) and ΔBCAL2641 (OME55) backgrounds. n= 7 from 2 

different clones. The mean OD600 of the control is 0.1017. * p<0.05, ** p<0.01 and *** p<0.001 

from unpaired student‟s t-tests. 

A B C 
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with the behaviour of ∆BCAL2641 and ∆BCAM1111-BCAM1112 mutants to PmB in terms of 

antimicrobial resistance (Fig. 21C-21E) and ROS production (Fig. 22). Moreover, this is 

consistent with our previous data showing increased transcription of BCAL2641, but not 

BCAM1111 or BCAM1112, in response to PmB (12). BCAL2641 also appears to regulate by an 

unknown mechanism the gene expression of BCAM1111 and BCAM1112 putrescine synthesis 

enzymes, since the expression of both genes was significantly reduced in the ∆BCAL2641 

background (Fig. 26B and 26C, respectively). This regulation is not mediated through the action 

of putrescine since 10 mM of putrescine did not stimulate the gene expression of BCAM1111 or 

BCAM1112 (not shown). Other indirect regulatory pathways may be involved which will require 

further investigation. On the other hand, the gene expression of BCAL2641 increased in the 

absence of BCAM1111 and BCAM1112 (Fig. 26A), which may explain the slight increase in 

survival of the ∆BCAM1111-BCAM1112 when exposed to PmB shown in Fig. 21E. This might 

be due to compensation of the reduced synthesis of putrescine by these enzymes being normally 

stimulated by BCAL2641. Alternatively, BCAM1111 and BCAM1112 might provide feedback 

inhibition to BCAL2641; thus their absence would lead to increased BCAL2641 gene 

expression. Notably, the expression of BCAM1112 (RLU/OD600 0.2423) is much lower than that 

of the other 2 enzymes (RLU/OD600 1.4829 and 1.5585 for BCAL2641 and BCAM1111 

respectively). This suggests that B. cenocepacia does not preferentially utilize the arginine 

decarboxylase BCAM1112. This agrees with the fact that B. cepacia can degrade arginine only 

through the use of the succinyl transferase pathway, despite the possession of an arginine 

decarboxylase homologue (40, 41). Except for ∆BCAL2641, which exhibited reduced growth in 

the presence of PmB, no differences in growth were observed in the other strains tested 

regardless of PmB exposure (Fig. 27). Together, these findings expose BCAL2641 as a crucial 

contributor of putrescine synthesis in the response against antibiotics. 

3.3.3. ROS production in response to other bactericidal antibiotics. 

To evaluate whether the induction of oxidative stress and its amelioration by putrescine is a 

general phenomenon, I tested other bactericidal antibiotics. Exposure of B. cenocepacia to 

gentamicin, norfloxacin, ceftazidime and rifampicin led to increased ROS production as detected 

by DCF (Fig. 28) at sub-lethal concentrations; i.e. concentrations below but more specifically 

near the MIC of these antibiotics (Fig. 29). Putrescine reduced the antibiotic-induced elevation  
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Figure 28. Effect of different bactericidal antibiotics on superoxide radical at different 

concentrations determined using DCF. 

n=6 from 2 independent experiments. 

A B 

C D 
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Figure 29.The relative growth of cells in the luminescence expression assay for BCAL2641, (in 

OME50), oxyR (in OME56), and BCAM1111 (in OME52) in response to different bactericidal 

antibiotics at 3 h shown in Fig. 31. 

Results are shown as percentage of OD600 relative to the control (untreated K56-2 background). 

n= a minimum of 6 from at least 2 different clones. The mean OD600 of the control is 0.1943 for 

BCAL2641; 0.1816 for OxyR and 0.2166 for BCAM1111. * p<0.05, **p<0.01 and *** 

p<0.001. 

A B 

C D 
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in ROS levels only for norfloxacin and rifampicin (Fig. 30), and this correlated with induction of 

BCAL2641 gene expression (Fig. 31A and 31B, respectively). This agrees with the contribution 

of BCAL2641 in resistance to both antibiotics that we have previously reported (12). Moreover, 

oxyR transcription was also upregulated in response to both norfloxacin and rifampicin (Fig. 31A 

and 31B, respectively), which was reflected in an increase in the catalase activity (Table 8), 

supporting the notion that both antibiotics lead to increased ROS production (Fig. 30 and Fig. 

28). In contrast, neither antibiotic affected BCAM1111 gene expression (Fig. 31), indicating that 

this gene and its product are not directly involved in the response to antibiotic-mediated 

oxidative stress. It should be noted that higher rifampicin concentrations resulted in great 

reduction in the expression of BCAL2641, oxyR, and BCAM1111 (Fig. 31B), which might be 

attributed to non-specific inhibition of transcription by rifampicin, especially at 512 µg/ml where 

expression from these genes was almost completely inhibited.  

 Putrescine did not reduce ROS production generated in response to ceftazidime, but 

rather further increased the generated ROS at 10 mM but not at 20 mM concentration of 

putrescine (Fig. 30). Ceftazidime did not affect the expression of BCAL2641, oxyR or 

BCAM1111 (Fig. 31C), and did not alter the catalase enzyme activity (Table 8). However, in a 

previous study we reported that BCAL2641 is involved in the response of B. cenocepacia to 

ceftazidime (12). This may suggest another role of BCAL2641 in the protective actions against 

ceftazidime not related to the oxidative stress. 

 Concerning the response to gentamicin, exogenous putrescine did not affect the level of 

gentamicin-induced superoxide anion (Fig. 30). Moreover, gentamicin did not alter the 

expression of BCAL2641 (Fig. 31D). This agrees with the previously reported lack of 

involvement of this enzyme in the response to gentamicin in B. cenocepacia (12). Furthermore, 

gentamicin did not affect the expression of oxyR (Fig. 31D). However, the highest tested 

concentrations of gentamicin did reduce the expression of both BCAL2641 and oxyR (Fig. 31D). 

Similarly, gentamicin reduced the catalase enzyme activity (Table 8). Such inhibition might be 

due to the mechanism of action of the aminoglycoside inhibiting translation and protein synthesis 

in general, since it also inhibited the expression of BCAM1111, which consequently might have 

led to increased ROS levels at high concentration (Fig. 30).  
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Figure 30.The role of putrescine in the bactericidal antibiotics-mediated ROS accumulation in B. 

cenocepacia K56-2. 

n= 9 from 3 independent experiments. The 4 tested antibiotics alone significantly (p<0.001) 

induced the accumulation of ROS compared to control cells. * p<0.05, ** p<0.01 and *** 

p<0.001 from unpaired student‟s t-tests compared to the respective control conditions. 
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Figure 31. Effect of different antibiotics on the expression of BCAL2641 (in OME50), oxyR (in 

OME56), and BCAM1111 (in OME52) determined using a luciferase expression assay at 3 h. 

Results are shown as percentage of relative light units RLU/OD600 relative to the control 

(untreated K56-2 background). The percentages of OD600 are shown in Fig. 29. n= a minimum of 

6 from at least 2 different clones. The mean RLU/OD600 of the control is 1.0759 for BCAL2641; 

0.1087 for oxyR and 1.4723 for BCAM1111. * p<0.05, ** p<0.01 and *** p<0.001 from 

unpaired student‟s t-tests compared to the respective control conditions. 
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3.4. Conclusions 

In this Chapter, I show the following: (i) Sub-lethal concentrations of different bactericidal 

antibiotics (PmB at 1 mg/ml, rifampicin at 256 and 512 µg/ml and norfloxacin at 32 and 64 

µg/ml) induce oxidative stress in B. cenocepacia that is manifested as induction of ROS 

formation as detected by DCF, stimulation of expression of the transcription regulator OxyR 

involved in response to oxidative stress (at antibiotic concentrations similar to or even lower than 

those inducing ROS formation; PmB at 0.5 mg/ml, rifampicin at 16 and 32 µg/ml and 

norfloxacin at 16-64 µg/ml), and increased catalase enzyme activity (PmB at 0.5 mg/ml, 

rifampicin at 16 µg/ml and norfloxacin at 8 µg/ml). (ii) This response does not apply to 

gentamicin and ceftazidime which do not induce OxyR expression or increase catalase enzyme 

activity, suggesting that not all bactericidal antibiotics induce oxidative stress. (iii) Putrescine 

protects against oxidative stress induced by several bactericidal antibiotics (PmB, norfloxacin 

and rifampicin). (iv) Protection by putrescine correlates with increased BCAL2641 gene 

expression. (v) BCAL2641, in addition to synthesizing putrescine, regulates the other putrescine 

biosynthetic enzymes BCAM1111 and BCAM1112 by an unknown mechanism that does not 

directly involve putrescine. Together, these observations suggest a model (Fig. 32) by which B. 

cenocepacia responds to antibiotic stress by overproducing putrescine and in turn, this 

polyamine protects bacterial cells by a surface effect blocking antibiotic binding (12) as well as 

by reducing oxidative damage. 

 Putrescine was previously shown to communicate antibiotic resistance among different 

bacteria (12). Its increased production in B. cenocepacia occurs in response to a subset of 

bactericidal antibiotics (12), which induce oxidative stress in bacterial cells at near lethal 

concentration ranges. It is still controversial whether the generation of ROS is the cause of 

lethality of antimicrobial agents or a consequence of antibiotic stress (16, 20, 21). However, it is 

conceivable that the oxidative stress accompanying antibiotic treatment imposes a metabolic 

burden on the bacterial cells at near death conditions. Thus, my results demonstrating a 

protective role for putrescine in the response to the oxidative stress generated in B. cenocepacia 

during antibiotic exposure represent another mechanism of protection from the antibacterial 

effects of bactericidal antibiotics. This agrees with previous reports on the antioxidant properties 

and protective effects of putrescine against antibiotic induced ROS formation in E. coli (17). 



130 
 

 

  

Figure 32. Model summarizing the role of putrescine in protecting B. cenocepacia from 

antibiotic-induced stress. 
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 While little is known about the physiological levels of putrescine, it seems that its level 

varies in different body sites. For example, putrescine concentration was reported to be 3 mM in 

urine (11), but was no greater than 0.2 mM in sputum samples from CF patients (42, 43). 

However, it is difficult to predict the local concentration of putrescine and other polyamines in 

the lung of CF patients, as infection alters the rheology of the mucus and the lung environment 

(44). Moreover, putrescine levels increase dramatically (by 10 fold or more) during 

exacerbations of bacterial infections in CF patients (42, 43). Hence, the concentrations used in 

this study could potentially resemble the physiological situation in certain body compartments. 

Furthermore, a direct relationship exists between increased putrescine concentration during 

infection and the proliferation of lung microbiota and specific pathogens such as P. aeruginosa 

in the lungs of CF patients (43). Also, putrescine and other polyamines in genital mucosal fluids 

increase the resistance of N. gonorrhoeae to antimicrobial peptides (PmB and LL-37), possibly 

enhancing its survival during infection by reducing bacterial susceptibility to host-derived 

antimicrobials (11). Interestingly, the expression of the ornithine decarboxylase BCAL2641 is 

induced in B. cenocepacia in CF conditions compared to soil environmental like conditions 

shown by comparative transcriptomics, underscoring the importance of putrescine, and this 

enzyme in particular, during infection (45). 

 This study also provides new information on the regulation of the putrescine synthesis 

enzymes. The ornithine decarboxylase BCAL2641 gene responds to the external antibiotic 

signals, while the other ornithine decarboxylase BCAM1111 or the arginine decarboxylase 

BCAM1112 do not. Also, BCAL2641 regulates the expression of BCAM1111 and BCAM1112 

since their expression depends on the presence of BCAL2641. This suggests that upon antibiotic 

stress maximal production of putrescine is required, which arises from the upregulation of 

BCAL2641 and by maintaining the expression of the other two enzymes in a BCAL2641-

dependent manner. The molecular mechanism of this regulation awaits further investigation.   

 In conclusion, this study broadens our understanding on the mechanism of chemical 

communication of antibiotic resistance mediated by putrescine. In addition, it provides a clear 

target for the design of inhibitors targeting the ornithine decarboxylase BCAL2641 that is 

critically implicated in this phenomenon. Such inhibitors would not only reduce the resistance to 
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antibiotics in B. cenocepacia but also would reduce its ability to communicate high-level 

resistance to other less resistant bacteria. 
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4.1. Introduction 

Communication among bacteria via small molecules is implicated in the transient increase of 

bacterial resistance to antibiotics, which could lead to therapeutic failures, thereby aggravating 

the problem of antibiotic resistance. The extremely antibiotic resistant bacterium Burkholderia 

cenocepacia protects Pseudomonas aeruginosa, in direct co-culture, from the lethal action of 

polymyxin B (PmB) (1).YceI is a small, secreted protein implicated in this protection (1).YceI 

constitutes a large family of conserved bacterial small proteins that share a common tertiary fold, 

similar to lipocalin proteins found in many prokaryotic and eukaryotic organisms, including 

humans. Bacterial lipocalin or “bacteriocalin” genes are present in 1524 bacterial species both 

Gram-positive and negative (according to SMART research tool (2)). The bacteriocalin structure 

has been elucidated in a few cases and consists of an extended, eight-stranded, antiparallel beta-

barrel that resembles the lipocalin fold, although no sequence homology exists with lipocalins 

(3).  

Bacteriocalin gene expression was induced in response to bases in Escherichia coli (4), 

and oxidative stress in Pseudomonas aeruginosa (5), and the protein was predicted to bind 

polyisoprenoid chain within the pore of the barrel via hydrophobic interactions in Thermus 

thermophilus based on its crystal structure (3). More recently, I have shown that YceI is involved 

in the bacterial response to several amphiphilic bactericidal antibiotics; the transcription of YceI 

was upregulated in B. cenocepacia in response to PmB and the purified YceI proteins were able 

to bind PmB (1). Interestingly, the structure of bacteriocalins resembles that of human α-1-acid 

glycoprotein (AGP), which was shown to bind polymyxin B in serum (6). However, until now, 

there has been no direct demonstration of bacteriocalin function. Here I hypothesize that 

bacteriocalins are involved in the bacterial response to stress conditions, including exposure to 

antibiotics and oxidative stress by binding toxic and undesired compounds. B. cenocepacia 

possesses 2 bacteriocalin homologues, BCAL3310 and BCAL3311. In this study, I characterized 

their individual roles in antibiotic resistance, their binding affinity to compounds of different 

chemical characteristics, and their expression profiles in response to antibiotic stress. I further 

investigated the functional conservation of bacteriocalins among different bacterial species and 

whether bacteriocalins secreted from one bacterium can protect other bacterial species in vitro 
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and in vivo. Herein, I present the first report of a defined function for bacteriocalin proteins in the 

communication of transient antibiotic resistance in B. cenocepacia. 

4.2. Materials and methods 

4.2.1. Strains and reagents 

Table 9 lists bacteria and plasmids used in this study. Bacteria grew in LB (supplemented with 

0.4% rhamnose when required) at 37°C. Escherichia coli cultures were supplemented as required 

with the following antibiotics (final concentrations): tetracycline (30µg/ml), kanamycin (40 

µg/ml), and trimethoprim (50 µg/ml). B. cenocepacia cultures were supplemented as required 

with trimethoprim (100 µg/ml), and tetracycline (100 µg/ml). Antibiotics (Sigma, St Louis, MO, 

USA) were diluted in water except for PmB, which was diluted in 0.2% bovine serum 

albumin/0.01% glacial acetic acid buffer. Rifampicin was dissolved in dimethyl sulphoxide 

(DMSO).  

4.2.2. General molecular techniques 

DNA manipulations were performed as previously described (7). T4 DNA ligase (Roche 

Diagnostics, Laval, Quebec, Canada), Antarctic phosphatase (New England Biolabs, Pickering, 

Ontario, Canada) and restriction endonucleases (Roche or New England Biolabs) were used as 

recommended by the manufacturers. Transformation of Escherichia coli GT115 and DH5α was 

performed using the calcium chloride method (8). Mobilization of plasmids into B. cenocepacia 

was conducted by triparental mating (9) using E. coli DH5α carrying the helper plasmid 

pRK2013 (10). DNA amplification by polymerase chain reaction (PCR) was performed using a 

C1000 Thermal cycler (Bio-Rad Laboratories Ltd., Mississauga, Ontario, Canada) with Taq or 

HotStar HiFidelity DNA polymerases (Qiagen, Mississauga, Ontario, Canada) and optimized for 

each primer pair. DNA sequencing was carried out at Eurofins MWG Operon, Huntsville, 

Alabama, USA. The DNA sequences were analyzed with the BLAST computer program and 

compared to the sequenced genome of B. cenocepacia strain J2315. Cloning, expression, and 

purification of B. cenocepacia bacteriocalins was performed as previously described (1). 

Transcriptional fusions to luxCDABE and the subsequent luminescence expression assays were 

performed as previously described (11). 
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Table 9. Strains and Plasmids used in Chapter 4 

Strain or plasmid Relevant characteristics
a
 Source and/or 

reference 

Strains 

Burkholderia cenocepacia 

K56-2 ET12 clone related to J2315, CF clinical Isolate bBCRRC,(12) 

OME19 K56-2 pSCrhaB2; TpR (1) 

OME37 K56-2 pOE12; BCAL3310 with C-terminus FLAG tag; TetR This study 

OME40 K56-2 pOE13; BCAL3311 with C-terminus FLAG tag; TetR This study 

OME59 K56-2, PBCAL3309::pGSVTp-luxCDABE; TpR This study 

OME60 K56-2, PBCAL3310::pGSVTp-luxCDABE; TpR This study 

OME61 K56-2, PBCAL3312-3311::pGSVTp-luxCDABE; TpR This study 

OME62 K56-2, ∆BCAL3311 This study 

OME63 K56-2, ∆BCAL3312 This study 

OME65 K56-2, ∆BCAL3310 This study 

OME66 K56-2 pDA17; TetR This study 

OME67 OME62 pDA17; TetR This study 

OME68 OME62 pOE13 (BCAL3311); TetR This study 

OME69 OME62 pOE31 (PA0423); TetR This study 

OME70 OME62 pOE32 (PA4340); TetR This study 

OME71 OME62 pSCrhaB2; Tp
R
 This study 

OME72 OME62 pOE33 (BCAL3311); TpR This study 

OME73 OME62 pOE34 (PA0423); TpR This study 

OME74 OME62 pOE35 (PA4340); TpR This study 

OME75 OME62 pOE36 (PA4345); TpR This study 

OME76 OME62 pOE37 (Rv1890c); TpR This study 

Escherichia coli 

DH5α F-80lacZ M15 endA1 recA1 supE44 hsdR17(rK
- mK

+)deoR thi-1  

nupG supE44 gyrA96relA1 ∆(lacZYA-argF)U169, λ– 

Laboratory 

stock 

GT115 F– mcrA∆(mrr-hsdRMS-mcrBC) 80∆lacZ∆M15 ∆lacX74 recA1 

rpsL (StrA) endA1∆dcm uidA(∆MluI)::pir-116 ∆sbcC-sbcD 

Invivogen, 

San Diego, 

CA 

BL21 F−dcm ompT hsdS(rB
−mB

−) gal  Novagen 

Pseudomonas aeruginosa 

PAO1 Non‐CF clinical isolate (13) 

Salmonella typhi 

SARB63  (14) 

Shigella flexneri 

SF51571 Serotype 1a, antigenic formula 1:4  

Acinetobacter species 
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A. baumannii 

(AB1) 

Clinical isolate LHSCc 

A. lwoffi (AB2) Clinical isolate LHSCc 

A. junni (AB3) Clinical isolate LHSCc 

Klebsiella pneumoniae 

Kpn18   

Staphylococcus aureus 

USA300 Community acquired MRSA  

Plasmids 

pRK2013 oricolE1, RK2 derivative, KanR, mob+, tra+ (10) 

pGSVTp-lux Mobilizable suicide vector containing lux operon, derivative from 

pGSV3-lux(15); OriT; TpR 

(16) 

pSCrhaB2 oripBBR1rhaR, rhaS, PrhaBTpRmob+ (17) 

pDAI-SceI-SacB oripBBR1, TetR, Pdhfr, mob+, expressing I-SceI, SacB (18) 

pGPI-SceI oriR6K,  ΩTpR , mob+, including an I-SceI  

restriction site 

(19) 

pDA17 oripBBR1, TetR, mob+, Pdhfr, FLAG epitope 

 

D. Aubert, 

unpublised 

pOE12 pDA17, BCAL3310, C-terminus FLAG, TetR This study 

pOE13 pDA17, BCAL3311, C-terminus FLAG, TetR This study 

pOE15 BCAL3310 without signal peptide encoding sequence cloned in 

pET28a(+) 

(1) 

pOE16 BCAL3311 without signal peptide encoding sequence cloned in 

pET28a(+) 

(1) 

pOE22 PBCAL3310::luxCDABE transcriptional fusion in pGSVTp-lux, TpR This study 

pOE23 PBCAL3312-3311::luxCDABE transcriptional fusion in pGSVTp-lux, TpR This study 

pOE25 pGPI-SceI with fragments flanking BCAL3310, TpR This study 

pOE26 pGPI-SceI with fragments flanking BCAL3311, TpR This study 

pOE27 pGPI-SceI with fragments flanking BCAL3312, TpR This study 

pOE31 pDA17, PA0423, C-terminus FLAG, TetR This study 

pOE32 pDA17, PA4340, C-terminus FLAG, TetR This study 

pOE33 pSCrhaB2, BCAL3311, TpR This study 

pOE34 pSCrhaB2, PA0423, TpR This study 

pOE35 pSCrhaB2, PA4340, TpR This study 

pOE36 pSCrhaB2, PA4345, TpR This study 

pOE37 pSCrhaB2, Rv1890c, TpR This study 
a
Tp

R
, trimethoprim resistance, Kan

R
, kanamycin resistance, Tet

R
, tetracycline resistance. 

b
BCRRC, B. cepacia Research and Referral Repository for Canadian CF Clinics. 

c
LHSC, London Health Science Centre, London, Ontario, Canada. 
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4.2.3. Protein analysis and Western Blotting 

Overnight cultures were diluted to OD600 0.03 in 30 ml fresh LB medium with or without PmB 

and incubated for 3.5 h at 37
o
C, 200 rpm. Following incubation, cells equivalent to OD600 ~0.2 

were pelleted, resuspended in 30 µl SDS-PAGE protein loading dye, and boiled to obtain whole 

cell lysates. Secreted proteins were precipitated from the supernatant of the rest of the cultures 

using 10% trichloroacetic acid as previously described (20). The precipitated proteins were 

resuspended by Tris buffer, 1M, pH 7.5. The volume of protein samples loaded to the 16% SDS-

polyacrylamide gel was normalized to the OD600 value. After SDS–PAGE, proteins were 

transferred onto nitrocellulose membranes and the membranes were blocked overnight at 4°C 

with Western blocking reagent (Roche Diagnostics, Laval, QC, Canada) in TBST (50 mM Tris-

HCl pH 7.5, 150 mM NaCl, 0.1 % Tween-20). The primary antibodies, anti-FLAG M2 

monoclonal antibody (Sigma) or anti-α-subunit RNA Polymerase (E. coli) (Neoclone, Madison, 

WI, USA), were diluted to 1:15,000 in TBST and applied for 1.5 h. Secondary antibody, goat 

anti-mouse Alexa Fluor 680 IgG antibodies (Invitrogen), was diluted to 1:15,000 and applied for 

1 h. Western blots were developed using LI-COR Odyssey infrared imaging system (LI-COR 

Biosciences, Lincoln, NE, USA) 

 

4.2.4. Antibiotic susceptibility testing. 

Overnight cultures of the parental B. cenocepacia K56-2 and the appropriate mutants in LB 

medium were diluted to an optical density at 600 nm (OD600) of 0.0008 in fresh LB with or 

without the antibiotic and incubated at 37°C with medium continuous shaking in a Bioscreen C 

automated growth curve analyzer (MTX Lab Systems, Vienna, VA, USA). Bacterial growth was 

assessed turbidimetrically at 600 nm.  

Etest strips (AB bioMérieux, Solna, Sweden) were applied to agar plates (17 ml agar in 

85 mm Petri dish) inoculated with test bacteria by swabbing overnight cultures diluted to OD600 

of 0.04; plates were then incubated at 37
o
C for 24 h. Alternatively, population analysis profiling 

(PAP) was performed turbidimetrically or by cfu counting as previously described (1). For in 
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vitro protection assays, B. cenocepacia bacteriocalins were added to LB broth at a final 

concentration of 1.5 µM. 

 

4.2.5. Fluorometric binding assays 

These assays were performed as previously described (6) with few modifications. Purified 

bacteriocalins, 8-Anilino-1-naphthalenesulfonic acid (ANS) and Auramine O were prepared in 

phosphate buffered saline (PBS, pH 7.4). Phospholipids and Nile Red were prepared in DMSO. 

The binding of each fluorescent probe to bacteriocalins was measured by titrating 100 µl of 

bacteriocalins (1.5 µM) in a flat bottom 96-well microtiter plate (LUMITRAC 200 White, 

Greiner bio-one, Monroe, North Carolina, United States) with aliquots of increasing 

concentrations of probe until fluorescence intensity reached plateau. All spectra were corrected 

for background fluorescence determined from probe into buffer titrations. Fluorescence was 

measured using a Cary Eclipse Fluorescence spectrophotometer (Varian, Mississauga, ON, 

Canada) set at an excitation wavelength (λex) specific for each probe, as follows: ANS (400 nm), 

Auramine O (428 nm), Nile Red (550 nm), and BODIPY phospholipids (500 nm for fatty acyl 

BODIPY labeled phosphocholine and 505 nm for head group BODIPY labeled 

phosphoethanolamine). The emission spectrum for each probe was collected across the following 

wavelengths (λem): ANS (420–600 nm), Auramine O (460–660 nm), Nile Red (590–750 nm), 

and BODIPY phospholipids (510–665 nm). The background-corrected binding fluorescence with 

each probe was fitted to a one-site binding model. The dissociation constant for the probe–

bacteriocalin complex at a probe concentration equivalent to half the saturation concentration at 

which the maximum specific fluorescence enhancement occurs (Kd), was determined by non-

linear least square regression analysis of the binding isotherms using GraphPad Prism V5.0 

software (GraphPad software, San Diego, CA, USA).  

For probe displacement experiments, antibiotic solutions diluted in PBS, pH 7.4 were titrated 

against bacteriocalin–probe complex at a saturating concentration necessary to obtain the 

maximum fluorescence when bound. Displacement of probe was measured as the corresponding 

decrease in fluorescence upon the progressive increase of antibiotic concentration. 
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4.2.6. Galleria mellonella larvae in vivo infection models 

These assays were performed as described in Harding et al. (21). Overnight cultures were diluted 

to OD600 in PBS, pH 7.4 with or without B. cenocepacia bacteriocalins at 1.5 µM final 

concentration as follows: P. aeruginosa PAO1 to 0.00004, K. pneumoniae Kpn18 to 0.04, A. 

baumannii AB1 to 0.4 and S. aureus USA300 to 0.004. The larvae were injected with 10 µl of 

the bacterial suspensions or sterile PBS (10 larvae/group in each experiment) using 10 µl 

Microliter syringes (Hamilton Company, Reno, Nevada, USA). The larvae were incubated at 

30
o
C and their viability was checked at regular time intervals. In similar assays, 5 larvae/group 

were sacrificed at 200 min post-infection and the hemolymph was extracted as previously 

described (21). The hemolymph was immediately serially diluted in PBS, plated on LB agar 

supplemented with 0.3% cetrimide to quantify the cfu of P. aeruginisa PAO1 recovered from the 

infected larvae. 

4.2.7. Statistical Analyses 

Unpaired student‟s t-tests and other statistical analyses were conducted with GraphPad Prism 

5.0. 

4.3. Results and discussion 

4.3.1. Secretion of B. cenocepacia bacteriocalins 

To confirm the release of bacteriocalins into the extracellular milieu from B. cencocepacia, 

plasmid-encoded Flag-tagged versions of each bacteriocalin homologue were used. This revealed 

that BCAL3311, but not BCAL3310, was only secreted from the wild type K56-2 irrespective of 

exposure to PmB (Fig. 33). BCAL3310 was not detected in the supernatant even upon treatment 

with PmB at 2 µg/ml (Fig. 33) or 500 µg/ml (not shown).  

 

4.3.2. The role of the different B. cenocepacia bacteriocalins in response to antibiotics 

The function of the individual bacteriocalin homologues (BCAL3310 and BCAL3311), and the 

associated cytochrome b561 (BCAL3312) was assessed by performing individual deletions.  
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Figure 33. BCAL3311 is the only secreted B. cenocepacia bacteriocalin. 

Proteins (carrying a C-terminal Flag-tag) were detected in whole cell lysates and supernatants of 

control untreated cultures or cultures treated with 2 µg/ml PmB by Western blot using anti-Flag 

antibody. The α-subunit of the RNA polymerase was used as a control for cell lysis. 
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The deletion mutant of only BCAL3311 showed increased susceptibility to PmB, rifampicin, 

norfloxacin and ceftazidime, but not the hydrophilic antibiotic gentamicin (Fig. 34). Etest 

revealed that ∆BCAL3311 has more homogenous response to ceftazidime observed as fewer 

discrete colonies at the otherwise clear zone of inhibition relative to the parental strain (Fig. 

34F). This matches with previously reported antibiotic susceptibility phenotypes of double 

deletion mutant of YceI homologues (1). However, BCAL3310 deletion did not affect the 

susceptibility to antibiotics (Fig. 34), which is consistent with being not secreted (Fig. 33). 

Similarly, the cytochrome b561 BCAL3312 was not involved in the response to any of the tested 

antibiotics (Fig. 34). 

4.3.3. Fluorometric assays of binding interaction of B. cenocepacia bacteriocalins 

To test the binding preference of bacteriocalins, I used fluorescent compounds that probe binding 

sites of proteins. These fluorophores have different chemical features enabling them to probe 

different binding sites of proteins. I used Nile Red (consisting of a hydrophobic multi-cyclic 

structure and a tertiary amine) which tests hydrophobic binding sites, Auramine O (consisting of 

a bridged bi-phenyl structure with a tertiary amine on each phenyl and a central basic group), 

which tests basic binding sites, and 8-Anilino-1-naphthalenesulfonic acid, ANS (consisting of 

three hydrophobic phenyl groups, a secondary amine and an acidic sulfonate group) which tests 

acidic binding sites (6). I determined the binding affinity of purified recombinant bacteriocalin 

homologues for each of the 3 probes in PBS buffer by measuring the increase in fluorescence 

intensity upon probe–protein complex formation (Fig. 35A-F). The rise in fluorescence at the 

specific emission wavelengths of each probe was monitored with a series of concentrations of 

probes until no further increase in the fluorescence intensity was detected, indicating all binding 

sites were occupied. A one-site binding model was fit to the binding isotherms to derive the 

dissociation constant for each probe–BCAL3311 complex as previously described for human 

AGP (6). Auramine O and Nile Red exhibited higher binding affinity for BCAL3311 relative to 

ANS (Fig. 35). This suggests that BCAL3311 binds with higher affinity to hydrophobic and 

basic molecules, whereas it binds acidic compounds with lower affinity. However, Auramine O 

interaction with BCAL3311 yielded fluorescence emission with low signal to noise ratio, and 

hence a low correlation coefficient compared to that of Nile Red-BCAL3311 interaction. The 

interaction of BCAL3310 with the same fluorophores was compared  
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Figure 34. BCAL3311 is the only B. cenocepacia bacteriocalin involved in resistance to 

hydrophobic but not hydrophilic antibiotics. 

Mutants carrying markerless deletions of individual genes encoding the 2 bacteriocalins 

BCAL3310 (OME65) and BCAL3311 (OME62) and the associated cytochrome b561 BCAL3312 

(OME63) were compared to the parental strain K56-2 in turbidimetric assays the results of which 

are expressed as %OD600 relative to control untreated culture of the corresponding mutant (A-E) 

and by Etest (F) in their response to the antibiotics: A, PmB 1 mg/ml at 18 h, from 3 independent 

experiments, n=9; B, rifampicin 16 µg/ml at 18 h, from 2 independent experiments, n=6; C, 

norfloxacin 4 µg/ml at 24 h, from 3 independent experiments, n=9; D, gentamicin 512 µg/ml at 24 

h, from 2 independent experiments, n=6; E, ceftazidime 16 µg/ml at 24 h, n=3; F, ceftazidime 

Etest. * p<0.05, ** p<0.01 and *** p<0.001 from unpaired student‟s t-tests compared to the 

respective control conditions. 
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Figure 35. Bacteriocalins bind with higher affinity to hydrophobic molecules; BCAL3311 shows 

superior binding affinity relative to BCAL3310. 

Fluorometric assays were used to determine the binding affinity of 1.5 µM recombinant B. 

cenocepacia bacteriocalins lacking their signal peptide sequences to fluorophores having 

different chemical characteristics in PBS. Binding affinity of BCAL3311 to Nile Red (A), 

Auramine O (B), and ANS (C) was determined from 3 independent experiments, n=5. The 

binding affinity of BCAL3310 was compared to that of BCAL3311 with 1.5 µM Nile Red (D), 

1.5 µM Auramine O (E), and 150 µM ANS (F). Displacement assays of the fluorophores from 

BCAL3311-fluorophore complex by antibiotics were performed with PmB and PmBN against 

1.5 µM Nile Red (G) and 150 µM ANS (H) and with rifampicin, norfloxacin, ceftazidime and 

gentamicin against 1.5 µM Nile Red (I); n=2. * p<0.05, ** p<0.01 and *** p<0.001 from 

unpaired student‟s t-tests. 
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to that with BCAL3311 (Fig. 35D-F). While there was no difference in the interaction at basic or 

acidic binding sites, BCAL3310 bound Nile Red with much lower affinity than BCAL3311 (Fig. 

35D). This suggests that binding hydrophobic moieties is critical to the function of BCAL3311. 

This agrees with my previous study showing that BCAL3310 binds with lower affinity to a 

fluorescent derivative of PmB compared to BCAL3311 (1). To further test the binding 

preference of BCAL3311 to hydrophobic moieties as opposed to hydrophilic ones, I measured 

the binding of two fluorescent phospholipid analogs labeled with the BODIPY fluorophore on 

the head group (BODIPY-phosphoethanolamine) and fatty acyl chain (BODIPY-

phosphocholine). There was no fluorescence emission observed upon titration of BCAL3311 

with BODIPY-phosphoethanolamine, whereas titration of BCAL3311 with BODIPY-

phosphocholine resulted in high fluorescence emission suggesting high affinity interaction 

comparable to that with Nile Red (Not shown). This indicates that the hydrophilic head group 

segment of the molecule with the fluorescent label does not bind to BCAL3311 whereas the fatty 

acyl segment of the molecule with the fluorescent label is responsible for binding. 

Next, the ability of different antibiotics to compete with each probe in complex with BCAL3311 

was examined by incremental titration with each antibiotic to gain insights on the basis of 

interaction between BCAL3311 and the different antibiotics (Fig. 35G-I). Probe displacement 

assay for Auramine O was not feasible due to the low signal-to-noise ratio. Initially, I compared 

the probe displacement ability of PmB to its nonapeptide derivative (PmBN). PmBN only lacks 

the fatty acyl tail of PmB, which results in a significant loss of its bactericidal activity (22). The 

fatty acyl tail of PmB seemed critical for binding to hydrophobic binding sites of BCAL3311 

where its loss led to significant reduction of its Nile Red displacement ability (Fig. 35G). 

Moreover, neither PmB nor PmBN could displace ANS (Fig. 35H), further supporting the notion 

of hydrophobic interaction between PmB and BCAL3311. Similarly, rifampicin and, to a lower 

extent, norfloxacin could displace Nile Red (Fig. 35I). Slight Nile Red displacement was 

observed only at the highest tested concentrations of ceftazidime, whereas no displacement of 

Nile Red from its interaction with BCAL3311 was observed with any of the tested gentamicin 

concentrations (Fig. 35I).     
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4.3.4. Luciferase expression assays of B. cenocepacia bacteriocalins 

The role of the two B. cenocepacia bacteriocalin homologues in response to antibiotics was 

further assessed by testing the expression of these proteins. I created chromosomal promoter-

luxCDABE transcriptional fusions for BCAL3310 (Fig. 36A) and the transcriptional unit 

BCAL3311-BCAL3312 (Fig. 36B). The expression of BCAL3311 and the associated 

cytochrome b561 (BCAL3312) was upregulated in response to PmB, rifampicin, and norfloxacin 

(Fig. 36B). The expression was not altered in response to ceftazidime whereas it was slightly 

reduced in response to gentamicin probably due to the mode of action of this aminoglycoside 

targeting protein expression (Fig. 36B). This agrees, in the most part, with the antibiotic 

susceptibility phenotypes observed for the ∆BCAL3311 mutant. Conversely, BCAL3310 

expression was overexpressed by norfloxacin and ceftazidime only whereas it was slightly 

inhibited by rifampicin and gentamicin probably due to their general mechanism of action 

targeting transcription and translation respectively (Fig. 36A). Interestingly, the expression of 

BCAL3311 only was upregulated by paraquat (Fig. 36), which is an inducer of the superoxide 

anion. This suggests that BCAL3311 is also involved in the response to oxidative stress. A 

similar link between the response to antibiotics and oxidative stress was recently shown in case 

of putrescine released from B. cenocepacia (11). 

 

4.3.5. Bacteriocalins from different bacterial species are involved in antibiotic resistance 

As bacteriocalins are conserved among bacteria, I sought to determine if bacteriocalins from the 

YceI family of proteins from different bacteria are also involved in response to antibiotics. To 

address this, I attempted to complement ∆BCAL3311 with bacteriocalin homologues from 

different bacterial species. I tested the B. cenocepacia K56-2 yceIBc BCAL3311, P. aeruginosa 

PAO1 yceIPa PA0423, PA4340 and PA4345, the Mycobacterium tuberculosis H37Rv yceIMtb 

Rv1890c and the S. aureus USA300 SAUSA300_2620. Cloning genes encoding BCAL3311, 

PA0423 and PA4340 with C-terminal Flag-tag did not complement the ∆BCAL3311 phenotype, 

potentially due to interference of the tag at this position with function of the proteins (Not 

shown). Next, I cloned all tested genes from the different species under the control of the 

rhamnose-inducible promoter in pSCRhaB2. PAP by agar dilution against PmB revealed that the  
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Figure 36. Luciferase expression assay of the different B. cenocepacia bacteriocalins in response 

to antibiotics at 3 h. 

Results are shown as percentage of relative light units RLU/OD600 relative to the control 

(untreated K56-2 background). The percentages of OD600 are shown in Fig. 37. A, Expression of 

BCAL3310 (OME60).n=6 from 2 different clones. The mean RLU/OD600 of the control is 0.5531. 

B, Expression of BCAL3311 and the associated cytochrome b561 BCAL3312 (OME61).n= 6 

from 2 different clones. The mean RLU/OD600 of the control is 1.3464. * p<0.05, ** p<0.01 and 

*** p<0.001 from unpaired student‟s t-tests compared to the respective control conditions. 
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Figure 37. The relative growth of cells in the luminescence expression assay of the different B. 

cenocepacia bacteriocalins in response to antibiotics at 3 h shown in Fig. 36. 

Results are shown as percentage of OD600 relative to the control (untreated K56-2 background). 

A, Growth in the expression assay of BCAL3310 (OME60).n=6 from 2 different clones. The 

mean OD600 of the control is 0.0963. B, Growth in the expression assay of BCAL3311 and the 

associated cytochrome b561 BCAL3312 (OME61).n= 6 from 2 different clones. The mean OD600 

of the control is 0.0998. * p<0.05, ** p<0.01 and *** p<0.001 from unpaired student‟s t-tests 

compared to the respective control conditions. 
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B. cenocepacia BCAL3311 significantly increased the resistance of ∆BCAL3311 to PmB (Fig. 

38A). Moreover, the M. tuberculosis yceIMtb fully complemented the deletion of BCAL3311, 

whereas the 3 P. aeruginosa yceIPa homologues and the S. aureus USA300 bacteriocalin 

homologue significantly increased resistance to PmB in the ∆BCAL3311 relative to the control 

vector (Fig. 38A). MIC determined by Etest showed that all tested bacteriocalin homologues 

from B. cenocepacia, P. aeruginosa, M. tuberculosis and S. aureus increased resistance to 

Rifampicin in the ∆BCAL3311 to the wild type level (Fig. 38B). Together, this shows that 

bacteriocalins from different pathogens are involved in antibiotic resistance and suggests that the 

function of bacteriocalins is conserved among bacteria. 

 

4.3.6. Bacteriocalins protect different bacterial species in vitro and in vivo 

I sought to determine if bacteriocalins secreted from one bacterial species can protect other 

bacteria from the action of antibiotics. In vitro assays showed that P. aeruginosa PAO1 treated 

with purified recombinant yceIBc BCAL3311 had reduced sensitivity to PmB, an effect that was 

not observed with the less active BCAL3310 (Fig. 39A). However, both proteins protected 

Salmonella typhi SARB63, Shigella flexneri SF51571, Acinetobacter baumanni AB1, 

Acinetobacter lwoffi AB2, and Acinetobacter junni AB3 (Fig. 39B-F) at concentrations ~10-20 

folds lower than that where protection was observed in case of P. aeruginosa (Fig. 39A). This 

difference in concentrations at which protection is observed for the different bacteria corresponds 

to difference in magnitude of affinity to Nile Red between BCAL3310 and BCAL3311 (Fig. 

35D), which could explain the protective effect of BCAL3310 in case of the different bacterial 

species and its lack with P. aeruginosa PAO1.  

Next, I used Galleria mellonella larvae infection model. BCAL3311-treated P. aeruginosa 

PAO1 cells were more virulent than the control PAO1 cells or BCAL3310-treated cells (Fig. 

39G). After 200 minutes post-infection with ~700-900 cfu of P. aeruginosa, I recovered 

significantly higher numbers of BCAL3311-treated cells compared to the control untreated cells 

or the BCAL3310-treated group from the hemolymph of G. mellonella larvae plated on LB agar 

supplemented with 0.3% cetrimide (Fig. 39H). This suggests that the increased virulence due to  
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Figure 38. The function of bacteriocalins in the response to hydrophobic antibiotics are 

conserved among different bacteria. 

Bacteriocalins from B. cenocepacia K56-2 (BCAL3311), P. aeruginosa PAO1 (PA0423, 

PA4340, PA4345), M. tuberculosis H37Rv (Rv1890c) and S. aureus USA300 

(SAUSA300_2620) were cloned in pSCRhaB2 under the control of the rhamnose promoter and 

used to complement the ∆BCAL3311 mutant in the presence of 0.4% rhamnose. A, PAP by agar 

dilution against PmB, from 3 independent experiments, n=6, asterisks are color coded and 

denotes difference from ∆BCAL3311 pSCRhaB2 mutant. * p<0.05, ** p<0.01 and *** p<0.001 

determined by unpaired student‟s t-tests. B, MIC determined by Etest against rifampicin, a 

representative of 3 independent experiments. Discrete colonies in the otherwise clear zone of 

inhibition indicating heteroresistance similar to those in Fig. 34 panel F were not taken into 

consideration for MIC determination. 
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Figure 39. B. cenocepacia bacteriocalins, mainly the secreted BCAL3311, protect different 

bacterial species in vitro and in vivo. 

I J K 
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(A-F) In vitro protection assays against PmB with 1.5 µM of BCAL3310 or BCAL3311: A, P. 

aeruginosa PAO1, n=8 from 4 independent experiments; B, S. typhi SARB63, n=7 from 3 

independent experiments; C, S. flexneri SF51571, n=7 from 3 independent experiments; D, A. 

baumanni AB1, n=6 from 2 independent experiments; E, A. lwoffi AB2, n=5 from 2 independent 

experiments; F, A. junni AB3, n=5 from 2 independent experiments. 

(G-K) In vivo protection assay using G. mellonella infection model. Each larva was injected with 

10 µl of suspensions of different bacteria in PBS with or without B. cenocepacia bacteriocalins. 

The survival was monitored over time and compared to control group injected with sterile PBS. 

Each group included 10 larvae. (G) P. aeruginosa PAO1, the results are obtained from 3 

independent experiments; the survival of both PAO1 and PAO1-BCAL3310 treated larvae is 

significantly different from that of PAO1-BCAL3311 treated group at p= 0.0165 and 0.0303 

respectively. (H) In an independent experiment, larvae were sacrificed 200 min post-infection 

and the hemolymph was collected and plated on 0.3% cetrimide agar to quantify the recovered P. 

aeruginosa PAO1; n=10 from 2 independent experiments. (I) K. pneumoniae Kpn18, from 2 

independent experiments; (J) A. baumannii AB1 from 3 independent experiments; and (K) S. 

aureus USA300, from 2 independent experiments. * p<0.05, ** p<0.01 and *** p<0.001 from 

unpaired student‟s t-tests compared to the respective control conditions. 

  



157 
 

treatment with BCAL3311 is a result of protection from killing of P. aeruginosa cells inside the 

host. G. mellonella larvae possess a humoral immune response where the hemolymph of 

bacteria-challenged larvae contains several antimicrobial peptides among them are members of 

linear α-helical peptides (cecropins and moricin-like peptides), cysteine-stabilized peptides 

(defensins), proline-rich peptides, and glycine-rich peptides in addition to lysozyme (23). Similar 

phenotype of increased virulence upon treatment with BCAL3311 was observed in K. 

pneumoniea Kpn18, A. baumannii AB1, and S. aureus USA300 (Fig. 39 I-K). 

 

4.4. Conclusions 

I show that bacteriocalins are involved in the bacterial response to hydrophobic or amphiphilic 

antibiotics (PmB, rifampicin, norfloxacin and ceftazidime), but not hydrophilic ones (such as 

gentamicin). This effect is attained by their preferential binding affinity to hydrophobic moieties. 

Bacteriocalins are functionally conserved among different bacteria and those secreted from one 

bacterial species can protect bacteria from other species from the effects of antibiotics whether in 

vitro or in vivo. Interestingly, the expression of both B. cenocepacia bacteriocalins is induced in 

CF conditions compared to soil environmental like conditions shown by comparative 

transcriptomics, underscoring the importance of bacteriocalins during infection (24). On the 

other hand, bacteriocalins could be involved in the response to oxidative stress. BCAL3311 

expression was induced in response to paraquat. This is consistent with the overexpression of P. 

aeruginosa PAO1 bacteriocalin PA0423 in response to hydrogen peroxide and paraquat (5). 

Furthermore, Mammalian Odorant binding protein (OBP), a soluble lipocalin, when 

overexpressed in E. coli, protected the bacterial cells from oxidative stress induced by hydrogen 

peroxide (25). In conclusion, I report for the first time a novel mechanism of antibiotic 

resistance, based on physical binding of antibiotics, that is conserved among large number of 

bacteria whether Gram-positive or Gram-negative and that can non-specifically protect various 

clinically relevant pathogens from the action of antibiotics. These findings offer a new avenue 

for intervention against antibiotic resistance and its spread among different bacteria by 

developing inhibitors against bacteriocalins. 
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5.1. General Overview 

At the present time, existing pipelines of novel antibiotic drug development are 

insufficient to bridge the widening gap that is inherent in the global dissemination of multi-drug 

resistant bacteria versus the effectiveness of available antibiotic therapy to treat microbial 

infections. This dilemma is further complicated by confusion regarding a closely related 

phenomenon, namely heteroresistance, which would complicate the overall therapeutic outcome. 

Despite the recognition of this phenomenon since 1947, the field is plagued with misconceptions 

and confusion about heteroresistance. In this thesis, I aimed at providing better characterization 

of heteroresistance and one of its major implications, which is the possibility of chemical 

communication of antibiotic resistance.  

 

5.2. Heteroresistance: the current understanding 

The term „heteroresistance‟ is sometimes used indiscriminately to describe other 

observations not related to population-wide response to antibiotics. Moreover, no clear definition 

or globally standardized methods to determine heteroresistance are available. The lack of 

standardization of test formats and the guidelines to decide heteroresistance led to the lack of 

agreement between outcomes of different methods and between different laboratories (1-3). 

Various studies showed that heteroresistance could have serious implications in therapy of 

microbial infections as discussed in Chapter 1. Hence, the harmonization and standardization of 

definitions and methods to describe heteroresistance is of utmost importance.  

Based on my study (Chapter 2) and upon extensive and critical review of the available 

literature (Chapter 1), I recommend defining heteroresistance as the population-wide variation of 

antibiotic resistance whereby different subpopulations within an isolate exhibit varying 

susceptibilities to a particular antimicrobial agent. With respect to the methods of detection, PAP 

remains the gold standard for detection of heteroresistance preferably by cfu counts, while 

turbidimetric PAP is an acceptable alternative, provided that the antibiotic increments are set at 

2-fold. A strain can be considered heteroresistant when the lowest antibiotic concentration 

exhibiting maximum inhibition of the bacterial population is equal to or greater than 8-fold 
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higher than the highest non-inhibitory concentration. A 4-fold difference may be regarded as 

intermediate heterogeneity while a lower difference indicates homogenous response to an 

antibiotic. An alternative to PAP would be disc diffusion or Etest assays, whereby the growth of 

discrete colonies at the otherwise clear zone of inhibition is indicative of heteroresistance. This 

method can be used for faster screening of clinical isolates rather than using the laborious PAP 

assays. With standard criteria to define and assess heteroresistance world-wide, the prevalence of 

heteroresistant bacteria as well as their clinical relevance and impact on healthcare can be better 

assessed. Consequently, effective therapeutic strategies should be explored to counteract 

heteroresistance. This may include testing synergistic combinations of antibiotics (4), or using 

antibiotic adjuvants inhibiting key pathways involved in antibiotic resistance in conjunction with 

front-line antibiotics (5). 

On the other hand, elucidation of the mechanisms of heteroresistance when this 

phenomenon is properly defined will help understand whether a common mechanism exists 

among the different bacteria and against the different antibiotics or these mechanisms are 

antibiotic-specific, species-specific or both. In B. cenocepacia, heteroresistance to polymyxin B 

depends on putrescine and YceI secretion, being differentially expressed across the different 

subpopulations as shown in Chapter 2. Moreover, a periplasmic component of an ABC 

transporter involved in the biosynthesis of hopanoids was overexpressed in the more resistant 

subpopulation exposed to polymyxin B. While the role of this transporter in heteroresistance was 

not directly evaluated, hopanoids have been shown to contribute to polymyxin B resistance in B. 

cenocepacia (6). Putrescine and YceI were similarly implicated in heteroresistance to rifampicin, 

norfloxacin and ceftazidime to various extents but not gentamicin. Identifying the mechanisms of 

heteroresistance would potentially aid in finding new targets for disruption of this phenomenon, 

thus reducing the window of therapeutic failure.  

It is also essential to determine thoroughly whether heteroresistance is only restricted to 

the response to bactericidal antibiotics, or bacteria can display heteroresistance to bacteriostatic 

antibiotics as well. No systematic comparisons of the response of heteroresistant bacteria to 

bacteriostatic versus bactericidal antibiotics have been reported. Here I showed that B. 

cenocepacia exhibited heteroresistance to bactericidal antibiotics from different classes and 

homogenous responses to bacteriostatic antibiotics. 
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Interestingly, the same strain can display both intrinsic and acquired heteroresistance. 

Here I showed that B. cenocepacia wild type and several less resistant isogenic mutants, 

including ∆hldA, displayed intrinsic heteroresistance to several bactericidal antibiotics including 

polymyxin B (5). Previously, heteroresistance was induced in the same hldA mutant possessing 

truncated LPS where it developed subpopulations resistant to higher concentrations of the 

antibiotic that are not tolerated by even the most resistant members of the original population 

after exposure to multiple rounds of selection in polymyxin B (7). 

In conclusion, global organizations concerned with antimicrobial resistance are urged to 

advocate for harmonized recommendations and coordinate general consensus concerning the 

phenomenon of heteroresistance. This is of utmost importance especially in clinical practice 

where currently thousands of clinical isolates are screened for heteroresistance, but rather using 

non-standardized methods that differ from one laboratory to another, further puzzling the global 

picture. Such efforts can be better directed to more accurate and standardized detection of 

heteroresistance, leading to superior therapeutic outcomes based on improved identification of 

heteroresistant bacteria and optimized strategies to eradicate them. 

 

5.3. Chemical communication of antibiotic resistance 

Highly resistant subpopulations of heteroresistant bacteria could further complicate the 

clinical picture of polymicrobial infections by providing protection to normally sensitive bacteria 

through chemical signals. Here I showed in Chapter 2 an example of such chemical 

communication of resistance in which P. aeruginosa was protected from the action of the 

antimicrobial peptide polymyxin B by highly resistant subpopulation of the heteroresistant 

pathogen B. cenocepacia. Simultaneous infection of both organisms is not uncommon; cystic 

fibrosis patients are among the groups having high potential of contracting such polymicrobial 

infection (8). This provides high potential for clinical relevance of such interaction between 

microorganisms given this particular example. This chemical communication of antibiotic 

resistance was mediated by the release of excessive amounts of the polyamine putrescine, and 

YceI, a small conserved protein with a lipocalin fold, from B. cenocepacia and resulted in P. 
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aeruginosa surviving polymyxin B treatment equivalent to the recommended therapeutic 

breakpoint instead of being completely killed in its pure culture. This was shown in an in vitro 

direct co-culture experiment and awaits further in vivo confirmation. In chapter 4, I showed an in 

vivo evidence of protection of P. aeruginosa PAO1 by the bacteriocalin BCAL3311 in G. 

mellonella larvae infection model. On the other hand, putrescine and other polyamines in genital 

mucosal fluids increased the resistance of N. gonorrhoeae to antimicrobial peptides (PmB and 

LL-37), possibly enhancing its survival during infection by reducing bacterial susceptibility to 

host-derived antimicrobials (9). Together, this supports the clinical relevance of putrescine and 

bacteriocalins as communicators of antibiotic resistance. 

Putrescine protected the surface of the bacteria from the initial binding of polymyxin B 

[Chapter 2 and (5)] and reduced antibiotic-induced oxidative stress [Chapter 3 and (10)]; 

however, this does not preclude other mechanisms by which putrescine modulate the antibiotic 

response (11). On the other hand, YceI could bind and sequester polymyxin B and other 

hydrophobic antibiotics thus potentially reducing their levels in the bacterial milieu [Chapters 2 

and 4, and (5)]. Given that the mechanism of such chemical communication could be universal 

among bacteria; i.e. the signals involved could be sensed and benefited from by almost all 

bacteria, extra caution should be in effect while dealing with heteroresistant B. cenocepacia 

infections (or by other bacteria displaying similar phenotype of extreme antibiotic resistance) in 

particular when associated with other bacteria in mixed infection. 

 

5.4. New targets for drug discovery 

Unveiling these mechanisms contributing to intrinsic antibiotic resistance and 

communication of resistance among bacteria provides novel targets for therapeutic interventions. 

A promising avenue for potential synergists is inhibition of biosynthesis of polyamines, 

putrescine in particular. In this study (Chapter 3), I identified the ornithine decarboxylase 

BCAL2641 as a critical player in response to antibiotics despite the presence of other putrescine 

synthesizing enzymes (BCAM1111 and BCAM1112), which seemed to have other physiological 

functions not related to antibiotic resistance. Therefore, these findings suggest BCAL2641 as a 
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plausible target for inhibitors that would potentiate the effects of antibiotics. Interestingly, certain 

inhibitors of key enzymes in the biosynthetic pathway of polyamines, such as ornithine 

decarboxylase and spermidine synthase, are available (12-15). Such inhibitors have been 

effective in the treatment of parasitic infections such as different types of trypanosomiases (16, 

17). The uptake of putrescine and other polyamines may present another potential target for 

inhibition potentially blocking the chemical communication among bacteria. Certain anthracene- 

and benzene-polyamine conjugates that inhibit polyamine transport were also effective for 

treatment for Pneumocystis pneumonia (18). Together, the identification of specific bacterial 

targets such as BCAL2641 in addition to the clinical implementation of interfering with 

polyamine synthesis and uptake in parasitic infections supports the feasibility of this approach in 

bacterial infections. 

 Similarly, bacteriocalins can provide another plausible target for inhibition. One strategy 

for inhibition is to design or search for molecules capable of binding to bacteriocalins with 

higher affinity than antibiotics thus preventing sequestration of antibiotics. Overall, this direction 

for drug discovery could potentially expand further as our understanding of the mechanisms, 

biosynthetic pathways and uptake of the different small molecules continues to increase. 

 

5.5. Ongoing and future research 

Indeed this study revealed novel observations in terms of the heteroresistance of B. cenocepacia 

to different bactericidal antibiotics as well as the chemical communication of antibiotic 

resistance and the signals involved in this interaction. However, much remains to be learned 

about antimicrobial heteroresistance and new avenues for drug development has been generated.  

 Thorough investigation of the mechanisms of heteroresistance in B. cenocepacia is still 

required. Although I have showed the implication of putrescine and bacteriocalins in this 

phenomenon through differential expression among the different bacterial subpopulations; 

however, the stability of the high level of resistance in the more resistant subpopulation implies 

the presence of underlying mutations contributing to such level of antibiotic resistance. Whole 

genome sequencing of the more resistant subpopulations is currently underway. This would 
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increase our understanding of the mechanisms of heteroresistance in B. cenocepacia and would 

potentially identify novel mechanisms of antibiotic resistance in general. 

To better exploit our knowledge of chemical communication of antibiotic resistance, 

better understanding of the mechanisms involved in the mediator infochemicals is essential. For 

example, while surface competition and protection from ROS has been revealed as mechanisms 

of protection by putrescine from the action of various antibiotics, other mechanisms of protection 

by putrescine needs to be identified as well. Two-dimensional gel electrophoresis is currently 

optimized to compare between the response of wild type and ∆BCAL2641 to antibiotics in a 

non-biased manner. On the other hand, since BCAL2641 was proven to be central in the 

putrescine-mediated response to antibiotics, it is desirable to explore its regulatory pathways, in 

particular those involved in its stimulation in the presence of antibiotics. This will be pursued 

through creating transposon libraries. Regulators important in such antibiotic response could 

serve as targets for inhibitors as well. Equally important, understanding the affinity of 

BCAL2641 to the available inhibitors of polyamines biosynthesis would aid in the rational drug 

design of novel specific inhibitors against this ornithine decarboxylase enzyme. 

With respect to bacteriocalins, mapping of the binding sites through in silico binding 

modeling is underway. This can be validated by site-directed mutagenesis and in vitro binding 

assays. This could be coupled with determination of the 3D structure of bacteriocalins by NMR. 

This would ultimately aid in identifying the favorable parameters for effective inhibitors for 

bacteriocalins. 

 

5.6. Significance and Concluding Remarks 

Using B. cenocepacia as a model opportunistic bacterium, I reported heteroresistance 

against PmB and other bactericidal antibiotics. Population analysis profiling identified B. 

cenocepacia subpopulations arising from a seemingly homogenous culture that are resistant to 

higher levels of PmB than the rest of the cells in the culture, and can protect the more sensitive 

cells from killing, as well as sensitive bacteria from other species, such as P. aeruginosa and E. 

coli. Communication of resistance depended on upregulation of putrescine synthesis and YceI, a 
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widely conserved low-molecular weight secreted bacterial lipocalin (bacteriocalin). Polyamines 

and bacteriocalins were also required for heteroresistance of B. cenocepacia to various 

bactericidal antibiotics. This work proposes that putrescine and bacteriocalins resemble "danger" 

infochemicals whose increased production by a bacterial subpopulation, becoming more resistant 

to bactericidal antibiotics, communicates higher level of resistance to more sensitive members of 

the population of the same or different species. 

Putrescine protects less resistant cells from PmB partly due to its ability to compete with 

PmB for binding to the surface of bacteria. In addition, it protects against oxidative stress induced 

by PmB and other antibiotics. On the other hand, I report for the first time a new mechanism of 

antibiotic resistance, based on physical binding of antibiotics, mediated by bacteriocalins. Shown 

in B. cenocepacia, M. tuberculosis, P. aeruginosa, and S. aureus, this mechanism can be 

conserved among a large number of bacteria that are predicted to possess bacteriocalins as well. 

Furthermore, bacteriocalins can non-specifically protect various clinically relevant pathogens 

from the action of antibiotics. 

In conclusion, the findings of this thesis uncover a novel, non-genetic and cooperative 

mechanism of transient increase in resistance that can be chemically communicated from more 

resistant members of a heterogeneous population to less resistant bacterial cells of the same or 

other species. This multifactorial mechanism of communication of antibiotic resistance is distinct 

from previously reported population-based resistance, hence expanding our knowledge on 

intrinsic antibiotic resistance mechanisms and offering novel targets for antimicrobial 

intervention.  
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A.1. Background and rationale 

 Pathogens respond to various insults in the host environment for infection to be 

successful. Integration of the signals generated into coherent messages, which the organism can 

counter with both transcriptional and post-translational responses is paramount. These responses 

involve several global regulatory systems. This also applies to survival of pathogens in the 

environment (1). Several envelope stress response systems have been characterized in other 

Gram-negative bacteria such as Escherichia coli, and investigated individually and globally (2-

6); however, little is known about the regulation of extracytoplasmic stress response pathways in 

B. cenocepacia. Thus, it is important to study the regulation mechanisms, which would enhance 

our understanding of the extreme resistance of B. cenocepacia to APs. 

 Outer membrane permeability is controlled in part by the master regulator of the 

extracytoplasmic stress responses, RpoE (7). RpoE has a similar role in E. coli in which many of 

the genes identified in its regulon are involved in membrane biogenesis or repair, protein folding 

or degradation, and they include rpoE itself along with its regulatory proteins (8). It has been 

shown that RpoE is required in B. cenocepacia for PmB resistance at 37
o
C (9) but not at 30

o
C 

(7). The MIC50 of Polymyxin B (PmB) at 37
o
C for the ∆rpoE mutant is 64 µg/ml versus more 

than 1024 µg/ml for the wild type strain (9). Therefore, characterization of the RpoE regulon in 

B. cenocepacia is essential to understand its contribution in resistance to APs. 

 A relatively more recently identified two component regulatory system 

(BCAL2831/BCAL2830) (10) has been shown to contribute to resistance of B. cenocepacia to 

PmB (9). This two-component system might correspond to the PmrA/PmrB system in 

Pseudomonas aeruginosa. Indeed, the gene encoding the putative response regulator, BCAL2831 

encoded a protein that exhibited a certain level of similarity (53% identity) at the primary amino 

acid sequence level with PmrA of P. aeruginosa (10). Previous reports have shown that the P. 

aeruginosa PmrA/PmrB system regulates resistance to APs in part by modifications of LPS, 

mainly through the addition of 4-L-aminoarabinose (Ara4N) (11, 12). Interestingly, the pmrA-

pmrB operon is activated by a number of cationic peptides (11). In striking contrast to other 

bacteria, the Ara4N modification of LPS in B. cenocepacia is essential for viability (13). This 

could imply that the regulation of this pathway would be different in B. cenocepacia than other 
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bacteria in which it is non-essential. Thus, I investigated whether the BCAL2831/BCAL2830 

system is involved in the regulation of the modification of lipid A or not. 

 

A.2. Characterization of the RpoE regulon in B. cenocepacia 

 Initially, I performed a bioinformatic analysis to identify genes potentially regulated by 

RpoE in B. cenocepacia by analogy to the previously characterized RpoE regulon of Escherichia 

coli K12 (3). Some predictions were tested by comparing the gene expression in wild type K56-2 

and the ∆rpoE mutant SAL65 using real-time PCR upon subjecting the cultures to PmB stress.  

 The bioinformatic analysis performed by analogy to the RpoE regulon in E. coli K12 

resulted in a list of ~ 60 genes potentially regulated by RpoE in B. cenocepacia J2315. Selected 

genes from these predictions were tested by comparing the gene expression in wild type B. 

cenocepacia K56-2, which is clonally related to J2315 and proven to be more amenable to 

genetic manipulation (14), and the ∆rpoE mutant SAL65 using real-time PCR. The preliminary 

results show that compared to the RpoE-regulated operons in E. coli, RpoE regulates some of 

them in B. cenocepacia while others are not. The differential expression of genes between wild 

type and SAL65 was different in the case of 30
o
C and 37

o
C (Table 10), which could explain the 

different patterns of resistance to PmB at those temperatures (7, 9). Among the tested genes, 

most of those that are significantly regulated by RpoE in B. cenocepacia at 37
o
C are genes 

encoding periplasmic proteases [BCAM1695 and BCAL0326], enzymes involved in lipid A 

synthesis [genes in the same operon with rseP as lpxABD genes], LPS transport and assembly 

[lptA and bamA present in the same operon with rseP], in addition to the rpoE operon itself 

[rseA] and its regulatory machinery [rseP]. However, previous studies showed that the 

periplasmic proteases are not involved in resistance to PmB mediated by RpoE (9). Furthermore, 

I have tested other genes of interest as those involved in Ara4N modification [arnT and arnB] 

and phosphoethanolamine binding [peb]; however, none of them was regulated by RpoE (Table 

10). In the previous experiment, the cultures were exposed to PmB for 15 minutes prior to RNA 

extraction. However, on prolonging this period to 30 minutes, I could see differences in the  
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Table 10. Differential expression of selected genes in wild type K56-2 versus the ΔrpoE 

mutant at 30
o
C and 37

o
C subjected to 1 mg/ml PmB for 15 min determined by qPCR. 

 

  

Gene ID Gene 

name 

Function Fold change 
normalized to BCAS0175 

37
o
C 30

o
C 

BCAL0999 rseA Anti-RpoE sigma factor 13.87 1.69 

BCAL2084 rseP Inner membrane zinc metalloprotease; activates 

RpoE by degrading RseA 
7.37 1.01 

BCAM1695 degQ/degP 
Periplasmic, membrane-associated serine 

endoproteases 

10.5 2.8 

BCAL0326 degQ/htrA 10.2 -2.2 

BCAL2829 degP/htrA 2.56 2.17 

BCAL0634  Putative lipoprotein -2.3 -18.4 

BCAL1881 yfgL Putative OM assembly lipoprotein -2.38 2.14 

BCAL3091 uppP/bacA undecaprenyl pyrophosphate phosphatase -2.17 -1.81 

BCAL0163 yraP Putative phospholipid-binding lipoprotein 2.14 -1.93 

BCAL0815 lptA LPS transport periplasmic protein 3.93 3.21 

BCAL0203 Peb Phosphatidylethanolamine-binding protein -2.16 -6.37 

BCAL1929  arnT putative undecaprenyl phosphate-α-4-amino-4-

deoxy-l-arabinose arabinosytransferase 
1.67  

BCAL1931  arnB putative UDP-4-amino-4-deoxy-l-arabinose-

oxoglutarate aminotransferase 
1.24  

BCAL0508 lpxL lipid A biosynthesis lauroyl acyltransferase 1.49  

BCAL1459  Calcineurin-like phosphoesterase -2.83 -3.32 

BCAL1659  Ribose transport permease -17.3 -2.08 

BCAL2694  Putative dehydrogenase -2.08 -1.38 

BCAL1861 phbB Acetyl-CoA reductase -4.23 1.26 
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Table 11. Differential expression of selected genes in wild type K56-2 versus the ∆rpoE 

mutant at 37
o
C subjected to 1 mg/ml PmB for either 15 or 30 min determined by qPCR. 

Gene Fold Change normalized to BCAS0175 

Duration of PmB Stress 

15 min 30 min 

BCAL1929 (arnT) 1.678 2.08 

BCAL1931 (arnB) 1.240 6.01 

BCAL0203 (peb) -2.158 1.35 

BCAL2829 (degP/htrA) 2.563 -4.63 

BCAL0999 (rseA) 13.875 7.16 
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differential expression profiles of most of the tested genes to variable extents (Table 11). This is 

consistent with previous studies performed on rpoE in E. coli that showed that different genes in 

the regulon were upregulated at different time points along the course of stress (3). It was 

interesting to see that prolonging the PmB stress showed that the arnB gene involved in the 

Ara4N modification pathway was upregulated in the wild type compared to SAL65. This points 

out that characterizing the RpoE regulon at a single time point might be misleading as we 

observed in the subset of genes tested after two durations of stress.  

To further investigate this, the differential expression of genes as a function of the 

duration of stress and the optimal stress conditions for expression of rpoE should be tested.This 

can be tested in a strain with luxCDABE reporter genes downstream of the promoter of the rpoE 

operon by monitoring the level of expression by determining the luciferase activity as a function 

of stress condition and time. Different variables should be tested such as concentration of PmB 

and duration of exposure to it under different conditions of culture (in nutrient rich or minimal 

media). Also, other conditions may be tested such as the effect of heat shock, osmotic stress or a 

combination of different stresses; RpoE is required by B. cenocepacia for survival under those 

stressful conditions (7). Next, whole transcriptome sequencing using mRNA-enriched RNA 

samples extracted from K56-2 and SAL65 after exposure to the previously determined optimal 

stress condition for expression of rpoE should be performed followed by validation of selected 

genes by qRT-PCR.  

 

A.3. Study of the BCAL2831/BCAL2830 two-component system. 

 Due to its similarity to PmrAB system, I expected that the BCAL2831/BCAL2830 

regulatory system might regulate LPS modification pathways such as those involving the 

addition of either Ara4N or phosphoethanolamine. It has been reported that the disruption of this 

system reduces the MIC50 of PmB by about 4 fold (9). I speculated that this low contribution to 

resistance to PmB may be due to the fact that a proportion of the OM in B. cenocepacia is 

already constitutively decorated with Ara4N, which is essential for viability (13), or that the 
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disruption of this regulatory system might stimulate RpoE thus compensating for the reduced 

resistance to APs.  

 I first tested the susceptibility to PmB in the medium 121 (15) that is reported to induce 

LPS modifications in E. coli (16). This was performed in deep rough mutants due to their higher 

susceptibility to PmB (17). Deep rough mutants lack O-antigen as a result of the deletion of the 

hldA gene which encodes a heptokinase involved in the modification of heptose sugars prior to 

their incorporation into the LPS core oligosaccharide (17). I compared the susceptibility to PmB 

of the deep rough mutant to that of other mutants with further disruptions in rpoE or BCAL2831 

genes (Table 12). It may be expected that if a system regulates the modification of LPS, the 

mutant with its functional gene will have increased MIC values in the medium 121 relative to LB 

medium, as opposed to the case in the mutant with disrupted gene of this regulator. Growth of 

the tested mutants was retarded in the medium 121, which was reflected in their lower MIC50 

values. The relative susceptibilities to PmB of the different mutants were the same under the 

different conditions, suggesting no significant modifications in LPS profile. This might indicate 

that neither RpoE nor the two-component system under study regulates LPS modifications, or 

that the medium 121 does not have LPS modifying properties in B. cenocepacia as those exerted 

in E. coli.  

 Then I compared the expression of selected genes in wild type B. cenocepacia K56-2 and 

RSF29 by qRT-PCR after subjecting them to 1 mg/ml PmB for 15 minutes. However, under the 

tested condition, this system did not affect the expression of arnB or arnT involved in Ara4N 

modification, peb involved in phosphoethanolamine modification, rseA present in the rpoE 

operon, or even the htrA BCAL2829 present in its own operon (Table 13). However, other 

conditions of stress should be tested before making a definitive conclusion on its role in 

resistance to PmB.  

A.4. Significance 

 The significance of these studies is that they will advance our understanding of the 

resistance of B. cenocepacia to APs in terms of its genetic basis and regulation and will provide 

insights for enhanced treatment of this pathogen‟s severe infections.  
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Table 12. MIC50 of PmB against different B. cenocepacia mutants in different culture 

media.  

Strain Medium MIC50, g/ml 

24 hr 48 hr 

 LB 128 256 

RSF34 121 LP <4 8 

 121 XP 8 32 

 LB 16 64 

SAL47 121 LP <4 ≤4 

 121 XP <4 8 

 LB 64 128 

SAL55 121 LP <4 4 

 121 XP <4 16 

Note: 

RSF34: K56-2, hldA  

SAL47: RSF34, with disrupted rpoE  

SAL55: RSF34, with disrupted BCAL2831 

LP: Limiting phosphate conditions (K2HPO4: 8.3 x l0
-5

M) 

XP: excess phosphate conditions (K2HPO4: 8.3 x l0
-4

M) 
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Table 13. Differential expression of selected genes in wild type K56-2 versus mutant with 

disrupted BCAL2831, RSF29, at 37
o
C subjected to 1 mg/ml PmB for 15 min determined by 

qPCR. 

Gene Fold Change  
normalized to BCAS0175 

BCAL1929 (arnT) 1.69 

BCAL1931 (arnB) -1.05 

BCAL0203 (peb) -1.17 

BCAL2829 (degP/htrA) 1.18 

BCAL0999 (rseA) -1.15 

Note:  

RSF29: K56-2, with disrupted BCAL2831 
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Appendix B 

 

 

Search for synergistic inhibitors potentiating the action of 

Polymyxin B against B. cenocepacia 
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 The concept of using helper compounds that could inhibit certain features of pathogenic 

bacteria has been investigated as an appealing approach to reverse resistance of bacteria to 

antibiotics (1-3). Such attempts targeted the membrane permeability of bacteria to enhance 

penetration of antibiotics (1) or the inhibition of efflux pumps (2). Another target for potential 

inhibitors is extracellular signaling where interfering with it would prevent the release of 

virulence factors, the formation of biofilms or increased antibiotic resistance (4). Such treatments 

targeting signaling systems neither arrest cellular division directly nor are they toxic to the cells, 

which means the selective pressure to evolve mechanisms of resistance is likely to be 

substantially reduced. In addition, targeting small-molecule signaling pathways ensures that 

treatments will be directed specifically at the pathogenic organism, rather than the entire 

microbiome (4). In the largest sense, the helper compounds or antimicrobial adjuvants inhibit a 

bacterial resistance mechanism to an antibiotic, thus rendering the bacterium susceptible to that 

antibiotic (5). 

 In this study, I attempted to identify inhibitors of the outer membrane (OM) barrier effect, 

which would permeabilize the cells to APs thus reducing resistance towards them and increasing 

their antimicrobial effectiveness. This would provide a therapeutic solution to the extremely high 

level of intrinsic resistance of B. cenocepacia to APs.  

The library consisted of 448 compounds derived from Sea life (obtained from Instituto 

Biomar, Leon, Spain). Solutions of these compounds were seeded in pairs of 100-well Bioscreen 

C plates and the solvent was evaporated. Overnight cultures of the wild type B. cenocepacia 

K56-2 diluted to OD600 0.0002 in fresh LB medium were added to the plates (300 µl/well) 

dissolving the compounds at final concentration of 1 µg/ml. Plate pairs were incubated in the 

Bioscreen C automated growth curve analyzer at 37
o
C with continuous medium shaking. After 

two hours, polymyxin B was added to one plate at a final concentration of 500 µg/ml and the 

vehicle control in which polymyxin B is dissolved (0.2% bovine serum albumin, 0.01% acetic 

acid) was added to the other plate. Wells that received no compounds were also included in each 

plate of the pairs. The plates were further incubated at 37
o
C and OD600 was read every 30 

minutes. This experimental design allows the identification of compounds that have direct 
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antibiotic activity against B. cenocepacia as well as those that synergize the antimicrobial 

activity of polymyxin B. 

From this preliminary screening of compound library, 4 compounds were effective in 

potentiating the antimicrobial activity of PmB against the wild type K56-2 (Figure 40). These 

compounds alone did not possess any toxic effects on the cells at the tested concentration (1 

µg/ml); this does not preclude that they may possess direct antibiotic activity at higher 

concentrations. These compounds were thielavin B, micacocidin B, and other 2 new compounds; 

the chemical structure of one of them is yet to be determined.  

Thielavin B (Figure 41A) is a Prostaglandin synthesis inhibitor produced by the fungus 

Thielavia terricola (6); it inhibits glucose-6-phosphatase (G6Pase) (7), telomerase and viral 

reverse transcriptase (8), and interferes with cell wall transglycosylation in Enterococcus faecalis 

(9). Micacocidin B (Figure 41B) is a Copper-containing compound produced by Pseudomonas 

species previously shown to exhibit potent activity against various Mycoplasma species (10). 

Notably, 3 other compounds with similar structure but not in complex with metal were included 

in the compound library; however, these did not have any synergistic effects with PmB against 

B. cenocepacia. Interestingly, derivatives of Micacocidin have recently been synthesized with 

activity against Mycoplasma pneumoniae (11). The third compound was a novel cyclic peptide 

coded CL0231 (Figure 41C). Interestingly, a similar compound (CL0236, Figure 41D) with 

slight side chain modification did not have any synergistic effects with PmB. The fourth 

synergistic compound was also novel and its chemical structure is yet to be determined. 

Follow up experiments were not possible due to inability of extraction of higher 

concentrations of these compounds from their marine sources. Ideally, confirming the results of 

the primary screening assays followed by determination of the optimal dose ratio for the 

combinations of these compounds with PmB would have been the next steps. However, these 

results offer a proof of concept for the screening of synergists for the activity of PmB. In 

addition, the positive hits may be worth pursing in more details in the future by fermentation 

from their producer organisms or their expression from an expression system for further 
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Figure 40. Screening of a library of ~450 compounds for synergists of the antimicrobial 

activity of PmB against B. cenocepacia K56-2 at 20 h. 
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A B 

C D 

 

Figure 41.Chemical structures of compounds from the screened library of compounds. 

A, Thielavin B. B, Micacocidin B. C, CL0231. D, CL0236.  
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evaluation of their antimicrobial activity. These results encourages screening larger libraries of 

compounds for synergists. On the other hand, future studies should aim at screening for 

inhibitors targeting a specific pathway or signal known to be involved in antibiotic resistance 

such as putrescine biosynthesis or bacteriocalins as previously discussed in the different chapters 

of the thesis. 
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Characterization of the more resistant subpopulation of  

B. cenocepacia ∆rpoE/500 
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Heteroresistance complicates the problem of antibiotic resistance and hence may pose serious 

problems in microbial infections. Hence, determination of the mechanism of heteroresistance is 

required. Characterizing the more resistant subpopulation in terms of its phenotypes in response 

to PmB is the first step towards understanding the mechanism of heteroresistance. 

For practical reasons, I used for these experiments a subpopulation isolated at 500 µg/ml 

in the ∆rpoE mutant, which displayed a stable higher level of resistance to PmB as indicated in 

their individual PAP (details in Chapter 2), as it was difficult to isolate the more resistant 

subpopulations of the parental strain K56-2 due to its extreme resistance to PmB. As discussed in 

Chapter 2, no differences in the secreted extracellular proteases, or LPS profiles between the 

∆rpoE/500 resistant subpopulation, its naïve population and the wild type K56-2 (details in 

Chapter 2). On the other hand, experiments of microbial adherence to n-hexadecane (1) revealed 

that the ∆rpoE/500 subpopulation was more hydrophilic than the naïve bacteria (Figure 42A), 

suggesting cell surface changes in the more resistant subpopulation.  

Exposure of the wild type K56-2 and ∆rpoE/500 to PmB led to reduction in their 

swimming motility and ability to form biofilm [determined as previously described in (2) and (3) 

respectively; Figure 42B and C respectively]. This agrees with previous findings showing that 

genes encoding proteins required for building and operating flagella are downregulated in B. 

cenocepacia following exposure to PmB (2), which would lead to reduction in motility. This 

reduced motility might, in turn, be responsible of the reduced biofilm formation, since motility 

and the flagellar apparatus are required in the initial steps of biofilm establishment (4). On the 

other hand, only ∆rpoE/500 treated with PmB exhibited reduced metabolic activity at 24 h 

relative to its naïve population and the wild type K56-2, whether treated with PmB or not, in a 

resazurin metabolic assay (details in Chapter 2). Thus, the increased resistance displayed by the 

more resistant subpopulation comes at a fitness cost. 

While these phenotypic characterizations provide insights about the properties of the 

more resistant subpopulation, detailed analysis of this subpopulation is required to understand 

the mechanism of its increased resistance to PmB. Therefore, whole-genome sequencing of this 

subpopulation in comparison with its naïve population is underway. The significance of this 

study is that it would advance the understanding of the mechanism of heteroresistance providing  
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A. Cell-surface hydrophobicity; B. Motility assay; and C. Biofilm assay. 

CV: Crystal violet. 

  

Figure 42.Characterization of the more resistant subpopulation ∆rpoE/500. 
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targets for therapeutic intervention to disrupt such phenomenon, hence reducing the window for 

therapeutic failures. 
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Characterization of other mechanisms of Putrescine-

mediated protection from the antimicrobial activity of 

Polymyxin B by 2-dimensional gel electrophoresis 
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In Chapters 2 and 3, I have shown that putrescine protects from the antimicrobial activity of 

PmB through two distinct mechanisms; protection of the bacterial surface from the initial 

binding of PmB and reduction of PmB-induced oxidative stress. Indeed, these mechanisms of 

protection against PmB do not preclude other mechanisms by which putrescine modulate the 

response towards antibiotics and hence acting as a chemical signal communicating antibiotic 

resistance. To further investigate the role of putrescine in the protection against the effects of 

PmB, I initiated an unbiased proteomic approach. I compared the total cell lysate of cells treated 

with PmB (500 µg/ml), putrescine (50 mM) or both, relative to control untreated cells using 2-

dimensional gel electrophoresis. Preliminary experiments were performed using 7 cm 

immobiline dry strips of pH range 3-10; following the first dimension of isoelectric focusing 

(Ettan IPGphor II, Amersham), the strips were run on 12% SDS-PAGE and stained with Sypro 

Ruby stain. The gels were visualized and scanned using ProXPRESS 2D Proteomics Imaging 

System and analyzed using Progensis SameSpots Software. Six strips were used per condition. 

This revealed a total of 27 differentially expressed protein spots among the different tested 

conditions (Figure 43). However, the amount of protein in these spots was not sufficient to be 

visualized by the Page Blue secondary stain and the subsequent Mass Spectrometric 

identification; also the resolution of the proteins at certain areas of the gel needed to be 

improved. Therefore, the next step is to use 13 cm strips, in which the total amount of proteins 

loaded can be increased (200 µg of proteins/strip instead of 75 µg) and the separation will be 

improved in both dimensions, to compare total cell lysates of PmB treated wild type and 

ornithine decarboxylase BCAL2641 mutants. 
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Figure 43. Two-dimensional gel electrophoresis investigation of the mechanism of putrescine to 

protect against PmB. 

pI 3 10 
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A representative gel is shown for total cell lysates obtained from the different conditions: A, 

Control untreated cells; B, Putrescine-treated cells; C, PmB-treated cells; and D, both PmB and 

Putrescine-treated cells. Panel E shows a representative gel with locations of differentially 

expressed protein spots under the different conditions. 
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Expression profiles of gene clusters (BCAL3309 and 

BCAL3313) adjacent to B. cenocepacia bacteriocalins 

clusters in response to antibiotics 
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Parallel to the evaluation of the expression of the transcriptional units of B. cenocepacia 

bacteriocalins (Chapter 4), similar promoter-luxCDABE reporter constructs were prepared in 

K56-2 B. cenocepacia (details of construction of mutants are in Chapter 4) for downstream 

(BCAL3309; in OME59) and upstream (BCAL3313; in OME62) genes. The expression profiles 

of these genes were determined using luciferase expression assays under the same conditions 

described in Chapter 4. 

BCAL3309 is a putative Major Facilitator Superfamily protein. Its expression was 

stimulated by rifampicin, norfloxacin and paraquat; whereas it was inhibited by gentamicin and 

PmB after 3 h of incubation at the concentrations used in this assay (Figure 44A). Ceftazidime 

did not alter the expression of BCAL3309. 

BCAL3313 is a hypothetical protein predicted to be paraquat-inducible protein A. Its 

expression was stimulated by rifampicin, norfloxacin, paraquat and ceftazidime as well; whereas 

it was inhibited by gentamicin under the tested conditions (Figure 44B). However, PmB did not 

alter the expression of BCAL3313. 

These results suggest the involvement of these proteins in the response to various 

antibiotics and potentially oxidative stress being responsive to paraquat. This warrants further 

characterization of their role in antibiotic resistance and stress response initially by deletion 

mutagenesis.  
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A 

 

B 

 

Figure 44. Luciferase expression assay of BCAL3309 in OME59 (A) and BCAL3313 in OME62 

(B) in response to antibiotics at 3 h. 

Results are shown as percentage of relative light units RLU/OD600 relative to the control 

(untreated K56-2 background). n=6 from 2 different clones. * p<0.05, ** p<0.01 and *** 

p<0.001. 
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