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Abstract

The generating hypothesis for the stable module category of a finite group is the

statement that if a map in the thick subcategory generated by the trivial representation

induces the zero map in Tate cohomology, then it is stably trivial. It is known that the

generating hypothesis fails for most groups. Generalizing work done for p-groups, we

define the ghost number of a group algebra, which is a natural number that measures the

degree to which the generating hypothesis fails. We describe a close relationship between

ghost numbers and Auslander-Reiten triangles, with many results stated for a general

projective class in a general triangulated category. We then compute ghost numbers

and bounds on ghost numbers for many families of p-groups. For non-p-groups, we

introduce two other closely related invariants, the simple ghost number, which considers

maps which are stably trivial when composed with any map from a simple module, and

the strong ghost number, which considers maps which are ghosts after restriction to

every subgroup of G. We produce the first computations of the ghost number for non-

p-groups. We prove that there are close relationships between the three invariants, and

make computations of the new invariants for many families of groups. We also discuss

how computational algebra can be applied to calculate the ghost number.

Keywords: Tate cohomology, stable module category, generating hypothesis, ghost

map, GAP.
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Chapter 1

Introduction

In this thesis, we study the ghost number of group algebras for finite groups. Briefly

speaking, the ghost number of a group algebra measures the failure of the generating

hypothesis on the stable module category. This is motivated by the famous conjecture

by Peter Freyd in stable homotopy theory, which states that if a map between two

compact spectra is sent to zero by the stable homotopy group functor, then the map is

null homotopic. The conjecture is referred to as the generating hypothesis and is still

an open question. In [25], where Freyd made this conjecture, he also showed that it

has many interesting consequences. For example, if the generating hypothesis holds for

spectra, then the stable homotopy group functor is fully-faithful on compact spectra.

The generating hypothesis can be generalised to a triangulated category, and has been

studied in various cases, such as the derived category of a ring R and the stable module

category of a group algebra kG. For the stable module category, it is known that the

generating hypothesis fails for most groups (see Theorem 1.3.1). Hence we continue the

study to see how badly the generating hypothesis can fail, and this is measured by the

ghost number of the group algebra, which is the subject of the thesis.

This thesis is divided into five chapters. Chapter 1 is an introduction chapter where

we introduce the background of the subject and summarize the results on ghost numbers

of group algebras. Chapters 2 and 3 are based on two consecutive papers that study the

ghost numbers of p-groups and non-p-groups, respectively. They contain both theoretical

and computational results. Chapter 4 focuses on applying computational algebra to

study the group algebra. We present some improved code for GAP [26] to work on

modular representations and provide examples of computations. The last chapter is

1



Introduction 2

a conclusion chapter that briefly summarizes the results of the thesis and the relation

between the chapters.

1.1 The generating hypothesis and its generalisation

In this section, we discuss the generalisation of the generating hypothesis to a triangu-

lated category.

In homotopy theory, homotopy groups play a central role. They detect whether a

nice space, such as a CW-complex, is contractible. Recall that the generating hypothesis

for the stable homotopy category of spectra is the conjecture that if a map between two

compact spectra is sent to zero by the stable homotopy group functor, then the map

is null homotopic. Note that the stable homotopy category is a triangulated category.

Hence we can apply the ideas from homotopy theory to other areas by generalisation

from the stable homotopy category to a triangulated category.

Definition 1.1.1. A triangulated category is an additive category T together with

a translation functor Σ and a class 4 of (distinguished) triangles X → Y → Z → ΣX

in T, such that Σ is a self-equivalence of T and 4 satisfies the following axioms:

TR1 For each X ∈ T, X
id−→ X → 0→ ΣX is a triangle;

for each map f : X → Y in T, there exists a triangle X
f−→ Y → Z → ΣX; and

the triangles are closed under isomorphisms.

TR2 If X
f−→ Y

g−→ Z
h−→ ΣX is a triangle, then Y

g−→ Z
h−→ ΣX

−Σf−−−→ ΣY and

Σ−1Z
−Σ−1h−−−−→ X

f−→ Y
g−→ Z are triangles too.

TR3 Given a commutative square β ◦ f = f ′ ◦ α in T, complete the maps f and g into

triangles. Then there exists a map γ making the following diagram into a map

between triangles

X
f
//

α
��

Y
g
//

β
��

Z
h //

γ
��

ΣX

Σα
��

X ′
f ′
// Y ′

g′
// Z ′

h′ // ΣX ′.
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TR4 (The octahedral axiom) Let X
f1−→ Y

f2−→W be maps in T. Complete the maps f1

and f2 into triangles. Then there exists a commutative octahedron in T:

Σ−1V

zz $$
Y

f2

��

// Z

��

""

X

f1 ::

$$

ΣX

W //

%%

U

zz

<<

V ,

such that X →W → U → ΣX and Σ−1V → Z → U → V are also triangles.

If X
f−→ Y

g−→ Z
h−→ ΣX is a triangle in T, then Z is called the cofibre of f and X is

called the fibre of g.

For example, the derived category D(R) for a ring R is a triangulated category.

The stable module category StMod(kG) for a group algebra kG is also a triangulated

category. We will give more details on StMod(kG) in Section 1.2.

In general, let T be a triangulated category, and let S be a set of distinguished objects

in T. We write [−,−] for hom-sets in T. Then the set of functors [S,−]∗ with S ∈ S is

analogous to the stable homotopy group functor in the sense that

if [S,M ]∗ = 0 for all S ∈ S and M ∈ Loc〈S〉 , then M = 0.

Here Loc〈S〉 is the localising subcategory of T generated by S. A full subcategory S of T

is localising if it is closed under suspension, retracts, triangles, and arbitrary sums. The

localising subcategory generated by S is the smallest localising subcategory that contains

S, and is denoted by Loc〈S〉. If we do not require S to be closed under arbitrary sums,

then S is said to be thick. The thick subcategory generated by S is defined similarly

and denoted by Thick〈S〉. We say that T satisfies the generating hypothesis with

respect to S if the functors [S,−]∗ are faithful on Thick〈S〉 for all S ∈ S.

Note that if S consists of finitely many compact objects in T, then

Thick〈S〉 = Loc〈S〉 ∩ compact objects in T.

In general, an object X in a triangulated category T is compact if the canonial map

⊕[X,Ci] → [X,⊕Ci] is an isomorphism for all coproducts in T. For example, finite
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CW-complex are compact in spectra and perfect complex are compact in the derived

category of a ring.

We will introduce the stable module category StMod(kG) of the group algebra kG

in Section 1.2.2, and show that it is a triangulated category. Hence, taking S to consist

of the trivial representation k, we can state the generating hypothesis on StMod(kG) in

this setting.

One can also consider the global generating hypothesis with respect to S on T, i.e.,

the statement that the functors [S,−]∗ are faithful on Loc〈S〉 for all S ∈ S. This is

studied by Hovey and Lockridge in the derived category of a ring spectrum E, and they

show that the global generating hypothesis puts very strong constraints on E. The

interested reader is referred to [27].

1.2 The generating hypothesis on the stable module cate-

gory

In Section 1.2.1, we review some basic facts in representation theory and define the group

cohomology and the Tate cohomology. Then, in Section 1.2.2, we describe the stable

module category and state the generating hypothesis on it.

1.2.1 Background

We begin with the basic concepts in representation theory.

Let G be a finite group and k be a field. We define the group algebra kG to be

the algebra over k, whose underlying space is the vector space generated by elements in

G. Then a general element in kG is of the form
∑
ag · g with ag ∈ k and g ∈ G. We

can multiply two basis elements g and h using the multiplication in G and extend this

linearly to a general element. This defines the multiplication in kG, and if u is the unit

in G, then 1 · u is the unit in kG. With an abuse of notation, we write 1 for the unit in

kG. Then the kG-modules are exactly the representations of G over k, and the study of

representation theory is the same as the study of modules over group algebras.
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We write Mod(kG) for the category of kG-modules and mod(kG) for its full sub-

category of finitely-generated modules. Then we make the following definitions for kG-

modules.

Definition 1.2.1. Let G be a group and k be a field. A kG-module M is said to be

irreducible or simple if it has no proper submodules. A kG-module M is completely

reducible or semisimple if every submodule of M splits off as a summand. The group

algebra kG is semisimple if every kG-module M is semisimple.

Maschke’s Theorem provides a criterion for when the group algebra kG is semisimple:

Theorem 1.2.2 (Maschke). Let G a finite group and k be a field. The group algebra

kG is semisimple if and only if the characteristic of k does not divide the order of the

group G.

If kG is semisimple and k is algebraically closed, then the representations of G over

k can be described by the character table. It provides a complete list of all irreducible

summands of the free module kG, or, more precisely, the character functions of these

irreducible modules. Note that since kG is semisimple, these are all the irreducible

modules, and every module in mod(kG) is a sum of the irreducible modules.

The following is an example of the character table of the group S3:

{1} {3} {2}
S3 id (12) (123)

χtrivial 1 1 1

χsign 1 −1 1

χ2 2 0 −1

When kG is not semisimple, we know that there are submodules that do not split off

as summands. For example, consider the central element Σg∈Gg in kG. It generates a

two-sided ideal of kG of dimension one and, since char(k) | |G| by Maschke’s Theorem,

the ideal is nilpotent. It follows that the ideal, considered as a submodule of kG, is not

a direct summand. A kG-module M is said to be indecomposable if it has no proper

summands. Note that if kG is semisimple, then indecomposable modules are the same

as irreducible modules. Now we can state the Krull-Schmidt property of mod(kG). It is

a very important feature of the module category over a group algebra.
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Theorem 1.2.3 (Krull-Schmidt). Let G be a group and k be a field. Let M be a finitely-

generated kG-module. Suppose that M = M1⊕ · · ·⊕Mk and M = N1⊕ · · ·⊕Nl are two

decompositions of M into indecomposable summands. Then k = l, and we can reorder

the summands Ni so that Mi
∼= Ni for each i.

The non-semisimple case is much more complicated than the semisimple case because

there are non-trivial extensions between simple modules. Hence we study the homologi-

cal properties of the group algebra kG when it is not semisimple. We still need a lemma

before we give the definition of Tate cohomology.

Lemma 1.2.4. Projective modules and injective modules coincide in mod(kG).

Proof. We have a non-degenerate quadratic form

kG× kG −→ k

that sends a pair (g, g′) ∈ kG to δ(g, g′). This gives us an isomorphism kG ∼= kG∗.

Hence kG is an injective module over itself and the lemma follows.

Now let G be a finite group and k be a field whose characteristic divides the order

of G. We define the group cohomology and Tate cohomology of a kG-module M .

Definition 1.2.5. Let G be a finite group and k be a field. Let

P∗ : · · · −→ P2 −→ P1 −→ P0

be a projective resolution of the trivial representation k. The n-th group cohomology

Hn(G,M) of M is defined to be the n-th cohomology of the chain complex Hom(P∗,M)

for n > 0.

If, instead of a projective resolution, we take a complete resolution

T∗ : · · · −→ P1 −→ P0
∂0−→ P−1 −→ P−2 −→ · · ·

of k, that is, a doubly infinite exact sequence of projective modules such that im(∂0) = k,

then the n-th Tate cohomology Ĥn(G,M) of M is defined to be the n-th cohomology

of the chain complex Hom(T∗,M) for n ∈ Z. We can also replace the trivial module k by

an arbitrary kG-module L and compute the resolutions P∗ and T∗ of L. The cohomology
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of the chain complexes Hom(P∗,M) and Hom(T∗,M) of M are denoted by Extn(L,M)

and Êxt
n
(L,M), respectively.

1.2.2 The stable module category

We define the stable module category in this section and go over its basic properties.

In particular, we show that the Tate cohomology functor is represented by the trivial

kG-module k in StMod(kG). Then we state the generating hypothesis and its variations

on the stable module category.

Let G be a finite group and k be a field. Note that a projective kG-module has trivial

reduced group cohomology and Tate cohomology. Hence, by Maschke’s Theorem, there

is no cohomology when char(k) - |G|. Thus we assume that the characteristic of k divides

the order of G and focus on non-projective modules. For M and N in StMod(kG), we

write PHom(M,N) for the subspace of Hom(M,N) that consists of maps between M

and N that factor through a projective module. The stable module category StMod(kG)

is a quotient category of the module category Mod(kG), the hom-sets being the quotient

Hom(M,N) = Hom(M,N)/PHom(M,N).

We write stmod(kG) for the full subcategory of finitely-generated modules in StMod(kG).

It will follow that two modules M and N are isomorphic in the stable category if and

only if there exists P and Q projective, such that M ⊕ P ∼= N ⊕ Q. In particular,

projective modules are isomorphic to zero in the stable category. By the Krull-Schmidt

property, two finitely-generated modules M and N are isomorphic in stmod(kG) if and

only if they have the same projective-free summands.

The module category Mod(kG) is abelian, but there is no reason that StMod(kG) is

abelian. However, we can show that StMod(kG) is a triangulated category. We define

the desuspension and suspension functors first.

Definition 1.2.6 (Desuspension and suspension). Let M be a kG-module. The desus-

pension of M , denoted by ΩM , is the kernel in the short exact sequence

ΩM → P
ε−→M,
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where ε is a surjection from a projective module P to M . Dually, the suspension of

M , denoted by ΣM , or Ω−1M , is the cokernel in the short exact sequence

M
ε−→ P → ΣM,

where ε is an injection from M to an injective module P .

Desuspensions and suspensions are well-defined in the stable module category by

Schanuel’s Lemma. It is clear that they are inverses of each other.

Lemma 1.2.7 (Schanuel’s Lemma). Let R be a ring, and let M be an R-module. Let

P
ε−→M and Q

θ−→M be projective covers of M in Mod(R). Then ker ε⊕Q ∼= ker θ⊕ P.

Remark 1.2.8. For M and N in Mod(kG), the tensor product M ⊗N can be viewed as

a kG-module via the diagonal action. One can show that if P is a projective module,

then P ⊗N is also projective. Since the functor −⊗N preserves short exact sequences

in Mod(kG), it follows that we have a stable isomorphism Ωk⊗M ∼= ΩM . Here k is the

trivial kG-module.

Now we can show that the cohomology groups are represented by hom-sets in

StMod(kG).

Theorem 1.2.9. Let G be a finite group and k be a field whose characteristic divides the

order of G. Then, for M and L in StMod(kG) and n ∈ Z, there is a natural isomorphism

Êxt
n
(L,M) ∼= Hom(L,ΣnM) ∼= Hom(ΩnL,M).

In particular, Tate cohomology is represented by the trivial representation k.

By usual homological algebra, Êxt
1
(L,M) is equivalent to the isomorphism classes

of extensions between L and M . Then, by the theorem, given a short exact sequence

M → N → L, there is a corresponding map in Hom(L,ΣM). More precisely, it is the



Introduction 9

connecting map δ : L→ ΣM in the following Snake-Lemma diagram

0 //

��

0 //

��

L

0 //M //

��

N //

��

L //

��

0

0 //P

��

P //

��

0 //

��

0

ΣM //ΣN //0 ,

where we choose P to be projective and the maps M → P and N → P to be injective.

Then we use this to define a triangle

M → N → L
δ−→ ΣM

in StMod(kG). Note that N → L ⊕ P → ΣM is also a short exact sequence, and this

corresponds the rotated triangle

N → L
δ−→ ΣM → ΣN.

Then, to compute the cofibre of a map f : M → N in StMod(kG), we replace f by an

injection f ′ that is stably isomorphic to it, and then coker(f ′) is the cofibre of f .

Note that there is also a multiplication structure on the Tate cohomology Ĥn(G, k).

It is easy to describe the algebra structure of Tate cohomology using the natural isomor-

phism Ĥn(G, k) ∼= Hom(Ωnk, k). For ζ ∈ Hom(Ωm(M), N) and γ ∈ Hom(Ωn(L),M),

we define

ζγ := ζ ◦ Ωm(γ) ∈ Hom(Ωm+n(L), N).

This makes Ĥ∗(G, k) into a graded commutative algebra. Similarly, we can define the

multiplication on the group cohomology H∗(G, k), and it is well-known [5, Section 4.2]

that H∗(G, k) is finitely generated. On the other hand, Ĥ∗(G, k) is finitely generated if

and only if the cohomology is periodic, i.e., Ωnk ∼= k for some n > 0.

We end this section with the generating hypothesis on the stable module category.

Note that the Tate cohomology functor Ĥ∗(G,−) on StMod(kG) plays an analogous

role to the stable homotopy functor, and it is represented by the trivial representation

k. Hence we state the generating hypothesis on StMod(kG) as follows:
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The generating hypothesis holds on StMod(kG) if the Tate cohomology functor

Ĥ∗(G,−) is faithful on Thick〈k〉.

We call a map in the kernel of the Tate cohomology functor a ghost. Then the

generating hypothesis (with respect to the trivial representation k) is the statement

that every ghost in Thick〈k〉 is stably-trivial. It is important that we restrict to Thick〈k〉
here. In general, Thick〈k〉 can be a proper subcategory of stmod(kG), the category

of finitely-generated kG-modules. And whenever this is the case, there exists a non-

projective kG-module M , whose Tate cohomology is trivial. Thus the identity map on

M is a stably non-trivial ghost in stmod(kG), but it is not in Thick〈k〉. Restricting

to Thick〈k〉 prevents this from happening. On the other hand, we can consider the

generating hypothesis with respect to all simple modules. Since the simple modules

generate the stable module category, there is no need to restrict to Thick〈k〉. A map

M → N is called a simple ghost, if the composite of maps X → M → N is stably-

trivial for anyX that is a suspension of some simple module, and the simple generating

hypothesis is the statement that every simple ghost in stmod(kG) is stably-trivial. If

G is a p-group, then k is the only simple module and the simple generating hypothesis

is equivalent to the generating hypothesis. One can also consider the strong ghosts

in StMod(kG), which are the maps whose restrictions to any subgroup are still ghosts.

Simple ghosts and strong ghosts are studied in Chapter 3.

1.3 Background and literature review

In this section, we review the previous work in the study of the generating hypothesis

and ghost numbers for group algebras. We begin in Section 1.3.1 with the results on

the generating hypothesis on StMod(kG) and review some techniques used in the proof.

Then we introduce projective classes in Section 1.3.2, and using this idea, we define ghost

numbers in Section 1.3.3. Finally, we introduce strong ghosts and the strong generating

hypothesis in Section 1.3.4.

1.3.1 The generating hypothesis

In a series of papers [9, 16, 18, 20], it is proved that the generating hypothesis holds in

StMod(kG) if and only if the Sylow p-subgroup P of G is C2 or C3.
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Theorem 1.3.1 (Benson, Carlson, Chebolu, Christensen and Mináč [9, 16, 18, 20]). Let

G be a finite group and k be a field whose characteristic p divides the order of G. The

generating hypothesis holds for StMod(kG) if and only if the Sylow p-subgroup of G is

C2 or C3.

We review the techniques used to prove the theorem. Note that they are quite

different for p-groups and non-p-groups.

1.3.1.1 The induction technique

Let H be a subgroup of G, and let k be a field. It is well known that the induction

functor is both left and right adjoint to the restriction functor:

↑GH : stmod(kH)� stmod(kG) : ↓GH .

Since the restriction of the trivial module is also trivial, then, by the adjunction

Hom(Ωnk, f↑GH) ∼= Hom(Ωn(k↓GH), f),

we see that if f is a ghost in stmod(kH), then f↑GH is a ghost in stmod(kG).

For a p-group G, since Thick〈k〉 = stmod(kG), the induction technique becomes very

useful. In particular, since the induction functor is faithful, it follows that if G is p-group

and the generating hypothesis fails for a subgroup H, then the generating hypothesis

fails for G. Hence, the work to disprove the generating hypothesis for a p-group can be

reduced to the study of small groups.

However, the induction technique does not apply in general if G is not a p-group,

since the image of a map induced up might not be in Thick〈k〉.

1.3.1.2 Auslander-Reiten triangles.

Auslander-Reiten triangles are used to disprove the generating hypothesis for a general

finite group. In general, a triangle X
α−→ Y

β−→ Z
γ−→ ΣX in a triangulated category is

called an Auslander-Reiten triangle, if

1. γ 6= 0,
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2. any map X → Y ′ that is not split monic factors through α,

3. any map Y ′ → Z that is not split epic factors through β.

Krause constructed Auslander-Reiten triangles in triangulated categories via Brown rep-

resentability, and pointed out that this could be a counterexample to the generating

hypothesis if the beginning-term X in the triangle is compact [30]. In the stable module

category, Auslander-Reiten triangles have the form

Ω2M → H →M
γ−→ ΩM,

with M being indecomposable and finitely-generated. One can show that if M ∈
Thick〈k〉 is indecomposable and not isomorphic to Σnk for any n ∈ Z, then γ is a

stably-non-trivial ghost in Thick〈k〉. In [16], such a module M is proved to exist if

the Sylow p-subgroup of G is not C2 or C3, hence the generating hypothesis fails in

StMod(kG) in this case.

1.3.2 Projective classes and the universal ghost

We introduce the idea of a projective class in this section. It is used throughout our

study of the generating hypothesis and ghost numbers.

Definition 1.3.2. Let T be a triangulated category. A projective class in T consists

of a class P of objects of T and a class I of morphisms of T such that:

(i) P consists of exactly the objects P such that every composite P → X → Y is zero

for each X → Y in I,

(ii) I consists of exactly the maps X → Y such that every composite P → X → Y is

zero for each P in P,

(iii) for each X in T, there is a triangle P → X → Y → ΣP with P in P and X → Y

in I.

Note that the class P is closed under arbitrary sums and retracts in T and that the

class I is an ideal in T. Also note that the map X → Y satisfying the third condition

in the definition is a (weakly) universal map out of X in I. It is zero if and only if X is

a retract of P , and then X ∈ P and every map out of X in I is zero.
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Given a projective class (P, I), there is a sequence of derived projective classes

(Pn, In) [21]. The ideal In consists of all n-fold composites of maps in I, and X is

in Pn if and only if it is a retract of an object M such that M sits inside a triangle

P →M → Q→ ΣP with P ∈ P1 = P and Q ∈ Pn−1. For n = 0, we set P0 to consist of

all zero objects and I0 to consist of all maps in T. The sequence P0 ⊆ P1 ⊆ · · · provides

a filtration of the localising subcategory generated by P.

In StMod(kG), the ghosts form an ideal of a projective class (F ,G), called the ghost

projective class. Here G consists of all ghosts in StMod(kG) and F is generated by the

trivial representation k by sums, retracts and suspensions. By assembling together the

maps Ωnik →M that represent the generators of Ĥ∗(G,M), we form a map ⊕Ωnik →M

that is surjective on Tate cohomology. Hence the cofibre of ⊕Ωnik → M is a universal

ghost and (F ,G) is a projective class in StMod(kG). Note that if the cohomology is

periodic, then ⊕Ωnik can be chosen to be a finite sum and the universal ghost can be

constructed within stmod(kG). Note that if G is the zero ideal, then the generating

hypothesis holds. In general, the smallest integer n such that Gn becomes zero provides

a measurement of the failure of the generating hypothesis. We make this precise in the

next section.

1.3.3 Ghost numbers

Since the generating hypothesis fails for StMod(kG) for most groups, we define the ghost

number to measure the degree of its failure. For M ∈ Thick〈k〉, the ghost length of M

is the smallest integer n, such that every composite M → M1 → · · · → Mn of n ghosts

in Thick〈k〉 is stably-trivial, and the ghost number of StMod(kG) is the upper bound

of the ghost lengths of modules in Thick〈k〉. With this terminology, the generating

hypothesis holds on StMod(kG) if and only if the ghost number is 1.

Another closely related invariant, the generating number, is introduced similarly.

For M ∈ Thick〈k〉, the generating length of M is the smallest integer n, such that

every composite M → M1 → · · · → Mn of n ghosts in StMod(kG) is stably-trivial, and

the generating number of StMod(kG) is the upper bound of the generating lengths

of modules in Thick〈k〉. Clearly, the generating length is greater than or equal to the

ghost length, and the same holds for the generating number and the ghost number.

Note that the generating length has better formal properties than the ghost length.

Indeed, since (Fn,Gn) is a projective class in StMod(kG), the generating length of M
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equals the smallest integer n such that M ∈ Fn\Fn−1. See Section 2.3.4 for discussion

on ghost length and generating length.

Computations of and bounds on ghost numbers and generating numbers of cyclic p-

groups, abelian p-groups, and the quaternion group Q8 are given in [19]. It is also proved

that the ghost number of a p-group G is always finite. The idea is to use the radical

sequence of a module, which allows us to build up the module from k within finitely

many steps, and the number of steps is universally bounded by the radical length of kG.

It follows that the generating number, hence the ghost number of a p-group, is finite.

1.3.4 Strong ghosts

Another variation of the generating hypothesis is to consider strong ghosts. A map in

StMod(kG) is called a strong ghost if its restriction to any subgroup H of G is a ghost.

It follows from the results in [17] that every strong ghost in stmod(kG) is stably-trivial

if and only if the Sylow p-subgroup P of G is C2, C3, or C4.

1.4 Results of the thesis

In this section, we summarize the main results of the thesis by chapters.

1.4.1 Ghost numbers of p-groups

We continue the study of the ghost number of a p-group in Chapter 2 (which is based

on [23]), improving on the results in [19]. We provide general bounds on ghost numbers

as well as computations of ghost numbers of various p-groups.

1.4.1.1 General lower bounds on the ghost number of a p-group

For an Auslander-Reiten triangle X
α−→ Y

β−→ Z
γ−→ ΣX in Thick〈k〉, we show that if Z has

generating length n, then γ is an (n−1)-fold ghost, i.e., the map γ is the longest possible

composite of ghosts out Z (Proposition 2.3.6). This suggests that we can factorize γ as

a composite of ghosts in Thick〈k〉 to find a lower bound on the ghost number.
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For a p-group P , we consider the module M = Mbp/2c↑PCp
, where Cp is a cyclic

subgroup of order p, and Mbp/2c is the indecomposable Cp-module of radical length

bp/2c. We find that the ghost length of M is equal to its radical length. As a result, we

have Corollary 2.4.17, which says that, for a p-group P ,

the ghost number of kP > 1/3 the radical length of kP,

and Proposition 2.4.33, which says that if P has order pr,

the ghost number of kP > (r − 1)(p− 1) + 1.

The inequalities recover that, for a p-group P , the generating hypothesis holds only if

P = C2 or C3. The results also apply to the quaternion group Q8 (Proposition 2.4.13)

and the dihedral groups D4q of order 4q (Corollary 2.4.18), and improve the lower bounds

on their ghost numbers shown in [19].

1.4.1.2 The ghost numbers of D4q and C3 × C3

We give an upper bound for the ghost number of a dihedral 2-group D4q, with the aid of

the classification theorem [4, Section 4.11]. This upper bound coincides with the lower

bound we get in Corollary 2.4.18, so we can compute that (Corollary 2.4.25):

the ghost number of kD4q = q + 1.

The classification of representations of the Kronecker Quiver is also applied to the

study of the ghost number of C3 × C3, and we have Theorem 2.4.28:

the ghost number of k(C3 × C3) = 3.

1.4.2 Ghost numbers of non-p-groups

In Chapter 3 (which is based on [24]), we generalise the study of ghost numbers to

arbitrary finite groups. We show that the ghost number is finite if Thick〈k〉 = stmod(B0),

and compute the ghost numbers of various examples in this case. We also study simple

ghosts and strong ghosts in Chapter 3.
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1.4.2.1 Finiteness and lower bound of the ghost number of a non-p-group

When the group G is a non-p-group, we prove finiteness under the assumption that

Thick〈k〉 = stmod(B0). Here stmod(B0) is the full subcategory of stmod(kG) consisting

of modules in the principal block B0. It follows from the assumption that all the simple

modules in the principal block have finite ghost lengths. Hence, given M ∈ stmod(B0),

the semisimple modules that appear in the radical sequence of M have finite ghost

lengths, and, like the p-group case, there is a universal upper bound for the ghost lengths

of M ∈ stmod(B0). Hence the ghost number of kG is finite in this case (Theorem 3.4.7).

Now let e0 be the principal block idempotent of kG. Left multiplication by e0

provides a natural projection of stmod(kG) onto stmod(B0). Assuming Thick〈k〉 =

stmod(B0) again, the image of the functor e0(−) lands inside Thick〈k〉. We prove that

the composite of functors e0(−↑) : stmod(kP ) → stmod(B0) is faithful, where P is a

Sylow p-subgroup of G. Since the functor e0(−↑) preserves ghosts, we get a lower bound

for the ghost number of kG in this case (Proposition 3.4.10):

If Thick〈k〉 = stmod(B0), then

the ghost number of kG > the ghost number of kP.

1.4.2.2 Examples of ghost numbers of non-p-groups

Recall that a map in StMod(kG) is a simple ghost if it is stably-trivial on any map from

the suspensions of the simple modules. By comparing ghosts with simple ghosts, we get

information about the ghost number. In the following examples:

1. G = A×B is a direct product, with Sylow p-subgroup A (Corollary 3.4.2),

2. the Sylow p-subgroup P of G is cyclic and normal (Theorem 3.5.5), and

3. the dihedral group D2ql of order 2ql with l odd (Corollary 3.4.14),

we show that the simple modules in the principal block are suspensions of k. It follows

that Thick〈k〉 = stmod(B0) and, by Proposition 3.4.10, the ghost number of kG is greater

than or equal to the ghost number of kP . On the other hand, we show that ghosts and
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simple ghosts coincide in the principal block, so the simple ghost number provides an

upper bound for the ghost number. Hence in these examples,

the ghost number of kG = the ghost number of kP.

1.4.2.3 Simple ghosts and the simple generating hypothesis

We have already seen that we need to consider simple ghosts in certain examples.

In Section 3.3.1, we show that if the Sylow p-subgroup P of G is normal, then the

simple ghost number of kP is equal to the ghost number of kG (Theorem 3.3.2).

In Section 3.5.2, we prove that the simple generating hypothesis holds for the group

SL(2, p) at any prime p (Theorem 3.5.9). This is an interesting result because the

generating hypothesis fails for its Sylow p-subgroup, the cyclic group of order p, when

p > 5.

1.4.2.4 Strong ghost numbers

Recall that a map M → N is a strong ghost in StMod(kG) if its restriction to any

subgroup H of G is a ghost. Observe that the map M → N is a strong ghost if and only

if the composite of maps X → M → N is stably-trivial for any X that is a suspension

of the module k↑GH for some subgroup H of G. Such test objects generate StMod(kG).

Hence, for M ∈ stmod(kG), we define its strong ghost length to be the smallest

integer n, such that every composite of n strong ghosts in stmod(kG) out of M is stably-

trivial. The strong ghost number of kG can be defined similarly as its ghost number

and simple ghost number. Unlike ghosts or simple ghosts, both the restriction and the

induction functors preserve strong ghosts, so the strong ghost number of kG equals that

of kP (Proposition 3.6.4), where P is the Sylow p-subgroup of G.

For cyclic p-groups other than C2, C3, and C4, whose strong ghost numbers are 1,

we compute in Theorem 3.6.6 that

strong ghost number of kG = dp+ 1

2
e,when |G| 6= 2, 3, or 4.
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Combining this with our earlier results about dihedral groups, we get an upper bound

for the strong ghost number of dihedral groups in Theorem 3.6.7:

strong ghost number of kD4q 6 3.

The computation of strong ghost numbers suggests that the concept of a strong ghost

is much stronger than a ghost.

1.4.3 Computations with GAP

In Chapter 4, we show how to apply GAP to the study of the group algebra. GAP

is a system for computational discrete algebra, with particular emphasis on Computa-

tional Group Theory [26]. The GAP package ‘reps’ has been developed to handle group

representations in positive characteristic. The overall structure of the reps package was

designed and most of it is written by Peter Webb , who is also the maintainer. Contribu-

tions were made by Dan Christensen, Roland Loetscher, Robert Hank, Bryan Simpkins,

Brad Froehle and others.

We have improved the code used in GAP to compute the universal ghost and ghost

length. Recall that the universal ghost is the cofibre of a map that is surjective on Tate

cohomology, and to compute the cofibre of a map, we need to replace it by an injection.

The new ReplaceWithInj function is faster than the previous version and uses less

memory. We explain the idea of the function and how to implement it in Section 4.4.1,

and we show that the code has the resulting cofibre as small as possible. We also discuss

the Simple function in the same section, which is used in the ReplaceWithInj function.

Given an indecomposable projective module P , it computes the corresponding simple

module of P . The functions are presented in pseudo-code.

The new function makes computations of cofibres and universal ghosts more efficient.

This allows us to apply the idea of a universal ghost to find an upper bound of the ghost

length. More precisely, given M ∈ stmod(kG), we can compute the n-fold universal

ghost out M , and if the map is stably-trivial, then the ghost number of M is at most

n. We implement this in Section 4.4.2. Note that the Tate cohomology is in general not

finitely-generated, so we can only compute unstable universal ghosts within a certain

range, i.e., maps that are stably-trivial on maps from Σik, with l 6 i 6 m for some

integers l and m. Nevertheless, if the n-fold unstable universal ghost out of M is stably-

trivial, then n is still an upper bound of the ghost length of M . And we can enlarge the
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range [l,m], and get a decreasing sequence of upper bounds, whose limit is exactly the

ghost length (Proposition 4.3.2). In the case when G has periodic cohomology, then the

Tate cohomology is finitely-generated and the computation of the ghost length becomes

a finite process.

Then we apply the functions to compute various examples. We make some compu-

tations with the group S3×C3, the first example where Thick〈k〉 6= stmod(B0). We also

present some computations with the group Q8 and C9 in Section 4.5.



Chapter 2

Ghost numbers of group algebras
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2.1 Introduction

In modular representation theory, the Tate cohomology functor plays a central role,

analogous to the role that the homotopy groups play in homotopy theory. Thus it is

natural to study the kernel of Tate cohomology, that is, the collection of maps which

induce the zero map in Tate cohomology. These maps are called ghosts, and are the

topic of the present paper.

Let G be a finite group, and let k be a field whose characteristic p divides the order

of G. We write StMod(kG) for the stable module category of kG, the triangulated

category formed from the module category by killing the projectives, stmod(kG) for the

full subcategory of finitely generated modules, and Thick〈k〉 for the thick subcategory

generated by the trivial representation, a full subcategory of stmod(kG). (See Section 2.2

for complete definitions and further background.)

The generating hypothesis (GH) for the stable module category is the statement

that if a map in Thick〈k〉 induces the zero map in Tate cohomology, then it is stably

trivial. Using the terminology of the first paragraph, this is equivalent to saying that all

ghosts in Thick〈k〉 are trivial. This problem is motivated by Freyd’s famous conjecture

in homotopy theory [25], which is still open.

By work of Benson, Carlson, Chebolu, Christensen and Mináč (Theorem 2.2.1 below),

it is known that the generating hypothesis fails for most groups. The extent to which

it fails is measured by the ghost number of kG, which is the smallest number n such

that every composite of n ghosts in Thick〈k〉 is stably trivial. With this terminology, the

generating hypothesis is the statement that the ghost number is one. The ghost number

was studied for p-groups in [19], but even for p-groups it was found to be difficult to

calculate, and in most cases only crude bounds are known. It is a long-term goal to

understand whether this invariant has a simple description in terms of other invariants

of kG.

In this chapter we develop new techniques for the study of ghost numbers and use

them to make new computations in many cases. For example, we make the first com-

putations of the ghost numbers of group algebras of wild representation type at an odd

prime (k(C3 × C3) and others mentioned in the detailed summary below) as well as

the first computations of the ghost numbers of non-abelian group algebras (the dihedral

2-groups). We also give many new bounds on ghost numbers, including lower bounds,
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which are generally difficult to come by. As one example, we show that the ghost number

is always at least one-third of the radical length, the first general lower bound we are

aware of. Our work includes results which are quite general, in some cases applying to

any projective class in any triangulated category.

Chapter 3 builds on the work here in order to compute the ghost numbers of non-

p-groups. For example, using the results on dihedral 2-groups, we are able to compute

the ghost number of an arbitrary dihedral group at the prime 2.

We now give a summary of the contents of the paper. We begin in Section 2.2.1 by

reviewing the stable module category. In Section 2.2.2 we recall the statement of the

generating hypothesis in this situation and state the result of Benson, Carlson, Chebolu,

Christensen and Mináč that says that the GH fails unless the Sylow p-subgroup of G is

C2 or C3. The ghost number, which measures the degree to which the GH fails, is best

studied using the idea of a projective class, so we introduce projective classes and their

associated invariants in Section 2.2.3. Briefly, a projective class consists of a collection

P of objects (thought of as “projective” building blocks) and an ideal I of morphisms

(the maps invisible to the objects in P) satisfying some axioms.

In Section 2.3 we present a variety of new results, many of which hold for arbitrary

projective classes in arbitrary triangulated categories. For example, in Section 2.3.1, we

give new bounds on the length of an object in a triangle in terms of the lengths of the

other two objects and the filtration of the connecting homomorphism in the powers of

the ideal. Then, in Section 2.3.2, we show that the connecting map γ : Z → ΣX in

an Auslander-Reiten triangle, which we call the almost zero map, has a remarkable

property: if (P, I) is any projective class such that there is a nonzero map from Z in

Ik, then γ is in Ik. So the almost zero map is in some sense a universal example of

a non-zero map from Z. We specialize to the case of the stable module category in

Section 2.3.3, where we show that the heart of an indecomposable module M (the fibre

of the almost zero map) has length which differs by at most one from M , with respect

to any projective class. We also show that this is true for any summand of the heart,

by showing that the lengths of the domain and codomain of any irreducible map differ

by at most one. We finish Section 2.3 with Section 2.3.4, which describes the extent

to which our results hold for the ghost length, the invariant used in defining the ghost

number.
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Section 2.4 contains detailed computational results on the ghost numbers of p-groups.

We begin by recalling some background results in Section 2.4.1, such as the fact that

the ghost number of kG is less than the nilpotency index of the Jacobson radical, as well

as the fact that multiplication by x − 1, where x is a central element of G, is always a

ghost. In Section 2.4.2 we show that the generating length invariant is in a precise sense

a stabilized version of the socle length, and show that if these are equal for a module

M , the same is true for rad(M) and M/soc(M). This follows from a general result

involving nested unstable projective classes in a triangulated category. We begin our

computations in Section 2.4.3, where we study the ghost numbers of abelian p-groups.

The main result here is an improved lower bound on the ghost number. This follows

from a result giving a lower bound on the ghost length of induced modules for general p-

groups. We also compute the exact ghost length of many modules over abelian p-groups.

In Section 2.4.4 we show that the ghost number for the quaternion group Q8 is 3 or 4,

improving the existing lower bound by 1. In Section 2.4.5, we compute the ghost length

and generating length of certain modules induced up from a cyclic normal subgroup of a

p-group, generalizing the technique used for Q8. This is used in the same section to show

that the ghost number and the radical length are within a factor of three of each other for

any p-group. More precisely, we show that (rad len kG)/3 6 ghost num kG < rad len kG

for p odd, the first general lower bound we are aware of. For p = 2, the factor of 3 is

replaced with a factor of 2. We also use the induction result in Section 2.4.6, where we

show that the ghost number of the dihedral 2-group D4q of order 4q is exactly q + 1.

This is the longest section of the paper. That the ghost length is at least q + 1 follows

immediately from the induction result of the previous section, but that it is no more than

q+1 requires using the classification of kD4q-modules. In Section 2.4.7 we show that the

ghost number of k(C3×C3) is exactly 3. While k(C3×C3)-modules are not classifiable,

we make use of the fact that certain quotients can be classified. Our argument also

shows that the ghost number of the group algebra k(Cpr × Cps), for pr, ps > 2, is at

most pr + ps − 3. It follows that the ghost number of k(C3 × C3s) is 3s and that the

ghost number of k(C4 × C2s) is 2s + 1. We end the paper with Section 2.4.8, in which

we give complete lists of the group algebras of p-groups with ghost numbers 1, 2 or 3,

with the possible exception of kQ8. We also prove that for each prime p there are gaps

in the possible ghost numbers that can occur, and state a conjecture related to this.
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2.2 The generating hypothesis and the ghost projective

class

In this section, we recall background material which provides context to our results and

which we use in our proofs.

2.2.1 The stable module category

Here we recall the basics of the stable module category. A good reference is [14].

Let G be a finite group, and let k be a field whose characteristic p divides the order

of G. The stable module category StMod(kG) is a quotient category of the category

Mod(kG) of left kG-modules by the ideal of maps that factor through a projective. Thus

the objects of StMod(kG) are left kG-modules and the hom-sets are Hom(M,N) =

[M,N ] := Hom(M,N)/PHom(M,N), where PHom(M,N) denotes the stably trivial

maps, i.e., those that factor through a projective module. Two modules M and N are

isomorphic in the stable module category if and only if they have the same projective-

free summands. In particular, projective modules are isomorphic to zero in the stable

module category. We write stmod(kG) for the full subcategory of finitely generated

kG-modules in StMod(kG). (More precisely, we include all modules which are stably

isomorphic to finitely generated kG-modules.)

The stable module category is a triangulated category. The desuspension ΩM of a

module M is the kernel of any surjection P →M with P projective. This is well-defined

in the stable module category by Schanuel’s Lemma [14, Prop. 4.2], and we write Ω̃M

for the projective-free summand of ΩM .

The group algebra kG is injective as a module over itself. In particular, this implies

that projective modules and injective modules coincide in mod(kG). The suspension ΣN

of a module N is defined to be the cokernel of any injection N → P with P injective.

We will often write Ω−1N for ΣN since Ω and Σ are inverse functors up to natural

isomorphism.

Write k for the trivial representation and Thick〈k〉 for the thick subcategory gener-

ated by k, the smallest full triangulated subcategory of StMod(kG) that is closed under

retracts and contains k. This is in fact a full subcategory of stmod(kG), and plays a
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central role in our formulation of the generating hypothesis. The localizing category gen-

erated by k, denoted Loc〈k〉, is the smallest full triangulated subcategory of StMod(kG)

that is closed under arbitrary coproducts and retracts and contains k.

2.2.2 The generating hypothesis

An important feature of the stable module category is that the Tate cohomology of a kG-

module M is representable, i.e., we have a canonical isomorphism Ĥn(G,M) ∼= [Ωnk,M ].

We say that the generating hypothesis (GH) holds for the stable module category

StMod(kG) if and only if the Tate cohomology functor Ĥ∗(G,−) restricted to Thick〈k〉
is faithful. It has been shown that the GH fails for most group algebras [9, 16, 18, 20].

Theorem 2.2.1 (Benson, Carlson, Chebolu, Christensen and Mináč). Let G be a finite

group, and let k be a field whose characteristic p divides the order of G. Then the GH

holds for StMod(kG) if and only if the Sylow p-subgroup P of G is either C2 or C3.

It is worth pointing out here why we restrict to Thick〈k〉. It is known that whenever

the thick subcategory is not all of stmod(kG), there are non-projective modules whose

Tate cohomology is zero. The identity map on such a module is sent to zero by Ĥ∗(G,−),

so the GH would be trivially false if we included such modules. Restricting to Thick〈k〉
prevents this from happening. In general, the stable module category is generated by the

simple modules as a triangulated category. For a p-group G, the trivial representation

k is the only simple module, so we have that Thick〈k〉 = stmod(kG) in this case.

We call a map in StMod(kG) that is in the kernel of the Tate cohomology functor a

ghost. Thus the GH is the statement that all ghosts in Thick〈k〉 are stably trivial. When

the GH fails, the vanishing of composites of ghosts gives a measure of the failure and

leads to invariants of modules and of kG. This is formalized in the idea of a projective

class.

2.2.3 The ghost projective class

Definition 2.2.2. Let T be a triangulated category. A projective class in T consists

of a class P of objects of T and a class I of morphisms of T such that:
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(i) P consists of exactly the objects P such that every composite P → X → Y is zero

for each X → Y in I,

(ii) I consists of exactly the maps X → Y such that every composite P → X → Y is

zero for each P in P.

(iii) for each X in T, there is a cofibre sequence P → X → Y with P in P and X → Y

in I.

In this paper, we make the additional assumption that the projective class is stable,

that is, that P (or equivalently I) is closed under suspension and desuspension. With

slight alterations, most of our results remain true without this assumption, but the extra

bookkeeping complicates the arguments. The one exception is that in Section 2.4.2 we

make use of an unstable projective class.

Remark 2.2.3. It follows from the definition that P is closed under arbitrary coproducts

and retracts, and I is an ideal.

We write G for the ideal of ghosts in the stable module category, and F for all retracts

of direct sums of suspensions of k in StMod(kG). For a module M ∈ StMod(kG),

since Ĥn(G,M) ∼= [Ωnk,M ], we can form a map ⊕Ωik → M that is surjective on

Tate cohomology by assembling sufficiently many homogeneous elements in Ĥ∗(G,M).

Completing this map into a triangle in StMod(kG)

ΩUM → ⊕Ωik →M
φM−−→ UM , (2.2.1)

we get a ghost φM : M → UM . The map φM is a (weakly) universal ghost in the sense

that every ghost out of M factors though it, but the factorization is not necessarily

unique. It follows easily that (F ,G) forms a projective class in StMod(kG). This is

called the ghost projective class.

While the ghost projective class is the focus of this paper, some of our results apply

to any projective class, so we mention two other examples at this point: The simple

ghost projective class is the projective class whose projectives are generated by all

simple objects, and it was proposed for study in [12] as a way to avoid focusing on

Thick〈k〉. And the strong ghost projective class is the projective class whose ideal

consists of the maps which are ghosts under restriction to every subgroup. (See [17] for

more on this topic.)
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For any projective class (P, I), there is a sequence of derived projective classes

(Pn, In) [21]. The ideal In consists of all n-fold composites of maps in I, and X is

in Pn if and only if it is a retract of an object M that sits inside a cofibre sequence

P → M → Q with P ∈ P1 = P and Q ∈ Pn−1. For n = 0, we let P0 consist of all zero

objects and I0 consist of all maps in T. The length lenP(X) of an object X of T with

respect to (P, I) is the smallest n such that X is in Pn, if this exists. The fact that each

pair (Pn, In) is a projective class implies that the length of X is equal to the smallest n

such that every map in In with domain X is trivial.

The length of a module M with respect to the ghost projective class is called the

generating length of M , and this exists when M is in Thick〈k〉. But since we are

interested in the collection Gt of ghosts in Thick〈k〉, we also get another invariant. We

describe both invariants, and the associated invariants of kG, in the following definition,

generalizing the definition given in [19] for p-groups.

Definition 2.2.4.

• The generating length gel(M) of M ∈ Thick〈k〉 is the smallest n such that

M ∈ Fn. That is, gel(M) = lenF (M).

• The ghost length gl(M) of M ∈ Thick〈k〉 is the smallest integer n such that every

map in (Gt)n with domain M is trivial.

• The generating number of kG is the least upper bound of the generating lengths

of modules in Thick〈k〉.

• The ghost number of kG is the least upper bound of the ghost lengths of modules

in Thick〈k〉.

With this terminology, the generating hypothesis is the statement that the ghost

number of kG is 1.

Let M be in Thick〈k〉. Since each (Fn,Gn) is a projective class and (Gt)n ⊆ Gn, it

follows that

gl(M) 6 gel(M)

and therefore that

ghost number of kG 6 generating number of kG.
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When G has periodic Tate cohomology, the coproduct in (2.2.1) can be taken to be

finite, and it follows that the ghost projective class restricts to a projective class in

Thick〈k〉 [19]. This implies that equality holds in this case. We don’t know whether

equality holds in general, except for the trivial observation that M ∼= 0 if and only

gel(M) = 0 if and only if gl(M) = 0 and the less trivial fact that gel(M) = 1 if and only

if gl(M) = 1 (see Corollary 2.3.7 or [16]). Thus the GH is equivalent to the generating

number of kG being 1. See Remark 2.3.13 for further discussion of whether ghost length

equals generating length.

2.3 Auslander-Reiten triangles and generating lengths

In this section, we explain how Auslander-Reiten triangles (in short, A-R triangles)

provide examples of ghosts, and, more generally, of non-trivial maps in In for n as large

as possible, for any projective class (P, I). This extends the work of [16], where these

triangles are called “almost split sequences.” Because we have in mind applications

to other projective classes, in this section we state many of our results for a general

projective class in a general triangulated category.

In Section 2.3.1, we give results about the relationship between the lengths of the

objects in a triangle when one of the maps is in a power Im of the ideal. In Section 2.3.2,

we recall A-R triangles and prove that the third map in an A-R triangle is the longest

possible non-trivial composite of maps in I with the given domain. In Section 2.3.3, we

apply these results to the study of lengths in the stable module category, and also show

a close relationship between lengths and irreducible maps. Finally, in Section 2.3.4 we

explain the extent to which our results on generating length are true for ghost length.

2.3.1 Relations between the lengths of objects in a triangle

Consider a projective class (P, I) in a triangulated category T. Let

X
α−→ Y

β−→ Z
γ−→ ΣX

be a triangle in T, where X, Y and Z have finite lengths k, n and l, respectively. We

know that n 6 k + l [21]. Rotating the triangle, we also get l 6 n + k and k 6 n + l.
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Here we show that when γ is in Im, one can refine these inequalities by subtracting m

from l. Our methods also show that n > m. Note that I0 consists of all maps in T.

Lemma 2.3.1. Let (P, I) be a projective class in a triangulated category T, and let

X
α−→ Y

β−→ Z
γ−→ ΣX

be a triangle in T, where X, Y and Z have finite lengths k, n and l, respectively, and

γ ∈ Im with m 6 l. Then

lenP(Y ) = n 6 max(k −m+ l, l).

Note that if m > l, then γ must be zero, and so the restriction to m 6 l is natural.

When m = l, the triangle splits, and the lemma says that n 6 max(k, l).

Proof. Let n′ = max(k,m), and let φ : Y → W be in In′ . Then φ ◦ α is zero (since

n′ > k), so φ factors through a map φ̃ : Z → W . We claim that φ̃ is in Im. Consider

the diagram

V
ψ̃

~~

ψ
��

X
α // Y //

φ
��

Z

φ̃~~

γ
// ΣX

W

with ψ : V → Z being any map from an object V ∈ Pm. Now γ ∈ Im, so γ ◦ ψ is zero,

and ψ factors through some map ψ̃ : V → Y . Hence φ̃◦ψ = φ◦ ψ̃ is zero (since n′ > m),

and the claim follows. If g : W →W ′ is in I l−m, then g ◦ φ̃ is zero because Z has length

l. Then g ◦ φ is zero, meaning that the length of Y is at most n′ + l −m.

Lemma 2.3.2. Let (P, I) be a projective class in a triangulated category T, and let

X
α−→ Y

β−→ Z
γ−→ ΣX

be a triangle in T, where X, Y and Z have finite lengths k, n and l, respectively, and

γ ∈ Im with m 6 l. Then

lenP(Y ) = n > max(k − l +m,m).
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When m = l, this says that n > max(k, l), so the two lemmas together recover the

fact that when the triangle splits, n = max(k, l).

Proof. We prove that the length of Y is at least k− l+m. The other inequality can be

proved similarly.

Consider a map φ : X →W in I l−m. Since φ ◦Σ−1γ is in I l and has domain Σ−1Z

of length l, it is zero and φ factors through a map φ̃ : Y →W :

Σ−1Z
Σ−1γ

// X //

φ

��

Y //

φ̃
}}

Z

W .

Let g : W → W ′ be in In. Then g ◦ φ̃ is zero because Y has length n, hence any

map in In+l−m with domain X is zero. This implies that k 6 n + l − m, i.e., that

n > k − l +m.

2.3.2 Auslander-Reiten triangles give composites of ghosts

We begin by recalling the definition.

Definition 2.3.3. Let T be a triangulated category. A triangle X
α−→ Y

β−→ Z
γ−→ ΣX is

called an Auslander-Reiten triangle, if

(a) γ 6= 0,

(b) any map X → Y ′ that is not split monic factors through α,

(c) any map Y ′ → Z that is not split epic factors through β.

A map α that is not split monic and satisfies (b) is said to be left almost split.

Dually, a map β that is not split epic and satisfies (c) is said to be right almost split.

We know that Auslander-Reiten triangles exist in great generality.

Theorem 2.3.4 (Krause, [30]). Let T be a triangulated category with all small coprod-

ucts, and suppose that all cohomological functors are representable. Let Z be a compact

object in T with local endomorphism ring. Then there exists an Auslander-Reiten triangle

X
α−→ Y

β−→ Z
γ−→ ΣX.
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The triangle is unique up to a non-canonical isomorphism.

Remark 2.3.5. Let β be the second map in the A-R triangle above. One can show that,

for any endomorphism g of Y with βg = β, the map g is an isomorphism (see [30]).

We say that the map β is right minimal in this case. Dually, the first map α in

an A-R triangle is left minimal. A map β that is right almost split sits inside an

Auslander-Reiten triangle if and only if it is right minimal [30].

For convenience, we call the map γ here the almost zero map with domain Z. It

is unique up to an automorphism of ΣX. The following proposition follows from the

definitions and the earlier lemmas.

Proposition 2.3.6. Suppose that (P, I) is a projective class on a triangulated category

T, and that

X
α−→ Y

β−→ Z
γ−→ ΣX

is a distinguished triangle with β right almost split. If Z has finite length l and X has

finite length k with respect to (P, I), then the third map γ is in I l−1, and

k − 1 6 lenP(Y ) 6 k + 1, if k > l;

l − 1 6 lenP(Y ) 6 l, if k 6 l − 1.

For any summand S of Y , lenP(S) 6 max(k + 1, l).

Proof. We test γ on all objects W in Pl−1. Because Z has larger length than W , a map

φ : W → Z cannot be split epic, so it factors through β. Hence γ ◦ φ is zero, which

implies that γ ∈ I l−1.

The inequalities follow from Lemmas 2.3.1 and Lemma 2.3.2, with m = l − 1. The

statement about the summand S follows immediately.

Note in particular that for any A-R triangle, the almost zero map γ is an example

of a non-zero map in the largest possible power of the ideal, for any projective class.

In the case when T is StMod(kG) with G being a p-group, we know that ghosts and

dual ghosts coincide [19]. Hence γ non-zero implies that k > l, and so we are in the first

case of Proposition 2.3.6.

In the next section, we develop these ideas further.
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2.3.3 Auslander-Reiten triangles, irreducible maps and lengths

The category StMod(kG) satisfies the hypotheses on T in Theorem 2.3.4, and its compact

objects are precisely those in stmod(kG). For projective-free M ∈ stmod(kG), the stable

endomorphism ring End(M) being local is equivalent to M being indecomposable. In

this case, the Auslander-Reiten triangle has the form [4, 4.12.8]

Ω2M
α−→ H(M)

β−→M
γ−→ ΩM.

The module H(M) is called the heart of M , and the triangle shows that it is also in

stmod(kG).

The general theory we have set up in the last two sections applies to an A-R triangle

for any projective class (P, I) on StMod(kG). As a special case of Proposition 2.3.6,

using that k = l in this case, we get

Corollary 2.3.7. Let G be a finite group, let k be a field whose characteristic divides the

order of G, and let (P, I) be a projective class on StMod(kG). Consider the Auslander-

Reiten triangle Ω2M
α−→ H(M)

β−→ M
γ−→ ΩM for some indecomposable non-projective

module M in stmod(kG) with finite length l with respect to (P, I). Then

lenP(M)− 1 6 lenP(H(M)) 6 lenP(M) + 1,

and γ is a non-trivial map in I l−1.

As above, we emphasize again that the same map γ : M → ΩM provides a map in In

with n maximal for any projective class (P, I). Put another way, γ is in the intersection

of all projective class ideals that contain a non-trivial map from M .

Remark 2.3.8. One might hope that the heart H(M) always has larger generating length

than M when gel(M) is less than the generating number of kG, but unfortunately this

is not true in general. For example, take G = C5 × C5 and M = k↑GC5
. One can

compute that gel(M) = gel(H(M)) = 5, while the generating number of kG is at least

6 (Theorem 2.4.9).

Let S be an indecomposable non-projective summand of H(M). Then, clearly,

lenP(S) 6 lenP(H(M)) 6 lenP(M)+1. We will show below that lenP(M)−1 6 lenP(S)

because of the right minimality of the map β.

We first need the notion of irreducible map.
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Definition 2.3.9. Let G be a finite group, and let k be a field whose characteristic

divides the order of G. A map λ : M → N in StMod(kG) is said to be irreducible if

it is not split monic or split epic, and for any factorization λ = ν ◦ µ, either µ is split

monic or ν is split epic.

Irreducible maps are closely related to Auslander-Reiten triangles:

Proposition 2.3.10 (Auslander and Reiten [2]). Let M and N be indecomposable non-

projective modules in stmod(kG). Then a map f : M → N is irreducible if and only if

the following equivalent conditions are satisfied:

(a) M is a summand of H(N) and f is the composite M → H(N)
β−→ N .

(b) N is a summand of Ω−2H(M) and f is the composite M
Ω−2α−−−→ Ω−2H(M)→ N .

Combining Corollary 2.3.7 and Proposition 2.3.10, one can prove

Corollary 2.3.11. Let f : M → N be an irreducible map with M and N non-projective

indecomposables in stmod(kG), and let (P, I) be a projective class on StMod(kG). If M

and N have finite lengths with respect to (P, I), then

lenP(M)− 1 6 lenP(N) 6 lenP(M) + 1.

In particular, for M indecomposable and S any summand of H(M), we have

lenP(M)− 1 6 lenP(S) 6 lenP(M) + 1.

2.3.4 Ghost lengths

The results of Sections 2.3.1 to 2.3.3 apply to the generating length of a module in

StMod(kG), since generating length is the length with respect to the ghost projective

class. When kG has periodic cohomology, there is a projective class on Thick〈k〉 whose

ideal is Gt, and ghost length is the length with respect to this projective class. In general,

we don’t know whether ghost length is a length with respect to a projective class, but

we can still prove the analogue of half of Corollary 2.3.7:

Proposition 2.3.12. Let G be a finite group, and let k be a field whose characteristic

divides the order of G. Consider the Auslander-Reiten triangle Ω2M → H(M)→M →
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ΩM for some indecomposable module M in Thick〈k〉. Then the following holds:

gl(M)− 1 6 gl(H(M))

Proof. We mimic the proof of Lemma 2.3.2. Suppose that gl(H(M)) = l − 1. We

must prove that gl(M) 6 l. Since gl(M) = gl(Ω2M), it suffices to show that any map

φ : Ω2M → N in (Gt)l is stably trivial, where Gt consists of ghosts between objects in

Thick〈k〉. Write φ as φ2φ1, where φ1 is in Gt and φ2 is in (Gt)l−1. Then, by Proposi-

tion 2.3.6, the composite φ1 Ωγ is stably trivial, so φ1 factors through H(M):

ΩM
Ωγ
// Ω2M //

φ1
��

H(M) //

ψ
zz

M
γ
// ΩM

W

φ2
��

N.

Now since gl(H(M)) = l−1, the composite φ2ψ is stably trivial and so φ is stably trivial

as well.

The analogue of the other half of Corollary 2.3.7 would say that gl(H(M)) 6 gl(M)+

1, and we don’t know whether this is true.

Remark 2.3.13. A related question is whether the generating length and ghost length

always agree. We know of no counterexamples. However, Corollary 2.3.7 implies that the

longest composite of ghosts starting from a given module M in Thick〈k〉 can always be

attained by a map in (Gm)t, the intersection of Gm and Thick〈k〉. Thus if (Gt)m = (Gm)t,

then the ghost length and generating length agree. Note that a related statement for

the objects of P, i.e., that (Pc)n = (Pn)c, where the superscript c means to take the

intersection with the compact objects, is known to be true [13, 2.2.4].

2.4 Ghost numbers of p-groups

In this section we study finite p-groups, using the fact that Thick〈k〉 = stmod(kG). We

begin in Section 2.4.1 by recalling several results that we will use. In Section 2.4.2 we

show that the generating length invariant is a stabilized version of the socle length, and

give a result that shows that if these are equal for a module M , the same is true for
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rad(M) and M/soc(M). Then we give new computations of bounds on ghost numbers

for various p-groups: abelian p-groups in Section 2.4.3, the quaternion group Q8 in

Section 2.4.4, dihedral 2-groups in Section 2.4.6, and the groups Cpr×Cps in Section 2.4.7.

In several cases we determine the ghost number completely, such as for D4q, C3 × C3s

and C4 × C2s . In Section 2.4.5, we compute the ghost length and generating length of

certain modules induced up from a cyclic normal subgroup. This is used in the same

section to show that the ghost number and the radical length are within a factor of three

of each other for any p-group. It is also used in Section 2.4.6 in the computation of the

ghost number of kD4q and in Section 2.4.8, where we classify group algebras with small

ghost number and put constraints on which ghost numbers can occur.

When we write “p-group”, we always mean “finite p-group”.

2.4.1 Background

We recall the following theorem, and then explain the terminology and give an idea of

the proof.

Theorem 2.4.1 (Chebolu, Christensen and Mináč [19]). Let G be a p-group, and let k

be a field of characteristic p. Then the generating length of a kG-module M is at most

its radical length, and the following inequalities hold:

ghost number of kG 6 generating number of kG < nilpotency index of J(kG) 6 |G|.

In particular, the ghost number of kG is finite in this case.

Let G be any finite group, and let k be a field whose characteristic divides the order

of G. Let J = J(kG) be the Jacobson radical of kG, i.e., the largest nilpotent ideal of

kG. The nilpotency index of J(kG) is the smallest integer m such that Jm = 0, and for

any module M , we have a radical series

M = rad0(M) ⊇ rad1(M) ⊇ rad2(M) ⊇ · · · ⊇ 0,

with radn(M) = JnM , and a socle series

0 = soc0(M) ⊆ soc1(M) ⊆ soc2(M) ⊆ · · · ⊆M,
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with socn(M) consisting of the elements of M annihilated by Jn. The radical length of

M is the smallest integer n such that radn(M) = 0. This is equal to the socle length

of M , the smallest integer m such that socm(M) = M . The successive quotients in the

sequences are direct sums of simple modules.

If G is a p-group, then each quotient is a direct sum of k’s, so the generating length

of a module M is less than or equal to its radical length. Note that the nilpotency index

of J(kG) is exactly the radical length of kG, and if M is a projective-free kG-module,

it always has smaller radical length than kG. The theorem then follows.

The following lemma is proved by studying Tate cohomology in degrees 0 and −1.

We write rad(M) for rad1(M) and soc(M) for soc1(M).

Lemma 2.4.2 (Chebolu, Christensen and Mináč [19]). Let G be a p-group, and let k be

a field of characteristic p. Let f : M → N be a map in Mod(kG) between projective-free

modules M and N . Then:

(a) soc(M) ⊆ ker(f) iff [k, f ] = 0.

(b) im(f) ⊆ rad(N) iff [Ω−1k, f ] = 0.

In particular, if f represents a ghost in the stable category, then both inclusions hold.

As a corollary, we get

Corollary 2.4.3 (Chebolu, Christensen and Mináč [19]). Let G be a p-group, and let k

be a field of characteristic p. Let f : M → N be a map in Mod(kG) between projective-

free modules M and N . If f is an l-fold ghost, then:

(a) socl(M) ⊆ ker(f).

(b) im(f) ⊆ radl(N).

The next lemma provides ghosts with a particular form.

Lemma 2.4.4 (Benson, Chebolu, Christensen and Mináč [9]). Let G be a p-group,

and let k be a field of characteristic p. Let x ∈ G be a central element. Then left

multiplication by x− 1 on a kG-module M is a ghost.
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Note that in general there are ghosts not of this form. Nevertheless these ghosts work

well for abelian groups in providing lower bounds for ghost numbers (see Section 2.4.3).

It is not hard to check that if G is a cyclic p-group with generator g, then g − 1 is a

universal ghost.

2.4.2 Generating and socle lengths

We now show that the generating length is a stabilized version of the socle length. In

this section we allow our projective classes to be unstable, that is, we don’t assume that

the projectives are closed under suspension and desuspension.

Let G be a p-group, let k be a field of characteristic p, and let M be a kG-module.

Note that soc(M) contains exactly the image of maps from k. So, when we build up M

in a socle sequence in Theorem 2.4.1, we are only using maps from k, not all suspensions

of k. This suggests that we consider the unstable projective class generated by k in

StMod(kG). We will show that the length with respect to this projective class is exactly

the socle length for projective-free modules in stmod(kG).

Note that the regular representation kG is the only indecomposable projective kG-

module, and soc(kG) ∼= k is its unique minimal left submodule. Thus any map kG→M

in Mod(kG) with M projective-free has soc(kG) in its kernel, since the map cannot be

injective. It follows that a map ⊕k → M in Mod(kG) with M projective-free is stably

trivial if and only if it is the zero map. For finitely generated modules, a similar argument

shows that the same is true for a map M → ⊕k in mod(kG) with M projective-free.

Proposition 2.4.5. Let G be a p-group, and let k be a field of characteristic p. Let (P, I)

be the unstable projective class in StMod(kG) generated by k. Then a map f : M → N

between projective-free objects M and N is in I if and only if it is represented by a map

f such that soc(M) ⊆ ker(f). Hence, if M is finitely-generated and projective-free, the

length of M with respect to (P, I) is exactly its socle length.

Proof. That f ∈ I is equivalent to soc(M) ⊆ ker(f) is Lemma 2.4.2 (a).

Now let M be projective-free. Then M → M/soc(M) is a universal map in I.

It follows that M → M/sock(M) is universal in Ik. If M has socle length n, then

M ∈ Pn and M → M/socn−1(M) is non-zero. If further M is finitely-generated, then

the universal map M → M/socn−1(M) ∼= ⊕k is stably non-trivial, by the remarks

preceding this proposition. Thus M has length n with respect to (P, I).
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Note that the stable projective class generated by k in StMod(kG) is exactly the ghost

projective class. Thus the generating length is indeed the socle length stabilized and is

generally less than or equal to the socle length. We have also recovered Theorem 2.4.1

from this observation. In Section 2.4.5, we are going to prove that the generating number

of kG is within a factor of 3 of the socle length of kG.

Here we show that if the generating length of a module M ∈ StMod(kG) happens to

equal its socle length (see, for example, Proposition 2.4.10 and Theorem 2.4.15), then

the same holds for rad(M) and M/soc(M), a result that we will use in Section 2.4.6

when studying dihedral groups.

Proposition 2.4.6. Let k be a field of characteristic p, and let G be a p-group. As-

sume that M ∈ StMod(kG) has generating length equal to its radical length. Then

gel(M/soc(M)) = gel(M)− 1, and similarly gel(rad(M)) = gel(M)− 1.

Proof. Since the generating length of M is strictly less than the nilpotency index of

J(kG), M is projective-free. The proposition is then a special case of the following more

general lemma.

Lemma 2.4.7. Let T be a triangulated category, and let (P, I) and (P ′, I ′) be (possibly

unstable) projective classes on T such that P ′ ⊆ P. Suppose that M ∈ T has lenP ′(M) =

lenP(M) = m and that there exist L ∈ P ′m−n and N ∈ P ′n with a triangle

L→M → N.

Then

lenP ′(L) = lenP(L) = m− n, and lenP ′(N) = lenP(N) = n.

Proof. We have that lenP ′(L) 6 m − n and lenP ′(N) 6 n. But lenP ′(L) + lenP ′(N) >

m = (m − n) + n, so the equalities follow for (P ′, I ′). Since P ′ ⊆ P, the same results

hold for (P, I) too.

Intuitively, this easy fact says that when lenP ′(M) = lenP(M), the related object L

can be built from P ′ as efficiently as it can be built from P. It applies to generating

lengths and socle lengths.

We now provide examples of computations of ghost numbers of certain groups, im-

proving on results in [19].
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2.4.3 Ghost numbers of abelian p-groups

We first prove a general proposition. It generalizes [9, Lemma 2.3] and [19, Prop. 5.10].

Proposition 2.4.8. Let k be a field of characteristic p, and let H be a non-trivial

subgroup of a p-group G. Assume that there exists a central element x in G. Let l be the

smallest positive integer such that xl ∈ H. Suppose that M ∈ StMod(kH) has generating

length m > 1. Then gel(M↑G) > gel(M) + (l − 1), and

generating number of kG > generating number of kH + (l − 1).

Suppose that M ∈ stmod(kH) has ghost length n > 1. Then gl(M↑G) > gl(M) + (l− 1),

and

ghost number of kG > ghost number of kH + (l − 1).

Proof. For brevity, we write ↓ for ↓GH and ↑ for ↑GH . Let f : M → N be a non-trivial

(m−1)-fold ghost in StMod(kH). We will show that (x−1)l−1 ◦f↑ is stably non-trivial.

Since ghosts induce up to ghosts and x − 1 is a ghost, it follows that there exists a

non-trivial composite of (m− 1) + (l − 1) ghosts in StMod(kG).

Consider the map M
i−→ M↑↓ f↑↓−−→ N↑↓ (x−1)l−1↓−−−−−−→ N↑↓ r−→ N , where i and r are the

natural maps. To be more explicit, M↑GH = kG⊗H M , i(α) = 1⊗ α and r(g ⊗ α) = gα

if g ∈ H and is zero otherwise. By naturality of the inclusion, the composite equals

M
f−→ N

i−→ N↑↓ (x−1)l−1↓−−−−−−→ N↑↓ r−→ N . Since xi 6∈ H for i 6 l − 1, the map N
i−→

N↑↓ (x−1)l−1↓−−−−−−→ N↑↓ r−→ N is simply multiplication by (−1)l−1, an isomorphism. Since

N is stably non-zero, it follows that (x− 1)l−1↓ ◦ f↑↓ and therefore (x− 1)l−1 ◦ f↑ are

stably non-trivial.

The result on ghost length and ghost number can be proved similarly by replacing

StMod(kG) with stmod(kG).

We can apply this proposition to abelian groups.

Theorem 2.4.9. Let k be a field of characteristic p, and let A = Cpr ×Cpr1 ×· · ·×Cprl
be an abelian p-group. Then

m− pr +

⌈
pr − 1

2

⌉
6 ghost number of kA 6 generating number of kA 6 m− 1,
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where m is the nilpotency index of J(kA), and pr is the order of the smallest cyclic

summand.

When the prime p is greater than 2, the result here improves on that in [19], where the

lower bound for the ghost number of kA is given by m−pr+pr−1 = m−pr+d(pr−1)/pe.

Note that since

m = 1 + (pr − 1) + (pr1 − 1) + · · ·+ (prl − 1),

our lower bound can also be written as⌈
pr − 1

2

⌉
+ (pr1 − 1) + · · ·+ (prl − 1).

Also note that when A is cyclic, we have m = pr, and the lower bound d = dp
r−1
2 e

here is exactly the ghost number of A [19, Thm. 5.4].

Proof. Let g be a generator of Cpr , and let gi be a generator of Cpri , i = 1, 2, · · · , l.
Write d =

⌈pr−1
2

⌉
. By the proof of [19, Prop. 5.3], kCpr has ghost number d. We can

now apply Proposition 2.4.8 by successively including the summands Cpri to obtain

ghost number of kA > d+ (pr1 − 1) + · · ·+ (prl − 1).

The other inequalities are from Theorem 2.4.1.

Proposition 2.4.8 allows us to make this explicit. Let M = N↑ACpr
, with N =

kCpr/(g − 1)d. Note that (g − 1)d−1 is a stably non-trivial (d − 1)-fold ghost on N

in stmod(kCpr) and, since A is abelian, the self map (g − 1)↑ACpr
on M is simply left

multiplication by g−1. Hence we have a particular form for the non-trivial (m−pr+d−1)-

fold ghost on M :

θ = (g − 1)d−1(g1 − 1)p
r1−1 · · · (gl − 1)p

rl−1.

More generally, we have the following result.

Proposition 2.4.10. Let k be a field of characteristic p, let A = Cpr1 ×Cpr2 ×· · ·×Cprl
be an abelian p-group, and let Mi be an indecomposable Cpri -module of dimension ni for

each i. Then the A-module M = M1⊗· · ·⊗Ml has radical length 1+(n1−1)+· · ·+(nl−1).

If ni 6
pri
2 for some i, then the generating length of M equals its radical length.
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Before proving the proposition, we state the following lemma.

Lemma 2.4.11 ([29, Theorem 1.2]). Let G be a p-group, and let k be a field of charac-

teristic p. Then the elements h− 1 with h 6= 1 form a basis for rad(kG). It follows that

the products (h1 − 1) · · · (hn − 1) with hi 6= 1 span radn(kG).

Note that it suffices to consider generators of the group G when we generate radnkG

as a sub-module. We can now compute the radical length of the module M and prove

the proposition.

Proof of Proposition. Let gi be a generator of Cpri . Then the various gi−1 with 1 6 i 6 l

generate rad(kG). We regard Mi as the quotient kCpri/(gi−1)ni , so the elements (gi−1)j

with 0 6 j 6 ni − 1 form a basis of Mi. Now let m = (n1 − 1) + · · · + (nl − 1). Since

any (m + 1)-fold product of the elements gi − 1 has to be zero in M , radm+1(M) = 0.

On the other hand, the element (g1 − 1)n1−1 ⊗ · · · ⊗ (gl − 1)nl−1 ∈ M is non-zero and

spans radm(M). It follows that the radical length of M is m+ 1.

To prove the last statement, without loss of generality we can assume that n1 6
pr1
2 .

We then consider the restriction of M to H = Cpr1 . Note that we have a vector space

isomorphism

M↓H ∼=
n2−1⊕
i2=0

· · ·
nl−1⊕
il=0

M1.

Since G acts componentwise, this is actually an isomorphism of kH-modules, and we

have kH-maps i : M1 →M↓H sending α to α⊗ 1⊗ · · · ⊗ 1 and r : M↓H →M1 sending

α⊗ (g2 − 1)i2 ⊗ · · · ⊗ (gl − 1)il to (−1)i2+···+ilα for 0 6 ik 6 nk − 1.

We can form the m-fold ghost f = (g1 − 1)n1−1 · · · (gl − 1)nl−1 on M . And one can

check that r ◦ f↓H ◦ i is ±(g1 − 1)n1−1 on M1, which is stably non-trivial. Hence f is

stably non-trivial and the ghost length of M is at least m + 1. Since this is also the

radical length of M , we have gl(M) = gel(M) = m+ 1.

Remark 2.4.12. We don’t know which of the lower bound and upper bound better ap-

proximates the ghost number in general, but we suspect that the lower bound is better.

We show in Section 2.4.7 that the upper bound can be refined by 1 for rank 2 abelian

p-groups Cpr × Cps , with pr, ps > 3. In particular, the lower bound we have here is the

exact ghost number for the group C3 × C3.
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2.4.4 Ghost number of the quaternion group Q8

In this section, we study the quaternion group Q8 = 〈ε, i, j | ε2 = 1, i2 = j2 = (ij)2 = ε〉
over a field k of characteristic 2. It has been shown in [19] that the ghost number of

kQ8 is 2, 3, or 4.

Proposition 2.4.13. Let k be a field of characteristic 2. Then there exists a stably

non-trivial double ghost in stmod(kQ8). Hence

3 6 ghost number of kQ8 6 generating number of kQ8 6 4.

Proof. We have a quotient map from Q8 to the Klein four group V that identifies ε with

1. We also write i and j for the generators of V . The rank one free kV -module can be

viewed as a kQ8-module, and we write kV for it. It has radical length 3, and we will

show that it admits a stably non-trivial double ghost, hence gl(kV ) = gel(kV ) = 3.

Right multiplication Ri+1 on kV by i+ 1 is a left kQ8-map, and we claim that it is

a ghost. To see this, consider the short exact sequence

0→ kV
i−→ kQ8 → kV → 0

of left kQ8-modules, where the kernel kV is generated by ε+ 1 in kQ8. It follows from

this sequence that ΩkV = kV and that ΩRi+1 = Ri+1.

Thus to show that Ri+1 is a ghost, we just need to check that it is stably trivial

on maps from k. Multiplication by i + 1 kills the socle of kV , which is generated by

1 + i+ j + ij, so this follows from Lemma 2.4.2(a).

Next we show that there is a non-trivial double ghost. For any map f : kQ8 → kV ,

the composite fi is zero, since ε+ 1 acts trivially on kV . Thus a kQ8-map kV → kV is

stably trivial if and only if it is zero, As a result, multiplication by (i+ 1)(j + 1) on kV

is stably non-trivial, and we get the desired double ghost.

It follows that the ghost number of kQ8 is at least 3. The nilpotency index of J(kQ8)

is 5, so the generating number of kQ8 is at most 4.

Remark 2.4.14. The map R(i+1)(j+1) = R1+i+j+ij : kV → kV constructed in the proof is

in fact the almost zero map with domain kV in stmod(kQ8). To see this, we consider the

inclusion rad(kV )→ kV . Since this map is not split-epi, its composition with the almost
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zero map γ : kV → kV factors through a projective module P . But P is also injective,

thus we can change γ by a map factoring through P to ensure that rad(kV ) ⊆ ker(γ).

Since kV/rad(kV ) ∼= soc(kV ) ∼= k and soc(kV ) is generated by the element 1+ i+j+ ij,

it must be that R1+i+j+ij is the almost zero map (up to a scalar factor). This gives

another proof that this map is stably non-trivial.

In the next section, we generalize the technique used here.

2.4.5 p-groups with cyclic normal subgroups

In Section 2.4.3, we produced ghosts using left multiplication by x−1 for abelian groups.

More generally, in Lemma 2.4.4, we saw that left multiplication by x− 1 for x a central

element produces a ghost. For a non-central element, in order to produce a left module

map, one must consider right multiplication, when this makes sense, and indeed we used

this technique in Section 2.4.4 to produce ghosts for Q8. However, it is not always true

that right multiplication by x−1 produces ghosts. Generalizing the known examples, we

show that if M is induced up from a cyclic normal subgroup, then right multiplication

by x− 1 on M is well-defined and is a ghost.

Theorem 2.4.15. Let Cpr be a cyclic normal subgroup of a p-group G, and let k be a field

of characteristic p. Let Mn be an indecomposable kCpr -module of dimension n, and write

M = Mn↑G. Then, for each x ∈ G, one can define the right multiplication map Rx−1

on M and it is a ghost. Moreover, if n 6 dp
r−1
2 e, then gl(M) = gel(M) = rad len M .

Note that for n = 1, we have M ∼= kH↓G, where H = G/Cpr and the restriction is

taken along the quotient map. Thus the ghosts in the previous section are examples of

this construction.

Proof. Let g be a generator of Cpr . We can identify Mn with the left submodule of kCpr

generated by (g − 1)p
r−n, and so we have a short exact sequence of kCpr -modules:

0→Mn → kCpr →Mpr−n → 0,

where Mpr−n is an indecomposable kCpr -module of dimension pr − n. Inducing up, we

get

0→Mn↑G
i−→ kG

p−−→Mpr−n↑G → 0. (2.4.1)
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The inclusion i identifies M = Mn↑G with the left submodule of kG generated by

(g− 1)p
r−n. Since Cpr 6 G is normal, this submodule is actually a sub-bimodule. Thus

the right multiplication map Rx−1 : M → M is well-defined and is a left kG-module

map, for each x ∈ G. We must show that it is a ghost.

Since (2.4.1) is in fact a short exact sequence of bimodules, Rx−1 is two-periodic as

a left kG-map, so it suffices to check that Rx−1 is left stably-trivial on maps from k and

Ω−1k. By Lemma 2.4.2, this is equivalent to socL(M) ⊆ ker(Rx−1) and im(Rx−1) ⊆
radL(M), where we use subscripts to indicate left and right socles and radicals. Clearly,

socR(M) ⊆ ker(Rx−1) and im(Rx−1) ⊆ radR(M). Now socL(kG) = socR(kG) ∼= k, so

socL(M) = socR(M) ∼= k, which gives the first inclusion. And one can also show that

radL(M) = radR(M), which gives the second inclusion.

To prove the last claim, let n 6 dp
r−1
2 e and assume that rad len M = l. We want to

construct an (l − 1)-fold ghost. Note that socL(M) = socR(M) = radl−1
R (M) = M(g1 −

1) · · · (gl−1−1) for some g1, . . . , gl−1 in G, so the (l−1)-fold ghost f := Rgl−1−1◦· · ·◦Rg1−1

takes M onto its socle. For any map h : kG → M , the composite hi is zero, since the

image of i is generated by (g− 1)p
r−n which acts trivially on M since n 6 pr − n. Thus

a map M →M is stably trivial if and only if it is zero, and so our (l− 1)-fold ghost f is

stably non-trivial. Thus l 6 gl(M) 6 gel(M) 6 rad len (M) = l, and we are done.

Remark 2.4.16. As in Remark 2.4.14, we can also see that f is non-trivial using the theory

of Auslander-Reiten triangles. There is a canonical inclusion j ofM intoMpr−n↑G = ΩM

induced from the kCpr -map Mn → Mpr−n, and one can show that the composite jf is

exactly the almost zero map out of M .

Note that any p-group G has a non-trivial center, hence a cyclic normal subgroup

Cp. Applying the theorem to the short exact sequence of groups Cp → G→ H, we get

Corollary 2.4.17. Let G be a p-group, and let k be a field of characteristic p. Then

1

2
rad len kG 6 ghost num kG 6 gen num kG < rad len kG,

when p is even, and

1

3
rad len kG 6 ghost num kG 6 gen num kG < rad len kG,

when p is odd.
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Proof. Choose a cyclic normal subgroup Cp of G, and let M = Mn↑G, where Mn is

an indecomposable kCp-module of dimension n = dp−1
2 e. Since rad len M = gl(M) 6

ghost num kG, we only need to show that 2(rad len M) > rad len kG for p even and

3(rad len M) > rad len kG for p odd. By (2.4.1), we know that

rad len M + rad len Mp−n↑G > rad len kG.

For p even, p− n = n, and so the result follows.

For p odd, p − n = n + 1. We will show that 2(rad len M) > rad len Mn+1↑G, and

the corollary will follow. There is a short exact sequence

0→M →Mn+1↑G →M1↑G → 0,

induced up from Cp-maps, and one sees that M1↑G is a submodule of M again by

inducing up the Cp-map k →Mn. It follows that

2(rad len M) > rad len M + rad len M1↑G > rad len Mn+1↑G,

and we are done.

We expect that for odd primes, the lower bound can be improved to an expression

that is generically close to (rad len kG)/2.

2.4.6 Ghost numbers of dihedral 2-groups

Our next goal is to study the dihedral 2-groups. We will show that the ghost number

and generating number of kD4q are both q + 1. Here we write D4q for the dihedral

2-group of order 4q, with q a power of 2:

D4q = 〈x, y | x2 = y2 = 1, (xy)q = (yx)q〉.

It has a normal cyclic subgroup C2q, generated by g = xy.

Since kC2q has ghost number q, which is realized by the ghost length of M =

kC2q/(g−1)q [19, Prop. 5.3], the ghost length of N = M↑D4q

C2q
is at least q in stmod(kD4q).

By Theorem 2.4.15, we actually have gl(N) = gel(N) = rad len N . Note that (xy)q ∈
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D4q is central of order 2 and that M ∼= k↑C2q

C2
, hence N = M↑D4q

C2q

∼= k↑D4q

C2

∼= kD2q↓
D2q

D4q
,

where the restriction is along the quotient map in the short exact sequence C2 → D4q →
D2q. It is not hard to see that the radical length of kD2q is q + 1 (see Remark 2.4.20)

and that its q-th radical is generated by ((y − 1)(x − 1))
q
2 = ((x − 1)(y − 1))

q
2 (which

makes sense for q = 1 since we have identified x = y in that case). Thus we have proved

the following consequence of Theorem 2.4.15:

Corollary 2.4.18. Let k be a field of characteristic 2. Then the ghost number of kD4q

is at least q + 1. In fact, gl(N) = gel(N) = q + 1, where N = k↑D4q

C2
.

The proof of Theorem 2.4.15 shows that an explicit q-fold ghost N → N is given by

R
((x−1)(y−1))

q
2
.

To get upper bounds for the generating numbers of dihedral 2-groups, we need clas-

sification theorems [4].

Let Λ = k〈X,Y 〉/(X2, Y 2) be the quotient of the free algebra on two non-commuting

variables. In kD4q, writing X = x−1 and Y = y−1, one can show that (XY )r−(Y X)r =

(xy)r − (yx)r for r a power of 2, and so kD4q
∼= Λ/((XY )q − (Y X)q) [4, Lemma 4.11.1].

In the isomorphism kD4q
∼= Λ/((XY )q − (Y X)q), we have implicitly assumed that

the characteristic of k is 2. However, for the classification we describe below, k can have

any characteristic, and we apply it in this generality in the next section.

Λ-modules are classifiable. Let W be the set of words in the direct letters a and b

and the inverse letters a−1 and b−1, such that a and a−1 are always followed by b or

b−1 and vice versa, together with the “zero length word” 1.

Given C = l1 · · · ln ∈ W, where each li is a direct or inverse letter, let M(C) be the

vector space over k with basis z0, . . . , zn on which Λ acts according to the schema

kz0
l1←− kz1

l2←− kz2 · · · kzn−1
ln←− kzn,

with X acting via a and Y acting via b. For example, if C = ab−1a−1, then the schema

is

kz0
a←− kz1

b−→ kz2
a−→ kz3
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and the module M(ab−1a−1) is given by

X 7→


0 0 0 0

1 0 0 0

0 0 0 1

0 0 0 0

 and Y 7→


0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0


with the matrices acting on row vectors on the right. Such a module is called a module

of the first kind. Clearly, M(C) ∼= M(C−1), where C−1 reverses the order of the

letters in C and inverts each letter.

Let C = l1 · · · ln be a word in W of even non-zero length that is not a power of a

smaller word, and let V be a vector space with an indecomposable automorphism φ on

it. An automorphism is indecomposable if its rational canonical form has only one block,

and the block corresponds to a power of an irreducible polynomial over k. Let M(C, φ)

be the vector space ⊕n−1
i=0 Vi, with Vi ∼= V , and let Λ act on M(C, φ) via the schema

V0

ln=id

44
V1

l1=φ
oo V2

l2=id
oo · · ·oo Vn−2

oo Vn−1
ln−1=id
oo .

Such a module is called a module of the second kind. It is clear that

M(C, φ) ∼= M(C−1, φ−1). And if C ′ differs from C by a cyclic permutation, say

l1 · · · ln 7→ lnl1 · · · ln−1, then M(C, φ) ∼= M(C ′, φ). Moreover, if V ′ is another vector

space with an indecomposable automorphism φ′, and V ∼= V ′ via an isomorphism that

commutes with φ and φ′, then M(C, φ) ∼= M(C ′, φ′).

Theorem 2.4.19 ([4, Section 4.11]). For any field k, the above provides a complete

list of all indecomposable Λ-modules, up to isomorphism. One of these modules has

(XY )q − (Y X)q in its kernel if and only if one of the following holds:

(a) The module is of the first kind and the corresponding word does not contain (ab)q,

(ba)q, or their inverses.

(b) The module is of the second kind and no power of the corresponding word contains

(ab)q, (ba)q, or their inverses.

(c) The module is M((ab)q(ba)−q, id). It is a module of the second kind and is the

projective indecomposable module for the algebra Λ/((XY )q − (Y X)q).
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Thus, when k has characteristic 2, a complete list of indecomposable kD4q-modules, up

to isomorphism, consists of the Λ-modules satisfying one of these three conditions.

Remark 2.4.20. The identification kD4q
∼= Λ/((XY )q − (Y X)q) yields that kD4q =

M((ab)q(ba)−q, id). It is not hard to see from the schema of M((ab)q(ba)−q, id) that it

has radical length 2q + 1. Here is an illustration for q = 2:

.

The module N = k↑D4q

C2
= kD4q ⊗kC2 k is the quotient of kD4q where we identify (xy)q

with 1, in other words, (xy)
q
2 = (yx)

q
2 , for q > 1. This is equivalent to (XY )

q
2 = (Y X)

q
2 .

Hence N = M((ab)
q
2 (ba)−

q
2 , id) and it follows that N has radical length q + 1.

We want to prove that the generating number of kD4q does not exceed q + 1. Note

that when q = 1, the dihedral group D4 is just C2 × C2, and the claim follows from

Theorem 2.4.9, so we assume that q > 2 from now on unless otherwise stated.

Now let M be an indecomposable kD4q-module. By Theorem 2.4.19, it corresponds

to a word satisfying one of the conditions (a), (b) or (c). Then soc(M) contains the sub-

module spanned by the vector spaces at positions of the form b−1a or a−1b (interpreted

cyclically if M is of the second kind). Such a position exists if M is of the second kind

since the condition that the word is not a power of a smaller word forces the word to con-

tain both direct and inverse letters. However, such positions are removed in M/soc(M),

so the indecomposable summands of M/soc(M) are of the first kind and correspond to

words not containing b−1a or a−1b.

Similarly, the indecomposable summands of rad(M) are of the first kind and cor-

respond to words not containing ba−1 or ab−1. It follows that the indecomposable

summands of rad(M/soc(M)) are of the first kind and correspond to words not contain-

ing b−1a, a−1b, ba−1 or ab−1. Thus the words must consist entirely of direct or inverse

letters. But since M(C) ∼= M(C−1), we can assume that the words only contain direct

letters. By (a), the possible words are (ab)q−1a, (ba)q−1b, or subwords of these. And we

can prove



Ghost Numbers of Group Algebras 49

Lemma 2.4.21. Let M be a kD4q-module of the first kind, with q > 2. If M corresponds

to a word that only contains direct letters, then its generating length is less than or equal

to q.

Proof. We are going to show that

gel(M((ab)ra)) 6 q and gel(M((ab)r)) 6 q

for 0 6 r 6 q − 1, the case of words starting with b being similar.

Since D4q is a 2-group, the generating length of a module is always no more than

its radical length, hence its dimension. So, for any word C, gel(M(C)) 6 dimM(C) =

|C|+ 1, where |C| denotes the number of letters in C. Thus we are done if r 6 q/2− 1.

To handle r > q/2, we temporarily introduce the following notation for modules

with symmetry under reflection when exchanging X with Y . For a word u, write u′ for

the inverse word with all as and bs exchanged, so for example (ab−1ab)′ = a−1b−1ab−1.

Write M ′(u) for M(uu′) and M ′(u, φ) for M(uu′, φ). Then kD4q = M ′((ab)q, id), and

one can see that Ω̃k = M ′((b−1a−1)q−1b−1) and Ω̃−2k = M ′((ab)q−1ab−1). It follows

that we have short exact sequences

0→ k → Ω̃−2k →M((ab)q−1a)⊕M((ba)q−1b)→ 0

and

0→ k → Ω̃k →M((ab)q−1)⊕M((ba)q−1)→ 0.

Since q > 2, one sees that gel(M((ab)q−1a)) = gel(M((ab)q−1)) 6 2, which handles the

case r = q − 1.

Now for r 6 q− 2, M((ab)ra) and M((ab)r) embed in M((ab)q−1). Thus their ghost

lengths are no more than the codimension plus two, and one can check that this is no

more than q when r > q/2.

In general, for a p-group G and a kG-module M , we know that M/rad(M) and

soc(M) are sums of trivial modules. Thus rad(M) is the fibre of a map M → ⊕k and

M/soc(M) is the cofibre of a map ⊕k →M . So

gel(M) 6 gel(rad(M)) + 1 and gel(M) 6 gel(M/soc(M)) + 1.
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Hence

gel(M) 6 gel(rad(M/soc(M))) + 2,

and so by Lemma 2.4.21 and the discussion preceding it, the generating number of kD4q

does not exceed q + 2. This is one more than the correct answer. We will show in

Proposition 2.4.26 that the module M((ab)
q
2
−1a) has length q, so we can’t improve this

bound by improving Lemma 2.4.21.

We will have to be a bit more clever in the construction to get the exact generating

number. The above process takes two steps to produce a module rad(M/soc(M)) whose

summands involve only direct letters, by removing “top” and “bottom” elements. We

next show that we can add top elements instead of removing them, with the same effect,

and as a result we will be able to do both steps at the same time.

Lemma 2.4.22. Let M be a non-projective indecomposable module, with corresponding

word C. There exists a short exact sequence

0→M →M ′ → ⊕k → 0,

where the indecomposable summands of M ′ are of the first kind and correspond to words

that contain no ab−1 or ba−1.

Proof. First suppose that M is of the first kind. If C contains no ab−1 or ba−1, we

simply set M ′ to be M . Otherwise, assume for example that C contains ab−1 and factor

the word C as L1L2, with L1 ending with a and L2 starting with b−1. Write z for the

basis element of M(C) corresponding to the vertex connecting L1 with L2, and write

zi for the corresponding basis element in M(Li), i = 1, 2. Then we have a short exact

sequence M → M(L1) ⊕M(L2) → k, where the first map takes z to z1 − z2 and does

the natural thing on the other basis elements, and the second map takes z1 and z2 to 1

in k and the other basis elements to 0. More generally, we can write C = L1L2 · · ·Ln,

broken at the spots a−1b and b−1a, and set M ′ = ⊕M(Li).

Now suppose that M = M(C, φ) is of the second kind, where φ : V → V is an

indecomposable automorphism. We can assume that C = a−1L b up to inverse and

cyclic permutation. Fix a basis v1, . . . , vn of V , where n = dim(V ). Let M ′′ = ⊕ni=1Mi,

with each Mi = M(C). We write wi and zi for the basis elements in Mi corresponding to

the beginning and end of the word C. Then we have a short exact sequence M(C, φ)→
M ′′ → V , where the first map sends vi to φ(wi) − zi for the first vertex and does the
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natural thing on the other vertices, and the second map sends wi to vi, zi to φ(vi) and the

other basis elements to 0. Here we regard V as a module with trivial action. Repeating

the process for a module of the first kind, we get a short exact sequence M ′′ →M ′ → ⊕k.

It is not hard to see that the cokernel of the composite M →M ′′ →M ′ also has a trivial

action, and we are done.

Note that the short exact sequence is represented by a map ⊕Ωk → M , and this

makes it possible to combine it with a map ⊕k →M .

Example 2.4.23. We illustrate an example for q = 2. Write kV for the module

M(a−1b−1ab, idk):

.

We begin by defining a cofibre sequence

Ωk → kV →M(a−1b−1ab)→ k.

To see what the maps are, first consider the module

X

which has kV as a codimension 1 submodule. We can choose a basis so that this becomes

M ′ = M(a−1b−1ab)

and the map M ′ → k takes both top points to k and has kernel kV . Then M ′ corresponds

to a word that does not contain ba−1 or ab−1, and the summands of M ′/soc(M ′) ∼=
M(a) ⊕M(b) correspond to words that only contain direct letters. Note that the map

from k to soc(M ′) factors through kV →M ′, so we can combine the two steps to get a

cofibre sequence

Ωk ⊕ k → kV →M(a)⊕M(b)→ k ⊕ Σk.
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By Lemma 2.4.21, the generating length of the third term is at most q, which is 2 in our

case.

Now we are ready to prove

Theorem 2.4.24. Let k be a field of characteristic 2. Then the generating number of

kD4q is at most q + 1, for all q > 1.

Proof. The case when q = 1 is dealt with in Theorem 2.4.9, so we prove the theorem for

q > 2.

Let M be a non-projective indecomposable module, with corresponding word C.

In the short exact sequence M → M ′ → ⊕k from Lemma 2.4.22, the indecomposable

summands of M ′ correspond to words that contain no ab−1 or ba−1. Hence the inde-

composable summands of M ′′ = M ′/soc(M ′) correspond to words of direct letters, and

gel(M ′′) 6 q.

We can form the octahedron

(⊕k)′

xx

φ

&&
M ′

��

// ⊕k

��

%%

M

::

$$

Ω−1M

M ′′ //

&&

W
xx

99

Ω−1(⊕k)′ ,

where (⊕k)′ is soc(M ′).

The proof will be finished once we show that gel(W ) = 1. Here W is the cofibre of

a map φ between direct sums of trivial modules. Such a map is the sum of an identity

map and a zero map. Hence W is a direct sum of trivial modules k and the modules

Ω−1k, so gel(W ) = 1.

Corollary 2.4.25. Let k be a field of characteristic 2. Then the ghost number and

generating number of kD4q are q + 1 for all q > 1.
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We now summarize and generalize the idea in the proof of the Theorem. Suppose

that we start building an object Q from P , Y and Z by first using a triangle

P → X → Y → ΣP

and then using a triangle

Q→ X → Z → ΣQ.

Then we can form the octahedron

P
{{

φ

$$
X

��

// Z

��

##

Q

==

!!

ΣQ

Y //

##

W
zz

;;

ΣP .

Assume that P has length m, Y has length n, and Z has length l. Then the length of Q

does not exceed m+ n+ l. Indeed, n+ len(W ) bounds the length of Q. For example, if

φ is in Is for some positive integer, we have len(W ) 6 m+ l− s by Lemma 2.3.1. Or, if

φ = 0, then W ∼= Z ⊕ ΣP and the two steps can be combined. This is analogous to the

fact in topology that when a second cell is attached to a CW -complex without touching

a first cell, then they can be attached to the complex at the same time.

We finish this section by computing the generating lengths of the modules M(ab)r

and M((ab)ra), with r 6 q/2 − 1. Note that there is a category automorphism on

StMod(kD4q) induced by the group automorphism on D4q that exchanges x and y. It

exchanges the a’s and b’s in the word which an indecomposable module corresponds to

and preserves the ghost projective class. As a result,

gel(M((ab)r)) = gel(M((ba)r)) and gel(M((ab)ra)) = gel(M((ba)rb))

for D4q-modules with 0 6 r 6 q − 1.

Recall from Corollary 2.4.18 that the module M = kD2q in StMod(kD4q) has its gen-

erating length equal to its radical length q+1. By Proposition 2.4.6, gel(rad(M/soc(M)))

= gel(M)− 2 = q − 1. Note that M = M((ab)l+1(a−1b−1)l+1, id), where l = q/2− 1, so

rad(M/soc(M)) ∼= M((ab)l) ⊕M((ba)l). Then, since exchanging a’s and b’s preserves
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the generating length,

gel(M((ab)l)) = gel(M((ba)l)) = q − 1.

It follows that

gel(M((ab)r) = 2r + 1 if r 6 l, and

gel(M((ab)ra) = 2(r + 1) if r 6 l − 1.

We need to be a bit trickier to handle the module M((ab)la).

Proposition 2.4.26. The kD4q-module M((ab)la) has generating length q, where l =

q/2− 1.

Proof. We have a triangle

Σk ⊕ k →M →M((ab)la)⊕M((ba)lb),

where the map Σk →M is a surjection.

Hence gel(M((ab)la)⊕M((ba)lb)) > q. Since its radical length is q, this must be an

equality. Then, using the symmetry again,

gel(M(ab)la) = gel(M(ba)lb) = q.

2.4.7 Ghost number of Cpr × Cps

Let G = Cpr × Cps . In this section we show that

the ghost number of kG 6 the generating number of kG 6 pr + ps − 3

and give the exact result when pr is 3 or 4. Note that a general upper bound for the

generating number for a p-group is given by the radical length of kG minus 1 (Theo-

rem 2.4.1). This gives pr + ps − 2 for the group Cpr × Cps , and our result refines this

upper bound by 1. To keep the indices simple, we give a detailed proof for the group

C3 × C3 at the prime 3, and we indicate how to modify the proof to cover the general

case. We are going to show that the composite of any three ghosts is stably trivial for

the group C3 × C3, using Theorem 2.4.19.
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Here is an overview of our strategy. Given a finitely generated projective-free module

N with radical length n and an l-fold ghost g : N → N1 in Mod(kG), where N1 is an

arbitrary projective-free module, we can form the following commutative diagram:

N

p1
��

g
// N1

N/radn−l(N)
p2
// N/socl(N).

h

OO

The l-fold ghost g factors through N/socl(N) by Corollary 2.4.3, and the canonical

projection N → N/socl(N) factors through N/radn−l(N) because radn−l(N) ⊆ socl(N).

If we have a good control over the modules N/radn−l(N) or N/socl(N), we can factorize

a long composite of ghosts as an l-fold ghost g : N → N1 followed by another composite

of ghosts f : N1 → N2, and check whether f is stably trivial on N/radn−l(N) or

N/socl(N). For example, we can take l to be n − 1, so that N/rad(N) is a sum of

trivial modules. Hence, if the map f is a ghost, the composite f ◦ g is stably trivial,

and so we have reproved that the generating length of N is at most its radical length

n (Theorem 2.4.1). If we want to improve the bound, we need to choose l smaller. We

will take l = n− 2.

The relevance of Theorem 2.4.19 is that there is an isomorphism k(Cpr × Cps) ∼=
k[X,Y ]/(Xpr , Y ps), where X = x − 1 and Y = y − 1, and x and y are the generators

of the cyclic summands. Under this isomorphism, rad(k(Cpr × Cps)) ∼= (X,Y ) and

rad2(k(Cpr × Cps)) ∼= (X2, XY, Y 2). Therefore k(Cpr × Cps)/rad2(k(Cpr × Cps)) ∼= Λ′,

where Λ′ = Λ/(XY, Y X) ∼= k[X,Y ]/(X2, Y 2, XY ) and Λ = k〈X,Y 〉/(X2, Y 2) is the

ring from Section 2.4.6. Thus when M is a k(Cpr × Cps)-module, M/rad2(M) will be

a Λ′-module. Up to isomorphism, the indecomposable Λ′-modules biject with the Λ-

modules of Theorem 2.4.19 satisfying conditions (a) or (b) for q = 1. Condition (c) is

excluded by the requirement that XY be in the kernel.

Our proof will use this classification, so we will make it more explicit. A module

satisfying condition (a) is of the first kind. If it has odd dimension, it is either the trivial

module k; the module M((b−1a)n) for some positive integer n, which we say has shape

“W”; or the module M((ab−1)n) for some positive integer n, which we say has shape

“M”. For example, the “M” module M((ab−1)3) looks like

.
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A module of the first kind with even dimension is one of the above with one end removed.

One can check that a module satisfying condition (b) of Theorem 2.4.19 corresponds

to the word b−1a, up to inverse and cyclic permutation. Recall that the additional data

one needs to specify are a vector space V with an indecomposable automorphism φ. Since

φ is indecomposable, one can choose a basis {v1, v2, . . . , vm} for V such that φ(vi) = vi+1

for i < m. Thus we can view such a module as a quotient of an “M” module, with a

relation that identifies the right bottom basis element with a linear combination of the

other bottom basis elements, as specified by φ(vm).

We point out that this is very similar to the classification of kV -modules given in [4,

Theorem 4.3.3], where k has characteristic 2.

Recall that the radical length of k(Cpr × Cps) is pr + ps − 1. If N is projective-free,

then its radical length n is at most pr + ps − 2, so we pick l = pr + ps − 4. Note that

N/rad2(N) and N/socl(N) are naturally Λ′-modules. And we have the following lemma,

which helps describe summands of N/socl(N).

Lemma 2.4.27. Let G = Cpr × Cps be an abelian p-group of rank 2 with generators x

and y, respectively, and let k be a field of characteristic p. Write X = x−1 and Y = y−1

in kG, and let l = pr + ps − 4. Suppose M is a kG-module containing elements z0, z2,

and z4 such that Y z0 − Xz2 and Y z2 − Xz4 are in socl(M). If ps > 3, then Xz0 and

Xz2 are in socl(M). Similarly, if pr > 3, then Y z2 and Y z4 are in socl(M).

Intuitively, this is saying that we cannot have a “W”-shape in the moduleM/socl(M).

In particular, only k, M(ab−1) andM((ab−1)2) can appear as indecomposable summands

of M/socl(M) if M is projective-free and pr, ps > 3. Note that to exclude a module like

M(a), one takes z2 = z4 = 0, so the “W” isn’t visible in this case.

Proof. Assume that ps > 3. To show that Xz0 ∈ socl(M), we need to show that it is

killed by radl(kG), which is generated by Xpr−1Y ps−3, Xpr−2Y pr−2 and Xpr−3Y ps−1

(where the last one is omitted if pr = 2). We compute

Xpr−1Y ps−3Xz0 = XprY ps−3z0 = 0,

Xpr−2Y pr−2Xz0 = Xpr−1Y ps−3Y z0 = XprY ps−3z2 = 0,
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and

Xpr−3Y ps−1Xz0 = Xpr−2Y ps−2Y z0 = Xpr−1Y ps−3Y z2 = XprY ps−3z4 = 0,

where we have made used of fact that Y z0 − Xz2 and Y z2 − Xz4 are killed by the

generators. Hence Xz0 ∈ socl(M). Similarly,

Xpr−1Y ps−3Xz2 = 0,

Xpr−2Y ps−2Xz2 = Xpr−1Y ps−3Y z2 = XprY pr−3z4 = 0,

and

Xpr−3Y ps−1Xz2 = Xpr−3Y ps−1Y z0 = 0.

Hence Xz2 ∈ socl(M). The other case is symmetrical.

We are now ready to prove the main theorem.

Theorem 2.4.28. Let G = C3 × C3 with generators x and y, respectively, and let k be

a field of characteristic 3. Then the ghost number of kG is 3.

Proof. Theorem 2.4.9 gives a lower bound of 3, so it suffices to show that the composite

of any three ghosts in Mod(kG) out of a finitely-generated module is stably trivial. As

we have explained, we consider the diagram

N

p1
��

g1
// N1

g2
// N2

g3
// N3

N/rad2(N)
p2

// N/soc2(N),

h

OO

where g1, g2, and g3 are ghosts in Mod(kG) and N , N1, N2, and N3 are projective-

free. Note that this diagram commutes in the module category. We will show that the

composite g3 ◦h◦p2 is stably trivial, by restricting to each indecomposable summand M

of N/rad2(N). We divide the summands M into four cases, and write j for the inclusion

map M → N/rad2(N).

Case 1: M is not of the form k, M(ab−1) or M((ab−1)2).
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We claim that soc(M) ⊆ ker(p2 ◦ j), hence p2 ◦ j factors through a sum of trivial

modules. Therefore, since g3 is a ghost, the composite g3 ◦ h ◦ p2 ◦ j is stably trivial.

We actually show that p−1
1 j((soc(M))) ⊆ soc2(N), which suffices, since p2 kills soc2(N).

Observe using the classification that since M is not k, M(ab−1) or M((ab−1)2), the

elements X(z0), X(z2), Y (z2) and Y (z4) span soc(M) as z0, z2, and z4 vary over elements

satisfying Y (z0) = X(z2) and Y (z2) = X(z4). Suppose that we have s ∈ p−1
1 j(soc(M)),

say p1(s) = j(X(z0)) for some z0 ∈ M satisfying the above relations. Since p1 is

surjective, we have z̃0, z̃2, and z̃4 ∈ N that project to j(z0), j(z2), and j(z4), respectively.

Then p1(Y (z̃0)) = p1(X(z̃2)) and p1(Y (z̃2)) = p1(Y (z̃4)). Since N is projective-free, its

radical length is at most 4, hence rad2(N) ⊆ soc2(N). Now we can apply Lemma 2.4.27

and see that X(z̃0) ∈ soc2(N). It follows that s ∈ soc2(N) because p1(s) = p1(X(z̃0)).

The other cases when p1(s) = j(Xz2), j(Y z2), or j(Y z4) are similar.

Case 2: M = M(ab−1).

The map p1 is surjective, so g3hp2 has its image in rad3(N3), using Corollary 2.4.3 and

the fact that the diagram commutes in Mod(kG). M has a basis {z,Xz, Y z} for some z

and the map g3hp2 sends z to an element of the form X2Y w1 +XY 2w2. After restriction

to M , g3hp2 factors through the injective module which is free on two generators v1 and

v2 via the maps sending z to X2Y v1 + XY 2v2, v1 to w1 and v2 to w2. Thus g3hp2 is

stably trivial on M .

Case 3: M = M((ab−1)2).

The module M((ab−1)2) has schema kz0
X←− kz1

Y−→ kz2
X←− kz3

Y−→ kz4. By consider-

ing the injective hull of M((ab−1)2), which is free on three generators, we see that a map

out of it is stably trivial if it sends z1 to XY 2w1 +X2Y w2 and z3 to XY 2w2 +X2Y w3

for some elements w1, w2, and w3. This is equivalent to z1 being sent to Xα and z3

being sent to Y α for some α in the 2nd radical.

To prove that this is the case, we form the following diagram:

Ω̃−2k
f

// N

p1
��

g1
// N1

g2
// N2

g3
// N3

M((ab−1)2)
j
// N/rad2(N)

hp2

55 .
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Writing g = g3 ◦ g2 ◦ g1, we will show below that we can choose z̃1 and z̃3 in N with

g(z̃1) = g3hp2j(z1), g(z̃3) = g3hp2j(z3), and Y z̃1 = Xz̃3.

Since Ω̃−2k is the free module on two generators u1 and u2 subject to the relation

Y u1 = Xu2, the last displayed equality allows us to construct the dotted map f , by

sending the generators to z̃1 and z̃3, respectively. We will now show that

g(z̃1) = Xα and g(z̃3) = Y α

for some α ∈ rad2(N3). Since g1 is a ghost, the composite g1f is stably trivial. It

follows that, modulo soc2(N1), g1(z̃1) = Xα′ and g1(z̃3) = Y α′ for some α′ ∈ N1. Since

g3g2 is a double ghost, it kills soc2(N1) and takes α′ into rad2(N3). Hence we can set

α = g3g2(α′).

We still need to pick the z̃1 and z̃3. First choose z̃1
′ and z̃3

′ in N that project to

j(z1) and j(z3) in M((ab−1)2), respectively. The difference Y z̃1
′ −Xz̃3

′ is in rad2(N),

say Y z̃1
′ − Xz̃3

′ = Y β − Xγ for some β and γ ∈ rad(N). We set z̃1 = z̃1
′ − β and

z̃3 = z̃3
′ − γ so that Y z̃1 = Xz̃3. By Corollary 2.4.3, g(β) = g(γ) = 0, hence

g(z̃1) = g(z̃1
′) = g3hp2j(z1) and g(z̃3) = g(z̃3

′) = g3hp2j(z3).

Case 4: M = k is trivial.

Then clearly g3 ◦h ◦ p2 is stably trivial when restricted to M , since g3 is a ghost.

Since we don’t require the modules N1, N2, and N3 to be finitely-generated in the

proof, we have actually proved a stronger result, a bound for the generating number,

giving:

Corollary 2.4.29. Let k be a field of characteristic 3. Then the generating number of

k(C3 × C3) is 3.

Remark 2.4.30. The arguments in this section go through for the group G = Cpr × Cps
with 2 < pr 6 ps, and we get that the generating number of kG is less than or equal

to pr + ps − 3. Theorem 2.4.9 gives a lower bound of
⌈
pr−1

2

⌉
+ ps − 1. In particular, if

pr = 3, the ghost number of kG is ps, and if pr = 4, the ghost number of kG is ps + 1.



Ghost Numbers of Group Algebras 60

We now indicate the modifications needed in the proof of the general case. Instead

of g2 being a ghost, we take it to be a (pr + ps − 5)-fold ghost. Then the map h has

domain N/socp
r+ps−4(N). In Case 1, one checks that p−1

1 j(soc(M)) ⊆ socp
r+ps−4(N).

In Case 2, the map g3hp2 sends z ∈M(ab−1) to an element of the form Xpr−1Y ps−2w1 +

Xpr−2Y ps−1w2. In Case 3, a map out of M((ab−1)2) is stably trivial if it sends z1 to Xα

and z3 to Y α for some α in the (pr + ps − 4)th radical. Case 4 is unchanged.

2.4.8 Possible ghost numbers for group algebras

In this Section, we classify group algebras with certain small ghost numbers, and also

put constraints on which ghost numbers can occur. Whenever we write kG, k can be

any field whose characteristic divides the order of G.

In [19] it is shown that the abelian groups G such that the ghost number of kG is 2

are C4, C2 × C2 and C5. The results of the previous section and Theorem 2.4.9 give a

complete list of abelian p-groups of ghost number 3:

Proposition 2.4.31. Let G be an abelian p-group. Then the ghost number of kG is 3

if and only if G is C7, C3×C3, or C2×C2×C2 if and only if the generating number of

kG is 3.

Below we will extend this to non-abelian p-groups, with one ambiguous group. We

first recall a consequence of Jennings’ formula which will also be useful in studying the

gaps in the possible ghost numbers.

Lemma 2.4.32 ([4, Thm. 3.14.6]). Let k be a field of characteristic p. If G is a group

of order pr, then

nilpotency index of J(k(Crp )) 6 nilpotency index of J(kG)

6 nilpotency index of J(k(Cpr)).

Note that the nilpotency index of J(k(Crp )) is r(p− 1) + 1.

Proposition 2.4.33. Let k be a field of characteristic p. If G is a group of order pr,

then the ghost number of kG is at least (r − 1)(p− 1) + 1.

Proof. The group G has a quotient H of order pr−1. By Theorem 2.4.15, rad len (kH) is

a lower bound for the ghost number of kG. Now by the previous lemma, rad len (kH) >

(r − 1)(p− 1) + 1, so we are done.
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Theorem 2.4.34. The following is a complete list of the p-groups G such that kG has

the specified ghost number:

1: the abelian groups C2 and C3;

2: the abelian groups C4, C2 × C2 and C5;

3: the abelian groups C7, C3 × C3 and C2 × C2 × C2, the dihedral group D8 of order

8, and possibly the quaternion group Q8, which has ghost number 3 or 4.

In each case, except possibly for Q8, the generating number equals the ghost number.

Proof. The case of ghost number 1 is the main result of [9].

A non-abelian p-group must have order pr for r > 3, so by Proposition 2.4.33 it must

have ghost number at least 3. Thus a p-group of ghost number 2 must be abelian, and

this case is proved in [19].

The only ways for (r−1)(p−1)+1 to equal 3 are pr = 8 or 9. The non-abelian groups

of order 8 are D8 and Q8, which are discussed in Corollary 2.4.25, Theorem 2.4.28 and

Corollary 2.4.29, and there are no non-abelian groups of order 9. The abelian case is

Proposition 2.4.31.

Next we observe that, for a fixed prime p, not all positive integers can be the ghost

number of some p-group. For example, since the generating hypothesis fails for p > 3,

the number 1 cannot be the ghost number of a p-group with p > 3. On the other hand,

the elementary abelian 2-group of rank l has ghost number l−1, so every positive integer

can be a ghost number at the prime 2. Here is a result giving gaps in the possible ghost

numbers at odd primes.

Theorem 2.4.35. Let p be an odd prime, and let k be a field of characteristic p. Write

(l1, l2, l3, · · · ) for the increasing sequence of integers that are ghost numbers of the group

algebras kG, with G being a p-group. Then l1 = p−1
2 ,

3(p− 1)

2
6 l2 = ghost number of Cp × Cp 6 2p− 3,

and min(p
2−1
2 , 2p− 1) 6 l3.



Ghost Numbers of Group Algebras II 62

Proof. We know that the ghost number of Cp is p−1
2 and that of Cp2 is p2−1

2 [19, Thm. 5.4].

And the ghost number of Cp×Cp is constrained by Theorems 2.4.9 and Remark 2.4.30:

3(p− 1)

2
6 ghost number of Cp × Cp 6 2p− 3.

By Proposition 2.4.33, the groups of order pr with r > 3 have ghost numbers at least

2p− 1. Comparing these numbers, we get

p− 1

2
6 2p− 3 6 min(

p2 − 1

2
, 2p− 1),

and the theorem follows.

Thus one sees that for large primes there are large gaps in the sequence of possible

ghost numbers.

Observe that when p > 5,

the ghost number of k(C3
p ) 6 3p− 3 6

p2 − 1

2
= the ghost number of kCp2 ,

where the first inequality uses Theorem 2.4.1. And by Theorem 2.4.9 and Proposi-

tion 2.4.33, the ghost number of k(Crp ) is no more than the ghost number of any p-group

with larger size. We conjecture that this is also true for groups of the same size, which

would imply that l3 is the ghost number of k(C3
p ) when p > 5. The following conjecture

should be viewed as the stabilized version of Lemma 2.4.32.

Conjecture 2.4.36. Let k be a field of characteristic p. If G is a p-group of order pr,

then

ghost number of k(Crp ) 6 ghost number of kG 6 ghost number of k(Cpr).



Chapter 3

Ghost numbers of group algebras

II
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3.1 Introduction

In this paper, we study several closely related invariants of a group algebra kG, where

G is a finite group, and k is a field whose characteristic p divides the order of G. To

describe these invariants, we work in the stable module category StMod(kG), which is

the triangulated category formed from the category of kG-modules by killing the maps

that factor through a projective. A map f in StMod(kG) is called a ghost if it induces

the zero map in Tate cohomology, or equivalently, if Hom(Ωik, f) = 0 for each i ∈ Z.

Our most basic invariant is the ghost number of kG, which is the smallest n such

that every composite of n ghosts in Thick〈k〉 is zero. Here Thick〈k〉 denotes the thick

subcategory generated by the trivial module. When there are no non-trivial ghosts in

Thick〈k〉 (so n = 1), we say that the generating hypothesis holds for kG. This is

motivated the Freyd’s generating hypothesis in stable homotopy theory [25], which is

still an open question. In a series of papers [9, 16, 18, 20] (with a minor correction made

below), it has been shown that the generating hypothesis holds for kG if and only if

the Sylow p-subgroup of G is C2 or C3. However, computing the ghost number in cases

where it is larger than one has proven to be difficult. Some preliminary work was done

in [19], where the ghost numbers of cyclic p-groups were computed, and various upper

and lower bounds were obtained in other cases. Substantial progress was made in our

previous paper [23], where we computed the ghost numbers of k(C3 × C3) and other

algebras of wild representation type, as well as the ghost numbers of dihedral 2-groups,

the first non-abelian computations.

In this chapter, we extend the past work in two different ways. Our initial motivation

was to produce the first computations of ghost numbers for non-p-groups. For a p-group,

Thick〈k〉 coincides with stmod(kG), the full subcategory of finitely generated modules,

which allows one to use induction from a subgroup to produce ghosts in Thick〈k〉. But

for a general p-group, Thick〈k〉 is usually a proper subcategory of stmod(kG), which

makes things more delicate. Nevertheless, we obtain a variety of exact computations

of ghost numbers in this setting, e.g., for all dihedral groups at all primes, as well as

new bounds. One of our new techniques is to produce ghosts for kG by inducing up

a ghost from a subgroup and then projecting onto the principal block. We show that

this composite is faithful, and so when Thick〈k〉 coincides with the principal block of

stmod(kG), we are able to use this technique to study the ghost number of kG. As an

example, we prove that the ghost number is finite in this situation. Our main results on

ghost numbers are described in the detailed summary below.
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Our work on non-p-groups led us to realize the importance of another invariant in

this setting, which is the simple ghost number, a concept suggested in [12]. A simple

ghost is a map f such that Hom(ΩiS, f) = 0 for each simple module S and each i ∈ Z,

and the simple ghost number of kG is the smallest n such that every composite of

n simple ghosts in stmod(kG) is trivial. The point here is that stmod(kG) is the thick

subcategory generated by the simple modules, so this is exactly analogous to the ghost

number, with the trivial module k replaced by the set of all simple modules. Moreover,

for a p-group, k is the only simple module, so the two notions coincide. In turns out

that there is a close relationship between the simple ghost number of kG and the ghost

number of kP , where P is a Sylow p-subgroup of G, and by studying both invariants at

once we can make many more computations. Again, these are described in the detailed

summary below.

One of the most important techniques in our work is the use of induction and re-

striction, which brings us to the third and final invariant that we study in this paper. A

strong ghost is a map f whose restriction to every subgroup is a ghost, or equivalently,

such that Hom(Ωik↑GH , f) = 0 for each subgroup H of G and each i ∈ Z. The strong

ghost number of kG is the smallest n such that every composite of n strong ghosts

in stmod(kG) is trivial. This follows the same pattern as above, since stmod(kG) is the

thick subcategory generated by the test objects k↑GH . Unlike the other invariants, one

can show that the strong ghost number of kG equals the strong ghost number of kP , and

so it suffices to study p-groups. Below we summarize our computations of and bounds

on strong ghost numbers.

The overall organization of the paper is as follows. In Section 3.2, we introduce

general concepts that will be of use in the rest of the paper and recall some background

material on modular representation theory. Sections 3.3, 3.4 and 3.5 study both the ghost

number and the simple ghost number, and are distinguished by the assumptions placed

on the group: In Section 3.3, we assume that the Sylow p-subgroup of G is normal.

In Section 3.4, we assume that Thick〈k〉 coincides with the principal block. And in

Section 3.5, we assume that the Sylow p-subgroup is cyclic. Finally, in Section 3.6, we

study the strong ghost number.

Note that there is some overlap in the assumptions made in Sections 3.3, 3.4 and 3.5.

For example, in Section 3.4.1 we study groups whose Sylow p-subgroup is a direct factor,

and these groups satisfy the assumptions of Sections 3.3 and 3.4. This includes the case of

p-groups. And in Section 3.5.1, we study groups with a cyclic normal Sylow p-subgroup,
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and these satisfy the assumptions of all three sections. In general, the assumptions made

are independent, except that Sunil Chebolu and Jan Mináč have an unpublished proof

that when the Sylow p-subgroup is cyclic, Thick〈k〉 coincides with the principal block.

(This may be one of those results that is “known to the experts”.)

We now summarize the main results of each section in more detail. In Section 3.2.1,

working in a general triangulated category, we define the Freyd length and Freyd number

with respect to a set P of test objects. The Freyd number generalizes the ghost number,

simple ghost number and strong ghost number defined above. We also recall the closely

related concept of length with respect to a projective class, and we prove general results

about both of these invariants. In Section 3.2.2, we recall the basics of the stable

module category, and in Section 3.2.3 we formally introduce ghosts and simple ghosts,

specializing the Freyd length and Freyd number to these two situations.

In Section 3.3 we assume that our group G has a normal Sylow p-subgroup P . Under

this assumption, in Section 3.3.1 we show that a map in StMod(kG) is a simple ghost if

and only if its restriction to P is a ghost, and show that the simple ghost number of kG is

equal to the ghost number of kP . It follows that when P is normal, the simple generating

hypothesis holds if and only if P is C2 or C3. (We don’t have a characterization of when

the simple generating hypothesis holds in general, but we do know that it does not

depend only on the Sylow p-subgroup. See Section 3.5.2.) In Section 3.3.2, we apply

this result to the group A4 at the prime 2, deducing that the simple ghost number is 2

and that the ghost number is between 2 and 4. We also give an example of a ghost for

A4 whose restriction to the Sylow p-subgroup is not a ghost.

In Section 3.4, we focus on groups whose principal block is generated by k in the

sense that stmod(B0) = Thick〈k〉 (or, equivalently, StMod(B0) = Loc〈k〉). We show that

this holds when the Sylow p-subgroup P is a direct factor, in Section 3.4.1, using a result

that shows that there is an equivalence between stmod(kP ) and ThickG〈k〉. This last

result corrects an error in [20]; see the comments after Theorem 3.4.1. In Section 3.4.2,

we show that if stmod(B0) = Thick〈k〉, then the ghost number of kG is finite. We

prove this by using a comparison to the simple ghost number, which is finite for any

G. We conjecture that the ghost number is finite for general G. This is related to a

question proposed in [8]. (See Remark 3.4.8.) Still assuming that the principal block is

generated by k, we show that the ghost number of kG is greater than or equal to the

ghost number of kP , by first showing that the composite of inducing up from P to G

followed by projection onto the principal block is faithful. In Section 3.4.3, working at
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the prime 2, we show that for a dihedral group D2ql of order 2ql, with q a power of 2

and l odd, the principal block is generated by k and the ghost number of D2ql is equal to

the ghost number of the Sylow 2-subgroup D2q, which was shown to be b q2 + 1c in [23].

By computing the simple ghost lengths of modules in non-principal blocks, we are also

able to show that the simple ghost number of D2ql is again b q2 + 1c.

Section 3.5 studies the case when the Sylow p-subgroup P is cyclic. In Section 3.5.1,

we assume that P is cyclic and normal, and show that every simple module in the

principal block is a suspension of the trivial module. It follows that stmod(B0) =

Thick〈k〉 and that a map in Thick〈k〉 is a ghost if and only if it is a simple ghost. Thus

the simple ghost number of kG, the ghost number of kG and the ghost number of kP

are all equal. Since P is a cyclic p-group, its ghost number is known [19]. In particular,

this allows us to compute the ghost numbers of the dihedral groups at an odd prime.

Combined with the results above, this completes the computation of the ghost numbers

of the dihedral groups, at any prime. The group SL(2, p) has a cyclic Sylow p-subgroup

P , but it is not normal. By studying the normalizer L of P and applying the results of

Section 3.5.1 to L, we show in Section 3.5.2 that the simple generating hypothesis holds

for SL(2, p) over a field k of characteristic p. Along the way, we find that there is an

equivalence stmod(kG) → stmod(kL), but that the simple generating hypothesis does

not hold for kL.

In Section 3.6 we study strong ghosts. We begin in Section 3.6.1 by showing that

the strong ghost number of a group algebra kG equals the strong ghost number of kP ,

where P is a Sylow p-subgroup of G. Then we compute the strong ghost numbers of

cyclic p-groups in Section 3.6.2. Finally, in Section 3.6.3, we show that the strong ghost

number of a dihedral 2-group D4q is between 2 and 3, with the upper bound being the

non-trivial result.

3.2 Background

In this section, we provide background material that will be used throughout the paper.

In Section 3.2.1, we define invariants of a triangulated category T which depend on a

set P of test objects, and prove general results about these invariants. In Section 3.2.2,

we recall some background results about the stable module category of a finite group.

In Section 3.2.3, we apply the general theory to two sets of test objects in the stable
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module category of a group, giving rise to invariants called the ghost number and the

simple ghost number.

3.2.1 The generating hypothesis and related invariants

We begin this section by stating the generating hypothesis with respect to a set of objects

in a triangulated category and defining invariants, the Freyd length and the length, which

measure the degree to which the generating hypothesis fails. Motivated by this, we recall

the definition of a projective class. Then, working in a general triangulated category, we

study the relationship between the lengths (and Freyd lengths) of an object with respect

to different projective classes. We also compare lengths in different categories by using

the pullback projective class.

Let T be a triangulated category, and let P be a set of objects in T. The thick sub-

category generated by P, denoted Thick〈P〉, is the smallest full triangulated subcategory

of T that is closed under retracts and contains P. It is easy to see that P detects zero

objects in Thick〈P〉, i.e., if M ∈ Thick〈P〉 and [ΣiP,M ] = 0 for all P ∈ P and i ∈ Z, then

M ∼= 0. Here we write [−,−] for the hom-sets in T.

The generating hypothesis for the set of test objects P is the statement that P
detects trivial maps in Thick〈P〉, i.e., if f is a map in Thick〈P〉 and [ΣiP, f ] = 0 for all

P ∈ P and i ∈ Z, then f is the zero map [12].

When the generating hypothesis for P fails, there is a natural invariant which mea-

sures the degree to which it fails. Let I denote the class of maps such that [ΣiP, f ] = 0

for all P ∈ P and i ∈ Z, and write It for such maps in Thick〈P〉. The Freyd length

lenF
P(X) of an object X in Thick〈P〉 with respect to P is the smallest number n such that

every composite X → X1 → · · · → Xn of n maps in It is zero. The Freyd number

of T with respect to P is the least upper bound of the Freyd lengths of the objects in

Thick〈P〉. With this terminology, the generating hypothesis holds for P if and only if the

Freyd number of T with respect to P is 1.

It turns out to be fruitful to consider a related invariant, where none of the objects

are required to lie in Thick〈P〉. The length lenP(X) of an object X in T with respect to

P is the smallest number n such that every composite X → X1 → · · · → Xn of n maps

in I is zero, if this exists (which is the case when X ∈ Thick〈P〉). This is clearly at least

as big as the Freyd length, but has better formal properties which make it easier to work
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with. These properties are best expressed in terms of the projective class generated by

P. To motivate the definition, note that 〈P〉 detects the same maps in T as P does,

where 〈P〉 denotes the closure of P under retracts, sums, suspensions and desuspensions.

Moreover, it is easy to show ([21]) that P := 〈P〉 and I determine each other in the sense

of the following definition:

Definition 3.2.1. Let T be a triangulated category. A projective class in T consists

of a class P of objects of T and a class I of morphisms of T such that:

(i) P consists of exactly the objects P such that every composite P → X → Y is zero

for each X → Y in I,

(ii) I consists of exactly the maps X → Y such that every composite P → X → Y is

zero for each P in P.

(iii) for each X in T, there is a triangle P → X → Y → ΣP with P in P and X → Y

in I.

Our main examples will be projective classes of the form (〈P〉, I), which we call the

(stable) projective class generated by P.

Given a projective class (P, I), there is a sequence of derived projective classes

(Pn, In) [21]. The ideal In consists of all n-fold composites of maps in I, and X is in Pn
if and only if it is a retract of an object M that sits inside a triangle P →M → Q→ ΣP

with P ∈ P1 = P and Q ∈ Pn−1. For n = 0, we let P0 consist of all zero objects and I0

consist of all maps in T.

Extending the definition above to any projective class, we define the length lenP(X)

of an object X in T with respect to (P, I) to be the smallest number n such that every

map in In with domain X is trivial. The fact that each pair (Pn, In) is a projective

class implies that the length of X is equal to the smallest n such that X ∈ Pn. When

P = 〈P〉, we write lenP(X) as above.

We note that different sets of objects can generate the same projective class but

different thick subcategories, so the Freyd length depends on the choice of generating

set P, not just on the projective class 〈P〉 it generates.

The following lemma is a direct consequence of the definition of a projective class.

This idea is used in comparing the ghost length and the simple ghost length of a module.
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Lemma 3.2.2. Let T be a triangulated category, and let (P, I) and (Q,J ) be projective

classes on T. Then we have the following relationships:

• If M has finite length with respect to (P, I), then

lenPn(M) =

⌈
lenP(M)

n

⌉
.

• If Q ⊆ P, then

lenP(M) 6 lenQ(M).

• If Q ⊆ Pn, then

lenP(M) 6 n lenPn(M) 6 n lenQ(M).

Proof. To show lenPn(M) =

⌈
lenP (M)

n

⌉
, we actually need to prove two inequalities:

lenPn(M) 6

⌈
lenP(M)

n

⌉
and lenP(M) 6 n lenPn(M). (3.2.1)

For the second inequality, let lenPn(M) = m. Then M ∈ (Pn)m ⊆ Pmn, which means

that lenP(M) 6 mn. Equivalently, we can prove the inequality using the inclusion

Imn ⊆ (In)m, i.e., if every m-fold composite of n-fold composites of maps in I out of

M is trivial, then every mn-fold composite of maps in I out of M is trivial.

Using the inclusions the other way, i.e., (Pn)m ⊇ Pmn and Imn ⊆ (In)m, one can

prove that lenPn(M) 6
⌈
lenP(M)/n

⌉
.

The other inequalities in the lemma follow with similar proofs.

The analog of Lemma 3.2.2 for Freyd lengths is a bit more subtle because of the

need to take into account the appropriate thick subcategories. For example, if (〈P〉, I)

and (〈Q〉,J ) are projective classes and Q ⊆ P, then clearly I ⊆ J . But the inclusion

Thick〈Q〉 ⊆ Thick〈P〉 goes in the other direction, so in general there is no inclusion

between It and Jt.

Nevertheless, if we include assumptions which control the thick subcategories, then

most of the results go through. We simply work with (It)n instead of In. However, one

difference is that we only have an inclusion (It)mn ⊆ ((In)t)
m, rather than an equality,
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and as a result, we lose the first inequality from equation (3.2.1). In the next lemma,

we give a result which we will use later.

Lemma 3.2.3. Let T be a triangulated category, and let (〈P〉, I) and (〈Q〉,J ) be pro-

jective classes on T generated by sets P and Q. If P ⊆ Thick〈Q〉, Q ⊆ 〈P〉n and

M ∈ Thick〈P〉, then

lenF
P(M) 6 n lenF

Q(M).

Proof. Let m = lenF
Q(M). We must show that any composite M = M0 → M1 → · · · →

Mmn of maps in I with the Mi in Thick〈P〉 is zero. The inclusion P ⊆ Thick〈Q〉 tells

us that Thick〈P〉 ⊆ Thick〈Q〉, so these maps are in Thick〈Q〉. The inclusion Q ⊆ 〈P〉n
tells us that In ⊆ J . Thus the above composite is an m-fold composite of maps in

J ∩ Thick〈Q〉, and so is zero by the definition of m.

Consider a triangle

M ′ −→M −→M ′′ −→ ΣM ′

in T. We know that len(M) 6 len(M ′) + len(M ′′) by [21, Note 3.6]. We will prove the

analog for Freyd lengths.

Lemma 3.2.4. Let T be a triangulated category with a set of test objects P and It be

the class of maps in Thick〈P〉 that are trivial on P. Let M ′
α−→ M

β−→ M ′′ → ΣM ′ be a

triangle in T. If M ′ and M ′′ have finite Freyd lengths, then

lenF
P(M) 6 lenF

P(M ′) + lenF
P(M ′′).

Proof. Let n = lenF
P(M ′) and l = lenF

P(M ′′). We want to show that any map φ : M → N

in (It)n+l is trivial. Write φ as φ2φ1, where φ1 is in (It)n and φ2 is in (It)l. Then, since

lenF
P(M ′) = n, the composite φ1α is stably trivial and φ1 factors through M ′′:

M ′
α //M

β
//

φ1
��

M ′′

ψ}}

W

φ2
��

N.

Now since lenF
P(M ′′) = l, the composite φ2ψ is trivial and so φ is trivial as well.
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Now we explain how to compare lengths in different categories, using the pullback

projective class.

Definition 3.2.5. Let U : T → S be a triangulated functor between triangulated

categories, together with a left adjoint F : S → T that is also triangulated, and let

(P, I) be a projective class on S. We define

I ′ := {M → N in T such that UM → UN is in I} = U−1(I).

Then I ′ forms the ideal of a projective class on T with relative projectives

P ′ = {retracts of FP for P in P} = 〈F (P)〉.

The projective class (P ′, I ′) on T is called the pullback of (P, I) along the right adjoint

U [22]. It is the projective class on T generated by the class of objects F (P).

One readily sees that the following relationships hold, since F sends P into P ′ and

U sends I ′ into I.

Lemma 3.2.6. Suppose we are in the above situation and that M ∈ S and N ∈ T. Then

lenP(M) > lenP ′(FM),

and, if the functor U is faithful,

lenP ′(N) 6 lenP(UN).

3.2.2 The stable module category

Let G be a finite group, and let k be a field whose characteristic p divides the order

of G. The stable module category StMod(kG) is a quotient category of the module

category Mod(kG). For kG-modules M and N , the hom-set Hom(M,N) in StMod(kG)

is the quotient Hom(M,N)/PHom(M,N), where PHom(M,N) consists of the maps that

factor through a projective module. Then StMod(kG) is a triangulated category with

triangles coming from short exact sequences in Mod(kG). Two modules M and N are

said to be stably isomorphic if they are isomorphic in the stable module category, and

this holds if and only if their projective-free summands are isomorphic as kG-modules.
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We use the symbol ∼= for isomorphism as kG-modules, unless otherwise stated. The

desuspension ΩM of a module M is defined to be the kernel in any short exact sequence

0 −→ ΩM −→ Q −→M −→ 0,

where Q is a projective kG-module. Note that ΩM is well-defined in the stable mod-

ule category, and we denote by Ω̃M the projective-free summand of ΩM . We write

stmod(kG) for the full subcategory of finitely generated modules in StMod(kG). (More

precisely, we include all modules which are stably isomorphic to finitely generated kG-

modules.) We refer to [14] for more background on StMod(kG).

Now let P be a Sylow p-subgroup of G. We consider the adjunction

↑G : StMod(kP )� StMod(kG) : res = ↓P ,

with ↑G as a left adjoint. We quote the following important facts in modular represen-

tation theory for further use:

Lemma 3.2.7 ([4]). Let G be a finite group, let k be a field whose characteristic p

divides the order of G, and let P be a Sylow subgroup of G. Then the following hold:

(i) The restriction functor ↓P : StMod(kG)→ StMod(kP ) is faithful.

(ii) Each kG-module M is a summand of the module M↓P ↑G.

(iii) A kG-module Q is projective if and only if its restriction Q↓P is projective.

Theorem 3.2.8 (Mackey’s Theorem [4]). Let L and H be subgroups of G, and let V be

a kH-module. Then

(V ↑GH)↓L ∼=
⊕

s∈L\G/H

(sV )↓L∩sHs−1↑L.

Here sV = s⊗V is the corresponding k(sHs−1)-module for s ∈ G, and the sum is taken

over the double coset representatives.

3.2.3 Ghost lengths and simple ghost lengths in StMod(kG)

By the generating hypothesis on StMod(kG), we mean the generating hypothesis

with respect to the set {k} containing only the trivial module. Since Tate cohomology

is represented by k, the associated ideal G consists of ghosts in StMod(kG), i.e., maps
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which induce the zero map in Tate cohomology. Thus the generating hypothesis is the

statement that there are no non-trivial maps in Thick〈k〉 which induce the zero map in

Tate cohomology. The projective class (F ,G) generated by k has F = 〈k〉, summands of

direct sums of suspensions and desuspensions of k. We call (F ,G) the ghost projective

class. When we need to indicate the dependence on the group, we write (FG,GG).

For a module M ∈ Thick〈k〉, its ghost length gl(M) is defined to be its Freyd length

with respect to {k}, and the ghost number of kG is the Freyd number of StMod(kG)

with respect to {k}. With this terminology, the generating hypothesis is the statement

that the ghost number of kG is 1.

Since the restriction functor preserves the trivial module, we can induce up a (non-

trivial) ghost from a subgroup of G to get a (non-trivial) ghost of G. This provides a

very convenient tool when we study p-groups. However, the inducing up technique has

limited use for a general finite group, since the ghosts, when induced up, do not always

land in Thick〈k〉, which is often smaller than stmod(kG).

In general, the stable module category is generated by the set S of simple modules.

This suggests that we examine the projective class (S, sG) generated by S, which we

call the simple ghost projective class, and compare it to the ghost projective class.

Here S = 〈S〉, and the maps in sG are called simple ghosts. The simple gener-

ating hypothesis for kG is the generating hypothesis with respect to S. The Freyd

length (respectively number) with respect to S will be called the simple ghost length

(respectively number). For M ∈ stmod(kG), the simple ghost length is denoted by

sgl(M) = lenF
S (M). Note that while the ghost length is only defined for M ∈ Thick〈k〉,

the simple ghost length is defined for all M ∈ stmod(kG) since stmod(kG) = Thick〈S〉.
If G is a p-group, then S = {k}, so the simple ghost projective class and the ghost

projective class coincide.

Remark 3.2.9. The radical series of a kG-module M gives a construction of M using

simple modules, showing that lenS(M) is at most the radical length of M , since the pair

(Sn, sGn) is a projective class, as described in Section 3.2.1. Therefore,

sgl(M) = lenF
S (M) 6 lenS(M) 6 rad len (M) 6 rad len (kG).

This shows that the simple ghost number of kG is finite. In particular, for P a p-group,

the ghost number of kP is finite. In Conjecture 3.4.9 we assert that the ghost number

of kG is always finite, but this is an open question.
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In the last section of the paper, we will study another projective class on StMod(kG),

which is called the strong ghost projective class.

3.3 Groups with normal Sylow p-subgroups

In this section, we assume that our group G has a normal Sylow p-subgroup P . Under

this assumption, in Section 3.3.1 we show that the simple ghost number of kG is equal

to the ghost number of kP . In Section 3.3.2, we apply this result to the group A4 at

the prime 2, deducing that the simple ghost number is 2 and that the ghost number is

between 2 and 4.

3.3.1 The simple projective class as a pullback

In this section, we show that the simple ghost projective class on StMod(kG) is the pull-

back of the ghost projective class on StMod(kP ), under the assumption that the Sylow

p-subgroup P is normal in G. Then we show that simple ghost lengths in StMod(kG)

are the same as ghost lengths in StMod(kP ). The main result of this section should be

viewed as the stabilised version of the next lemma:

Lemma 3.3.1 ([1, Lemma 5.8]). Let k be a field of characteristic p, and let G be a finite

group with a normal Sylow p-subgroup P . Let M be a kG-module. Then rad(M)↓P =

rad(M↓P ). It follows that the radical sequence of M coincides with that of M↓P . In

particular, M is semisimple if and only if M↓P is.

We write (〈FP ↑G〉, res−1(GP )) for the pullback of (FP ,GP ) along the restriction

functor. Then, by Lemma 3.2.7(ii), we have FG ⊆ 〈FP ↑G〉. Equivalently, res−1(GP ) ⊆
GG, i.e., if a map in StMod(kG) restricts to a ghost in StMod(kP ), then it is a ghost.

(Note that we write ↓P for the restriction functor except when considering preimages, in

which case we write res−1.) We can describe res−1(GP ) more precisely when P is normal

in G.

Theorem 3.3.2. Let k be a field of characteristic p, and let G be a finite group with a

normal Sylow p-subgroup P . Then the projective classes (S, sG) and (〈FP ↑G〉, res−1(GP ))

on StMod(kG) coincide, and for M ∈ stmod(kG) and L ∈ stmod(kP ), we have

sgl(M) = gl(M↓P ) and gl(L) = sgl(L↑G).
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Hence

simple ghost number of kG = ghost number of kP.

In particular, the simple generating hypothesis holds for kG if and only if P ∼= C2 or

P ∼= C3.

The first claim of the theorem is saying that a map in StMod(kG) is a simple ghost

if and only if its restriction to P is a ghost.

Proof. We first show that both functors ↑G and res = ↓P preserve the test objects. The

containment res(S) ⊆ FP follows directly from Lemma 3.3.1. To see that 〈FP ↑G〉 ⊆ S,

by Lemma 3.3.1 it suffices to check that k↑G↓P ∼= ⊕k, and this is true by Mackey’s theo-

rem (Theorem 3.2.8). Finally, by Lemma 3.2.7(ii), we have inclusions S ⊆ 〈res(S)↑G〉 ⊆
〈FP ↑G〉, hence S = 〈FP ↑G〉. It follows immediately that sG = res−1(GP ), and so

sG↓P ⊆ GP . Note that we also have that GP ↑G ⊆ sG, using that res(S) ⊆ FP and that

↑G is right adjoint to restriction.

We now prove that sgl(L↑G) = gl(L), with the other equality following similarly.

Since the induction functor takes a non-trivial ghost in stmod(kP ) into a non-trivial

simple ghost in stmod(kG), we get sgl(L↑G) > gl(L) for L ∈ stmod(kP ).

To show that sgl(L↑G) 6 gl(L), we claim that the natural isomorphism

α : HomG(L↑G,M) → HomP (L,M↓P ) takes simple ghosts to ghosts. Indeed,

if g : L↑G → M is a simple ghost, then the morphism α(g) is the composite

L
η−→ L↑G↓P

g↓P−−→M↓P , and is a ghost. It follows that sgl(L↑G) 6 gl(L).

Remark 3.3.3. One can also consider the unstable projective classes generated by the

simple modules on StMod(kG) and StMod(kP ). We write (Su, sGu) for the unstable

projective class generated by the simple modules on StMod(kG) and (Fu,Gu) for the

unstable projective class generated by the trivial module on StMod(kP ). Here Su consists

of retracts of direct sums of simple modules in StMod(kG) and Fu consists of direct sums

of the trivial module in StMod(kP ).

For a projective-free kP -module L, the radical length of L is exactly the length

with respect to the projective class (Fu,Gu). And Lemma 3.3.1 says that if M is a

projective-free kG-module and L is a projective-free kP -module, then

lenSu(M) = rad len (M↓P ) and rad len (L) = lenSu(L↑G).
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Moreover, the projective classes (Su, sGu) and (〈Fu↑G〉, res−1(Gu)) are the same on

StMod(kG). Hence we see that Theorem 3.3.2 and Lemma 3.3.1 are stable and un-

stable versions of each other.

Remark 3.3.4. When the Sylow p-subgroup is not normal, there is no obvious relationship

between the simple ghost number of G and the ghost number of its Sylow p-subgroup,

or between their radical lengths. See Section 3.5.2 for more discussion.

3.3.2 The group A4 at the prime 2

In this section, we show that in general the restriction functor from a finite group G

to a Sylow p-subgroup P does not preserve ghosts. We also compute the simple ghost

number of kA4 at the prime 2 and give bounds on its ghost number.

Let G be A4, the alternating group on 4 letters, and set p = 2, so P = V , the

Klein four group, is normal in A4. It is known that ThickA4〈k〉 = stmod(kA4) [20]. For

convenience, we assume that k contains a third root of unity ζ, i.e., F4 ⊆ k. Then

k↑GV ∼= k ⊕ kζ ⊕ kζ̄ . Here kζ is the one-dimensional module with the cyclic permutation

(123) acting as ζ and elements of even order acting as the identity, and similarly for

kζ̄ . Note that by Lemmas 3.2.7(ii) and 3.3.1, these are all the simple kA4-modules,

i.e., S = {k, kζ , kζ̄}. By Theorem 3.3.2, a map restricts to a ghost in stmod(kV ) if and

only if it is a simple ghost in stmod(kA4). Since kζ � Ω̃ik for all i ∈ Z, the class of

kA4-modules F = 〈k〉 is strictly contained in S = 〈S〉, or equivalently, simple ghosts are

strictly contained in ghosts. Therefore, there exists a ghost in stmod(kA4) which does

not restrict to a ghost in stmod(kP ).

For a specific example, we consider the connecting map γ : kζ → Ωkζ in the

Auslander-Reiten triangle [4, Section 4.12]

Ω2kζ −→ E −→ kζ
γ−−→ Ωkζ

associated to the simple module kζ . Since γ is stably non-trivial, it is not a simple ghost.

But since kζ 6∈ F , the map is a ghost, by [16, Theorem 2.1].

We now compute the simple ghost number of kA4 and give bounds on the ghost

number. We are able to get an upper bound for the ghost number of A4, since the

simple modules have bounded ghost lengths.
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Proposition 3.3.5. Let k be a field of characteristic 2. Assume that k contains a third

root of unity ζ. Then

simple ghost number of kA4 = ghost number of kV = 2,

and

2 6 ghost number of kA4 6 4.

Proof. By Theorem 3.3.2, the simple ghost number of kA4 is equal to the ghost number

of kV , which is known to be 2 (see [19]).

Since stmod(kA4) = Thick〈k〉 and every simple ghost is a ghost, the ghost number

of kA4 is at least 2. On the other hand, there is a short exact sequence

Ω̃2k → Ω̃kζ ⊕ Ω̃kζ̄ → k

in mod(kA4) (see [4, Section 4.17]). It follows that S ⊆ F2. Thus, by Lemma 3.2.3, the

ghost number of kA4 is at most twice the simple ghost number.

Note that stmod(kA4) = Thick〈k〉. In the next section, we prove finiteness under a

weaker hypothesis.

3.4 Groups whose principal block is generated by k

In this section, we further our study of the ghost number of a group algebra kG by

making use of the fact that the thick subcategory Thick〈k〉 generated by k is contained

in stmod(B0), where B0 is the principal block of kG, and stmod(B0) consists of modules

in stmod(kG) whose projective-free summands are in the principal block B0. The reader

is referred to [1] and [4] for background on block theory.

We focus on the case in which Thick〈k〉 = stmod(B0). In Section 3.4.1, we show that

this holds when the Sylow p-subgroup A is a direct factor. In this situation, we prove

that stmod(kA) is equivalent to ThickG〈k〉, and use these results to show that the ghost

numbers of kA and kG agree.

In Section 3.4.2, we show that when Thick〈k〉 = stmod(B0), the ghost number of

kG is finite. The finiteness of the ghost number remains an open question without this
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hypothesis. We also show that in general the composite of functors

e0(−↑G) : StMod(kP )→ StMod(B0)

is faithful, where P is a Sylow p-subgroup of G and e0 is the principal idempotent, which

allows us to prove that the ghost number of kG is at least as large as the ghost number

of kP when Thick〈k〉 = stmod(B0). We quote Theorem 3.4.11 which provides conditions

equivalent to Thick〈k〉 = stmod(B0).

Finally, in Section 3.4.3, we use this material to compute the ghost numbers of the

dihedral groups at the prime 2. In addition, we give a block decomposition of each

dihedral group and compute its simple ghost number.

3.4.1 Direct products

In this section, we study the ghost number of certain direct products, making a slight

correction to a result in [20]. Let k be a field of characteristic p, and G = A × B with

A being a p-group, and the order of B being coprime to p. (That is, A is the Sylow

p-subgroup of G.) Write i : A→ A×B for the inclusion of A into G and π : A×B → A

for the projection onto A. Then πi = idA.

We will prove the following result. Recall that for a class P of objects, Loc〈P〉 denotes

the localizing category generated by P, i.e., the smallest full triangulated subcategory

that is closed under arbitrary coproducts and retracts and contains P.

Theorem 3.4.1. Let k be a field of characteristic p, and let G = A×B with A a p-group

and the order of B coprime to p. Then the projection π : G→ A induces a triangulated

functor π∗ : StMod(kA)→ StMod(kG) that preserves the trivial representation k, and it

restricts to triangulated equivalences

π∗ : StMod(kA)→ LocG〈k〉

and

π∗ : stmod(kA)→ ThickG〈k〉.

The inverse functors are the restriction functors. Moreover, the image of π∗ consists of

the kG-modules whose projective-free summands have trivial B-actions.
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This theorem corrects the statement of Lemma 4.2 in [20], which has StMod(kG) in

place of LocG〈k〉 and stmod(kG) in place of ThickG〈k〉. That statement is false whenever

B is non-trivial. The problem is that the restriction functor StMod(kG)→ StMod(kA)

is not full. For example, writing kB for the kG-module on which A acts trivially, note

that kB ∼= k↑GA. Then one can see that the dimension of HomG(kB, kB) is |B|, while the

dimension of HomA(kB↓A, kB↓A) is |B|2. The correction is simply to restrict attention

to LocG〈k〉. The uses of Lemma 4.2 in [20] can be replaced with the above theorem and

the fact that ThickG〈k〉 = stmod(B0) (Corollary 3.4.4 below), so all of the main results

of [20] are correct.

Proof of Theorem. We first note that the functor π∗ : Mod(kA) → Mod(kG) induced

by π : G → A passes down to the stable module categories. To prove this, it suffices

to show that if P is a projective kA-module, then π∗P is projective. Since πi = id,

the restriction of π∗P to A is P , and since A is the Sylow p-subgroup of G, it fol-

lows from Lemma 3.2.7(iii) that π∗P is projective. It is easy to see that the functor

π∗ : StMod(kA) → StMod(kG) is triangulated and preserves coproducts and the trivial

representation.

Let im(π∗) be the essential image of π∗ in StMod(kG). The modules in im(π∗) are

exactly those whose projective-free summands have trivial B-actions. It follows that π∗

is full and that im(π∗) is closed under coproducts. Since i∗π∗ = id, the functor π∗ is also

faithful. Thus π∗ induces a triangulated equivalence between StMod(kA) and im(π∗).

Because StMod(kA) = LocA〈k〉 and π∗ is triangulated, we get that im(π∗) is contained

in LocG〈k〉 and that im(π∗) is triangulated. Hence im(π∗) = LocG〈k〉, and we get the

triangulated equivalence π∗ : StMod(kA) → LocG〈k〉. Clearly, the restriction functor

i∗ : LocG〈k〉 → StMod(kA) on the localizing subcategory generated by k is inverse to π∗.

Restricting to compact objects, we get the equivalence π∗ : stmod(kA) → ThickG〈k〉,
since Thick〈k〉 consists of exactly the compact objects in Loc〈k〉 by [32, Lemma 2.2].

As a corollary, we can compute the ghost number of kG.

Corollary 3.4.2. In the same set-up as above, the following holds:

ghost number of kG = ghost number of kA,

In particular, the generating hypothesis holds for kG if and only if it holds for kA if and

only if A is C2 or C3.
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To show that Thick〈k〉 = stmod(B0), we compute the principal block idempotent

using the next formula:

Theorem 3.4.3 ([31, Theorem 1]). Let k be a field of characteristic p, let G be a finite

group, and let e0 =
∑
εgg be the principal block idempotent in kG with each εg in k.

Then

εg = |{(u, s) ∈ Gp ×Gp′ | us = g}| |Gp′ |−1

for a p-regular element g ∈ G, and εg = 0 if g is not p-regular.

We say that g is p-regular if its order is not divisible by p; otherwise it is said to be

p-singular; an exception is that the identity element 1 is both p-regular and p-singular.

We write Gp for the set of p-singular elements and Gp′ for the set of p-regular elements.

Corollary 3.4.4. Let k be a field of characteristic p. Let G = A×B, with A being the

Sylow p-subgroup of G. Then ThickG〈k〉 = stmod(B0) and LocG〈k〉 = StMod(B0).

The conditions ThickG〈k〉 = stmod(B0) and LocG〈k〉 = StMod(B0) are equivalent by

Theorem 3.4.11.

Proof. We compute that the principal idempotent e0 is 1
|B|(
∑

b∈B b), using Theorem 3.4.3.

Since be0 = e0 for each b ∈ B, the projective-free modules in stmod(B0) and StMod(B0)

all have trivial B actions. Thus, by Theorem 3.4.1, the claim follows.

One can also prove the corollary using Theorem 3.4.11.

Note that the only simple module in stmod(B0) is the trivial module k in this case.

Indeed, since A 6 G is normal, a simple module S has trivial A-action (Lemma 3.3.1);

and if S is in stmod(B0), then it has trivial B-action too, by Theorem 3.4.1. Hence S is

the trivial module k.

Remark 3.4.5. One can check that the algebra map kA → k(A × B)
e0−→ e0(k(A × B))

is an isomorphism. It induces the equivalence stmod(B0) → stmod(kA) with inverse

π∗. This also explains why we need to shrink the domain of the functor i∗ to get an

equivalence.

We combine the discussion in Section 3.3.1 and the results of this section in the next

proposition.



Ghost Numbers of Group Algebras II 82

Proposition 3.4.6. Let k be a field of characteristic p. Let G = A × B, with A being

the Sylow p-subgroup of G. Then, for M ∈ stmod(B0),

gl(M) = sgl(M) = gl(M↓A),

and for N ∈ stmod(kA),

sgl(N↑) = gl(N) = gl(e0(N↑)) = sgl(e0(N↑)).

Proof. Since the trivial module k is the only simple module in stmod(B0), gl(M) =

sgl(M) for M ∈ stmod(B0). The equalities sgl(M) = gl(M↓A) and sgl(N↑) = gl(N)

are from Theorem 3.3.2. That gl(N) = gl(e0(N↑)) for N ∈ stmod(kA) is a result of

Theorem 3.4.1, as one checks that the functor e0(−↑) is isomorphic to the equivalence

π∗ : stmod(kA)→ ThickG〈k〉. The last equality is a special case of the first.

Note that one can’t expect gl(N) = gl(e0(N↑)) for groups that aren’t direct products,

even when Thick〈k〉 = stmod(B0). For example, this fails for A4, using the discussion in

Section 3.3.2 and the fact that e0 = 1 in this case.

3.4.2 Finiteness of the ghost number and a lower bound

Let G be a finite group, let k be a field whose characteristic p divides the order of G, and

let P be a Sylow p-subgroup of G. In this section, assuming that Thick〈k〉 = stmod(B0),

we prove that the ghost number of kG is finite (Theorem 3.4.7) and is greater than or

equal to the ghost number of kP (Proposition 3.4.10).

Theorem 3.4.7. Let k be a field of characteristic p, and let G be a finite group with

Sylow p-subgroup P . Suppose that ThickG〈k〉 = stmod(B0). Then the ghost number of

kG is finite.

In particular, the theorem holds for any p-group G, where ThickG〈k〉 = stmod(B0) =

stmod(kG), recovering [19, Theorem 4.7]. Our proof follows the approach used in Propo-

sition 3.3.5 for the alternating group A4.

Proof. Recall that the simple ghost number of kG is finite (Remark 3.2.9). It then follows

that, since there are no non-zero maps between different blocks, the Freyd number of
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kG with respect to Q := S ∩ B0, the set of simple modules in the principle block, is

finite. On the other hand, since ThickG〈k〉 = stmod(B0) and Q is a finite set, we have

Q ⊆ Fn = 〈P〉n for some n, where P = {k}. It then follows from Lemma 3.2.3 that the

ghost number of kG is bounded above by n times the Freyd number of kG with respect

to Q, and thus is finite.

We call the Freyd number of kG with respect to Q the simple ghost number of

B0.

Remark 3.4.8. Note that each M ∈ Thick〈k〉 has finite ghost length. But we need to find

an universal upper bound to prove finiteness of the ghost number. One idea is to look at

the radical sequence as was done for p-groups in [19]. When ThickG〈k〉 = stmod(B0), the

simple modules that can appear in the radical sequence for M ∈ ThickG〈k〉 all have finite

ghost lengths. However, whether the ghost number is finite when ThickG〈k〉 6= stmod(B0)

remains open, since we cannot answer the following question proposed in [8]: does there

exist a simple module in the principal block with vanishing Tate cohomology? Indeed, if

there exists a simple module in stmod(B0) but not in ThickG〈k〉, and its Tate cohomology

does not vanish, then it can appear in the radical sequence of a module M ∈ ThickG〈k〉.
Hence the proof here does not apply to the case where ThickG〈k〉 6= stmod(B0).

We state the question in the general case as a conjecture:

Conjecture 3.4.9. Let G be a finite group, and let k be a field whose characteristic

divides the order of G. Then the ghost number of kG is finite.

Now we determine a lower bound for the ghost number of kG. Note that for a groupG

with subgroup H, the induction functor sends ghosts to ghosts and is faithful. However,

induction does not preserve Thick〈k〉 in general, so this technique is of limited use in

computing the ghost number of G. To try to remedy this, we can consider the composite

e0(−↑G) of induction with projection onto the principal block. This will provide us with

a ghost in ThickG〈k〉 if we assume that ThickG〈k〉 = stmod(B0).

Note that we have adjunctions

↑G : stmod(kH)� stmod(kG) : ↓H and e0(−) : stmod(kG)� stmod(B0) : j,

where j denotes the inclusion. We show that the composite e0(−↑G) is faithful in the

case where H is a Sylow p-subgroup.
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Proposition 3.4.10. Let k be a field of characteristic p, and let G be a finite group

with Sylow p-subgroup P . Then the functor

e0(−↑G) : stmod(kP )→ stmod(B0)

is faithful. In particular, if ThickG〈k〉 = stmod(B0), then

ghost number of kG > ghost number of kP.

We don’t know of a counterexample to the last inequality.

Proof. It suffices to show that the unit map

M −→ j(e0(M↑G))↓P
m 7−→ e0 ⊗m

of the composite adjunction is split monic.

It is well known that ↑G is both left and right adjoint to ↓P , with unit map η : M →
M↑G↓P sending m to 1⊗m, and counit map ε : M↑G↓P → M sending g ⊗m to gm if

g ∈ P and to 0 if g 6∈ P .

The unit map for the adjunction e0(−) : stmod(kG) � stmod(B0) : j is the natural

projection N → j(e0N) by left multiplication by e0. Since the stable module category

stmod(kG) decomposes into blocks, it is easy to check that e0(−) is also right adjoint to

j, with counit the natural inclusion j(e0N)→ N .

The composite

M → j(e0(M↑G))↓P →M↑G↓P
ε−→M

sends m to ε(e0⊗m). We show that it is an isomorphism. Since P is a p-subgroup of G

and the only possible non-zero coefficient εh for h ∈ P is ε1 = |Gp′ |−1 by Theorem 3.4.3,

one sees that ε(e0 ⊗ m) = ε1m. But ε1 is invertible in k, so the composite is an iso-

morphism. It follows that M → (e0(M↑G))↓P is split monic and the functor e0(−↑G) is

faithful.

It is clear that the composite e0(−↑G) preserves ghosts. Hence gl(e0(L↑G)) > gl(L)

for L ∈ stmod(kP ), and the ghost number of kG is greater than or equal to the ghost

number of kP .
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We quote the next theorem to end this section. It provides conditions for checking

whether ThickG〈k〉 = stmod(B0). Recall that a finite group is said to be p-nilpotent if

Gp′ , the set of p-regular elements of G, forms a subgroup.

Theorem 3.4.11 ([6, Theorem 1.4]). Let G be a finite group, and let k be a field of

characteristic p. Then Thick〈k〉 = stmod(B0) if and only if Loc〈k〉 = StMod(B0) if and

only if the centralizer of every element of order p is p-nilpotent.

3.4.3 Dihedral groups at the prime 2

Let G = D2ql be a dihedral group of order 2ql, where q is a power of 2 and l is odd, with

presentation D2ql = 〈x, y | xql = y2 = (xy)2 = 1〉. Let k be a field of characteristic 2.

In this section, we will determine the ghost number and simple ghost number of kD2ql

by analyzing the blocks. (See Theorem 3.5.7 for the ghost number of kD2ql at an odd

prime.)

We can compute the principal block idempotent of kD2ql using Theorem 3.4.3 and

the fact that l = 1 in k.

Lemma 3.4.12. The 2-regular elements of D2ql are exactly those in the subgroup Cl =

〈xq〉. The principal idempotent is e0 = 1 + xq + x2q + · · ·+ x(l−1)q.

We regard D2q as the subgroup of D2ql generated by xl and y, and so we have a

natural unital algebra map α : kD2q → kD2ql → e0kD2ql. Note that D2q is a Sylow

2-subgroup of D2ql.

Lemma 3.4.13. The algebra map α : kD2q → e0kD2ql is an isomorphism.

Proof. As an algebra, e0kD2ql is generated by e0x and e0y. Clearly, e0y = α(y) is in

the image of α. And since l is odd and e0x
q = e0, we see that e0x = e0x

kl for some

integer k. Hence the map α is surjective. Since e0kD2ql is projective as a kD2ql-module,

its dimension is at least 2q, which equals the dimension of kD2q, so α has to be an

isomorphism.

As a corollary, we can compute the ghost number of kD2ql.
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Corollary 3.4.14. The thick subcategory generated by k is the same as the principal

block,

ThickD2ql
〈k〉 = stmod(e0kD2ql),

and the ghost number of kD2ql is b q2 + 1c.

Proof. Since α is an isomorphism, it induces an equivalence

stmod(kD2q)→ stmod(e0kD2ql)

that sends M to e0(M↑D2ql

D2q
). The first statement follows from the facts that this equiv-

alence sends k to k and that ThickD2q〈k〉 = stmod(kD2q). It also follows that

the ghost number of kD2ql = the ghost number of kD2q.

The second statement then follows from [23, Corollary 4.25], which shows that the ghost

number of kD2q is b q2 + 1c.

So, in this case, the lower bound given by Proposition 3.4.10 is an equality.

We next consider the simple ghost number of kD2ql.

Remark 3.4.15. Note that the only simple module in the principal block is k,

by Lemma 3.4.13. Also, the inverse to the equivalence stmod(kD2q) → stmod(e0kD2ql)

is given by restriction. It follows that, for M ∈ stmod(e0kD2ql), we have

sgl(M) = gl(M) = gl(M↓D2q
).

To compute the simple ghost number of kD2ql, it remains to consider the non-

principal blocks. From now on, we assume that k contains an l-th primitive root of

unity ζ. Let Cql be the cyclic subgroup of D2ql generated by x. We will show that

inducing up is fully-faithful on each non-principal block, using the following lemmas.

It is not hard to compute the idempotent decomposition of 1 in kCql.

Lemma 3.4.16. The identity 1 ∈ kCql has an decomposition into orthogonal primitive

idempotents:

1 =

l−1∑
i=0

ei, with ei =

l−1∑
j=0

(ζixq)j .
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The block corresponding to ei has exactly one simple module ki, the one-dimensional

module on which xq acts as ζ l−i.

Proof. It is easy to check that the ei’s are orthogonal and idempotent, and that eiki = ki.

It is well known that the ki’s are a complete list of simple kCql-modules, so it follows

that the idempotents are primitive.

Since conjugation by y in D2ql takes e0 to e0 and ei to el−i for i > 0, we can deduce

the idempotent decomposition for kD2ql.

Lemma 3.4.17. The identity 1 ∈ kD2ql has a decomposition into orthogonal primitive

central idempotents:

1 = e0 +

l−1
2∑
i=1

e′i, with e′i = ei + el−i =
l−1∑
j=0

(ζixq)j +
l−1∑
j=0

(ζ l−ixq)j .

Moreover, the block corresponding to e′i has exactly one simple module, namely Si :=

ki↑
D2ql

Cql
. It follows that stmod(e′ikD2ql) = ThickD2ql

〈Si〉.

Proof. Clearly, the e′i’s are orthogonal central idempotents. They are primitive since

there are exactly (l+ 1)/2 simple kD2ql-modules [1, Theorem 3.2]. It follows that there

is exactly one simple module in each block.

Define Si to be ki↑
D2ql

Cql
= kD2ql ⊗Cql

ki, where ki is the simple kCql-module defined

in Lemma 3.4.16. With respect to the basis {1⊗ 1, y ⊗ 1} of kD2ql ⊗Cql
ki, it is easy to

check that Si is represented using the following matrices:

xl 7→

[
1 0

0 1

]
, xq 7→

[
ζ l−i 0

0 ζi

]
, and y 7→

[
0 1

1 0

]
.

And from this representation, one sees quickly that Si↓Cql
= ki ⊕ kl−i. The action of

y on Si exchanges ki and kl−i, hence, as kD2ql-modules, both ki and kl−i generate the

whole module Si. Thus Si is a simple module. It is also clear that the module Si is in

the block e′ikD2ql, and so stmod(e′ikD2ql) = ThickD2ql
〈Si〉.

We next provide a list of all the indecomposable kCql-modules. The result can be

found in [1, p. 14, 34]. Recall that for each 1 6 n 6 q there is a unique indecomposable



Ghost Numbers of Group Algebras II 88

kCq-module Mn of radical length n, and that these are all of the indecomposable kCq-

modules.

Lemma 3.4.18 ([1]). The modules ei(Mn↑Cql), for 1 6 n 6 q and 0 6 i < l, are a

complete list of the indecomposable kCql-modules.

Now we can show that the induction functor induces an equivalence between the

non-principal blocks of kCql and kD2ql.

Proposition 3.4.19. For i 6= 0, let Bi = eikCql be a non-principal block of kCql. Then

the composite of functors

stmod(Bi) −→ stmod(kCql)
↑
D2ql
Cql−−−−→ stmod(kD2ql)

is fully-faithful, hence induces an equivalence stmod(Bi)→ stmod(e′ikD2ql).

Proof. We begin by showing that ↑D2ql

Cql
is fully-faithful when restricted to stmod(Bi). Let

M := ei(Mn↑Cql) be one of the indecomposable kCql-modules described in Lemma 3.4.18,

and write N := Mn↑Cql . Using Mackey’s Theorem, we have M↑D2ql↓Cql
∼= ei(N) ⊕

y(ei(N)) = ei(N) ⊕ el−i(N), and the natural map M
η−→ M↑↓ ∼= ei(N) ⊕ el−i(N) is an

isomorphism onto ei(N).

Because ↑ is left adjoint to ↓, the following diagram commutes

HomCql
(M,M)

↑
//

η∗
))

HomD2ql
(M↑,M↑)

∼=
��

HomCql
(M,M↑↓).

By the discussion in the previous paragraph, η∗ is an isomorphism, and so ↑ is as well.

Since this is true for every indecomposable in stmod(Bi), it follows that the induc-

tion functor is fully-faithful when restricted to stmod(Bi), and induces a triangulated

equivalence between stmod(Bi) and its essential image. Since stmod(Bi) = ThickCql
〈ki〉

(Lemma 3.4.16) and ki↑ = Si, the essential image of stmod(Bi) is stmod(e′ikD2ql) =

ThickD2ql
〈Si〉 (Lemma 3.4.17), and the claim follows.

Remark 3.4.20. Note that the inverse of the equivalence is given by the composite of

restriction and then projection onto the block eikCql.
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We can now compute the simple ghost number of kD2ql.

Theorem 3.4.21. For M ∈ stmod(e′ikD2ql) with i 6= 0, we have

sgl(M) = sgl(M↓Cql
) = gl(M↓Cq

).

For M ∈ stmod(e0kD2ql), we have

sgl(M) = gl(M↓D2q
).

Hence the simple ghost number of kD2ql = the ghost number of kD2ql = b q2 + 1c.

Proof. We have equivalences

stmod(Bi)→ stmod(e′ikD2ql) and stmod(kD2q)→ stmod(e0kD2ql).

The equivalences preserve simple modules, hence radical lengths and simple ghost lengths.

Then, for M ∈ stmod(e′ikD2ql), we have sgl(M) = sgl(ei(M↓Cql
)) = sgl(el−i(M↓Cql

)) by

Proposition 3.4.19 and Remark 3.4.20. Since M↓Cql
= ei(M↓Cql

)⊕el−i(M↓Cql
), it follows

that

sgl(M) = sgl(M↓Cql
).

And by Theorem 3.3.2, sgl(M↓Cql
) = gl(M↓Cq

).

For M ∈ stmod(e0kD2ql), we have seen in Remark 3.4.15 that

sgl(M) = gl(M) = gl(M↓D2q
).

Since the ghost number of Cq is bq/2c (Lemma 3.6.5), and the ghost number of D2ql

is b q2 + 1c [23, Corollary 4.25], it follows that the simple ghost length is maximized by

sgl(M) for some M ∈ stmod(e0kD2ql), and that the simple ghost number of kD2ql equals

its ghost number.

3.5 Groups with cyclic Sylow p-subgroups

We consider a group G with a cyclic Sylow p-subgroup P in this section. When the

Sylow p-subgroup is normal, we know from Section 3.3.1 that simple ghost lengths

can be computed by restricting to P . We show in Section 3.5.1 that, when P is also
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cyclic, the simple ghost length of a module in the principal block is equal to its ghost

length and that the finitely generated modules in the principal block are exactly those in

Thick〈k〉. We use this to compute the ghost numbers of dihedral groups at odd primes.

In Section 3.5.2, we study the group SL(2, p) at the prime p, which has a cyclic Sylow

p-subgroup which is not normal. Nevertheless, by restricting to the normalizer L of P ,

we are able to show that the simple generating hypothesis holds for SL(2, p) for any p,

even though it fails for L and P when p > 3.

3.5.1 The case of a cyclic normal Sylow p-subgroup

Let k be a field of characteristic p, and let G be a finite group with cyclic Sylow p-

subgroup Cpr . We assume that k is algebraically closed and that Cpr is normal in G.

Since P 6 G is normal, Theorem 3.3.2 says that

sgl(M) = gl(M↓P )

for M ∈ stmod(kG). In this section, using that P is in addition cyclic, we are going to

show that

sgl(M) = gl(M)

for M ∈ stmod(B0), as we found for direct products in Proposition 3.4.6.

Our approach is as follows. We will show that all simple modules in the princi-

pal block StMod(B0) are suspensions of the trivial module k. Hence the simple ghost

projective class and the ghost projective class coincide when both are pulled back to

StMod(B0). It then follows that Thick〈k〉 equals stmod(B0) and that for M in stmod(B0),

its ghost length is the same as its simple ghost length.

We say that a kG-module M is uniserial if the successive quotients in the radical

sequence associated to M are simple. Note that this is equivalent to the successive

quotients in the socle sequence associated to M being simple.

An important fact about the representations of G when its Sylow p-subgroup is

normal and cyclic is that the indecomposable modules are uniserial:

Theorem 3.5.1 ([1, pp. 42–43]). Let G be a finite group, and let k be a field of character-

istic p. Assume that the Sylow p-subgroup P of G is normal and cyclic. Then there are
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finitely many indecomposable kG-modules. Every indecomposable module M is uniserial

and is characterised by its radical length and the simple module M/rad(M).

Recall that in general there is a bijection between indecomposable projective kG-

modules and simple kG-modules given by the assignment that sends a projective mod-

ule Q to its radical quotient Q/rad(Q) [1, Theorem 5.3]. The inverse sends a simple

module to its projective cover, i.e. the unique indecomposable projective module that

surjects onto it. Also note that for a projective kG-module Q, we have an isomorphism

Q/rad(Q) ∼= soc(Q) [1, Theorem 6.6].

When P = Cpr 6 G is cyclic and normal, we can say more.

Lemma 3.5.2. Let G be a finite group with cyclic normal Sylow p-subgroup P = Cpr ,

let k be a field of characteristic p, and let Q be the projective cover of the trivial module

k. If S is a simple module, then Q⊗ S is its projective cover.

Proof. First note that Q ⊗M is projective for any kG-module M [1, Lemma 7.4], so

Q⊗ S is projective.

To see that Q⊗ S is indecomposable, first note that S ∼= k⊗ S ⊆ soc(Q⊗ S). Since

Q ⊗ S is projective, so is its restriction to P , by Lemma 3.2.7(iii). Since projective

kP -modules are free, this restriction must have rank dimS and socle k⊕ dimS . Then, by

Lemma 3.3.1, the dimension of soc(Q⊗ S) must also be dimS, and so we actually have

S ∼= soc(Q⊗ S). Thus Q⊗ S is indecomposable.

We have seen that Q ⊗ S is an indecomposable projective, and it comes with a

surjection onto S, so it must be the projective cover of S.

We continue to write Q for the projective cover of the trivial module k. The proof

above shows that Q↓kCpr
= kCpr . It follows that the radical layers of Q are all 1-

dimensional. Now, let W be the 1-dimensional simple module rad(Q)/rad2(Q). We

show that W ∼= Ω̃2k.

Lemma 3.5.3. The module W is isomorphic to the double desuspension of the trivial

module k, i.e., W ∼= Ω̃2k. Moreover, each composition factor of Q is a tensor power

W⊗n of the module W .

Proof. The map Q⊗W →W lifts through the quotient map π : rad(Q)→W and gives

a map f : Q⊗W → rad(Q). Since ker(π) = rad2(Q) is the unique maximal submodule



Ghost Numbers of Group Algebras II 92

of rad(Q), the map f is surjective. As we saw for Q, the radical layers of Q ⊗W are

also all 1-dimensional, so Q and Q⊗W have the same radical length. Since the radical

length of rad(Q) is one less than that of Q⊗W , the composite

W → Q⊗W f−→ rad(Q)

is zero, where the map W → Q⊗W is the inclusion of the last radical (which equals the

socle) of Q⊗W . By comparing dimensions, one sees that this is a short exact sequence.

And since rad(Q) ∼= Ω̃k, we have W ∼= Ω̃2k.

To see that the composition factors of Q are W⊗n, first note that

radn(Q)/radn+1(Q) ∼= radn−1(Q⊗W )/radn(Q⊗W )

for 1 6 n 6 pr−1. We get these isomorphisms by comparing the radical layers along the

surjective map f : Q⊗W → rad(Q), using that both Q and Q⊗W have 1-dimensional

layers. On the other hand, radn(Q ⊗ W ) ∼= radn(Q) ⊗ W , since tensoring with W

preserves the radical layers. Thus

radn−1(Q⊗W )/radn(Q⊗W ) ∼= (radn−1(Q)/radn(Q))⊗W.

Combining the two displayed isomorphisms and using that W = rad(Q)/rad2(Q), it

follows inductively that

radn(Q)/radn+1(Q) ∼= W⊗n.

Note that M ⊗W ∼= Ω̃2M for any module M . In particular, W⊗n ∼= Ω̃2nk. Also

note that, more generally, the indecomposable projective module Q⊗S is uniserial with

composition factors W⊗n ⊗ S. Thus the following lemma, together with Lemma 3.5.3,

implies that the modules W⊗n are all the simple modules in StMod(B0). (See also [1,

Exercise 13.3].) Thus the simple modules in StMod(B0) are all in F , and so simple

ghosts and ghosts agree in the principal block.

Lemma 3.5.4 ([1, Proposition 13.3]). Let k be a field of characteristic p, and let G be

a finite group with a cyclic normal Sylow p-subgroup Cpr . Then two simple modules S

and T are in the same block if and only if there exists a sequence of simple modules

S = S1, S2, · · · , Sm = T
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such that Si and Si+1 are composition factors of an indecomposable projective kG-

module, for 1 6 i < m.

We can use the above observations to compute the ghost number of kG.

Theorem 3.5.5. Let k be a field of characteristic p, and let G be a finite group with

a cyclic normal Sylow p-subgroup Cpr . Then ThickG〈k〉 = stmod(B0), and a map in

ThickG〈k〉 is a ghost if and only if its restriction to stmod(kCpr) is a ghost. As a result,

ghost number of kG = ghost number of kCpr = bpr/2c.

Moreover, let M be a uniserial kG-module of radical length l in ThickG〈k〉. Then

gl(M) = sgl(M) = min(l, pr − l).

In particular, using the natural terminology, the ghost number of kG is equal to the

simple ghost number of B0.

Proof. Since the simple modules in the principal block are contained in F , the pullback of

the simple ghost projective class to StMod(B0) coincides with the pullback of the ghost

projective class to StMod(B0). It follows that ThickG〈k〉 = stmod(B0), and gl(M) =

sgl(M) for a module M in stmod(B0). Since P 6 G is normal, sgl(M) = gl(M↓P ) for

M ∈ stmod(kG), by Theorem 3.3.2. Hence

gl(M) = sgl(M) = gl(M↓P ),

and we can compute the ghost lengths in kG by restricting to kCpr . The ghost lengths

in kCpr are computed in [19] (summarized in Lemma 3.6.5 below).

Remark 3.5.6. We give a concrete description of the module W [1, Exercise 5.3]. Let x

be a generator of the cyclic group Cpr . Then the one-dimensional module W is given by

the group homomorphism that sends g ∈ G to α(g) ∈ k×, where α(g) is the integer such

that gxg−1 = xα(g) and α(g) is its image under the canonical map Z→ k. If we further

compose this map with the self map on k× that takes α to αn, we get the module W⊗n.

Since α(g) lands in Fp ⊆ k, we always have W⊗(p−1) = k.

Let M be a non-projective uniserial module with radical length l > 2. We give an

explicit construction of a (weakly) universal simple ghost out of M . Let W ∗ be the dual
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of W , so W ⊗W ∗ ∼= k. We have

M/rad(M) ∼= (rad(M)/rad2(M))⊗W ∗ ∼= rad(M ⊗W ∗)/rad2(M ⊗W ∗). (3.5.1)

To see that the first isomorphism holds, note that it holds for the module Q, hence for

the modules Q⊗S with S simple. Since M is a quotient of one of the uniserial modules

Q ⊗ S, the isomorphism holds for M too. Recall by Theorem 3.3.2 that a map f is

simple ghost if and only if its restriction to a Sylow p-subgroup is a ghost. And for a

p-group P , we know that a ghost g : M → N has im(g) ⊆ rad(N) and soc(M) ⊆ ker(g)

by [19, Corollary 2.6]. Hence we consider the short exact sequences

0→ soc(M)→M
π−→M/soc(M)→ 0

and

0→ rad(M ⊗W ∗) i−→M ⊗W ∗ →M ⊗W ∗/rad(M ⊗W ∗).

Equation (3.5.1) implies that M/soc(M) ∼= rad(M ⊗W ∗). Now let g be the composite

M
π−→ M/soc(M) ∼= rad(M ⊗W ∗) i−→ M ⊗W ∗. Then im(g) ⊆ rad(N) and soc(M) ⊆

ker(g). By Lemma 3.3.1, the inclusions still hold when restricted to the normal Sylow

p-subgroup Cpr . Since Ω2k ∼= k in stmod(kCpr), the proof of [19, Proposition 2.1] shows

that g↓Cpr
is a ghost. So by Theorem 3.3.2, the map g is a simple ghost. One can check

that the fibre of g is soc(M)⊕Ω(M ⊗W ∗/rad(M ⊗W ∗)). Thus g is a weakly universal

simple ghost. This process can be iterated, producing composites M → M ⊗ (W ∗)n

of n simple ghosts which are nonzero for n < sgl(M). If M is in the principal block,

then these simple ghosts are ghosts, and so we have exhibited the ghosts predicted by

Theorem 3.5.5.

Theorem 3.5.7. Let D2ql be a dihedral group, with q a power of 2 and l odd. Let k be a

field of characteristic p which divides 2ql. If p is odd, then the ghost number of kD2ql is

bpr/2c, where pr is the p-primary part of l. If p is even, then the ghost number of kD2ql

is bq/2 + 1c.

Proof. If p is odd, then its Sylow p-group is cyclic and normal, so its ghost number is

given by Theorem 3.5.5. If p is even, then its ghost number was computed in Corol-

lary 3.4.14.
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3.5.2 The simple generating hypothesis for the group SL(2, p)

In this section, we show that the simple generating hypothesis holds for kG, where G is

the group SL(2, p) of order p(p−1)(p+1) and k is a field of characteristic p. Background

on representations of SL(2, p) can be found in [1, p. 14, 75]. We will also need to know

about representations of the normalizer N(P ) of P in SL(2, p), which illustrates the

results of Section 3.5.1.

We let P 6 G consist of all elements of the form

(
1 0

c 1

)
. P has order p and is a

Sylow p-subgroup of G. Let L = N(P ) be the normalizer of P in G. It consists of the

elements of the form

(
a 0

c′ 1/a

)
.

For i ∈ Z, consider the one-dimensional simple module Si of L given by the group

map L→ k× that sends

(
a 0

c′ 1/a

)
to ai. Note that S0 = k is the trivial representation.

Clearly, Si ∼= Sj if and only if i ≡ j (modulo p− 1) and Si ⊗ Sj ∼= Si+j . These are all of

the simple kL-modules, since there can be at most p−1 non-isomorphic indecomposable

projective kL-modules.

Applying the discussion in Section 3.5.1 to the group L, one obtains a kL-module

W ∼= Ω̃2k. By Remark 3.5.6, one can check that W ∼= S−2. It follows that kL has two

blocks, with the module Si in the principal block if and only if i is even. Moreover,

S−2i
∼= W⊗i ∼= Ω̃2ik, using Lemma 3.5.3, so all of the simple modules in the principal

block are suspensions of the trivial module k. By Theorems 3.3.2 and 3.5.5, the simple

ghost number of kL, the ghost number of kL and the ghost number of kP are all equal

to bp/2c.

We will show below that the simple ghost number of kG is actually 1, which is

surprising since the simple generating hypothesis fails for its subgroups P and L when

p > 3. It is even more surprising in view of the next result, which shows that stmod(kG)

and stmod(kL) are equivalent.

The Sylow p-subgroup P is cyclic of order p. Thus it is a trivial intersection subgroup

of G (gPg−1 ∩P is either P or trivial), and we have an equivalence between stmod(kG)

and stmod(kL) by restriction and inducing up:

Theorem 3.5.8 ([1, Theorems 10.1, 10.3]). Let G be a finite group, and let k be a field

whose characteristic divides the order of G. Let P be a Sylow p-subgroup of G and let
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L = N(P ) be the normalizer of P in G. Assume that P is a trivial intersection subgroup

of G. Then the restriction functor

stmod(kG)→ stmod(kL)

is an equivalence, with inverse given by the inducing up functor.

Note that the equivalence preserves the trivial representation k both ways, so the

ghost number of kG equals that of kL, which is bp/2c, by Theorem 3.5.5. But the

equivalence does not preserve simple modules.

By Theorem 3.5.8, to study the simple ghost number of StMod(kG), it is equivalent

to study the pullback projective class of (S, sG) on StMod(kL), i.e. the projective class

on StMod(kL) generated by the modules S↓L, for S a simple kG-module. We are going

to show that this projective class contains all finitely-generated modules. It will then

follow that the simple generating hypothesis holds for kG.

Theorem 3.5.9. Let G = SL(2, p). Every module in stmod(kG) is a direct sum of

suspensions of simple modules. In particular, the simple generating hypothesis holds for

kG.

Note that despite the equivalence of Theorem 3.5.8, we already observed that the

simple generating hypothesis does not hold for kL unless p 6 3.

Proof. By the remarks immediately preceding the theorem, it suffices to show that the

modules S↓L, with S a simple module in stmod(kG), generate everything in stmod(kL)

under direct sums, suspensions and retracts.

By Theorem 3.5.1, the indecomposable kL-modules are Mi,j , for 1 6 i 6 p and

0 6 j 6 p− 2, where Mi,j has radical length i and radical quotient M/rad(M) ∼= Sj . It

thus suffices to show that each module Mi,j is a suspension of some S↓L. For convenience,

in the following we will interpret the subscript j modulo p− 1.

There are p simple kG-modules [1, p. 14], and we write V1, . . . , Vp for their restrictions

to L. The kL-module Vi is uniserial of radical length i, with radical quotient Vi/rad(Vi) ∼=
Si−1 [1, p. 76], so Vi = Mi,i−1. Note that the module V1 is trivial and the module Vp

is projective. The case p = 2 follows immediately, since L = C2, and M1,0 = V1
∼= k
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and M2,0 = M2,1 = V2
∼= kC2 are the only two indecomposable kL-modules. Thus we

assume that p is odd.

Recall that W ∼= Ω̃2(k), hence − ⊗ W is isomorphic to the functor Ω2(−) on

stmod(kL). Since −⊗W preserves radical lengths and shifts the simple module Sj

to Sj−2, we have a stable isomorphism Ω2kVi ∼= Mi,i−1−2k for k ∈ Z. This gives all

modules Mi,j where i+ j is odd.

To get the modules Mi,j with i+ j even and 1 6 i < p, note that Vp ⊗ Sp−i−1 is the

projective cover of Vp−i. It follows that Ω̃Vp−i has radical length i and radical quotient

Si−2, i.e., Ω̃Vp−i ∼= Mi,i−2. Then we can apply Ω2k again to obtain the modules Mi,j

where i+ j is even.

In general, for which groups the simple generating hypothesis holds remains open.

3.6 Strong ghosts

In Section 3.6.1, we motivate and define strong ghosts and show that the strong ghost

number of a group algebra kG equals the strong ghost number of kP , where P is a

Sylow p-subgroup of G. In Section 3.6.2, we compute the strong ghost numbers of cyclic

p-groups. In Section 3.6.3, we show that the strong ghost number of a dihedral 2-group

D4q is between 2 and 3.

3.6.1 The strong ghost projective class

If H is a subgroup of a finite group G, then it is rare for the restriction functor from

G to H to preserve ghosts. For example, we saw in Section 3.3.2 that restriction from

the group A4 to its Sylow p-subgroup P does not preserve ghosts. As another example,

if G is a p-group and N 6 G is any normal subgroup, then the restriction from G to

N does not preserve ghosts, since k↑GN is indecomposable [1, Theorem 8.8] and is not a

suspension of k. Strong ghosts, which were introduced in [17], will by definition restrict

to ghosts.

Definition 3.6.1. Let G be a finite group, and let k be a field whose characteristic

divides the order of G. A map in StMod(kG) is called a strong ghost if its restriction

to StMod(kH) is a ghost for every subgroup H of G.
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It follows immediately that the restriction of a strong ghost to any subgroup is again

a strong ghost.

In [17], Carlson, Chebolu and Mináč study strong ghosts in Thick〈k〉, but their

results imply the following theorem, which says that most groups admit strong ghosts

in stmod(kG):

Theorem 3.6.2 (Carlson, Chebolu and Mináč [17]). Let G be a finite group, and let

k be a field whose characteristic divides the order of G. Then every strong ghost in

stmod(kG) is stably trivial if and only if the Sylow p-subgroup of G is C2, C3, or C4.

Note that in passing from ghosts to strong ghosts, we only get one more p-group,

namely C4, where all strong ghosts are stably trivial.

We next observe that strong ghosts form an ideal of a projective class and use this

in further study of strong ghosts.

Let H be a subgroup of G. We know that the restriction functor

↓H : StMod(kG)→ StMod(kH)

is both left and right adjoint to the induction functor

↑G : StMod(kH)→ StMod(kG).

The pullback (see Definition 3.2.5) of the ghost projective class along the restriction

functor consists of maps in StMod(kG) which restrict to ghosts in StMod(kH). The

intersection of such ideals when H ranges over all subgroups of G consists of exactly the

strong ghosts and again forms an ideal of a projective class: the relative projectives are

obtained from modules of the form k↑GH by closing under suspensions, desuspensions,

direct sums and retracts. This is the strong ghost projective class on StMod(kG)

and is denoted by (stF , stG). (In the terminology of [21], it is the meet of the pullbacks.)

Note that we can set P = {k↑GH | H is a subgroup of G} in StMod(kG), and this gen-

erates exactly the strong ghost projective class. Since every kG-module M is a summand

of M↓P ↑GP , where P is a Sylow p-subgroup of G, and induction is a triangulated functor,

we have that ThickG〈P〉 = stmod(kG). Hence, using the terminology in Section 3.2.1,

Theorem 3.6.2 is the statement that the generating hypothesis with respect to P holds

in StMod(kG) if and only if the Sylow p-subgroup of G is C2, C3, or C4.
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For M ∈ stmod(kG), we define the strong ghost length of M , denoted by stgl(M),

to be the Freyd length with respect to P, i.e., stgl(M) = lenF
P(M). The strong ghost

number of kG is defined to be the Freyd number of StMod(kG) with respect to P.

One can show that strong ghosts induce up to strong ghosts by proving the dual

statement, i.e., that relative projectives restrict to relative projectives. This follows from

Mackey’s Theorem (Theorem 3.2.8) and the observation that s(Ωn
Hk) ∼= Ωn

sHs−1k [17].

Since the induction functor is always faithful, one obtains the following result:

Proposition 3.6.3 (Carlson, Chebolu and Mináč [17]). Let G be a finite group, and

let k be a field whose characteristic divides the order of G. Let H be a subgroup of G.

If g is a stably non-trivial strong ghost in StMod(kH), then g↑G is a stably non-trivial

strong ghost in StMod(kG).

Next, we prove that the induction functor preserves strong ghost lengths.

Proposition 3.6.4. Let G be a finite group, and let k be a field whose characteristic

divides the order of G. Let H be a subgroup of G. Then for any M in stmod(kH),

stgl(M↑G) = stgl(M), and so the strong ghost number of kG is at least as big as the

strong ghost number of kH. Moreover, if P is a Sylow p-subgroup of G, then

strong ghost number of kP = strong ghost number of kG.

Proof. The proof is essentially the same as the proof of Theorem 3.3.2. By Proposi-

tion 3.6.3, we have stgl(M↑G) > stgl(M). Conversely, since the natural isomorphism

α : HomG(M↑G, L)→ HomH(M,L↓H) preserves strong ghosts, stgl(M↑G) 6 stgl(M).

When P is a Sylow p-subgroup of G, the restriction functor is faithful by

Lemma 3.2.7(i). The last equality follows.

3.6.2 Strong ghost numbers of cyclic p-groups

We study the strong ghost numbers of cyclic p-groups in this section. Our result suggests

that the notion of a strong ghost is much stronger than that of a ghost.

We first review ghost lengths in stmod(kCpr), following [19, Section 5.1].

Lemma 3.6.5. Let G = Cpr be a cyclic group of order pr with generator g, let k be a

field of characteristic p, and let Mn be the indecomposable kCpr -module of radical length
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n. Then the self map g−1 on Mn is a weakly universal ghost, i.e., any ghost with domain

Mn factors through g − 1. Moreover gl(Mn) = min(n, pr − n) and the ghost number of

kG is bpr/2c.

Proof. That the map g−1 is a ghost is proved in [9, Lemma 2.2]. It is weakly universal,

since it fits into a triangle

k ⊕ Σk −→Mn
g−1−−→Mn −→ k ⊕ Σk.

The l-fold composite (g − 1)l on Mn is stably trivial if and only if l > min(n, pr − n)

(see [19, Propositions 5.2, 5.3]). Hence gl(Mn) = min(n, pr − n). Since all indecompos-

ables are of this form, the ghost number of kG is bpr/2c.

Theorem 3.6.6. Let G = Cpr be a cyclic group of order pr, let k be a field of character-

istic p, and let Mn be the indecomposable kCpr -module of radical length n < pr. Writing

N = min(n, pr − n) = gl(Mn), we have the following:

(i) If N 6 pr−1, then

stgl(Mn) =

1, if N | pr,

2, otherwise.

(ii) If N > pr−1, then

stgl(Mn) =

⌈
N

pr−1

⌉
=

⌈
gl(Mn)

pr−1

⌉
.

It follows that

strong ghost number of kG =


⌈
p+ 1

2

⌉
, if p = 2 and r > 3, or p is odd and r > 2,⌈

p− 1

2

⌉
, otherwise.

Proof. We divide the proof into three cases:

Case 1: We first determine the indecomposable modules in stF , i.e., those of strong

ghost length 1. The set stF is generated by P = {k↑Cpr

C
pj

= Mpr−j | 1 6 j 6 r}, and so

an indecomposable module Mn is in P if and only if n | pr. Since stF also contains the

suspensions of modules in P and ΣMn
∼= Mpr−n, it follows that stgl(Mn) = 1 if and only

if n | pr or (pr − n) | pr, i.e., N | pr.
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This implies that P ⊆ Fpr−1 , or equivalently, that Gpr−1 ⊆ stG, which will be useful

below.

Case 2: For N < pr−1, we show that Mn is contained in stF2. Indeed, for such n we

have a triangle

Mn ⊕ ΣMn −→Mpr−1
(g−1)N−−−−−→Mpr−1 −→Mn ⊕ ΣMn,

where g is a generator of Cpr . Hence Mn ∈ stF2 and stgl(Mn) 6 2, completing the proof

of (i).

Case 3: We compute the strong ghost length of Mn for N > pr−1. By the previous

observation, the self map (g − 1)p
r−1

on Mn is a strong ghost. This map fits into the

triangle

Mpr−1 ⊕ ΣMpr−1 −→Mn
(g−1)p

r−1

−−−−−−→Mn −→Mpr−1 ⊕ ΣMpr−1 ,

with fibre in stF , so it is a weakly universal strong ghost. By Lemma 3.6.5, its jth power

is stably trivial if and only if jpr−1 > N = gl(Mn). The equality in (ii) then follows.

The calculation of the strong ghost number follows from these results:

When p = 2, the ghost number of C2r is 2r−1, hence all C2r -modules are dealt with

in (i), and the strong ghost number of C2r is 2 provided r > 3, and 1 otherwise.

When p is odd, the modules in (ii) dominate. The strong ghost length is maximized

when N = (pr − 1)/2 (the ghost number of Cpr) and is

⌈
pr − 1

2pr−1

⌉
=

⌈
p− 1

pr−1

2

⌉
,

which simplifies to the desired expressions.

3.6.3 Strong ghost numbers of dihedral 2-groups

In this section we find an upper bound for the strong ghost number of a dihedral 2-

group, using the result from the previous section on the strong ghost numbers of cyclic

p-groups.
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We write D4q for the dihedral 2-group of order 4q, with q a power of 2:

D4q = 〈x, y | x2 = y2 = 1, (xy)q = (yx)q〉.

It has a normal cyclic subgroup C2q, generated by g = xy. We prove the following

theorem on the strong ghost number of D4q:

Theorem 3.6.7. Let D4q be the dihedral 2-group of order 4q, with q = 2r and r > 1.

Then

2 6 the strong ghost number of kD4q 6 3.

Recall that the strong generating hypothesis fails for kD4q by Theorem 3.6.2, so the

strong ghost number of D4q is at least 2 for r > 0. When r = 0, so D4q
∼= C2 × C2,

the strong ghost number is 2. Since, for a p-group, the strong ghost length is bounded

above by the ghost length, and by [19, Corollary 5.13], the ghost number of C2 × C2 is

also 2.

Our goal will be to prove the upper bound. We will make use of the notation from [4]

(see also [23, Section 4.6]), where the indecomposable kD4q-modules are written using

words in the letters a and b. By the proof of [23, Theorem 4.24], every non-projective

indecomposable kD4q-module M sits in a triangle ΩW → M → M ′′ → W , where M ′′

is a sum of modules of the form M((ab)s) and M((ab)sa), for 0 6 s < q (and the same,

with a and b reversed), and W is a sum of suspensions and desuspensions of the trivial

module. Thus, by Lemma 3.2.4, it will suffice to show that the modules M((ab)s) and

M((ab)sa) have strong ghost length at most 2.

Proof of Theorem. By the discussion above, it suffices to show that

stgl(M((ab)s)) 6 2 and stgl(M((ab)sa)) 6 2

for 0 6 s < q.

It will be convenient to make the following notational convention: when we write

(ab)
m
2 , we mean aba · · · with m letters in total. For example, (ab)

5
2 = ababa. In addition,

(ba)−
m
2 denotes ((ba)

m
2 )−1, so (ba)−

5
2 = b−1a−1b−1a−1b−1. Let M = M((ab)

q
2 (ba)−

q
2 , id)

∼= k↑D4q

C2

∼= Mq↑
D4q

C2q
, which has strong ghost number 1. Similarly, for 0 6 m 6 q − 1,

we write M ′m for the module M((ab)
m
2 (ba)−

m
2 , id), which has 2m letters in total. Then

M ′m
∼= Mm↑

D4q

C2q
, as one can check that (1− xy)m(yxyx · · · ) = XYXY · · · − Y XY X · · ·
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(m factors in each expression) by induction. Thus, by Proposition 3.6.4, M ′m has strong

ghost length at most 2, since Mm does. Inducing up the triangle Mq
(1−g)m−−−−→ Mq →

Mm ⊕M2q−m →Mq in stmod(kC2q), we get the triangle

M
(1−xy)m−−−−−→M

α−−→M ′m ⊕M ′2q−m
β−−→M. (3.6.1)

Let j : M ′m ⊕M ′2q−m → k be zero on M ′m and non-zero on M ′2q−m. Then the composite

jα is stably trivial. One can check this fact by looking at the adjoint of jα. Similarly,

let i : k → M ′m ⊕M ′2q−m be zero on M ′m and non-zero on M ′2q−m. The composite βi is

stably trivial as well.

The kernel of the non-zero map M ′2q−m → k is M((ab)q−
m+1

2 (ba)
m+1

2
−q), which we

denote K2q−m. We then form the octahedron

Ωk

ww ))

M ⊕ Ωk

��

//M ′m ⊕K2q−m

ψ

��

φ

((
M

γ 77

(1−xy)m ''

M

M
α //

0 ''

M ′m ⊕M ′2q−m

jvv

β

66

k .

(3.6.2)

We can use K2q−m to build the module M((ab)q−
m
2
−1), using the triangle

k
θ−−→ K2q−m −→M((ab)q−

m
2
−1)⊕M((ba)q−

m
2
−1) −→ Σk.

Now consider the map 0 + θ : k → M ′m ⊕K2q−m. Since φ(0 + θ) = βψ(0 + θ) = βi is

stably trivial, we get another octahedron

k0+θ

ss

0

&&
M ′m ⊕K2q−m

��

φ
//M

��

Σγ
((

M ⊕ Ωk

22

,,

M ⊕ k

M ′m ⊕M((ab)q−
m
2
−1)⊕M((ba)q−

m
2
−1) //

++

M ⊕ Σk

xx

f 77

Σk ,
(3.6.3)
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and the triangle

M ⊕ Ωk −→M ′m ⊕M((ab)q−
m
2
−1)⊕M((ba)q−

m
2
−1) −→M ⊕ Σk

f−−→M ⊕ k

shows that stgl(M((ab)s)) and stgl(M((ab)s−1a)) 6 2 for q−1
2 6 s 6 q − 1.

Note that in order to get M((ab)q−1), we set m = 0, hence the map (1 − xy)m is

the identity on M and M((ab)q−1) is a summand of the cofibre of the non-trivial map

k → Ωk.

To construct the modules M((ab)s) and M((ab)sa) for s small, we first suspend the

map γ to get a triangle

M
Σγ−−→M ⊕ k −→M ′2q−m ⊕M((ba)−

m
2 (ab)

m
2 )

Σφ−−→M.

Then we have

Ωk
θ′−−→M((ba)−

m
2 (ab)

m
2 ) −→M((ba)

m
2 )⊕M((ab)

m
2 ) −→ k,

with Σφ(0 + θ′) stably trivial and we get a triangle similar to the one above:

M ⊕ Ωk
g−−→M ⊕ k −→M((ab)

m
2 )⊕M((ba)

m
2 )⊕M ′2q−m −→M ⊕ k.

Thus stgl(M((ab)s)) and stgl(M((ab)s−1a)) 6 2 for 1 6 s 6 q−1
2 .

The two remaining cases are M((ab)0) = k and M((ab)q−1a) ∼= k↑D4q

〈1,y〉, both of which

have strong ghost length 1, so we are done.

We illustrate the triangles in the first octahedron as follows, taking q = 4 and m = 2.

The triangle (3.6.1) corresponds to a short exact sequence

X Y

X Y

⊕

X Y

X Y

⊕

X Y

,
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where a free module kD16 has been included. In these diagrams, the downward-left

arrows indicate the action of X = x − 1 and the downward-right arrows indicate the

action of Y = y − 1.

And the triangle

M
γ−−→M ⊕ Ωk −→M ′2 ⊕M((ab)2ab−1(ba)−2)

φ−−→M

appearing in (3.6.2) and (3.6.3) has Ωk in place of the free summand and corresponds

to a short exact sequence

X Y

X Y

⊕

X Y

⊕

.

One can check that the map 0 + θ : k → M ′2 ⊕M((ab)2ab−1(ba)−2) factors through

the middle term.



Chapter 4

Computations with GAP
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4.1 Introduction

In this chapter, we discuss how to apply GAP to compute ghost lengths for some ex-

amples. GAP is a system for computational discrete algebra, with particular emphasis

on Computational Group Theory [26]. The GAP package ‘reps’ handles group repre-

sentations in positive characteristic. Its overall structure was designed and most of it

written by Peter Webb, who is also the maintainer. Contributions were made by Dan

Christensen, Roland Loetscher, Robert Hank, Bryan Simpkins, Brad Froehle and others.

4.2 The group S3 × C3 at the prime 3

We begin with a motivating example. Let G = C3 × S3, and let k be a field of charac-

teristic 3. We write x for a generator of C3, y = (123) for an element of order 3 in S3

and z = (12) for an element of order 2 in S3. Thus G is a group on three generators x,

y, and z subject to the relations x3 = y3 = z2 = 1, xy = yx, xz = zx, and yz = zy2.

There are two simple kG-modules k and ε. Here k is the trivial representation and ε

is a 1-dimensional module with z acting as −1. They correspond to the indecomposable

projective modules:

X Y X Y

,

where we use a solid dot for k and a circle for ε. The arrows down-left indicate the action

of X = 1 − x, and the arrows down-right indicate the action of Y = y − y2. Note that

Xz = zX, while Y z = −zY . The correspondence is a result of the following lemma.

Lemma 4.2.1. [4, Theorem 1.6.3] Let P be an indecomposable projective kG-module.

Then P/rad(P ) is simple and P/rad(P ) ∼= soc(P ).

With an abuse of notation, we write ε for its restrictions to C3×C2 and S3. Since the

principal idempotent of kG is 1 [31], both k and ε are in the principal block. However,

ε is not in ThickG〈k〉. Indeed, by restricting to C3 × C2, one sees easily that ε is not in
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the principal block of k(C3 × C2), hence cannot be in ThickC3×C2〈k〉. Since restriction

is triangulated, it follows that ε 6∈ ThickG〈k〉.

More generally, we know that there are only 6 indecomposable k(C3 ×C2)-modules:

.

It is clear that the first three modules are in ThickC3×C2〈k〉. We know that ε is not

in ThickC3×C2〈k〉, and the fifth module is isomorphic to Ωε in stmod(k(C3×C2)), hence

is not in ThickC3×C2〈k〉 either. The last module is projective as a k(C3 × C2)-module,

hence is in ThickC3×C2〈k〉.

Since the restriction functor is triangulated, we deduce the following proposition.

Proposition 4.2.2. Let M be a kG-module. If M is in Thick〈k〉, then the modules

.

cannot be summands of M↓C3×C2
.

Conversely, we can view the k(C3×C2)-modules as kG-modules with trivial y-action.

Again, it is easy to see that the first three modules listed above are in ThickG〈k〉. One

also sees that the three-dimensional modules are induced up from the subgroup S3, as

k↑G and ε↑G. Since Ω2k ∼= ε in stmod(kS3), the last module is a double suspension of

the third one in stmod(kG), hence is in ThickG〈k〉. It then follows that the other two

modules are not in ThickG〈k〉, and we conjecture that the converse of the proposition is

also true.

For example, we consider the cokernel M of a non-zero map f

that sends ε to the difference of the bottom elements. By Proposition 4.2.2, the domain

and codomain of f are not in ThickG〈k〉. Nevertheless, we expect M to be in ThickG〈k〉.
Note that this is equivalent to showing that M has finite generating length.
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4.3 A computational method to calculate the generating

length

Before we show how to apply computational methods to calculate the generating length,

we need to introduce some notation. Let T be a triangulated category and P be a finite set

of compact objects in T. Recall that 〈P〉 denotes the closure of P under retracts, direct

sums, suspensions, and desuspensions, and this constitutes part of a projective class

(〈P〉, I). Then we can inductively define 〈P〉1 = 〈P〉 and 〈P〉n to consist of the objects

X that are retracts of some object M such that M sits in a triangle P →M → Q with

P ∈ 〈P〉 and Q ∈ 〈P〉n−1. Now we set 〈P〉c to be the closure of P under retracts, finite

direct sums, suspensions, and desuspensions, and define 〈P〉cn in the same way as 〈P〉n,

with 〈P〉 replaced by 〈P〉c. Writing Tc for the collection of compact objects in T, it is

not hard to see that 〈P〉c = 〈P〉 ∩ Tc. More generally, we have

Lemma 4.3.1. [13, Proposition 2.2.4] Let T be a triangulated category and let P be a

set of compact objects in T. With the notion described above,

〈P〉cn = 〈P〉n ∩ Tc.

In particular, Thick〈P〉 = Loc〈P〉 ∩ Tc.

We have chosen the notation to be consistent with that in Chapter 3. It is slightly

different than that of [13]. Note that we have a filtration of Thick〈P〉 by

〈P〉c ⊆ 〈P〉c2 ⊆ · · · 〈P〉cn ⊆ · · · ⊆ Thick〈P〉.

Now consider P = {k} in StMod(kG). We write P(−m,m) for the set {Σik | −m 6
i 6 m} of finitely many suspensions of k contained in 〈P〉. Recall that 〈P(−m,m)〉 is

part of a projective class. Given M ∈ Thick〈k〉, we write gelm(M) for the length of M

with respect to P(−m,m). Since P(−m,m) ⊆ P(−m − 1,m + 1) ⊆ · · · ⊆ 〈P〉, we get a

decreasing sequence greater than or equal to gel(M):

gelm(M) > gelm+1(M) > · · · > gel(M).

Moreover, since M ∈ 〈P〉cn for some positive integer n, there are only finitely many

spheres Σnik needed to built up M in n steps. Hence there exists an integer m, such

that M ∈ 〈P(−m,m)〉cn, and, as a result of Lemma 4.3.1, we get
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Proposition 4.3.2. Let G be a finite group and k be a field whose characteristic divides

the order of G. Let M be a module in Thick〈k〉. Then gel(M) = limn→∞ gelm(M).

Since (gelm(M)) is a sequence of integers, we have gelm(M) = gel(M) for m large.

Using the formal property of a projective class, we are going to show that, for each

integer n, geln(M) can be computed by a finite process. In particular, if the cohomology

of kG has periodicity n, then gel(M) = geln(M) and the computation of the generating

length of M is a finite process. We recall the following lemma on the basic property of

a projective class.

Lemma 4.3.3. Let T be a triangulated category, and (P, I) be a (possibly unstable)

projective class on T. Let M be an object in T. Then the following are equivalent:

1. M is in Pn.

2. Every n-fold composite of maps in I out of M is zero.

3. The n-fold composite of universal maps in I out of M is zero.

To implement this idea, we first compute the (unstable) universal ghost f : M → N

in the range [−m,m]. Since there are only finitely many suspensions of k needed, this is

a finite computation. If f is stably trivial, then we know that M actually has generating

length 1. Otherwise, we can make a recursive call to compute the universal ghost out

of N , and test whether the composite of the universal ghosts is stably trivial. Finally,

the first integer n such that n-fold composite of universal ghosts out of M is stably

trivial is the generating length of M in the range [−m,m]. We present the method in

pseudo-code:

GhostLengthHelper = function with inputs: a map f from M to N,

an integer n

g = universal ghost g from N to L

if f composed with g is stably trivial then

return f and n

return GhostLengthHelper(f composed with g, n+1)

GhostLength of M = GhostLengthHelper(the identity map on M, 1)

Example 4.3.4. With the help of the GhostLength function, we can compute that

the four dimensional module M we considered in Section 4.2 has gel3(M) = 3, and so
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gl(M) 6 gel(M) 6 3. Now we show that

gl(M) = gel(M) = 3.

To compute the lower bound, we consider left multiplication by the central element 1−x
on M . Restricting to C3 × C3, we know that 1 − x is a ghost and (1 − x)2 is stably

non-trivial. Then, by Theorem 3.3.2, 1−x is a simple ghost, hence a ghost, on M . Since

the restriction functor to the Sylow p-subgroup is faithful by Lemma 3.2.7, and 1− x is

a map in ThickG〈k〉, the ghost length of M is at least 3. Note that it follows directly

from Theorem 3.3.2 that the simple ghost length of M is 3, but this does not guarantee

that the simple ghosts are in ThickG〈k〉.

Remark 4.3.5. We remark here that there is not a universal choice of N such that

gelN (M) = gel(M) for all M ∈ Thick〈k〉. Indeed, if the group cohomology is not

periodic, then gelN (Ωnk) = gel(Ωnk) if and only if N > |n|, and the number N can

grow infinitely large. Note that the numbers geln(M) give upper bounds of the ghost

length of M . Hence if a lower bound of the ghost length of M is known, we can hope

to get the exact answer for the ghost length of M . It would also be interesting to know

whether there is a way to compute lower bounds for the ghost length which converge to

the correct answer.

4.4 The ReplaceWithInj function and related functions

We have improved the GAP code used in the reps package to compute the universal

ghost and ghost length. We introduce the ReplaceWithInj function in this section,

which is essential for computing the universal ghost. We also show the relation of

ReplaceWithInj with other functions.

4.4.1 The ReplaceWithInj function and the Simple function

Recall that the universal ghost is the cofibre of a map that is surjective on Tate cohomol-

ogy, and computing the cofibre depends on a function that replaces a map by an injection

that is stably equivalent to it. For simplicity, we write f + g for the map M → N ⊕ P ,

where f : M → N and g : M → P are maps out of M . If P is projective, then the

maps f and f + g are stably equivalent. Now let {Pi} be the set of non-isomorphic
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indecomposable projective kG-modules, and let Bi be a basis for Hom(M,Pi). Observe

that the natural map

α : M → ⊕i(⊕g∈BiPi)

is injective. Then for any map f : M → N , the map f + α is a replacement of f by

an injection. But in this way, we will have added more maps than we need to f . For

example, we don’t need the maps g with ker(f + g) = ker(f). And we can do better

than this. We need a lemma before we state the condition that we will put on g.

Lemma 4.4.1. Let f : M → N be a map in mod(kG). Then the map f is injective if

and only if, for any simple module S, the map

Hom(S, f) : Hom(S,M)→ Hom(S,N)

is injective.

Proof. Since ker(Hom(S, f)) ∼= Hom(S, ker(f)), the map f being injective implies that

Hom(S, f) is injective for any S ∈ mod(kG). Conversely, if Hom(S, ker(f)) = 0 for all

simple modules, then, since the simple modules generate the module category, ker(f) = 0

and f is injective.

It follows from the lemma that we only need to add to f those maps g that shrink

ker(Hom(S, f)). More precisely, let P be an indecomposable projective module, and let

g be a map from M to P . Then, to decide whether we want to replace f by f + g, it

suffices to check the condition

ker(Hom(S, f + g)) ( ker(Hom(S, f)), (4.4.1)

where S = P/rad(P ) is the corresponding simple module of P . Indeed, if S′ � S

is another simple module, then Hom(S′, P ) = 0, and since ker(Hom(S, f + g)) =

ker(Hom(S, f)) ∩ ker(Hom(S, g)), there is no need to test g on S′. It follows that

we can work with one simple module at a time. Note that if we have replaced f by

f ′ = f+g, then we can replace the condition in Equation 4.4.1 by ker(Hom(S, f ′+g)) (
ker(Hom(S, f ′)), and if {g1, g2, . . . , gl} is a basis for Hom(M,P ), then

ker(Hom(S,
l∑

i=1

(gi))) = ker(Hom(S, α)) = 0,
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where α : M → ⊕i(⊕g∈BiPi) is the injection we started with. Hence, for each inde-

composable projective module P , we can use the following peudo-code to produce a

replacement f such that ker(Hom(S, f)) = 0 for S = P/rad(P ).

f = a given map from M to N

P = an indecomposable projective module

S = the corresponding simple module of P

for g in a basis for Hom(M, P)

if ker(Hom(S, f+g)) is strictly contained in ker(Hom(S, f)) then

replace f by f+g

continue the loop over g until ker(Hom(S, f)) = 0

return f

Then, by Lemma 4.4.1, we can loop the preceding process over all indecomposable

projective modules and produce a replacement by an injection. But we still need to

describe how to determine whether ker(Hom(S, f + g)) ( ker(Hom(S, f)). This is done

by a rank computation. We form the map β : ⊕S → M , where the sum ranges over a

basis for Hom(S,M). Then we compare the dimensions of im((f + g) ◦ β) and im(f ◦ β)

in the diagram

N ⊕ P

##

⊕S β
//M

f
//

f+g
;;

N.

It is clear that rank((f + g) ◦ β) > rank(f ◦ β). Since ⊕S is semi-simple, the equality

holds if and only if ker(Hom(S, f + g)) = ker(Hom(S, f)). In other words, the following

conditions are equivalent:

1. ker(Hom(S, f + g)) ( ker(Hom(S, f)),

2. rank((f + g) ◦ β) > rank(f ◦ β).

Note that rank(f ◦ β) is at most rank(β), and this is equivalent to ker(Hom(S, f)) = 0,

so we can break out the loop over the basis for Hom(M,P ) when rank(f ◦β) = rank(β).

We can also check at the same time whether f is injective or not and, if yes, we return

f to avoid the extra loop over the other projective modules. To conclude the discussion,

we display the function “ReplaceWithInj” in the following pseudo-code:
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f = a given map from M to N

if Rank(f) == dimension of M then % f is injective

return N and f

L = list of non-isomorphic indecomposable projectives

for P in L

S = the corresponding simple module of P

b = map from a sum of S to M, ranging over a basis for Hom(S, M)

r = Rank(f composed with b)

rankb = Rank(b)

if r !== rankb then

% r not maximal, so need to loop over a basis for Hom(M, P)

for g in a basis for Hom(M, P)

newf = f+g

newr = Rank(newf composed with b)

if newr > r then

f = newf

r = newr

N = direct sum of N and P

if r == rankb then % r is maximal

if Rank(f) == dimension of M then

return N and f

break out of the loop over the basis for Hom(M, P)

Remark 4.4.2. We remark here that the code we just presented actually produces an

optimal answer. That is, the replacement we produce is always minimal, unless the

map f itself contains a stably-trivial summand, in which case we need to exclude the

summand. To see that the process is optimal, observe first that ker((f+g)◦β) ⊆ ker(f◦β)

is the kernel of the composite

ker(f ◦ β)→ ⊕S β−→M
g−→ P.

Since ker(f ◦ β) is a direct sum of copies of the simple module S and P is the corre-

sponding projective module, the image of this composite is either zero or isomorphic to

S. It follows that, when we replace f by f + g, we always have

rank((f + g) ◦ β) = rank(f ◦ β) + dim(S).
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Thus, to replace a map f : M → N by an injection, we need to add exactly

rank(β)− rank(f ◦ β)

dim(S)

copies of the projective module P to N , as our code will do. Since this number is

independent of the choice of a basis for Hom(M,P ), our code is optimal.

Note that the new code we introduced depends on a decomposition function to find

all indecomposable projective modules and, for each indecomposable projective module,

we need to find the corresponding simple module. We describe how to do these now.

It follows from Lemma 4.2.1 that there is a self map on P

f : P → P/rad(P ) ∼= soc(P )→ P ,

with im(f) ∼= S, and we can compute the image of all self maps on P to find S as the

image whose dimension is the smallest. But this is not very efficient. So we consider

M = im(f), the image of an arbitrary self map f on P . Then M also satisfies the

condition that M/rad(M) ∼= soc(M) ∼= S, being both a submodule and a quotient

module of P . Hence, we can replace P by M to work with a smaller hom-set, and find S

as the image of a self map on M . To implement this, we can loop over all self maps f on

P and compute M = im(f). Then, if M is a proper submodule of P , we replace P by M

and make a recursive call and compute the images of self maps on M . The recursion will

end with a module S that has no proper submodules. In other words, S is simple. Note

that if Hom(M,M) has dimension 1, then the map M →M/rad(M) ∼= soc(M)→M is

an isomorphism, hence M is simple, and we can return M in this case. Then, assuming

that P is an indecomposable projective module, we can find the corresponding simple

module S using the following pseudo-code:

Simple = a function with one input P

M = P

hom = Hom(M, M)

if hom has dimension 1 then

return M

for all maps f in hom

if 0 < Rank(f) < dimension of M then

M = im(f)

return Simple(M)

return M
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Remark 4.4.3. Note that not every simple module S has dim(Hom(M,M)) = 1 when the

field k is small, so, in general, we have to search over all self maps on M . Also note that,

for an arbitrary module M , dim(Hom(M,M)) = 1 does not imply that M is simple. For

a counterexample, take G = S3, the symmetric group on three letters and consider the

two dimensional module M = Ω̃k, where the condition M/rad(M) ∼= soc(M) fails. But

for the modules M that arises in the algorithm, the condition always holds.

4.4.2 Other functions related to ReplaceWithInj

We show in this section how the ReplaceWithInj function can be used in other functions.

1. Cofibre and Suspension.

With the ReplaceWithInj function, we can compute the cofibre of a map f . In

particular, replacing the zero map out of M , we get an injection of M into a pro-

jective module, and it cofibre is the suspension of M . Since the ReplaceWithInj

function provides an optimal answer, the suspension of M we get is projective-free.

Cofibre is also essential in the GhostLength function, where we need to compute

universal ghosts.

2. CreateRandomModule.

We can create random modules in Thick〈k〉 using cofibres. The function

CreateRandomModule takes a random map f : P → Q between random mod-

ules P and Q that are sums of suspensions of k and computes that cofibre R1.

Note that R1 has generating length at most 2. Iterating the process n-times, we

can build up a module Rn of length at most n+1. Note that the function depends

on the number of summands that we allow in each step and the number of steps

n that we take.

3. IsStablyTrivial.

Let f : M → P be an injection of M into a projective module. Then since P is

also injective, every map from M to a projective module factors through f . Hence

ReplaceWithInj provides an algorithm to detect whether a map g : M → N is

stably-trivial or not, by checking whether it factors through f .

4. ReplaceWithSurj, Fibre and Desuspension.

Note that the pseudo-code we present in ReplaceWithInj is dualizable, so we can

write the dual functions ReplaceWithSurj, Fibre and Desuspension.
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4.5 More examples

We give more examples of computations in this section.

4.5.1 Comparing new code with old code

We begin with an easy computation of suspensions of the trivial representation for

the alternating group A4 and the field GF (4) to compare the different versions of the

Suspension function. We iterate Suspension to compute Σ14(k) and test the time used.

Σ14(k) Dimension Time

new function 29 0.7 s

old function without decomposing 37 13.2 s

old function with decomposing 29 45.4 s

It is clear from the table that our new function gives the optimal answer with less time.

The old ReplaceWithSurj adds a free module to the codomain, so it may produce some

projective summands in the cofibre. In the example, it raises the dimension of Σ14k by

8. To get the optimal answer, we ask GAP to compute the projective-free summand,

but this has taken much more time.

4.5.2 Computations in C9 and Q8

We test our code for the cyclic group C9 of order 9 with k = GF (3) and the quaternion

group Q8 of order 8 with k = GF (2). Note that the cohomology of C9 has periodicity 2

and that the cohomology of Q8 has periodicity 4. Also note that the generating number

of kC9 is 4 and that the generating number of kQ8 is 3 or 4. In the examples, we

create modules using the CreateRandomModule function, and keep the cofibres Rn with

n > 3, so that Rn can have lengths greater than or equal to 4. Then we compute their

generating lengths.

For the group C9, we first take n = 4 and record the dimensions and lengths of R3

and R4. We performed 6 trials and get

n 3 4 3 4 3 4 3 4 3 4 3 4

Dimension 17 22 30 29 17 8 22 15 7 15 7 16

Length 1 2 2 3 1 1 2 2 3 4 2 2
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The process seldom produces a module that achieves that generating number.

But if we take n = 17, then we have created some kC9-modules of length 4:

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Dimension 22 14 20 19 11 11 11 12 11 19 18 18 8 16 9

Length 2 2 3 4 4 4 4 4 3 3 3 3 3 3 2

It is interesting to note that the lengths can decrease as we take more steps to build up

the modules.

For the group Q8, we are looking for some module that has length 4. It would then

follow that the generating number of Q8 should be 4. We have tried to build up kQ8-

modules with n up to 100, but in all the examples, there are no kQ8-modules of length

4, strongly suggesting that the generating number of kQ8 is 3.

Conjecture 4.5.1. Let G = Q8 and k be a field of characteristic 2. Then

generating number of kQ8 = 3.

For evidence, here is the result when we built up kQ8-modules with n = 9. We

allowed up to 20 summands in each step to build up the modules.

n 3 4 5 6 7 8 9

Dimension 39 33 61 57 55 63 55

Length 3 3 2 3 3 3 3
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Conclusion

We provide a brief summary of the thesis in this chapter and describe the relation

between the chapters.

The thesis focuses on the study of the stable module category StMod(kG). Since

StMod(kG) is a triangulated category, we can generalize the generating hypothesis from

the stable homotopy category of spectra to StMod(kG). In StMod(kG), the generating

hypothesis is the statement that the Tate cohomology functor Ĥn(G,−) is faithful on

the subcategory Thick〈k〉. In a series of papers [9, 16, 18, 20], Benson, Carlson, Chebolu,

Christensen and Mináč proved that the generating hypothesis holds in StMod(kG) if and

only if the Sylow p-subgroup P of G is C2 or C3. Since the generating hypothesis fails in

StMod(kG) in most cases, we study the ghost number of kG, which measures the failure

of the generating hypothesis in StMod(kG). It is the smallest integer n such that every

n-fold composite of ghosts in Thick〈k〉 is stably trivial. This is first studied in [19] for

a p-group, where it is shown that the ghost number of kG is always finite in this case.

There are also some computations of and bounds on ghost numbers given in [19]. The

ghost number is best described using the idea of a projective class [21], and this has

been used throughout the thesis. The notation and background that we need here are

introduced in Chapter 1. It also contains a literature review of the previous work in

Section 1.3 and a summary of the main results of the thesis in Section 1.4.

In Chapter 2, which is based on [23], we continue the study of the ghost number of a

group algebra. We have improved on the results in [19] and provided new computations

for p-groups (See Section 2.4). And in general, we have proved that, for p-groups, the

ghost number and the radical length of kG are within a constant factor of each other

119



Computations with GAP 120

(Corollary 2.4.17). More precisely, let G be a p-group, and let k be a field of characteristic

p. Then
1

3
rad len kG 6 ghost num kG 6 gen num kG < rad len kG.

Note that the trivial module k is the only simple module when G is a p-group, so the

induction technique is very useful in our study of p-groups. This fails in the case of

an arbitrary finite group. On the other hand, we have proved results on Auslander-

Reiten triangles that apply to a general projective class in a triangulated category in

Section 2.3.2. For example, we consider the simple ghosts and the strong ghosts in

Chapter 3, where the results apply.

In Chapter 3, which is based on [24], we generalize the study of ghost numbers to

arbitrary finite groups. In general, since Thick〈k〉 6= StMod(kG), a module induced up

from a subgroup might not be in Thick〈k〉 and the induction technique fails. Hence we

consider the projection onto the principal block B0 of kG. Under the assumption that

Thick〈k〉 = StMod(B0), we show in Section 3.4.2 that

ghost number of kP 6 ghost number of kG,

with P being a Sylow p-subgroup of G, and that

ghost number of kG is finite.

Examples of computations of ghost numbers are given in Sections 3.4 and 3.5. We have

also introduced the simple ghost number in Section 3.2.3 and the strong ghost number

in Section 3.6, and we show that they are closely related to the ghost number.

In Chapter 4, we apply computational algebra to the study of ghost numbers. We

introduce a method to compute the generating number in Section 4.3, and then we

describe the improved GAP code in the reps package to compute universal ghosts and

ghost length in Section 4.4. We have made computations for the group S3 × C3 at the

prime 3, the first example where Thick〈k〉 6= StMod(B0) (See Example 4.3.4). And for

the quaternion group Q8 of order 8, we have experimental data that suggests Conjec-

ture 4.5.1, which says that

generating number of kQ8 = 3.
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