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Abstract

Development of an effective human metaphase chromosome analysis algorithm can

optimize expert time usage by increasing the efficiency of many clinical diagnosis

processes. Although many methods exist in the literature, they are only applicable

for limited morphological variations and are specific to the staining method used

during cell preparation. They are also highly influenced by irregular chromosome

boundaries as well as the presence of artifacts such as premature sister chromatid

separation.

Therefore an algorithm is proposed in this research which can operate with

any morphological variation of the chromosome across images from multiple staining

methods. The proposed algorithm is capable of calculating the segmentation outline,

the centerline (which gives the chromosome length), partitioning of the telomere re-

gions and the centromere location of a given chromosome. The algorithm also detects

and corrects for the sister chromatid separation artifact in metaphase cell images. A

measure termed the Candidate Based Centromere Confidence (CBCC) is proposed

to accompany each centromere detection result of the proposed method, giving an

indication of the confidence the algorithm has on a given localization.

The proposed method was first tested for the ability of calculating an accurate

width profile against a centerline based method [1] using 226 chromosomes. A statisti-

cal analysis of the centromere detection error values proved that the proposed method

can accurately locate centromere locations with statistical significance. Furthermore,

the proposed method performed more consistently across different staining methods

in comparison to the centerline based approach. When tested with a larger data set of

1400 chromosomes collected from a set of DAPI (4’,6-diamidino-2-phenylindole) and

Giemsa stained cell images, the proposed candidate based centromere detection algo-

rithm was able to accurately localize 1220 centromere locations yielding a detection

accuracy of 87%.
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1

Chapter 1 Introduction

The development of image processing techniques for analyzing human metaphase

chromosomes can be seen as the key in speeding up many cytogenetical diagnosis

processes while optimizing the use of the scarce resource, expert time.

A human chromosome is comprised of DeoxyriboNucleic Acid (DNA) along with

protein. The DNA is primarily responsible for genetic inheritance and behavioral pat-

terns of a human being. The genetic makeup and the familiar physical resemblance of

a human chromosome is achieved due to the genetic condensation during cell division

(mitosis). Therefore by studying the chromosome structure during mitosis, cyto-

geneticists can identify genetic disorders caused by genetic translocation, deletion,

trisomy, monosomy and radiation exposure etc. Many chronic diseases are caused

by these genetic deformations and can be diagnosed by analyzing chromosome cell

images. Therefore the study of human chromosomes and their structure is of ut-

most importance in clinical diagnosis. Although cell preparatory techniques such as

non radioactive Fluorescence In Situ Hybridization (FISH) have been used to assist

this diagnosis process by providing the cytogeneticist with information regarding the

present location of a known DNA sequence in a selected chromosome, the diagnosis

process can still be tedious and time consuming [7]. A typical lymphocyte slide of a

given patient on average can yield up to 500 cell images when imaged through a light

microscope. Perusing through hundreds of cell images for one patient even at triage

stage can be tiresome and can lead to operator fatigue. Therefore, manual analysis

and diagnostic processes are tedious and tiresome for experts and also are limited by

the the number of experts available.

With increasing use of digital microscopy for cytogenetical diagnosis, high res-

olution digital images are becoming readily available for the diagnosis process. With

the adaptation of various staining methods and cell preparation technologies, the list

of diseases that can be diagnosed also increases. One such technique is termed Flu-

orescence In Situ Hybridization (FISH), which places probes as markers for certain

genetic sequences within the chromosome body. In Karyotype analysis, the expert

needs to be presented with an annotated karyograms in order to diagnose effectively
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for chromosome abnormalities. Similarly in radiation dosimetry, the number of di-

centrics (radiation dosage) needs to be counted accurately in order for the medical

expert to prescribe a chain of remedies for the patient. This can grow into an even

severe issue during the aftermath of a nuclear event where millions of patients would

need these services from a handful of experts within a small window of time. Therefore

with increasing capabilities of computer systems, developing a set of image analysis

algorithms for analyzing chromosomes and aiding in diagnosing is a tempting task.

This can certainly increase the efficiency of the diagnosis process while optimizing

expert time usages. The research reported in this dissertation is part of a combined

effort in developing a set of algorithms for detecting dicentric chromosomes for radi-

ation biodosimetry.

Many methods have been tried over decades in order to fill this void for a set of

algorithms to analyze human metaphase chromosomes. However, coming up with a

set of algorithms to reliably detect salient features of human chromosomes remains a

challenge to date due the morphological variations of the chromosome structure. The

morphology and length of chromosomes within diploid human cells can vary between

cytogenetic preparations depending upon the methodology used to grow and analyze

the cells. The clinical reasons mostly governs the methodology or steps taken during

cell preparation. If subtle structural chromosome abnormalities involving a single

chromosome band are suspected as in certain inherited genetic disorders then meth-

ods (such as addition of DNA intercalating agents, reduced colcemid time, cell cycle

synchronization, 3-4 day lymphocyte culture) that reduce chromosome condensation

or arrest chromosomes in an earlier stage of metaphase are utilized (referred to as

prometaphase or high resolution cytogenetic analysis). If numerical chromosome ab-

normalities or low frequency large structural acquired abnormalities such as dicentric

chromosomes are suspected as in certain cancer specimens or biodosimetry samples

then methods (such as prolonged colcemid time and concentration; 2 day cell culture)

that increase the number of cells in metaphase at the cost of chromosome length are

used. Aside from the obvious differences in chromosome length between the two types

of methods, shorter more condensed chromosomes often have separated or distinct sis-

ter chromatids on each arm and fewer chromosomal bands are evident. Furthermore,

the cell preparatory method and steps also depends on the type of laboratory which

is utilized for the test. For an instance, cells prepared at a cytogenetic laboratory (for

the diagnosis of many genetic abnormalities) would be in general lengthy compared
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to ones prepared at a biodosimetry laboratory (to calculate the radiation exposure

dose of victims of a mass radiation event). Even environmental factors such as am-

bient temperature and humidity influences the shape variations in human metaphase

chromosomes and a minute change in anyone of these factors can be represented in

the shape of the chromosomes on the slides.

Despite these differences however, the primary constriction or centromere, which

is the most constricted region of a chromosome, to which the spindle fiber is attached

during mitosis (cell division) [8] remains evident on the chromosomes. Detection of

the centromere involves in segmentation of the chromosome as well as identifying

salient points such as the chromosome end points. Furthermore the accurate cen-

tromere localization can be used to directly identify the chromosome type and with

additional information can lead to identifying the chromosome number in the cell as

well. Therefore, accurate detection of the centromere location can be considered as a

key element in a reliable chromosome analysis algorithm. However, detecting the cen-

tromere can be a challenging task even to the trained human eye. Irregular boundary

conditions (especially in Giemsa stained chromosomes) as well as bent chromosomes

can make the detection algorithm miss the constriction.

The ability to detect centromere locations can be extended into the field of radi-

ation dosimetry that is required to detect dicentric chromosomes which are metaphase

chromosomes with an additional centromere location as a bi product of radiation ex-

posure. Since both centromere locations share similar characteristics, a set of features

designed to detect the primary centromere in principle should be applicable to de-

tect the secondary centromere as well. Once a set of suspected centromere locations

are established, machine learning techniques can be used to reject dicentric false

positives using features that captures the similarity between the two detected cen-

tromere locations and physical constraints such as the minimal distance between the

two centromeres. Therefore the development of an algorithm for accurate centromere

detection which is compatible with high morphological variations of chromosomes

from multiple staining methods provides a good foundation for detecting dicentric

chromosomes.

The majority of existing methods for chromosome analysis and centromere lo-

calization involve first calculating the chromosome centerline which is then used as

a basis of measurement for calculating the thickness of the chromosome in order to

detect the centromere location [9]. Generally the handful number of methods that do
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not utilize the centerline require some special cell preparation techniques for them to

operate properly. Although centerline based methods do perform better than other

methods, all existing methods manifest one or more of the following shortcomings.

• Suited to work with only a given type of staining / cell preparation method.

The algorithms are designed to utilize some of the features specific to that

particular staining / cell preparation method and therefore would not perform

well for other types of analysis problems.

• The width constriction on higher banded chromosomes can be missed easily due

to bends or noise on the chromosome boundary, while chromosomes with sister

chromatid separation tends to mislead the width profile calculation near the

telomeric region.

• The centromere detection result is not accompanied by any indication of either

a measure of confidence or a measure of uncertainty. Cytogeneticists often

makes critical decisions based on these detection results and false positives and

negatives can have very high life threatening consequences.Therefore a measure

of confidence in the localization would provide the expert with some insight into

the detection process as opposed to a binary decision.

In this research, we explore image processing techniques and combinations to de-

rive or compute various information from chromosome cell images. This information

can be directly or indirectly used for clinical diagnosis and therefore can drastically

reduce the time per patient. Since centerline based methods tend to perform better

than other methods, we have proposed an algorithm which utilizes the centerline sim-

ply to divide the chromosome contour into two nearly symmetric partitions instead

of using it as a basis for measurements. This approach prevents the possibility of

boundary irregularities adversely affecting the centerline and therefore making the

width profile measurements noisy. Once the contour is segmented, we then utilized

a Laplacian based thickness measurement algorithm where intensity was integrated

through a weighting scheme to bias the thickness measurement trace lines into ho-

mogenous intensity regions known as chromosome bands. The algorithm is capable

of partitioning the telomere region, detecting evidence of premature sister chromatid

separation and then correcting for the artifact. Finally, a classifier was trained where
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the distance from the separating hyperplane was then used as measurement of good-

ness of fit in order to find the best centromere candidate from the pool of candidates

for a given chromosome. A Principal Component Analysis (PCA) was performed on

the features that were created for centromere localization in order to gain some in-

sight into the contribution from each feature to the overall variance of the feature set.

A metric called ’Candidate Based Centromere Confidence’ (CBCC) was introduced

which represents the confidence in the selected centromere candidate. This provides

the expert with useful information which he/she can then use in the diagnosis pro-

cess. The proposed algorithm is designed to work with multiple staining methods

and preparation procedures and is tested with a data set containing both Giemsa

and DAPI stained cell images collected from multiple sources which were prepared

for distinct clinical reasons. During preliminary testing, the proposed method was

observed to be more accurate and statistically significant compared to a centerline

based method [1]. We have tested the algorithm on a larger data set for further

validation of its performance.

1.1 Contributions

The objective of this research is to develop a set of algorithms that can analyze hu-

man metaphase chromosomes originating from multiple sources with multiple staining

methods. The algorithm is intended to work with chromosomes with high morpho-

logical variations and in the presence of premature sister chromatid separation 1.

The centromere detection is identified as a basis for measuring the performance of

the proposed algorithm. Also a metric to yield the confidence in a given centromere

detection was proposed. With the inclusion of the metric, the proposed algorithm

provides experts with additional information regarding the detection process on top

of the typical detection result.

The following are the main contributions of this research divided into 3 cate-

gories based on the functionality of the contribution.

1. Please refer Chapter 2, page 23 - 27 in Concepts of Genetics by Klug and Cum-
mings [10] for more details
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Improvements to the thickness measurement of chromosomes

• The use of Laplacian algorithm for detecting the width of human chromosomes.

• Incorporating intensity into the Laplacian framework for guiding the width pro-

file measurement process more accurately.

Providing additional information relating to a given centromere detection

• Creating a measure for measuring the confidence in a centromere candidate

detection using the distance from the separating hyperplane as a measure of

goodness of fit to a label.

Improvements to the applicability of the algorithm

• A chromosome centromere detection algorithm is proposed which is compatible

with all chromosome classes and multiple staining methods.

• Combining the advantages of both centerline based methods and their counter-

part to come up with a hybrid solution for obtaining the feature profiles.

• A candidate based centromere detection approach facilitates the inclusion of

acrocentric and submetacentric chromosomes into the analysis.

Some of the publications related to this dissertation are listed below,

Patent publication

1. US Patent - Centromere detector and method for determining radiation ex-

posure from chromosome abnormalities, United States 8,605,981. PCT No.:

PCT/US2011/059257

Journal publications

1. Akila Subasinghe A. et al. In review - ”Centromere Detection of Human

Metaphase Chromosome Images using a Candidate Based Method”. In Biomed-

ical Engineering, IEEE Transactions on (TBME), 2014.
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2. Peter K. Rogan, Yanxin Li, Asanka Wickramasinghe, Akila Subasinghe, Natasha

Caminsky, Wahab Khan, Jagath Samarabandu, Joan H. Knoll, Ruth Wilkins,

and Farrah Flegal.”Automating dicentric chromosome detection from cytoge-

netic biodosimetry data”,Journal of Radiation Protection Dosimetry, 2014.

3. Akila Subasinghe A. et al. ”Intensity integrated Laplacian-based thickness mea-

surement for detecting human metaphase chromosome centromere location”. In

Biomedical Engineering, IEEE Transactions on (TBME), volume 60, pages 2005

2013, July 2013.

4. W. A. Khan, R. A. Chisholm, S. M. Taddayon, A. Subasinghe, J. Samara-

bandu, L. J. Johnston, P. R. Norton, P. K. Rogan, J. H. M. Knoll. ”Relating

centromeric topography in fixed human chromosomes to a-satellite DNA and

CENP-B distribution”, Cytogenetics and Genome Research

Conference publications

1. Akila Subasinghe A. et al. ”Intensity integrated Laplacian algorithm for hu-

man metaphase chromosome centromere detection”. In Electrical Computer

Engineering (CCECE), 2012 25th IEEE Canadian Conference on, May 2012.

2. Rajeev Ranjan, Akila Subasinghe Arachchige, Jagath Samarabandu, Peter K.

Rogan and Joan Knoll. ”Automatic Detection of Pale Path and Overlaps in

Chromosome Images using Adaptive Search Technique and Re-thresholding”,

International Conference on Computer Vision Theory and Applications, 2012.

3. Yanxin Li, Asanka Wikramasinghe, Akila Subasinghe, Jagath Samarabandu,

Joan Knoll, Ruth Wilkins, Farrah Flega, and Peter Rogan. ”Towards Large

Scale Automated Interpretation of Cytogenetic Biodosimetry Data”, Interna-

tional Conference on Information and Automation for Sustainability, 2012.

4. Akila Subasinghe A, Jagath Samarabandu , Joan Knoll, Wahab Khan and Peter

Rogan.”Accurately extracting the centerline from human metaphase chromo-

somes using image processing”. Canadian Student Conference on Biomedical

Computing and Engineering (CSCBCE), 2012.

5. Akila Subasinghe A, Jagath Samarabandu , Joan Knoll and Peter Rogan. ”Au-

tomated metaphase chromosome centromere refinement using fuzzy inference
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systems”. Canadian Student Conference on Biomedical Computing and Engi-

neering (CSCBCE), 2012.

6. Akila Subasinghe A. et al. ”An accurate image processing algorithm for de-

tecting fish probe locations relative to chromosome landmarks on dapi stained

metaphase chromosome images”. In Seventh Canadian Conference on Com-

puter and Robot Vision (CRV), May 2010.

7. Akila Subasinghe A. et al. ”An image processing algorithm for accurate extrac-

tion of the centerline from human metaphase chromosomes”. In International

Conference on Image Processing (ICIP), September 2010.

1.2 Thesis organization

In this chapter we have discussed the problem domain addressed by the proposed

algorithm including its contributions to the literature. Chapter 2 will provide some

insight into the existing literature and provide a basic description of background

methods as well as the anatomy of a chromosome. The proposed algorithm will

be explained in chapter 3 while chapter 4 will provide the results of the proposed

algorithm in order to gauge its performance. Chapter 5 will provide a summary of

the conclusions drawn from this research and also provide some future work warranted

by the proposed method.
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Chapter 2 Background

The main objective of this chapter is to layout the background information to provide

context for the proposed algorithm described in chapter 3. This includes a brief intro-

duction to human chromosome anatomy followed by a review of the existing literature

and a theoretical background of some of the techniques required to comprehend the

proposed method.

2.1 Introduction to human chromosomes

In every living organism (except some viruses), nucleic acid DNA (deoxyribonucleic

acid) makes up the genetic material. DNA is essentially a double stranded molecule

organized as a double helix which stores the hereditary units known as genes (see

figure 2.1). The smallest unit in this double helix is known a nucleotide which is

composed of Deoxyribose (a 5- Carbon sugar molecule), a phosphate and one of four

nitrogen bases Adenine (A), Cytosine (C), Thymine (T) and Guanine (G). Deoxyri-

bose and phosphate bond together to create a twin backbone in the reverse order

on either side of the helix, while connection between the two strands are made by

the relatively weak nitrogenous bonds. These bonds happen in a very specific or-

der wherein, Adenine (A) only connects with Thymine (T) and Cytosine (C) only

connects with Guanine (G) and vice versa. Each of these connections make up a

single base pair. On average, a human chromosome contains about 100 million base

pairs of DNA [11]. The chromosome can contain non-genic regions on top of the

vast abundance of genes. During mitosis (and meiosis), the diffuse network of genetic

material in the nucleus known as chromatin condenses and folds up while giving the

chromosome its characteristic shape temporarily only to return to the original state

towards the end of mitosis. During mitosis, chromosomes must ensure that the DNA

matter is separated equally to daughter nuclei during mitosis while maintaining the

integrity of the genome [10].
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When imaged using a light microscope during some stages of mitosis, a healthy

human cell image should contain 46 chromosomes. This consists of 22 pairs (auto-

somes) of chromosomes (a number referred as the haploid number in a cell) and two

sex chromosomes X and Y. The presence of two XX chromosomes normally represents

a female while XY would normally specify a male. The 44 autosomes are numbered

from 1-22 in descending order of the length, size and the centromere position of each

of these pairs [12]. Each chromosome in a pair with nearly identical length and

centromere placement are called ’homologous chromosomes’. The karyotype of a G-

banded image given by figure 2.2 shows this nearly identical length and centromere

placement except for the two sex chromosomes (in male subjects). Furthermore, ho-

mologous chromosomes carry the same gene sites along their lengths and therefore

have similar genetic potential. In humans (as with any sexually reproducing species),

one of these homologous chromosomes is derived from the paternal parent while the

other from the maternal parent.

A human metaphase chromosome has the following functional regions (depend-

ing on the chromosome type) which can be visually identified as,

• The centromere

• The telomere

• The nucleolar organizer regions

During this research we were mostly interested in the centromere and the telom-

ere regions.

2.1.1 The centromere

Centromere is the condensed or constricted location which holds the two sister chro-

matids together in place. It acts as the site where the spindle fibers attach to during

mitosis [8]. This is the location that is critical in chromosome segregation and cell di-

vision in both meiosis and mitosis. A mistake in the meiosis stage can yield incorrect

number of chromosomes in cells and can lead to disorders such as the ’Down syn-

drome’. In many groups of chromosomes, this region in general can be observed as a

clear constriction in relation to the width profile of the chromosome. The centromere

positioning in these chromosomes also determines their shape during a later stage of
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Figure 2.1: An illustration of the structure of a chromosome in context of the cell
(Source- http://commons.wikimedia.org/wiki/File:Chromosome.gif).



Chapter 2: Background 12

Figure 2.2: A karyotype analysis end result with all 46 chromosomes organized
according to their chromosome groups and types (Reproduced with permission from

Dr. Joan Knoll and Dr. Peter Rogan).
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mitosis called the anaphase. Furthermore, human chromosomes can be grouped into

3 categories based on the location of the centromere with respective to its ends as

follows,

• Metacentric

• Sub-metacentric

• Acrocentric

The centromere of metacentric chromosomes are located near the middle of the

chromosome while in acrocentric chromosomes, it is near one of the end points. Sub-

metacentric chromosomes have the centromere between the middle and one of the end

points of the chromosome. All three different types of chromosomes, including the

acrocentric type (with ’nucleolar organizer regions’ or ’satellite stalks’) are depicted

in figure 2.3. Additionally chromosomes that do not possess a functional centromere

are called ’acentric’, while those with two centromere locations are called ’dicentric’.

Most of the time only one of the two centromere locations in a dicentric chromosome

is active during mitosis.

(a) Metacentric (b) Submetacentric (c) Acrocentric

Figure 2.3: The structural components of metaphase chromosomes of all three
categories : the metacentric, sub-metacentric and acrocentric
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2.1.2 The telomere

The name telomere is derived from the Greek term ’telos’ which means the ’end’.

Apart from the centromere (see figure 2.3), the telomere can be regarded as the

second most important structure of the chromosome. Located at the ends of the

chromosomes, its primary function is to prevent the chromosome from interacting

with other chromosomes in the cell by rendering the ends of the chromosome inert [12].

Therefore telomere regions do not fuse with one another or with other broken ends.

This is important since the ends of broken DNA molecules tend to fuse together easily.

Preventing such unwanted fusions is critical in cell propagation in the organism [13].

2.1.3 The centromere index (CI)

The centromere index (CI) is a measure based on the location of the centromere (see

section 2.1.1) with respect to the ends of a chromosome. The value of this index is

defined using figure 2.4.

Figure 2.4: The lengths used for calculating the centromere index of a given
chromosome.

Let lp and lq respectively be the lengths of the short-arm (p-arm) and the long-

arm (q-arm) of the chromosome. Then CI is the ratio between the short-arm length

to the total length of the chromosome, and is stated as,

CI =
lp

lp + lq
(2.1)
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Therefore, it can further be observed that the CI value lies in the range of 0

and 0.5. For each chromosome in a cell (based on the chromosome number), the CI

value must fall within a certain small interval. Therefore, the CI value is an important

value that can be used to assist chromosome identification and classification. Table 2.1

below provides CI value ranges for all chromosomes in a human metaphase cell [2].

Table 2.1: Typical range of centromere index (CI) for each human chromosome [2]

Chromosome CI value Chromosome CI value
Number Number

1 0.45 - 0.50 13 0.13 - 0.22
2 0.35 - 0.42 14 0.13 - 0.22
3 0.44 - 0.50 15 0.13 - 0.22
4 0.24 - 0.30 16 0.41 - 0.45
5 0.24 - 0.30 17 0.28 - 0.37
6 0.34 - 0.42 18 0.23 - 0.33
7 0.34 - 0.42 19 0.42 - 0.50
8 0.33 - 0.38 20 0.41 - 0.50
9 0.32 - 0.40 21 0.22 - 0.30
10 0.30 - 0.37 22 0.22 - 0.30
11 0.35 - 0.45 X 0.36 - 0.41
12 0.24 - 0.30 Y 0.28 - 0.34
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2.2 Review of existing algorithms

With the use of cytogenetical analysis methods, the demand is rising for automated

microscopy systems that can increase throughput while not compromising the ac-

curacy. This is specially the case since the speed of the diagnosis process is highly

dependant on the time required by a trained cytogeneticist to examine the chromo-

some images. Therefore, a significant amount of research has been carried out to

automate these processes in order to present the data in a better way to the experts

so that they speed up the diagnosis process. One such attempt where many research

publications have being carried out is Karyotyping, where the algorithm provides an

annotated list of all the 46 chromosome in a Giemsa - banded human cell image.

Fluorescence in situ-Hybridization (FISH) is another such attempt of analysis where

the algorithm is required to detect a fluorescent probe hybridized in the DAPI stained

chromosome body and provide the expert information regarding its positioning with

respect to the chromosome structure. In radiation dosimetry, the objective of the

algorithm is to detect and count the number of dicentric chromosomes in the cell

image, which are by-products of radiation exposure. An expert can utilize this infor-

mation in order to diagnose the amount of radiation exposure and then to prescribe

a suitable remedy accordingly. All these methods and approaches rely on obtaining

the following information,

• An accurate segmentation of the chromosome

• An accurate localization of the centromere location

• A mechanism to detect supplementary information such as banding patterns,

length of the chromosome etc.

In this section we have provided a detailed literature review of the existing

methods of segmentation and centromere detection.

2.2.1 Segmentation methods

Image segmentation can be defined as the process that partitions a given digital

image into many non-overlapping (disjoint) regions which correspond to individual

objects [14]. This is an essential step in isolating the chromosome from the cell image.
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Some of the approaches relied on manual segmentation of the chromosomes where a

technician had to mark the outline of the chromosome by hand [15], [9]. This was a

very time consuming process which produced subjective results for the segmentation

of each chromosome.

Chromosome cell images generally present a reasonable degree of contrast in

terms of intensity between the objects and the background. In other words, the image

histogram is bi modal and separable. Therefore many of the existing approaches

tend to employ intensity based thresholding in order to segment images [16]. In

one approach Sadina and Mehmet simply segmented the chromosomes using a fixed

threshold value set at 0.9 of the normalized intensity of the Giemsa banded image [17].

Since G-banded image background intensity is higher than the intensity values within

the chromosomes, they marked intensity values less than 0.9 as the object and the

rest as the background. Since general intensity characteristics can change from one

cell image to another, having a fixed intensity level would yield highly inconsistent

segmentation results.

Many of the automated segmentation techniques are performed based on global

thresholding for different staining methods, where the algorithm calculates a suit-

able intensity value in order to separate the bimodal histogram into two segments.

Popescu et al. performed global thresholding on G-banded images using an algorithm

termed ’Otsu’s method’ [18] and used this segmentation result as the initial stage of

segmentation in his approach [19]. Similarly, Wolf et al. utilized the same algorithm

for segmentation on DAPI stained images used for FISH [20]. In another approach a

thresholding algorithm called ’Ketler’s method’ [21] was used to globally threshold the

chromosome cell image [22]. Some authors resorted to operate directly on the image

histogram for obtaining the segmentation result. In one such approach, Ji [23] seg-

mented chromosomes by applying a threshold value based on the smoothed histogram

of the chromosome image. This initial value was selected to be the value where the

intensity gradient (slope) of the histogram becomes zero. Then he re-thresholded the

first result with a higher threshold value.

Since thresholding is a point operation where each pixel is labeled based on

its intensity value, this method is prone to creating noise in the segmented binary

image. Therefore many authors have attempted to employ both pre processing and

post processing methods to minimize this phenomenon. Gajendran and Rodriguez

proposed the use of ’hysteresis thinning’ (used in the ’Canny edge operator’) as a
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post processing step on the threshold output in order to reduce some of this noise

content [24], [25]. Wang et al. utilized pre processing approach where a median filter

was used to remove some of the noise in the original image which could lead to a

noisy segmentation result [26], [27]. Then, the thresholded image was subjected to

4-connected component labeling to remove isolated noise in the binary image.

Despite the fact that some of these approaches were successful in significantly

removing noise in the binary segmented output, the global thresholding approach in

general remains highly dependent on the lighting conditions in the image. Uneven

illumination in the cell image can cause the thresholded objects to be noisy and even

discontinuous at some locations. Furthermore, chromosomes could cluster together

as one blob if the threshold value is set incorrectly or on the other extreme, even

could break the chromosomes into multiple segments. In some of the approaches,

the threshold value was set locally (adaptively) based on the immediate vicinity of

the chromosome to possibly solve this problem. Enrico et al. attempted this by

dividing the cell image into many tessellations with manually set fixed sizes and

applied thresholding on each of those regions of interests (ROIs) [28].

In general, segmentation using thresholding is highly sensitive to both quan-

tization errors as well as to intensity fading around chromosome boundary regions.

This tends to create a noisy object boundary on the binary output and therefore

fails to represent the intricate shape variations of the corresponding chromosome in

the cell image. However, local thresholding could be considered as a very effective

segmentation step when followed by a refining step.

Few methods can be found in literature where parametric active contour mod-

els such as Gradient Vector Flow (GVF) have been utilized for segmentation. GVF

is an improvement of the standard active contour model [29], where limitations

such as the small capture range and lack of convergence into boundary concavi-

ties were addressed [30]. The works of Britto & Ravindran and also Li et al. has

reported significant improvements in chromosome segmentation by using the GVF

snake model [31], [32]. However, GVF being a parametric active contour, the global

minima is not guaranteed unless the control points are initialized in the vicinity of

the desired contour (even with the improved capture range). Therefore the contour

could converge to an unwanted local minimum such as a chromosomal band (which

has a strong intensity gradient) or even to the contour of another chromosome.
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2.2.2 Centromere detection methods

Accurate detection of the centromere location in a chromosome is a critical step in

any automated diagnosis process. The location is characterized by a constriction in

the width and sometimes by a relatively lower intensity region within the body of the

chromosome. The region of darker intensity depends on the specific staining method

and the approach taken by the technicians when preparing the samples. Therefore,

the width constriction can be considered as the more universally evident feature

of the centromere location. Centromere localization methods in the literature vary

mainly based on the methodology of obtaining the width profile of the chromosome.

Therefore, methods for centromere detection can be divided into the following two

categories,

• Methods that first calculates the centerline of the chromosome : The morpho-

logical centerline of a closed object are defined as the set of all points which

are centers of circles (in 2D case) that are tangent to the shape at more than

one point and that contain no other tangent circles [33]. Once the centerline is

calculated, it will be used as the basis for calculating the width and/or inten-

sity profiles of the chromosome. This is often performed by creating a trellis

structure along the longitudinal axis of symmetry.

• The few methods that do not rely on a calculated centerline as the basis for

measurement of the width of the chromosome : The applicability of these meth-

ods are often restricted by the necessity for special preparation techniques or

by morphological conditions.

Medial Axis Transform (MAT) and morphological thinning are the most com-

monly attempted methods of finding the centerline in the literature. Medial axis

transform or skeletonization attempt to reduce the segmented object into a set of

pixels which preserves the extent and connectivity of the original object. One such

attempt was made by Wolf et al., in which the binary segmented image was subjected

to morphological closing (dilation operator followed by the erosion operator) before

applying Medial Axis Transform (MAT) to find the centerline [20]. The rationale

behind applying the closing operator was to smoothen the object boundary before

skeletonization. The author resorted to manual user interaction based corrections

when any spurious branches were present. Therefore, this process is far from being
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autonomous. Moradi & Saterahdan proposed a better approach in which the prob-

lem of having bifurcations (in the skeleton) towards the ends of the chromosome was

solved [9]. They took the median line of the triangle formed by the two skeletal

segments and the chromosome boundary at the telomere regions. Yet, this method

also fails if the skeleton gives spurious branches away from the telomere regions. In

another attempt, Stanley et al. calculated the feature profiles using a trellis struc-

ture based on a centerline derived using MAT [34]. In all these methods, the main

weakness is the accuracy of the centerline, which can be quite unreliable due to the

occurrence of spurious branches. Furthermore, MAT provides a set of points in space,

rather than a parametric curve that could effectively and easily be used for further

calculations.

Thinning on the other hand creates less spurious branches compared to skele-

tonization. These methods are often accompanied by a method for end point extension

since they remove data points from the extreme ends of the centerline [4], [35]. In one

such attempt, Wang et al. applied morphological thinning to the segmented binary

object and then sampled it with a 5-pixel interval. Then these points were interpo-

lated to obtain the chromosome centerline [36],[27]. Gajendran & Rodriguez applied

median filtering to the digital cell image prior to obtaining the thinned centerline of

the chromosomes [24]. Some of the approaches have utilized iterative thinning algo-

rithms which preserve the ends of the centerline unlike previous thinning methods. In

one such approach Somasundaram and Kumar used a method called the ’stentiford

thinning algorithm’ in order to obtain the complete centerline of the chromosome [22].

Yet, irregular boundary conditions which are commonly observed in Giemsa stained

images can introduce spurious branches in the thinned centerline.

We have previously proposed an algorithm to calculate the centerline with no

spurious branches irrespective of boundary irregularities or the morphology of the

chromosome [1]. Mohammad proposed an approach where he used our aforementioned

algorithm to derive the centerline and then used a curvature measure to localize the

centromere location instead of the width measurements [37]. Despite the lack of

spurious branches, irregular boundary conditions (boundary noise) adversely affect

the centerline derived through these methods. Measurements performed on a noisy

centerline can easily lead to false centromere localization.

Several attempts have been made in order to find suitable methods without us-

ing skeletonization or thinning due to their aforementioned inherent weaknesses. Jim
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Piper and Erick Granum [38] proposed a two stage approach to find the centerline

in which they first determined the orientation of the chromosome by calculating the

minimum width enclosing rectangle. Then, if the chromosome is not highly bent, it

was rotated such that the orientation was vertical and mid points of the horizontal

chromosome slices were connected together to obtain the centerline which was then

smoothed to get the ’poor man’s skeleton’. But, if the chromosome is bent, they

performed a conventional skeletonization algorithm. Yet, the problem with this ap-

proach is the spurious branches that occurred with the conventional skeletonization

process. In another approach [39], chromosomes were sampled into scan lines of dif-

ferent inclinations and after selecting proper cross-sections, the selected mid points

were combined to obtain an approximate centerline. The drawback of this method is

that it attempted at getting a polygonal approximation of the centerline instead of

the centerline itself. Results were poor when the segmented chromosome boundaries

were irregular in shape, which is a common occurrence in medial imaging. Gunter

Ritter [40] proposed a method which was based on finding the dominant points of the

chromosome. But, results were not reliable when it was applied to highly bent and

blurred chromosomes.

Due to the non rigid structure of bent chromosomes it has been one of the most

challenging aspects in developing an algorithm for centromere localization. The bend

points can introduce spurious branches to morphological operators such as thinning

or MAT and also cause the centerline based method’s trellis structures to miss the

actual centromere location. Most chromosomes bend at the centromere location and

therefore exacerbate these false localizations. Some of our previous work have focused

on getting a centerline without spurious branches [41] while retaining the original

shape and orientation of the chromosome while Piper et al. rotated the chromosome

to align the centerline vertically [38]. Another such centromere detection approach

attempts to straighten bent chromosomes prior to detecting the width minima [42].

The straightening process analyzes the vertical and horizontal projection vectors of

the chromosomes calculated at a set of rotation values in order to find the best

rotation to align the centerline vertically [43]. However this algorithm works only

with chromosomes limited to one bending center and is expected work well only on

chromosomes in group E (chromosome numbers 16-18).

There has been some research work in the literature, where the centromere de-

tection does not involve in finding the centerline of the chromosome [36]. Mousavi [44]
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assigned a membership value for each pixel of DAPI (4’,6-diamidino-2-phenylindole)

and FITC (Fluorescein Isothiocyanate) images (with centromere probes) based on an

iterative fuzzy algorithm. However, this method required the use of centromere probes

to mark the location of the centromere. Another work carried out by Moradi [15] and

similarly by Faria [45] (on chromosomes of fish) attempted to find the centromere loca-

tion by getting the horizontal and vertical projection vectors of the binary segmented

chromosomes. Both methods did not perform well on acrocentric chromosomes as

well as on chromosomes with a bend greater than 900 degrees.

Considering the above limitations and shortcomings, there exists the need for

a centromere localization algorithm which can perform well with any morphological

variation as well as with multiple staining methods. Furthermore, none of the ap-

proaches in literature can correct for artifacts such as sister chromatid separation.

Similarly, we are yet to encounter a centromere localization algorithm which provides

relevant supplementary confidence measurement values for each centromere localiza-

tion.

2.3 Background methods

This dissertation employs a number of existing image processing and machine learn-

ing algorithms. A brief description is given below. For a more detailed description,

the reader is referred to appendix A.

Gradient Vector Flow (GVF) snakes - This is a commonly used active contour

model based segmentation algorithm. GVF uses an edge based static vector field

as the external energy for evolving a set of points which constitutes a closed/open

snake. This segmentation algorithm has a higher capture range and the ability to

converge into boundary concavities better than the standard active contour models.

Therefore, this algorithm was used to obtain smooth object boundaries of human

metaphase chromosomes. A detailed description of the GVF snake algorithm along

with a comparison with the distance based snake model is given by appendix A1.
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Discrete Curve Evolution (DCE) - DCE is a polygonal shape simplification al-

gorithm which evolves by iteratively deleting vertices of a given polygon based on a

relevance measure. This measure captures the contribution of each individual vertex

to the overall shape of the polygon. In this research, this algorithm was utilized to

locate chromosome salient points in order to partition the object boundary. Appendix

A2 provides a detailed description of the algorithm and the relevance measure along

with the advantages and disadvantages of this approach for detecting salient points.

Support Vector Machine (SVM) - SVM is a powerful kernel based supervised

learning technique. SVM maximizes the margin between the two classes using the

training data set. This provides good generalization and therefore is more likely to

perform well with unseen data. Furthermore, the use of kernels to map data into a

higher dimensional space increases the probability of obtaining a better separation

between the class labels. In this research SVM was used as a classifier in multi-

ple learning problems including contour partitioning, shape analysis and centromere

detection. In some instances, the distance from the separating hyperplane (geomet-

ric margin) was used as a measure of goodness of fit of a given sample. The basic

framework of SVM along with the derivation of the classification problem is given in

appendix A3.
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Chapter 3 Proposed algorithm

Detecting abnormalities in the human metaphase chromosome structure is a key stage

in the cytogenetic diagnosis process. Digital image analysis algorithms can speed

up this process to effectively utilize valuable and scarce expert time. However, the

existing algorithms in the literature can only operate on a limited range of shape

variations that a chromosome can exhibit with a specific staining method. Therefore,

an algorithm is proposed in this research which could operate with multiple staining

methods and chromosome morphologies. The proposed algorithm is able to perform

segmentation, extract the centerline, detect the centromere location and to detect

and correct for sister chromatid separation. The algorithm also provides cytogenetic

experts with a measure of confidence in a given centromere detection. It is developed

and tested with both DAPI and Giemsa stained images and is readily adoptable to

work with other staining methods.

The algorithm requires the user to manually pick a point within (or close to)

each chromosome in order to proceed with the rest of the process autonomously. The

algorithm assumes that the marked chromosome does not either touch or overlap

with other chromosomes in the cell image. This assumption is reasonable due to

the use of a content based ranking algorithm proposed by Kobayashi et al. in this

approach [46]. The output of this algorithm was a ranked set of metaphase images

where chromosome images that were spread well with minimal overlaps and were

complete (contain all 46 chromosomes) were ranked higher. Typically from a given

set of cell images, only the highest ranked 5% were selected for further processing.

This is a critical step required to improve the accuracy of the proposed algorithm.

The proposed algorithm which is designed as a sequential set of processes, is

depicted in the flow diagram given by figure 3.1. The user selected chromosome is

first segmented out from the cell image. Next, the centerline of the chromosome

is derived using the binary segmentation result. The algorithm next partitions the

telomere regions of the chromosome in order to detect evidence of sister chromatid

separation. If the presence of sister chromatid separation is detected, the proposed

method corrects for the artifact. The correction is performed in order to obtain an
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approximately symmetric partitioning of the contour which is a prerequisite for the

IIL (Intensity Integrated Laplacian) thickness measurement algorithm. The Lapla-

cian based thickness measurement algorithm was improved by integrating intensity

information to utilize chromosome intensity bands. Once the thickness measurements

are calculated, the proposed method creates multiple candidates for the centromere

location based on local minima. Next, the candidates are ranked and the best candi-

date is selected as the centromere location. The proposed method then calculates a

measure termed ’Candidate Based Centromere Confidence’ (CBCC) which yields the

confidence of the centromere detection based on the candidates.

The proposed algorithm will be explained in the following five functional stages,

• Preprocessing and segmentation (discussed in section 3.2)

• Finding the chromosome centerline (discussed in section 3.3)

• Contour partitioning & correcting for sister chromatid separation (discussed in

section 3.4)

• Laplacian based thickness measurement (discussed in section 3.5)

• Candidate based centromere detection (discussed in section 3.6)

3.1 The data set

The research was carried out as a part of a combined effort for developing a set of

algorithms to perform dicentric chromosome detection. Samples of peripheral blood

lymphocytes were prepared to obtain metaphase cells, then metaphase cells were

stained with either Giemsa or DAPI, imaged and analyzed in laboratories at Health

Canada (Dr. Ruth Wilkins), Atomic Energy of Canada Ltd (Ms. Farrah Flegal)

and the University of Western Ontario (Dr. Joan Knoll, Pathology Dept). Figure 3.2

provides an example for the two staining methods used for this research. The complete

data set used for developing and testing the algorithm discussed in this dissertation

consists of 40 metaphase cell images including 38 from biodosimetry samples and 2

from clinical cytogenetic samples. The chromosome data set comprised images of

18 Giemsa stained cells and 22 DAPI stained cells. These metaphase images were

manually selected from a pool of 1068 cell images. The main criteria of the selection
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Figure 3.1: The flow diagram of the proposed method.
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was to gather a representative sample of cells from both DAPI and Giemsa stained

images with no bias to the length of the chromosomes. In the case of DAPI images,

the selection was performed to include chromosomes with and without premature

sister chromatid separation which captures a large degree of morphological variations.

Furthermore, the selected cell images had a good spread of chromosomes (containing

all 46 chromosomes) with minimal touches and overlaps which is a feature that enables

the algorithm to extract more chromosomes from each cell image.

(a) (b)

Figure 3.2: Shows two cell images with different staining methods. Figure 3.2(a)
contains a cell image with DAPI staining while figure 3.2(b) is a Giemsa stained

image.

The data collection process for the experiment was performed using the Matlab

version of the algorithm while a converted and parallelized C++ version of the algo-

rithm (termed ADCI - Automated Dicentric Chromosome Identifier) was developed

and tested by the combined efforts of Mr. Asanka Wickramasinghe and Mr. Yanxin

Li. For the data collection, the chromosomes were manually selected in order to pick

all possible chromosomes with no touches or overlaps with neighboring chromosomes

(judged visually). The interface required the operator to select a point within or in

the vicinity of the chromosome of interest while the rest of the process was fully auto-

mated. Some control was given to the operator to hard segment the chromosomes in

cases where separation was possible with minimal change of the threshold value (in

cases of chromosomes that are barely touching each other). This was obtained using

a thresholding factor (default value of 1.00) which was used to multiply the Otsu’s

threshold value (see section 3.2). The author was able to extract 1400 chromosomes
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in total from these images with no touching and overlapping present, which averages

to 35 chromosomes per cell image. However, the thresholding factor was required to

be changed only in 44 chromosomes out of the 1400 cases to the value of 1.05 in order

to perform the separation. All the images were converted to gray scale (0 - 255) from

the RGB (Red, Green and Blue) format for processing. The ground truth collection

for training and testing all machine learning problems discussed in the dissertation

were performed by the author.

3.2 Pre processing and segmentation

Chromosome metaphase images are often subjected to uneven illumination and could

contain nuclei which appear as bright blobs under the microscope. Since these arti-

facts can adversely affect the segmentation process, each chromosome was processed

individually. A user was required to mark a pixel within or close by the chromosome,

which in turn was used to extract a fixed window containing the chromosome as the

’Region Of Interest’ (ROI) for further processing. This window had to completely

include the chromosome of interest while also including some portion of the back-

ground as well. The dimensions of this ROI was set to 201x201 empirically. This

value was observed to be sufficient to include all chromosomes in the given data set

(collected using the standard 100X magnification). However, if needed, the value may

be changed to accommodate more elongated chromosomes in the future.

Chromosome metaphase cell images tend to contain pixels with limited range

of intensity values (out of the possible 256 levels in the digital image). The effects

introduced by the fluorescence light source also contributes to this feature. For exam-

ple, a window extracted from the middle of a fluorescence microscopy image would

on average have brighter (higher) intensity values compared to a window extracted

from the corners of the image. Also, in terms of segmentation, a well spread bi-modal

histogram intuitively would lead to better results. Therefore the intensities of this

extracted ROI was normalized. The normalization was performed using a technique

called the ’window center adjustment’ (see figure 3.4) which calculates the highest

and lowest intensity values and then scale them linearly in order to fit the possible

range of intensity values of 0 - 255 by setting the window size to match the original

intensity range. The increase of contrast on a DAPI stained chromosome window due

to intensity normalization is depicted by figure 3.5.
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Figure 3.3: The flow diagram of the preprocessing and segmentation stage of the
proposed method.
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Figure 3.4: The window-center intensity mapping scheme which was used to map a
certain intensity range (defined by the window and the center) to the full range

(intensity levels 0 - 255).

DAPI images are composed of chromosomes with brighter (higher) intensities

with a dark (low) intensity background as opposed to Giemsa images which have

darker intensity chromosomes in the bright background. In order to process images

with both staining methods, intensity values of the DAPI cell images were inverted

to obtain an appearance consistent with Giemsa stained images.

The initial stage of segmentation consists of thresholding the image using Otsu’s

method [18]. Otsu’s method is a clustering algorithm that attempts to find the op-

timum threshold value that minimizes intra-class variance (background/foreground).

The intra-class variance σc is calculated according to equation 3.1, where qc1(t) &

qc2(t) are estimated class probabilities while σ2
c1(t) & σ2

c2(t) are their respective indi-

vidual class variances. Once the threshold intensity value (Tint) is found, the image

intensities are converted to a binary image (Ibin) using equation 3.2.

σ2
c (t) = qc1(t) ∗ σ2

c1(t) + qc2(t) ∗ σ2
c2(t) (3.1)

Ibin =

 Ibin = 1, if Ix,y < Tint

Ibin = 0, if Ix,y ≥ Tint
(3.2)

In binary thresholding, it is a common mistake to segment some neighboring

chromosomes into a single binary object despite the presence of a visual separation.
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(a) (b)

(d) (e)

Figure 3.5: Depicts an example of the effect of intensity normalization on a DAPI
stained image window. Figure 3.5(a) & (b) depicts the original image window and

the corresponding histogram. Similarly the figures 3.5(c) & (d) depicts the intensity
normalized image window and the corresponding histogram.

This phenomena is due to the washed out intensity patches (called ’pale paths’ in

literature [19], [23]) evident between nearby chromosomes in metaphase cell image.

The user was provided with means of separating such touching chromosomes through

the use of thresholding factor (default value of 1.00). The threshold factor was used to

multiply the threshold value calculated above using Otsu’s method to perform a hard

segmentation. Although this allowed gathering of more chromosomes from a given cell

image, it is important to notice that excessive hard thresholding could have adverse

effects on the object contour. In extreme cases, this can even break the chromosome

into few segments. In this experiment, the thresholding factor was only increased

to 1.05(a small increment) in approximately 3% of the chromosomes collected (44

chromosomes out of the 1400 collected). The use of the thresholding factor was a

interim solution and is planned to be removed following the implementation of an
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algorithm for accurately separating touching and overlapping chromosomes.

Using thresholding on an extracted window as opposed to the cell image, re-

duced the adverse effects of uneven illumination in cell images. However since thresh-

olding being a point processing method, this segmentation method often yields noisy

results. This can show up as both individual pixels (or small blobs) being marked

as objects or as noisy object boundaries due to intensity fading in the vicinity of the

chromosome boundary. The noise created by individual pixels getting thresholded

as object was removed by labeling 4-connected components and then removing all

regions with the same label where the regions size was less than 10 pixels (set em-

pirically). Once these small blobs were removed, the extracted binary object was

subjected to a morphological filling operation where every pixel in the image with

a value ’0’ with 4-connected pixels with value ’1’ was complemented to have value

’1’. Since thresholding is a point processing method, this step ensures the continuity

of the chromosome blob. Next, the user selected the chromosome that needed to

be extracted from the labeled binary image. Since the user selected point can be

both inside, on and just outside the object boundary, the closest binary object was

selected as the chromosome of interest. Next, the morphological operation was re-

versed on the selected chromosome blob where every pixel in the image with a value

’1’ which has 4-connected pixels with value ’1’ was complemented to have value ’0’.

This iterative process reveals the object boundary which was traced using a (3 x 3)

neighborhood [47].

In order for the final stage of the segmentation algorithm to perform well, noise

in a digital image needs to be removed or attenuated. Metaphase cells often have

background pixels with highly variable intensity values as artifacts created during

the light microscopy imaging process. A median filter with element dimensions of

5x5 was utilized in order to remove these artifacts from the ROI as a pre-processing

step. Unlike Gaussian filtering, median filtering is a non linear filtering process which

effectively removes noise from images without blurring object boundaries. Although

the amount of noise removal is directly proportional to the size of the filtering element,

it also dislocates the object boundary. Therefore a relatively smaller element (5x5)

was utilized in this research. Once the image window was filtered for noise, the

image window was then subjected to the next stage of the segmentation algorithm

where the object boundary from global threshold was utilized as the starting points

for a Gradient Vector Flow (GVF) active contour model, which is a variation of
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the standard parametric active contour model (see figure 3.3). The rationale for

adopting a parametric active contour model was due to the availability of a close

approximation of the chromosome shape through thresholding and the presence of

strong edges around the chromosomes. However depending on the content within

the extracted window, initial object shapes are either under-approximated or over-

approximated. The GVF active contour model has the ability to both contract or

expand depending on the static vector field created using the object boundary. GVF

also has the capability to converge into boundary concavities which is an important

property when analyzing chromosomes with high shape variability. The main internal

parameters of the GVF were set at α = 0.05 (elasticity factor), β = 0 (rigidity

factor), µ = 0.2 (GVF regularization factor) and κ = 2 (external force weight). This

set of values were obtained empirically and yielded satisfactory segmentation results

with good convergence into boundary concavities across the entire data set.

External energy models for increasing the capture range, along with the advan-

tages of using GVF snakes are discussed in detail in section A.1. The ’Canny edge

detection operator’ which uses a multi-stage algorithm to accurately detect image

boundary edges was utilized for generating the edge map [25]. The image result of

some of the steps of the segmentation algorithm is depicted in figure 3.6.

3.3 Finding the centerline

The morphological centerline of a closed object is defined as the set of all points which

are centers of circles (in 2D case) that are tangent to the shape at more than one

point and that contain no other tangent circles [33]. The detection of the chromo-

some centerline is a necessary step in many existing chromosome analyzing methods

in the literature [19], [38]. Many shape and structure-related features such as the

chromosome length, chromosomal banding pattern, width and density profiles can

be extracted using the centerline. Therefore the accuracy of the centerline is impor-

tant since a small deviation could result in classification error [39]. The majority of

the existing methods in the literature employ iterative methods such as MAT and

thinning to first calculate a collection of points representing the original shape of the

object [9], which is then followed by a skeleton pruning method in order to remove

spurious branches. These branches are introduced due to the morphological varia-

tions of the chromosomes as well as boundary irregularities. The methods that were
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(a) Original image window (b) Thresholded binary image

(c) Extracted chromosome (d) GVF segmentation result

Figure 3.6: Depicts the resulting image window at different stages of the
segmentation algorithm where figure 3.6 (a) gives the original window containing the

chromosome prior to segmentation. Figures 3.6 (b) and (c) contain the threshold
output and the extracted binary object. The GVF outcome is given in figure 3.6 (d)



Chapter 3: Proposed algorithm 35

not based on MAT mainly have problems with handling objects with sharp bends

which are commonly present in metaphase chromosomes [38], [39].

Although morphological thinning in general creates less spurious branches in

comparison to skeletonization (MAT) method, both approaches are sensitive to bound-

ary deformations, noise and irregularities and that proves to be a significant drawback

in an image analysis point of view. Both methods attempt to preserve sufficient in-

formation to recreate the original shape of the object using the resulting centerline.

This information includes image boundaries which are bound to be discontinuous due

to quantization errors, irrespective of the resolution. This increases the probability

of getting spurious branches. Figure 3.7 demonstrates some examples of chromo-

somes where skeletonization and thinning methods create spurious branches. Due to

the highly unpredictable nature of the appearance, these branches can pose a sig-

nificant difficulty for any higher level image analysis algorithm thus demanding a

reliable skeletal pruning algorithm in order to obtain the centerline. The majority

of skeletal pruning algorithms reported in the literature are application specific and

are based on simple methodologies. The Prairie fire model [33] is one of the most

common methods utilized in which the propagation velocities were adjusted to be

proportional to the curvature at the fire front and by doing so attempts to promote

convexity of the binary object during skeletonization. Another method attempted to

remove branches with a shape contribution below a certain threshold level in order

to prune these spurious branches [48]. However these methods have the tendency to

provide disconnected skeletal segments due to the lack of regularization.

In this research a skeleton pruning method based on Discrete Curve Evolution

(DCE) [49] was applied to obtain an accurate centerline of a chromosome with any

morphological variation having no spurious branches. This algorithm first partitioned

the contour into a given number of polygonal sections which in turn was then used

for removing all spurious branches in the skeleton. The partitioning was obtained by

evolving the polygonal structure using DCE. Furthermore, pruning was achieved by

removing all skeletal points of which all the generating points (the points where the

maximal disks touch the object boundary) lie on the same polygon partition. Results

in this skeletal pruning method were highly dependent on the contour partitioning

itself. Therefore the skeleton pruning problem was transformed to a problem of

obtaining an accurate contour partitioning which represents the original shape.

DCE was the ideal solution for this problem where any shape can be simplified
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(a) (b) (c)

(d) (e) (f)

Figure 3.7: Two chromosomes and their skeletonization [3] and morphological
thinning results [4] showing some resulting spurious branches. These operations

were performed on the binary object obtained through Otsu’s method. Figure 3.7
(b) and (e) are the skeletonization results while figure 3.7 (c) and (f) are the

morphological thinning results.
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by effectively evolving polygon partitions by vertex deletion based on any given rele-

vance measurement [50]. Since any digital image boundary is easily approximated to

a polygon without loss of information by taking each boundary pixel as a vertex on

the polygon where the distance between each of these can be considered as the edges.

DCE was then used to evolve the polygon iteratively by removing the vertex which

had the least value for the relevance value K(v, u, w) defined in equation 3.3, where

duv & dvw are the Euclidean length between the vertices and θ is the turn angle at

vertex v. This relevance function was selected so that it is dependent on features

of its neighbors thus making DCE able to evolve using global features of the shape

information.

K(v, u, w) = (θ ∗ duv ∗ dvw)/(duv + dvw) (3.3)

Topology information of the original shape is guaranteed to be preserved at the

skeleton ends since the evolution proceeds by deleting vertices as opposed to methods

that displace the vertices of the polygon. Furthermore, the speed of the iterative

evolution process was improved by deleting multiple vertices which share the same

lowest relevance value at the initial stage. The DCE algorithm is also highly robust

against noise on the object boundary since such points are deleted at the early stages

of the evolution due to their relatively smaller relevance measure with respect to the

original shape of the object. Another important property of the DCE method is that

the algorithm can guarantee convergence, which will be the polygon with the number

of vertices set as the end stop criteria.

The telomere regions where the ends of the centerline should fall are convex in

shape. Therefore by considering only convex polygon combinations, the possibility of

selecting a bending point of a chromosome (which is concave) as an end point for the

centerline was significantly reduced [6], [49].

Figure 3.8 depicts the polygonal skeletal results at various stages of the DCE

based skeletal pruning algorithm compared to the standard skeletonization result.

Figure 3.8(c) and figure 3.8(d) are the skeletons resulting from the DCE triangle and

the DCE pentagon.

In obtaining the medial axis of a chromosome, the ideal result would be a

pruned skeleton with no extra branches. However, since the minimum convex polygon

being a triangle and DCE being modeled as convex polygons, the resulting skeleton

will have one spurious branch. Although this method leaves a spurious branch in
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(a) Original Image (b) Skeleton

(c) DCE triangle (d) DCE pentagon

Figure 3.8: Comparison between standard skeleton with DCE based skeletal
pruning results where (c) and (d) are the skeletons resulting from the DCE triangle

and the DCE pentagon results.

the skeleton, it is a consistent occurrence as opposed to the unpredictable nature

involved in other morphological approaches. Throughout this chapter, the symbol P

will refer to various point sets on the chromosome object contour. If C ∈ R2 is the

contour of the chromosome, the DCE initial anchor points (skeletal end points) for

the centerline are denoted by P Ê (
∣∣∣P Ê∣∣∣ = 3). Since the DCE method preserves the

topological information of the chromosome, the spurious branch is simply removed by

tracing all branches and pruning the shortest branch completely. This yields the set

of anchor points PE . This set of points is be used for partitioning the chromosome

contour in order to isolate the telomere region in section 3.4.1.

The DCE result was then processed by a modified thinning algorithm to ensure
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(a) (b) (d) (e)

(a) (b) (d) (e)

Figure 3.9: The eight masks used for the hit and miss algorithm where ’+1’ and ’-1’
elements search for matching foreground and background pixels respectively, while

the ’0’ ignores the value at that position.

single pixel thickness of the skeleton. This modified thinning algorithm consisted of

the application of a set of masks to the skeleton on the basis of the morphological hit

& miss algorithm followed by a thinning process described by Lam [4]. The hit and

miss algorithm was applied prior to the application of the standard thinning method

for ensuring that the junction points where two branches connect have a single pixel

thickness. Figure 3.9 depicts the set of eight masks used for this step where ’+1’

and ’-1’ elements search for matching foreground and background pixels respectively,

while the ’0’ ignores the value at that position.

The skeletonisation result was next pruned by 10% (empirically set) of the total

length of the skeleton at both ends. This accounted for the skeletal bifurcations where

the skeletal portion deviated at the telomere regions from the actual centerline. It is

important to note that this pruning percentile value is not universal. However, since

the proposed method does not use the centerline of the chromosome as a basis for

measurements, the accuracy of the centerline is not detrimental to centromere local-

ization. Finally, a simple method was devised to correct the end points of the pruned

centerline using the GVF segmentation outcome. End points of the pruned centerline

were used with 2 points sampled 7 pixels inwards from both ends to calculate the

inclination. This slope was then used to extend the ends of the pruned centerline

until the GVF segmentation outline was intersected.
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3.3.1 Centerline based Centromere identification

Apart from calculating the chromosome length, the centerline provides a basis for

detecting centromere locations as well. This is a rational step since the centerline

derived in the above algorithm is not susceptible to spurious branches. Since the

telomere regions of the chromosome are narrow compared to the body of the chromo-

some, the pruned centerline was used as the basis for calculating the width profile,

which is the collection of width measurements along the longitudinal axis of symme-

try. Width constriction is a characteristic feature of a chromosome and therefore the

width profile is the best feature for detecting the centromere location.

Figure 3.10: Depicts the trellis structure created for calculating the width profile of
a chromosome.

The width profile was calculated using a set of perpendicular line segments(called

the ’trellis structure’) along the centerline. Figure 3.10 demonstrate such a trellis

structure which also can be used for detecting other features such as intensity fea-

ture profiles of the chromosome. Once the width profile was generated, the global

minima of this profile was selected as the chromosome centromere location. This

simple approach yielded reasonably accurate results. However, the presence of sister

chromatid separation was observed to dislocate the centerline by placing it on one of

the sister chromatids as opposed to the middle of the chromosome. This created false

measurements for the width profile where the width measurements were only based
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on one of the chromatid arms, which leads to false localization on one of the chro-

matids. Figure 3.11 depicts examples of such cases where the centromere localization

algorithm was mislead by the presence of this artifact. The algorithm discussed in

the subsequent sections has the capability to detect and correct for sister chromatid

separation and therefore mitigate the impact of the artifact on the detection accuracy.

(a) (b)

Figure 3.11: (a) and (b) depict two instances where the centerline based centromere
detection was adversely affected by sister chromatid separation.

3.4 Contour partitioning & correcting for sister

chromatid separation

Sister chromatid separation in chromosomes is an integral process in cell division

or mitosis. Therefore depending on the stage of mitosis at which the cells were ar-

rested, sister chromatid separation may be visible at a varying degree. Furthermore,

a chemical agent termed colcemid which is used mainly as a preparatory chemical in

biodosimetry studies, can cause or exacerbate this condition and prematurely force

sister chromatid separation on metaphase cells. Therefore it is important that a

given chromosome processing software be able to analyze chromosomes with sister

chromatid separation to the greatest possible extent. However from an image anal-

ysis point of view, the presence of sister chromatid separation significantly increases

the complexity of the morphological variations of the chromosome (see figure 3.13).

The most substantial change of shape features occur towards the telomere regions
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Figure 3.12: The flow diagram of the correction for sister chromatid separation
stage of the proposed method.
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of the chromosome where the separation of the sister chromatids create concavities

in the segmentation outline. These concavities attract the centerline into one of the

sister chromatids, leading to false localization of centromere in one of the chromatid

arms. Therefore it is essential to detect and correct for sister chromatid separation in

metaphase cell images in order to develop a reliable chromosome analysis algorithm.

The following sub section describes the automated contour partitioning and shape

matching algorithm that has been proposed in this research to identify and correct

for sister chromatid separation. The steps involved in detecting and correcting for

sister chromatid separation is given by figure 3.12.

(a) (b)

Figure 3.13: Depicts the effects on the chromosome morphology introduced by sister
chromatid separation. (a) and (b) depict two straight chromosomes without and

with sister chromatid separation respectively both with DAPI staining.

The chromosome thickness measurement algorithm discussed in section 3.5 re-

quires an approximately symmetric division of the contour of the chromosome. Accu-

rate partitioning of the telomere region can yield means to identify evidence of sister

chromatid separation and therefore correct for any such artifact as well as to split the

contour into two segments accurately.

3.4.1 Contour partitioning for isolating the telomere

Contour partitioning requires an algorithm which can effectively detect the salient

points despite the morphology of the chromosome. Curvature of the contour is one

of the most commonly used features in the literature for detecting salient points that

can be used for partitioning chromosomes [51]. An important requirement is that
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the location of these salient points need to be highly repeatable under varying level

of object boundary noise. Curvature values of the chromosome boundary are highly

susceptible to the boundary noise which is introduced by different staining and cell

preparation techniques.

The DCE method used for polygon evolution and shape simplification for prun-

ing spurious branches in the centerline is immune to boundary noise. This is because

the noisy boundary points are deleted during the initial stages of the DCE algorithm

owing to the lack of contribution of those points to the overall shape of the object.

Furthermore the DCE method also preserves the topological information of the orig-

inal object during shape simplification. These properties provide an ideal platform

for obtaining a set of initial salient points on the contour of the chromosome outline

which performs well with boundaries regardless of their smoothness, yielding repeat-

able results [52]. The ability to terminate the process of DCE shape evolution at

a given number of vertices further lends to its applicability. The requirement of the

contour partitioning stage was to detect the 4 salient points of the chromosome which

isolates the two telomere regions of the chromosome. However, due to morphologi-

cal variations, the DCE result with just 4 contour points (DCE rectangle) could not

guarantee the inclusion of the points required for isolating the telomere region. Next

it was empirically established that a termination at 6 DCE points would ensure that

the required telomere end points will be retained within the set of candidate salient

points. However, the two anchor points (PE) of the skeleton obtained through DCE

based skeleton pruning in section 3.3 is a subset of these 6 DCE points. Contour

partitioning was performed by selecting the best 4 point combination (including the

two anchor points) that represents all the telomere end points.

The approach for selecting the best contour partitioning combination has two

stages as listed below,

• Training a feature based classifier using a large data set to capture desirable

properties which contribute to make a good contour partitioning combination.

• Using the trained classifier for selecting the best combination from a set of

contour partitioning set of points.

At the first stage, all the combinations across the data set were used as a pool

of candidates to train the classifier. Use of this data aided the classifier to capture



Chapter 3: Proposed algorithm 45

the desirable features across the data set and account for the high morphological vari-

ations in human metaphase chromosomes. Once trained, the classifier was then used

to place the 12 candidates of each chromosome in the feature space separately. Then

the signed Euclidean distance from the separating hyperplane (say ρ) was calculated

for each of the candidate for the given chromosome. This distance was directly used

as a measure of the goodness of fit of a given set of combinations. The best com-

bination for partitioning the chromosome contour for isolating the telomere region

was selected by picking the candidate with the largest distance from the separating

hyperplane. Unlike traditional rule based ranking algorithms, this approach required

very little high level knowledge of the desirable characteristics. The positioning of the

separating hyperplane encapsulated this high level information through user-provided

ground truth. Therefore the highest ranked combination was the best set of points

that could be used to isolate the telomere region to detect the evidence of sister

chromatid separation.

In order to define the features (F s) used for contour partitioning, Let Φh be the

curvature value at candidate point h and S ∈ R2 be the skeleton of the chromosome

with 6 DCE point stop criteria. Next, the following set of points were defined,

• PD (⊂ C) is the set of six DCE vertices.

• PS constitutes of all the points in PD except the anchor points (PE). These

are the four telomere end-point candidates.

Then the family of sets PT for all possible combinations with the sets PE and

PS would contain the following combinations,{
PE1 , P
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2 , P

S
2

}
,
{
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3
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4
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.

Figure 3.14 illustrates one such combination where the selected (connected by

the blue line segments) combination for the contour partitioning points are given by{
PE1 , P

S
4 , P

E
2 , P

S
1

}
.

The SVM classifier utilized for detecting the best combination for contour par-

titioning was trained using 11 features (F s) listed subsequently. A Gaussian radial
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basis function kernel was used with sequential minimum optimization (which yields

a l-1 norm soft margin classifier) for training this classifier. These were designed to

capture a collection of features capturing local properties of each point and measure

of how they position relatively as well. Features F s1 and F s2 provide an indication to

the saliency of each of the candidate points to decide whether the candidate point

was a skeletal end point during the pruning process. This provided a measure of

saliency with respect to the morphological skeletonisation process. Features F s3 to

F s5 are three normalized features which capture the relative positioning of each can-

didate in the given combination. F s6 and F s7 represent the shape or the morphology

of the chromosome of interest. Although the value of F s6 and F s7 is the same for

all 12 candidates for given chromosome, the inclusion of these features account for

morphological variations across the cell images in the data set. F s8 and F s9 represent

the curvature of the candidate points as well as the concavity/convexity of those loca-

tions. This is an important feature since salient points used for contour partitioning

are in general convex. The features F s10 and F s11 are two Euclidean distance based

features which captures the proportion of each telomere region in the combination

to the perimeter of the rectangle made by connecting the 4 points in consideration.

During the research, a significant improvement of the accuracy of classification was

observed by the inclusion of these two features.

Let d (p, q) denote the Euclidean distance between the points p and q. Simi-

larly let l (p, q) represent the length of the curve between p and q, which are points

from the set PD. Then for each contour partitioning combination in PT given by{
PE1 , P

S
i , P

E
2 , P

S
j

}
(where i and j are integer values such that 1 ≤ i, j ≤ 4 and

i 6= j), two main length measurements ratios (r1 and r2) are used for both calcu-

lating length based features as well as for normalizing them. r1 =
l(PE

1 ,P
S
i )

l(PE
1 ,P

S
j )

which

yields the chromosome width/length with respect to the anchor point PE1 for the

given contour partitioning combination (refer figure 3.14). Similarly r2 =
l(PE

2 ,P
S
i )

l(PE
2 ,P

S
j )

is calculated with respect to the anchor point PE2 . Then the set of features F s for

each contour partitioning combination is defined as follows,

1. F s1 = 1 if the point PSi belongs to a skeletal end point (PSi ∈ (S ∩ C)).

Otherwise, F s1 = 0.
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Figure 3.14: Figure demonstrates one possible combination for contour partitioning
where the anchor point (red ’+’ sign) PE1 is connected with the candidate point PS4

while the other anchor point PE2 is connected with candidate point PS1 which
captures the telomere regions. The blue line connects the set of points constituting

the considered combination in this instance.
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2. F s2 = 1 if the point PSj belongs to a skeletal end point (PSj ∈ (S ∩ C)).

Otherwise, F s2 = 0.

3. F s3 =
[
1 −

∣∣∣ r1−r2
max(r1,r2)

∣∣∣] where 0 < F s3 < 1. This calculates the chromosome

width/length ratio for each anchor point and the difference between the two

measures. Two similar fractions would result in a high value for the feature F s3 .

4. F s4 =
[
1 − r1

max(r1,r2)

]
where 0 < F s4 < 1. This calculates the chromosome

width/length ratio with respect to the first anchor point (PE1 ). The telomere

region in general is shorter than the sides of the chromosome. Therefore a lower

length ratio measurement which in turns is a higher value for the feature F s4 is

a desirable property.

5. F s5 =
[
1 − r2

max(r1,r2)

]
where 0 < F s5 < 1. This is same as F s4 , but from the

other anchor point, PE2 .

6. F s6 : ratio of length of the chromosome to area of the chromosome. This provides

a measure of elongation of a chromosome.

7. F s7 : ratio value of perimeter of the chromosome to the area of the chromosome.

This provides a measure of how noisy the object boundaries are.

8. F s8 : average of the curvature values Φh of the candidates. The curvature is an

important measurement of the saliency of the candidate points.

9. F s9 : number of the negative curvature values (Φh < 0) of the candidates points(
PSi andP

S
j

)
. The telomere region end points are generally characterized by

points with high convexity. The number of negative angles yield how concave

the points of interest are.

10. F s10 =
d(PE

1 ,P
S
i )

D where D =
∑x=2
x=1,y=i,j d(PEx , P

S
y ). This feature calculates

the normalized Euclidean distance between the anchor point PE1 and the can-

didate PSi which makes up one telomere region.

11. F s11 =
d(PE

2 ,P
S
j )

D where D =
∑x=2
x=1,y=i,j d(PEx , P

S
y ). Same as feature F s10 but

calculated for the other anchor point.



Chapter 3: Proposed algorithm 49

Once the set of features were finalized, the combinations for the contour par-

titioning set of points were created for the complete data set. This created 16,800

combinations for the total of 1400 metaphase chromosomes. Next, ground truth

required for training and testing the accuracy of the classifier was collected. The

author examined all the possible combinations for each chromosome in the data set

and manually marked the combinations which are viable solutions for partitioning

and isolating the telomere regions of the chromosome. Next, a SVM classifier was

trained and tested for effectiveness with 2 fold cross validation (50% - train data,

50% - test data) and obtained an accuracy, sensitivity and specificity values of 94%,

97% and 68% respectively. The results demonstrated the ability of the feature set

to effectively detect good combination of candidate points for partitioning telomere

regions. Slightly lower specificity suggests inclusion of some false positives into the

detection. However, this does not affect the accuracy of the contour partitioning since

the algorithm picks the combination based on its rank as opposed to the classification

label.

Once the 12 combinations for a given chromosome was generated, the signed

distance from the separating hyperplane (ρ) was calculated. This distance is the

geometric margin of that sample in the feature space with respect to the separating

hyperplane (see section A.3 ). Then the combination of points with the largest positive

geometric margin (ρ) was selected and the telomere regions was segmented using these

points. The algorithm used for the analysis of shape features of these telomere contour

segments is described in section 3.4.2.

3.4.2 Shape information extraction

The partitioned telomere curve segments carry important information relating to the

presence of premature sister chromatid separation. Traditionally, this is achieved by

incorporating high level shape information using a large set of well defined features

which capture the subtle changes in shape characteristics. Once a large number of

features have been defined, it is common to try and reduce the number of features to

optimize the feature space for classification. Principal component analysis (PCA) is

one of the most common methods adopted to reduce the number of features. However,

there are few disadvantages in a feature based set up. Namely,
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• The performance of the system directly depends on the defined set of features.

Therefore, this will lead to experimentation with a variety of feature combina-

tions in order to optimize the setup.

• Some shape features are not invariant to the scale of the object. In these cases,

additional computing is required to make the features scale invariant.

• The lack of expert knowledge of how each of the features contribute towards

detecting the required shape.

In this research, an alternative approach towards detecting shape features was

proposed using functional approximations of each of the curve partitions as an alter-

native to various geometrical features. The concept of using orthogonal coefficients

for matching shapes have been tested in the field of hand writing recognition with

satisfactory results [53], [54]. The procedure of the algorithm in calculating the coef-

ficients (based on Legendre polynomials) is explained below.
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Orthogonal function representation:

By definition, a set of functions is considered ’Orthogonal’ with respect to a

functional inner product < . , . > within the domain [ a, b ] if,

< hi, hj > =

b∫
a

hi(t).hj(t).w(t) dt = 0 , i 6= j (3.4)

where, w(t) is the weight function defined for the same domain. A given function f(t)

is expressed as a linear combination of coefficients calculated related to an orthogonal

basis (refer equation 3.5).

f(t) =
∞∑
i=0

αi.hi(t) (3.5)

Where each coefficient αi can be calculated as follows,

αi =
< f, hi >

‖hi‖2
(3.6)

However, the functions of the contour segments are unknown at the moment.

Therefore equation 3.6 cannot be directly used to calculate the coefficient values.

Instead, we need to calculate moments of different orders using these coordinate

values (for x and y coordinates separately). By definition, the kth order moment of

the x coordinate is given by,

µk =

b∫
a

xkf(x)dx (3.7)

The coordinate points in the partitioned contour segments are not uniformly

distributed. This is due to the forces acting upon each control point in the GVF

segmentation stage. Therefore, each contour segment has to be parameterized ac-

cordingly. Since the curve segment length is variable, coordinate points have to be

parameterized using the arc length λ to obtain f(λ). Given the x and y coordinates,

the Euclidean distance between each coordinate pair (dx1,dy1) were first calculated,

along with the cumulative distances (d1) and offsets (fx(λ),fy(λ)) from the initial

position. With this information, the moment of a given order within two consecutive

contour points using equation 3.8 was calculated. Then, each moment (µk) for the
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respective variable is calculated by taking sum of the moments for all intervals (refer

equation 3.8).

i+1∫
i

λkf(λ)dλ =
d1(i+ 1)k+1 − d(i)k+1

k + 1

×f(i+ 1) + f(i)

2
(3.8)

In this research the series of moments were truncated at the ninth order ele-

ment. Therefore it is assumed that calculation of ten moments accurately recreate or

represent a shape characteristics at the telomere region. This is a reasonable thresh-

old since the inclusion of moments of higher order values adds very little information

of the general shape while having the possibility of including boundary noise of the

chromosome outline [54]. Next, a set of orthogonal basis functions were created using

Legendre polynomials (Pn(t)) given by equation 3.9 with a weight function w(t) = 1,

which are orthogonal in the interval [−1, 1]. These polynomials are easily generated

using a symbolic mathematical software such as MAPLE [55] or Mathematica [56].

Pn(t) =
1

2nn!

dn

dtn
(t2 − 1)n (3.9)

Next, the series coefficient were calculated using the moment values. The calcu-

lation of these coefficients was performed using equation 3.10, where k is the maximum

order of the moments and L is the total length of the curve segment. These coeffi-

cient values were scaled in order to span any required interval [a, b] using equation [53],

where δi,0 = 1 only when i = 0.

α̂k = (−1)k
2k + 1

L

×
k∑
i=0

(
−1

L
)i
(
k

i

)(
k + i

i

)
µi (3.10)
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ˆ̂αi = α̂i
b− a

fmax − fmin
+ δi,0

a.fmax − b.fmin
fmax − fmin

(3.11)

With the imposed limitation of 10 coefficients per axis, this yielded 20 features

representing shape features along both x and y axis. A second SVM classifier was

trained using 90 labeled set of telomere coordinate curve segments to effectively de-

tect shape variations inherent to telomere regions with sister chromatid separation.

A multi-layer perceptron kernel was used with Quadratic programming (which yields

a l-2 norm soft margin classifier) was was utilized for training this classifier. These

telomere curve segments were examined for evidence of sister chromatid separation

which appears as a boundary concavity and was manually labeled for training and

testing the classifier. The support vector machine classifier is a ’large margin clas-

sifier’, which maximizes the largest distance to the nearest training data points of

any class [57]. This yielded more reliable classification for any new data points even

close to the decision boundary/plane. With 2-fold cross-validation (50% - train data,

50% - test data), the support classifier demonstrated an accuracy higher than 92%.

If a telomere region was detected for sister chromatid separation, then the end point

correction discussed in section 3.3 was altered so that the extended line satisfy the

coordinates of the telomere mid point (see figure 4.2). This correction was not meant

for correcting the centerline of the chromosome for the artifact of sister chromatid

separation. Instead it attempts to split the contour of the chromosome into two ap-

proximately symmetrical contour segments which is a requirement for the Laplacian

based thickness measurement algorithm proposed in section 3.5 below.

3.5 Laplacian based thickness measurement

An effective framework for calculating the width profile of a human metaphase chro-

mosome should posses the following properties,

• The effect of boundary noise needs to be minimum since it introduces noisy

measurements in the width profile values. Noise on the object boundary gets

represented in the centerline. The scan lines calculated based on centerline tend

to miss the actual constriction at the centromere location. This can lead to high

false positives in the centromere localization process.
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• The measurement requires to be uniform in sampling the width of the chromo-

some along the longitudinal axis of the chromosome. This is specially important

at bends of the chromosome since most bends happen at the centromere of the

chromosome.

All the centerline based measurement methods, including the trellis structure

method described in section 3.3.1 are prone to creating incorrect width measurements

due to noisy centerline data points introduced through boundary noise. Furthermore,

correcting the centerline for sister chromatid separation is a difficult problem as well.

Therefore, a better algorithm was proposed which uses the centerline merely for divid-

ing the chromosome into two sections and not as a basis for width or intensity profile

measurements. This algorithm was based on solving the Laplacian heat equation for

a contour image and was further modified to include intensity information into the

process.

3.5.1 Intensity integrated Laplacian based thickness

measurement

Laplacian based thickness measurement is an algorithm satisfactorily used for cortical

thickness measurements in some brain mapping applications [58], [59]. The Laplacian

operator (∆) yields the divergence of the gradient of a function in the Euclidean

point space. In other words, it gives the difference of the gradient or the second order

derivative of a function or an image. This is written as follows, where 5 is the first

derivative or the divergence of the gradient operator in any given direction.

∆ f = div(5 f) = 5.5 f (3.12)

In this approach the Laplacian operator was used to obtain the steady state

of heat flow or voltage distribution between two heated or charged surfaces. This

stage of the algorithm operated on the contour of the chromosome which was split

into two approximately symmetrical segments after correcting for sister chromatid

separation in section 3.4.2. By retaining the two longitudinal contour sides at two

different potentials or temperatures, a set of equipotential lines in the static vector

field created by the heat flow was derived in steady state according to the Laplacian

equation [59]. Depending on the relative voltage or temperature that the segments
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Figure 3.15: The flow diagram of the Intensity integrated Laplacian algorithm of the
proposed method.
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were maintained, a heat flow static field was initiated from one segment and end on

the other segment creating a path. Therefore a simple incremental method such as

the Euler’s method was utilized to trace the thickness of the chromosome from one

contour segment to the other by traversing normal to these equipotential lines [60].

Then the thickness or width was calculated by summing up the Euclidean length of

all the small incremental segments together. This method gives a uniform sampling

of the width profile better than other techniques based on the centerline.

However, due to the sole dependency on the contour information, the Laplacian

based method can still be susceptible to contour noise embedded during the segmen-

tation stage. With different staining methods and imaging conditions, the object

boundary noise content may vary significantly and in return will affect the effective-

ness of this algorithm. On the other hand, most chromosome images contain some

amount of intensity band information. The amount of visibility of this banding infor-

mation varies across different staining and cell preparatory techniques. The direction

of the intensity information is also useful since they are in general oriented normal to

the object contour. Furthermore, the centromere region in general has a homogenous

intensity patch surrounding the location. Therefore, intensity information carries

useful information that can assist the thickness measurement process. This creates

the need for a framework for integrating this valuable intensity information into the

thickness measurement process and thereby reducing the influence of boundary noise

on the Laplacian based algorithm. The solution proposed was to integrate intensity

information using a simple weighting scheme which captures both the direction and

the magnitude of intensity values in the neighborhood. This information was then

used to improve the thickness measurement algorithm as discussed below. The main

objective of the inclusion of the intensity is to guide the Laplacian static field across

the breadth of the object, based on neighboring pixel intensity values. Figure 3.15

provides a flow diagram depicting the main stages of the intensity integrated Lapla-

cian method.

The proposed thickness measuring algorithm required the following information

as inputs to the system.

• The single pixel wide contour of the segmented object of interest.

• A separation of the object contour using the longitudinal axis of symmetry

of the object. Correcting this for sister chromatid separation was performed
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through the shape analysis process.

When applied to digital images, the standard Laplacian equation is represented

by the kernel given in table 3.1. This digital representation makes the application of

the Laplacian method simpler on high resolution images. The constant scaling factors

in the kernel given in table 3.1 implies that the algorithm affects the 3x3 neighbor-

hood uniformly based on the contour information. The proposed weighting scheme

for including intensity information simply changes the Laplacian kernel weights to

account for local intensity variations as described below.

Table 3.1: A kernel that represents the Laplacian equation on a digital image

−1
8 −1

8 −1
8

−1
8 +1 −1

8

−1
8 −1

8 −1
8

Given the intensity image (I) which contains the object of interest, a total of 8

matrices (digital images) were created based on connectivity and directional intensity

gradients with identical dimensions to I as follows,

∇I(i,j) = abs[I(x, y)− I(x+ i, y − j)] (3.13)

(i, j) = {i, j ∈ (−1, 0, 1), (i, j) 6= (0, 0)}

For simplicity and clarity, remaining steps will be described using the generic

term ∇I(i,j). These 8 gradient images capture the intensity variations in all the 8

major directions on the 3X3 neighborhood of each pixel in the image yielding a higher

value in the directions across the edges of the chromosomal bands. Due to the need of

capturing subtle intensity variations to bias the vector field, the above crude method

of calculating the gradient was preferred over methods such as Canny edge detection.

Next, all the matrices were normalized to the interval (0 , 1), using the maximum
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absolute intensity difference in that direction (refer equation 3.14). Then, the matrix

values were inverted within the same range of (0 , 1) by subtracting each matrix value

from 1. The matrix ∇I(i,j) then yielded values close to unity where intensity level in

the neighborhood was similar. Similarly this also gave smaller values (close to 0) for

pixels with high intensity gradients. To address cases where intensity patches were

parallel to the object contour, the proposed algorithm can be modified by simply

removing the inverting step for all 8 matrices. By doing so, the weighting factors

will bias towards higher intensity differences instead of homogenous regions. This is

a useful capability when adopting this algorithm into other fields where the banding

information orientation is different from that of human metaphase chromosomes.

∇I(i,j) =
∇I(i,j)

max(∇I(i,j))
(3.14)

The intensity based weighting matrices were then re-scaled according to equa-

tion 3.15, where b is a scalar value between (0 , 1) which will be referred to as the

’control variable’ henceforth. Therefore the values in the weighting matrix ∇I(i,j)

will vary in the interval of (b , 1).

∇I(i,j) = ∇I(i,j) ∗ (1− b) + b (3.15)

The purpose of the control variable b is to control the influence from the intensity

variation on to the standard Laplacian calculation. A lower value for b will increase

the influence of the intensity information and vice versa. Therefore, a value of 1

for the control variable will calculate the standard Laplacian vector field with no

influence from the intensity values. This value has to be set based on how prominent

and consistent the intensity patterns are in a given image. Practical range of values

lied between the limited range of (0.7 , 1) for this experiment. Control variable values

less than 0.7 was observed to deviate the vector field in order to follow pale paths

(along the centerline of the chromosome) created by the presence of sister chromatid

separation. Therefore, empirically the control variable b was set to 0.9 for all the

experiments in this research due to the limited banding information present in DAPI

and Giemsa stained cell images as opposed to staining methods such as G-banding

used in Karyotype analysis.

Once these sets of intensity weighting factor matrices were calculated, those

values were directly used to change the way the Laplacian static field was calculated
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at each iteration. Therefore the kernel given by table 3.1 was replaced by the kernel

in table 3.2, which was then defined for each (x , y) coordinate location in the image.

It is important to notice that the sum of all the elements in the modified kernel does

not equal to zero in this implementation. Therefore, this yielded a static vector field

generation process that included both non-uniform and local shape features depending

on the intensity variation in the region and the control variable b which controlled the

amount of biasing. When using the standard Laplacian kernel, every pixel influenced

the 8 connected neighbors uniformly. However in the proposed method, each pixel

affected the neighboring pixels based on the intensity similarity or difference between

them. Its also important to realize that these weight matrices are static in nature

and do not change with each iteration. Therefore the Laplacian kernels needed to be

calculated only once per image window.

Table 3.2: The kernel that integrates intensity information into the Laplacian
calculation for location (x, y) in a 3x3 local neighborhood.

−
∇I(−1,1)(x,y)

8 −
∇I(0,1)(x,y)

8 −
∇I(1,1)(x,y)

8

−
∇I(−1,0)(x,y)

8 +1 −
∇I(1,0)(x,y)

8

−
∇I(−1,−1)(x,y)

8 −
∇I(0,−1)(x,y)

8 −
∇I(1,−1)(x,y)

8

Figure 3.17 depicts the difference between the standard Laplacian kernel and

(one instance of) the proposed intensity based Laplacian kernel. The instance of the

proposed kernel (figure 3.17(d)) clearly depicts the biasing of the Laplacian field in

directions where similar intensities are present.

Once the steady state was achieved, the gradients at each pixel location (Φ)

were calculated along the two major axes (x and y) using neighborhood pixel values

as given below where B(x, y) was the steady state Laplacian image,
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Φ(x, y)

∆x
=

(B(x+ ∆x, y)−B(x−∆x, y))

2
Φ(x, y)

∆y
=

(B(x, y + ∆y)−B(x, y −∆y))

2
(3.16)

Then each of these gradient components were normalized and stored in matrices

Nx and Ny using the magnitude of the vector at each pixel. The matrices Nx and

Ny contained the intensity biased Laplacian static field vector components for x and

y axis directions.

Once the proposed intensity integrated Laplacian static field was derived, the

corresponding contour points and the distance between them was calculated. The

same thickness measures was obtained by using starting points from either contour

segments or even the centerline points of the chromosome. The Euler’s method was

used for the above task. This is a simple and yet effective way of traversing through

a vector field as given by equation 3.17, based on the local vector field direction and

magnitude. For implementation, the direction of traverse had to be adjusted at times

(by flipping the polarity of the vector field when necessary) in order to assure that

the thickness was measured within the chromosome body. The Euler’s method is an

incremental method which utilizes the gradient information as given by equation 3.17

below,

xn = x + ∆x

yn = y + y′∆x (3.17)

Therefore the gradient values at each pixel location (Ψ) was calculated next

using each tangent vector components (Nx and Ny) as given by equation 3.18.

Ψ(x, y) = y′(x, y) = Ny(x, y)/Nx(x, y) (3.18)

The Euler’s method was used for thickness measuring of metaphase chromo-

somes using the following steps of operations.

1. Based on the local direction of the vector field gradient (Ψ(x, y)), select the

direction (axis) for incrementing.
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2. Apply Euler’s equation and calculate the new pixel location along the direction

of the vector field.

3. Calculate the Euclidean distance between the new and current location and

accumulate with the current total distance.

4. If the new location is within the object of interest, start from the first step

onwards. Once the calculated location placed outside the object, the algorithm

will move to the next contour point.

The collection of these accumulated Euclidean length values is considered as

the thickness/width profile of that object. Figure 3.18 depicts the steps of tracing

the thickness at one contour location of the chromosome. This algorithm uniformly

samples the thickness of the chromosome along the longitudinal axis of symmetry

while mitigating the effects from noisy boundary conditions and chromosome bends.

3.6 Candidate point generation & metaphase

centromere detection

Accurate detection of the centromere location in human metaphase chromosomes is a

critical step in many clinical diagnosis processes. This location is visually character-

ized by a constriction in the width of the chromosome body. Therefore, an accurate

width profile of a chromosome can be directly utilized to detect the centromere lo-

cation. The majority of the existing methods resort to detecting the global minima

of the measured feature profile in order to locate the chromosome centromere. How-

ever, the telomere regions have the possibility of having the smallest width value

due to the general anatomy of the chromosome. Some of the methods in literature

including the approach discussed in section 3.3.1 resorted to pruning the centerline

or effectively the ends of the width profile in order to exclude the telomere region

from consideration. However, this step has the potential to remove the ability to

detect acrocentric chromosome centromere locations which are located towards the

telomere regions. Hence some methods in the literature resorted to excluding selected

classes of chromosomes in order to improve the accuracy of the published methods.

These exclusions varied from excluding all acrocentric chromosomes [61] to includ-

ing only metacentric chromosomes [62]. However, for a given algorithm to be used
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effectively for diagnostic purposes, it needs to be capable of handling all groups and

morphologies of chromosomes.

Bends in chromosomes along with artifacts such as sister chromatid separation

can cause the simple approach of detecting the centromere location at the global

minima of the feature profile erroneous. A handful of methods have considered more

than one location in the feature profile as a candidate for the centromere location. In

one such approach, four candidate points were selected based on the minima values

from the width profile [34]. However, this limits the number of possible locations that

could be detected as the centromere location. Specially in cases where high degree of

sister chromatid separation is present, limiting the search to just few candidate can

have adverse effects.

In this research, a simple criteria is proposed to select all possible local minima

locations as candidates for the centromere location in a given chromosome, as given

below.

The notation p will be used to refer to point(s) in general within the chapter.

Let the contour C be partitioned into two segments C1 (starting segment for tracing

lines) and C2 (see figure 3.19). The width measurement of the normalized width

profile (say n number of width values) at the discrete index λ (W (λ)) is obtained

using the trace line which connects the contour points C1
λ and C2

λ from the two

contours C1 and C2.

Then the set of candidate points for the centromere location pC (which stores

the indices λ) were calculated where either of the two logical criterions below were

satisfied,

1. where the local minima conditions of W (λ − 1) < W (λ) < W (λ + 1) and

W (λ − 2) < W (λ) < W (λ + 2) are met for all valid locations λ of the width

profile (i.e. λ = 3, ..., n− 2).

2. where the local minima conditions of W (λ− 1) < W (λ) < W (λ + 1) is met at

λ = 2, λ = n− 1 of the width profile.

The second criteria was placed to account for acrocentric chromosomes where

the centromere location is located towards one extreme of the width profile. However

if either of the above criterions failed to yield at least one candidate location, the

global minima was selected by default as the sole candidate. This was observed to
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occur rarely in chromosomes which are short and stubby that the width profile was

not wide enough to yield a candidate. Next, the following two sets of indices were

created to correspond with each given element pC(α) of pC ,

• pmL(α) = W (β) where W (β) > W (γ), ∀ γ < pC(α). Here pmL(α) stores the

index of the global maxima for the portion (referred to as a regional maxima

henceforth)of the width profile prior to the candidate minima index pC(α).

• pmR(α) = W (β) where W (β) > W (γ), ∀ γ > pC(α). Similarly pmR(α) stores

the index of the global maxima for the portion of the width profile after the

candidate minima index pC(α).

Once the centromere candidate points pC and their corresponding maxima

points pmL and pmR were calculated, the set of features F c were calculated as given

below. A set of 11 features F c were proposed to train the third SVM classifier which

was then used to calculate the best candidate for a centromere location in a given

chromosome. Features F c1 to F c3 provide an insight on the significance of the can-

didate point with respect to the general width profile distribution. The normalized

width profile value itself is embedded in features F c4 and F c8 where the latter scales the

minima based on the average value of the width profile. Features F c5 and F c6 capture

the contour curvature values that are intrinsic to the constriction at the centromere

location. Features F c7 ,F c9 and F c10 include distance measures which indicate the po-

sitioning of the candidate point with respect to the chromosome as well as to the

width profile shape. Finally the feature F c11 records the staining method used in the

cell preparation. This gives the classifier some crucial information that is then used

to accommodate for specific shape features introduced through the cell preparation

technique used.

Let i be a candidate member number in the centromere candidate pool. Also

let d(1, i) be the Euclidean distance along the midpoints of the width profile trace

lines (centerline) from a telomere to the candidate point and L be the total length

of the chromosome. Then the set of features F c are stated as below where ‖.‖ yields

the absolute value,

1. F c1 =
∥∥∥W (pC(i))−W (pmL(i))

∥∥∥. This feature calculates the absolute width

profile difference between the candidate and the regional maxima prior to the

candidate point on the width profile.
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2. F c2 =
∥∥∥W (pC(i))−W (pmR(i))

∥∥∥. This feature calculates the absolute width

profile difference between the candidate and the regional maxima beyond the

candidate point on the width profile.

3. F c3 = F c1 + F c2 which calculates the combined width profile difference created

by the candidate point.

4. F c4 = W (pC(i)). This captures the value of the width profile (0 ≤ F c4 ≤ 1) at

the candidate point location.

5. F c5 is the local curvature value at the contour point C1
λ which corresponds to

the current centromere candidate location (where λ = pC(i))

6. F c6 is the local curvature value at the contour point C2
λ which corresponds to

the current centromere candidate location (where λ = pC(i))

7. F c7 = min (d(1, i), L− d(1, i)) /L. Gives a measure where the candidate is

located with respect to the chromosome as a fractional measure ( 0 ≤ F c7 ≤ 0.5

)

8. F c8 = W (pC(i))/W̄ , where W̄ is the average of the width profile of the chromo-

some. This includes the significance of the candidate point minima with respect

to the average width of the given chromosome.

9. F c9 = d(pmL(i), pC(i))/L. This gives the distance between the candidate point

location and the regional maxima value prior to the candidate point, normalized

by the total length of the chromosome.

10. F c10 = d(pC(i), pmR(i))/L. This gives the distance between the candidate point

location and the regional maxima value beyond the candidate point, normalized

by the total length of the chromosome.

11. F c11 is a boolean feature used to indicate the staining process used during cell

preparation. A logical ’0’ would indicate the use of DAPI staining while ’1’

would indicate a Giemsa stained cell.

The detection of the centromere location assumes that each chromosome at

least contains one centromere location within the chromosome. This is a reasonable

assumption since the centromere region is an integral part of the anatomy which is
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normally retained in cell division with the exception of cases with excessive radiation

exposure. This assumption transforms the detection problem into a ranking problem

in which we pick the best out of a pool of candidates. Therefore the same approach

that was utilized for the contour partitioning algorithm (section 3.4)was adopted here

in which the distance from the separating hyperplane ρ (the geometric margin) was

used as a measure of goodness of fit for a given candidate. This metric reduced

the multidimensional feature space in to a single dimension metric which inherently

reduced the complexity in ranking the candidate locations. Since the large margin

binary classifier (SVM) oriented the separating hyperplane in the feature space, the

1D distance metric was directly related to how well a given candidate fits into the

general characteristics of a given class label. A detailed principal component analysis

(PCA) of the centromere detection features F c is provided in the following section

followed by an introduction to the candidate based centromere confidence metric.

3.6.1 Principal component analysis (PCA) of features

PCA is a technique used for mapping a set of correlated features into principal com-

ponents using orthogonal basis functions where each component captures the variance

of the data set in ascending order. Therefore PCA is commonly used in literature to

analyze and reduce the number of features in many machine learning problems. PCA

was performed in this research for the feature set used for centromere detection in

order to obtain an insight into the feature set through their contribution to the overall

variance. Table 3.3 provides the percentage figures of contribution to variations (in

descending order) from the set of features. The candidate width profile value (F c4 )

and the width profile value scaled by the average width value (F c8 ) accounts for almost

50% of the variation. The first 8 features in table 3.3 accounts for over 95% of the

total variance while leaving out the curvature features and the image staining method

features. However, when reduced to these 8 features, both the classification accuracy

as well as the detection accuracy deteriorated noticeably. Here it was surmised that

the inclusion of the maximum variance through PCA does not guarantee better sep-

aration of data in the feature space. Therefore, the original 11 features were retained

in the experiment.
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Table 3.3: The percentage contribution of each feature to the variance of the whole
data set in the descending order.

Number Feature number Percentage of variance %

01 F c4 26.67
02 F c8 23.26
03 F c1 14.16
04 F c2 11.68
05 F c7 7.56
06 F c3 6.09
07 F c9 4.17
08 F c10 3.03

09-11 F c5 + F c11 + F c6 3.38

3.6.2 Candidate based centromere confidence (CBCC)

Centromere localization is an essential stage in many cytogenetical diagnosis pro-

cesses. Although the accuracy measures are a good basis for establishing performance

of a machine learning application, it does not yield any useful information regarding

the accuracy of a given classification or localization. A measure of confidence in a

particular localization is a useful tool in diagnosis processes. Therefore an intuitive

and effective measure termed the Candidate Based Centromere Confidence (CBCC)

for representing the confidence was proposed in the detection of a centromere loca-

tion, which can be obtained using the solution space derived through the classifier

and the distance metric ρ.

For a given set of candidate points of a chromosome pC , the goodness of fit (GF)

of the optimal candidate point (ρ̀) is obtained by calculating
∥∥∥ (ρ̀−ρ̄)

2

∥∥∥ which is the

average distance of all the remaining candidate points. The expected detection would

have the optimal candidate as well as the other candidates as support vectors for the

classifier on either side of the separating hyperplane (see figure 3.20). The average

of the rejected candidates was used instead of the second best candidate for gauging

the goodness of fit due to multiple reasons. First, it was possible to have multiple

candidates within a given centromere region. Also there are dicentric chromosomes

that possess two centromere locations which could adversely affect the CBCC value

if the second best candidate was used as a benchmark. Here, the optimal candidate

distance (ρ̀) is ≈ 1 while the average of the remaining candidate distances (ρ̄) be

≈ −1. The GF value was truncated at unity since exceeding this value does not add
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any new information to the measure.

Table 3.4 depicts CBCC values for accurately detected chromosomes as opposed

to inaccurately detected chromosomes. It also includes a third category termed ”All

nonviable candidates chromosomes” (a subset of inaccurate centromere detection)

where none of the candidates of a given chromosome were marked as capturing the

true centromere of the chromosome. These were mainly caused by segmentation of

acrocentric chromosomes where the lighter intensity of the satellites were segmented

out and also by extreme sister chromatid separation. Values in table 3.4 shows a clear

correlation between the CBCC values and the accuracy of the centromere localization

outcome and therefore representing the confidence in the detection.

Table 3.4: The mean and the standard deviation of the CBCC values in cases with
accurate centromere detection as well as inaccurate centromere detection. The table

also includes cases where non of the candidates were not found to be viable
candidates (a subset of inaccurate centromere detection) for the centromere location.

Category Mean (µ) Std. Dev (σ)

Accurate detection 0.7861 0.3000
Inaccurate detection 0.3799 0.3293

All nonviable candidates 0.2696 0.2457

3.6.2.1 Customizing the confidence value

In clinical diagnosis applications and in many other candidate based approaches, a

percentile value of the detection confidence could convey information better regarding

a detection result in a more comprehendible form. However it is important to note

that a given certain percentile value (say 90%) would imply two different levels of

significance depending on the application. For an example in critical diagnosis prob-

lems, a 90% value should provide very high confidence in the measurement which

may not be demanded by another candidate based detection problem. Therefore,

this percentile measure is highly subjective and problem specific unlike the CBCC

measure discussed in section 3.6.2. This also implies the requirement of a mapping

framework which can be easily altered for creating any problem specific confidence

measurement schema.

This is proposed to be obtained by mapping the CBCC value prior to truncation

(GF) using the cumulative distribution function of a normal distribution. The mean
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and the standard deviation values used for this gives a control to the user to set the

sensitivity of the accuracy values to match the required standards and then filter out

detections below a certain threshold CBCC value. For an example, in situations where

detection accuracy is highly important the user can fine tune the confidence percentile

value by setting a relatively higher mean value and a lower standard deviation value.

This assigns a lower value for cases with low goodness of fit and focuses the major

segment of mapping to the higher GF region. The spread of this region is controlled

through the standard deviation value. Figure 3.21 demonstrates the curve shape

of few possibilities of cumulative distribution functions that can be used to map the

accuracy values according to the requirements of the given problem. This improves the

applicability of this measure to various applications not only in centromere detection,

but for any application which involves in selecting an optimal candidate from a set

of candidates. Furthermore, this scheme utilizes the CBCC values which are beyond

1.00 and rank these ideal cases to fit into the higher percentile value range.

Since centromere detection carries important information regarding the anatomy

of the chromosome, the mean and the standard deviation values for instance were set

at 0.75 and 0.5 respectively which is represented by figure 3.21(c). This penalized

detections with less desirable GF while mapping most of the cases with higher GF

properly to the percentile confidence values. Table 3.5 depicts these mapped per-

centile values (derived using figure 3.21(c)) for accurately detected chromosomes,

inaccurately detected chromosomes and all nonviable candidates chromosomes sim-

ilar to table 3.4. A close examination of the values in table 3.5 in comparison to

those in table 3.4 for the same groups reveals the effect of normalization (mapping).

A more aggressive mapping function as given by figure 3.21(d) would increase the

difference between the mean values of correct and incorrect localization values while

further penalizing the lower CBCC values.



Chapter 3: Proposed algorithm 69

Table 3.5: The mean and the standard deviation of the percentile confidence values
in cases with accurate centromere detection as well as inaccurate centromere

detection. The table also includes cases where none of the candidates were not
found to be viable candidates (a subset of inaccurate centromere detection) for the

centromere location.

Category Mean (µ) Std. Dev (σ)

Accurate detection 70.01% 24.34%
Inaccurate detection 29.29% 27.64%

All nonviable candidates 19.29% 14.44%

(a) (b)

(c) (d)

Figure 3.16: Depicts the uniform sampling of the width profile using the proposed
method in figure 3.16 (c) & (d) as opposed to the trellis structure measurements

through the centerline based approaches given by figure 3.16 (a) & (b).
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(a) (b)

(c) (d)

Figure 3.17: Demonstrates the difference between the kernel of the proposed
method in comparison to the standard Laplacian kernel. Figure 3.17(b) is an

enlarged view of the 3x3 neighborhood of the pixel location marked by yellow on
figure 3.17(a). Figure 3.17(c) & (d) represents the standard Laplacian and intensity

biased Laplacian kernels calculated for the neighborhood of interest.

Figure 3.18: The steps of tracing the thickness (yellow stars) at one contour location
of the chromosome where the arrows indicate the Laplacian vector field. The black

square indicates the end point on the contour of the object. The final thickness
value is calculated by getting the sum of all the lengths of these small steps.
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Figure 3.19: An example where the contour C is split into two approximately
symmetric segments C1 and C2. The red width trace line connects the points C1

λ
and C2

λ of the two contour segments.

Figure 3.20: Shows the expected scenario for candidate based centromere detection
where the blue square represents the optimal candidate while the other five

candidates are given by the red squares in the feature space.
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Figure 3.21: A collection of possible cumulative distributive functions (of Gaussian
distributions) where the (µ, σ) values are set at (0.5, 0.5) for figure 3.21(a) , at (0.5,
0.1) for figure 3.21(b), at (0.75, 0.5) for figure 3.21(b) and finally at (0.75, 0.1) for

figure 3.21(d).
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Chapter 4 Results

Centromere localization is an essential step in many chromosome analysis algorithms

which can be used to derive information such as the Centromere Index (CI), chromo-

some group and chromosome number. Therefore the centromere detection accuracy

was used to measure the performance of the proposed algorithm. Testing was carried

out using two different test schemas designed to test different aspects of the proposed

algorithm as listed below.

• Preliminary testing : The main objective of this stage of testing was to

analyze the performance of the proposed method in accurate sampling of the

width profile of the chromosome. The performance of the proposed method was

tested against a centerline based method and an in depth statistical analysis

was conducted to establish the statistical significance of the observed results.

• Candidate based centromere detection : This stage of testing analyzed

the candidate based centromere detection accuracy of the proposed method.

Testing was done based on a sizable and diverse data set of chromosome which

contained all groups of chromosomes with different staining methods.

4.1 Preliminary testing

The main objective of this test was to establish the accuracy in sampling of the

width profile of the proposed method using the centromere detection accuracy. The

centromere and centerline detection method described in section 3.3.1 was used for

comparing the results of the proposed method. The centerline based method was

selected since it can handle any chromosome morphology without yielding spurious

branches in the centerline and also attempts to find the width profile similar in princi-

ple to most existing methods [1],[41]. The results of the proposed method was tested

for statistical significance against those obtained using the centerline approach.

Since the centerline based method used a pruned centerline for width profile

calculation, the width profile of the proposed method was also pruned by the same
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extent at each end. Furthermore, both methods were set up to detect the centromere

location by calculating the global minima of the width profile. The data set for

this stage consisted of 226 human lymphocyte chromosomes from 12 chromosome

cells which yielded an average of 18.8 chromosomes per cell image where only non

overlapping and touching chromosomes were selected. Due to the limitations of the

centerline based method, a majority of the data set consisted of metacentric and

submetacentric chromosomes with skeletons longer than 35 pixels were included in

the analysis. Cell images contained chromosomes with different staining methods and

artifacts. Table 4.1 provides the breakdown of these cell images based on the staining

method as well as the presence of sister chromatid separation (judged visually).

Table 4.1: Breakdown of chromosome cell images and chromosomes based on the
staining method and the sister chromatid separation (SC Sep.)

Abbr. Label Images Chromosomes

D-NSC DAPI-No SC Sep. 4 72
D-WSC DAPI-With SC Sep. 3 59
G-WSC Giemsa-With SC Sep. 5 95

Total 12 226

A proper mechanism for collecting ground truth was essential in order to quan-

titatively measure the accuracy of centromere detection using both centerline and the

Laplacian based (proposed) methods. For this experiment, the centromere location

manually recorded by the author was used as the ’gold standard’ in the analysis. Due

to limitations of resources, the intra-observer variability of ground truth was not ana-

lyzed in the current stage of the research. Here, the ground truth was collected in the

form of a line drawn across the centromere region. Then, the perpendicular distance

in pixels from the centromere location given by the algorithm (midpoint of the scan

line with the minimum width) to the user drawn line segment was denoted as the

error of detection. In this study, the interest was placed in errors in the vicinity of

the center of the chromosome rather than the orientation of the scan line. Therefore

the experiment was set up in a way that any displacement of the detected centromere

location along the drawn ground truth centromere line would not influence the ac-

curacy of detection. Furthermore, pixel error values were not normalized since the

centromere structure mostly remains fixed despite chromosome morphology or chro-

mosome number. These error values will be denoted by EL and EC for the error of
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the Laplacian based proposed method centromere and the centerline method result

respectively.

The Laplacian based proposed algorithm performed well on chromosomes de-

spite the staining method and the shape of the chromosome which was verified with

the statistical analysis performed in section 4.1.1. However, the algorithm failed in

the presence of high sister chromatid separation in the binary segmentation of the

chromosome. The DCE algorithm in contour partitioning selected a high curvature

point within the telomeric region and thus yielded the correction for sister chromatid

separation ineffective. Figure 4.1 shows some of the sample results for multiple stain-

ing methods used commonly in cytogenetic studies. Figure 4.1 (f) depicts an instance

where the correction for sister chromatid separation had failed to yield the expected

result. In figure 4.1 (e) a case is presented where the centerline based method had

failed to yield an accurate centromere location. This was caused by a noisy centerline

which missed the actual width constriction at the centromere location. However the

proposed method yielded better results due to uniform sampling despite the object

boundary noise (see figure 4.2 (d)).

4.1.1 Statistical analysis

Once error measurements were calculated, statistical analysis techniques were used

to reject or accept the null hypothesis which states that both the proposed Laplacian

error measurements (EL) and the centerline method error measurements (EC) were

from the same population. Therefore the failure to reject the null hypothesis con-

cluded a statistically insignificant improvement from the proposed Laplacian based

method. However, the following conditions needed to be fulfilled before applying any

parametric statistical analysis test.

1. The samples of both error distributions should contain normal distributions.

2. Both error distributions have equal variance.

3. Chromosomes used for testing are selected through a complete random process.

4. Both groups contain equal number of chromosomes (same sample size).

The normality of the two error distributions were first examined using the de-

scriptive values given in table 4.3. The proposed algorithm yielded a smaller error
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Demonstrates some sample results of the algorithm where the detected
centromere location is depicted in red color circle against the centerline based

approach [1] in blue color star while the ground truth centromere line is depicted in
white. Figure 4.1 (a)&(b) are results of DAPI (4’,6-Diamidino-2-Phenylindole)

stained chromosomes while figure 4.1 (c)-(f) are results of Giemsa stained
chromosomes. Figure 4.1(e) is an instance in which the proposed algorithm has

outperformed the state of the centerline method significantly while figure 4.1 (f) is
an instance in which the proposed algorithm has failed to yield the accurate

centromere location due to high degree of sister chromatid separation.
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(a) (b)

(c) (d)

Figure 4.2: Depicts an example of the correction for the sister chromatid separation
artifact and the impact of that correction on the width profile measurement in the

proposed method. The right hand side telomere region was corrected for sister
chromatid separation in figure 4.2 (c) where the resulting uniform sampling of the

width profile from the Laplacian based method is given in figure 4.2 (d) as opposed
to the centerline based method in figure 4.2 (b).
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mean value with a smaller standard error of mean while having a relatively higher

skewness and kurtosis values obtained in comparison to the centerline method. How-

ever the high kurtosis and skewness values in table 4.3 suggested that both distri-

butions deviated from normality. Next, the Kolmogorov-Smirnova test was used to

statistically test the normality of these distributions. The results of this test are given

in table 4.2. According to this test result, the null hypothesis that these distributions

were normal (p < 0.05) was rejected. Although this deviation from normality is not

statistically preferred, the high kurtosis and skewness values along with the relatively

high Kolmogorov-Smirnova statistic value (Z = 0.280) provided evidence towards the

conclusion that the proposed method yielded a better grouped distribution towards

a lower mean error value when compared to the centerline method.

Table 4.2: The Kolmogorov-Smirnova normality test results for the data set.

Kolmogorov-Smirnova
Statistic df Sig.

EL .280 226 .000
EC .258 226 .000

Table 4.3: Descriptive values for the detection error data set when analyzed with
proposed Laplacian based method (EL) and Centerline based method (EC) [1].

N Mean Kurt- Skew-
Stat. Std. Error -sis -ness

EL 226 4.0243 .4535 17.859 3.839
EC 226 8.7819 .7749 2.657 1.834

Levene’s test for equal variance was then used in order to test for the null

hypothesis of equal variance in the two distributions. The results of the test given

in table 4.4 indicated that the null hypothesis of equal variance could be rejected

(p < 0.05).

Table 4.4: Levene’s test for testing equal variance of detection error within image
groups (given in table 4.1) for each algorithm.

Levene Statistic df1 df2 Sig.
EL 9.763 2 223 .000
EC 23.362 2 223 .000
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Earlier mentioned 3rd and 4th conditions had to be ensured during the design

stage of the experiment. The 4th condition about having the same sample size was

met since both algorithms were tested against the same number of chromosomes.

Although these chromosome were selected without any bias, this test could not be

considered as a random process since the same set of images were presented for both

algorithms. Therefore these experiments violated the third condition and fell under

the category of ’repeated measurement’ analysis. Therefore, a ’t statistic’ cannot be

utilized to obtain the significance of the results.

Since the experimental setup as well as the error distributions violates some

of the assumptions of parametric statistical analysis, nonparametric methods were

selected to test for the statistical significance of the proposed method. This was

obtained through the ’Wilcoxon Signed Rank Test’ which could be directly applied

to repeated measurements without the normality constraint. The results of the test

are given below in table 4.5.

Table 4.5: The Wilcoxon signed test rank analysis results.

N Mean Sum of
Rank Ranks

(-) Ranks 80 89.74 7179.00
EC - EL (+) Ranks 146 126.52 18472.00

Ties 0
Total 226

The data in table 4.5 analyzes cases based on their signs after comparing each

corresponding pair. Therefore it was observed that the sum of positive ranks were

significantly higher than that for negative ranks, which corresponded to the cases

when the Laplacian based proposed method gave lower error values compared to the

centerline based approach.

Table 4.6: The Wilcoxon signed test significance analysis results.

EC - EL
Z -5.738

Asymp. Sig.(2-tailed) .000

The significance analysis of the Wilcoxon signed rank test given in table 4.6

demonstrates that the error values yielded by the proposed Laplacian based method
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are statistically ’rare’. Given this observation, it is reasonable to assume that the pro-

posed method error measurements EL and the centerline based error measurements

were derived from two different populations. Therefore the null hypothesis that both

EL and EC are from the same population (equal mean values) was rejected (p < 0.05),

concluding that the proposed method elicit statistically significant improvement in

centromere localization (p < 0.05) compared to the centerline based method.

Since the proposed method results are significant (rare), the variability of error

measurements between the defined three labels given in table 4.1 for the proposed

method was investigated. This was an essential step for judging the performance of

the proposed Laplacian based method on different groups of images. The descriptives

for each of these image groups for the proposed method results are given in table 4.7.

Table 4.7: Descriptive values for the detection error for the proposed Laplacian
method (EL) and the centerline based method (EC) with respect to the image

groups stated in table 4.1.

Method - Group N Mean Std. Std.
Dev. Error

Error 1.00 72 2.4835 3.00623 .35429
Laplacian 2.00 59 3.9585 5.93717 .77295

3.00 95 5.2328 8.91079 .91423
Error 1.00 72 3.3006 5.44868 .64213

Centerline 2.00 59 9.2070 11.38440 1.48212
3.00 95 12.6721 13.56750 1.39200

A one-way Analysis of Variance (ANOVA) was performed and the results are

given in table 4.8. ANOVA provides an insight to whether the variance between

groups is larger than that would be expected through chance by comparing to the

variance within groups. The results of this test depicted that there were statistically

significant variations between the groups in both methods. However the lower ’F’

statistic value along with the smaller margin of significance suggested that the pro-

posed method performed more consistently than the centerline based method within

all groups of data.

The results given by the one-way ANOVA test (see table 4.8) failed to reject the

null hypothesis. This warranted the need of a post-hoc test which analyzes the vari-

ability between each image groups separately. However a post-hoc analysis method

had to be selected carefully since the null hypothesis of equal variance was rejected
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Table 4.8: ANOVA test for significance within image groups.

df Mean F Sig.
Square

EL Between 2 154.963 3.405 .035
Within 223 45.516
Total 225

EC Between 2 1805.780 14.954 .000
Within 223 120.754
Total 225

based on the Levene’s test results (see table 4.4). Therefore, the Games-Howell post-

hoc test was chosen for this purpose since it does not rely on homogeneity of variance

assumption (refer table 4.9).

Table 4.9: Games-Howell post-hoc test results for analyzing significance of variance
between image groups where the groups Group 1,2,3 were D-NSC (DAPI without

SC Sep.),D-WSC (DAPI with SC Sep.) and G-WSC (Giemsa with SC Sep.)
respectively.

Dependent Group Group Mean Std. Sig.
Variable (I) (J) Diff Err

1.00 2.00 -1.4749 .8503 .199
3.00 -2.7493 .9805 .016

EL 2.00 1.00 1.4749 .8503 .199
3.00 -1.2743 1.1972 .538

3.00 1.00 2.7493 .9805 .016
2.00 1.2743 1.1972 .538

1.00 2.00 -5.9064 1.6152 .001
3.00 -9.3715 1.5330 .000

EC 2.00 1.00 5.9064 1.6152 .001
3.00 -3.4650 2.0333 .207

3.00 1.00 9.3715 1.5330 .000
2.00 3.4650 2.0333 .207

The post hoc analysis demonstrated that performance of the proposed method

varies significantly only between D-NSC (DAPI without SC Sep.) & G-WSC (Giemsa

stained with SC sep.). In the meantime, the results of centerline based method varied

significantly between groups D-NSC (DAPI without SC Sep.) & D-WSC (DAPI with

SC Sep.) as well as groups D-NSC (DAPI with SC Sep.) & G-WSC (Giemsa stained).

Therefore it was deduced that the proposed method varied less in performance based
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on the image group type in comparison to the centerline based method. Further-

more, the difficulty in handling Giemsa stained images were also visible through both

methods due to the high level of boundary noise introduced during the staining pro-

cess. Boundary noise can often distort the width profile measurement values and

inject error into centromere localization. The presence of sister chromatid separation

was better handled through the proposed method compared to the centerline based

method.

Figure 4.3: The scatter plots for demonstrating the correlation between the two
detection error distributions in which the ’x’ axis is the detection error of the

proposed Laplacian based method (EL) and the ’y’ axis is the centerline based
method (EC).

During an analysis it is equally important to test the amount of correlation

between the results obtained using the two methods. This provides insights about

the similarities in results obtained from the two methods. A scatter plot is used as

given by figure 4.3 for this purpose as a preliminary analysis. The outliers of the
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error values (a common shortcoming shared by both methods) were observed to be a

result of the inaccuracy of the contour partitioning and correcting for sister chromatid

separation. The same phenomenon was observed between the error values for the pro-

posed method with and without integrating intensity information. A nonparametric

correlation test using the Spearman coefficient was used to obtain a quantitative value

(refer table 4.10). Therefore it was observed that there is a strong correlation between

the error values obtained through both these methods. The clustering of data points

in the figure 4.3 corresponds to the majority of these correlation measurements been

significant.

Table 4.10: Non-parametric correlation test for significance (Sig.) using Spearman
coefficient for detection error between the proposed algorithm and the centerline

based method where ρ(X,Y ) denotes the correlation between two random variabels.

EL EC
ρ(X,Y ) 1.000 .250

EL Sig. .000
Spearman’s N 226 226

rho ρ(X,Y ) .250 1.000

EC Sig. .000
N 226 226

Following the statistical analysis, a preliminary study was conducted in order

to explore the effects of adding the intensity information into the standard Laplacian

framework. A total of 11 chromosomes were examined from the data set which had

the most positive impact from the addition of intensity into the algorithm. These

chromosomes on average showed an improvement of 20.9 pixels in error. However

out of the 11 chromosomes, 3 were affected by the presence of high degree of sister

chromatid separation. The chromosomes that were not affected by this phenomenon,

showed the presence of a lighter intensity band close to the centromere location. On

the other hand, only 4 chromosomes were present in the data set which considerably

downgraded the result (with an average of 26.4 pixels in error). A close examina-

tion of these 4 chromosomes revealed the presence of high degree of sister chromatid

separation, influencing the algorithm to detect the centromere location on one of the

sister chromatids (towards the telomere region).
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4.2 Candidate based method performance

It was established that the proposed algorithm outperformed centerline based ap-

proach [1] with statistical significance as demonstrated in section 4.1. In this experi-

ment the proposed method was tested for performance on a larger data set containing

1400 chromosomes from 40 cell images (at an average of 35 chromosomes per image)

containing both DAPI and Giemsa staining, with and without sister chromatid sepa-

ration. Table 4.11 provides the breakdown of these cell images based on the staining

method as well as the presence of sister chromatid separation (judged visually). In

this experiment, the complete length of the width profile was utilized, which was a

feature enabled by the use of candidates for centromere location as opposed to the

global minima of the profile. Therefore, all chromosomes that were not touching or

overlapping neighboring chromosomes in each cell image were included in the analysis

of the experiment.

Table 4.11: Breakdown of chromosome cell images and chromosomes used for the
larger data set based on the staining method and the sister chromatid separation

(SC Sep.)

Abbr. Label Images Chromosomes

D-NSC DAPI-No SC Sep. 4 114
D-WSC DAPI-With SC Sep. 18 587
G-WSC Giemsa-With SC Sep. 18 699

Total 40 1,400

The centromere locations manually recorded by the author were used as the

’ground truth’ in the analysis. The set of candidates generated by the algorithm

was displayed superimposed on the chromosome and the candidate(s) that closely

represent (within the centromere region) the centromere location was selected while

rejecting others. In cases where all the candidates provided by the algorithm are

incorrect, all the candidates were marked as rejected (negative examples for the clas-

sifier). Since the centromere is a region, a pixel error in detection may not convey

the accuracy of the algorithm effectively. Therefore a binary detection accuracy mea-

sure was used for this test. In the current stage of the research, the intra-observer

variability of ground truth was not analyzed due to the limitations of resources. The

1400 chromosome data set yielded 7058 centromere candidates. A randomly selected

50% portion of the data set along with the corresponding ground truth were used
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for training a support vector machine for centromere localization. A Gaussian radial

basis function kernel was used with sequential minimum optimization (which gives

a l-1 norm soft margin classifier) for training the support vector machine classifier

in this experiment. The trained SVM classifier was tested for effectiveness using the

remaining 50% of the data set (2 fold cross validation) and obtained an accuracy,

sensitivity and specificity values of 92%, 96% and 72% respectively. Two fold cross

validation was selected as the validation method since it is a less computationally

expensive method compared to methods such as the ’leave on out’ approach. Fur-

thermore, the importance was placed on the ranking of the candidates as opposed to

the label given for each candidate. Therefore two fold cross validation method yielded

a reasonable estimation of the performance with minimal computation.

However, the key objective was to accurately detect the centromere location for

each given chromosome in the data set as opposed to classifying all candidate points

individually. The candidates in each chromosome were analyzed separately and the

best candidate from the set was selected based on the distance metric value (ρ).

After testing on 1400 chromosomes, the algorithm accurately located the centromere

location in 1220 chromosomes with a detection accuracy of 87%. Its also important

to note that the 124 chromosomes out of the missed 180 chromosomes were cases

where none of the candidates included the centromere of the chromosome. Some

of these were caused by segmentation of acrocentric chromosomes where the lighter

intensity of the satellites were segmented out while others were caused by extreme

sister chromatid separation. The detection accuracy for each image group is given in

table 4.12 where a slight reduction in accuracy was observed for the groups with the

presence of sister chromatid separation. The lowest detection accuracy was observed

with Giemsa stained images which generally shows higher degree of chromosome

boundary noise. It is important to notice that these observations are consistent

with the conclusions derived through the Games-Howell post-hoc test (see table 4.9)

discussed in section 4.1.1.

Figure 4.4 shows an example where 5 candidates were created using the local

minima locations in width profile given by the proposed Laplacian based thickness

measuring algorithm. In this instance, the 4th candidate was selected which was

the largest positive distance from the data set, yielding a truncated CBCC value

of 1.00. Figure 4.5 provides a sample representation of cases where the centromere

was accurately localized. From a machine learning point of view, figure 4.5 (a), (b)
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(a)

(b)

(c)

Figure 4.4: Demonstrates an example where 5 candidates were created for the
chromosome in figure 4.4 (a) using the width profile in figure 4.4 (b). The figure 4.4

(c) shows the signed distance values for each candidate calculated from the
separating hyperplane while the selected candidate is depicted in blue.
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and (c) are fairly straight forward centromere localizations. The very high truncated

CBCC values at 1.000 for all three cases provide further validity into the CBCC

measure which indicate that the selected candidate was more preferable than the other

candidates in the chromosome. Figure 4.5 (e) represents a chromosome where sister

chromatid separation has had a significant effect on the chromosome segmentation.

However as a result of correcting for sister chromatid separation, the algorithm has

localized the centromere accurately with a CBCC value of 1.000. The chromosome

segmentation in figure 4.5 (d) demonstrates evidence of extensive sister chromatid

separation and therefore the CBCC value was at 0.995 which still was a high value

for the data set. The figure 4.5 (f) represents a chromosome which was highly bent

and also with very significant sister chromatid separation present within. Yet, the

algorithm was capable of localizing an accurate centromere location with a low CBCC

value of 0.661, which indicated a less than ideal separation between the centromere

candidates.

Table 4.12: The detection accuracy values for chromosomes used for the larger data
set based on the staining method and the sister chromatid separation (SC Sep.)

Abbr- Number of Number of Accuracy
-viation chromosomes accurate detections

D-NSC 114 104 91.2%
D-WSC 587 517 88.1%
G-WSC 699 599 85.6%

Figure 4.6 provides some cases where the algorithm failed to localize the accu-

rate centromere location. Most of these (68%) were observed to be cases where none

of the candidates were deemed to contain the actual centromere location, mainly

due segmentation problems and very high levels of sister chromatid separation. Fig-

ure 4.6(b) depicts an example where the segmentation algorithm failed to capture

the constriction in an acrocentric chromosome. The CBCC value in this example

was as low as 0.066 which indicated that the algorithm picked a weak candidate for

the centromere. Figure 4.6(a) demonstrates a case where extreme sister chromatid

separation has caused the segmentation algorithm to treat each individual chromatid

arm separately. This chromosome had a low CBCC value of 0.368 which represented

the acentric nature (morphological) of the separated arm. Another adverse impact

of high sister chromatid separation is given by figure 4.6(c) where the long arm sister
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Demonstrates some sample results of the algorithm where the accurately
detected centromere location (selected candidate) is depicted by a yellow dot while
the segmented outline is drawn in blue. Figure 4.5 (a) is a result of DAPI stained
chromosomes while figure 4.5 (b)-(f) are results of Giemsa stained chromosomes.

These results reported CBCC measures of (a) 1.000, (b) 1.000, (c) 1.000, (d) 0.995,
(e) 1.000, (f) 0.661 respectively.
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chromatids of an acrocentric chromosome had been identified as a bent chromosome

with no sister chromatid separation. The CBCC measure failed to distinguish this

chromosome from a normal bent chromosome and had yielded a relatively high (com-

pared to other misidentified localizations) value of 0.655.

(a) (b) (c)

Figure 4.6: Demonstrates some sample results where algorithm failed to yield an
accurate centromere location. The detected centromere location (selected candidate)

is depicted by a yellow dot while the segmented outline is drawn in blue. These
results reported CBCC measures of (a) 0.368, (b) 0.066, (c) 0.655 respectively.

A preliminary study was conducted to gauge the possibility of extending the

proposed centromere detection algorithm into dicentric (chromosomes with two cen-

tromere locations) detection in radiation biodosimetry. Given that the constriction

at the second centromere carries similar characteristics to the first centromere lo-

cation, in theory it should be ranked high along with the best candidate (primary

centromere). Therefore, the top four ranked candidates of the dicentric chromosomes

in the data set was analyzed manually. The purpose was to find out whether both

centromere locations would be encompassed within the top four candidate positions.

In all 31 dicentric chromosomes in the data set, the first candidate (the selected cen-

tromere) was accurate. Out of the 31 cases, there were only two instances where the

second centromere was not within the top four candidates. This was caused mainly by

high sister chromatid separation. The example given in figure 4.5 (f) was observed to

be one of these cases. The breakdown of the candidate numbers which captured the

second centromere location is given in table 4.13, where a majority of cases reported

the second centromere location as the second highest ranked candidate location. It is

important to notice that in some of the cases, more than one candidate was created at

the primary centromere location (in long chromosomes). This was observed to cause
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some of the cases where the second centromere was ranked as the third candidate.

Table 4.13: The results of the preliminary analysis in studying the feasibility of
extending the proposed method for dicentric detection is presented by indicating the

number of times different ranked candidates were able to encompass the second
centromere.

Rank of the Number of
second centromere cases

02 20
03 6
04 3
05 1
06 1
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Chapter 5 Conclusions & Future work

The dissertation presented a novel algorithm for effectively analyzing human metaphase

chromosomes in lymphocyte cell images. The algorithm was tested for the accuracy

in width profile calculation as well as for centromere detection accuracy as discussed

in chapter 4. This chapter provides a summary of the algorithm along with some

conclusive remarks and feasible future work.

5.1 Summary of the proposed method

The algorithm first segmented the chromosome using a multi stage local segmenta-

tion algorithm. The segmented object along with the gray scale image was used to

reliably calculate the centerline of the chromosome despite the morphology of the

chromosome. The centerline calculation process was able to guarantee the presence

of no spurious branches in the final result. This provided the algorithm a basis for

calculating the length of a given chromosome. Next, the proposed algorithm au-

tonomously selected salient points to partition the contour of the chromosome. This

was needed in order to isolate the telomere regions of the chromosome which capture

the evidence of sister chromatid separation. This was followed by feature extraction

process based on functional approximation which was then used to detect whether

the chromosome contour contained evidence of sister chromatid separation or not.

The objective of testing for sister chromatid separation was to correct the location

where the chromosome contour was split into two approximately symmetrical seg-

ments. This correction was essential since the centerline tend to deviate into one of

the chromatids in the presence of sister chromatid separation. The method next used

a Laplacian based thickness measurement algorithm to calculate the width profile of

the chromosome along the longitudinal axis of symmetry. Intensity was integrated in

to this process in order to guide the thickness measuring trace lines to closely follow

homogenous regions of the chromosome (chromosomal banding). The width profile

was then used to calculate a set of candidates for centromere location of the chro-

mosome. Next, these candidates were ranked based on the geometric margin with
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respect to the separating hyperplane of a trained classifier, where the best candidate

was selected as the centromere of the chromosome.

A confidence measure termed as the ’Candidate Based Centromere Confidence’

(CBCC) was proposed which conveyed the confidence of each centromere detection

using a scalar value with an upper bound of unity. CBCC provides the expert with

additional information regarding the detection which they can use to make informed

diagnosis.

The proposed algorithm was tested at two different stages for accuracy and per-

formance. First, the capability for calculating an accurate width profile was tested

using the centromere localization accuracy in comparison with a centerline based ap-

proach [1]. A data set of 226 chromosomes were used for the test where the quantified

detection error values were subjected to an in depth statistical analysis. The proposed

method was proved to have a statistically significant improvement when compared

with the centerline based method while performing more consistently across different

staining methods and morphologies. The second stage of testing was conducted on

a larger data set containing 1400 chromosomes collected from 40 cell images across

two staining methods. Here the accuracy of the proposed method was tested using

the candidate based approach, where a detection accuracy of 87% was obtained.

The experiments that were carried out to detect the performance of the pro-

posed method, revealed some limitations. Extreme sister chromatid separation was

one of the main contributors to these limitations. Each chromatid arm of some chro-

mosomes were segmented as two separate chromosomes due this phenomenon. In

some acrocentric chromosomes, extensive sister chromatid separation gave the ap-

pearance of a bent chromosome with no sister chromatid separation. Furthermore,

in some acrocentric chromosomes, the segmentation algorithm failed to capture the

width constriction altogether. This was mainly caused by the relatively light inten-

sity of the satellite stalks (nucleolar organizer regions) of these chromosomes getting

segmented out (see figure 4.6 for some of these example situations).

A number of empirically tuned parameters are reported in this dissertation.

It was important to establish the robustness of the proposed method with respect

to these parameters. Therefore, the parameter values were first tuned using the

preliminary data set of 226 chromosomes. Then the same set of values were used

for processing the larger data set of 1400 metaphase chromosome. The detection
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accuracy of 87% suggests that the empirical values used are considerably robust in

the presence of a different data set.

5.2 Conclusive remarks

The centromere detection algorithm used for radiation biodosimetry requires being

able to handle chromosomes with multiple staining methods and preparation tech-

niques since the data may be generated at different laboratories with different pro-

tocols. These variations in preparation techniques result in large morphological vari-

ations along with the presence of premature sister chromatid separation caused by

exposure to prolonged colcemid time and concentration. The proposed method was

observed to perform satisfactorily despite the high morphological variations on cells

images from DAPI as well as Giemsa stained images (see section 4.2). Furthermore,

the proposed method performed better at calculating width profile of chromosomes

with minimal influence from boundary noise than the centerline based approach (dis-

cussed in section 4.1.1).

Dicentric chromosomes appear in low frequencies in human metaphase cell im-

ages even at considerable radiation levels and become even less frequent in lower

radiation dosages. Therefore, it is paramount to include all types of chromosomes in

the analysis for dicentric detection. This is a major drawback in methods currently

known [61], [62]. The candidate based approach in the proposed algorithm gives the

ability to include both acrocentric and submetacentric chromosomes into the analy-

sis. Coupled with the CBCC (Candidate Based Centromere Confidence) metric, the

proposed algorithm is geared to provide useful information to the expert involved

in the diagnosis process. Its important to notice that though these are essential re-

quirements for radiation dosimetry, they are also desirable properties to have in any

chromosome analysis and centromere detection algorithm.

More research is warranted in extending the centromere detection algorithm

to accurately identify dicentric chromosomes. The initial experiment performed to

analyze whether the top four ranked candidates can capture the second centromere

location (discussed in section 4.2) is an important step towards this direction. It

was demonstrated that the algorithm captured 29 out of the 31 second centromere

locations within the top four candidate pool. This implies that the proposed method
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provides a good framework for detecting dicentric chromosomes in radiation bio-

dosimetry applications.

5.3 Future work

The proposed method presents a framework for incorporating additional features into

the Laplacian based thickness measurement process. The framework was used to in-

tegrate intensity information into the thickness measurement process in the research.

However, the possibility of incorporating other relevant features into thickness mea-

surement processes in different applications warrants further experiments.

The proposed algorithm currently assumes at the least one centromere location

chromosome exists. This is a reasonable assumption in most cases. However, in radi-

ation dosimetry analysis, there is a possibility of encountering acentric chromosomes

which have no centromere location within them. Therefore a mechanism needs to be

developed in order to reject these cases in the future. Radiation dosimetry analysis

can also benefit from an extension of the current algorithm to detect dicentrics which

are chromosomes with two centromere locations. An accurate calculation of these

dicentric occurrences provides an insight to the extent of radiation exposure a patient

have had over the years.

Furthermore there exists the need for an effective method for separating touch-

ing and overlapping chromosomes in order to fully automate the proposed algorithm.

There exist some methods in literature which attempted to separate these overlap-

ping/touching blobs by detecting the pale path between the objects or by using a

model based approach. The implementation of an accurate algorithm for this prob-

lem will ensure the smooth and effective operation of the proposed algorithm by

removing the need to select individual chromosomes as well as the need for using a

thresholding factor for separating barely touching chromosomes.

In radiation dosimetry, the algorithm needs to process a large number of chro-

mosomes within a short period of time. This is specially the case in a mass casualty

nuclear event. Therefore the processing time of the proposed method needs to be

reduced in order to facilitate the said requirement. Fast optimization methods such

as dynamic programming could be used to speed up stages of the proposed algorithm.

During this study, the content based ranking algorithm [46] was observed to

perform poorly on cell images with premature sister chromatid separation. Since
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poorly ranked images are discarded from the analysis, this can have significant impact

on the accuracy of the algorithm and therefore warrants further improvements.

A high centromere detection accuracy is critical for radiation biodosimetry ap-

plications since the frequency of dicentric occurrence in cell images are relatively

low even at high radiation doses. Therefore, the detection accuracy of the proposed

method needs to be improved by implementing a better segmentation algorithm which

can reliably capture the centromere constriction of acrocentric chromosomes. A mech-

anism for excluding cell images with extreme levels of sister chromatid separation from

the analysis will further contribute to improve the detection accuracy.

The proposed algorithm can be tested on a larger data set containing other

staining methods such as G-banding in order to gauge the effectiveness of the algo-

rithm. Since the author collected the ground truth in this experiment, it is important

to involve an expert to annotate a separate data set to verify the performance mea-

sures reported in this dissertation. The ADCI software which is currently on field

testing could provide the perfect platform for collecting the required ground truth

data. It is also important to test the inter and intra observer variabilities during the

analysis of such a data set.
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Appendix A Background methods

A.1 GVF snakes

Gradient vector flow (GVF) snakes is a widely used active contour model in segmen-

tation. It is a well known method in literature that has being used to obtain better

convergence at boundary concavities. Section A.1.1 provides a brief overview of the

traditional active contours and section A.1.2 discusses the GVF snake external energy

model in detail. A brief comparison between the GVF snakes and Distance Transform

(DT) based snakes is stated in section A.1.3.

A.1.1 Parametric snakes or active contours

In 1988, Kass et al. [29] first introduced parametric active contours and they have

been applied to many image processing problems ever since. This approach can

be modeled either as an open or closed curve within the 2D domain of the image

where the contour iteratively deforms in order to conform to image features such as

edges [63]. A parametric curve (PC) in general, can be stated as in equation A.1.

v(s) = (x(s), y(s)) 0 ≤ s ≤ 1 (A.1)

In order to achieve this behavior, the curve is either shrunk or expanded based

on the value of the internal energy term defined for the curve. Convergence occurs

when this internal energy term is neutralized by an external energy term (also known

as ”data term”) acting upon the curve at that specific position. Therefore, the en-

ergy formulation of the snake model can be viewed as an energy (physics based)

minimization problem depicted by equation A.2.

Esnake =

∫
(Einternal(v(s)) + Eexternal(v(s)))ds (A.2)
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In order to represent the contour as a set of 2D control points, the energy terms

in equation A.2 can be modified and converted into the discrete domain as given by

equation A.3 and equation A.4.

vi = (xi, yi) 0 ≤ i < n (A.3)

Esnake =
n−1∑
i=0

(Einternal(vi) + Eexternal(vi)) (A.4)

The internal energy (Einternal) stated in equation A.4 is a combination of two

characteristics which govern the motion of the snake when it is under no influence

from the data term. Equation A.5 (by discrete approximation) below depicts these

two characteristics respectively as elasticity and stiffness and they ensure that the

evolution of the contour under the internal forces does not deform the original shape.

The constants α and β are the corresponding scaling factors which need to be set

depending on the application in order to decide the contribution of each energy term

towards the motion. Setting these parameters is critical in getting a proper segmen-

tation result. For an example. a higher value of α and β can overpower the external

energy component and continue the evolution past the object boundary.

Einternal =
n−1∑
i=0

α|vi+1 − vi|2 + β|vi+1 − 2vi + vi−1|2 (A.5)

The external energy in equation A.4 was originally defined to repel the motion

enforced by the internal energy component near object boundaries and to incorporate

the edge information of the image. This interpretation is shown in equation A.6 where

the term ∇I(vi) defines the edge strength at control point vi of the image I. Even

though parametric snakes are in general solved as an energy minimization problem,

for the external energy (data term energy), it is desirable to maximize this value.

Therefore a negative sign is used in equation A.6 to correspond with the general

energy minimization framework. Furthermore, γ is the scaling factor used to balance

the external and internal energy to prevent the snake from missing edge points and
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ultimately shrinking to a single point.

Eexternal = −
n−1∑
i=0

γ|∇I(vi)|2 (A.6)

Reconsidering the parametric representation (equation A.2), it can be further

shown that a snake which minimizes energy should satisfy the Euler-Lagrangian equa-

tion shown below.

αv′′(s) − βv′′′′(s) − ∇Eexternal = 0 (A.7)

By treating v(s) as a function of time, this can further be expressed as a dynamic

equation with (t) [30],[64]:

vt (s, t) = αv′′(s, t) − βv′′′′(s, t) − ∇Eexternal (A.8)

The above equation will be used to represent the GVF snake energy terms which

will be discussed in the subsequent section A.1.2.

Parametric active contours defined above had been applied to many segmen-

tation problems in a variety of fields. The main advantages of this model are listed

below.

• As opposed to methods based on edge maps, they yield a connected contour as

the end result .

• Active contour model evolves under the influence of cumulative forces on all

control points in contrast to point processing methods such as thresholding.

• When segmentation problem is modeled as an energy minimization problem, it

can effectively be solved mathematically.

Yet, the basic snake model described by Kass [29] has the following disadvan-

tages,

• Snakes are not guaranteed to find the global solution for the problem and de-

pending on the initialization they often converge to a local minima .
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• Basic parametric active contour model cannot handle topological changes in the

object of interest. Therefore the number of objects in a given image need to be

predetermined to calculate the object boundaries.

• Snake contours have the possibility to twist (fold on each other) which is highly

unlikely to be present in real objects.

• The model has very limited capture range for the data term and thus has

problems in negotiating concave boundaries.

Among these limitations in the traditional snake model, the sensitivity to the

initialization and the low capture range have been identified as most prominent. The

most common method used to increase the capture range is by merely spreading

the edge strength using Gaussian smoothing. The Gaussian filtering increases the

range in which the snake movement can be influenced by the edge strength. This

can be represented as in equation A.9. Yet, depending on the variance (σ) value of

the Gaussian distribution used [65], this application also blurs the image boundaries

and the exact positioning of the end segmentation result . The capture range will be

larger, if the variance (σ) is set to a higher value, but this will also produce highly

blurred image boundaries which can adversely affect the accuracy of the final contour

positioning.

Eexternal = −
n−1∑
i=0

γ|∇(Gσ ∗ I(vi))|2 (A.9)

Another common approach to increase the capture range is to apply the stan-

dard distance transform (DT) to the image of interest. In order to apply this trans-

form, a distance map is created using intensity edges as the feature points where the

distance value is set to be proportional to the shortest distance from any of these

feature points. Equation A.10 illustrates the use of distance transform as an external

energy in parametric snakes. Unlike the external energy functions given by equa-

tion A.6 & A.9, there is no negative sign in equation A.10 because the value of D (vi)

reduces as the point becomes closer to image boundaries (feature points).

Eexternal =
n−1∑
i=0

D (vi) (A.10)
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The distance transform (D (p)) for any pixel p in the image can be formally

defined as following,

D (p) = minq {α. ‖p − q‖ + F (q)}

where F (.) is a modified 2D matrix generated based on the feature points or the edge

map. For ’standard distance transform’, given the edge map edge(I), the function

F (p) for any pixel p can be defined as follows ,

F (p) =

0 , if p ∈ edge(I)

∞, if p /∈ edge(I)

In order to further enhance the capture range of a snake, Cohen [66],[67] applied

a non-linear transformation to the above mentioned distance maps . These ’distance

potential forces’, only altered the magnitude of the potential forces which are acting

on the edge map while retaining the original vector filed orientation.

A.1.2 Gradient vector flow as an external energy

As mentioned above, there are two main limitations in using conventional snake model

in real world segmentation problems. High sensitivity to the initialization of the snake

control points with respect to the data terms present in the image can be considered

as one limitation. For example, if the adopted model is of a shrinking snake and the

initial contour is selected completely within the object boundary, the snake would

evolve into a single point missing the actual boundary. At boundary concavities,

the direction of the image gradient (on each side of the concavity) would point in

opposite direction and prevents the snake from converging toward concave regions

(see figure A.2). Therefore, given the edge map (edge(I)) such that,

edge
(
Ix,y

)
= Eexternal (x, y)

we can define a static vector field v (x, y) = [u (x, y) , v (x, y)], which minimizes the
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energy functional [30] given below,

ε =

∫∫
x,y

µ
(
u2
x + u2

y + v2
x + v2

y

)
+ | ∇edge |2 | v − ∇edge |2 dxdy (A.11)

where∇edge is the gradient of the edge map and ux is the partial derivative of compo-

nent u(x, y) with respect to x (ux =
∂u(x,y)
∂x ). By closely observing the equation A.11,

following two behaviors of the energy functional ε can be revealed,

• At homogenous regions where ∇gradient is small , the functional ε is influenced

by the partial derivatives of the vector field, thus ensuring a smooth variation

along the homogenous regions. Traditional energy models would have no re-

sponse to such behavior. Therefore, this first term of equation A.11 is called

the ”smoothness term”, where µ is the factor used to balance the contributions

from the two terms towards ε.

• In regions close to object boundaries, the ∇gradient value becomes more dom-

inant increasing the contribution of the second term of equation A.11. The

minimum value (0) for the energy functional in the same equation is achieved

by setting v = ∇gradient around the vicinity or object boundaries preserving

the conditions for a fast convergence.

Then by replacing the external energy component (Eexternal) in equation A.8

with v (obtained by minimizing equation A.11), the following representation can be

achieved,

vt (s, t) = αv′′(s, t) − βv′′′′(s, t) − v (A.12)

GVF snake is the parametric curve obtained by solving the equation A.12.

Detailed information on solving this equation can be found in [30],[64],[65].

A.1.3 GVF snakes vs DT snakes

In this section, image results of applying two different external energy models to active

contours are examined, based on the image and code examples provided by Prince

& Xu [5]. Figure A.1 depicts the difference in convergence of the DT based snake
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with the GVF snake. Figure A.1(a) and A.1(c) show that the GVF converges faster

and more deeper into the concave region of the image where as the final result of the

DT snake (figure A.1(b)) is not satisfactory. The reason for GVF snake to converge

into the region where DT snake fails, can be explained by using the respective vector

fields given in figure A.2. Following observations can be made with respect to the

two vector fields,

• The GVF model vector field is more dense relative to the DT snake field and

is specifically stronger near object edges. It decreases (in magnitude) slower

than the DT model, when going away from these boundaries, thus explaining

the faster convergence.

• The GVF field points towards the concave boundary (in the mid section of

the U shape concavity) whereas the DT model vectors simply exert forces with

opposite directions (in the same region). This cancels out the influence of the

external energy term in the DT model and therefore, the snake stops traversing

towards the concave region.
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(a) DT model iterations (b) DT model final result

(c) GVF model iterations (d) GVF model final result

Figure A.1: Comparison between Distance Potential (DT Based) model (top) and
the GVF model (bottom). Each model depicts the initialization of the contour and
convergence with each iteration (on left) followed by the final contour result after

100 iterations(on right) [5]. (Reproduced with permission from Prof. Jerry L Prince)

A.2 Discrete curve evolution (DCE)

In many shape matching applications, it is required to compare multiple objects vari-

ations with an underlying shape structure. DCE is a technique that can be adopted

for evolving polygons to preserve visual information which can yield a hierarchical

set of polygons according to their significance in representation of the original object.

It is an effective and robust tool for generalizing polygonal contours based on digi-

tal linearization [6]. This technique can be directly applied to digital images as the

boundary of any digital image object can be approximated with a polygon containing

high number of vertices.

This contour evolution method is observed to have potential applicability in the

following fields of studies:

• Shape simplification : DCE can be directly used for shape simplification to
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(a) DT vector field (b) GVF vector field

Figure A.2: Comparison between Distance Potential (DT Based) vector field (left)
and the GVF vector field (right) [5]. (Reproduced with permission from Prof. Jerry

L Prince)

compare different shapes of objects derived from the same model. Latecki &

Lakämper [50] have done detailed study of this aspect in one of their publica-

tions. Some shape simplified examples can be found on web resources [68]

• Object extraction: DCE can also be used to extract objects from a database

when a query is given in the form of a visual sketch. Here, a shape descriptor

can be extracted using a simplified polygonal contour obtained through DCE

(with a single contour). A study on this application on the MPEG-7 standard

data set was performed by Latecki et al [69].

• Skeleton pruning: Bai et al [49] suggest that the polygons which are obtained

through the DCE process can be effectively used for skeleton pruning as it can

remove boundary noise from the digital image object. Also, the DCE end result

would be a high level representation (based on the relevance function) of the

initial object. During our research, we have used this application of DCE to

obtain the centerline of a chromosome.

A.2.1 Definitions

First, we will briefly define the notations that will be used in this sections to explain

the DCE process. Let, C ∈ <2 be the contour of interest which may also contain

self-intersections. Then we can define P as a closed polygon which will lead to a
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sequence of polygons
(
P 0, P 1, ....., Pm−1, Pm

)
through DCE. Also, we can define

the following general terms (related to the polygon structuring),

• v (P i) as a vertex contained in the polygon P i

• arc (si, si+1) defines the arc that spans between two line segments as si ∪ si+1

• the line segment si consists of a line connecting two adjacent vertices and is

defined as vi ∪ vi+1

Then we can define a relevance value K(v, P i)) for any vertex on the closed

polygon P . section A.2.2 explains the equation used for calculating this relevance

measurement and the rationale behind using it. The algorithm of discrete curve evo-

lution by digital linearization is illustrated below [6],[52],[70],

The DCE algorithm:

1. Find the value of,

Kmin
(
P i
)

= min
{
K(u, P i) | u ∈ v(P i)

}
, where (Kmin) is the minimum

value for the relevance measurement at a given iteration.

2. Find the set (Vm) which give all the vertices with the minimum relevance value

found above(Kmin) and this can be noted as,

Vm
(
P i
)

=
{
u ∈ V (P i) | K(u, P i) = Km(P i), ∀ i = 0, 1, ...., (m− 1)

}
3. Then, DCE is the process of constructing a new polygon P ′ from the previous P

polygon by deleting all the vertices with the minimum relevance value (Kmin).

This can be expressed as,

V
(
P i+1

)
= V

(
P i
)
\ Vm

(
P i
)

where |V (Pm)| ≤ 3, in which | . | is the cardinality operator
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This new polygon is created by replacing two line segments (si & si+1) with a

new line segment s′, which effectively connects the end points of arc (si, si+1)

provided that the arc has a relevance value of Kmin.

The iterations can be carried out for any desired termination criterion even until

the end polygon becomes convex.

Depending on the application when the end criterion is set up accordingly, the

end result convexity can be assured by stopping the process at a higher stage of

evolution. Since the convex shapes determines the visual parts of an object [6], the

convexity of the result polygonal partitions are of utmost importance . If the stopping

criterion is inappropriate, the algorithm will converge to a degenerate solution of a

polygon P = {∅}. The shape simplification process and the immunity to noise of

the above defined function can be clearly seen in figure A.31. Some feature points are

marked in figure A.3 to show the stability with noise deformations and the similarity

of the two evolution results.

Figure A.3: above: Steps of the DCE process of shape simplification, below: the
same steps when initiated by adding boundary noise to the same image [6].

(Reproduced with permission from Prof. Longin Jan Latecki)

1. Special acknowledgement to Prof. Longin Jan Latecki, Dept. of Computer and Infor-
mation Sciences, Temple University, Philadelphia, USA.
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A.2.2 The relevance function

Figure A.4: A representation of two line segments and the used angle measurements
in the DCE process, which can be used to explain the rationale behind the used

’relevance measure’.

Discrete curve evolution is used to obtain a hierarchical set of polygons that

represent the shape features of the original contour C ∈ R2. The effectiveness of

this evolution process depends on the measurement used to select vertex/vertices to

be deleted at each iteration in order to obtain a better and simpler representation

of the original object. The main assumption behind deriving this relevance equation

(see equation A.13) is as follows:

’Larger values of total turn (arc) angles as well as relative lengths of segments

imply higher contribution to the shape of the curve or in other words, these segments

have higher relevance value’

The highly intuitive rationale behind the above assumption can be explained

using figure A.5. In this figure line segments A-B & C-D are two segments (B = C)

on a polygon partition (P i) in the DCE process, which makes the arc (arc (s1, s2)).

Then the turn angle as shown in figure A.4, is expressed as β (s1, s2) and is calculated

by |angle (C − D) − angle (A − B)|. According to figure A.5, the contour segments

C2 and C4 are equal in length and shape whereas those of C1 and C3 arcs are not.

The shape contribution of the arc C1 is higher than that of C3 with respect to rest

of the contour. Also, the turn angle and the length of the segments of C1 is greater

than C3. Therefore, these observations justify the assumption made earlier regarding

the relevance measure dependencies. During this process, the lengths of the segments
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are normalized with respect to the total length of the contour/polygon in order to

get the global perspective.

(a) (b)

Figure A.5: Shape variations of polygon partitions and the effects of turn angle and
arc length to the relevance measure.

Next step is to formulate a suitable function to reflect the previously mentioned

two parameters. Considering the ’tangent space’ representation of the polygon where

the x and y axes represent the segment length (normalized) and the direction of each

segment respectively, the turn angle (β) is the difference of ’y’ axis values between

two consecutive entries. Then, an angle ]x (0 ≤ x ≤ β) is calculated, which is the

angle that the segment C − D has to be rotated so that point D and Dn coincide

where A−F and B−Dn are parallel to each other (refer figure A.4). This angle ]x

can be expressed as ]x = [β (s1, s2)× Ls2] / [Ls1 + Ls2] where both Ls1 and Ls2

are normalized lengths of the segments [6]. Then, the circular arc-length (Ls1 × x)

is defined as the relevance function for the DCE process as follows,

K (s1, s2) =
β (s1, s2)× Ls1 × Ls2

(Ls1 + Ls2)
(A.13)

For a given arc of the polygon, the above relevance value can be considered as

the linearization cost . This relevance measure, although its calculated locally has
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a global representation due to normalization of length values. Further explanation

regarding the derivation of the equation A.13 and the tangential space representation

can be found in [6] along with some image examples at [68].

A.2.3 Advantages & disadvantages of DCE

The discrete curve evolution based on digital linearization has shown the following

advantages compared to other existing methods for shape simplification [6], [52], [70] (

One of the main comparison methods is the shape simplification work carried out by

Siddiq and Shokoufandeh [71] ).

• DCE method is rotation, reflection, translation and scaling invariant. It is

rotational invariant due to the use of the tangent space for the polygon evolution

process.

• DCE is robust in real world discrete digital images, unlike other methods which

are based on local extremal points. It is also robust against boundary noise

(digitization errors) in digital images by removing the noise in the early stages

of the evolution itself. Therefore, the evolved contour is noise free after few

initial iterations. The continuity of the DCE method has proven to be stable

against noise. [70]

• The algorithm is guaranteed to converge as at least one vertex is deleted in

every iteration.

• DCE is guided by a global feature called the relevance value. Though this

feature is locally calculated for each vertex pair, it is formulated in a way to

represent the contribution of a given arc with respective to the whole contour.

• Throughout the evolution process the relevance value of the polygon to its

original shape, reduces gradually. This yields a relevance hierarchy of polygonal

representations.

• The DCE method can handle self intersecting objects, objects with holes as well

as any object with a complex shape as long as it is possible to obtain a rough

approximation for the outer silhouette of the object .
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• Since the algorithm operates by merely deleting vertices, it doesn’t dislocate

the object boundary or blur the boundary as with other methods.

The main drawback of the DCE method is the ambiguity regarding the stopping

criteria of the process. A higher level of knowledge of the desired end result (polygon)

is a necessity. If not specified, the DCE based method will continue deleting at least

one vertex pair in an iteration until the end polygon becomes an empty set.
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A.3 Support Vector Machines (SVM)

Support Vector Machines (SVM) a.k.a kernel methods, is a supervised learning method

which has its beginning rooted in the Statistical Learning Theory (SLT) [72]. The

objective of the technique is simply to generate input-output mapping from a set of

labeled training data and hence the term ’supervised learning’. This machine learning

technique can be used for classification as well as for regression and is considered the

best off the shelf learning algorithm up to date. SVM has attracted popularity in

data mining and machine learning for solving real world problems in fields such as

bioinformatics, text mining and image analysis. This section is focused on deriving

the SVM classifier and discussing some of its properties in detail.

Classification problems have evolved to be much more complicated over the

years. Many current machine learning problems or data sets suffer from a phenom-

ena commonly referred to as the ’curse of dimensionality’. This is caused by the

increase in the volume as well as the dimensionality of the feature space with the

addition of many features to the classification problem. The sparsity of data also

increases along with this by scattering the training data points in the high dimen-

sional feature space. Support vector machines, which are based on the optimal margin

classifier method, provides an ideal platform for tackling learning problems in high

dimensional feature spaces. SVM also provides better generalization compared to

other learning algorithms and therefore can perform better with unseen data during

testing. Artificial Neural Networks (ANN) can be considered as the other method

which can be used to draw some comparison to SVM from a performance point of

view. However, SVM demonstrates superior (or comparable) results against ANN

solutions due to its inherent properties discussed later in this section [73].

The SVM framework is derived using two main intuitions as described below.

First intuition:

Let x(i) be a given input feature vector and Θ be the training parameter of a

classifier. Then y will be the predicted label for the input x(i) based on the following

criteria.

Predict y = +1 ⇔ Θtx(i) ≥ 0

Predict y = −1 ⇔ Θtx(i) < 0

Intuitively, if Θtx(i) � 0, this implies that the confidence of the decision of

assigning the label as y = +1 is very high. Similarly, Θtx(i) � 0 would imply
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a highly confident label y = −1. Therefore we would prefer to see the following

situation in a classification problem where,

Θtx(i) � 0, ∀i s.t y = +1

Θtx(i) � 0, ∀i s.t y = −1

Second intuition:

Given a classification problem, we would like to obtain the largest margin of

separation possible. Figure A.6 depicts a linearly separable training data set where

two different separating hyperplanes were derived to yield zero training error. Only

the separating hyperplane given by figure A.6(a) contains the optimal margin. This

is important in generalizing the classification problem in order to cater unforseen

data. The new data point marked by the yellow square is now incorrectly classified

in figure A.6(b) due to the small separation margin. Therefore, the second intuition

is that we want to maximize this separation margin for both positive and negative

samples.

(a) (b)

Figure A.6: Two different separating hyperplanes derived for the same training data
points. Figure A.6(a) contains the separating hyperplane with the optimal margin.
The new data point given by the yellow square will be classified differently in these

two cases.

In the following section, we have briefly followed the steps involved in deriving

the SVM algorithm highlighting features which makes the SVM, the best off the shelf



Appendix A: Background methods 114

machine learning tool in industry up to date.

A.3.1 Deriving the SVM framework

Consider a linearly separable classification problem of which the training data points

are plotted in figureA.7. Let the labels of the training set be y (∈ {−1, +1}) and the

hypothesis (separating hyperplane) h is given by,

hw,b (x) = g(wtx + b) = 0 (A.14)

where g(.) is the output function such that,

g(z) =

{
+1 if z > 0

−1 if z < 0

(a)

Figure A.7: The framework for deriving the geometric margin of a support vector
machine classifier.

The functional margin (γ̂(i)) of the separating hyperplane given by equation A.14,

with respect to a data point x(i) in the feature space is defined as below [74],

γ̂(i) = y(i).(wtx + b) (A.15)
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We would expect positive large values for the functional margin (γ̂(i)) ideally

for all samples in the training data set. A negative value for γ̂(i) implies a misclas-

sification. However the value given by equation A.15 can be artificially boosted by

scaling up w and b. Therefore, the geometric margin (γ(i)) which is the normalized

distance from the data point x(i) can be derived since it is immune to such artificial

boosting. The point x̄(i) which is the projection of point x(i) on to the separating

hyperplane should satisfy the equation A.14 (refer figure A.7).

x̄(i) = x(i) − γ(i) w

‖w‖
Therefore by equating the above coordinates in equation A.14, the geometric

margin (γ(i)) can be derived as follows,

γ(i) = y(i).

[(
w

‖w‖

)t
x(i) +

b

‖w‖

]
(A.16)

Which implies the general relationship between the two distance measurements

given below,

γ(i) =
γ̂(i)

‖w‖
(A.17)

Furthermore, the geometric margin of a data set (γ) is defined as follows,

γ = min
i
γ(i)

Therefore, the geometric margin of a data set (γ) which is the worst case for

the data set is a good measure to maximize for calculating the optimal margin.

max
γ,w,b

γ subjected to, y(i).(wtx(i) + b) > γ

Using equation A.17 and setting ‖w‖ = 1 we can obtain the following opti-

mization problem,

max
γ,w,b

γ̂

‖w‖
subjected to, y(i).(wtx(i) + b) > γ̂
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Then by setting γ̂(i) = 1 and changing into a faster minimization problem,

the following optimization equation can be derived,

min
w,b

‖w‖2 subjected to, y(i).(wtx(i) + b) > 1 (A.18)

The equation A.18 present a convex optimization problem which guarantees

a global minimum solution and can be solved using techniques such as quadratic

programming. However in this form, the computational cost is high for data sets

with high dimensionality and large cardinality. Therefore by using Karush Kuhn

Tucker theorem [75], the dual problem (W (α)) can be derived, where αi ≥ 0 is the

lagrangian multiplier coefficient for the support vector data point x(i) [76].

W (α) =
∑
i

αi −
1

2

∑
i

∑
j

αi αj y
(i) y(j)

〈
x(i).x(j)

〉
(A.19)

w =
∑
i

αi y
(i) x(i) (A.20)

∑
i

y(i). αi = 0 (A.21)

The calculation of w given by equation A.20 reveals that only the support vec-

tors contribute to calculating the separating hyperplane since other αi are usually

equal to zero. Therefore, the support vector machines can handle large data sets

efficiently provided that a significant proportion are not support vectors. SVM also

utilizes the ”covers theorem” [77] which states that a pattern classification problem

that cast into a high dimensional feature space using non linear transformations, is

more likely to be linearly separable than in a low dimensional feature space. Through

the use of non linear kernels, support vector machine framework transforms the orig-

inal problem into a high dimensional feature space. The inner product
〈
x(i). x(j)

〉
can be implicitly calculated through the use of the kernel functions [78]. Therefore,

SVM provides an efficient framework to classify new data with high generalization

compared to other methods.
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