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Abstract 

Statistical language learning is an implicit process wherein language learners track sequential 

statistics in fluent speech, and may it facilitate the learning of word boundaries. This process 

is well studied, however, the cognitive mechanisms supporting it remain poorly understood. 

The present thesis investigated whether domain-specific or cross-domain explicit working 

memory engagement would impair implicit statistical learning of word boundaries in fluent 

speech. Participants (n = 110) were exposed to an implicit statistical word segmentation 

paradigm while concurrently engaged in no other task (control), or an explicit domain-

specific (verbal) or cross-domain (visuospatial) working memory task of either low- or high-

demand. Participants in the control task and either visuospatial task (low- and high-demand) 

reliably segmented words from the artificial language, however those in either verbal 

working memory condition (low- and high-demand) did not. These findings suggest an 

interference effect on implicit verbal learning by explicit processing of material from the 

same domain.  

Keywords 

Statistical language learning, language learning, word segmentation, implicit learning, 

explicit processing, working memory   
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Introduction 

One of the hallmarks of human cognition is the ability to rapidly learn our 

complex system of language without instruction and seemingly, without much effort. It is 

proposed that the language learner undertakes this task via a process of statistical 

language learning, wherein learners implicitly track the statistically predictable 

regularities inherently present within language (Chun & Jiang, 2003; Conway & 

Christiansen, 2006; Fiser & Aslin, 2001; Thiessen, Kronstein, & Hufnagle, 2013; Turk-

Browne, Jungé, & Scholl, 2005). Implicit statistical learning may be especially important 

in early word segmentation (Saffran, Aslin, & Newport, 1996). What remains poorly 

understood, however, are the cognitive mechanisms that support implicit statistical 

learning. One growing area of interest (Ludden & Gupta, 2000; Saffran, Newport, Aslin, 

Tunick, & Barrueco, 1997; Toro, Sinnett, & Soto-Faraco 2005) requiring more 

systematic investigation is the extent to which implicit learning may be supported by 

explicit cognitive processes such as working memory, a resource suggested to be 

important in complex learning and word learning in particular (Baddeley, Gathercole, & 

Papagno, 1988; Gathercole, 2006). The question of domain-specific effects in statistical 

learning also requires further study. Findings of statistical learning of both phonological 

and nonphonological patterns have led to the suggestion that statistical learning is a 

domain-general mechanism (Evans, Saffran, & Robe-Torres 2009; Fiser & Aslin, 2001; 

Kirkham, Slemmer, & Johnson, 2002; Reber, 1967), although domain-specific 

interference effects may be possible depending on the stimuli. The purpose of the present 

thesis was to investigate the cognitive processes supporting statistical language learning 
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by systematically imposing concurrent explicit working memory demands involving 

either same- (verbal) or cross-domain (visuospatial) stimuli. 

Statistical learning of language 

In the most general sense, statistical learning can be defined as the “discovery of 

patterns in the input” (Reber, 1967). Natural languages are composed of statistically 

reliable distributional patterns (Bloomfield, 1933; Harris, 1951). Indeed, some of the 

earliest investigations of implicit learning demonstrated that learners exposed to an 

artificial grammar string could learn the lawfulness of the stimuli without explicit 

awareness or instruction (Reber, 1967). More recent research has demonstrated that 

infant language learners are able to exploit statistical regularities of syllables within 

words in order to segment words from fluent speech (Saffran, Aslin, et al., 1996). It is not 

surprising then, that growing attention has been paid to the idea that language is 

supported by a statistical learning mechanism (Altmann, 2002; Conway & Christiansen, 

2005; Conway & Pisoni, 2008; Gupta & Dell, 1999; Kirkham, Slemmer, Richardson, & 

Johnson, 2007; Kuhl, 2004; Pothos, 2007; Reber, 1967; Saffran, 2003; Turk-Browne et 

al., 2005; Ullman, 2004). Indeed, the evidence demonstrates that implicit statistical 

learning is important for word segmentation (Echols, Crowhurst, & Childers, 1997; 

Goodsitt, Morgan, & Kuhl, 1993; Johnson & Jusczyk, 2001; Saffran et al., 1996), word 

learning (Graf Estes, Evans, Alibali, & Saffran, 2007; Mirman, Magnuson, Graf Estes, & 

Dixon, 2008; Saffran, 2001), learning phonemic contrasts (Maye, Werker, & Gerken, 

2002), learning phonological patterns (Saffran & Thiessen, 2003), the acquisition of 

syntax (Gómez & Gerken, 1999, 2000; Marcus, Vijayan, Bandi Rao, & Vishton, 1999; 
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Ullman, 2004), and simultaneous word segmentation and syntax acquisition (Saffran & 

Wilson, 2003).  

One of the first puzzles facing the language learner is uncovering the boundaries 

between words in fluent speech. Unlike written language, spoken language does not 

contain neat “white space” in between words to help learners segment words. Segmenting 

words from fluent speech is a complicated task as there are multiple opposing cues within 

spoken language that may demarcate word boundaries such as prosodic cues (Christophe, 

Dupoux, Bertoncini, & Mehler, 1994; Cutler, 1994; Cutler & Norris, 1988), stress 

patterns (Echols, 1993; Echols & Newport, 1992, Jusczyk, Houston, & Newsome, 1999), 

and speakers’ tendency to rarely pause between words (Cole & Jakamik, 1980). 

However, one cue that has been proposed to be reliable in segmenting words from fluent 

speech are the statistically predictable relationships of syllables within words. The idea of 

using statistical relationships between syllables to uncover words dates back to Harris 

(1955), who proposed word units could be identified by uncovering correlational 

relationships between individual phonemes. Later, Hayes and Clark (1970) proposed that 

words could be segmented using a clustering mechanism based on correlations between 

syllables.  

Following this, Saffran and colleagues (Saffran, Newport, & Aslin 1996) sought 

to clarify the clustering mechanism of Hayes and Clark (1970). The clustering 

mechanism formalized probabilities of co-occurrence between syllables as transitional 

probabilities. A transitional probability can be understood as the probability of Y given X 

(Miller & Selfridge, 1950), and can be computed as: 

!|!:! !"#$%#&'(!!"!!"#$!!"!"#$%#&'(!!"!!  
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A high transitional probability value indicates that the presence of X reliably predicts the 

presence of Y. A low transitional probability value indicates that the presence of X does 

not reliably predict the presence of Y. Using the example of the phase “pretty baby” 

(/��
	� ��
���) as it occurs within a natural language corpus, the within-word transitional 

probability of syllables could be computed as: 

bi|beɪ:! !"#$%#&'(!!"!!"#$/beɪ/./bi/!"#$%#&'(!!"!/beɪ/  

Using the same example, the between-word transitional probability of syllables could be 

computed as 

beɪ|ti:! !"#$%#&'(!!"!!"#$!/ti/!./beɪ/!"#$%#&'(!!"!/ti/!  

In this example, the value of the within-word transitional probability is higher than the 

value of the between-word transitional probability. That is, the presence of /��
� followed 

by /��� is a more reliable relationship than /-	�� predicting /��
�� ��	�� as the word-final 

syllable of pretty could be followed by an initial syllable for any number of subsequent 

words, but /��
-/ as a word-initial syllable is followed by a limited number of syllables 

(e.g.: baby, basil, bacon). Thus, the words pretty and baby could be segmented at this 

between-word boundary based on transitional probabilities. 

Although this approach appears computationally complex, research has 

demonstrated with considerable consistency that language learners utilize transitional 

probabilities to segment words from fluent speech. In one of the demonstrations of this 

finding, Saffran, Newport, and Aslin (1996) examined whether participants could 

segment words from an artificial language using only the transitional probabilities of 

syllables within and between words. Their language was rendered from an inventory of 
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12 consonant-vowel (CV) syllables combined to create six trisyllabic words: babupu, 

bypada, dutaba, patubi, pidabu, and tutibu. Because some syllables from the inventory 

were reused in different words in the corpus, within-word transitional probabilities 

ranged from 0.31 to 1.0. Between-word transitional probabilities were low, ranging from 

0.1 to 0.2. Words were combined in random order within the language, with the 

stipulation that no word was repeated. The auditory language stimuli were produced via a 

speech synthesizer, and contained no other cues to word boundary such as syllable stress, 

pauses, or contours. No instructions regarding the length or structure of words within the 

language were given to participants. Participants listened to the language for 21 minutes. 

Immediately following language exposure, participants were tested on their knowledge of 

words from the language. At test, a word from the language was paired with a word foil 

from the language and participants had to indicate “which of the two strings sounds more 

like something you heard from the language”. Accuracy was judged as total items 

correctly identified. Word foils were either part words or nonwords. Part words were 

constructed by pairing a syllable pair from a word within the language, plus an additional 

syllable from another word. For example, the first syllable of the word dutaba was altered 

to create the part-word bitaba. Nonwords were constructed by combining three syllables 

from the language that did not occur together within a word or across word boundaries, 

such as in the test nonword padubu. Note that for the listener, the transitional 

probabilities within padubu would be zero. Results indicated that participants performed 

above chance, with a mean score of 27.2 out of a possible 36 (76% correct). This finding 

is important as it demonstrates that adults are able to discover word units rapidly, and 
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simply by using the transitional probabilities of syllables with no additional cues to 

segment words. 

In a further study, Saffran and her colleagues (Saffran, Aslin et al. 1996) 

examined this process in 8-month-old infants. Infants were exposed to an artificial 

language produced by a speech synthesizer containing four trisyllabic words for two 

minutes. The language contained no cues to word boundaries except for the transitional 

probabilities of syllables within and between words. Using a novelty preference test, 

infants demonstrated they could discriminate between words from the language and 

nonwords. These results are particularly impressive as infants as young as 8 months with 

only a brief familiarization phase were able to extract words from the speech stream 

based on sequential statistics. Aslin and colleagues (Aslin, Saffran, & Newport, 1998) 

later demonstrated that this discrimination was not based on frequency information (i.e., 

words did occur more frequently than test-item part words in the Saffran, Aslin et al., 

1996 study). Instead, infants discriminated on the basis of transitional probabilities above 

and beyond frequency information. It is evident from these findings that language 

learners have access to a powerful statistical learning mechanism responsive to the 

statistical properties of language input. 

Researchers have sought to examine when statistical learning of word boundaries 

comes on line for infants. Jusczyk and Aslin (1995) demonstrated that 7.5-month-olds 

were able to segment words from fluent speech, but 6-month-olds were not. After 

demonstrating this ability in 6.5- to 7-month olds, Thiessen and Saffran (2003) suggested 

that the ability to segment words by computing transitional probabilities might emerge 

around 6 to 6.5 months of age. Thiessen and Saffran also found that 9-month-old infants 
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appeared to use syllable stress to segment words, while ignoring transitional probability 

cues. It may be that the different strategies infants use to successfully segment words 

emerge over the early stages of language acquisition, and that segmenting words using 

computations of transitional probabilities may be of primary importance in the earliest 

stages of language learning. 

Further studies investigated whether infants grant lexical status to segmented 

words. Saffran (2001) embedded newly segmented words or part-word foils in English 

sentences to examine if infants demonstrated a preference for materials consistent with 

their prior knowledge. Following artificial language exposure, infants preferred test 

sentences containing words from the familiarized artificial language to part-word foils. 

This demonstrated that the newly segmented words were more readily integrated into the 

infant’s language of English. Graf Estes and collaborators (Graf Estes et al., 2007) 

presented similar findings, supporting the hypothesis that infants treat newly segmented 

words as lexical candidates. Here, infants were exposed to the statistical word 

segmentation paradigm (Aslin et al., 1998; Saffran, Aslin, et al., 1996). The infants then 

participated in a label-object association task, in which labels were words from the 

speech stream or foil words. The authors found that infants preferred word labels to 

nonword and part word labels, further supporting the notion that there is a connection 

between word segmentation and linking words to meaning. Saffran’s (2001) and Graf 

Estes’ and collaborators’ findings suggest that infants are not just learning the statistical 

properties of sound sequences, but acquiring linguistic knowledge and integrating this 

with native language understanding. 
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It is clear from the preceding review that there is mounting evidence that 

statistical learning plays a role in language learning. Given this relationship, growing 

interest has been focused on understanding the cognitive processes supporting statistical 

learning. In particular, questions regarding possible interactions between implicit and 

explicit processes, and domain-specificity have been raised. 

What cognitive processes support statistical learning? 

Statistical learning is considered an implicit process. However, it may be that 

some minimal conscious awareness is necessary to support implicit learning. In contrast 

to implicit processes, explicit processes require conscious, active, and purposeful effort 

(Graf & Schacter, 1985; Reber, 1967, Schacter, 1987). For explicit learning, learners are 

generating and testing hypotheses in order to adapt to changes in the environment.  

Research has predominately focused on the separability of implicit and explicit learning 

(Gabrieli, Fleischman, Keane, Reminger, & Morrell, 1995; Rodeiger & McDermott, 

1993; Rugg, Mark, Walla, Schloerscheidt, Birch, & Allan, 1998; Schacter, 1987), but 

some findings show that these two processes may interact. For example, in motor skill 

learning explicit and implicit knowledge can be learned in parallel (Willingham & 

Goedert-Eschmann, 1999). Furthermore, explicit knowledge becomes accessible 

following implicit learning in the learning of visual scenes (Goujon, Didierjean, & 

Poulet, 2013). As applied to language learning, infants’ explicit knowledge of previously 

learned words can aid segmentation of subsequent words in a stream of speech (Lew-

Williams, Pelucchi, & Saffran, 2011). All of these findings point to some interaction 

between implicit and explicit processes in learning. 
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One theory related to statistical word segmentation that incorporates both implicit 

and explicit processes is Thiessen, Kronstein and Hufnagle’s (2013) extraction and 

integration framework. This is a memory-based framework of statistical learning offering 

a two-process account as to how conditional relations between discrete representations 

(such as words) can be learned. It is hypothesized that learners extract and store 

statistically coherent units (words) within long-term memory and integrate across these 

stored units within memory to identify a central tendency. The ability to extract patterns 

such as candidate word forms is considered to rely on implicit learning of conditional 

statistics such as transitional probabilities even before phonological cues to word 

boundaries are discovered (Thiessen & Saffran, 2003). Once stored within long-term 

memory, integration across word forms allows for the discovery of phonological 

regularities to extract newly encountered words, such as lexical stress in English 

(Thiessen & Saffran, 2007). It is possible that integration (and possibly extraction) relies 

on explicit processing resources as elements in the input are only chunked together when 

they are simultaneously held in attention (Perruchet, Tyler, Galland, & Peereman, 2004; 

Thiessen et al., 2013). 

 With regards to explicit processes that may support implicit learning, two 

potential candidates have been considered: Attention and working memory. Attention can 

be defined as mental effort (Johnston & Dark, 1986), limited by central resources that are 

shared amongst all concurrent tasks (Cowan, 1988). Attention is strongly linked to 

learning generally (Nissen & Bullemer, 1987) probably because attention facilitates 

processing of received stimuli. As such, at least minimal attentional focus may support 

the implicit extraction and integration of information (Thiessen et al., 2013). One way in 
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which the role of attention can be investigated in implicit learning is to examine the 

negative impact on implicit learning of engaging attention in an attention-demanding 

secondary task. And indeed, engaging explicit processes using attention-demanding 

secondary tasks has been found to result in reduced implicit learning of artificial 

grammar learning (Diens, Altman, Kwan, & Goode, 1995) and sequence learning (Nissen 

& Bullemer, 1987).  

Few studies have examined the relationship between implicit statistical language 

learning and explicit attentional processes. Thiessen, Hill, and Saffran (2005) examined 

whether infant-directed speech would help guide statistical word segmentation on the 

premise that infant directed speech is more likely than adult directed speech to hold an 

infant’s attention (e.g.: Werker, Pegg, & McLeod, 1994) and lead to improved memory 

for segmented words (e.g.: Hertel & Rude, 1991; Rensink, O’Regan, & Clark, 2000). The 

authors found that infant-directed speech had a facilitative effect on word segmentation. 

One possibility is that increased attention to the stimuli improved memory for the 

segmented words during the learning phase. Attentional engagement, however, was not 

measured and so a possible role of attention in implicit learning is only speculative. 

Indeed, Saffran and colleagues (Saffran, et al., 1997) argued against a role of attention in 

implicit statistical learning based on findings that children and adults demonstrated 

learning of an artificial language after 21 minutes of exposure while engaged in drawing 

a picture. Nevertheless, the extent to which attention was captured by the drawing task is 

unknown. As well, the study did not include a control group, making the role of attention 

difficult to interpret. Results of a subsequent study by Ludden and Gupta (2000) shed 

light on these findings by including a control (no drawing) and drawing group. After 21 
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minutes of exposure to an artificial language, both groups exhibited learning of words 

from the language, with greater levels of learning for the control group. Although highly 

similar in design, the findings from the above studies conflict. Additionally, both face 

methodological limitations. Thus, they do not offer clear evidence as to the impact of 

explicit processing on implicit statistical language learning.  

In their examination of the role of attention in statistical word segmentation, Toro, 

and colleagues (2005) aimed to impose tasks that were more attention-demanding tasks 

than in the Saffran et al. (1997) or Ludden and Gupta (2000) studies. Participants in the 

Toro et al. study were exposed to an artificial language similar to the one used in Saffran 

et al. Performance on word segmentation was compared across controls and those who 

were engaged in a concurrent attention-demanding task, either in the auditory 

(Experiments 1 and 3) or visual (Experiment 2) domain. The authors speculated that the 

impact on the implicit learning task might differ based on the processing load of the 

secondary task. Specifically, it was hypothesized that task-irrelevant information (i.e., the 

artificial language) might undergo some processing if the demands of the secondary task 

were low (Lavie, 1995; Rees, Frith, & Lavie, 2001), whereas if the secondary task is 

sufficiently demanding, attentional resources may be depleted to a point where the 

learning of word boundaries does not occur (Rees, Frith, & Lavie, 1997). 

In Experiment 1, participants had to attend to an auditory stream and listen for 

repeats in a familiar sound (e.g., car engine, door slamming, etc.). Sounds from the 

auditory stream were 400-500ms in length, with a 250ms inter-stimulus interval (ISI), 

giving a stimulus onset asynchrony (SOA) of 650-750ms. The authors titled this a high-

attention load task. Performance for controls in Experiment 1 was above chance (78%), 



12 

 

whereas performance for those in the high-attention load task was not significantly 

different from chance (58%). A noticeable limitation within this design is that the sound 

stream stimuli may have been a sensory mask for the speech stream. Thus, in Experiment 

2, the authors used a high-attention load condition where participants attended to a visual 

stream of pictures while concurrently being exposed to the artificial language. 

Participants were to attend for and respond to repeating pictures. Pictures were presented 

for 250ms for half of the subjects, and 500ms for the other half of participants, with an 

ISI of 250ms. Thus, the SOA was either 500ms or 750ms with greater attention demands 

imposed by the shorter SOA condition. Controls (no concurrent task) and participants in 

the 750ms SOA group could successfully segment words from the speech stream above 

chance levels (69% and 63% correct, respectively), whereas those in the 500ms SOA 

group did not differ from chance (48% correct). In Experiment 3, the authors examined 

the effect of having the distractor task within the speech stream itself. Participants in the 

high-attention load group had to listen for and respond to a pitch change of 20Hz on 

pseudo-randomly selected syllables within the speech stream. Here, word recognition 

scores for control participants were above chance (64% correct), and the high-attention 

load did not differ from chance (55% correct). From these findings, the authors 

concluded that diverting attention with an attentionally demanding secondary task in 

either the visual or auditory domain compromises statistical learning, especially for tasks 

imposing a high processing load.  

Toro et al.’s (2005) findings of reduced implicit learning when completing a 

concurrent attention-demanding task imposing a high processing load raised the 

possibility that another explicit process beyond attention may place a role in implicit 
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learning, specifically, working memory. Working memory refers to both the storage and 

manipulation of information in the current focus of attention (Baddeley & Hitch, 1974; 

Cowan, 1999). According to the tripartite working memory model of Baddeley and Hitch 

(1974), working memory is comprised of a domain-general central executive resource 

responsible for the manipulation and processing of information necessary for the current 

cognitive task, as well as two domain-specific short-term memory resources responsible 

for the retention of phonological (phonological loop) or visuospatial information 

(visuospatial sketchpad). The storage and processing demands of a working memory task 

are thought to compete for required but limited attentional resources such that 

performance is constrained by the cognitive load of the task (Barrouillet & Camos, 2001). 

As a result, when cognitive load is high, fewer attentional resources can be shared for 

other purposes. A plethora of research has established links between working memory 

and complex cognitive tasks including learning across domains (Baddeley, Papagno, & 

Vallar, 1988; Cantor & Engle, 1993; Daneman & Carpenter, 1980; Smith & DeCoster, 

2000; Unsworth & Engle, 2005).  

In order to examine the potential role of working memory in implicit learning, 

Toro et al. (2005) examined statistical language learning after 21 minutes of exposure to 

an artificial language while participants were engaged in a 2-back task. The 2-back task is 

a variant of an n-back task widely considered to tap working memory (Conway, Kane, 

Bunting, Hambrick, Wilhelm, & Engle, 2005; Kane & Engle, 2002). In an n-back task, 

the participant is required to monitor a series of stimuli and to respond when a presented 

stimulus is a match to the stimulus presented n trials previously. Subjects must 

continuously update their mental representation and storage of target items, while also 
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continuously dropping now irrelevant items from consideration. Verbal versions of the 

task require monitoring of phonological information such as letter names whereas spatial 

versions requiring monitoring of locations. The n-back task requires on-line monitoring, 

updating, inhibiting, storage, and manipulation of information. Therefore, this task fits 

with the definitional aspects of working memory (Baddeley & Hitch, 1974; Cowan, 

1999) as involving the storage and processing of information in the current focus of 

attention. 

In Toro et al.’s (2005) study, participants simultaneously completing a visual 2-

back task later identified words from an artificial language at a level significantly better 

than chance, and equivalent with controls. Taken together with their findings of reduced 

statistical language learning in the context of a attention-demanding secondary task from 

the same study (Toro et al., 2005), the evidence of statistical learning while engaged in a 

2-back task was suggested to indicate that attention, but not working memory, supported 

implicit statistical learning.  

It must be noted, however, that the attention-demanding secondary task employed 

by Toro et al. (2005) involved either picture-matching or sound-matching on consecutive 

stimuli. These tasks could be described as a 1-back task, where participants were required 

to detect a repetition on consecutive pairs, and a 1-back task may still place a load on 

working memory. Within the 1-back condition, maintenance processes are required to 

hold the information within the focus of attention while two stimuli are compared. 

Furthermore, there are updating processes involved with continually updating the to-be-

matched stimulus. Stimulus decision, selection, inhibition, and interference are also 

involved in selecting correct responses, and rejecting incorrect responses. These 
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processes are closely associated with working memory functions (Smith & Joindes, 

1997). As well, 1-back tasks have been shown to elicit activation in areas of the 

prefrontal cortex commonly associated with working memory processes (Braver, Cohen, 

Nystrom, Joindes, Smith, & Noll, 1997). It may be that the picture- or sound-matching 

tasks employed in the Toro et al. study, in fact, measured the influence of working 

memory interference on implicit statistical language learning.  

The possibility of the involvement of working memory in a statistical language 

learning paradigm was further suggested by findings from a study by Evans and 

colleagues (2009). Evans, Saffran, and Torres compared children with specific language 

impairment (SLI) and typically developing children on their ability to segment words 

using transitional probabilities of syllables from an artificial language. SLI is a relatively 

common developmental impairment in which a child fails to learn language at the typical 

rate, despite the absence of intelligence, hearing, or motor impairments, and with the 

presence of typical educational and experiential opportunities (Leonard, 1998). Implicit 

learning may be impaired in children with SLI, as made evident from learning deficits on 

serial reaction time tasks (Tomblin, Mainela-Arnold, & Zhang, 2007) and artificial 

grammar learning tasks (Plante, Gómez, & Gerken, 2002). Evans and colleagues 

examined whether children with SLI were impaired in the implicit learning of speech or 

sound information. After 21 minutes of exposure to an artificial language, children with 

SLI were significantly poorer than their typically developing peers at identifying words 

from the language, and that this was not correlated with age, nonverbal IQ, receptive 

vocabulary, or expressive vocabulary. However, after increasing exposure to the artificial 

language to 42 minutes, children with SLI and typically developing peers did not differ. 
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In a similar study design, both groups were exposed to an artificial tone “language” 

where tone sequences could be segmented based on transitional probabilities, similar to 

words in the artificial language. The authors found that children with SLI were impaired 

in this condition relative to typically developing peers after 21 and 42 minutes of 

exposure, demonstrating an implicit learning deficit for the SLI group on a non-linguistic 

task.  

One possibility to explain the poor implicit word learning in children with SLI is 

that they may not possess the necessary memory resources to form appropriately 

specified phonological representations of newly learned words, whereas typically 

developing children could. Furthermore, there was evidence of individual variability in 

performance for children with SLI. It was suggested that individual differences in 

working memory could account for these findings (Evans et al., 2009). Children with SLI 

have been found to have a reduced working memory capacity relative to their peers, 

specifically in the domain of verbal working memory (Archibald & Gathercole, 2006; 

Ellis Weismer, Evans, & Hesketh, 1999; Montgomery 2000a, 2000b; Montgomery & 

Evans, 2009). It may be that when working memory resources are insufficient as may be 

the case in SLI, statistical language learning abilities are impaired.  

It is clear from the preceding review that further examination of the role of 

explicit processing in supporting implicit learning is warranted. In particular, the 

potential role of working memory in statistical learning remains unclear. The present 

thesis sought to examine this relationship systematically by evaluating the impact on 

statistical language learning of working memory tasks with different cognitive loads 

across domains.  
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Domain-specificity in statistical language learning 

Implicit statistical learning is widely considered to be a domain-general learning 

mechanism (Reber, 1967). Researchers have demonstrated the learning of transitional 

probabilities between elements in sequence can be exhibited in multiple domains: Adults 

and infants use transitional probabilities to segment tone sequences (Creel, Newport, & 

Aslin, 2004; Evans et al., 2009; Saffran, Johnson, Aslin, & Newport, 1999; Saffran & 

Griepentrog, 2001), visual sequences (Fiser & Aslin, 2001, 2002; Kirkham, Slemmer & 

Johnson, 2002; Saffran, Pollak, Seibel, & Shkolnik, 2007; Turk-Browne et al., 2005), and 

manual response sequences (Nissen & Bullemer, 1987). This variety of findings suggests 

that statistical learning is a highly operational learning mechanism, and can be utilized for 

learning across domains.  

If we are to view statistical learning as a domain-general learning mechanism, it 

could then be the case that learning is disrupted by cross-domain influences. The current 

thesis examined this hypothesis as it pertains to the potential support of the explicit 

processes of working memory on implicit learning. As mentioned previously, working 

memory is comprised of a domain-general central executive and two domain-specific 

short-term memory stores, the phonological loop and visuospatial sketchpad (Baddeley & 

Hitch, 1974). If statistical language learning is reduced while engaged in an explicit 

working memory task regardless of domain, then the most parsimonious explanation 

would be that the domain-general central executive component of working memory 

supports implicit learning. It should be noted, however, that the lack of a domain-general 

effect of an explicit task would not rule out an alternate domain-general mechanism 

operating implicitly.  
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It is important to note that the resulting knowledge from statistical learning is 

stimulus-specific (Conway & Christiansen, 2006; Saffran & Thiessen, 2007). For 

example, statistical language learning usually refers to the learning of phonological 

forms. Although domain-specific effects have not been examined in detail in studies of 

statistical language learning, domain-specific effects are documented widely for the 

explicit process potentially supporting implicit memory and investigated in the current 

thesis, working memory. Evidence for the domain-specificity of the short-term stores 

within the working memory model (i.e., the phonological loop and the visuospatial 

sketchpad) comes from tasks involving domain-specific interference effects. For 

example, the recall of primary verbal material in an articulatory suppression task is 

reduced when a secondary articulatory task interferes with the operations of the 

phonological loop, but not when a non-articulatory secondary task is completed 

(Baddeley, Lewis, & Vallar, 1984). 

 The phonological loop has been proposed to play a specific and important role in 

the early learning of phonological word forms (Gathercole, 2006). Gathercole proposed 

that initial encounters with phonological forms of novel words from verbal input are 

represented within the phonological loop. These phonological representations form the 

basis for a gradual process of abstracting a stable specification of the sound structure of 

the novel word across repeated exposures (Brown & Hulme, 1996). It is through this 

process of gradual extraction of relevant tokens that novel phonological forms become 

lexicalized. Conditions that compromise the formation of initial phonological 

representations (e.g., limited phonological short term memory resources) will necessarily 

compromise the quality of these phonological representations.  
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It is thought that information in the domain-specific phonological loop is entered 

and retained in an explicit fashion, where learners have conscious access to the stored 

information (Baddeley, 1986; Baddeley & Hitch, 1974). There is evidence, however, that 

phonological information can access phonological storage through an implicit channel. 

Consider the cocktail party effect: You are engaged in conversation in a crowded room, 

and all of the speech around you is nothing more than a buzz. However, when someone 

calls your name, your attention is immediately redirected (Cherry, 1953). This effect 

demonstrates that we are able to access phonological information without allocating 

conscious attention. Also, consider the unattended speech effect, where ignored 

phonological information (both words and nonsense words) disrupts digit recall, a 

phonological storage task (Salamé & Baddeley, 1982). Both of these effects illustrate that 

unattended phonological material can gain obligatory access to the phonological store. 

These findings leave open the possibility that phonological information is stored via a 

unitary phonological storage mechanism responsible for retaining attended and non-

attended material. If this is the case, then engaging in any type of explicit phonological 

task that occupies the phonological loop’s capacity may be expected to impair concurrent 

implicit encoding of phonological information.  

The present study 

In this study, participants were exposed to in an implicit statistical word 

segmentation task while concurrently engaged in an explicit working memory processing 

task in the form of a computer-administrated n-back task, or were not engaged in a 

concurrent task (control). The concurrent working memory task varied in whether the 

demands of the task imposed a high or low working memory load, and required 
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monitoring of verbal or visuospatial stimuli. One goal of the study was to examine the 

effect of engaging in an explicit working memory process on statistical language 

learning. Reduced learning relative to the control group while engaged in any explicit 

working memory task would suggest that engaging attention in any way impairs implicit 

learning. On the other hand, performance dependent on the cognitive load of the task 

such that concurrent tasks with higher cognitive demands result in lower learning levels 

would specifically implicate working memory, and the central executive component in 

particular. A second purpose of the study was to examine the domain-specific effects on 

statistical learning. Findings of reduced learning when engaged in either verbal or 

visuospatial concurrent tasks would indicate a domain-general effect, which, when taken 

together with the cognitive load results, may further implicate the central executive 

component of working memory. Domain-specific effects, on the other hand, would be 

reflected in lower scores when engaged in same-domain (verbal) working memory tasks 

regardless of cognitive load. Such a pattern would suggest a specific role of the 

phonological loop in supporting implicit learning. 

Method 

Participants 

Participants in the present study consisted of 110 adults (Mage = 20.22 years, 

SDage= 3.35, Nmale = 30). Nineteen students were recruited from a senior-level high school 

Psychology and Human Development course as part of a course project. Sixty-nine 

students were recruited from the undergraduate psychology pool at Western University 

and received course credit for study completion. Twenty-two students were recruited 
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from the summer undergraduate psychology pool at Western University and received 

$10.00 for study completion. All subjects reported being monolingual English speakers 

and had no uncorrected vision or hearing difficulties.  

Procedure 

Upon arrival, participants received a letter of information, signed a consent form, 

and completed a short questionnaire to obtain the following demographic information: 

Age, gender, first language, number of years speaking English, and presence of vision or 

hearing difficulties. Testing took place in either a quiet computer testing lab (<8 

participants) where the task was administered via individual PCs, or within a quiet testing 

room (1 participant) where the task was administered via a laptop computer. After 

completing the questionnaire, participants completed the listening phase (artificial 

language exposure) of the study while engaged in one of five concurrent working 

memory task conditions (no load; verbal, low load; verbal, high load; visuospatial, low 

load; visuospatial, high load). Participants were quasi-randomly assigned to one of the 

five conditions such that equal numbers completed each condition with no participant 

factors determining group assignment. If participants were being tested in a computer 

testing lab, all participants were entered into the same condition. If participants were 

being tested privately, they were randomly assigned with the constraint of obtaining 

matched group sizes. An attempt was made to keep group sizes approximately equal as 

data collection progressed. Random draws from a group were discarded if a group was 

larger than all others. Immediately following the language exposure and working memory 

task completion, participants completed the test phase. Following study completion, 

participants were administered a debriefing form detailing the experimental manipulation. 
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Listening phase: Artificial language exposure. 

Artificial language stimuli. The artificial language employed in the present study 

was based on the stimuli described by Saffran, Newport et al. (1996). The language 

consisted of four consonants (p, t, b, d) and three vowels (a, i, u) which, when combined, 

rendered an inventory of 12 CV syllables. These syllables were then combined to create 

six trisyllabic “words” in an artificial language: patubi, tutibu, babupu, bupada, dutaba, 

pidadi. Some syllables from the inventory occur more often within the language than 

others (e.g.: bu occurs in three words, whereas ti occurs in one word). The word corpus in 

the present artificial language used all 12 syllables, differing from the Saffran et al. 

(1996) corpus, in which the syllable di was not included. Transitional probabilities of 

syllables varied, and were higher within words (Range: 0.33 to 1.0) than across word 

boundaries (Range: 0.1 to 0.2).  

Recording the artificial language stimuli. Unlike Saffran et al.’s (1996) synthesized 

stimuli, the artificial language in the present study was constructed from audiorecordings 

of a female native-English speaker using a neutral vocal effort. Although the majority of 

available evidence is based on findings from exposure to synthetic speech samples, more 

recent work of Saffran and colleagues (Graf, Estes et al., 2007) and similar studies (Lew-

Williams et al., 2011; Pelucchi, Hay, & Saffran, 2009, Experiment 1) have employed 

naturally produced speech and found similar effects. 

Recordings were made in a double walled IAC sound booth with a pedestal 

microphone (AKG C 4000B) located approximately 30cm from the speaker’s mouth and 

routed to a USBPre 2 pre-amplifier (Sound Devices). Digitization was performed via 

soundcard, and recordings were made with commercially available SpectraPuls software 
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(Pioneer Hill Software, 2008). Recordings were made of each of the 12 target syllables in 

the middle of a three-syllable sequence, within every coarticulation context required for 

the language. For example, the syllable tu occurred in two words in the artificial 

language, tutibu and patubi. For the word tutibu in the continuous artificial language 

stream, the word-initial syllable tu could be preceded by the word-final syllables for the 

remaining five words, bi, pu, da, ba, or di, and followed only by ti. Thus, recordings of 

these six iterations were made. Alternatively, for the word patubi, the word-medial 

syllable tu would be preceded only by the word-initial syllable pa and the word-final 

syllable bi. Thus, recordings of this one iteration were made. Eight repetitions of each 

sequence were recorded, and the token with the most neutral pitch contour and best sound 

quality was chosen and uploaded into Sound Forge Audio Studio (Sony) editing software.  

Creating the artificial language. Middle syllables from the recorded tokens were 

extracted by identifying the final offset of vowel oscillation in the previous syllable to the 

offset of vowel oscillation in the target syllable. The continuous artificial language stream 

was created by concatenating the medial syllables to create random sequences of the 

words. In this way, all syllables were spliced together in the same way throughout the 

entire language regardless of whether the syllables were within a word or across word 

boundaries. The language maintained a consistent speech rate (3.1 syllables/s) using a 

time stretch and was normalized to a pitch of F0 = 196 Hz using Sound Forge Audio 

Studio (Sony). There were no pauses between words. As such, there were no acoustic 

cues to word boundaries. The artificial language was comprised of 490 tokens of each of 

the six words occurring in a random order, with the constraint that the same word never 
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occurred twice in a row. This created 28 minutes of auditory language stimuli, divided 

into four listening blocks of seven minutes each. 

Listening phase procedure. The listening phase involved exposure to 28 minutes of 

an artificial language divided into four 7-minute listening blocks, with 3-minute breaks in 

between each block. Following Saffran, Newport, et al. (1996), participants were told 

they would hear a nonsense language. No information was provided about the length or 

the number of words within the language in all conditions. Those in the no load task 

condition were seated in front of a computer displayed stimuli from the working memory 

task, but were not instructed to attend to or perform memory operations on the working 

memory stimuli. Those in a working memory task condition were instructed to complete 

the working memory task, and this was highlighted to them as the primary task. This 

deliberate use of vague instructions regarding the artificial language was done to 

minimize the chance of participants trying to explicitly learn or “figure out” the language 

during the experiment. 

Concurrent working memory tasks. 

Working memory task stimuli. The n-back task employed in the present study 

involved presenting one of six alphabetic letters (P, G, T, K, W, C) in 72 point sans-

sheriff black font on a white background (see Figure 1). Letter case was randomized 

across trials to avoid reliance on visual recognition of the letter instead of a verbal label 

when required. The letter on a given trial appeared at random in 1 of 6 positions on the 

screen. The positions of the letters on the screen were not centered in verbalizable spatial 

locations (i.e., “top right” or “center” positions were avoided), but appeared in 
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pseudorandom locations. Letter name and position were counterbalanced across trials so 

that each letter and position occurred with equal probability. Stimuli were presented for a 

duration of 500 milliseconds (ms), with an interstimulus interval of 2500ms. 

!

Figure 1. Schematic diagram of events in all task conditions.  
Task conditions are labeled on the left-hand column. Each square represents a separate 
stimulus presentation within each task, as seen on a computer monitor for the participant. 
Stimuli were presented for 500ms, with a 2500ms blank screen in between each 
presentation. Correct responses within each n-back task condition are labeled “MATCH”. 
Target stimuli for 0-back conditions are labeled “TARGET”. 

 

Working memory task procedure. Participants in n-back conditions received task 

instructions pertaining to their respective condition administered via E-Prime 2.08 

(Schneider, Eschman, & Zuccolotto, 2002). A script of task instructions for each 

condition is provided in the Appendix. Stimuli were presented via laptop computer using 

E-Prime 2.08 software (Schneider et al., 2002). Equivalent stimuli were presented across 
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conditions, while varying the type of processing and working memory requirements. 

Stimuli were presented concurrently with the artificial language stimuli in four blocks of 

seven minutes each. Each block contained a series of 140 trials, with matches in 30% of 

trials. All participants in experimental conditions completed 30 practice trials prior to the 

beginning of the task. Recall that the artificial language stimuli were presented to 

participants through headphones during engagement in the n-back task or control 

conditions. The n-back stimuli began immediately following the completion of the 

practice trials.  Artificial language stimuli began playing as presentation of the n-back 

stimuli began. 

 The n-back task in the present study employed visuospatial and verbal material. In 

visuospatial task conditions, participants were instructed to look for matches across 

locations of stimuli on the screen. During instructions, the term “letter” was not used, and 

all instructional examples used a red square to demonstrate spatial location. This was 

done to ensure participants focused on visuospatial location and had no attachment to 

verbal letter labels. In verbal task conditions, participants were instructed to look for 

matches across letter names, regardless of letter case.  

In 2-back conditions that imposed a heavy load on working memory, participants 

had to decide if a stimulus on each trial matched a stimulus occurring two trials 

previously (see Figure 1). This matching was performed on spatial locations for those in 

the high-load visuospatial working memory condition, and letter names for those in the 

verbal high-load working memory condition. Subjects had to update the sequence on 

each trial by retaining the most recent stimulus from two trials back. Subjects were 
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instructed at the start of each block to press space each time they encountered a match to 

the 2-back stimulus.  

In 0-back conditions that imposed a low working memory load, only the spatial 

location or verbal name of the first stimulus of each block had to be remembered and 

compared to subsequence stimuli. For those in a visuospatial condition, target locations at 

the onset of an experimental block were indicated by a red target square. Participants 

were informed of the target stimulus at the initiation of each block.  Participants were 

instructed at the start of each block to press space each time they encountered a match to 

the target stimulus  

 In the No Load condition, participants saw the same sequence of stimuli that 

participants in the working memory task conditions were exposed to. However, they were 

not instructed to attend to or respond to the stimuli.  

Test phase. 

Test phase stimuli. Six nonword foils were constructed from the same 12 CV 

syllables as the artificial language: pubati, tapudi, dupitu, tipabu, bidata, batipi. 

Nonwords were created with the constraint that within word transitional probabilities 

would be zero based on the participants’ previous artificial language exposure. Syllables 

were drawn from the same recording inventory as the artificial language stimuli, with 

appropriate coarticulation contexts.  

Test phase procedure. Following the listening phase, participants immediately 

entered the test phase delivered by E-Prime 2.08 (Schneider et al., 2002). The test format 

was a two-alternative forced-choice task. Here, a word from the language was paired with 

a nonword foil in order to test the ability of participants to accurately identify words from 
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the artificial language. For each test item, participants heard two trisyllabic strings 

separated by 500ms of silence. One of these strings was a word from the nonsense 

language, and the other a nonword foil. The presentation of a word/nonword pair was 

randomized across trials. Subjects were instructed to indicate which word “sounds more 

like something you heard in the language”, and to select “A” or “L” on the keyboard to 

indicate the first or second string, respectively. The instructions stayed on the screen for 

the duration of the test phase. Each nonword was paired exhaustively with each word, 

comprising 36 total test pairs. E-Prime 2.08 software recorded responses automatically. 

Data Analysis 

It must be noted that, of necessity, the present study was not fully factorial. In the 

conditions involving a working memory task two factors were manipulated: Domain 

(verbal; visuospatial) and load (low; high). In both cases, performance was compared to a 

single control group, that is, the control group for ‘no domain’ and ‘no load’ was the 

same. As such, the study did not have a full 3 (no domain, verbal, visuospatial) x 3 (no 

load, low load, high load) design because the ‘no domain’ and ‘no load’ condition was 

the same. As a result, a single, omnibus analysis of variance (3 x 3 ANOVA) could not be 

completed on the data.  

Instead, a single one-way ANOVA with a series of planned simple contrasts was 

conducted to compare the mean of select experimental groups to a reference standard, the 

control (no load/domain) group. Table 1 describes the contrasts that were conducted. To 

examine the effect of task domain of an explicit task on implicit learning, Contrast 1 

compared the groups completing a verbal task regardless of load (low load; high load) to 

the control condition, and Contrast 2 compared the groups completing a visuospatial task 
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(low load; high load) to the control group. To examine the effect of task load of an 

explicit task on implicit learning, Contrast 3 compared the groups completing a low load 

task regardless of task domain (verbal; visuospatial) to the control condition, and 

Contrast 4 compared the groups completing a high load task (verbal; visuospatial) to the 

control group. In the case of significant results in these contrasts, comparisons between 

relevant individual experimental groups (verbal, low load; verbal high load; visuospatial, 

low load; visuospatial, high load) and the control group utilizing post hoc tests of least 

significant difference were planned to examine mean differences between groups.!!

Table 1. Labeled planned simple contrasts with contrast coefficients from a one-way 

ANOVA comparing experimental groups to controls 

  

Condition 

 

Contrast 

Control 

(no load) 

Verbal 

low load 

Verbal 

high load 

Visuospatial 

low load 

Visuospatial 

high load 

1 -2 1 1 0 0 

2 -2 0 0 1 1 

3 -2 1 0 1 0 

4 -2 0 1 0 1 

 
Note. Values represent coefficient weights assigned within the regression model of each 
planned contrast. 
 

Results 

 Recall that in the two-alternative forced-choice test, participants identified which 

of two words came from the artificial language to which they had been exposed during 

the study. Table 2 presents descriptive statistics of the word identification test scores for 
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each group. The control group had the highest identification scores. Those in both the low 

load and high load verbal task conditions had the lowest scores, while those in the low 

load and high load visuospatial task conditions had scores somewhat lower than the 

control group.  

Table 2. Means and effect sizes of word identification scores for each experimental 

group and controls 

   

Task domain 

 

Task Load 

  

No domain 

 

Verbal 

 

Visuospatial 

 
No load       

M (SD) 

  
Control 

24.36 (4.30) 

  

Low load     
M (SD) 

da 

   
21.05 (5.26)* 

0.77 

 
22.55 (4.15) 

0.43 

High load    
M (SD) 

da 

   
21.09 (4.31)* 

0.76 

 
21.64 (5.29) 

0.56 
 
* p < .05 
Note. n = 22 for each group; a: Cohen’s d effect size, calculated as effect size between 
independent experimental groups and the control group test scores. 

Assessing the impact of task domain of an explicit task 

 The first series of simple contrasts compared word identification test scores across 

task domains (control, verbal, and visuospatial) within a one-way ANOVA. Levene’s test 

of homogeneity of variances was nonsignificant, F (4, 105) = 0.609, p > .05, so equal 

variances were assumed when examining all contrast results. Contrast 1 comparing the 

verbal conditions (low and high load) to controls was significant, t (1, 105) = -2.692, p = 
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.008, indicating that those completing an explicit verbal task scored significantly lower 

than the control group. Contrast 2 comparing the visuospatial (low and high load) to 

controls was not significant, although results approached significance, t (1, 105) = -1.856, 

p = .066, indicating that those in either visuospatial task group did not differ from 

controls in their word identification scores. Results of post hoc tests on Contrast 1 

revealed that those in both the verbal low load (p = .021) and the verbal high load (p = 

.023) groups had significantly lower word identification scores than controls. The overall 

one-way ANOVA comparing all groups was not significant, F (4, 105) = 9.917, p > .05. 

Assessing the impact of task load of an explicit task  

 The second series of simple contrasts compared word identification test scores 

across task load (control, low load, and high load). Contrast 3 comparing the low load 

conditions (verbal and visuospatial) to controls was significant, t (1, 105) = -2.098, p = 

.038. Post hoc analyses revealed that those in the verbal low load task had significantly 

lower word identification scores than controls, p = .021. However, those in the 

visuospatial low load task did not differ significantly from controls, p > .05. Contrast 4 

comparing the high load conditions (verbal and visuospatial) to controls was significant, t 

(1, 105) = -2.450, p = .016, indicating that those in a high load task group differed 

significantly from controls. Post hoc tests revealed that those in a verbal high load task 

had significantly lower word identification scores than controls, p = .023. Those in a 

visuospatial high load task did not differ significantly from controls in word identification 

scores, although the difference approached significance, p = .056.  
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Further investigation of marginally significant results 

The results clearly demonstrate significantly lower word identification scores 

when participants were completing a concurrent explicit verbal task. The results for the 

visuospatial and cognitive load conditions were less clear, with marginal or contrasting 

results in both cases. Figure 2 displays the boxplots for all study groups. The data were 

normally distributed (skewness = -0.277 – 0.415; kurtosis = -1.436 – 0.484, all groups), 

yet the verbal high-load (kurtosis  = -1.438) and visuospatial high-load (kurtosis =            

-1.107) groups were somewhat leptokurtic. As a result, additional evidence was sought 

for the pattern of significant findings revealed in the ANOVAs by comparing mean ranks 

in nonparametric analyses. Mann-Whitney U tests compared the word identification 

scores for each experimental group to the control group. Results revealed significantly 

lower word identification scores than controls for those completing a verbal task (low 

load: U = 157.50, p < .05; high load: U = 143.50, p < .05). Those in a visuospatial 

condition did not differ significantly from controls, and results did not approach 

significance (low load: U = 189.00, p > .05; high load: U = 177.50, p > .05). These 

results provide additional support for the nonsignificant findings in the ANOVA for the 

visuospatial compared to control conditions. Regarding the significant findings in the 

ANOVA for both the low and high load planned contrasts, the nonparametric analyses 

confirm that these significant findings were driven by the poor performance on the verbal 

tasks. 
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Figure 2. Boxplot of word identification test scores for experimental groups and 
controls 
Note. Raw scores represent total test items correct out of 36. Condition labels are as 
follows: NL = no load; VBL LL = verbal working memory, low load; VBL HL = verbal 
working memory, high load; VSSP LL = visuospatial working memory, low load; VBL 
HL = visuospatial working memory, high load.  

Analyzing working memory task scores 

In order to ensure that the working memory tasks imposed differing processing 

loads as hypothesized, performance accuracy on the n-back task was compared across 

groups. Performance accuracy was calculated as a d’ sensitivity score that takes into 

account both hits (i.e., correctly responding when required) and false alarms (i.e., 

incorrectly responding when a response is not required) (Macmillan & Creelman. 1991). 

D’ values are presented as z-scores, and can be calculated as: 

!! = !! ℎ!"!!"#$ − !!(!"#$%!!"!#$!!"#$) 
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 Higher positive d’ z-values represent a higher proportion of hits, with a value of 0 

representing chance responding. Descriptive statistics for all groups completing a 

working memory task are shown in Table 3, and reveal generally higher scores for the 

low load conditions. A 2 (working memory domain) x 2 (working memory load) 

between-subjects ANOVA conducted on the d’ scores revealed one significant effect: 

The main effect of task load was significant, F (1, 68) = 79.156, p < .001, with those in a 

low-load task having higher d’ scores than those in a high-load task. The remaining 

effects were not significant (task domain: F (1, 68) = .032, p > .05; interaction: F (1, 68) 

= 1.874, p > .05). 

Table 3. Descriptive statistics for working memory d’ scores with means and 

standard deviations 

  Task Domain   

Task Load  Verbal Visuospatial  Task Load M (SD) 

Low Load 3.99 (0.48) 3.72 (1.14) 3.85 (0.89) 

High Load  1.57 (0.85) 1.93 (1.18)  1.75 (1.03) 

Task Domain M (SD)  2.47 (1.45) 2.65 (1.45)   

Note. Bolded values significantly different at p < .05. 

Discussion 

! The present thesis aimed to investigate the cognitive processes supporting 

statistical language learning by examining the influence of explicit domain-general or 

domain-specific working memory processing on implicit statistical word segmentation. In 
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this study, adults were exposed to a statistical word segmentation paradigm while 

concurrently engaged in a working memory or control task. The working memory task 

varied across domain and load, creating four working memory task conditions: 1) verbal 

working memory, low load, 2) verbal working memory, high load, 3) visuospatial 

working memory, low load, and 4) visuospatial working memory, high load. After 28 

minutes of exposure to an artificial language, word recognition abilities were analyzed 

and compared across working memory task groups. As expected, those in the control 

group (no working memory task) were able to identify words from the artificial language. 

Also, those concurrently completing either visuospatial working memory task, regardless 

of task load, chose words from the artificial language at above chance rates. However, 

those in a verbal working memory task condition, regardless of task load, had 

significantly lower word identification scores than controls.  

Some participants in the present study demonstrated implicit statistical language 

learning of an artificial language. Those not engaged in any concurrent task performed 

above chance in choosing between foils and words from an artificial language after a 

relatively short exposure to the language. The language contained no additional cues to 

segment words except for the transitional probabilities within and between syllables. 

With such impoverished input, it is impressive that participants were able to correctly 

identify words from the language.  This result supports previous findings of implicit 

statistical word segmentation (Saffran, Newport, et al., 1996), and demonstrates that 

transitional probabilities might be a cue aiding language learners in segmenting words 

from fluent speech. 
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Interestingly, statistical language learning was demonstrated in the present study 

even when participants were engaged in a concurrent task. Specifically, there were no 

implicit learning differences between groups engaged in a concurrent visuospatial 

working memory task and those with no concurrent task. This finding is similar to those 

from Saffran et al. (1997), in which participants were engaged in a drawing task while 

concurrently exposed to a statistical word segmentation paradigm. Saffran et al.’s 

participants were able to identify words from the artificial language, despite explicit task 

engagement (but see, Ludden & Gupta, 2000). Findings from the current study suggest 

engaging in an explicit secondary task does not necessarily impair statistical learning. 

Rather, the results support the idea that implicit statistical learning can occur incidentally, 

at least when concurrent task demands are visuospatial in nature: Occupying attention 

with a secondary task did not result in a reduction in implicit learning. 

Nevertheless, implicit learning was impaired in some cases in the present study. 

Participants who were engaged in an explicit verbal working memory task while 

concurrently exposed to the artificial language were unable to identify words from the 

artificial language at test at the same level as controls. This finding provides clear 

evidence of an interference effect of an explicit domain-specific (verbal) working 

memory task on an implicit statistical language learning task. That is, engagement in 

explicit verbal processing imposed a limit on implicit verbal learning. Reduced levels of 

implicit learning have been demonstrated in previous studies when participants were 

engaged in an explicit secondary task (Ludden & Gupta, 2000; Toro et al., 2005). None 

of these previous studies, however, considered the domain-specificity of the task. 
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 There are two possible explanations for the interference effect observed in the 

present study. The first and most compelling argument is that these results represent a 

true domain-specific finding. It may be that verbal working memory task demands 

interfered with verbal statistical learning, that is, explicit processing may have 

constrained implicit learning when material was being delivered in the same domain. One 

explanation for this interference effect is that the implicit and explicit systems supporting 

phonological processing are not separable mechanisms. Instead, a single mechanism may 

operate on similarly coded material. If this is the case, then engaging the mechanism 

explicitly would limit that mechanism’s availability to support implicit learning, and 

reduced levels of implicit learning would be observed as in the present study. It is 

important to note that this interference may occur regardless of attentional status. That is, 

this hypothesis does not require a shift in attention away from an implicit signal and 

towards another, perhaps explicit, signal. But rather, this hypothesis requires sufficient 

processing capacity to code material regardless of it being delivered to the system via 

implicit or explicit processing. 

It is interesting to speculate about a candidate process that could support implicit 

and explicit processing of phonological material. One possibility is the phonological loop 

component of working memory (Baddeley & Hitch, 1974). Perhaps, the phonological 

loop encodes information through both conscious and unconscious processes. Despite the 

focus on the role of the phonological loop in explicit serial recall tasks (Baddeley, 1996; 

Baddeley, Chincotta, Stafford, & Turk, 2002; Gathercole, Pickering, Hall, & Peaker, 

2001), the phonological loop has been considered to support implicit phonological 

processing as well, as in the well-known cocktail party phenomenon (Cherry, 1953). 
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Findings such as this have led to the suggestion that phonological information gains 

obligatory access to the phonological loop regardless of attentional allocation at the time 

of initial encoding (Baddeley, 1986). Thus, one possible explanation for the domain-

specific findings in the current study is that the phonological loop was engaged in 

processing the phonological information from both the explicit verbal working memory 

task and the artificial language. It is possible that the demands went beyond the capacity 

of the phonological loop resulting in reduced learning of the artificial language. Domain-

specific capacity, then, may be important for the processing of incoming phonological 

information regardless of whether the task is implicit or explicit in nature. Further 

investigation would be needed to examine this influence.    

A second explanation for the current findings is that the verbal but not 

visuospatial tasks imposed a sufficient constraint on attention or limited cognitive 

resources to impair learning. That is, the effects are due to a domain-general influence, 

with the particular pattern of findings in the present study related to the stimuli and 

methods employed. One factor systematically investigated in the present study was the 

impact of attention-demanding processing load. Statistical language learning being 

supported by attentional resources would have been suggested if performance was 

reduced in all experimental conditions. Or, support from domain-general executive 

processing resources would have been suggested if performance were reduced for those 

in either high-demand condition, with those in either low-demand condition spared. But, 

neither of these assumptions were supported: Reduced word identification was observed 

only for the concurrent verbal task groups, regardless of load. The contrast comparing 

those in either high-load condition (verbal and visuospatial) was significant, yet post-hoc 
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analyses revealed that this result was due to the performance of those in the verbal high-

load condition. Furthermore, results from the nonparametric analyses showed that the 

visuospatial high-load group did not differ significantly from controls. Additionally, there 

was no significant difference in performance on the statistical language learning task 

based on the processing demands (low- or high-load) of the explicit verbal tasks. Thus, 

general attentional demands of the secondary task or central executive processing load 

did not differentiate learning effects.  

It could be that the attentional demands of the visuospatial and verbal tasks 

differed, making the effect appear domain-specific when, in fact, it was not. One 

possibility is that the visuospatial low load condition allowed the participant to focus on 

only one location to decide if the target was there or not, whereas the verbal low load 

condition required identification of each letter presented in order to decide if it was the 

target letter or not. However, response accuracy within the n-back task did not differ 

between the low-load verbal and visuospatial groups (or between the corresponding high 

load conditions), so a difference caused by secondary task stimuli was not evident. Thus, 

there is no evidence to suggest that task difficulty differed on a dimension other than 

working memory load. Given these findings, it would appear that the present study did 

not find an impact of domain-general processing on implicit statistical word 

segmentation. However, other domain-general mechanisms supporting statistical 

language learning cannot be ruled out. 

 What is important about these findings is the demonstration that implicit 

statistical language learning can help learners segment words, and there are some 

constraints on this learning process. Specifically, the availability of phonological 
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processing capacity may be of particular importance. Of course, although statistical word 

segmentation may be a necessary cue aiding language learners, it is unlikely to be 

sufficient to surmount the task of language learning. Other cues coexist within natural 

language input, and the learner likely takes advantage of this combination of cues at all 

levels of language learning, from word segmentation to grammatical syntax (Romberg & 

Saffran, 2013; Sahni, Seidenberg, & Saffran, 2010). It is interesting to speculate that 

within natural language learning, phonological processing capacity may be an important 

constraint on the ability to combine the necessary cues to uncover regularities within 

language.  

A potential limitation of the study design is that some differences between verbal 

and visuospatial working memory processes may have been masked if subjects were 

unable to ignore task irrelevant attributes. For example, in the visuospatial working 

memory condition participants were required to look for matches along the trait of spatial 

location of an alphabetic letter on a screen. However, it could be assumed that the 

participants in the present study were skilled readers and automatic processing of the 

letters occurred, regardless of task instruction. While it is possible that subjects encoded 

both verbal and spatial information in this manner, working memory task instructions 

specifically highlighted performing memory operations only on relevant stimuli. It is 

reasonable to assume that participants would have been unaware of patterns amongst the 

task-irrelevant stimulus attributes. Thus, it is unlikely that they performed memory 

comparisons on the task irrelevant features. Furthermore, it may have been that the 

cognitive demands of the visuospatial low-load condition were too low to elicit an effect 

on statistical language learning. As participants were attending to a 0-back match to a 
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target stimuli presented at the onset of each experimental block, it could have been that 

participants “locked in” their visual focus on that spatial location for the duration of the 

task. Perhaps, then, participants did not need to engage in additional working memory 

processing, such as active updating or matching to the target stimuli. This would have 

been more likely in the visuospatial than the verbal 0-back condition, because those in the 

verbal 0-back condition would still be required to attend to a letter match that could have 

appeared in multiple locations on the screen. However, if the visuospatial low-load task 

were to elicit any processing cost to indicate a domain-general interference effect, we 

would have seen this in the visuospatial high-load task group as well, and this was not the 

case. Furthermore, n-back accuracy scores in verbal and visuospatial low-load conditions 

did not differ, suggesting equivalent processing costs across task domains. 

A further limitation may be that word identification knowledge of participants 

could have been better assessed with a different testing methodology. The two-alternative 

forced-choice procedure used here involves the direct comparison of two exemplars, a 

word and a nonword. This test requires an explicit judgment of the stimuli. However, the 

stimuli were to be learned implicitly. Perhaps a procedure using a more implicit test of 

learning would be a more sensitive measure for determining word identification 

knowledge. Tests employing serial reaction time (e.g., Misyak, Christiansen, & Tomblin, 

2010) or event-related potentials (e.g., Turk-Browne, Scholl, Chun, & Johnson, 2009) 

might be more suitable for future work. At present, however, the two-alternative forced-

choice method is the most widely used amongst adult statistical learning studies, so it can 

be deemed appropriate for the present study. 
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Conclusion 

It has been proposed that learning language occurs via an implicit statistical 

learning mechanism. This mechanism may be specifically useful for helping language 

learners discover the boundaries between words in fluent speech, a finding reliably 

demonstrated in past research (Saffran, Newport, et al., 1996). What remains poorly 

understood, however, are the cognitive processes that may support implicit statistical 

language learning. This thesis sought to examine how engaging in explicit domain-

specific (verbal) or cross-domain (visuospatial) working memory tasks of either low or 

high demand would impair the implicit statistical learning of word boundaries in an 

artificial language. It was found that engaging in an explicit verbal working memory task 

of either low- or high- demand impaired the ability to uncover word boundaries, whereas 

engagement in a visuospatial working memory task did not. The results raise the 

possibility that implicit and explicit processing of phonological information is supported 

by a common mechanism, which could be the well-described phonological loop 

component of working memory. 
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Appendix A: Scripts of Task Instructions (All Conditions) 
No load 

Listening Phase 

Welcome to the experiment. 

The listening phase will take place in 4 7-minute blocks, with 3-minute breaks in between 

each block. 

You will hear a nonsense language play through your headphones. 

Good luck! 

Test Phase 

Good work - you are almost finished! 

Now, we will test your knowledge of the words in the nonsense language. 

You will hear two words played through your headphones, one after another. Choose the 

word that sounds most like something you heard in the language. 

There are 36 trials, and this will take about 3 minutes. 

The words will come quickly, and can not be repeated, so listen closely. 

To select the first word, press "A" 

To select the second word, press "L" 

Thank you for your participation in the experiment. 

Please see the experimenter. 

 

Visuospatial working memory – high-load 

Welcome to the experiment. 
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This experiment will take place in four 7-minute blocks, with 3-minute breaks in between 

each block. There will be a short test phase at the end of the experiment. 

Please make sure you are wearing your headphones. 

Working Memory Task Instructions 

You are going to see items presented in different locations on the screen, one at a time. 

Try to remember the positions of the items. Decide if the item on the screen is in the 

same position as the item you saw TWO BACK. 

We will go through some instructions now to show you what we mean. 

You will see items come up one at a time in different positions on the screen. 

You might see an item here... 

Or here... 

Or maybe here... 

Or in other positions on the screen. 

Items will come up on the screen one at a time. The image on the left shows a sequence 

of screens you might see. Remember the positions of the items you see. When you see a 

match for an item TWO BACK press SPACE. 

Screen 4 is a match for screen 2 in our sequence. It is a match because the item was in the 

same position TWO BACK. You would press SPACE when the item on screen 4 popped 

up. 

The computer is going to show an example. Try to remember the positions of the items. 

Decide if the item on the screen is in the same position as the item you saw TWO BACK. 

When you see a match, press SPACE. 

MATCH - Press SPACE 
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Remember, the red square was in the same spot TWO BACK. 

MATCH - Press SPACE 

Remember, the red square was in the same spot two steps back. 

You can have two matches overlapping. The pattern always continues, even if you have 

pressed SPACE for a match in between.  

You are always looking for an item in the same position as TWO BACK. 

Look at the matches in this sequence. 

Screen 4 is a match for screen 2. 

Screen 5 is a match for screen 3. 

The pattern continues, even though the matches overlap. 

The computer is going to show an example. Try to remember the positions of the items. 

Decide if the item on the screen is in the same position as the item you saw TWO BACK. 

When you see a match, press SPACE. 

Remember, the pattern continues, even when you have a match in between. 

MATCH - Press SPACE 

Remember, the red square was in the same spot two steps back. 

MATCH - Press SPACE 

Remember, the red square was in the same spot two back, and it's still a match even 

though we had another match in between. 

The pattern also continues even if an item was already used as a match. 

Here, screen 3 is a match for screen 1. 

Screen 5 is a match for screen 3. 
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The pattern continues. Even though screen 3 was already a match, it is still possible for 

an item in the same position to be a match two steps after it. 

The computer is going to show an example. Try to remember the positions of the items. 

Decide if the item on the screen is in the same position as the item you saw TWO BACK. 

When you see a match, press SPACE. 

Remember, the pattern continues. Even if an item was already used as a match (you 

pressed SPACE for it), it could have a match two steps after it. 

MATCH - Press SPACE 

Remember, the red square was in the same spot two steps back. 

MATCH - Press SPACE 

Remember, the red square was in the same spot two steps back. The pattern continues, 

even though we already had the same match before. 

Now that we have given you the instructions, you will do some practice trials that look 

like the real experiment. 

Remember the positions of the items. Press SPACE when an item is in the SAME 

POSITION as the item from TWO BACK. And remember, the pattern continues, even if 

you have matches overlapping, or an item was already used as a match. 

Answer quickly. 

Good work! 

We have now finished doing the practice. We are going to start the real experiment. 

While you are doing the real experiment, you will hear a nonsense language play through 

your headphones. 

Please make sure your headphones are on. 
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You will now have a 3-minute break. 

If you have any questions, please ask the experimenter. 

Do not leave the computer lab. 

Test Phase 

Good work - you are almost finished! 

There were words contained within the nonsense language that played throughout the 

experiment. 

Now, we will test your knowledge of the words in the nonsense language. 

You will hear two words play through your headphones, one after another. Choose the 

word that sounds most like something you heard in the language. 

There are 36 trials, and this will take about 3 minutes. 

The words will come quickly, and cannot be repeated, so listen closely. 

To select the first word, press "A" 

To select the second word, press "L" 

Choose the word that sounds most like something you heard in the language. 

First Word: A         Second Word: L 

Thank you for your participation in the experiment. 

Please see the experimenter before leaving. 

 

Visuospatial working memory – low-load 

Welcome to the experiment. 

This experiment will take place in four 7-minute blocks, with 3-minute breaks in between 

each block. There will be a short test phase at the end of the experiment. 
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Please make sure you are wearing your headphones. 

Working Memory Task Instructions 

You are going to see items presented in different locations on the screen, one at a time. 

You will be asked to watch for items in a particular position. This is your TARGET 

position. Remember this position. You will need to press the SPACE BAR each time you 

see an item in the SAME spot as your TARGET position. You will be told the target 

position at the beginning of each 7- minute block.  

We will go through some instructions now. 

The red square tells you the position to watch for: 

You will see items in different positions around the screen. 

You might see an item here... 

Or here... 

Or maybe here... 

Or in other positions on the screen. 

You will be told to remember a particular TARGET position, and press SPACE each 

time an item shows up in that target position. 

Be sure to remember this spot, and answer quickly. 

For items in spots that are NOT the target position,  

DO NOT press SPACE. 

The computer is going to show an example... 

You will be told to remember a particular TARGET position, and press SPACE each 

time an item shows up in that target position. 

Be sure to remember this spot, and answer quickly. 
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For items in spots that are NOT the target position,  

DO NOT press SPACE. 

The computer is going to show an example... 

This is the TARGET position.  

Press SPACE only when an item is in the same spot as the target position. 

NO MATCH - DO NOT press SPACE 

NO MATCH - DO NOT press SPACE 

MATCH - Press SPACE 

NO MATCH - DO NOT press SPACE 

MATCH - Press SPACE 

Now that we have given you the instructions, you will do some practice trials that look 

like the real experiment. 

Your target position will be presented on the next screen for 3 seconds. Remember this 

spot. Press SPACE when an item is in the same spot as the target position. Answer 

quickly. 

Good work! 

We have now finished doing the practice. We are going to start the real experiment. 

While you are doing the real experiment, you will hear a nonsense language play through 

your headphones. 

Please make sure your headphones are on. 

Your target position will be displayed on the next screen for 3 seconds. Remember this 

position. 

Test Phase 
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Good work - you are almost finished! 

There were words contained within the nonsense language that played throughout the 

experiment. 

Now, we will test your knowledge of the words in the nonsense language. 

You will hear two words play through your headphones, one after another. Choose the 

word that sounds most like something you heard in the language. 

There are 36 trails, and this will take about 3 minutes. 

The words will come quickly, and can not be repeated, so listen closely. 

To select the first word, press "A" 

To select the second word, press "L" 

Choose the word that sounds most like something you heard in the language. 

First Word: A         Second Word: L 

Thank you for your participation in the experiment. 

Please see the experimenter before leaving. 

 

Verbal working memory – high-load 

Welcome to the experiment. 

This experiment will take place in four 7-minute blocks, with 3-minute breaks in between 

each block. There will be a short test phase at the end of the experiment. 

Please make sure you are wearing your headphones. 

Working Memory Task Instructions 

You are going to see letters presented on the screen, one at a time. 
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Try and remember the letters you see. Determine if the letter currently on the screen is a 

match in letter name to the letter from TWO BACK. Press SPACE when you see a 

match. 

We will go through some instructions now to show you what we mean. 

You will see letters come up one at a time on the screen. 

You might see a letter like this... 

Or this... 

Or this... 

Or some other English letters. 

Notice how the letters were in upper and lower case. 

The image on the left shows an example of screens that might come up, one at a time, in 

the experiment. 

You need to look for when the screen is a letter name match for the screen from TWO 

BACK. 

Screen 4 is a match for screen 2. It is a letter name match from TWO BACK. You would 

press space as soon as you saw the match on screen 4 pop up. (Case does not matter, what 

matters is letter name) 

The computer is going to show an example. Try and remember the letters you see. 

Determine if the letter currently on the screen is a match in letter name to the letter from 

TWO BACK. Press SPACE when you see a match. 

Remember, case does not matter. What matters is letter name. 

Answer quickly. 

MATCH - Press SPACE 
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Remember, you saw a "W" TWO BACK. 

MATCH - Press SPACE 

Remember, you saw a "C" TWO BACK. 

It is still a match, even though the case of the letters was different. 

You can have two matches cross over. The pattern always continues. Even if you have 

pressed SPACE for one match, the next item could also be a matching item, where you 

need to press SPACE again. 

Look at the sequence on the left. 

Screen 4 is a match for screen 2. 

Screen 5 is a match for screen 3. 

The pattern continues, even though the matches cross over. You are always trying to 

remember what was TWO BACK. 

The computer is going to show an example. Try and remember the letters you see. 

Determine if the letter currently on the screen is a match in letter name to the letter from 

TWO BACK. Press SPACE when you see a match. 

Remember, the pattern continues, even if matches cross over. 

Answer quickly. 

MATCH - Press SPACE 

Remember, you saw a "T" TWO BACK. 

MATCH - Press SPACE 

Remember, you saw a "P" TWO BACK, and it's still a match even though the matches 

cross over. 

The pattern also continues even if an item was already a match, and you pressed SPACE. 
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Screen 3 is a match for screen 1, and screen 5 is a match for screen 3 - even though you 

already pressed SPACE for screen 3, it can still have a match come after it.  

You are always trying to remember what was TWO BACK. 

The computer is going to show an example. Try and remember the letters you see. 

Determine if the letter currently on the screen is a match in letter name to the letter from 

TWO BACK. Press SPACE when you see a match. 

Remember, the pattern continues, even if the item was already used as a match. 

MATCH - Press SPACE 

Remember, you saw a "G" TWO BACK. 

MATCH - Press SPACE 

Remember, you saw a "G" TWO BACK. The pattern continues, even though we already 

had the same match before. 

Now that we have given you the instructions, you will do some practice trials that look 

like the real experiment. 

Remember the names of the letters. Press SPACE when you see the SAME LETTER as 

the letter from TWO BACK. And remember, the pattern continues, even if you have 

matches overlapping, or an item was already used as a match. 

Answer as quickly as possible. 

Good work! 

We have now finished doing the practice. We are going to start the real experiment. 

While you are doing the real experiment, you will hear a nonsense language play through 

your headphones. 

Please make sure your headphones are on. 
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Test Phase 

There were words contained within the nonsense language that played throughout the 

experiment. 

Now, we will test your knowledge of the words in the nonsense language. 

You will hear two words play through your headphones, one after another. Choose the 

word that sounds most like something you heard in the language. 

There are 36 trails, and this will take about 3 minutes. 

The words will come quickly, and can not be repeated, so listen closely. 

To select the first word, press "A" 

To select the second word, press "L" 

Choose the word that sounds most like something you heard in the language. 

First Word: A         Second Word: L 

Thank you for your participation in the experiment. 

Please see the experimenter before leaving. 

 

Verbal working memory – low-load 

Welcome to the experiment. 

This experiment will take place in 4 7-minute blocks, with 3-minute breaks in between 

each block. There will be a short test phase at the end of the experiment. 

Please make sure your headphones are on. 

Working Memory Task Instructions 

You are going to see different letters presented on the screen, one at a time. 
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You will be asked to watch for a particular letter. This is your TARGET letter. 

Remember this letter. You will need to press the SPACE BAR each time you see a 

MATCH to the TARGET letter. The match can be in upper or lower case, as long as it's 

the same letter-name. You will be told the target letter at the beginning of each 7-minute 

block. 

We will go through some instructions now. 

You will see different letters on each screen. 

They might look something like this... 

Or some other letters, in either upper or lower case. 

You will be told to remember a particular TARGET letter. Press the SPACE BAR each 

time you see a MATCH, either upper or lower case, for the target letter. 

Be sure to remember this letter, and answer quickly. 

For letters that are DIFFERENT, DO NOT press SPACE. 

The computer is going to show an example... 

MATCH - Press SPACE 

Now that we have given you the instructions, you will do some practice trials that look 

like the real experiment. 

Your target letter will be in red, and displayed on the next screen for 3 seconds. 

Remember this letter. Press SPACE every time you see a match for this letter. Answer 

quickly. 

We are now finished doing the practice. We are going to start the real experiment. 

While you are doing the real experiment, you will hear a nonsense language play through 

your headphones. 
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Please make sure your headphones are on. 

Your target letter, in red, will be displayed on the next screen for 3 seconds. Remember 

this letter. 

Test Phase 

Good work - you are almost finished! 

There were words contained within the nonsense language you heard throughout the 

experiment. 

Now, we will test your knowledge of the words in the nonsense language. 

You will hear two words play through your headphones, one after another. Choose the 

word that sounds most like something you heard in the language. 

There will be 36 trials, and this will take about 3 minutes. 

The words will come quickly and can not be repeated, so listen closely. 

To select the first word, press "A" 

To select the second word, press "L" 

Choose the word that sounds most like something you heard in the language. 

First Word: A         Second Word: L 

Thank you for your participation in the experiment. 

Please see the experimenter. 
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