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Abstract 

 

Sustainable and clean fuels are in demand due to the perceived negative effects on health 

and environment with current use of fossil fuels. Lipids from microalgae offer a potential 

approach to obtain sustainable biofuels. In this study a two step process was adopted: 

investigation of culture conditions to find optimal points for lipid productivity and 

cellulose content, followed by an investigation of microalgae disruption for lipid 

recovery.  

 

In the first phase of the research the effect of culture conditions on Chlorella vulgaris 

biomass concentration and the ratio of lipid productivity/cellulose content were studied. 

Response surface methodology was applied to optimize the culture conditions. The 

response model for biomass concentration led to a predicted maximum of 1.12 g dw L
-1

 

when carbon dioxide and sodium nitrate concentrations were 2.33% vv
-1

 and 5.77 mM, 

respectively. For lipid productivity/cellulose content ratio the maximum predicted value 

was 0.46 (mg lipid L
-1

d
-1

)(mg cellulose mg biomass
-1

)
-1

 when carbon dioxide 

concentration was 4.02% vv
-1

 and sodium nitrate concentration was 3.21 mM. Also a 

common optimum point for both models was also found. 

 

For the second phase of the study, the optimized Chlorella vulgaris microalgae obtained 

in the first phase was subjected to high pressure steaming as a hydrothermal treatment for 

recovery of bio-crude, and analysis by empirical modeling allowed finding operating 

points in terms of target temperature and microalgae concentration for high bio-crude and 

glucose yields. Within the range covered by these experiments the best conditions for 

high bio-crude yield were temperatures higher than 174˚C and low biomass 

concentrations (<5 g/L). For high glucose yield there were two suitable operating ranges, 

either low temperatures (<105˚C) and low biomass concentrations (<4 g/L); or low 

temperatures (<105˚C) and high biomass concentrations (<110 g/L).  

 

To finalize this study, microalgae with different lipid and cellulose content was used to 

calculate the bio-crude recovery efficiency applying high pressure steaming. This thermal 
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treatment allowed extracting 97.94±8.26% of the total lipids. The biomass with the 

highest cellulose content was later subjected to high pressure steaming as a pre-treatment 

for glucose production via enzymatic hydrolysis, and the glucose yield for this process 

was 0.28 g.gbiomass
-1

. 

 

Keywords 

 

High pressure steaming, biofuels, cellulose, microalgae, lipid extraction, enzymatic 

hydrolysis, response surface methodology. 
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1. Chapter 1: Introduction 

 

Lipids from microalgae are an attractive source of biofuels. However the implementation 

of this technology at industrial scale is challenging and need to address problems like low 

extraction efficiencies; even though different methods for breaking down the cell wall 

have been studied they are not efficient enough or they affect the lipids profile. 

 

To help in the solution of this problem, this study proposes that if a successful process for 

lipid extraction is wanted; all aspects related with cell wall disruption should be taken 

into account. This means that not only the method for breaking down the cell plays an 

important role, but also the intrinsic characteristics of the cell wall. Thus, a culture 

containing cells with high lipid productivity and low cellulose content is ideally desired 

in a biodiesel from microalgae process. Therefore, treatments for breaking the cell wall 

would be less intensive and therefore more economically feasible and environmentally 

friendly. Even though cell wall plays a fundamental role on lipid extraction, only a few 

reports were found on the effect of culture conditions on cellulose content, making this 

area of high interest for research. 

 

In this study, a holistic strategy to investigate the lipid recovery from microalgae is used, 

so manipulation of process variables will occur from culture conditions (to see their 

effect on lipid and cellulose content) to the disruption methods for breaking down the cell 

wall. In order to better understand the flow of ideas that were followed during this 

research, the next section summarizes the sequence of experiments conducted. 

 

1.1. Research structure 

This research study was divided into two main phases. The first phase involved an 

investigation of the culture conditions and their effect on lipid productivity and cellulose 

content, and the second on application of cell wall disruption methods for bio-crude 

recovery (See Figure 1.1). 



5 
 

 

Figure 1.1 General scheme of thesis structure. 

In the first phase, carbon dioxide and nitrate concentrations in growth media were 

manipulated simultaneously in cultures of Chlorella vulgaris. The values for these 

variables were determined based on literature data and chosen based on the requirements 

of the central composite design (CCD) for response surface methodology (RSM). This 

kind of experiment design allows exploring the effect of some factors on a response 

variable in a determined region, which is chosen by the researcher as promissory. The 

main goal of the model obtained was to explore the region of interest for the response 

variable, and determine the location for its maximum or minimum according to research 

interest. 

The model was used to study the effect of two factors, carbon dioxide and nitrate 

concentration, on lipid productivity and cellulose content. But additional variables were 

quantified in order to get information that helps to explain the results of the main 

response variables. Once the model was obtained, it was mathematically manipulated in 

order to find the operating point, in terms of carbon dioxide and nitrate concentration that 

gives the maximum lipid productivity with the lowest cellulose content. This point 

determines the conditions under which C. vulgaris cultures were established for 

experiments in the second stage of the research, where disruption methods were applied. 
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For the second phase of the research, cells of C. vulgaris were subjected to high pressure 

steaming (HPS). Simultaneous effect of target temperature and microalgae concentration 

was explored. In this case, a CCD with two factors was used. A model for bio-crude yield 

was obtained in terms of the variables mentioned and optimization was applied in order 

to find the conditions under which HPS allows the highest bio-crude yield. Additionally, 

measurement for glucose yield and fatty acids methyl esters (FAME) composition were 

made as a way of studying cellulose degradation and ensuring that HPS conditions do not 

affect significantly the lipids quality for biodiesel production in comparison with 

traditional solvent extraction. 

 

Finally, enzymatic hydrolysis of biomass previously treated with HPS was proposed as a 

way of breaking down the remaining cellulose structures, allowing the production of 

glucose. In this case the effect of pre-treatment temperature and the nature of the 

substrate was study on glucose yield. The global idea for all the experiments was to 

provide a comprehensive analysis of lipid recovery from the very initial stages of any 

microalgae process (cultivation), to the application of extraction methods in order to 

increase extraction efficiency. 

 

1.2.Objectives 

Towards the completion of this study, one overall objective and several sub-objectives 

were proposed. 

 

1.2.1. Overall objective 

The overall objective of this study was to demonstrate the applicability of HPS treatment 

on Chlorella vulgaris for cell wall disruption by determining values for the main 

parameters of the process which lead to a high bio-crude recovery. 

1.2.2. Specific objectives 

 

The following were specific sub-objectives or milestones of this study. 
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Objective 1: To study the effect of culture conditions on lipid production and 

cellulose content. Effect of carbon dioxide and nitrate concentration on biomass 

concentration, lipid productivity and cellulose content were studied. Data obtained 

allowed to plot response surface graphics that gave the following information: Biomass 

concentration, lipid productivity and cellulose content at low and high CO2 and nitrate 

concentrations. 

Objective 2: To develop an empirical model for optimization of culture conditions 

studied. Statistical data obtained from RSM led to the development of an empirical 

model of the ratio lipid productivity/cellulose content as function of carbon dioxide and 

nitrate concentrations. This model was mathematically processed to obtain the culture 

conditions that produce the maximum (optimal point) for lipid productivity between the 

interval studied, and the minimum for cellulose content. 

Objective 3: To study the effect of high pressure steaming treatment on cell wall 

disruption and bio-crude recovery. The effect of temperature and biomass 

concentration on bio-crude and glucose yields, and also FAME composition were 

studied. Analysis of Scanning Electron Microscopy (SEM) images allowed concluding 

on the physical effect of HPS on microalgae morphology. 

Objective 4: To find an operating area or point for high pressure steaming process. 

Based on the empirical models obtained from RSM, an operating area in terms of target 

temperature and microalgae concentration was found. This operating area led to high bio-

crude recovery yield between the intervals studied. 

Objective 5: To study the effect of algae composition on bio-crude recovery. The 

effect of lipid and cellulose contents on the bio-crude recovery efficiency applying HPS 

was studied. 

Objective 6: Study of enzymatic hydrolysis of cellulose from C. vulgaris pre-treated 

with high pressure steaming. The feasibility of the production of glucose from 

microalgae pre-treated with HPS was study using a cellulase. Data obtained provided 
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information on the effect of pre-treatment temperature on glucose production as a 

possible source of fermentable sugars. 

 

1.3.  Thesis structure 

The thesis was divided into 6 Chapters: Chapter 1 supplies an introduction to the research 

and thesis structure, Chapter 2 covers the literature review and gives the general 

background on biofuels production from microalgae. The following Chapters provide the 

background needed to explain and justify the experiments done. Chapter 3 presents the 

results on the first phase of experiments regarding the effect of culture conditions on lipid 

productivity, cellulose content and biomass concentration. Chapter 4 and 5 covers the 

experiments and results of the second phase of experiments mentioned above. Chapter 4 

describes the effect of HPS on bio-crude and glucose yield as function of target 

temperature and microalgae concentration, while Chapter 5 shows the possibility of the 

use of HPS also as a pre-treatment for enzymatic hydrolysis of microalgae. Chapter 6 

summarizes the conclusions of the study and provides some recommendations for future 

work. 

 

1.4.  Major contributions 

 

The literature review done contributed to: 

 Identify and describe challenging aspects of biofuels from microalgae; the 

bottlenecks in the implementation of microalgae technology at industrial scale 

were clearly stated. 

 

The study of culture conditions on algae growth, lipid productivity and cellulose content 

contributed to: 
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 Be able to modulate the microalgae concentration, lipid productivity, and 

cellulose content to any wanted value (in the range of the study), by changing the 

carbon dioxide and nitrate concentration in the growth media using the empirical 

models obtained. 

 Find optimal points for algae growth and the ratio lipid 

productivity/cellulose content in microalgae cultures. 

 

The study of HPS as bio-crude recovery method contributed to: 

 Test the feasibility of the application of HPS as disruption and bio-crude 

recovery method in microalgae systems. The process was efficient in extracting 

the lipids regardless of the algae composition, and it does not affect significantly 

the lipids profile. 

 Find an operating area in terms of target temperature and microalgae 

concentration that lead to high bio-crude recovery yields. 

 Identify operating areas in terms of target temperature and microalgae 

concentration for high glucose yield as by-product of the HPS process. 

 

The study of HPS as pre-treatment for enzymatic hydrolysis contributed to: 

 Show that the thermal pre-treatment aids the enzymatic hydrolysis of the 

cellulose allowing its conversion to glucose. 

 Increases the viability of the bio-fuels from microalgae processes by 

showing the possibility of obtain two sources of biofuels, (bio-crude and glucose) 

by the implementation of only one method (HPS). 
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2. Chapter 2: Literature review: Engineering challenges in biodiesel production 

from microalgae  

 

The information presented in this Chapter is based in the paper “Engineering challenges 

in biodiesel production from microalgae”, published in Critical Reviews in 

Biotechnology, September 2013, Vol. 33, No. 3, pages 293-308.  

 

2.1.  Abstract 

The combustion of fossil fuels produces several environmental intoxicants, contribute to 

emission of greenhouse gases and raise the concern for climate change and health 

problems. Production of biodiesel from microalgae represents an attractive solution to 

aforementioned problems, offers a renewable source of fuels and emits fewer pollutants. 

This literature review presents a compilation of engineering challenges related to 

microalgae as a source of biodiesel, advantages and current limitations for biodiesel 

production, and some aspects of microalgae cell biology. Also, recent advances in the 

different stages of the manufacturing process are included. 

 

2.2.  Introduction 

Energy utilization in 2008 was equivalent to 11,295 million tons of oil, which will 

potentially rise by 60% in 2030, and China and India alone will account for 45% of this 

energy demand. Therefore, there is a requirement for adoption of global strategies for 

energy security, CO2-energy reduction (Hoffert et al., 2002), and also the need for 

alternative sustainable fuels with high efficiency and low environmental impact. 

To satisfy the increasing energy needs, all feasible alternative energies should be 

considered. Currently, many strategies are under investigation, among them are the use of 

(i) solar energy, in which the energy from the sun is converted into thermal or electrical 

energy through solar panels. It has low energy consumption, low maintenance 
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requirements and allows the generation of energy in the same place of consumption. 

However, it also represents a high initial investment cost, requires large areas, and the 

efficiency depends on the sun location and intensity (Thirugnanasambandam et al., 

2010). (ii) Hydroelectric energy: where the kinetic and potential energy accumulated in 

waterfalls are transformed into electrical energy. This process results in the production of 

moderate to high energy and it has low cost of operation and maintenance, but it implies 

high cost of infrastructure (Onat and Bayar, 2010). (iii) Geothermal energy: the heat 

accumulated inside the earth is converted by turbines or heat exchangers into useful 

energy. This requires low operating cost and low maintenance, but needs land suitable for 

plant installation, emission of some harmful gases is possible, and may cause landscape 

deterioration (Haehnlein et al., 2010). (iv) Tidal energy: this harnesses the kinetic energy 

of ocean currents through hydraulic turbines which convert this into electrical energy. 

This is, potentially, an inexhaustible energy source since there are no polluting by- 

products. However, it can be uneconomical, and may have high environmental impact 

during installation (Khan et al., 2009). (v) Wind energy: in this strategy the kinetic 

energy of air currents is transformed into electrical energy by wind turbines, it does not 

produce polluting compounds, and it is an inexhaustible energy source, but it depends of 

air currents, may has interference with communication systems, is detrimental to 

landscape quality, has negative effects on environment, and generates high noise levels 

(Saidur et al., 2010). (vi) Biofuels: they are a wide range of fuels which are in some way 

derived from biomass. The chemical energy stored in the molecules of the biomass is 

converted into other types of energy. For biofuels production, it is possible to use waste 

pollutants, as a way of energy recycling and producing less emission of gases as 

compared to the use of fossil fuels. Some biofuels have shown a strong negative impact 

on environment and food markets, sometimes the yields are low, and the land 

requirement is high. 

Of all the sources listed above, in particular, the production of biofuels from microalgae 

is attracting a lot of interest as a potential transformational solution for the problems 

mentioned. Nevertheless, as a new technology, many engineering challenges must be 

overcome before the establishment of this process at industrial level. For example, the 

lipids from microalgae have a lower heating value when compared to regular diesel fuel, 
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production of lipid from microalgae is unstable, the cost of production plants for 

microalgae’s bio-oil remains higher than traditional oil crops (Huang et al., 2010), 

biomass concentration in reactors is low, and also supply, safety and policy barriers must 

be considered (Demirbas and Demirbas, 2011). 

In this Chapter, the advantages, stages in the production process, and parameters 

affecting the production of biodiesel from microalgae are discussed, with special 

emphasis on lipid production and extraction as central topic of this thesis. 

 

2.3.  Biodiesel and its applications 

Several fuels can be obtained from microalgae but discussion will focus on biodiesel 

from microalgae lipids. Biodiesel is a fuel comprised of mono-alkyl esters of long chain 

FAME derived from vegetable oils or animal fats, designated B100, and meeting the 

requirements of the American Society for Testing and Materials, ASTM D6751. The 

main use of biodiesel is as liquid fuel that can be pure or blended with petroleum in any 

percentage. Biodiesel has similar chemical and physical properties to fuels derived from 

petroleum. Some studies have shown that the use of biodiesel increases the engine 

performance in diesel cars (Atadashi et al., 2010). 

Biodiesel can also be used for i) cleaning up oil spills: biodiesel promotes the 

biodegradation of aliphatic and aromatic fractions of the residual fuel oil (Fernández-

Alvarez et al., 2007), ii) production of hydrogen: it has been proposed in autothermal 

reformers with high and low temperatures shift reactors, autothermal reformer with a 

single medium temperature shift reactor, and thermal cracker with high and low 

temperature shift reactors with high and low temperature shift reactor (Nahar, 2010), iii) 

heating oil in domestic and commercial boilers: studies have shown similar performance 

in boilers with biodiesel and petrodiesel (Bazooyar et al., 2011), among other uses. 
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2.4.   Microalgae as engineering systems 

Biofuels from microalgae have been suggested since the 1950s (Oswald and Goleeke, 

1960). In particular, in the 1970s, the large scale cultivation of microalgae for production 

of sustainable liquid fuels was investigated (Lin et al., 2011; Sheehan et al., 1998). The 

process for producing biodiesel from microalgae generally comprises three stages. The 

first stage is the microalgae strain selection and the pretreatment of raw materials. The 

second stage comprises all the steps for biomass growth and production (the microalgae 

transform the nutrients present in the culture medium into new products such as biomass 

and fatty acids). The final stage consists of all the processes of separation and purification 

of fatty acids that are ultimately converted into biodiesel (FAME). Microalgae emerge as 

an attractive alternative due mainly to its high lipid content. Table 2.1 compares oil 

content and productivity of biodiesel per year from different feedstocks. 

Table 2.1 Comparison of different biodiesel feedstocks (Mata et al., 2010). 

Plant source content Seed oil Oil yield Land use Biodiesel 

productivity 

 (% ww
-1

) (L oil/ha year) (m
2
 year/kg 

biodiesel) 

(kg biodiesel/ha 

year) 

Soybean (Glycine max L.) 18 636 18 562 

Camelina (Camelina sativa L.) 42 915 12 809 

Canola/Rapeseed (Brassica 

napus L.) 

41 974 12 862 

Sunflower (Helianthus annuus 

L.) 

40 1070 11 946 

Castor (Ricinus communis) 48 1307 9 1156 

Palm oil (Elaeis guineensis) 36 5366 2 4747 

Microalgae (low oil content) 30 58,700 0.2 51,927 

Microalgae (medium oil 

content) 

50 97,800 0.1 86,515 

Microalgae (high oil content) 70 136,900 0.1 121,104 
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Table 2.1 indicates that oil content in microalgae under conditions of environmental 

stress is 70% (by weight) of dry biomass versus values of 18% - 48% in plants. 

Therefore, the third-generation of biofuels derived from microalgae is considered as a 

technically viable energy source that overcomes the problems presented during the 

previous generation of biofuels (Goh and Lee, 2010). From previous and current research 

in production of biodiesel from microalgae the following advantages have been found 

(Costa and de Morais, 2011; Demirbas and Demirbas, 2011): Some of the crops from 

which biodiesel is traditionally produced cannot be grown continuously, especially in 

countries with extreme weather conditions. For their part, microalgae culture would be 

sustainable independent of the time of the year with high productivity of oil, since 

artificial conditions would be easier to implement. Microalgae are grown in aqueous 

media, the amount of water required is less than that used in traditional crops, which is an 

advantage in order to reduce fresh water consumption (Demirbas and Demirbas, 2011; 

Um and Kim, 2009). Microalgae can also grow in wastewater helping to control pollution 

not only by treating the water but also by fixing CO2. The growth rate of microalgae in 

comparison with the growth rate of plants in a crop is much higher, so the processing 

time is significantly shortened promoting productivity. Furthermore, microalgae cultures 

can be used for simultaneous production of several products of interest, including 

biofuels and high value compounds, this would specially help to increase the economic 

feasibility. For control process, the manipulation of variables in bioreactors is easier than 

that in traditional crops. This facilitates the modulation of microalgae metabolism in 

order to increase the production of fatty acids or other compounds of interest. Never the 

less, there are still many barriers, some of them will be presented later. 

 

2.5.  Biology of microalgae 

Understanding microalgae cell biology facilitates the development of strategies for 

biodiesel production at industrial level. Microalgae can be eukaryotic (Chlorophyta, 

Rhodophyta, Bacillariophyta) or prokaryotic (Cyanophyta) (Williams and Laurens, 

2010), and can also be classified by pigmentation, product storage structures, cell wall 
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composition, cycle life (eukaryotic), and basic cellular structure (Hoek et al., 1996; Khan 

et al., 2009). Table 2.2 presents some basic characteristics of different microalgae genera. 

 

Table 2.2 Some characteristics of algae (Hoek et al., 1996). 

Group Type Number of 

species 

Positive or negative effects 

Cyanobacteria Prokaryote 2000 species Some produce toxins (e.i. cyclic peptide toxins) 

Can be used as dietary supplement (spirulina) 

Dinoflagellates Eukaryote >2000 species Responsible for “Red Tide” which destroys 

fishing 

Some produces potent toxins 

Euglenoids Eukaryote ≈1000 species Some species have been used for many years as 

experimental organism in biochemical and 

physiological investigations. 

Diatoms Eukaryote 

 

≈ 11000 species Diatomaceous earth (made up of millions of 

diatoms skeletons) can be used as filter, insulator 

and bioindicator 

Important source of food and oxygen for 

heterotrophs 

Red algae Eukaryote >5000 Produce agar which is used commercially and in 

laboratory procedures 

Brown algae Eukaryote 1500-2000 

species 

Include a number of edible seaweeds 

Some are used for the extraction of iodine and 

potash 

Extensively exploited for the extraction of alginic 

acid 
 

Green algae Eukaryote 

 

7500 species Chlorella produces high levels of fatty acids, 

which are used for biodiesel production. 

Dunaliella produces compounds with aAnti-

oxidative activity 

 

It can be seen that algae have a vast variety of species, each one with unique features and 
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industrial applications. For the production of biodiesel, the green algae are of particular 

interest, as in this group have been found species with high fatty acid yields. In this 

research Chlorella vulgaris was selected. Details of its advantages for lipid production 

are presented in Chapter 3. 

Based on energy and carbon source microalgae can be classified as autotrophic, 

heterotrophic or mixotrophic. Photoautotrophic growth involves only photosynthesis in 

the presence of light and carbon dioxide. Heterotrophic metabolism uses organic carbon 

as the source of energy. Mixotrophic growth occurs when the microorganisms utilize 

both mechanisms, i.e. phototrophy and heterotrophy for energy (Barsanti and Gualtieri, 

2006). Microalgae have the ability to tolerate and survive even on harsh environmental 

conditions; this represents a positive feature for large scale process where control of 

process variables would be difficult. 

 

2.5.1.  Lipid Droplets 

Lipid droplets are the main target to increase lipid productivity and content want to be 

increased, since they represent the lipid storage compartments in the cell. Lipid droplets 

are the reservoir of triglycerides (precursors of lipids), which primarily serves as a source 

of carbon and energy under deprived growth conditions. In response to environmental 

stress like salinity (Qin, 2005), nitrogen limitation (Weldy and Huesemann, 2007; 

Widjaja et al., 2009) or extreme temperature (Qin, 2005) some unicellular microalgae are 

able to accumulate high lipid content (30-70% dry weight). Wang et al., (2009) 

successfully demonstrated that genetic inhibition of starch biosynthesis in C. reinhardtii 

starchless (sta6 mutant), increased lipid bodies. After 48 h of nitrogen depletion, content 

of lipid droplet was increased by 15-fold in wild-type cells, but 30-fold increase in lipid 

droplets was observed in the sta6 starch-less mutant algae. Moreover, after 18 h of 

nitrogen starvation, on average 17 ng of triglycerides were accumulated in sta6 starchless 

mutant in comparison to 10 ng in the wild-type cells (Wang et al., 2009). 

Li et al., (2008) demonstrated that alteration of physical parameters results in desirable 
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changes for lipid production. Their results showed that more lipid accumulation occurs 

under high light and nitrogen-depleted conditions. They also registered a dramatically 

decrease in starch granules, and the lipid content increased to about 50% of cell dry 

weight (gg
-1

) during the first ten days under high light and nitrogen-depleted conditions. 

Correspondingly, size of lipid droplets increased considerably. The C16 and C18 

derivatives of total fatty acids accounted for 95% of the neutral acid (Li et al., 2008).  For 

biodiesel production fatty acids from C14:0 to C20:0 are preferred since they have higher 

cetane numbers and are less prone to oxidation. 

 

2.5.2. Microalgae cell wall 

Increasing oil production in microalgae is not the only challenge imposed by microalgae 

biology. The extraction of the lipids also constitutes an important aspect of the process. In 

this case, cell wall represents the biggest barrier for lipid extraction. The cell wall is a set 

of layers that are located outside microalgae’s membrane. The cell wall protects the 

contents of the cell, gives rigidity to the cell structure, and functions as a mediator in the 

relations of the cell with the environment. Cell wall composition is of great interest for 

the establishment of some strategies for cell disruption with the aim of liberating the fatty 

acids produced by cells (Arad and Levy-Ontman, 2010a). 

Cell wall composition varies among different species of microalgae. Cyanobacteria are 

surrounded only by their cell wall, but some of them have an outer layer composed of 

mucilage. In other microalgae cell wall is made up of four layers; the innermost layer is 

composed of murein, in which small pores are usually seen as cytoplasm extensions. The 

remaining layers are comprised mainly of polysaccharides. In red, brown and green algae 

cell walls are composed of two fractions - the fibrillar fraction and the amorphous 

fraction. In red algae, the fibrillar fraction (consisting mainly of cellulose), is embedded 

in the second layer, and it gives the cell wall strength. This cellulose is arranged 

irregularly. In some species of red algae, it has been found that fibrillar fraction is made 

up of xylose or mannans. The amorphous fraction is composed of "slime" generally 

consisting of galactans like agar and carrageenan. In brown algae, the fibrillar fraction is 



18 
 

composed of cellulose and reinforced with alginate, forming cross-linked structures. 

Alginate in the brown algae’s wall could be of two kinds; the insoluble alginate is present 

in greater proportion in the fibrillar fraction, while the amorphous fraction can be formed 

by water-soluble alginate and/or fucoidan. In green algae (microalgae used in this study), 

the fibrillar fraction is embedded in the matrix or amorphous fraction. It is located at the 

inner side of the cell wall, arranged in parallel, while the amorphous fraction is the most 

external. 

The cell wall composition of green algae species is quite variable, but cellulose is 

generally the main component (Hammed et al., 2013; Hoek et al., 1996). Figure 2.1 

presents a general representation of microalgae cell wall. The main differences found in 

microalgae cell walls are in their composition and arrangement. According to Shefner et 

al., (1962), in Chlorella the cell wall is approximately 210 Å thick and contains polymers 

of glucose, galactose, mannose, arabinose, and rhamnose. 

 

 

Figure 2.1 General representation of microalgae cell wall structure. 
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Table 2.3 shows the cell wall composition for some representative microalgae (Chlorella, 

Monoraphidium, Ankistrodesmus and Scenedesmus) (Blumreisinger et al., 1983). For the 

different microalgae studied, neutral sugars were the main cell wall constituent; C. 

vulgaris K presented the highest value (74%) (Takeda, 1988). This information would be 

useful for the implementation of cell wall disruption techniques. 

 

Table 2.3 Cell wall composition for some microalgae
* 
(Blumreisinger et al., 1983). 

Algae  Neutral 

sugars 

Uronic 

acids 

Glucosamine Protein Unknown 

C. vuulgaris K 74 4.1 - 3.9 18 

C. vulgaris 211-81 24 18 6.3 4.5 47 

C. vulgaris 211-llf 44 24 15 3.9 13 

C. saccharophila 211-la 54 14 0 1.7 30 

C. fusca 211-8c 68 6.9 0 11 14 

M. braunii 202-7b 47 6.1 0.4 16 31 

A. densus 202-l 32 2.3 - 14 52 

S. obliquus 276-3a 39 1.2 0 15 45 

*
(% dry wt). 

 

The effect of light over cellulose content in the cell wall of Chlorella pyrenoidosa was 

studied by Makooi, (1976). Mixotrophic growth produces the highest amount of 

cellulose, followed by heterotrophic and photoautotrophic growth. The content of 

cellulose for mixotrophic growth was 2.25 times higher than in photoautrophic growth 

and, 2.76 times higher than in heterotrophic growth. Low content of cellulose in 

heterotrophic cultures may be due to the factor that cell growth and maintenance depends 

on an external source of glucose, which is used as a precursor for the synthesis of all 

cellular components. Thus, the cell would spend a minimum amount of energy in cell 

wall formation, giving priority to energetic metabolism. The cells in mixotrophic growth, 
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on the other hand, have two sources of carbon (CO2 and glucose), so the expense of this 

element would be less regulated (Makooi, 1976). The information on the effect of other 

culture conditions on cellulose content is very limited and insufficient. 

As previously mentioned, cell wall composition may change between different strains of 

the same species. Takeda, (1988), performed a study over nineteen strains of Chlorella. 

The strains tested were divisible into two different groups; the first one was composed by 

cells with the presence of glucose and a smaller amount of mannose, and the second 

group had glucose and glucosamine.  

 

2.6.  Challenges in different stages of biodiesel production from 

microalgae 

Microalgae technology has to overcome some limitations in order to become safe enough 

for investors. It is known that a big effort of research and development is needed to 

reduce the still high-risk level and uncertainty associated with this process. But not only 

technical issues must be taken into account, but also the regulations and standards in 

public and private sectors and, market analyses, including quality and safety trials to meet 

standards (Richardson et al., 2010). Intensive research has been conducted on carbon 

balance for biofuels from microalgae processes and many questions remain opened.  

Simulations had shown the potential of microalgae as energy source, but for the 

establishment of this process at a large scale, there is a need for decreasing the energy 

and nutrients consumption by means of optimization of culture conditions, lipid 

extraction and the coupling of anaerobic digestion of oilcakes (Lardon et al., 2009). Other 

important issue on the establishment of biofuels from microalgae according to current 

policies is the estimation of the ecological impact of the process, for this it is necessary to 

calculate the ecological footprint of the products, the land area needed, promote studies 

on restoration of degraded areas and selection of microalgae species that do not affect the 

natural interaction between native species (Groom et al., 2008). 

At present, microalgae have most potential as a source for biodiesel production. For this, 
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product must meet ASTM standards with respect to diesel quality (Antolin, 2002; 

Demirbas and Demirbas, 2011). Table 2.4 compares some properties of biodiesel from 

microalgae, conventional diesel and the ASTM biodiesel standards (Xu et al., 2006). 

 

Table 2.4 Comparison of properties of biodiesel from microalgae oil, diesel fuel and 

ASTM biodiesel standard  (Xu et al., 2006). 

Properties Biodiesel from 

microalgae oil 

Diesel fuel ASTM biodiesel 

standard 

Density (kg L
-1

) 0.864 0.838 0.86-0.90 

Viscosity (mm
2
 s

-1
, cSt at 40˚C)  5.2 1.9-4.1 3.5-5.0 

Flash point (˚C) 115 75 Min 100 

Solidifying point (˚C) -12 -50 to -10 - 

Cold filter plugging point (◦C) -11 -3.0 (max -6.7) Summer max 0 

Winter max <-15 

Acid value (mg KOHg
-1

)  0.374 Max 0.5 Max 0.5 

Heating value (MJ kg
-1

) 41 40-45 - 

H/C ratio 1.81 1.81 - 

 

Figure 2.2 presents a general scheme of biodiesel production from microalgae and some 

engineering challenges that need to be overcome before industrial implementation 

(Amaro et al., 2011; U.S. DOE, 2010). The following sections will present some of the 

latest research and efforts made for these bottlenecks. Also, highlighted with dashes in 

Figure 2.2 are the topics where this research attempts to provide contributions. 
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Figure 2.2 Bottleneck in biodiesel production from microalgae. 

 

2.7. Fundamental microalgae biology research 

As mentioned before, microalgae comprise a wide range of species. In a process for the 

production of biodiesel from microalgae, the first bottleneck that can be found is in the 

identification of strains with high lipid content and productivity. The enormous diversity 

of environments where microalgae can be found makes hard tasks the steps related with 

screening and selection of microalgae (Doan et al., 2011; Sydney et al., 2011). When 

microalgae strains screening is performed for commercial production of microalgae the 

following aspects should be consider: microalgae (i) should have high lipid productivity 

without affecting cell division, (ii) must be able to grow under severe conditions (e.g. 

extreme temperatures), (iii) must be able to compete with local strains in open production 

systems (ponds and wastewater facilities), (iv) must uptake CO2 effectively and, (v) 

should display self-flocculation capacity. It is important to consider the steps required for 

the product separation since it is a factor greatly affecting the final product cost. The 
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strain allowing the separation of fatty acids with few economic steps is a strain with 

potential use in biodiesel production. 

Nevertheless, no known microalgae strain has fulfilled all requirements to unlock the 

profitable commercialization of microalgae. The Aquatic Species Program (ASP), of the 

U.S. Department of Energy (DOE), suggested that exploitation of local microalgae strains 

could overcome the limitation of environmental factors in commercial microalgae 

production (Sheehan et al., 1998). To solve the limitation of low lipid productivity in 

dominant strains, genetic manipulation can be implemented. Hopefully, genetically 

modified strains can potentially reach and yield the theoretically achievable 

photosynthetic conversion efficiencies and accumulate high amounts of neutral lipids 

(Sheehan et al., 1998). 

Furthermore, increasing lipid productivity cannot go beyond where microalgae biology 

allows, therefore genetic manipulation represent a way to solve this limitation but a 

bigger understanding of biochemical pathways is needed. Genetic engineering and 

manipulation of metabolic pathways can promote cellular synthesis of preferred lipids in 

microalgae. In this interest, the ASP attempted over-expression of acetyl-CoA 

carboxylase (ACCase), an enzyme that catalyzes the conversion of acetyl-coenzyme A 

(CoA) to malonyl- CoA in lipid biosynthesis (Radakovits et al., 2010). Even though, the 

over-expression of ACCase has been achieved, it did not result in a significant increased 

lipid synthesis (Sheehan et al., 1998). In addition, instability of genetically engineered 

strains limits the projections for industrial process with the current technology. Thus, in 

spite of potency of transgenic microalgae to produce sustainable biofuels and 

nutraceuticals, this area is still in its infancy. For research purposes, access to reliable 

information is fundamental, but there is still a lack of unified microalgae databases 

containing relevant, specific and detailed information about microalgae strains. 

 

2.8.  Nutrients source and microalgae cultivation 

Challenges in nutrients source and microalgae cultivation are abundant, specially taking 
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into account all the different possible approaches and the specie-specific behavior of 

microalgae strains under given conditions. For microalgae cultivation several factors 

should be taken into account simultaneously, i.e. light availability and intensity, land 

topography, climatic conditions, water supply and access to the carbon source and other 

nutrients (Demirbas, 2011; Mata et al., 2010). Furthermore, biomass also depends on the 

mode of cultivation including photoautotrophic, heterotrophic and mixotrophic 

production, types of culture (open and closed systems), culture strategies (batch or 

continuous culture), inhibitors concentration, mixing, dilution rate, depth and harvests 

frequency (Gallardo Rodríguez et al., 2010). Nevertheless, for all of them, big efforts 

should be done in order to optimize the main variables according to specific production 

plant location. This must be accompanied by the design of robust and stable cultures, able 

to mitigate changes in environmental conditions without affecting microalgae growth and 

lipid productivity. 

Under favorable conditions of growth, the algae can double their biomass within 24 h 

(Chisti, 2008). The growth rate directly affects the concentration of the metabolites of 

interest; for metabolites associated with growth, increased cell concentration will lead to 

greater final concentration of the product. Moreover, the yield of fatty acids and their 

composition varies between different strains, so it is needed to select those that best 

correspond to established standards. If the microalgae will grow in culture with little 

control over environmental conditions, it is necessary to ensure that they can respond 

positively to these changes, so productivity would be not affected significantly (Doran, 

1995). 

Durability and life cycle studies are important for long term operating plants. On the 

other hand, if sustainability problems want to be avoided, a detailed study on use of land, 

water, and nutrients are required, for which the predictable risks and impacts must be 

identified (Campbell et al., 2011; Yang et al., 2011). The economics of microalgae 

technology is very dependent of the scale and scaling-up of the process is still a main 

issue. Conversion rates of lipids into biodiesel reduce when scale increases. If a 

technically successful scale-up is achieved, some other aspects related with plant 

construction would become of interest. For a big production plant, larger markets of raw 
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materials and products are required, as well enough skilled personnel. This significantly 

reduces the plant location options, but also in case of a successful plant establishment 

bigger positive impacts would be expected. 

 

2.8.1. Light and carbon source 

Under natural growth conditions, photosynthetic yield a of microbial system is affected 

by sunlight exposure and CO2 concentration (both natural free sources). The theoretical 

photosynthetic yield of microalgae is around 6%-7% of total solar energy. However, this 

yield is limited by availability of sunlight because of light-dark cycle and seasonal 

variations. This limitation can be overcome by artificial sunlight or fluorescent lamps 

implementation (Muller-Feuga et al., 1998; Yeh et al., 2010); or construction of 

microalgae-based industries in tropical countries where light is more stable over the year. 

Fifty percent of biomass dry weight of microalgae is approximately carbon by weight, 

(generally derived from carbon dioxide). Most microalgae can tolerate high levels of CO2 

with a theoretical yield of roughly 513 tons of CO2 to produce 280 tons of dry biomass 

per ha
-1

y
-1

. Chlorococcum littorale, a marine alga, can utilize up to 40 percent CO2 

concentration (Iwasaki et al., 1998). Chlorella strains from hot springs are used for 

biological fixation of carbon dioxide from industrial flue gases (Sakai et al., 1995). 

Therefore, in commercial scale, power plant exhaust can be applied for microalgae 

biomass production. 

Metabolism of microalgae also determines the biomass concentration and cost of 

biodiesel production. As previously mentioned microalgae have several different modes 

of metabolisms (e.g. autotrophic, heterotrophic, mixotrophic, photoheterotrophic) and can 

make metabolic shift to cope with variable environmental conditions. Usually phototropic 

production is feasible for commercial production of microalgae biomass, and commonly 

deploys for open pond and closed photobioreactor system. However in autotrophic 

culture it is hard to attain high density of microalgae biomass and lipid content (Chen and 

Johns, 1991). 
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Heterotrophic growth of microalgae is independent of light and use organic substrate as 

carbon source thus offers the more opportunities to increase cell density, productivity of 

algal biomass, and cellular lipid content (Miao and Wu, 2004; Xu et al., 2006). This is 

noteworthy that heterotrophic production lowers the harvesting cost (Chen and Chen, 

2006), but the use of glucose or acetate as carbon source is costly. To resolve the 

drawback of high carbon source cost, crude glycerol a cheap resource derived from 

biodiesel production processes, can be used as carbon substrate (Liang et al., 2009). 

Mixotrophic microalgae have successful alliance of photosynthetic and heterotrophic 

metabolism. The capability of mixotrophs to process organic substrates or carbon dioxide 

as carbon source depends on several factors including the concentration of carbon 

substrates, and also light intensity in the growth medium. For example, C. 

protothecoides, a mixotropic microalgae shift its metabolic process from 

photoautotrophic to heterotrophic in response change of organic carbon source (glucose) 

and reduction of the inorganic nitrogen source in the medium (Miao and Wu, 2004). It 

infers that in mixotrophic cultivation, there is less loss of biomass during the dark phase. 

 

2.8.2. Temperature and pH 

Temperature is one of the most limiting factors among the environmental parameters 

governing the activities and growth rate of microalgae in open and closed system (Park et 

al., 2011). The optimal temperature range is generally between 25-35°C. Many 

microalgae can even tolerate temperatures around 15°C. Temperature affects, among 

others aspects, the types of fatty acids produced by these cells. Usually by lowering the 

temperature, the amount of saturated fatty acids increases, but it is not necessarily true for 

all species of microalgae (Renaud et al., 2002). 

The pH of the algal system affects the biomass regulation, photosynthesis rate, 

availability of phosphorous to microalgae and species competition. pH influences toxicity 

of free ammonia to living algal cells by altering the ratio of free ammonia and ammonium 

ion (Y. Azov, 1982), and also directly influencing the metabolic rate of microalgae in 
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open or closed system. 

 

2.9.  Harvesting and dewatering of microalgae biomass 

As mentioned previously in this Chapter, downstream processes are responsible for a big 

portion of lipid cost. Therefore, to overcome the bottlenecks in these steps is critical for 

large-scale implementation of microalgae technology (Chen et al., 2011). All approaches 

for harvesting must be studied and those with the lowest energy requirements, capital, 

operating cost and higher efficiency would be good candidates. Although, the 

compatibility of these operations with other steps in the process should be also 

considered simultaneously. 

In biotechnological processes, the product purification processes generally involve 

several steps that represent about 33% of the total production cost. For biodiesel 

production from microalgae, the scenario is quite similar. There is not a unique process 

for biomass harvesting and it is still an area of active research, where the method 

developed must be technically appropriate and economically favorable for any species of 

microalgae (Mata et al., 2010). The traditional process includes flocculation, filtration, 

flotation, and centrifugation, some of which consume large amounts of energy. The low 

cell densities and the small size of the cells make the biomass recovery process difficult. 

The harvesting method selection depends on biomass characteristics (size, density and 

product value). This process can be divided into two stages: bulk harvesting and 

thickening. The aim of the bulk harvesting is the separation of biomass of the bulk 

suspension; the methods used are generally flocculation, flotation or gravity settling. For 

its part, thickening seeks to concentrate the slurry produced in the previous step. The unit 

operations of centrifugation, filtration and ultrasonic aggregation utilize higher energy as 

compared to bulk harvesting (Brennan and Owende, 2010). Additionally, the method 

employed should be able to process all the culture media produced (Molina Grima et al., 

2003). 

Flocculation aims to increase particle cell size by aggregation, and involves the use of 
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multivalent cations to neutralize negative charges present on the surface of microalgae, 

preventing the adhesion of algal cells in suspension. This technique commonly use metal 

salts such as aluminum sulfate (Al2(SO4)3), ferric chloride (FeCl3), polyferric sulfate 

(PFS), ferric sulfate (Fe2(SO4)3), cationic polymers and chitosan (Molina Grima et al., 

2003). However, if the biomass is to be used in specific food related applications, 

flocculation by metal salts should be avoided. 

Uduman et al., (2010) evaluated the effect of polyelectrolyte with different charges as 

flocculants for marine microalgae cells cultured in bioreactors. A flocculation efficiency 

of 89.9% was obtained with the cationic flocculant. This study also confirmed that the pH 

and temperature of the process affect the microalgae flocculation (Uduman et al., 2010).  

Acoustic effects have been also evaluated on cell aggregation. Ultrasonic harvesting 

systems has some major advantages at laboratory and/or pilot-plant scale. First, this 

technology never gets blocked with cells (as it can happen when filters are used). 

Secondly, it does not cause shear stress on biomass even if the system is in continuous 

operation; this means the harvested biomass can be used as inoculum. Thirdly, the space 

needed for the complete system is very small. Also, when an organism excretes a high 

valuable secondary metabolite, this technique can be used as a retention system. The 

resonation chamber acts as a biological filter by rejecting the organisms and allowing the 

solubilized product to pass. Ultrasonic method can achieve 92% separating efficacy and a 

concentration factor of 20 times. Its main disadvantage is that it can destroy the 

metabolites of interest (Brennan and Owende, 2010). 

In flotation, the objective is to reduce the density of suspended solids by trapping in a 

lower density gas. The gas used is generally micro-bubbles of air where the microalgae 

cells are trapped. Cheng et al., (2010) applied dispersed ozone gas to cultures of 

Chlorella vulgaris, the amount of ozone required to achieve an acceptable separation of 

biomass was <0.05 mg/g biomass. Similar results were obtained for Scenedesmus 

obliquus FSP-3 (Cheng et al., 2010). 

Sedimentation is the process in which a solid material carried by flowing water, is 

deposited on a surface, since it requires large space and recovery is time dependent would 
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not be a convenient option for biodiesel production (Al-Sammarraee et al., 2009). 

Gravity sedimentation is most commonly used for concentrating algal biomass in 

wastewater treatment, since it allows treatment of large volumes. Centrifugation makes 

use of rotational force which produces a force greater than gravity, allowing a faster 

sedimentation. Harvesting of the biomass by centrifugation depends on biomass 

characteristics, settling depth and the residence time in the centrifuge. Its main 

disadvantage is the high cost of operation and the need for constant maintenance of 

equipment (Brennan and Owende, 2010). Possibly, efficiency of sedimentation can be 

increase by the use of flocculants (Chen et al., 2011). 

Conventional filtration processes are most appropriate for the recollection of microalgae 

with relatively large sizes (>70μm) (Brennan and Owende, 2010). For the recollection of 

smaller cells (<30 microns), it is possible to use microfiltration- generally employed for 

fragile cells-, or ultrafiltration. Because of the cost of replacing membranes and large-

scale pumping, this may be an expensive method for biomass harvesting (Brennan and 

Owende, 2010; Molina Grima et al., 2003). 

Rossignol et al., (1999) compared performances of eight commercial membranes for 

recovery of two types of marine microalgae (Haslea ostrearia and Skeletonema 

costatum). They found that the ultrafiltration membrane of 40 kDa was optimum for 

recovering of the cells at commercial production (e.g., >20 m
3
day

-1
). Membrane filtration 

processes is not economical method because of high cost of membrane replacement and 

pumping (Rossignol et al., 1999). 

Dehydration and drying are used to prolong the viability. Among the most common 

methods are low-pressure shelf, direct sun, and use of rotating drums, spray dryers, freeze 

dryers or fluidized beds. The sun drying is understandably inexpensive; however, it is 

time consuming, requires large surfaces and, due to high water content in cells, it is not 

very efficient (Mata et al., 2010). For biofuels extraction, it is important to consider 

efficiency and cost of drying-effectiveness with the objective of maximizing the net 

production of biofuels. The drying temperature affects lipids extraction, either its 

composition or yield (Brennan and Owende, 2010; Molina Grima et al., 2003). 
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2.10. Lipid extraction 

Even though there has been a considerable amount of research on lipid extraction, there is 

still not a suitable method that satisfies all the requirements for an efficient and 

economical feasible method. This represents a main bottleneck in biodiesel production 

from microalgae, since it does not matter if lipid content has increased when there is not a 

good method to extract them from the cell to convert these lipids into biodiesel. Some 

methods have shown acceptable efficiency at laboratory scale, but when the technique is 

scaled-up, the efficiency reduces and lipids remain trapped in the cell. 

Following the processes presented in Figure 2.2, once the biomass is concentrated and 

dried, the next step is the extraction of fatty acids. There are basically three ways to 

achieve the extraction: the first option consists of a biomass pretreatment which seeks to 

disrupt the cell wall, followed by an extraction process with solvents. The second 

approach involves solvent extraction of the fatty acids without prior cell disruption, and 

the third option is the spontaneous release of components of interest from the cell into the 

culture medium (U.S. DOE, 2010). In terms of safety and energy consumption the ideal 

system should allow the use of wet cells and reduce or eliminate the need of solvents 

(Horst et al., 2012). 

 

2.10.1. Cell wall disruption 

Although all the above-mentioned harvesting processes are important for the extraction 

of oil from microalgae, cell disruption is a key step since it determines the yield of lipids 

obtained after disruption method (Araujo et al., 2013). Therefore, the development of an 

appropriate method and device for cell disruption is essential. Despite all the research in 

this field, the most efficient method for microalgae has not yet been obtained (Lee et al., 

2010). The variables that affect the extraction of lipids are still not well known, making 

the process scale-up for commercial purposes difficult (Halim et al., 2011). 
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Most of the methods to break microalgae cell walls were adapted from methods used in 

other cell types. Among the most used are high-pressure homogenizers, autoclaving, 

ultrasound, microwaves, freezing, enzyme reactions, and acid or alkaline hydrolysis. The 

cell wall properties, mentioned earlier in this Chapter, play a crucial role in the extraction 

of oil, as it may hinder direct contact between the solvent and solute (Brennan and 

Owende, 2010; Mata et al., 2010). The ideal system for cell wall disruption should 

maximize the yield of the product without contamination or degradation of the target 

compounds. It also has to be efficient at an industrial scale and it should not conduct to 

any complication in farther steps of the process (Goettel et al., 2013). 

Lee et al., (2010) compared the efficiency of bead-beating, autoclaving, sonication, 

microwaves and 10% sodium chloride (NaCl) solution on microalgae disruption. The 

research results indicated that the efficiency of extraction of lipids from microalgae differ 

according to species and the method used (Lee et al., 2010). 

Fu et al., (2010), reports the first article that used immobilized cellulase to degrade 

microalgae cell walls. Under the best conditions tested, the immobilized cellulase reached 

62% conversion and the yield of hydrolysis remained above 40% after 5 reuses. 

Additionally, the extraction of lipids from microalgae increased from 32% to 56% after 

enzyme treatment (Fu et al., 2010). 

Some heat treatments have been employed on microalgae in order to facilitate lipid 

extraction. Kita et al., (2010) reported the use of thermal pre-treatment. The microalgae 

cells were suspended in water and subjected to heating at temperatures from 75-120°C in 

a reactor for 10 minutes, and then hexane extraction was used. The results showed that 

the recollection of hexane-soluble materials substantially improved around 90% or more 

(85°C) when heat pre-treatment was applied at very low cell concentrations. Additionally 

it was not necessary to apply biomass dehydration or drying, which is very advantageous 

for the process economy. In this research a hydrothermal treatment is studied (Chapter 4). 
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2.10.2.  Extraction methods 

There are three main methods for extracting oil from microalgae: solvent extraction, 

expeller/press and supercritical fluid extraction. Table 2.5 summarizes some advantages 

and disadvantages for different harvesting, extraction, purification, and cell wall 

disruption methods. For lipid extraction, solvent is usually applied directly to dry 

biomass. In solvent extraction of bio-oil from microalgae the lipids are transferred from 

one phase (microalgae biomass) to a second phase (solvent). The solubility of the lipids 

in the solvent is governed by the Gibbs free energy of the dissolution process, which is 

related to the equilibrium constant that fixes the concentration of the lipids in either phase 

(Cooney et al., 2009); a detailed description of the extraction process of lipids from 

inside microalgae cells is presented by Halim et al., (2011). 

 

Table 2.5 Some advantages and disadvantages for different harvesting, extraction, 

purification and cell wall disruption methods (Brennan and Owende, 2010; Fu et al., 

2010; Halim et al., 2011; Kita et al., 2010; Lee et al., 2010). 

Method Advantages Disadvantages 

Harvesting and dewatering 

Flocculation It can be operated in continuous 

No shear stress on biomass 

It is necessary to add flocculants 

Flotation 

 

It does not require chemicals addition 

 

Limited evidence of its technical and 

economic feasibility 

Centrifugation 

 

It allows treatment of large volumes 

 

High cost of operation  

Need for constant maintenance 

Filtration Effective High cost of replacing membranes and 

large-scale pumping 

Sun drying It is cheap It is time consuming 

It requires large surfaces 

Other drying 

methods cited in text 

Effective They are expensive 
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Cell wall disruption 

Microwaves Effective High cost of operation 

Cellulase treatment Low energy required 

High selectivity 

Few side products 

High cost of the cellulase 

Heat pre-treatment Improve the recovery rate Energy demanding 

Lipid extraction 

Supercritical carbon 

dioxide 

Low toxicity 

Favorable mass transfer equilibrium 

Solvent-free extract 

High cost of infrastructure and operation 

 

Ranjan et al., (2010) evaluated Soxhlet extraction method, Bligh and Dyer method and 

sonication with two solvents for lipid extraction of Scenedesmus sp cells. The response 

variables were cell disruption, lipid diffusion, bulk convection, and solvent selectivity. 

Complete cell wall disruption was not achieved with any of the pre-mentioned methods. 

Results also confirmed that selection of the solvent was a dominating factor in the overall 

lipid extraction in comparison to intensity of bulk convection in the medium under these 

test conditions. Supercritical fluids have been studied; among them is carbon dioxide 

(SC-CO2) extraction, which has several advantages, e.g. low toxicity, favorable mass 

transfer, and production of a solvent-free extract. Its main disadvantage is the high costs 

associated with the process. Experimental results have shown that for SC-CO2 extraction, 

lipid yield decreases with increasing temperature and pressure (Halim et al., 2011).  

 

2.11. Conversion of lipids into biodiesel 

As presented in Figure 2.2, the main challenges in conversion of lipids into biodiesel are 

the finding of a suitable method that allows high conversion yields reducing the amount 

of lipids that remain without reacting. This method should be also versatile and easily 
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enough to scale-up, so its implementation at large scale becomes reliable. 

Conversion of algal biomass to biofuel depends on the sources and types of biomass, 

conversion option and final product. On the basis of cost and project specificity, 

thermochemical liquefaction, pyrolysis and transesterification have been used for this 

purpose. 

The transesterification process comprises conversion of algal lipids into biodiesel in the 

presence of a catalyst; usually methanol (methanolysis), to yield the corresponding 

FAME and glycerol. Depending on the phase of catalysis, transesterification can be 

homogeneous (same phase) or heterogeneous (different phases) (Lam et al., 2010). 

Homogeneous catalysts are categorized into acid and base type. Homogeneous catalyst 

increase the reaction rate for biodiesel production since catalyst are in constant contact 

with the reaction mixture. The principal variables in the reaction are alcohol quantity, 

reaction time, reaction temperature and catalyst concentration (Leung et al., 2010). 

Acid catalysts are corrosive, and they often results in damages to reactors. They also 

require high temperatures and pressure conditions. Therefore, the use of the basic 

catalysts like potassium hydroxide and sodium hydroxide are commercially more 

acceptable relative to acidic catalysts (Leung et al., 2010). Moreover, basic catalysts have 

low cost and more than 98% conversion yield (Canakci and Sanli, 2008). However, this 

method is not favorable when free fatty acids (FFA) content is over 0.1–0.5% in the oil 

source, because of formation of metal soaps hinders final purification of biodiesel 

(Marchetti and Errazu, 2008). Basic catalysts increase the production cost of biodiesel 

since several washings using hot (distilled) water are required for removal of basic 

catalyst (Janaun and Ellis, 2010; Sharma et al., 2010). 

Ehimen et al., (2010) studied the production of biodiesel from lipids of microalgae using 

the in-situ acid-catalyze transesterification process. The results confirmed that increase in 

volume of alcohol and temperature has a direct correlation with the production of FAME. 

They also observed that the reactor mixing positively affects the production of biodiesel, 

while increasing the biomass water content leads to a reduction in reaction yield. 
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Efficient heterogeneous (solid) catalysts have economic benefits for production of 

biofuels, since they catalyze materials with high FFA content (>0.1–0.5%) (Leung et al., 

2010). Commercially used heterogeneous catalysts include alumina, zirconia, titania, ion-

exchange resins and strong acid zeolites. Recently, Park et al., (2010) have examined 

WO3/ZrO2 for FFA conversion to biodiesel and the yield of conversion was 

approximately 93%. Also, Feng et al., (2010) reported 90% conversion yield by NKC-9. 

Heterogeneous catalysts are economical (Di Serio et al., 2008), noncorrosive and 

environmental friendly thus considerably decrease over all production cost of biodiesel 

(Marchetti and Errazu, 2008). 

A more recent idea is the use of enzymes (lipases) as reaction catalysts. By their use, the 

process could be conducted at moderate conditions, and it does not produce pollutant co-

products. However, some drawbacks must be overcome as some compounds in the 

reaction medium can act as inhibitors of the reaction, and the cost of enzymes are high. 

 

2.12. Microalgae industries and Economics 

In recent years, microalgae are commercially exploited for the production of biofuels, 

nutritional supplements, drug screening and waste water treatment. For all these 

activities, more than 7.5x10
6
 tons of algae are harvested every year representing a world 

market of US$ 6X10
9
/year. Economic viability of the process for the production of 

biodiesel from microalgae is the main bottleneck for development and establishment of 

this technology at industrial level. There are many factors affecting the economy of the 

process. 

Chisti (2008), provides a compilation of information about economics of biodiesel 

production. The production of one kilogram of biomass in raceways is $ 0.85 more 

expensive than in bioreactors, but by increasing biomass production capacity this 

difference in costs is reduced. The step that most contributes in increasing the production 

cost of biodiesel is the oil collection, it represents about 50% of the final cost of oil. A 

liter of oil from microalgae costs 5.3 times more than a liter of palm oil. Economic 
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feasibility of biodiesel production can be enhanced by the use of the by- products of the 

process, by optimizing the process parameters, by the design of more efficient bioreactors 

and/or by increasing the oil content in the cells, photosynthetic efficiency and growth 

rate. 

Norsker et al., (2011) conducted a comparative study of costs of biodiesel production 

from microalgae in either a tubular photobioreactor or a flat-panel photobioreactor versus 

open ponds. The cost of producing a kilogram of biomass including the cost of 

dewatering was €4.15, €5.96 and €4.95 respectively. They also identified the factors that 

most influence these costs for each of these processes, these were respectively: the 

centrifuge, the culture circulation pump and the blower/paddle wheel. 

As mentioned before many economical constrains need to be overcome. The latest 

studies on the topic have shown that even small changes in technological aspects of the 

process may improve economic viability which increases the potential of microalgae 

technology in the long term (Richardson et al., 2010; Stephens et al., 2010). According to 

Schulz, (2006), the best way to achieve the potential of microalgae industry is by the 

development of a large scale demonstration plant so more reliable result would be found. 

Richardson et al., (2010) provides a complete economic study; according to their research 

carbon dioxide cost ranges from 0.0035 to 0.2 $/kg microalgae biomass, water cost from 

0.01 to 0.26 $/ m
3
, media cost is around 0.02 to 0.59 $/kg microalgae biomass, and labor 

0.006 to 0.39 $/kg microalgae biomass, differences in costs depend of culture and 

operation conditions. 

Currently there are many industries dedicated to the cultivation of microalgae with 

different objectives, e.g. some industries produce microalgae biomass as a final product, 

others take biomass to obtain high value products such as proteins or pigments. Many 

industries are focusing their research on the production of biodiesel and bioethanol, while 

others are developing equipment for laboratory, pilot and industrial scale cultivation and 

harvesting of microalgae. Table 2.6 presents a list of some industries around the world 

currently working with microalgae. 
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Table 2.6 Some microalgae industries (All the websites were visited on 08-05-2014). 

Company name Description Country Website 

Microalgae biomass and derivate production 

Algae food and 

Fuel 

Production and commercialization of 

microalgae in fluid, pasta dried and freeze-

dried forms. 

Netherlands http://www.algaefoo

dfuel.com/english/ho

me/ 

Algaltech Developing and commercialization of 

microalgae derived products for the 

nutraceutical and cosmetic industries 

Israel http://www.algatech.

com 

Aquacarotene 

Ltd. 

Growing of Dunaliella salina for production 

of dry marine algae 

Australia http://www.aquacaro

tene.com.au 

Astaxa Microalgae biomass production at industrial 

scale, production of fresh or frozen 

microalgae of different genera 

Germany http://www.algae-

biotech.com/ 

Bioprodukte Prof. 

Steinberg GmbH 

Research and production of Chlorella 

vulgaris tablets, powder, and organic ribbons 

Germany http://www.algomed.

de/ 

Earthrise 

Nutritional 

Production of Chlorella and Spirulina based 

products 

United States http://www.earthrise.

com/ 

Easy algae Microalgae production for aquaculture, 

aquarium and cosmetic markets 

Spain http://www.easyalga

e.com 

Far East 

Microalgae Ind 

Co., Ltd 

Preparation of dietary supplements, aqua 

culture feeds, and skin care products from 

algae 

China http://www.femico.c

om.tw/eng/algaeintro

.html 

Nutrimed Group Raw materials from microalgae for food, 

pharmaceutical and nutraceutical industries 

Australia http://www.nutrimed

group.com/ingredien

ts.htm 

Parry 

Nutraceuticals 

Spirulina, carotenoids, and astaxanton 

production 

India http://www.parrynutr

aceuticals.com/ 

Solarium 

Biotechnology 

Spirulina production as food supplements Chile http://www.spirulina.

cl/ 

Subitec Microalgae biomass production at industrial 

scale 

Germany http://www.subitec.c

om/ 

Tianjin Norland 

Biotech Co., Ltd. 

Spirulina and Chlorella production China http://www.norlandb

iotech.com/ 

Biofuels from microalgae (Biodiesel or bioethanol) 

A2Be Carbon 

Capture 

Currently developing a system for biodiesel 

production 

United States http://www.algaeatw

ork.com/ 
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Algae floating 

systems 

Production of biodiesel in algae floating 

systems 

United States http://www.algaefloa

tingsystems.com/ 

Algaenergy Research and production of biomass, oil and 

biofuels from microalgae 

Spain http://www.algaener

gy.es/ 

Aurora Algae Pilot plant for the production of fuel, 

pharmaceutical and food products from algae 

United States http://www.aurorabi

ofuels.com/ 

Biofuel systems Pilot plant for the production of biofuels from 

microalgae 

Spain http://www.biopetrol

eo.com/ 

Breen biotec Microalgae cultures for the production of 

biodiesel and other bioresuorces 

Germany http://www.breen-

biotec.de/ 

Petroalgae Production of biodiesel from microalgae in 

photosynthetic micro-crops 

United States http://www.parabel.c

om/ 

Pond biofuels Biodiesel production from microalgae 

employing CO2 

Canada http://www.pondbiof

uels.com 

Seambiotic Utilization of flue gases from coal burning 

power stations for the production of biodiesel 

from microalgae 

Israel http://www.seambiot

ic.com/ 

Solazyme Algal biotechnology for the production of 

fuels, chemicals, food and health science 

products 

Unites States http://www.solazyme

.com/ 

Bioreactors and Harvesting systems 

Algae link Photobioreactor for controlled, large-scale 

production of microalgae 

Netherlands http://www.algaelink

.com/ 

Algasol 

technologies 

Commercialization of floating 

photobioreactor 

Spain http://www.algasolre

newables.com/en/ 

Culturing 

Solutions Inc. 

Tubular photobioreactor, software and 

extraction systems 

United States http://www.culturing

solutions.com/ 

Diversified 

Energy 

Corporation 

Developing and commercializing algal 

biomass production system 

United States http://www.diversifie

d-energy.com/ 

Evodos Microalgae harvesting system Netherlands www.evodos.eu 

Origin Oil Research and development of bioreactors and 

harvesting systems 

United States http://www.originoil.

com/ 

Phyco 

Biosciences 

Algae production system and commercial 

scale harvester for dewatering and drying 

algae biomass 

United States http://www.xlrenewa

bles.com/ 

Solix Biofuels Oil extraction technology from microalgae in United States http://www.solixbiof
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a continuous process uels.com/ 

Pollution control with microalgae 

Hydromentia Water pollution control United States http://www.hydrome

ntia.com 

Kent Seatech Water pollution remediation and CO2 capture United States http://www.kentbioe

nergy.com/page5/pa

ge5.html 

Microalgae research and development 

AlgoSource 

technologie 

Services in conceptual Engineering and 

Process development for photosynthesis and 

bio-refining of microalgae and CO2 

sequestration 

France www.algosource.co

m 

Chevron 

Corpotation 

Research and development for the production 

of liquid transportation fuels using algae 

United States http://www.chevron.

com/News/Press/Rel

ease/?id=2007-10-31 

Cyano Biofuels Company focused on the biology research of 

microalgae for the production of biofuels and 

chemical feedstock 

Germany http://www.cyano-

biofuels.com/ 

Phytolutions Research, monitoring, analysis and disposal 

for microalgae industry 

Germany www.phytolutions.co

m 

 

2.13. Current research directions 

Microalgae technology is getting stronger every day due to significant support from a 

diversity of companies and governmental institutions. The Air Force Office of Scientific 

Research (AFOSR) in United States has started the algal bio-jet program (AFOSR, 2008). 

This is a long term, basic research funding program that is interested in facilitating the 

production of bio-based jet fuel using oil derived from microalgae. Research supported 

comprises identification of specific hurdles that must be overcome in order to achieve 

cost-effective production of algae oil for jet fuel conversion and address the basic science 

research requirements needed to overcome these drawbacks as well as to elucidate 

various novel scientific approaches that will be needed for developing a fundamental 

understanding of algal lipid biosynthesis and biomass cultivation principles. The 

Advanced Research Projects Agency-Energy of the DOE, Office of Science, Office of 
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fossil Energy, and Biomass Program are all founding research activities that include 

investigating microalgae. 

Topics under current major research are sources of microalgae, biochemistry, genetic and 

biotechnology of microalgae, photobioreactor design, manufacture and microalgae 

culture systems; mass production of microalgae for different applications and 

optimization; downstream processing; sustainable development of microalgae activities; 

biofuels production; wastewater treatment; and CO2 capture (S. Carlsson, J.B. van Beilen, 

R. Moller, 2007). 

 

2.14. Conclusions 

The production of biodiesel from microalgae is an attractive alternative because it 

provides a renewable source of fuel and helps to reduce the pollution problems. 

Microalgae cultivation for the production of biodiesel has major advantages over other 

biofuels production, although it is necessary to overcome some problems before full scale 

implementation. Each of process stages should be improved in order to increase the 

process economic viability. The extraction of lipids from the cell is a fundamental step 

and represents a bottleneck for the production of biodiesel, so it is necessary to develop 

technologies that allow the release of lipids within the cell in an efficient and economical 

way. 
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3. Chapter 3: Investigation of biomass concentration, lipid production and 

cellulose content in Chlorella vulgaris cultures using response surface 

methodology 

 

The information presented in this Chapter is based in the paper “Investigation of Biomass 

Concentration, Lipid Production, and Cellulose Content in Chlorella vulgaris Cultures 

Using Response Surface Methodology.”, published in Biotechnology and 

Bioengineering, August 2013, Vol. 110, Issue 8, pages 2114-2122. The sections in 

Chapter 3 present the results towards the completion of objectives 1 and 2 of the thesis 

(see section 1.2.2). 

 

3.1.  Abstract 

 

The microalgae Chlorella vulgaris produce lipids that after extraction from cells can be 

converted into biodiesel. However, these lipids cannot be efficiently extracted from cells 

due to the presence of the microalgae cell wall, which acts as a barrier for lipid removal 

when traditional extraction methods are employed. Therefore, a microalgae system with 

high lipid productivity and thinner cell walls could be more suitable for lipid production 

from microalgae. This Chapter addresses the effect of culture conditions, specifically 

carbon dioxide and sodium nitrate concentrations, on biomass concentration and the ratio 

of lipid productivity/cellulose content. Optimization of culture conditions was done by 

RSM. The empirical model for biomass concentration (R
2
=96.0%) led to a predicted 

maximum of 1123.2 mg dw L
-1

 when carbon dioxide and sodium nitrate concentrations 

were 2.33% vv
-1

 and 5.77 mM, respectively. For lipid productivity/cellulose content ratio 

(R
2
=95.2%) the maximum predicted value was 0.46 (mg lipid L

-1
d

-1
)(mg cellulose mg 

biomass
-1

)
-1

 when carbon dioxide concentration was 4.02% vv
-1

 and sodium nitrate 

concentration was 3.21 mM. A common optimum point for both variables (biomass 

concentration and lipid productivity/cellulose content ratio) was also found, predicting a 

biomass concentration of 1119.7 mg dw L
-1

 and lipid productivity/cellulose content ratio 
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of 0.44 (mg lipid L
-1

d
-1

)(mg cellulose mg biomass
-1

)
-1

 for culture conditions of 3.77% vv
-

1
 carbon dioxide and 4.01 mM sodium nitrate. The models were experimentally validated 

and results supported their accuracy. This study shows that it is possible to improve lipid 

productivity/cellulose content by manipulation of culture conditions, which may be 

applicable to any scale of bioreactors. 

 

3.2.  Introduction 

 

Microalgae are known for producing high levels of lipids that after extraction from the 

cells can be converted into biodiesel. Among the different microalgae species, Chlorella 

vulgaris is one of the most studied due to its high lipid content reaching up to 50% ww
-1

 

(Costa and de Morais, 2011), and biological characteristics which makes it easier to 

culture (Aguirre et al., 2013; Fu et al., 2010). Lipids from C. vulgaris cannot be 

efficiently extracted due to the presence of a rigid cell wall. This cell wall represents a 

barrier for lipids diffusion when traditional extraction methods with solvents are 

employed. It reduces the yield product/biomass (in this case lipids/biomass) of the 

process, and consequently the amount of biodiesel that can be further produced. A culture 

containing microalgae cells with high lipid productivity and low cellulose content (as an 

indicator of cell wall thickness) is ideally desired in a biodiesel from microalgae process. 

So, treatments for breaking the cell wall would be less intensive and therefore more 

economically feasible and environmentally friendly, since less solvents or energy would 

be needed. A first attempt to understand lipid extraction consists in the study of culture 

conditions on cellulose content in microalgae. 

 

Previous studies show that cell wall permeability depends on the size of the molecule that 

is being extracted (Skene, 1943; Sokolnicki et al., 2006) and cell wall thickness.  It is 

speculated that when cellulose content increases the difficulty for mass transfer (lipid 

extraction from inside the cell) potentially can also increase, since the cell wall acts as a 

barrier where only diffusional processes take place. On the other hand, when cell wall 

disruption techniques are employed, the thicker the cell wall the more intensive the 
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potential treatment needed (Van Hee et al., 2004), especially if microalgae cell size is 

considered.  

 

Cellulose content is of great interest in the study of some strategies for cell disruption 

aiming to release the lipids produced by cells (Arad and Levy-Ontman, 2010b; Barbir et 

al., 1990). The cellulose content in sea-weed species was studied and found to be 1-20% 

of the algae biomass and in filamentous green algae as high as 20-45% (Mihranyan, 

2011; Siddhanta et al., 2009). The composition of the cell wall varies among different 

species of microalgae, but in the case of C. vulgaris cellulose is the main polymer in the 

cell wall comprising around 70-80% dw (Abo-Shady et al., 1993; Preston, 1974). Even 

though the cell wall plays a fundamental role on lipid extraction, few reports have been 

found on the effect of culture conditions on cellulose content, making this area of high 

interest for research (Adda et al., 1986). For example, the effect of light over cellulose 

content in the cell wall of Chlorella pyrenoidosa was studied by Makooi, (1976) and their 

results showed that mixotrophic growth produces the highest amount of cellulose, 

followed by heterotrophic and photoautotrophic growth, as detailed in section 2.5.2. 

 

The production of carbohydrates in microalgae has two purposes, first they are structural 

components in the cell wall, and second they provide storage of energy inside the cell 

(Markou et al., 2012). The composition of microalgae can be manipulated by modifying 

the cultivation conditions including for instance nutrients, light, and temperature. It 

results in one affordable way to change the amount of carbohydrates and lipids produce 

by the cell.  

 

It is known that carbon dioxide and nitrate concentration have a significant effect on 

microalgae growth and lipid production, but little information is available on their effects 

on cellulose content. The effect of CO2 concentration on microalgae growth was first 

shown by Briggs and Whittingham, (1952) in cultures of Chlorella (Briggs and 

Whittingham, 1952; Tsuzuki and Miyachi, 1989). Tang et al., (2011), evaluated a wide 

range of CO2 concentrations (from 0.03% to 50%) on Scenedesmus obliquus and 

Chlorella pyrenoidosa; for both species, best growth was observed at 10% CO2, but 
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higher concentrations were favorable for lipid accumulation, reaching lipid content 

values of 24.4% and 26.8%, respectively. In cultures of C. vulgaris the increase in CO2 

concentration did not increase the biomass growth until the later stages of the batch 

culture, however changes in lipid content were significant (Lv et al., 2010). Optimal 

values for CO2 concentration not only changes among different microalgae strains, but 

also for the same strain growing under slightly different conditions. 

 

Under unfavorable environmental conditions for growth (e.g. nitrogen depletion or high 

temperature), microalgae change their biosynthetic pathways towards the formation and 

storage of neutral lipids, especially triacylglycerols and hydrocarbons (Guschina and 

Harwood, 2006). Illman et al., (2000) found that the reduction of nitrogen in the medium 

increases the lipid content in five Chlorella strains. Specifically for C. vulgaris it was 

found that nitrogen reduction increased lipid content in biomass to 40%. Xin et al., 

(2010), performed a study where cells of Scenedesmus sp. were subjected to nitrogen and 

phosphorus limitation, the results showed that even though lipid content was increased, 

lipid productivity was not enhanced. This suggests that nitrogen source not only increases 

lipid production but also reduces biomass growth. Tam and Wong (1996), found that 

cultures containing either very low (10 mgL
-1

) or very high (1000 mgL
-1

) nitrogen 

concentrations have less growth. In cultures of Chlorella sorokiniana and Oocystis 

polymorpha grown in batch reactors, nitrogen could be reduced to 3% of dry weight, 

causing a remarkable increase in total fatty acids and changes in their composition 

(Richardson et al., 1969). In the case of Nannochloropsis oculata, a 75% reduction of the 

nitrogen concentration in media (compared with optimal values for biomass production), 

increased the lipid content from 7.90% to 15.31%; and in cultures of C.vulgaris from 

5.90% to 16.41% (Converti et al., 2009). For these reasons, an optimal value for high 

lipid productivity, that implies high biomass productivity and lipid content, must be 

found. 

 

RSM is a statistical and mathematical tool used for optimization processes. Especially in 

those cases where the underlying mechanisms are not completely known, and therefore a 

mechanistic model is not easy to obtain. The nature of the model is usually a first or 
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second order polynomial from where a response surface is plot. In biochemical processes, 

non-linear behaviors are common and a second-order model will likely be required to 

better represent and fit experimental data. The use of second order equations for 

empirical modeling has several advantages, among them are flexibility in providing good 

approximations to the true response surface, the regression of data for coefficients 

estimations is easy, and it has shown to provide feasible results in many applications. 

There are many statistical design approaches available, the most used one is the CCD that 

includes the use of a two-level factorial, axial and central points; each one providing 

information about the existence and estimation of terms in the second order equation 

(Box and Wilson, 1992). 

 

CCD also provides the base for optimization of several parameters simultaneously, which 

is a common need in industrial processes since operating condition must satisfied 

different restrictions. Once an experiment to fit response models has been conduct, the 

optimization of multiple responses can be performed. There are some well-known 

methods for multiple response optimizations, but the desirability (D) approach is the most 

used one in industry to solve this kind of problems. In this method a D function is 

assigned for each response variable, each of them must have a value between 0 and 1, 

being 0 a completely undesirable value and 1 a completely desirable response. The D 

functions for each response are combined by means of the geometric mean, which 

provides the overall D that is maximized with respect to the controllable factors (Myers et 

al., 2004). 

 

In this Chapter a study on the simultaneous effect of carbon dioxide (CO2) and sodium 

nitrate (NaNO3) concentrations on C. vulgaris biomass concentration (β), lipid 

productivity and cellulose content was carried out, the last two by means of the ratio lipid 

productivity/cellulose content (Θ) (See Table 3.1 for nomenclature). The term Θ (lipid 

productivity/cellulose content ratio) is applied as the parameter for optimization because 

the ratio between these variables  has a more practical meaning than their independent 

study, since the value found would be that one leading to an operating point where there 

is an equilibrium between the optimal for lipid productivity and the optimal for cellulose 
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content. Optimization of these parameters under the conditions studied was performed by 

RSM that led to CO2 (X) and NaNO3 (Y) concentrations that produce the highest β and Θ 

ratio in the range covered by the experimental design. In this Chapter the Θ ratio is 

introduced as a way to compare the amount of lipids produced on a known period of time 

in relation with the amount of cellulose in the same culture. Therefore, a culture with a 

high Θ ratio could be suitable for production of biodiesel with a potentially easier 

extraction step. In a production system, the optimization of the parameters β and Θ would 

help to find the operating point where the biomass concentration and the lipid 

productivity are high, while the cellulose content remains low. Therefore the amount of 

lipids produced would be higher and the product separation would be easier, both features 

affecting the process feasibility in a positive way. 

 

Table 3.1 Nomenclature used in Chapter 3 

Symbol Name Units 

X Carbon dioxide concentration % vv
-1

 

Y Sodium nitrate concentration mM 

β Biomass concentration mg dw L
-1

 

Θ Lipid productivity/cellulose content ratio (mg lipid L
-1

d
-1

)(mg cellulose mg biomass
-1

)
-1

 

 

3.3.  Materials and methods 

 

To obtain the information needed the following protocols were implemented. 

 

3.3.1. Microalgae strain and culture media 

 

C. vulgaris UTEX 2714 was used for this study. The microalgae were originally isolated 

from a wastewater-treatment stabilization pond in Bogota, Colombia. The strain was 

transferred from Proteose Medium agar slant to liquid Bold’s modified media (0.25 gL
-1

 

NaNO3, 0.025 gL
-1

 CaCl2.2H2O, 0.075 gL
-1

 MgSO4.7H2O, 0.075 gL
-1

 K2HPO4, 0.175 gL
-

1
 KH2PO4, 0.025 gL

-1
 NaCl, 63.9 mgL

-1
 Na2EDTA, 4.98 mgL

-1
 FeSO4.7H2O, 11.42 mgL

-

1
 H3BO3, 8.82 mgL

-1
 ZnSO4.7H2O, 1.44 mgL

-1
 MnCl2.4H2O, 1.57 mgL

-1
 CuSO4.5H2O), 

pH of the media was adjusted to 6.6 and sterilized in autoclave at 121°C, 21 psig for 15 
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minutes. Cultures were incubated at room temperature (23±2°C) with continuous air 

bubbling (7 Lmin
-1

) and sub-cultured every 2 weeks until they reached 380 mg dw 

biomass per liter of media and were used as inoculum for experiments. 

 

3.3.2. Experimental set-up 

 

Microalgae were cultured in Bold’s modified media with the same composition described 

above, but sodium nitrate (NaNO3) concentrations changed according to experiment 

design (SeeTable 3.2 column 3).  

 

Table 3.2 Variables and experimental CCD levels for RSM. 

Treatment [CO2 ] (X) 

(% vv
-1

) 

[NaNO3] (Y) 

(mM) 

β 

(mg dw L
-1

) 

Θ ratio 

(mg lipid L
-1

d
-1

)(mg 

cellulose mg biomass
-1

)
-1

 

Measured Model  Measured Model  

T1 1.50 (-1.41) 3.77 (0) 1075.4 1063.4 0.19 0.22 

T2 2.33 (-1) 5.77 (1) 1110.4 1123.2 0.20 0.19 

T3  2.33 (-1) 1.77 (-1) 808.8 826.0 0.32 0.30 

T4 4.33 (0) 0.94 (-1.41) 606.9 618.4 0.34 0.32 

T5’(replicate 1) 4.33 (0) 3.77 (0) 1044.4 1082.4 0.50 0.45 

T5’(replicate 2) 4.33 (0) 3.77 (0) 1121.4 1082.4 0.40 0.45 

T5’(replicate 3) 4.33 (0) 3.77 (0) 1081.4 1082.4 0.44 0.45 

T6 4.33 (0) 6.60 (1.41) 1094.9 1038.7 0.13 0.16 

T7 6.33 (1) 1.77 (-1) 651.2 630.9 0.17 0.21 

T8 6.33 (1) 5.77 (1) 848.3 928.1 0.13 0.10 

T9 7.16 (1.41) 3.77 (0) 820.3 787.5 0.09 0.09 

 

 

Several 4 L flasks containing 3 L of media and 0.5 L of inoculum with a biomass 

concentration of 380 mg dw biomass per liter of media were used. Air enriched with 

carbon dioxide (CO2) was injected to media and flow was controlled with rotameters 

(Multi-tube rotameters and gas mixer, Omega, Stamford, USA) (for calibration curves of 

gas mixers and rotameters refer to Figure 7.1, Figure 7.2 and Figure 7.3). The CO2 

concentration in air varied according to experimental design (See Table 3.2 column 2). 

Light was provided with fluorescent lamps (T5) (see Figure 7.4 for lamp spectrum) and 

photo-period of 12 h light: 12 h dark. From previous experiments on C. vulgaris growth 

was seen that after 16 days of culture biomass had reached the stationary phase of growth 
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and therefore the experiments were conducted for that period of time. The experimental 

set-up is presented in Figure 3.1. 

 

 

  

Figure 3.1 Schematic diagram and picture of experimental set-up used for C. vulgaris 

cultivation. 

 

3.3.3. Variables measurement 

 

Following are the methodology used to measure the response variables. 

 

3.3.3.1.  Biomass concentration (β) 

 

β was calculated by Optical Density (OD) measurements at 686 nm (Bhola et al., 2011) 

using a spectrophotometer (DR 2800 portable spectrophotometer, HACH.). A standard 

curve was done to correlate dry biomass concentration with OD. The equation for β (mg 

dw L
-1

)=250.1*OD686 (R
2
=0.99) was obtained by linear regression of data (see Figure 

7.5). Measurements were done every other day during culture time. Cultures were 

periodically monitored by observing samples under the microscope to avoid 

contaminated cultures. 
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3.3.3.2.  Nitrate concentration 

 

Nitrate concentration was measured by OD after reaction with chromotropic acid under 

acidic conditions (sulfuric acid). This reaction produces a yellow product with a 

maximum absorbance at 410 nm.  The kit Nitrate High range Test ‘N Tube (0 to 30.0 

mgL
-1

 NO3-N) from HACH was used for this purpose and sample dilutions were done 

when needed (DR 2800 portable spectrophotometer, HACH, Loveland, USA). 

 

3.3.3.3.  Lipid content 

 

The measurement of lipid content (lipid mass (biomass mass
-1

) *100) was carried out by 

following a modified version of Folch’s method (Folch et al., 1957; Krienitz and Wirth, 

2006; Wahlen et al., 2011). At day 16 biomass was harvested by centrifugation (Sorvall 

ST 40R, Thermo Scientific) for 20 minutes at 3400 rpm and 4°C, pellet was collected on 

aluminum pans and dried at 105°C for 40 h (Converti et al., 2009). Dried biomass was 

pulverized to improve lipid extraction. For each treatment a known amount of dried 

biomass was homogenized with chloroform: methanol 2:1 (vv
-1

) to a final dilution 20 

fold the volume of the sample. Samples were placed for 15 minutes in a sonicator 

(UP400S, Hielscher, Teltow, Germany) to break the cell wall down. Extraction was 

allowed to take place overnight (12 h). The sample was vacuum filtered and the extract 

was mixed in a vortex with 0.2 times its volume of water, the mixture was allowed to 

separate into two phases by centrifugation, the upper phase was removed and the lower 

phase was placed in pre-weighed aluminum pans for evaporation of solvent and the lipids 

remained on the pans. Lipid content was then calculated gravimetrically (Wahlen et al., 

2011). 

 

3.3.3.4.  Cellulose content 

 

The Updegraff method (Updegraff, 1969) was used to extract and quantify the cellulose 

content. At day 16 biomass was harvested using the same conditions previously 
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described. To each sample 3 ml of acetic-nitric reagent (150 ml 80% of acetic acid and 15 

ml concentrated nitric acid) was added and mixed. The samples were placed in a boiling 

water bath for 30 minutes and then centrifuged 5 minutes at 3500 rpm. The supernatant 

was discarded and the pellet was washed with distilled water and centrifuged to remove 

water. Ten milliliters of 67% (vv
-1

) sulfuric acid was added and samples were left to 

stand for 1 h and then diluted with water according to original protocol. Anthrone reagent 

(0.2 g anthrone in 100 ml concentrated H2SO4 and chilled for 2 h in refrigerator prior to 

use) was added and diluted samples mixed with a vortex. The reaction took place in a 

boiling water bath for 16 minutes. The samples were cooled down to room temperature 

and OD was measured at 620 nm.  The cellulose content and OD620 was correlated with a 

standard curve previously obtained for pure cellulose, following the protocol presented 

by Updegraff, (1969) for this purpose (see Figure 7.6). 

 

3.3.3.5.  Experimental design 

 

RSM was employed to optimize the concentrations of CO2 and NaNO3 that leads to the 

highest values for β and Θ ratio. To fit experimental data to mathematical model, the 

CCD 2
2
 + star was used with 2 factors and 5 levels. The CCD consisted of 9 experiments 

with 3 replicates for the central point and α=±1.41., Table 3.2 in columns 2 and 3, 

presents the codified (terms in parenthesis) and actual values for each treatment. The 

experiments appear in the table in order they were performed. Mathematical models 

describing the relationship between response variables (β and Θ ratio) and manipulated 

variables (CO2 (X) and NaNO3 (Y) concentrations) were developed by finding the 

coefficients of a second order equation.  

 

All the calculations were done using the data for day 16 (last day of the culture). The 

accuracy of the model was calculated by the regression coefficients R
2
 and adjusted R

2
 

(adj R
2
). To identify the statistically significant terms the analysis of variance (ANOVA) 

was employed. Significance of regression coefficients was determined with a confidence 

level of 95%. The statistical analysis and the optimum values for each response variable 
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were found based on mathematical models using Statgraphics Centurion XVI (StatPoint 

Technologies, Inc, Warrenton, USA). 

 

3.4. Results and discussion 

 

3.4.1. Codified and actual values for central composite design 

 

 

Table 3.2 shows the CCD for treatments evaluated. The CO2 and NaNO3 concentrations 

ranged from 1.50 % vv
-1

 to 7.16 % vv
-1

 and from 0.94 mM to 6.60 mM, respectively. The 

area of study covered by these concentrations was selected according to previous 

literature information about best CO2 and NaNO3 concentrations found for C. vulgaris 

growing under different conditions (Converti et al., 2009; Illman et al., 2000; Lv et al., 

2010; Tang et al., 2011). 

 

3.4.2. Biomass  concentration  as  a  function  of  carbon  

dioxide  and  sodium  nitrate concentration 

 

Figure 3.2 shows the growth curves for all treatments. As it can be seen all cultures 

followed a similar pattern; no adaptation phase was observed for any treatment, meaning 

that cells were well adapted to media and operating conditions. Based in all the points the 

growth is likely linear. Cultures grew in a linear fashion way up to the point where the 

nutrients are depleting. For all treatments the growth rate in this stage was quite similar 

(average value for all treatments was 0.38±0.03 gL
-1

d
-1

, and R
2
=0.99±0.01). After day 4, 

the growth rate was reduced for all treatments, especially for that one with the lowest 

NaNO3 concentration (T4). The time where growth rate is reduced corresponds to that 

where NaNO3 concentration is depleting. 
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Figure 3.2 C. vulgaris growth curves under different CO2 (X) and NaNO3 (Y) 

concentrations. 

 

Figure 3.3 presents nitrate consumption profile for treatments T4, T5’ and T6 (all at 

4.33% vv
-1

 CO2) where the behavior mentioned is clearly depicted. Treatment T4 had the 

lowest initial NaNO3 concentration (0.94 mM), for this treatment nitrates were 

completely depleted at day 4 which corresponds to a remarkable reduction in biomass 

growth (See Figure 3.2). Treatment T6 had the highest NaNO3 concentration and the 

biomass growth rate was higher for longer period of time reaching one of the highest β 

values in the rage studied. This suggests that NaNO3 played a fundamental role in C. 

vulgaris growth (Mahboob et al., 2011; Shi et al., 2000).  

 

The simultaneous effect of CO2 (X) and NaNO3 (Y) concentration on β was studied. The 

experimental CCD matrix is presented in Table 3.2. β ranged from 606.9 mg dw L
-1

 to 

1121.4 mg dw L
-1

 which correspond to treatments T4 and T5’, respectively. Table 3.3 

shows the ANOVA that partitions the variability in β into separate pieces for each of the 

effects. In this case only the significant regression coefficients having P-values less than 

0.05 (indicating that they are significant different from zero) were considered into the 

model. The R
2
 coefficient indicates that the model as fitted explains 96.01% of the 
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variability in β; the adj R
2
, which is more used to compare different models, was 93.35% 

(For statistical software outputs refer to section 7.2.1).  

 

 

Figure 3.3 NaNO3 consumption profile in C. vulgaris cultures under same CO2 (X) 

concentration. 

 

Table 3.3 Analysis of variance for β model 

Source Sum of Squares Degree of freedom Mean Square F-Ratio P-Value 

X 76131.9 1 76131.9 31.78 0.0024 

Y 176650. 1 176650. 73.74 0.0004 

X
2
 34758.1 1 34758.1 14.51 0.0125 

XY 2732.15 1 2732.15 1.14 0.3344 

Y
2
 90955.1 1 90955.1 37.97 0.0016 

Total error 11978.0 5 2395.6   

Total (corr.) 368903. 10    

R
2
:96.0125%, Adj R

2
:93.3541% 

 

These results indicate good accuracy of the model. The regression coefficients of the 

second order equation were calculated using the designed experimental data leading to 

the following model of β as a function of CO2 (X) and NaNO3 (Y) concentrations 

(Equation 3.1): 

 

β=194.84+121.08X+313.53Y-19.61X
2
-31.73Y

2
                                             Equation 3.1 
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Equation 3.1 indicates that coefficients of the linear terms, X and Y, have positive effect 

by increasing β. However, quadratic terms (X
2
 and Y

2
) have negative effects. Figure 3.4 

shows the response surface and contours plot for β. From this figure it can be seen that 

NaNO3 has a stronger effect than CO2 concentration.  

 

Figure 3.4 Response surface and contour lines indicating the effect of CO2 (X) and 

NaNO3 (Y) on C. vulgaris biomass concentration (β). 

 

When the CO2 concentration is set at a high value, β increases (NaNO3 concentrations 

from 0.94 mM to around 4.5 mM), and then slightly decreases (NaNO3 concentrations 

from 4.5 mM to 5.77 mM). This effect is enhanced for lower CO2 concentrations, where 

biomass increases (NaNO3 concentrations from 0.94 mM to around 5.3 mM) and the 

reduction in β occurring for the higher NaNO3 concentration is practically negligible. The 

effect of CO2 seems to be the opposite; for the lower values of NaNO3, β slightly 



64 
 

increases (CO2 concentrations from 2.33% to around 3.5%) and then strongly decreases 

(CO2 concentrations from 3.5% to 7.16%). Table 3.2, in columns 4 and 5, compares the 

observed experimental data with model predicted results for β.  

 

3.4.3. Lipid productivity/cellulose content as a function of 

carbon dioxide and sodium nitrate concentration 

 

Lipid content and cellulose content were measured for each treatment at last day of 

culture. Figure 3.5 present these results in order of increasing lipid content. 

 

 

Figure 3.5 Lipid and cellulose content in C. vulgaris cultures under different CO2 (X) and 

NaNO3 (Y) concentrations. 
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Treatments T4 and T5’ had the highest lipid content with values of 17.39 % ww
-1

 and 

20.31 % ww
-1

, respectively. Their nitrate concentrations belong to the lowest values tried 

in this experiment. Nitrogen deprivation has a strong effect on amino acid synthesis, 

reducing protein availability and production, and therefore mitigating the rate of growth 

and photosynthesis. As response to these conditions the cell produces lipids that act as 

carbon and energy reservoir (Falkowski et al., 1989). According to Gerken et al., (2013) 

nitrogen depletion not only changes the lipid composition of the cell but also the 

morphology of the cell wall in C. vulgaris by reducing the hair-like fibers on the surface 

of the cell. 

 

The data in Figure 3.5 were plotted in 3D in order to better understand the behavior of 

results (figures not shown), from this was seen that lipid content increases when CO2 

concentration increases until it reaches a value close to 4.3% (vv
-1

) from this CO2 value 

lipid content reduces; this pattern was observed for all NaNO3 concentrations. For 

cellulose content results, it was seen that the cellulose content is quite constant for the 

lowest and highest CO2 concentrations, but for 4.3% CO2 (vv
-1

) cellulose content 

increases when NaNO3 increases. The treatment leading to the highest lipid 

content/cellulose content was T4 with a value of 0.9 mg mg
-1

. Treatment T6 had the 

highest cellulose content in relation with the amount of lipid produced. This treatment 

had the highest initial NaNO3 concentration and relative high CO2 concentration, so no 

limitations for growth were imposed over cells and probably they could produce more 

cellulose. Even though, lipid content is an important factor in lipid production from 

microalgae, at industrial scale lipid productivity plays an even more important role, since 

industry is more interested in the amount of lipids that can be obtained in a known period 

of time which have a strong effect on economic feasibility of the process. It is for that 

reason that in this study a model which includes the lipid productivity term as part of the 

response variable was considered. 

 

With the aim of finding the CO2 and NaNO3 concentrations that lead to the point where 

the Θ ratio is maximum (indicating cultures where cells produce more lipids in a shorter 

period of time and have low cellulose content) an optimization based on RSM was 
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performed. The same levels and factors in the study of β were used (see Table 3.2). The 

lowest Θ ratio was obtained when cultures were subjected to treatment T9 and the highest 

ratio corresponds to treatment T5’. Treatment T5’ had CO2 (4.3% vv
-1

) and NaNO3 (3.77 

mM) concentrations, so enough nutrients were provided during the first stage of growth 

(biomass productivity of 67.65 mgL
-1

d
-1

), therefore a high β value was present when 

NaNO3 was depleted at day 10 (see Figure 3.3); and microalgae cultures remained under 

nitrate starvation conditions for 6 days, inducing cells towards the production of lipids.  

 

Table 3.4 shows the ANOVA for Θ ratio study. Once again, only statistically significant 

terms (P-value<0.05) were taken into account for model fitting. Regression coefficients 

had values of R
2
: 95.17% and Adj R

2
: 91.95%, which indicates a good fitting of 

experimental data to second order model. 

 

Table 3.4 Analysis of variance for Θ ratio model. 

Source Sum of Squares Degree of freedom Mean Square F-Ratio P-Value 

X 0.0168886 1 0.0168886 11.31 0.0200 

Y 0.0253594  1 0.0253594 16.98 0.0092 

X
2
 0.121515 1 0.121515 81.39 0.0003 

XY 0.00189305 1 0.00189305 1.27 0.3113 

Y
2
 0.0576065 1 0.0576065 38.58 0.0016 

Total error 0.00746538 5 0.00149308   

Total (corr.) 0.193814 10    

R
2
:95.1714%, Adj R

2
:91.9524% 

 

Regression coefficients were calculated and an empirical model describing the effect of 

CO2 (X) and NaNO3 (Y) concentration on Θ ratio was obtained (Equation 3.2). From 

Equation 3.2 it can be concluded that linear terms have a positive effect on increasing Θ 

ratio while quadratic terms have a negative effect (For statistical software outputs refer to 

section 7.2.2).   

 

Θ=-0.39+0.29X+0.16Y-0.04X
2
-0.03Y

2
                                                           Equation 3.2 

 

Figure 3.6 shows the response surface and contour plot for Θ ratio. For high and low CO2 

concentrations, as NaNO3 concentration increases the Θ ratio increases up to 3.7 mM of 

NaNO3 where this ratio started to decrease. On the other hand, the CO2 concentration 
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showed that, independently of NaNO3 concentration, for values higher than 4.0% vv
-1

 the 

Θ ratio decreases abruptly. Table 3.2, in columns 6 and 7, compares the observed 

experimental data with model predicted results for Θ ratio; for this model similar amount 

of sub and over-estimated points were obtained. 

 

 

Figure 3.6 Response surface and contour lines indicating the effect of CO2 (X) and 

NaNO3 (Y) on C. vulgaris lipid productivity/cellulose content ratio (Θ). 

 

3.4.4. Optimization and model validation 

 

Optimization was performed for the empirical mathematical models. Two different 

approaches were used and each one would be useful under different conditions. The first 

approach involved the independent optimization of each response variable. It means that 

one optimum point, in terms of CO2 and NaNO3 concentration, was found for β and other 
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different point was found for Θ ratio, each one based on its own mathematical model. 

The results are presented in Table 3.5. 

 

Table 3.5 Optimized values and model validation results for β and Θ ratio 

Optimization 

approach 

Response 

variable 

CO2 

concentration 

(X) 

(% vv
-1

) 

NaNO3 

concentration 

(Y) 

(mM) 

Lower 

95.0% 

limit 

Upper 

95.0% 

limit 

Observed Model 

result 

Individual 

optimization 

β 

 

2.33 5.77 1049.01 1197.4 1069.0±7.33 1123.2 

Θ ratio 4.02 3.21 0.40 0.51 0.50±0.09 0.46 

Simultaneous 

optimization 

β 3.77 4.01 1051.6 1187.7 1102.9±33.8 1119.7 

Θ ratio 

 

0.38 0.49 0.45±0.05 0.44 

Optimized D for simultaneous approach: 0.92 

 

According to Equation 3.1 the highest β value in the range covered by the experimental 

design would be obtained when cultures are submitted to 2.33 % vv
-1

 CO2 and 5.77 mM 

NaNO3. The optimal point was located very close to central point of the experiment 

design. On the other hand, optimization based on Equation 3.2 leads to the point where Θ 

ratio is a maximum, this point corresponds to 4.02 % vv
-1

 CO2 and 3.21 mM NaNO3. 

This optimization approach would be useful when only one of the variables is of interest 

for researchers. The second approach involves the simultaneous optimization of both 

response variables. It means that conditions found are those leading to maximize β and Θ 

ratio at the same time. This point was found at 3.77 % vv
-1

 CO2 and 4.01 mM NaNO3 

(see Table 3.5). 

 

Experimental validation of the models was done under the conditions leading to the 

optimal results (see Table 3.5). Independent experiments to those for the CCD were done. 

The accuracy of the model was validated with triplicate experiments. For individual 

optimization of β the optimal point was found to be 2.33 % vv
-1

 of CO2 and 5.77 mM of 

NaNO3. The model predicted a β value of 1123.2 mg dw L
-1

 and the experimental result 

obtained for these conditions was 1069.0±7.33 mg dw L
-1

; this β value is in the range of 

the confidence interval. As a result, the model was considered to be accurate and reliable 

for predicting β. Also positive results were obtained for individual optimization of Θ 
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ratio; the optimal culture conditions were found to be 4.02 % vv
-1

 of CO2 and 3.21 mM of 

NaNO3. The optimal value from the model was 0.46 (mg lipid L
-1

d
-1

)(mg cellulose mg 

biomass
-1

)
-1

 which agreed with the experimental value 0.50±0.09 (mg lipid L
-1

d
-1

)(mg 

cellulose mg biomass
-1

)
-1

 well. 

 

In the case of simultaneous optimization (experiments conducted at 3.77 % vv
-1

 of CO2 

and 4.01 mM of NaNO3) there was also agreement between predicted and experimental 

results for the response variables β and Θ ratio. Therefore, this approach for the 

optimization is also accurate and reliable. 

 

3.5.  Conclusions 

 

Cells of Chlorella vulgaris growing under the studied conditions were well adapted, all 

treatments followed a similar growing profile and no adaptation phase was observed. 

Sodium nitrate was a determining factor for cell growth; its depletion considerable 

reduced the growth rate. Empirical models obtained for biomass concentration and 

lipid/content ratio applying the RSM had good accuracy explaining the 96.01% and 

93.35% of the response variables respectively. Differences on cellulose content in cells of 

Chlorella vulgaris were obtained when subjected to different culture conditions. The 

location of an optimal point in the range of study, where lipid productivity is high and 

cellulose content is low, was possible by means of the CCD. Experimental validation 

confirmed de accuracy and feasibility of the models. The main goal of this Chapter was 

to show the effect of culture conditions on cellulose content. The results of this study 

could be applied in further experiments about cell wall disruption, where the cellulose 

content could play an important role in the intensity of the treatment needed. Any small 

increases in efficiency can translate into potentially large savings at high volumes. 
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4. Chapter 4:  Investigation of high pressure steaming as a thermal treatment 

for lipid extraction from Chlorella vulgaris 

 

The information presented in this Chapter is based in the paper “Investigation of High 

Pressure Steaming as a thermal treatment for lipid extraction from Chlorella vulgaris”, 

published in Bioresource technology. July 2014, Vol. 164, pages 136-142. The sections 

in Chapter 4 present the results towards the completion of objectives 3 and 4 of the thesis 

(see section 1.2.2). 

 

4.1.  Abstract 

 

In this part of the research HPS was studied as a hydrothermal treatment for extraction of 

lipids from Chlorella vulgaris, and analysis by RSM allowed finding operating points in 

terms of target temperature and microalgae concentration for high lipid and glucose 

yields. Within the range covered by these experiments the best conditions for high bio-

crude yield are temperatures higher than 174˚C and low biomass concentrations (<5 g/L). 

For high glucose yield there are two suitable operating ranges, either low temperatures 

(<105˚C) and low biomass concentrations (<4 g/L); or low temperatures (<105˚C) and 

high biomass concentrations (<110 g/L). HPS is a good hydrothermal treatment for lipid 

recovery and does not significantly change the FAME profile for the range of 

temperatures studied. 

 

4.2.  Introduction 

 

Traditionally oil has been extracted from plant biomass, and although the oil contents are 

similar between seed plants and microalgae (when they are grown under optimized 

conditions the lipid content can be higher), there are significant variations in the overall 

biomass productivity, resulting in an oil and biodiesel productivity with a clear advantage 

for microalgae (Mata et al., 2010). As mentioned, biofuels derived from microalgae are 
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considered as a technically viable energy source which overcomes the problems 

associated with the previous generation of biofuels (Goh and Lee, 2010; Naik et al., 

2010). Several researchers have reported the step of cell wall disruption (method or 

process for releasing biological molecules from inside a cell) as particularly important for 

establishing microalgae processes at  an industrial scale, since the amount of lipids 

obtained from biomass  depends to a large extent on the disruption method used. For this 

reason, different methods have been studied; among them are maceration, supercritical 

fluid extraction, osmotic shock, microwave, freezing, French press, ultrasound, bead-

beating, enzymatic extractions, and thermal treatments. Despite the large list, more 

research in microalgae cell wall disruption is needed (Lee et al., 2010). The objective of 

the following experiments is to approach the inefficient lipid extraction by using thermal 

treatment as a cell wall disruption method. 

 

Thermal treatments comprise any kind of technology involving heat in the processing of 

a substrate. Some previous works have shown good results for microalgae (Chen, 1998; 

Chow et al., 2013a). For these kinds of treatments, wet microalgae can be used before 

conversion of lipids to biodiesel, decreasing considerably the amount of energy required 

for the overall process. According to Minowa and Sawayama (1999), for every 1 kg of 

microalgae, about 3 MJ of energy are required only for centrifugation to produce an 

microalgae paste with 90% water by weight, and another 20 MJ are needed to decrease 

the water content  to 10% water by weight using conventional drying, which represent an 

enormous amount of energy at an industrial scale. High extraction efficiencies have been 

reported for hydrothermal treatment, for instance Kita et al., (2010) reported a 

hydrocarbon recovery of 97.8% when using water at 90°C as thermal treatment. Their 

findings suggest that drying steps could be possibly bypassed if not avoided. 

 

One of the most popular thermal treatments for biomass is thermochemical liquefaction. 

In this process, microalgae biomass is added to water and subjected to high temperatures 

and pressures; also, some chemicals (mainly alkaline compounds) can be added as 

catalysts. This treatment produces bio-crude, water, gas and a solid fraction. It has 

attracted much interest due to its many advantages, including relative stable oil product 
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and high energy recovery. Unfortunately, this treatment still has drawbacks, such as 

equipment corrosion and the requirement of expensive process devices to reach 

temperature and pressure inputs (Toor et al., 2011).  At this point the term bio-crude is 

introduced and it refers to all the lipid fraction that is soluble in organic solvents 

including those that are not convertible to biodiesel including some hydrocarbons, sterols, 

ketones, and pigments (carotenes and chlorophylls) (Halim et al., 2011). 

 

Another recognized thermal treatment for biomass is HPS. This process differs from 

thermochemical liquefaction in the use of lower temperatures, generally in the range of 

subcritical water (water between 100˚C and 300˚C); which is an effective solvent for 

polar and non-polar compounds since the polarity of water changes with temperature. For 

example, when water is heated above 100˚C its dielectric constant becomes like dimethyl 

sulfoxide at ambient conditions (Carr et al., 2011). HPS is currently used in industry for 

the fractioning of wood, and many kinds of industrial HPS boilers are commercially 

available. This is an important advantage for the implementation of this technology for 

microalgae lipid extraction, since the technology is already available and only adaptation 

to microalgae feedstock and specific operating points should be found. HPS can be 

followed by a rapid decompression (also referred to as explosion), or by slowly 

decreasing the pressure to atmospheric (no explosion). The products after HPS include a 

bio-crude with a dark brown color and biomass with a modified cell wall structure; this 

modified cell wall may allow the extraction of the lipids remaining inside the microalgae 

easily. 

 

Many advantages have been observed in processes using HPS for other feedstocks; 

among them are the high recovery yield and better substrate quality for further hydrolysis 

processes (e.g. thermal hydrolyzed carbohydrates can be used as substrate for enzymatic 

hydrolysis). In HPS, as in thermochemical liquefaction, it is also possible to add 

exogenous catalyst, but when no catalyst is added the process is referred as 

autohydrolysis, and the breakdown of the cellulose glycosidic linkages in the cell wall of 

the biomass depends on the acids naturally present in the microalgae biomass. The 

temperatures required for HPS usually range between 140 to 240˚C, with a wide 
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residence time distribution generally extending from 2 up to 6000 seconds (Ramos, 

2003). Thus, optimization of process variables for the application of this technology to 

microalgae processing is fundamental; however, the optimal values may change 

according to process specifications (i.e. complete cellulose degradation vs. cell wall 

disruption, being the later the objective of this research). The use of thermal treatments 

may lead to oil contents higher than the lipid content of microalgae (10-15% higher), due 

to the polymerization of proteins and carbohydrates into oily composites (Toor et al., 

2011). 

 

According to Biller and Ross (2011), the formation of bio-crude follows the trend lipids > 

proteins > carbohydrates, meaning that lipids and proteins are converted to bio-crude 

more efficiently when no catalyst is added. Particle size has also shown to be a significant 

variable when steam treatments are used (Liu et al., 2013), since the size of the feedstock 

may impose heat transfer problems; larger particles are susceptible to overcook in the 

surface and have low steam access to the inner part. When microalgae are used, the 

particle size (cell size) is rather homogenous and it can range from a few micrometers to 

a few hundreds of micrometers, they are considerable smaller particles when compared 

with other biomass feedstocks. 

 

In this Chapter, a study on the simultaneous effect of target temperature (Tt), and 

microalgae concentration (β) (see Table 4.1 for nomenclature and units) on C. vulgaris 

bio-crude and glucose yields after HPS was carried out. The main goal was to find 

operating points for cell wall disruption to ensure an improved bio-crude recovery yield. 

A study of these parameters was performed by RSM. 

 

Table 4.1 Nomenclature used in Chapter 4. 

Symbol Name  Units 

Tt Target temperature ˚C 

β Microalgae concentration g/L 

T Temperature ˚C 

P Pressure psi 

Ψ Bio-crude yield mg bio-crude/g microalgae 

α Glucose yield mg glucose/g microalgae 
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4.3.  Materials and methods 

 

To obtain the information needed the following protocols were implemented. 

 

4.3.1. Microalgae strain and culture media 

 

The microalgae strain Chlorella vulgaris UTEX 2714 was used in this study. Cultures 

were kept in Bold’s modified media (section 3.3.1) with 3.21 mM of sodium nitrate and 

4.02% (vv
-1

) of carbon dioxide. These culture parameters were found to be the optimum 

for C. vulgaris cultures producing high lipid productivity and low cellulose content, as 

previously reported (Aguirre and Bassi, 2013) (section 3.4.4). After 15 days of culture, 

biomass was harvested by centrifugation at 3400 rpm for 20 minutes, and washed 3 times 

with distilled water to remove culture media and extracellular components. The 

microalgae paste was freeze dried for 24 h and stored at -20˚C until it was used in HPS 

experiments. To ensure biomass homogeneity for all the experiments, the freeze dried 

biomass produced in different batches was mixed together before experiments. 

 

4.3.2. Experimental set-up 

 

HPS experiments were conducted in a custom made and laboratory-scale device at 

Western University Machine Services (London, ON, Canada) (See Figure 4.1). Detailed 

information of device configuration is presented in Appendix 3. The equipment has one 

steam chamber (120 mL) and one expansion chamber (460 mL) separated by one ball 

valve which allows fast decompression of the sample. Close to the ball valve there is a 

nozzle where sample was forced to pass through during decompression. This process 

increases the shearing action and helps in the cell wall disruption by homogenization of 

the sample (Samarasinghe et al., 2012). 
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Figure 4.1 Schematic diagram and picture of experimental set-up used for high pressure 

steaming of C. vulgaris biomass. 

 

Experiments were done in the following steps. First, a 20 mL sample consisting of freeze 

dried microalgae and distilled water was introduced into the steam chamber (still at room 

temperature) by the upper part of the device using a long needle to reach the bottom of 

the steam chamber (the needle was wide enough to ensure that no disruption of the cells 

was happening at this point), the amount of microalgae in each sample was calculated 

according to experimental design (Table 4.2, column 3); then all the valves in the system 

were closed. The device, charged with the sample, was inserted into the furnace (pre-

heated at 800˚C) by an upper hole in the furnace wall. Readings of temperature (T) and 

pressure (P) were taken every minute until the target temperature was reached. At this 

point the decompression valve was rapidly opened to allow a fast pressure drop of the 

system due to a sudden total volume increase. 

 

The device was removed from the furnace and cooled with tap water for 3 minutes and 

then allowed to naturally cool down until the temperature in steam chamber was 25˚C. At 

this temperature the sample was completely condensed, and the aqueous sample was 

removed from inside the device. 
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Table 4.2 Variables and experimental CCD levels for RSM. 

Experiment Target 

temperature 

Tt (˚C) 

Microalgae 

concentration 

β (g/L) 

Crude yield (Ψ) 

(mg bio-crude/g 

microalgae) 

Glucose yield (α) 

(mg glucose/g 

microalgae) 

Cell 

fraction 

Extraction 

efficiency 

(%) 

   Measured Model 
result 

(Equation 

1) 

Measured Model 
result 

(Equation 

2) 

  

E1 104.47 60.00 49.40 67.43 

 

8.06 8.86 1.72E-

01 

24.34 

E2 210.53 60.00 157.47 133.34 
 

0.80 0.82 6.89E-
02 

77.60 
 

E3* 

(replicate 1) 

157.50 60.00 83.45 94.82 3.76 2.70 1.18E-

01 

41.12 

 

E3’ 

(replicate 2) 

157.50 60.00 79.34 94.82 2.92 2.70 1.61E-

01 

39.10 

 

E3’’ 
(replicate 3) 

157.50 60.00 69.12 94.82 2.73 2.70 1.10E-
01 

34.06 
 

E4 157.50 3.43 198.54 147.35 

 

14.23 11.11 4.80E-

01 

97.84 

 
E5 157.50 116.57 66.32 61.02 

 

1.94 1.84 2.79E-

01 

32.68 

 

E6 195.00 20.00 127.86 164.80 
 

3.63 4.63 5.70E-
02 

63.01 
 

E7 120.00 100.00 69.07 54.56 

 

6.58 6.98 2.97E-

01 

34.04 

 
E8 195.00 100.00 98.53 88.36 

 

0.44 0.49 7.07E-

02 

48.55 

 

E9 120.00 20.00 136.64 101.77 7.72 9.39 3.48E-
01 

67.33 

*E3 is the central point of the CCD. 

 

4.3.3. Analytical techniques 

 

4.3.3.1.  Temperature and pressure 

 

Temperature (T) during HPS and target temperature (Tt) were measured with a 

thermocouple. Pressure was measured with a pressure transducer with an operating 

pressure range of 0-500 psi (1 psi is equivalent to 6.8948 kPa) (see Figure 7.7).The 

thermocouple and pressure transducer were both directly connected to the steam 

chamber. Even though temperature and pressure are correlated for steam, both readings 

were taken independently in order to ensure reliable and accurate experimental data. The 

HPS device was insulated with fiberglass to ensure stability of these measurements, and 

to reduce heat losses to its surroundings. For the target temperatures used in these 

experiments the steam produced was in the wet steam region (also known as the two-
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phase region). Due to equipment and sample size, both water and steam phases were 

always present but in different ratios for each experiment because of the different 

microalgae concentrations.  

 

4.3.3.2.  Bio-crude yield 

 

The low value for the sample volume to internal surface area ratio of the device 

represents a challenge at small scale. The bio-crude obtained can easily stick to the walls 

of the device and therefore washing the device with a solvent was necessary (the use of 

solvent at large scale could be reduced or avoided). After HPS the aqueous sample was 

removed and the device was washed 4 times with 30 mL of hexane (30 minutes each). 

All the used hexane was mixed with the aqueous sample and stirred for 1 h to allow 

transfer of the bio-crude to the hexane phase. This step was done separately for each 

experimental sample. The hexane phase was filtered and transferred to pre-weighed 

aluminum pans. Bio crude recovery was achieved via evaporation of the hexane. Total 

extracted bio-crude for each experiment was measured gravimetrically. The bio-crude 

yield (Ψ) was calculated as the ratio between the mass of bio-crude produced over the 

dried mass of microalgae used in each experiment. 

 

4.3.3.3.  Glucose concentration 

 

To quantify glucose concentration after HPS, aliquots of 1 mL from the aqueous phase 

after HPS were removed and filtered using 0.2 µm syringe filters. Samples were analyzed 

using an Agilent 1260 Infinity series high performance liquid chromatography device 

equipped with an Agilent Hi-Plex H column at 60˚C, using 0.005 M H2SO4 as the mobile 

phase at a flow rate of 0.7 mL/min. Injection volume was 20µL, and the refractive index 

detector was kept at 55˚C (Ewen, 2009). The glucose yield (α) was calculated as the ratio 

between the mass of glucose produced over the dried mass of microalgae used in each 

experiment. 
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4.3.3.4.  Cell fraction and scanning electron 

microscope  

 

Aliquots of 100 µL were taken before and after HPS, and cell counting under an optical 

microscope (40x) was performed using a haemacytometer. The intact “cell fraction” after 

treatment was calculated using the equation proposed by Samarasinghe et al., (2012) (cell 

fraction=cell density in sample after treatment*cell density in sample before treatment
-1

). 

The lower the cell fraction value the more effective the cell wall disruption method. 

 

SEM was used to see the effect of HPS treatment on microalgae morphology and surface. 

A standard preparation for biological samples was followed including microalgae fixation 

in 3% glutaraldehyde in 0.1 M phosphate buffer. Samples were later washed 3 times in 

the same buffer. Post-fixation was done with 2% osmium tetraoxide in phosphate 

solution. Dehydration was achieved by consecutive immersions of the sample in 

increasing concentration solutions of ethanol (Karcz, 2008). Samples were dried in the 

critical point for ethanol and attached to a paper filter for SEM imaging. 

 

4.3.3.5.  Fatty acid methyl esters profile 

 

Gas chromatography (GC) analysis was performed to determine the FAME profiles. The 

total bio-crude obtained from each experiment was dissolved in 20 mL of methanol. For 

GC analysis, the FFA must be converted into FAME, for which 1 mL of bio-crude-

methanol solution was mixed with 1 mL of methylene chloride, 50 µL of internal 

standard (methyl nonadecanoate, 74208 Fluka) and 16.5 µL of pure sulfuric acid. Each 

sample was introduced in sealed high pressure test tubes and transesterification reaction 

of FFA into FAME was allowed for 3 hours at 100˚C in a water bath. FAME were 

analyzed by injecting 2 µL samples into an Agilent 7890A GC-flame ionization detector 

equipped with a 30 m X 0.32 mm X 0.25 µm J&W HP-5 column. Oven temperature was 

kept at 80˚C for 2 minutes, then heated up to 140˚C at the rate of 20˚C/min, and then to 

260˚C at the rate of 4˚C/min. Temperature was maintained at 260˚C for 10 minutes (Kim 

et al., 2012). 



83 
 

 

4.3.4. Experimental design 

 

The manipulated variables in this study were target temperature (final temperature 

reached in the experiment) and microalgae concentration. A statistical approach was used 

to study the simultaneous effect of multiple variables. RSM was used to fit experimental 

data to a mathematical model by means of the CCD 2
2 

+ star with 2 factors (target 

temperature and microalgae concentration) and 5 levels. Again, the CCD consisted of 

nine experiments with three replicates for the central point and alpha value of ±1.41. 

Table 4.2, in columns 2 and 3, presents the actual values for each experiment. The 

accuracy of the model was calculated by the regression coefficients R
2
 and adjusted R

2
 

(adj R
2
). To identify the statistically significant terms the ANOVA was employed. 

Significance of regression coefficients was determined with a confidence level of 95%. 

The models were obtained after several trials for best accuracy and fitting of 

experimental data. These analysis included analysis of variables transformations with 

different functions and inclusion and exclusion of no statistically significant terms. The 

model with the highest regression coefficient (R
2
) and only statistical significant terms 

was selected. The statistical analysis was done using the software Statgraphics Centurion 

XVI (StatPoint Technologies, Inc., Warrenton, VA). 

 

Target temperature and microalgae concentrations ranged from 104.47 to 210.53˚C and 

from 3.43 to 116.57 g/L, respectively. This range of temperature was wide enough to 

ensure the formation of steam to different extents in the system and create different 

thermal environments. In terms of the effect of temperature on biomass it is known that 

hot compressed water at temperatures close to 100˚C may cause the extraction of the 

aqueous soluble fraction. When temperature is above 150˚C, hydrolysis of polymers like 

cellulose starts producing shorter polymers and monomers. Finally, when temperature is 

around 200˚C and pressure near 145 psi, the biomass is transformed into a slurry in a 

process known as liquidization (The-Japan-institute-of-Energy, 2008). The temperatures 

studied in this set of experiments covered all the conditions mentioned above. On the 

other hand, biomass concentration may have a role on the efficiency of cell breakage 



84 
 

(Samarasinghe et al., 2012). Accordingly, a range of biomass as wide as possible was 

used.  

 

4.4.  Results and discussion 

 

Next sections present the results for the experiments conducted. 

 

4.4.1. Temperature and pressure profiles 

 

Figure 4.2 shows the profiles of temperature with respect to time for all experiments.  

Temperature profiles followed a similar behavior (logarithm-like), where the temperature 

increased quickly in the first 120 seconds, and after that time the rate of heating was 5.5 

times slower. Heat transfer in a vessel initially filled with water, which is the case of the 

device used, is in the first stage by conduction (Brownell et al., 1986). The heat increases 

the internal energy by means of molecular agitation. Heat transfer by convection occurs 

later, when the heated water expands and becomes more buoyant; cooler hence denser 

water descends and patterns of circulation are formed. The energy transferred to biomass 

reduces the stability of the cell wall and makes it more susceptible to break. 

 

The similar profiles of temperature for all the treatments indicate that the presence of 

microalgae in the suspension did not affect significantly the heating process. Experiment 

1 (E1) had the lowest target temperature (104.47˚C), reached after 67 seconds, which 

corresponds to the experiment with the lowest bio-crude yield (see Table 4.2). 

Experiment 2 (E2) had the highest target temperature of 210.53˚C, which was reached 

after 706 seconds. In this case E2 did not have the highest bio-crude yield, which implies 

that temperature is not the only variable playing an important role in bio-crude recovery, 

as discussed later. 
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Figure 4.2  Profile of temperature (T) and pressure (P) during high pressure steaming of 

C. vulgaris. 

 

Pressure (Figure 4.2) also followed similar profiles for all treatments (exponential-like). 

Experiment 2 (E2) (as expected for the given target temperature), reached the highest 

pressure (432 psi) and the lowest pressure of 22.179 psi corresponded to Experiment 1 

(E1). For HPS, not only the final pressure reached at the target temperature accounts for 

cell wall disruption, but also the pressure drop after decompression of the system. When a 

gas-liquid system (air-water) is subjected to high pressure and then the pressure drops 

rapidly, the gas dissolved in the liquid is released causing cavitation bubbles that aid to 

lyse the cells. In addition to this, pressure within the cell drops at a slower rate than the 
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pressure outside. This pressure difference is mainly responsible for the cell wall breakage 

along with cavitation bubble effects. Samarasinghe et al., (2012) reported that one of the 

most significant parameters for rupture of N. oculata cell wall is pressure differential 

when cells go across a nozzle. 

 

Based on the data for each experiment (before and after decompression) and using RSM, 

a correlation between pressure drop (ΔP) and target temperature was found: ΔP = 494.04-

8.49Tt+0.04Tt
2
, (R

2
=0.98), where, ΔP is measured in psi and Tt  in ˚C. This correlation can 

be used to predict any pressure drop wanted in the system within the range of 

temperatures covered by the experiments. Microalgae concentration did not have a 

statistically significant effect on the pressure drop. From this equation it is deduced that 

the pressure drop increases with the target temperature, but with a higher effect for higher 

temperatures due to the effect of the quadratic term of temperature (Tt
2
). At higher 

temperatures more of the liquid mass of water is transformed into steam, after 

decompression the density of this steam drastically increases (condensation), leading to 

higher pressure drops. The experiments with the highest pressure drops correspond to E2 

(ΔP=357.61 psi), E6 (ΔP=221 psi), and E8 (ΔP=266 psi), accounting for some of the 

treatments with the highest bio-crude yields (Table 4.2). 

 

Even though, pressure drop does not appear as one term in the models proposed in the 

next sections, this variable is implicit in the equations (and linked to target temperature 

term, Tt), due to the relationship between pressure and temperature for saturated steam in 

the system. Each decompression starts at one different final pressure for each 

experimental treatment and this final pressure is the saturation pressure at temperature Tt. 

Some researchers have introduced the term pressure drop in their models directly, but it is 

important to notice that the goal of most of those works is the thermo-mechanical 

disruption of biomass for depolymerisation of lignocellulosic components, and therefore 

complete degradation of these polymers is wanted, hence the inclusion of the term 

pressure drop into those models is practical. The main polymer found in C. vulgaris cell 

wall is cellulose comprising around 80% by dry weight of the cell wall (Abo-Shady et al., 

1993), making this polymer the main target in cell wall disruption techniques. In this 
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case, the goal is not the complete depolymerisation of the cellulose but the release of 

lipids from inside the cell, which can be achieved by breaking the cellulose in several 

points but not necessarily completely.  

 

When bio-crude samples for all the experiments were compared, a stark visual difference 

in color was observed. Pictures of all samples were taken and it was clear that as the 

target temperature or microalgae concentration increased the bio-crude became darker. 

Target temperature seems to have a stronger effect on bio-crude color than microalgae 

concentration (see Figure 4.3). This could have some implications at industrial scale 

purification of the bio-crude. 

 

 

Figure 4.3 Pictures of bio-crude dissolved in methanol for each of the treatments in this 

study. 
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4.4.2. Cell breakage and scanning electron microcopy images 

 

The ratio between the amount of undisrupted cells before and after HPS is an indicator of 

the extent of the cell disruption treatment.  According to Samarasinghe et al., (2012) as 

the intensity of the treatment increases the number of intact cells disappears in the sample 

matrix because the disrupted particles are smaller than the resolution of the microscope 

used for counting the intact cells. 

 

The intact cell fraction remaining after HPS (referred as cell fraction) was analyzed using 

RSM (Table 4.2 shows the cell fraction for each treatment). According to data fitting the 

equation describing the relationship between cell breakage and target temperature is: 

(1/Cell fraction)=28.6497-0.410514*Tt+0.0017027*Tt
2
 (R

2
=75.50%), which means that 

as the temperature increases the cell fraction decreases. Figure 4.4g shows how cell 

fraction is reduced (for a constant microalgae concentration of 60 g/L) as temperature 

increases. 

 

Figure 4.4 shows SEM images of microalgae before and after HPS. Microalgae cells 

before thermal treatment had a spherical shape and smooth surface (4.3a, 4.3b, and 4.3c); 

after HPS the microalgae cell collapses, some microalgae break into pieces and cell 

debris appears, the cell surface becomes rough, and some small pores on the cell wall are 

visible (4.3d, 4.3e, and 4.3f). It is clear from these images that the HPS treatment has a 

very strong effect on microalgae integrity.  

 

4.4.3. Bio-crude yield as a function of target temperature and 

microalgae concentration 

 

RSM was used to evaluate the effect of target temperature and microalgae concentration 

on bio-crude yield. Logarithmic transformation of data was applied to improve the fit of 

the model to data and only statistically significant terms were taken into account for the 

second order mathematical model. 
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Figure 4.4 SEM images of C. vulgaris microalgae. (Images a and b show microalgae 

before HPS. Images d and e show microalgae after HPS. Images c and f show microalgae 

surface details before and after HPS, respectively. Image g shows the effect of target 

temperature on cell fraction). 

 

The ANOVA (Table 4.3) partitions the variability in LN(Ψ) into separate pieces for each 

of the effects.  It tests the statistical significance of each effect by comparing the mean 

square against an estimate of the experimental error. The model as fitted accounted for 

67.89% of the variability in LN(Ψ). Equation 4.1 describes the response surface for this 

variable (For statistical software outputs refer to section 7.2.3).  

 

Table 4.3 Analysis of variance for LN(Ψ) model. 

Source Sum of Squares Degree of freedom Mean Square F-Ratio P-Value 

Tt 0.464778 1 0.464778 6.33 0.0360 

β 0.777191 1 0.777191 10.59 0.0116 

Total error 0.587251 8 0.0734064   

Total (corr.) 1.82922 10    

R
2
: 67.8961%; adj R

2
:59.8701%. 
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LN(Ψ) = 4.00721+0.00642757Tt-0.00779216 β                                             Equation 4.1 

 

Figure 4.5, shows the estimated response surface and the points represent the 

experimental data. For a given value of microalgae concentration, the results show that 

the bio-crude yield increased linearly with temperature. Conversely, for constant values 

of temperature, as microalgae concentration increases, the bio-crude yield decreases.  

 

Figure 4.5 Response surface of the effect of target temperature (Tt) and microalgae 

concentration (β) on LN(Ψ). Black dots represent experimental results data. 

 

If the equation for cell fraction and bio-crude yield are overlapped, it is noticed that for a 

given microalgae concentration, as the cell fraction decreases the bio-crude yield 

increases, meaning that cell wall disruption and lipid recovery are linked. 
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According to Equation 4.1 for LN(Ψ), within the range covered by these experiments the 

best conditions for high bio-crude yield are temperatures higher than 174˚C, and low 

biomass concentrations (<5.90 g/L). One possible explanation to why low microalgae 

concentrations are beneficial for bio-crude recovery is that the ratio “solid (microalgae) 

concentration/steam mass” is higher. I.e. given an amount of steam in the system and as 

the microalgae concentration decreases, the total area of the cell walls exposed to that 

steam increases, more steam is available for each microalgae and the processes of 

extraction is improved. Figure 4.6 shows the bio-crude obtained after microalgae are 

subjected to HPS. 

 

  

Figure 4.6 Picture of the bio-crude obtained using high pressure steaming. 

 

Table 4.2 also presents the extraction efficiency for each treatment. The total lipid 

content in the biomass used for all the experiments was 20.29% (ww
-1

) and was 

calculated applying the Folch’s modified method described in section 3.3.3.3 (in this case 

cells were freeze dried), this percentage was compared to the amount of bio-crude 

recovered using HPS for each treatment, and the efficiency of the extraction was 

calculated. The treatment with the highest bio-crude recovery efficiency was E4 

(97.84%) where almost all the lipids from the cell were recovered; while the treatment 

with the lowest bio-crude recovery efficiency was E1 (24.34%).  
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Table 4.4 Comparison of bio-crude recovery efficiency. 

Algae strain Extraction conditions Bio-crude recovery 

efficiency 

Reference 

Botryococcus braunii Thermal pre-treatment 

90˚C 

10 minutes 

97.8% 

Compared with solvent 

extraction 

(Kita et al., 2010) 

Scenedesmus obliquus resonant continuous 

microwave processing 

system 

95˚C 

30 min 

76–77% 

Compared with 

hexane:ethanol 

extraction 

(Balasubramanian et al., 

2011) 

Nannochloropsis 

oceanica 

hydrothermal 

liquefaction 

300˚C 

0.5 h 

67.73% 

Of total biomass energy  

(Cheng et al., 2014) 

Nannochloropsis sp. continuous flow lipid 

extraction system 

100 °C 

50 psi 

100% 

Compared with soxhlet 

extraction 

(Iqbal and Theegala, 

2013) 

Chlorella (KAS603) Solvent extraction with 

2-ethoxyethanol (2-EE) 

60˚C 

30 min 

150–200 % 

Compared to extraction 

solvents with 

chloroform:methanol or 

hexane 

(Jones et al., 2012) 

Chlorella vulgaris 

(This study) 

High pressure steaming 

157.5 

3.43 g/L 

97.84% 

Compared with Folch’s 

method 

(Aguirre and Bassi, 

2014) 

 

The average extraction efficiency for all the treatments was 50.88%. Chow, Jackson, 

Chaffee, & Marshall, (2013) present a comprehensive review on thermal treatment of 

microalgae for production of biofuels; comparison of the results summarized by them for 

Chlorella species with this study’s results, show that the bio-crude recovered applying 

HPS are consistent with the results obtained by other researchers.  

 

4.4.4. Glucose yield as a function of target temperature and 

microalgae concentration 

 

The amount of glucose produced after HPS is not only one indicator of the extent of 

cellulose degradation, but also this glucose can be used as substrate for production of 

other bio-fuels, as ethanol or butanol, via fermentation. Glucose in the aqueous phase 
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after HPS was measured and analyzed as function of target temperature and microalgae 

concentration. Logarithmic transformation of data was applied again. Table 4.5 shows the 

ANOVA. 

 

Table 4.5 Analysis of variance for LN(α) model. 

Source Sum of Squares Degree of freedom Mean Square F-Ratio P-Value 

Tt 5.66497 1 5.66497 111.91 0.0000 

β 3.23496 1 3.23496 63.91 0.0002 

Tt β 0.951266 1 0.951266 18.79 0.0049 

β
2
 0.412667 1 0.412667 8.15 0.0290 

Total error 0.303717 6 0.0506195   

Total (corr.) 10.5676 10    

R
2
: = 97.1259%; adj R

2
: 95.2099%. 

 

In this case, four effects have P-values less than 0.05, indicating that they are 

significantly different from zero at the 95.0% confidence level.  Only statistically 

significant terms were taken into account for the second order mathematical model. 

Therefore, the term Tt
2
 was excluded of the final analysis. The model as fitted was able to 

explain 97.13% of the variability in LN(α). The equation describing the surface is 

Equation 4.2 (For statistical software outputs refer to section 7.2.4).  

 

LN(α) = 2.98877-0.00293341Tt +0.0159297 β -0.00032511Tt β +0.00016148 β
 2
                     Equation 4.2 

 

Figure 4.7 presents the estimated response surface for LN(α). For temperatures between 

104˚C and 150˚C as the microalgae concentration increases the glucose yield slightly 

increases as well. However, at higher temperatures the behavior seems to change and as 

the microalgae concentration increases the glucose yield decreases. For lower values of 

microalgae concentration (3.43 g/L to 40 g/L), the glucose yield decreases slowly, but for 

values of biomass higher than 80 g/L and one temperature of 200˚C, the glucose yield 

decreases rapidly. 

 



94 
 

 

Figure 4.7 Response surface of the effect of target temperature (Tt) and microalgae 

concentration (β) on LN(α). Black dots represent experimental results data. 

 

Glucose can be transformed into 5-Hydroxymethylfurfural (5-HMF) at temperatures in 

the range of 150–250 °C (de Souza et al., 2012) which could explain the reduction in 

glucose concentration in the aqueous phase after HPS. According to Equation 4.2, for 

LN(α), within the range covered by these experiments there are two possible operating 

points for high glucose yield. They can be either low temperatures (<105˚C) and low 

biomass concentrations (<4 g/L), or low temperatures (<105˚C) and high biomass 

concentrations (<110 g/L). 

 

Although the glucose yield is low it does not affect the bio-crude recovery from 

microalgae biomass; the long cellulose fibers could be broken allowing the release of the 

intracellular compounds. At this point, if higher glucose yields are needed, enzymatic 

hydrolysis of the cellulose after HPS can be applied (see Chapter 5 for experiments on 
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this topic). The results of higher glucose concentrations at lower temperatures are in 

accordance to the results obtained by Cara et al., (2006) when olive tree wood was 

treated with steam explosion. 

 

4.4.5. FAME profile 

 

GC analysis of the FAME was done in order to see if differences in the HPS conditions 

had any effect on the FAME composition. A pool of 37 different FAMEs was analyzed 

but only those found in higher concentrations are highlighted in this study, while the 

others were grouped in one set called “other FAMEs”. There was no statistical difference 

(T-test, P-value=0.05) between the FAME compositions among the HPS treatments in the 

range of temperature studied, meaning that the range of conditions studied did not affect 

FAME composition. Hence, an average for all the HPS treatments was found and plotted 

in Figure 4.8. 

 

The FAMEs found in larger percentages were palmitoleic acid methyl ester (C16:1), 

palmitic acid methyl ester (C16:0), linoleic acid methyl ester (C18:2n6C), oleic acid 

methyl ester (C18:1n9c), linolelaidic acid methyl ester (C18:2n6t), α-linolenic acid 

methyl ester (C18:3n3), stearic acid methyl ester (C18:0), elaidic acid methyl ester 

(C18:1n9t), and cis-8,11,14-eicosatrienoic acid methyl ester (C20:3n6). The composition 

of FAME from C. vulgaris in this study was similar to that found by Kim et al., (2012), 

Lohman et al., (2013), and Ryckebosch et al., (2011). 

 

The percentage of FAME after HPS was also compared to the percentage of FAME 

extracted using only hexane (no thermal treatment was applied) in order to see how the 

thermal treatment was affecting the percentage of FAME composition in comparison to 

no thermal treatments. There were statistically significant differences (T-test, P-

value=0.05) for C16:1, C16:0, C18:2n6c, and C18:1n9t. Tyagi and Vasishtha (1996), 

reported the changes in specific gravity, saponification value, color, refractive index, 

viscosity,  and FFA composition of soybean oil when was subjected to temperatures from 

170 to 190˚C. These differences are expected when thermal treatments are applied but 
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from Figure 4.8 it can also be concluded that even if there are statistically significant 

differences for some FAME, they are not extreme and some of them favor the HPS 

treatment. Santana et al., (2012) observed similar behavior comparing the profile of fatty 

acids extracted from Botryococcus braunii with supercritical carbon dioxide and 

traditional solvent extraction. 

 

 

Figure 4.8 Comparison of fatty acid methyl esters in microalgae using high pressure 

steaming and solvent extraction 
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4.5.  Conclusions 

 

RSM allows the study of the effect of simultaneous variables (target temperature and 

microalgae concentration) on HPS by empirical modeling. Also, target temperature and 

microalgae concentrations play significant roles on lipid and glucose yields. It was found 

that to achieve high bio-crude yields, low microalgae concentrations and high 

temperatures are favorable; meanwhile, for high glucose yields, low temperatures and 

microalgae concentrations produce better results. From SEM images it was evident that 

HPS modifies cell morphology and surface; cell breakage and formation of pores was 

observed. 
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5. Chapter 5: Investigation of an integrated approach for bio-crude recovery 

and enzymatic hydrolysis of microalgae cellulose for glucose production 

 

The information presented in this Chapter is based in the paper “Investigation of an 

integrated approach for bio-crude recovery and enzymatic hydrolysis of microalgae 

cellulose for glucose production”, ready to be submitted to Industrial and engineering 

chemistry research. The sections in Chapter 5 present the results towards the completion 

of objectives 5 and 6 of the thesis (see section 1.2.2). 

 

5.1.  Abstract 

Microalgae cellulose offers potential value as a source of fermentable sugars; this 

cellulose can be used after the extraction of other valued products in the biomass such as 

bio-crude. In Chapter 4, the bio-crude recovery efficiency using HPS was calculated for 

different target temperatures and biomass concentrations; in this Chapter the same 

efficiency was calculated for microalgae cultures with different lipid and cellulose 

contents, and integrated to the obtainment of fermentable sugars via enzymatic 

hydrolysis. The efficiency of the extraction was 97.94±8.26% for the algae with the 

lowest cellulose content.  Later, the algae with the highest cellulose content was pre-

treated with HPS and hydrolyzed with cellulase, and the glucose yields after both 

treatments was 0.28 g.gbiomass
-1

 at 210˚C. 

 

5.2.  Introduction 

 

Biofuels from microalgae are an attractive alternative as a sustainable energy source. 

They are renewable, can use waste as substrate for microalgae growth and they have less 

carbon emissions than regular fossil fuels. Biofuels from microalgae include lipids that 

can be converted into biodiesel, the microalgae biomass can be transformed into bio-char 

(Chaiwong et al., 2013) and bio-crude, and the remaining carbohydrates can be 

hydrolyzed for the production of fermentable sugars for the production of methanol or 
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methane. In terms of energy density microalgae lipids are 37.6 kJg
-1

, followed by proteins 

with 16.7 kJg
-1

, and carbohydrates with 15.7 kJg
-1

 (Wilhelm and Jakob, 2011).  Even 

though this is a promising technology, more studies are needed to be done for integration 

of all these processes. One of the alternatives for application of microalgae feedstock is 

the initial use of microalgae biomass for lipid recovery and the further utilization of the 

remaining biomass debris for glucose production from the remaining carbohydrates. 

 

Different approaches have been previously tried for using microalgae as a source of 

lipids. The most traditional method, but difficult to implement at large scale due to 

environmental challenges, is solvent extraction. This method requires dried biomass 

which is expensive since dewatering of microalgae is highly energy consuming, also 

organic solvent extraction is slow and requires considerable amounts of toxic and 

expensive solvents (Halim et al., 2011). To avoid this step other researchers have applied 

hydrothermal treatment, where wet microalgae are utilized directly for cell wall 

disruption and lipid extraction. The hydrothermal treatment makes use of water at 

temperatures usually between 100-600˚C and the equipment can be pressurized to 

increase mechanical stress on microalgae cells. At these conditions, water decreases its 

dielectric constant (also known as relative permittivity) and behaves similar to organic 

solvents (Carr et al., 2011). Hence, the solubility of the hydrophobic components is 

improved. The products obtained and the distribution of these compounds is however a 

characteristic of each microalgae strain, but there are some general groups of compounds 

present in most of them including lipids (oils). The bio-crude obtained may potentially 

meet market demands or it could be further upgraded to desired quality standards.  

 

The components remaining in the biomass, after bio-crude recovery through 

hydrothermal treatment, can further be utilized for other processes or can be re-circulated 

(as supplement in the culture media) thus increasing the economic feasibility of the 

overall process. The use of mild conditions (≈200˚C) for hydrothermal treatments is very 

attractive, since the production of unwanted by-products is reduced. If the temperature for 

lipid recovery is increased (e.g. 15 min at 250˚C) the process leads to charring and 

degradation of some biopolymers (e.g. proteins and carbohydrates) that may contaminate 
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the oil in a negative way (Roussis et al., 2012). Using hydrothermal treatment, 

investigators have shown it is possible to extract most of the lipid content of the cell 

(around 30% (ww
-1

). The amount of lipids that can be recovered depends on microalgae 

strain, culture and extraction conditions. But efficiencies of extraction of lipids as high as 

95% have been reported, using milder thermal conditions (80-90˚C) for microalgae 

biomass (Chow et al., 2013a). The operating points for high bio-crude yield were 

previously presented in Chapter 4. 

 

The same hydrothermal processing of microalgae can also be implemented as pre-

treatment step for enzymatic processes, allowing the use of biomass for the production of 

sugars (including low cellulose content biomass) due to the increased accessibility of the 

enzyme to the remaining cellulose. Many hydrothermal treatments including uncatalyzed 

steam explosion, liquid hot water, pH controlled hot water, and flow-through liquid hot 

water have shown to increase the accessible surface area (Mosier et al., 2005) of 

polymers to enzymes. Other advantages of the use of hydrothermal pre-treatment is the 

significantly lower environmental impact, lower capital investment and application of 

less hazardous process chemicals (Cara et al., 2006). Chlorella species have cell walls 

with up to 80% carbohydrates (Rodrigues and da Silva Bon, 2011), including cellulose, 

that produces glucose monomers after hydrolysis. The high carbohydrate content of 

Chlorella biomass makes these green microalgae of particular interest as source of 

fermentable sugars through degradation of their cell walls.  

 

As mentioned, enzymatic hydrolysis is one of the ways to produce fermentable sugars 

from cellulose originally present in the cells. The enzymes involved in this reaction are 

cellulases that generally consist of one catalytic domain and one carbohydrate binding 

module. Cellulases catalyze the reaction via acid catalysis, and this reaction requires the 

addition of water to break the cellulose bonds (Alvira et al., 2010; Zverlov et al., 1998). 

Accessibility of the enzyme to the cellulose fibers is fundamental to increase the 

efficiency of the reaction; otherwise the hydrolysis will not proceed. This accessibility is 

function of the specific surface area, crystallinity of the substrate, particle size, porosity 

and the presence of other compounds associated to the cellulose (Alvira et al., 2010; Fan 
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et al., 1981). When enzymatic hydrolysis is selected for the production of sugars, the 

process requires specific conditions for the enzyme. These conditions are optimum  pH, 

temperature, enzyme concentration, hydrolysis time, and agitation speed. Some of these 

conditions have interactive effects on enzyme performance (Hammed et al., 2013). 

Therefore, multivariable optimization is generally preferred for accurate and reliable 

results. 

 

In some cases the production of inhibitory compounds has been reported after the use of 

hydrothermal pre-treatment on biomass, especially in the cases where the feedstock 

contains lignin (not in the case of microalgae biomass (Markou et al., 2012)). After 

hydrothermal treatment the produced compounds may include phenolic compounds 

which have in many processes an inhibitory or toxic effect on enzymes, bacteria, yeast 

and methanogens (Hendriks and Zeeman, 2009). As mentioned previously, some reports 

apply in conjunction thermal treatments and enzymatic hydrolysis for production of a 

wide variety of compounds (from oil extraction to high value chemicals). Grala et al., 

(2012) studied the effect of the use of hydrothermal depolymerisation as pre-treatment for 

enzymatic hydrolysis of microalgae for the production of methane and concluded that the 

application of these two processes contributed to increase the quantity and qualitative 

composition of biogas produced. 

 

The objective of this Chapter was to investigate if the microalgae composition, in terms 

of cellulose and lipid content, affects the bio-crude recovery efficiency using HPS.  Later, 

the same hydrothermal process was implemented as pre-treatment for enzymatic 

hydrolysis of the microalgae for glucose production. 

 

5.3.  Materials and methods 

This study was divided into two stages. For the first stage, microalgae were cultivated 

under different carbon dioxide (CO2) and sodium nitrate (NaNO3) concentrations to 

produce biomass with different cellulose content, following the approach presented in 

Chapter 3. The microalgae with the lowest and the highest cellulose content were denoted 
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as LC and HC, respectively. This biomass was used to analyze the effect of cellulose and 

lipid content on bio-crude recovery efficiency using HPS. For the second stage, the 

microalgae biomass identified in the first stage to have the highest cellulose content was 

later used to study the feasibility of HPS as pre-treatment for enzymatic hydrolysis for 

glucose production. 

 

5.3.1. Microalgae strain and culture media 

C. vulgaris UTEX 2714 was used for this study. The strain was cultivated in liquid 

Bold’s modified media with the same composition described in previous Chapters. For 

LC content cultures the CO2 concentration in the air was adjusted to 1.5 % (vv
-1

) and 

NaNO3 concentration to 3.77 mM; for HC content cultures the CO2 concentration was 

adjusted to 2.33 % (vv
-1

) and NaNO3 concentration to 1.77 mM. These values were 

obtained from previous studies on the effect of culture conditions on cellulose content 

and microalgae growth (Aguirre and Bassi, 2013), see section 3.4.3. For all the cultures 

the pH of the media was adjusted to 6.6 and sterilized in an autoclave at 121˚C, 21 psig 

for 15 min. Cultures were incubated at room temperature (23-25˚C) with continuous 

bubbling (7 Lmin
-1

), according to the CO2 concentration specified by each treatment. 

 

5.3.2. Analysis of the effect of cellulose and lipid contents on 

bio-crude recovery efficiency using high pressure steaming 

 

Each microalgae culture (LC and HC) consisted of 3 flasks containing 3 L of culture 

media and 0.5 L of inoculum with a biomass concentration of 380 mg dw biomass per 

liter of media. Experimental setup for microalgae cultivation was described in detail in 

section 3.3.2. Biomass was harvested after 16 days of culture by centrifugation and then 

freeze dried for 24 hours. To quantify the cellulose content after cultivation, the 

Updegraff method (Updegraff, 1969) was used (protocol presented in section 3.3.3.4) 
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After finding the cellulose content in each of the cultures, samples consisting of freeze 

dried microalgae (LC or HC) with a concentration 4.04 gL
-1

 in distilled water (volume of 

20 mL) were subjected to HPS. This thermal treatment was conducted in a custom made 

device at Western University Machine Services (London, ON, Canada). Details on device 

operation and configuration are provided in section 4.3.2. Readings of temperature (T) 

and pressure (P) were taken every minute until 180˚C were reached inside the HPS 

device. The selection of temperature and biomass concentration was based on high bio-

crude recovery yields obtained in previous experiments at high temperatures (>174˚C) 

and low biomass concentrations (<5 g/L) (section 4.4.3). At this point the decompression 

valve was rapidly opened to allow a fast pressure drop of the system due to a sudden total 

volume increase. After cooling the device to 25˚C the sample was removed from inside 

the device.  Bio-crude quantification was done following the same protocol in section 

4.3.3.2. 

Extraction efficiency was calculated according to equation 5.1. The lipid content was 

determined applying a modified version of Folch’s method (Folch et al., 1957) (protocol 

in section 3.3.3.3), and calculated using equation 5.2. 

 

  tractio  e  icie cy = 
  tracted  io-crude yield usi      

 otal li id co te t
                           Equation 5.1 

 
 

 otal li id co te t = 
Li id  ass

 icroal ae  ass
                                                         Equation 5.2 

 

 

5.3.3. Enzymatic hydrolysis of microalgae pre-treated with 

high pressure steaming 

 

After determining the effect of lipid and cellulose contents on bio-crude recovery, the 

microalgae with the highest cellulose content (HC) was used to study the production of 
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glucose as by-product of the bio-crude recovery process using enzymatic hydrolysis. In 

this case 5 different treatments were studied: Control (pure cellulose without enzyme), 

pure cellulose, NoHPS-algae (biomass no pre-treated with HPS), microalgae subjected to 

HPS at 104˚C (HPS-algae 104C) and microalgae subjected to HPS at 210˚C (HPS-algae 

210C). For the enzymatic reaction 3 ml of each sample were introduced in 20 ml glass 

vials. The pH was adjusted to 5.0 with sodium hydroxide and 50 mM Sodium acetate 

buffer (pH: 5.0) was added to increase volume to 7.5 ml. Cellulase from Aspergillus 

niger (Sigma C1148-100KU) was hydrated with the same buffer and added to each vial 

(7.5x10
-3

 gvial
-1

). Enzymatic hydrolysis took place for 8 hours at 50˚C in a water bath. 

Samples were taken at times 0, 0.5, 1, 2, 6, and 8 hours.  

Glucose production was measured following the protocol proposed by Wood et al., 

(2012), which is a rapid quantification method for reducing sugars. To remove the solids, 

samples were centrifuged at 4000 rpm for 5 minutes and supernatant was collected. In 

PCR plates (Fisher Brand) 9 µL of sample are mixed with 171 µL DNS solution. The 

samples were placed in a PCR thermocycler (Touchgene Gradient. Techne.) at 100˚C for 

1 minute, and then held for 2 minutes at 20˚C. A 90 µL aliquot of this mixture was 

transferred to 96-well flat transparent microplates (Corning Costar), and absorbance was 

read at 540 nm (see Figure 7.8). 

Silva et al., (2011) reported solubilization of components of sugarcane bagasse after 

hydrothermal pre-treatment processing (e.g. 23% of the cellulose was solubilized at 

185˚C while 26.5% was solubilized at 195˚C). Then, the total suspended solids (TSS) 

were calculated for all the samples prior to enzymatic hydrolysis, since the amount of 

solids is reduced in those treatments subjected to HPS. To calculate the TSS after HPS, 

samples of 5 ml were filtrated with pre-weighted filters and rinsed with distilled water. 

The samples were dried in oven for 1 hour at 105˚C and place in desiccator for 30 

minutes prior to final weighing. 
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5.3.4. Experimental design 

 

All experiments were conducted by triplicate. An ANOVA was done for each 

experiment, and treatments were considered to be statistically significantly different 

when the P-value of the F-test was less than 0.05. To determine which means were 

significantly different from others a multiple range test was done. 

 

5.4.  Results and discussion 

 

5.4.1. Efficiency of HPS on bio-crude recovery 

 

The amount of cellulose in biomass may affect the lipid recovery due to the presence of 

thicker cell walls. In this Chapter the main goal was to calculate the efficiency of 

extraction of lipids as function of cellulose content in biomass. When C. vulgaris 

microalgae was grown at different CO2 and NaNO3 concentrations, the biomass obtained 

after 16 days of culture had different cellulose and lipid content. Microalgae cultured at 

1.55% (vv
-1

) CO2 and 3.77 mM NaNO3 had cellulose content of 9.53±0.13%, while 

biomass grown at 2.33% (vv
-1

) CO2 and 1.77 mM NaNO3 produced biomass with 

42.21±0.04% cellulose (Figure 5.1). These results are in accordance with previous 

experiments were the effect of CO2 and NaNO3 was studied (see Figure 3.5) (Aguirre and 

Bassi, 2013). Therefore, the treatments were effective for the production of biomass with 

different cellulose content, and the biomass obtained was suitable for the study of the 

effect of cellulose content on lipid recovery. 

It is important to notice that culture conditions may not only affect cellulose content but 

also the percentage of lipids inside the cell. For more accurate calculations of the lipid 

extraction efficiency, the total lipid content in LC and HC content microalgae was 

quantified independently. As expected lipid contents were statistically different for both 
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treatments; for LC content microalgae the lipid content was 22.97±1.94% while in HC 

content microalgae was 15.96±0.11% (Figure 5.1). 

 

 

Figure 5.1 Microalgae composition and bio-crude recovery efficiency. 

 

After characterizing the cellulose and lipid content in LC and HC content microalgae, the 

biomass was subjected to HPS as thermal treatment for lipid recovery. From LC content 

biomass the bio-crude yield after HPS was 229.66±19.38 mg.g
-1

, and in HC content 

microalgae the same yield was 159.64±1.13 mgg
-1

. The bio-crude yield obtained from 

microalgae grown under different CO2 and NaNO3 concentrations were statistically 

different. 
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The bio-crude yield after HPS was very similar to the amount of total lipids quantified by 

Folch’s method and mentioned above. When extraction efficiency was calculated, the 

values obtained for both treatments (HC and LC) were 97.94±8.26% and 84.84±0.60 for 

LC and HC content biomass, respectively (Figure 5.1). Both efficiencies are high. 

Mercer and Armenta (2011), present a comprehensive review on extraction efficiencies 

from different algae species and extraction methods. Nagle and Lemke (1990), obtained 

extraction efficiencies of 90%, 73%, and 78%, when using 1-butanol, ethanol, and 

hexane/propanol, respectively from Chaetoceros muelleri. According with (Lee et al., 

1998), solvent extraction may not lead to the highest lipid recovery; they obtained more 

lipids from Botrycoccus braunni using bead-beater extraction, then it can explain why in 

some cases the extraction efficiency calculations are higher that 100%. Comparison of 

the extraction efficiency for both biomass compositions (LC and HC), in this experiment, 

showed that there is not statistical difference; it means that HPS is able to efficiently 

extract lipids from microalgae with different biomass compositions. 

 

5.4.2. Enzymatic production of glucose from HPS pre-treated 

microalgae 

 

Knowing that HPS steaming is an efficient method for lipid recovery, the next step was to 

study the possible use of the biomass obtained after this process for the production of 

glucose which can be a by-product of the overall microalgae process, and it can be later 

used as fermentable sugar. The aim of this experiment was not the optimization of the 

enzymatic process but the study of its technical feasibility. Some papers have reported the 

production of enzymatic inhibitory compounds after thermal treatment; hence, it was 

wanted to know if the cellulose remaining after HPS can be used for enzymatic 

processes. 

The biomass selected in the previous experiment as high cellulose (HC) content was used 

for the enzymatic hydrolysis experiments. Glucose production was measured during 8 

hours. For all the treatments the initial glucose concentration was very close to zero. Most 
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of the glucose was produced during the first 2 hours of the enzymatic reaction. There was 

no difference between the treatments evaluated in terms of glucose yield, calculated as 

gram of glucose per gram of biomass before HPS (Figure 5.2). 

 

Figure 5.2 Glucose yield calculated based on total suspended solids before HPS. 

 

When microalgae is subjected to HPS the amount of TSS is reduced, therefore glucose 

yield was also calculated based on the TSS after HPS, which is the actual amount of 

solids in the enzymatic reaction as a way of finding the effect of cellulose solubilization 

on enzymatic reaction. Table 5.1 shows the total suspended solids before enzymatic 

hydrolysis.  

 

Table 5.1 Total suspended solids after HPS and dilution with buffer. 

Treatment TSS (gl
-1

) TSS after dilution with buffer (gl
-1

) 

HPS 104˚C 2.04±0.03 0.816 

HPS 210˚C 0.84±0.01 0.336 

NoHPS-algae 4±0.04 1.6 

NoHPS Pure cellulose 4.2±0.01 1.68 

Control 4.2±0.02 1.68 
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If glucose yields are calculated based on the amount of TSS after HPS there is significant 

difference between some of the treatments (Figure 5.3). 

 

 

Figure 5.3 Glucose yield calculated based on total suspended solids after HPS. 

 

 In this case, microalgae subjected to HPS at 210˚C had the highest yield of glucose (1.37 

grams of glucose per gram of TTS or 0.28 grams of glucose per gram of biomass before 

pre-treatment), followed by the treatment of HPS-microalgae 104˚C, meaning that 

solubilization of components due to HPS has a positive effect on glucose production. In 

subcritical water the cellulose is rapidly solubilized (Toor et al., 2011), and also the 

smaller the substrate size, the higher the enzyme degradation (Hammed et al., 2013), 

explaining the higher yields for pre-treated microalgae. There was no difference between 

the microalgae untreated and pure cellulose, probably due to difficult access of the 

enzyme to cellulose and the insolubility of cellulose in water. Additionally, the enzyme is 

much bigger than the cellobiose in the cellulose chain, as consequence the enzyme covers 

numerous bonds making them even more unavailable (Andersen, 2007). Comparison of 

sugar yields from other research with this study is presented in Table 5.2. 
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Table 5.2 Comparison of sugar yields for different pre-treatments of biomass. 

Feedstock Pre-treatment Enzyme Sugars yield Reference 

Olive tree wood Steam explosion 

190˚C 

Celluclast 

 

0.288 g.gbiomass
-1

 (Cara et al., 2006) 

Sunflower stalks Steam explosion 

220 ◦C 

5 minutes 

Celluclast 1.5 L 0.167 g.gbiomass
-1

 (Ruiz et al., 2008) 

Ulva pertusa 

kjellman 

High pressure 

steaming 

180˚C 

8 min 

Cellulase 0.7 g.gcellulose
-1

 (Choi et al., 2013) 

Seaweed Ulva Pre-heat treatment 

120˚C 

1 hour 

Cellulase 22119 0.207 g.gbiomass
-1

 (Trivedi et al., 

2013) 

Chlorella 

homosphaera 

Cells were washed 

with chilled 

ethanol, cold dried, 

and grounded 

Cellulases, 

xylanases, and 

amylases blend 

0.245 g.gbiomass
-1

 (Rodrigues and da 

Silva Bon, 2011) 

Chlorella 

zofingiensis 

Cells were washed 

with chilled 

ethanol, cold dried, 

and grounded 

Cellulases, 

xylanases, and 

amylases blend 

0.193 g.gbiomass
-1

 (Rodrigues and da 

Silva Bon, 2011) 

Monostroma 

nitidum Wittrock 

Hydrothermal 

fractional 

150C 

Cellulosin T2) 0.107 g.gbiomass
-1

 (Okuda et al., 

2008) 

Chlorella vulgaris 

 

High pressure 

steaming 

210˚ 

4.04 gL
-1

 

Cellulase from 

Aspergillus niger 

0.28 g.gbiomass
-1

 (This study) 

 

 

5.5.  Conclusions 

 

From the results presented in this chapter it is concluded that regardless of the microalgae 

composition in terms of cellulose and lipid content, HPS was able to extract most of the 

bio-crude in the biomass leading to extraction efficiencies as high as 97.94±8.26%. Also 

HPS was a suitable pre-treatment to increase accessibility of the cellulase to microalgae 

cellulose and helped in the solubilization of the substrate. The reductions of the TSS after 

this hydrothermal treatment aimed the enzymatic hydrolysis, with glucose yield of 0.28 

g.gbiomass
-1

for microalgae subjected at 210˚C. 

The possible use of HPS as a thermal treatment for bio-crude recovery and as a pre-

treatment for enzymatic hydrolysis, favors the use of this technology on microalgae 



114 
 

integrated processes, where the economical feasibility and sustainability may be 

increased. The good glucose yields obtained using this technology under non-optimized 

conditions motivates the further study where even better production could be reached. 
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6. Chapter 6: Conclusions and recommendations 

 

In this Chapter the main conclusions of this study are presented; also some 

recommendations for future work are suggested. 

 

6.1.  Conclusions 

 

Current limitations in biodiesel production from microalgae were identified in the earliest 

stages of the research, and the low lipid extraction efficiency from the cell was 

highlighted as one of the principal bottlenecks of this process, leading to the development 

of this research where the culture conditions and extraction methods were integrated 

towards one objective: increasing lipid extraction efficiency. 

 

Differences on cellulose and lipid contents in cells of Chlorella vulgaris were obtained 

when cultures were subjected to different culture conditions in terms of carbon dioxide 

and sodium nitrate concentrations. The empirical models obtained for biomass 

concentration and lipid/content ratio applying the RSM had good accuracy explaining the 

96.01% and 93.35% of the response variables respectively. The location of an optimal 

point in the range of study, where lipid productivity is high and cellulose content is low, 

was possible by means of the CCD.  

 

The models in Chapter 3 can be used as a tool when algae with specific characteristics are 

needed. For instance, if the objective is only to produce biomass Equation 3.1 can be 

maximized to lead to the highest biomass concentration within the range covered by the 

variables. Similarly, if a culture with high lipid productivity is wanted, Equation 3.2 can 

be maximized, granting a good amount of lipids in a shorter period of time. But also if a 

culture with high cellulose content is required (for instance for the further production of 

fermentable sugars), Equation 3.2 can be minimized. So cultures can be adjusted to 

specific needs.  
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Microalgae cultures under the optimal conditions for high lipid productivity and low 

cellulose content were used for studies of HPS as bio-crude recovery method in Chapter 

4. The manipulated variables, target temperature and microalgae concentrations, played 

both significant roles on bio-crude and glucose yields. From SEM images it was evident 

that HPS modifies cell morphology and surface, cell breakage and formation of pores in 

the microalgae surface was observed. RSM allowed the study of the effect of target 

temperature and microalgae concentration on HPS. It was found that to achieve high bio-

crude yields, low microalgae concentrations and high temperatures are favorable; 

meanwhile, for high glucose yields, low temperatures and microalgae concentrations 

produce better results. 

 

Once again the empirical models obtained allow manipulating the process towards a 

wanted output. If high bio-crude yield is the objective of the process, then according to 

Equation 4.1 the system should operate at low microalgae concentrations and high 

temperatures; meanwhile, for high glucose yields, Equation 4.2 suggest that low 

temperatures and microalgae concentrations produce better results. 

 

One important annotation on the significance of the operating areas obtained in this 

research is that both, target temperature and microalgae concentration, are intensive 

properties, therefore they do not depend of the system size. Then, the results presented in 

this research can be used as a start point in scale-up studies. 

It was also concluded that regardless of the microalgae composition, in terms of cellulose 

and lipid content, HPS was able to extract most of the bio-crude in the biomass leading to 

extraction efficiencies as high as 97.94±8.26%.  

Finally, the possible use of the same HPS process for the production of glucose via 

enzymatic hydrolysis was investigated, and results showed that the thermal treatment aid 

the solubilisation of the remaining biomass after bio-crude recovery, leading to higher 

glucose yields. This means that the thermal treatment proposed for bio-crude recovery 

can be integrated with enzymatic processes to increase the global process feasibility. The 
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higher glucose yield obtained without any optimization was 0.28 g.gbiomass
-1 

for 

microalgae subjected at 210˚C.  

 

6.2.  Recommendations 

 

From the experience obtained after the completion of this thesis the following 

suggestions are done for future work: 

 

 In Chapter 4 the effect of pressure in the system was indirectly study by 

the relationship between temperature and pressure for saturated steam, but it 

would be interesting to study the independent effect of pressure without 

increasing the target temperature in the system. This experiment could be done by 

injecting nitrogen in the system until the target pressure is reached. It could 

possible reduce the change in color of the bio-crude and the degradation of other 

by-products. 

 

 As stated several times in this thesis, one of the advantages of the use of 

thermal treatments for lipid recovery is the possible use of wet microalgae, which 

reduces the cost of drying the biomass. It is suggested to investigate the feasibility 

of the direct injection of microalgae culture (algae+media), after growth, in the 

HPS device. It would not only reduce the cost of drying but also it would avoid 

any step to dilute or concentrate the microalgae, since the algae concentration 

after growing usually belongs to the values found to produce high bio-crude 

recovery yields. 

 

 The operating points for high bio-crude recovery can be used at a start 

point in scaling-up studies of HPS as mentioned in the conclusion. The scale-up 

of the process would allow obtaining larger quantities of the bio-crude and 

therefore its characterization would be easier. HPS devices for larger volumes 
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already exist in the market, so adaptation of this technology to microalgae process 

would be the main objective. 

 

 If the same HPS device presented in Figure 4.1 is going to be used in other 

experiments the following modification are suggested: 

o Increase the expansion chamber volume to allow bigger pressure 

drops, or adapt the system to decompression to atmosphere; this 

theoretically would increase the cell wall breakage. 

o If the volume of the steam chamber is increased then all the water 

in the sample could be transformed into vapor without bursting the safety 

valve. This can create the conditions needed for a steam explosion which 

is known to be an effective treatment of breaking polymers such as 

cellulose. 

o The current geometry of the device does not allow the easy 

removal of the sample, so solvents are needed to wash all the lipids from 

the walls. A wider or disassemble system would facilitate the removal of 

the sample and shorten the experimental times. 

 

 HPS showed to be an efficient method for recovery of bio-crude from 

algae with different cellulose concentrations, partly due to the physical disruption 

and formation of pores in the call wall. It would be interesting to study the effect 

of cellulose content in milder extraction treatments where the cell wall may 

impose diffusional limitations for lipid extraction. 

 

 Chapter 5 briefly explored the possible use of HPS as pre-treatment for the 

production of fermentable sugars using cellulases. This can be studied by 

multivariable optimization of the enzymatic process parameter such as 

temperature, pH, substrate-enzyme ratio, and the possible use of multiple 

enzymes. 
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7. Appendices 

7.1. Appendix 1: Calibration and standard curves. 

 

 

Equipment: 

Flowmeter N034-39 (G, S, ST, C), Omega. 

Figure 7.1 Calibration curve for carbon dioxide flow in mixer (N112-02). 

 

Equipment: 

Flowmeter N034-39 (G, S, ST, C), Omega. 

Figure 7.2 Calibration curve for air flow in mixer (N034-39). 

 

Equipment: 

Flowmeter 082-03 (GL,SA, ST, CA, TA), 

Omega. 

Figure 7.3 Calibration curve for rotameters. 
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Equipment: 

39’’ T5 fluorescent lamp, Illume. 

Figure 7.4 Lamp spectrum. 

 

Equipment:  

DR 2800 portable spectrophotometer, 

HACH. 

Figure 7.5 Standard curve for dry biomass concentration. 

 

Equipment:  

DR 2800 portable spectrophotometer, 

HACH. 

Figure 7.6  Standard curve for cellulose concentration. 

 

Equipment: 

Model A2 Heavy Industrial 

PressureTransmitter, Ashcroft. 

Figure 7.7 Standard curve for pressure transducer. 
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Figure 7.8 Calibration curve for glucose concentration 

 

7.2. Appendix 2: Statistical results from software. 

 

Following are the outputs from the statistical software “Statgraphics centurion” for all the 

empirical models presented in this study. 

 

7.2.1. Biomass concentration model. 

 

Table 7.1 Estimated effects for Biomass concentration. 

Effect Estimate Stnd. Error V.I.F. 

average 1082.42 28.5873  

A:Carbon dioxide concentration -195.105 35.0121 1.0 

B:Nitrate concentration 297.195 35.0121 1.0 

AA -156.908 41.6727 1.0947 

BB -253.824 41.6727 1.0947 

Standard errors are based on total error with 6 d.f. 

 

The StatAdvisor: This table shows each of the estimated effects and interactions.  Also 

shown is the standard error of each of the effects, which measures their sampling error.  

Note also that the largest variance inflation factor (V.I.F.) equals 1.0947.  For a perfectly 

orthogonal design, all of the factors would equal 1.  Factors of 10 or larger are usually 

interpreted as indicating serious confounding amongst the effects.   
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R-squared = 96.0125 percent 

R-squared (adjusted for d.f.) = 93.3541 percent 

Standard Error of Est. = 49.5146 

Mean absolute error = 29.138 

Durbin-Watson statistic = 1.91941 (P=0.4625) 

Lag 1 residual autocorrelation = -0.00173548 

 

The StatAdvisor: The R-Squared statistic indicates that the model as fitted explains 

96.0125% of the variability in Biomass concentration.  The adjusted R-squared statistic, 

which is more suitable for comparing models with different numbers of independent 

variables, is 93.3541%.  The standard error of the estimate shows the standard deviation 

of the residuals to be 49.5146.  The mean absolute error (MAE) of 29.138 is the average 

value of the residuals.  The Durbin-Watson (DW) statistic tests the residuals to determine 

if there is any significant correlation based on the order in which they occur in your data 

file.  Since the P-value is greater than 5.0%, there is no indication of serial 

autocorrelation in the residuals at the 5.0% significance level.   

 

 Table 7.2 Regression coefficients for Biomass concentration. 

Coefficient Estimate 

constant 194.836 

A:Carbon dioxide concentration 121.077 

B:Nitrate concentration 313.528 

AA -19.6136 

BB -31.728 

 

The StatAdvisor: This pane displays the regression equation which has been fitted to the 

data.  The equation of the fitted model is 

 

Biomass concentration = 194.836 + 121.077*Carbon dioxide concentration + 

313.528*Nitrate concentration - 19.6136*Carbon dioxide concentration^2 - 

31.728*Nitrate concentration^2 

 

where the values of the variables are specified in their original units. 
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Figure 7.9 Standarized pareto chart for biomass concentration. 

 

Figure 7.10 Main effects plot for biomass concentration. 

 

7.2.2. Lipid productivity over cellulose content model 

 

Table 7.3 Estimated effects for LP/CC. 

Effect Estimate Stnd. Error V.I.F. 

average 0.446005 0.0228016  

A:Carbon dioxide concentration -0.0918927 0.0279261 1.0 

B:Nitrate concentration -0.112604 0.0279261 1.0 

AA -0.293382 0.0332387 1.0947 

BB -0.202001 0.0332387 1.0947 

Standard errors are based on total error with 6 d.f. 

 

The StatAdvisor: This table shows each of the estimated effects and interactions.  Also 

shown is the standard error of each of the effects, which measures their sampling error.  
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Note also that the largest variance inflation factor (V.I.F.) equals 1.0947.  For a perfectly 

orthogonal design, all of the factors would equal 1.  Factors of 10 or larger are usually 

interpreted as indicating serious confounding amongst the effects.   

 

R-squared = 95.1714 percent 

R-squared (adjusted for d.f.) = 91.9524 percent 

Standard Error of Est. = 0.0394935 

Mean absolute error = 0.0259922 

Durbin-Watson statistic = 2.42667 (P=0.7838) 

Lag 1 residual autocorrelation = -0.220734 

 

The StatAdvisor: The R-Squared statistic indicates that the model as fitted explains 

95.1714% of the variability in LP/CC.  The adjusted R-squared statistic, which is more 

suitable for comparing models with different numbers of independent variables, is 

91.9524%.  The standard error of the estimate shows the standard deviation of the 

residuals to be 0.0394935.  The mean absolute error (MAE) of 0.0259922 is the average 

value of the residuals.  The Durbin-Watson (DW) statistic tests the residuals to determine 

if there is any significant correlation based on the order in which they occur in your data 

file.  Since the P-value is greater than 5.0%, there is no indication of serial 

autocorrelation in the residuals at the 5.0% significance level.  

  

Table 7.4 Regression coefficients for LP/CC. 

Coefficient Estimate 

constant -0.394844 

A:Carbon dioxide concentration 0.294613 

B:Nitrate concentration 0.162235 

AA -0.0366727 

BB -0.0252502 

 

The StatAdvisor: This pane displays the regression equation which has been fitted to the 

data.  The equation of the fitted model is 
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LP/CC = -0.394844 + 0.294613*Carbon dioxide concentration + 0.162235*Nitrate 

concentration - 0.0366727*Carbon dioxide concentration^2 - 0.0252502*Nitrate 

concentration^2 

 

where the values of the variables are specified in their original units.  

 

 

Figure 7.11  Standarized pareto chart for LP/CC. 

 

Figure 7.12 Main effects plot for LP/CC. 

 

7.2.3. Bio-crude yield model 

 

Table 7.5 Estimated effects for LOG(Bio-crude yield). 

Effect Estimate Stnd. Error V.I.F. 

average 4.55202 0.0816903  

A:Temperature 0.482067 0.191581 1.0 

B:Biomass concentration -0.623373 0.19158 1.0 

Standard errors are based on total error with 8 d.f. 
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The StatAdvisor: This table shows each of the estimated effects and interactions.  Also 

shown is the standard error of each of the effects, which measures their sampling error.  

Note also that the largest variance inflation factor (V.I.F.) equals 1.0.  For a perfectly 

orthogonal design, all of the factors would equal 1.  Factors of 10 or larger are usually 

interpreted as indicating serious confounding amongst the effects.   

 

R-squared = 67.8961 percent 

R-squared (adjusted for d.f.) = 59.8701 percent 

Standard Error of Est. = 0.270936 

Mean absolute error = 0.215875 

Durbin-Watson statistic = 2.49868 (P=0.7861) 

Lag 1 residual autocorrelation = -0.310086 

 

The StatAdvisor: The R-Squared statistic indicates that the model as fitted explains 

67.8961% of the variability in LOG(Bio-crude yield).  The adjusted R-squared statistic, 

which is more suitable for comparing models with different numbers of independent 

variables, is 59.8701%.  The standard error of the estimate shows the standard deviation 

of the residuals to be 0.270936.  The mean absolute error (MAE) of 0.215875 is the 

average value of the residuals.  The Durbin-Watson (DW) statistic tests the residuals to 

determine if there is any significant correlation based on the order in which they occur in 

your data file.  Since the P-value is greater than 5.0%, there is no indication of serial 

autocorrelation in the residuals at the 5.0% significance level.   

 

Table 7.6 Regression coefficients for LOG(Bio-crude yield). 

Coefficient Estimate 

constant 4.00721 

A:Temperature 0.00642757 

B:Biomass concentration -0.00779216 

 

The StatAdvisor: This pane displays the regression equation which has been fitted to the 

data.  The equation of the fitted model is 
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LOG(Bio-crude yield) = 4.00721 + 0.00642757*Temperature - 0.00779216*Biomass 

concentration 

 

where the values of the variables are specified in their original units.  

 

 

Figure 7.13 Standarized pareto chart for bio-crude yield. 

 

Figure 7.14 Main effects plot for bio-crude yield. 

 

7.2.4. Glucose yield model 

 

Table 7.7 Estimated effects for LOG(Glucose yield). 

Effect Estimate Stnd. Error V.I.F. 

average 0.991576 0.0945137  

A:Temperature -1.683 0.15909 1.0 

B:Biomass concentration -1.2718 0.15909 1.0 

AB -0.975329 0.224988 1.0 

BB 0.516736 0.180979 1.0 

Standard errors are based on total error with 6 d.f. 
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The StatAdvisor: This table shows each of the estimated effects and interactions.  Also 

shown is the standard error of each of the effects, which measures their sampling error.  

Note also that the largest variance inflation factor (V.I.F.) equals 1.0.  For a perfectly 

orthogonal design, all of the factors would equal 1.  Factors of 10 or larger are usually 

interpreted as indicating serious confounding amongst the effects.   

 

R-squared = 97.1259 percent 

R-squared (adjusted for d.f.) = 95.2099 percent 

Standard Error of Est. = 0.224988 

Mean absolute error = 0.132297 

Durbin-Watson statistic = 2.30259 (P=0.7647) 

Lag 1 residual autocorrelation = -0.15743 

 

The StatAdvisor: The R-Squared statistic indicates that the model as fitted explains 

97.1259% of the variability in LOG(Glucose yield).  The adjusted R-squared statistic, 

which is more suitable for comparing models with different numbers of independent 

variables, is 95.2099%.  The standard error of the estimate shows the standard deviation 

of the residuals to be 0.224988.  The mean absolute error (MAE) of 0.132297 is the 

average value of the residuals.  The Durbin-Watson (DW) statistic tests the residuals to 

determine if there is any significant correlation based on the order in which they occur in 

your data file.  Since the P-value is greater than 5.0%, there is no indication of serial 

autocorrelation in the residuals at the 5.0% significance level.   

 

Table 7.8 Regression coefficients for LOG(Glucose yield). 

Coefficient Estimate 

constant 2.98877 

A:Temperature -0.00293341 

B:Biomass concentration 0.0159297 

AB -0.00032511 

BB 0.00016148 
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The StatAdvisor: This pane displays the regression equation which has been fitted to the 

data.  The equation of the fitted model is 

 

LOG(Glucose yield) = 2.98877 - 0.00293341*Temperature + 0.0159297*Biomass 

concentration - 0.00032511*Temperature*Biomass concentration + 

0.00016148*Biomass concentration^2 

 

where the values of the variables are specified in their original units. 

 

 

Figure 7.15 Standarized pareto chart for glucose yield. 

 

Figure 7.16 Main effects plot for glucose yield. 
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7.3. Appendix 3: High pressure steaming device and pre-assays. 

 

The first step was to adapt the HPS device to project requirements. Initially this 

equipment was a cylindrical device with one steam chamber and one expansion chamber. 

The chambers were separated by one ball valve for sample decompression. With this 

initial design the control and measurement of process variables was null. To increase the 

reliability of the data obtained from the steam explosion device the following changes 

were implemented: 

 

 

Figure 7.17 Dimension of high pressure steaming device. 
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 Installation of a thermocouple that shows actual temperature inside steam 

chamber: the temperature inside the oven was quite different from the temperature 

inside the equipment due to all the air contained in the oven that acts as an isolator. 

  Installation of a pressure transducer: actual pressure inside the steam chamber 

can be read using this pressure transducer. This accessory is protected from sudden 

drops in pressure by a valve that can be closed before steam decompression. 

 Installation of a safety cage: for safety reason a cage around the device was built. 

In case of uncontrolled explosion, the cage would protect users. The cage has a top 

door that makes easy to remove the device from the oven. 

 

7.3.1. Determination of oven temperature and sample volume 

 

In order to find the proper temperature at which the oven must be pre-heated and the 

volume of the sample to be used, the following experiment was conducted. Oven was 

pre-heated and sample was introduced to the steam chamber (values for each experiment 

are shown in Table 7.9). The temperature inside the steam chamber should increase up to 

210˚C, which was the highest target temperature to be part of the CCD (Table 4.2). 

Table 7.9 Experiments for oven temperature and sample volume. 

Experiment Ove  te  erature (˚C) Sample volume (ml) 

E1 400 20 

E2 600 20 

E3 800 20 

E4 400 40 

E5 600 40 

E6 800 40 

 

Figure 7.18 and Figure 7.19 show the results for temperature and pressure inside the 

steam chamber. From Figure 7.18 it can be seen that only when the oven was pre-heated 

at 800˚C the system was able to reach the target temperature of 210˚C. Therefore, 800˚C 

was selected as the temperature at which the oven was pre-heated for the experiments 

presented in Chapter 4. There was a significant effect of sample volume on the time 

required to reach 210˚C when oven was pre-heated at 800˚C. When the sample was 20 ml 
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of distilled water, it took about 24 minutes, but when the sample volume was 40 ml the 

time required to reach the same temperature was about 40 minutes. In order to reduce the 

amount of energy consumed during the process the sample volume selected was 20 ml. 

 

Figure 7.18 Profile of temperature in HPS conditions test. 

 

Figure 7.19 Profile of pressure in  HPS conditions test. 

 

7.3.2. Experiments reproducibility for temperature and pressure 
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In order to check the reproducibility of the experiments done in the HPS device, a test 

was conducted. The objective was to confirm that the device follows the same behaviour 

every time an experiment is done under the same conditions. The oven was pre-heated at 

800˚C and sample volume was 20 ml. The test was done with pure distilled water and 

algae sample at 1 gL
-1

. Figure 7.20 and Figure 7.21 show the profiles of temperatures and 

pressure for each replicate ef the test. 

 

Figure 7.20 Profile of temperature in reproducibility test. 

 

Figure 7.21 Profile of pressure in reproducibility test. 
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From Figure 7.20 and Figure 7.21, it can be seen that all the replicates followed a very 

similar profile of temperature and pressure; this means that the HPS device is reliable 

since it has the same behavior in different runs with the same conditions. 

 

7.3.3. Experiments reproducibility for lipid extraction from 

microalgae 

 

Also reproducibility of lipid recovery was tested after HPS of microalgae samples. For 

this test 1 gram of freeze dried algae was added to 20 ml sample in water. The protocol 

for HPS was previously described (Chapter 4). The objective was to prove that the 

amount of bio-crude obtained after every HPS treatment was the same for microalgae 

under the same conditions. Table 7.10 shows the total oil recovered and the extraction 

efficiency for each replicate. It was concluded that the bio-crude recovery process using 

HPS had a good reproducibility. 

 

Table 7.10 Reproducibility of bio-crude recovery applying HPS. 

Replicate Algae in 20 ml 

(g) 

Oil recovered (g) Extraction efficiency (%) 

Replicate 1 0.9885 0.1221 55. 46  

Replicate 2 1.0523 0.1254 53.53 

Replicate 3 1.0168 0.1248 55.11 
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