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Abstract 

Some blind humans use the reflected echoes from self-produced signals to 

perceive their silent surroundings. Although the use of echolocation is well 

documented in animals such as bats and dolphins, comparatively little is known 

about human echolocation. The overarching goal of the work presented in this 

thesis was to shed light on some of the basic functions of human echolocation, 

including the perception of the shape, size, and material. I addressed these 

aspects of echolocation using behavioural psychophysics and neuroimaging. 

In Chapter 2 I show that blind echolocators were able to accurately identify 

the shape of 2D objects, but that their ability to do so was dependent on the use 

of head and body movements to ‘scan’ the objects’ edges. I suggest that these 

scanning movements may be similar to the many saccades made by sighted 

individuals when visually surveying an object or scene. 

In Chapter 3 I addressed the possibility that object size perception via 

echolocation shows size constancy – a perceptual phenomenon associated with 

vision. The results revealed that an expert echolocator accurately perceived the 

true physical size of objects independent of their distance, even though changes 

to distance directly affect size-related echo information. The results of this study 

highlight the ‘visual’ nature of echolocation, and suggest further parallels 

between the two modalities than previously known or theorized. 

Chapter 4 presents the results of a functional neuroimaging study aimed 

at uncovering the neural correlates of material processing via echolocation. By 

having echolocators listen to recordings of echoes reflected from surfaces of 

different materials, I show not only that they can determine the material 

properties of objects, but also that the neural processing underlying this ability 

may make use of a visual- and auditory-material processing area in the 

parahippocampal cortex.  

Taken together, the work presented in the current thesis describes some 

of the recent contributions to our understanding of human echolocation, with a 

particular emphasis on its apparent parallels with vision and visual processing. 
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The results of this work show that accurate and reliable information can be 

extracted from echoes, thus supporting echolocation as a viable resource for the 

blind. 
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1.1 Why Study Human Echolocation? 

Human echolocation refers to the ability of some blind humans to use the echoes 

from self-generated auditory signals to perceive silent objects and surfaces in 

their environment. For example, by producing a clicking sound with their mouths, 

expert echolocators can then listen for reflected echoes, which contain 

information about the size, shape, location, distance, motion, and material 

properties of objects (for reviews, see Stoffregen & Pittinger, 1995; Kolarik, 

Cirstea, Pardhan, & Moore, 2014). The use of echolocation, then, can provide 

blind individuals with a rich source of information that has obvious implications for 

navigation and obstacle avoidance; furthermore, the enriched perceptual 

experience echolocation affords these individuals is not trivial. Despite the clear 

benefits and advantages that echolocation can offer the blind community, very 

little research has been dedicated to understanding echo perception in blind 

humans. 

In the absence of vision, the perception of one’s surroundings is achieved 

with the remaining senses. Specifically, a blind individual can explore and identify 

objects haptically (i.e. via touch) and can also localize and identify objects based 

on the sounds they emit. But how would a blind individual perceive objects that 

are silent and beyond reachable space? Without vision, the perception of objects 

in such a situation would be impossible. The use of echolocation, though, offers 

the opportunity for blind individuals to overcome this issue, as the use of echoes 

allows individuals to perceive silent objects at a distance. Therefore, echolocation 

can serve to a degree as a substitute for vision because it allows blind individuals 

to perceive aspects of their environment that are not directly accessible via any 

of the remaining senses. 

It is a rare opportunity in science to encounter a topic area that is both 

exceptionally interesting and relatively untapped in terms of empirical research. 

Although there have been anecdotal reports on enhanced sensory abilities of the 

blind in past centuries and also some behavioural investigations during the mid-

20th century, research in the field has failed to gain any significant traction. It has 

been only recently that human echolocation has captured the attention of a small 
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number of researchers, and our understanding of the use of echolocation 

techniques by blind humans is now only slowly developing. Given the obvious 

benefits of echolocation, it is important to continue to better our understanding of 

the technique in order to validate its utility as an additional resource for the blind. 

The current thesis explores some of the behavioural applications of echolocation 

as well as the neural underpinnings of echo processing, all with the ‘visual’ 

nature of echolocation in mind. 

1.2 Sensory Loss 

Before delving into the literature on echolocation, it is important to have a basic 

understanding of how the absence of vision affects the structure and function of 

the brain. Humans are undoubtedly visual animals, and we rely heavily on vision 

for perceiving and acting within our environment. This is reflected in the 

substantial amount of cortex dedicated to the processing of vision and its related 

functions. Furthermore, it has been argued that it is vision that is the dominant 

sense, and that visual input is required for calibrating certain aspects of audition 

and somatosensation (Rauschecker, 1995; in animals: Brainard & Knudsen, 

1998; Knudsen, 1998). But, if the human brain is so reliant on visual information, 

what happens in the absence of this input? There is a common belief that, in the 

absence of one sensory system, the remaining sensory systems become 

enhanced to compensate for the loss. While this is certainly a generalized and 

over-simplified statement, there is an element of truth to it. It is not uncommon for 

other neural processes to extend and strengthen connections into the available 

‘real estate’ in the brain; that is, the cortical areas normally dedicated to the 

processing of the sense that is absent. This process – known as neuroplasticity – 

is actually a feature of the healthy brain and is the mechanism for learning, 

growth, and development (Pascual-Leone, Amedi, Fregni, & Merabet, 2005). 

Since the brain is the source of human behaviour, it must be capable of being 

molded by environmental pressures, physiological modifications, and experience. 

This applies especially in cases where sensory input is absent, and the brain 
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often compensates for the lack of input by increasing the cortical representation 

of one or more of the remaining senses. 

1.2.1 Behavioural Sensory Compensation 

As discussed above, the absence of sensory input from a particular modality may 

result in behavioural compensation in one or more of the remaining senses. In 

the case of blindness, superior performance (compared to sighted individuals) 

has been observed in both the somatosensory (i.e. tactile) and auditory domains. 

For example, several studies have shown that blind individuals are superior to 

sighted individuals in discriminating grating orientation with their fingertips 

(Goldreich & Kanics, 2003; Legge, Madison, Vaughn, Cheong, & Miller, 2008; 

Van Boven, Hamilton, Kauffman, Keenan, & Pascual-Leone, 2000). Furthermore, 

it was found that these tactile improvements did not correlate with Braille-reading 

proficiency or the age at which the individuals learned to read Braille (Legge et 

al.). It remains unclear, though, whether the enhanced tactile sensitivity is due to 

the lack of visual input per se, or to the fact that blind individuals rely more 

heavily on tactile cues (e.g., for Braille reading and object exploration). There is 

evidence to suggest that the increased sensitivity is simply due to experience 

with Braille reading, with results indicating that the reading finger on the dominant 

hand shows the most improved sensitivity (although the non-reading fingers on 

the dominant hand showed some improvement as well) and no sensitivity 

differences from sighted individuals for tactile stimulation of the lips (Wong, 

Gnanakumaran, & Goldreich, 2011). However, Chebat, Rainville, Kupers, and 

Ptito (2007) saw improvements in sensitivity on the tongue in a subset of their 

blind participants, thus suggesting that widespread and nonspecific 

somatosensory enhancement may occur in at least some blind individuals. 

The possibility of auditory sensitivity enhancement in the blind, on the 

other hand, has been tested more thoroughly. For example, numerous studies 

have shown that blind individuals show enhanced pitch – or frequency – 

perception. More specifically, blind individuals are better than sighted individuals 

at discriminating the pitch of sounds (Wan, Wood, Reutens, & Wilson, 2010), and 
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they can also perceive changes in pitch at speeds as much as ten times faster 

than sighted people (Gougoux et al., 2004). Furthermore, the prevalence of 

perfect pitch – that is, the rare ability to specifically identify the pitch of tones 

without a reference – is significantly higher in blind individuals with musical 

training as compared to sighted musicians (Hamilton, Pascual-Leone, & Schlaug, 

2004). Blind people also have better auditory temporal resolution (Muchnik, 

Efrati, Nemeth, Malin, & Hildesheimer, 1991). 

 Perhaps the most widely studied aspect of auditory compensation in the 

blind is in sound localization. Blind participants have been shown to have 

binaural auditory spatial mapping that is comparable or superior to sighted 

individuals; furthermore, blind participants show enhanced monaural localization 

as compared to sighted listeners (Lessard, Paré, Lepore, & Lassonde, 1998). 

Further investigations on auditory localization have revealed that the 

enhancement seen in blind individuals is typically in the peripheral auditory fields 

only (Röder et al., 1999). In addition, blind individuals show superior performance 

to sighted individuals in discriminating the distance of sound sources using 

direct-to-reverberant cues (Kolarik, Cirstea, & Pardhan, 2013). These findings 

suggest that, although vision may normally dominate in calibrating spatial 

relations, the absence of visual input – particularly during development – may 

allow for auditory spatial relationships to become more developed and refined in 

an atypical fashion. On the other hand, visual calibration may play an important 

role in forming Euclidean auditory relationships because blind individuals show a 

deficit on more difficult auditory tasks, such as the spatial bisection of source 

sounds (Gori, Sandini, Martinoli, & Burr, 2014) and localization along the vertical 

plane (Zwiers, Van Opstal, & Cruysberg, 2001). Overall, the existing evidence 

suggests that blind individuals do show enhanced auditory abilities, but these 

enhancements may manifest differently across individuals and may be beneficial 

for only certain classes of auditory tasks. 
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1.2.2 Neural Reorganization Following Sensory Loss 

For blind individuals to show behavioural improvements in auditory and tactile 

tasks there must be changes at the cortical level that underlie and produce these 

enhancements. Numerous studies have shown that the occipital cortex of blind 

subjects is activated during auditory and tactile tasks (for review, see Collignon, 

Voss, Lassonde, & Lepore, 2009). For example, a positron emission tomography 

(PET) study found that the occipital cortices of the blind participants but not the 

sighted participants were activated during an auditory localization task (Weeks et 

al., 2000). A separate PET study showed that during a monaural sound 

localization task (on which blind individuals typically outperform sighted 

individuals, as discussed above) blind participants showed activation in the 

occipital cortex, and this was not seen in sighted participants (in fact, during a 

binaural task sighted participants actually showed a decrease in activity in the 

occipital cortex) (Gougoux, Zatorre, Lassonde, Voss, & Lepore, 2005). 

Furthermore, the activity in the occipital cortex of the blind participants was 

strongly correlated with their sound localization accuracy. In addition to general 

sound-related activation in the occipital cortex, evidence suggests that there is 

feature-specific activation. More specifically, the use of a sensory substitution 

device that converts visual shape information into auditory shape signals was 

found to activate the lateral occipital complex, an area traditionally associated 

with the processing of visual shape and form (Amedi et al., 2007). 

 While the findings discussed above are certainly intriguing and suggest a 

relationship between behavioural and functional compensation, causal links are 

necessary in order to draw such a conclusion. Collignon, Davare, Olivier, and De 

Volder (2009) specifically addressed causality by applying transcranial magnetic 

stimulation (TMS) to the brains of blind participants while they performed a sound 

lateralization task. When TMS was applied to the intra-parietal sulcus (a brain 

area in sighted individuals that is critical for the spatial processing of sound), the 

researchers saw no change in performance on the task. When TMS was applied 

to the occipital cortex, however, the participants’ performance was disrupted. 
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These results suggest that the occipital cortex of early-blind individuals can 

reorganize to support auditory spatial processing. 

A particularly interesting case related to tactile processing in the blind also 

sheds light on causality between behavioural and functional compensation. 

Specifically, following a bilateral occipital stroke, a blind woman was no longer 

able to interpret Braille, although she had been a proficient Braille reader prior to 

her stroke (Hamilton, Keenan, Catala, & Pascual-Leone, 2000). Interestingly, her 

somatosensory perception of the Braille was intact – that is, she could detect the 

Braille and feel the spatial relationships of the bumps. What she could not do, 

however, was infer the meaning of the Braille. This suggested, then, that the 

occipital activation typically seen in Braille readers (Burton et al., 2002; Sadato et 

al., 1996) likely underlies the understanding but not the sensation of Braille. 

Supporting this possibility is a TMS study that applied short bursts to the occipital 

cortex during Braille reading to disrupt processing in that area. They found that 

blind individuals showed an increased number of interpretation errors when TMS 

was applied to occipital areas but not to a control area (Cohen et al., 1997). 

Overall, these studies suggest that in the absence of visual input the occipital 

cortex not only plays a special role in the interpretation of Braille, but also that 

increased or strengthened connections between somatosensory and occipital 

cortices must exist to mediate the two components of Braille reading (i.e. tactile 

and interpretation). 

1.3 Echolocation in Animals 

Echolocation is a rare practice among animals, and the use of echo perception is 

typically limited to animals whose living environments are not conducive to the 

use of vision (for example, nocturnal, deep-sea, and in-ground-dwelling animals). 

Of all mammals, bats and the Cetacea (whales and dolphins) have the most 

advanced echolocation capabilities, although some other small insectivores (for 

example, shrews) use echolocation on a more basic level (Altringham, 1996). In 

addition, there are some species of birds that echolocate at least to some extent; 

for example, cave dwelling birds such as the South American oilbird and the 



 

8 

 

South-East Asian swiftlets (Brinklov, Fenton, & Ratcliffe, 2013; Price, Johnson, & 

Clayton, 2004). Because the most extensive amount of research has been 

conducted on echolocating bat species, the remainder of this section will focus 

primarily on an overview of the current knowledge regarding bat echolocation. 

1.3.1 Bat Echolocation : An Overview 

The first experiments on the navigation and location methods of bats were 

performed in 1793 by Lazzaro Spallanzani, who discovered that bats were able 

to navigate with their eyes covered and in total darkness (Griffin, 1959). Although 

the bats did not appear to use their eyes very much, Spallanzani found that 

covering or damaging their ears proved to be detrimental and the bats would 

collide with obstacles and were unable to hunt successfully. At that time, though, 

it was thought that bats were mute and it was not until some 130 years later that 

ultrasonic detection technology was created and it was discovered that bats had 

the ability to avoid obstacles using sound. Finally, in 1938 Griffin demonstrated 

that bats emit sounds in the ultrasonic frequency range and listen to echoes from 

objects in the path of the sound beam, allowing them to orient and locate objects 

in the dark. It was Griffin who coined the term ‘echolocation’ (Griffin 1944; 1958). 

Echolocation is similar to other sonar systems (for example, radar) in that 

the animal utilizes reflected echoes from self-produced sounds. Bats typically use 

one of two high-frequency call styles: a constant frequency (CF) call or a 

frequency modulated (FM) call (Suga & O’Neill, 1979). Some species of bats also 

use a combination of CF and FM calls. CF calls, as their name suggests, are of a 

single frequency to which the bat’s auditory system is specifically tuned and are 

usually of a longer duration (10 – 50+ ms). For the most part, CF calls (or the CF 

component of CF-FM calls) are useful for the simple detection of objects, 

regardless of any object features, such as size, shape, and material. Because CF 

calls are of a single frequency, they are also useful in determining the relative 

velocity of objects (for example, a flying insect) toward or away from the bat 

(Simmons, Howell, & Suga, 1975). This is due to Doppler shift, which refers to 

the changes in the frequency of the echoes as an echo-reflecting surface moves 
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toward (increase in frequency) or away from (decrease in frequency) the bat. 

Bats that use CF calls show neural specialization for processing sound at and 

around their call frequency. These bats can modulate the frequency of their calls 

– for example, to compensate for Doppler shift – so that the resulting echo 

occurs at the preferred frequency. 

FM calls, on the other hand, are typically shorter in duration (0.5 – 10 ms) 

and rapidly sweep across a wide range of frequencies (i.e. they are broadband 

signals). Because FM calls are broadband, this makes them particularly suitable 

for gathering information about object features, such as size, shape, material 

properties, and distance, because the frequency components of the signal (and 

the intensity at each of the components) can be compared to those that are 

present in the echo. For example, the size of objects can be determined via 

overall echo intensity (i.e. larger objects will reflect a greater amount of signal 

than smaller objects) and also through the object aperture (that is, the spread of 

angles from which the echoes are reflected) (Heinrich et al., 2011). Similarly, 

shape information can be inferred from the intensity of the echo as well as 

spectral differences in the echo (relative to the signal). In terms of material 

perception, the broadband FM call is especially useful, because reflective 

materials tend to reflect sound across the entire range of frequencies while 

absorptive materials tend to absorb high frequencies and reflect only lower 

frequencies (Simmons, Howell, & Suga, 1975).   

In terms of distance perception, echolocating bats can determine the 

distance of a target object by listening for the delay between their own sound 

production and any returning echoes (Jones, 2005). In fact, neurons in the 

auditory cortex of echolocating bats are specifically tuned to these delays 

(Wenstrup & Portfors, 2011; Köss, 2014). Differences in echo intensity and the 

time of arrival of the echoes at the ears are cues used to determine location 

(particularly in terms of horizontal angle) (Muller, 2004).  

The above discussion is a simplification of the mechanisms used for 

extracting and interpreting echo information, but at a basic level these processes 

aid the bat in navigating its environment and hunting for prey. These basic 
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principles also apply to human echolocation, and they will be discussed within 

this context in the following sections. 

1.4 Echolocation in Humans 

1.4.1 The Palatal Click 

Although any acoustic signal can theoretically be used for echolocation, the 

palatal click – or mouth click – is by far the preferred signal of expert 

echolocators. The clicking sound is produced by rapidly moving the tongue 

backwards and downwards from the hard palate directly behind the teeth. The 

signals produced in this way tend to be short and spectrally broad, and are thus 

quite similar to the FM calls used by some species of echolocating bats (although 

they are at lower frequencies due to the smaller human audible range). Although 

expert echolocators typically use the palatal click, they also report using other 

signals such as finger-snaps, hand claps, tapping of the white cane, and 

vocalizations other than mouth-clicks. Given the number of possibilities for 

producing a signal, researchers have aimed to determine the best type of signal 

to use, but a consensus is lacking. For example, it has been suggested that 

longer-duration signals (500 ms) may be better than shorter ones because they 

result in a surplus of echo information due to repetition pitch (Schenkman & 

Nilsson, 2010). Also, some say that noise signals provide more and better 

information than click signals (Arias & Ramos, 1997), though it has also been 

suggested that in particular the palatal tongue click is the best signal for 

echolocation (Rojas, Hermosilla, Montero, & Espi, 2009). Therefore, although the 

best signal to use is still up for debate, the palatal click is certainly the most 

common and preferred signal choice amongst echolocators.  

1.4.2 Behavioural Investigations of Human Echolocation 

Before anything was known about human echolocation, it was theorized that the 

ability of some blind humans to sense and avoid obstacles in their surroundings 

was due to ‘facial vision’. It was thought that an object in close proximity would 

cause slight changes in pressure on the skin, and thus that the face could ‘feel’ 
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the presence of an object. Later, Supa, Cotzin, and Dallenbach (1944) directly 

tested this notion, and found that blind individuals were unable to detect the 

presence of an obstacle when their ears were occluded. Therefore, they 

concluded that the ability of these blind individuals to sense the presence of an 

obstacle under normal circumstances must be auditory-based. This was later 

confirmed, and the use of crude echolocation was adopted as an explanation for 

the participants’ obstacle-detecting abilities. 

Once it was confirmed that some blind individuals could use echoes to 

perceive objects, the field of human echolocation enjoyed a brief yet productive 

period of empirical research. In a classic study on human echolocation, Kellogg 

(1962) showed that blind individuals could comment on size, distance, and 

texture based on the echoes that reflected from objects and surfaces. 

Specifically, Kellogg found that blind participants could detect objects as small as 

15 cm in diameter, and also detect the presence of an object at distances 

ranging from 30 – 120 cm. Furthermore, Kellogg showed that blind participants 

could discriminate between different materials, such as velvet, glass, and wood.   

Rice and colleagues confirmed and expanded on Kellogg’s (1962) 

findings, and showed that blind individuals could comment on the spatial 

locations of echo-reflecting surfaces with impressive accuracy (Rice, 1967; Rice, 

1969; Rice & Feinstein, 1965; Rice, Feinstein, & Schusterman, 1965). Following 

these initial findings, however, research on human echolocation fell out of favour, 

and it has been only recently that it has regained traction. 

The recent work on human echolocation has made significant 

contributions to our understanding of the technique. For example, using an 

auditory adaptation of a Vernier acuity task, Teng, Puri, and Whitney (2012) 

showed that expert echolocators have impressive spatial acuity of approximately 

1.2° of azimuth, which is comparable to the thresholds found in bats performing 

similar tasks and also to acuity in the visual periphery. Furthermore, it has 

recently been shown that blind echolocators can accurately and reliably extract 

echo information even from recorded sounds, and can comment on the location, 

motion, shape, and material properties of objects (Thaler, Arnott, & Goodale, 
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2011; Thaler, Milne, Arnott, Kish, & Goodale, 2014; Arnott, Thaler, Milne, Kish, & 

Goodale, 2013). These recent findings have broadened our understanding of 

human echolocation and have provided numerous avenues for future research. 

An important consideration in human echolocation is the fact that under 

normal circumstances the brain suppresses echoes, a phenomenon called the 

‘precedence effect’ (Wallach, Newman, & Rosenzweig, 1949). This effect 

describes how when similar sounds occur from different locations with a brief 

delay, the auditory system suppresses the later sound (i.e. an echo) and gives 

‘precedence’ to the first sound (i.e. the source). This process aids in sound 

localization because it causes sound reverberations (for example, from walls, 

ceilings, and other surfaces) to be suppressed and the original source to be 

attended to. An obvious question, then, is how can people echolocate if their 

brains suppress echoes? This question was specifically addressed in a recent 

study with sighted individuals trained on basic echolocation (Wallmeier, Geβele, 

& Wiegrebe, 2013). The researchers found that the precedence effect still 

operated, but was significantly reduced during an active echolocation task as 

compared to a passive listening task. In other words, the precedence effect 

operated normally (i.e. the echoes were suppressed) only when the echoes were 

not informative; when the echoes were informative (i.e. in the echolocation task), 

the precedence effect was reduced and the participants consciously perceived 

the echoes. Therefore, it is likely that a similar process occurs in blind 

echolocation experts to support complex echo processing. 

1.4.3 Neural Correlates of Human Echolocation 

In the first neuroimaging study investigating human echolocation, it was found 

that the calcarine cortices (i.e. what is normally primary visual cortex) of two blind 

expert echolocators were activated when these individuals perceived objects that 

were identifiable only by echoes (Thaler et al., 2011). Specifically, their blood 

oxygenation level dependent (BOLD) activity while listening to binaural 

recordings of their clicks and the reflected echoes increased not only in auditory, 

but also in visual cortex. Furthermore, when the investigators isolated the 
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processing of just the echoes, the BOLD activity was specific to just the visual 

cortex. Sighted control participants did not show visual cortical activation during 

the tasks. Therefore, these results suggest that the visual cortex may play a 

special role in processing echo information in blind expert echolocators. 

These initial findings on the neural correlates of echo processing in 

general set the foundation for investigating how the blind echolocating brain 

parses and processes specific types of echo features. For example, it has 

recently been shown that the processing of echoes reflected from a moving 

surface activated brain areas in the temporal lobe that might potentially overlap 

‘visual’-motion area MT+, and that this activation showed a contralateral 

preference in blind echolocation experts (Thaler et al., 2014). In addition, the 

processing of object shape via echoes activates regions in the ventrolateral 

occipital cortex, encompassing areas in the lateral occipital complex (LOC), a 

brain area traditionally involved in visual shape processing (Arnott et al., 2013). 

Taken together, these findings suggest not only that the processing of echoes 

may be feature-specific, but also that this processing may make use of what are 

normally feature-specific visual areas.  

1.5 The Physical-Acoustic Principles of Echolocation 

The following will discuss some of the basic mechanisms thought to operate in 

the human brain for interpreting the information contained in echoes. The 

mechanisms discussed below are quite similar to those discussed in the section 

on bat echolocation because much about human echolocation is inferred from 

similar processes in bats. Therefore, the discussion of the mechanisms within the 

context of human echolocation will be brief. To understand these mechanisms, 

though, we must begin with a basic overview of the human auditory system. 

1.5.1 The Auditory Pathway 

Auditory processing begins at the level of the ear, which is the mechanism for 

receiving and transducing air perturbations, or sound. The pinna – which is the 

visible portion of the outer ear made up of folds of cartilage – acts as a receiver 
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and funnels incoming sounds into the ear canal. The sound then travels to the 

middle ear which consists of a series of small, delicate bones whose role is to 

amplify sounds. From the middle ear, sound travels to the inner ear which 

contains the cochlea. The cochlea is a spiral-shaped, fluid-filled structure that is 

organized based on frequency, with high-frequency selectivity at the basilar 

portion and low-frequency selectivity at the apical end. The cochlea is responsive 

to sounds ranging from approximately 20 – 20,000 Hz, and thus this range of 

frequencies comprises the human audible range. When a sound enters the 

cochlea, the frequency components of the sound will perturb the respective 

frequency sites on the cochlea. The cochlea is also responsive to the intensity of 

the various frequency components of a sound. These perturbations result in the 

displacement of hair cells, which then transduce the mechanical perturbation 

information into an electrical signal which is sent to the brain via the auditory 

nerve. 

After exiting the inner ear, the auditory nerve then projects to brainstem 

structures, first reaching the cochlear nucleus and then the superior olivary 

complex. The superior olivary complex is comprised of the lateral superior olive 

and the medial superior olive, with the former playing a role in the detection of 

inter-aural level differences (ILD) and the latter a role in inter-aural time 

differences (ITD). These areas then project to the lateral lemniscus, which then 

relays the signal to the contralateral inferior colliculus. It is believed that the 

inferior colliculus plays a role in integrating information from the various 

brainstem structures, and then projects this information to the medial geniculate 

nucleus (MGN) of the thalamus. The MGN contains multiple sub-nuclei, each 

dedicated to a particular function of auditory perception. The MGN is the last 

subcortical site of auditory processing, with its afferent connections projecting to 

primary auditory cortex, located along the superior temporal gyrus. The primary 

auditory cortex is responsible for the processing of basic features of sound, 

including temporal pattern recognition and pitch change direction. Beyond the 

primary auditory cortex, sound information is further processed to support 

aspects of audition such as speech, sound identification, and localization. 
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The above focused on the ascending connections within the auditory 

system, but it is also important to discuss the influence of the cortex on the lower-

order auditory structures. The cortex projects numerous descending connections 

that flow down through the structures discussed above in order to modulate their 

functions. For example, descending connections can help to protect the small 

bones within the middle ear from high-intensity sounds by causing the 

surrounding muscles to contract, and can also protect the hair cells in the inner 

ear by reducing their mobility. Furthermore, the cortex can have a top-down 

influence on the cochlea by modulating its sensitivity at specific frequencies. This 

top-down modulation may be particularly relevant in echolocation because the 

cortex can inform the cochlea to specifically attend to frequencies contained 

within the signal emission. In addition to modulation at the level of the cochlea, 

descending connections can also influence activity within the cochlear nucleus to 

act as a gatekeeper on ascending information. Overall, auditory perception is the 

product of both ascending and descending connections within the auditory 

system, and both of these pathways certainly play important roles in perception 

via echolocation. 

1.5.2 Using Echoes to Perceive Location 

One of the advantages of having two spatially-separated ears is that, depending 

on where a sound is coming from, the information arriving at the ears will have 

slight disparities in timing, intensity, and frequency composition. These disparities 

allow us to determine the azimuthal location of objects with impressive precision, 

and this is true for source sound localization as well as localization via 

echolocation. In terms of echolocation, when an individual emits a signal, that 

signal will come into contact with an object or surface and reflect it back to the 

listener. Say, for example, that an object is located slightly to the left of centre. 

The echo that reflects from that object will arrive at the left ear sooner and with a 

higher intensity than at the right ear. These disparities are termed interaural time 

differences and interaural level differences, respectively. The reason for these 

differences is due to the fact that the object in question is closer to the left ear 
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and also to the fact that the head creates a ‘shadow’ that attenuates sound. The 

human auditory system is especially sensitive to these very slight differences, 

and expert echolocators show remarkable precision in determining the horizontal 

position of objects via reflected echoes. 

1.5.3 Using Echoes to Perceive Distance 

In the same way that bats can determine distance using FM calls, blind human 

echolocators can determine the distance of objects because they have the 

benefit of comparing the time of the emission of their signal to the time of arrival 

of the echo at the ears. Sound travels at a mostly constant rate (343 m/s at 

20°C), so the computations for determining distance need only rely on the signal-

echo comparison. An additional advantage for distance computations is that 

distance information is not confounded or influenced by any other factor (such as 

size, shape, material, etc.). For example, an object that is close – regardless of 

any other object properties – will reflect echoes almost immediately. Echoes 

reflected from an object that is far away, on the other hand, will take longer to 

arrive at the ears, and thus the individual can conclude that the echo-reflecting 

surface is far away. Interestingly, humans are quite poor at localizing the 

distance of source sounds (e.g., a sound emitted from a loudspeaker). For 

example, while it may be true that loud sounds are typically close and faint 

sounds are far, the opposite can be true as well. Therefore, echolocation 

provides a unique advantage for determining the distance of objects due to the 

ability to compare the timing of signal emission and echo arrival. Because 

echolocation is not a typical or common method of perception and navigation in 

humans, it is unclear if – like echolocating bats – human echolocators show 

neural representations for specific signal-echo delays. It is possible, though, that 

human echolocators develop new representations or enhance existing ones in 

order to support distance perception via echoes.  

 In addition to the information about distance inferred from the timing of 

signal emission to echo arrival, the distance of echo-reflecting surfaces can also 

be determined based on repetition pitch. Repetition pitch refers to the 
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‘colouration’ of the tone or pitch of a sound as a result of very slight delays 

(typically less 30 ms) in arrival at the ears between the direct emission and the 

reflection (Bilsen & Goldstein, 1974; Yost, 1997). In these cases, the listener 

does not hear an echo per se, but rather hears a ‘fused’ sound that is slightly 

different in pitch as compared to the emission. This fusion of the direct emission 

and the reflection also results in an increase in the overall level (i.e. intensity) of 

the sound at the ears (Schenkman & Nilsson, 2010). Therefore, echo-reflecting 

surfaces that are located at different distances will differentially affect the overall 

pitch, and thus this information can be informative for distance discriminations. It 

is possible that blind echolocators use some combination of absolute timing 

differences (i.e. delay between the emission and the echo arrival) and repetition 

pitch, with the overall contribution of either strategy depending on the distance of 

the surface and other environmental factors.   

1.5.4 Using Echoes to Perceive Size 

The perception of size via echoes is more complicated than simple location and 

distance perception, and likely makes use of many of the same mechanisms 

discussed in the context of bat echolocation. As mentioned earlier, at a basic 

level, size can be inferred from the overall intensity of the echo: large objects will 

reflect more of the signal and small objects will reflect less. Furthermore, the 

echolocator can directly compare the intensity of their emission to the intensity of 

the echo to infer basic size information. Echo aperture, which represents the 

angles from which the echoes reflect from the object, can also be useful in 

determining the size an echo-reflecting surface. It is important to note, however, 

that both of these cues to object size can be affected by other object properties, 

such as distance and material. Therefore, the brain must take into account 

several factors in order to deduce the true object size. This problem is addressed 

in Chapter 3 of this thesis. 
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1.5.5 Using Echoes to Perceive Shape 

The process of inferring shape information from echoes remains comparatively 

less understood in the context of human echolocation and is specifically 

addressed in Chapter 2 of this thesis. For two-dimensional objects, it is likely that 

echolocators trace the edges or contours of the object. In other words, by 

scanning the object while using mouth clicks (or any echolocation signal), the 

echolocator can determine the boundaries of the object (i.e. the point at which 

there is no longer a reflection) and, once the boundary has been determined, can 

further inspect the edges in order to come to an overall percept of the shape. In 

terms of three-dimensional shape identification, it is possible that the shape itself 

can affect the acoustic parameters of the echo. For example, a concave shape 

will amplify sound relative to a convex shape. In order to identify a three-

dimensional shape such as a cube, an echolocator may make use of subtle delay 

and frequency differences as a result of facets of the cube being closer or farther 

away. As mentioned above, though, the mechanisms underlying shape 

identification via echoes remain only crudely understood, and thus further 

research is necessary. 

1.5.6 Using Echoes to Perceive Material 

Expert echolocators repeatedly report that one of the most salient and 

informative object cues extracted from echoes are those related to the material 

properties of objects. This is perhaps not surprising since an echo will 

necessarily contain characteristics concerning the surface it was reflected from. 

The fact that echolocation offers the opportunity to compare the emitted signal to 

the echo has been a common theme in this section. This fact is also of particular 

relevance to material perception. An echo from a perfect reflector would be 

identical to the emission in terms of its frequency components. Any deviation 

away from the frequency components of the emission provides information about 

the consistency of the reflective surface. As materials become more absorbent, 

they tend to absorb higher frequencies and reflect lower frequencies. Therefore, 

if an echolocator emits a click signal (which, as mentioned previously, is typically 
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broadband) and the echo contains only the lower frequency components, it can 

be inferred that the reflective surface was made of an absorptive material (i.e., 

less dense). If almost all of the frequency components of the echo match the 

click, then the surface was reflective (i.e., more dense). Of course this is a 

simplification, but echolocators often comment on and discriminate between 

various types of materials. 

1.6 Thesis Objectives and General Overview 

The overarching goal of the work presented in this thesis was to contribute to our 

current understanding of human echolocation by examining some of its basic 

functions, including the perception of the shape, size, and material properties of 

objects. To address these facets of echolocation, I used both behavioural 

psychophysical techniques as well as neuroimaging. Given the fact that 

echolocation can provide for the perception of spatial aspects of the environment 

similar to vision, and in this way act as a substitute for vision (though with 

reduced resolution), the experiments within this thesis were planned and 

discussed with the ‘visual’ nature of echolocation in mind. 

The first goal of my thesis work was to determine the role of head 

movements in the identification of two-dimensional shape, and these findings are 

presented in Chapter 2. Briefly, I found that blind echolocators were able to 

accurately identify the shape of two-dimensional objects, but that their ability to 

do so was dependent on the use of head and body movements to ‘scan’ the 

objects’ edges. As mentioned above, I addressed my research questions with the 

‘visual’ nature of echolocation in mind, and so I suggest that these scanning 

movements may be similar to the many saccades made by sighted individuals 

when visually surveying an object or scene.  

The second goal of my thesis work was to investigate the possibility that 

object size perception via echolocation shows size constancy – a perceptual 

phenomenon associated with vision, and these findings are presented in Chapter 

3. The results of the study showed that an expert echolocator accurately 

perceived the true physical size of objects independent of the distance at which 
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they were located, even though changes to object distance affect size-related 

echo information. These findings suggest that there may be further parallels 

between vision and echolocation than previously thought. 

My third goal was to determine the neural correlates of material-echo 

processing, and these findings are presented in Chapter 4. By having expert 

echolocators listen to recordings of echoes reflected from surfaces of different 

materials, I show not only that they can determine the material properties of 

objects, but also that the neural processing underlying this ability may make use 

of a multimodal visual-auditory-material processing area in the parahippocampal 

cortex. Again, these results highlight the apparent relationship between 

echolocation and vision. 

Taken together, the work presented in the current thesis makes a 

significant contribution to our current understanding of human echolocation, and 

particularly highlights the apparent parallels with vision and visual processing. 

Overall, the current work supports echolocation as a viable resource for the blind. 
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2.1 Abstract 

Similar to certain bats and dolphins, some blind humans can use sound echoes 

to perceive their silent surroundings. By producing an auditory signal (e.g., a 

tongue click) and listening to the returning echoes, these individuals can obtain 

information about their environment, such as the size, distance, and density of 

objects. Past research has also hinted at the possibility that blind individuals may 

be able to use echolocation to gather information about 2D surface shape, with 

definite results pending. Thus, here we investigated people’s ability to use 

echolocation to identify the 2D shape (contour) of objects. We also investigated 

the role played by head movements, i.e. exploratory movements of the head 

while echolocating, because anecdotal evidence suggests that head movements 

might be beneficial for shape identification. To this end we compared the 

performance of six expert echolocators to that of ten blind non-echolocators and 

ten blindfolded sighted controls in a shape identification task with and without 

head movements. We found that expert echolocators could use echoes to 

determine the shapes of the objects with exceptional accuracy when they were 

allowed to make head movements, but that their performance dropped to chance 

level when they had to remain still. Neither blind nor blindfolded sighted controls 

performed above chance, regardless of head movements. Our results show not 

only that experts can use echolocation to successfully identify 2D shape, but also 

that head movements made while echolocating are necessary for correct 

identification of 2D shape. 

2.2 Introduction 

It is well known that some animals use self-generated sounds to perceive their 

surroundings via reflected sound waves, or echoes. Echolocation can be used in 

environments not conducive to vision, thereby allowing animals to navigate and 

forage even in complete darkness. Similarly, some blind humans have developed 

the ability to use echoes from self-produced sounds to perceive their silent 

surroundings. For example, blind echolocators can perceive information such as 

the size, shape, distance, motion, and material properties of silent objects 
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(Arnott, Thaler, Milne, Kish, & Goodale, 2013; Kellogg, 1962; Rice, 1967; Rice, 

1969; Rice & Feinstein, 1965; Rice, Feinstein, & Schusterman, 1965; 

Schenkman & Nilsson, 2010; Stoffregen & Pittenger, 1995; Teng, Puri, & 

Whitney, 2012; Teng & Whitney, 2011; Thaler, Arnott, & Goodale, 2011; Thaler, 

Milne, Arnott, Kish, & Goodale, 2013). In this way, then, echolocation could be 

considered a crude substitute for vision, allowing blind humans to perceive 

aspects of their environment that would otherwise go undetected.  

Although our knowledge of echolocating animals such as dolphins and 

some species of bats is quite extensive (for example, see Harley, Putman, & 

Roitblat, 2003; Schnitzler & Kalko, 2001; Thomas, Moss, & Vater, 2004), 

comparably little research has been dedicated to understanding the use of 

echolocation by humans. In the 1940s, it was determined that blind individuals’ 

ability to avoid obstacles and sense the presence of objects was not due to ‘facial 

vision’, but to the use of active auditory perception (Ammons, Worchel, & 

Dallenbach, 1953; Cotzin & Dallenbach, 1950; Supa, Cotzin, and Dallenbach, 

1944). Following this discovery, a series of behavioural investigations of 

echolocation revealed the ability of blind echolocators to detect the presence of 

objects and also to comment on object features such as size, distance, and 

material properties (Kellogg, 1962; Rice, 1967; Rice, et al. 1965; Schenkman & 

Nilsson, 2010; Schörnich, et al. 2013; Teng et al., 2012). Studies have even 

provided evidence that sighted individuals can learn to echolocate as well (Teng 

& Whitney, 2011; Ammons et al., 1953). 

Although human echolocation is receiving increasing attention in the 

literature, a clear understanding of the ability of blind echolocators to discern 2D 

shape is lacking. The perception of shape is likely important to a blind 

echolocator, for example during navigation where landmark identification and 

obstacle avoidance are critical. In 1967, Rice reported preliminary results of a 2D 

shape discrimination task which suggested that blind echolocators could 

distinguish between a circle, square, and triangle, but he never followed-up on 

these initial observations. Later, Hausfeld, Power, Gorta, and Harris (1982) 

showed that untrained sighted individuals could learn to discriminate simple 
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shapes using echoes, and that a blind participant performed within the range of 

these sighted individuals. Furthermore, we know from the literature that 

echolocating bats can perceive the shape of objects from echoes and can use 

this information to discriminate between food and non-food objects (Simmons & 

Chen, 1989). Thus, it is reasonable to believe that blind expert echolocators can 

determine the shape of objects using echoes. What remains unclear in the 

literature, though, is how the use of movement affects shape identification. We 

know anecdotally that when expert echolocators are naturally using echolocation 

they typically make many movements with their head. In fact, almost all of the 

studies on echolocation from the last century mentioned that their echolocating 

subjects used head movements that seemed to aid in performance on the tasks, 

but no research has been done to follow up on these reports. In the context of 2D 

shape perception, head movements are likely to be useful for resolving the 2D 

shape of an object, for example by acoustically ‘tracing the contour’ of an object.  

In sum, based on the evidence to date, the aim of the current study was 

two-fold: (1) to determine if blind expert echolocators can use echolocation to 

identify 2D shapes and (2) to determine if this behaviour is affected by imposing 

constraints on their head movements. We found that expert echolocators were 

remarkably accurate at identifying shapes when they were allowed to freely move 

and explore the objects as they would naturally; when they were required to 

remain still, however, their performance declined dramatically. The results of the 

current work contribute to our understanding of the applications of echolocation 

and show that head movement is crucial to successful object identification (at 

least in the case of 2D shape perception). 

2.3 Methods 

2.3.1 Participants 

A total of 26 participants were recruited to participate in a shape identification 

experiment at The University of Western Ontario (London, Ontario, Canada). All 

testing procedures were approved by the University ethics board and participants 

gave written informed consent prior to testing. Participants were drawn from 
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three different groups: blind expert echolocators (EE) (reported everyday use of 

active echolocation and extensive experience with the technique), blind controls 

(BC) (reported little to no use of active echolocation techniques), and blindfolded 

sighted controls (SC) (reported normal or corrected-to-normal vision and no 

experience with echolocation techniques). Blind participants who reported any 

residual vision (for example, bright light detection) were also blindfolded. All 

participants reported to have normal hearing and no history of hearing difficulties. 

See Table 2.1 for participant details. 

It is important to note that blind and blindfolded sighted controls received 

no echolocation training prior to participating in the experiment. It is clear from 

previous research that sighted individuals can learn to use echoes (Teng & 

Whitney, 2011) and, of course, blind individuals can be trained as well. The 

purpose of the control participants in the current study, however, was to control 

for performance that could be attributed to factors other than echolocation 

expertise (super-sensitivity to echoes as a simple consequence of blindness, 

ambient sounds, sounds from the movements of the experimenter, etc.). The 

tongue-click, finger-snap, and other echolocation signals were explained to 

control participants and they were free to use the technique of their choosing, 

provided that the ‘signal’ was produced without any external device. 

2.3.2 Stimuli 

Four two-dimensional shapes were presented to all participants: a square (40 cm 

x 40 cm), a triangle2 (52 cm x 45 cm [height]), a rectangle oriented horizontally 

(100 cm x 16 cm), and the same rectangle oriented vertically (see Figure 2.1A). 

All of the shapes were made of a 0.5-cm thick foam board and covered with 

                                                 

2
 Please note that the surface area of the triangle is slightly smaller than the other stimuli. This 

was done to make the triangle ‘visually similar’ in size to the other shapes. We had participants 

EE1-3 verify that this difference in surface area would not be informative regardless of shape. 

Furthermore, as also mentioned in the ‘Results’, we confirmed through analysis of error 

distributions that performance in ‘triangle’ conditions was the same as for the other shapes. 
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aluminum foil. The shapes were positioned on a 0.6-cm diameter pole, which 

was determined to be undetectable by echolocation. Before beginning the 

experiment, all participants were familiarized with the four shapes (sighted 

controls were allowed only to touch the shapes and not to see them). 

2.3.3 Procedure 

All participants took part in two conditions: A ‘free-moving’ condition permitting 

head and body movements, and a ‘fixed position’ condition not permitting any 

movement. For both conditions participants EE1, EE2, and EE5 were tested in a 

Beltone Anechoic Chamber (18 feet high, 23 feet wide, 12 feet deep) at the 

National Centre for Audiology in London, Ontario, Canada. The chamber is 

equipped with a 125 Hz cut-off wedge system on the walls and ceiling, and 

ambient noise recordings indicated a noise floor of 18.6 dB (Larson-Davis 

System 824). Only participants EE1, EE2, and EE5 were tested in the anechoic 

chamber due to logistical reasons (i.e. additional participants were not available 

at the time of testing and the researchers had limited access to the chamber). 

For free-moving conditions, these participants were also tested in an echo- 

dampened room (2.75 m x 3 m, four walls covered in 3.8-cm convoluted foam 

sheets). After determining that there were no performance differences between 

the anechoic chamber and the echo-dampened room (see Results), we felt it was 

not necessary to test other participants in the anechoic environment. Therefore, 

all other participants in all conditions were tested in the echo-dampened room 

only. 

On each trial, one of the four shapes was presented. The presentation 

height was unique for each participant in order to centre the shapes at ear-level. 

For the free-moving conditions (Figure 2.1B), participants were situated at a 

starting position 40 cm away (measured from the ears) and centered on the 

shape. Once the trial began, participants could freely move their heads and/or 

bodies to examine the objects via echolocation. For the fixed position condition 

(Figure 2.1C), participants were situated 80 cm away from the shape and had to  
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Table 2.1. 

 

Participant Details for Expert Echolocators (EE), Blind Controls (BC), and Blindfolded 

Sighted Controls (SC) 

 

Subject Sex, 
Age 

Cause of Blindness Onset Residual Vision Echolocation Technique 

EE1 
EE2 
EE3 
EE4 
EE5 
EE6 

M, 45 
M, 29 
M, 56 
M, 49 
M, 44 
F, 21 

Retinoblastoma 
Glaucoma 

Optic nerve atrophy 
Retinoblastoma 

Retinopathy of prematurity 
Idiopathic intracranial 

hypertension 

Early 
Early, progressive 

Early 
Early 
Early 
Late 

None 
None 
None 
None 
None 

Bright light 

Tongue-click 
Tongue-click 
Tongue-click 

Speech, tongue-click 
Tongue-click 
Finger Snap 

BC1 
BC2 
BC3 
BC4 
BC5 
BC6 
BC7 
BC8 
BC9 

BC10 

M, 39 
M, 34 
F, 25 
F, 22 
M, 44 
M, 20 
M,40 
F, 60 
F, 24 
F, 32 

Leber congenital amaurosis 
Retinopathy of prematurity 

Diabetes 
Glaucoma, cataracts 

Retinopathy of prematurity 
Leber congenital amaurosis 

Optic nerve atrophy 
Retinoblastoma 

Retinopathy of prematurity 
Optic nerve atrophy 

Early, progressive 
Early 
Late 
Early 

Early, progressive 
Early, progressive 

Early 
Early 
Early 
Early 

Bright light  
Bright light (left eye)  

Low level vision (left eye) 
Bright light 
Bright light 

Bright light (left eye) 
None 
None 

Bright light 
Low level vision 

Speech, finger snap 
Finger snap, clap 
Finger snap, clap 

Speech, clap, finger snap 
Speech, finger snap 

Finger snap 
Clap, finger snap 

Speech, clap 
Clap 
Clap 

SC1 
SC2 
SC3 
SC4 
SC5 
SC6 
SC7 
SC8 
SC9 

SC10 

M, 30 
M, 29 
F, 22 
F, 58 
F, 31 
F, 45 
F, 47 
F, 37 
F, 35 
F, 56 

  Clap, speech 
Clap, finger snap 

Clap 
Clap 
Clap 

Clap, finger snap 
Clap 
Clap 
Clap 

Clap, finger snap 

 

 

 

 

 

 

 

 



 

33 

 

keep their head and body still for the duration of the trial. This farther distance 

(compared to the 40 cm starting distance in the free-moving condition) was 

reported by three expert echolocators to provide the “best overall impression” of 

the shape. They mentioned that being any closer to the objects in the fixed 

position condition would prevent them from gathering object edge information 

from the echoes. The 80 cm position was used for the fixed position condition, 

then, to provide the best possible chance for successful performance in these 

cases. To validate the suggestion given by the expert echolocators, and to rule 

out distance as a confound, we conducted a control experiment which replicated 

the ‘fixed head’ conditions, but at a distance of 40 cm (Figure 2.1D). This 

experiment was conducted only with a subset of participants (EE3, EE6, SC2, 

SC3). 

Throughout the experiment, participants used an echolocation technique 

of their choice (see Table 2.1) and listened for reflected echoes to determine the 

shape of the stimulus presented. For the fixed position condition, any participants 

who chose an echolocation technique other than tongue-clicks or other 

vocalizations were asked to keep the source of the sound (for example, their 

hand while finger-snapping) underneath the chin and as close to the body as 

possible and could not move from that position. For both conditions, participants 

were given a maximum of 15 seconds per trial and could provide their response 

at any point within that timeframe (4-alternative forced choice – ‘square’, 

‘triangle’, ‘horizontal rectangle’, or ‘vertical rectangle’). For each trial the 

experimenter measured their response time (i.e. trial start until verbal response 

onset) using a stopwatch. For each condition, there were a total of 40 pseudo-

random trials (10 repetitions per shape, per condition). 

2.4 Results 

For the purpose of the analyses, performance for each participant was collapsed 

across the four shapes (analyses not shown here revealed no significant 

differences in the individual shape response patterns for any of the groups). 

Therefore, the analyses were performed on the overall percentage correct value 
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for each participant in each of the conditions (free-moving and fixed position). As 

mentioned in the Methods section, for the free-moving condition participants 

EE1, EE2, and EE5 were tested in both an anechoic chamber and an echo-

dampened room. For each of these participants, we ran t-tests to determine if 

there were any performance differences between the anechoic chamber and the 

echo-dampened room. Results for all three participants revealed no significant 

differences in performance between the two rooms (EE1: t(78) = -5.30, p = 

0.598; EE2: t(78) = 1.63, p = 0.107; EE5: t(78) = -1.113, p = 0.269). Therefore, 

for the purpose of the following analyses we averaged these participants’ 

performance scores across the two testing environments. 

A 3 x 2 mixed analysis of variance (ANOVA) was conducted on the data, 

with between subjects factor ‘Group’ and within subjects factor ‘Condition’. The 

factor Group included three levels: expert echolocators (n = 6), blind controls (n = 

10), and sighted blindfolded controls (n = 10). The factor Condition included two 

levels: free-moving and fixed position. Because there were fewer participants in 

the EE group and therefore there could be variability differences across groups, 

we computed Levene’s tests for each condition. The results for both conditions 

were not significant (free-moving: F(2,23) = 2.371, p = 0.116; fixed position: 

F(2,23) = 2.61. p = 0.095). 

The results of the ANOVA revealed a significant interaction between 

Condition and Group, F(2,23) = 38.535, p < .0005, η2 = .77 (see Figure 2.2A). 

Bonferroni-corrected pairwise comparisons revealed that the EE group 

performed significantly better than both the blind (p < .0005) and blindfolded 

sighted (p < .0005) control groups in the free-moving condition. In the fixed 

position condition, the EE group also performed significantly better than both of 

the control groups (EE vs. BC: p = 0.012; EE vs. SC: p = 0.043), but this 

difference was substantially smaller (EE vs. BC: mean difference = 14.83; EE vs. 

SC: mean difference = 12.33). The drastic decline in the EE groups’ performance 

in the fixed position condition is easily seen in Figure 2.2A, and pairwise  
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Figure 2.1. Stimuli and procedure for the free-moving and fixed position conditions. Four 

2D shapes (A) were presented individually to participants. Shapes were made of foam 

board and covered in aluminum foil to maximize sound reflection. In the free-moving 

condition (B), participants were situated 40 cm away from the shape which was centered 

at ear-level. Once the trial began, participants could move freely in any direction (without 

touching the shape) in order to identify the shape via echolocation. In the fixed position 

condition (C), participants were situated 80 cm away from the shape and had to remain 

in that position for the duration of the trial without making any movements. We also ran a 

control experiment (D) on a subset of the participants to rule out the possibility of a 

distance confound between the free-moving and fixed position conditions. For all 

conditions, participants were given a maximum of 15 seconds per trial to identify the 

presented shape. 
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comparisons revealed that the EE group performed significantly better in the 

free-moving condition (p < .0005). The performance of the two control groups in 

both conditions was statistically indistinguishable (free-moving: p = 1; fixed 

position: p = 1). Overall, the results of the interaction show that when the expert 

echolocators could freely move their heads and bodies they had a substantial 

advantage and were able to reliably indicate the shape of the object presented to 

them. When they were required to remain still, however, their ability to indicate 

the shape of the objects decreased dramatically. Neither of the control groups 

showed this movement advantage. 

To address the possibility that distance differences per se were 

responsible for the decrease in performance in the fixed position as compared to 

the free-moving condition, we had conducted a control experiment with a subset 

of participants. This control experiment replicated the fixed position condition, but 

at the 40 cm position. We used nonparametric related samples McNemar’s tests 

to compare the individual participants’ performance on fixed position conditions 

at each of the two distances. The results of this experiment are shown in Figure 

2.2B. The data show that there was no advantage to being located at 40 cm in 

fixed position conditions. In fact, the EE participants’ performance was the same 

(EE3: p = 1) or worse (EE6: p = 0.008) than their performance in 80 cm fixed 

position conditions. The sighted controls showed no significant difference in 

performance between the two distances (SC2: p = 0.5; SC3: p = 0.25). In sum, 

the difference in object distance between free-moving and fixed position 

conditions could not account for performance differences in the EE group.  

Main effects of both Group and Condition were also found (F(2,23) = 

42.189, p < .0005, η2 = .786; F(1,23) = 46.637, p < .0005, η2 = .67). Bonferroni-

corrected pairwise comparisons for the main effect of Group revealed that the EE 

group performed significantly better than both of the control groups (EE vs. BC: p 

< .0005; EE vs. SC: p < .0005) but that the control groups performed identically 

(p = 1). Inspection of means showed that the main effect of Condition was due to 

the fact that, overall, participants performed significantly better in the free-moving 

condition as compared to the fixed position condition (p < .0005). This effect, of 
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course, was driven by the high performance of the EE group in the free-moving 

condition, as was shown via the significant interaction. 

To supplement the ANOVA analysis, we also ran individual t-tests on each 

group for each condition comparing performance to chance (25%) and the results 

were Bonferroni corrected for multiple comparisons. Performance was 

significantly different from chance only for the EE group in the free-moving 

condition, t(5) = 8.013, p < .0005. The EE group did not perform significantly 

better than chance when they were required to remain still (t(5) = 2.019, p = 

0.099) and the BC and SC groups performed at chance level in both the free-

moving and fixed position conditions (BC-free: t(9) = .023, p = 0.982, BC-fixed: 

t(9) = -.943, p = 0.370; SC-free: t(9) = -.103, p = 0.920), SC-fixed: t(9) = .514, p = 

0.619). The results of the tests against chance are consistent with the ANOVA in 

that they provide support for a strong advantage for the EE groups in the free-

moving condition. 

Although the ANOVA allowed us to gain an understanding of the overall 

performance of the EE group compared to control subjects, it is important to 

appreciate that, similar to neuropsychological patients, blind echolocators show 

profound variability in their echolocation abilities as well as their history of use, 

cause and time of blindness, and so on. Therefore, we felt it was important to 

also analyze the data by treating each individual echolocator as a single case 

and comparing their performance in both of the conditions to the control 

participants. To increase statistical power for this analysis, and because the 

ANOVA revealed no significant differences in performance between the control 

groups, we combined the control groups for each condition (free-moving and 

fixed position) for the purpose of this analysis. For each EE participant, we ran 

modified t-tests to compare their performance to that of the combined control 

group for both conditions (see Crawford & Garthwaite, 2002; Crawford & 

Garthwaite, 2007; Crawford & Garthwaite, 2012; Crawford, Garthwaite, & Porter, 

2010; Crawford & Howell, 1998). The modified t-test is an extension of the 

traditional t-test but has been adapted to compare a single case to a control 

group. For the free-moving condition, the results of the modified t-tests revealed 
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Figure 2.2. Percent correct performance of all groups (expert echolocators [EE], blind 

control [BC], sighted blindfolded controls [SC]) in each of the two conditions (free-moving 

and fixed position). Panel A presents the results of the omnibus ANOVA which revealed 

a significant interaction between the factors (significant differences indicated by 

asterisks). Error bars represent the standard error of the mean across participants and 

the dashed line indicates chance performance (25%). Panel B shows the performance of 

two expert echolocators and two sighted controls who were also tested at the 40 cm 

position in the fixed position condition. For reference we also show those participants’ 

performance at 80 cm fixed position condition. It is clear from the data that being located 

closer to the objects in the fixed position condition provided no advantage. In fact, the 

echolocating participants show comparable (EE3) or worse (EE6) performance at this 

distance (asterisks indicate a significant difference in performance at the two distances 

based on results from nonparametric related samples McNemar’s tests). These data 

support our use of the 80 cm position in this condition which, according to the expert 

echolocators, provided the best overall impression of the shape and thus a better 

chance of successful performance. 
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that each individual echolocating participant performed significantly better than 

the combined control group (see Table 2.2 for all t- and p-values and Figure 2.3A 

for a graphical depiction of each individual’s performance against the control 

group). The effect size of each echolocator’s score also reveals that they reliably 

performed well above the level of the control group (see Figure 2.3B). In the fixed 

position condition, however, only participants EE2, EE4, and EE6 performed 

significantly better than the control group, and the effect size of the difference in 

performance was substantially lower than in the free-moving condition (with the 

exception of EE6 who showed high performance in both conditions; see Figure 

2.3).  

We also ran a 3 (Group) x 2 (Condition) mixed ANOVA on the participants’ 

response times, but this analysis did not reveal any significant results (Condition 

x Group: F(2, 23) = .524, p = 0.599, η2 = .044; Condition: F(1, 23) = 4.14, p = 

0.054, η2 = .153; Group: F(2,23) = 2.995, p = 0.07, η2 = .207). There was a trend 

toward significance for the main effect of Condition, suggesting that, overall, 

participants used slightly more time in the free-moving condition, but Bonferroni-

corrected pairwise comparisons did not reveal a significant difference.  

Overall, the results show that expert echolocators can consistently and 

reliably indicate the shape of 2D objects when they are allowed to make head 

and body movements while echolocating. When they are required to remain still, 

however, performance drops to a level that is statistically indistinguishable from 

chance. In fact, our single-case analysis shows that in free-moving conditions all 

our experts perform statistically superior to the control group, whereas only half 

of them perform superior in fixed conditions. Neither blind nor sighted blindfolded 

controls showed a movement advantage in the free-moving condition; in fact, 

their performance was nearly identical in each of the conditions and never 

deviated from chance. 
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Table 2.2. 

 

Results of Modified t-test Analysis Comparing Individual Echolocators to Non-

echolocating Controls 

Free-Moving  Fixed Position 

Control Sample  Significance 
Test 

 Control Sample  Significance 
Test 

n Mean SD Case Score t p  n Mean SD Case Score t p 

20 24.94 6.3 EE1 77.5 8.14 .000  20 24.75 5.61 EE1 27.5 .478 .319 

 EE2 86.25 9.495 .000   EE2 37.5 2.217 .019 

EE3 85 9.302 .000  EE3 27.5 .478 .319 

EE4 77.5 8.14 .000  EE4 37.5 2.217 .019 

EE5 48.75 3.687 .000  EE5 30 .913 .186 

EE6 97.5 11.238 .000  EE6 70 7.866 .000 

Note. Means (control groups only) and case scores are percentage values (percent 

correct performance). Significance values (p) are one-tailed.  
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Figure 2.3. Results of the individual case analyses for the free-moving and fixed position 

conditions. Each individual echolocator’s performance in the free-moving (y-axis) and 

fixed position (x-axis) conditions are shown in Panel A. The data from the combined 

control group is also shown, with the shaded bars in each direction indicating the range 

of scores for each condition. Significant results from the modified t-tests are indicated by 

asterisks. Asterisks above a data point indicate a significant difference from the 

combined control group in the free-moving condition, and asterisks to the right of a data 

point indicate a significant difference from the combined control group in the fixed 

position condition (see Table 2.2 for results from all individual tests). Dashed lines in 

each direction represent chance performance. The Bayesian effect size (with error bars 

showing 95% confidence intervals (CIs); in some cases CIs are so small that error bars 

are not visible) for the results of each individual t-test are shown in Panel B. The effect 

size was calculated using adapted z scores (Crawford et al., 2010). The ‘abnormality’ of 

the case’s scores are presented in Panel C which shows the percentage of the control 

population (with 95% CIs) that would obtain a lower score than the case. The information 

presented here and in Table 2.2 fully meets the reporting standards set out by Crawford 

et al. (2010). 
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2.5 Discussion 

The aim of the current experiments was to determine if (1) blind expert 

echolocators can determine the 2D shape of objects by analyzing the echoes 

reflected from the edges of similar objects, and (2) if movements of the head and 

body while echolocating are crucial for successful shape identification in our task. 

The results were clear. Expert echolocators were exceptional at determining the 

shape of objects that differ only in their edge or contour properties, and they 

performed well above blind participants who do not echolocate and sighted 

participants who were blindfolded. When the echolocators were required to 

remain still, however, performance fell substantially, and was statistically 

indistinguishable from chancel level. Therefore, our results show that blind expert 

echolocators can use echoes to successfully determine the shape of similar 

objects, and this ability is critically dependent on the use of head movements. In 

our study echolocators could move freely, which means that they could perform 

both angular movements, as well as movements in depth. Future research 

should aim to investigate the relative contributions of these separate aspects of 

head motion in more detail. 

As mentioned in the Methods, blind and sighted control participants did 

not receive any explicit echolocation training prior to participation. Not 

surprisingly then, these participants were unable to successfully use echoes to 

discern the shape of the objects. This runs contrary to the findings of Hausfeld et 

al. (1982) who found that untrained sighted participants could identify simple 

shapes using echoes. Although these participants were untrained, they received 

feedback on every trial and improvements in performance over the first few trials 

indicates that this feedback was useful. In fact, the participants in the study 

reported that during the initial trials they were simply memorizing which echo was 

associated with which shape, and then applied this knowledge to the remaining 

trials. It is unclear, then, whether the participants were actually perceiving object 

shape or were simply relying on subtle differences in echo characteristics without 

perceiving any shape details. Therefore, the role of feedback, and other 
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methodological differences, may explain the differences in performance between 

untrained participants in the current study and in Hausfeld et al.’s experiments. 

An important consideration in the design of the experiment is the fact that 

the distance at which the shape was presented was different for the free-moving 

and fixed position conditions. Therefore, one could argue that the difference in 

distance alone may underlie the EE group’s decrease in performance in the fixed 

position condition. We addressed this in our control experiment, and the results 

of that experiment (see Figure 2.2B) suggest that distance per se cannot explain 

performance differences between free-moving and fixed conditions. Furthermore, 

if it were the case that distance per se could account for performance differences 

between free-moving and fixed position conditions, we would expect a similar 

distance effect for all groups, but this was not the case. Finally, we want to 

highlight once more that the farther position for the fixed position condition was 

chosen based on echolocators’ advice because they found that this distance 

gave them a better impression of shape as compared to closer distances. This 

can be understood considering that if an individual is situated very closely to an 

object and required to remain still, the majority of the echolocation signal will be 

reflected from the center of the object, thus lacking edge information that could 

be used to discern the object’s shape. One can imagine a similar situation in 

vision when an individual is situated very closely to an object and is unable to 

gather information about object features in the periphery without movements of 

the head and/or eyes. This problem could be solved by simply moving farther 

away from the object. 

A final thing to consider is that more people in the blind control group 

reported having some residual vision than the expert echolocators (Table 2.1). It 

is possible that the presence of some residual vision in a blind individual might 

make them less inclined to develop echolocation as a strategy. But this need not 

always be the case. Participant EE6, for example, had some residual vision at 

the time of testing but even so had mastered echolocation and performed better 

on the task than any of the other expert echolocators. In any case, it seems 

unlikely that the degree of vision normally available determines how well people 
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can use echoes to discriminate shape. After all, the blind controls did not perform 

better than the sighted controls when both groups were blindfolded. Furthermore, 

the two totally blind individuals (BC7, BC8) in the blind control group performed 

no better or worse than the rest of that control group, again suggesting that it was 

expertise per se and not degree of blindness that drove performance in our 

study.  

In sum, our results show that blind expert echolocators can use echoes to 

successfully determine the shape of similar objects, and this ability is critically 

dependent on the use of head movements. 

Head movements made while echolocating may be similar to the multiple 

eye movements, or saccades, a sighted person makes when visually scanning a 

large object or a scene. These saccades allow a person to accumulate visual 

information from the boundaries of a large object and the features of a visual 

scene, which are then pieced together to create an overall perceptual 

representation. This process, termed transsaccadic integration, requires the brain 

to make quick computations of the incoming visual information in order to arrive 

at a rich and stable representation of an object or scene (Neimeier, Crawford, & 

Tweed, 2003; Prime, Vesia, & Crawford, 2011). In terms of echolocation in the 

current study, making head movements while producing tongue-clicks (or other 

signals) could have provided sound snapshots – or ‘echo saccades’ – that are 

then automatically pieced together by the brain to provide the individual with a 

perceptual representation of the object. While transsaccadic integration in vision 

can occur in a few hundred milliseconds, human echolocation is by comparison 

much more time-consuming and effortful. Furthermore, the resulting percepts are 

likely coarser than in vision. In fact, it has been recently shown that the precision 

of echolocation is comparable to visual acuity in the periphery, which, when 

compared to foveal acuity, is quite poor (Teng et al., 2012).  

Further evidence to support our suggestion that the head movements 

made by echolocating humans might serve a similar function as visual saccades 

comes from a recent study on scanning movements in echolocating bats 

(Seibert, Koblitz, Denzinger, & Schnitzler, 2013). It was suggested that each bat 
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signal-echo pair was comparable to a visual fixation and that the movements 

made by the bat between signal-echo pairs are comparable to visual saccades. 

The researchers found that the bats’ scanning behaviours changed depending on 

the environment they were in and the task they were performing. In particular, 

when the bats were examining a scene they made large scanning movements 

but when they detected an object or obstacle the angle of the movements was 

much smaller. This is quite similar to vision in that the pattern of head and eye 

movements can be quite different based on if one is looking at a large visual 

scene – which requires larger, longer movements – or looking at an object within 

a visual scene – which requires smaller, shorter movements to gain greater 

object-specific detail (Hardiess, Gillner, & Mallot, 2003; Rayner, 1998). 

Considering these findings in echolocating bats and our results showing the 

advantage of using head movements in human echolocation, it is important for 

future research to address the different types of movements made by expert 

echolocators and how these movements change in different environments and 

tasks. 

Although it is quite clear that head movements – or ‘echo saccades’ – 

seem to facilitate 2D shape perception in echolocation, one of our echolocating 

participants, EE6, showed impressive performance in both of the conditions. An 

important consideration is the fact that EE6 used a finger-snap as opposed to the 

tongue-click signal used by the other echolocating participants. As mentioned in 

the Methods section, any participants who used a signal other than tongue-clicks 

or other vocalizations had to keep the source of the signal (in this case, the hand) 

close to the body, under the chin, and as still as possible. It is possible, however, 

that slight movements were made that were not noticed by the researcher and 

possibly not even by the participant herself, and that these might have aided 

performance. One might also consider the choice of signal per se aiding 

performance, i.e. EE6 used a finger snap whereas the other EEs used tongue 

clicks. Yet, several of the control participants used finger snaps as well, without 

the advantage we saw in EE6.  
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In addition to being potentially relevant for explaining EE6’s impressive 

performance, the question of the choice of signal is also relevant for the current 

study because the majority of control participants used a signal that was different 

from the echolocating participants (with the exception of EE6). It is important to 

note, though, that even though the majority of our EE participants used tongue-

clicks, this is not to say that they use this type of signal exclusively in everyday 

life. In fact, almost all of the echolocators report using claps, finger-snaps, and 

other techniques. So, the variety of signals used by echolocators in real life – and 

the various signals used by participants in the current study – raises an important 

question: what is the best signal to use for echolocation? This question has been 

addressed previously (Rojas, Hermosilla, Montero, & Espi, 2009; 2010) but a 

consensus is lacking. For example, longer signals (500 ms) may be better than 

shorter ones because they result in a surplus of echo information due to 

repetition pitch (Schenkman & Nilsson, 2010). Also, it has been suggested that 

noise signals provide more and better information than click signals (Arias & 

Ramos, 1997), though it has also been suggested that in particular the palatal 

tongue click is the best signal for echolocation (Rojas et al., 2009). Therefore, it 

is unclear whether participants’ choice of signal in the current study could have 

directly affected performance (regardless of movement) because there is no 

clear indication of what is the best echolocation signal. Also, it is important to 

note that most systematic studies of the signals used in echolocation (and many 

studies on echolocation in general) use artificial sounds played by a loudspeaker 

or through headphones. Therefore, it is important for future research to address 

the use of self-produced signals in order to better understand the use of natural, 

active echolocation and maximize the information content of echoes. 

 It can be argued that, at a basic level, the ability to echolocate involves 

some combination of increased echo sensitivity (Dufour, Després, & Candas, 

2005; Kolarik, Cirstea, & Pardhan, 2013), suppression of the precedence effect 

(Wallmeier, Gebele, & Wiegrebe, 2013), and, of course, intact hearing 

(Schenkman & Nilsson, 2010). This is encouraging because it means that the 

ability to echolocate is available to all people, blind or sighted. Therefore, we 
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believe that the use of echolocation should be more actively promoted in the 

blind community because, even if one learns to echolocate only at a very basic 

level, it would provide another resource for perceiving one’s surroundings and 

gaining further independence in life. In fact, a recent survey has shown that the 

use of echolocation by the blind may have real-world advantages (Thaler, 2013). 

In particular, blind echolocators have higher salaries and greater mobility in 

unfamiliar places than blind individuals who do not echolocate. Of course, other 

variables likely mediate these advantages, but even the additional information 

that an echolocator possesses about his surroundings – which then aid in 

obstacle avoidance, navigation, and object perception – is an advantage in itself.  

 Overall, the results of the current experiments show that active 

echolocation is a useful resource that allows blind individuals to gather accurate 

object shape information from faint echoes. Even this basic application of 

echolocation shows how useful it can be, by providing blind individuals with 

perceptual information that they would otherwise not have access to. Considering 

echolocation is a trainable skill, there is great potential to offer valuable and 

liberating opportunities for the blind and visually-impaired. 
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Chapter 3: 

A Blind Human Expert Echolocator Shows Size Constancy 
for Objects Perceived by Echoes3 

 

 

 

 

 

 

                                                 

3
 A version of this chapter is published: 

Milne, J.L., Anello, M., Goodale, M.A., & Thaler, L. A blind human expert echolocators shows size 
constancy for objects perceived by echoes. Neurocase, doi:10.1080/13554794.2014.922994. 
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3.1 Abstract 

Some blind humans make clicking noises with their mouth and use the reflected 

echoes to perceive objects and surfaces. This technique can operate as a crude 

substitute for vision, allowing human echolocators to perceive silent, distal 

objects. Here we tested if echolocation would, like vision, show size constancy. 

To investigate this, we asked a blind expert echolocator to echolocate objects of 

different physical sizes presented at different distances. The expert echolocator 

consistently identified the true physical size of the objects independent of 

distance. In contrast, blind and blindfolded sighted controls did not show size 

constancy, even when encouraged to use mouth-clicks, claps, or other signals. 

These findings suggest that size constancy is not a purely visual phenomenon, 

but that it can operate via an auditory-based substitute for vision, such as human 

echolocation.  

3.2 Introduction 

A number of studies have confirmed the ability of blind human echolocators to 

extract information from echoes about object features such as shape, location, 

motion, and material (for reviews see Stoffregen & Pittenger, 1995; Kolarik, 

Cirstea, Pardhan, & Moore, 2014). Furthermore, echoes are informative for 

determining the size and distance of objects (Rice & Feinstein, 1965; Rice, 

Feinstein, & Schusterman, 1965; Teng & Whitney, 2011). Although it has been 

confirmed that expert echolocators can extract size and distance information 

from echoes in isolation, there has been no direct investigation on the 

echolocation of these factors in combination. 

Integrating size and distance cues is critical for accurate perception of 

object size. For example, the visual system must overcome the fact that altering 

the distance of an object from the eyes results in changes to the size of the 

retinal image. Despite the differences in retinal image size, however, people’s 

percept reflects the true physical size of the object. This perceptual phenomenon 

has been termed size constancy (Holway & Boring, 1941).  
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In echolocation a similar situation may arise. Specifically, the size of the 

acoustic angle of a sound-reflecting surface decreases as its distance increases. 

Importantly, changes in the size of a sound-reflecting surface (regardless of 

changes in distance) lead to changes in both the level and spectrum of the 

reflected sound (e.g., Heinrich, Warmbold, Hoffmann, Firzlaff, & Wiegrebe, 

2011). At the same time, the distance of a sound-reflecting surface is reliably 

coded via pulse-echo delays. Hence, the acoustic information present in 

echolocation is sufficient for accurate computation of the physical size of a 

sound-reflecting surface. Given that the human brain shows size constancy in at 

least one modality (i.e. vision), and given that echolocation in principle provides 

the information necessary to achieve size constancy, we were interested if size 

constancy is also supported for objects perceived via reflected echoes.  

To test this, we recruited a blind human expert echolocator (EE) who lost 

his sight in early infancy due to idiopathic optic nerve atrophy and has no residual 

vision. EE developed echolocation techniques on his own during early childhood 

and attributes his first realizations of the possible utility of echoes to hearing the 

sound of his father hitting a metal fence post with a hammer. He noticed that the 

hammering sound reflected from the walls and other surfaces around him, and 

realized that these echoes provided a rich source of information, particularly for 

obstacle avoidance. As time went on, he learned that he could produce his own 

sounds, such as mouth-clicks. Now in his late fifties, EE continues to use 

echolocation on a daily basis. 

3.3 Methods 

3.3.1 Participants 

As mentioned above, we recruited one blind expert echolocating participant 

(male, 57 years old at time of testing). Hearing tests revealed that EE’s pure tone 

thresholds were within the range of a young normative sample up to 4 kHz and 

that he showed mild hearing loss beyond 4 kHz, consistent with his age. As 

control groups, we recruited 10 blind participants (five female; mean age = 35.9) 

and 10 blindfolded sighted participants (five female; mean age = 40.4). All control 
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participants reported normal hearing and no prior experience with echolocation. 

Sighted participants reported no history of visual disorders. All participants were 

blindfolded (including EE and blind control participants) and took part in three 

experiments (detailed below) at The University of Western Ontario (London, 

Ontario, Canada). The experiments took place in an echo-dampened room (2.75 

m x 3 m, four walls covered in 3.8-cm convoluted foam sheets, carpeted floor).  

All testing procedures were approved by the University ethics board and 

participants gave written informed consent prior to testing. 

3.3.2 Stimuli and General Procedure 

Objects used in the experiments included three physical sizes of circles and 

horizontally-oriented rectangles (Figure 3.1A). The shapes were designed so that 

the medium-sized shape was twice the size of the small shape, and the large-

sized shape was three-times the size of the small shape. Furthermore, each size 

of circle and rectangle were near-equated in total area. In accordance with the 

proportional size relationship between the objects, the distances were chosen so 

that the middle location was twice the distance of the near location, and the far 

location was three times the distance of the near location. Although shape is not 

a relevant cue for size constancy, we included the different shapes to increase 

the attentional demands of the tasks. The objects were positioned on a 0.6-cm 

diameter pole and could be placed at one of three distances (Figure 3.1B). The 

objects and distances used depended on the particular experiment being run, 

and each one of the experiments is detailed below. Before beginning the 

experiments, all participants were familiarized with the objects (sighted controls 

were allowed only to touch the objects and not to see them).  

 Before the beginning of each trial, one object was positioned directly 

ahead of the participant and centered on the ears (i.e. presentation height was 

unique for each participant). During this object-placement period between trials, 

participants wore ear-bud headphones playing white noise to mask any noise 

cues related to changing the stimulus display. Once the trial began, participants 

were given a maximum of 20 seconds to scan the object using the echolocation 
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Figure 3.1. Stimuli and procedure for Distance, Acoustic Size, and Size Constancy 

experiments. A) The possible objects to be used in each of the experiments included 

three physical sizes of circles and rectangles (the medium-sized objects were double the 

size of the smallest objects, and the large objects were triple the size of the smallest 

objects). The objects were created from 0.5-cm think foam board and covered with 

aluminum foil and were positioned on a 0.6-cm diameter pole. B) The basic layout is 

shown for each individual experiment. The top panel shows the distance(s) at which the 

objects could be placed (specific objects used in each experiment are shown in the 

bottom panel). Note that the spacing of the distances is proportional to the sizes of the 

objects (i.e. the middle position is twice the distance of the near position, and the far 

position is three times the distance of the near position). For all tasks, participants stood 

and were permitted to move side-to-side as well as up and down to allow them to scan 

the object (for a maximum of 20 seconds) but were not permitted to move toward or 

away from the object. Note that for Experiment 3 only the near and far positions and 

small and large objects were used. This allowed for a direct test of size constancy. 
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technique of their choice. Participants stood for the duration of all experiments 

and were allowed to make slight movements from side-to-side and up and down, 

but not toward or away from the object. Participants provided verbal responses 

for each experiment.  

It is important to note that blind and blindfolded sighted controls received 

no echolocation training prior to participating in the experiment. The reason for 

this was that the purpose of the control participants in the current study was to 

control for performance that could be attributed to factors other than echolocation 

expertise (for example, neuroplasticity due to blindness, ambient sounds, sounds 

from the movements of the experimenter, etc.). The mouth-click, finger snaps, 

and other echolocation signals were explained to control participants and they 

were free to use the technique of their choosing. 

3.3.3 Experiment 1: Distance 

To investigate the ability to detect distance information, we used three circular 

objects and presented them in isolation at any of the three distances (Figure 

3.1B). The participants’ task was to determine only the distance of the object, for 

which they provided a verbal response (“near”, “middle”, “far”). There were a total 

of 36 trials, with four repetitions of each object size at each distance. 

3.3.4 Experiment 2: Acoustic Size 

To investigate the detection of size, we utilized six objects (three circles and 

three rectangles) but presented them only at the middle distance. The 

participants’ task was to determine both the size and shape of the object (e.g., 

“small circle”, “medium rectangle”). Since distance was kept constant in 

Experiment 2, identification of size in these cases was equivalent to identification 

of acoustic size (i.e. area in degrees of acoustic angle), but it did not require size 

constancy. There were a total of 36 trials, with six repetitions of each object. 

3.3.5 Experiment 3: Size Constancy 

To examine size constancy, i.e. correct perception of physical size, we designed 

the experiment in accordance with the principles of visual size constancy. That is, 
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we used only the small and large objects (circles and rectangles) and placed 

them only at the near and far distances. The small objects at the near location 

would have the same acoustic size (i.e. same echo intensity and aperture) as the 

large objects at the far position. The participants’ task was to indicate the size 

and shape of the object (e.g., “small rectangle”, “large circle”). There were a total 

of 40 trials, with five repetitions of each object at each location. 

3.4 Results 

3.4.1 General Details 

Our initial analyses were aimed at determining if there were any differences in 

performance between the blind and sighted control groups for each of the three 

experiments. To do this, we ran mixed analysis of variance (ANOVA) tests, with 

the experimental manipulations as the repeated variable, and ‘group’ as the 

between subjects variable for each experiment. The analyses revealed no 

significant effect of ‘group’ for any of the three experiments (Figure 3.2). 

Therefore, for all subsequent analyses we combined blind and sighted control 

groups into a single control group. 

 To compare EE’s performance to controls, we ran two types of analyses. 

First, we used t-tests and effect size measures modified to compare a single 

case to a control group (Crawford, Garthwaite, & Porter, 2010; Crawford & 

Howell, 1998). The analyses were conducted on the overall percentage correct 

performance of EE and the combined control group in each experiment. We 

supplemented these analyses by comparing both EE’s and the combined control 

group’s performance to chance for each experiment using binomial tests and 

traditional t-tests, respectively. Instead of overall performance, we performed 

these analyses on the separate conditions within each experiment. An initial 

analysis had revealed no differences between circular and rectangular shapes for  

Experiments 2 and 3. Thus, for subsequent analyses, performance was 

collapsed across shape. 
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Figure 3.2. Average percent correct performance (+/- SEM) of the blind non-echolocating 

and blindfolded sighted control groups on the Distance, Acoustic Size, and Size 

Constancy experiments. Mixed analysis of variance tests for each of the three 

experiments revealed no significant main effects or interactions for any of the three 

experiments (similarities in performance are easily seen in the figure). Therefore, for all 

subsequent analyses the control groups were combined to form a single control group. 
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3.4.2 Experiment 1: Distance 

The modified t-test revealed that EE performed significantly better than the 

combined control group on the distance discrimination task (see Figure 3.3A and 

Table 3.1). Comparisons to chance revealed that EE performed well above 

chance level (33%) at each of the distances (near: p = 0.004; middle: p = 0.004; 

far: p = 0.018), while the control group’s performance was statistically 

indistinguishable from chance at each distance (near: t(19) = 2.043, p = 0.055; 

middle: t(19) = 1.347, p = 0.194; far: t(19) = 0.418, p = 0.681) (see Figure 3.4A). 

3.4.3 Experiment 2: Acoustic Size 

As mentioned above, the responses from Experiment 2 were collapsed across 

shape. The modified t-test analysis revealed that EE performed significantly 

better than the combined control group (see Figure 3.3A and Table 3.1). 

Additional analyses comparing performance to chance revealed that EE 

performed well above chance level (16.67%) for each of the different sizes 

(small: p = 0.008; medium: p < 0.001; large: p < 0.001) (see Figure 3.4A). Again, 

the combined control group’s performance did not differ from chance for any of 

the object sizes (small: t (19) = 0.117, p = 0.908; medium: t (19) = 0.972, p = 

0.343; large: t (19) = 1.071, p = 0.297). 

3.4.4 Experiment 3: Size Constancy 

As mentioned above, Experiment 3 was aimed at determining if an expert 

echolocator can integrate acoustic size and distance information to determine the 

true physical size of objects. Again, the responses for this experiment were 

collapsed across shape. The modified t-test analysis revealed that EE performed 

well above the level of the combined control group (see Figure 3.3A and Table 

3.1). In fact, EE’s best performance across all three experiments was in 

Experiment 3. Comparisons against chance revealed that EE performed 

significantly better than chance level (25%) in three of the conditions (small-near: 

p < 0.001; large-near: p < 0.001; large-far: p < 0.001) but his performance failed 

to reach significance for the small object at the far position (p = 0.078). It is 

important to note, though, that EE’s performance in this condition was largely 
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driven by errors in shape and not in size (see Figure 3.4B). The combined control 

group did not show above chance performance for any of the conditions (small-

near: t (19) = 0.667, p = 0.513; small-far: t (19) = 0.17, p = 0.867; large-near: t 

(19) = 1.082, p = 0.293; large-far: t (19) = 1.255, p = 0.225). 

 Overall, the results of Experiments 1 and 2 confirm the ability of a blind 

expert echolocator to determine the distance and acoustic size of objects 

independently. This agrees with previous reports in the literature (Rice & 

Feinstein, 1965; Rice et al., 1965). Most importantly, however, Experiment 3 

goes beyond this and shows that a blind expert echolocator can determine the 

true physical size of an object independent of its distance. Therefore, these 

results suggest that size constancy operates for object size perception via 

echolocation. 

3.5 Discussion 

The aim of the current experiment was to determine if size constancy – a 

perceptual phenomenon linked to vision – also operates for echolocation. We 

showed for the first time that a blind human expert echolocator could consistently 

and reliably indicate the true physical size of objects independent of the distance 

at which they were located. Blind non-echolocators and blindfolded sighted 

controls did not show size constancy, suggesting that echolocation expertise 

rather than neuroplasticity due to blindness or ambient sounds was responsible 

for EE’s performance.  

These findings support the use of echolocation as a viable and useful 

resource for the blind, because the ability to accurately determine the physical 

size of objects has immediate benefits for navigation in the physical world. In 

addition, the current findings broaden our basic understanding of the technique. 

For example, previous studies using functional magnetic resonance imaging 

have implicated ‘visual’ brain areas for echolocation (Arnott, Thaler, Milne, Kish, 

& Goodale, 2013; Thaler, Arnott, & Goodale, 2011; Thaler, Milne, Arnott, Kish, & 

Goodale, 2014). The current findings suggest further parallels between vision 

and echolocation, in that both modalities show size constancy. This suggests that 
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Figure 3.3. Results of the individual case analyses for the Distance, Acoustic Size, and 

Size Constancy experiments. Panel A shows the results of the modified t-tests 

comparing the expert echolocator’s overall performance (as percent correct) to the 

combined control group’s performance. Significant differences are indicated by asterisks. 

The Bayesian effect sizes (with error bars showing 95% confidence intervals (CIs)) of 

each individual t-test are shown in Panel B. The effect size was calculated using 

adapted z scores (Crawford et al., 2010). The ‘abnormality’ of the case’s scores are 

presented in Panel C which shows the percentage of the control population (with 95% 

CIs) that would obtain a lower score than the case.  
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Table 3.1. 

Results of the modified t-test analysis comparing EE’s overall performance to the overall 

performance of the combined control group in each of the three experiments.  

  Control Sample  Significance  

Experiment EE’s Score n Mean SD  t p 

1. Distance 72.22 20 39.31 17.37  1.85 0.039 

2. Acoustic Size 61.11 20 18.61 8.55  3.671 < 0.001 

3. Size Constancy 82.5 20 27.31 8.11  6.638 < 0.001 

Note: The modified t-test is a version of the classic t-test used to compare the 

performance of a single case against a control group. Means (control group only) and 

case scores are percentage values (percent correct performance). Significance values 

(p) are one-tailed. 
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Figure 3.4. Results from tests against chance for the expert echolocator (binomial tests) 

and combined control group (t-tests). Participants’ performance (shown as percent 

correct) was collapsed across shape for Experiments 2 and 3. Chance performance for 

each of the tasks is indicated by the dashed lines and significant results are indicated by 

asterisks. The distribution of EE’s responses (B) is shown for the size constancy task. 

Although EE performed statistically at chance for the ‘small-far’ condition, the error 

distributions show that this decrease in performance was driven by errors in shape 

judgement and not size judgement, thus supporting size constancy in these cases. 
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similarities in brain activity may also signify similarities in terms of behavioral 

principles, and future research should address these possibilities. 

 As laid out in the introduction, at a general level, object size information 

can be inferred from the overall intensity of the echo as well as spectral changes 

caused by the ‘spread’ of angles from which the echoes arrive at the ears 

(aperture). The contribution of each of the cues may depend on the size of the 

object, with evidence suggesting that overall intensity cues are best suited for 

smaller objects whereas aperture cues are most relevant for larger object widths, 

at least in the case of echolocating bats (Heinrich et al., 2011). Furthermore, 

there are binaural cues to size (Holderied & von Helversen, 2006). In terms of 

object distance, the cue that indicates distance most reliably is the time delay 

between the outgoing signal and the returning echo, and this cue is independent 

from other aspects of the sound. Thus, echolocation has information sufficient for 

size constancy.   

Although the current study is the first investigation of size constancy in 

human echolocation, Heinrich and Wiegrebe (2013) tackled the question in the 

context of bat echolocation. Interestingly, based on their results the researchers 

suggested that bats do not show size constancy, at least for the perception of 

virtual objects. This is curious, because echolocating bats do encode both object 

aperture (i.e. acoustic size) (Heinrich et al., 2011) and pulse-echo delays (i.e. 

distance) (Wenstrup & Portfors, 2011). Therefore, it is surprising that bats would 

not show size constancy considering the clear neural representation of both size 

and distance. Contrary to these unresolved findings in bats, our results clearly 

show that a human echolocator has stable, absolute size perception. Considering 

that human echolocators may lack the sophisticated neural mechanisms that 

have evolved in bats, our findings, then, warrant further investigation into 

potential size constancy mechanisms in bats and other echolocating species. 
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Chapter 4: 
 

Parahippocampal Cortex is involved in Material Processing 
via Echoes in Blind Echolocation Experts4 
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Milne, J.L., Arnott, S.R., Kish, D., Goodale, M.A., & Thaler, L. Parahippocampal cortex is involved 
in material processing via echoes in blind echolocation experts. Vision Research, accepted 
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4.1 Abstract 

Some blind humans use sound to navigate by emitting mouth-clicks and listening 

to the echoes that reflect from silent objects and surfaces in their surroundings. 

These echoes contain information about the size, shape, location, and material 

properties of objects. Here we present results from an fMRI experiment that 

investigated the neural activity underlying the processing of materials through 

echolocation. Three blind echolocation experts (as well as three blind and three 

sighted non-echolocating control participants) took part in the experiment. First, 

we made binaural sound recordings in the ears of each echolocator while he 

produced clicks in the presence of one of three different materials (fleece, 

synthetic foliage, or whiteboard), or while he made clicks in an empty room. 

During fMRI scanning these recordings were played back to participants. 

Remarkably, all participants were able to identify each of the three materials 

reliably, as well as the empty room. Furthermore, a whole brain analysis, in which 

we isolated the processing of just the reflected echoes, revealed a material-

related increase in BOLD activation in a region of left parahippocampal cortex in 

the echolocating participants, but not in the blind or sighted control participants. 

Our results, in combination with previous findings about brain areas involved in 

material processing, are consistent with the idea that material processing by 

means of echolocation relies on a multi-modal material processing area in 

parahippocampal cortex. 

4.2 Introduction 

Like animals such as bats and dolphins, a subset of blind humans can use 

echoes from self-produced signals to localize and identify silent objects and 

surfaces in their environment. For example, by interpreting the echoes of their 

mouth-clicks, these individuals can report on features such as the size, shape, 

location, distance, motion, and material (or texture) of objects (Arnott, Thaler, 

Milne, Kish, & Goodale, 2013; Hausfeld et al, 1982; Kellogg, 1962; Rice, 1967; 

Rice, 1969; Rice & Feinstein, 1965; Rice, Feinstein, & Schusterman, 1965; 

Schenkman & Nilsson, 2010; Stoffregen & Pittenger, 1995; Teng, Puri, & 
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Whitney, 2011; Teng & Whitney, 2011; Thaler, Arnott, & Goodale, 2011; Thaler, 

Milne, Arnott, Kish, & Goodale, 2013; for review, see Kolarik, Cirstea, Pardhan, & 

Moore, 2014). Because echolocation allows blind individuals to perceive silent 

objects from a distance, it can be thought of as an alternative to vision; without 

the use of echolocation the perception of such objects would be impossible with 

the remaining senses.  

In the first functional magnetic resonance imaging (fMRI) investigation on 

human echolocation, it was found that the calcarine cortices (i.e. BA17, what is 

typically referred to as primary visual cortex in sighted people) of two blind expert 

echolocators were activated when these individuals perceived objects that were 

identifiable only by echoes (Thaler et al., 2011). Specifically, their blood 

oxygenation level dependent (BOLD) activity while listening to binaural 

recordings of their clicks and the reflected echoes increased in not only auditory, 

but also calcarine cortex. Even more, when they isolated the processing of just 

the echoes, the BOLD activity was specific to just the calcarine cortex. Sighted 

control participants did not show calcarine cortical activation during the tasks.  

These initial findings on the neural correlates of echo processing in 

general set the foundation for investigating how the blind echolocating brain 

parses and processes specific types of echo features. For example, we have 

recently shown that the processing of echoes reflected from a moving surface 

activated a brain area in temporal-occipital cortex that potentially corresponds to 

‘visual’-motion area MT+, and that this activation showed a contralateral 

preference (Thaler et al., 2014). In addition, we have shown that the processing 

of object shape via echoes activates areas in the ventrolateral occipital cortex, 

encompassing areas in the lateral occipital complex (LOC), a brain area 

traditionally involved in visual shape processing (Arnott et al., 2013). Taken 

together, these findings suggest not only that the processing of echoes may be 

feature-specific, but also that this processing may make use of what are normally 

feature-specific visual areas.  

Several of the expert echolocators whom we have studied have 

anecdotally remarked on the saliency and utility of information about material that 
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they routinely get from echoes, particularly in terms of navigation, orientation, 

and obstacle avoidance. For example, the stark difference in material (and thus 

the reflected echoes) between a concrete sidewalk and adjacent grass provides 

useful information for discerning the path ahead while walking or bike-riding. 

Previous behavioural investigations have shown that people can use 

echolocation to discriminate between reflective materials such as metal and 

glass and more absorptive materials such as velvet and denim (Hausfeld et al., 

1982; Kellogg, 1962).  

The neural basis underlying this skill is poorly understood, however. With 

respect to visual perception of material properties, fMRI research suggests the 

involvement of collateral sulcus (CoS) and the parahippocampal cortex (PHC) 

(Cant & Goodale, 2007, 2011; Cavina-Pratesi, Kentridge, Heywood, & Milner, 

2010; Hiramatsu, Goda, & Komatsu, 2011; Jacobs, Baumgartner, & 

Gegenfurtner, 2014). With respect to the auditory modality, previous research 

suggests the involvement of right parahippocampal cortex (Arnott et al., 2008). 

Importantly, areas in right PHC responding to auditory materials also responded 

to visual surface materials, thus suggesting the existence of a visuo-auditory 

multimodal material processing area in PHC. Auditory materials in the context of 

Arnott et al. (2008) were conveyed through sounds of materials being 

manipulated, i.e. materials were manipulated with the hands to produce a 

material conveying sound, such as crumpling of paper. During echolocation, in 

contrast, the material is conveyed through the reverberation of a vocalization off 

the material, whilst the material itself remains distal and silent. Thus, one may 

expect a difference in terms of how the brain processes material conveyed 

through echoes. Accordingly, we conducted a previous study into echolocation of 

material, alongside echolocation of shape (Arnott et al., 2013), but the results of 

this study with respect to brain activation specific to material echoes were 

inconclusive. This could potentially be due to the design of the task in which 

echo-acoustic information conveying shape was not acoustically independent 

from echo-acoustic information conveying material properties, rendering a 

comparison of material echoes regardless of shape essentially impossible.  
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Consequently, the current study addressed the perception of material 

echoes per se; that is, in the absence of any other object or spatial cues. Three 

blind expert echolocators, three blind, and three sighted control participants took 

part in the experiment. Our results revealed a material-echo related increase of 

activation within left parahippocampal cortex in all three expert echolocators. This 

activation was absent in sighted and blind control participants. We did not find 

material echo related activations in posterior CoS, suggesting that some of the 

brain areas previously implicated for visual processing of materials were not 

involved. Our results further support the idea of feature-specific echo processing 

and also contribute to the possibility of a multimodal material processing area 

within parahippocampal cortex. 

4.3 Materials and Methods 

All testing procedures were approved by the ethics board at the University of 

Western Ontario, and participants gave written, informed consent prior to testing. 

All experimental procedures conformed to The Code of Ethics of the World 

Medical Association as stated in the Declaration of Helsinki (1964). The consent 

form was read to participants, and the location to sign was indicated through 

tactile and visual markers. 

Software used to conduct testing was programmed using Psychophysics 

Toolbox 3.08 (Brainard, 1997), Matlab (R2009a, The Mathworks, Natick, MA) 

and C/C++. fMRI data were analyzed using Brain Voyager QX version 2.8 (Brain 

Innovation, Maastricht, The Netherlands) and Matlab. Sound editing was 

performed with Adobe Audition version 1.5 software (Adobe Systems, San Jose, 

CA). Sound equalization was performed with filters provided by the headphone 

manufacturer (Sensimetrics, Malden, MA). 

4.3.1 Participants 

Three blind, male echolocation experts (EE1-EE3) participated in the study. EE1 

(age 44) was enucleated in infancy due to retinoblastoma and reports to have 

used echolocation for as long as he can remember. EE2 (age 44) had lost sight 

due to retinopathy of prematurity. He reports having begun using echolocation in 
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his early twenties, but did not practice echolocation between age 34 and 40 due 

to health reasons. He resumed using echolocation on a daily basis at age 40. 

EE3 (age 29) gradually lost sight from birth due to glaucoma, and had only bright 

light detection since early childhood. At the time of testing he was completely 

blind. EE3 reports that he has used echolocation techniques since age 12. At 

time of testing, each of the echolocation experts reported using click-based 

echolocation on a daily basis. 

We also tested six control participants (three congenitally blind non-

echolocators [BC1-BC3; two male, aged 36, 25, 38, respectively] and three 

sighted individuals [SC1-SC3; two male, aged 26, 29, 30, respectively]). Control 

participants reported no prior use of or training in echolocation prior to 

participation. 

4.3.2 Experimental Stimuli 

4.3.2.1 Sound Stimuli: Setup and Recording Procedure 

All auditory stimuli were recorded in a Beltone Anechoic Chamber at the National 

Centre for Audiology in London, Ontario, Canada, measuring 5.5 m high × 7.0 m 

wide × 3.7 m deep, and equipped with a 125-Hz cutoff wedge system on the 

walls and ceiling. The chamber floor was covered in foam baffles. Ambient noise 

recordings indicated a background noise (i.e., “noise floor”) of 18.6 dBA. 

Recordings of the entire session's audio were acquired via in-ear binaural omni-

directional microphones (Sound Professionals-TFB-2; “flat” frequency range 20–

20,000 Hz) attached to a portable Edirol R-09 digital wave recorder (16-bit, 

stereo, 44.1-kHz sampling rate). Microphones were placed directly at the opening 

of the echolocators’ left and right auditory canals and held in place by a soft 

rubber “horn-shaped” housing that conformed to the shape of the concha. During 

recording, participants held their head stationary and faced straight ahead. 

Recordings were made separately with EE1, EE2, and EE3.  
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4.3.2.2 Echolocation Sounds 

Similar to our previous studies (Arnott et al., 2013; Thaler et al., 2011, Thaler et 

al., 2014), echo stimuli were created by making binaural recordings of 

echolocation clicks and subsequent echoes as each echolocating participant was 

presented with sound-reflecting surfaces that were made of different materials. 

Thus, echolocation recordings contained both clicks and the click echoes. The 

advantage of using binaural microphones is that the sounds are perceived to be 

externalized when played back over headphones (i.e. that they are occurring ‘out 

in the world’ as opposed to inside of the head). The recordings were made in the 

presence of one of three materials: a whiteboard, synthetic foliage, and a fleece 

blanket covered with a fencing material5 (Figure 4.1A). The objects were large 

(sizes varied) and were designed to encompass the entire ‘scene’ (i.e. to provide 

no shape or edge information). The materials were suspended from a pulley 

system on the ceiling and were centered at ear-level for each participant. During 

recording, the participant was positioned approximately 45 cm away from the 

material and told to click at a comfortable pace (see Figure 4.1B). We also made 

recordings of the participants’ clicks in the absence of any material (i.e. 

theoretically echoless) to serve as a ‘no-material’ condition. For all recording 

conditions, the participant was inside of the anechoic chamber by himself with 

the door closed. Examples of click-echo pairings for each condition are shown in 

Figure 4.1A.  

4.3.2.3 Sound Editing 

From each echolocator’s recordings, we took individual click-echo pairings to 

create three unique 10-second exemplars for each condition (whiteboard,  

                                                 

5
 During the planning of the experiment, we presented the echolocators with a number of different 

materials and had them report on the material properties they perceived (we did not provide them 
with any information prior to presentation). The three materials used here were chosen because 
the echolocators indicated that the echoes were reflected from these materials were salient and 
also that they sounded very differently from each other. The echolocators described the 
whiteboard as sounding “hard, flat, and smooth”, the synthetic foliage as sounding “like foliage”, 
and the fleece blanket covered in fencing material as sounding “sparse”. 
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Figure 4.1. Material stimuli and setup for binaural recordings. A) Photos of the materials 

(and empty chamber) recording conditions, with sample waveforms for each condition 

(samples were extracted from EE1’s recordings). B) The participant (EE1-EE3) was 

positioned approximately 45 cm from each material, which was suspended from the 

ceiling and was large enough to encompass the entire field and not provide shape or 

edge information. The participant wore binaural microphones (inset) and was told to click 

at a comfortable pace while the researchers recorded the clicks and returning echoes. 

For the empty anechoic chamber recordings no material was present and the participant 

was alone in the anechoic chamber. Recordings were made separately for EE1, EE2, 

and EE3. 
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synthetic foliage, fleece blanket covered in fencing material, and the empty 

chamber environment). This resulted in having three different sets of sound 

stimuli (i.e. from each echolocator’s recordings), each including 12 sounds (4 

conditions x 3 exemplars). Because the echolocators were free to click at their 

own pace, the number of click-echo pairings per 10-second stimulus varied within 

and between participants, with an average of 14 pairings per sound stimulus. The 

average acoustic energy of the sounds (in dB root mean square [RMS]) was -

48.4 (SD = 1.9) for EE1, -46.1 (SD = 1.2) for EE2, and -45.9 (SD = 2.3) for EE3. 

4.3.3 MRI Scanning 

Imaging for all participants, except EE3, was performed at the Robarts Research 

Institute (London, Ontario, Canada) using a 3-Tesla, whole-body MRI system 

(Magnetom Tim Trio; Siemens, Erlangen, Germany) with a 32-channel head coil. 

EE3 was scanned at Durham University Neuroimaging Centre, James Cook 

Hospital, Middlesbrough, using the same model scanner and head coil.  

4.3.3.1 Setup and Scanning Parameters 

Audio stimuli were delivered over MRI-compatible inset earphones (model S-14, 

Sensimetrics, Malden, MA). Participants adjusted the sound level to their own 

comfort. The earphones were encased in replaceable foam tips that provided 20- 

to 40-dB sound attenuation. Further sound attenuation was achieved by placing 

foam inserts between the head rest and the participants’ ears. Due to the fact 

that the experiment involved listening to sound stimuli including faint echoes, the 

MRI’s bore circulatory fan was turned off. A single-shot gradient echo-planar 

pulse sequence in combination with a sparse-sampling design (Hall et al., 1999) 

was used for functional image acquisition. Repetition time was 12 seconds (10-

second silent gap + 2-second slice acquisition). The field of view was 211 mm 

with a 64 x 64 matrix size, which led to in-slice resolution of 3.3 x 3.3 mm. Slice 

thickness was 3.5mm and we acquired 38 contiguous axial slices covering the 

whole brain in ascending order. Echo time was 30 ms and flip angle was 78°. 
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4.3.3.2 Anatomical Image 

Anatomical images of the whole brain were acquired at a resolution of 1 x 1 x 1 

mm using an optimized sequence (MPRAGE). 

4.3.3.3 Functional Paradigm 

Each run contained silent baseline and experimental trials (Figure 4.2). 

Experimental trials included a 10-second sound stimulus presentation (i.e. one of 

the four conditions [three materials and empty anechoic chamber]). Each sound 

presentation was followed by a 50-ms, 1200-Hz tone, which cued the participant 

to provide their response via button-press (Behavioural Paradigm below). 

Functional scans began 10 seconds after the run had started and lasted 2 

seconds. The next trial began immediately after scanning had ended. Silent 

baseline trials differed from experimental trials in that the 2-second functional 

scan occurred after 10 seconds of silence (which was not followed by the 

response-cue tone and participants did not make a button-press). The 

echolocating participants did not listen to their own click recordings, but rather to 

the recordings of one of the other echolocators (Behavioural Paradigm below). 

Stimulus presentation was pseudo-randomly ordered such that each run 

contained eight clusters, each cluster containing an exemplar of each of the four 

experimental conditions. The order of the four conditions was counterbalanced 

across clusters using a Latin square design. Each cluster of four conditions was 

preceded by a silent baseline trial, and each run began and ended with a silent 

baseline trial. Thus there were a total of 41 trials per run (9 silent + 8 x 4 

experimental) and the durations of each run was 41 x 12 seconds. Each 

participant completed five runs. 

4.3.3.4 Behavioural Paradigm 

As mentioned above, the echolocating participants did not listen to their own 

recorded clicks and echoes. The purpose of this was to account for the fact that 

recordings were not made with control participants and therefore they listened to 

the recordings of another individual. The participants assigned to each set of  
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Figure 4.2. Experimental design. Time is indicated by the arrow from left to right in 

seconds (s). An enlarged view of a single trial is shown in the inset. The presentation of 

the material sounds was pseudo-randomized across runs, and the labeling in the top 

panel for each sound is for illustrative purposes only. Each sound presentation was 

followed by a ‘beep’ which cued the participant to respond via button-press. Every fifth 

trial was a silent baseline which was not followed by a ‘beep’ and participants did not 

provide a response. Functional slice acquisition took place only during the 2-second 

period between sound presentations. 
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recordings were as follows: EE1’s recordings: EE3, BC3, SC3; EE2’s recordings: 

EE1, BC1, SC1; EE3’s recordings: EE2, BC2, SC2.  

Participants were asked to keep their eyes closed during the duration of 

the experiment. The task was a 1-interval-4-alternative forced choice paradigm. 

The participant listened to the echolocation sound and judged the material 

properties of the sound reflecting surface (whiteboard, synthetic foliage, fleece 

blanket with fencing, no material [empty anechoic chamber]). Participants 

indicated their response with a button press using a four-button magnetic 

resonance-compatible keypad.  

4.3.3.5 Prior to MRI 

EXPERTS: Before MRI scanning, the echolocating participants were familiarized 

with the sounds they would be listening to during experimentation. Feedback was 

provided initially to ensure that the participants were accurately identifying the 

echoes. A mock run was performed without feedback just prior to testing. 

BLIND AND SIGHTED CONTROL PARTICIPANTS: Blind and sighted controls 

completed a 40-minute practice session to familiarize themselves with their 

respective echo stimuli. Feedback was provided for the first portion of the 

practice session until the participants could comfortably and reliably identify the 

sound stimuli. This portion of practice was followed by a mock run during which 

no feedback was provided. Just prior to MRI, participants were once again 

familiarized with the sounds and feedback was provided. 

4.3.4 fMRI Data Analysis 

4.3.4.1 Preprocessing and Coregistration 

Each functional run began with three functional scans not saved to disk (scanner 

manufacturer default programming for functional sequences). Following these 

initial scans, functional data acquisition began. The first volume of each run was 

not included in the functional data analysis. Each run was subjected to slice scan 

time correction (tri-linear sinc), temporal high-pass filtering (cut-off at 2 

sines/cosines) and three-dimensional motion correction (sinc). To align the 
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functional to the anatomical data for each participant, we first used three-

dimensional motion correction to align each volume within a run to the functional 

volume closest to the anatomical scan. This volume was co-registered to the 

anatomical scan of that same participant. The anatomical for each participant 

was then transformed into standard stereotactic space (Talairach and Tournoux, 

1988). Spatial smoothing was not applied to the data.  

4.3.4.2 Functional Analyses 

Due to the nature of the study and the small number of participants, all analyses 

were performed on a single-subject level. 

4.3.4.2.1 BOLD Activity Related to Echolocation Stimulation 
Compared with Silence 

To compare brain activity related to the processing of echolocation sounds as 

compared to a silent baseline for each participant, we ran a fixed-effects general 

linear model (GLM) with the stick-predictor ‘All Sounds’ to the z-transformed time 

courses of the runs (5 runs per participant; for EE3, the first run was omitted due 

to head movement-related artifacts). To determine where BOLD activity during 

sound-stimulation trials exceeded activity during silent baseline trials, we isolated 

voxels where the beta value of the ‘All Sounds’ predictor was significantly larger 

than zero. To control for Type-I error probability, each participant’s data was 

subjected to a cluster threshold correction (Forman et al., 1996). Cluster 

threshold values were estimated in volume space using the BrainVoyager Cluster 

Threshold Estimator Plugin (Goebel et al., 2006) (see Supplemental Table S1). 

Following the cluster correction, individual data was also subjected to a false 

discovery rate (FDR) correction of p < .01. 

4.3.4.2.2 BOLD Activity Related to Material Echoes 

The purpose of this analysis was to isolate the processing of only the echoes 

reflected from the materials. To obtain activity related to echo processing, we 

applied a fixed-effects GLM with the following contrast: (whiteboard + synthetic  
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Table 4.1. 

Summary of Participants’ Behavioural Performance 

 

 Performance on Material Discrimination Task (% correct)   

Participant Whiteboard Synthetic 
Foliage 

Fleece-Fence Empty 
Chamber 

Overall 
Accuracy 

Test Result Significance 

EE1 
EE2 
EE3 

100 
92.5 
97.5 

100 
92.5 
95 

95 
85 

72.5 

72.5 
67.5 
62.5 

91.86 
84.38 
81.88 

21.64 
19.19 
16.53 

p < .001 
p < .001 
p < .001 

BC1 
BC2 
BC3 

50 
55 
55 

33.3 
45 

57.5 

55 
33.3 
70 

45 
67.5 
92.5 

45.83 
50.2 

68.75 

6.61 
8.08 

14.125 

p < .001 
p < .001 
p < .001 

SC1 
SC2 
SC3 

92.5 
37.5 
55 

45 
37.5 
55 

45 
45 
45 

45 
45 

100 

56.88 
41.25 
63.75 

10.21 
5.14 

12.49 

p < .001 
p < .001 
p < .001 

 

Note: Test statistics and significance values are the result of binomial tests comparing 

each participant’s overall percentage correct performance to chance (25%). 
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foliage + fleece with fence) > empty anechoic chamber. Again, each participant’s 

data was subjected to cluster threshold correction (see Supplemental Table S1) 

and FDR correction of p < .05. A more liberal threshold was used for this contrast 

because the material-related activation (contrast all materials > silence) was not 

as robust. 

4.4 Results 

4.4.1 Behaviour 

The participants’ behavioural task during fMRI scanning was to identify the 

material of the sound-reflecting surface (i.e. whiteboard, synthetic foliage, fleece 

blanket with fencing, or no material [empty anechoic chamber environment]). The 

behavioural performance (as percent correct) for all participants is shown in 

Table 4.1. Each participant completed five runs (with the exception of EE3, for 

whom analyses were conducted on runs 2-5), with 40 trials in each run (10 

repetitions per material condition), for a grand total of 200 behavioural trials. EE3 

completed four runs and thus completed 160 behavioural trials. Binomial tests 

were conducted on each participant’s overall percentage correct performance 

compared to chance (25%). The results of the binomial tests revealed that all 

participants performed significantly better than chance (p < .001; Table 4.1). It is 

also evident that, even though each of our participants could perform the task, 

each of the echolocation experts had higher accuracy than any of the control 

participants. Recall that none of the participants – even the expert echolocators – 

listened to their own recordings. Thus, this difference in performance is due to 

echolocation expertise, rather than familiarity with the sounds. 

4.4.2 BOLD Activity Related to Echolocation Stimulation 
Compared with Silence 

Figures 4.3 and 4.4 show slice views of the expert echolocator’s (Figure 4.3) and 

blind and sighted control participants’ (Figure 4.4) BOLD activity associated with 

the processing of all of the sound stimuli compared to silence. The top row for 

each group of participants shows coronal slices (with Talairach y-coordinates 

indicated below). All participants showed highly significant activation in bilateral  
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Figure 4.3. BOLD activation for participants EE1-EE3 related to echolocation stimulation 

compared with silence. The top row shows coronal slice views with activation in bilateral 

Heschl’s gyrus for all three echolocating participants (with Talairach y-coordinates 

below). The bottom row shows sagittal slices views with activation in the right calcarine 

sulcus in all three participants (with Talairach x-coordinates below). The contrast values 

(with SE) for each region of activation are shown in the plot. EE1 exhibited three 

separate areas of activation along the calcarine sulcus, and the contrast value plotted 

represents the average of these three regions. Complete Talairach coordinates and 

sizes of all regions are shown in Table 4.2. 
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Figure 4.4. BOLD activation for blind (BC1-BC3) and sighted (SC1-SC3) control 

participants related to echolocation stimulation compared with silence. The top row for 

each group of participants shows coronal slice views with activation in bilateral Heschl’s 

gyrus (with Talairach y-coordinates below). The bottom row for each group of 

participants shows sagittal slice views at the location of the right calcarine sulcus (which 

was activated in EE1-EE3; Talairach x-coordinates are below). Control participants did 

not exhibit any activation in this area. The contrast values (with SE) for each region of 

activation are shown in the plot. Complete Talairach coordinates and sizes of all regions 

are shown in Table 4.2. 
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Heschl’s gyrus, which was expected given that Heschl’s gyrus contains the 

primary auditory cortex. The average contrast values for each of the activated 

shown in the plot at the bottom of each figure, and the Talairach coordinates and 

sizes of each region are shown in Table 4.2 for all participants. 

The bottom row in Figure 4.3 and in each participant section in Figure 4.4 

shows sagittal slice views (with Talairach x-coordinates indicated below) for each 

participant. The contrast revealed activation along the right calcarine sulcus, but 

only in the three echolocating participants. In particular, EE1 showed activation 

along the entire sulcus, while EE2 and EE3 showed smaller isolated areas of 

activity. Previous research on the blind has shown that auditory stimulation in the 

blind brain can activate what are considered ‘visual’ brain areas in the sighted 

brain (for review, see Bavelier & Neville, 2002; Merabet & Pascual-Leone, 2010). 

Interestingly, though, the blind control participants did not exhibit significant 

activation in the occipital cortex in our experiment, even at more liberal 

thresholds (although BC1 shows a small region of activation at the parieto-

occipital junction). This absence of occipital activation in the blind control 

participants in response to auditory stimulation is addressed in the Discussion. 

Sighted controls also did not show calcarine activation, even at more liberal 

thresholds. The average contrast values for each of the activated regions are 

shown in the plot at the bottom of each figure, and the Talairach coordinates and 

sizes of each region are shown in Table 4.2 for all participants. 

4.4.3 BOLD Activity Related to Material Echoes 

Figure 4.5 shows the BOLD activity associated with the processing of only the 

material echoes. As described in the methods, we isolated the echoes by 

subtracting the activity related to the click-only empty anechoic chamber 

condition from the activity related to the three click-echo material conditions. This 

contrast revealed similar but not overlapping areas of activation within the region 

of the left parahippocampal cortex (an area encompassing the parahippocampal 

gyrus, fusiform gyrus, and anterior CoS) in all three expert echolocators. The 

relative location of each echolocator’s region of activation is shown on an  
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Figure 4.5. BOLD activation for expert echolocators (EE1-EE3), blind controls (BC1-

BC3), and sighted controls (SC1-SC3) related to material echoes. The top row shows 

coronal slice views for EE1-EE3, all exhibiting activation within the parahippocampal 

cortex (the location of the CoS is indicated by a dashed white line). The magnified inset 

shows the relative location of each participant’s activation on an averaged brain (colours 

for each participant are indicated by the line underneath the participant label). Contrast 

values (with SE) are shown in the plot to the right of the inset. The bottom row shows the 

results from the control participants, who did not exhibit activation in this area, even at 

more liberal thresholds (i.e. p < 0.1). Complete Talairach coordinates and sizes of all 

regions are shown in Table 4.2.  
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Table 4.2. 

Center-of-gravity coordinates (Talairach space) and sizes of activated regions within 

auditory, calcarine, and parahippocampal cortex. 

 
All Sound Stimuli > Silence (p < .01) 

  Auditory Cortex Activation 

Subject Hemi. No. 
Voxels 

x y z 

EE1 Left 
Right 

233 
298 

-41 
43 

-20 
-20 

3 
9 

EE2 Left 
Right 

559 
320 

-35 
37 

-20 
-26 

3 
3 

EE3 Left 
Right 

496 
220 

-50 
46 

-20 
-14 

3 
0 

BC1 Left 
Right 

294 
362 

-41 
40 

-20 
-20 

3 
0 

BC2 Left 
Right 

316 
372 

-44 
37 

-23 
-26 

3 
6 

BC3 Left 
Right 

261 
219 

-38 
38 

-23 
-22 

0 
3 

SC1 Left 
Right 

326 
301 

-38 
37 

-17 
-20 

-3 
3 

SC2 Left 
Right 

562 
215 

-41 
37 

-20 
-26 

0 
-1 

SC3 Left 
Right 

216 
247 

-38 
37 

-23 
-23 

0 
6 

 

 

 

All Sound Stimuli > Silence (p < .01) 

  Calcarine (visual) Cortex  

Subject Hemi. No. 
Voxels 

x y z 

EE1 Right-1 
Right-2 
Right-3 

288 
432 
555 

7 
7 

10 

-95 
-83 
-77 

3 
6 
9 

EE2 Right 371 5 -77 6 

EE3 Right 340 1 -92 6 

 

 

 
All Materials > Empty Chamber (p < .05) 

  Parahippocampal Cortex  

Subject Hemi. No. 
Voxels 

x y z 

EE1 Left 25 -14 -55 -6 

EE2 Left 278 -20 -53 -9 

EE3 Left 56 -11 -53 -6 
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averaged brain in the magnified inset in Figure 4.5 (the Talairach coordinates 

and sizes of each region are shown in Table 4.2). Interestingly, Arnott et al.’s 

(2008) findings on visual and auditory material processing in sighted individuals 

also revealed parahippocampal cortex activation, but their participants showed 

activation in the right hemisphere. This difference in lateralization is addressed in 

the Discussion. The bottom panel of Figure 4.5 shows the left parahippocampal 

cortex of each of the blind and sighted control participants, none of whom 

showed any significant activation within that region, even at more liberal 

thresholds (p < 0.1). It is noteworthy that none of our participants showed activity 

in Heschl’s gyrus, or in calcarine cortex, for this contrast. 

Activation within the left parahippocampal cortex was consistent across 

EE1, EE2, and EE3, but activity was also seen in other areas, most notably for 

participant EE1. EE1 exhibited bilateral activation within the cingulate cortex and 

middle temporal gyrus, as well as small regions of activation within the medial 

parietal cortex, prefrontal cortex, and cerebellum. Because these areas of 

activation were present in only one echolocating participant, our discussion will 

focus primarily on the consistent PHC activation in all echolocators. 

4.5 Discussion 

Previous neuroimaging research in blind human echolocators has provided 

evidence for a functional role of calcarine cortex in processing echoes reflected 

from silent objects (Thaler et al., 2011). More recent research (Arnott et al., 2013; 

Thaler et al., 2014) has suggested that this occipital activation is likely not due to 

general cross-modal plasticity, but rather that the functional nature of particular 

visual brain areas (such as the LOC, or MT+) are preserved. In other words, the 

processing of echoes may show feature-specificity similar to the normal functions 

of such brain areas for the processing of vision. Given the evidence for feature-

specific activation, the aim of the current experiment was to determine how the 

blind echolocating brain processes echoes reflected from surfaces of different 

materials. In particular, we were motivated by findings about visual (Cant & 

Goodale, 2007, 2010; Cavina-Pratesi et al., 2011; Hiramatsu, Goda, & Komatsu, 
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2011; Jacobs, Baumgartner, & Gegenfurtner, 2014) and visuo-auditory (Arnott et 

al., 2008) material processing that implicated CoS and PHC. Our results revealed 

activation in left parahippocampal cortex for all three echolocating participants. 

  By showing material related activity in PHC, our results suggest that 

material processing through echoes may recruit the same general regions of 

PHC that have been implicated in both visual and auditory processing of material 

properties (Arnott et al. 2008; Cant & Goodale, 2011; Jacobs, Baumgartner, & 

Gegenfurtner, 2014). We saw no activation, however, in posterior regions of CoS 

that have also been associated with aspects of the visual processing of material.  

A discrepancy between our and Arnott et al.’s (2008) findings is that Arnott et al. 

observed activation in the right hemisphere whereas we show activation only in 

the left hemisphere across all three echolocators. This difference could 

potentially be attributed to the fact that our stimuli were specifically designed to 

minimize any spatial information (i.e. the material encompassed the whole 

‘scene’ and had no discernible edges/boundaries for the echolocators), whereas 

the stimuli in Arnott et al.’s study had inherent spatial properties (for example, the 

sound of a snack food bag could elicit spatial imagery of the object’s form, or the 

object being spatially manipulated). The right-lateralized material-related 

activation found previously could then be due in part to the spatial properties of 

the stimuli. In fact, right occipital regions in the blind have been shown to be 

preferentially activated for spatial versus non-spatial stimuli in both the auditory 

and tactile domains (Collignon et al., 2011; Renier et al., 2010). Nevertheless, 

future research is needed to follow up on these differences in lateralization. 

 One could argue that the observation of PHC activity in only the blind 

echolocating participants (and not in blind or sighted controls) could be due 

simply to general echo expertise and not functionally specific to material 

perception, particularly considering that the echolocating participants showed 

considerably higher behavioural performance than the control participants. 

Sighted participant SC1, though, showed comparable performance to the expert 

echolocators in identifying the ‘whiteboard’ echoes. In a contrast isolating the 

processing of just the whiteboard echoes, however, we found no evidence of 
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PHC activity in this participant, even when using liberal, uncorrected statistical 

thresholds. Furthermore, considering that the PHC has previously been 

implicated in material processing in other perceptual domains (vision and 

audition), we are more confident in attributing the activation found in the current 

study to material-echo perception. Nevertheless, future research should aim to 

disentangle the possibilities of expertise versus feature-specific activation in 

expert echolocators. 

The observation of activation within the PHC invites speculation about the 

nature of the activity we found, particularly because of PHC’s typical (though not 

exclusive) association with scene perception (for review, Aminoff, Kveraga, & 

Bar, 2013). Specifically, in our study the presence of a material could also be 

considered the presence of a particular material surface, or ‘scene’ respectively, 

so that one could argue that the PHC activation we found represents echo-scene 

related activation, rather than echo-material related activation. In previous work, 

however, which aimed to determine echo-scene related activation within blind 

echolocators (Arnott et al., 2013) we found results suggesting involvement of 

auditory and  calcarine cortex rather than PHC. Nevertheless, it will be important 

for future research on material perception via echolocation to further disentangle 

the possible explanations for the PHC activation we found.  

In sum, our results are most similar to those obtained by Arnott et al., 

(2008). Most importantly, the fact that we found highly consistent activation in left 

PHC in all three echolocating participants, in combination with those previous 

findings, suggests the potential involvement of visuo-auditory material processing 

areas in PHC for processing of material echoes in blind experts. 

In addition to the main findings in parahippocampal cortex, we also 

observed activation along the right calcarine sulcus in all echolocating 

participants, but this activation was observed only for the contrast isolating 

activity related to echolocation stimulation compared to silence. This 

lateralization is consistent with previous findings on calcarine activation in human 

echolocators (Thaler et al., 2011) and also with general auditory stimulation in 

the blind (e.g., Weeks et al., 2000). Surprisingly, we did not observe calcarine 
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activity in our blind control participants, even when applying more liberal 

statistical thresholds. Because we have not tested this set of blind control 

participants on any other auditory tasks, we cannot say whether the absence of 

occipital activation in this case is related to the participants themselves (i.e. they 

do not show occipital activation for any auditory tasks) or whether it is something 

related to the echolocation task. Future research should address this.  

 Interestingly, we did not observe calcarine activity in the echolocating 

participants for the contrast (all materials > empty chamber). Since this contrast 

isolated processing of echoes (which in our study were always material echoes), 

the absence of calcarine recruitment for this contrast seemingly runs counter to 

what we have found previously (Thaler et al., 2011). A difference between the 

current and our previous study, though, is that the material-echoes in the current 

study were designed with the goal to convey material information per-se, i.e. to 

minimize spatial information. Thus, again, one could argue that the material 

echoes in our study did not contain a spatial component, and it is possible that 

the calcarine activation previously associated with echo perception was 

particularly related to the spatial components of the echoes (Thaler et al., 2011). 

Based on the idea that echo-related activation in calcarine cortex is tied to the 

spatial component of echoes, we would expect that contrasts of various sorts of 

spatial echo-information should lead to differences in activation in calcarine 

cortex. Remarkably, this is exactly what we found when we reported modulation 

of echo-related activity in calcarine cortex with echo laterality (Thaler et al., 2011) 

and eccentricity (Arnott et al., 2013). Thus, these findings suggest the viability of 

the idea that echo-related activity in calcarine cortex of blind experts is tied to the 

spatial component of the echoes. An alternative, though not mutually exclusive, 

explanation for the absence of calcarine activity for the contrast (all materials > 

empty chamber) in our study is the idea that the recruitment of calcarine cortex in 

the case of material-echo perception is unnecessary due to the fact that the PHC 

is normally recruited for the processing of material properties within the auditory 

(and visual) domain. Future research should address these possibilities. 
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Because echolocation is an auditory process, it must involve auditory 

processing. Yet, for the contrast (all materials > empty chamber) we were unable 

to find significant differential activity in primary auditory cortical areas, i.e. 

Heschl’s gyrus. The lack of any difference in activity in auditory cortex for the 

contrast between (all materials > empty chamber) was expected, because we 

had created stimuli so that the acoustic differences were minimal and the only 

difference was the presence or absence of very faint echoes. It is possible, 

therefore, that the auditory processing of the very faint echoes did not yield a 

significant differential BOLD signal in primary auditory areas because activity in 

those areas might have been dominated by the processing of the much louder 

and more salient clicks (which are present in both material and empty chamber 

sounds). 

Given the possibility of a multimodal material processing area within PHC, 

one must also consider the perception of material properties via haptics. 

Research on sighted individuals has, not surprisingly, shown activation within the 

somatosensory cortex (such as the postcentral gyrus, parietal operculum, and 

insula) related to the tactile exploration of objects with different material or texture 

properties (Podrebarac, Goodale, & Snow, 2014; Servos, Lederman, Wilson, & 

Gati, 2001; Stilla & Sathian, 2008). Furthermore, haptic texture-related activation 

has been observed within the medial occipital cortex (MOC), with regions of 

activity overlapping (Stilla & Sathian, 2008) or adjacent to (Podrebarac et al., 

2014) visual-texture selective areas. Interestingly, though, the visuo-haptic 

texture-selective areas within MOC are quite different from the visuo-auditory 

material area in right PHC found by Arnott et al. (2008), and from the areas within 

left PHC observed in the current study. In the blind, material perception has been 

investigated only in the tactile domain, but not in the auditory domain. With 

regard to tactile perception of materials, no notable differences in behavioural 

performance have been reported to date between sighted and blind people 

(Grant, Thiagarajah, & Sathian, 2000; Heller, 1989), with the exception of Braille 

patterns which might be related to blind people’s Braille proficiency (e.g., Grant, 

Thiagarajah, & Sathian, 2000). To the best of our knowledge, at present there is 
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no study having investigated brain areas involved in tactile perception of 

materials per se in the blind (i.e. not the perception of Braille or dot position 

offset). In sum, it will be important for future research to address how the blind 

and sighted brain processes material-related information from the echolocation, 

pure auditory, and tactile domains. 

4.5.1 Conclusions 

The aim of the current study was to investigate the neural correlates of material 

processing through echolocation in blind human expert echolocators. The 

perception of material has real-world implications for blind individuals, with 

immediate benefits for navigation, orientation, and obstacle avoidance. Given the 

evidence suggesting that the blind echolocating brain may show functional 

specificity for echoes in a way similar to visual processing, we aimed to 

determine whether material processing via echoes would make use of brain 

areas normally associated with such functions in vision. Our results indicated that 

the processing of material-echoes makes use of an area within the 

parahippocampal cortex that has previously been implicated in both visual and 

auditory material processing. Future research should draw direct comparisons 

between material processing through echolocation, ‘regular’ hearing, and vision. 
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5.1 Summary of Findings 

The goal of the current thesis was to better understand some of the basic 

functions of human echolocation. Specifically, I used behavioural psychophysical 

techniques to examine the ability of human echolocators to determine the shape 

and size of objects and I used neuroimaging to observe the neural correlates of 

material-echo processing. The following will summarize the main findings of this 

thesis. 

In Chapter 2, I showed that six expert echolocators could discriminate 

between four different two-dimensional shapes (a square, triangle, horizontally-

oriented rectangle, and vertically-oriented rectangle) with remarkable precision, 

but that their ability to do so was dependent on the use of head and body 

movements. When the echolocating participants were instructed to remain still, 

we observed a substantial decrease in performance. We suggested, then, that 

these movements allowed the echolocators to scan and trace the edges of the 

objects, with each echo providing a ‘snapshot’ of information about the location 

from which it was reflected. By piecing-together each of these snapshots, the 

echolocator could produce an overall percept of the object’s shape. This process 

of combining small pieces of information is strikingly similar to how sighted 

individuals perceive objects and scenes (although echolocation certainly 

operates on a much cruder scale than vision). Therefore, we suggested that 

these movements may be similar to the many saccadic eye movements used for 

visually surveying an object or scene. 

In Chapter 3 I investigated whether or not a blind expert echolocator 

shows size constancy for object size perception. Recall that size constancy is a 

visual-perceptual principle, and refers to the stable perception of object size at 

various distances, despite the fact the retinal image size is directly affected by 

distance. The results in Chapter 3 indicated that the expert echolocator indeed 

showed size constancy, even though changes to the distance of the objects had 

a direct effect on size-related echo information. These findings are intuitive 

considering that in order to successfully navigate one’s surroundings based on 

echoes the information content must be accurate. And, of course, we know 
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anecdotally and from the existing literature on human echolocation that blind 

expert echolocators can accurately and reliably perceive and navigate their 

surroundings via the information content of echoes. The work presented in 

Chapter 3, though, was the first to directly test and confirm that size constancy 

operates via echolocation. 

In Chapter 4 I used functional neuroimaging to examine the neural 

correlates of material processing in echolocation. Material information contained 

in echoes is informative for navigation and obstacle avoidance, and the 

broadband echolocation signals used by human echolocators are well-suited for 

discriminating material properties. The results of this project demonstrated not 

only that expert echolocators can discriminate between recorded echoes 

reflected from different materials, but also that the processing of these echoes 

was associated with activity within the parahippocampal cortex. This area has 

been previously implicated in the processing of visual and auditory material 

properties. These findings support the suggestion that echo-related neural 

activity in visual cortical areas shows feature-specificity similar to related 

functions in vision. 

5.2 Implications for the Blind 

5.2.1 General Benefits 

The work presented in the current thesis – along with much of the existing work 

in the human echolocation literature – supports echolocation as a viable resource 

for the blind. The research reported here and elsewhere demonstrates that the 

information these blind individuals can extract from echoes is an accurate 

representation of objects and surfaces in the real world, and thus this information 

can be relied upon for navigation, obstacle avoidance, and general perception. 

Furthermore, as mentioned throughout this thesis, echolocation allows for the 

detection and perception of silent objects at a distance, and thus provides a 

unique perceptual opportunity that would otherwise not be available to blind 

individuals (that is, without the use of echolocation or a sensory substitution 

device). 
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 Although the current thesis emphasized the relationship between 

echolocation and vision, it is important to note that echolocation is an 

extraordinary and valuable skill on its own, regardless of any connection with 

vision or other sensory modalities. Furthermore, the fact that echolocation is a 

teachable skill means that it is theoretically available to anyone – blind or sighted 

– and can offer perceptual benefits above and beyond the traditional senses. In 

terms of the blind population, in addition to the benefits discussed throughout this 

thesis, there is evidence suggesting that the use of echolocation improves 

auditory space representations, and that some blind echolocators even perform 

superiorly to sighted people (Vercillo, Milne, Gori, & Goodale, under review). In a 

more general sense, echolocation expertise has been positively correlated with 

higher salary and greater mobility in unfamiliar places as compared to blind 

individuals who do not echolocate (Thaler, 2013). Given the obvious benefits of 

echolocation, research should continue to validate its utility in hopes of having 

echolocation training become more ubiquitous in the blind (and even the sighted) 

community. 

5.2.2 Echolocation devices 

Substantial efforts have been made in research and engineering to create 

sensory substitution devices (SSDs) to allow blind individuals to ‘see’ via the 

remaining senses, such as audition or touch (Bach-y-Rita & Kercel, 2003; Proulx, 

Brown, Pasqualotto, & Meijer, 2012). Visual-to-auditory SSDs typically involve 

the use of a camera that scans an object or scene and then converts the visual 

information into an auditory signal. For example, sounds of different frequencies, 

intensities, and durations can be used to represent the location of objects in the 

scanned image. Similarly, visual-to-tactile SSDs convert visual information into a 

tactile signal that can be transmitted to the skin on the hand (Zelek, Bromley, 

Asmar, & Thompson, 2003), tongue (Bach-y-Rita, 2004) or other areas. Similar 

to the results on echolocation and other auditory-related tasks activating visual 

cortical areas, the use of SSDs has been found to activate the occipital cortex in 
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the blind (Amedi et al., 2007; Collignon, Lassonde, Lepore, Bastien, & Veraart, 

2007; DeVolder et al., 1999). 

 Although the research is promising and many of the devices are 

successful, the use of a device can be inconvenient and unpleasant. 

Echolocation, on the other hand, has a unique benefit in that no device is 

required at all. The fact that there is no device required also means that there is 

no cost, maintenance, power requirements, etc. associated with the use of 

echolocation, and thus it is a resource available to all (although training is 

recommended). Furthermore, the use of a self-produced signal and its echo may 

allow for efference copy mechanisms to operate and make precise comparisons 

between the outgoing and incoming signals. The fact that the echolocation 

involves the emission of a self-produced signal also allows the individual to easily 

modify the signal to best suit the demands of particular tasks and environments, 

although research has not been done to verify or quantify this as of yet. This is 

not to say that SSDs are not effective, though. In fact, visual-to-tactile-SSDs, for 

example, may be particularly useful for those with poor hearing. For example, 

overall hearing sensitivity as well as relative sensitivity between each of the ears 

tends to deteriorate with age, and thus older individuals may benefit from the use 

of tactile SSDs as opposed to echolocation. Overall, the use of any device or 

technique that improves and enriches the daily lives of blind individuals should be 

fully supported.  

5.3 Future Directions 

As mentioned throughout this thesis, research on human echolocation is lacking 

and thus our understanding is limited, particularly in comparison to the literature 

on echolocating animals such as bats and dolphins. A benefit of this limited 

understanding, though, is that the possibilities for future research on human 

echolocation are seemingly endless. The following will outline some potential 

avenues for future research that stem from the findings presented in this thesis. 

In Chapter 2 I demonstrated that the use of head movements to ‘scan’ the 

objects’ edges was required for successful shape discrimination. An obvious and 
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logical next step, then, is to investigate these movements in greater detail. For 

example, how do the head movements interact with other variables such as 

distance and how do these interactions affect echo content and perception? 

Furthermore, it would be interesting for future research to investigate head 

movements in more real-world contexts. In Chapter 2, the participants had prior 

knowledge of the objects before performing the task (they were given the 

opportunity to haptically explore the objects). In a future investigation, one could 

use a motion-tracking system to study how expert echolocators use head and 

body movements in naïve situations; for example, one could have an 

echolocating participant locate and identify a goal object within an unfamiliar 

environment. Motion-tracking could shed light on the different types of 

movements used when searching for an object versus identifying an object. 

These processes have been investigated to some extent in the context of bat 

echolocation, and researchers have demonstrated that bats use large scanning 

movements when exploring a scene and use smaller, more detailed movements 

when examining an object or obstacle (Hardiess, Gillner, & Mallot, 2003; Rayner, 

1998; Seibert, Koblitz, Denzinger, & Schnitzler, 2013). It would be interesting to 

see if human echolocators show similar scanning behaviours for such tasks.  

A number of studies have shown that sighted people can learn to perceive 

object features via echoes (e.g., Hausfield, Power, Gorta, & Harris, 1982; 

Schenkman & Nilsson, 2010; Teng & Whitney, 2011; Wallmeier, Geβele, & 

Wiegrebe, 2013), and obviously blind individuals can learn this technique as well. 

This presents an interesting opportunity to train individuals to use echolocation 

and examine the behavioural and neural changes associated with training and 

acquisition of the technique. Furthermore, if training is provided to individuals of 

various ages, one could make inferences about neuroplasticity and sensitive 

periods of development by tracking functional and structural cortical changes 

associated with echolocation training. An investigation of this kind would not only 

be beneficial in terms of making a scientific contribution, but also simply in terms 

of providing a new perceptual resource to blind and/or sighted individuals.  
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In Chapter 3, I showed that an expert echolocator shows size constancy 

for objects perceived via echoes. These results present an interesting opportunity 

to further investigate size constancy in blind echolocators with the use of 

functional neuroimaging. A recent neuroimaging study investigating size 

constancy in the context of visual afterimages found that activation in primary 

visual cortex was correlated with the perceived size of the afterimage and not the 

retinal image size (Sperandio, Chouinard, & Goodale, 2012). Given that size 

constancy also applies to object size perception in echolocation and the fact that 

echo stimuli tend to activate primary visual cortex in blind individuals, it would be 

interesting to see whether this activation reflects the perceived size of objects or 

the raw size information contained in the echoes. An investigation of this type 

could shed light on potential top-down modulatory mechanisms that influence the 

processing and ultimately the perception of the information contained in echoes. 

Given some of the limitations in the work presented in Chapter 4, future 

research should aim to better understand how the echolocating brain processes 

the material properties of echo-reflecting surfaces. Considering that material 

information in echoes is based on frequency composition (relative to the emitted 

signal), future research should aim to determine if material-related activity in the 

brain is modulated by the frequency content of echoes (which is indicative of the 

material properties of the echo-reflecting surface). Furthermore, one could 

investigate whether or not a correlation exists between the frequency 

composition of the echoes and the associated neural activity. For example, using 

multi-voxel pattern analysis (MVPA), one could determine whether different 

patterns of activity underlie the processing of different classes of material 

properties. Overall, having a better understanding of material processing in 

echolocation – as well as various other object features contained in echoes –  

could potentially contribute to methods and strategies that can optimize echo 

content.  

The above-mentioned suggestions for future research are only a select 

few of the vast number of possibilities in the study of human echolocation. Even 

with our limited current understanding, the recent research in the field is certainly 
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encouraging, and the future of human echolocation research is sure to present 

exciting and significant contributions. 

5.4 Conclusions 

The work presented in this thesis represents original and significant findings 

related to the perception of shape, size, and material properties by blind 

individuals who use echolocation. Not only do these findings highlight some of 

the impressive perceptual abilities afforded by echolocation, but they also shed 

light on the numerous similarities between vision and echolocation, suggesting 

further parallels between the two modalities than previously recognized. 

Furthermore, the results of the current projects inspire several potential avenues 

for future research on human echolocation. Taken together, the findings 

presented in this thesis represent a strong and meaningful contribution to the 

scientific understanding of human echolocation. 

 

 

 

 

 

 

 

 

 

 



 

104 

 

5.5 References 

Amedi, A., Stern, W.M., Camprodon, J.A., Bermpohl, F., Merabet, L., Rotman, S.,
 Hemond, C., Meijer, P., & Pascual-Leone, A. (2007). Shape conveyed by
 visual- to-auditory sensory substitution activates the lateral occipital
 complex. Nature Neuroscience, 10, 687-689. 
 
Bach-y-Rita, P. (2004). Tactile sensory substitution devices. Annals of the New
 York Academy of Science, 1013, 83-91. 
 
Bach-y-Rita, P. & Kercel, S.W. (2003). Sensory substitution and the human-
 machine interface. Trends in Cognitive Sciences, 7, 541-546. 
 
Collignon, O., Lassonde, M., Lepore, F., Bastien, D., & Veraart, C. (2007).
 Functional cerebral reorganization for auditory spatial processing and
 auditory substitution of vision in early blind subjects. Cerebral Cortex, 17,
 457-465.  
 
De Volder, A. G., Catalan-Ahumada, M., Robert, A., Bol, A., & Labar, D. (1999).
 Changes in occipital cortex activity in early blind humans using a sensory
 substitution device. Brain Research, 826, 128–34. 
 
Hardiess, G., Gillner, S., & Mallot, H.A. (2008). Head and eye movements and
 the role of memory limitations in a visual search paradigm. Journal of
 Vision, 8, 1-13. 
 
Hausfeld, S., Power, R.P., Gorta, A., & Harris, P. (1982). Echo perception of
 shape and texture by sighted subjects. Perceptual and Motor Skills, 55,
 623-632. 
 
Proulx, M.J., Brown, D.J., Pasqualotto, A., & Meijer, P. (2012). Multisensory
 perceptual learning and sensory substation. Neuroscience and
 Biobehavioral Reviews, http://dx.doi.org/10.1016/j.neubiorev.2012.11.017. 
 
Rayner, K. (1998). Eye movements in reading and information processing: 20
 years of research. Psychological Bulletin, 124, 372-422. 
 
Schenkman, B.N. & Nilsson, M.E. (2010). Human echolocation: Blind and sighted
 persons’ ability to detect sounds recorded in the presence of a reflecting
 object. Perception, 39, 483-501. 
 
Seibert, A., Koblitz, J.C., Denzinger, A., & Schnitzler, H. (2013). Scanning
 behavior in echolocating common pipistrelle bats (Pipistrellus pipistrellus).
 PLoS ONE, 8(4), e60752. 
 



 

105 

 

Sperandio, I., Chouinard, P.A., & Goodale, M.A. (2012). Retinotopic activity in V1
 reflects the perceive and not the retinal size of an afterimage. Nature
 Neuroscience, 15, 540-542. 
 
Teng, S. & Whitney, D. (2011). The acuity of echolocation: Spatial resolution in
 sighted persons compared to the performance of an expert who is blind.
 Journal of Visual Impairment & Blindness, 105(1), 20-32. 
 
Thaler, L. (2013). Echolocation may have real-life advantages for blind people:
 An analysis of survey data. Frontiers in Psychology, 4, 98. 
 
Vercillo, T., Milne, J.L., Gori, M., & Goodale, M.A. Enhanced auditory spatial
 localization in blind echolocators. (in preparation) 
 
Wallmeier, L., Geβele, N., & Wiegrebe, L. (2013). Echolocation versus echo
 suppression in humans. Proceedings of the Royal Society B, 280, 1769.  
 
Zelek, J.S., Bromley, S., Asmar, D., & Thompson, D. (2003). A haptic glove as a
 tactile-vision sensory substitution for wayfinding. Journal of Visual
 Impairment and Blindness, 97, 621-632.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

106 

 

Appendix A: Supplemental Information for Chapter 4 

 

Supplemental Table S1. 

Cluster size threshold values (in mm3) for all participants and for each contrast. 

 
Contrast 

Participant All sounds > silence 

(p < .01) 

All materials > empty chamber 

(p < .05) 

EE1 212 108 
EE2 178 133 

EE3 183 113 

BC1 272 208 

BC2 206 117 

BC3 198 188 

SC1 208 186 

SC2 241 194 

SC3 201 199 
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