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ABSTRACT

Kant distinguished between sensible and intellectual representation. The
intellect represents mathematical objects as co..posed of their parts and so he
continuum must be represented intellectually as a collection of punctual
parts. However, an influential line of argument, advanced by Aristotle, Kant,
and others contends that the continuum cannot be composed of parts, and so
not determined by the intellect. Thus an intuition of space and time must be
used in addition to intellection to determine mathematical objects.

The semantic tradition, in contrast, holds that intuition is not needed
in order to determine objects. The closely related approach of transfinite set
theory and the development of measure theory, topology, and mathematical
logic has precluded the need for intuition of space and time by constructing
continuua out of sets (of well distinguished objects). However this refutation
of Kant is not decisive if Leibniz's infinitesimal calculus is taken seriously.
For, underlying his calculus is the idea that each curve is locally straight and
contains infinitesimal elements indistinguishable from zero. Hence, since
there are no such objects in the universe of sets, such a curve cannot be a set.
Thus a "Leibnizian puzzle” can be formulated with the consequence that
intuition is needed in order to determine such a continuum.

However, this puzzle can be resolved by noting that it is possible, using
the concepts of category theory, to widen the notion of set to that of variable
set varying smoothly over a space. In such a model each curve is locally
straight and the infinitesimal calculus can be developed. Thus the semantic
philosophy can be extended to solve Leibniz's puzzle.
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INTRODUCTION

"I prized only that part of mathematics which was at the same time philosophy.”

Bernard Bolzano.

“... from the seventeenth to the nineteenth century, the history of the philosophy of
mathematics is largely identical with the history of the foundations of the calculus.”
Abraham Robinson

The foundation of Leibniz's calculus rests upon an intriguing
conception of the continuum (let us call it "the smooth continuum”): every
curve can be regarded as an infinite-angled polygon. A curve is to be regarded,
then, as possessing an infinity of points (the vertices of the polygon) joined
together by infinitesimally small straight lines (the edges of the polygon).
Leibniz also believed that mathematical knowledge was of clear and distinct
objects of thought. In clear and distinct knowledge it is possible to enumerate
the characteristics which distinguish an object from another object. Thus, he
held a thesis which will be of central concern, the decidability thesis:

VxVy[(x = y) v (x # y)]; i.e., the identity of any pair of actual mathematical
objects is decidable (such objects will be called "decidable objects").

Leibniz did not believe that the parts of an object were themselves
decidable and this fact is closely related to his solution to the problem of the
composition of the continuum. The problem is whether the continuum
should be regarded as composed of its parts, the parts being given as objects
prior to the continuum, or whether the continuum is given as a whole which
is prior to its parts. Taking the continuum to be composed of an infinite
number of objects results in a number of paradoxes which were noted by
Zeno, Aristotle, Leibniz and others. Leibniz’s central problem appeared to be
how we can grasp an infinitely divisible quantity as a whole, given the
mind'’s finiteness.

Leibniz's solution consists in distinguishing between actual wholes,
which are simple and indivisible substances (monads), and ideal wholes
which arise as the appearance of an aggregate of monads. Ideal (as opposed to
real) wholes contain their parts potentially whereas actual (real) wholes have




no parts. We have a perception of the former, but our perception of it does
not contain in itself the perception of these monads. Such phenomena
constitute an ideal whole rather than a real whole and the parts of the
continuum are indeterminate, arbitrary and ideal. Thus the continuum of
Leibniz is non punctual inasmuch as it is not composed of actual objects.

The modern reaction to a non punctual model of the continuum is
well known. Rescher exhibits this attitude when he says of Leibniz's view
that

Ore can, today, afford to be hard on Leibniz's treatment of the
continuum problem. Subsequent developments in mathematics - the
theory of transfinite numbers, point set topology, measure theory -
have shown that Leibniz's method of attack was poor. (Rescher, 1967, p.
111).

Rescher is correct in pointing out that modern mathematical methods
have cast doubt on a non-punctual model of the continuum. Modern
mathematics has been quite successful at silencing the argurnents of Aristotle,
Leibniz, Newton and Kant. But it is Leibniz's conception of curves as
infinitangular polygons which is particularly resistant to being treated as a
composition of objects. The reason is fairly straightforward but was not
explicitly proven until recently: infinitesimals are not decidable objects. This
fact is not surprising, since in the seventeenth and eighteenth centuries the
apparently contradictory nature of the infinitesimal (the fact that it seemed to
be treated as both 0 and not 0 in calculations) made it difficult to accept that
the identity of infinitesimals was decidable, and hence that any such analysis
of curves into (decidable) cbjects was possible.

Arising from Leibniz's thought, then, is something which is at once
both a puzzle and a challenge to promoters of punctual continua. Leibniz’s
puzzle: mathematical objects are decidable, but infinitesimal parts of a
continuum are not decidable. Therefore some parts of a continuum are not
mathematical objects. So, a continuum is not a collection of objects, and
cannot be represented using the concepts of set theory. Of course this is not a
paradox for Leibniz, since he considered the continuum as a confused
perception of a multiplicity rather than a perception of a real whole object.
Although the modern set theoretical approach has adopted the view that
every mathematical object is decidable, rather than simply admitting that set




theory is inherently limited by its inability to represent the smooth
continuum, non-punctual continua are deemed incoherent.

Such ar attitude towards infinitesimals is not completely unreasonable
given the master's own attitude. Although the existence of the infinitesimal
was accepted by a number of leading mathematidans including L'Hospital,
Bernoulli, Fontenelle and Nieuwentijt, Leibniz himself was reluctant to treat
infinitesimal and infinitangular polygons as actual objects, and at times,
denied their existence. Instead he treated then: as devices to shorten
traditional mathematical reasoning, either by invoking a prirciple of
continuity or the method of exhaustion.

Traditional mathematical reasoning relied heavily on the use of
intuition. Newton's calculus, in particular, was founded upon the intuition
of flowing non-punctual quantities. It was during the nineteenth century,
beginning with Bolzano, that the use of intuition in mathematical reasoning
was rejected. The banishment of the use of intuition as a method of
mathematical proof, and its gradual replacement with a model theoretic
approach, brought with it the concomitant rejection of the intuitive non-
punctual continuum in favou »f a punctual continuum. The newer model
of the continuum is primarily due to the work of Cauchy, Weierstrass,
Dedekind and Cantor who, in the nineteenth century, constructed the real
numbers out of abstract sets. Refinements and developments, which
continued into the twentieth century, allowed for the development of the
conception of a "smooth” manifold, and the overcoming of traditional
objections to a punctual continuum.

In contrast to the idea of a non-punctual continuum a “smooth”
manifold is a collection of points which looks locally like an n-dimensional
collection of real numbers endowed with enough derivatives, (see MacLane,
1986, ch. 6). Sometimes a continuum is thought of as being a compact,
connected metric space, without requiring that it be differentiable. At any rate,
on both these accounts a continuum is regarded as a set of well-distinguished
points with some additional structure. These points are not regarded as
potential cuts or possibilities of division, rather the continuum, on this view,
is like a collection of building blocks. The "smoothness" of the manifold is
due to a complex construction out of sets in which certain kinds of selections
of blocks are ruled out so that the smoothness of the intuitive continuum is

effectively mimicked.




As I mentioned, in the nineteenth century the belief in the autonomy
of mathematics from other disciplines led the majority of mathematicians
(Klein is a notable exception), to abandon the use of intuition of space and
time in proofs, and this led to the belief that the continuum, as well as every
mathematical object, is a collection of its elements. In 1925, in a paper given
in honour of Weierstrass, Hilbert summed up the result of this process as
ridding mathematics of the confused notion of the infinitesimal (Hilbert,
1989, p. 183).

As a result of his penetrating critique, Weierstrass has provided a solid
foundation for mathematical analysis. By elucidating many notions, in
particular tl.ose of minimum, function, and differential quotient, he
removed the defects which were still found in the infinitesimai
calculus, rid it of all confused notions about the infinitesimal, and
thereby completely resolved the difficulties which stem from that
concept.

Historians of mathematics have often read the theme of this drama, which
occurred over a period of about three centuries, into the history of
mathematics writ large. For instance Boyer writes (1959, p. 4 - 5):

Some twenty-five hundred years of effort to explain a vague instinctive
feeling for continuity culminated thus in precise concepts which are
logically defined but which represent extrapolations beyond the world
of sensory experience. Intuition, or putatively immediate cognition of
an element of experience which ostensibly fails of adequaie expression,
in the end gave way, as a result of reflective investigation, to those
well-defined abstract mental constructs which science and mathematics
have found so valuable as aids to the economy of thought.

There is a widespread tendency among mathematicians, philosophers,
and especially historians, to think that the historical process which “gave
way" to the set theoretic model of the continuum justifies this view of the
continuum. (“If it was good enough for Dedekind, Cantor, Hilbert ... it's good
enough for me.") But the result of a historical process is not necessarily the
conclusion of a sound argument, especially when the result is itself subject to
extensive dispute.

And the view that the continuum is composed of points has remained
in dispute. As illustrious and varied a group as Aristotle, Zeno, Brouwer,




Leibniz, Kant, Brentano, Poincare, Veronese, Weyl, Bergson, Godel, Lawvere,
Galileo, Wittgenstein, Peirce, and Thom have objected to the punctual model
of the continuum. A sampling of remarks give some of the flavour of the
objections:

...no continuum can be made up out of indivisibles, as for instance a
line out of points, granting that the line is continuous and the point
indivisible. (Aristotle, trans. 1984, Physics 6.1)

Commenting on Cantor’s theory of the continuum Poincare remarked that

The continuum thus conceived is nothing but a collection of

ind! viduals arranged in a certain order. This is not the ordinary
conception in which there is supposed to be, between the elements of
the continuum, a sort of intimate bond which makes a whole of them,
in which the point is not prior to the line, but the line to the point. Of
the famous formula, the continuum is unity in multiplicity, the
multiplicity alone subsists, the unity has disappeared. (quoted in
Russell 1903, § 326)

... a true continuum has no points. (Thom, quoted in Bell, 1995)

Space, like time, is a certain order - which embraces not only actuals,
but possibles also. Hence it is something indefinite, like every
continuum whose parts are not actual, but can be taken arbitrarily -
space is something continuous but ideal , mass is discrete, namely an
actual multitude, or being by aggregation, but composed of an infinity
of units. In actuals, simples are prior to aggregation, in ideals the whole
is prior to the part. The neglect of this consideration has brought forth
the labyrinth of the continuum. (Leibniz, quoted in McGuire, 1992, p.
38)

According to this intuitive concept, summing up all the points, we do
not get the line; rather the points form some kind of scaffold on the
line. (Godel, quoted by Wang, 1974, p. 86)

Space and tii..e are quanta continua ... points and instants mere
positions ... and out of mere positions viewed as constituents capable of
being given prior to space and time neither space nor time can be
constructed. (Kant, 1784/1965, A170/B212)




Can they all be wrong? Perhaps, but it is unreasonable, even r diculous,
to believe that the notion of the continuum alluded to in the above remarks
is incoherent. This suggests that the history of the rigorization of the calculus
is not that of overcoming incoherent notions and establishing a conceptually
clear view of the continuum but is rather a case of one conceptually clea:
view being traded for another. Restricting to Leibniz's view of the
continuum, one may say that before such a shift the continuum consisted of
points “intimately bonded" by infinitesimals and on the latter view it
consisted solely of points.

The possibility of describing the points of a curve was suggested by
Descartes's geometry which correlated points on a curve with numbers. As
Weyl picturesquely put it, the continuum is like a gooey fluid, but in doing
analysis only the points of the continuum are considered and the "gooeyness"
(the infinitesimal) is left behind. The mathematician

... selects from the flowing goo .. a heap of individual points. The
continuum is smashed into isolated elements and the
interconnectedness of all its parts replaced by certain relations between
the isolated elements. When doing Euclidean geometry it suffices to
use the system of points whose coordinates are Euclidean numbers.
The continuous 'space-sauce’ that flows between them does not
appear. (quoted in Feyerabend, 1983, p. 85)

So, in the sixteenth and seventeenth century it became possible to
describe the points of a curve and the development of analysis allowed for
- roofs about the points of curves and many properties of the curve could be
described in terms of its points. By the nineteenth century, however, it was
believed that a curve must be described in terms of its points and that these
points were not given in sensible intuition but rather, in Cantor's case,
determined by concepts alone. It may suffice for certain purposes to use the
system of points of the continuum, but it is little consolation for the
Leibnizian calculus which uses both the points and infinitesimal line
segments.

For many, the difficulties just cited would no doubt be thought of as
ancient quibbles held as a result of a false philosophy of mathematics which
regards mathematics as an intuition of forms in nature and consequently
regards these objections based on intuition of the “true continuum” as




irrelevant to mathematics. These objections are simply part of the old-
fashioned view according to which a model must be given in intuition prior
to its description by axioms. But on the modern model-theoretic view, the
description of the continuum by axioms is independent of the selection of a
model (which then may be guided by intuition). There is no "true”
continuum, but only axiomatic descriptions of continua which may be true in
one structure but not in another.

Continuing this line of argument one would say that requiring the
mathematical descriptions to be limited to forms given in intuition, whether
empirical or a priori, shackles mathematics to concepts and facts which are, in
fact, irrelevant to mathematics. The outstanding example, of course, is how
spatial intuitions limited the study of geometries to Euclidean geometries.
But the examples may be multiplied. Limiting functions to those which
represent the continuous motion of bodies could be thought of as hampering
the development of analysis. Boyer (1959, p. 4 and 309) again expresses the
standard historical view:

It was nature which thrust upon mathematicians the problems of the
continuum.... Nevertheless, in the rigorous formulation and
elaboration of such concepts as have been introduced, mathematics
must necessarily be unprejudiced by any irrelevant elements in the
experiences from which they have arisen. Any attempt to restrict the
freedom of choice of its postulates and definitions is predicated on the
assumption that any preconceived notion of the nature of the
relationships involved is necessarily valid.

In spite of this criticism, the necessity of intuition in mathematics has a
venerable history and is not easily overcome. Aristotle and Kant both held
that intuition was a necessary component of mathematical reasoning.
Moreover, it is not only prominent philosophers who have regarded
intuition as a necessary component of mathematical reasoning but a
distinguished set of mathematicians from Euclid, to Barrow, Newton, Norris,
Wallis, McLaurin, Colson, Poincare, Weyl, Brouwer and many others.

The words of Colson, an eighteenth century follower of Newton, are a
good example of someone who thought that geometry and mechanics
provided an ontological foundation for variable quantities (quoted in
Guicciardini, 1989, p. 57):




The foregoing principles of the doctrine of fluxions being chiefly
abstracted and analytical, I shall here endeavour, after a general
manner, to shew something analogous to them in geometry and
mechanicks; by which they may become not only objects of the
understanding, and of the imagination, (which will only prove their
possible existence) but even of sense too, by making them actually exist
in a visible and sensible form.

There is a standard philosophical explanation for why intuition was thought
to be necessary for mathematical knowledge in the writings of Kantian
interpreters such as Russell (1903), Allison (1983), Beck (1955), Hintikka (1992),
Brittan (1992), and Friedman (1992) among others. It is that intuition offered a
kind of reasoning that was unavailable in thought alone. The implication of
this line of thought is that now, with a more powerful logic, intuition is no
longer necessary.

Russell introduced this idea in the Principles of Mathematics, and it is
worth quoting fairly fully since Russell links the observation (as I wish to do)
to the problem of the composition of the continuum (or the problem of
infinity and continuity as he calls it) (1903, § 24). Russell is not sympathetic
with the intuitive conception of the continuum at all. For Russell modern
logic does not only show that intuition is unnecessary but, like Hilbert, that
the notion of infinitesimal is "unnecessary, erroneous, and self contradictory”
(1903, §324). And for Leibniz’s calculus he had these words: "And by his
emphasis on the infinitesimal, he gave a wrong direction to speculation as to
the calculus, which misled all mathematicians until Weierstrass.... and all
philosophers down to the present day” (1903, §303). (The role of logic was not
only a central theme in Russell's philosophy but also in the interpretation of
other philosophers: the philosophies of Leibniz and Kant were thought to
follow largely from their logical viewpoints.)

In describing the situation first he mentions the transformation of the
problem in the hands of Weierstrass and Cantor:

We come now to what has been generally considered the fundamental
problem of mathematical philosophy - I mean, the problem of infinity
and continuity. This problem has undergone, through the labours of
Weierstrass and Cantor, a complete transformation. Since the time of
Newton and Leibniz, the nature of infinity and continuity has been
sought in discussions of the so-called infinitesimal calculus. But it has
been shown that the calculus is not, as a matter of fact, in any way




concerned with the infinitesimal, and that a large and important
branch of mathematics is logically prior to it. (1903, §24)

Then, in a somewhat castigating tone, he construes this transformation as
one which overcomes Kant's doctrine that mathematical objects are given in
intuition:

It was formerly supposed - and herein lay the real strength of Kant's
mathematical philosophy - that continuity had an essential reference to
space and time, and that calculus (as the word fluxion suggests) in
some way presupposes motion or at least change.... All that has been
changed by modern mathematics. What is called the arithmetization of
mathematics has shown that all the problems presented, in this respect
by space and time, are already present in pure arithmetic .... we shall
find it possible to give a general definition of continuity, in which no
appeal is made to a mass of unanalyzed prejudice which Kantians call
"intuition” ....(1903, §24)

It has become increasingly clear, in retrospect, that it was more than a
mere "mass of unanalyzed prejudice” which led Kant to adopt his position.
As Russell well knew, Kant had a fundamental argument for the necessity of
intuition in mathematics. Following Britain (1992) I label this argument
Kant's master argument and briefly outline it. First of all, Kant says that:

To know a thing completely, we must know every possible [property],
and must determine it thereby, either affirmatively or negatively.
(1784/1965, A573/B610)

Thus by determining an object, we may say (by the identity of indiscernibles)
whether for any pair of objects that their identity is decidable. The master
argument can be briefly stated as this: mathematical objects are determined.
These objects are determined either by intuitions or by concepts. But concepts
cannot determine intuitions completely; the- >fore intuition is needed to
complete the determination of objects. Kant's strategy in the Critique of Pure
Reason is to examine what is given in our cognition of mathematical objects
and then to show that what is given in our cognition caniot arise wholly
from the intellect, but requires intuition in addition (Falkenstein, 1991).

Not only is the conclusion of the master argument fundamental to
Kant's mathematical philosophy but it bears a striking resemblance to




Aristotle's view regarding geometrical objects. This is important because
Aristotle's understanding of geometrical objects was deeply ingrained in the
mathematics of the seventeenth century (Jesseph, 1994; Gray, 1992). According
to Aristotle, mathematical objects are the abstracted forms of physical bodies
and of images produced in the imagination. The forms which are impressed
upon the sensory organs of the body are then separated in thought. This
proposal is made in opposition to Plato's view that mathematical objects are
objects of reason alone. Thus it appears that we may say that for Aristotle too
thought alone is not sufficient to determine mathematical objects (Lear, 1982).

Modern mathematics has offered new theories which are especially
relevant to the understanding of the continuum. The unity of the whole
continuum and the multiplicity of its parts is accounted for by considering
collections of objects to have a unity which a mere multiplicity of parts
cannot have. In addition the theory of transfinite numbers has allowed
infinite quantities to be considered to be completed wholes. Real analysis,
topology and measure theory have developed techniques which make it
possible to show that certain properties (infinite divisibility, connectedness,
and possessing a length or measure) emerge out of suitable collections of
elements. These and other new methods of determining objects have not
gone unnoticed. Russell's view has been given further ammunition by recent
Kantian interpreters, such as Friedman (1992) who shows in some detail how
the lack of mixed quantification and polyadic relations in logic forced the use
of an intuitively conceived flowing continuum.

Of course Bolzano, Dedekind and Cantor thought intuition was
irrelevant to mathematics. In adopting an alternative to intuition, they held
that mathematical concepts are a free creation of the mind. In direct defiance
of Kant, Cantor and Dedekind believed that intuition was not needed to
determine objects. Objects need not be given in intuition but are determined
purely logically when the identity of any pair of individuals is decidable.
Dedekind made this point in 1872 by requiring that objects be "things"” and
Cantor made it in 1882 by requiring that the elements of sets be well-
distinguished. Frege later made the same point in 1874 regarding numbers
and required, in addition, that numbers have a criterion of identity. Hilbert
made a similar point in his axiom of the “existence of an intelligence” in
1905. Finally, decidability is a provable consequence of Zermelo's
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axiomatization of set theory of 1908, and of Lawvere's axiomatization of the
category of sets.

In spite of their differences, the method of Cantor as well as Pasch, Frege,
Hilbert, Russell and others, may be broadly conceived as part of a movement
to establish a semantic conception of mathematics (Coffa, 1991; Hallett, 1990,
1994; Demopoulos, 1994; Mayberry, 1994; Hylton, 1990) provide valuable
recent writings on this topic). This philosophy of mathematics may be viewed
as an alternative to the philosophical position of Kant on the necessity of
intuition for a proper interpretation of the calculus. Intuition is not needed in
order to supply content to mathematical assertions because there exist
objective meanings which are independent of the (subjective) representations
supplied by our faculty of intellect. Moreover, once the bond linking axioms
to an intuitive interpretation is broken one is free to propose alternative
models of axioms, thus making models independent of axiomatic description.
Freedom of choice reigns in a way that no one interpretation is singied out as
the "correct” interpretation. There are several kinds of continua just as there
are several kinds of geometry. This approach may be called the "model
theoretic" view.

It is worthwhile to explore this transition to the model-theoretic
viewpoint because it is unclear to what extent its lessons have been fully
assimilated. One leading mathematician, for instance, appears to commit
himself to an abstractionist point of view rather than to a model-theoretic
one. In MacLane's view mathematics studies an abstraction “in itself" where
the phenomena from which it is abstracted is extraneous:

..Mathematics deals with a heaping pile of successive abstractions, each
based upon parts of the ones before, referring ultimately (but at many
removes) to human activities or to questions about real phenomena.
The advance of mathematical understanding depends on the
contemplation of each abstraction in itself. (1986, p. 448)

Thus it is appears that for MacLane axioms are not independent of their
interpretation.

The independence of axioms from any particular interpretation in the
model-theoretic outlook leads to the idea that the question as to which is the
“correct” or "true” continuum is misconceived. Goldblatt suggests the

problem in our context:
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Particularly striking is the fine-tuning that has been given to the
modern logical/set-theoretical articulation of the conceived

continuum (which to Euclid was not a set of points at all, let alone an
object in a topos). Indeed it seems that the deeper the prob::ag gnes the
less will be the currency given to the definite article in reference to “the
continuum.” (1984, p. xii-xiii)

On this reading the problem of the composition of the continuum is
something of a pseudo-problem. Whether "the" continuum is the one
described by Leibniz or by Cantor has meaning only relative to the model one
is working within. This is indeed correct; but it only fuels the claim I wish to
make. If mathematics is to be free, as Cantor says, then surely the guiding
intuitions of Leibniz, Newton, L'Hospital, Bernoulli, Varignon and others are
not to be dismissed as incoherent. And here is where the observation of
Russell and the Kantian interpreters cuts both ways. For just as the intuitive
non-punctual conception of the continuum arose because of the inadequacy
of logic and mathematics to determine mathematical objects in Kant’s sense,
the punctual conception of the continuum of Dedekind and Cantor arose
precisely because of the limitations of set theory to represent the smooth
continuum. Thus, insofar as such a limitation is viewed as a criticism of the
use of intuition and the resultant non punctual conception of the
continuum, it is equally a criticism of set theory and its associated punctual
conception of the continuum. This latter limitation is crystallized in the fact
(noted in Leibniz's puzzle) that it is impossible that any curve is an
infinitangular polygon in the category of sets. This fact makes it possible for a
Kantian to argue that intuition must be called upon to represent the smooth
continuum. How can one maintain the model-theoretic viewpoint and also
represent the smooth continuum purely conceptually?

Notwithstanding the deep commitment to set theory in modern
mathematics, the possibility of a smooth conception of the continuum has
been rekindled recently as a result of the discovery of toposes in the 1960s by
Grothendieck. As a first approximation a topos can be thought of as a kind of
mathematical framework which shares fundamental structural similarities to
the framework of set theory. Grothendieck discovered ihat the world of
continuous spaces and maps and the world of discrete spaces and maps share
fundamental similarities: they both can be modelled in toposes. So a topos is a




mathematical framework sufficiently broad to encompass both the smooth
objects (and smooth maps) and discrete mathematical objects (and discrete
maps). An important consequence of this discovery is that it has made

possible the construction of smooth spaces and maps out of discrete spaces

and maps.
The idez that topos theory is able to unite the frameworks of smooth

and the discrete is put into epic terms by Grothendieck.

The theme of toposes ... is the 'bed’ or 'deep river' in which are wedded
geometry and algebra, topology and arithmetic, mathematical logic and
category theory, the world of continuous and that of 'discontinuous' or
'discrete’ structures. ... it is the vastest thing I have conceived, to
capture an ‘essence’ common to situations the most removed from
each other coming from one region or another in the vast universe of
mathematical objects. (quoted in McLarty, 1992, p. 39)

There is, thus, an alternative to the punctual model of t’ 2 continuum,
and so the punctual model of the continuum has lost its historical
inevitability. Moreover, as I menticned above, and as Hallett has pointed out,
it seems that the very methods used by those who established the set
theoretical model of the continuum has resulted in a continuum which is

truly smooth.

... mathematicians just do very often proceed by the method of
Dedekind, Cantor and Hilbert. A nice example is provided by recent
work on infinitesimals. The infinitesimals were originally treated as
ideal elements, and, at least by Leibniz as useful but dispensable
“fictions”. But... with the work on synthetic differential geometry,
infinitesimals are admitted as, in Robinson’s words, "neither more nor
less real than, for example, the standard irrational numbers” (1990, p.
249, my emphasis)

Just as the smooth continuum was the foundation of Leibniz's
infinitesimal calculus, the new smooth continuum also allows for the
development of the calculus (and differential geometry). What category
theory does is extend the model - theoretic viewpoint to a wider possibility of
structures. The universe of sets is no longer the unique or "absolute” model
for mathematical axioms; categories which are very unlike the universe of
sets are admitted as structures. It was to be expected that this development
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would not go unchallenged. Mayberry (1994) and Feferman (1973) and Bell
(1981), in particular, have been strong critics of the role of categories as a
substitute for the universe of sets while Bell (1986) defends the substitution.
In particular Mayberry takes the position that the universe of sets is a fixed
background ontology and not a structure which can satisfy some variable in
the language of category theory. "The universe of sets is not a structure: it is
the world that all mathematical structures inhabit, the sea in which they all
swim (1994, p. 35)."

This criticism may be misleading because, in fact, there is something of
a rift in the foundations of category theory. Excepting those who don't believe
in the foundational role of categories at all, there are two profoundly different
attitudes. Bell (1986) has argued that the absolute universe of sets, a kind of
mathematica magna for mathematics, needs to be replaced - relativized - to a
plurality of categories, namely toposes, with their corresponding local set
theory. These toposes act as worlds of discourse or frameworks for
mathematics. The language of topos theory may be defined in terms of some
standard set theory. On the other hand, Lawvere (1966) and McLarty (1992)
prefer an "absolute” category of categories which does not presuppose a
universe of sets. Here [ am presuming the former approach.

Nevertheless, the recent construction of smooth frameworks out of
sets and functions has led to a significant reevaluation of the rigorization of
the calculus movement. In hindsight it appears that the framework of
smooth spaces and maps is the natural framework of the calculus of Leibniz.
Bell claims that this framework allows “the virtually complete incorporation
of the methods of the early calculus” (1988, p. 315).

The hope of revitalizing the Leibnizian calculus, in particular, is not
unique to topos theory. It is well known that Abraham Robinson thought
that his theory developed Leibniz's theory of the calculus, and, in fact, fully
vindicated that theory, and that in light of Robinson's non-standard analysis
that the history of the calculus must be rewritten (Robinson, 1966; 1969).
Lakatos, as well, has expressed agreement that non-standard analysis
revolutionizes the picture of the history of calculus. But this point of view
has not gone undisputed.

The foremost historian of Leibnizian mathematics suggests that
Leibniz's theory can be "rehabilitated” without adopting a new Robinsonian
interpretation.
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If the Leibnizian calculus needs a rehabilitation because of too severe
treatment by historians [not to mention mathematicians!] in the past
half century, as Robinson suggests (1966, p. 260), I feel that the
legitimate grounds for such a rehabilitation are to be found in the
Leibnizian theory itself. (Bos, 1974, p. 82)

Edwards goes further. Non-standard analysis does not successfully
elucidate the historical calculus of Leibniz but "merely” finds ways to
reinterpret what he was saying in a new framework and therefore cannot
justify Leibniz’s calculus. Edwards says that

It is true, as the above discussion suggests, that non-standard analysis
can be employed to convert most of the intuitive infinitesimal
arguments of the seventeenth and eighteenth century into logically
precise arguments. But this is an a posteriori interpretation in terms of
twentieth century mathematical thought rather than a vindication of
the seventeenth and eighteenth centuries on their own terms. (1979. p.

346)

Edward's complaint here is that the interpretation of the calculus is quite
different in substance than the mathematics of Leibniz. But this objection
ignores the most salient aspect of the model theoretic viewpoint since,
according to the model theoretic view, mathematical statements are not to be
regarded as having fixed interpretations. Thus one should be able to
"vindicate" the Leibnizian calculus by finding any interpretation under
which it is valid.

There are serious problems, however, with the claim that non-
standard analysis provides an interpretation of Leibniz's theory of the
calculus. It is remarkable that no one, as far as I know, has pointed out that
non-standard analysis does not implement Leibniz's fundamental idea of a
curve being an infinitangular polygon; nor can it. This fact in itself makes
Robinson's claims highly doubtful. Briefly put, non standard analysis is in
contradiction with the main principle of Leibniz's calculus, namely, that
every curve be considered an infinitangular polygon since Robinson's
“hyperreal continuum® contains a property (the field property) which
Leibniz's continuum cannot have.




I hope to show, in passing, that this latter criticism is not applicable to
the interpretation of Leibniz's calculus within the framework of smooth
spaces since the basic idea of the framework of smooth spaces, unlike that of
non-standard analysis, is that the continuum is an infinitangular polygon. In
addition, Leibniz did not adopt any particular interpretation (although he
discussed a couple of possibilities) of this fundamental principle. His reticence
to adopt an interpretation does not seem to arise out of sheer ignorance, but
seems rather to be an attitude similar to the modern model-theoretic
position. Mathematical reasoning has no need of an intuitive interpretation.
Therefore it may not be an objection to a reformulation of Leibniz's calculus
that it is given a modern interpretation that he could not have given it.

As a consequence of the development of a framework in which the
smooth continuum exists one may see the rigorization movement, not as a
flight from the incoherence of the smooth continuum which contains non -
punctual infinitesimal parts to a coherent set theoretical continuum which
contains only punctual parts; but as a concentration on the punctual parts of
smooth spaces (which are sets) and punctual maps between such spaces
(which are functions). McLarty has emphasized this connection.

In the nineteenth century sets were first conceived as sets of points of
spaces [punctual parts of smooth spaces], and then various assumptions
and discoveries were made relating spaces to their sets of points until
eventually spaces could be defined as sets of points with some
structure. Then set theoretic thinking displaced geometric intuition in
the foundations of mathematics. (1988, p. 75)

I will modify this proposal in three essential aspects. First, the
rigorization of the calculus which displaced intuition for set theoretic
thinking forced one to consider the punctual parts of smooth spaces to be sets
(and not the other way around as McLarty seems to indicate). Otherwise there
could be no continuity from intuitive thinking to set theoretic thinking.
Secondly, it follows. from this last observation that the shift from smooth
spaces occurred gradually from the seventeenth to the nineteenth century. It
did not occur as suddenly as one might presume from reading McLarty.
Thirdly, McLarty believes the change of mathematical frameworks is pretty
much a simple change in (intemal) logic from intuitionistic to classical logic
by adding the principle of excluded middle. This is correct, in a sense, but the
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situation is more subtle than this indicates because, as I will show, a central
tenet of Leibniz, Kant, Bolzano, Dedekind and Cantor was that the identity of
all mathematical objects is decidable (and this implies excluded middle). More
precisely certain entities (points for instance) were not considered to be actual
objects (as opposed to potentially existing objects or ideals) and so were not
subject to the principle of excluded middle.

At any rate, if this line of thought is correct, then it shows that,
although the rigorization movement may have released mathematics from
the bonds of physical concepts of space, time and motion, it has now chained
itself to models of the discrete mathematical framework of sets. Of course
most thinkers simply assume that the models satisfying an axioms system are
sets. Mayberry claims that the universe of sets "is the world that all
mathematical structures inhabit” (1994, p. 35). The essential problem with the
model-theoretic tradition (and an internal source of tension), then, is that the
requirement that objects be well-distinguished, limits the kinds of models
that can be constructed. In particular there can be no models of an intuitively
smooth continuum, since the intuitive continuum contains objects which
are not well-distinguished. More technically, there are no models of the topos
of smooth spaces in the topos of sets.

Now we can return to the epistemological puzzle which was originally
put forward. It seems that the Leibnizian continuum cannot be a set since the
identity of every set is decidable by examining its members, but the identity of
infinitesimals is undecidable. Is the Leibnizian continuum punctual? Yes and
No. No because in the framework of sets and functions there are no
infinitesimals. Yes because we may shift to a framework of smooth spaces and
maps in which every curve contains infinitesimals. Moreover it is possible to
construct a framework of smooth spaces and maps from a base framework of
discrete spaces and maps. Thus, while the objects of the smooth framework
are not necessarily decidable in that framework, they are composed of or
emerge from distinct objects of the base framework. Thus, the continuum is
non punctual but when fully analysed into components of the base
framework, the continuum can be seen to be composed of distinct objects, and
distinct maps. To put it in Leibnizian terms, the smooth continuum arises as
the confused perception of an aggregate of monads (sets in the base topos). But
if someone’s (say God's) representation (of the smooth topos) ¢ :ntained
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within it the representation of every concept of which it was composed, then
that representation would be of discrete objects.

I have given the gist of the argument of the thesis. In the first chapter I
describe the traditional problem of the composition of the continuum and the
non-punctual continuum as it arises in Aristotle and show how set theory
attempts to answers these problems. Then, in the second chapter I ask
whether the Leibnizian smooth continuum can be given a set-theoretic
account and whether it is punctual as well. Leibniz believed that all
mathematical objects were decidable but the puzzle that arises is that the
smooth continuum seems to contain undecidable objects, and so it cannot be
represented as a collection of decidable objects. In chapter three I present
Kant's master argument for the necessity of an intuitive continuum. The
important point that Kant raises is that the infinite divisibility of the
continuum cannot be represented by the intellect alone because as finite
creatures we cannot have a representation of each of its infinite parts. The
rigorization of analysis is described as an attempt to defeat Kant's view that
intuition is necessary for mathematical reasoning by developing a semantic
philosophy which holds that the intellect may, by set theoretical reasoning,
objectively represent the continuum as infinitely divisible without our
thereby having a subjective representation of each its parts. The resulting
rigorization is a shift, discussed by McLarty, from the investigation of the
smooth continuum by Leibniz and others, to an investigation of the punctual
parts of the smooth continuum by Cantor and others. This shift makes it
impossible to have a smooth continuum as a model, since the smooth
continuum contains non punctual infinitesimals and set theoretical
reasoning cannot represent a continuum which contains non punctual
elements. Thus Kant's argument can be extended: it is impossible to represent
the smooth continuum by the concepts of set theory, and so intuition must be
used. So, in the final chapter I briefly describe how the smooth continuum
may be regained within the semantic tradition by constructing models in the
category of smooth spaces; and thus shifting back from a discrete framework
to a smooth framework.
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ARISTOTLE'S OBJECTIONS AND SET THEORY'S SOLUTIONS

...n0 continuum can be made up out of indivisible, as for instance a line out of points...”
Aristotle

The traditional problem of the composition of the continuum is
whether continuous quantities are composed of points. There is a tradition
which holds that the continuum cannot be composed of points and Aristotle
is one of its key figures. In what follows I briefly review three Aristotelian
arguments against a punctual continuum in order to see how these objections
can be handled in set theory. I report some solutions which draw on
developments in the areas of transfinite set theory, topology and measure
theory which attempt to show that the continuum can be composed of points
after all. My intention is not to go into any great detail but merely to suggest
the kind of solutions that set theory can offer and to give some background
for later discussions.

The modern approach is quite removed from Aristotle’s thinking. In
ancient mathematics the objects of mathematics were considered to be
abstracted from the forms of ordinary objects in nature, as a surface is
abstracted from the surface of a table. These objects exist in nature as
completed wholes and possess certain attributes which are given in
perception. Thus the fact that a line segment is infinitely divisible, has a
positive finite measure, and is cohesive were simply given as properties of
the perceived object. Moreover, in the case of the properties mentioned
above, e.ery part of the continuum inherits those properties of the
continuum.

Set theory implicitly offers a fundamentally different approach.
According to one variant, the iterative view of sets, mathematics starts from
given well-distinguished objects and collects them into a whole. Thus instead
of extracting the parts from the intuitively given whole, set theory starts from
given objects and compounds them into a whole, apparently united in virtue
of the concept they fall under. So, the whole may possess properties that the
parts do not have and likewise the parts may not inherit the properties of the
whole. On this approach it is not assumed that every part of a line, for
instance, has length, contiauity, or cohesion, rather these properties emerge
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from suitable collections of elements which themselves do not have these
properties.

If one is prepared to accept that parts of continua do not inherit all the
properties of the whole then this approach can be seen as somewhat
successful in answering the three Aristotelian objections. This success leads to
an important question: is the Leibnizian continuum amenable to a set-
theoretic analysis? Is the Leibnizian continuum a punctual continuum? Does
the same strategy work? One might think that the rigorization of analysis
settled this question by showing that Leibniz's (and Newton's) calculus and
hence his view of the continuum, is ultimately based upon set theory. But
this is a superficial reading of the history and philosophy of the movement,
for instead of reinterpreting the view of the continuum and the use of
infinitesimaiz, the infinitesimals were simply shunted aside by set theory and
driven underground to be used only as "heuristic devices.”

The apparent success of set theory in answering the Aristotelin
objections inspires confidence that it can do the same for the Leibnizian
continuum. But as I report in the next chapter, this confidence is quickly
shattered when it is realized that the presence of undecidable elements
guarantees that the Leibnizian continuum cannot be a collection of well-
distinguished objects. But the concepts of set theory are usually taken to
exhaust mathematical concepts. Thus it would seem that since we do,
presumably, have the concept of a Leibnizian continuum, and it cannot be
given by the concepts of set theory, we must rely on intuitive reasoning as
Aristotle asserted.

Aristotle on continuity

Aristotle thinks of a continuous quantity as a unified whole consisting
of an interior and its boundary such a line and its endpoints. The boundary of
a continuum, such as a point or surface, is either potential or actual. If actual
then it is the limit or extremity of the body, since an actual point has no
interior. If the boundary is potential it indicates a position where a division
may occur and an actual boundary would result. Such a boundary is a shared
boundary of the continuum that it divides. A boundary serves two functions,
then, since it allows for divisions and it bounds the interior of a region. "...the
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point, too, both makes the length continuous and bounds it” (trans. 1987,
Physics, 4.11, 220a10-11).

The most important property of a continuum, is infinite divisibility.
"The infinite is the first thing that presents itself to view in the continuous”
(Trans. 1987, Physics 3.1, 16-21). This is important, for it indicates that
continuity is a property which is simply given in intuition from the outset
and so does not need to be proved to exist. Aristotle attributes infinite
divisibility to continuous quantities in the following description of
magnitudes and multitudes in Metaphysics 5.13:

We call a quantity that which is divisible into constituent parts of
which each is by nature a one and a "this". A quantity is a multitude if
it is numerable, a magnitude if it is measurable. We call a multitude
that which is divisible potentially into non-continuous parts, a
magnitude that which is divisible into continuous parts; a magnitude,
that which is continuous in one dimension is length, in two breadth,
in three depth. Of these limited multitude is number, limited length is
a line, breadth a surface, and depth a solid (Aristotle, 1020 7 - 14, quoted
in Stein 1995, p. 336).

In short, the parts of a continuum are divisible into continuous parts.
Thus its parts are divisible ad infinitum. For if not, then it would be divisible
into a non-continuous part. This contrasts, notably, with a multitude, not
every part of which is divisible into further parts. The Aristotelian stricture
against a continuum being a multitude is, at first glance, true by definition. A
magnitude is something contrasted with multitude. But this contrast
evaporates if it is possible to have collections containing infinitely many
members. In this case the collection will be infinitely divisible, but also
actually divided into an infinite number of parts. So it will be a magnitude
and a multitude.

Aristotle’s view that parts of continuous quantities are potentially
infinite rather than actually infinite represents a compromise between the
apparent existence of the infinite and its paradoxical consequences. The
apparent existence of an infinite number of atomic parts had seemed to
follow from Democritus's argument in Generation and Corruption 1.2, 316a
13ff (Furley, 1969). This argument tries to prove the existence of atomic parts
by proving its contradictory, that magnitude is divisible everywhere, false. For
suppose that magnitude is divisible everywhere. If it is divisible everywhere
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what will be the products of such a division? They cannot be magnitudes,
because such parts are further divisible. Nor can they be parts without
magnitude, since such parts cannot be added together to make up a
magnitude. So magnitude is not divisible everywhere, and so there must be
indivisible atomic magnitudes.

But the existence of an infinite number of objects was difficult to accept
because of the numerous contradictions in which the infinite was shrouded.
One of the more amusing and persistent examples of a contradiction is what
was called "Aristotle's wheel".

Figure 1

Consider the two concentric circles to be composed of their points. The
circumference of a circle with radius two is twice as long as that with radius
one, so if the lines are composed of points, the outer circle should (we
intuitively think) contain a larger infinity of points than the latter. But by
drawing radii as indicated one can see that each point R on the small circle
corresponds one to one with a point H on the larger circle. Thus, we have the
paradoxical situation that the two infinities are simultaneously of distinct
size, and yet equal because their points are paired one to one. This argument
against a punctual continuum was given by Duns Scotus in the thirteenth
century (Moore, 1990, p. 50).

We can think of the larger circle as the rim and the smaller the hub of a
wheel. The paradox is most vivid if we let the wheel rotate for one




revolution. In this case the rim traces out a line RR and the hub a line HH .
Since the wheel is rigid, and the three points are collinear at the beginning of
the rotation, they will still be collinear at the finish. As the wheel rotates
there will be no slipping: no point on the hub of th: wheel will slide through
several points. Instead each point on the wheel will touch exactly one point
on HH . Similarly, there will be no skipping: no point on the line HH" will
fail to be touched by the hub of the wheel as it rolls along.

The manner in which the hub rotates is exactly like the manner in
which the rim rotates along RR . If the circles are composed of points, how
can the inner wheel make this revolution without skipping? For the inner
concentric circle with a smaller circumference than the outer circle must
match the movement of the outer circle over a path as it proceeds point by
point, and finally cover a distance equal to the perimeter of the outer circle.
The paradox suggests that the inner wheel must skip in order to cover the
same distance as the larger.

Galileo offered his own resolution to this problem which involved
giving the smaller length the apperance of a longer length by adding an
infinite number of infinitesimally small line segments to serve as gaps
between each point. The line is stretched out by the infinitesimal gaps, but the
gaps are so small as to be unnoticeable. Galileo conceived of the circles as
being "polygons of infinitely many sides”, for after all "how ... without
skipping can the smaller circle run through a line so much longer than its
circumference” (Quoted in Smith, 1976, p. 575)?

The idea can be understood by considering both circles to be regular
polygons with few sides, say octagons. As the outer octagon turns and pivots
on a vertex A, the vertex B of the inner octagon must rise above the line RR'
for a short distance d, a distance which is equal to the length of the side of the
inner polygon, since A B is greater than distance from A to the line RR .
Thus, as the length of the sides becomes infinitesimally small, and the circle
becomes an infintangular polygon, the gaps on RR become infinitely small
and give RR the appearance of being equal to HH'.

Galileo also applied this idea to surface and to solid bodies:

What is said of simple lines is to be understood also of surfaces and of
solid bodies, considering those as composed of infinitely many
unquantifiable atoms .... In this way there would be no contradiction in
expanding, for instance, a little globe of gold into a very great space
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without introducing quantifiable void spaces - provided, however, that
gold is assumed to be composed of infinitely many indivisibles (quoted
in Smith, 1976, p. 575).

Aristotle’s own answer to the Greek atomists did not involve the use
of indivisibles. Instead he distinguished between the potential and actual
infinite. On this reading, the paradox of Aristotle’s wheel results from
considering the set of points of the concentric circles to be actually infinite
totalities. There is no sense in which we can compare the size of the points on
the two lines because this would involve the simultaneous existence of an
infinite number of points.

Yet, although the concept of the actual infinite leads to paradox, it is
clear to Aristotle that the infinite must, in some sense, be said to exist because
magnitudes are characterized by their infinite divisibility. What sense is it?
Aristotle says that a continuous quantity can contain an infinite number of
points "in addition" (by adding points successively) or “by division" (by
making successive cuts in the quantity).

But if there is, unqualifiedly, no infinite, it is clear that many
impossible things will result. For there will be a beginning and end of
time, and magnitudes will not be divisible into magnitudes, and
number will not be infinite. Now when the alternatives have been .
distinguished thus and it seems that neither is possible, an arbitrator is
needed and it is clear that in a sense the infinite is and in a sense it is
not. “To be", then may mean "to be potentially” or “to be actually” ;
and the infinite is either in addition or in division. It has been stated
that magnitude is not in actual operation infinite; but it is infinite in
division -it is not hard to refute indivisible lines - so that it remains for
the infinite to be potentially. (Aristotle, trans. 1987, Physics 3.6 206a 10-
15)

One can see from the above passage that "existence” is ambiguous for
Aristotle, “existence” can mean potential existence or actual existence. Thus it
is not that there are two kinds of infinity, the potential and the actual, one of
which exists and the other does not. Potential and actual are kinds of
existence; not kinds of infinity. The infinite, then, exists (potentially). This is
the sense of existence in which the Olympic Games exist or in which a day
exists. These are not actualized simultaneously in their entirely but are
actualized successively, one by one. As Aristotle says: "The infinite exists
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when one thing can be taken after another endlessly, each thing taken being

finite”(trans. 1984, Physics 3.6 206a25-30). Infinity is, therefore, not applied to

individual things but to sequence of events or things (trans. 1984, Physics 3.4,
206a32-3).

Therefore Aristotle's conception of the continuity of a line is that of a
potentially (unending) division of the line into further lines. To conceive of
the division to have ended, is to conceive of the line as a completed infinity
of individuals, and this result involves unsolvable paradoxes. This is a tactful
evasion of the problems of the actually existing infinite, and leads to the use
of construction in intuition as a necessary part of mathematics. For it is by
construction of figures in thought, that they become actually existent. In
Metaphysics IX where he describes the standard Euclidean proof that the sum
of the angles of a triangle is equal to 180 degrees he relates: "It is by an activity
also that geometrical constructions are discovered; for we find them by
dividing. If they had already been divided, the constructions would have been
obvious; but as it is they are present only potentially.”

Almost all mathematicians up until Cantor followed Aristotle's
approach to the infinite, that is to evade the problems by the use of his actual/
potential distinction. Gauss is often cited as an authoritative source of
opposition to the actual infinite.

But concerning your proof, I protest above all against the use of an
infinite quantity as a completed one, which in mathematics is never
allowed. The infinite is only a facon de parler, in which one properly
speaks of limits. (Quoted in Dauben, 1979, p. 121)

Set theory attempts to overcome these problems by maintaining that
there is an actual infinite number of points in the continuum. Traditionaily,
collections were viewed as pluralities, or multiplicities of units. Cantor
replaced this idea by considering numbers to be true unities, because in them
“a multiplicity and manifold of ones is joined together” (quoted in Hallet,
1984, p. 124) thereby turning the set into an object of study in its own right.
The ability to conceive of collections as complete and unified where formerly
they were mere multiplicities, leads to astounding possibilities. Cantor creates
new transfinite numbers by generating them. First, we may add a new unity
to an exiting unity. This generates all the natural numbers. Then we create a
new transfinite number , the least ordinal number, as the limit of this
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sequence by considering the natural numbers as a whole. Thereafter we may
add unities and take limits to generate new numbers. Cantor attempted to
justify the existence of such transfinite numbers by showing that they each
express a well ordering on their underlying sets. Thus, since finite sets are
well ordered, to accept finite numbers is to implicitly accept the existence of
transfinite numbers as well.

Accordingly Cantor replaces the notion of absolute (unending) infinity
with actual infinity. He then divides the actual infinite into the increasable
infinite, which he calls the "transfinite” and the “unincreasable” or
“absolute” infinite. Or perhaps, it is better to say that, he extends the notion of
finite to that of transfinite. It is the absolute infinite which is beyond
mathematical determination. In Cantor’s 1891 paper he presented his
diagonal proof which showed that the size of the set of subsets of a set V is
always greater than that of the set V. It followed that although the algebraic
and hence rational numbers could be put into one-one correspondence with
the natural numbers the same does not hold for the real numbers. Cantor
drew from this result the conclusion that there is a "clear difference between a
so called continuum and a set of the nature of the entire algebraic {and hence
also natural] numbers."” Later he went on to further characterize the
continuum in ordinal terms.

The well known philosophical point which is drawn from this proof is
that it allows for a distinction between two citeria for the size of collections,
the part criterion and the correlation criterion. The parts criterion has it that if
a collection is a part of a (more extensive) whole, then the part is of smaller
size: the whole is greater than the part. According to correlation criterion,
collections are of the same size if they can be put into a one-one
correspondence. This condition is natural because it implies that there are the
same number of people in a concert hall as there are seats if and only if every
seat is occupied by one person. But it also has the "paradoxical” consequence
that there are the same number of even numbers, odd numbers, algebraic
numbers, and rational numbers, as there are natural numbers. So a collection
which is a part of a collection can be of the same size as the more extensive
whole. Therefore what the paradoxes show is that collections of different
extensiveness are, nevertheless, the same size.
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On Cantor's view, then, the paradoxes result from attempting to apply
both criteria for the size of collections to transfinite sets, whereas they only
apply together to finite sets.

All so-called proofs against the possibility of actually infinite numbers
are faulty, as can be determined in every particular case, and as can be
concluded on general grounds as well..... from the outset they expect or
impose all the properties of finite numbers upon the numbers in
question, while on the other hand the infinite numbers ... must (in
contrast to finite numbers) constitute an entirely new kind of number,
whose nature is entirely dependent upon the nature of things and is an
object of research, but not of our arbitrariness or prejudices. (Cantor,
quoted in Dauben, 1979, p. 125)

The Cantorian solution to the paradoxes is well-entrenched, but it
leaves some room for an Aristotelian to mount a challenge to the conception
of a line as composed of points. For Cantor divided the infinite into the
increasable and the unincreasable but Aristotle did not. For Aristotle the
points on the line were, in essence, unincreasable. Thus it is not obvious how
to apply the Cantorian solution to Aristotle. A Cantorian solution is usually
forced upon Aristotle by saying that infinite divisibility for Aristotle is merely
density: for any two points there is an intermediate point (of division). Since
Cantor showed that there are actual dense collections of numbers, Aristotle
was simply wrong to think that the continuum could not be composed of
points.

But this interpretation of Aristotle is misleading. For Aristotle a
multitude is divisible into parts which are indivisible, but a magnitude is
divisible into continuous parts so that they are again divisible ad infinitum.
In Aristotle's words, the continuum is "divisible everywhere". What would
Aristotle say today if confronted with the set of real numbers? If we consider
the real numbers, we find that they are dense, but contain indivisible real
numbers as parts. It is tempting to believe that he would say that the
collection of real numbers cannot be a magnitude since a magnitude is such
that every part is divisible into parts ad infinitum.

Another look at Democritus's argument in Generation and Corruption
for indivisibles seems to confirm this interpretation. In this argument the
assumption is that an actual division, of a quantity which is divisible
everywhere must leave nothing.
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Suppose then that it is divided; now what will be left? Magnitude? No
that cannot be, since there will then be something left which is not
divided, whereas it was everywhere divisible. But if there is to be no
body or magnitude [left] and yet [this] division is to take place, then
either the whole will be made of points, and then [parts] of which it is
composed will have no size, or [that which is left] wili be nothing at all.
(A2, 316a 24-30, quoted in Furley, 1967)

A similar objection to Aristotle's rejection of punctual continua was
given by Peirce. Peirce thought that because one cannot show that there is a
set of "all the points there are” the continuum cannot be considered to be a
collection of points. This is closely related to the fact established by both
Cantor and Peirce that there can be no set of all sets. Since if V is the set of all
sets it must contain ail of its subsets. But Cantor's diagonal theorem show
that the size of the subsets of a set V is always greater than that of the set V.
Cantor used the diagonal method to show that the set of real numbers (i.e. the
power set of natural numbers) is not in one - to - one correspondence with
the natural numbers.

Unlike Cantor, Peirce drew from this result a conclusion that threatens
to undermine the belief that the set of real numbers is a continuum. He
observes that if a line is truly continuous (and so contains no gaps) it must
contain "all the points there are”, an unincreasable or absolute infinity of
points, and so cannot be a set. By Cantor's (and Peirce's) theorem there can be
no set of all sets, and so it follows that points cannot be constituent parts of a
line:

For if they were so, they would form a collection; and there would be a
multitude greater than that of the points determinable on a line. We
must, therefore, conceive that there are only so many points on the
line as have been marked, or otherwise determined upon it. Those do
form a collection, but even a greater collection remains determinable
upon the line. All the determinable points cannot form a collection,
since, by postulate, if they did the multitude of that collection would
not be less than another multitude. The explanation of their not
forming a collection is that all the determinable points are not
individuals, distinct, each from all the rest.... (1960, p. 363)
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If this line of thought is correct that the "totality” of all points is not a set,
what kind of thing is it? Peirce's answer seems to be simply that it is, of
course, a line which is grasped intuitively as a whole. Its continuity consists
in the fact that it has an unincreasable infinity of points on the line. No
matter how many points are determined on the line (by bisection, for
instance), like Hilbert's hotel there is always room for more.

It may be asked, "if the totality of the points determinable on a line
does not constitute a collection, what shall we call it?" The answer is
plain: the possibility of determining more than any given multitude of
points, or in other words, the fact that there is room for any multitude
at every part of the line, makes it continuous. Every point actually
marked upon it breaks its continuity, in one sense. (Peirce, 1960, p. 363)

But so far this can hardly be considered an objection to a punctual model of
the continuum. For it accepts that the real number continuum is punctual, it
is just not punctual enough! Although there is always room for more points,
the continuum becomes "overcrowded” in the sense that identity of the
points is no longer decidable. It is this latter feature which transforms "all the
points” into a line. In his words:

A supermultitudinous [absolute or increasable infinite] collection sticks
together by logical necessity. Its constituent individuals are no longer
distinct and independent subjects. They have no existence - no
hypothetical existence - except in their relations to one another. They
are not subjects, but phrases expressive of the properties of the
continuum (1976, Vol. 3, p. 95).

So Peirce is not thinking of a punctual continuum after all. The "constituent
individuals" are not well-distinguished objects. At the root of Peirce’s view,
then, is an agreement with Leibniz's puzzle. The line cannot be a collection of
points because it is not composed of well distinguished objects. Consider a
finite line segment. No points are actually determined on a line until some
construction, such as a bisection occurs. After a bisection occurs a new shared
point, the boundary of the two distinguished parts exists. Peirce's idea that
there must be an inexhaustible supply of points, or an absolute infinity of
points, is simply a consequence of Aristotle’s idea that every part must be
divisible into an divisible part. One could argue that this highlights the point
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common to Peirce, Brouwer, Bergson and Kant, that intuitive cognition is
able to conceive of absolute infinities as completed wholes, (such as the
cognition of a given line) whereas intellectual (discursive) cognition cannot.

How can set theory deal with this problem? A defender of a punctual
model of the continuum might well admit that there can be no “absolutely
continuous” set. But rather than admit that a line, with its absolute infinity of
points, is given in perception as a particular whole they could deny that we
can have any such notion. Such a notion of an unending infinity synthesized
into a whole is itself inconsistent. As Cantor says:

A collection can be so constituted that the assumption of a
"unification” of all its elements into a whole leads to a contradiction,
so that it is impossible to conceive of the collection as a unity, as a
"complete object.” Such collections I call absolute infinite or
inconsistent collections. (quoted in Dauben, 1979, p. 245)

Accordingly, what Cantor’s argument against a set of all sets shows is that we
cannot consider a given line segment in either intuition or the intellect as
containing a completed absolute infinite, since either contains a
contradiction. But we can coherently conceive of a transfinite number of
points on a line, and for this we do not have to resort to intuition.

The continuum and cohesiveness

A further property of the continuum is its cohesion: the elements of
the continuum cohere or stick together as a continuous, unified, whole. This
is closely related to Aristotle’s view that continuous quantities are given in
sense perception and that sense perception is always of the particular. We
sense a line as a continuous whole, and its parts as cohering by virtue of the
fact that when we make a cut in the continuum the parts share and are
thereby welded together by this common boundary. This property has been of
paramount importance in Aristotle, Leibniz, Kant, Brouwer, Peirce and
others. Aristotle uses the property of cohesion to argue that a continuum
cannot be punctual. In Physics 6.1 he says, as I quoted earlier, that " it is
impossible that something that is continuous be constituted from
indivisibles, e.g. a line from points if the line is continuous but the point
indivisible” (231a24-26, quoted in White, 1988, p. 2). In Physics 5.3 Aristotle
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defines continuity in terms of succession. "A thing succeeds something when
it is distinguished as coming after the first with respect to place or kind or
some other respect and there is nothing of the same sort between it and what
it succeeds” (226b34-227a1, quoted in White, 1988, p. 4). Later he adds:

The contiguous is that which, being in succession, touches [what it
succeeds). The continuous, then, is a species of the contiguous. I call
something ‘continuous’ whenever the limit of both things at which
they touch become one and the same, and as the word implies, they are
"stuck together”. But this is not possible if the extremities are two. It is
clear from this definition that continuity pertains to those things from
which there naturally results a sort of unity from their being joined
together. (227 16, 227a10-15, quoted in White, 1988, p.4)

So on Aristotle’s conception two curves are continuous when their
extremities or boundaries touch and become one. As White (1988) points out,
the fundamental idea here is that what is continuous is a natural unity;
consequently any parts or divisions which we may want to distinguish within
it will share a common boundary. Thus, there can be no "natural joints,
seams or articulations” in the continuous with which to make a clean
division into well-distinguished parts. As Aristotle remarked elsewhere: " Of
things called one in their own right some are so called from being
continuous” (trans. 1987, Metaphysics 5.6 1015b36 -1016atl).

The natural unity of the continuum, perhaps, has been the most
emphasized aspect of the intuitive continuum. Thus it has often been
observed that points cannot be considered in isolation from the continuum
but are always part of a whole. In this sense the whole is prior to the points
and the points arise as mere limits of the whole. Let me note a few instances
of this belief to show how pervasive it is.

The student of Aristotie, Franz Brentano, put it this way:

The spatial point cannot exist or be conceived of in isolation. It is just
as necessary for it to belong to a spatial continuous whole as it is for the
moment of time to belong to a temporal continuous whole. (1874/1973,
p. 356)

Kant contrasted our intuitive cognition' of particulars with intellectual
(conceptual representation). He emphasized that in the representation of
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continuous magnitudes, such as time, the parts are represented through
limitation of the whole intuition and therefore must be given in intuition:

The infinitude of time signifies nothing more than that every
determinate magnitude of time is possible only through limitations of
one single time that underlies it. (1781/1965, A32/B48)

According to Brouwer, the continuum is given in our experience of moments
as boundaries of past and future in which the past and present are joined
together. I am calling this property "cohesion.” Brouwer calls it the intuition
of "two-oneness” and like Aristotle he sees this as the foundation of
continuity. In Brouwer's Inaugural address at the University of Amsterdam
he says this:

This neointuitionism considers the falling apart of moments of life
into qualitatively different parts, to be reunited only while remaining
separated by time, as the fundamental phenomenon of the human
intellect .... This basal intuition [of two -oneness], in which the
connected and the separate, the continuous and the discrete are united,
gives rise immediately to the intuition of the linear continuum, i.e. of
the "betweenness”, which is not exhaustible by the interposition of
new units and which therefore can never be thought of as a mere
collection of units. (1983, p. 80)

This experience of a boundary is not exhaustible by pure units because the
continuity is not "in the units” but in their "betweenness” or the fact that
they were joined together. Of course any set is exhaustible, or has a complete
and definite number of members. Therefore Kant was right, Brouwer thinks,
to consider arithmetic and geometry to be synthetic a priori.

On this view, then, the continuum is a unity and may be thought of as
an idealized "perfect fluid”, a homogeneous whole which has extension and
duration, but has no natural joints or gaps to individuate all of its parts. One
cannot arbitrarily “reach in" to a continuum and “pull out” a well-
distinguished object. Like a fluid, it will simply flow through one's hands.
Consequently, a continuum is non punctual, because any point. would serve
as natural joints to distinguish its parts.

This notion of a natural unity is remarkably similar to that of a
connected topological space. Thus it is not surprising that it has been argued




by White (1988) that Aristotle's requirement that a continuum be a natural
whole is met by the property of the connectedness of a topological space. The
fundamental idea is to build into the continuum a kind of cohesiveness by
constructing the continuum out of (open) sets such that, while the points
may not be individually continuous, collections of them will be continuous.
This perspective accords with Aristotle’s that the points of a continuum will
not be individually continuous, but is not consonant with Aristotle's
assumption that cohesiveness cannot emerge from a larger collection of
points. In particular, open sets of points, on an Aristotelian view, are not
properly parts or "chunks" of the continuum. For chunks of the continuum
must have (non-empty) interiors and definite boundaries. But if this
topological interpretation is correct, we can extend the notion of a thing to
include open sets of things, and then set theory can account for the natural
unity of continua, and therefore Aristotle's objection can be overcome. In
order to assess this claim we need some basic notions of topology.

Suppose we are given an n-dimensional Euclidean
space R* = (x = (x, X;,-..,».):X; € R}. For instance R is the real line, and R? is the
Euclidean plane. Intuitively, a neighbourhood of a point x is the set of points
which are sufficiently close to x. These neighbourhoods define any "natural
joints" which the space may have. Let A be a subset of points in R*. A point x
is an interior point of A if there is a neighbourhood N of x such that
xeNCA,ie, the disc is totally enclosed in A. A point is exterior to A if
there is a neighbourhood N such that xe N C R" - 4, i.e. the disc is totally
outside of A. In other words NnA=0. A point x of R" is a limit point of A
if every neighbourhood N of x contains at least one point of A distinct from
x,iee NnA .O.

The importance that each point of the continuum be a limit point was
emphasized by Bolzano:

... continuum is present when we have an aggregate of simple entities
(instances or points or substances) so arranged that each individual
member of the aggregate has, at each individual and sufficiently small
distance from itself, at least one other member of the aggregate for a
neighbour. When this does not obtain, when so much as a single point
is not so thickly surrounded by neighbours as to have at least one at
each individual and suffi~iently small distance from it, then we call
such a point isolated, and say for that reason that our aggregate does
not form a continuum. (Quoted in Wilder, 1978, p. 721)
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Note that, according to this definition, every point of A is a limit point
of A. Also, if x itself is in A and is the only point in A which lies in a
neighbourhood of N (i.e. NN A = (x]), then x is called an isolated point of A.
If x is a limit point of A such that every neighbourhood of x contains a point
y€ A, then x is a boundary point of A. So every boundary point is also a limit
point. Since if a point x is a limit point but not a boundary point, then it is
not the case that every neighbourhood of x contains a point y € A; so there is
a neighbourhood of x which contains no points not in A and hence there is a
neighbourhood of x which contains only points of A.So x is an interior
point of A. We can picture this situation something like a golf course,
complete with putting greens and holes.

boundary point

interiox point

y

. extezior point

{limit points) = (boundary points}u{interioz points}

Figure 2

A set A is said to be open if every x € A is an interior point. A set A is
said to be closed if every x € A is an exterior point. A topological space is an
ordered pair (X, O) of which the first element is a set of points and the second
element O, the topology of X, is a family of open sets meeting the following
conditions:

(1) @ and X arein O.
(2) the union of the elements of any subset of O arein O.
(3) the intersection of the elements of any finite subset of O are in O.
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As White (1988) maintains, the open sets of X represent the possibility
of a natural articulation or joint in the topological space. In a topological space
the family of open sets constitutes the parts or regions of space that are subject
to being "pulled out” or "excised" while leaving the remainder of the space
intact. In general we can think of a joint as a "natural” or a "clean division" if,
whenever we pull out a set A out of O, leaving the remainder in behind, we
"take with it" only the elements of A. On the other hand, a messy division
results if, whenever we pull a set A out of O, we must "take along with" A
elements (limit points of A) which are not in A (the boundary points of A).
Thus the remainder of the space is not left intact. However, it may not be the
case that any sets can be “pulled out” of the topology while leaving the
remaining space intact, and in this sense a topology will have no "natural
seams or joints”". In order to formulate the condition that a continuum has
no natural joints, then, there must be a condition whereby whenever we
"pull” an open set A from O we have a messy division. This condition is
expressed by the connectedness of a topological space.

S is a connected set if whenever § is separated into two non-empty
disjoint sets A and B such that their union is S, then either A contains a
limit point of B or B contains a limit point of A. Therefore any way of slicing
a connected set results in 2 messy division, one which does not respect the
natural joints established by the open sets. § must be considered to be a
natural unity or to consist of only one part.

Y

X is connected but Y is not

Figure 3

In the above figure X and Y have been sliced into two parts, where B looks
exactly like B' and A looks exactly like A’ with the point x adjoined. A and B
are now stuck together. The point x “glues” A and B together to make X
connected and, being absent from Y constitutes a gap which allows Y to break




into two parts. Since x is in the set A and is a limit point of A and B8, so that
x is infinitesimally close to B; in this sense, x, and also A cannot be separated
from B. We note that x is a limit point of both A and B. Another way of
stating the property of connectedness is to say that a continuum § cannot be
the union of two non-empty disjoint subsets which are open relative to S. §
admits no separation.

The intuition that the continuum must be cohesive in this sense was
thought by Dedekind to be the "essence of continuity”. The Dedekind cut
property requires that:

If all points of the straight line fall into two classes such that every point
of the first class lies to the left of every point of the second class, then
there exists one and only one point which produces this division of all
points into two classes.... (1963, p. 11)

Call this point b. The infinite divisibility of the line entails that it is divisible
at a point b to obtain two parts X and Y. According to the Dedekind cut
property, b is going to have to be either in the left part (X) or the right part
(Y) but not both. The property of cohesiveness guarantees that X and Y share
a common boundary point, the point where they are together. More explicitly,
it can be proved that any set which has the Dedekind cut property is
connected.

So far I have attempted to ascertain whether modern topology is able to
escape Aristotle’s objections against a punctual continuum by interpreting
"punctual” in a more liberal manner. A continuum could be said to be
punctual simply if it was a set. But Aristotle had an argument against a
punctual continuum in Physics 6.1 which was designed to show that "it is
impossible that something that is continuous be constituted from
indivisibles, (like}, a line from points if the line is continuous but the points
indivisible” (quoted in White, 1988, p. 4). It is interesting to assess what
remains of this argument from the topological perspective.

In order to do this it is helpful to reformulate the notion of a topology
of a set in terms of a basis set of elements for a topology rather than by
describing the entire collection of open sets. To give a basis for the topology
we need two conditions:

(1) for each x € A, there is at least one basis element B containing x




(2) if x € (B, N B,), then there is a basis element B, containing x such that

B, c(B,NB,).

Now it is possible to generate a topology from the basis set by defining a set U
of A to be open in A if, for each x e U, there is a basis element B such that
x€ B and BcU. In other words every open set is the union of members of
the basis. (For proof consult any topology text such as Munkres, 1975.) For
example, the set of all circular regions of the plane satisfies the conditions for

being the basis of a topology.

B,

B; B’

Figure 4

Aristotle’s assertion that a continuum in Physics 6.1 cannot be
composed of points can be reinterpreted by adherents of the punctual
continuum as saying that a basis for the topology on the continuum cannot be
the singleton sets of points (White, 1988). On this point the adherents of the
punctual continuum agree. For by taking the singleton set of points as a basis
for a topology we have, in fact, produced a topological space which is
everywhere jointed. Such a basis produces the discrete topology, the set of all
subsets of A. Here it is possible to separate any set into two disjoint open sets,
since each open set (trivially) contains all its limit points (so it is closed), and
so the topology is not connected. For if we consider any subset A of R*, and x
of R*, there is an open set, namely {x}, which contains x, but does not contain
any other point of A distinct from x. Thus x is not a limit point.

Now consider how this applies to Aristotle's argument in Physics 6.1.
One rendering of Aristotle’s argument against the view that the continuum
is composed of indivisibles, that given by White (1988), goes as follows.
Things are continuous only if their extremities are one; and things are




touching only if their extremities are together. But since indivisibles do not
have parts, they cannot be divided into parts with extremities and parts
without. Now there are two possibilities: either (a) it is not the case that the
extremity of one indivisible is one with or is touching the extremity of
another indivisible; or (b) an indivisible touches another as "whole to
whole."” If (a) is the case, then pairs of indivisibles are neither continuous nor
touching. But Aristotle believes that it is necessary that if the continuous
were composed of points, then each indivisible would be “touching one
another” or continuous (trans. 1984, 231a29-b1). In other words, points must
be individually continuous. So if (a), then the continuous is not composed of
indivisibles. If (b), then if the continuous were composed of indivisibles,
none of these inuivisibles would be distinguishable from any other
constituent indivisible since they would all be whole to whole. Aristotle
requires that whatever is continuous has distinct parts and may be divided in
terms of these, which are therefore different and separate in place (trans. 1984,
231b4-6). Therefore, if (b), the continuous is not composed of indivisibles. So,
by constructive dilemma, the continuous is not composed of the discrete, as a
line from its points.

The premise which is questionable from the topological perspective
contained in (a) is that pairs of points must touch and “become one.” Points
must be regarded as individually continuous or in contact with other points.
As | have discussed this conception has also been endorsed by Peirce. One
could also attribute it to Leibniz on the basis of his law of continuity, that
“nature makes no jumps":

Matter, according to my hypothesis, would be divisible everywhere and
more or less easily with a variation which would be insensible in
passing from one place to another neighbouring place; whereas
according to the atoms, we make a leap from one extreme to the other,
and form a perfect incohesion, which is in the place of contact, we pass
to an infinite hardness in all other places. And these leaps are without
example in nature. (quoted in Mates, 1986, p. 165, my emphasis)

From a topological perspective it may be that continuity fails at an individual
level but emerges at a collective level when a sufficiently large number of
points are collected. Aristotle's anti - emergent view follows quite evidently
from his statement of the infinite divisibility of quantities in Metaphysics V.
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For if continuity is an emergent property there is a level of parts at which a
line is not continuous. But, on Aristotle’s view, a magnitude is that which is
divisible into continuous parts. Thus continuity must go "all the way down."
There can be no parts which are not continuous.

Thus the basic objection is much the same as the one directed at
Aristotle's definition of infinite magnitude. Because of this collective
conception, topology apparently parts company with Aristotle, and with
intuition. For while a sensed spatial region must consist of thing with a (non-
empty) interior and a boundary, no such stricture applies to topology.
Topology is free to conceive of things in a wider sense because it is not tied to
intuition. Then cohesion emerges at a higher level.

Meaurement and the continuum

The paradox of measure was not actually raised by Aristotle although
reports of it are contained in his work. In Generation and Corruption 316a14
-34 Aristotle discusses a well known argument against the continuum being
composed of points. Nevertheless the argument concludes that the
continuum must be composed of indivisible magnitudes (which are not
points). This Aristotle vehemently denied. According to Vlastos (1968, p. 371)
it is highly probable that this argument is originally due to Zeno and forms
part of his paradox of measure or plurality. This paradox rests upon the
assumption that a magnitude should be additive. That is to say, the measure
of the whole should be the sum of the measures of the parts since the whole
contains all of its parts. Nowadays it is useful to classify Zeno's argument as
an example of a "paradoxical decomposition” (Wagon, 1985) in the same
genre as the (Banach - Tarski) paradox that one can decompose a ball into two
balls each of which is equal in volume to the original ball.

Of course the paradoxical decomposition of a ball would be impossible
in ancient mathematics because every part of a magnitude was itself a
magnitude. Put the other way around, the whole had to be the sum of its
parts because parts are the lengths that remain after a line has been divided. If
it was not the sum of its parts, then some part was simply unaccounted for.

In a nutshell the paradox of measure is this. Consider a line of unit
length. Suppose, in addition, that the line is a collection of an infinite
number of points. It is assumed that the length of any of these indivisibles is
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decidable; in particular, that all the atoms will either have positive or zero
magnitude. So, if the line is composed of an infinite number of atoms then it
will either have zero or infinite magnitude. The sum of the atoms is
therefore either infinite or zero; but it is definitely not one. So it cannot be
composed of atoms. This is a modern reconstruction of the paradox of
measure that Zeno gives. For predise historical niceties see Vlastos (1968). (An
analogous paradox can be given for dimension (see Grunbaum, 1952).)

Zeno's argument presents the challenge for mathematics to come up
with a measure that works in the same way that our intuitive conception of
measure works. One could argue, in a way which is becoming familiar, that if
we cannot come up with a measure of sets which gives a unit line measure
one, and each of its infinite number of punctual parts zero measure, then our
reasoning regarding length must rely on intuition. But, of course, modern
measure theory does accomplish this.

More celebrated than Zeno's paradox of measure are his arguments
against motion. These four paradoxes of motion (the racecourse, Achilles and
the tortoise, the arrow and the stadium) are often treated, following
Aristotle's treatment of them, as independent of the paradox of measure, and
as proving the separate Parmenidian doctrine that motion is impossible. It is
more plausible, though, to treat the arguments about motion not as
paradoxes, but as part of a grand argument designed to support the contention
that a continuum cannot be composed of atomic parts. Instead of questioning
the existence of motion on the basis of a punctual model of the continuum,
Zeno may be taken as granting the existence of motion and arguing that this
demands that time and space are not composed of an infinity of points. A
number of authors have backed this interpretation, including Tait
(unpublished), Skyrms (1983), and Owen (1957 - 8). (Note that Tait confusingly
calls "the racecourse” the "dichotomy“and the “stadium” the "racecourse".
See Vlastos (1968) for the correct terminology.)

Let me briefly consider the new interpretation. The racecourse asserts
that a runner starting at a point S cannot reach the goal G except by
traversing successive halves of the distance, subintervals of SG, each of
length SG/2" for n=1,2,3... Thus given M as the midpoint of SG, the runner
must first traverse SM;if N is the midpoint of SM the runner must next
traverse SN, and so on. It is then argued that the runner cannot traverse all
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the subintervals because this would involve successively completing an
infinite number of tasks (Vlastos, 1968).

But on Tait’s interpretation the point of the argument is this. Suppose,
for simplicity, that we have the runner occupying exactly one point of space.
Let S = position(s) refer to the position of the runner at time s. Now suppose
that the runner moves linearly during a time interval sg from S$ = position(s)
to G = position(g). Then the racecourse asserts that each point P of the path
SG is given by P = position(t), for a unique ¢, s <z<g. (On this interpretation
the fact that the runner must traverse the midpoint before traversing the
whole course is purely arbitrary: the argument is meant to suggest that this
fact holds for any point in the path SG.)

The arrow establishes the converse result, but the traditional reading is
this. The arrow cannot move in a place where it is not. But neither can it
move in the place where it is. For at a given instant the arrow occupies an
area equal to itself, and a thing is at rest when it occupies an area equal to
itself. Thus an arrow is always at rest (Vlastos, 1968). At this point
commentators usually point out that the arrow is in motion in the sense that
the instantaneous velocity at x is the limit of the average velocity of each
interval of a sequence of progressively smaller intervals around x.

Here is an alternative interpretation. Suppose that the arrow is moving
along a path SG and suppose that there is an instant : between s and g. Then
there must be a point P between § and G on the path with P = position(r). For
if P=5, then there was no motion between s and r; and, if P =G, then there
was no motion between ¢ and g. But we are assuming the arrow is in motion.
In short, the racecourse and the arrow establish that there is a bijective
correspondence between positions in space and instants in time.

Now consider the paradox of Achilles and the tortoise. As Achilles
starts from position § toward A, the tortoise, already at A, moves ahead.
Suppose that her speed is r times that of Achilles (where r is some small
fraction, say, 1/100). Then in the time, ¢, that it takes Achilles to traverse SA
(of length s), she will traverse AB (of length sr). For the same reason, in the
time, 1, it takes to travel AB she will traverse BC (of length sr%). In this
manner we obtain an unending sequence of intervals.
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Intervals run 1 run 2 run 3 ...

Achilles SA (=35) AB (=sr) BC (=sr?)...

tortoise AB(=sr) BC(=sr') CD(=sr)..

temporal sequence t r o’

So Achilles will catch up to the tortoise if and only if an interval traversed by
Achilles, and an interval traversed by the tortoise reach the same point at the
same instant. But since, by assumption, the n* interval traversed by the
tortoise is identical to the (n+1)th traversed by Achilles, the tortoise will
always be one interval ahead. So Achilles will never catch up (Vlastos, 1968).
But let's suppose that Achilles does, after all, catch the tortoise at Z. Let
A be a point strictly between S and Z. Suppose that Achilles traverses SZ ata
constant velocity in time interval sz, and the tortoise traverses the interval
AZ at a constant velocity in time interval sz. So, under these assumptions,
Achilles catches the tortoise at time z. Now it is possible to show that both SZ
and sz contain an infinite number of atoms. Let position(t) be the point in AZ
at which the tortoise is located at time ¢ in sz, and time(p) the time at which
Achilles is at P in SZ. This is justified by the isomorphism established by the
racecourse and the arrow. Now the existence of an infinite sequence

Py<P <P, .. <t <ty..
of points in SZ and instants in sz, respectively, may be defined as follows:
Po =A 's = u'ﬂle(P.) Pu»l = pOSi'ion(‘-)

Thus, from the assumption that Achilles starts his run at § and the tortoise at
A, and Achilles catches the tortoise at Z, it is possible to show that SZ
contains an infinite number of atoms in SZ and in sz.

So Zeno's “paradoxes of motion" appear to prove that the line contains
an infinite number of points. More significantly the line must be considered
to contain a completed infinity of points because the motion which generates
them successively is complete. Achilles does catch the tortoise. There is no
paradox of measure yet because it has only been proved that a line contains
and infinite number of atoms. The paradox of measure arises when one
considers the line to be compused of its unit sets of atoms, or punctual parts.




The Cantorian theory of the real number continuum allowed Zeno’s
problem of measure to be raised anew. Beginning in 1895, a number of French
philosophers became interested in Cantor's work. In particular Hannequin, a
young Kantian philosopher, had written a book criticizing the use of atoms in
mathematics and physics. Although Hannequin conceded the existence of a
least infinite ordinal @, he rejected Cantor’s theory of the continuum because
of its inability to deal with metric considerations (Moore, 1983). He
perceptively remarked: “Thus Cantor’s researches have served only to render
more obvious the ancient conflict between the continuum on the one hand
and the notion of [real] number on the other (quoted in Moore, 1983, p. 131).”

On Cantor's and Dedekind's view of the continuum it consists of a set
of real numbers, one for each point of the geometric continuum. It may have
other properties, such as being a complete ordered field, but this need not
concern us. Zeno argued that if a line segment is divisible ad infinitum it can
be partitioned into an infinite number of punctual parts. Let me cite
Democritus’'s argument again in Generation and Corruption.

Suppose then that it is divided; now what will be left? Magnitude? No
that cannot be, since there will then be something left which is not
divided, whereas it was everywhere divisible. But if there is to be no
body or magnitude {left] and yet [this] division is to take place, then
either the whole will be made of points, and then [parts] of which it is
composed will have no size, or [that which is left] will be nothing at all
(A2, 316a 24-30, quoted in Furley, 1967, p. 84).

One way of construing this construction is as follows. (Here I basically follow
Skyrms’s (1984) construction.)

1: Partition the line into two segments obtained by bisecting it.
2: Refine the partition obtained at stage (n-1) by bisecting each member of it.
: Take the common refinement of all partitions obtained at finite stages of

the process.

In the last step Zeno's construction makes a bold leap from a potential
infinity of parts to an actual infinity of parts. According to the interpretation
adopted here this interpretation is justified because motion generates an
actual infinity of points. Let us apply this construction to the set of real
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numbers. It is obvious how to construct each finite partition n. Consider the
unit interval [0,1]. Bisecting this line into two parts gives: [0,1/2):{1/2,1], with
the midpoint arbitrarily placed in the right half. Step @ is not obvious. In
order to complete step @ construct a sequence of sets: select the first member
from the first partition ... the n* member from the n* partition, such that for
each n, the (n+1)" set s a subset of the n* set; such a sequence will be
referred to as a chain. We can do this if we assume the axiom of choice.
Zeno's bold leap amounts to this: each intersection of such a chain is a part of
the line at level @. The collection of such "@ parts” is considered to be an
infinite partition of the unit line.

The parts of the line which we obtain will be the empty set together
with the unit set of each point of the real line. To see this notice that each
point on the line is a member of some @ part. First, for any point consider the
set containing for each finite n, the member of the n* level partition of which
that point is a member. This set is a chain, and the point in question is in its
intersection. Second, each @ part contains no more than one point. For
between any two points on the real continuum there is some finite distance.
Thus, there is sc e finite stage of the construction at which the points fall
into different elements of the partition. So they fall into separate @ parts
since if they were to fall in the same @ part they would have to both be
members of the chain of which that @ part is the intersection. However some
o parts are empty, for consider the intersection of the chain (0,1],
[0,1/2],10,1/2) {1/4,1/2),(3/8,1/2),[7/16,1/2) and so on is empty. The point
1/2 is not a member of the chain and any point distinct from the midpoint is
eventually dropped. Putting these features together shows that the collection
of w parts form a partition of R.

Perhaps it is wishful thinking to think that Zeno could have thought
of such a construction but it does give a more precise sense to the idea of
producing a collection of unit sets from the set of real numbers by "dividing
through and through”. Now let's look at how this construction leads to a
paradox. Zeno argues that either all parts have zero magnitude or all parts
have equal positive magnitude. Then he poses the dilemma:

(A) If the parts had a non zero finite magnitude, the whole would have an
infinite magnitude.
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(B) If the parts had zero magnitude, then the whole would have zero
magnitude.

The conclusion can be questioned in a number of ways. One might
follow Aristotle in denying that points are parts of lines; hence cannot be
measured. For Aristotle points cannot be parts of lines by his very conception
of lines as divisible into divisibles, and so each part thereby possesses a length.
Moreover, Aristotle argued that a line consisting solely of points would lack
cohesion. So . sistotle does not deny that parts are measurable, he denies that
such a construction can be given. For, if one starts with a continuous quantity
one must end up with a continuous quantity after successive divisions.

But this objection simply begs the question at issue. Since we are
questioning whether a collection of points can be a continuum it is not
appropriate to rule out the possibility that continuity can emerge from that
collection. In other words it cannot be assumed that successive divisions of a
continuous quantity cannot result in a discontinuous quantity.

A second objection which Aristotle can give is that the cunstruction
can take place up to any level n, but cannot pass to level @. He says: "A thing
is infinite only potentially, i.e., the dividing of it can continue indefinitely ...”
(On Generation and Corruption 318a, 21, quoted in Skyrms, 1983). But as I
have pointed out, Zeno has available a devastating counter to someone, like
Aristotle, who thinks that the construction can proceed for each finite n, but
not to level @ on the grounds that the latter presupposes an actually
completed infinite collection of n stages. How can one move from A to B?
How does Achilles actually catch the tortoise? He cannot catch him at any
finite stage n. But he does catch him, so he must have traversed an infinite
number of points.

One might deny the conclusion by questioning the exhaustiveness of
the dichotomy between (A) and (B); in particular by supposing that some of
the parts of a line have different magnitudes. Suppose that an infinite
number of the parts have zero magnitude and a finite number have a
positive magnitude. This would defeat the paradox. Or suppose that a line is a
succession of segments converging at an endpoint. Certain series of this type,
for instance geometric series, will converge at the endpoint and so a sum can
be established. So this assumption (B) may seem to be a simple blunder of
thinking that an infinite collection of magnitudes must have an infinite
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magnitude. But it is not, and in fact Zeno's own paradoxes of Achilles and the
Dichotomy provide a counterexample. The point is that there is such a
partition of a line, and other possible partitions are ruled out by the
assumption that the partition is invariant, that is, that each part has equal
magnitudes. The idea is not that every partition is invariant, just that there is
an invariant partition of the reals so that Zeno's construction is possible.

This raises a more subtle issue. We are assuming that on the basis of
the decidability of magnitudes, either (A) or (B) must hold. Of course,
according to the usual (non-constructivist) view, decidability does hold for
real numbers; in particular, every real number is either 0 or distinct from 0.
It might seem unquestionable to assume decidability at this stage, but, as 1
pointed out in the introduction (and as will be discussed later), Leibniz's
infinitesimals have the feature that “they can't decide whether they are zero
or not.” In other words, it is not the case that any infinitesimal is equa! to
zero, nevertheless one cannot thereby conclude that some infinitesimal is
unequal to zero. Undecidability of magnitudes could defeat the paradox at this
point because, even if we agree that we are dealing with quantities which
have a measure, we cannot make the inference from the fact that no part has
Zero magnitude, to the conclusion that every part has a positive magnitude.
The parts in question may be undecidable magnitudes. Since we are
attempting to give a paradox concerning Cantor's real numbers, however, it is
appropriate to impose the constraint of decidability. In other words
undecidability of magnitudes is not a way out of the paradox as far as the real
number continuum is concerned.

The argument relies on the intuitive idea that the whole is equal to the
sum of its parts, and the assumption that this idea continues to hold when
the parts are infinite in number. This requires that there be some sort of
coherent notion of the sum of an infinite number of magnitudes. We can use
the following principle of ultra-additivity (Skyrms, 1983). Let S be any infinite
set of magnitudes, and let S* be the set of finite partial sums of magnitudes in
S. A real number is an upper bound for $* if and only if it is greater than or
equal to every member of S*. The principle of Ultra-additivity requires that
the sum of § is the least upper bound of S* if a least upper bound exists, and
is e otherwise.

The argument makes the additional assumption that there are no
positive non-Archimedean magnitudes, since if there were their sum would
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be finite. The infinitesimal mathematics of Cavalieri, Leibniz, and others
considered the length of a curve or the area under a curve to be the sum of an
infini:e number of non-Archimedean infinitesimal quantities. But, of course,
this is ruled out by Cantor since real numbers are Archimedean. For if they
were not R would not be complete: it would not be such that every non-
empty set of real numbers with an upper bound has a least upper bound. For
completeness implies the Archimedean condition (see MacLane, 1986, p. 103
for a proof). It follows that $* will have no upper bounds and (B) will be false.

The inability of Cantor's theory of real numbers to deal with metric
considerations in the late nineteenth century allowed measure theory to
become a central area of investigation in French mathematics. The
development of measure theory has allowed a certain kind of answer to
Zeno's measure paradox that is similar, in spirit, to the answer to the problem
of cohesiveness. This kind of answer is implicit in the mathematics. It was
made explicit in a well known paper by Grunbaum who claims that "Zeno's
mathematical paradoxes are avoided in the formal part of a geometry built on
Cantorean foundations” (1952, p. 301). The philosophical point at the basis of
this judgement is that singleton sets have measure zero, a collection of
singleton’s will have a non-zero measure which emerges from the collection
of singleton sets. Grunbaum contrasts points with singleton sets (of points)
and puts the point about emergence as follows:

While it is boti logically correct and even of central importance to our
problem that we treat a line interval of geometry as a set of point-
elements, the definition of "length” renders it strictly incorrect to refer
to such an interval as an "aggregate of unextended points.” For the
property of being unextended characterizes unit point - sets but is not
possessed by their respective individual point elements, just as
temperature is a property only of aggregates of molecules and not of
individual molecules. (1952, p. 301)

How does measure theory allow one to escape from Zeno's paradox of
measure? According to a Grunbaum-Skyrms view, modern measure theory
questions the assumption that ultraadditivity is the correct sense in which the
measure of a whole is the sum of a measure of the parts. For ultraadditivity
fails in general for measurable sets. Consider the Peano - Jordan definition of
a measurable set. A measure is not a property of an object given in our
perception; it is an assignment of a unique number, called "the area” to a set.
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The intuition is that a figure is measurable when its area can be compressed
between sequences of polygons. In 1883 Peano noted that (1) the class of
polygons contained in a given area (such as a circle) should be less than or
equal to (1) the class of polygons containing the circle and conversely that (II)
should be greater than or equal to (I) (see Hawkins, 1970). When these
conditions determine a unique number, then it is the area of the region, and
if not "then the concept of area would not apply in this case” (quoted in
Hawkins, 1970, p. 87).

Thus, on the real line, an interval [a,b] is assigned a length b~-a asa
measure. Degenerate intervals [a,a] are assigned 0 measure. These measures
are the fundamental starting point for assigning measures, and the concept of
measure is extended to include other sets. This occurs as follows. Consider
finite sets of intervals which cover the set of points in an interval in the sense
that the points are contained in their union. We associate with each such
cover the sum of the lengths of the intervals contained in it. The greatest
lower bound of these lengths is the outer content of the set. We can also
consider the finite sets of non-overlapping (pairwise disjoint) intervals whose
union is contained in the set at issue. We can associate with each such set the
sum of the lengths of its members. The least upper bound of these lengths is
the inner content of the set. A set is measurable in the sense of Peano and
Jordan when tie inner and outer content of the s are equal, and that content
is its measure.

This definition of measure is easier to visualize with areas. Lay a grid
over a plane containing the figure to be measured. If by halving one proceeds
to a finer grid, the new inner approximation contains the old one and is
usually larger because of the addition of new smaller squares to the old
region, while the new outer region results by deieting new smaller squares
from the old region. Thus the difference between inner and outer content
becomes smaller. If continuing refinement of the figure brings the inner and
outer content arbitrarily close to a number then this number is the content of
the figure; if not, the figure is non measurable.
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Approximation of Peano - Jordan content
Figure 5

Jordan was able to prove that such a measure is finitely additive. That
is to say, if each of a finite collection of mutually disjoint sets is measurable,
then their union is also measurable and is the sum of their measures. But the
stronger sense of countable additivity fails for Peano-Jordan measure. For
example, the set of rational points in [0,1] is not Jordan-Peano measurable
since its outer content is 1 while its inner content is 0. But it is the union of a
denumerable collection of unit sets.

Again this can be visualised better with areas. Consider a square ABCD
on whose upper side CD we construct a perpendicular at every point whose
distance from Cis a rational number. In this case the outer content is twice as
large as the inner content, and the two do not tend to a common limit as the
grid is refined, because area CC D' D always belongs to the outer
approximation and only to that one. Every grid square lying in CC D' D, no
matter how small, contains both points that do, and others that do not belong
to the figure.

Figure 6
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This approach to measure was generalised by Lebesgue who formulated
the measure problem for plane regions as follows:

The Measure Problem for plane regions bounded by simple closed
curves can be posed in the following manner .... : To assodate with
each such region a number, to be called an area, such that congruent
regions have equal areas, and such that the region formed from the
union of finitely many regions, which have part of their boundary in
common and which do not overlap, has as its area the sum of the areas
of the component regions.... (quoted in Moore, 1983, p. 136)

In answer to this problem Lebesgue generalized the concepts of inner and
outer content in such a way that the countable additivity of measure could be
established. It is not necessary to go into the details of this concept of measure.
The important point is that by applying Lebesgue measure to Zeno's partition
of the real line does not lead to a paradox because there is an additive

measure which assigns zero to each punctual part and assigns one to the unit
line.

But, as Skyrms has pointed out, the spirit of Zeno is still capable of
mischief. The spirit of Zeno would insist that such an approach to solving
Zeno's paradox would call for a positive answer to Lebesgue's measure
problem: every possible partition of the line must be measurable. However, a
negative solution to Lebesgue's measure problem was given by Vitali in 1905.
This, Vitali did, and in the process, he produced an example of a set which is
non (Lebesgue) measurable.

But if the spirit of Zeno is malicious, then any paradoxical
decomposition shows that the continuum cannot be regarded as being
composed of points. Just as considering a unit line segment to be composed of
points generates Zeno's paradox of measure, considering a unit cube to be
composed of points leads to Hausdorff's paradox and its generalization due to
Banach and Tarski (Wagon, 1985). Hausdorff showed that one cannot have a
finitely additive measure which assigns the unit cube measure 1, assigns
congruent sets equal measure and assigns a measure to all the subsets of the
unit cube. Banach and Tarski were able to show (using the axiom of choice)
that one can cut a ball into a finite number of pieces that can be rearranged so
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that one obtains two cubes of the same size as the original ball. The pieces are
simply non measurable sets (Wagon, 1985; Jech, 1977).

But these argument can be questioned. As Moore (1983, p. 141)
recounts, Lebesgue did not accept that Vitali had established the existence of a
non measurable set because his proof relied upon the use of the axiom of
choice. Lebesgue was not alone in this attitude. Hausdorff's 1914 paradox was
taken by Borel to vindicate his (Borel's) opposition to the axiom of choice:

The contra:iction has its origin in Zermelo's axiom of choice. The set
A is homogeneous on the sphere; but it is at the same time a half and a
third of it .... The paradox results from the fact that A is not defined, in
the logical and precise sense of the words defined. If one scorns
precision and logic, one arrives at contradictions. (quoted in Moore,

1983, p. 142)

On the basis of the view of the French Intuitionists, e.g., Borel, Baire and
Lebesgue, Moore has argued that the history of measure theory contains a
contradiction between the expressed philosophy of a group of mathematicians
and the type of mathematics they developed. On the one hand the
aforementioned mathematicians stood opposed to the axiom of choice in
mathematics and, on the other hand, they developed theories of measure
which depended upon such an axiom. As Moore puts it, Lebesgue's "work
reveals how a mathematician of the first rank may subtly fail to see that he is
fundamentally violating his own philosophical scruples in his own work”
(1983, p.149).

Perhaps their attitude toward the axiom of choice was justified because
of the subsequent discovery of the Banach - Tarski paradox and Solovay's
proof that the existence of a non measurable set depends in an essential way
upon the axiom of choice. One can show, moreover, that in Solovay's model
of set theory all the standard theorems of Lebesgue measure theory hold (Jech,
1977). This discovery resolves the "inherent contradiction” in the thinking of
the French Intuitionists because the theory of measure can be developed
without the axiom of choice - although not without the countable axiom of
choice which does hold in Solovay's model. I think the moral to be drawn,
then, is that in order to represent our intuitive conception of measure the
axiom of choice has to be set to one side.
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LEIBNIZ'S PUZZLE AND THE SMOOTH CONTINUUM

A curvilinear figure must be considered to be the same as a polygon with infinitely many sides.
G. Leibniz

The previous chapter was devoted to a brief survey of how modern set theory
attempts to solve the challenges raised by Aristotle to conceiving the
continuum as composed of points. Aristotle doubted that collections of units
could be conceived as having the properties that continua have. Modern set
theory, by conceiving sets to be unities in their own right, allows for complex
collections of points. At a sufficient degree of complexity the properties
possessed by continua emerge from the discrete.

Is it possible to give a set theoretic account of the continuum? Like
Aristotle, Leibniz believed that the continuum was perceived as a whole. But
he differed in that he also believed that our conception of mathematical
objects was clear and distinct. Hence, the continuum was nothing more than
a confused perception of the underlying discrete monads. But Leibniz’s view
of the continuum had an additional structural feature which was central in
his infinitesimal calculus. This feature is that every curve is to be considered
an assemblage of straight lines. It follows from this viewpoint, that the
positions along these straight lines have a peculiar feature, namely that the
identity of any pair of positions is undecidable. The difficulty in adopting a set
theoretic approach will be that the identity of every set is decidable; so the
infinitesimal positions will not be representable by sets. It will become clear
later that in order to represent these infinitesimals the notion of set will have
to be generalized to that of variable set.

The principle of infinitesimal linearity and undecidable objects

Seventeenth century analysis was a corpus of analytical tools for the
study of geometrical objects, in particular, curves. A curve embodies relations
between several variable geometrical quantities such as ordinate, abscissa, arc
length, polar arc, radius, subtangent, normal, areas between curve and axes,
tangent, circumscribed rectangle. The main problems of mathematics
involved determining the relations, such as tangent and quadrature, between
variable quantities. These relations are illustrated in the following figure.
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x: abscissa, y: ordinate, s: arc length, r: radius, a: polar arc, @: subtangent, t: tangent, v: normal,
Q = OPR: area between curve and x axis, xy: circumscribed rectangle.

Figure 7

Cartesian analysis had introduced the idea that relations between
variable quantities be expressed by equations whenever possit-le. These
relations were not functional relations since there was no sense of one
variable being dependent upon another variable. Hence, a relation between x
and y was a single relation rather than two separate mappings x——y and
y——x. The curve was not considered a graph of a function but rather a
geometrical figure which embodies relationships between variable quantities.

It was technically impossible prior to Descartes to consider the variables
of geometric analysis to be real numbers. For geometric quantities, as
conceived by mathematicians up to the seventeenth century, lacked a
multiplicative structure and a unit element. This is due to the fact that
quantities were conceived of as having dimension, which could be that of a
line, an area or a solid. Higher powers were uninterpretable because they were
thought not to be interpretable in actual space, so quantities were not closed
under multiplicatioxi. Descartes, in his Geometrie, found a way to multiply
quantities without assuming that the quantities are of different dimension
(Mancosu, 1992). Later Riemann introduced the idea of an n - fold extended
space so that it became possible to interpret quantities as having a dimension
greater than that of actual space (Nowak, 1989).
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The most notable event in seventeenth century mathematics was a
rebirth of infinitesimal techniques in the hands of Kepler, Cavalieri, Norris,
Wallis, Barrow, Newton and Leibniz among others (Jeseph, 1989; Baron, 1969;
Edwards, 1979). According to this conception surfaces were considered to be
composed of indivisible surfaces, and lines of indivisible lines. But many
were reluctant to take such a realist approach to indivisible elements.
Cavalieri, one of the premiere practitioners of infinitesimal mathematics
wrote to Galileo in 1639 that "I have not dared to say that the continuum was
composed of these [infinitesimals]...”(quoted in Anderson, 1975, p. 307).
Earlier in 1634 he had declared even more emphatically to Galileo that "I
absolutely do not declare to compose the continuum by indivisibles” (quoted
in Anderson, 1975, p. 307). In spite of the emphasis Cavalieri placed on not
affirming the continuum to be composed of indivisibles it seems that he
never took a definite view on whether the continuum was, in fact, composed
of indivisibles.

This ambivalence is found in other prominent mathematicians as well.
Huygen's opinion of the infinitesimal techniques was characteristic of many.
He believed that infinitesima! .cchniques were methods of discovery but not
methods of proof. These techniques could not be regarded as rigorous, but
they could, nevertheless, make for good labour saving devices and be
heuristically satisfying:

As to the Cavalierian methods: one deceives oneself if one accepts their
use as a demonstration but they are useful as a means of discovery
preceding a demonstration.... Nevertheless that which comes first and
which matters most is the way in which the discovery has been made.
It is this knowledge which gives most satisfaction and which seems,
therefore, preferable to supply the idea through which the results first
came to light and through which it will be most readily understood.
We will thereby save ourselves much labour and writing and the
others the reading; it is necessary to bear in mind that mathematicians
will never have enough time to read all the discoveries in geometry ...
if they continue to be presented in a rigorous form according to the
manner of the ancients. (quoted in Baron, 1969, p. 223)

Leibniz's attitude appeared to express a decidedly realist view of
infinitesimals. By 1684 the Leibnizian calculus had reached a somewhat
definite form and Leibniz made it clear that the fundamental idea of his




calculus was that every curve is an infinitangular polygon (quoted in Bos,
1974, p. 14):

I feel that this method and others in use up till now can all be
deduced from a general principle which I use in measuring
curvilinear figures, that a curvilinear figure must be considered
to be the same as a polygon with infinitely many sides.

This principle was not completely novel. It had been alluded to by
Protagoras of Abdera, Bryson, Antiphon, Descartes, and Galileo (Baron, 1969;
Mentzeniotis, 1986). What was new was that it was the central notion of a
comprehensive mathematical theory - the infinitesimal calculus. For instance
Antiphon's ancient approach to computing the quadrature of a circle was to
inscribe a square in the circle, and from this square construct to ar octagon,
and a 16 - gon and so on, until the circle and polygon coincide.

And then in the same way of cutting the sides of the 16-gon and
joining the lines and doubling the inscribed polygon, and doing this
always, so that at some time, the area being exhausted, a certain
polygon would be inscribed in the circle whose sides on account of
smallness would coincide with the arc of the circle. (quoted in
Mentzeniotis, 1986, p. 15)

Even Descartes pointed out that if a circle rolls on a straight line, the
circle can be considered as a polygon made up of “cent mil millions” of sides
and the tangent at each point will be perpendicular to the line joining that
point to the generating line with the base line (Baron 1969, p. 164).

The intuition behind this principle was straightforward. For the Greeks
rectilinear and curvilinear figures were different kinds of quantities, just as
areas and lengths are different kinds of quantities. Thus it was difficult to
understand how comparisons of curvilinear and rectilinear quantities could
be made. It was obvious how to calculate the area of a square, say with sides of
unit length, since the area is defined as the square of unit length. But, suppose
we are given a circle of unit length and asked to compute the area of the circle
in rectilinear units. Since a circle is a kind of curvilinear figure it is not
immediately obvious how to calculate the area in rectilinear units. How is
this gap between curvilinear and rectilinear to be bridged? Antiphon's simple
solution begins by denying that there is a gap to be bridged between
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curvilinear and rectilinear figures. If the curve were actually a kind of
rectilinear figure, then computing the area would, in principle, be the same as
calculating the area of a rectilinear figure.

As simple as this solution seemed, it was rejected unequivocally by
Aristotle because curvilinear and rectilinear figures were different kinds of
quantity. Circles and infinitangular polygons can be distinguished in two
simple ways. First, no matter how many sides a polygon had, it could never
be a circle, since a straight line and a circle are tangent only at a point, and
hence cannot coincide with an edge of a polygon. Building on this point, and
the infinite divisibility of magnitude, the difference between the area of a
circle and that of any member of a sequence of inscribed polygons can never
become zero.

A similar attitude to the reintroduction of the infinitangular polygon in
the seventeenth century was expressed by Berkeley who, in a manner
reminiscent of Aristotle, considered the idea of a circle being an
infinitangular polygon to be a perversion of language.

What do the Mathematicians mean by Considering Curves as
Polygons? either they are polygons or they are not. If they are why do
we give them the name of curves? Why do not they constantly call
them Polygons & treat them as such. If they are not polygons I think it
is absurd to use polygons in their stead. What is this but to pervert
language to adapt an idea to a name that belongs not to it but to a
different idea. (quoted in Jesseph, 1993, p. 159)

It is apparent that the view that a curve can be considered to be an
infinitangular polygon ("polygon infintanguli”) has had a checkered
intellectual history and, until recently, was fated to being viewed as an
incoherent notion. Even today, respectable philosophers continue to speak of
the "contradictory being of Leibniz's infinite sided polygons, at once
continuous and discrete, geometric and combinatorial, infinitary and finite”
(Grosholz, 1992, p. 133). This attitude could have been permanently changed
because of the great results which the infinitesimal calculus brought about but
it was not, largely because of the inability of Leibniz's calculus to survive the
“rigorization” of the calculus. The inability of Leibniz's conception to survive
is due to the fact, as we shall see, that infinitangular polygons cannot exist in
the framework of a universe of sets.
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A straightforward interpretation of Leibniz's writings is to take his
principle at face value; and many who had read and comprehended Leibniz's
papers, such as Bernoulli, Varignon, Nieuwentijt, and L'Hospital interpreted
and applied the principle literally. In order to attempt to explain the concept
of an infinitangular polygon, it is helpful to consider the case in which a
curve is approximated by a finite polygon OABCDE.
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Figure 8

We suppose that, in approximating the curve, the vertices of the
polygon are on the curve. The curve is, therefore, considered to be
approximated by a sequence of points (the vertices of the polygon) joined
together by straight lines. This occasions considering the quantities as varying
with respect to the points of the curve. The approximating polygon gives rise
to a sequence of variable quantities. Leibniz recognized that if the polygon is
chosen so that the difference of the successive x values is equal to 1, then the
sum of the ordinates provides an approximation of the quadrature and the
differences of successive ordinates are approximations to the slope of the
tangents for the corresponding points on the curve (Bos, 1974, p. 13).

Leibniz had observed in his early studies on number sequences that the
operations of summing sequences and taking the difference of sequences were
reciprocal operations: if one takes the successive differences of the sum
sequence one obtains the original sequei\ce, and similarly, if the one takes the
successive sums of the difference sequence, one obtains the terms of the
original sequence (diminished by a)).
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sequence

3,18;,84,4...
sum sequence: difference sequence:
8,152:53,545-+. With 4 .d,.d,.d,....with
s=a d=0-q
H=6+a d, =a,-aq,
=6 ta+a, d,=a,-a,
S, =aq,+a,+a,+a, d, =a-a,
etc. etc.

He wrote:

Foundations of the calculus: Differences and sums are reciprocal to
each other, that is, the sum of the differences of a sequence is the term
of the sequence, and the difference of the sums of a sequence is also the

term of the sequence. The former I denote thus: jdx = x; the latter thus
dj'x = x(quoted in Bos, 1986, p. 86).

A finite polygon will approximate a curve more nearly if the
differences of the terms are made smaller and smaller. The Leibnizian
calculus results from the daring hypothesis that when a finite polygon which
approximates a curve becomes an infinitangular polygon, it coincides with
the curve when the differences are taken to be infinitesimally near. A curve,
then, is an infinite set of points "joined" by linear segments - geometric
infinitesimals. The geometric infinitesimals linking vertices of the polygon
are not punctual infinitesimals nor indivisibles but smoothly varying
infinitesimal quantities, or “continua in the small”.

One should notice immediately that there is an ambiguity in the
notion of an infinitangular polygon since it is unclear whether Leibniz thinks
of every curve as being an actually existing infinitangular polygon or
potentially existing infinitangular polygon. It may seem that Leibniz is saying
that every curve is an actually completed infinitangular polygon but it is




possible to make Leibniz's point in a way which does not state outright that
every curve is an (actual) infinitangular polygon. This is the principle of local
straightness of curves: each point on a curve lies on a straight line (compare
Bell, 1988). Here a point may be interpreted as a potential locus of division
such that when such a division is made, it will lie on a straight line segment.
On the other hand, how can we envisage an actual infinitangular
polygon? The extrapolation from a finite polygon to an infinitangular
polygon is not only daring but difficult to understand. One suggestion is to try
to visualize this extrapolation as the result of a limit process of increasing the
number of sides of the polygon. But visualizing this extrapolation as a limit
process seems not to be of much help. For, suppose that we attempt to find
the area under a curve by summing up the inscribed rectangles under the
curve. This approach to quadrature was given by Leibniz in a 1677
manuscript. (It should be noted that one of the main advances of Leibniz's
approach over Cavalieri's use of indivisible lines and surfaces was his use of

differential triangles.)

I represent the area of a figure by the sum of all the rectangles
contzined by the ordinates and the differences of the abscissa [the sum
of the rectangles of the figure].... For the narrow triangles [the
differential triangles]... since they are infinitely small compared with
the said rectangles, may be omitted without risk; and thus I represent

in my calculus the area of the figure by I ydx, or the rectangle contained

by each y [height] and the dx [base] that corresponds to it. (quoted in
Mentzeniotis, 1986, p. 71)

This conception of finding the area under a curve is intimately related to the
principle that every curve is a polygon. Since in order for the area to be equal
to the sum of the areas of the rectangles the differential triangles must be
equal to zero. One way of attempting to visualize this is to decrease the area of
the triangles by making the areas smaller and smaller by making the
ordinates closer and closer so that they approach zero. Leibniz observed that
the problem with this traditional approach to limits is that we never get to
infinitesimals as the limit of such a process. But what if the difference in
ordinates does becomes zero? If we view this as the result of a limit process,
where the differences between the terms of the sequence become zero, the




ordinates fill the entire area between the curve and the axis, the rectangular
areas of the polygon disappear and the polygon “collapses”.

differential triangle &

amm——

collapse

Figure 9

Thus in order for the area to be the sum of the rectangles, the ordinates are
required to be distinct, so the polyg~n does not collapse, and yet the area of the
differential or characteristic triangle must be equal to zero. In other words the
base of the triangle must be non-zero, while the area A is zero. Leibniz dealt
with this problem of collapse in a two different ways, each of which
amounted to refusing to let the characteristic triangle equal zero. As we shall
see it is a simple consequence of the principle of the local straightness of
curves that the area of the differential triangle must be zero while the base is
non zero.

This failure to understand an infinitangular polygon by means of a
limit process is symptomatic of the general problem of attempting to
understand geometrical concepts through the consideration of limit
processes, and vice-vers~. There are many other examples of apparent failures
and an amusing example v/l help illustrate the problem (Giaquinto, 1994).
Consider the following sequence of curves: first we draw a semicircle on a
line segment; secondly we divide the segment into halves and form two
semicircles, one on the upper side of the left half, and the other or. the iow:r
side of the right half; we then repeat step two ad infinitum. The curve gets
closer and closer to the original line segment, so one might reason that the
limit of the curves is the original line segment. So our visualization of this
infirite process is the length of the curve becoming smaller and smaller, ard
gradually "winding itself* around the original line segment. Finally, in the
limit, the curve is wound so “tightly” that it becomes the original line

segment.
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figure 10

Here our intuitive visualization is misleading because, in fact, the length of
every curve is the same. If the original segment, the diameter of the first
semicircle, has length d, that semicdircle has length nd/2; the next curve, two
semicircles on diameters half the length, has length 2(zd/4)=nd /2. The
next curve will have length 4nd /8= nd /2. Thus the length of the curve does

not decrease contrary to expectations based upon visual intuition.

Because of the difficulty of visualizing infinitangular polygons Leibniz
preferred to concentrate on operations on the sequence of points of the
polygon. Thus Leibniz was led to consider infinite sums and sequences
induced by the polygon. These difference are the arithmetic representations of
the infinitesimal quantities, and they are regarded as zero compared to
elements of the original sequence. One can proceed further and calculate a
second order difference sequence from the difference sequence itself. Each n -
order difference is regarded as incomparably small (zero, for all intents) in
comparison with quantities at level n-1.

As we shall see the symbolic nature of reasoning is characteristic of
Leibniz's approach to mathematical reasoning. In order to understand a
mathematical concept we do not need not have a representation of each part
of the concept, and for Leibniz it sufficed to study the arithmetical sequence
which the polygon induced. But this approach can give rise to
misunderstanding even among the most sensitive Leibniz scholars. In a
finite polygon a finite number of values are associated with the variable. That
is, the variable is considered to range aver the values connected with the
vertices of the polygon. When we extrapolate from a finite polygon to an




infinitangular polygon the variable is conceived to range over an infinite
sequence of values associated with vertices of the infinitangular polygon.
Since the curve is supposed to be an infinitangular polygon Bos suggests that
the “sequence and the variable now coincide; the variable is the sequence
along which it ranges” (1986, p. 88) . Thus Bos contrasts Leibniz's approach to
curves as ranging over an infinite sequence of (static) points rather than
flowing along a continuum of values as Newton's continuum does.

But this is premature and departs from Leibniz's central tenet. What
happened to the infinitesimal segments joining the vertices when the
extrapolation took place? Did they disappear? A different answer which, of
course, is difficult to visualize, is that when the number of points becomes
infinite, the infinitesimal line segments joining the points become
"absorbed" within the points. Thus the sides of the polygon become shorter
and shorter and finally become "absorbed" within the points. The coincidence
of the variable quantity and its points is due to the fact that the infinitesimal
D is of non-zero length, and so may have very strange order properties. It
turns out that, in modern models of Leibniz's continuum, we
have D c{0,0] . As well, if x e[a,b], then (x+ d) €[a,b). Therefore, since for
each point a, ae(a,a), it follows that the infinitesimal distance around a, is
entirely enclosed within a, (a+d)€[a,a]. Thus the infinitesimally small
"linelets"don’t quite disappear; but are hidden within the points. The
strangeness of this situation is evident from the fact that, according to
standard measure theory, the measure of the segment [a,a] is zero.

This suggestion is only the beginning of the radical consequences of
accepting the Leibnizian conception of the continuum. Here I will draw
attention to two such consequences. First, the principle that every curve is an
infinitangular polygon implies that there exist non-degenerate square zero
infinitesimals. Leibniz did not draw the conclusion that there were square
zero infinitesimals; this was left to Nieuwentijt in his treatise Analysis
Infinitorium which appeared before that of L'Hospital in 1695. Nieuwentijt
said "anything that, if multiplied by ap infinite quantity. does not produce a
given [finite quantity], however smali, cannot be reckoned among the beings,
and must in geometry be counted as zero” (quoted in Vermij, 1989, p. 71).
Nieuwentijt also attempted to demonstrate the calculus from the principle
that considered curves as polygons (Vermij, 1989, p. 70). The publication of
this work sparked an important dispute over the existence of higher- order
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differentials with Nieuwentijt claiming that there could not be such entities
and Leibniz claiming there must be. This dispute reveals the confusion that
existed over the basic points of how to apply the principles of the
infinitesimal calculus. Nieuwentijt eventually conceded Leibniz’s point, but
he did not do so lightly:

Every one who has had the trial of it, knows how mortifying it is to
give up an hypothesis which he has believed for so many years to be
true, upon which he has pored and meditated so many nights, with
which he has blotted so much paper, and for the sake of it ran thro' so
many books; and lastly, by the help of which, he fancies to himself, that
he has arrived to the top of all wisdom, or at lea';t that he shall soon
reach it. (quoted in Vermij, 1989, p. 85)

The point can be illustrated with a simple problem. If y=x? and x takes
the value x+dx for some infinitesimal value dx, then y becomes
x? +2xdx + dx*. If the change in x is dx, the change in y is 2xdx + dx?,then the
ratio of the change is 2xdx +dx? / dx =2x + dx. But the differential quotient of
x* is said to be 2x and not 2x+dx. What justifies subtracting the dx?
Nieuwentijt claimed that it was justified by the fact that dx* =0. Hence the
syuare of infinitesimals must equal zero.

Leibniz disagreed. He said:

... I accept not only infinitely small lines such as dx, dy, ... as true
quantities in their own sort, but also their squares and rectangles, such
as dx dx, dydy, dx dy. And I accept cubes and other higher powers and
products as well, primarily because I have found them useful for
reasoning and invention. (quoted in Bos, 1974, p. 64)

This response must have been somewhat disconcerting, because Leibniz
simply responded to a theoretical explanation with a practical answer.

In Leibniz’s early papers, as well as in I’'Hospital’s and Johann
Bernoulli’s, neglecting the dx was justified because it was infinitesimally
small compared to finite quantities: 2x+dx and 2x are equal. In this way
Leibniz is prepared to simply extend the notion of equality to that of
infinitesimal nearness. Later, Berkeley observed that errors in mathematics
can never be so small as to be ignored. But on Leibniz's view there are no
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errors since If 2x +dx and 2x are not strictly equal we simply change the
definition of "equal".

Of course I hold with Euclid (Book V, definition 5) that all
homogeneous quantities are comparable which can be made to exceed
one another through multiplication by a finite number. (quoted in
Jeseph, 1989, p. 241)

But also:

I think that those things are equal not only whose difference is
absolutely nothing, but also whose difference is incomparably small;
and although this difference need not be called absolutely nothing,
neither is it a quantity comparable with those whose difference it is.
Just as when you add a point of one line to another line or a line to a
surface you do not increase the magnitude.... (quoted in Jeseph, 1989, p.
240)

Thus, when applied to the problem of the collapse of the infinitangular
polygon, the differential triangles do not become absolutely zero, but only
incomparably small with respect to finite quantities. Leibniz would not
commit himself to the idea that any order of infinitesimal was absolutely
zero; this would imply the collapse of the polygon. This answer was never
fully accepted by Nieuwentijt. Nieuwentijt thought that, in the end, all
controversy regarding infinity comes down to what he regarded as an
insoluble problem:

Whether something that is infinitely small, or better: smaller than
someone can determine, remains something in then end; or ./hether it
should be kept to a mere nothing? (quoted in Vermij, 1789, p. 84)

It is just this problem, which the new framework of smooth spaces and maps
solves by showing that there are nilpotent quantities of any power, i.e. x* 20
but x* =0 for any given n.

Nieuwentijt did not prove that the square of an infinitesimal is zero,
but such a proof is available based upon the consideration that every curve is
a polygon. Suppose we wish to find the tangent to a curve which is described
by the equation y = x*. Given the principle of local straightness of curves it is
clear that:
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.... to find a tangent is to draw a straight line joining two points of the
curve which have an infinitely small distance to one another; or the
produced side of the infinitangular polygon which for us is equivalent
to the curve. This infinitely small distance, however can always be
represented by a given differential, such as dv, or by a relation to it, that
is, by a given tangent. (quoted in Bos, 1974, p. 63)

An intuitive proof of the existence of square zero infinitesimals is given
by considering the graph of y=x?.

Figure 11

We consider the elements along the abscissa x to be numbers, the point
at unit length is 1, and the origin point is 0. D is the infinitesimal line
segment which is the intersection of the parabola and x axis. Thus D is the
collection of all points x such that x* =0, or the domain of an "equalizer"
map of the zero map and the square map, i.e. D can be regarded as the
domain on which the maps agree. Now consider any element d € D on the x
- axis at a given distance from the origin. Clearly, it is not the case that, for any
d, d=0,ie., D cannot consist of 0 alone. For if it did, consider the part of the
parabola g = D — R, given by g(d) = d*. Then g(d) = g(0)+ db for any b which
violates the uniqueness of b.

Let's formulate the principle of local straightness of curves more precisely.
Consider an arbitrary curve y = f(x) (below).
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We have imagined the infinitesimals to be squeezed between points so that
D lies around the point 0. Since the curve is locally straight, there is a linear
infinitesimal portion S of the curve y = f(x) around the point (0,£(0)) which
coincides with the tangent line at that point. Suppose that we are in a
mathematical framework in which every curve is represented by a
polynomial. If the curve f were a polynomial function, then S may be taken
to be the image f[D}of D under f. (Given a polynomial
f(x)=a,+ax+a,x*+...ax" with x’ =0, we have f(x)=a,+ax ) Thus if we
consider the restriction g of f to D, then this postulate is equivalent to the
assertion that the graph of g is linear on D. In short, a principle of
infinitesimal linearity applies to D: for any map g:D——R there is a unique
slope b e R such that for all de D g(d)= g(0)+db.

The consequence which will be most important for this thesis is that
the identity of elements of D is not decidable. 1t is this fact, in conjunction
with Leibniz’'s commitment to the decidability of objects which leads to what I
have called "Leibniz’s puzzle". For if a continuum is to be considered a
collection of objects and every object is decidable, then infinitesimals cannot
be contained in the continuum. Thus no curve can be considered
infinitesimally linear, and so cannot be represented by the intellect. I am not
claiming that Leibniz ever formulated this puzzle as it pertains to square-zero
infinitesimals, nor that he was aware of the undecidability of infinitesimals.
But such a puzzle can be culled from his work and fits nicely with his idea
that infinitesimals are merely “ideal”.

The undecidability of infinitesimals is a fairly immediate consequence
of the principle of infinitesimal linearity. Suppose that D is decidable, that is




Vd\Vd,((d, = d,) v (d, # d,)), i.e. any pair of infinitesimals is decidable. In
particular each d is distinguishable from 0, Vd(d=0)v(d # 0). Thus a
function f may be defined by f(0)=0if d =0 and if d # 0 then f(d)=1. Since
it is not the case that, for any d, d =0, consider a d # 0. Then by the definition
of the function f, f(d)=1=db. But then 1=(db)* =0, a contradiction. Thus
we conclude that —~(d # 0). Therefore by the initial assumption of decidability
we obtain d = 0. This holds for all d, and so contradicts the former conclusion
that d # 0. The conclusion follows. Note that this immediately entails that
the classical law of excluded middle cannot hold, since that principle states
that for any formula @, we have @ v -0,

Leibniz, I think, would not have been shocked at this last result. One
may argue that this violates Leibniz's fundamental law of non-contradiction.
That is, Leibniz presupposed the principle of excluded middle in order to
apply his supreme principle of non-contradiction. As Leibniz put it:

First of all, I assume that every judgement (that is, affirmation of
negation) is either true or false and that if the affirmation is true the
negation is false, and if the negation is true the affirmation is false ....
All these are usually included in one designation, the principle of
contradiction. (quoted in Mates, 1986, p. 153)

The reason that he would not have been shocked is that, as I will discuss, the
parts of a continuum are not real but ideal. But the law of excluded middle
should only applies to actual objects and not possible objects. This is certainly
the line that Pierce took:

Now if we are to accept the common idea of continuity ... we must say
that a continuous line contains no points or we must say that the
principle of excluded middle does not hold of these points. The
principle of excluded middle applies only to an individual ... but places
being mere possibilities without actual existence are not individuals
(1976, p. xvi).

At any rate it has been revealed that Leibniz's fundamental idea leads
quite directly to the fact that the infinitesimal parts of the continuum are
undecidable in the sense that the identity of infinitesimals cannot be
distinguished. This is an important structural difference between Aristotle’s
continuum and Leibniz’s and it leads to a puzzle for anyone who wants to
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regard the continuum as composed of points. As we shall see in the next
section, Leibniz believed that every mathematical object was decidable. But
the infinitesimal parts of Leibniz’s continuum are not decidable. Thus, on
Leibniz’s view, the parts of the smooth continuum cannot be objects. So, a
continuum is not a collection of objects.

The "sublime geometry” and the problem of its interpretation

Let's approach Leibniz's conception of the continuum from a different
direction. Namely, what the continuum must be like in order to solve the
problems associated with the composition of the continuum. The basis of the
solution to the problem of the composition of the continuum in the writings
of Leibniz, Kant, Bolzano and Cantor is intimately related to their
understanding of how mathematical objects are represented and thereby
understood by us. It was a standard view in the seventeenth century that our
knowledge of mathematical objects was mediated by representations. In
Leibniz's words human souls “perceive what passes without them by what
passes within them” (Alexander, 1956, p. 83). According to the usual story
(which is highly influenced by Kant) in the Cartesian tradition
representations are of a single faculty - intellection (as opposed to sensibility).
Thus Descartes, Leibniz and Wolff assimilated all representation to a single
faculty. As Kant would put it, Leibniz “intellectualized” appearances.

Descartes had taken it as a rule that “the things we conceive clearly and
distinctly [are] true" (Cottingham, 1984. Vol. I, p. 193-4). Intuition on this
view, is “the conception of a clear and attentive mind, which is so easy and
distinct that there can be no room for doubt about what we are understanding
... [it} proceeds solely from the light of reason” (Cottingham, I, p. 14). For
Leibniz it was analysis that rendered concepts distinct and the model of
cognition was often blind and symbolic rather than intuitive (Leibniz, 1969b,
p. 292). Thus knowledge could be classified as clear or obscure, distinct or
confused, and symbolic or intuitive (Leibniz, 1969b, p. 291-292). Knowledge is
clear when it is possible to recognize the object represented as one that has
been seen before even if one cannot enumerate the properties which
distinguish it from another object. Thus we may recognize two trees as
distinct but be unable to enumerate the leaves on the tree which distinguish
the two. Knowledge is distinct when it is possible to enumerate the
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characteristics which allow the object represented to be distinguished from
another object. Thus an object which has been represented clearly and
distinctly is what I have called a “decidable object.” If every ingredient which
enters into a distinct concept is itself known distinctly then knowledge is
intuitive (Leibniz, 1969b, p. 291-292.)

Kant criticized Leibniz in taking sensory representations to differ from
intellectual representations only in their greater degree of confusion, which
he took to be the logical form of representations and not their content
(1784/1965, B62). For Kant, our intuitive and conceptual representations have
different part - whole structures and so originate in different faculties.
Leibniz, in fact, holds that there are three levels of concepts, according to
whether they arise from particular sense, common sense or the intellect.

Thus there are three levels of concepts: those which are sensible only,
which are produced by each sense in particular; those which are at once
sensible and intelligible, which appertain to the common sense; and
those which are intelligible only, which belong to the understanding.
The first and second are imaginable, but the third lie beyond the
imagination. The second and third are intelligible and distinct, but the
first are confused, although they may be clear and recognizable.
(Leibniz, quoted in McRae, 1994, p. 181)

The third kind of concept such as the I who perceives or acts is neither
sensible nor imaginable but purely intellectual. Besides the representation of
sensible qualities which are of particular external sense there are some which
come from multiple senses in which these particular representations are
found united. This sense is the imagination; it comprises both the concepts of
particular senses which are clear yet confused and the concepts of the
common sense which are clear and distinct. “And these clear and distinct
ideas which are subject to the imagination are the objects of the mathematical
sciences ...."” (Leibniz, quoted in McRae, 1994, p. 180). Leibniz repeats this idea
in other places as well. "“Mathematics is the science of imaginable things.
Universal mathematics should treat of the method of determining exactly
what falls under the imagination or that which I call the logic of the
imagination” (Leibniz quoted in McRae, 1994, p.182). On the basis of the fact
that clear and distinct objects are the subject matter of mathematics I am
attributing to Leibniz the view that every mathematical object is decidable.
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A strong motive, perhaps the main motive, of Leibniz’s for
distinguishing between confused and distinct perceptions was precisely the
need to solve the problem of the composition of the continuum (McRae,
1994, p. 178ff). Leibniz’s chief concern appears to be how we can grasp the
concept of the continuum as a single whole given that the continuum is
infinitely divisible. To spell this out, our concept of the continuum must
contain the concept of each of its parts, but such a complete concept which
gives us intuitive knowledge can only be had by a divine intellect.

His solution begins by distinguishing between perception and
apperception, the former may be confused or distinct but the latter is always
distinct. The distinction between the two is a matter of degree. A perception
may begin as clear yet confused but it is as sufficiently heightened and distinct
"as when rays of light are concentrated by means of the shape of the humours
of the eye and act with greater force that perceptions are noticed and thereby
become objects of our consciousness or apperception” (Leibniz, quoted in
McRae, 1994, p.180). Thus Leibniz makes the distinction between perception,
which is "the internal state of the monad representing external things" and
apperception which is "consciousness or the reflexive knowledge of this
internal state itself” (Leibniz quoted in McRae, 1994, p. 179).

Secondly he distinguishes between appearances of substances and
substances themselves. Appearances are infinitely divisible and comprise
such continua as space, time and extended bodies, while substances must be
indivisible unities. For Leibniz “that which is not truly one being is not truly
a being” (quoted in McGuire, 1992, p. 32). So the only real or actual things are
individual substances; appearances are merely ideal. An aggregation or
collection of substances into extended bodies, for instance, appears to have
unity. But this is an illusion, its unity is only mental.

This unity of the idea of collection is only a congruity or relation,
whose foundation is in what is found in each simple substance by
itself. And so these beings by aggregation have no other complete unity
but what is mental or phenomenal, like that of a rainbow. (quoted in
McGuire, 1992, p. 40)

In holding this belief he differs drastically from those, such as Frege and
Godel, who believe that the unity of an aggregation given by the concept
under which it falls provides a real unity.
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For ideal wholes, those whose unity is entirely in the mind and not in
reality, the whole is prior to the parts. By dividing an appearance we create
parts, and so the parts of the appearance exist potentially rather than actually.
Because of the priority of whole to part we have no need of apperception to
represent appearances because there is no need to individuate their parts in
order to individuate the whole appearance. The appearance arises as a
confused perception of an aggregate of actual simple substances.

But in order to recognize an aggregation as a plurality of substances,
simple substances must be distinguished in representations by means of their
internal qualities and relations. Otherwise by the identity of indiscernibles
they would collapse into one substance. Thi:s there must be a plurality of
affections and relations within the indivisible unity which is the simple
substance or monad. So in order to distinguish between simple substances by
means of our representations, the representations of those substances must
contain witk'n themselves the representation of the affections and relations.

However no human mind can grasp such a complete concept. “It is
impossible for us to know individuals or to find any way of precisely
determining the individuality of anything” (Leibniz, quoted in McRae, 1994,
p- 190). The reason is that to individuate a given thing is to ascribe to it an
infinity of attributes, and so only someone who is capable of grasping the
infinite could know the principle of individuation of a given thing. Thus the
problems of an actual infinite that arise from apperception of things is left for
the Divine Intellect. There can be no problem arising from our grasping the
existence of an actual completed infinite because we are unable to do so.

Ideal wholes are truly continuous but they are not real; actual wholes
are simple and indivisible. Thus the question of whether the continuum is
composed of actual indivisibles is due to confusing actual wholes, the
monads, with ideal wholes, confused perceptions of monads. Leibniz puts the
solution this way in a letter to Des Bosses:

A continuous quantity is something ideal which pertains to possibles
and actuals insofar as they are possible. A continuum that is, involves
indeterminate parts, but on the other hand, there is nothing indefinite
in actuals, in which every division that can be made, is made. Actuals
are composed as a number is composed of unities, ideals as a number is
composed of fractions; the parts are actual in the real whole but not in
the ideal whole. But we confuse ideals with real substances when we
seek for actual parts in the order of possibles, and indeterminate parts
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in the aggregate of actuais, and so entangle ourselves in the Labyrinth
of the continuum and in inexplicable contradictions. (quoted in
McGuire, 1992, p. 38 - 39)

The indeterminacy or undecidability of the parts of a continuum was
considered by Leibniz to be due to the fact that its parts were not actual, but
were confused perceptions of actual monads. Thus the solution to the
problem of the composition of the continuum is that neither the continuum
nor its parts are actually real objects. We do not need divine powers to
account for our representation of a single real actually infinite collection of
parts because our perception ‘s only of a confused perception of an actually
infinite multiplicity.

What Leibniz did not realize was that the indeterminacy of parts was
also implied by the conception of a comtinuum as infinitesimally linear. This
fact would not have particularly troubled Leibniz because he did not think of
the parts of the continuum as actual objects. But it will be a problem for the
semantic tradition because it does consider the parts of the continuum to be
actually distinct objects. The conception of a curve as infinitesimally linear
implies that even if the parts of the continuum are conceived to be actual
they are still undecidable. Thus, there are two routes to the undecidability of
elements of the continuum in Leibniz’s thought: his conception of perception
and the strcture of the continuum itself which is used in the infinitesimal
calculus. It is the implications of this latter aspect that I wish to consider.

Leibniz's view of the continuum implies that the infinitesimal parts of
the continuum are merely ideal. However such a notion of the infinitesimal
would come as a great shock to Leibniz's adherents in the Paris Academy of
Sciences. In delivering L'Hospital’s eulogy, Fontenelle (The secretary of the
Paris Academy of Sciences) described the differential calculus as the “sublime
geometry” and L'Hospital as pu.sessing a map to “Le Pays de I'Infini". Given
this tribute it is difficult to imagine that there was a bitter dispute in the
French Academy over the proper interpretation of the calculus. As I noted,
Leibniz managed to evade invoking an interpretation of an infinitangular
polygon by relying on results concerning the infinite sequence it induced.
However, Nieuwentijt, L'Hospital, as well as Varignon and the Bernoullis
clearly believed in the existence of infinitesimal quantities and were under
the impression that they were in agreement with Leibniz's interpretation of




the calculus. This sparked a controversy between Leibniz and French
mathematicians surrounding the proper interpretation of infinitesimals. The
outcome of this dispute reveals that, for Leibniz, not only were infinitesimal
parts of the continuum ideal, but the language of mathematics was held to be
independent of its interpretation. Thus Leibniz anticipates the model
theoretic viewpoint in mathematics which emphasizes the independence of
the language of mathematics and its interpretations.

The centrality of the use of infinitesimals, and, in particular, the
principle of infinitesimal linearity, was recognized by Bernoulli and made
explicit in the notes dictated by Bernoulli to L'Hospital L’Analyse des
Infiniment Petit pour LIntelligence des Lignes Courbes (quoted in Jesseph,
1994, p. 139ff). The work opens with the following definitions and principles
and provides the paradigm of a realist approach to the Leibnizian calculus.

Definition I: Variable quantities are those which increase or diminish
continually; and constant quantities are those which remain the same
while others change. Thus in a parabola the ordinate and abscissa are
variable quantities, while the parameter is a constant quantity.

Definition II: The infinitely small portion by which a variable small
quantity continuzlly increases or diminishes is called the difference.

Tostulate or supposition: It is postulated that one can take indifferently
for one another two quantities which differ from one another by an
infinitely small quantity: or (which is the same thing) that a quantity
which is augmented or diminished by another quantity infinitely less
less than it, can be considered as if it remained the same.

Postulate or supposition: It is postulated that a curved line can be
considered as an infinite collection of right lines, each infinitely small:
or (which is the same thing) as a polygon of an infinite number of
sides, each infinitely small, which determine the curvature of the line
by the angles they make with one another.

Some of Leibniz’s comments made it appear . .. he did not believe in
infinitesimals. For example, in a letter to John Bernoulli he says:

As concerns infinitesimal terms, it seems not only that we never get to
such terms, but that there a. ~ none in nature, that is, that they are not
possible. Otherwise, as I have already said, I admit that if I could




concede their possibility I could concede their being (Leibniz, 1969a, p.
511).

This com ..ent is closely related, of course, to the problem of visualizing a
complete infinitangular polygon. Elsewhere he writes: “I consider
infinitesimals to be useful fictions” (quoted in Rescher, 1967, p. 106). Again:
“To tell the truth, I am not so persuaded myself that is necessary for us to
consider infinity and infinitesimals as anything other than ideal things or
well founded fictions” (quoted in Earman, 1975, p. 238 my translation). An
ideal thing for Leibniz is not a real thing but merely the appearance of a real
thing which is caused by our confused perception of aggregations of real
things. But it is well founded because the confused perception arises from an
actual plurality of monads and is not a mere dream or hallucinatin. Thus,
for instance, we may take a thousand sided polygon to be an infinitangular
polygon, and its sides to be infinitesimal rather than finite, because of our
inability to have a distinct perception of the polygon.

These statements reflect 2an ambivalence on Leibniz’s part regarding the
existence of infinitesimal quantities rather than an outright denial. In his
letter to Bernoulli his denial that there are any infinitesimals in nature does
not contradict this ambivalence, since Leibniz simply thought that there being
“none in nature” was a consequence of his attitude. For, as Leibniz reasons,
admitting the possible non existence of infinitesimals is tantamount to
asserting that they don’t exist at all. In this case, perhaps ambivalence is better
served by being completely non committal.

Considering the straightforward interpretation of the principle of local
straightness of curves that existed in French mathematical circles it is not
surprising that the idea that infinitesimals were fictions caused some
consternation and confusion. In a letter to his friend Pinson, Leibniz does n¢-
deny the existence of infinitesimals but says that they are un.-ecessary for the
calculus. The differential may be supposed to stand to the variable in the
proportion of a grain of sand to the earth.

In ou- calculations there is no need to conceive the infinite in a
rigorous way. For instead of the infinite or the infinitely small, one
takes quantities as large or as small, as necessary in order that the error
be smaller than the given er -, so that one differs from Archimedes’
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style only in the expressions, which are more dire.t in our method anc.
conformn more to the art of invention. (quoted in Horvath, 1986, p. 66)

Opponents of the calculus 1:5ed the letter to Pinson to attack Varignon by
reciting Leibniz's own apparent admission that differentials were very small
fixed finite quantities as Archimedes’ method of exhaustion required rather
than infinitesimal quantities. Varignon requested clarification on Leibniz's
interpretation of the calculus and Leibniz responded that infinitesimals have
the effect of being infinitely small because they become arbitrarily small:

These incomparable quantities are not at al! fixed or determined but
can be taken as small as we wish in our geometrical reasoning and so
have the effect of the infinitely small in the rigorous sense. If any
opponent tries to contradict this proposition, it follow* ‘rom our
calculus, that the error will be less thin any possible a- _gnable error,
since it is in our power to take that incomparably sma.1 quantity small
enough that for that purpose, inasmuch as we can always take a
quantity as small as we wish. May be that is what you Sir, mean by the
notion when you speak about that of inexhaustion, moreover, there is
no doubt, that this idea establishes the rigorous demonstration of the
infinitesimal calculus. (quoted in Horvath, 1986, p. 66)

Leibniz’s response emphasizes the fact that the differentials are not to be
regarded as fixed, but as being variable, so that as they approach zero they
have the effect of being infinitely small. Leibniz tells us that incomparable
quantities are what we now refer to as non - Archimedean quantities:
quantities which are such that for any a and b with a<b, thereis a ¢ such
thatac > b (Horvath, 1986, p. 63). In other words, for any b, there is a ¢ such
that a+...4+a summed c times exceeds b. The effect that the quantities are as
small as we wish entails that they cannot be Archimedean since a multiple of
an arbitrarily small quantity will remain arbitrarily small.

Thus Leibniz's use of the method of exhaustion is quite different from
the traditional one, since traditionally the method of exhaustion was wedded
to the use of Archimedean quantities. Thus it is inaccurate to ascribe to
Leibniz, as Bos (1974, p. 55) does, the view that one of his interpretations of
the calculus was that of ‘he traditional method of exhaustion. For the method
of exhaustion uses only finite quantities. Bos has it the wrong way around:
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Leibniz does not invoke the traditional method of exhaustion as an
interpretation of the calculus; instead he uses the method of exhaustion to
prove the existence of infinitesimals.

Let me explain. The method of exhaustion solved the problem of
finding areas enclosed by curvilinear figures tvithin the Euclidean theory of
ratios and proportions of Euclid's Elements. The essence of the method is to
take a given magnitude and construct another magnitude which bears the
desired relation to the original. Fuller explanations are in Jeseph (1994) and
references contained therein; Stein (1995) and in Edwards (1979). Consider the
following definitions:

3. A ratio is a sort of relation in respect of size between two magnitudes
of the same kind.

4. Magnitudes are said to have a ratio to one another when they are
capable, when multiplied, of exceeding one another.

5. Magnitudes are said to be in the same ratio, the first to the second
and the third to the fourth, when, if any equimultiples whatever be
taken of the first and third, and any equimuitiples whatever of the

second and fourth, the former equimultiples alike exceed, are alike
equal to, or alike fall short of, the latter equimultiples, respectively,
taken in corresponding order

6. Let magnitudes which have the same ratio be called proportional.

These definitions allow for the comparison of magnitudes within each
species of magnitude by forming ratios and constructing proportions. The
finite nature of the theory of ratio and proportion is apparent from the fact
that the multiplications in Definitions 4 and 5 are finite multiplications.
Non-Archimedean (what Leibniz calls non comparable) quantities are
explicitly barred, since Definition 5 would not hold if there were non-
Archimedean quantities.

The theory of ratio and proportion gives rise to the fundamental
method of proof in classical geometry: proof by exhaustion. The main idea in
a proof by exhaustion consists in showing that the unknown ratio between
two magnitudes can be determined by considering sequ>nces of inscribed and
circumscribed quantities which approximate the unknown quantity to within
any degree of magnitude. When it can be shown that the unknown quantity
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is compressed between irscribed and drcumscribed quantities, the proof is
completed by a double reductio ad absurdum which shows that the unknown
can be neither greater than nor less than a given amount. It is clear that no
infinitesimal quantities are required in an exhaustion proof, since they are
barred by Definition 5.

However, it was common in the seventeenth century to consider the
method of exhaustion as equivalent to infinitesimal techniques and the
existence of infinitesimals as proved by the method of exhaustion. We have
already read Leibniz's words to that effect. Consider also Wallis's remark:

The method of Exhaustions, (by inscribing and Circumscribing Figures,
till their difference becomes less than any assignable) is a little
disguised, in (what hath been called) Geometria Indivisibilium ...
which is not, as to the substunce of it, really different from the Method
of Exhaustions, (used both by Ancients and Moderns,) but grounded on
it, and demonstrable by it: But is only a shorter way of expressing the
same notion in other terms. (quoted in Jeseph, 1989, p. 234, my
emphasis)

We can see, then, that Leibniz is not merely using the calculus as an
abbreviated form of proof by exhaustion, instead he is interpreting the
method of exhaustion as proving that there are incomparable magnitudes.

So Leibniz’s first line of response is that we have no need of
“rigorously” infinitely small quantities, since we use incomparably smalil
quantities. These quantities are not intrinsically or rigorously small since “we
never get to them” but insofar as we treat them as actual infinitesimal
quantities, they are fictions. These incomparably small quantities are variably
finite quantities, and are used in proofs by exhaustion.

Leibniz did not need to derive the existence of infinitesimals from the
method of exhaustion since it can be derived from his principle that each
curve is an infinitangular polygon. It has already been shown that the
principle of infinitesimal linearity implies that there are square zero
infinitesimals. One can then prove from the existence of square zero
infinitesimals that the continuum is non Archimedean. Let d € D where D
contains the infinitesimal parts of a curve R,ie. D={xeRx*=0);and bisa
non infinitesimal part of a curve, i.e. beRbutbeD. Clearly, multiplication
by an infinitesimal is a closed operation, that is, (Vd,b)db € D. (Since (db)* =0
and so is in D as well.) So if the elements of R were Archimedean, then for




any d, e with d<e, thereis be R such that db> e. But this would contradict
the fact that dbe D.

Leibniz distinguished between two distinct questions: (1) whether
infinitesimal quantities actually exist; and (2) whether analysis by means of
differentials and the rules of the calculus leads to the correct solutions to the
problems to which it is applied. This is confirmed in a letter to Varignon,
where Leibniz says that “it is unnecessary to make mathematical analysis
depend upon metaphysical controversies” (Leibniz, 1969b, 542 - 3). Bos (1974)
agrees that Leibniz did not commit himself on the question of the existence of
infinitesimals. Therefore, Bos reasons, if Leibniz thought that the
infinitesimal calculus was justified he could not invoke infinitesimals to
justify the calculus; so Leibniz must have treated infinitesimal as fictions.

... he could not invoke the existence of infinitesimals in answer to the
objections to the validity of the calculus. Instead he had to treat
infinitesimals as fictions which need not correspond to actually
existing quantities, but which nevertheless can be used in the analysis
of problems. ( Bos 1974, p. 54)

Edwards (1979, p. 264) draws a similar conclusion. But this is going too far.
Leibniz is not saying that we must treat infinitesimals as fictions. In fact, the
interpretation of infinitesimals as fictions was one of the metaphysical views
in question, and thus one of the views which was held to be independent of
the justification of the calculus. The ambivalence regarding the existence of
infinitesimals does not force him to adopt an interpretation which does not
need them. Leibniz simply says that we may use infinitesimals as ideal
concepts if we refuse to take them as real.

... Moreover even if someone refuses to admit infinite and infinitely
small lines in a rigorous metaphysical sense and as real things, he can
still use them with confidence as ideal concepts which shorten the
reasoning. (Leibniz, 1969a, p. 543)

The confusion of other commentators, such as Bos, Earman and Ishiguro, is
due, I think, to failing to come to grips with the fact that Leibniz believed his
calculus was just that - a calcuius; and as such the interpretation of the
calculus was independent of its deployment as a calculus. It would be perfectly
natural for a mathematician who worked in the seventeenth century (or a
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historian or philosopher studying this period) to assume that the reference of
a mathematical expression is a form abstracted from physical objects. But this
isn’t Leibniz’s view. Mancosu (1989) makes a related point in his assessment
of Leibniz's interpretation of “infinitesimal”. After discussing the
interpretation of Leibniz offered by his French colleagues Mancosu says:

Leibniz was in fact attempting to define a more subtle position by
considering his infinitesimals as well founded fictions.... In effect,
Leibniz was proposing a sophisticated "formalistic” foundation for his
algorithm. However, by considering the infinitesimal as a well
founded fiction, he was introducing a gap between the formal
apparatus and [its interpretation). (Mancosu, 1989, p. 238)

Mancosu'’s position is closer to the truth than that of Earman or
Ishiguro. By denying that infinitesimals must be taken as real, he makes a
decisive break with the accepted view that mathematical objects are abstracted
from, and are the forms of, real objects. But Leibniz goes further than
considering infinitesimals to be well founded fictions. He is not introducing a

"gap between the formal apparatus and the [interpretation]” by introducing
fictions. The gap is introduced because Leibniz believed that there was simply
no need for any particular interpretation to justify the calculus. It was
justified by its problem solving ability. Jeseph has recently come to a similar
conclusion.

Thus Leibniz's concern with matters of rigor leads him to propound a
very strong thesis indeed, namely no matter how the symbols “dx" and
" dy" are interpreted, the basic procedures of the calculus can be
vindicated. Such vindication could take the form of a new science o:
infinity, or it could be carried out along classical lines, but in either case
the new methods will be found completely secure. (1989, p. 243)

Thus Jesseph places Leibniz within the model theoretic tradition. On the
modern model theoretic approach, no particular model is needed to justify a
proof, but only that it must be true that whenever the premises are true in a
model the conclusion is true as well. Fortunately recent developments in
category theory have produced models in which Leibniz's reasoning is, in
fact, correct.




80

Leibniz's point of view becomes clearer if wa understand how he
thought that mathematical reasoning works in general. The separation of
language and models in Leibniz s philosophy is connected to his views about
thought and meaning. Much of mathematical reasoning does not require that
we have a particular interpretation or meaning in mind when we use a word,
although we do know the meaning of the words involved.

Thus when I think of a chiliagon, or of a polygon with a thousand
equal sides, I do not always consider the nature of a side and of equality
and of a thousand (or the cube of ten), but I use words which I have for
them, because I remember that ¥ know the meaning of the words but
their interpretation is not necessary for the present judgment. Such
thinking I usually call blind or symbolic .... (Leibniz, 1969b, p. 292)

The reason that mathematical reasoning can be blind and still be
meaningful as well as increase our knowledge is a consequence of Leibniz's
views on meaning in general. For Leibniz meanings are not private images
located in one's mind, but objective entities. In Alice in Wonderland Humpty
Dumpty thought that words meant whatever he wanted them to mean. This
"humpty dumpty” approach to meaning contends that communication
depends on our successfully transferring our subjective representations to
one another. Or in the case of mathematical reasoning, we reason from step
to step by transforming mental images. But it is unlikely that there would be
much communication or such reasoning if we had to rely solely on the
transference of private meanings between speakars. As Putnam (1975) has
observed, there is a division of labour in language which allows experts to
know the deeper meaning of specialized terms such as "gold", "temperature”
or “atom”, while, at the same time, allowing ordinary individuals to
understand what is meant by such terms. In other words, the subjective
representation of the meaning of such natural kind terms may differ among
users; identity in objective meaning allows communication to take place.

An objective representation is required for communication because
communication depends on attaching a common meaning to our
expressions. In the case of mathematical reasoning, we often simply do not
have a complete understanding of the object under investigation. Yet in order
to analyze it we must suppose that the object of the imagination which we are
analyzing does stay the same. Thus Leibniz thinks that we each have a




confused, and therefore imperfect, understanding of the contents of our
thoughts; but these contents themselves are objective and unchanging
(Compare with Mates, 1986, p. 102). By adopting this point of view Leibniz is a
forerunner of the semantic approach to meaning which requires that we
distinguish between the subjective representation and the objective meaning
of things.

Leibniz offered a second interpretation of the calculus through his law
of continuity. Many of the same points emerge from studying this method.
This law is formulated as:

If any continuous transition is proposed terminating in a certain limit,
then it is possible to form a general reasoning, which covers also the
final limit. (Quoted in Bos, 1974, p. 56)

Elsewhere he compresses the law into the maxim that "Nature makes no
jumps”, or "No transition happens by a leap” (quoted in Mates, 1986, p. 163).
Leibniz's favourite examples of the principle of continuity came from
geometry and mechanics. The example which occurs most frequently in his
writings concerns the fact that the various conic sections can be continuously
transformed into one another by gradually tilting the intersecting pla...
(Mates, 1986, p. 163 - 4).

However the example which concerns the infinitesimal calculus
directly is that of conceiving of a circle as an infinitangular regular polygon by
continually transforming a polygon into a circle. Because "nature makes no
leaps” we are able to proceed continuously from polygons to circles.

Although it is not at all rigorously true that rest is a kind of motion or
that equality is a kind of inequality, any more than it is true that a circle
is a kind of regular polygon, it can be said, nevertheless, that rest,
equality and the circle terminate the motions, the inequalities, and the
regular polygons which arrive at them by a continuous change and
vanish in them. And although these terminations are excluded, that is,
are not included in a rigorous sense in the variable they limit, they
nevertheless have the same properties as if they were included in the
series, in accordance with the language of infinities and infinitesimal,
which takes the circle, for example, as a regular polygon with an
infinite number of sides. Otherwise the law of continuity would be
violated, namely, that since we can move from polygons to a circle by a
continuous change and without making a leap, it is also necessary to
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make a leap in passing fi >m the properties of polygons to those of a
circle (Leibniz, 1969, p. 546).

Here Leibniz argues that the principle of continuity can be invoked to prove
that a dircle is an infinitangular polygon.

Leibniz and his French supporters also argued, on the basis of his
principle of continuity, that infinitesimals were necessary in order to
implement limits. Leibniz gives the following argument for this in his Letter
to Varignon (Loemker, 1969a, p. 545-6).

E 2 A

Figure 13

Assume that the angle ECA is not equal to 45 degrees. Thus the ratio c/e # 1.
Since ECA is similar to YCX, we obtain (x—c)/y = c/e. Now suppose that the
line EY is transported parallel to itself towards A. The angle ECA and, thus,
the ratio c¢/e remain constant. But as EY passes over A, ¢ and e will vanish.
But according to Leibniz neither ¢ nor e is zero. Rather they should be
understood as evanescent or vanishingly small quantities. This is due to the
fact that if the quantities did become zero, then the ultimate ratio would
reduce to 0/0 but 0/0 =1, which contradicts the assumption that the angle
ECA is not 45 degrees.

Hence ¢ and e are not taken for zeros in this algebraic calculus, except
comparatively in relation to x and y; but ¢ and e still have an
algebraic relationship to each other. And so they are treated as
infinitesimal, exactly as are the elements of our differential calculus
recognizes in the ordinates o curves for momentary increments and
decrements. (Lcembker, 1969, p. 545)
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Here we find an application of Leibniz's law of continuity that in any
continuous transition, ending in any terminus, it is permissible to include
the final terminus.

An alternative approach: Newton and the intuition of variable quantities

I have placed Leibniz’s approach to the calculus firmly within the
semantic tradition which eschewed the need for any interpretation of the
calculus. However, not everyone was convinced by Leibniz’s view, and it was
believed by many, especially those in England, that an interpretation of the
calculus was to be found in spatial and temporal intuition. In particular, the
Newtonian view of the calculus was that the foundation of the calculus was
the intuition of motion. The fact that mathematical arguments were often
couched in spatial and temporal terms no doubt influenced Kant's position
that intuition was necessary for mathematical proof. In order to appreciate the
Kantian argument for the necessity of intuition, and the negative reaction to
the use of intuition by subsequent mathematicians, then, it is nec -sary to be
acquainted the kind of temporal approach to the calculus that was adherad to
by many others in England.

Newton foreshadows an important distinction drawn by Kant between
intuitive representation of quantities and conceptual representation of
quantities. Representation by the concepts has a compositional structure in
which the objects are considered to be composed of their parts, whereas in
intuitive representation a variable quantity is not composed of parts but,
instead, is generated by a continual motion. Newton descril-2s his own
position as follows:

I don't consider Mathematical quantities as composed of Parts
extremely small but as generated by a continual motion. Lines are
described and by describing are generated, not by any apposition of
Parts, but by a continual motion of Points. Surfaces are generated by the
motion of Lines, Solids by the motion of Surfaces, Angles by the
rotation of their legs, Time by a continual flux, and so in the rest. These
Geneses are founded upon Nature, and are everv D.y seen in the
motion of Bodies (quoted in Friedman, 1992, p. 74).
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Newton's calculus, as the name suggests, was based upon the
conception of a curve as flowing along a continuum of values. The focus on
flowing quantities represents one approach to geometric problem solving.
This idea was in keeping with the Cartesian revolution in geometry which
solved geometric problems by means of tracing a curve and intersecting it
with a straight line, circle, or other curve rather than relying simply on ruler
and compass constructions. Newton regarded the curve f(x,y) =0 (the fluent
[ as determined by moving lines x and y) as the locus of the intersection of
two moving lines , one vertical and one horizontal. The x and y coordinates
of the moving point are functions of time, specifying the location of the
vertical and horizontal lines, respectively.

The motion is therefore the composition of the horizontal and vertical
velocity vectors, the tangent velocity vector being given by the parallelogram

sum of the vectors. If one takes a line of length &, there are products kx and

ky which will stand in the same proportion as & and y. So one may take the
sum of those vectors in order to give the tangent vector to the fluent. So
Newton considers a geometrical model of two or more points A and 8
travelling distance x and y along different straight lines in equal periods of
time, so that f(x,y) =0 at each time, with speeds given by x and y

respectively.
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L ] i ?k
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Figure 14
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The fundamental problem of the calculus was this: given the fluents
and their relations, to find the relations between their fluxions, and
conversely. Newton's method of prime and ultimate ratios is the temporal
analog of the modern use of limits. The prime ratios of nascent quantities are
those which hold between quantities as the quantities are just beginning to be
generated, while the ultimate ratios of evanescent quantities are those which
hold between quantities as they diminish to zero and vanish. Newton
describes the method in his 1693 "Treatise on Quadrature":

Fluxions are very nearly as the augment of Fluents, generated in equal,
but infinitely small parts of Time; and to speak exactly, are in the Prime
Ratio of the nascent Augments: but they may be expounded by any
Lines that are proportional to ‘em (quoted in Kitcher, 1984, p. 238).

Consider the following exercise given in the Treatise. Suppose that a quantity
(a fluent) x flows uniformly, i.e., its fluxion is 1. What is the fluxion of

y = x*? In the same time that the quantity x by flowing becomes x+o0, the
quantity x* will become (x +0)". This last expression may be expanded by the
binomial theorem to obtain:

L nn— Ix*2

2
21 o +...

™ (x+o)=x"+mx""o

and subtracting y = x* Newton obtained the change in x* which corresponds

to the change o in x. Now one may form the ratio of the change in x to the

n(n-1)x*?

change in x*. The augments o and ax*'o+ o*+... are to one another

n(n-1)x""?

as listo mx*"' + o+... Now let the augments vanish by setting

0* =0, and their ultimate ratio will be 1 to nt*"!. So when the fluxion of x =1,
the fluxion of y=x"is mx*™.

Here we arrive at the same problem that provoked the dispute between
Leibniz and Nieuwendijt. What allows one to eliminate all terms apart from
nx*~'o(and so setting o> =0 in (*)? It is not construed as a square zero
infinitesimal, as Nieuwentijt believed it should. Rather it is justified by the
temporal intuition that a process which ceases, ceases with a particular
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velocity. Thus if we take the ratios of the component fluxions at the end we
obtain the ultimate ratio.

Newton realized that his method of prime and ultimate ratios may be
met with some skepticism. The problem involves the interpretation of
beginning and ceasing. One may argue that there are no such evanescent
quantities because the proportion, before the quantities vanish, is not
ultimate, and when they have vanished there is no proportion. Similarly,
one may argue that a body arriving at a certain place and stopping has no
ultimate velocity since before it has stopped it has not attained its "ultimate”
velocity and when it has stopped there is no velocity. This criticism is
premised upon the assumption that a temporal continuum is composed of
instants, such that for any instant, there is an earlier instant. Newton digs in
his heels with an appeal to the temporal intuition of a limit as that velocity
with which a quantity stops .

But the answer is easy; for by the ultimate velocity is meant that with
which the body is moved, neither before it arrives at its last place and
the motion ceases, nor after, but at the very instant it arrives; that is that
velocity with which the body arrives at its last place, and with which the
motion ceases. And in like manner, by the ultimate ratio of evanescent
quantities (i.e. ones that are approaching zero) is to be understood the
ratio of the quantities not before they vanish, nor afterwards, but with
which they vanish. In like manner the first ratio of nascent quantities is
that with which they begin to be. And the first or last sum is that which
they begin and cease to be (or to be augmented or diminished;,. There is
a limit which the velocity. at the end of the motion may attain, but not
exceed. This is the ultimate velocity. And there is the like limit in all
quantities and proportions that begin and cease to be
(1729/1955,Principia 1, 1, Scholium).

Thus the problem of finding a tangent is understood as finding an
ultimate ratio of varying quantities. Newton seems to recognize the inherent
problems in understanding the notion of an ultimate ratio in an intuitively
given continuum for, after giving the above - quoted answer, he then dlarifies
(or, at least, modifies) the notion of ultimate ratio in terms of convergence to
a limit:

Those ultimate ratios with which the quantities vanish are not truly the
ratios of ultimate quantities but limits towards which the ratios of
quantities decreasing without limit do always converge; and to which
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they approach nearer than by any give difference, but never go beyond,
nor in effect attain to, till the quantities are diminished ad infinitum.

But how do we know that quantities converge to a limit? Here again
temporal intuition seems necessary to allow the mathematical argument to
proceed. If one traces out a curve by a finite continuous motion, and the
motion gradually diminishes, then the line is completed and there is a point
at which it ends. Any finite motion must be enclosed within limits, and so
terminate at a point. Conversely, if the tracing of a line ends at a point, then
the motion of the tracing has diminished to that limit. Thus every sequence
which converges, converges to a limit point and, conversely, every point is
the limit of some converging sequence. The necessity for these temporal
intuitions, Kant argues, is due to the inability of the intellect alone to
represent an inf nite collection. It is to this argument that we now turn.




FROM SMOOTH SPACES TO SETS

"In actuals, simples are prior to aggregates, in ideals the whole is prior to the part. The neglect
of this consideration has brought forth the labyrinth of the continuum.”
G. Leibniz

In a previous chapter I examined the responses of modern
mathematics to Aristotle’s argument that the continuum is not composed of
points. This led to the question of whether Leibniz's smooth continuum
admits of a similar analysis. Such a set-theoretic analysis of the continuum
runs counter to a powerful tradition in mathematical and philosophical
thought. According to this tradition the primary reason for thinking that no
continuum can be punctual is a consequence of Kant's "master argument”
which concludes that only construction in intuition can provide determinate
objects of knowledge for mathematics. Since intuition is a faculty which does
not admit of an infinite analysis of its contents into distinguishable parts the
continuum cannot be regarded as composed of points.

It was left to Bolzano and subsequent rigorizers to show that Kant's
position regarding the necessity of intuition in mathematical knowledge was
wrong by giving purely analytic proofs of significant propositions of analysis
which hitherto required intuition. Bolzano is part of the movement to
rigorize the calculus and is at the beginning o7 that tradition, the “semantic
trac'ition”, as it has been called by Coffa, which emphasizes the distinction
between representations which are independent of our mind and
representations which are mind dependent. This tradition attempted to rid
the calculus of the need for intuition by invoking the use of mind
independent representations. Thus the concepts of derivative and integral
were given definitions independent of our intuitions, and underlying this
“solution” is the assumption that the continuum is punctual. But a side-effect
of this tradition was that in the final "rigorized” form of the “infinitesimal”
calculus the infinitesimals were nowhere to ‘v found.

I want to emphasize that in overcoming Kant's argument, the model
theoretic tradition has, in fact, embraced a central idea: mathematical objects
must be decidable in the sense that VaVy{(x = y)v(x # y)). Whereas formerly
the parts of the continuum were not regarded as mathematical objects and so
were represented as objects of intuition or as merely confused objects of the



89

intellect, in the hands of Bolzano, Cauchy and Weierstrass, the domain of
objects was widened to include the parts of the continuum as (decidable)
objects. However, since infinitesimals are not decidable they were eliminated
as possible objects of mathematical knowledge and only the punctual parts of
smooth spaces were retained. So there was a change in the conception of a
continuum from an object which contains undecidable parts to one which is
an object composed of decidable parts. Leibniz’s puzzle is thus ultimately
resolved by the semantic tradition by declaring infinitesimals to be non
entities, and by giving the (purportedly) purely conceptual construction of the
continuum by Cantor and Dedekind.

Kant’s master argument

The problem of the composition of the continuum in Kant's thought
arises in a similar way as it does in both Aristotle and Leibniz’s work.
Aristotle considered the idea of completing an infinite division of a
continuous quantity, and held that this was impossible. Both Leibniz and the
early Kant held a kind of theocentric view of knowledge (Allison, 1984).
According to this viewpoint our knowledge is mediated by or filtered through
an infinitely deep hierarchy of concepts, with each concept only fully
understood by God. If we consider Aristotle’s question in the theocentric
context of Leibniz the natural problem that arises is how one is able to
consider a magnitude to be a completed whole if we, as finite human
intellects cannot analyze the concepts into their infinite constituent concepts.

Kant expresses the main problem as follows. First he distinguishes
between synthesis and analysis or regression. The former arrives at the
concept of a substantial compound by successively adding or compounding
parts to parts, whereas the latter arrives at simples by taking away the concept
of composition. Thus the concept of a whole arises through synthesis, that of
a simple through analysis.

The problem is this:

... in the case of a continuous magnitude, the regression from the
whole to the parts, which are able to be given and in the case of an
infinite magnitude, the progression from the parts to the whole, have
in each case no limit. Hence it follows that in one case, complete



analysis, and in the other case, complete synthesis will be impossible.
(1770/1992, §1)

It follows that in the case of analysis we cannot have the idea of a completed
object while in the case of synthesis we cannot have the idea of a totality of
objects.

Kant notes that the representation of a continuous magnitude as a
whole is frequently rejected as impossible on the basis of the above argument
(1992, §1). Indeed Leibniz believed that the appearance of a continuum as a
whole was simply a well-founded fiction. It was not an accurate
representation of real phenomena but a confused perception of discrete
monads. But, unlike Leibniz, Kant did not reject the real existence of a unified
continuum existing on the basis that our perception of continua is confused.
Kant says of people who argue that there cannot be infinite wholes that they
are "perverse" and are "guilty of the gravest errors” (1992, ID §1). The defect of
such an argument, for Kant, is that it depends upon the assumption that all
thinking is intellectual.

At the base of this reaction was the fact that Kant rejected the idea that
the distinction between intellect and sensation is the same as the distinction
between distinct and confused perceptions. Kant held, in contrast to the
Cartesian - Leibnizian - Wolff tradition, that representations are of two types -
concepts and intuitions - and that we have two kinds of faculties, sensibility
and intellect. The distinction between intuition and intellect, is based upon
their different sources rather than their degree of confusion. The distinction
between these two faculties is summed up by Kant in terms of their peculiar
functions. In the first sentence of the Introduction to the Transcendental
Logic he writes:

Our cognition springs from two fundamental sources of the mind. The
first of these is that by which representations are sensed ... the second
the capacity to cognize an object by means of representations ... through
the first an object is given to us; through the second this object is
thought. (1781/1965, A50/B74)

Of course the distinction between intellect and sensation is central to
the Critique of Pure Reason. But one looks in vain in the Critique for the
reason for such a distinction between faculties (Falkenstein, 1991). However if
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one looks at the Inaugural Dissertion (ID) one finds that the very motive for
the distinction between the faculties of sensibility and intellect was to solve
the problem of the continuum just outlined (Kant, 1770/199%4, §1 and §2;
Falkenstein, 1991). Leibniz had made a "grave error”, Kant thought, because
the need to consider the perception of the continuum as confused is due
solely to the false assumption that all thinking is intellectual and so must
allow for analysis and synthesis.

Thus Kant's solution in the ID is quite different from Leibniz's.
Whereas Leibniz considered the continuura as merely ideal, Kant's idea is
that the problem of representing a continuous magnitude arises only when
the composites in space and time arise by analysis or synthesis. Intellectual
representation is compositional in nature whereas intuitive representation is
not. Intuitive and intellectual representation are not distinguished by their
degree of clarity but by a fundamental difference in the relation of part and
whole. Put more explicitly a concept such as "animal” has related concepts
"invertebrate” and "vertebrate” which are formed by distinguishing between
various kinds of animals. Concepts contain other concepts in the form of a
hierarchy of kinds in a species - genus relationship. We do not have the
representation of a vertebrate in our representation of an animal in the way
that we have a representation of our finger in our representation of our hand.
In the former case the representation has a hierarchical or compositional
structure of whole to part whereby the part is a kind of the whole, while in
the latter case the part is conceived in the whole.

Because of the compositional structure of intellectual representation,
the representation of a continuous quantity must contain, in itself, the
representation of each of its infinite parts. Moreover, the representation “is
composed of component concepts in the same way in which the entire
represented thing is composed of component parts” (Kant, quoted in Coffa,
1992, p 31). But no complete analysis or synthesis can be given because, as
finite creatures (unlike a divine, infinite creature) we cannot arrive at the
simples of which a composite concept is composed. We could only do this if
we could complete an infinite analysis of a whole to the fundamental simples
of which it composed. How does Kant solve this problem?

For Kant, it is only the intellect and not sense which demands that
something be subject to a thorough-going analysis and hence be represented
as containing an infiaity of concepts. It is not demanded of sensibility that




what is observed should admit of analysis into distinguishable parts. Thus if
it were the case that the objects given in the faculty of sense and the faculty of
intellect were cognized in different ways, the problem would not arise. The
continuity of space and time do not give rise to paradoxes because there is no
requirement that they admit of an analysis into (an infinite number of )
distinguishable parts.

Kant’s solution, thus, depends upon the assumption that the cognition
of time and space depends only upon one faculty - sensitive intuition. Thus
he formulates his solution as follows:

Let him who is to extricate himself from this thorny question note that
neither the successive nor the simultaneous coordination of several
things (since both co-ordinations depend on concepts of time) belong to
a concept of a whole which derives not from the understanding but
only to the conditions of sensitive intuition. (1770/1994, ID, §1)

Thus Kant only needs to prove that space and time are cognized by sensation,
and so cannot be legitimately subject to an infinite analysis. The focal point of
the ID is the argument for the assumption that the cognition of space and
time depends only upon sensitive intuition. Kant’s strategy is to show that
there is something about the nature of space and time that renders it
incapable of intellectual representation. The main point that he makes is that
space and time are singular or are particular. Time is singular because
different parts of time are united and ordered in a single time. A specific time
cannot be distinguished from another time by means of a specific feature
which may be abstracted (by the intellect) from it, but only in terms of its
relations to other times. Finally, if time were a universal which could be
abstracted by the intellect, it would have some common feature which would
define a kind under which distinct time intervals formed differing subkinds.
But time intervals are not kinds of time, as a Jaguar is a kind of animal. Time

intervals are in time, and make up time, rather than being subkinds of a kind.

The same points hold for space.
As to why sensation is always of particulars Kant tells us:

There is (for man) no intuition of what belongs to the understanding
(intellectualium}, but only a symbolic cognition; and thinking is only
possible for us through universal concepts in the abstract, not by means
of a singular concept in the concrete. For all our intuition is bound to a
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certain principle of form under which form alone that anything can be
apprehended by the mind immediately as singular, and not merely
conceived discursively by means of general concepts. But this formal
principle of our intuition (namely space and time) is the condition
under which something can be the object of our senses. Accordingly
this formal principle, as the condition of sensitive cognition, is not a
means to intellectual intuition..... Divine intuition, however, which is
the principle of objects, and not something governed by a principle, is
an archetype and for that reason perfectly intellectual. (1770/1992, ID,
§10)

Kant's purported answer to why we cannot have intellectual intuitions of
particulars is that the cognition of objects is bound to the conditions of space
and time - namely singularity and immediacy. But the whole point of the
exercise was to prove that space and time can only be cognized by sense and
not intellect. Thus unless there is some independent reason to adopt the two-
faculty theory of cognition Kant appears to be arguing in a circle (Falkenstein,
1991). Moreover this passage is doubly embarrassing because Kant claims that
we have a “symbolic cognition” through the intellect. But if this were so, then
as Leibniz held, there is no reason to require that such a symbolic cognition
admits of an infinite analysis into its parts as a concept would. Indeed, later he
rejects the intuitive/symbolic distinction which Leibniz had originated. "It is
a contrary and incorrect use of the word symbolic to contrast symbolic with
intuitive modes of representation (as the new logicians have done) for the
symbolic is properly a species of the intuitive” (Kant, quoted in Falkenstein,
1991, p. 178.)

But Falkenstein fails to appreciate Kant's remark regarding the
distinction between human and divine intellect. For divine intellect can
represent particulars by intellectual cognition, whereas human intellection
can't. Thus the reason for this inability is tlie reason why our intellect cannot
represent particulars. The distinguishing feature between human and divine
intellect is that human intellect is finite, it cannot engage in an infinite act of
analysis. But the fact that an infinite being could engage in an infinite act
entails that a divine being could represent particulars intellectually. Although
the nature of intellectual representation is that it is inherently general, the
more features thought in a concept the narrower the extension of the concept.
Thus if a concept of a thing contains so many features that its extension is
only one object, then a particular has been represented intellectually. But
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Kant maintains that it is impossible for a human to have a representation of a
concrete particular because this would require the ability to complete a
synthesis and have a complete concept in Leibniz's sense. The finitude of
human cognitive capacity prevens this.

The Critique offers a very different solution to the problem of the
paradoxes of the continuum. Whereas, in the ID each faculty separately
cognizes different domains, in the Critigue “"neither concepts without
intuitions in some way corresponding to them, nor intuitions without
concepts can provide a cognition” (1781/1965, A50/B74). The strategy in ID
was to isolate the distinguishing characteristic of a faculty and then to show
that space and time could only be cognized by that faculty. But in the Critique
our representations are irrevocably tied together, and now our knowledge of a
continuum, such as a rainbow, is not the confused perception of the
individual droplets; instead we have no perception of individual droplets as
things in themselves at all (1781/1965, A44-46/B62-63).

Human cognition arises only as a result of such a synthesis of
intuitions and concepts. The necessity of such a synthesis is the conclusion of
a complex transcendental deduction in the Critique which starts from the
premise that all of our representations are unified in a single subject.
Moreover, such a union is necessary not only for mathematical knowledge
but for meaning as well. Concepts provide the logical form of the objects
which they represent, whereas the content of the form of the object is
provided by sensibility. If there were no union of intuition and concept, then
our concepts would be empty of content.

We demand in every concept, first the logical form of a concept (of
thought) in general, and second, the possibility of giving it an object to
which it may be related. In the absence of such object, it has no sense
and is complete.y empty in respect to content, though it may contain
the logical function which is required for making a concept out of any
possible data. Now the object cannot be given to a concept otherwise
than in intuition. (A239/B298, quoted in Friedman, 1992, p. 96)

This presents a problem for Kant. The Critique cannot offer the same solution
as the ID to the paradoxes of the continuum since there can be no
representation of a particular without the representation being a concept and
an intuition. Because the defining feature of intuitive cognition is no longer



that of sensing particulars, it is no longer possible to argue that space and time
must be intuitions because they are particulars.

The relevance of all this to Leibniz’s view of the continuum can be
shown rather quickly. Recall that Leibniz believed that the cognition of
mathematical objects does not require a synthesis of intuition and concept.
Instead, our mathematical reasoning proceeds without any particular
interpretation at all. Leibniz believed that much of mathematical reasoning
was purely symbolic, and therefore depended only upon the logical form of
the concept rather than upon an object to which it might be related in
perception. We do not, in this way, intuit the nature of the object, but rely in
reasoning only on the sign for the thing rather than its nature. Leibniz
contrasts symbolic with intuitive reasoning in the following remark.

Yet for the most part, especially in a longer analysis, we do not intuit
the entire nature of the subject matter at once but make use of signs
instead of things, though we usually actually omit the explanation of
these signs in any actually present thought for the sake of brevity,
knowing or believing that we have the power to do so. Thus when I

think of a chilliagon, or of a polygon with a thousand equal sides, I do
not always consider the nature of a side and of equality and of a
thousand (or the cube of ten), but I use words which I have of them,
because I remember that I know the meaning of the words but their
interpretation is not necessary for the present judgment. Such thinking
I usually call blind or symbolic; we use it in algebra and arithmetic, and
indeed almost everywhere. When a concept is very complex we
certainly cannot think simultaneously of all the concepts which
compose it. But when this is possible, or at least insofar as it is possible,
I call this knowledge intuitive (Leibniz, 1969b, p. 292).

It is not much of a stretch to see the relevance of this comment to the
infinitesimal calculus. The fundamental idea of the infinitesimal calculus
was that each curve could be regarded as an infinitangular polygon. But "one
cannot go to infinity in his proofs” and so we cannot have an intuitive
representation of an infinitangular polygon (quoted in McRae, 1994, p. 192).
So reasoning about curves in mathematics took exactly the form of symbolic
reasoning. One need not have in one's mind the idea of an infinitangular
polygon, one need only blindly (and blithely Berkeley might say) apply certain
techniques.




Kant, of course, is opposed to any such conception of reasoning. Such a
method which does not involve an object given in sensible intuition Kant
sees as specious because it is empty of content.

There is however, something so tempting in the possession of an art so
specious, through which we give to all our knowledge, however poor
and empty we yet may be with regard to its content, the form of
understanding, that general logic, which is merely a canon of
judgment, has been employed as if it were an organon for the actual
production of at least the semblance of objective assertions, and thus in
fact has been misapplied. (1781/1965, A60 - 61/B85, quoted in Friedman,
1992, p. 97)

It is not that difficult to see what Kant is getting at. Kant is concerned that a
form of reasoning which does not use intuition lacks objective content or
meaning. As Friedman (1992, p. 98 - 99) points out, much of the recent work
of interpreting Kant's philosophy of mathematics can be seen to relate directly
to this "formalist” conception of mathematics suggested in the above remark
of Leibniz. If all there were to mathematical reasoning were the blind
manipulation of symbols, then mathematics would be without content. The
notion of synthesis itself implies that we must go beyond purely conceptual
representation in order to attain knowledge.

For the notion of synthesis clearly indicates that something outside of
the given concept must be added as a substrate which makes it pcisible
to go beyond the concept with my predicate. Thus the investigation is
directed to the possibility of a synthesis of representations with regard
to knowledge in general, which must soon lead to the recognition of
intuitior as an indispensable condition for knowledge, and pure
intuition for a priori knowledge. (quoted in Allison, 1973, p. 155)

Leibniz was undaunted by such concerns. "No one should fear that the
contemplation of signs themselves will lead us away from the things in
themselves; on the contrary, it leads us irito the interior of thingz” (quoted in
Ishiguro, 1990, p. 44). The reason that we have confused perceptions is because
the signs we are using are baclly arranged, but with proper arrangement we
have a "mechanical thread of meditation” with which any representation can
be resolved into its component representations (Ishiguro, 1990, p. 44). Indeed
an early project was to arrive at a Universal Characteristic or calculus with
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which all philosophical problems could be resolved by calculation. Leibniz
could not contain his missionary zeal in the 1670s:

Where this language can once be introduced by missionaries, the true
religion, which is in complete agreement with reason, wi'l be
established, and apostasy will no more be feared in the future than the
apostasy of men from the arithmetic or geometry which they have
once learned. (quoted in Brown, 1954, p. 57)

Although one may be sympathetic to Kant's reservations regarding
Leibniz's program, it presents a problem for his analysis of the continuum,
and for a prcper response to Leibniz. For how can we make out that space and
time are given in intuition and then acted upon by the intellect if every
representation comes already synthesized? The basic strategy must be this:
one must show that our concepts of space and time could not have arisen
from intellect alone, but require intuition.

Thus a basic theme of Kant's mathematical philosophy in the Critique
(as a number of commentators have pointed out) is that a merely conceptual
determination of an object of experience is never adequate; intuitions are
required. The fact that objects must be determined is supposed to follow from
the argument of the transcendental deduction. For instance, the concept of
the self as subject of experience necessitates, among other things, that the
objects of experience are spatial, endure through time, and are causally
connected. This idea is most problematic in the case of mathematics, since it is
here where conceptual determination seems unavailable.

Following Brittan (1992) this theme can be crystallized into Kant's
master argument which argues for the view that intuitions are required in
order to complete the determination of objects.

Determination thesis: Mathematical objects are completely determinable.

Conceptual underdetermination thesis: Concepts do not completely
determine mathematical objects.

Framework thesis: Either concepts or intuition determine objects.
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Necessity of intuition: Therefore, intuitions are required to complete the
determination of mathematical objects.

This conclusion is often referred to as Kant’s principle of synthetic judgmencs.
Kant attributes determination to both proporsitions and to objects claiming
that every well formed mathematical proposition is|determinable.
Mathematics, says Kant, may "..demand and expect pone but assured answers
to all questions within its domain, although up to the present they have
perhaps not been found” (1781/1965, A480/B508). A4 far as objects go, Kant
says that "... to know a thing completely, we must kaow every possible
[property], and must determine it thereby, either affyrmatively or negatively”
(1781/1965, A573/B610).

Thus, to determine an object a with respect toa property P is to verify
or falsify the proposition "a is P*. Kant’s point is directly relevant to the
mathematics of the seventeenth century since the main problem of the
infinitesimal calculus of this period was to determine the relations between
variable quantities such as the area under a curve, the length of a curve, and
the tangent to a curve. It is not surprising, then, thal how we determine
mathematical objects was of central concern to Kant| Indeed mathematical
objects provided Kant with his paradigm illustratior}s of why intuition was
needed in order to determine objects.

Given Kant’'s notion of determination we can|say something more
about objects. To determine an object is to decide, fox every property, whether
the object has the property or not. If every object is dptermined, and we are
given the law of the identity of indiscernibles VxVy[YF(Fx ¢ Fy)= (x=y)],
then we can say whether any pair of objects a and b whether a=5 or not.
Thus, the thesis that every mathematical object is dgtermined entails the
decidability thesis: VxVy{(x = y)v (x # y)}, i.e. the iderftity of any pair of
individuals is decidable. Conversely, by the law of indiscernibility of
identicals VxVy{(x = y) = VF(Fx & Fy)], we can say that two objects are
determined by the same properties.

For Kant, the situation in the empirical sciences is quite different than
that in mathematics. "In the explanation of natural §ppearances much must
remain uncertain, and many questions [remain] insojuble, because what we
know of nature is by no means sufficient, in all cases  account for what has
to be explained” (1781/1965, A477/B505). Apparently]fur Kant whereas the
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spontaneity of pure intuitions guarantees the determinateness of
matheratical objects, the receptivity of empirical intuition fails to complete
the determination of empirical objects (see Allison, 1984, chapter 13). Unlike
mathematical objects, no empirical object can ever be completely determined
since (in light of the definition of determination above) "The complete
determination is thus a concept, which in its totality, can never be exhibited
in concreto “(1781/1965, A573/B610).

Again, this differs quite significantly from Leibniz. Since Leibniz
believes that the content of a subject always includes that of the predicate, and
that mathematical statements are of this subject - predicate form, he holds
that mathematical objects can be determined by concepts alone. The concept
of the subject must always include the concept of the predicate in such a
manner that if one has a perfect understanding of the subject, then it will be
known which properties apply to it. Therefore concepts alone are sufficient to
determine an object.

... thus the subject term must always include that of the predicate, so
that whoever understood the notion of the subject perfectly would also
judge that the predicate belongs to it. That being so, we can say that the
nature of an individual substance or complete being is such a complete
notion as to include and entail all the predicates of the subject that
notion is attributed to. (Leibniz, 1988, §8, 13)

Although the concept of the subject contains the concept of the predicate, that
fact does not entail that we have a perfect understanding of the subject, since
our representation may be purely symbolic. Only God has a full
understanding of a (complete) concept.

How, then, are intuitions able to complete the determination of
mathematical objects? Some sort of explanation is needed of how this
determination is to take place. It is useful to suppose, roughly following
Brittan (1992), that all mathematical propositions can be determined as the
conclusion of a demonstration. I leave open what form the demonstration
takes. A demonstration may take the form of a syllogism, as in Aristotle’s
demonstrations in the Posterior Analytics, or it may take the form of an
argument in first order logic, or an argument in set theory, or even an
argument in the internal language of a topos.
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Given this understanding of determination, mathematical objects may
fail to be determined in one of two ways. Either, there are not enough
premises in the argument for it to be a cogent demonstration, or the form of
the demonstration may not be powerful enough . determine an object,
whatever premises are used. It is this failure to determine an argument
because of a lack of premises within a theory of demonstration which forces
the use of intuition to determine objects. This is the well known view of Beck
(1955) which Friedman (1992) calls the anti-Russellian view. This anti-
Russellian interpretation has been heavily criticized by Friedman (1992) and I
will not discuss it further.

A different interpretation of determination which stems from Russell
is that objects cannot be determined by concepts alone only because of some
inadequacy of logic. A prominent passage which supports this reading is the
following:

Suppose a philosopher be given the concept of a triangle and he be left
to find out, in his own way, what relation the sum of its angles bear to
a right angle. He has nothing but the concept of a figure enclosed by
three straight lines, along with the concept of just as many angles.
However long he meditates on these concepts, he will never, produce
anything new. He can analyze and clarify the concept of a straight line
or of an angle or of the number three, but he can never arrive at any
properties not already contained in these concepts. Now let the
geometer take up this question. He at once begins by cons'ructing a
triangle.... [Kant here goes on to describe the standard construction.] In
this fashion, through a chain of inferences guided throughout by
intuition, he arrives at a solution of the problem that is
simultaneously full, evident, and general (1781/1965 A715-717/B743-
745, quoted in Friedman, 1992, p. 57).

The general point is that philosophy reasons using concepts alone, whereas
mathematics exhibits the concepts in concreto (1781/1965, A715-717/B743-745).
Philosophy is confined to general concepts; whereas mathematics is able to
prove nothing by using concepts alone. Instead mathematics considers the
concept which it constricts in concreto, although not empirically. Then it is
reasoned that whatever follows from the general conditions of the
construction must hold for the object of the concept thus constructed.

What logical limitations lead mathematics to resor: to intuition? In
particular, what is there in the concept of the continuum that cannot be given



101

solely by the intellect? In connection with the problem of the composition of
the continuum, the part-whole structure is fundamentally different in the
faculty of intellect from that of sense. In sense the parts are contained in the
whole, as a part of a picture is contained in i, and the continuum is thus
unified and unbounded. But in our intellectual conception the parts precede
the whole. The striking point is that we do perceive the continuum as a
whole, but the whole is prior to its constituent parts, which are mere
limitations of the single whole. Thus the continuum must be given in
intuition. Kant puts the argument like this:

Space and time are quanta continua, because no part of them can be
given without being enclosed between limits (points and instants), and
therefore only in such fashion that this part is itself again a space or a
time. Space consists oniy of instants, time cor.sists only of times. Points
and instants are only limits, that is, mere places of their limitation. But
places always presuppose the intuitions which they limit or determine;
and out of mere places, viewed as constituents capable of being given
prior to space or time, neither space nor time can be composed (A169-
170/B211-212, quoted in Friedman, 1992, p. 74).

This passage is quite clearly saying that the concept of an unbounded
continuum must rely on intuition in order to complete its determination.
Again he says:

The infinitude of time signifies nothing more than that every
determinate magnitude of time is possible only through limitations of
one single time that underlies it. The original representation, time,
must therefore be given as unlimited. But when an object is so given
that its parts, and every quantity of it, can be determinately represented
only through limitation, the whole representation cannot be given
through concepts, since ihey contain only partial representations; on
the contrary such concepts must themselves rest upon immediate
intuition (1781/1965, A32/B48).

This can be explained in greater detail. I have already mentioned that
conceptual representation is compositional whereas intuitive representation
is not. This leads to the fact that concepts and intuitions differ in their whole-
part relations. The difference is established by the way that the content of the
concept is divided. To begin with, concepts are general because by means of
them one can represent many objects. To be exact, concepts are ot



representations of complete objects, but only of properties which may be
common to many objects. The generality of a concept is manifest in the way
that a part-whole relationship is derived from it. General concepts are
organized in a hierarchical relation su-h that they bear a type-subtype
relation. For instance, the concepts “physical object”, "animal” and "left-
handed" can be arranged in such fashion. "Physical object” is the highest, or
most general concept, and contains the other concepts under it. Conversely,
the concept "left-handed” presupposes the concepts "physical object” and
"animal”. The content of the concept "physical object” is contained in the
concept "animal”.

On Kant's view the extension of the higher concept is divided on the
basis of characteristics which differentiate the objects. This allows for further
lower order classifications of objects by dividing the objects into those objects
which posses a further characteristic, such as left-handedness and those that
do not. Thus the concept "animal” has a smaller extension than the concept
"physical object” but a greater intension. Lower order concepts are obtained by
adding content. So for concepts, the parts are greater (in content) than the
whole.

This whole-part relation differs for intuitions. First of all, the whole
part relation is not hierarchical or compositional. Instead, the part is
contained within the whole, not as a subtype. My perception of a house
contains the perception of the windows in it, rather than falling under it. The
perception of the house is not a type of which the window is a subtype. In this
case the content of the whole is greater than the content of any of its parts.
Thus the contrast between intellectual representations and intuitions is in
terms of their part whole relations.

The feature that Kant thought apparently clinches the difference
between the whole - part structure is the fact that representations of infinitely
divisible quantities cannot be given in the intellect. On this matter Friedman
(1992) has advanced a compelling interpretation of the following passage of
Kant's Critiqgue according to which Kant is expressing the impossibility that a
conceptual representation could contain an infinity of objects in its very idea.
As Kant put it in the Critique :

Space is represented as an infinite given quantity. Now one must
certainly think every concept as a representation which is contained in




103

an infinite aggregate of different possible representations (as their
common characteristic), and it therefore contains these under itself.
But no concept, as such, can be so thought as if it were to contain an
infinite aggregate of representations in itself. Space is thought in
precisely this way, however (for all parts in space in infinitum exist
simultaneously). Therefore the original representation of space is an a
priori intuition, not a concept (B40, quoted in Friedman, 1992, p. 64).

Friedman's gloss on this passage is that since the "laws of thought” of the
(monadic) logic of Kant and Aristotle was not able to force the representation
to contain an infinity of concepts within itself it could only be done
intuitively by an iterative process of construction. The implication of this
interpretation is that Leibniz was wrong to think that we could have a
symbolic representation of an infinitangular polygon, or of any infinitely
divisible quantity, since no concept which conforms to monadic logic can
force its models to be infinite. Thus, since our concepts cannot force its
models to be infinite, our representation of space cannot be conceptual.

This point can be made more explicit by considering Euclid's proof of
proposition I of Book I: an equilateral triangle can be constructed with any
given line segment as base. In order to prove this proposition wi*hin Euclid's
method of demonstration we start with three basic operations: (i, drawing a
line segment connecting any two given points; (ii) extending a line segment
by any given line segment; (iii) drawing a circle with any given point as a
centre and any given line segment as radius. Given AB, by postulate three we
construct the circles C1 and C2 with AB as their radius. let C be a point of
intersection of C1 and C2, and by postulate 1 draw lines AC and BC. Thus, by
the definition of a circle (Definition 15) AC = AB = BC. So ABC is equilateral.



Cit C2
Figure 15

There is a difficulty with this proof and Friedman (1992) has drawn
attention to its implications for Kant's views on intuition. The difficulty is
that it contains a gap, since the existence of point C has not been proved. We
have "let” C be a point of intersection of C1 and C2. But there is no guarantee
from the axioms alone that there is a point of intersection. Of course, given
the intuitive conception of the continuum, there cannot be a gap between
which C1 and C2 “slip through.” For one thing, C1 and C2 are both infinitely
divisible. But consider the following case. We cover the Euclidean plane with
Cartesian coordinates such that A has coordinates (-1/2, 0), and B has
coordinates (1/2, 0). Thus the midpoint of AB has coordinates (0, 0) and point
C has coordinates (0,4/3/2). Now throw away all the points in the Euclidean
plane with irrational coordinates. This model satisfies Euclid's axioms, but it
does not even contain the point (0,4/3/2). So Euclid's axioms do not
guarantee that there is an intersection of C1 and C2.

The point can be put more generally. Monadic logic does not have the
expressive power to force its models to be infinite. In particular, no set of
monadic sentences with & primitive predicates, and with »n variables can
determine a model with more than 2*-n objects. The basic idea of the proof
(for one variable) consists in showing that all models are generated by a
binary choice tree. Suppose we are given k primitive predicates P,,P,,P,,...P,.
The class of subsets of any model can be partitioned into 2* subclasses
P} ,P,,P;,...P,with 15i <k, such that for each P/, is either P,v —P,. So a tree is
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generated where each branch is of the following type: P A P, A P;...AP,; since
there are 2* such subclassess we require 2' elements for them to be distinct.
Thus the conceptual resources of monadic logic are insufficient to force the
concept of a potential or actual infinite number of objects.

The post Fregean approach is quite different. In Hilbert's
axiomatization of geometry or the standard axiomatization of the real
numbers (MacLane (1986), chapter III or Friedman (1992)) certain axioms
exhibit a quantifier dependence, the logical form, Vx3y, allows us to capture
an iterative process of production formally: for any x, there exists a y such that
.... This allows for the production of some y which can then be fed back into
the formula to produce a new x. For instance, in the context of a theory of
order, an axiom which states that, for each a there is b such that a<b, can
only have infinite models.

This discussion bears comparison with Aristotle’s own interpretation
of geometrical axioms in Metaphysics IX where he describes the standard
Euclidean proof that the sum of the angles of a triangle equal 180 degrees.
Aristotle emphasizes the need to construct figures in the imagination.
Philosophical reasoning does not produce anything new, whereas
mathematical reasoning is able to obtain new knowledge because it can
produce new objects in intuition. The similarity to Kant is obvious. Objects
which can't be determined by thought alone need intuition to determine by
producing an object.

It is by an activity also that geometrical constructions are discovered;
for we find them by dividing. If they had already been divided, the
constructions would have been obvious; but as it is they are present
only potentially. Why are the angles of a triangle equal to two right
angles? Because the angles about one point are equal to two right
angles. If, then, the line parallel to the side had been drawn upwards, it
would have been evident why [the triangle had such angles] to anyone
as soon as he saw the figure. Obviously, therefore, the potentially
existing things are discovered by being brought to actuality; the
explanation is that thinking is an actuality. (trans. 1987)

105




In order to prove the theorem one simply notes that a=d', b=¥ and
a+b+c=d+b +c. It is from this observation that Aristotle was able to use the
two faculty theory to solve the Platonic problem of the origin of our
mathematical concepts. Objects are not given by our perception of some ideal
realm, rather they are brought into existence by constructing them in thought.

The rigorization of the calculus

One of the central figures in the rigorization of the calculus was the
Bohemian Monk Bernard Bolzano. Bolzano's work was near the very
beginning of a remarkable change in the character of mathematics. In 1781,
three years after the publication of the first Critique, the Berlin Academy
offered a prize for anyone who could successfully prove propositions of the
calculus without reverting to the use of infinitely small and infinitely large
quantities. Mathematicians were not shy to take up this challenge and it led to
what has been called a revolution in mathematical thought. As Gray (1992, p.
245) explains, "there was a revolution in mathematics in the nineteenth
century because, although the objects of study remained superficially the
same, the way they were defined, analyzed theoretically, and thought about
intuitively was ent.rely transformed.” Nevertheless, this revolution was
deceptive since

...the very success of the new method [of arithmetizing analysis])
disguised from its practitioners the revolutionary nature of the change
it had effected. It was often seen as a vindication, rather than a
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repudiation of the traditional methods which it replaced. ... The
theorems of Newton and his 18th century successors were retained -
though, to be sure, their traditional proofs were expanded and made
rigorous - and their applications remained the same, but their ultimate
meanings were completely altered. (Mayberry, 1988, p. 331)

Bos offers a similar assessment of the Lebnizian calculus: "... the [modern}
calculus, one may say, replaced the techniques, reinterpreted the notation,
and lost the concepts” (1986, p. 91).

These assessments are more sympathetic to the mathematics of the
time than is usually the case. Instead of seeing the rigorization of analysis, as
suggested by the Berlin Academy question, as giving new proofs of the same
mathematical results without using (incoherent) infinitesimal and infinitely
large quantities, it is better to understand the rigorization as shifting from one
mathematical framework to another. In this chapter 1 hope to further flesh
out this shift as one from a framework of smooth spaces and maps to a
framework of discrete spaces and maps.

The rigorization of the calculus was not a mere mathematical exercise
but had a philosophical motivation. Bolzano's work, and the subsequent
work of Cauchy and Weirstrass, showed how mathematical knowledge could
be obtained by reasoning entirely based upon an analysis of concepts : "All
mathematical truths can and must be proven by concepts” (Bolzano, quoted
in Coffa, 1991, p. 22). This was carried out in opposition to Kant's claim that
mathematical objects needed intuition in order to complete their
determination. Newton and his followers, who regarded the calculus as
founded upon an intuition of motion were also part of the target of the
rigorization movement. As I have noted, spatial and temporal intuition was
the foundation of Newton’s calculus, unlike the calculus of Leibniz.

This emphasis on spatial and temporal intuition was the central point
of contention for rigorizers. For instance, Colin McLaurin's attempted defense
of Newton'’s use of motion in the calculus was criticized by d'Alembert in
1789 when he said that motion "is a foreign idea and one which is not
necessary in the demonstration” (Grabiner, 1982, p.83). Bolzano in 1817 also
wrote: “The concepts of time and motion are just as foreign to general
mathematics as the concept of space (1980, p.161). This tradition continued
unabated so that over half a century later Dedekind in elaborating his theory
of the continuum relates that instead of using geometric concepts " it will be
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necessary to bring out clearly the corresponding purely arithmetic properties
in order to avoid even the crpearance [that] arithmetic [is] in need of ideas
foreign to it” (1963, p.5).

The deepest critic of the use of intuition in mathematics was
undoubtedly Bolzano who, in a sketch of an autobiography, challenged Kant's
viewpoint that intuition is needed to prove mathematical truths:

From very early on he dared to contradict him [Kant] directly on the
theory of time and space, for he did not comprehend or grant that our
synthetic a priori judgments must be mediated by intuition and, in
particular, he did not believe that the intuition of time lies at the
ground of the synthetic judgments of arithmetic, or that in the
theorems of geometry it is allowable to rest so much on the mere claim
of the visual appearance, as in the Euclidean fashion. He was all the
more reluctant to grant this, since very early on he found a way to
derive from concepts many geometric truths that were known before
only on the basis of mere visual appearance. (quoted in Coffa, 1991, p.
28)

Bolzano's response consisted not only in criticizing Kant but in giving an
analytic proof of the intermediate value theorem (sometimes referred to as
Bolzano's theorem) (Russ, 1980). In giving such a proof Bolzano gives an
example of establishing a theorem without the aid of intuition.

Prior to Bolzano's purely analytic proof of the intermediate value
theorem an intuitive proof might go like this: If f is continuous on [a,b] and
f(a) and f(b) have opposite signs, then f(c)=0 for some ¢ between a and b.
We are given an uninterrupted line, the x axis. Any continuous function on
[a,b]) on the x axis, with f(a) <0< f(b) has an uninterrupted curve from a
point below the x axis to a point above. The x axis is infinite in extension in
both directions, so it cannot go around the x axis. Because of the continuity of
the line, the curve cannot slip through, nor can the curve ascend to another
dimension and tunnel through: the curve stays in the plane. Any
uninterrupted curve from a point below the x axis to a point above must
cross the x axis. As Lagrange himself put it: the curve "will little by little,
approach the axis before cutting it and approach it, consequently by a quantity
less than any given quantity” (quoted in Bottazini, 1986, p. 97). The y
coordinate at the x axis is zero, so any function whose curve meets the x axis
has a zero value. Here we seem to have a proof of Bolzano's theorem based
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upon spatio-temporal intuition of continuity (A good discussion is in
Giaquinto, 1994). What is wrong with it?

First of all, intuitions were considered to be irrelevant to mathematics
because mathematics dealt with all possible foims, and not those which
happened to be instantiated in the acti:al world. Even if one cannot raise any
objection to a geometrical proof, Bolzano said, "... it is just as clear that it is an
insufferable offense against right methou to want to derive truths of pure (or
general) mathematics (that is, arithmetic, algebra or analysis) from
considerations that belong to a purely applied (or special) part of it, namely to
geometry” (quoted in Bottazini, 1986, p. 98).

An example of an apparently faulty judgment is the supposition that
any continuous function is also differentiable. Temporal intuition, in fact,
guarantees that this is true for curves described by continuous motion, for, if a
curve is generated by a continuous motion of an object (say a curve drawn by
a pencil), then it automatically has a direction of motion or tangent at every
point, namely the direction of the moving point (see Whiteside, 1962, p. 349).
Moreover, one may interpret Leibniz's principle of continuity which asserts
that "nature has no gaps" as antailing that each curve is straight for an
infinitesimally small period over its domain of variation. There can be no
sudden jumps, gaps, peaks or valleys in the production of a quantity. Putting
these two ideas together we may say that the direction which a curve has at a
point is the infinitesimal tangent vector which is coincident with the point.

However, in order to represent physical phenomena, such as the
motion of a vibrating string, the idea of a function has to be enlarged to one
which is not described by continuous motion. “... the first vibration [of a
string] depends on our pleasure, since we can, before letting the string go, give
it any shape whatsoever. This means that the vibratory nature of the string
can vary infinitely, according to whether we give the string such and such a
shape at the beginning of the movement” (Euler, quoted in Bottazini, 1986,
chap. 1).

Moreover as a result of the limitation of a mathematics which is bound
to intuition one may end up with incorrect results. For suppose we allow a
smooth curve to be “pieced together” so that it has "cusps” or “sharp corners”.
Complicated examples weze given by Weierstrass and Riemann. An elegant
example of a continuous but nowhere differentiable function of this type was
given by Koch in 1903. Take a horizontal line segment AB and divide it into




three equal parts. Erect an equilateral triangle CED on the middle segment CD
and erase the open segment CD. Repeat the same procedure on each of the
remaining segments AC, CE, ED, DB. Finally, continue to iterate this process
indefinitely on each remaining segment. This curve is continuous, in the
modern sense, but there is no tangent at any given point. Thus it is not
continuous in Leibniz's sense. At a particular finite stage of construction it
looks something like this:
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Figure 17

The construction described i a bit mislcading since it starts from a
curve and gradually builds peaks and valleys, which makes it seem that if one
"zooms in" sufficiently, a smooth curve will be found. But the point is that
no matter how much one zooms in there is no part of the curve which is
smooth. It has sharp turns at every point. Such a function cannot be imagined
as curve at all. (Notice that this latter judgment is similar to the usual
response to the infinitangular polygon.) And so the intuitive proof that
continuity implies differentiability, and its reliance on the correspondence
between a function and a curve, does not work.

Bolzano's proof of the intermediate value theorem relies on a new
definition of continuity in terms of points or fixed values. This conception
originated in opposition to Newton's temporally influenced conception of a
limit as the evanescent quantity with which a variable quantity ceases, but
neither before nor after it ceases. This early notion of a limit, given by
Newton, was not accepted by Bolzano, Cauchy or the other rigorizers of
analysis because of its appeal to temporal notions. The main objection, as
pointed out by Newton himself, was the problem of understarding what this
evanescent state “with which" a quantity ceases is. For, if the quantity has
either ceased or not, the value is either not the ultimate limit of the quantity,




or it has a value of zero. Notice how this argument presupposes the
decidability of magnitudes, and concludes that there can be no such
evanescent state.

Both Bolzano and Cauchy took up the idea of defining “continuity”,
“derivative” and “integral” in terms of limits. Cauchy defined the concept of
limit as follows: "When the successively attributed values of the same
variable indefinitely approach a fixed value, so that finally they differ from it
as little as desired, the last is called the limit of all others” (in Grabiner, 1981,
p- 81). The modern definition, due to Weierstrass, goes further and eschews
temporal intuition completely by replacing the idea of a variable quantity
successively acquiring values. A sequence of points S, has the number b as a
limit if and only if to each point £ > 0 there exists a number k with the
property: if n> k, then IS, ~bi<e€.

Cauchy's definition of the continuity of a function (and Bolzano's) is
close to ours: "In other words, the function f(x) is continuous with respect to
x between the given limits if, an infinitely small increment in the variable
produces an infinitely small increment in the function itself “(Grabiner, 1982,
p- 87). In other words the continuity of a function at a point is one which
preserves infinitesimal nearness of points. But an infinitesimal was for
Cauchy, as it was for Leibniz, a subsisting entity rather than an existing entity
because it is not an entity but stands for the property of being infinitely small
(Cleave, 1978). The concept of an "infinitely small quantity" or
“infinitesimal” is defined this way: "one says that a variable becomes
infinitely small when its numerical value decreases indefinitely in such a
way as to converge towards the value zero” (Edwards, 1979, p.310).

Thus Cauchy reverses the conceptual origin of continuity by defining
continuity in terms of convergence to a limit, rather than the reverse as with
Newton. Continuity can now be defined in terms of the preservation of
convergence. Notice that at this stage that the notion of "infinitely small
increment"” and "variable quantity” still ties Cauchy and his contemporaries
to the use of temporal concepts (Cleave, 1978). The modern notion of
continuity can be obtained by simply replacing Cauchy's notion of
convergence with that of the modern Weierstrassian notion given above.
Thus a function f is continuous at a point b if f maps every sequence S,
converging to b into a sequence f(S,) converging to f(b).
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So far the continuity and convergence of a varigble quantity have been
analyzed in terms of the points of that quantity. The problem that arises
immediately is that intuitively every finite motion which gradually
diminishes, terminates at a point; so every series which converges (internally,
so to speak) converges to a point. Can this be established without recourse to
temporal intuition?

Cauchy tried. To define the sum of the sequence let
S, = Uy + 4 +u,+...+u,_,. To say that such a series converges is to say that "if, for
increasing values of a, the sum §, indefinitely approaches a certain limit §,
the series is called convergent, and the limit in question is called the sum of
the series” (in Grabiner, 1982, p.102). Cauchy then called attention to the
differences between the first and the successive partial sums defined by
Sart =S, = U4,

Saiz =S, = U4, +u,,
Sens =Sa=H, +U, +Uy,

Cauchy stated the following criterion of convergence: for any given n, the
different sums have finished by constantly having an absolute value less than
any assignable limit. In modern parlance such a sequence is said to have the
Cauchy property and so is a Cauchy sequence: if to every point &> 0 there is a
number k such that for all >k and m > k imply IS, - S, I< €. Thus Cauchy
attempted to show that every Cauchy sequence converges. Cauchy proved the
necessity of this condition for convergence but as for sufficiency, Cauchy
apparently thought that this was guaranteed by the temporal intuition that a
quantity which gradually diminishes, ceases at some instant.

The problem is that the proof of the sufficiency of Cauchy's criterion
requires very strong assumptions about the existence of points, for example
that every real number is represented in the continuum. Here again temporal
intuition was needed because of the inability of logic to guarantee the
completeness of the real numbers. The necessity of the production of points
in intuition in mathematical proofs was recognized by mathematicians and
philosophers. Two important features of these quanta continua are that they




are always conceived within limits and that they possess a flowing quality.
These qualities were pointed out by Kant:

Space and time are quanta continua, because no part of them can be
given without being enclosed between limits. .... Such quantities may
also be called flowing, since the synthesis (of the productive
imagination) in their generation is a progression in time, whose
continuity is most properly designated by the expression of flowing
(flowing away) (1781/1965, A169-170/B211-212).

Moreover, as Kant put it, an intuition can only be obtained by drawing the
continuum in thought:

I cannot represent to myself a line, however, without drawing it in
thought, that is gradually generating all its parts from a point. Only in
this way can the intuition be obtained (1781/1965, A162-163/B203-204).

Both features of quantities are evident in Newton's fundamental
lemma in the Principia:

Quantities and the ratio of quantities which in any finite time converge
continually to equality, and before the end of that time approach nearer
to each other by any given difference, become ultimately equal (Book I,
§1, Lemma 1).

The temporal intuition suggested above seems to guarantee completeness.
Friedman (1992) provides an example of how this can be done. One can
construct a line of length V2 by a continuous process that take one unit of
time. At r=1/2 aline of length 1.4 has been produced; at ¢+ =2/3 a length of
1.41 has been produced and in general at time ¢ = n/(n+1) a line of length s,
is produced, where s, is the decimal expansion of V2 carried out to n places.
At 1=1 a line of length V2 has be constructed, and a point which can be
identified as V2 exists, because, on the basis of intuition, a finite motion,
occurring in a part of time, must be enclosed between temporal limits. One
can repeat this procedure for any real number.

The proof of the intermediate value theorem given by Bolzano and
Cauchy was only partially successful since it depended upon the proof of the
sufficiency of the Cauchy condition. But the point that is highlighted by
Bolzano’s and Cauchy's proofs is that the logic of the intellect is not as limited
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as Kant would have one believe. Cauchy was able to go on and define the
concepts of derivative and integral in a way which, when the concept of limit
was clarified, relied upon no temporal intuition. The derivative of a function
at a point x, is the limit of a ratio Ay/Ax, as Ax approaches zero, written,

dy/ dx. The integral is the limit as Ax approaches zero, of a sum Y f(C,)-Ax,
[}
intuitively the product of the base and height of inscribed rectangles equal to
»
the area under a curve ffrom a to b, written, I f(x)dx.

But at this point Kant has a powerful response. Bolzano's and Cauchy's
mathematics are empty of content, meaningless. On this view Bolzano and
Cauchy have missed Kant's point. The determination of mathematical objects
by intuition is what gives mathematics its content - n- amount of thinking
can produce such content. Bolzano was the first to understand what was
wrong with Kant's conceptual underdetermination thesis. Kant had
evidently conflated synthetic judgments with judgments which extend our
knowledge. Here I largely follow Coffa’s (1991) interpretation of Bolzano’s
response to Kant. In essence, Bolzano’s solution is a development of Leibniz’s
point that we do not need to have an intuitive thought of an object in order
to think of that object. We may only have clear and indistinct knowledge of
some object and then use analysis to resolve the components of our
representation of it into its distinct parts. On the basis of this analysis we have
an intuitive concept and we have increased our understanding. Bolzano calls
intuitive knowledge “thinking of a certain representation in itself” and puts
his point this way:

We think a certain representation in itself, i.e. we have a
corresponding mental representation, only if we think of all the parts
of which it consists, i.e. if we also have a mental representation of all
these parts. But it is not necessarily the case that we are always clearly
conscious of, and able to disclose, what we think. Thus it may occur
that we think a complex representation in itself and are conscious that
we think it, without being conscious of the thinking of its individual
parts or able to indicate them (quoted in Coffa, 1991, p. 69).

Bolzano develops the point by drawing out the implication that there are two
kinds of representation. His point can be illustrated with Leibniz's own
example. We may think of a 1000 siced polygon without thereby thinking of




all its parts. Nevertheless there is a sense in which we still have a
representation of a thousand-sided polygon. This is the objective
representation - the existence of the objective representation, the content of
our thought, is independent of any mental state we may have. These are the
"meanings"” or "sense" of later philosophy. This objective representation is
distinct from the object of our representation, an actual 1000 sided polygon.
Finally, we have a subjective representation, a state of mind of thinking of an
object such as a polygon.

Kant’'s confusion between the subjective and the objective
representation is the basis for another confusion between ampliative and
synthetic judgments. For he would say that in order to have the idea of an
infinitangular polygon we must go beyond our intellectual representation of
it. For "it is evident that from mere concepts only analytic knowledge is
obtained" (1781/1965, A47/B64-5). Therefore “I must advance beyond the
given [subject] concept, viewing as related to it something entirely different
from what was thought in it" (1781/1965, A154/B193). But this follows only if
our representations are taken to be subjective representatons. For the parts of
the infinitangular polygon may be thought in it without our thereby having a
subjective representation of it. Thus it is possible to increase understanding by
increasing the distinctness of our subjective concept through analysis. We
only have need of intuition if there are no such objective representations.

But the existence of objective representations is virtually asserted by
Kant himself. For Kant analysis is the process whereby indistinct
representations become distinct. “... to analyze a concept [is] to become
conscious to myself of the manifold which I always think in that concept"
(1965, A7/B11). We may have an indistinct representation of a house in the
distance, but may not be consciously aware of its doors and windows. But
according to Kant, "we must necessarily have a representation of the different
parts of the house.... For if we did not see the parts, we would not see the
house either. But we are not conscious of this presentation of the manifold of
its parts” (quoted in Coffa, 1991, p. 10).

Therefore, on Kant's understanding of analysis, our understanding of
the concept (say tree) which is being analyzed changes whereas the concept
does not. For in order to render a concept distinct by analysis we must admit
that the same concept can be considered as indistinct, before analysis, and
distinct after analysis. Kant remarks:
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When I make a concept distinct, then my cognition does not in the
least increase in its content by this mere analysis ... [through analysis] I
learn to distinguish better or with greater clarity of consciousness what
already was lying in the given concept. Just as by the mere illumination
of a map nothing is added to it, so by the mere elucidation of a given
concept by means of analysis of its marks no augmentation is made to
this concept itself in the least (quoted in Coffa, 1991, p. 11).

As Coffa points out, Kant's views on analysis called for a distinction
between the act of representing to oneself an object and the content of that
representation. Kant, nonetheless, disregards that distinction when he makes
his argument for the necessity of intuition.

Kant’'s view is that, in the case of the representation of the continuum
we must have a representation of each of its infinite parts. Otherwise our
concept of the continuum would have no content. This representation
cannot be thought by the (human, finite) intellect alone and so requires
intuition. But Bolzano’s and Leibniz’s point would surely be that the content
of the representation is always there - independent of our thinking of it, and
Kant has simply confused the subjective representation with its content, the
objective representation. The upshot of Kant's view is that the continuum is
non - punctual in character. For in spatial and temporal representation the
whole precedes the parts. On the other hand if Bolzano is correct, then the
continuum must be compositional in character. For in conceptual
representation the representation of the parts (such as the concept of point in
the definition of continuity) precedes the definition of the whole (the
continuum defined by such concepts).

Dedekind and Cantor on Autonomy and Real numbers

Cantor's and Dedekind's views, like those of Bolzano, are developed in
explicit reaction to the use of intuition in geometry. Their ideas are important
because each of them developed a view of the linear continuum as a set of
real numbers and which is now regarded as standard. Yet there are significant
difference both in philosophy and in their mathematical construction of real
numbers. Cantor and Dedekind can both be understood as opposing Kant's
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view that sensible intuition is needed to determine objects. Cantor thinks that
intellect is sufficient to determine objects, and aligns himself with the
philosophy of Plato who has it that the concepts are already implanted in our
mind. Dedekind is more extreme. He believes that intellect is able to create
objects as if by divine intervention, and thus intellectual intuition

determines objects. In this way Dedekind carries on the theocentric view of
knowledge “hat Leibniz held, according to which only an infinite being could
grasp the infinite, but contends that humans are gods in this respect. In spite
of these difference they both agree that every mathematical object need to be
determinate.

Let's begin with Dedekind since his view of the continuum is most
accessible. Dedekind claimed Eudoxus's theory of quantity and ratios as the
source of his theory or real numbers rather than that of Cantor or Heine
(Dedekind, 1888/1963, p. 39-40). Just as the definition of proportionality of
ratios induced a cut in the rationals, Dedekind would create an irrational
number by this method. Although Dedcxind rejected appeal to "geometric
evidence” he, in fact, begins with the idea that the linear continuum is
infinitely richer in points than the domain of rational numbers. His idea is to
construct the irrational numbers from the rationals in such a way that the
reals have the same completeness of numbers as the line has completeness of
points (1888/1963, p.9).

According to Dedekind the "essence of the continuity of the straight
line" consists in the following principle:

If all points of the straight line fall into two classes such that every point
of the first class lies to the left of every point of the second class, then
there exists one and only one point which produces this division of all
points into two classes... (1888/1963, p. 11).

The first thing to point out regarding this statement is that it may
appear as if Dedekind is simply abstracting the continuity of the line from the
line itself so that he is investigating the continuity of a class of objects
through the use of space and time. But Dedekind indicates that the converse
is the case:

Only by means of the purely logical construction of the science of
numbers, and the continuous number-domain achieved with it, are we
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in a position to investigate precisely our conceptions of space and time,
by tying these to just that number domain created in our intellect
(1888/1963, p. 32).

Here Dedekind is claiming that the structure of space and time are
investigated by arithmetic and that arithmetic is part of logic. Dedekind says
that "in speaking of arithmetic (algebra, analysis) as a part of logic I mean to
imply that I consider the number concept entirely independent of the notions
of space and time, that I consider it an immediate result from the laws of
thought” (1963, p.31). The striking thing about both of these passages is that
they both speak of producing or creating numbers and the latter adds that this
is done in the intellect. A natural reading of Dedekind's position in relation
to Kant's master argument is that he accepts that intuition is needed in order
to determine objects, but insists that there is intellectual intuition.

This reading is confirmed by the following passage where Dedekind
claims that a thing is determined by thought alone .

A thing is completely determined by all that can be affirmed or thought
about it. A thing a is the same as b (identical with b), and b the same as
a, when all that can be thought concerning a can also be thought
concerning b, and when all that is true of b can also be thought of a .... If
the above coincidence of the thing denoted by a with the thing denoted
by b does not exist, then are the things a, b said to be different, a is
another thing than b, b another thing than a: there is some property
belonging to the one that does not belong to the other (1888/1963, p. 44
5).

Here Dedekind states that a thing is determined (apparently in the
sense of Kant) by thought; he then states the identity of indiscernibles. Thus
he relates the determination thesis directly to the decidability of things.

C{ course, in the semantic tradition, the idea that one creates
mathematical objects by thought is a joke. Mayberry's reaction is indicative of
this view. Concerning Dedekind's creation of a number by a cut he makes an
amusing remark: "This, of course, is utter nonsense. However could one
undertake to "create” even one irrational number, let alone uncountably
many. Whatever could be the source of. this vast "creative” power? You may
call spirits from the vas.y deep; but will they come when you do call for
them” (1994, p. 24)? But, to be fair, this position moves away from Kant's use

118




of sensible intuition; the emphasis on freely creating new objects in the
intellect suggests that there is no requirement that new theories refer te any
specific previously existing physical objects or abstractions of such objects.
Thus, in addition to the attitude against the use of intuition there is also the
idea, central to the model theoretic viewpoint, that mathematics has no
particular objects of study.

Consequently, the modem use of Dedekind cuts drops the
philosophical overtones inherent in the idea that objects are a product of the
intellect and substitutes a definition of a modified Dedekind cut property: for
each partition of the rational numbers into two non-empty classes A and 4,
such that every element of A is less than every element of A,, there exists
one and only one element of R less than or equal to every element of A, and
larger than or equal to every element of A,. For instance V2 is constructed, by
forming the set of rational numbers (A,B) where A= (x:x* <2} and
B={y:y’22).

However Dedekind would not have allowed such an emendation to
his viewpoint. Thus one might suggest, as his friend Weber 1id, that no new
numbers are actually created by Dedekind's cut in the rationals, rather the
irrational is the cut itself as the above example would have it. Dedekind’s
response shows that he was deeply committed to idea that numbers are a
creation of the intellect.

If one wishes to pursue your way - and I would strongly recommend
that this be carried out in detail - I should still ad that by number ...
there be understood not the class (the system of  mutually finite
systems), but rather something new (corresponding to this class) which
the mind creates. We are of divine species and without doubt possess
creative power not merely in material things (railroads, telegraphs), but
quite specially in intellectual things. This is the same question of which
you speak at the end of your letter concerning my theory of irrationals,
where you say that the irrational number is nothing else than the cut
itself, whereas I prefer to create something new (different from the cut),
which corresponds to the cut .... We have the right to claim such a
creative power, and besides it is much more suitable, for the sake of the
homogeneity of all numbers, to proceed in this manner (quoted in
Stein, 1995, p. 248).

Of course the (epistemological) right to claim such a divine power is
exactly what Kant argued against. Kant wrote in a letter to his triend Marcus
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Hertz that there was a kind of divine intelligence, intellectus archetypus "on
whose intuitions the things in themselves are grounded” (quoted in Walsh,
1968). The concepts of this type are able to determine objects because in this
sort of case thinking of objects brings the objects into existence as "the ideas in
the divine mind are the archetype of things” (quoted in Walsh, 1968). Kant,
however, did not think that humans had any such divine creative reasoning
ability. Dedekind disagreed.

Whereas Dedekind draws on the idea that the mind has special (and
seemingly divine) powers of creation and could thereby create mathematical
objects, the modified procedure has become a standard device of mathematics.
But this creative power has led to strange res:lts. Here I am referring to
Dedekind's notorious proof of the existence of a simply infinite system, or the
infinity of the natural numbers. Dedekind believed that by thinking alone
one could have the idea of an infinity of natural numbers. Again, for those
trained in the model-theoretic tradition, the reaction is predictable. Boolos
describes this argument as "one of the strangest pieces of argumentation in
the history of logic”(1995, p. 234). Dedekind argues that "the totality of things
which can be objects of my thought” is infinite; for given such an object s, we
can let S(s) to be the thought that s can be the object of my thought, and this
will be a new object of my thought. S is therefore a one-one mapping of the
potential objects of my thought into themselves and therefore this totality is
infinite.

This seems closely related to Dedekind's discussion of the power of the
mind to refer to objects. In one passage Dedekind gives a transcendental
justification of the ability to refer to things:

If we scrutinize closely what is done in counting an aggregate or
number of things, we are led to the ability of the mind to relate things
to things, to let a thing correspond to a thing, or to represent a thing by
a thing, an ability without which no thinking is possible. Upon this
unique and absolutely indispensable foundation ... must, in my
judgment, the whole science of numbers be established (1888/1963, P.

32)

Nor is Dedekind alone among mathematicians in thinking that this
capability is fundamental, or that the things referred to must be determinate
in the sense that we can recognize them again (Leibniz's notion of a clear
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thought) and so distinguish them from other things; and also that these
things occur in determinate laws. Hilbert calls this capability an axiom of
thought or of existence of an intelligence:

... an Axiom of Thought or , as one might say, an Axiom of the
existence of an Intelligence, which can be formulated approximately as
follows: I have the capability to think things and to denote them
through simple signs (a, n: ..., X, Y, ...; ...) in such a fully characteristic
way that I can always unequivocally recognize them again. My
thinking operated with these things in the designation in a certain way
according to determinate laws, and I am capable of learning these laws
through self-observation, and of describing them completely (quoted in
Hallett, 1984, p. 179).

However, neither thinker gives the slightest explanation of these amazing
powers.

Cantor's position shares similarities with Dedekind's. He shares the
view that in order to describe the continuum we can not simply observe
continuous quantities and abstract from them their mathematical form. He
differs from Dedekind, however, in thinking that intellect creates objects.
Instead the intellect awakens preexisting concepts with which we refer to
objects. After agreeing with the position of Spinoza that the order of things
and the order of ideas were the same he takes his cue from Leibniz:

The same epistemological principle is hinted at even in Leibniz's
philosophy. Only since the new empiricism, sensualism and
skepticism, and the Kantian criticism that emerged from it, has it been
believed that the source of knowledge and certainty is located in the
senses or in the so-called form of pure intuition of the world of ideas
and must be restricted to these. According to my conviction, however,
these elements do not at all furnish certain knowledge. This can only
be obtained through concepts and ideas, which are at best only
stimulated by outer experience, but which are principally formed
through inner induction and deduction, like something which, so to
speak, already within us and is only awakened and brought to
consciousnass. (quoted in Hallett, 1984, p. 15).

Leibniz had a nice analogy for this viewpoint. The mind is not like a blank
slate (as Locke thought) but like a block of marble - not a uniform block, but
one that has veins, so that the blows of the sculptor reveal the underlying



shape. Similarly the "blows" of sensory stimulus help us uncover the
fundamental truths within us. Thus our knowledge of space and time is not
grounded in intuition but is found within the mind itself.

Our concept of time is not from experience:

... I have to declare that in my opinion reliance on the concept of time
or the intuition of time in the much more basic and more general
concept of the continuum is quite wrong. In my opinion, time is an
idea whose clear explication presupposes the independent concept of
continuity, and which even with the help of this latter can be
conceived neither objectively as a substance, nor subjectively as a
necessary a priori form of intuition. Rather, it is nothing other than a
relational concept, by whose aid the relation between various motions
we perceive in nature is determined (Hallet, 1984, p.15).

Cantor also makes the same point with respect to space. Cantor is quite
specific that the concept of continuity is not a necessary a priori form of
intuition in Kant's sense nor is it abstracted from an intuition of space or
time. Instead it is imposed upon nature by intellect alone. Thus Cantor and
Dedekind reject the idea that intuition is needed for knowledge or to supply
content to mathematics. However the sense of "free creation” in Dedekind
and “awakening” concepts is troublesome. This aspect of their thought has
been pursued by a few Platonists, such as Godel but has never been adequately
understood. The ideas of free creation and awakening of existing concepts is
related in spirit to the model theoretic tradition. The emphasis on freely
creating new concepts suggests that there is no requirement that new theories
refer to any specific previously existing objects. This orientation is in keeping
with the idea that mathematics is not concerned with any objects in
particular.

Cantor makes a similar claim as Dedekind regarding the creation or
“introduction” of mathematical objects. In order to give content to
mathematical statements one lays down a concept and its predicates. This
concept must be definite, and hence the objects be distinguished by means of
those concepts alone.

In particular one is only obliged with the introduction of new numbers
to give definitions of them through which they achieve such a
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definiteness and possibly such a relation to the older numbers that in
given cases they can be distinguished from one another. As soon as a
number fulfills all these conditions, it can and must be considered in
mathematics as existent and real (Hallett, 1984, p. 17).

A fundamental element of Cantor’s view of sets is that, in virtue of the
prindiple of excluded middle, the identity of any elements of a set is decidable,
and the membership relation is decidable.

I call an aggregate (a collection, a set) of elements, which belong to any
domain of concepts, well-defined, if it must be regarded as internally
determined on the basis of its definition and in consequence of the
logical principle of the excluded middle. It must also be internally
determined, whether any object belonging to the same domain of
concepts belongs to the aggregate in question as an element or not, and
whether two objects belonging to the set, despite formal differences,
are equal to one another or not (Dauben, 1979, p. 83.)

Here one might wonder under what circumstances a concept is
internally determined as opposed to externally determined. Cantor
distinguishes between internally determined and externally determined. By
“internally determined” he meant that a mathematical statement may not be
actually or externally determined because of lack of mathematical resources.
But a mathematical statement is internally determined where it may be
determined with a perfection of resources. For instance in Cantor's time the
set of all numbers satisfying x* + y" = z* was not known, but apparently the
problem has now been solved. So while the problem was not externally
determined in Cantor’s time it was internally determined because an actual
determination can be made with a "perfection of resources” (Dauben, 1979,
p-83).

In building up a set of real numbers Cantor had to start with already
given numbers, and defined new numbers in relation to the old, natural
numbers. But, if Cantor wanted to show that intuition is not needed in order
to determine mathematical objects he had to show that it is not needed to
determine the natural numbers. Thus the foundations of calculus ultimately
depend, as Frege skillfully pointed out, on the foundations of arithmetic. At
this point Cantor applies a two-fold act of abstraction. One considers a set M
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and the intellect abstracts from the nature and then the order of the elements
to arrive at an ordinal number (Hallett, 1984, p. 128). However, Cantor’s
method of determining new objects was rightly subject to strong criticism by
Frege. Frege raises an amusing problem. If one considers a white cat and a
black cat and disregards the properties that serve to distinguish them, then
one obtains the concept of “cat”. If one then proceeds to abstract all
distinguishing characteristics in order to obtain “pure units”, the cats
themselves, whatever we think of them, still remain the same. Moreover, we
will no longer have the idea of a number, or plurality of units but of one unit,
because all distinguishing characteristics have been abstracted away (1984, p.
45). Dummett gives the standard view of Frege’'s argument when he
comments that Frege’s argument refutes the abstractionist view of number
“brilliantly, decisively, and definitively” (1992, p. 82).

Cantor never solved this problem and it was left for others, such as
Frege and Zermelo, to attempt to solve. But supposing that we are given the
concept of a natural number independent of intuition, then the problem is to
show that we can generate a continuum from these concepts. Cantor’s idea
was to construct a set of objects - real numbers - which can be placed into one-
one correspondence with the points of a line. This isomorphism to the points
of the intuitively given continuum would then show that the constructed
continuum was a real continuum. But Cantor was unable to prove that the
real numbers were isomorphic to the points of the intuitive line, and so he
took this correspondence as an axiom.

The assumption that space is continuous amounts to the supposition
that the set of real numbers is isomorphic to the linear continuum. It was
clear to Cantor that every point on the line corresponded to a real number b
because each point could be represented as a distance b from the origin. But it
was not clear that each real number corresponded to a point on the linear
continuum. Thus Cantor took it as an axiom that “also, conversely, to every
number there corresponds a definite point of the line, whose coordinate is
equal to that number” (quoted in Dauben, 1979, p. 40).

Given this correspondence between the points of the smooth
continuum and the constructed continuum Cantor was able to sustain the
idea that continuity is an autonomous notion. Referring to the assumption
that physical space is continuous Cantor says:
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According to the simultaneous but completely independent
investigations of Dedekind and the author, this assumption consists in
nothing other than the assumption that every point whose coordinates
X, ¥, z are given by absolutely any definite real, rational or irrational
numbers, in a rectangular coordinate system, is thought of as actually
belong to space. There is no inner compulsion to this, but rather it
must be seen as a free act of our activity of mental construction. The
hypothesis of the continuity of space is hence nothing other than the
assumption, arbitrary in itself, of the complete one to one reciprocal
correspondence between the three dimensional purely arithmetical
continuum (x, y, z) and the space which lies at the basis of the world of
appearance. (quoted in Hallet, 1990)

Given this construction Cantor was faced with the problem of
distinguishing between the continuous and the discrete, i.e. between the
rational numbers and the real numbers. In other words, Cantor believed he
had constructed a continuum and he wanted to characterize the “essence” of
the continuum. Cantor went on to give a characterization of the continuum
in terms of its “perfection”, the fact that a set is equal to its limits points, and
its order. No kind of characterization of the real numbers is nowadays
recognized as essential (MacLane, 1986, ch. 4). It can be described as a
complete, archimedean-ordered, field, or a complete, unbounded, ordered, set
with a denumerably dense subset. These differing axiomatizations reflect
different aspects of the continuum, its algebraic, continuity and order
properties in the former case and its order, and continuity properties in the
latter case. The essential point is that these axiomatizations of the real
numbers allow for the description, in a purely formal manner, of concepts,
such as continuous, infinite divisibilty, derivative, integral, and the proofs of
theorems concerning these concepts without recourse to intuition.

Although, Cantor and Dedekind both found methods of completing
the rational with irrationals Cantor differed with Dedekind on the
construction of the real numbers. Whereas Dedekind “created” irrational
numbers from Dedekind cuts, Cantor defined them as “fundamental
sequences” or “Cauchy sequences” of rational numbers. Cantor’s construction
relies on the principle (usually called the “Cauchy condition”) that every
fundamental sequence has a limit b. By this Cantor meant that each sequence
was associated with a symbol “5" which could be considered a real number.
For instance the sequence (1, 1.4, 1.41, ...} is identified with v2. Since, for any
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real number b, there many sequences which converge to b, one identifies the
sequences which converge to b, and defines the collection of all such
equivalence classes of fundamental sequences to be the set of real numbers B.

This different methods of constructing the reals is usually taken to be
of no consequence mathematically because Dedekind reals and Cauchy reals
can be shown to be isomorphic in set theory (MacLane, 1986. § 4.5). An
interesting point which emerges, however, is that the two constructions are
not, in general, isomorphic (Johnstone, 1977, § 6.6). So while the
isomorphism of the two constructions led to confidence that concepts alone
could describe the actual continuum, this result only holds generally if one
assumes that the only framework is that of set theory.

Leibniz’s puzzle revisited: the master argument extended

It is time to revisit Leibniz's puzzle. The puzzle arose as a result of two
of Leibniz’s cherished views: the identity of mathematical objects is decidable,
and every curve is an infinitangular polygon. Of course, the problem is that
the infinitesimal parts of an infinitangular polygon are not decidable.
Therefore the infinitesimal parts of a continuum are not mathematical
objects. So, a continuum cannot be a set, if it is to contain infinitesimals. For
Leibniz the solution would be straightforward. Intuition was simply a
confused perception of well-distinguished wholes. Thus Leibniz’s solution
was to consider the continuum to be a well founded fiction rather than a real
object. It is a "fiction" because it is not a single whole, but a confused
representation of a multiplicity which is taken to be a whole, and “well-
founded” because it is not simply a hallucination or a dream. The continuum
and its parts are not real objects at all; so the puzzle is solved. Every real object
is decidable.

For Kant intuition was a completely different faculty; one which has a
completely different function mandated by the unity of our apperception. The
faculty of intuition grasps the continuum as a whole prior to the perception
of its parts. Leibniz had erred, according to Kant, in denying that the
continuum can be grasped as a whole because of his misunderstanding of the
function of the faculty of sense. Even if this were true in Kant's time, Cantor’s
discoveries alter the situation. Prior to Cantor, who solved the paradoxes of




the infinite, the intellect was regarded as unable to grasp a completed infinite
because of the alleged inconsistencies in the concept of a completed infinite.
But the construction of a punctual continuum of real numbers within set
theory seemed to undercut the need for intuition to provide a representation
of it. Although, Kant was, perhaps, correct that intuition was needed to grasp
an infinite whole because of the inconsistencies in our concept of the infinite,
Cantor's theory has swept away this barrier to intellectual representation of
the infinite. Moreover, as Russell concluded, while the inadequacy of Kant's
logic to force the representations of infinite magnitudes was a barrier to
intellectual representation of such magnitudes, modern logic has overcome
this barrier.

But Kant's master argument can be altered in a way which counters
Russell’s argument. According to the set theoretic approach every object is
decidable. Thus, insofar as intellectual representation is mediated by the
concepts of set theory, we are limited to representing decidable objects. Kant's
argument against the ability of the intellect to determine mathematical
objects was heavily based upon Newton’s account of the calculus and its
dependence upon intuition. But ironically, it seems that Leibniz’s approach
would have served him better in response the objections of the rigorizers. For
if one takes seriously the perception that the continuum is smooth, i.e. that
each curve is locally straight, then parts cannot be decidable, and no
conceptual representation can be had. In particular there is no model of a
smooth continuum in the universe of sets.

Thus Leibniz's puzzle is not a puzzle for a Kantian. It is simply another
illustration that mathematics must use intuition. Friedman, following
Russell, argued that Kant's logic was too weak to determine objects, but one
can now argue that the implicit (classical) logic of set theory is too strong
because it does not allow the existence of (undecidable) infinitesimals. Thus
the infinitesimal techniques of Leibniz cannot work in a conceptual
framework where every object is decidable. But every framework which is
thought through the intellect is just such a framework. Thus, the faculty of
intuition must be used.

This observation leads to a related problem. McLarty has claimed that
Dedekind and Cantor created sets by abstracting the punctual parts of smooth
spaces to form sets (1988). Of course Cantor was unable to prove that the set of
real numbers was isomorphic to the continuum and took the correspondence
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as an axiom. But if we take the smooth continuum seriously, it is possible to
understand that there was no way that Cantor could have proven, in set
theory, that the punctual parts of spaces are sets, and that the continuum of
real numbers are isomorphic to the smooth continuum. Such a proof
requires that we be able to represent the smooth continuum by set theory -
which we can't.
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Figure 18

Understanding the transition from the Leibnizian conception of the
continuum to that of Cantor and Dedekind requires a wider kind of
framework pictured above. Given such a picture the rigorization of the
calculus is understood as extracting only the points of smooth objects and

maps in order to give a discrete framework. But, conversely, it is now possible

to build a model of the smooth framework by constructing it out of constant
sets and constant maps. When we view the shift from this wider framework
it will become apparent that there is a solution to Leibniz’s puzzle. I will
argue that this shift to smooth spaces is an extension of the semantic
approach to mathematics, and that it is required in order to answer Leibniz's
puzzle.
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FROM SETS TO SMOOTH SPACES

"Proofs of the simplest truth lie hidden very deeply and can at first only be brought to light in
a way very different from how one originally sought them.”
Gauss

In the last chapter I showed how Bolzano, Cantor and Dedekind
overcame Kant's argument that the continuum had to be given in intuition
by actually constructing a punctual continuum in thought. This might be
thought of as simply supplying an alternative continuum to the intuitive
one, but, from Russell's point of view, the freedom that Cantor introduced
only serves to show that the earlier conceptions of the continuum were
simply due to the limitation of Kant's logic. I have argued that this criticism
applies equally well to the set theoretical analysis of the continuum of Cantor
and Dedekind since, from the point of view of category theory, the idea that
an object is a set is highly restrictive itself. In particular it does not allow
variable quantities, undecidable objects, including infinitesimals. Thus
Leibniz's puzzle has not really been answered by the semantic tradition as
presently understood. In this chapter I discuss how category theory allows one
to build variable sets from (constant) sets which offer a less restrictive
framework in which the Leibnizian continuum can be regained. I argue that
this pushes the semantic tradition further and allows Leibniz’s puzzle to be
solved.

This extension of the semantic tradition is accomplished by
generalizing the notion of set to that of a set smoothly varying over a space or
a smooth space. 1 attempt to motivate this idea by considering McTaggart's
view of temporal flow. In passing I consider two objections to such a
framework, (i) McTaggart's argument that there can be no variation; (ii) the
more general objections to the use of categories rather than sets as
mathematical models. In the framework of smooth spaces every curve is an
infinitangular polygon and the infinitesimal calculus may be developed in
such a framework. Given the development of such a smooth framework the
rigorization of analysis can be understood as shifting from the framework of
smooth space to the framework of disciete spaces and maps by taking the
punctual parts of smooth spaces and maps. The extension which I \m



proposing is to shift from the framework of discrete spaces and maps back to
the framework of smooth spaces and smooth maps.

Variable Sets

Leibniz, Newton, and their followers - even Cauchy- conceived of the
calculus as a calculus of variable quantities. Kant, Newton and Leibniz all
considered the continuum to be generated by the motion of points. It is this
variation or temporal flow which distinguishes the continuum from a
collection of discrete points. The set-theoretical model of the continuum
elaborated by Cantor and Dedekind did not completely silence dispute on this
issue. Indeed at least one of their critics, Du Bois Raymond, took issue with
the static nature of their continuum. He relates that points themselves have
no length and need to be moving in order to generate a length, thereby
raising a point common to Kant and Newton.

The conception of space as static and unchanging can never generate
tne notion of a sharply defined, uniform line from a series of points
however dense, for after all, points are devoid of size, and hence no
matter how dense a series of points may be, it can never become an
interval, which always must be regarded as a sum of intervals between
points. (Quoted in Ehrlich, 1994, p. x)

The majority opinion, however, was not with dissenters such as Du Bois
Raymond, and by the twentieth century the mistrust of temporal intuition
was so firmly entrenched that Russell could, for instance, ridicule the
conception in the following remark:

Originally, no doubt, the variable was conceived dynamically, as
something which changed with the lapse of time, or as is said, as
something which successively assumed all values of a certain class.
This view cannot be too soon dismissed. If a theorem is proved
concerning n, it must not be supposed that n is a kind of arithmetical
Proteus, which is 1 on Sundays and 2 on Mondays and so on. (1903, §

87)

Thus, the rigorization of the calculus produced a change in the conception
of variable quantities. A variable quantity was no longer regarded as
something which is in a state of transition, such as a point flowing from point
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to point; rather it is captured as a collection of constant points. For Russell
"Motion consists in the fact that, by the occupation of different places at
different times, a correlation is established between places and times.... , and
when such correlation exists, there is motion. Continuous motion consists in
the fact that the function defined on these domains of points and times is
continuous (1903, §446). From the point of view of the "active” conception of
flowing quantities and flowing objects such a correlation is merely the result
of "stopping"” or evaluating the flowing quantity at certain moments.

The modern antagonism toward variable quantities, which was a part of
the rigorization of the calculus, gained support from unexpected quarters: the
British idealist philosopher J. M. E. McTaggart. McTaggart's position, argued
in his brilliant (1908) paper, can be summed up starkly: there is no coherent
sense in which events vary with respect to time. Rather, there are only
timeless quantities which we order by means of direct experience, anticipation
and recollection. Those events which are directly experienced are present;
those which are fading further and further in our memory are further and
further in the past; and those events which are more and more faintly
anticipated are further into the future. Set-theorists might well find
themselves applauding this idea, for it suggests that they were right all along
to abandon variable quantities for constant sets.

Recently, however, this apparent elimination of variable quantities in
favour of static quantities by mathematicians such as Dedekind and Cantor
and philosophers such as McTaggart has been the subject of severe criticism.
The American mathematician F. W. Lawvere has vigorously argued that the
notion of variable quantity is

" a notion which was taken quite seriously by the founders of analysis
and which has not been eliminated by set theory any more than
continuity has been eliminated by the ‘arithmetization of analysis’
(which is just that and not analysis itself). (1975, p. 135)

According to this view the motion of a variable quantity is needed in order to
express the continuity of space and time, and even to understand constancy or
lack of motion. Lawvere continues:



... the concept of motion as the presence of one body at one place at one
time, in another place at a later time, describes only the result of
motion. Every notion of constancy is relative, being derived
perceptually or conceptually as a limiting case of variation. (1975, p.
136)

This was certainly the conception of motion that was derided by Russell in
the previously quoted remark, but is there any reason for thinking that
variable quantities are coherent after all? In answer to this Lawvere further
proposes that the notion of a "variable set” is able to recapture the variability
that was ignored in the arithmetization of the calculus. Lawvere's motivation
is admittedly vague, but worth pursuing insofar as it promises to give a new
account of the variable quantities of the seventeenth century.

Lawvere's stated dissatisfaction with the Russellian view of motion as
recording the result of motion rather than characterising motion is similar to
McTaggart's reasons for introducing an A series of temporal properties.
Namely, a B series of static points does not exhibit any motion. It will be
helpful, then, to briefly examine McTaggart's conception of temporal flow in
order to understand the motivation for variable sets .

The central intuition about time flow for McTaggart is simply this: events
which are present, were once future and will become past. Thus, he gives an
analysis of the flow of time as that of an A series of temporal properties
varying with respect to a B series of temporal instants. Much as the motion of
an object in space is a succession of positions with respect to time, the flow of
time is the successive acquisition of A series properties of pastness,
presentness and futurity by B series events; properties which every event
must have. In order for a quantity to be varying it must possess both A series
and B series relations and properties.

past present future
A series: --- »
J'motion-u-—o
B series:
events a b ¢ d e f G H | J K L

Figure 19
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Put more abstractly the point is that, as the diagram portrays, variation
requires that the A series and B series supply an alternative systems of
coordinates for events. The coordinates in the A series are the properties of
being present, and various degrees of being future and being past. In the B
series events are coordinatized with respect to an earlier-than relation. In
effect, the B series is a static record of events, and the A series properties
moves across the B series endowing events with temporal properties.
McTaggart writes that " ... this characteristic of presentness should pass along
the series in such a way that all positions on the one side of the Present have
been present, and all the positions on the other side of it will be present”
(1908, p. 118).

McTaggart considered an A series varying with respect to a B series to be
necessary for the flow of time. He argued as follows: Events are located in a B
series only if time exists; time exists only if there is genuine change; but there
is genuine change only if events are located in a real A series. Therefore,
events are in a B series only if they are (also) located in an A series. One might
be suspicious of the idea of "genuine” change. Indeed one might argue that
the supposition that "genuine” change requires an A series is gratuitous.
Why can't there be genuine change in a B series? The change of an event F
into an event G is simply the fact that F is earlier in time than G.

What is problematic in any purely B series account of change is that a B
series cannot exhibit genuine change, since B series facts express relations
which are fixed and eternal. If F is before G, it was so a million years ago, it is
now and will be a million years hence (McTaggart, 1908, p. 459). In order for
there to be genuine change there must be a genuine difference in properties of
events at different times, rather than merely relations which hold for all
time. One must be able to say which event is (now) present, and therefore
which events are past and future in an absolute way rather than simply
expressing fixed relations between events.

Let's try to mathematically model an A space varying with respect to a B
space. A first idea is to think of time as a B - indexed family of sets A, but this
would just seem to be reproducing the B series constancy in the A series, since
a family of sets exhibits no genuine variation. The A series would not
"move" along the B series. Instead, drawing on Lawvere’s idea of variable set,
let's build a new model out of sets and functions, where a functior. from a set
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X to a set Y introduces the idea of X becoming Y, so that it is the movement of
the A series across the B series which is being described and not simply the
result of such motion.

In order to explain this new framework it is necessary to begin with the
notion of a category. A category is just a collection of objects and arrows, for
instance a collection of sets and functions. Each arrow goes from one object
(domain) to another object (codomain). To say that f goes from A to B we
write f:A—— B. In some cases "goes” will be taken quite literally as
involving motion. Two arrows f and g with domain of f = codomain of g
are composable. If f and g are composable arrows, then they have a
composite arrow fog . There are three axioms:

Domain and codomain: For every composable pair f and g, the composite
fog goes from the domain of g to the codomain of f.

Identity: For each object A the identity arrow 1, goes fron. * to A.
Associativity: composition is associative.

These are quite general axioms. From the point of view of category theory it is
natural to regard these axioms as providing a mathematical framework
which has as much freedom as possible, and any additional axioms as
restricting mathematics to a particular framework. These axioms are
evidently true for sets and functions (providing that we regard functions as
going from a domain to a prescribed codomain and not just to the range of
the function).

These axioms are also satisfied by other structures such as the category of
pairs of sets and pairs of maps, or the category of partially ordered sets and
order preserving maps. They are also true for more complicated categories
such as the category of topological spaces and continuous maps. The feature
which is most relevant for our purposes is the fact that new categories can be
built from (old) categories. One can use this feature to construct more
complex categories from sets and functions which will share many features of
the category of sets but which, unlike the category of sets, will vary.

The category of sets and functions is our first example of a topos. For the
moment think of a topos as a category which is sufficiently like the category of
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sets. In other words, a topos is a category with the following features. Any two
objects A and B have a product, Ax B, comparable to the Cartesian product in
a model of set theory. There is a terminal object 1, such that for any object X
there is a unique map X——1. In the universe of sets these are the singleton
sets. For any pair of objects A and B, there is an exponential object B* of all
mappings A~ B. This corresponds to the set of all functions from A to B
in the category of sets. Finally there is an object of truth values Q such that
there is a natural correspondence between subobjects of X and arrows

X ~—— Q. In the universe of sets Q is {0,1) and maps X ——Q are
characteristic functions or properties.

The difficulty with developing Leibniz’s calculus with the concepts of set
theory is that the classical logic which is presumed is sufficiently strong to
prevent the existence of infinitesimals. However, the generalization of the
concept of set to that of topos will allow one to define an “internal language”
which is weaker than first order logic, and which allows infinitesimals to
exist. Russell’s defence of set theory against Kant has rebounded upon him.
Just as he criticized Kant’s logic as being too weak to allow proofs in the
calculus without the aid of intuition, it turns out that the set theory which he
defended was too strong to develop the Leibnizian calculus.

A rough idea of how such an internal language is defined is as follows. In
the category of sets arrows are well pointed in the sense that for every parallel
pair of arrows f,g:A—— B either f =g or there is a map x:1—— A such that
fx # gx. Hence an arrow from 1-—— A may be considered an element of type
A. However there are not “enough” arrows in an arbitrary topos to make it
well pointed. Nevertheless, in an arbitrary topos arrows are determined by
their “generalized elements” w:U/ —— A in the sense that for a parallel pair of
arrows f,g:A—— B, either f = g or there is a map u:U—— A for some U
such that fu= gu. Arrows 1—— PA, for arbitrary objects A are set - like in that
they satisfy a kind of bounded Zermelo - Frankel set theory. This is the so -
called local set theory of a topos. Arrows from 1— N are natural numbers
for they satisfy Peano's postulates for natural numbers. Arrows to 1 are
formulas. Moreover arrows Q2—— define natural logical operations of
conjunction, disjunction, negation, implication and even quantification.

The subobjects of any object classified by Q form an algebra which is
weaker than the usual algebra of first order logic and is called a Heyting
algebra. For instance, the algebra of open sets of a topological space have this
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algebra. The most notable aspect of this algebra is that the the logical
operations it defines are intuitionistic rather than classical, and it does not
follow that every object is decidable (see Bell, 1988 and Borceaux, 1994 for
details). A Heyting algebra in which the law of excluded middle is valid is
called a Boolean algebra. Thus, in generalizing from set to topos one effects a
generalization of the truth value object from a Boolean algebra to a Heyting
algebra, and a corresponding weakening of the logical operations.

For the simplest case of a variable set consider a set varying over two
moments of time, 0 (o'clock if you will) and 1 (MacLane, 1973, 1986; Bell,
1993). This is our second example of a topos (Set€ for any category C is still a
topos, Bell (1988, p. 60)). Let 2 be the category with objects (0,1} and let arrows
be from A—— B when A < B. The objects of the category are the functions
t:X,— X, and 7:Y,——Y,, (functions always specify their domain and

codomain), and the arrows of the category are
f(6:Xy— X, )— (7Y, »Y,) the pair of functions such that the diagram

t
o Xs

L | fa

commutes. (That is ¢ f, = f,1.)

One may view this category as a set of events varying over two times, 0
and 1. X, is earlier than X,, so X,s time index is smaller than X;s time index.
But a variable set is not simply a static sequence X,, X,, for, in addition, it is
changing from X, to X,. The object t (an arrow) is X, changing into to X,, so
we may think of X as a single variable object standing for t together with its
domain and codomain. The fact that the object is an arrow (which always has
a domain and codomain) highlights the fact that it is the motion of the set
which is being described and not the resulting domains. As Bell has
emphasized, “In category theory the morphisms (arrows) between structures
(objects) play an autonomous role which is in no way subordinate to that
played by the structures themselves. So category theory is a language in which
the verbs are on equal footing with the nouns” (1988, p. 236). Or, one might
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add, in category theory variable quantities are on an equal footing with
constant quantities.

A new and clearer perspective is given if we consider an object ¢. X, — X,
to be pictured as a space X over 2. According to this viewpoint the category
we have been describing is a category of maps (called functors) between
categories. Thus is the category of all maps from 2 to Set.

t

X: Xe—m Xa
T
P
.L
{0.1) 0 1
Figure 20

In this picture there is 2 map P mapping X to 2 and for each i€ 2, the
inverse image p'(i) is called the fibre of X over i. This emphasises that a set
is embedded into a variable set as a (constant) set varying over a one point
space. Here is where the A series enters the picture. X may be regarded as the
A series and 2 as the B series. Thus ¢ is a map which describes the events in X,
changing into X;: events which were future are becoming present. We regard
P as assigning X; to 0 and X, to 1 when X, is in the past of X;. So the
transition map t: X, — X; holds when X; is in the past of X;. The B series is
generated, then, by the way that P partitions events into times. X, is earlier
than X, is just the relation that X; and X, have with respect to the base space
of times.

A cross-section of a space p:X ——2 over 2 is a map 5:2—— X such that
ps is the identity map. The map s can be viewed as picking out one element
from each fibre. So the set of all cross sections is thus the set of all arrows
from 1—— X, or the points of X. Therefore this points map I is a functor
from Set* —— Set which effectively takes the points (1-——— X) of Ser’ into Set.
Conversely, the construction of Ser* takes constant sets and embeds them in
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Essentially this reveals a relationship between two distinct mathematical
frameworks: variable sets and constant sets which are related as follows:

) pointswmapl )
variable
sets
sets
,_Sonstancy mapa
N ~—
Figure 21

The mathematical essence of the rigorization of analysis, I will argue, is just
this shift from variable sets to sets. But because of the inability of set
theoretical concepts to represent the smooth continuum of Leibniz, this
rigorization must be extended further by shifting back to variable sets.

A digression: on the paradox of temporal variation

In spite of the fact that I have begun to give a mathematical development
of temporal variation in terms of Lawvere's conception of variable sets we
now come to a serious problem. For, notoriously, McTaggart denied that this
conception of change was possible because it harbours inherent
contradictions. So, at this point a defender of McTaggart would likely object to
the construction of variable sets by claiming that there is no variation in X.

X is simply a static sequence of elements which possesses different properties
at different times. According to this objection X (i. e., the function

1:X,—— X, ) is only a static sequence of X; s at each ¢, , for each i is fixed,
eternal and constant. X; is not becoming X,,. Let me digress for a moment to
discuss this issue, since I think it is necessary to consider McTaggart's well
known objections in order to vindicate the idea that X is varying ar< not just
a more elaborate system of constant quantities.

McTaggart argues as follows (1908, p. 468): If events are located in a real A
series then each event acquires the absolute properties of past, present and
future, since, after all, what is present, was once future and will become past.
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Past, present and future cannot be relations, because such relations would
hold for all time, and so each event in such a series would be static and
constitute a B series. This is because if X is past relative to Y it will always be
past relative to Y; hence static. On the other hand there is a contradiction in
supposing that any event has (timelessly) any two of these absolute
properties. Therefore, a real A series cannot exist. But since the existence of
the earlier than relation (the B series) depends upon the existence of a real A
series, there is no B series. That is, time is unreal; or, in other words there is
no variation.

Of course one should immediately object, as McTaggart himself points out,
that the A series properties are contradictory only when attributed
simultaneously. It is never true that an event is past, present and future - but
is present, was future and will become past. They are not contradictory if they
are attributed successively. But the fact that such events are successive cannot
come from the B series, because this series is static. And so the successive
attribution of A series properties is done relative to the A series itself. To state
this again: an event is present, was future and will become past.

McTaggart is not slow to point out the danger of this response and what he
says is potentially devastating:

What we have done is this - in order to meet the difficulty that my
writing of this article has the characteristics of past, present, and future,
we may say that it is present, has been future, and will be past. But "has
been” is only distinguished from "is" by being existence in the future.
Thus our statement amounts to this - that the event in question is
present in the present, future in the past, past in the future. And it is
clear that there is a vicious circle here if we endeavour to assign the
characteristics of present, past and future by the criterion of the
characteristics of the present past and future. (1908, p. 468)

So McTaggart's response is that the price of attributing A series temporal
properties to events is a new higher-level contradiction, and in order to
attempt to vitiate this contradiction one must engage in a vicious regress.
Nonetheless, one may argue in response that when one says, as in
McTaggart's preceding example, that an event "has been” when it is future in
the past, we are not using future and past at the same level. Therefore there is
no vicious circle of A series attributes. Instead, there is a hierarchy of levels of
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temporal properties. Each time an event is said to possess an A series property
it must be qualified by means of an A series property at a higher level.

But in that case, says McTaggart, the fallacy will exhibit itself as a vicious
regress rather than a vidous dircle since each attribution of an A series
property will have to be qualified at a higher level. Thus, the contradiction of
being present, past and future at level one is resolved by ascending to level
two so that, for instance, an event is not present simpliciter, but is present in
the present, future in the past and past in the future. Of course, if this is so, a
similar contradiction arises at the second level as it did on the first level, since
an event must have all the second level temporal properties unless it is
specified that it has them in succession at a third level. In each case the new A
series will face the same incompatibility of attributes and a new A series will
need to be constructed. So “You can never get rid of the contradiction, for by
the act of removing it from what is to be explained, you produce it over again
in the explanation” (1908, p. 469).

There is a strong inclination, as Dummett (1960) has pointed out, to regard
McTaggart's denial of flowing time (and thus variable quantities) as a deeply
confused sophism based upon a misunderstanding of the indexical nature of
temporal predication. For consider other instances of indexical predication.
Every place can be designated as here and there, near and far, and each person
can be designated I and you. A Zebra may be designated as black and white.
These indexical predicates may be applied to things in various circumstances.
One might go on to argue, therefore, that there can be no space, personality,
nor colour since here and there, near and far, I and you, black and white are
incompatible predicates . But the sense of incompatibility is that there is no
circumstance in which they both apply to the same entity. So incompatible
predicates do apply to the same entity (in different circumstances), but this
incompatibility does not, thereby, result in a contradiction. The confusion
that is displayed is to neglect that indexical predicates are implicitly
relativized to circumstances.

Yet I agree with' Dummett's observation that this "solution” “rests on a
grave misunderstanding” (p. 1960, p. 501). The point is underscored by the fact
that McTaggart hasn't the slightest inclination to make these arguments
regarding space, personality, or the colour of zebras. McTaggart's viewpoint
hinges on the apparent fact that, unlike the cases of personality colour and
space, a complete description of events taking place in time is impossible
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unless indexical expressions enter into it. We can coordinatize the whole of
space and completely describe the position of objects in space in terms of those
coordinates. We can coordinatize time and describe exactly when each event
occurs in time. But such a description would be incomplete and static, since it
would not describe which event is occurring now. Nevertheless when we
attempt to give a complete description of time, then the use of A series
indexical expressions will then introduce contradictions.

If this is correct so far, then we have a choice between giving up the reality
of temporal flow or giving up the idea that a complete description of reality ‘s
possible, but still maintaining that temporal flow is, indeed, real. McTaggart
gives up the reality of temporal flow and Dummett gives up the ability to
offer a complete description. But I think that variable sets present us with a
third option by allowing us to give an incomplete descripuon of time flow
which is nevertheless not a static description. Where McTaggart goes wrong, |
think, is to believe that we must think of individual objects as constant
objects, and so temporal attributions are made to such objects. When thes¢
attributions are made to a constant object a contradiction results. Thus, in
order to avoid a contradiction, A series predications must be made only to
varying objects.

But how can we treat a variable set X as truly varying, rather than simply a
sequence of objects X, X,,...X,? In set theory the mapss: X, —— X, and
r:Y,—Y,, are treated as reducible to sets, i.e., to the objects of the category.
Thus any map together with its domain and codomain is merely a fanciful
description of a constant set. Category theory, on the other hand, permits
arrows to be irreducible to the objects of the category. There is the possibility
that a map represents motion. Moreover since maps are not forcibly reduced
to sets, and so we may consider the map ¢:Y,——Y, together with its objects
as itself an object in its own right, and one which is not a set. To think of a
map as a variable set is to treat it as a unity, or an object. In other words, it
extends the idea in set theory of taking a collection of objects to be a unity, to
taking objects and arrows together to be a unity. Since the arrows are not
taken to be automatically reducible to objects, new objects are formed which
do not exist in the category of sets. What justification exists for taking such a
step? The justification is that, since the objects of a topos share deep structural
similarities with sets, then one has just as much reason to treat an arrow
r.X,—— X, as an object, as one has to treat a collection of objects as an object.
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Category theory and the continuum: a semantic approach

The main purpose of this section is to suggest that category theory is
part of the semantic tradition in mathematics - more precisely, of the model
theoretic approach to mathematics. The semantic tradition can be seen as an
attempt to show that intuition is not needed in order to determine
mathematical objects. Recall that Kant believed that mathematical statements
could not be thought without an a priori intuition to provide their meaning,
as well as to ground or justify them. In response to this idea the semantic
tradition beginning with Bolzano began to develop a punctual continuum in
the form of a set of real numbers which could be thought without relying on
intuition. Category theory generalizes this trend by showing how a non
punctual continuum can be thought without the aid of intuition.

I have concentrated on the views of Cantor and Dedekind because their
view of the continuum has now become standard and they can both be
understood as motivated by the semantic approach to mathematics. However,
the history of the semantic approach is long and complex and will not be
retold at any length here. It is sufficient to note that Cantor and Dedekind’s
construction of the linear continuum, Russeil and Frege’s logicism, and
Hilbert's axiomatic approach all owe much to the semantic tradition. I have
already extensively quoted from Russell who intended his works Principles of
Mathematics and Principia Mathematica to prove that Kant’s view of
mathematics was faulty (Hylton, 1990). Frege repeatedly insists that it is not
necessary to refer to “foreign elements” such as space and time in order to
justify arithmetic (Demopoulos, 1994; Dummett, 1992; Hallett, 1994). For
instance Frege states, in the Begriffsschrift that by using his "concept script” in
mathematical proof:

... we can see how pure thought, irrespective of any content given by
the senses or even by an intuition a priori, can, solely from the content
that results form its own constitution, bring forth judgements that at
first sight appear to be possible only on the basis of some intuition.
(quoted in Demopoulos, 1994, p. 229)

Hilbert can also be considered to be in this tradition because of his stress on
the self - sufficiency of the intellect in mathematics.
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... in the further development of a mathematical discipline, the human
intellect becomes conscious of its self - sufficency, encouraged by the
achievement of solutions in the past. Out of itself, and often without
recognizable stimulation from without, intellect ~reates new and
fruitful problems, through purely logical combinations, through
generalization, through specialization, through separating and
collecting concepts in the cleverest ways, and thus steps forward itself
as the real questioner. (quoted in Hallett, 1994, p. 161)

Within the semantic tradition there is a more specialised subapproach
to meaning, the model theoretic approach. This approach accepts the
distinction between subjective and objective representations of mathematical
statements but pushes the distinction one step further by considering
objective content to be relative rather than fixed. In contrast with the model
theoretic viewpoint Russell and Frege took logic to be an umbrella theory
which deals with the general operations of any concepts and which governs
all of our thinking. In this sense logic is supposed to be a universal language,
which supplies the “laws of thought” for every domain. The universe of
discourse must be “everything that exists.” Indeed Russell argued that logic
must be a universal language because to think otherwise would lead to
absurdities.

His basic argument was repeated on several occasions. Russell’s
argument is that if we are to have a restricted universe of discourse,
something other than simply the universe, then we must establish such a
universe of discourse by means of a statement which restricts the variables to
a specific domain. But in that statement we have no reason to assume that we
are using a restricted universe of discourse. We can make such an
assumption only if we make a prior statement in which the restriction of the
variables are made explicit. But then the same point will apply to this
statement. Thus in order to have all variables restricted we will require an
infinite regress of restricting statements. Since we can’t have such a regress,
the use of restricted variables presupposes unrestricted variables which range
over everything that there is (Hylton, 1990, p. 145). Moreover, since logical
propositions must be thought of as completely general, and unconditionally
true only the unrestricted propositions are to be counted as part of logic.

The model theoretic viewpoint differs with this point of view Ly taking
the objective content of mathematical statements to be relative rather than
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fixed. The distinction is most succinctly introduced by very briefly considering
the basis of the dispute between Frege and Hiibert on the proper use of axiom
systems. For Hilbert the non logical constants of a language, such as “point”,
“shoe”, “beer mug”, have a variable reference. In Hilbert's most memorable
statement he makes reference to this variability by claiming that “point”,
“line” and “plane” might refer to table, chair and beermug. The point is that
once an interpretation is given, the meaning of the non logical terms is fixed,
but not prior to a choice of interpretation (Demopoulos, 1994; Hallett, 1994;
Hodges, 1986). Thus the reference of the non logical terms is allowed to vary.

The process at work here in the introduction of the model theoretic
approach is that of replacing the non logical constant by a variable, and its
associated relativisation of the notion of truth from truth (in the universe) to
truth in a structure. Hodges (1986) take the discovery by Tarski and Vaught of
the notion of structure to be the discovery of a new indexical term like “here”
or “now”. Tarski argued, notably, that the notion of truth must be relativised
in this way in order to solve semantic paradoxes such as that of the liar
(Etchemendy, 1988). A notable consequence of this approach is that it allowed
for a clear definition of logical consequence which did not depend upon the
Kantian idea of content. No longer is a proposition B a logical consequence of
A in virtue of its containing the content of A. Rather B is a logical
consequence of A because in every structure in which A is true, B is also true.

While Tarski succeeded in isolating the notion of truth in a structure,
it has been widely assumed that such structures must be drawn from a fixed
domain of sets - the so called “absolute” universe of sets. Now, category
theory allows one to proceed further in the replacement of constants by
variables. Instead of seeing the structures of mathematics being drawn from
the domain of an absolute universe of sets, this universe is itself seen as one
among many categories which play the role of the structures of category
theory. In other words category theory allows the category to vary rather than
being a fixed category of sets.

Of course, this view of category theory as an extension of the model
theoretic outlook did not originate with Eilenberg or MacLane, whose
intentions were purely mathematical. They were considering certain functors
which assign certain groups to topological spaces. For this reason they
introduced the idea of a category as the domain and codomain of functors. In
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their initial presentation they viewed the notion of category as merely
auxiliary, and not as introduced as a substitute for the universe of sets.

It should be observed that the whole concept of a category is essentially
an auxiliary one. Our basic concepts are essentially those of a functor
and of a natural transformation .... The idea of a category is required
only by the precept that every functor should have a definite class as
domain and a definite class as range, for the categories are provided as
the domain and ranges of functors. (quoted in Bell, 1981, p. 351)

Thus the ontological status of a category was uncertain at its inception
because such an inclusive notion of domain and codomain was not needed.
As they noted maps need not be defined for “all topological spaces” but only
for given pairs of topological spaces. But the notion of a category caught on,
and MacLane characterises the rise of category theory as the “idea of looking
not at one group or one homomorphism, but at all the groups and all the
homomorphisms - that is, the category of all groups ...” (1982, p. 24 - 25).

Yet many may be skeptical of the coherence of the idea of a category.
Perhaps the idea that there can be categories such as variable sets is
misconceived, since after all, the view that sets are the fundamental objects
and that every object is a set (and so composed of discrete elements) is the
fundamental foundational belief of the twentieth century. The work of
Bourbaki has convinced many that all mathematical theories must be
regarded as extensions c. the theory of sets. Indeed this idea is so deeply
ingrained that it allows for an even more recalcitrant stance. It has been
expressed by Mayberry who puts it "Set theory is not really, or not just, a
foundation for mathematics. It simply is modern mathematics "(1988, p. 353).

One might be tempted to think that Mayberry's predilection for sets
may be a result of a lack of clear alternatives. The intuitive conception of
varying quantity may be all well and good one might say, but it is not a
mathematical conception, only an outdated metaphysical conception entirely
derived from intuition. But this is not so. As I have shown, it is possible to
generalise constant sets to variable sets. This leads to two related ways of
looking at this development. On the first approach, associated with Reyes
(1980), the notion of set is enlarged to that of continuously variable set which
allows for the development of the calculus. As Moerdijk and Reyes make
clear in their treatise on smooth infinitesimal analysis their purpose is meant




to generalise set theory to topus theory in a way which is compatible with
intuitive proofs in analysis, and later differential geometry (1991, p.v and
p-166).

The second approach is to consider the notion of set as inherently
flawed by its underdetermined character, which is evidenced by the fact that
there are truths which are independent of the concept of set. Bell (1986, 1988)
is a good representative of this approach. According to the view spelled out by
Bell, the usual model theoretic viewpoint holds that there is one "absolute
universe of sets” which provides the materials for every model, but the
independence proofs of Cohen led to the idea that the concept of set was
underdetermined. Mostowski noted in 1965 in response to Cohen's
discoveries that we will probably have different notions of sets just as we
have different notions of space and our discussion of set theory will be
relative to the kinds of sets which we wish to study. Bell concludes from this

state of affairs that

In this event it becomes natural, even mandatory, to seek for the set
concept a formulation that takes account of its underdetermined
character, that is, one which does not bind it so tightly to the absolute
universe of sets with its rigia hierarchical structure. (1988, p. 238)

Bell goes on to say that category theory furnishes the required formulation of
a determinate set concept through the concept of a topos and its associated
internal language - local set theory (1988, p. 238). Thus Bell draws on the fact
that the power objects of a topos are set-like. Thus it would seem that Bell's
approach is to widen models to include toposes other than that of the topos of
sets. One would think that the approach of Reyes and that of Bell should be
naturally interpreted as an extension of the semantic tradition. But after
noting the flexibility of a plurality of these local frameworks Bell concludes
that:

So the local interpretation of mathematics implicit in category theory
accords closely with the unspoken belief of many mathematicians that
their science is ultimately concerned, not with abstract sets, but with
the structure of the real world. (1986, p. 425)
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So rather than drawing the model theoretic conclusion, Bell takes the
development of topos theory to confirm the view that mathematics is about
“the structure of the real world.”

Lawvere states his concern openly: the content of mathematics is the
space and quantitative relationships in the world. However, the central
purpose of the semantic outlook is to provide an approach to a priori proof in
mathematics that does not rely upon intuition. It is, therefore, quite peculiar
that Lawvere does not apparently take his own approach to the foundations
of the calculus as a triumph of the semantic approach. Instead he takes it as an
instance of how intuition of space and time allows for the development of
the calculus (and synthetic differential geometry). His thinking appears to be
the result of a Marxist materialist ideology that only a non-Russian
mathematician could espouse. Let me cite a passage from Lawvere.

As many have pointed out, the essential object of study in mathematics
is space and quantitative relationships. Thus an essential part of the
scientific world-picture, we have the mathematical world-picture

space
and
quantity

whose links with the remainder of the scientific world-picture should
never be forgotten. Consideration of this picture shows clearly, by the
way, just how wrong was the banker Kronecker and his followers who
claim that the continuum is only a mental construction from N and Q
(the subjective idealizations of iteration and truth respectively), rather
than primarily a concept derived from our historical-scientific
experience with the world of matter in motion. (1980, p. 378)

I find this a highly strange description of the significance of the
development of variable sets which contain smooth objects. For Lawvere
could have argued along a Kantian line that intuition is necessary because of
our inability to cognize the smooth continuum through the intellect alone.
He does not and, in fact, his work shows precisely the opposite: it is possible to
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represent the smooth continuum by the intellect alone if one is prepared to
admit variable sets as mathematical structures. That is to say, the natural
interpretation of Lawvere’s axiomatization of elementary toposes is that it
allows for an extension of the model theoretic tradition in which toposes
other than the category of sets are models.

Mayberry raises a deep objection to the natural interpretation of
category theory as that of simply extending the model theoretic approach to
include models which are not sets. Mayberry sees it otherwise and regards this
idea as confused.

The fons et origio of all confusion here is the view that set theory is
just another axiomatic theory and the universe of sets another
mathematical structure. And it makes no difference whether that
structure is taken to be the relational structure (V, €) consisting of the
cumulative hierarchy of sets V, equipped with the membership
relation, €, or to be the category Set whose object comprise all sets and
whose arrows comprise all mappings. There are no such structures.
The universe of sets is not a structure: it is the world that all
mathematical structure inhabit, the sea in which they swim. (1994, p.
35)

The point that Mayberry is getting at can be made as follows. When an
axiom is satisfied by a model that model is itself a set. But the universe of
“all” sets is not itself a model of any axioms. No axioms could pick out the
“universe of sets” as an object because postulating its existence is inconsistent.
Thus the universe of sets is not a model! but rather the “sea in which they
swim". Yet, as Mayberry points out, there is a natural tendency for category
theory to form inclusive categories of objects and maps.

The problem of forming large complete categories thus remains
unsolved since we appear to be faced with the problems of grasping the
unincreasable infinite by intellect alone. This reasoning applies to Lawvere's
proposal to understand categories as given in a category of categories instead
of as collections of objects and arrows. On such an approach a category is not
defined as a collection of objects and arrows but as an object within a category
of categories CAT and with maps as functions between categories. The
intuition for such an object is readily introduced. A function between
categories A and B is a structure preserving map from A to B. Every category
A has an identity function 1,:A—— A which leaves the arrow and object




unchanged, and given functions F:A—— B, and G:B——C, there is a
composite function GF:A—C.

So it is natural to speak of a category of all categories, which we call
CAT, the object of which are all the categories and the arrows of which
are all the functors. This raises genuine problems. Is CAT a category in
itself? Our answer here is to treat CAT as a regulative idea; that is, an
inevitable way of thinking about categories, but not strictly a legitimate
entity. (McLarty, 1992, p. 5, my emphasis)

Thus, when we try to form large categories (categories in which the
objects and arrows do not form a set) we must face dealing with categories of
all topological spaces and continuous maps, or all sets and functions, and
ultimately, all categories. Unlike set theory, in which sets are limited in size,
CAT, the category of categories, must be unlimited in size. But as McLarty
admits, our concept of CAT determines no object. Rather such a concept is an
idea of reason, and like an object seen in a mirror, is a "mere idea, a focus
imaginarius, from which, since it lies outside the bounds of possible
experience, the concepts of the understanding do not in reality proceed”
(1871/1965, A645/B673). Thus McLarty’s "solution” is a facile answer to the
epistemological problem. Instead of answering the question “is our
knowledge of mathematical objects justified by thought alone?”, he just
denies that we have any mathematical knowledge of objects at all!

But I don’t think there is any need for either Mayberry’s skeptical
position or McLarty’s view that categories are inerely ideal. There is a third
option which is very much like the earlier response to Peirce’s objection.
Recall that Peirce thought that in order to capture the infinite divisibility of a
line we must be able to conceive of the line as consisting of “all the points
there are”. But this is impossible because it would require completing the
uncompletable (i.e. the absolute infinite). However, if Cantor is correct, it is
possible to conceive of a (completed) transfinite number of elements of the
real number continuum which is infinitely divisible. Likewise we may
consider a transfinite collection of “all sets”, “all rings”, and in general “all
objects and arrows”. In short the concept of category is defined in terms of the
concept of set.

The model theoretic conception is closely related to another
conception, the structuralist view in mathematics. Since many commentators
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have taken category theory to be the culmination of structuralism rather than
the semantic approach to mathematics it is important to see that they both
agree on the fundamental point that category theory relativizes the notion of
structure to that of category. Thus, it takes Tarski’s discovery one point
further: “category” is taken to be indexical term.

A succinct statement of the structuralist doctrine is given by Resnik
where again we find the basic point that mathematical objects are determined
by means of their relations to other objects rather than their internal
composition (1981, p. 530).

In mathematics, I claim, we do not have objects with an internal
composition arranged in structures, we have only structures. The
objects of mathematics, that is, the entities which our mathematical
constants and quantifiers denote, are structureless points or positions
in structures. As positions in structures, they have no identity or
features outside of a structure.

The structuralist motive is not unique to smooth spaces but pervades
all of category theory. It is expressed at its most extreme by Lawvere who
defends category theory as a foundation for mathematics in terms of a similar
structuralist ambition:

In the mathematical development of recent decades one sees clearly the
rise of the conviction that the relevant properties of mathematical
objects are those which can be stated in terms of their abstract structure
rather than those in terms of which the objects were thought to be
made of [sic). The question naturally arises whether one can give a
foundation for mathematics which expresses wholeheartedly this
conviction concerning what mathematics is about and in particular in
which classes and membership in classes do not play any role. (quoted
in Feferman, 1977, p. 149 - 50)

The interpretation of category theory as the culmination of a
structuralist programme in modern mathematics is not uncommon. It is
endorsed by Dieudonne (1979), MacLane (1982) and Bell (1986) for example. In
spite of the endorsement by Dieudonne, it is certainly not the culmination of
Bourbaki's programme, as Corry (1992) has shown, since the notion of
category was eschewed by Bourbaki. But here again we can see the same
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dialectical process of replacing constants by variables that was evident in the
development of the conceptual structure of model theory.

According to Bell, category theory bears the same relation to abstract
algebra as the latter does to elementary algebra. Elementary algebra results
from the replacement of constant quantities by variable quantities while
keeping the operations on these quantities fixed. Abstract algebra carries
forward the same idea by allowing operations to vary while the structures
(group, ring and so on) are fixed. Finally, category theory, in its turn, allows
even the structures to vary, which gives rise to a general theory of structures
themselves. Therefore, structuralism is seen as part of an agenda to replace
constants by variables. Dieudonne likewise sees the theory of categories and
functions as not only the culmination of the "difficult birth of mathematical
structures” but as a mathematical framework which replaces the framework
of sets. "[Category theory] also gives, nowadays, a framework and a guide
which are as useful in modern mathematics as the set-theoretic approach was
for the theories of the century” (1979, p. 22).

It may seem that category theory can solve the problem of the
composition of the continuum simply by adopting the structuralist view,
acc_iding to which an object is described by means of its relation to other
objects rather than to what is "inside” it. This would allow the continuum to
be considered a relational structure rather than an object with an internal
constitution of objects much as Leibniz considered a continuum to involve
indeterminate parts rather than actual parts. This approach is expressed
clearly by Kock. By a "smooth object” Kock is referring to the smooth
continuum and objects constructed from it.

We want to have an axiomatic mathematical theory of smooth objects,
by giving a theory of the totality of such. So we would not start by
saying "a smooth object is a set of elements (atoms) with some
additional structure”; but rather, smoothness is a property of how these
objects relate to each other, or map to each other (1981, p. 52).

Of course we should not start describing smoothness in terms of atomic parts
such as sets because there are no smooth spaces in the universe of sets. But
simply giving a structural description of objects will not result in a "totality of
smooth spaces” either since one can describe the category of sets in this
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manner and there are no smooth spaces in it. Instead there must a sufficiently
rich framework to contain infinitesimals.

The idea that there can be linear infinitesimals in a framework of
objects which are generalised (variable) sets has been adopted by Lawvere and
his followers Kock, Reyes, Lavendhomme, McLarty, Bell and others.

The solution to the problem, as was outlined in the preceding sections, is to
regard points as, in a trivial sense, varying . According to Bell the inherent
contradiction of the infinitesimal in the seventeenth century resulted from
trying to represent infinitesimals in an unnatural way in discrete spaces. Thus
in order to describe infinitesimals properly, we need to treat them as varying
quantities:

The infinitesimal methods commonly used in the 17th and 18th
century to solve analytical problems had a great deal of elegance and
intuitive appeal. But the notion of infinitesimal itself was flawed by
contradictions. These arose as a result of attempting to represent
change in terms of static conceptions. Now, one may regard
infinitesimals as the residual traces of change after the process of
change has terminated. The difficulty was that these residual traces
could not logically coexist with the static quantities traditionally
employed by mathematics. The solution to this difficulty, as it turns
out, is to regard these quantities as also being subject to change, for then
they will have the same nature as the infinitesimal representing the
residual traces of change, and will become, ipso facto, compatible with
these latter. (1988b, p. 314)

As I have argued the essence of the contradiction is to be found in the
attribution of temporal properties to constant objects, and this contradiction is
overcome by attributing temporal properties to variable objects. Thus in order
to avoid the contradictions inherent in the seventeenth century mathematics
it is necessary to provide a framework of variable objects; but this is not
sufficient, for a more complicated variable set than that of a set varying over a
discrete space is needed in order for infinitesimals to exist. Logically speaking,
the contradiction resulted from the supposition that a variable quantity has
either zero value or not zero value, but certainly has no intermediary state.
By throwing away the presupposition that quantities must be decidable, it is
possible to develop a framework in which variable quantities exist. Such a
framework is a topos of sheaves of sets, and as MacLane recounts this
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framework holds it self out as a foundation of mathematics in competition
with the universe of sets:

Now the idea has appeared that set theory can be replaced by sheaf
theory: The fundamental object of mathematics is not a set composed
of elements but a sheaf of functions on some nonspecified space or
locale. This proposes a foundation of mathematics with a geometric
flavour replacing the usual analytical one. (1980, p.191)

A sheaf model of Spaces

The simple example of Ser* described in a previous section does not
account for more than two times. Consider the natural numbers as a category;
that is, there is an arrow from m to n whenever m < n, and objects are the
numbers. A slight generalisation is the category Set" of sets varying over
discrete time. Here the objects are all countable sequences of maps
X,——X, »X,.... and the arrows are all strings of maps f,.f,.f,.... such
that the diagram

t: Xs - Xa > x, > XI — ®00

fo fa f2 fa

t'Ye + Ya - Y2 -+ Ys —p oo
comrmutes.

This framework is still too simple to represent variable quantities, for
the calculus of the seventeenth century was concerned with smooth variation
which is given by the principle of local straightness of curves. This section
sketches a generalisation of Ser” to that of a smoothly varying sheaf of sets, a
model which satisfies the principle of local straightness of curves. For proof
that such sheaves are toposes consult MacLane and Moerdijk, chapter 2.8.

As in the case of Ser", the objects of the model are constructed out of
sets and functions, but are variable sets rather than sets. As a result the




properties of the objects of the new category may be quite unlike those of the
old category. In particular, the objects of set are decidable, whereas not every
object of Set" is decidable. Thus, since undecidable objects may be constructed
from decidable objects, the clarity and distinctness which is at the cornerstone
of Cantorian set theory has allowed fuzziness to be reintroduced into thought
in a clear and distinct way.

A partially ordered set is a set together with a transitive, reflexive, and
antisymmetric relation. A slight generalisation of Set" replaces N with a
partially ordered set P in order to obtain Set”. This category has as objects
functors P——Set, i.e. maps F which assign to each p in P aset F(p) and to
each p, q,in P such that p<q amap F,:F(p)— F(q) such that psq<r

implies
Fm
F(p) +»-F(q)

Fpe

F(r)

commutes, and F,, is the identity map on F(p). An arrow K:F——G in Set”

is an assignment p—— Kp of a map K - F(p)—>G(p) to each pe P such
that p € ¢ implies the diagram

F
F(p) » F(q)

Kq

G(p) & G(q)
Cm

commutes.
In order to get an intuitive picture of this situation it is helpful to look

at the underlying set theoretic structure, to be called a bundle A over P
(where A is in Set).
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family of sets A
A; A A, Ay
cross sections
or “points”of
A sheaf
¢] LT T —
QR )
P ~ . ’ 1 e

Partially ordered set P
Figure 22

Here is a collection A = (A;:i € P}) of pairwise disjoint A;s. The set A, isa
fibre or stalk over i. The members of A, are the germs at i. The whole
structure of A;s “sprouting up” from P is the bundle of sets over the base
space P. The aptness of the terminology is evident from the picture or by
consulting your nearest gardener. A bundle of sets A over P is virtually just
a function with codomain P.Forlet A= (x:x € A}, for some ie P.For x€ A,
there is exactly one A such that x € A, by the pairwise disjointness condition.
Set f(x)=i. Thus all the members of A, are mapped to i for eachi e P. So each
fibre A, can be recaptured as the inverse image of (i} under f, and all A, and
so on in the same way. So given an arbitrary function f:A— P, we can
define A, tobe f~'((i}) for each i, and likewise define
A= (f"(li)i e P} =(A;i € P). Thus it is convenient to think of a bundleas a P
indexed family of fibres f~'({i)), for each ie P.

Consider P as a category. If we reverse the arrows in the category P to
obtain P” then we obtain Ser””. When P is the partially ordered set O(X) of
open sets of a topological space X, then objects in Ser™*"” are called
presheaves on X. So a presheaf F on X is an assignment to each pair of open
sets V, U, such that VcU amap F,:F(U)——F(V) suchthat WcV cU
implies that |




fw
F(U) —F(V)
Fru
Fou
F(W)

commutes. IfF is a presheaf on X, and U, V open sets of X such that VU
and s e F(U), a section of F on U, then write sV for F,,(s) (the restriction of
s to V). A presheaf on a topological space B is a sheaf when it meets a
patching or collating condition: for every covering (U;:i € I} of an open set U
in X and any family (S;:i €/} such that s, € F(U,) for all i € I and if for any
i.jel, we have siU,NU, =s5,lU,NU,, there is a unique s € F(U) such that

s, = slU, for all i e /. In other words, the sections are uniquely collatab'e.

This explanation is quite abstract, but it can be made more concrete by
considering the following example. The standard example of a sheaf is the set
of real valued continuous functions C(U) on a topological space. Such
sheaves of continuous functions naturally arise in manifolds when these
manifolds are defined "intrinsically”. The idea of an intrinsic description goes
back to Gauss who believed that a description of the geometry of a surface
should be made without reference to an ambient space in which it is
embedded. Consider the simple example of a sphere 5. It can be described as
the manifold of all solutions (x,y,z) of the equation x*+y*+2* =1 in R’. So it
is a collection of points with a certain structure. But it can also be given an
intrinsic description, that is, a description without reference to the ambient
space R’. If one omits the north pole of the sphere the stereographic
projection is a homeomorphism p:5? - (n}— R?, and similarly,

q:S* - {s)— R?, for the south pole. All of S? may be obtained by taking these
two homeomorphic copies and pasting them together along the common part
St ~ (s,n).

Any manifold may be described in a similar way by this pasting
technique whereby local pieces of R* are pasted together in order to >btain an
intrinsic description of a manifold. In general, an n-dimensional manifold M
is a topological space such that each poiht q in M has an open
neighbourhood V homeomorphic to an open set W c R". Such a
homeomorphism o:V—— W c R is referr:d to as a char? for M. [Note that a
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function @ is continuous on Vc M when its inverse image is continuous on
W c R*; and in this way the chart defines a sheaf of continuous functions on
M.] An atlas for M is an indexed set {0,:V,—— W) of charts such that the

domains V; cover M. Any such atlas defines M as a topological space. Two
charts 0; and o; of an atlas may overlap on the set V,n\V,, as in the diagram

open sets of M

i) it @. ~—t—— opensets of R"

puhh‘ VJ,

Figure 23

The chart o; gives by composition with inclusion V,nV,cV,—W, a
homeomorphism o,;:V,NV, =W, from the overlap to some open set
W,cW,cR" and g; gives a (distinct) homeomorphism o,:V,NV, =W toa
distinct open set W, c W, c R*. Thus for each ordered pair of indices (i, j)
there is a composite "transition” functon 0,0,™:W,——W,, such that i,je/
w'iich homeomorphically maps one open set of R* into another open set. In
other words, M is obtained by taking all the open sets W, of R* and pasting the
opensets W, c W, to W, c W, together by the "pasting” or “transiuon” maps.
The "pasting” function codes the way in which two charts are to be pasted
together on the manifold.

Smooth manifolds are built up in a similar way. Intuitively smooth
means there is a set C* of functions with k derivative, possibly with k=es. So a
smooth manifold can be described as an atlas of charts with smooth overlaps.
[Again the chart determines the sheaf C of continuous functions on M; and in
the case of a smooth manifold a subsheaf of C, of smooth functions on M
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Intuitively, this object is the linear continuum in a smooth topos.] To say that
overlaps are smooth requires that the composite of smooth functions is
smooth; that a smooth map remain smooth when its domain is restricted;
and that a function put together from smooth pieces is itself smooth.

The set of smooth functions can be added and multiplied in such a way
that they form a commutative ring. A smooth map is given by a pair <a,b>
where a is the base point, and b the slope, or as the constants and linear
coefficients of a Taylor series. These coefficients should add and multiply as
the Taylor coefficients do; that is: {a, +b)+{a, +b,)=(a, +a,.b, +b,) and
(a,.b,).{a2.0,}=(a,.0,.(a,.b, + b.4,)). This is an example of the so-called C* rings
that are at the basis of synthetic differential geometry and which we identity
with the linear continuum R.

The concept of a sheaf has been described but this is really only the
oeginning of a complicated construction. Briefly, the next step is to specify a
certain category theoretic notion called a "Grothendieck topology” and then a
topos G of smooth spaces is defined as the category of sheaves for this
topology. Roughly speaking the notion of a sheaf is extended to the category
of C” rings and the smooth topos G is then defined to be the resulting
category of sheaves. (See Mac Lane and Moerdijk, 1992 §I11.2; McLarty, 1992
§24.1 or Moerdijk and Reyes, 1992 chapter three.)

A curve on a manifold is a map c:U——M with U an open interval in
R. In order for the curve to have a direction at an arbitrary point it is
necessary specify a tangent vector at each point. Intuitively a tax _:nt vector to
a curve c is a short segment arou. .1 p pointing along ¢ at p. If we think of
each point in the Euclidean place R x R as specifying a location and a
direction, i.e., a possible tangent vector to a curve, and D as the space of
square zero infinitesimals, the existence of an isomorphism between R xR
and the space R°of all maps D—— R indicates that D may be regarded as a
generic tangent vector. In other words, the only possible effect of a map
D—— R is to translate and rotate it so that it is coincident with a tangent
vector at a particular point. The fundamental result of synthetic differential
geometry is that in smooth spaces there is such an isomorphism
Rx R—= R® defined by a(a,b)=(d — a+db] (Moerdijk and Reyes, 1992). :t
follows that for any map g:D—— R there is a unique slope v € R such tha*
for all (Vd e D)g(d) = g(0) + db (Moerdjik and Reyes, 1992, or McLarty 1994).
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Unlike the usual manifold, such a “synthetic” manifold will contain
infinitesimal elements, the loci of quotient rings of polynomials such as
R(x]/x* (see Moerdijk and Reyes, 1992 for discussion). This idea of collapsing
all polynomials that agree on their linear coefficients can be explained by
analogy with the way 12:00 collapses into 0:00 on a twelve hour clock. When
we add times on such a clock we treat multiples of 12 as congruent. For
instance, 6 hours past 8:00 A.M. is 2:00 P.M. and so the two are congruent. By
this method we may form classes of congruent times. In other words, given a
polynomial function in a ring of smooth polynomial functions, we identify
all those polynomials whose linear coefficients agree. For these polynomials,
x#0 but x* = 0., so the infinitesimals are both linear and nilpotent. By the
same method we can define higher order infinitesimals x*' 20 but x* =0 as

R(x]/ x".
The topos of smooth spaces

I have suggested that an acceptable interpretation of the calculus,
although obviously not the one that Leibniz actually gave, is given by
smoothly varying sets and have given a rough sketch of such a model. The
framework consisting of smooth mathematical objects and smooth maps is
formalised in a topos Spaces. In this section I give axioms which fill out
Leibniz's calculus and which define the idea of a smooth mathematical
framework. I will not prove that the axioms hold in a model but if the reader
wished to verify this he or she is urged to consult Moerdijk and Reyes (1991).
This exercise reveals that it is possible to give proofs in the style of the
Leibnizian calculus purely conceptually, thereby “rigorizing” the Leibnizian
calculus. By generalizing the framework of concepis in such a manner one
thereby solves “Leibniz’s puzzle” by showing how it is possible to represent
the smooth continuum soley by the intellect, and so an appeal to intuition is
needed in proofs.

No system of axioms has become standard. I draw on the axioms i
McLarty (1992) in which he gives a short presentation of the smooth calculus,
from Bell (1988b) and Lavendhomme (1987). The latter work contains an
elegant and readable discussion of the infinitesimal calculus and differential
geometry in the context of smooth spaces. In addition, Bell (1988b) contains a
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very intuitive discussion of the smooth calculus which gives applications and
some philosophical discussion.

Here a particular topos Spaces will be described. The intended model is
the ring described in the previous section. The linear continuum is a ring of
smooth functions, N is a subset of the linear continuum, products are
products of this ring, the terminal chject is the one point space 1 of the ring,
the truth value object is some Heyting algebra. We refer to the objects of
Spaces as smooth spaces, to its arrows as smooth maps, and to the global
elements x:1—— A as points of the smooth space A. We assume the

Existence of a linear continuum: Spaces has a (smooth) space R with selected
points 0:1— R and 1:R— R and maps -~-R—— R, +;RXR—— R, and
x:R x R—— R that makes R a (non-trivial) ring.

Intuitively R is a line and the selected point are numbers. We need not
assume that R is a collection of points but merely assume that once RXxR is
given, the operations described above can be defined by means of a Euclidean
construction. It is assumed that R is »on-trivial, that is, 0 # 1. It has an
arithmetic structure similar to the usual real numbers but also includes
infinitesimals. Note that an element x does not «. 1tain a2 multiplicative
inverse when ——(x =0), or equivalently, when x € D. Otherwise, consider
de D, a subspace of R. Then 1/d exists and d -(1/d)=1. Thus
0=0-(1/d)=d*-(1/d)=d-(d/d)=d-1=d. But, since this holds for any
element d. this is not compatable with the assumption that D = {0} which
was shown earlier to be implied by the principle of infinitesimal linearity.
The following axiom says that if we except the nilpotent elements (i.e.,

when —(x=0), R is a field.

Risafield: ~(x=0)=> (JyeR)xy=1

There is a constant map x:R—— R, and a squaring map x*:R——R. The
equalizer of these two maps, i.e. the domain where they agree on inputs, is a
space D = {x € R:x* = 0). This is the space of square zero infinitesimals. The
central axiom describes D in terms of how maps behave on D.
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Principle of infinitesimal linearity: For any map g:D—— R there is a unique
beR ,its slope, such that for all (Vd € D)g(d) = g(0)+db.

This says that every map f from D to R is an affine transformation, i.e., it
preserves colinearity around a infinitesimal neighbourhood of 0. D is a linear
segment of R which unlike a curve in the Euclidean plane, cannot be bent or
broken under any transformation. In the Dedekind-Cantor continuum the
points behave like rigid bodies, but in the smooth space R it is the space of
infinitesimals D that behaves like an infinitesimally rigid body.

As was demonstrated in chapter three, D is not {0} as it is in the
continuum of real numbers, that is, it not the case that for all deD (d =0).
But it does not follow that any d € D is definitely unecual to zero because D is
not decidable. Stronger still, "d cant' decide whether it is zero or not" in the
sense that it is not the case that Vd e D[(d = 0) v (d # 0)}. In Bell's (1995) words,
D is a "pure synthesis of location and direction”. Since D is a subspace of R,
R is not, in general, decidable either.

Let us say say that a and b are distinguishable when —(a=b), and
indistinguishable when ——(a=b5). We can say, moreover, that every element
of D is indistinguishable from 0. For assume = (d = 0). Since R is a field (in
the sense specified above) and D a subspace of R we conclude for all 4,
~(d = 0) = 3y € R(dy = 1). It follows that ~(d=0)=>(3ye R0 =4y’ =1 =1.
This contradicts the non -triviality of R, so we have ~~(d = 0). Notice that
this immediately contradicts the decidability of infinitesimals, since we could
conclude, assuming decidability, that for all de D (d = 0). Thus the linear
continuum of Spaces is very much unlike that of the continuum of real
numbers.

Not only is every map from D to R affine, it follows that every map from
R to R is locally affine at every point. Intuitively since the image of any map
from D to R is linear around f(0) we translate D along R so that the origin
lies on the x cvordinate of the point in question. More precisely we may
define the derivative of an arbitrary function f:R — R at an arbitrary point
xe R by considering the interval (x +d:de D). For any f:R— R and any x€R,
there is a function g:D—— R given by g(d) = f(x +d) and therefore (by the
principle of infinitesimal linearity) f(x+d)=g(d)=g(0)+db= f(x)+db for
some unique b in R and all de D. Since each x has a unique b, there is a
unique map f :R—— R such that f(x+d)= f(x)+df (x) for all x e R and
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d e D. This equation may be considered the fundamental equation of the
differential calculus. (Notice that it may be rewritten as

flx+d)~ f(x)/d= f(x) and that the quantity df (x)is exactly the change in
the value of y (= f(x)) as x changes from x to x+d.)

The principle of infinitesimal linearity immediately implies a principle of
infinitesimal cancellation: for any a,b in R, if da=db for all de D , then
a=b. Just consider the function g:D—— R defined by g(d)=da=db. The
slope b must be unique and so a=b. From the definition of a derivative and
the principle of infinitesimal cancellation it is possible to derive the usual
rules of the calculus (See Bell, 1988; Lavendhomme, 1987; or McLarty 1992).

Given the concept of linear infinitesimal one can define continuity
quite intuitively. Let us say that a is (infinitesimally) close to b whenever a
and b differ by an infinitesimal, that is a~b=d e D and write a = b. This
allows continuity to be defined directly as a infinitesimal preserving
transformation preserving transformation in the space. We say that f is
continuous just in case f(a)=~ f(b) whenever a=b. It follows from the
principle of infinitesimal linearity that every function is continuous. For
given xeR define g:D——R g(d)= f(x+d) for all deD. Then by the
principle of infinitesimal linearity f(x+d)= g(d) = g(0)+db for some b in R
and all d ir D. Since db € D, the result follows.

I have already quoted Leibniz as having said that "a curvilinear figure
must be considered to be the same as a polygon with infinitely many sides.”
Leibniz, I have argued, preferred to reason symbolically without need of an
interpretation. Initially one might reject this axiom out of hand: as Berkeley
said, considering a curve to be a polygon is simply an abuse of language. No
matter how many sides a polygon has it can never equal a dircle, for a circle
has a different tangent for each distinct point; whereas a given polygon has
the same tangent at distinct points. Again the circle can only be approximated
by a sequence of polygons. This description of the circle approximated by a
static sequence of polygons neglects the fact that the tangent line to the curve
is varying over the curve.

For consider the example in Bell (1988b, p. 306). Given a curve y = f(x),
consider a point P with x coordinate x, and let P move to an infinitesimally
near point Q with x coordinate x, +d, with d e D. Moving the origin of
coordinates to P transforms the variable (x,y) to (4,v) givenby u=x-1x,,
v=y-f(x,). Writing f (x)=a, f'(x,) = b, and considering the fundamental




equation of the differential calculus, the equation of the tangent to the curve
at P (in terms or the new coordinates) is (I) v = au; and that for Q is (II)

v = (a+ bd)u. Note that both of these lines pass through P and Q and yet the
lines are distinct, since (assuming that b # 0), I has slope a and II has slope
a+bd+a.

!

Xa Xo+ d

Figure 24

As one passes from P to Q the locally straight portion of the curve is subject
to an increase in slope db. This reveals how a curve may be an infinitangular
polygon, for the curvature is manifested in the infinitesimal rotation of the
locally straight segment of the curve as one "moves” along the curve.

R is a preorder. There is a transitive, reflexive relation € on R which is
compatible with the following conditions:

a) Vx,y,2ER(xSY)=>(x+2Sy+2)
b) Vx,ye ROSX)A(0S y)] = (0SS xy)
) (0S1DA(150)

d) Vde D0sd)A(d <0)

It can be proved from this axiom that a closed interval [4,b] is stable under
addition of infinitesimals: i.e. if x €[a,b] then, (x+ d) €{a,b),) The existence of
the required function f' depends upon this fact.
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This last condition d helps us to understand how to avoid the
phenomenon of collapse of an infinitangular polygon. Now we define
[a.b] = [x € R:a S x S b). By condition d we have D c[0,0]. Thus as the number
of edges of a finite polygon increases the edges become smaller. In passing
from a finite polygon to an infinite polygon, the edge D does not become
identical to 0, since this would contradict the principle of infinitesimal
linearity; nevertheless D is entirely contained within 0. In actuality, though,
the infinitesimal portion D of the edge of the polygon was always within 0

even in a finite polygon.
For the sake of completeness, though irrelevant to our concern at this

point, I will mention that Spaces must possess a natural number object.
Intuitively there is a subobject of R that behaves like the natural numbers.

Existence of natural numbers: There is a natural number object N.

A natural number object is an object N and arrows 0:1-—— N, (0 is
number) s:N —— N (the successor of a number is a number) such that to
every diagram 1—— X —— X there is a unique arrow which makes the

following diagram commute.

1—9——>N—5’——>N

f f

1 - X - X
X h

This axiom is essentially the categorical version of the Dedekind-Peano
postulates for natural numbers. It follows straightforwardly that the natural
number object N is decidable. The diagram is just that defining the function
f(0)=x, fs=hf . So the axiom states that natural numbers may be defined by
recursion. See MacLane (1986, §2.2) for details.

These principles may be applied to solve traditional problems by using
the infinitesimal reasoning of the seventeenth century. By using the concept
of the smooth continuum we are able to determine areas, lengths, curvature
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and other features of quantities The following examples are drawn from Bell
(1988b).

Example 1. The fundamental theorem of the calculus.

Leibniz considered finding a tangent to be drawing a straight line
coincdident with an infinitesimal line segment joining the vertices of an
infinitangular polygon and finding the area under a curve as summing the
inscribed rectangles under the curve. The prindiple of infinitesimal
cancellation allows for a direct proof of the fundamental theorem of the
calculus in a way which reveals its original meaning, namely that summing
(or integration as Bernoulli later called it) and finding a tangent are mutually
inverse operations. A fundamental insight of Leibniz was to apply this idea to
geometric figures. "The consideration of differences and sums in number
sequence had given me my first insight, when I realised that differences
correspond to tangents and sums to quadratures” (quoted in Bos, 1974, p. 106).

Q

P ‘_/R

x xed
Figure 25
One could assume on the basis of spatial intuition that there is an area under

the curve. But for rigorous purposes it is necessary to give a principle of
Integration:
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Integration Principle: For any f:(0,1]~—> R, there is a definite function
£:(0,11—— R such that g'= f and g(0)=0.

This principle formalizes the intuition that for any function f:[0,1]——R,
there is definite (area function) g:(0,1]—— R, such that for any x in the
interval [0,1], g(x) is the area under the curve y = f(x) from 0 to x. The area

under f is symbolized as j f@)deand referred to as the definite integral of
0

fover [0,x]. It is also possible to generalize this principle to arbitrary i:itervals
to allow for integration over arbitrary intervals.

We can assume by the principle of integration that there is a well
defined area A(x)under the curve defined by the function y = f(x) bounded
by the x and y axes and by the abscissa x parallel to the y axis. In order to find
how this area is related to the function y = f(x) we begin by considering a
slightly greater area under a curve bounded instead by x +d, with d € D. Then
A(x +d)- A(x) = dA' (x), and writing R for the shaded rectangle,

A(x +d)- A(x) = R+ A. But the infinitesimal portion P @ of the curve is
straight, so A is a triangle of base d and height df (x). Hence the area of A is
1/2.d* =0, since d* = 0. Thus dA'(x) = A(x +d) - A(x) = df(x). Since this holds
for arbitrary d, we may cancel the d on each side to obtain A'(x) = f(x). This
is the fundamental theorem of the calculus and expresses the inverse nature
of summing and taking derivatives.

In order to apply the fundamental theorem of the calculus it is
necessary to assume a constancy principle. It follows from the order axiom
that there.is such a

Constancy principle: If f:R——R and f =0, then f is constant (and
conversely). It follows immediately from this principle that for f,g:R——R,
if f=g', thenf and g differ at most by a constant.
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Example 2. Exhausting a circle.

The standard objection against a circle being an infinitangular polygon
is connected with the method of exhaustion. According to Euclid’s account
there should be a difference between the area of any given inscribed polygon
and a circle. It follows that if we inscribe a polygon and then partition the
polygon into triangles, the sum of these triangles will not exhaust the circle.
In short the area 1/ 2radius - circumferance cannot be derived from considering
a drcle to be an infinitangular polygon.

S(x)
P /’

V& /i

Figure 26

But consider the following reasoning. Let A(x) be the area of the sector OPQ
of the circle, where Q has abscissa x. Let s(x) be the length of the arc PQ. If we
permit x to change to x+d, with d € D (and with it Q to Q'), we obtain

dA (x) = A(x + d) - A(x) = area0QQ . But Q Q' is a straight line of length

s(x +d) - s(x) = ds (x). The triangle OQQ"’ then has an area 1/2r0Q =1/2rs (x)
(where r is the radius of the circle). Therefore, dA'(x)=1/2-drs (x). By
cancelling ds we obtain A'(x) =1/2rs (x). By the constancy principle we obtain
A(x) =1/ 2rs(x), since A(0)=s(0)=0. Thus taking x =r, the area of the
quadrant OPR is 1/2-r-PR. Since there are four quadrants, we multiply both
sides by four and arrive at the conclusion that the area of a circleis 1/2rc.
Thus we obtain the right answer by treating the circle as an infinitangular

polygon.
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Example 3. Arc length.

We can use infinitesimal techniques rather than the method of limits
to derive the arc length of a curve. Let S(x) be length of the curve y = f(x)
measured from a given point on the curve.

yut(x)

I NEFER

x ned
Figure 27

Given a point P on the curve with abscissa x, consider a nearby point Q on
the curve with abscissa x+d, with de D. Then PQ is a small straight line
segment of length s(x +d) - s(x) = d¢ (x). If we write f (x) =tan@, we have
length of PQ = dsec@ = dV1+1tan’0 = d\/1+ f (x)*. Hence, since the length of
PQ = ds (x), we have arrived at ds (x) = s(x+d)-s(x) = d\/l + f(x)*. Applying
the principle of infinitesimal cancellation gives s (x) =1+ f (x)*. From this
formula it is also possible to derive the curvature of a curve at a given point
(see Bell (1988b)).

Defining sets as punctual parts of spaces

Since we have sketched the construction of a smooth framework from
a discrete framework of sets it is only natural that we can shift back to the
discrete framework by disassembling spaces into sets. This fact makes it
possible to describe the nineteenth century rigorization of the caiculus as a
shift from a smooth framework to a discrete one by taking the punctual parts
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and punctual maps of Spaces to form a category of sets. In this way it is
pussible to describe the “meta - mathematics” of the rigorization of analysis.
The suggestion that there is a shift from smooth spaces to sets in the
nineteenth century is originally due to McLarty (1987; 1988) but this
suggestion needs to be qualified in several ways.

According to McLarty the transformation took place in the nineteenth
century and was followed by the displacement of geometric thinking (1988, p.
75). This suggests that the displacement of geometric thinking arose as a result
of the shift from spaces to sets effected by the development of set theory. Of
course the decisive change came with the mathematics of Weierstrass, Cantor
and Dedekind, but they could not have accomplished this feat without the
pr.or philosophical viewpoint and mathematical efforts of rigorizers such as
Bolzano and Cauchy, and even Leibniz. Thus it is more reasonable to regard
the shift from smooth spaces to sets as occurring over a period of centuries
and occurring as a result of the efforts to banish intuition from the calculus.

McLarty argues that the change in conception was a change in logic
from intuitionistic logic to classical logic, and cites Cantor's and Dedekind's
commitment to the decidability of objects and to excluded middle in support
of that contention. This is a peculiar thing to say because Leibniz was also
committed to the principle of the excluded middle and to the decidability of
magnitudes; in fact both were among his main epistemological principles. So
this gives rise to an obvious objection to regarding the rigorization of analysis
as a shift from smocoth spaces to discrete spaces. It is this: Leibniz, Cantor,
Dedekind were committed to the decidability of objects and the principle of
excluded middle. Thus une cannot describe the rigorization of analysis as a
shift from a framework in which the principle of excluded middle applied to
objects to one in which it doesn’t.

The answer to this objection is that in such a reconstruction we are
trying to represent conceptually what was only represented intu ively or
confusedly. In the intuitive representation of the continuum, the points were
not regarded as actual objects but were given as potential limits of the
continuum as a whole. Aristotle regarded parts as potential, and they were
thought of by Kant and Newton as limits of the whole which presuppose a
representation of the whole and by Leibniz as ideal. So the parts of the
continuum were not even thought of as a domain of objects which to which
logic would apply. Thus it is only when we construe these parts as objects, in
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our conceptual reconstruction, that excluded middle cannot be held to apply
to them, and this reflects their different status in the mathematics of that
time.

This section gives an axiomatic description of the shift from Spaces to
Sets. An interpretation of this shift in terms of sheaves is further described in
MacLane and Moerdijk (1992, chapter VII) as an example of a "geometric
morphism” from one topos to another. But instead of assuming that smooth
spaces have an interpretation in sheaves, it is possible to describe a
subcategory of dis.rete spaces within the category of Spaces so that sets can be
defined as punctual parts of space and functions as punctual maps. In other
words, by adding appropriate axioms to the axioms for smooth spaces already
given it is possible to axiomatize a category of sets as a subcategory of Spaces.
This map I' will be called "points” because the discrete framework is obtained,
essentially, by taking the points of the smooth framework. One can visualize
the continuum of Spaces as viewed through a pair of "polarized” glasses
whereby only the decidable points of spaces are noticed and any temporal
variation is arrested at those points. The effect of such a shift on a Leibnizian
curve is to “smocth out” its locally straight segments.

Thus, the result of banishing intuition from mathematics was to effect
a "geometric morphism" I':Spaces—— Sets which takes the punctual parts cr
spaces; and whereby the contiruum came to be understond as a (punctual)
object in the category of sets. Conversely the constructions of smooth spaces is
a geometric morphism A:Sets—— Spaces. A embeds the constant sets and
constant maps into the variable category Spaces. So the rigorization
movement, as described here, not only involves the elimination of intuition.
It is a kind of dialectical process of shifting between frameworks.

The first step in the shift from smooth spaces to sets is to obtain a
subcategory of spaces by taking the punctual parts of spaces.

Punctual parts exist: Every space M has a unique punctual part I'M (i.e one
such that every point of »* 0 in ['M). There are also maps between such
spaces (i.e. foreachmap , ~ —— N thereisamap If:TM——IN .

The next axiom must ensure that this subcategory behaves like a
categor'’ of sets. Briefly this can be done as follows. Intuitively we want the
object to be well distinguished. In the category of sets, sets are distinguished by
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means of their elements. In other .rords, for sets A and B, A ¢ B iff every
member of A is a member of B. In category theory one says that a topos is
extensional iff for every object o, the following condition holds for subobjects
of o:

Punctual parts are distinguishable: f C g ifi for all v:1—— 0, x 2 f implies
xeg.

(An equivalent formulation is that maps are well-pointed in the sense that
for all f,g:A—— B, either f =g or thereis an x:1—— A such that fx=gx.) A
fundamental result of topos theory is that an extensional (or well-pointed)
topos satisfies the axioms c: a set theory which is like ZF, except that
quantifiers are restricted or bounded.

Here we may think of a shift from Spaces to Sets along the lines of a
coordinate transformation in physics. Consider the concept “smooth function
in sheaf X of smooth functions" interpreted within a framework of discrete
sets. Any such function may be regarded as real nunber "varying" siaoothly
over X. In this framework everything is constant. Now consider the
framework Spaces. Here everything is varying. Shifting from Spaces to Sets
amounts to placing oneself in a coordinate system which is “comoving" with
the varying smooth real numbers over X. So the variation of real numbers
in Spaces is not "noticed”; and so the varying reals are regarded as satisfying
the conditions for being a real number.

McLarty has described the development of the real continuum by
Cantor and Dedekind as such a shift:

Dedekind and Cantor each defined a set of real numbers, R, with
arithmetic structure and an order retation; and both postulated that
this represented the set of points on the geometric line [ R] with their
arithmetic and order relation. In our terms they defined X within Set
and added an axiom 'R =% plus others for arithmetic and order. (1988,
p- 85)

After this had been accomplished it became unnecessary to deal with the
smooth continuum R, and so the problem of how to represent the smooth
continuum was thereby avoided. It is only since the development of topos
theory that the relation between the smooth continuum and the real number
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continuum could be widerstond and that a cohersnt solution to Leibniz’s
puzzle be found.




CONCLUSION: LEIBNIZ'S PUZZLE RESOLVED

"...there is no such thing as philosophy - free science; there is only science whose philosophical
baggage is taken on board without examination."”
D. Dennett

A venerable view of the continuum is that it is not composed of points
in which the parts are prior to the whole but is such that the whole is prior to
its parts. Aristotle and others would have agreed. A multitude of points
cannot be continuous, cohesive, or possess a measure. Kant's explanation for
these features of the continuum was based upon the distinction between
intuitive and intellectual representation. The form of pure intellection is
such that concepts are composed of their constituent concepts in a species -
genus relationship and that the objects they represent mirror the part-whole
structure of conceptual representation. In purely intuitive representation the
parts are contained in their whole by forming boundaries or limitations
within the whole.

Kant argued, in addition, that it was necessary to use intuition in order
to determine mathematical objects since our intuition of continuous
magnitudes has a whole-part structure which could only be supplied in
conjunction with intuitive representation. His most important idea was that
the concept of the continuum was of an infinite quantity, which cannot be
given purely intellectually because we lack the power to conceive of a concept
solely by the intellect which contains within itself an infinite number of
distinguished constituents. Thus intuition must be called in to have a
representation of the continuous. Kant argued, furthermore, that even if one
could find a way to represent such quantities by the intellect, such
representations would be purely formal and, he thought, thereby empty of
content.

The development of the concept of continuity and the construction of
the real number continuum and its eventual axiomatization allowed for a
continuum which could be grasped purely conceptually. Later, the
development of the concepts of connectedness, and of Lebesgue measurable
set, further increased the at.lity to represent the continuum solely by the
intellect. So, It wculd seem, on balance, that the arguments of Kant and
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Aristotle on this matter were extremely astute for their time, but are no
longer sound.

The development of a semantic outlook took on Kant's objection that
mathematics without a priori intuition would be empty of content and
mathematical arguments uninformative. The semantic approach has
gradually pried apart the notion of subjective content which is in the mind
and may be of a purely symbolic character, and objective content which is
independent of the mind and given by mathematical structures drawn from
the universe of sets. The model theoretic approach shows that our ability to
extend our knowledge comes, not from adding intuition to concepts in order
to extend our subjective representation, but consists in proving that a
statement, B, is a logical consequence of another, A, because B is true in a
structure, whenever A is true in it.

But the success of this programme to refute Kant is faced with a puzzle
which is generated by considering Leibniz’s notion of the continuum. The
rigorization of analysis was primarily devoted to riddiig the calculus of the
need for the intuition of space and time. But this emphasis on the use of
spatial and temporal intuition was fundamentally a Newtonian conception of
the calculus. The fundamental idea of Leibniz’s calculus, is that each curve is
an infinitangular polygon, and that the interpretation of the notion of
infinitangular polygon is irrelevant to mathematics. The elimination of
temporal and spatial concepts, and the use of temporal and spatial intuition
in proofs finally resulted, in the present century, in conceptualizing math in
terms of the concept of set. But how does this eventual “solution” to the
problem of rigorization bear on the Leibnizian idea that each curve is an
infinitangular polygon?

A committed Kantian could argue at this point that, since we consider
a set to be a collection of well distinguished objects of thought, we cannot
regard a smooth continuum as a collection of objects, that is, of points. The
smooth continuum contains undecidable objects, and so there is no way that
the infinitesimal parts of the continuum could be represented as a set. Thus
there are no infinitesimally linear curves in the unijverse of sets. But, as
Leibniz argued, we do have a such a notion of a continuum, and its validity is
shown by the results of successful application of the calculus rather than by
any intuitive representation we may have of such a notion. But if our concept
of a continuum can only come from intuition or intellect, then our concept of
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a smooth continuum must require the use of intuition. Thus, in order to
represent the smooth continuum we must go beyond what can be represented
solely throught the intellect.

At this point the adherent of the semantic view has a choice. Either
admit that Kant, Aristotle and others were right, after all, that intuition must
be used in order to represent mathematical objects, or we can pursue the idea
that our notion of conceptual representation or model must be widened from
that of set to something which can encompass smooth curves. The second
option is more favourable. It turns out that, if we generalize the notion of
model or structure to that of category, then it is possible .0 represent the
smooth continuum in a topos of smooth spaces and to prove the results of
the calculus in the style of Leibniz. This option, then, generalizes the model
theoretic tradition by allowing models to be categories which may be very
unlike the category of sets.

There is some irony in this development when considered in light of
Russell’s criticism of Kant's use of intuition. Russell's view was that Kant’s
logic was simply too weak and, as a result, limited his representation of
mathematical objects. However this criticism cuts both ways, for set theory
itself limits the kind of objects that it can represent. Thus, it is ironic that the
very criticism that drove the rigorization of the calculus to eliminate
intuition in mathematical reasoning, and drove the infinitesimal out of the
domain of mathematics, inevitably leads to the construction of smooth spaces
in which the existence of the smooth continuum is regained.

The main difficulty of this approach is that if models are extended to
include categories, how are we to represent these categories? If we represent
them as objects of a further category, then we have a category of all categories
CAT. But this notion is bound to fall prey to the paradoxes involved in trying
to have completed totalities of objects. If this were the case we would have to
invoke intuition of space and time (as Kant said) in order to grasp a complete
infinite totality, or regard CAT as an idea of pure reason, a focus imaginarius.
But there is a third option. First we consider a base category of discrete sets
and well - pointed maps. Then it is possible to build variable sets by
concatenating Jiscrete sets and maps to form a category of smooth spaces
which are sets, smoothly varying over a category of rings. In this framework
every map is infinitesimally linear.
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In this case we obtain a solution to the problem of the composition of
the continuum reminiscent of Leibniz. The paradoxes of the continuum were
evaded by saying that our representation of the continuum was a confused
perception of underlying monads, just as a perception of a rainbow is a
confused perception of its droplets. The objects of the variable sets may be
regarded as the confused perception of the underlying monads ( sets and well-
pointed maps) of the base topos of sets. So the undecidable objects emerge
from the decidable objects. But if, as is suggested by topos theory, we regard
the variable sets as objects in their own right, then unlike Leibniz, we
consider the objects of the smooth topos as real rather than ideal. In this way
Leibniz's puzzle is rosolved and a purely intellectual mode! of the smooth

continuum vindicated.
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