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ABSTRACT 
 
 

The force-velocity relationship of skeletal muscle dictates that with increasing velocity of 

muscle shortening there is an exponential decrease in force production. However, during 

lengthening muscle actions, with increasing velocity there is a rapid increase then plateau in 

force. It is unknown whether ECC strength continues to increase at very-fast velocities (>200o/s). 

PURPOSE: To investigate ECC strength of the dorsiflexors over a large range of velocities in 

younger and older men. METHODS: Isometric neuromuscular properties (voluntary & 

electrically evoked) were assessed at 40o of plantar flexion on a CYBEX dynamometer. Nine 

younger (~24y) and 9 older (~76y) healthy men performed, in random order, one isokinetic 

lengthening contraction over a 50o range of motion (5o DF- 45o
 PF) at ten angular velocities; 15, 

30, 45, 60, 120, 210, 270, 300, 330, 360o/s. RESULTS: Participant voluntary activation was 

>99% in both older and younger. Older were 31% weaker than the young for ISO strength. At all 

velocities, old had a greater ECC:ISO ratio compared to young. Additionally, there was a 

velocity-dependence of strength in both groups, in which absolute ECC strength increased as 

velocity increased. Old and young ECC strength at 15o/s was 17% and 37% greater than ISO 

strength; while at 360o/s ECC strength was 49% and 88% greater, respectively. CONCLUSION: 

Both old and young had continuing increases in ECC ankle dorsiflexion strength as the velocity 

of the lengthening contraction increased. Furthermore, relative to isometric levels, the older 

group showed particularly enhanced torque production at the higher velocities of muscle 

lengthening. 

 

Keywords: torque, force, velocity, eccentric, lengthening, dorsiflexors,  
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TORQUE PRODUCTION OF THE DORSIFLEXORS DURING LENGTHENING 

CONTRACTIONS AT DIFFERENT VELOCITIES IN YOUNG AND OLD________________ 

 

CHAPTER 1: INTRODUCTION 

 

1.1 BACKGROUND MUSCLE PHYSIOLOGY 

 

Our muscles are what allow us to perform important everyday movements. The necessary 

force to achieve these everyday movements is provided by contractions of the muscles involved. 

A muscular contraction develops force through collective contribution of many working parts. 

Force development, in part, is generated by the myosin heads attaching (cross-bridge) and 

pulling on the actin filament (power stoke) (Huxley 1957). Cross-bridges are formed during both 

static and dynamic muscular contractions, where a dynamic contraction can either be to produce 

force by the myosin pulling on the actin filament, or resist force by the myosin fighting being 

pulled apart from the actin. Therefore, there are three types of contractions; isometric, 

concentric, and eccentric. Isometric (ISO) torque is produced during a static contraction; the joint 

angle is fixed and not moving. Concentric (CON) torque is produced during muscle shortening, 

and has an inverse relationship with the angular velocity of the joint (Hill 1938). Eccentric 

(ECC) force is produced during muscle lengthening, during which the muscle is resisting stretch, 

and tends to increase as velocity increases (Edman et al. 1978) and plateaus at higher velocities 

(Reeves et al. 2005). 

 It is known that torque is developed through the formation of cross-bridges and the 

initiation of power stokes. The number of cross-bridges contributing to and developing torque 

varies depending on how overlapped the thick and thin filaments are, where either too 

overlapped (short muscle length) or not overlapped enough (long muscle length) will result in 

less force production. Naturally, there is an optimal amount of thick and thin filament overlap for 
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force production, making the length of the muscle (joint angle) highly influential on the maximal 

amount of isometric force the muscle is able produce. This relationship between muscle length 

and maximal isometric force production is called the force-length relationship (Gordon et al. 

1966).  

 Maximal concentric force is related to the velocity of the movement. As the force the 

muscle is required to produce increases, the maximum velocity of the movement decreases. This 

is called the force-velocity relationship (Hill 1938). It is well known that more force can be 

produced isometrically than concentrically, and furthermore that one can produce more ECC 

force than ISO or CON force (Katz 1939; Wilkie 1949). This thesis investigates the maximum 

eccentric torque generated about the ankle joint at a range of velocities from slow to very fast. 

1.2 TIBIALIS ANTERIOR 

1.2.1 Anatomy and Function of the Tibialis Anterior 

 The tibialis anterior (TA) is found in the anterior compartment of the leg on the lateral 

side of the tibia. It is a circumpennate muscle originating from the lateral tibial condyle and 

inserting onto the base of the first metatarsal. The TA is innervated by the deep branch of the 

fibular nerve and is responsible for dorsiflexion and inversion of the foot. The fiber type 

composition of the TA is about 73% type I (slow twitch) and 27% type II (fast twitch) (Polgar et 

al. 1973).  The TA is responsible for approximately two thirds (65%) of the dorsiflexor group 

(Holmback et al. 2003).  

1.2.2 Muscle Model of Choice 

 There are many factors that contribute to the TA being a highly suitable muscle to study. 

Nerve stimulation of the TA is made easy due to the common fibular nerve, posterior to the 

fibular head, running superficially. Studies have also shown that the voluntary activation (VA) is 
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consistently high in the TA, meaning most subjects are able to fully activate the muscle with 

limited practice, eliminating effort and familiarization as a confounding variables (Klass et al. 

2005, 2007; Power et al. 2011).  

With regards to antagonist accessibility, nerve stimulation and EMG recording is quite 

feasible on the soleus (SOL). It is important to record EMG from both the agonist and antagonist 

muscle groups so we can decide whether changes in torque are attributed to changes in EMG or 

attributed to other mechanisms.  Using the muscle of the leg makes this simpler than other areas 

of study on the body. 

1.3 AGE RELATED CHANGES 

 As the neuromuscular system ages, there are changes that will inevitably occur. Muscle 

from older people (>~65y), on average, becomes slower and weaker (Power et al. 2013). This 

change is most pronounced in CON and the least pronounced in ECC contractions, with CON 

having been shown to drop 30 – 40 % , whereas eccentric contractions lose  only 20 – 25 % 

between the third and tenth decades (Porter et al. 1995; Poulin et al. 1992; Roig et al. 2010; 

Vandervoort 2002). Even though ECC is maintained more than CON, absolute force produced 

during both types of contractions is less in old compared to young, and there are many factors 

responsible for this change. The most important ones, for my purposes, involve the death of 

motor neurons (McNeil et al. 2005; Power et al. 2013), motor unit remodeling (Roos et al. 1997) 

and the increase in passive elements (Kent-Braun et al. 2000). 

1.3.1 Motor Neuronal Death  

 To produce a movement, the brain sends a signal down the spinal cord to the motor 

neuron pool, which sends a signal to all of the muscle fibers it controls. The motor neuron and all 

of the muscle fibers it innervates is called a motor unit. As the neuromuscular system ages, some 
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motor neurons will eventually die, rendering the motor unit dysfunctional. This phenomenon has 

been studied using many different techniques to compare the number of functional motor units in 

young to old, one of those being the motor unit number estimate technique (MUNE). Using 

MUNE, it has been confirmed that the number of motor units decrease with age (Campbell et al. 

1973; McNeil et al. 2005). 

1.3.2 Change in Motor Unit Structure and Function 

 When motor neurons die, the muscle fibers that were innervated by it are now ‘orphaned’ 

and are no longer able to contract. However, this orphaned state doesn’t always last indefinitely. 

Other motor units can connect with the orphaned muscle fibers and include them into their motor 

unit; this is called collateral reinnervation. This reorganization results in there being less motor 

units. There is a preferential loss of muscle fibers from fast motor units, as well as a decrease in 

fiber size of the remaining fibers. Both these factors result in smaller motor units with slower 

contractile properties (acting closer to slow twitch, type I muscle fibers). As the neuromuscular 

system ages, motor neuron death occurs and is followed by collateral reinnervation, leading to 

smaller motor units and slower contractile properties: see review by Roos et al. (1997) and 

Campbell et al. (1973). Slower contractile properties also mean slower cross-bridge kinetics, 

such that the rate of force development is slower in older adults (Hook et al. 2001). This slower 

rate of force development contributes to the decrease in concentric force seen in older adults. 

1.3.3 Passive Elements 

 There are both contractile and non-contractile components that are part of the 

musculotendinous unit and contribute to total force production. Contractile components involve 

cross-bridge based mechanisms actin and myosin, whereas non-contractile components are 

structural proteins that transfer force to the joints. When muscle is stretched, the passive 
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components resist and absorb part of the force. The resisting and absorbing during lengthening 

allows the muscle to resist loads and produce forces via a mechanism not active during isometric 

or concentric contractions. There is evidence suggesting that titin could be the mechanism not 

active during muscle shortening, and plays an important role in increasing force during 

lengthening (Herzog et al. 2012). This property of passive components is in part how we are able 

to produce more force eccentrically. It has been found that older adults have an increase in 

passive element content (Kent-Braun et al. 2000; Narici et al. 2003) which could be the reason 

older adults have a better maintenance of ECC strength compared to ISO and CON.   

1.4 LENGTHENING VELOCITY 

Numerous studies have looked at the torque-velocity relationship during concentric 

contractions, many reaching velocities above 500°/s, whereas studies testing eccentric 

contractions mostly test at much slower velocities. We know that as a percentage of ISO torque, 

older adults are weaker concentrically and stronger eccentrically than young (Porter et al. 1995; 

Poulin et al. 1992; Power et al. 2012; Vandervoort 2002); owing to the maintenance of ECC 

torque in old. This maintenance of eccentric torque in old is consistent at both the lower and 

higher velocities of lengthening. Until recently, torque had only been recorded during 

lengthening velocities of around 200°/s in large muscle groups (Babault et al. 2001, Poulin et al. 

1992; Roig et al. 2010) as well as the dorsiflexors (Klass et al. 2005; Porter et al. 1997; Sasaki 

and Ishii 2010) of young and old adults. A more recent study has tested high velocities of 

lengthening (Pain et al. 2013) but only in young and not in the dorsiflexors. To my knowledge, 

there has yet to be a published study looking at high velocity lengthening contractions greater 

than 200°/s in older adults.  
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The purpose of my study is to determine if there is a difference in torque production 

between young and old adults during lengthening velocities higher than 200°/s, thereby 

extending knowledge about the aging human motor system and the eccentric force velocity 

relationship. We expect the older adults will have a larger amount of torque production relative 

to isometric torque as lengthening velocity increases. 
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CHAPTER 2: METHODS 

2.1 PARTICIPANTS 

All young (n=9, 24.8 ± 3.2 y, 180.0 ± 6.9 cm, 82.7 ± 10.0 kg) and old (n=9, 76.0 ± 5.5 y, 

175.3 ± 5.8 cm, 83.0 ± 9.4 kg) participants were instructed to refrain from any unaccustomed or 

strenuous physical activity for 24 h, alcohol for 6 h, and caffeine consumption for 2 h prior to 

testing. All participants were recreationally active and free from any known neuromuscular or 

musculoskeletal disorders. Young were recruited from the university population and old from a 

university run exercise group for older adults. Informed written consent was obtained from all 

participants prior to testing. Participants returned to our lab two days after this testing session for 

related testing not included in this thesis, and none reported any soreness as a result of the 

lengthening contraction protocol. This study was approved by The University of Western 

Ontario Health Science Research Ethics Board and conformed to the Declaration of Helsinki. 

2.2 EXPERIMENTAL SETUP 

A HUMAC NORM dynamometer (CSMi Medical Solutions, Stoughton, MA) was used 

to test the dorsiflexors muscle during lengthening. The non-dominant foot was fastened to the 

ankle attachment footplate, and the ipsilateral thigh, just above the knee, was immobilized by the 

thigh stabilizer pad. If the non-dominant side was injured (knee or ankle) then the dominant foot 

was used (3 old, 1 young). The contralateral foot rested on the footrest attachment, and remained 

in the same position throughout the testing session. Participants were seated in a slightly reclined 

position, with the knee angle at 140o (where 180o is considered straight). The contralateral hip 

angle was 110o and the ipsilateral hip angle was 70o, due to the knee being raised and 

immobilized by the thigh stabilizer pad (see Figure 1). Proper knee and hip alignment was 

achieved through manual modification of the chair position and angles were measured using a 
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goniometer. The ankle axis of rotation was lined up with the rotational axis of the dynamometer. 

The foot was secured to the footplate by two Velcro straps around the distal portion of the foot. 

To reduce extraneous movements, a horizontal strap across the waist and two vertical straps 

across the chest were used to secure the participant. Ankle range of motion (ROM) was set at 45o 

dorsiflexion (PF) – 5o plantar flexion (DF); totalling for 50o ROM. 

 

 

 

 

Figure 1: Experimental Setup 
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2.3 RECORDING 

 Electromyography (EMG) signals were collected using self-adhering Ag – AgCl surface 

electrodes (1.5 x 1 cm; Kendal, Mansfield, MA) arranged in a monopolar setup. The active 

electrode for the TA was placed over the muscle belly (7 cm distal from the tibial tuberosity and 

2 cm lateral to the tibial anterior border) and the reference electrode over the distal tendinous 

portion of the TA just proximal to the level of the malleoli. The active electrode for the soleus 

was positioned 2 cm distal to the lower border of the medial head of the gastrocnemius and the 

corresponding reference electrode was placed over the calcaneal tendon (Power et al. 2012). The 

surface EMG signals collected by the electrodes were pre-amplified (x100), amplified (x2), 

band-pass filtered (10 – 1,000 Hz), and sampled at 2500 Hz using Spike 2 software (Version 

7.07, Cambridge Electronic Design Ltd). Torque, velocity, and position channel information was 

sampled at a rate of 2500 Hz, converted to digital format using a 12-bit analog-to-digital 

converter (model 1401 Power, Cambridge Electronic Design, Cambridge, UK) and using Spike 2 

software (Version 7.07) a live feed was displayed for participants for feedback on a large 

computer monitor.  

2.4 BASELINE MEASUREMENTS 

Passive resting tension of the dorsiflexors and plantar flexors was measured after 

participant setup was complete and prior to any electrically evoked or voluntary contractions. 

Participants were asked to relax while passive resting tension was measured at 0, 10, 20, 30, and 

40° PF. EMG was also monitored to make sure the participant was fully relaxed. The ankle was 

moved from 0 - 40° PF in 10° intervals in a step-like pattern, returning to 0° after each 10° 

progression towards 40° PF, and pausing for 5-7 seconds at each of the five angles (see Figure 
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2). The torque value at each angle was recorded as the mean torque between 2-5 seconds after 

the ankle was moved to that angle.  

For tibialis anterior stimulation, the bar electrode was positioned over the deep branch of 

the common fibular nerve, with one electrode posterior and one anterior to the fibular head. For 

soleus stimulation, the bar electrode was pressed into the popliteal fossa, up against and 

perpendicular to the medial tendon of the hamstring. Compound muscle action potentials (M-

waves) were measured from the tibialis anterior and soleus muscle to normalize agonist and 

antagonist EMG collected during subsequent voluntary efforts. Maximum M-waves were 

determined by gradually increasing the current until a plateau in M-wave peak to peak amplitude 

was reached; then the current was further increased by at least 15% to supramaximally stimulate, 

ensuring all motor axons were activated. The stimulator current remained at this intensity for the 

remainder of the testing session, and was the intensity used to assess voluntary activation. M-

waves were evoked electrically with a standard clinical bar electrode (Empi, St. Paul, Minnesota, 

USA) coated in conductive gel. A computer-triggered stimulator (model DS7AH, Digitimer, 

Welwyn Garden City, Hertfordshire, UK) set at 400 V provided the electrical stimulation using a 

pulse width of 100 µs.  

A 3-5 s duration isometric dorsiflexion baseline MVC was performed to ensure there was 

sufficient time for subjects to reach peak MVC torque.  During MVC, participants were provided 

visual feedback of the torque tracing on a computer monitor, and were exhorted verbally.  

Voluntary activation was used to determine the degree to which participants were capable of 

fully, or close to fully, activating their dorsiflexors and was assessed using the interpolated 

twitch technique.  The amplitude of the interpolated twitch torque evoked during the peak 

plateau of the MVC was compared with a resting peak twitch torque (Pt: 1 Hz) evoked 1 s 
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following the MVC when the muscles were relaxed.  Percent voluntary activation was calculated 

as voluntary activation (%) = [1- interpolated Pt /resting Pt] x 100%.  Values from the baseline 

MVC with the highest peak torque are reported. 
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2.5 LENGTHENING VELOCITIES 

The range of motion was increased by 5° in both directions for the lengthening 

contractions; from 0° PF – 40° PF to 5° DF – 45° PF. This change in ROM is due to 

dynamometer requiring more time during the faster velocities to accelerate up to the 

programmed velocity and decelerate near the end range of motion to stop the foot. If not 

changed, the faster velocities would be mechanically unattainable by the dynamometer. The 10 

different velocities the muscle was lengthened at were 15, 30, 45, 60, 120, 210, 270, 300, 330, 

and 360°/s. Each velocity of lengthening was performed only once.  Velocities were pseudo-

randomized such that the only consistencies between participants were that 330 and 360°/s were 

performed last. This was done so the participant performed eight lengthening velocities before 

attempting the two fastest ones, giving them practice, which is important given that the faster 

velocities are the novel part of this protocol (Figure 2). 

Each trial consisted of a 1-2 second isometric contraction at 5° DF followed directly by a 

lengthening contraction as the foot moved at the programmed velocity through the ROM, ending 

at 45° PF. The participants were encouraged verbally for both the isometric and eccentric 

portions of the contraction. One minute of rest was given between each contraction.  

2.6 Data and Statistical Analysis 

Data were analysed off-line with Spike2 software after the testing session was complete. 

All position and torque channels were filtered in Spike2 with a 2nd order Butterworth filter. This 

effectively smoothed the torque tracings without changing the location or amplitude of peak 

torque, and reduced noise in the position channel. The peak torque value from the lengthening 

contraction was taken at the time during which the dynamometer arm was moving at the 

programmed velocity. At higher velocities acceleration and deceleration of the foot took up a 

larger portion of the contraction and if peak torque occurred during either of those phases, it was 



14 
 

 
 

disregarded; peak torque at the programmed velocity was taken instead. Using the absolute value 

of peak torque, relative peak torque was calculated as: ((ECC torque / MVC torque) – 1) x 100. 

Once the peak torque value was chosen, the position channel was used to determine ankle angle 

at time of peak torque.  

The torque passively applied to the dynamometer arm at 0°PF was used as the reference 

for 10, 20, 30 and 40°PF. The difference between passive torque at 0°PF and passive torque at 

10, 20, 30 or 40°PF was considered the amount of passive tension in Nm. This difference was 

then divided by ISO torque, to be presented as a percentage of ISO.  

The EMG was processed as root mean square amplitude (RMSamp) for both TA and 

SOL. For analysis of EMG, time 0 represents the start of lengthening; where negative time is 

during the MVC prior to lengthening and positive time is during lengthening. The time intervals 

chosen for analysis were - 0.5 seconds to 0, 0 to 0.18, and 0 to time of peak torque. In the faster 

velocities this 0.18 seconds would represent a greater portion of the lengthening contraction, 

where as in the slower velocities this would represent a smaller portion (Figure 3). The reason 

the interval of 0.18 seconds was chosen is because that’s the amount of time it takes to reach 

peak torque at 360°/s. I wanted to compare EMG leading up to peak torque while controlling for 

time, so 0.18 was the maximum amount of time I could compare EMG across the entire range of 

velocities; i.e., at faster velocities any EMG recordings past 0.18 seconds would be after peak 

torque has already been achieved. 

SPSS software (version 20, SPSS Inc. Chicago, IL) was used for all statistical analyses. 

Un-paired t-tests were performed for all baseline measurement comparisons between young and 

old. A two-way analysis of variance (ANOVA) with repeated measures was performed to 

compare peak torque, ankle joint angle, and EMG during lengthening between young and old 
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across velocities (Age x Absolute torque, Age x Relative torque, Age x Ankle angle, and Age x 

EMG RMSamp). A two-way analysis of variance (ANOVA) with repeated measures was also 

performed to compare passive tension at rest between young and old across ankle angles (Age x 

Passive tension). The level of significance was set at P < 0.05. Post hoc analysis used un-paired 

t-tests with a modified bonferroni correction factor to determine where significant differences 

between factors existed. All data in tables are presented as mean ± standard deviation (SD), and 

all data in figures are presented mean ± standard error (SE). 
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Figure 3: Raw torque, TA EMG, and velocity data at 30°/s (A), 120°/s (B), and 330°/s (C). 

Cursors 1, 0, 2, and 3 represent 0.5 seconds before onset of lengthening, onset of lengthening, 

0.18 seconds after onset of lengthening, and peak torque, respectively. In figure C, cursor 2 

represents both peak torque and 0.18 seconds after onset of lengthening. 
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CHAPTER 3: RESULTS 

3.1 BASELINE MEASUREMENTS 

 Baseline Measurements are all shown in Table 1. The old and young participants were 

separated by ~ 50 years of age, but not significantly different in height and weight. The isometric 

MVC was significantly different between old and young, with the old being 31% weaker than 

young, 29.1 ± 6.7 and 42.1 ± 8.5 respectively. Old and young had no significant differences in 

VA. All participants included in the data set, except one old (~ 96%), had a VA of >99%, 

therefore participants were able to voluntarily maximally activate their tibialis anterior and were 

giving a full effort. This allows us to assume most participants were able to give their full effort 

during the lengthening contractions as well.  

The ITT showed that during the isometric MVC participants were near maximally 

activated, and EMG during lengthening was not different than during isometric; therefore I know 

participants were giving a full effort during the lengthening contraction. 
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Table 1: Participant characteristics and baseline measurements 

 

 Young Old 

Measure Mean SD Mean SD 

     

Age (y) 24.8 3.2 76.0 5.5 

Mass (kg) 82.7 10.0 83.0 9.4 

Height (cm) 180.0 6.9 175.3 5.8 

MVC (N•m) 42.1 8.5 29.1* 6.7 

VA (%) 100.0 0.0 99.6 1.3 

     

 

There were 9 subjects in each group for all measures. Isometric maximum voluntary  

contraction (MVC). Voluntary activation (VA). Standard deviation (SD).  

* denotes significant difference between age. 

 

 

 

3.2 LENGTHENING VELOCITIES 

The absolute peak torque during lengthening was only significantly different between old 

and young at the three slowest velocities: 15, 30, and 45°/s. As the velocity of the lengthening 

contraction increased, the difference in absolute peak torque decreased and was statistically non-

significant between old and young: at 15°/s and 360°/s old peak torque was 80% and 87% that of 

young, respectively (Figure 4). On the other hand, relative peak torque was significantly greater 

in old compared to young at all velocities. The old relative peak torque was approximately 

double the young at most velocities. At 15°/s young and old ECC peak torque was 17% and 37% 

greater than MVC torque, respectively, and at 360°/s young and old ECC peak torque was 49% 

and 88% greater than MVC torque, respectively. At most velocities, old had double the percent 

increase that young had (Figure 5).  
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Figure 4: Absolute peak torque during dorsiflexor lengthening over ten velocities. Data are 

expressed as group mean ± standard error. * denotes a significant difference between age (P < 

0.05). 
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Figure 5: Peak torque during dorsiflexor lengthening as a percentage increase from isometric 

torque (shown on graph as 0), over ten velocities. Data are expressed as group mean ± standard 

error. * denotes a significant difference between age (P < 0.05). 
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When comparing old with young at the same angular velocity, there are no significant 

differences in ankle angle where peak torque was achieved. The mean ankle angle at peak torque 

of all trials, not controlling for velocity, is 27.0° ± 8.3 for young and 25.2° ± 9.9 for old (Table 

2). Therefore, peak torque was achieved around 25°PF in both old and young. In the older group 

the passive tension at 20°PF and 30°PF, the angles surrounding the angle peak torque was 

achieved at, was 14.1% and 18.0% of ISO torque, respectively. In young the passive tension at 

20°PF and 30°PF was 12.7% and 15.3% of ISO torque, respectively. At 0, 10, 20, and 30 passive 

tension in the older group was greater than the younger, but not significantly different. Passive 

tension was only found to be significantly different at 40°PF, where old had 6.1% greater passive 

torque than young (Table 3).  

 

 

Table 2: Ankle joint angle at time of peak torque 

 

 Young Old 

Velocity (°/s) Mean SD Mean SD 

     

15 29.9 9.7 26.4 9.9 

30 28.3 9.8 27.9 13.8 

45 29.5 6.9 26.2 11.9 

60 29.6 8.3 26.1 12.0 

120 32.1 9.1 27.8 10.6 

210 26.6 9.3 25.3 9.3 

270 22.5 9.6 24.4 11.2 

300 23.5 7.4 21.0 9.6 

330 22.1 4.1 20.7 4.2 

360 25.7 3.0 26.0 4.3 

     

Total 27.0 8.3 25.2 9.9 

 

Mean values are in degrees plantar flexion. ‘Total’ represents the  

mean of all ankle joint angles during peak torque regardless of  

velocity. Standard deviation (SD). 
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Table 3: Passive Tension 

 

 Young Old 

Ankle Angle (°PF) Mean SD Mean SD 

     

0 0.0 0.0 0.0 0.0 

10 8.8 2.1 9.8 4.3 

20 12.7 3.2 14.1 5.8 

30 15.3 3.6 18.0 5.7 

40 18.7 3.9 24.8* 6.7 

  

Means are normalized to 0, and represent the percentage of MVC torque.  

Standard deviation (SD). Plantar flexion (PF)* denotes significant  

difference between age. 
 

 

 

 

When comparing the RMSamp during the first 0.18 seconds of the lengthening 

contraction in old, the TA EMG was not significantly different across velocities. When 

comparing the RMSamp during the first 0.18 seconds of the lengthening contraction in young, 

the TA EMG was only significantly different between the 30 (4.9 ± 2.7) and 330°/s (5.2 ± 2.6) 

conditions. SOL EMG was consistent across velocities for the 0.18 second interval in both old 

and young. 

When comparing the RMSamp during the whole lengthening contraction in old, the TA 

EMG was only significantly different between 45 (5.5 ± 2.9) and 60°/s (5.0 ± 2.6), and 60 (5.0 ± 

2.6) and 120°/s (5.6 ± 3.1). When comparing the RMSamp during the whole lengthening 

contraction in young, the TA EMG was only significantly different between the 15 (5.6 ± 3.0) 

and 360°/s (5.2 ± 2.8) conditions. The SOL EMG in both old and young, like during the 0.18 
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second interval, was not significantly different across velocities when comparing the whole 

lengthening contraction. Therefore, neither agonist nor antagonist activation levels differed 

substantially among the various comparisons, and are not responsible for the torque related 

changes experienced across velocities and between age groups. Figure 3 shows the time 

intervals from which the data was extracted and the comparisons made for EMG. 
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CHAPTER 4: DISCUSSION 

4.1 MAJOR FINDINGS 

One of the major findings in this study is that the older adults had greater increases than 

young in ECC torque, relative to MVC, as the velocity of the lengthening contraction increased. 

The old group had increases, at some velocities, twice as large as the young group. It was 

necessary to present the ECC torques relative to MVC because absolute values could be 

misleading. Old had significantly lower absolute torque at 0 to 45°/s. It is also noteworthy that 

there was a trend (Figure 4), in both old and young, for the torque to increase as the velocity of 

lengthening increased. This trend was independent of and uninfluenced by any other measure I 

collected. Motivation would not be an influence either as each participant was verbally 

encouraged in the same manner. Furthermore, the ITT measurements indicate that all participants 

were able to maximally activate their TA. EMG, in both groups and in both TA and SOL, is 

unlikely to explain changes in torque because EMG did not change as the velocity increased. The 

ankle angle that peak torque was reached at was similar between groups. Even if the angles were 

slightly different, there is essentially a plateau in isometric torque when stretching further than 

10° PF (Marsh et al. 1981); meaning a plateau in the torque length relationship. So even if there 

was a slight difference in the angle old and young were producing peak torque during 

lengthening, I could eliminate any active mechanisms of torque production as a possible 

contributor. I am unable to pin the results on any additional measures I collected, but there may 

be some mechanism at work during lengthening (discussed below), advantaging the older group 

and allowing them to produce a relatively greater amount of torque than young. 
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4.2 ISOMETRIC TORQUE 

 The way I was able to show ECC torque as being increased was by normalizing it to the 

participant’s MVC. The main findings of this study are reliant on the MVC torque being an 

accurate measure. When comparing to like studies in the literature, this study’s average value of 

42.1 N•m for young MVC torque is similar to Klass et al. (2005), Power et al. (2010), and Sasaki 

and Ishii (2010) which were 43.5, 47.2, and 44.2 respectively. I also found this study’s average 

value of 29.1 N•m for old MVC torque to be similar to Baudry et al. (2007) and McNeil et al. 

(2005) which were 28.6 and 29.5 respectively.  

4.2 ECCENTRIC TORQUE 

 Having shown that the MVC torque produced by both young and old is consistent with 

the literature, the next major concern is whether the ECC forces are similar to those achieved in 

other studies. The novel part of this study is that the high angular velocities old participants’ 

muscles were lengthened at, to my knowledge, had not been reached previously; and in young, it 

has not been reached by many. What I can compare is whether the results at lower velocities of 

lengthening are consistent with other studies; if yes, I can extrapolate that the torque readings 

during the higher velocities of stretch are valid as well.  

Studies already conducted in young show that dorsiflexors ECC torque at 100°/s is 

approximately 30 – 40% greater than ISO torque (Klass et al. 2005). My results fall into this 

range; at 120°/s young ECC torque was 35% greater than ISO torque. There have been few 

studies testing young at higher velocities in the dorsiflexors. One study shows ECC to be 27% 

greater than ISO (Reeves and Narici 2003) and another shows ECC to be 50% greater (Hasson et 

al. 2011); both at 200°/s. Other studies have tested young ECC torque at velocities close to and 

as high as the ones this study reached, but they are in different muscle groups. A recent study by 
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Pain et al. (2013)  investigated voluntary and stimulated ECC torque at 400°/s in the knee 

extensors; they reported that voluntary ECC torque at 400°/s was about 20% greater than the ISO 

force, and the stimulated was about 50 – 70% greater. It has been shown that the dorsiflexors are 

easier to fully activate than larger multi-joint muscle groups (Kent-Braun and Ng 1999; Power et 

al. 2010), so they would act more like the stimulated condition; in which case the 50% increase 

at 360°/s in this study is consistent with Pain et al (2013). 

When lengthening the dorsiflexors in old at 100°/s, Klass et al. (2005) found ECC torque 

to be 40% greater than ISO torque; similar to the 60% greater ECC torque recorded in this study. 

Hasson et al. (2011) measured ECC torque at 200°/s in older adults and found a 40% increase 

from ISO torque. The ECC torque in this study at 200°/s was 75% higher than ISO torque for the 

older group. Thus my age-related effect is  more pronounced than other studies in the 

dorsiflexors and even when I looked at studies testing old ECC torque at 200°/s in other muscle 

groups their ECC torque was still only about 40% higher than ISO torque (Hortobagyi et al. 

1995; Reeves et al. 2005). To my knowledge, no study has examined old ECC torque at the 

higher velocities that this study lengthened at: > 200°/s. 

4.3 ELECTROMYOGRAPHY 

 One explanation for seeing a larger change in the older group’s torque as velocity was 

increased may be as a result of changing neural drive to the muscles performing or resisting the 

movement. If the neural input to the TA and other DF muscles in old became relatively higher 

than young as the velocity of the lengthening contraction increased, then that could explain the 

larger amount of torque. Likewise, if the neural input to the antagonist plantar flexors in old was 

relatively lower than young as the velocity increased, then that could also help explain the larger 

torque increases.  
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However, the results of this study do not show any change in neural input as the velocity 

of the lengthening contraction changes: I did not find a change in either the TA or SOL EMG in 

young and old as the velocity increased. The old did have higher ECC torque as the velocity 

increased, so if neural input were to be a contributing factor, I would have seen a change in either 

the TA or SOL EMG as velocity changed. A similar study to this one, which measured ECC 

torque in young and old, found that the TA EMG when normalized to the M-wave was not 

different between groups and did not change across velocities (Klass et al. 2005); agonist neural 

drive is therefore not considered to be responsible for the maintenance of ECC torque in old 

(Roig et al. 2010). Unfortunately, Klass et al. (2005) did not have antagonist data to speculate on 

SOL co-activation. A study that examined the elbow flexors of young and old that did record 

antagonist activation though reported both young and old to have similar levels of co-activation 

across velocities (Pousson et al. 2001). Interestingly, it has also been shown that there is more 

antagonist activation during concentric compared to eccentric contractions (Kellis and 

Baltzopoulos 1999), an observation that points out the unique nature of eccentric muscle 

performance. 

4.4 PASSIVE TENSION 

 The results of my study show that during a stretch of the musculotendinous unit at rest, 

older adults have more passive tension than young adults. A statistical difference occurred at the 

longer muscle length (40° PF), and there was  a consistent trend for old to have more passive 

tension at 10°, 20°, and 30° PF  compared to young. The passive tension measurement was 

obtained during a relaxed muscular state where the majority of the resistive torque produced by 

the muscle would be due to the non-contractile components, Therefore we should look at the 

non-contractile components of aged muscle units more closely. In animal muscle, passive tension 
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is increased with age as a result of an increase of connective tissue in either the parallel or series 

elastic component (Alnaqeeb et al. 1984). Studies in humans similarly suggest that the 

connective and non-contractile tissues in muscle increase with age (Kent-Braun et al. 2000). We 

can assume the increase in passive tension I found in old was due to the increase of non-

contractile elements and their contribution to the larger viscoelastic effect old would experience 

at longer muscle lengths (Power et al. 2013).  In the next section on potential mechanisms I 

explore the possibility that this increase in connective tissue and the non-contractile components 

could be responsible for the differences we see between young and old when comparing ECC 

relative to MVC.  

4.5 POTENTIAL MECHANISMS 

The amount of force generated by a stretched muscle is a combination of contributions 

from both the active components and the passive tissue components within it (Rassier et al. 

1999). When I measured passive tension at rest, the actin and myosin were weakly bound and not 

actively contributing to force production. However, prior to the lengthening contraction I had 

participants perform an isometric MVC, thus engaging the active components (actin and myosin 

cross-bridges). The MVC before lengthening would allow the active component to contribute to 

the overall total force production during lengthening. We know that older adults have an overall 

shift in muscle composition from fast twitch to slow twitch muscle fiber components. This 

alteration is one of the causes that leads to slower cross-bridge cycling in older adults (Hook et 

al. 2001; Miller et al. 2013). It could be possible that thick and thin filament detachment takes 

longer as well if the myosin takes longer to attach to actin, maybe it takes longer to detach as 

well. We know twitch contractile characteristics, more specifically half relaxation time, slows 

with aging (Roos et al. 1999). This prolongation means that the active enhancement of resistance 
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to lengthening, force generated by the cross-bridges, could be contributing to the ECC torque for 

a longer period of time in old compared to young. It is also understood that the muscle will 

produce less force near the end of its ROM, due to the amount of thick and thin filament overlap 

not being optimal for generating force. One might think that the peak torque occurred at a joint 

angle where the thick and thin filament were past the optimal angle for force production; 

however it has been shown that around 30° PF is where the dorsiflexors are strongest 

isometrically (Maganaris 2001). It is important too that we recognize the Maganaris (2001) study 

was isometric, because force generation isometrically requires the active components of muscle 

to form cross-bridges. The peak torque was reached at the optimal ankle angle for cross-bridge 

force to contribute to overall force, yet, there is still an increase from ISO to ECC torque. There 

must be an additional mechanism increasing the force even further during lengthening, as the 

active components are fully engaged and are already contributing as much force as possible. 

As the length of a muscle increases, the contribution of the passive components 

(connective tissue and non-contractile elements) to the overall force production increases 

(Rassier et al. 2005). Participants were reaching their peak torque at longer muscle lengths 

during high velocity, and therefore passive muscle elements had a greater opportunity to 

influence overall torque production. Furthermore, older adults have an increase in passive 

element content (Kent-Braun et al. 2000) so older adults’ torque during lengthening may be more 

affected by the involvement of the passive muscle components in muscle compared to young. 

Therefore, a conclusion  was reached that the force enhancement seen during lengthening is 

likely due to additional resistance from passive structural elements (Edman and Tsuchiya 1996). 

It is thought that the passive structural element that is mostly responsible for increases in force 

during lengthening is a structural protein called titin that might also be affected by a muscle’s 
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activation history (Granzier and Labeit 2007; Herzog et al. 2012; Kellermayer and Granzier 

1996b; Monroy et al. 2012). Increased levels of calcium have been shown to increase titin-actin 

interaction (Kellermayer and Granzier 1996a). By having the participants perform a one to two 

second isometric contraction directly before lengthening, the muscle would have been flooded 

with calcium (Cannell and Allen 1984), providing a good environment for titin-actin binding, 

thereby increasing resistance during lengthening.   

 

 

4.6 SUMMARY 

 To my knowledge, ECC torque has not been compared between young and old adults at 

the high velocities of up to 360°/s that this study lengthened the dorsiflexor muscle group at. The 

ECC torque expressed relative to baseline MVC increased in old more than young as the velocity 

of the lengthening contraction increased. This difference cannot be explained by EMG, as the 

RMSamp of the agonist and antagonist muscles did not change in either young or old as the 

velocity increased, and the literature has shown similar results (Klass et al. 2005; Pousson et al. 

2001). Passive tension at rest between young and old was  found to be significantly different at 

the ankle position of 40° PF;  with a consistent trend for passive tension to be higher in old at 

10°, 20°, and 30° PF. The angle that young and old hit peak torque during lengthening was 

around 25° PF, and thus stretched connective tissue could be of influence. When comparing 

young to old, I found old to generate significantly more ECC torque production as a percentage 

of ISO torque at every lengthening velocity. I believe this finding is likely a result of greater non-

contractile elements in the old muscle (Kent-Braun et al. 2000), thereby increasing tension 

during lengthening. Of these passive elements, I recognize titin as one of the potential major 
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contributors responsible for generating the additional tension and resistance in older adults 

(Herzog 2014; Herzog et al. 2012), resulting in the ability to produce more relative eccentric 

torque than young. 
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CHAPTER 5: LIMITATIONS AND FUTURE DIRECTIONS 

5.1 LIMITATIONS 

 In my protocol, each of the 9 participants only performed one lengthening contraction at 

each velocity. This made for a total of 9 torque readings at each velocity for each age group. It 

would have been interesting to have collected data on more than one lengthening contraction per 

velocity per person. However, it would have been difficult to do this in one session of testing, 

due to the eccentric contractions potentially causing fatigue plus damage to the muscle and 

affecting further torque readings. I pilot tested two lengthening contractions per velocity during 

the same session, and the second contraction at most velocities was worse. Furthermore, at the 

higher velocities, which was the novel part of the study, the torque was much lower.  

 Another potential limitation is that I was using isometric torque produced at 40°PF to 

normalize the individuals’ torque during lengthening, i.e., for calculating ECC relative to ISO 

values. In retrospect, isometic MVCs should have also been performed at 20 or 30°PF, because 

that is the ankle angle where most participants reached peak torque during lengthening. Using 

ISO torque at 30°PF to calculate ECC torque relative to ISO might have been a more precise 

comparison; that way I would be comparing ECC and ISO at the same ankle angle. 

5.2 FUTURE DIRECTIONS 

It would be interesting to take a biopsy from the TA of each participant and analyse the 

relative amount of non-contractile content versus muscle tissue for the young and old groups. A 

comparison could then be made between the non-contractile contributions to torque during 

lengthening, to see if the participants with the higher torque during lengthening also have a 

higher amount of passive elements in their muscle. The biopsy method needed to make this 
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comparison might be challenging because the TA has a relatively smaller diameter; however, it 

could still potentially be done in willing volunteers with good muscle definition. 

My study only looked at young and old men. Another possible avenue would be to try 

this same protocol with women. There have been previous studies that compared eccentric torque 

at slower velocities between young and old groups of men and women (Baudry et al. 2007; 

Holmback et al. 2001; Porter et al. 1995; Vandervoort et al. 1990), but not at the speeds achieved 

in the current investigation. It would also be interesting to test people of different activity levels, 

and compare whether ECC torque in sedentary individuals is the same as active individuals. 

The use of ultrasound imaging during muscle lengthening would also be another potential 

addition to my protocol in a future study. The main purpose of using ultrasound during the 

contraction would be to record changes in fasicle lengths and compare them to the increases in 

eccentric torque that my study found to be especially pronounced at high velocities of 

lengthening in older men. 
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