
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

6-19-2014 12:00 AM

On The Applications of Lifting Techniques On The Applications of Lifting Techniques

Esmaeil Mehrabi, The University of Western Ontario

Supervisor: Dr. Eric Schost, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Computer Science

© Esmaeil Mehrabi 2014

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Numerical Analysis and Scientific Computing Commons, and the Theory and Algorithms

Commons

Recommended Citation Recommended Citation
Mehrabi, Esmaeil, "On The Applications of Lifting Techniques" (2014). Electronic Thesis and Dissertation
Repository. 2126.
https://ir.lib.uwo.ca/etd/2126

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F2126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ir.lib.uwo.ca%2Fetd%2F2126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.lib.uwo.ca%2Fetd%2F2126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.lib.uwo.ca%2Fetd%2F2126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/2126?utm_source=ir.lib.uwo.ca%2Fetd%2F2126&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

ON THE APPLICATIONS OF LIFTING TECHNIQUES

(Thesis format: Integrated Article)

by

Esmaeil Mehrabi

Graduate Program in Computer Science

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

© Esmaeil Mehrabi 2014

Abstract

Lifting techniques are some of the main tools in solving a variety of different compu-

tational problems related to the field of computer algebra. In this thesis, we will consider

two fundamental problems in the fields of computational algebraic geometry and number

theory, trying to find more efficient algorithms to solve such problems.

The first problem, solving systems of polynomial equations, is one of the most fun-

damental problems in the field of computational algebraic geometry. In this thesis, we

discuss how to solve bivariate polynomial systems over either k(T) or Q using a combi-

nation of lifting and modular composition techniques. We will show that one can find

an equiprojectable decomposition of a bivariate polynomial system in a better time com-

plexity than the best known algorithms in the field, both in theory and practice.

The second problem, polynomial factorization over number fields, is one of the oldest

problems in number theory. It has lots of applications in many other related problems

and there have been lots of attempts to solve the problem efficiently, at least, in prac-

tice. Finding p-adic factors of a univariate polynomial over a number field uses lifting

techniques. Improving this step can reduce the total running time of the factorization

in practice. We first introduce a multivariate version of the Belabas factorization algo-

rithm over number fields. Then we will compare the running time complexity of the

factorization problem using two different representations of a number field, univariate vs

multivariate, and at the end as an application, we will show the improvement gained in

computing the splitting fields of a univariate polynomial over a rational field.

Keywords. Polynomial system solving, Polynomial factorization, Computer Algebra

ii

Acknowledgments

First and foremost I would like to offer my sincerest gratitude to my supervisor,

Dr. Éric Schost, who has supported me throughout my thesis with his patience and

knowledge. I attribute the level of my Ph.D. degree to his encouragement and effort, and

without him, this thesis would not have been completed or written.

Secondly, all my sincere thanks and appreciation go to all the members from our

Ontario Research Centre for Computer Algebra (ORCCA) lab in the Department of

Computer Science for their invaluable support and assistance, and all the members of

my thesis examination committee.

Finally, I would like to thank all of my friends and family members for their consistent

encouragement and continued support.

iii

Contents

Abstract iii

Acknowledgements iv

List of Algorithms vi

List of Tables vii

1 Introduction 1

1.1 Solving bivariate polynomial systems . 1

1.1.1 Preliminaries . 2

1.1.2 Problem statement and related works 5

1.2 Univariate polynomial factorization . 10

2 Solving bivariate polynomial system: the case of non-singular solutions 13

2.1 Introduction and main results . 13

2.2 Preliminaries . 17

2.2.1 Notation and basic results . 17

2.2.2 Chinese Remainder techniques . 18

2.2.3 Specialization properties . 19

2.3 A direct algorithm . 20

2.4 Normal form algorithms . 22

2.4.1 Reduction modulo one triangular set 23

2.4.2 Reduction modulo several triangular sets 25

2.5 Proof of the main results . 27

2.5.1 One lifting step . 27

2.5.2 Main algorithm . 29

2.6 Experimental results . 30

3 Solving bivariate polynomial systems: the case of singular solutions 33

iv

3.1 Introduction . 33

3.2 Quantitative estimates . 39

3.2.1 Polynomials in general position 39

3.2.2 Non-vanishing conditions . 46

3.2.3 Conservation of intersection multiplicity 47

3.3 Finding zeros in a list . 51

3.4 Normal forms for derivatives . 53

3.4.1 Auxiliary results . 55

3.4.2 Proof of Proposition 3 . 59

3.5 The deflation lemma . 61

3.6 The σ-decomposition . 65

3.6.1 Computing all mi’s and Hi’s . 67

3.6.2 Computing all Ji’s . 70

3.6.3 Computing all ni’s, ai’s and Ki’s 73

3.7 Newton iteration . 78

3.8 Main algorithm . 82

3.8.1 Choosing parameters . 82

3.8.2 Computations modulo p . 83

3.8.3 Analysis of one lifting step . 84

3.8.4 Total cost . 88

4 Univariate Polynomial Factorization 89

4.1 Introduction . 89

4.2 Factoring polynomials over Z and Q . 90

4.2.1 Some basic considerations . 90

4.2.2 The approach of van Hoeij . 92

4.3 Factoring polynomials over number fields 110

4.3.1 Factor construction . 112

4.3.2 Factor Combination . 119

4.3.3 Bound on the Traces . 127

4.3.4 Choosing a Denominator . 129

4.3.5 Splitting Fields . 134

v

List of Algorithms

1 Main Algorithm . 29

2 zero index(P , r) . 52

3 zero index vectorial(P , R) . 53

4 m H rational(F,G, x, y) . 67

5 compute m H(F,G, P, S) . 68

6 compute J(F,G, [(Ci, Ti,mi, Hi, ni)]1≤i≤s) 71

7 compute n a K (F,G, [(Pi, Si, Hi,mi)]1≤i≤s) 74

8 lift y(F,G,Σ mod N) . 86

9 lift x y(N,F,G,ΣN) . 87

vi

List of Tables

2.1 Lifting vs CRT . 31

4.1 Splitting Fields Computation . 139

vii

Chapter 1

Introduction

The following two problems are the main primary objectives of this research work:

• Solving bivariate polynomial systems over Q or k[t] , where k is a field

• Univariate polynomial factorization over number fields

Both of these problems are the most fundamental and challenging subjects in the field

of computer algebra, as they play an important role in many higher-level algorithms. In

the following, we describe both problems in detail by providing the required background,

related work done in the area, and the main contributions of our research.

1.1 Solving bivariate polynomial systems

Solving systems of polynomial equations is one of the most fundamental and most stud-

ied subjects in mathematical sciences. If the case of linear systems is theoretically well

understood, the case of non-linear systems is, by essence, richer and more complex. Thus,

research in this area covers theory, algorithms, implementation techniques and applica-

tions.

In this research work, we investigate the complexity of solving bivariate polynomial

systems. This question is interesting in its own right, but it also plays an important

role in many higher-level algorithms, such as computing the topology of plane and space

curves [26, 19] or solving general polynomial systems [33].

1

Many recent contributions on this question discuss computing real solutions of bi-

variate systems with integer or rational coefficients [28, 25, 57, 11, 27], by a combination

of symbolic elimination and real root isolation techniques. Our interest here is on the

complexity of the symbolic component of such algorithms.

By solving a bivariate polynomial system, we mainly refer to a triangular representa-

tions of the solutions, obtained by a triangular decomposition.

Triangular decompositions are one of the main tools for solving polynomial systems.

For systems of algebraic equations, they provide a convenient way to describe the com-

plex solutions and a step toward decompositions into irreducible components. Combined

with other techniques, they are used for these purposes in many computer algebra sys-

tems such as Maple or Singular.

1.1.1 Preliminaries

In this section we will talk about the two main ingredients of the following sections. The

first one explains what exactly we mean by solving a bivariate system, which is called the

equiprojectable decomposition of the given system. The second one introduces a kind of

measurement to estimate the size of the problem, addressing the optimality issues.

Definition 1. Let F,G ∈ L[X, Y] generates a zero dimensional ideal, where L is a

domain. A triangular decomposition of the ideal 〈F,G〉 over K, the fraction field of L, is

defined as follows:√
〈F,G〉 = 〈U1(X), V1(X, Y)〉 ∩ · · · ∩ 〈Us(X), Vs(X, Y)〉

where
√
〈F,G〉 is the radical ideal of 〈F,G〉, and

• Ui ∈ K[X] is monic

• Vi ∈ K[X, Y] is monic in Y and reduced modulo Ui

Triangular decomposition of a given polynomial system is one way, among others, of

representing the solutions of the system. But, these solutions can be represented using

different triangular sets, which indeed, puts a question to the uniqueness of such a de-

composition.

2

Example 1. The following picture shows two different triangular decompositions of an

ideal, from a geometrical point of view.

x

y

−→

x

y

or

x

y

We are not going to talk about the technical issues of the above triangular decompo-

sition here, as we will do so in the coming chapters. But the aim of the example is to

show how such a decomposition works geometrically. Indeed, we are going to pack the

roots of the given system of bivariate polynomials in such a way that in each package

there exists the same number of points over any x-coordinate. This sort of packaging the

roots seems interesting since we can represent the given polynomial system using two new

polynomials U(x), V (x, y) where U is a univariate polynomial only in the variable x, and

we can then extract useful information about, for instance, the properties of its roots and

the dimension of the given ideal.

The other important point that we want to make in this example is that such a triangular

decomposition is not necessarily unique. As we can see from the picture, the variety of

the given system can be packed into two different triangular sets, one including 4 and

3 points, the other 6 and 1 points, while both satisfying the mentioned properties of tri-

angular decomposition. This non-uniqueness property creates some difficulties when we

are using a lifting technique to find such a decomposition starting from its image modulo

some prime ideal in the base ring. We will talk about this problem and the proposed tech-

nique to resolve such a problem in the following. But it is worth to mentioning that the

problem would be resolved using a restricted version of triangular decomposition, called

equiprojectable decomposition.

One way to guarantee the uniqueness property of such a decomposition is using a

canonical decomposition of a 0-dimensional ideal, which is called the equiprojectable de-

composition, defined as follows.

Using the same notation as in Definition 1, let Z ⊂ K̄2 be the variety of the ideal gen-

erated by F,G, where K̄ is the algebraic closure of K. Let π : K̄2 → K̄ be the projection

on the X-space given by (x, y)→ x. To p = (x, y) in Z, we associate the positive integer

N(Z, p) defined as the cardinality of the fibre π−1(x) ∩ Z: this is the number of points

in Z lying above x. We say that Z is equiprojectable if there exists a positive integer n

such that N(Z, p) = n for all p ∈ Z.

3

It is proved in [7] that Z is equiprojectable if and only if its defining ideal admits a

Gröbner basis for the lexicographic order Y > X that is a monic triangular set, i.e. of

the form T = (U(X), V (X, Y)), with U and V monic in respectively X and Y and with

coefficients in K.

When Z is not equiprojectable, it can be decomposed into equiprojectable sets, usu-

ally in a non-unique manner. The equiprojectable decomposition [23] is a canonical way

to do so: it decomposes Z into subsets Zn1 , · · · , Zns , where for all i ∈ {1, · · · , s}, Zni is

the set of all p ∈ Z for which N(Z, p) = ni.

If Z is defined over K, then all Zni are defined over K as well, so they can be repre-

sented by monic triangular sets

T1

∣∣∣∣∣ V1(X, Y)

U1(X)
. . . Ts

∣∣∣∣∣ Vs(X, Y)

Us(X)

with coefficients in K. If we let mi = |π(Zni)|, then Ti has bidegree (mi, ni) for all i, and∑
i≤smini = δ, where δ is the cardinal of Z.

By abuse of notation, we will call the family of monic triangular sets T = (T1, . . . , Ts)

the equiprojectable decomposition of Z. Since
√
〈F,G〉 is a radical ideal of K[X, Y]

that remains radical in K̄[X, Y], its zero-set Z is defined over K; then, we define the

equiprojectable decomposition of 〈F,G〉 as that of Z.

Example 2. In Example 1, the first decomposition is equiprojectable, while the other one

is not. Since for the second one, by projecting the points over their x-coordinates, you

see that there are 3 points having the third x-coordinate as the x-coordinate, but the other

two has only two points above their x-coordinate.

So from now on, by solving a bivariate system, we mean computing the equiprojectable

decomposition of the given system.

In the complexity analysis, we are mainly interested in the following two domains

associated with the defined length functions:

• L = k[T] and K = k(T), for a field k, where we use the length function λ(a) =

deg(a), for a ∈ L− {0};

• L = Z and K = Q, where we use the length function λ(a) = log(|a|), for a ∈ L−{0}.

In both cases, the length of a ∈ L represents the amount of storage needed to rep-

resent it, in terms of elements of k, resp. bits. It will be useful to introduce a notion of

4

length for polynomials with coefficients in K: if P is such a polynomial, λ(P) denotes

the maximum of the lengths λ(ni) and λ(di), where ni and di are the numerators and

denominators of the coefficients of P , when written in reduced form using a common de-

nominator. Note that when L = k[T], we are studying the intersection of two surfaces in

a 3-dimensional space with coordinates T,X, Y ; the output describes the solution curve

for generic T .

1.1.2 Problem statement and related works

Problem 1. Let F,G ∈ L[X, Y] of degree at most d in each variable, generating a zero

dimensional ideal over K, the fraction field of L. What we aim to do is to compute

the equiprojectable decomposition of the ideal 〈F,G〉 over K, that is, finding all monic

triangular sets 〈Ui, Vi〉 such that√
〈F,G〉 = 〈U1(X), V1(X, Y)〉 ∩ · · · ∩ 〈Us(X), Vs(X, Y)〉

There has been lots of work to solve the problem as efficiently as possible. The most

recent ones are mainly concerned with finding the real solutions of the given bivariate

system [57, 11, 27]. These algorithms usually follow two main steps, called symbolic

elimination and real root isolation.

The first step is the main objective of this research. Symbolic elimination tries to

find the required decomposition by first computing the resultant of F,G in Y and then

applying some techniques such as regular gcd [48] to compute the actual Ui and Vi’s. In

terms of complexity, both steps have the same cost, up to logarithmic factors.

Using Chinese Remainder Theorem (CRT) or Reischert’s method [55] for finding the

resultant of two multivariate polynomials, the resultant of two bivariate polynomials F,G

in Y can be computed in Õ(d3) operations in L. It is still an open problem to compute

this resultant in O(d2) operations in L, since the whole problem, the inputs and the

output, can be stored using O(d2) elements of L. Assuming L = k[T] (resp. L = Z),

and letting ` = max(λ(F), λ(G)) ≤ d, the total complexity of the best known algorithm

for the symbolic elimination part would be of order Õ(d5) operations in k (resp. bit

operations).

What we aim to do in this work, is to solve Problem 1 in a more efficient way, both

5

in theory and practice, using lifting techniques [33, 59], which will be discussed through

the next chapters. To this aim, we will consider Problem 1 in the following two cases:

(a) the case of non-singular solutions

(b) in general case, considering singular solutions

The proposed idea for solving Problem 1, is to use lifting techniques [33, 59] to lift

the triangular sets to an appropriate precision, starting from the image of them modulo

some (lucky) maximal ideal of L.

But the required assumption enabling lifting possible, is the invertibility of the Ja-

cobian matrix of F,G modulo the triangular sets. The invertibility assumption is itself

equivalent to non-singularity of the given system. So as long as there is no singular point,

case (a), in the variety of 〈F,G〉, we have shown in [39] that Problem 1 can be solved by

applying lifting technique and using a fast (collective) modular composition in a more

efficient way, both theoretically and practically. The main results of [39] is stated in the

following two theorems, for the cases of L = k[T], and L = Z, respectively.

In what follows, we let M : N → N be such that over any ring, univariate poly-

nomials of degree less than d can be multiplied in M(d) ring operations, under the

super-linearity conditions of [66, Ch. 8]: using FFT techniques, we can take M(d) ∈
O(d log(d) log log(d)). We also let ω be such that we can multiply n × n matrices using

O(nω) ring operations, over any ring. The best known bound is ω < 2.38 [65].

Theorem 1. Let k be a field and let F,G be in k[T][X, Y], with d = max(deg(F), deg(G))

and ` = max(λ(F), λ(G)). If k has characteristic at least 4d2(6d2 + 9d`), one can com-

pute the modified equiprojectable decomposition [see 2.1 for definition] of 〈F,G〉 over

k(T)[X, Y] by a probabilistic algorithm with probability of success at least 1/2, using

O
(
M(d2)M(d`+ d2)d(ω−1)/2 log(d`)

)
⊂ O˜

(
d3.69`+ d4.69

)
operations in k.

Theorem 2. Let ε > 0, let F,G be in Z[X, Y], d = max(deg(F), deg(G)), and ` =

max(λ(F), λ(G)). One can compute the modified equiprojectable decomposition of 〈F,G〉
over Q[X, Y] by a probabilistic algorithm with probability of success at least 1/2, using

O(d3+ε`+ d4+ε) bit operations.

6

Note that if we let ` ≤ d, then the complexity of Theorem 1 (resp. Theorem 2)

becomes Õ(d4.69) (resp. O(d4+ε)) which is less than Õ(d5) for the best known algorithm.

In addition, for the case of L = Z, we almost reached the optimal running time.

But if we relax the non-singularity assumption, case (b), the situation would become

worse and more challenging, as we can not directly apply the lifting techniques intro-

duced in [59] anymore. So we need a new approach of lifting to handle the singularity

issues.

Lifting technique, which is basically a Newton’s iterator, is one of the most popular

component of polynomial system solvers, either from numeric or symbolic point of view.

This iterator usually handles smooth situations only, since in the case, the Jacobian ma-

trix of the given system is invertible.

Generalizing Newton iterator to the singular situations and the question of how to

design an efficient iterator with quadratic convergence in degenerate cases is still an on-

going challenging problem. There have been lots of attempts to find such an iterator.

In order to be develop Newton-type methods that converge to multiple roots, deflation

techniques which consist in adding new equations in order to reduce the multiplicity

have already been considered. For an overview of the work done in the area, we refer the

reader to Chapter 3.

Our approach to solve Problem 1 in the case (b), is based on the Lecerf’s idea intro-

duced in [40], since we are interested in exact computation and p-adic lifting application

which is a continuation of our previous work done in [39], while most of the recent work

done in the area [61, 2, 1, 8, 45] are considering the problem from numerical point of

view which are not of interest in our work here.

In [40], Lecerf proposed a new iterator generalizing the regular Newton iterator for

multiple roots which compared to a smooth case, he proved quadratic convergence with

a small overhead that grows with the square of the square of the multiplicity of the root.

Indeed, in [40], Lecerf proved that we can resolve Problem 1 in general case, not only

for bivariate systems which are our primary interest here, but for multivariate polynomial

systems. The main idea behind the Lecerf’s approach is to replace the given multivariate

polynomial system ψ with a new one, say ψ̃, such that for the given root x∗ of ψ with

7

multiplicity M , x∗ is still a root of the new system ψ̃, but with multiplicity M̃ < M . The

ideal generated by the new polynomial system ψ̃ is usually called deflated ideal. Granting

this fact, we can find a new deflated system ψ̃ in which x∗ is a non-singular root, by just

repeating the same process several times.

In [40], Lecerf showed that the complexity of his algorithm grows with the square of

the multiplicity M of the root, compared to the smooth case, that is, its complexity can

be M2 times the multiplicity of Newton iteration for non-singular roots, which does not

seem satisfying. Note that M can be as large as the degree of the whole system, where

the system ψ has only one root with multiplicity greater than one.

But we are actually interested in solving Problem 1 in bivariate case using the same

amount of complexity as in the non-singular situation, aiming to gain the same improve-

ment compared to the best known methods in the field. Following the same approach

as in [39] for packaging the triangular sets together in a way that we can apply lifting

technique on the whole system efficiently, which is independent of the choice of new-

ton iterator, the only remaining problem for extending the same approach introduced in

chapter one to the case of singular solutions is to generalize the Newton iterator with

not only quadratic convergence, as Lecerf did, but with the same complexity as in the

smooth case up to some poly-logarithmic factors.

In Chapter 3, we slightly change the definition of what we mean by solving a bivariate

polynomial system. As we know, several approaches exist to describe the solutions of our

system: Gröbner bases, triangular representations, or descriptions based on univariate

polynomials. For instance, in [39], the authors relied on a canonical description of a

zero-dimensional variety, called the equiprojectable decomposition from [23]. Although

it would be natural to use this kind of description here as well, the techniques we rely

on are slightly easier to apply when working in generic coordinates. Indeed, if we are

in generic coordinates, the zeros of F = G = 0 can simply be described, called rational

univariate representation of the ideal 〈F,G〉, by a pair of polynomials in K[X], of the

form

P (X) = 0, Y = S(X). (1.1)

Let us temporarily let Z ′ be the set of all non-singular solutions of the polynomial sys-

tem F,G. In [39], we gave with Lebreton an algorithm to compute a triangular represen-

tation of Z ′; this algorithm could be adapted to give a rational univariate representation,

after putting the equations in generic coordinates.

8

In a nutshell, the main idea is to compute the output modulo a prime p, then lift this

representation modulo powers of p using a suitable form of Newton iteration. Looking

only at points in Z ′ makes it straightforward to apply such techniques, since by assump-

tion, at such points, the Jacobian matrix of (F,G) is invertible.

In Chapter 3, we show that we can extend these ideas to find a univariate represen-

tation of V (F,G), in a time close to optimal; this matches the results of [39] in the case

where all solutions of F = G = 0 are simple. The algorithm uses a combination of the

lifting techniques introduced by Lecerf in [40] and a modification of the Kedlaya-Umans

modular composition algorithm [36], following the same strategy as in [39].

Our algorithm is probabilistic of the Monte Carlo kind: one can choose an arbitrary

error threshold, say 1/2P , and the algorithm guarantees that the result is correct with

probability at least 1 − 1/2P . Part of the randomness simply amounts to choosing an

integer in a finite set. Another component is more involved, as it amounts to choosing

primes. Since this is a delicate question in itself, and not the topic of this paper, we will

use the following device: we assume that we are given an oracle O, which takes as input

an integer B, and returns a prime number in {B + 1, . . . , 2B}, uniformly distributed

within this set of primes.

Theorem 3. Let F,G ∈ Z[X, Y] with degree at most d and height at most h, that have

no nontrivial factor in Q[X, Y].

For any ε > 0, there exists an algorithm with the following characteristics. Given

P ≥ 1, the algorithm computes the Rational Univariate Representation of the system

Ft = Gt = 0, where t is an integer of height O(P + log(d)), Ft = F (X + tY, Y) and

Gt = G(X + tY, Y). The running time is d3+εO (̃(h + d)P) bit operations, and the

probability of success is at least 1− 1/2P .

For fixed P , this is thus d3+εO (̃h + d) bit operations, which almost matches the

known upper bounds on the output size. We are not aware of previous result that would

be comparable in terms of complexity. As reviewed in [39], previous approaches to this

question had cost at least O (̃d4h + d5), for Monte Carlo algorithms. For Las Vegas

algorithms, the known bounds are higher yet, namely O (̃d5h + d6), see [15] for latest

results in this context.

For the case where our base ring is A = k[T] instead of Z, we were not able to obtain

the same result as in [39, Theorem 1], as we were not able to find a fast algorithm for

one specific question of modular composition appearing in the process of evaluating the

9

derivatives of the given system. However, the approach given for the case A = Z remains

correct in the case of A = k[T] as our base ring.

1.2 Univariate polynomial factorization

The other problem that we are concerned with in this work, is the factorization of uni-

variate polynomials over number fields.

Until 2000, the two main algorithms able to factor a polynomial P over Q[X] were

the Berlekamp-Zassenhaus algorithm [12, 69], which starts by factoring h over Qp[X] for

a suitable prime number p and tries to recombine the p-adic factors, and the Lenstra-

Lenstra-Lov’sz algorithm, based on their celebrated LLL lattice reduction algorithm [42].

While the latter is polynomial-time and the former exponential in the worst case, the

former performs far better on average, in practice.

In 2002, van Hoeij [63] published an algorithm which, while following the Berlekamp-

Zassenhaus argument, uses a new approach for lattice basis reduction to guess the correct

recombination. In [10], it was shown that van Hoeij algorithm is polynomial-time, and

recently in [64], the authors tried to fill the gap between theoretical and practical complex-

ity, by expressing the complexity with respect to the number of LLL switches occurring

in the LLL-reduction steps.

There are two main approaches to factor a univariate polynomial over a number field.

The first approach which is based on [62], says that factoring over F (α) is doable if we

can factor over F , where F is a field and α is in the algebraic closure of F . Since we

know how to factor over Q [69, 42, 63], so we can do it over any number fields, using [62].

The other approach is to apply a similar method as we do over Q, which is done

by Lenstra in 1982 [41]. Then Belabas in [9] combined a modification of the Lenstra

method and van Hoeij’s factors recombination approach to introduce a polynomial-time

algorithm for factoring univariate polynomials over number fields. These methods are

based on two main steps, modular factorization and factors combination. The first step

is just applying the Hensel lifting on the factors of the given polynomial, say h ∈ Q(α)[x],

modulo some (lucky) prime ideal, say P , up to some precision. The other step deals with

the problem of finding the true factors of h over Q(α) from the P -adic factors. Now our

main concern is to solve the factorization problem, following the second approach, in a

10

more efficient way. To make the problem more clear, we state it as below.

Problem 2. Let h ∈ K[x] of degree n, where K is a number field, and [K : Q] = N .

Find the irreducible polynomials h1, · · · , hr in K[x] and β1, · · · , βr in N, such that h =

hβ11 · · ·hβrr .

As we know, a number field K is an algebraic extension of Q, which can be represented

in many different ways. Two of the most common representations of K are:

• Univariate representation

K is represented as the quotient Q[t]/P (t), where P is an irreducible univariate

polynomial of degree [K : Q] = N . Indeed, K includes all polynomials over Q with

degree less than N , and all computations in K are done modulo the polynomial P .

• Multivariate representation

K is represented as the quotient Q[t1, · · · , tq]/〈H1, · · · , Hq〉, where H1, · · · , Hq is a

monic triangular set; for 1 ≤ i ≤ q, Hi is a polynomial in Q[t1, · · · , ti] with degree

hi in ti and reduced modulo H1, · · · , Hi−1, and irreducible on Q[t1,··· ,ti−1]
〈H1,··· ,Hi−1〉 , and the

ideal 〈H1, · · · , Hq〉 is a radical ideal. Note that [K : Q] = N =
∏q

i=1 hi.

All of the given references above are dealing with the univariate representation of K,

which is more commonly used in Number theory. Of course, the choice of different rep-

resentations for a given number field can potentially effect the cost of the factorization

algorithm, at least in practice. So now the question that we are going to consider in

this work is how choosing the above representations can effect the cost of the polynomial

factorization in practice.

To this aim, we first need to present a factorization algorithm which uses the mul-

tivariate representation of the number field K. Our approach for factoring a univariate

polynomial over a number field is inspired by Belabas [9]. Following the same approach

as in [9], as we already said, we need to modify the main two steps of the algorithm,

modular factorization and factor combination.

The multivariate modular factorization phase, which is basically a multivariate lifting,

can be done using [59]. For the factor recombination phase, which uses the LLL approach,

we made a lattice using the modular images of the polynomials H1, · · · , Hq and the

obtained modular factors. All required theoretical support for the new lattice and the

correctness of the whole factorization algorithm in the new representation, have been

done in Chapter 4. At the end of Chapter 4, we examine our approach against the

11

previous ones for one of the most important applications of polynomial factorization,

that is computing splitting fields. We will show that computing splitting fields of a given

polynomial over Q can be done more efficiently if we use multivariate representation

for the underlying number fields in the main core of this computation, which is the

factorization algorithm.

12

Chapter 2

Solving bivariate polynomial system:

the case of non-singular solutions

2.1 Introduction and main results

We investigate the complexity of solving bivariate polynomial systems. This question

is interesting in its own right, but it also plays an important role in many higher-level

algorithms, such as computing the topology of plane and space curves [26, 19] or solving

general polynomial systems [33].

Many recent contributions on this question discuss computing real solutions of bi-

variate systems with integer or rational coefficients [28, 25, 57, 11, 27], by a combination

of symbolic elimination and real root isolation techniques. Our interest here is on com-

plexity of the “symbolic” component of such algorithms. One of our main results says

that we can solve bivariate systems with integer coefficients in essentially optimal time,

at least for non-singular solutions.

Geometric description. Let A be a domain, let K be its field of fractions and let K
be an algebraic closure of K.

Let X, Y be the coordinates and let Z ⊂ K2
be a finite set defined over K and of

cardinality δ (so the defining ideal I ⊂ K[X, Y] of Z is generated by polynomials in

K[X, Y]). To describe Z, one may use a Gröbner basis of I, say for the lexicographic

order Y > X. Such bases can however be unwieldy (they may involve a large number of

polynomials, making modular computations difficult). Triangular decompositions are an

alternative for which this issue is alleviated.

Geometrically, performing a triangular decomposition of the defining ideal of Z amounts

to writing Z as the disjoint union of finitely many equiprojectable sets. Let π : K2 → K

13

be the projection on the X-space given by (x, y) 7→ x. To p = (x, y) in Z, we associate

the positive integer N(Z, p) defined as the cardinality of the fiber π−1(x)∩Z: this is the

number of points in Z lying above x. We say that Z is equiprojectable if there exists a

positive integer n such that N(Z, p) = n for all p ∈ Z (see [23] for illustrations).

It is proved in [7] that Z is equiprojectable if and only if its defining ideal I admits

a Gröbner basis for the lexicographic order Y > X that is a monic triangular set, i.e.

of the form T = (U(X), V (X, Y)), with U and V monic in respectively X and Y and

with coefficients in K (that result holds over a perfect field, so it applies over K; the

fact that I has generators in K[X, Y] implies that T has coefficients in K). The degree

m = deg(U,X) is the cardinality of π(Z), and the equalities n = deg(V, Y) and δ = mn

hold; we will say that T has bidegree (m,n).

When Z is not equiprojectable, it can be decomposed into equiprojectable sets, usually

in a non-unique manner. The equiprojectable decomposition [23] is a canonical way to do

so: it decomposes Z into subsets Zn1 , . . . , Zns , where for all i ∈ {1, . . . , s}, Zni is the set

of all p ∈ Z for which N(Z, p) = ni. This decomposition is implicit in the Cerlienco-

Murredu description of the lexicographic Gröbner basis of the defining ideal of Z [18]; it

can also be derived from Lazard’s structure theorem for bivariate Gröbner bases [38].

If Z is defined over K, then all Zni are defined over K as well, so they can be repre-

sented by monic triangular sets

T1

∣∣∣∣∣ V1(X, Y)

U1(X)
. . . Ts

∣∣∣∣∣ Vs(X, Y)

Us(X)
(2.1)

with coefficients in K. If we let mi = |π(Zni)|, then Ti has bidegree (mi, ni) for all i, and∑
i≤smini = δ.

By abuse of notation, we will call the family of monic triangular sets T = (T1, . . . ,Ts)

the equiprojectable decomposition of Z. If I is a radical ideal of K[X, Y] that remains

radical in K[X, Y], its zero-set Z is defined over K; then, we define the equiprojectable

decomposition of I as that of Z.

Solving systems. Let now F and G be in A[X, Y]. In this paper, we are interested in

the set Z(F,G) of non-singular solutions of the system F = G = 0, that is, the points

(x, y) in K2
such that F (x, y) = G(x, y) = 0 and J(x, y) 6= 0, where J is the Jacobian

determinant of (F,G). Remark that Z(F,G) is a finite set, defined over K; if F and G

have total degree at most d, then Z(F,G) has cardinality δ ≤ d2.

For instance, for generic F andG, Z(F,G) coincides with their whole zero-set V (F,G),

it is equiprojectable (s = 1), the corresponding triangular set T = T1 takes the form

14

T = (U(X), Y − η(X)) and U is (up to a constant in K) the resultant of F and G in Y .

Given F and G, our goal will be, up to a minor adjustment, to compute the triangular

sets T = (T1, . . . ,Ts) that define the equiprojectable decomposition of Z(F,G).

Representing these polynomials requires O(d2) elements of K. We will show below

that one can compute them using O (̃d3) operations in K, where O (̃) indicates the

omission of logarithmic factors. It is a major open problem to compute T in time

O (̃d2), just like it is an open problem to compute the resultant of F and G in such a

cost [30, Problem 11.10].

Size considerations. In this paper, we are mainly interested in a refinement of this

situation to cases where A is endowed with a “length” function; in such cases, the cost

analysis must take this length into account. Rather than giving an axiomatic treatment,

we will assume that we are in one of the following situations:

• A = k[T] and K = k(T), for a field k, where we use the length function λ(a) =

deg(a), for a ∈ A− {0};

• A = Z and K = Q, where we use the length function λ(a) = log(|a|), for a ∈ A−{0}.

In both cases, the length of a ∈ A represents the amount of storage needed to represent

it, in terms of elements of k, resp. bits. It will be useful to introduce a notion of length for

polynomials with coefficients in K: if P is such a polynomial, λ(P) denotes the maximum

of the lengths λ(ni) and λ(di), where ni and di are the numerators and denominators of

the coefficients of P , when written in reduced form using a common denominator.

When A = k[T], we are studying the intersection of two surfaces in a 3-dimensional

space with coordinates T,X, Y ; the output describes the solution curve for generic T .

In that case, write again d = max(deg(F), deg(G)), as well as ` = max(λ(F), λ(G)).

Then, the polynomials U1, . . . , Us in the equiprojectable decomposition (2.1) of Z(F,G)

are in k(T)[X], and the sum of their degrees in X is at most d2. These polynomials are

all factors of the resultant res(F,G, Y), which implies that λ(Ui) is at most 2d` for each

i, so that representing them involves O(d3`) coefficients in k.

For the polynomials V1, . . . , Vs, however, the bounds are worse: [24] proves that λ(Vi)

only admits a weaker bound of order d3` + d4, so they involve O(d5` + d6) coefficients

in k. Practice shows that these bounds are realistic: the polynomials Vi are usually much

larger than the polynomials Ui. In order to resolve this issue, we will use the polynomials

N1, . . . , Ns defined by Ni = U ′iVi mod Ui for all i. Then, Theorem 2 from [24] combined

with the bi-homogeneous Bézout bound shows that λ(Ni) ≤ 2d` + d2 for all i; thus,

storing these polynomials uses O(d3`+ d4) coefficients in k.

15

Entirely similar considerations apply in the case A = Z; in that case, Theorem 1

from [24] and an arithmetic Bézout theorem [37] prove that λ(Ui) ≤ 2d` + 24d2, and

similarly for λ(Ni), so O(d3`+ d4) bits are sufficient to store them.

We call modified equiprojectable decomposition of Z(F,G) the set of polynomials C =

(C1, . . . ,Cs), with Ci = (Ui, Ni). These are not monic triangular sets anymore (Ni is not

monic in Y), but regular chains [6]. In the particular case where s = 1 and V = V1 has the

form V (X, Y) = Y − η(X), it coincides with the rational univariate representation [56].

Main results. Our main results are the following theorems, that give upper bounds on

the cost of computing the modified equiprojectable decomposition. We start with the

case A = k[T], where we count operations in k at unit cost. Our second result concerns

the case A = Z; in this case, we measure the cost of our algorithm using bit operations.

In what follows, we let M : N → N be such that over any ring, univariate poly-

nomials of degree less than d can be multiplied in M(d) ring operations, under the

super-linearity conditions of [30, Ch. 8]: using FFT techniques, we can take M(d) ∈
O(d log(d) log log(d)). We also let ω be such that we can multiply n × n matrices using

O(nω) ring operations, over any ring. The best known bound is ω < 2.38 [65].

Theorem 1. Let k be a field and let F,G be in k[T][X, Y], with d = max(deg(F), deg(G))

and ` = max(λ(F), λ(G)). If k has characteristic at least 4d2(6d2 +9d`), one can compute

the modified equiprojectable decomposition of Z(F,G) over k(T)[X, Y] by a probabilistic

algorithm with probability of success at least 1/2, using

O
(
M(d2)M(d`+ d2)d(ω−1)/2 log(d`)

)
⊂ O˜

(
d3.69`+ d4.69

)
operations in k.

Theorem 2. Let ε > 0, let F,G be in Z[X, Y], and write d = max(deg(F), deg(G))

and ` = max(λ(F), λ(G)). One can compute the modified equiprojectable decomposition

of Z(F,G) over Q[X, Y] by a probabilistic algorithm with probability of success at least

1/2, using O(d3+ε`+ d4+ε) bit operations.

In both cases, one can easily obtain a cost of O (̃d4` + d5) using modular methods:

e.g., over A = k[T], solve the system at O(d` + d2) values of T , each of which costs

O (̃d3) operations in k, and use rational function interpolation. Our main contribution is

to show that this direct approach is sub-optimal; over A = Z, the cost of our algorithm

almost matches the known upper bounds on the output size.

The structure of our algorithm is the same in both cases: we compute Z(F,G) modulo

an ideal m of A, lift the result modulo a high power of m and reconstruct all rational

16

function coefficients. This approach is similar to the algorithm of [23]; the key difference

is in how we implement the lifting process. The result in [23] assumes that the input

system is given by means of a straight-line program; here, we assume that the input is

dense, and we rely on fast modular composition techniques.

Our results imply similar bounds for computing the resultant R = res(F,G, Y), at

least for systems without singular roots: one can reconstruct R from U1, . . . , Us, taking

care if needed of the leading coefficients of F and G in Y ; we leave the details to the

reader. The main challenge is to handle systems with multiplicities without affecting the

complexity. We expect that deflation techniques will make this possible.

After a section of preliminaries, we give (Section 2.3) an algorithm to compute Z(F,G)

over an arbitrary field in time O (̃d3). Section 2.4 is devoted to computing normal forms

modulo triangular sets by means of modular composition techniques; this is the key

ingredient of the main algorithm given in Section 2.5. Section 2.6 presents experimental

results.

2.2 Preliminaries

2.2.1 Notation and basic results

In the introduction, we defined monic triangular sets with coefficients in a field. We will

actually allow coefficients in a ring A; as in the introduction, all monic triangular sets

will be bivariate, that is, in A[X, Y].

For positive integers m,n, A[X]m denotes the set of all F ∈ A[X] such that deg(F) <

m, and A[X, Y]m,n the set of all F ∈ A[X, Y] such that deg(F,X) < m and deg(F, Y) < n.

Using Kronecker’s substitution, we can multiply polynomials in A[X, Y]m,n in O(M(mn))

operations in A.

For a monic triangular set T in A[X, Y], the monicity assumption makes the notion

of remainder modulo the ideal 〈T〉 well-defined; if T has bidegree (m,n), then for any F

in A[X, Y], the remainder F mod 〈T〉 is in A[X, Y]m,n. In terms of complexity, we have

the following result about computations with such a triangular set (see [50, 44]).

Lemma 1. Let T be a monic triangular set in A[X, Y] of bidegree (m,n). Then, given

F ∈ A[X, Y]m′,n′, with m ≤ m′ and n ≤ n′, one can compute F mod 〈T〉 in O(M(m′n′))

operations in A. Additions, resp. multiplications modulo 〈T〉 can be done in O(mn), resp.

O(M(mn)) operations in A.

We continue with a result on polynomial matrix multiplication. The proof is the

same as that of [13, Lemma 8], up to replacing univariate polynomials by bivariate

17

ones. Remark that for such rectangular matrix multiplications, one could actually use an

algorithm of Huang and Pan’s [35], which features a slightly better exponent (for current

values of ω).

Lemma 2. Let M1,M2 be matrices of sizes (a×b) and (b×c), with entries in A[X, Y]m,n.

If a = O(`1/2), b = O(`1/2) and c = O(`), one can compute M = M1M2 using

O(M(mn)`(ω+1)/2) operations in A.

2.2.2 Chinese Remainder techniques

Let T = (T1, . . . ,Ts) be a family of monic triangular sets in A[X, Y], where A is a

ring. In such situations, we write 〈T 〉 = 〈T1〉 ∩ · · · ∩ 〈Ts〉; if A is a field, we write

V (T) = V (T1) ∪ · · · ∪ V (Ts), where V (T) denotes the zero-set of T over the algebraic

closure of A.

Following [23], we say that T is non-critical if for i in {1, . . . , s}, Fi = U1 · · ·Ui−1Ui+1 · · ·Us
is invertible modulo Ui; if A is a field, this simply means that U1, . . . , Us are pairwise

coprime. The family T is a non-critical decomposition of an ideal I if T is non-critical

and 〈T 〉 = I.

Let T = (T1, . . . ,Ts) be a non-critical family of triangular sets, with Ti = (Ui(X), Vi(X, Y))

of bidegree (mi, ni), and suppose that there exists n such that ni = n for all i; let also

m = m1 + · · · + ms. Under these conditions, the following lemma shows how to merge

T into a single monic triangular set T of bidegree (m,n). Because A may not be a field,

we assume that R = (R1, . . . , Rs) is part of the input, with Ri = 1/Fi mod Ui; we call

them the cofactors of T .

Lemma 3. Given a non-critical family T as above, under the assumption ni = n for

all i, and given the cofactors R, we can compute a monic triangular set T of bidegree

(m,n) such that 〈T〉 = 〈T 〉 using (nM(m) log(m)) operations in A.

Given F ∈ A[X, Y] reduced modulo 〈T〉, we can compute all polynomials Fi = F mod

〈Ti〉 using O(nM(m) log(m)) operations in A.

Proof. For i = 1, . . . , s, write Vi =
∑n

j=0 vi,jY
j, with all vi,j in A[X]. Algorithm 10.22

in [30], where our polynomials Ri are written si, allows us to apply the Chinese Remainder

Theorem, yielding v0, . . . , vn in A[X] such that vi,j = vj mod Ui for all i, j. Since vi,n = 1

for all i, vn = 1 as well, so we let U = U1 · · ·Us, V =
∑n

j=0 vjY
j and T = (U, V).

Computing U takes O(M(m) log(m)) by [30, Lemma 10.4] and computing V takes a total

time of O(nM(m) log(m)) by [30, Coro. 10.23].

To prove the second point, write F =
∑n−1

j=0 fjY
j, with all fj in A[X]. For j =

0, . . . , n − 1, we apply the modular reduction algorithm of [30, Algo. 10.16] to compute

18

f1,j, . . . , fs,j, with fi,j = fj mod Ui; we return Fi =
∑n−1

j=0 fi,jY
j, for i = 1, . . . , s. The

total time is n times the cost of modular reduction, that is, O(nM(m) log(m)). �

Corollary 1. Let K be a field and let T = (T1, . . . ,Ts) be a non-critical family of monic

triangular sets in K[X, Y], with Ti = (Ui, Vi) of bidegree (mi, ni) for all i. Suppose that

the ideal 〈T 〉·K[X, Y] is radical. Then one can compute the equiprojectable decomposition

of the ideal 〈T 〉 using O(M(δ) log(δ)) operations in K, with δ =
∑

1≤i≤smini.

Proof. Partition T in the classes of the equivalence relation where (U, V) ≡ (U?, V ?) if

and only if deg(V, Y) = deg(V ?, Y). Let T1, . . . ,Tt be these classes; for j ∈ {1, . . . , t}, let

µj =
∑

(U,V)∈Tj
deg(U,X) and let νj be the common value of deg(V, Y) for (U, V) ∈ Tj;

then,
∑

1≤j≤t µjνj = δ.

For j = 1, . . . , t, let T?
j be the monic triangular set obtained by applying the previous

lemma to Tj. Since K is a field, the cofactors Rj are computed in time O(M(µj) log(µj))

using [30, Algo. 10.18], so the total time for any fixed j is O(νjM(µj) log(µj)), which is

O(M(νjµj) log(νjµj)). Summing over all j, the total cost is seen to be O(M(δ) log(δ)).

Since 〈T 〉 is radical in K[X, Y], we deduce that for all i ∈ {1, . . . , s}, the zero-set Zi

of Ti is equiprojectable, with fibers for the projection π : K2 → K all having cardinality

ni. Thus, the triangular sets T?
1, . . . ,T

?
t form the equiprojectable decomposition of 〈T 〉.

�

2.2.3 Specialization properties

Consider a domain A, its fraction field K, and a maximal ideal m ⊂ A with residual

field k = A/m. Given F and G in A[X, Y], our goal here is to relate the equiprojectable

decomposition of Z(F,G) to that of Z(F mod m, G mod m), where the former is defined

over K and the latter over k.

The following results give quantitative estimates for ideals of “good reduction” in the

two cases we are interested in, A = k[T] and A = Z; in both cases, we use the length

function λ defined in the introduction. The case A = k[T], while not treated in [23], is

actually the simpler, so we only sketch the proof; for A = Z, we can directly apply [23,

Th. 1].

Lemma 4. Let F,G be in k[T][X, Y] and let T1, . . . ,Ts ⊂ k(T)[X, Y] be the equipro-

jectable decomposition of Z(F,G). If d = max(deg(F), deg(G)) and ` = max(λ(F), λ(G)),

there exist A ∈ k[T]−{0} of degree at most 2d2(6d2+9d`) and with the following property.

If an element t0 ∈ k does not cancel A, then none of the denominators of the co-

efficients of T1, . . . ,Ts vanishes at T = t0 and their evaluation at T = t0 forms the

equiprojectable decomposition of Z(F (t0, X, Y), G(t0, X, Y)).

19

Proof. The approach of [23, Section 3] still applies in this case, and shows that if

an element t0 ∈ k satisfies three assumptions (denoted by H1, H2, H3 in [23]), then the

specialization property holds. These properties imply the existence of a non-zero A ∈ k[T]

as claimed in the lemma; its degree can be bounded using the results of [59, 24]. �

Lemma 5. Let F,G be in Z[X, Y] and let T1, . . . ,Ts ⊂ Q[X, Y] be the equiprojectable

decomposition of Z(F,G). If d = max(deg(F), deg(G)) and ` = max(λ(F), λ(G)), there

exists A ∈ N−{0}, with λ(A) ≤ 8d5(3`+ 10 log(d) + 22) and with the following property.

If a prime p ∈ N does not divide A, then none of the denominators of the coeffi-

cients of T1, . . . ,Ts vanishes modulo p, and their reduction modulo p forms the modified

equiprojectable decomposition of Z(F mod p,G mod p).

2.3 A direct algorithm

In this section, we work over a field K. We give an algorithm that takes as input F,G

in K[X, Y] and computes the equiprojectable decomposition T1, . . . ,Ts of Z(F,G). If F

and G have degree at most d, the running time is O (̃d3), that is, essentially the same as

computing res(F,G, Y) (we count all operations in K at unit cost). This result is by no

means surprising (a particular case appears in [43]) and certainly not enough to prove

our main theorems. We will only use it as the initialization step of our lifting process.

The rest of this section is devoted to prove this proposition, following a few prelimi-

naries.

Proposition 1. Let F,G be in K[X, Y], of total degree at most d. If the characteristic

of K is greater than 2d2 + d + 1, one can compute the equiprojectable decomposition of

Z(F,G) using O(M(d)M(d2) log(d)2) operations in K.

Regular GCDs and quotients. Let R be a nonzero, squarefree polynomial in K[X],

and let F , G be in K[X, Y]. A regular GCD of (F,G) modulo R is a non-critical decom-

position of the ideal 〈R,F,G〉; a regular quotient of F by G modulo R is a non-critical

decomposition of the ideal 〈R,F 〉 : G. If T = (T1, . . . ,Ts) is a regular GCD of (F,G)

modulo R, with Ti = (Ui, Vi) for all i, and if F is monic in Y , then S = (§1, . . . , §s),
with §i = (Ui, F/Vi mod Ui) for all i, is a regular quotient of F by G modulo R.

If F,G have degree at most d in Y , and R,F,G have degree at most m in X, then using

the algorithm of [3], both operations can be done in time O(M(d)M(m) log(d) log(m)).

Radical computation. Regular quotients allow us to compute radicals. Let indeed

T = (U, V) be a monic triangular set of bidegree (m,n) in K[X, Y], with U squarefree

20

and with m and n less than the characteristic of K; we prove that I = 〈U, V 〉 : ∂V/∂Y is

the radical of the ideal 〈T〉.
Let I ′ be the extension of I in K[X, Y]. Over K, the assumption on m ensures that

U is still squarefree, so the ideal 〈U, V 〉 is the intersection of primary ideals of the form

pi = 〈X − xi, (Y − yi)
ei〉, where (xi, yi)1≤i≤t are the zeros of T, and ei ∈ N>0 is the

multiplicity of the factor Y − yi in V (xi, Y). Then, I ′ is the intersection of the ideals

pi : ∂V/∂Y , which we can rewrite as

I ′ =
⋂

1≤i≤t

〈X − xi, (Y − yi)ei〉 : (ei(Y − yi)ei−1).

The assumption on n implies that ei 6= 0 in K, so that I ′ is the intersection of the

maximal ideals 〈X − xi, Y − yi〉; our claim is proved. As a consequence, under the above

assumption on T, we can compute a non-critical decomposition of the radical of 〈T〉 in

time O(M(n)M(m) log(n) log(m)).

After these preliminaries, we can turn to the algorithm. In what follows, J is the

Jacobian determinant of (F,G), H = gcd(F,G), F ? = F/H and G? = G/H. The idea is

classical: we compute the resultant R = res(F ?, G?, Y), then a regular GCD of (F ?, G?)

modulo R; make the result radical and finally we remove all points where J vanishes.

Step 0. We compute H, F ?, G? as defined above. Corollary 11.9 in [30] gives an

expected O(dM(d) log(d)) operations for computing H; we briefly explain how to make it

deterministic, up to an acceptable increase in running time (this is routine; some details

are left to the reader).

Choosing 2d2 + d + 1 values xi in K, we compute Hi = gcd(F (xi, Y), G(xi, Y)),

F ?
i = F (xi, Y)/Hi and G?

i = G(xi, Y)/Hi. Lucky values of xi are those where the leading

coefficient of (say) F in Y and the resultant of (F ?, G?) in Y are non-zero. We are sure

to find at least d2 + 1 of them; these will be those xi’s where Hi has maximal degree.

These are enough to reconstruct H, F ? and G? by interpolation, hence a total running

time of O(M(d)M(d2) log(d)).

Step 1. Compute the (nonzero) resultant R = res(F ?, G?, Y). Using Reischert’s algo-

rithm [55], this takes time O(M(d)M(d2) log(d)).

Step 2. Replace R by its squarefree part, which takes time O(M(d2) log(d)). Note that

V (R,F ?, G?) = V (F ?, G?).

Step 3. Compute a regular GCD T = (T1, . . . ,Ts) of (F ?, G?) modulo R, in time

O(M(d)M(d2) log(d)2). Note that V (T) is equal to V (R,F ?, G?), that is, V (F ?, G?).

Step 4. For i = 1, . . . , s, writing Ti = (Ui, Vi), compute a regular quotient of Vi by

21

∂Vi/∂Y modulo Ui.

Letting (mi, ni) be the bidegree of Ti, the cost for each i is

O(M(d)M(mi) log(d) log(mi)). Using the super-linearity of M, the total is seen to

be O(M(d)M(d2) log(d)2).

Let S = (§1, . . . , §t) be the union of all triangular sets obtained this way, with

§i = (Pi, Qi). Since d2 is less than the characteristic of K, this is also the case for all mi

and ni. As a result, by the discussion above, 〈S 〉 is the defining ideal of V (F ?, G?); in

particular, it is radical in K[X, Y].

Step 5. For i = 1, . . . , t, compute Ji = J mod Pi, where J is the Jacobian determinant

of (F,G). Using fast simultaneous modular reduction, this costs O(dM(d2) log(d)).

Step 6. For i = 1, . . . , t, compute a regular quotient of Qi by Ji modulo Pi; again, the

cost is O(M(d)M(d2) log(d)2). Let U be the union of all resulting triangular sets; then,

〈U 〉 is the defining ideal of V (F ?, G?) − V (J), and one verifies that the latter set is

Z(F,G).

Step 7. Finally, apply the algorithm of Corollary 1 to U to obtain the equiprojectable

decomposition of Z(F,G). Since Z(F,G) has size at most d2, the cost is O(M(d2) log(d)).

2.4 Normal form algorithms

We consider now the problem of reducing F ∈ A[X, Y] modulo several triangular sets.

Our input is as follows:

• T = (T1, . . . ,Ts) is a non-critical family of monic triangular sets in A[X, Y], where

Ti = (Ui, Vi) of bidegree (mi, ni) for all i and A is a ring;

• R = (R1, . . . , Rs) is the family of cofactors associated to T , as in Subsection 2.2.2;

• F is in A[X, Y], of total degree less than d.

We make the following assumptions:∑
i=1,...,s

mini ≤ d2 and ni ≤ d for all i. (H)

Then, the size of input and output is Θ(d2) elements of A.

Already for s = 1, in which case we write (m,n) instead of (m1, n1), the difficulty of

the problem can vary significantly: if both m and n are O(d), Lemma 1 shows that the

reduction can be done in optimal time O (̃d2); however, when m ' d2 and n ' 1, that

same lemma gives a sub-optimal O (̃d3).

22

In this section, we prove the following propositions, which give algorithms with better

exponents. The first one applies over any ring A; it uses fast matrix multiplication to

achieve an exponent (ω + 3)/2 ' 2.69.

Proposition 2. Under assumption (H), there exists an algorithm that takes as input

polynomials T , R and F as above and returns all F mod 〈Ti〉, for i in {1, . . . , s}, using

O(M(d2)d(ω−1)/2 log(d)) operations in A.

When A = Z/NZ, for some prime power N , better can be done in a boolean model:

this second proposition shows that we can get arbitrarily close to linear time (in the

boolean model, input and output sizes are Θ(d2 log(N))).

Proposition 3. Under assumption (H), for any ε > 0, there exists an algorithm that

takes as input a prime power N , and polynomials T , R and F as above, all with coef-

ficients in Z/NZ, and returns all F mod 〈Ti〉, for i in {1, . . . , s}, using d2+εO (̃log(N))

bit operations.

2.4.1 Reduction modulo one triangular set

We first discuss a simplified version of the problem, where we reduce F modulo a single

monic triangular set. In other words, we take s = 1; then, we simply write T = (U, V)

instead of T1, and we denote its bidegree by (m,n) instead of (m1, n1). The polynomial

F is in A[X, Y], of degree less than d; thus our assumptions are the following:

mn ≤ d2 and n ≤ d. (H′)

In [54], Poteaux and Schost give two algorithms computing F mod 〈T〉. The first one,

originating from [53, Ths. 4-6], applies only in a boolean model, when A = Z/pZ for a

prime p. Only a small change is needed to make it work modulo a prime power N = p`.

In both cases, when the base ring, or field, is too small, we need to enlarge it, by adding

elements whose differences are invertible. In our case, we extend the basering Z/NZ by

a polynomial that is irreducible modulo p (since if x− x′ is a unit modulo p, it is a unit

modulo N). The analysis of [53, Ths. 4-6] remains valid with this minor modification,

and yields the following result.

Proposition 4. [53, 54] Under assumption (H′), for any ε > 0, there exists an algorithm

that takes as input a prime power N and F and T as above, with coefficients in Z/NZ,

and returns F mod 〈T〉 using d2+εO˜log(N)) bit operations.

23

Since in this case the input and output size is Θ(d2 log(N)) bits, this algorithm is

close to being optimal.

If we consider the question over an abstract ring A, no quasi-optimal algorithm is

known. Under assumption (H′), the second algorithm of [54] runs in time O(dω+1); this

is subquadratic in the size d2 of the problem, but worse than O (̃d3). The following

proposition gives an improved result.

Proposition 5. Under assumption (H′), there exists an algorithm that takes as input F

and T as above and returns F mod 〈T〉 using O(M(d2)d(ω−1)/2) operations in A.

The rest of this subsection is devoted to prove this proposition. As in [54], we use a

baby steps / giant steps approach inspired by Brent and Kung’s algorithm [17], but with

a slightly more refined subdivision scheme.

Let thus F be in A[X, Y], of total degree less than d, and let T = (U, V) be of

bidegree (m,n). The steps of the algorithm are given below: they consist in computing

some powers of Y modulo 〈T〉 (baby steps, at Step 3), doing products of matrices with

entries in A[X, Y] (Step 4), and concluding using Horner’s scheme (giant steps, at Step 6).

Step 0. Replace F by F mod U ; as a consequence, we can assume F ∈ A[X, Y]r,d, with

r = min(d,m). For future use, note that mn ≤ rd: if r = d, this is because mn ≤ d2.

Else, r = m, and the claim follows from the fact that n ≤ d.

We do d reductions of polynomials of degree less than d by a polynomial of degree m

in A[X]; this is free if d < m and costs O(dM(d)) otherwise.

Step 1. Let t = dd/ne − 1 and write F as F = F0 + F1Y
n + · · · + FtY

nt, with all Fi in

A[X, Y]r,n.

Step 2. Let ρ = bd/n1/2c and µ = d(t + 1)/ρe; note that since d ≥ n, ρ ≥ 1 so µ is

well-defined. Furthermore, both ρ and µ are O(d/n1/2) and ρµ ≥ t+1. Set up the (µ×ρ)

matrix M1 = [Fiρ+j]0≤i<µ,0≤j<ρ with entries in A[X, Y]r,n, where we set Fk = 0 for k > t.

Step 3. For i = 0, . . . , ρ, compute σi = Y ni mod 〈T〉. Cost: since deg(V, Y) = n,

σ1 = (Y n mod 〈T〉) is equal to Y n − V , so computing it takes time O(mn). Then, it

takes time O(ρM(mn)) to deduce all other σi’s.

Step 4. Let ν = dm/re − 1; for i = 0, . . . , ρ− 1, write σi = σi,0 + σi,1X
r + · · ·+ σi,νX

rν ,

with all σi,j in A[X, Y]r,n. Build the ρ×(ν+1) matrix M2 = [σi,j]0≤i<ρ,0≤j≤ν and compute

M = M1M2.

Cost: we have seen that mn ≤ rd, so that m/r ≤ d/n and thus ν = O(d/n). Using

the bounds on ρ, µ, ν and Lemma 2, we deduce that the cost is O(M(rn)(e/n)(ω+1)/2).

Step 5. Let [mi,j]0≤i<µ,0≤j≤ν be the entries of M, which are in A[X, Y]2r−1,2n−1. For

i = 0, . . . , µ − 1, compute Gi = mi,0 + mi,1X
r + · · · + mi,νX

rν and Hi = Gi mod 〈T〉.

24

Because mi,j = Fiρσ0,j + Fiρ+1σ1,j + · · · + F(i+1)ρ−1σρ−1,j, we deduce that Gi = Fiρσ0 +

Fiρ+1σ1 + · · · + F(i+1)ρ−1σρ−1. Since σj = Y nj mod 〈T〉 for all j, this proves that Hi =

Fiρ + Fiρ+1Y
n + · · ·+ F(i+1)ρ−1Y

n(ρ−1) mod 〈T〉.
Computing a single Gi takes O(rnν) additions in A, which is O(mn) since rν = O(m).

By construction, Gi is in A[X, Y]r(ν+2)−1,2n−1; since r(ν + 2) = O(m), Lemma 1 implies

that reducing Gi to obtain Hi takes time O(M(mn)). The total for all Gi’s is O(µM(mn)).

Step 6. Compute H = H0 + H1σρ + · · · + Hµ−1σ
µ−1
ρ mod 〈T〉 using Horner’s scheme;

the expression given above for the polynomials Hi implies that H = F mod 〈T〉. Cost:

O(ρ) additions and multiplications modulo T, each of which costs O(M(mn)) operations

in A.

Summary. Summing all contributions, we obtain

O
(
M(d)d+ M(mn)(d/n)1/2 + M(rn)(d/n)(ω+1)/2

)
.

The first two terms are easily seen to be O(M(d2)d1/2). To deal with the last term, note

that r ≤ d implies M(rn) ≤ M(dn), and the super-linearity of M implies that M(dn) ≤
M(d2)n/d. Thus, the third term is O(M(d2)(d/n)(ω−1)/2), which is O(M(d2)d(ω−1)/2).

Proposition 5 is proved.

2.4.2 Reduction modulo several triangular sets

We now prove Proposition 2 and 3. To simplify the presentation, we give details for the

first result (in the algebraic model); the proof in the boolean model requires no notable

modification (just use Proposition 10 instead of 5 below).

Let thus T = (T1, . . . ,Ts) be monic triangular sets of the form Ti = (Ui, Vi), with co-

efficients in A and bidegrees (mi, ni). We also assume that the cofactors R = (R1, . . . , Rs)

are given. Given F in A[X, Y] of degree less than d, we consider the question of reducing

F modulo all 〈Ti〉, under assumption (H). Our proof distinguishes three cases, from the

most particular to the general case.

Identical ni’s. Assume first that there exists n such that ni = n for all i. Writing

m = m1 + · · · + ms, Lemma 3 shows that we can build a monic triangular set T in

A[X, Y] of bidegree (m,n), such that the ideal 〈T〉 is the intersection of all 〈Ti〉, in time

O(nM(m) log(m))

To compute all F mod 〈Ti〉, because (H) implies mn ≤ d2, we first compute H =

F mod 〈T〉 using Proposition 5, in time O(M(d2)d(ω−1)/2). Then, we use Lemma 3 to

reduce H modulo all 〈Ti〉 in time O(nM(m) log(m)). Since nM(m) is O(M(d2)), the cost

25

of this step is negligible.

Similar ni’s. We now relax the assumption that all ni’s are the same; instead, we

assume that there exists n such that ni ∈ {n, . . . , 2n − 1} for all i; as above, we write

m = m1 + · · ·+ms, and we introduce n′ = 2n− 1.

For i = 1, . . . , s, define V ?
i = Y n′−niVi and T?

i = (Ui, V
?
i), so that the T?

i ’s are

monic triangular sets of bidegrees (mi, n
′). These new triangular sets and F may not

satisfy (H) anymore, but they will, provided we replace d by d′ = 2d. Indeed, notice that

the inequality n′ ≤ 2ni holds for all i; using (H), this yields∑
i=1,...,s

min
′ ≤ 2

∑
i=1,...,s

mini ≤ 2d2 ≤ d′
2
,

and similarly n′ ≤ d′. The algorithm in the previous paragraph then allows us to compute

all Hi = F mod 〈T?
i 〉, still in time O(M(d2)d(ω−1)/2).

Then, for all i, we compute the remainder Hi mod 〈Ti〉. Using Lemma 1, this can be

done in time O(M(min)) for each i, for a negligible total cost of O(M(mn)) ⊂ O(M(d2)).

Arbitrary degrees. Finally, we drop all assumptions on the degrees ni. Instead, we

partition the set S = {1, . . . , s} into S0, . . . , Sκ such that i is in S` if and only if ni is

in {2`, . . . , 2`+1 − 1}. Because all ni satisfy ni ≤ d, κ is in O(log(d)). We write as usual

m = m1 + · · ·+ms.

We are going to apply the algorithm of the previous paragraph to all S` independently.

Remark that if all Ti and F satisfy assumption (H), the subset {Ti | i ∈ S`} and F still

satisfy this assumption. Let us thus fix ` ∈ {0, . . . , κ}. The only thing that we need to

take care of are the cofactors required for Chinese Remaindering. As input, we assumed

that we know all Ri = 1/(U1 · · ·Ui−1Ui+1 · · ·Us) mod Ui; what we need are the inverses

R`,i = 1/
∏

i′∈S`,i′ 6=i Ui′ mod Ui for i ∈ S`. These polynomials are computed easily: first,

we form the product B` =
∏

i/∈S` Ui; using [30, Lemma 10.4], this takes O(M(m) log(m))

operations in A. Then, we reduce B` modulo all Ui, for i ∈ S`, for the same amount of

time as above. Finally, we obtain all R`,i as R`,i = RiB` mod Ui; the time needed for

these products is O(M(m)).

Once the polynomials R`,i are known, the algorithm above gives us F mod 〈Ti〉, for

i ∈ S`, in time O(M(d2)d(ω−1)/2); this dominates the cost of computing the polynomials

R`,i. Summing over ` finishes the proof of Prop. 2.

26

2.5 Proof of the main results

We assume here that we are one of the cases A = k[T] or A = Z and we prove Theo-

rems 1 and 2. Given F,G in A[X, Y] and writing as before T = (T1, . . . ,Ts) for the

equiprojectable decomposition of Z(F,G) and C = (C1, . . . ,Cs) for its modified version,

we show here how to compute the latter.

The algorithm follows the template given in [23]: compute the equiprojectable de-

composition modulo a randomly chosen maximal ideal m of A, lift it modulo mN , for N

large enough, and reconstruct all rational fractions that appear as coefficients in C from

their expansion modulo mN .

We suppose that λ(F), λ(G) ≤ ` and deg(F), deg(G) ≤ d, where λ is the length

function defined in the introduction. For i ≤ s, we write (mi, ni) for the bidegree of

Ti; then, we have the upper bound
∑

i≤smini ≤ d2; besides, each ni is at most d, so

assumption (H) of Section 2.4 holds.

2.5.1 One lifting step

Here, m is a maximal ideal of A; we assume that none of the denominators of the

coefficients of the polynomials in T vanishes modulo m. Thus, for N ≥ 1, we can define

TN = T mod mN by reducing all coefficients of T mod mN . Given TN , we show how to

compute T2N ; this will be the core of our main algorithm. We start by describing some

basic operations in AN = A/mN (when N = 1, we also use the notation k to denote the

residual field A/m).

For complexity analyzes, we assume that A = k[T] and that m has the form 〈T − t0〉,
for some t0 in k; we discuss the case A = Z afterwards. Remark in particular that

operations (+,−,×) in AN can be done in O(M(N)) operations in k.

Univariate inversion. Given Q monic of degree m in AN [X] and F ∈ AN [X] of degree

less than m, consider the problem of computing 1/F in AN [X]/〈Q〉, if it exists.

This is done by computing the inverse modulo m (i.e., over k[X]) by an extended

GCD algorithm and lifting it by Newton iteration [30, Ch. 9]. The first step uses

O(M(m) log(m)) operations in k, the second one O(M(m)M(N)).

Bivariate inversion. Given a monic triangular set T in AN [X, Y] of bidegree (m,n)

and F ∈ AN [X, Y]m,n, consider the computation of 1/F in AN [X, Y]/〈T〉, assuming it

exists.

We use the same approach as above, but with bivariate computations. For inversion

modulo m, we use [22, Prop. 6], which gives a cost O(M(m)M(n) log(m)3 log(n)3). The

lifting now takes O(M(mn)M(N)).

27

Lifting TN . We can now explain the main algorithm, called Lift in the next subsection.

In what follows, we write TN = (TN,1, . . . ,TN,s); all computations take place over A2N .

Step 0. First, as in the proof of Corollary 1, we compute the cofactors RN associated

to TN using [30, Algo. 10.18]; this time, though, we work over the ring A2N . Steps 1

and 2 of that algorithm work over any ring; Step 3, which computes inverses modulo the

polynomials TN,j, is dealt with using the remarks made above on univariate inversion.

Because TN,j has bidegree (mj, nj) for all j, with
∑

j≤smjnj ≤ d2, the total cost is

O(M(d2)M(N) log(d)) operations in k.

Step 1. We will use formulas from [59] to lift from TN to T2N . First, we reduce the

polynomials F , G and the entries of their Jacobian matrix J modulo m2N ; as a result,

we will now see these polynomials as elements of A2N [X, Y].

Over A = k[T], the assumption that λ(F), λ(G) ≤ ` means that F and G have degree

at most ` in T ; we are reducing them modulo the polynomial (T − t0)2N . The time for

one coefficient reduction is O(M(`)), since when 2N > `, no work is needed. The total

time is O(d2M(`)).

Step 2. We compute FN,j = F mod 〈TN,j〉 over A2N [X, Y] for all j ∈ {1, . . . , s}, as

well as GN,j = G mod 〈TN,j〉 and JN,j = J mod 〈TN,j〉. This is the most costly part

of the algorithm: because we know the cofactors RN associated to TN , and because

assumption (H) of Section 2.4 is satisfied, Proposition 2 shows that one can compute

all FN,j using O(M(d2)M(N)d(ω−1)/2 log(d)) operations in k. The same holds for all GN,j

and JN,j.

Step 3. Finally, for all j, we compute the (2 × 2) Jacobian matrix MN,j of TN,j in

A2N [X, Y] and the vector

δN,j = MN,jJ
−1
N,j

[
FN,j

GN,j

]
over A2N [X, Y]/〈TN,j〉.

Proposition 4 in [59] then proves that T2N,j = TN,j + δ?N,j , where δ?N,j is the canonical

preimage of δN,j over A2N [X, Y].

The dominant cost is the inversion of the matrices JN,j. By the remark above, the

cost for a given j is O(M(mj)M(nj) log(mj)
3 log(nj)

3 + M(mjnj)M(N)); summing over j,

this step is negligible compared to Step 2.

Summary. When A = k[T], the cost of deducing T2N from TN is O(d2M(`) +

M(d2)M(N)d(ω−1)/2 log(d)) operations in k, which is O (̃d2`+ d(ω+3)/2N).

When A = Z and m = 〈p〉, for a prime p, the algorithm does not change, but the

complexity analysis does. Using the fact that computations modulo pr can be done

28

in O (̃log(pr)) bit operations, and using Proposition 3, we obtain a cost of d2+εO (̃` +

N log(p)) bit operations, for any ε > 0.

2.5.2 Main algorithm

We will now analyze the main steps of the following algorithm, proving our main

theorems. For simplicity, we suppose that A = k[T]; the modifications for A = Z follow.

Algorithm 1: Main Algorithm

Input: F,G in A[X, Y], m ⊂ A, ` ∈ N, d ∈ N
Output: C = (C1, . . . ,Cs)

1 (1) T1 ← Z(F mod m, G mod m)

2 (2) i← 1

3 (3) while λ(m2i) < 4d`+ 48d2 do

4 (3.a) T2i ← Lift(T2i−1 , F,G)

5 (3.b) i← i+ 1

6 end

7 (4) C2i−1 ← Convert(T2i−1)

8 (5) return RationalReconstruction(C2i−1)

Step 1. Over A = k[T], the maximal ideal m has the form m = 〈T − t0〉, for some t0 ∈ k.

Reducing F and G modulo m takes O(`d2) operations in k by the plain algorithm.

We assume that t0 is not a root of the polynomial A defined in Lemma 4. By

assumption, the cardinality of k is at least twice the degree of A, so choosing t0 at

random, our assumption is satisfied with probability at least 1/2.

We use the algorithm of Section 2.3 over k to compute the equiprojectable decom-

position T1 of Z(F mod m, G mod m); under our assumption on t0, T1 coincides with

T mod m. This step takes O(M(d)M(d2) log(d)2) operations in k.

Step 3. We saw in the introduction that over either A = k[T] or A = Z, all polynomials

Ui and Ni in C satisfy λ(Ui), λ(Ni) ≤ 2d`+ 24d2. In order to reconstruct the coefficients

of these polynomials from their expansion modulo mN , it is thus enough to ensure that

2(2d` + 24d2) ≤ λ(mN); this accounts for the bound in the while loop. If we wanted to

compute T instead, the bound would be of order d3`+ d4.

Step 3.a. For each value of i, we call the algorithm described in the previous subsection;

we saw that the cost is O(d2M(`) + M(d2)M(2i)d(ω−1)/2 log(d)) operations in k. The last

value i0 of the loop index is such that 2i0 < 4d` + 48d2 ≤ 2i0+1. We deduce the total

29

running time:

O
(
d2M(`) log(`) + M(d2)M(d`+ d2)d(ω−1)/2 log(d)

)
.

Step 4. We obtain C mod m2i0 from T mod m2i0 by applying subroutine Convert, which

does the following: for all i ≤ s, Ti has the form (Ui, Vi) and Ci = (Ui, Ni), with

Ni = Vi U
′
i mod Ui, over the ring A2i0 [X, Y]. The cost is negligible compared to that of

the lifting.

Step 5. Finally, RationalReconstruction recovers the rational coefficients appearing in C

from their expansion modulo m2i0 (the index i0 was chosen such that this precision is

sufficient). There are O(d2) coefficients, each of them having numerator and denominator

of degree O(d`+ d2), so the total time is O(d2M(d`+ d2) log(d`)) operations in k.

Summary. Summing all previous costs, we see that the total time admits the upper

bound claimed in Theorem 1,

O
(
M(d2)M(d`+ d2)d(ω−1)/2 log(d`)

)
.

Over A = Z, m is of the form 〈p〉, for a suitable p chosen as follows: let B = 6 · 8d5(3`+

10 log(d) + 22). Using [30, Th. 18.10], we can compute in time O (̃log(d`)) an integer

p ∈ [B+1, . . . , 2B] such that with probability at least 1/2, p is prime and does not divide

the integer A of Lemma 5. We apply the same algorithm as above (in particular, since

p ≥ B, the computation modulo p will satisfy the requirement on the characteristic of

the field k = Z/pZ of Proposition 1).

Using the analysis in the previous subsection and the bounds on the bit-size of the

output, it is straightforward to derive an upper bound of d2+εO (̃d`+ d2) bit operations,

for any ε > 0. Up to doubling ε, the polylogarithmic terms can be discarded, and we get

the result of Theorem 2.

2.6 Experimental results

We report here on preliminary results obtained with an experimental implementation of

our main algorithm in the case A = Z, based on Shoup’s NTL [60]. Although Theorem 2

features the best complexity, it relies ultimately on an idea of Kedlaya and Umans’ [36],

and we are not aware of an efficient implementation of it, nor do we know how to derive

one. Instead, we used the baby steps / giant steps idea underlying Theorem 1, which

applies over any ring.

Our prototype is limited to inputs with word-size coefficients, and handles only the

generic case described in the introduction, with only one triangular set of the form

30

degree precision Lifting CRT, ZZ p CRT, lzz p

100 32 295.67 1474.88 899.48
100 64 558.75 2949.76 1798.96
100 128 1241.4 5899.52 3597.93
120 32 421.78 2711.36 1990.40
120 64 774.14 5422.72 3980.80
120 128 1728.1 10845.44 7961.60
140 32 818.97 4902.24 2671.89
140 64 1486.35 9804.48 5343.79
140 128 3045.91 19608.96 10687.59
160 32 1072.1 7610.6 5293.64
160 64 1896.64 15221.2 10587.28
160 128 3958.17 30442.4 21174.56
180 32 1394.61 11121.48 6541.90
180 64 2399.61 22242.96 13097.57
180 128 4951.37 44485.92 26195.15

Table 2.1: Lifting vs CRT

U(X), Y − η(X) in T . We did implement some classical optimizations not described

above in the lifting process, such as halving the precision needed for the Jacobian

matrix [33, § 4.4]. In the size ranges below, we choose our prime p of about 50 bits (this

agrees with the bound given in the previous section; also, in this generic case, it is easy

to verify that such a prime is “lucky”). Our implementation does polynomial matrix

multiplication with exponent ω = 3. Nevertheless, this step was carefully implemented,

using FFT techniques for evaluation / interpolation and fast multiplication of matrices

modulo small primes.

We compare our results to a Chinese Remainder approach that computes the resultant

and the last subresultant modulo many primes. NTL only computes resultants, so we

used an implementation of the fast subresultant algorithm already used in [31] that

mimics NTL’s built-in resultant implementation. We give timings for the two kinds of

modular arithmetic supported by NTL, ZZ p and lzz p, for respectively “large” primes

and word-size primes. The latter is usually faster, as confirmed below, but the former

allows us to choose fewer but larger primes for modular computations, which may be

advantageous.

The above table shows timings needed to compute the output modulo pN , where p

is a 50 bit prime, and N is a power of 2, using these various approaches; inputs are

random dense polynomials, and correctness was verified by comparing that the results

31

of all approaches agreed. On these examples, our lifting algorithm does better than our

CRT-based resultant implementation. The next step in our implementation will be to

confirm whether this is still the case when we lift the general position assumption.

32

Chapter 3

Solving bivariate polynomial

systems: the case of singular

solutions

3.1 Introduction

Overview. Newton’s iterator is one of the most popular components of polynomial

system solvers, either from the numeric or symbolic points of view. This iterator usually

handles situations without multiplicities only, since it requires that the Jacobian matrix

of the given system is invertible at the roots we are looking for.

In this paper, we are interested in applying such techniques to the solution of bivariate

polynomial systems F = G = 0, with F and G in Z[X, Y]. This work is in the contin-

uation of [39], where Newton iteration techniques were used to handle solutions without

multiplicities of system F = G = 0. In this work, using results and ideas from [39],

as well as Lecerf’s extension of Newton’s iterator to systems with multiplicities [40], we

extend this approach to all solutions.

A large body of recent work on this question [28, 25, 57, 11, 27] focuses on the problem

computing real solutions of such systems, using a combination of symbolic elimination

and real root isolation or approximation techniques. Our interest here is on complexity

of the symbolic component of such algorithms. In a nutshell, one of our main results says

that bivariate systems with integer coefficients can be solved “symbolically” in essentially

optimal time.

Over an arbitrary field. Let us first discuss known results for solving a bivariate

system F = G = 0 over K[X, Y], where K is an abstract field. All along, we will suppose

33

that that the zero-set V (F,G) is finite. In this case, if F and G have total degree at

most d, the Bézout theorem implies that the system F = G = 0 has at most d2 solutions

in an algebraic closure K of K.

Several approaches exist to describe the solutions of our system: Gröbner bases,

triangular representations, or descriptions based on univariate polynomials. For instance,

in [39], the authors relied on a canonical description of a zero-dimensional variety, called

the equiprojectable decomposition from [23]. Although it would be natural to use this

kind of description here as well, the techniques we rely on are slightly easier to apply

when working in generic coordinates.

Indeed, if we are in generic coordinates, the zeros of F = G = 0 can simply be

described by a pair of polynomials in K[X], of the form

P (X) = 0, Y = S(X). (3.1)

Remark that for such a description to make sense, no two points on V (F,G) should have

the same abscissa; this is precisely what is ensured once we are in generic coordinates.

In such an output, our choice is to take P square-free; in other words, our representation

of the solutions will forget multiplicities.

The input polynomials F and G have degree d in two variables; the polynomials P

and S have degree at most d2 in one variable. Thus, representing both input and output

involves only (d2) elements in K. However, the best algorithms known so far all use at

least O (̃d3) operations in K.

Systems over the integers. In this paper, we are going to work in the particular case

where K = Q; our approach would extend to cases such as K = k(T) (as was discussed

in [39]), but one key complexity estimate still eludes us in those other cases. In such

cases, it becomes crucial to take into account the bit-size of the output as well.

For a non-zero integer a, we write ht(a) = log(|a|); this essentially represents the

amount of bits needed to store a. We call this the height of a. It will be useful to introduce

a notion of height for polynomials with coefficients in Q: if P is such a polynomial, the

height ht(P) denotes the maximum of the heights λ(ni) and λ(di), where ni and di are

the numerators and denominators of the coefficients of P , when written in reduced form

using a common denominator. Thus, height and degree combined give us an estimate of

the total amount of bits, or machine words, . . . , needed to store P .

Suppose then that F and G have coefficients in Z, with degree at most d and height

at most h. Assuming that we are in generic coordinates, so that a representation of

34

the solutions of F = G = 0 makes sense, both P and S have coefficients in Q. As is

well-known (since at least [5, 56]), the bit-size bounds for the coefficients of S are much

worse than those for P (and this is reflected in practice very accurately). Explicitly, the

following results are known (we will reprove them):

ht(P) = O(dh+ d2), ht(S) = O (̃d3h+ d4).

The usual workaround is to replace S by another polynomial, R, defined as R = P ′S mod

P ; equivalently, the solutions are now described by

P (X) = 0, Y =
R(X)

P ′(X)
.

This construction was highlighted in [5, 56], but goes back to early work of Kronecker

and Macaulay. For the polynomial R, much better height bounds are known, of the form

ht(R) = O(dh+ d2). Thus, representing (P,R) involves O(d3h+ d4) bits.

Following Rouillier, we will call this representation the Rational Univariate Repre-

sentation of V (F,G). Remark that a similar construction for triangular representation

is in [24].

Let us finally say a word about generic position questions. As was mentioned above,

our requirement for the existence of an output such as polynomials (P, S) or (P,R) is

that the coordinates X separates the points in V (F,G). A simple change of variables of

the form X ← X + tY will ensure that this is the case, for almost all values of t ∈ Z
(that is, all values except a finite number).

Main result. In all that follows, we will say that a solution (x, y) of the system F =

G = 0 is simple if the Jacobian determinant of (F,G) is nonzero at (x, y).

Let us temporarily let Z ′ be the set of such simple solutions. In [39], we gave with

Lebreton an algorithm to compute a triangular representation of Z ′; this algorithm could

be adapted to give a univariate representation, after putting the equations in generic

coordinates.

In a nutshell, the idea is to compute the output modulo a prime p, then lift this rep-

resentation modulo powers of p using a suitable form of Newton iteration. Looking only

at points in Z ′ makes it straightforward to apply such techniques, since by assumption,

at such points, the Jacobian matrix of (F,G) is invertible.

In this paper, we show that we can extend these ideas to find a univariate represen-

tation of V (F,G), in a time close to optimal; this matches the results of [39] in the case

35

where all solutions of F = G = 0 are simple. The algorithm uses a combination of the

lifting techniques introduced by Lecerf in [40] and a modification of the Kedlaya-Umans

modular composition algorithm [36], following the same strategy as in [39].

Our algorithm is probabilistic of the Monte Carlo kind: one can choose an arbitrary

error threshold, say 1/2P , and the algorithm guarantees that the result is correct with

probability at least 1 − 1/2P . Part of the randomness simply amounts to choosing an

integer in a finite set. Another component is more involved, as it amounts to choosing

primes. Since this is a delicate question in itself, and not the topic of this paper, we will

use the following device: we assume that we are given an oracle O, which takes as input

an integer B, and returns a prime number in {B + 1, . . . , 2B}, uniformly distributed

within this set of primes.

Theorem 4. Let F,G ∈ Z[X, Y] with degree at most d and height at most h, that have

no nontrivial factor in Q[X, Y].

For any ε > 0, there exists an algorithm with the following characteristics. Given

P ≥ 1, the algorithm computes the Rational Univariate Representation of the system

Ft = Gt = 0, where t is an integer of height O(P + log(d)), Ft = F (X + tY, Y) and

Gt = G(X + tY, Y). The running time is d3+εO (̃(h + d)P) bit operations, and the

probability of success is at least 1− 1/2P .

For fixed P , this is thus d3+εO (̃h + d) bit operations, which almost matches the

known upper bounds on the output size. We are not aware of previous result that would

be comparable in terms of complexity. As reviewed in [39], previous approaches to this

question had cost at least O (̃d4h + d5), for Monte Carlo algorithms. For Las Vegas

algorithms, the known bounds are higher yet, namely O (̃d5h + d6), see [15] for latest

results in this context.

For the case where our base ring is A = k[T] instead of Z, we were not able to obtain

the same result as in [39, Theorem 1], as we were not able to find a fast algorithm for

one specific question of modular composition appearing in the process of evaluating the

derivatives of the given system. However, the approach given for the case A = Z remains

correct in the case of A = k[T] as our base ring.

Multiplicities. Before explaining how our result compares to previous work, it will

be useful for us to recall the definition of the multiplicity of an isolated solution of a

polynomial system. We will only need to discuss systems in one or two variables. As per

the above convention, our base ring in this discussion is a domain A with fraction field

K, and K is an algebraic closure of K. To give the most general definition, we assume

that our polynomials have coefficients in K.

36

First, consider a nonzero univariate polynomial F in K[X], and a root x∗ of F . The

multiplicity of F at x∗ is the highest integer M such that (X − x∗)M divides F . The

multiplicity M is one if and only if F ′(x∗) is nonzero.

Next, consider an ideal ψ in K[X, Y], and an isolated solution (x∗, y∗) of the system

of equations ψ = 0. Define the ideal ψ′ = {f(X + x∗, Y + y∗) | f ∈ ψ}, so that (0, 0) is

a solution of the system ψ′ = 0. Then, the multiplicity M of the system ψ at (x∗, y∗)

is the dimension of the K̄-vector space K̄[[X, Y]]/ψ′, see for instance [21, Chapter 4];

the fact that (x, y) is an isolated solution is equivalent to this dimension being finite. If

ψ = 〈F,G〉, the multiplicity M is one if and only if the Jacobian determinant of (F,G)

is nonzero at (x∗, y∗).

It will also be useful to remember the following extension of the Bézout bound on the

number of isolated solutions of a bivariate system: if (F,G) is a system in K[X, Y], with

both F and G having degree at most d, then the sum of the multiplicities of the isolated

solutions of the system F = G = 0 is at most d2. Examples such as F = Xd, G = Y d

show that multiplicities as high as d2 are possible.

Lecerf’s deflation algorithm. Our main idea is to apply lifting techniques to the

triangular sets T1, . . . ,Ts: given these polynomials modulo an ideal m of A, we intend

to compute them modulo successive powers mk; when k is large enough, we deduce

T1, . . . ,Ts, or rather C1, . . . ,Cs, since we saw that the latter have better size bounds.

However, the algorithm for lifting triangular sets from [59] requires that all points

our triangular sets define are simple solutions of the input system (F,G); this is why the

algorithm of [39] was restricted to such points.

In order to handle all solutions, including the multiple ones, one has to remember that

the lifting algorithm from [59] is a variation around Newton iteration. Thus, it makes

sense to attempt to use variants of Newton iteration techniques for multiple roots.

Our approach is based on a result of Lecerf’s [40], which generalizes the usual Newton

iterator to multiple roots, in our context of m-adic lifting (that is, of lifting modulo the

powers of a maximal ideal m in the domain A). However, this algorithm does not deal

with our problem of lifting triangular sets; instead, in line with the classical presentation

of Newton iteration, it deals with iterative approximations of a unique isolated root x∗

of a polynomial system ψ, that has multiplicity M > 1.

The main idea behind this approach is classical: it boils down to replacing the given

polynomial system ψ with a new one, say ψ̃, such that for the given root x∗ of ψ with

multiplicity M , x∗ is still a root of the new system ψ̃, but with multiplicity M̃ < M . The

ideal generated by the new polynomial system ψ̃ is usually called a deflation ideal. We

37

can then find a new deflated system ψ̃ in which x∗ is a non-singular root, by repeating

the process sufficiently many times.

Lecerf proved that his construction of deflation ideals leads to an iteration with

quadratic convergence, with an overhead that grows like the square of the multiplicity

M of the root.

Our main technical contribution in this paper lies in the adaptation of this result to

our context of lifting triangular sets, with an admissible complexity. One difficulty lies in

the very fact that we are lifting whole triangular sets, not only a single root. In addition,

Lecerf’s algorithm and cost analysis assume that the input polynomials are given by a

straight-line program, which is not the case for us. Finally, we saw that the cost of

Lecerf’s algorithm is quadratic in the multiplicity; we saw above that multiplicities as

large as d2 are possible for a bivariate system of degree d, so we will have to show that

the cost can actually be reduced to quasi-linear in M . On the other hand, the fact that

we consider only bivariate systems simplifies considerably the constructions.

Other deflation algorithms. Generalizing Newton iteration to singular situations,

and in particular designing an efficient iterator with quadratic convergence in degenerate

cases, are still ongoing challenging problems. We briefly review some of the previous

work on this question. Remark that all algorithms below work for an arbitrary number

of variables, not only bivariate systems.

In order to be develop Newton-type methods that converge to multiple roots, a com-

mon idea is to use deflation techniques, which consist in adding new equations in order

to reduce the multiplicity.

An early result in this area is due to Ojika, Watanabe, and Mitsui [61]: by applying a

triangulation preprocessing step on the Jacobian matrix at the approximate root, minors

of the Jacobian matrix are added to the system to reduce the multiplicity.

In [2, 1], instead of triangulating the Jacobian matrix, the number of variables is

doubled and new equations are introduced, which are linear in the new variables; it is

proved that the multiplicity decreases through this process. In [8], this construction in

related to Macaulay’s inverse systems; Macaulay [47] dialytic method is revisited for this

purpose. These deflation methods are applied iteratively until the root becomes simple,

doubling each time the number of variables. Other algorithms for the construction of

inverse systems are described e.g. in [45], reducing the size of the intermediate linear

systems, or in [49] using an integration method.

In [52], a minimization approach is used to reduce the value of the equations and their

derivatives at the approximate root, assuming a basis of the inverse system is known.

38

In [68], the inverse system is constructed via Macaulays method; multiplication table of

the local algebras are deduced and their eigenvalues are used to improve the approximated

root. It is proved that the convergence is quadratic when the Jacobian has co-rank one

at the multiple root.

Unfortunately, even when the input system is bivariate, it seems difficult to control

the complexity of the above algorithms. In addition, several of these results rely on

purely numerical techniques, such as the Singular Value Decomposition, which will not

carry over to our context. This explains why we rely on the approach of [40].

Notation. For positive integers m,n, and for a ring A, A[X]m denotes the set of all

F ∈ A[X] such that deg(F) < m, and A[X, Y]m,n the set of all F ∈ A[X, Y] such that

deg(F,X) < m and deg(F, Y) < n.

3.2 Quantitative estimates

3.2.1 Polynomials in general position

In this subsection, we describe a classical notion of system in general position, and we

discuss conditions that ensure that this property is preserved through reduction at a

prime. These results are in essence classical (they go back to Kronecker and Macaulay),

and their quantitative versions appear for instance in [37, 59, 23, 25, 16], among many

other references. Nevertheless, we chose to give short self-contained proofs of the facts

we need.

In all this section, π denotes the mapping (x, y) 7→ x of projection on the first fac-

tor; although the points x, y will be taken in various fields, we keep the same notation

throughout, since no ambiguity can arise. In the beginning of this section, A is a domain

with field of fractions K; we let K denote an algebraic closure of K.

Representing zero-dimensional algebraic sets. Let V ⊂ K2
be a finite set, and

assume that V can be written as V = V (F1, . . . , Ft) for some F1, . . . , Ft in K[X, Y].

Suppose that the following conditions are satisfied:

G1. K is perfect.

G2. X is a separating element for V , that is, the restriction of π to V is one-to-one.

Under these assumptions, there exist uniquely defined polynomials (P, S) in K[X], with P

squarefree and monic, and S of degree less than P , such that the ideal 〈P (X), Y −S(X)〉

39

is the defining ideal of V in K[X, Y] (remark that the existence of such polynomials with

coefficients in K requires that K be perfect).

Following [32], we call polynomials (P, S) the Shape Lemma representation of V ,

and denote them by (P, S) = SL(V). Over a field such as K = Q, it is well known

that this representation suffers from coefficient size bloat: the coefficients of S are in

many cases significantly larger than those of P . A workaround is to use an alternative

description, the Rational Univariate Representation of V , for which this issue usually

disappears. It consists in polynomials (P,R), with R = SP ′ mod P ∈ K[X]; we denote

these polynomials by (P,R) = RUR(V).

The notion of Rational Univariate Representation is from [5, 56]; note the original

definition is able to incorporate multiplicities, which we do not take into consideration

here.

Polynomials in general position. Let F and G be in A[X, Y] and let V = V (F,G) ⊂
K2

. We say that F,G are in general position if the following holds:

H1. F and G have no common factor in K[X, Y], so V is finite.

H2. The leading coefficients f and g of respectively F and G with respect to Y are in

A.

H3. V satisfies G1 and G2

When this is the case, polynomials P , S and R associated to V as above are well-defined;

the polynomial P appearing in the Shape Lemma representation of V is the squarefree

part of the resultant of F and G with respect to Y (once the latter has been made monic).

As a matter of notation, we will write (P, S) = SL(F,G) and (P,R) = RUR(F,G).

For t in A, we will denote by Ft and Gt the polynomials Ft = F (X + tY, Y) and

Gt = G(X + tY, Y); similarly, we will write Vt = V (Ft, Gt), so that

Vt = {(x, y) ∈ K2 | (x+ ty, y) ∈ V } = φt(V),

where φt is the mapping K2 → K2
given by φt(x, y) = (x − ty, y). Letting T be an

indeterminate over A, we use the same notation, using a subscript T instead of t, to

denote the polynomials

FT = F (X + TY, Y) and GT = G(X + TY, Y),

40

and their zero-set VT in K(T)
2

(actually, VT lies in K(T)2 ⊂ K(T)
2
). If F and G are

polynomials in A[X, Y], with no common factor (so they satisfy H1), one easily verifies

that FT and GT satisfy H1 and H2, that VT satisfies G2, over the ring A[T] instead of A,

and that VT has the same cardinality as V .

Over the integers. Let us now restrict our attention to the case A = Z and K = Q;

as before, we take F and G that satisfy H1 and we write V = V (F,G).

Let then A be the resultant of FT and GT with respect to Y ; this is a nonzero

polynomial in Z[T,X], and we denote by a ∈ Z[T] its leading coefficient with respect to

X. Let next B ∈ Z[T,X] be the squarefree part of A, that is, B = A/ gcd(A,A′), where

A is the derivative of A with respect to X; remark that the gcd, and thus B itself, are

formally defined only up to sign, but this will be inconsequential.

Lemma 1. In Q[T,X], B factors as

B = b
∏

(x,y)∈V

(X − (x− Ty)), (3.2)

where b is the leading coefficient of B with respect to X, and belongs to Z[T].

Proof. In Q(T)[X], the roots of B are the values (x − Ty), for (x, y) ∈ V , so there

is indeed a factorization of the form B = b
∏

(x,y)∈V (X − (x − Ty)). A priori, b is in

Q(T), but the right-hand side expression shows that it is the leading coefficient of B

with respect to X. Since B is in Z[T,X], b is in Z[T].

The following lemma shows how the polynomial B and its factors allows us to give

formula for the Rational Univariate Representation of Vt and its subsets, when Ft and

Gt are in general position. To state this lemma, remark that if W if a subset of V , we

may rewrite the factorization in (3.2) as

B = bCW CW c ,

where we write W c = V \W and

CW =
∏

(x,y)∈W

(X − (x− Ty)) and CW c =
∏

(x,y)∈W c

(X − (x− Ty)).

If in addition W is defined over Q (for instance, for W = V), both CW and CW c are in

Q[T,X].

41

Lemma 2. Let W be a subset of V defined over Q. Then, CW can be written as DW/cW ,

where DW is a primitive polynomial in Z[T,X] that divides B in Z[T,X], and cW is a

nonzero integer that divides the content of b.

Proof. Start from the factorization B = bCW CW c , which holds between polynomials

in Q[T,X]. Since CW and CW c are in Q[T,X] and are monic in X, they can be written as

CW = DW/cW and CW c = DW c/cW c , with cW and cW c in Z, and DW and DW c primitive

in Z[T,X]. Similarly, we can write b = rs, where r ∈ Z is the content of b and s is

primitive in Z[T], and B = RS, where R ∈ Z is the content of B and S is primitive in

Z[T,X].

Clearing denominators, we obtain cW cW cRS = rsDWDW c . Using Gauss’ Lemma over

Z[T,X], we deduce that cW cW cR = r; this implies that cW divides r, as claimed. We also

obtain S = sDWDW c , so that DW divides S in Z[T,X], and thus B.

The explicit factorization of B and of the polynomials CW allows us to give formula

for the Rational Univariate Representation of V , or of one of its subsets W .

Lemma 3. Let t ∈ Z be such that b(t) 6= 0 and such that Ft and Gt are in general

position. Let further W be a subset of V , defined over Q. Then, Wt is in general

position, and the associated Rational Univariate Representation (PWt , RWt) = RUR(Wt)

is given by

PWt = CW (t,X) and RWt =
∂CW
∂T

(t,X).

In addition, all denominators appearing in PWt and RWt divide b(t).

Proof. The proof of the first properties is classical, see for instance [5, 56, 59], which

actually apply in more general cases. The last property follows from the previous lemma,

together with the remark that the content of b divides b(t), for any integer t.

Let now ∆ ∈ Z[T] be the discriminant of B with respect to X and define finally Γ

as the product of ∆ by the leading coefficients f and g of respectively FT and GT with

respect to Y , and by the leading coefficient a of A in X. This is a nonzero element of

Z[T].

The following lemma gives upper bounds on the degree and height of ∆ and of the

various polynomials CW , for W a subset of V . These bounds are far from sharp as far as

the constants involved are concerned, in particular in terms of degrees, but this will be

harmless for the overall cost analysis.

Lemma 4. Suppose that F and G have degree at most d and height at most h. Then,

the following holds:

42

• for any subset W of V defined over Q, the polynomial CW ∈ Q[T,X] satisfies

deg(CW , T) ≤ d2 and ht(CW) ≤ 2hd+ 16d2.

• Γ satisfies deg(Γ) ≤ 12d4 and ht(Γ) ≤ 12hd3 + 120d4.

Proof. The polynomials FT and GT have degree at most d in Y and (X,T) and, by [37,

Lemma 1.2.1.c], height at most h + 4d. Their resultant A has total degree at most 2d2,

and the same lemma as above (and the remark following it) implies that its height is

at most 2hd + 12d2. The factor bound of [37, Lemma 1.2.1.d] then implies that B has

degree at most 2d2 and height at most 2hd+ 16d2.

From this, we can prove the bounds we claim on CW . The degree bound in T is

obvious, since at most d2 linear factors appear in the product giving CW . For the height

bound, remark that CW and the polynomial DW defined in Lemma 2 have the same

height, and that DW divides B, and thus A in Z[T,X]. Thus, they admit the same

height bound as B itself.

On the other hand, applying again the remark following [37, Lemma 1.2] to B, the

degree and height bounds for this polynomial imply that ∆ has degree at most 8d4 and

height at most 8hd3 +80d4. Multiplying by the leading coefficients f and g of respectively

FT and GT in Y , and by the leading coefficient a of A in X, which are all in Z[T], we

deduce that Γ has degree at most 12d4 and height at most 12hd4 + 120d4, using [37,

Lemma 1.2.1.b].

The following specialization lemma shows how ∆ controls (in particular) prime of bad

reduction. We give it in the general form we will need below.

Lemma 5. Let φ be a ring morphism Z[T] → A, where A is a domain; this morphism

extends to a ring morphism φ : Z[T,X, Y]→ A[X, Y].

Let V ′ = V (φ(FT), φ(GT)) ⊂ K2
, where K is an algebraic closure of the fraction field

K of A. Then, if φ(Γ) is nonzero, φ(FT) and φ(GT) satisfy H1 and H2, and the cardinality

of π(V ′) ⊂ K is equal to the cardinality of V .

Proof. First, let us establish that the cardinality of π(V ′) is the number of pair-

wise distinct roots of φ(A) in K. Because φ(f) and φ(g) are nonzero, they remain the

leading terms of respectively φ(FT) and φ(GT) with respect to Y (which proves H2);

in addition, the resultant res(φ(FT), φ(GT), Y) coincides with the image φ(A). On the

other hand, because φ(f) and φ(g) are nonzero, the number of pairwise distinct roots of

res(φ(FT), φ(GT), Y) is the cardinality of π(V ′) ⊂ K. Our claim above is thus proved.

In addition, since φ(Γ) is nonzero, φ(a) is nonzero, where a is the leading coefficient

of A with respect to X (recall that a divides Γ). Thus, φ(A) itself is nonzero, which

43

implies that res(φ(FT), φ(GT), Y) is nonzero. As a result, φ(FT) and φ(GT) can only

have a common factor in A[X]. However, since their leading coefficients with respect to

Y lie in A, they have no such common factor. This proves H1.

Since B = A/ gcd(A,A′), we deduce that B divides A, and that A divides some

polynomial of the form aBk in Z[T,X], for some positive integer k. This relationship

remains true through φ; this implies that φ(B) and φ(A) have the same roots in K.

Now, we claim that because φ(∆) is nonzero, φ(B) has no multiple root in K. Indeed,

the leading term b of B divides its discriminant ∆, so φ(b) must be nonzero. This implies

that the resultant computation that gives ∆ = res(B,B′, X) carries over through φ, so

that φ(∆) is the discriminant of φ(B). Our claim above is thus proved.

This implies that the number of roots φ(B), or equivalently of φ(A), is equal to the

degree of φ(B). Since φ(b) is nonzero, this degree is the degree of B in X, which is the

cardinality of V , by Eq. (3.2). We are done.

Corollary 1. Take F and G as above, that satisfy H1, with degree at most d and height

at most h. Then, the following holds.

• For t in Z, if Γ(t) is nonzero, then Ft and Gt are in general position.

• For t as above, if t has height at most `, and if W is a subset of V defined over

Q, then the polynomials (PWt , RWt) = RUR(Wt) have degree bounded by d2 and

height bounded by an explicitly computable integer BRUR(d, h, `) = O (̃hd + d2`).

The polynomial SWt appearing in SL(Wt) has degree at most d2 and height bounded

by an explicitly computable integer BSL(d, h, `) = O (̃hd4 + d4`).

In particular, the polynomials in RUR(Ft, Gt) satisfy these bounds.

• Let in addition p be a prime. If Γ(t) mod p is nonzero, then Ft mod p and Gt mod p

are in general position, and the leading terms of Ft mod p and Gt mod p with respect

to Y are the images of those of Ft and Gt modulo p.

• For t and p as above, for any subset W of V defined over Q, p cancels no denomi-

nator in either SL(Wt) or RUR(Wt). In addition, we have

SL(Ft, Gt) mod p = SL(Ft mod p,Gt mod p)

and

RUR(Ft, Gt) mod p = RUR(Ft mod p,Gt mod p).

44

Proof. Suppose that t ∈ Z is such that Γ(t) is nonzero. Properties H1 and G1 clearly

hold for Ft and Gt. Applying the previous lemma to φ : Z[T]→ Z given by φ(f) = f(t),

we deduce that H2 holds for Ft and Gt, and that the cardinality of π(Vt) ⊂ Q is equal

to the cardinality of V . Since V and Vt have the same cardinality, this proves that Vt

satisfies G2. Thus, Ft and Gt are in general position.

To prove the second item, recall the formula for (PWt , RWt) given in Lemma 3. Using

the bounds on the degree and height of CW given in Lemma 4, together with the bounds

for evaluation given in [37, Lemma 1.2.1], a few simplifications show that upon evaluation

at T = t, the height of CW and its derivative with respect to T remains at most 4hd +

40d2 + 4d2`.

From this, we can deduce bounds for SWt = RWt/P
′
Wt

mod PWt , by applying the

Hadamard bound to the Sylvester matrix associated to PWt and P ′Wt
, followed by the

analysis of the height growth induced by multiplication by RWt modulo PWt . The most

significant factor here is the Hadamard bound, which induces an height overhead of

O (̃d2) compared to the bounds for RWt . This proves the second item.

Suppose next that the prime p is such that Γ(t) mod p is nonzero. Consider first

φ′ : Z[T] → Fp[T] given by φ(f) = f mod p. Because Γ(t) mod p is nonzero, we have in

particular that φ′(Γ) is nonzero.

Let then V ′t be the zero-set of Ft mod p and Gt mod p (in an algebraic closure of Fp)
and V ′T be the zero-set of FT mod p and GT mod p (in an algebraic closure of Fp[T]).

Because evaluation of T at t commutes with reduction modulo p, we deduce that |V ′T | =
|V ′t |. As pointed out previously, V ′T satisfies G2, so that |π(V ′T)| = |V ′T | = |V ′t |. On the

other hand, applying the previous lemma to φ′ implies that the cardinality of |π(V ′T)| is

equal to |V |. We deduce that |V | = |V ′t |.
Consider now the mapping φ′′ : Z[T]→ Fp[T] given by φ(f) = f(t) mod p. Applying

the previous lemma to φ′′, we deduce that Ft mod p and Gt mod p satisfy H1 and H2, and

that |π(V ′t)| = |V |. Since we saw above that |V | = |V ′t |, this proves that |π(V ′t)| = |V ′t |,
so that Ft mod p and Gt mod p are in general position. This proves the third item.

To conclude, consider again a subset W of V , defined over Q, together with the

formula that yield (PWt , RWt) = RUR(Wt). Let us also simply write (Pt, Rt) = RUR(Vt)

and (Pt, St) = SL(Vt), forgetting the index V .

Again, we use the fact (established in the proof of the previous lemma) that b(t)

is nonzero modulo p. Using Lemma 3, this proves that none of the denominators of

the coefficients of either PWt or RWt vanishes at p. On the other hand, B(t,X), or

equivalently Pt(X), remains squarefree modulo p (because Γ(t) does not vanish mod

p), so this is the case as well for the polynomial CW appearing in the Shape Lemma

45

representation of Vt. We deduce that the computation of the polynomial SWt appearing

in (PWt , SWt) = SL(Wt), given by SWt = RWt/P
′
Wt

mod PWt , specializes well modulo p.

Notice that the polynomials Ft and Gt reduce to zero modulo 〈Pt(X), Y − St(X)〉.
This relationship remains true modulo p, so that the polynomials (Pt(X) mod p, Y −
St(X) mod p) define a subset of V (Ft mod p,Gt mod p). However, both sets have

the same cardinality |V |, so these sets are equal. By uniqueness, we conclude that

SL(Ft, Gt) mod p = SL(Ft mod p,Gt mod p); multiplying by P ′t mod Pt, this carries over

to RUR(Ft, Gt) mod p = RUR(Ft mod p,Gt mod p). The proof is complete.

3.2.2 Non-vanishing conditions

Let K be a field, let P and S be in K[X], with P monic of degree e, and S of degree

less than e. Consider a further polynomial H in K[X, Y], and assume that the following

properties hold:

C0. P is squarefree.

C1. H vanishes nowhere one the set V = V (P (X), Y − S(X)).

In this short section, we focus on the case K = Q. Assuming that H has integer

coefficients, we give conditions under which these two properties are maintained through

reduction at a prime p.

Proposition 1. There exists an explicitly computable function ∆1(d, h, e, `) = (dhe`)O(1)

such that the following holds.

Suppose that P and S have degree at most e and height at most `, and that H ∈
Z[X, Y] has degree at most d and height at most h. If (P, S,H) satisfy C0 and C1, there

exists a nonzero integer δ1 such that:

• δ1 has height at most ∆1(d, h, e, `);

• for any prime p that does not divide δ1, P mod p and S mod p are well-defined,

and (P, S,H) mod p satisfy C0 and C1 over Fp.

The proof of this result will occupy the rest of this section. Let cP and cS be common

denominators respectively P and S, so that we can write P = P ?/cP and S = S?/cS,

with P ? and S? in Z[X]. Remark that we can take cP and cS of height at most ` and

that the same holds for P ? and S?.

Suppose that p is a prime that does not divide c, and such that P remains squarefree

modulo p. Thus, C0 is maintained through reduction at such a prime.

46

Starting from H =
∑

i,j hi,jX
iY j, let us then define the polynomial with integer

coefficients

H̃ =
∑

i≤d,j≤d

cd−jhi,jX
iY j,

so that K(X) = cdH(X,S) satisfies K(X) = H̃(X,S?). By assumption C1, this poly-

nomial is coprime with P , and C1 holds modulo p if K and P remain coprime modulo

p. This is the case as soon as p does not divide the resultant of K and P ?, which is a

nonzero integer. Thus, we can define δ1 as

δ1 = c res(P ?, P ?′, X) res(P ?, K,X).

It remains to estimate the height of this integer. First, recall that c has height at most

` and that the same holds for P ? and S?. This implies that P ?′ has height at most

2`+ log(e).

• The matrix giving the resultant res(P ?, P ?′, X) has size at most 2e and integer

entries of height at most 2`+ log(e). Hence, its determinant is a nonzero integer of

height at most 4e`+ 4e log(2e).

• The polynomial K = H̃(X,S?) is obtained by evaluating a polynomial of degree

at most d in 2 variables, with coefficients of height at most h + d`, at univariate

polynomials of degree at most e and height at most `. Using Lemma 1.2.1.c in [37],

we deduce that K has degree at most de and height at most h+ d(2`+ e+ 1).

• As a result, the matrix giving the resultant res(P ?, K,X) has for determinant a

nonzero integer of height at most 2de log(2de) + eh+ de(2`+ e+ 1) + de(h+ d`).

Adding all estimates gives an explicit formula for the upper bound ∆1, which is easily

seen to be polynomial in d, h, e, `.

3.2.3 Conservation of intersection multiplicity

Our context in this section is similar to the one of the previous section. We still consider

a field K, P and S in K[X], with P monic of degree e, and S of degree less than e. Now,

we also take two further polynomials H,K in K[X, Y], not necessarily coprime, and we

assume that the following properties hold:

M0. P is squarefree.

M1. All points in V = V (P (X), Y − S(X)) are isolated points of V (H,K).

47

We are interested in describing situations under which the following extra property is

verified:

M2(n). There exists n ≥ 1 such that for all (x, y) in V , 〈H,K〉 has multiplicity n at

(x, y).

Define the new polynomials G = gcd(H,K), H ′ = H/G and K ′ = K/G. Then, the

points in V are still isolated points of V (H ′, K ′), and for (x, y) ∈ V , the intersection

multiplicities µ((H,K), (x, y)) and µ((H ′, K ′), (x, y)) are the same.

Intersection multiplicity is invariant through linear change of coordinates. Thus,

reusing the notation of Subsection 3.2.1, we deduce that for any value of t in K, and for

(x, y) in V , the equality µ((H ′, K ′), (x, y)) = µ((H ′t, K
′
t), (x− ty, y)) holds. Consider then

a value t such that H ′t and K ′t are in general position.

In particular, for such a t, since Vt is a subset of V (H ′t, K
′
t) of cardinality e, there

exist polynomials P[t] and S[t] in K[X], with P[t] monic and squarefree of degree e, such

that Vt = V (P[t](X), Y − S[t](X)). We use the [t] in our subscripts, since the subscript t

is reserved for polynomials obtained by applying a linear change of variable. The same

will hold below for A[t].

Lemma 6. Let t be such that H ′t and K ′t are in general position, and let A[t] ∈ K[X] be

their resultant with respect to Y . For n ≥ 1, condition M2(n) holds if and only if we have

both:

• P n
[t] divides A[t] in K[X]

• P[t] and A[t]/P
n
[t] are coprime in K[X].

Proof. Because H ′t and K ′t are in general position, for any (x, y) in Vt, we know that

µ((H ′t, K
′
t), (x, y)) is the valuation of the resultant A[t] = res(H ′t, K

′
t, Y) at x, that is, the

highest exponent n such that (X − x)n divides A[t]. Equivalently, µ((H ′t, K
′
t), (x, y)) is

characterized as being the unique integer n such that (X − x)n divides A[t] and (X − x)

and A[t]/(X − x)n are coprime.

Taking all (x, y) in V into account, this leads to the condition given in the statement

of the lemma.

We will now focus on the particular case where K = Q. We suppose that H and

K are in Z[X, Y], that P and S are in Q[X], and that P, S,H,K satisfy M0, M1 and

M2(n), for some n ≥ 1. Our goal is to give conditions on a prime p such that the same

polynomials taken modulo p are well-defined and still satisfy M0, M1 and M2(n).

48

Proposition 2. There exists an explicitly computable function ∆2(d, h, e, `) = (dhe`)O(1)

such that the following holds.

Suppose that P and S have degree at most e and height at most `, and that H,K ∈
Z[X, Y] have degree at most d and height at most h. If (P, S,H,K) satisfy M0, M1 and

M2(n), for some n ≥ 1, there exists a nonzero integer δ2 such that:

• δ2 has height at most ∆2(d, h, e, `);

• for any prime p that does not divide δ2, P mod p and S mod p are well-defined,

and (P, S,H,K) mod p satisfy M0, M1 and M2(n) over Fp.

The proof of this proposition will occupy the rest of this section. As a preliminary

remark, recall that we let G be the gcd of H and K in Z[X, Y]. Since V consists entirely

of isolated points of V (H,K), the polynomials (P, S,G) satisfy conditions C0 and C1 of

the previous section. Our first constraint is that p does not divide the integer δ1 defined

in Proposition 1. For such a prime p, the polynomials (P, S,G) mod p are well-defined,

P remains squarefree modulo p, and (P, S,G) mod p still satisfy conditions C0 and C1. In

particular, the polynomials (P, S,H,K) mod p still satisfy M0, but we cannot conclude

that they satisfy M1 yet.

Let then Γ be the polynomial in Z[T] associated to H ′ and K ′ by the construction of

Section 3.2.1. In all that follows, we take t in Z such that Γ(t) is nonzero; in particular,

by Corollary 1, H ′t and K ′t are in general position. We let A[t] ∈ Z[X] and P[t] ∈ Q[X]

be as defined above; then, by the previous lemma, P n
[t] divides A[t] in Q[X], and P[t] and

A[t]/P
n
[t] are coprime in Q[X].

We will give conditions on p for which the same statement remains true modulo p;

then, using the converse direction in the previous lemma will allow us to conclude.

The resultant A[t] is in Z[X], not necessarily monic. The polynomial P[t] is monic,

so we may write it as P[t] = P ?
[t]/c[t], with c[t] in Z and P ?

[t] primitive in Z[X]. Since P n
[t]

divides A[t] in Q[X], we deduce that P ?
[t]
n divides A[t] in Z[X], so N[t] = A[t]/P

?
[t]
n is a

polynomial with integer coefficients. By assumption, P[t] and N[t] are coprime, and thus

so are P ?
[t] and N[t]. We deduce that their resultant is a nonzero integer.

Let us then add the following conditions on our prime p: Γ(t) mod p is nonzero, and

the resultant res(P ?
[t], N[t], X) does not vanish modulo p. We are going to prove that

the construction of P[t] and S[t] specializes modulo p. Since Γ(t) mod p, we can apply

Corollary 1, and we deduce the following facts:

• H ′t mod p andK ′t mod p are in general position; in particular, H ′ mod p andK ′ mod

p have finitely many common solutions. Since H = GH ′ and K = GK ′, and since

49

by Proposition 1 the points defined by (P (X) mod p, Y−S(X) mod p) do not cancel

G, we deduce that these points are isolated points on V (H mod p,K mod p), and

that the multiplicities of (H,K) mod p and (H ′, K ′) mod p are the same at these

points. In particular, we have proved that M1 still holds.

• Let α[t] ∈ Fp[X] be the resultant of H ′t mod p and K ′t mod p with respect to Y .

By Corollary 1, the leading terms of H ′t mod p and K ′t mod p are the reductions

modulo p of those of H ′t and K ′t. As a consequence, α[t] = A[t] mod p.

• Since (P[t], S[t]) are the polynomials in the Shape Lemma representation of Vt ⊂
V (H ′t, K

′
t), none of the denominators of the coefficients of P[t] or S[t] vanishes modulo

p. In particular, c[t] does not vanish modulo p.

Since P remains squarefree modulo p, the polynomials P (X) mod p, Y −S(X) mod p

define a subset V ′ of cardinality e of V (H ′ mod p,K ′ mod p). Applying the change of

coordinates φt, we obtain a subset V ′t of V (H ′t mod p,K ′t mod p) of cardinality e. Since we

saw that the latter equations are in general position, we can deduce from the discussion

prior to Lemma 6 (that held over an arbitrary field, provided we are in general position)

that there exist polynomials π[t], σ[t] in Fp[X] such that V ′t = V (π[t](X), Y − σ[t](X)).

Lemma 7. πt = P[t] mod p and σt = S[t] mod p.

Proof. By uniqueness of the Shape Lemma representation, it is enough to prove that

V ′t = V (P[t](X) mod p, Y − S[t](X) mod p). Because both sets have cardinality e, it is

even sufficient to prove only one inclusion.

Now, V ′t is simply the zero-set of P (X + tY) mod p and Y − S(X + tY) mod p. By

construction, both P (X + tY) and Y − S(X + tY) reduce to zero modulo P[t](X), Y −
S[t](X), and this relationship remains true modulo p, so we have indeed established

that V (P[t](X) mod p, Y − S[t](X) mod p) ⊂ V ′t . As explained above, this implies that

πt = P[t] mod p and σt = S[t] mod p.

We can now prove that M2(n) is satisfied for (P, S,H,K) mod p. By assumption on

p, the resultant res(P ?
[t], N[t], X) does not vanish modulo p. Using the previous lemma, we

deduce that N[t] mod p is equal, up to a nonzero constant, to α[t]/π
n
[t]. Since the degree

of P ?
[t] mod p remains equal to e, res(P ?

[t], N[t], X) mod p is thus equal (up to a power of

c[t]) to res(π[t], α[t]/π
n
[t], X). Since we say that this quantity is nonzero, Lemma 6 implies

that M2(n) is satisfied for (P, S,H,K) mod p, and we are done.

It remains to roughly quantify the conditions on p. First of all, since deg(Γ) =

O(d4), there exists t ∈ Z that does not cancel Γ and such that t = O(d4); its height

is O(log(d)). By Lemma 4, the height of Γ is O(hd3 + d4), so the height of Γ(t) is

50

roughly of the same order, and an upper bound (hd)O(1) be calculated for it, see for

instance [37, Lemma 1.2.1.c]. The polynomials P ?
[t] and N[t] both divide the resultant A[t]

in Z[X]. Using bounds on the resultant to estimate A[t] [37, Lemma 1.2.1.(ab)], then

factor bounds for P ?
[t] and N[t] [37, Lemma 1.2.1.d], and once again resultant bounds for

res(P ?
[t], N[t], X), we deduce the existence of bounds of the form (hd)O(1) for the height of

the latter integer, that can be computed explicitly.

Putting these bounds together, and taking into account as well the fact that p does

not divide the integer δ1 defined in Proposition 1, we conclude the proof the proposition.

3.3 Finding zeros in a list

Consider the following question: take a field K, an element x in K (or, as below, in an

algebraic closure of it called K) and polynomials r = [r1, . . . , rN] in K[X]. To x and R,

we can associate the index v(x, r), which is the smallest i such that ri(x) is nonzero; if

no such i exists, take v(x, r) =∞. Computing v(x, r) is easy, by evaluating all ri’s at x

one after the other.

Let r be as before and let now P be non-constant and square-free in K[X]; let also

V be the set of roots of P in K. The finite set V can be partitioned into non-empty

sets Vv1 , . . . , Vvs , for some indices vi ∈ N ∪ {∞}, where Vvi is the subset of all points x

in V such that v(x, r) = vi. Computing the partition Vv1 , . . . , Vv` amounts to factoring

P into (non-necessarily irreducible) factors P1, . . . , Ps, and finding the indices v1, . . . , vs

in N ∪ {∞}, such that for all i in {1, . . . , s}, the set of roots of Pi in K is precisely Vvi
(remark that the Pi’s and vi’s are uniquely defined, up to order). This is the object of

the following algorithm called zero index.

Lemma 8. Suppose that P has degree e, and that all ri have degree less than e. Algo-

rithm zero index correctly returns (P1, v1), . . . , (Ps, vs) as specified above, using O (̃eN)

operations in K.

Proof. Correctness is proved by seeing that at the beginning of each step i of the for

loop, the roots of C are exactly the roots x of P for which v(x,R) ≥ i, and that the roots

of Z are then those roots x of P for which v(x,R) = i. Each pass through the loop takes

O (̃e) operations for GCD and exact division, so the cost estimate follows.

Slightly more generally, consider polynomials

R = [R1,1, . . . , R1,N], . . . , [RM,1, . . . , RM,N]

51

Algorithm 2: zero index(P , r)

Input: P in K[X], r = (r1, . . . , rN) in K[X]N

Output: L = [(P1, v1), . . . , (Ps, vs)], with vi ∈ N ∪ {∞}
1 L = []
2 C = P
3 for i = 1, . . . , N do
4 Z = gcd(C, ri)
5 if Z is not constant then
6 append (C/Z, i) to L
7 C = Z

8 end
9 if C is not constant then

10 append (C,∞) to L
11 return L

in K[X], and x as above. Then, to x and R, we want to associate the smallest index i

such that one of R1,i(x), . . . , RM,i(x) is nonzero (if it exists); we also want to compute

the smallest index j such that Rj,i(x) is nonzero, so that our output is w(x,R) = (i, j).

If no such i exists, instead of the pair (i, j), we return w(x,R) = (∞,−1).

Given R and a polynomial P as before, we can then partition the zero-set V ⊂ K of P

into Vw1 , . . . , Vwt , such that Vwi is the set of all x ∈ V such that w(x,R) = wi. As output,

we thus return a sequence of polynomials P1, . . . , Pt, together with indices w1, . . . , wt in

({1, . . . , N} × {1, . . . ,M}) ∪ {(∞,−1)}, such that for all i in {1, . . . , t}, the set of roots

of Pi in K is precisely Vwi .

This is done by the following algorithm, called zero index vectorial, which now takes

as input P and the sequence of sequences of polynomials R. We use a subroutine called

infinity(L) which takes as input a sequence [(P1, v1), . . . , (Ps, vs)] such as the one computed

by zero index, and returns the polynomial Pi in it corresponding to vi = ∞, if one such

polynomial exists; otherwise, this subroutine returns 1.

Lemma 9. Suppose that P has degree e, and that all Rj,i have degree less than e. Algo-

rithm zero index vectorial correctly returns (P1, w1), . . . , (Pt, wt) as specified above, using

O (̃eMN) operations in K.

Proof. Correctness is proved by seeing that at the beginning of each step i of the

for loop, the roots of C are exactly the roots x of P for which we have not found a

nonzero Rj,i′ , for any i′ < i. After the call zero index(C, r), L′ contains the zero indices

for [Rj,i mod C | j ∈ [1, . . . ,M]]. We remove from it the factor C = infinity(L′) (if it

exists), which corresponds to those roots for which we will continue the process. At the

52

Algorithm 3: zero index vectorial(P , R)

Input: P in K[X], R = [R1,1, . . . , R1,N], . . . , [RM,1, . . . , RM,N] in K[X]M×N

Output: L = [(P1, w1), . . . , (Pt, wt)], wi ∈ ({1, . . . , N} × {1, . . . ,M}) ∪ {(∞,−1)}
1 L = []
2 C = P
3 for i = 1, . . . , N do
4 r = [Rj,i mod C | j ∈ [1, . . . ,M]]
5 L′ = zero index(C, r)
6 C = infinity(L′)
7 if C is not constant then
8 remove (C,∞) from L′

9 L = L cat L′

10 end
11 if C is not constant then
12 append (C, (∞,−1)) to L
13 return L

end of the loops, C defines those roots of P that cancel all Rj,i, so we associate it with

(∞,−1).

For a given index i, the reductions at step 4 take O (̃Me) operations in K, using fast

Euclidean division. Calling zero index takes O (̃Me) operations as well, in view of the

previous lemma. Summing these costs, we conclude the proof.

3.4 Normal forms for derivatives

In this section, we discuss some normal form algorithms for derivatives, inspired by those

in [39], together with ideas from [40]. In all this section, we work over the ring A = Z/NZ,

for some prime power N = p`, using indeterminates X, ξ, ζ. Our input is as follows:

• L = [(n1,m1), . . . , (nt,mt)] is a list of pairs of integers.

• L′ = [P1, . . . , Pt] is a list of polynomials, with for all i, Pi monic of degree ei in

A[X]. In addition, we suppose that for all i, j, with i 6= j, Pi and Pj generate the

unit ideal in A[X]. Equivalently, Pi mod p and Pj mod p are coprime in Fp[X].

• L′′ = [J1, . . . , Jt] is a list of polynomials, with for all i, Ji in A[X, ξ]ei,ni+1.

• F is a polynomial in A[X, Y].

53

As output, we want to compute the normal forms

Di,µ =
∂µF

∂Y µ
(X + ξ, Ji) mod 〈Pi(X), ξni+1〉,

for all i = 1, . . . , t and µ = 0, . . . ,mi. This will be done by computing

Fi = F (X + ξ, Ji + dY) mod 〈Pi(X), ξni+1, dmi+1
Y 〉, (3.3)

since Taylor expansion shows that

Fi =

mi∑
µ=0

1

µ!
Di,µd

µ
Y .

We will focus on the computation of the Fi’s, since the overhead to deduce all D′i,µs by

coefficient extraction and multiplication by µ!’s will be negligible.

If, for instance, Ji does not depend on ξ, so it lies in A[X]ei , Di,µ can be written

Di,µ =

ni∑
ν=0

1

ν!

∂µ+νF

∂Xν∂Y µ
(X, Ji)ξ

ν mod 〈Pi(X)〉;

knowing Di,µ thus allows us to compute the normal forms of the derivatives ∂µ+νF
∂Xν∂Y µ

modulo 〈Pi(X), Y − Ji(X)〉, for all i = 1, . . . , t, ν = 0, . . . , ni and µ = 0, . . . ,mi.

Suppose that F has degree d. We make the following assumption regarding the

quantities ni,mi, ei:

HNF. The inequality
∑

1≤i≤t(ni + 1)(mi + 1)ei = O(d2) holds.

Representing F requires approximately d2 coefficients in A. On the other hand, for all

i, Fi lies in A[ξ, ζ,X]ni+1,mi+1,ei , representing all of them uses
∑

1≤i≤t(ni + 1)(mi + 1)ei

coefficients in A. Thus, assumption HNF means that input and output size are not too

far off.

The main result in this section is the following proposition, which shows that all Fi

can be computed in essentially linear-time.

Proposition 3. Under assumption HNF, for any ε > 0, there exists an algorithm nor-

mal forms that takes as input a prime power N = p`, sequences L,L′, L′′ and polynomial

F as above, and returns all Fi, for i in {1, . . . , t}, using d2+εO (̃log(N)) bit operations.

54

3.4.1 Auxiliary results

A first normal form algorithm. The central problem for these normal form questions

is normal form computation modulo a single triangular set T = (P (X), Q(X, Y)), with

P monic in X and Q monic in Y , reduced with respect to P . Given F in A[X, Y], the

question is to compute F mod 〈P, Y − Q〉. This apparently simple question is actually

quite challenging; so far, no algorithm is known to solve it in optimal time in an algebraic

complexity model.

In our particular context of computations modulo N , however, better results are

available. Building on seminal results by Kedlaya and Umans [36], Theorem 6 in [53]

gives a quasi-linear bit complexity result for such a task (as pointed out in [39], this result

was originally proved for N a prime, but carries over to the case of a prime power).

Lemma 10. For any ε > 0, there exists an algorithm normal form with the following

input:

• a prime power N ;

• F in A[X, Y]m,n, with A = Z/NZ,

• a triangular set T = (P (X), Q(X, Y)), with P in A[X], monic of degree f , and Q

in A[X, Y], monic in Y of degree g and of degree in X less than e.

This algorithm returns F mod 〈P, Y −Q〉 using (mn+ fg)1+εO (̃log(N)) bit operations.

Remark that up to the exponent ε, this algorithm is optimal, since both input and

output involve O(mn+ ef) coefficients in A = Z/NZ, which require a total of O((mn+

ef) log(N)) bits of storage.

Using this, Proposition 3 in [39] states the following result regarding the reduction of

one polynomial F modulo several bivariate triangular sets.

Lemma 11. Let T1, . . . ,Ts be triangular sets in A[X, Y], where for all i, Ti =

(Pi(X), Qi(X, Y)), with Pi monic in X of degree fi and Qi(X, Y) monic in Y of de-

gree gi, and reduced with respect to X. Suppose that for all i, j in {1, . . . , s}, with i 6= j,

Pi and Pj generate the unit ideal in A[X].

Let F be in A[X, Y] with degree d, and suppose that
∑

i≤s figi = O(d2). Then, for

any ε > 0, there exists an algorithm normal forms bivariate that takes as input the prime

power N , T1, . . . ,Ts and F as above, and returns all F mod 〈Ti〉, for i in {1, . . . , s},
using d2+εO (̃log(N)) bit operations.

55

As in Proposition 3, the input and output sizes are O(d2) elements of A, so the running

time is close to optimal. This lemma will be our main tool to prove our proposition; most

of the work in this section will consist in turning our original problem into an instance

of the bivariate problem above.

There are two slight differences between the statement above and the one given in

reference [39]. First, that result seemingly required another assumption, namely that

all gi should satisfy gi ≤ d. This is actually not needed: paper [39] gave an alternative

solution to this problem, valid in an algebraic complexity model (over an arbitrary ring),

that did require such an assumption. In our context, we can safely omit it.

Another slight difference is that the result in [39] required as an extra input the

inverses of (P1 · · ·Pi−1Pi+1 · · ·Ps) modulo Pi, for all i = 1, . . . , s. It was then pointed out

that in the case A = Z/NZ, for N a prime power, they can be computed in O (̃d2 log(N))

operations, which will be negligible. Thus, our assumptions are not restrictive.

An easy change of order. Our next auxiliary result is an explicit change-of-order for

a particular bivariate ideal in A[X,Z]. Several references give algorithms to perform this

kind of operations [14, 50], but we are not aware of a complexity result that would apply

in this particular case (for instance, the algorithm of [50] requires a radical ideal over

a field, none of which conditions applying here). Nevertheless, the situation is simple

enough that we can give an explicit solution.

Lemma 12. Let P be in A[X] of degree e, such that P mod p is squarefree, and let n

be a positive integer. One can compute using O (̃en log(N)) bit operations a polynomial

V in A[Z] of degree less than en, such that in A[X,Z], we have the following equality

between ideals:

〈P (X), (Z −X)n〉 = 〈P (Z)n, X − V (Z)〉.

Proof. Let P ∗ be an arbitrary monic lift of P to Zp[X], where Zp is the ring of p-adic

integers. Because P mod p is squarefree, P ∗ is squarefree as well. In the first part of the

proof, we work over Zp, its field of fractions Qp, and an algebraic closure of it, Qp.

Let a1, . . . , ae be the (unknown) pairwise distinct roots of P ∗ in Qp. Then, the ideal

〈P ∗(X), (Z −X)n〉 is the product of the pairwise coprime ideals∣∣∣∣∣ (Z − ai)n

X − ai,
i = 1, . . . , e.

For such ideals, changing the order of X and Z is straightforward. We deduce that the

56

polynomial V ∗(Z) of degree less than en defined by the Chinese Remainder conditions

V ∗ mod (Z − ai)n = ai, i = 1, . . . , e

satisfies the equality 〈P ∗(X), (Z−X)n〉 = 〈Q(Z), X−V ∗(Z)〉, except that V ∗ is a priori

in Qp[Z], and the equality holds in Qp[X,Z].

Let us write Q = P ∗(Z)n. To compute V ∗, we define the polynomials

A =
e∑
i=1

ai
∏
i′ 6=i

(Z − ai′)n and B =
e∑
i=1

∏
i′ 6=i

(Z − ai′)n.

First, let us show how to compute A and B; we will show as we go that both A and B

are in Zp[Z].

Let Ã and B̃ be the polynomials Z(e−1)nA(1/Z) and Z(e−1)nB(1/Z); define similarly

Q̃ = ZenQ(1/Z), so that we have

Ã =
e∑
i=1

ai
∏
i′ 6=i

(1− ai′Z)n, B̃ =
e∑
i=1

∏
i′ 6=i

(1− ai′Z)n

and

Q̃ =
e∏
i=1

(1− aiZ)n.

Let us first show how to compute the power series expansions of the rational functions

Ã/Q̃ and B̃/Q̃. Consider the power series

1

(1− Z)n
=
∑
j≥0

cjZ
j and S =

∑
j≥0

sjZ
j,

where sj = aj1 + · · · + ajn is the jth power sum of P ∗, so that all cj’s and sj’s are in Zp.
The rational functions Ã/Q̃ and B̃/Q̃ can then be written as

Ã

Q̃
=

e∑
i=1

ai
(1− aiZ)n

=
e∑
i=1

∑
j≥0

aj+1
i cjZ

j =
∑
j≥0

cjsj+1Z
j,

B̃

Q̃
=

e∑
i=1

1

(1− aiZ)n
=

e∑
i=1

∑
j≥0

ajicjZ
j =

∑
j≥0

cjsjZ
j.

It is enough to compute both series expansions at precision en. Upon multiplication by

Q̃, we deduce that Ã and B̃ are both in Zp[Z], as claimed.

57

In addition, we claim that B is invertible modulo Q, not only in Qp[Z], but actually in

Zp[Z]. Indeed, the resultant of Q and B is (up to sign) the n2-th power of the discriminant

of P ∗, which is by assumption a unit in Zp. Finally, one verifies that V ∗ = A/B mod Q,

so that V ∗ is in Zp[Z], as announced before.

So far, we established the equality 〈P ∗(X), (Z − X)n〉 = 〈Q(Z), X − V ∗(Z)〉 in

Qp[X,Z]. However, since all polynomials are in Zp[X,Z], and monic in their leading

variables, we deduce that the underlying membership identities hold in Zp[X,Z] as well.

Truncating modulo N , and defining V = V ∗ mod N ∈ A[Z], we conclude that the equal-

ity 〈P (X), (Z −X)n〉 = 〈P (Z)n, X − V (Z)〉 holds in A[X,Z].

Finally, we turn to the cost analysis. We can compute all coefficients cj and sj at

precision en using O (̃en) operations in A, and thus O (̃en log(N)) bit operations: for the

former, this is for instance done by computing (1−X)n by binary powering and inverting

it; for the latter, this is in [58].

Once we know the coefficients cj and sj, we recover Ã and B̃ through multiplication

by Q and reversal, for another O (̃en) operations in A, and A and B are deduced for

free. The last non-obvious step is the computation of 1/B mod Q (since the rest is just

another multiplication modulo Q). This is done using Newton iteration: the inverse

of B modulo 〈p,Q〉 can be computed using the fast extended GCD algorithm in Fp[Z]

in O (̃en) operations modulo p; then, Newton iteration for inverse gives us 1/B mod Q

in A[Z] in quasi-linear time O (̃en log(N)). Summing all costs above gives the claimed

overall running time.

All notation being as in the lemma, we deduce that we have an isomorphism

ψ : A[X,Z]/〈P (X), (Z −X)n〉 → A[Z]/〈P (Z)n〉.

Taking A[X,Z]e,n and A[Z]en for representatives of respectively the left and right-hand

sides, ψ is given by

ψ(R) = R mod 〈P (Z)n, X − V (Z)〉

for R in A[X,Z]n,e, and

ψ−1(S) = S mod 〈P (X), (Z −X)n〉

for S in A[Z]en. Once V is known, applying Lemma 10, we deduce in particular that for

any ε > 0, both change-of-bases ψ and ψ−1 can be performed in (en)1+εO (̃log(N)) bit

operations.

58

3.4.2 Proof of Proposition 3

Recall that on input sequences L,L′, L′′ our goal is to compute normal forms

Fi = F (X + ξ, Ji + ζ) mod 〈Pi(X), ξni+1, ζmi〉,

for i = 1, . . . , t. Let us fix i in {1, . . . , t}, and let Z and T be two new variables. We will

use them through the change of variables Z = X + ξ, T = Ji + ζ.

First change of variables. First, we consider the introduction of the variable Z, that

stands for X+ξ. In most of this paragraph, the index i ∈ {1, . . . , t} is fixed. Then, there

is an A-algebra isomorphism

φi : A[X, ξ]/〈Pi(X), ξni+1〉 → A[X,Z]/〈Pi(X), (Z −X)ni+1〉.

The left-hand side and right-hand side admit respectively the polynomials in A[X, ξ]ei,ni+1

and A[X,Z]ei,ni+1 as canonical representatives. With these representatives, we have, for

R in A[X, ξ]ei,ni+1, φi(R) = R(X,Z − X) mod Pi. The inverse mapping is given by

φ−1
i (S) = S(X, ξ +X) mod Pi, for S in A[X,Z]ei,ni+1.

Lemma 13. The following holds:

• For R in A[X, ξ]ei,ni+1, one can compute φi(R) using O (̃eini + 1 log(N)) bit oper-

ations.

• For S in A[X,Z]ei,ni+1, one can compute φ−1
i (S) using O (̃eini + 1 log(N)) bit

operations.

Proof. We give the proof for φi; that for φ−1
i is entirely similar. Define B = A[X]/〈Pi〉.

Computing φi(R) amounts to seeing R in B[ξ], and computing R(ξ − X) in that ring

(and finally, formally replacing ξ by Z). This is thus an instance of shifting a polynomial,

in this case by −X. Since R has degree less than ni + 1 in ξ, the divide-and-conquer

algorithm of [29] solves this problem in O (̃ni + 1) operations (+,×) in B, which is

O (̃eini + 1) operations (+,×) in A, and thus O (̃eini + 1 log(N)) bit operations.

The mapping φi can then be extended to a change of a variables

Φi : A[X, ξ, ζ]/〈Pi(X), ξni+1, ζmi〉 → A[X,Z, ζ]/〈Pi(X), (Z −X)ni+1, ζmi〉,

which acts coefficient-wise in ζ. Both Φi and its inverse Φ−1
i can thus be computed in

O (̃ei(ni + 1)µi log(N)) bit operations. Let us finally write J
(1)
i = φi(Ji), so that J

(1)
i lies

59

in A[X,Z]ei,ni+1. Defining

F
(1)
i = F (Z, J

(1)
i + ζ) mod 〈Pi(X), (Z −X)ni+1, ζmi〉,

we see that Fi can be recovered as Φ−1
i (F

(1)
i).

Since we saw that applying the changes of variables takes quasi-linear time, we can

now focus on computing the polynomials F
(1)
i , for i = 1, . . . , t.

Second change of variables. Our second change of variables is actually a change of

order. As before, for the following discussion, we fix an index i in {1, . . . , t}.
Applying Lemma 12, we deduce that we can compute in O (̃ei(ni + 1)) a polynomial

Vi in A[Z] such that we have the equality between ideals

〈Pi(X), (Z −X)ni+1〉 = 〈Pi(Z)ni+1, X − Vi(X)〉

in A[X,Z]. In addition, we saw that the change of basis

ψi : A[X,Z]/〈Pi(X), (Z −X)ni+1〉 → A[Z]/〈Pi(Z)ni+1〉

and its inverse can be performed in (ei(ni + 1))1+εO (̃log(N)) bit operations. As above,

the mapping ψi can be extended to a change-of-basis

Ψi : A[X,Z, ζ]/〈Pi(X), (Z −X)ni+1, ζmi〉 → A[Z, ζ]/〈Pi(Z)ni+1, ζmi〉

which acts coefficient-wise in ζ. Both Ψi and its inverse Ψ−1
i can thus be computed in

(ei(ni + 1))1+εO (̃mi log(N)) bit operations.

Let us finally write J
(2)
i = ψi(J

(1)
i), so that J

(2)
i lies in A[Z]ei(ni+1) ' A[Z]/〈Pi(Z)ni+1〉.

Defining

F
(2)
i = F (Z, J

(2)
i + ζ) mod 〈Pi(Z)ni+1, ζmi〉,

we see that F
(1)
i can be recovered as Ψ−1

i (F
(2)
i). Thus, since the change of bases take

quasi-linear time, we can now focus on computing the normal forms F
(2)
i , for i = 1, . . . , t.

Third change of variables. Our last change of variables introduces a new variable T

which will stand for J
(2)
i + ζ. In the same vein as what we said for the introduction of

variable Z, we can now notice that there is an A-algebra isomorphism

γi : A[Z, ζ]/〈Pi(Z)ni+1, ζmi〉 → A[Z, T]/〈Pi(Z)ni+1, (T − J (2)
i)mi〉.

60

The left-hand side and right-hand side admit respectively the elements of A[Z, ζ]ei(ni+1),mi

and A[Z, T]ei(ni+1),mi as canonical representatives. With these representatives, we have,

for R in A[Z, ζ]ei(ni+1),mi , γi(R) = R(Z, T − J
(2)
i) mod P ni+1

i . The inverse mapping is

given by γ−1
i (S) = S(Z, ζ + J

(2)
i) mod P ni+1

i , for S in A[Z, T]ei(ni+1),mi .

Proceeding exactly as in Lemma 13, we deduce that we can compute γi or its inverse

in O (̃eini + 1mi log(N)) bit operations. Defining finally

F
(3)
i = F (Z, T) mod 〈Pi(Z)ni+1, (T − J (2)

i)mi〉,

we deduce that F
(2)
i = γ−1

i (F
(3)
i). Once more, the change of variables takes quasi-linear

time, so we are left with the problem of computing the polynomials

F (Z, T) mod 〈Pi(Z)ni+1, (T − J (2)
i)mi〉,

for i = 1, . . . , t. Since the polynomials (Pi(Z)ni+1, Pj(Z)nj+1) generate the unit ideal

in A[Z] (for i 6= j), this can be done as a direct application of Lemma 11, with the

announced cost of d2+εO (̃log(N)) bit operations, for any ε > 0.

Adding up all of the costs seen so far, we conclude the proof of Proposition 3.

3.5 The deflation lemma

Consider a polynomial system F = G = 0 in K[X, Y] and an isolated solution (x∗, y∗) of

it. Most extensions of Newton iteration to the case where (x, y) has multiplicity M > 1

seek to replace the given system with a new one, say ψ, such that the multiplicity of ψ at

the root (x, y) is less than M – eventually, we reach M = 1, where we can apply Newton

iteration without difficulty. Such a process is called deflation.

Following Lecerf’s approach, the deflated systems are constructed by considering

suitable derivatives of the given system 〈F,G〉. For the complexity analysis, we will

need to set a bound on the order of partial derivatives. The following construction as-

signs to an isolated solution (x, y) of F = G = 0 a signature σ(x∗, y∗), of the form

σ(x∗, y∗) = (m, H, n, a, K). In essence, this signature predicts which derivatives of F,G

should be taken to reach a deflated ideal ψ satisfying the multiplicity reduction require-

ment.

The following deflation lemma is the key to this construction. It follows very closely

Lemma 4 from [40]. That reference deals with systems in an arbitrary number of variables,

but relies on a generic change of variables, which we avoid here (by slightly changing the

definition of integer m below).

61

Lemma 14 (Deflation lemma). Let 〈F,G〉 be an ideal in K[X, Y], with F and G of degree

at most d, and let (x∗, y∗) ∈ K2 be an isolated root of 〈F,G〉 with multiplicity M . Define

m := min

{
µ :

∂µF

∂Y µ
(x∗, y∗) 6= 0 or

∂µG

∂Y µ
(x∗, y∗) 6= 0

}
.

If in addition K has characteristic at least d, then:

(a) m > 0;

(b) m ≤ d;

(c) (x∗, y∗) is a root of ψ with multiplicity n, for some integer n satisfying 1 ≤ n ≤
M/m, where

ψ :=

〈
F,G,

∂F

∂Y
,
∂G

∂Y
, · · · , ∂

m−1F

∂Y m−1
,
∂m−1G

∂Y m−1

〉
.

Proof. Upon translating the origin to (x∗, y∗), we can assume without loss of generality

that x∗ = y∗ = 0. To prove the first item, note that F (0, 0) = G(0, 0) = 0, which implies

m > 0. Let us further denote by I the ideal 〈F,G〉.
Let us next prove that m is finite. If all partial derivatives of F with respect to

Y, Y 2, . . . , Y d vanish at (0, 0), F (0, Y) must be the zero polynomial (recall that F has

degree at most d), so that X divides F . If this is the case for G as well, X divides both

F and G, so (0, 0) is not an isolated solution of F = G = 0, a contradiction.

Using the following facts,

∂µF

∂Y µ
(0, 0) = 0 and

∂µG

∂Y µ
(0, 0) = 0, 0 ≤ µ ≤ m− 1

and

ψ =

〈
F,G,

∂F

∂Y
,
∂G

∂Y
, · · · , ∂

m−1F

∂Y m−1
,
∂m−1G

∂Y m−1

〉
,

it is clear that (0, 0) is a root of ψ, so n ≥ 1. It remains to give an upper bound on it.

We are going to work locally, by looking at F,G and their derivatives in K[[X, Y]].

So, by the definition of multiplicity, we have

M = dimKK[[X, Y]]/I and n = dimKK[[X, Y]]/ψ.

We are going to describe more precisely these residue class rings. Let us endow K[[X, Y]]

with the order defined by

Xa1Y b1 > Xa2Y b2 ⇐⇒ a1 < a2 or a1 = a2 and b1 < b2.

62

One verifies that this order is compatible with multiplication, and that 1 > X and 1 > Y

both hold. This is thus a local monomial order, as in [21, Chapter 4]. To any power

series S in K[[X, Y]], we can associate its leading monomial lm(S) with respect to this

order; this notation carries over to ideals in K[[X, Y]].

From [21, Theorem 4.3], we infer that the monomials in lm(I)c and lm(ψ)c – where the

exponent c denotes complement – form bases of respectively K[[X, Y]/I and K[[X, Y]/ψ.

In particular, the numbers of these monomials are respectively M and n. Define

T := {XaY m−1 ∈ lm(I)c | a ≥ 0}.

Because lm(I) is stable by multiplication, for each element XaY m−1 of T , all monomials

XaY b, for 0 ≤ b ≤ m − 1, are in lm(I)c, whence M = |lm(I)c| ≥ m|T |. We now prove

that n is at most |T |.

• The definition of m implies that at least one of ∂mF
∂Ym

or ∂mG
∂Ym

does not vanish at

(0, 0); let us assume without loss of generality that this is the case for ∂mF
∂Ym

. This

implies that for b = 0, . . . ,m − 1, the coefficient of the monomial Y b in F is zero,

while that of Y m is nonzero. The definition of our local order then implies that Y m

is the leading term of F . Thus, Y m is in lm(I), so that XaY m is in lm(I) for any

a ≥ 0.

Consider an element P ∈ K[[X, Y]] having leading monomial XaY m. Because

m ≤ d, and due to our assumption on the characteristic of K, we deduce that the

leading monomial of ∂m−1P
∂Ym−1 is m!XaY . This shows that for a ≥ 0, XaY is in lm(ψ).

• Similarly, let a0 be the smallest integer such that Xa0Y m1−1 is in lm(I); thus,

a0 = |T |. Differentiating m− 1 times as above, we deduce that Xa0 is in lm(ψ).

The two items above prove that lm(ψ)c is contained in {Xa | 0 ≤ a < a0}, so it has

cardinality at most a0 = |T |. This proves the lemma.

This lemma allows us to define the first components m, H of σ(x∗, y∗):

• m is defined as in the lemma;

• the string H ∈ {”F”, ”G”} indicates which of ∂mF
∂Ym

and ∂mG
∂Ym

is nonzero at (x∗, y∗); in

case of a tie, for definiteness, we choose F .

Using the same notation as above, let us define H = F (if H = ”F”) or H = G (if

H = ”G”), so that

m = min

{
µ :

∂µH

∂Y µ
(x∗, y∗) 6= 0

}

63

and (x∗, y∗) is a root of ∂m−1H
∂Ym−1 .

Define Hc (the “complement” of H) as either Hc = G if H = F and Hc = F if

H = G. We could replace the system (F,G) by (∂
m−1H
∂Ym−1 , H

c) to find the root (x∗, y∗), but

the multiplicity of (x∗, y∗) for that new system is not necessarily less than M/m. To fix

the problem, based on the deflation lemma, we consider the following system instead:

ψ :=

〈
F,G,

∂F

∂Y
,
∂G

∂Y
, · · · , ∂

m−1F

∂Y m−1
,
∂m−1G

∂Y m−1

〉
.

The lemma then implies that (x∗, y∗) is a root of ψ of multiplicity n, with n ≤M/m.

The invertibility assumption of ∂mH
∂Ym

(x∗, y∗) allows us to apply the implicit function

theorem to ∂m−1H
∂Ym−1 at (x∗, y∗). Replacing X by x∗ + ξ, where ξ is a new variable, we can

find a power series J in K[[ξ]] and A in K[[ξ]][Y] such that

∂m−1H

∂Y m−1
(x∗ + ξ, Y) = (Y − J)A, J(0) = y∗ and A(0, y∗) 6= 0.

Let us further replace Y by y∗ + ζ, where ζ is a new variable, and let us work in the

power series ring K[[ξ, ζ]]. Since A(0, y∗) is nonzero, A(ξ, y∗+ ζ) is a unit in K[[ξ, ζ]]. We

deduce that in K[[ξ, ζ]], we have the equality

∂m−1H

∂Y m−1
(x∗ + ξ, y∗ + ζ) = ζ − (J − y∗).

This implies that in K[[ξ, ζ], (0, 0) is a root of multiplicity n of the ideal generated by(
∂αH

∂Y α
(x∗ + ξ, J)

)
0≤α<m−1

, ζ − (J − y∗),
(
∂αHc

∂Y α
(x∗ + ξ, J)

)
0≤α≤m−1

.

For α ≥ 0, define

Hα :=
∂αH

∂Y α
(x∗ + ξ, J) and Hc

α :=
∂αHc

∂Y α
(x∗ + ξ, J),

so that the above ideal is generated by

〈
H0, H

c
0, H1, H

c
1, . . . , Hm−2, H

c
m−2, ζ − (J − y∗), Hc

m−1

〉
.

Remark that, with the exception of ζ − (J − y∗), all the above generators are in K[[ξ]].

Since ζ − (J − y∗) has degree one in ζ, we deduce that 0 is a root of multiplicity n of the

ideal 〈
H0, H

c
0, H1, H

c
1, . . . , Hm−2, H

c
m−2, H

c
m−1

〉
⊂ K[[ξ]].

64

This proves in particular the following lemma.

Lemma 15. The integer n satisfies

n = min ({val(Hα)}0≤α<m−1 ∪ {val(Hc
α)}0≤α<m) ,

where val denotes the ξ-adic valuation.

This allows us to to complete the definition of the signature σ(x∗, y∗): the last three

components are n, the integer a that realizes the minimum above (in case of a tie, choose

the minimum), and a string K ∈ {”H”, ”Hc”} that indicates whether the minimum occurs

for H or Hc (in case of a tie, choose H). Associated to string K, we have the corresponding

polynomial K ∈ {F,G}, obviously defined sa K = H if K = ”H” and K = Hc otherwise.

The following lemma will help us give conditions on the preservation of the signature

through specialization at primes, when for instance K = Q.

Lemma 16. Suppose that (x∗, y∗) has signature (m, H, n, a, K). Then (x∗, y∗) is a root of

multiplicity n of 〈∂m−1H
∂Ym−1 ,

∂aK
∂Y a
〉.

Proof. The proof amounts to going backward the previous derivation, but taking fewer

polynomials into account. By definition of a and K, and using Lemma 15, we see that n

is the ξ-adic valuation of
∂aK

∂Y a
(x∗ + ξ, J)

in K[[ξ]], that is, the multiplicity of 0 as a root of the equation ∂aK
∂Y a

(x∗+ξ, J). Equivalently,

it is the multiplicity of (0, 0) as a root of the system 〈∂aK
∂Y a

(x∗+ξ, J), ζ−(J−y∗)〉 in K[[ξ, ζ]];

as we saw previously, this ideal coincides with 〈∂aK
∂Y a

(x∗+ ξ, y∗+ ζ), ∂
m−1H
∂Ym−1 (x∗+ ξ, y∗+ ζ)〉.

Translating back the origin, this proves our claim.

3.6 The σ-decomposition

In this section, we consider two polynomials F and G in K[X, Y], over some field K, with

degree at most d. We assume that K has characteristic greater than or equal to deg(F)

and deg(G), and that F and G have no nontrivial common factor in K[X, Y].

In this case, the signature σ(x, y) of any element (x, y) of V = V (F,G) is well-defined.

Since V is finite, we can partition it into non-empty subsets Vσ1 , . . . , Vσs , indexed by

signatures σ1, . . . , σs, such that Vσi is the subset of V consisting of all (x, y) having

signature σi. This decomposition will be called the σ-decomposition of V , it is unique up

to order.

65

In this section, we give an algorithm that computes the σ-decomposition of V ; we

work under the assumption that F,G are in general position. This assumption implies

that there exist polynomials (P, S) = SL(F,G) in K[X] such that the defining ideal of V

(which is by definition a radical ideal) admits the generators 〈P (X), Y − S(X)〉.
Starting by computing P and S, we return tuples [(Pi, Si,mi, Hi, ni, ai, Ki)]1≤i≤t, where

all Pi’s and Si’s are in K[X], and for each i, the defining ideal of Vσi is 〈Pi(X), Y −Si(X)〉,
with σi = (mi, Hi, ni, ai, Ki). By a slight abuse of notation, we still call this sequence the

σ-decomposition of V , and we denote it by σ-dec(F,G) (as above, it is uniquely defined

up to order only).

The first main result of this section is the following complexity bound on this calcu-

lation, when working over a finite field.

Proposition 4. Suppose that F and G are polynomials in K[X, Y], with no nontrivial

common factor and in general position. There exists an algorithm σ−decomposition that

takes as input F , G and SL(F,G), and returns the σ-decomposition of V (F,G). When

K = Fp, this algorithm can be implemented so as to take d3+εO (̃log(p)) bit operations.

In addition, when K = Q and F,G have coefficients in Z, we give conditions under

which the computation reduces well at a prime p. The data σ-dec(F,G) consists of

a sequence of polynomials, integers and strings; by reducing such an object modulo

p, we refer to the sequence obtained by reducing the coefficients of all polynomials in

σ-dec(F,G) modulo p, if no denominator vanishes. We denote this new sequence σ-

dec(F,G) mod p.

Proposition 5. There exists an explicitly computable function ∆3(d, h, `) = (dh`)O(1)

such that the following holds.

Suppose that F and G are polynomials in Z[X, Y], with no nontrivial common factor

and in general position, with degree at most d and height at most h. Suppose as well

all polynomials appearing in SL(W), for any subset W of V (F,G) defined over Q, have

height at most `. Then, there exists a nonzero integer δ3 such that:

• δ3 has height at most ∆3(d, h, `);

• for any prime p that satisfies the following conditions:

– p does not divide δ3,

– SL(F,G) mod p = SL(F mod p,G mod p),

– for any subset W of V (F,G) defined over Q, p cancels no denominator in

either SL(W) or RUR(W),

66

the equality σ-dec(F,G) mod p = σ-dec(F mod p,G mod p) holds.

3.6.1 Computing all mi’s and Hi’s

In order to motivate the general algorithm, we first briefly explain how to compute the

integer m and string H at a rational point (x, y) ∈ K2 of V (F,G), assuming such a

point exists. In this case, the process is straightforward: simply evaluate all required

derivatives at (x, y), and stop as soon as we find a nonzero value. This is detailed

in Algorithm m H rational, where we use a function zero index((x, y), [r1, . . . , rN]) that

returns the smallest index i such that ri(x, y) vanishes (with indices starting at one).

Algorithm 4: m H rational(F,G, x, y)

Input: (F,G) in K[X, Y], a point (x, y) in V = V (F,G)

Output: (m, H)

1 d = max(deg(F), deg(G))

2 R = [∂F
∂Y
, ∂G
∂Y
, . . . , ∂

dF
∂Y d

, ∂
dG
∂Y d

]

3 n = zero index((x, y), R)

4 if n is odd then

5 return ((n+ 1)/2, ”F”)

6 else

7 return (n/2, ”G”)

8 end

Given the Shape Lemma representation (P, S) of V , we follow the same approach.

The only significant difference is that zero-tests are replaced by the splitting mechanism

of Algorithm zero index.

To describe the output, note that we can partition V into subsets Vm1,H1 , . . . , Vms,Hs ,

for pairwise distinct (mi, Hi), where Vmi,Hi is the subset of V consisting of all (x, y) such

that σ(x, y) = (mi, Hi, . . .). The output of the following algorithm compute m H is the

sequence [(Pi, Si,mi, Hi)]1≤i≤s such that (Pi, Si) is the Shape Lemma representation of

Vmi,Hi (this output, just like the partition Vm1,H1 , . . . , Vms,Hs , is uniquely defined up to

order).

In particular, notice that for all i, ∂mi−1Hi
∂Ymi−1 (X,Si) = 0 modulo Pi and ∂mHi

∂Ymi
(X,Si) is a

unit modulo Pi.

67

Algorithm 5: compute m H(F,G, P, S)

Input: (F,G) in K[X, Y], the Shape Lemma representation (P, S) of V = V (F,G)

Output: a sequence [(Pi, Si,mi, Hi)]1≤i≤s

1 d = max(deg(F), deg(G))

2 R0 = [∂F
∂Y
, ∂G
∂Y
, . . . , ∂

dF
∂Y d

, ∂
dG
∂Y d

]

3 R = [r mod 〈P, Y − S〉 | r ∈ R0]

4 K = zero index(P,R) K is a sequence of the form [(Pi, ni)]

5 W = []

6 for (Pi, ni) in K do

7 Si = S mod Pi

8 if ni is odd then

9 append (Pi, Si, (ni + 1)/2, ”F”) to W

10 else

11 append (Pi, Si, ni/2, ”G”) to W

12 end

13 end

14 return S

Lemma 17. Algorithm compute m H is correct. When K = Fp, one can implement it so

that to take d3+εO (̃log(p)) bit operations.

Proof. Correctness of the algorithm directly follows from the correctness of zero index,

and the fact that all mi’s are at most d, as proved in the deflation lemma.

For the complexity analysis in the particular case K = Fp, we know that the cost of

zero index is quasi-linear, so all that matters is the cost of computing polynomials R, at

steps 2 and 3.

This is achieved by calling Algorithm normal forms of Proposition 3, with input t = 1,

and L,L′, L′′, F , where L is the list [(0, d)], L′ is the list [P] and L′′ is the list [S]. In

order to satisfy the required assumption HNF, let us write d′ = dd3/2e; then, the product

me = de admits the upper bound d3 = O(d′2), so we are under the assumptions of that

proposition, up to replacing d by d′. As noted in Section 3.4, the output (F1) of this

algorithm takes the form

F1 =
d∑

µ=0

1

µ!
Dµζ

µ;

68

since the index n was chosen to be zero, the entry of L′′ depends only on X, Dµ writes

Dµ =
∂µF

∂Y µ
(X,S) mod 〈P (X)〉,

so it gives half the polynomials we wanted. Doing the same with G, we obtain all normal

forms we required.

In terms of complexity, for any ε > 0, calling Proposition 3 can be done in

d′2+εO (̃log(p)) bit operations; this is d3+εO (̃log(p)), as claimed. All other costs are

negligible.

Suppose that we are over K = Q, and that F and G are in Z[X, Y]. The following

discussion gives conditions under which the above calculation admits a good reduction

at a prime p.

Lemma 18. There exists an explicitly computable function ∆3,1(d, h, `) = (dh`)O(1) such

that the following holds.

Suppose that F and G are polynomials in Z[X, Y], with no nontrivial common factor

and in general position, with degree at most d and height at most h. Suppose as well that

P and S have height at most `. There exists a nonzero integer δ3,1 such that:

• δ3,1 has height at most ∆3,1(d, h, `);

• for any prime p that satisfies the following conditions:

– p does not divide δ3,1,

– SL(F,G) mod p = SL(F mod p,G mod p),

– for any subset W of V (F,G) defined over Q, p cancels no denominator in

SL(W),

the sequence obtained from compute m H(F,G, P, S) mod p coincides with the out-

put of compute m H(F mod p,G mod p, P mod p, S mod p).

Proof. Let [(Pi, Si,mi, Hi)]1≤i≤s be the output of compute m H(F,G, P, S) mod p.

For a given index i in {1, . . . , s}, the corresponding integer mi is characterized as fol-

lows: for each entry, say H, of index less than mi in the sequence [∂F
∂Y
, ∂G
∂Y
, . . . , ∂

dF
∂Y d

, ∂
dG
∂Y d

],

H(X,Si(X)) = 0 mod Pi; for the entry Hi, gcd(Hi(X,Si(X)), Pi) = 1. This latter con-

dition is equivalent to Hi vanishing nowhere on V (Pi(X), Y − Si(X)).

Thus, the polynomials Pi, Si, Hi satisfy conditions C0 and C1 of Proposition 1. We

claim that we can take for δ3,1 the product of the integers δ1 associated by that proposition

to the systems Pi, Si, Hi, for i = 1, . . . , s.

69

Let then p be a prime such that (P mod p, S mod p) = SL(F mod p,G mod p) and

such that for any subset W of V (F,G) defined over Q, p cancels no denominator in

SL(W); assume as well that does not divide δ3,1.

Then, all Pi’s and Si’s can be reduced modulo p; besides, because P remains squarefree

modulo p, this is also the case for all Pi’s. Thus, the polynomials [(Pi mod p, Si mod

p)]1≤i≤s] form the Shape Lemma representations of some partition of V (F mod p,G mod

p). It remains to see whether this is the same partition as the one induced by running

the algorithm over Fp, with input (F,G, P, S) mod p.

The calculation of Algorithm 14 reduces well modulo p as soon as zero index does

(all other steps clearly admits a good reduction modulo p). In view of the discussion in

the first paragraph, we are led to consider how the relations H(X,Si(X)) = 0 mod Pi or

H(Xi, Si(X)) = 0 mod Pi that hold over Q reduce modulo p.

Of course, a relation of the form H(X,Si(X)) = 0 mod Pi will remain true modulo

p, for any p which which both sides make sense. The more delicate question is whether

the relation gcd(H(X,Si(X)), Pi) = 1 remains true after reduction. Proposition 1 shows

that as soon as p does not divide the integer δ1 associated to Pi, Si, Hi, the gcd remains

one modulo p, as requested.

Thus, our claims are proved, except for the upper bound on the height δ3,1. This

follows directly from Proposition 1, and the fact that there are at most d2 indices i to

take into account.

3.6.2 Computing all Ji’s

Suppose that we have determined the sequence [(Pi, Si,mi, Hi)]1≤i≤s of the previous sub-

section; we now want to compute a power series J as defined in Section 3.5. Compared

to that section, there is a slight difference: we are not working at a point (x, y) with

coordinates in K2
, but with points given through Shape Lemma representations.

Let us thus fix an index i in {1, . . . , s}. Associated to Pi, one can define the ring

Bi = K[X]/〈Pi〉; this is in general not a field, but only a product of fields. Two elements

will be highlighted in Bi: the residue class xi of X, and the residue class yi of Ti(X). Thus,

by construction, F (xi, yi) = G(xi, yi) = 0 (where F and G are viewed as polynomials in

B, through the injection K → B). In addition, the polynomial Hi associated to Pi and

Ti is such that

∂mi−1Hi

∂Y mi−1
(xi, yi) = 0 in Bi and

∂miHi

∂Y mi
(xi, yi) is a unit in Bi. (3.4)

This is sufficient for us to apply Newton iteration, and compute a power series Ji in

70

Bi[[ξ]] such that
∂miHi

∂Y mi
(xi + ξ, Ji) = 0 and Ji(0) = yi.

The following algorithm describes this process. This algorithm will be used in a slightly

more general context: instead of taking as input the exact polynomials Pi and Si com-

puted in the previous section, we will as well call it using only a factor of the actual

polynomial Pi (with Si being correspondingly reduced modulo this factor); this will not

change the analysis. These polynomials will be written (Ci, Ti) instead of (Pi, Si).

As input, this algorithm also takes extra parameters ni, which give the required

precision in ξ for the power series Ji.

Algorithm 6: compute J(F,G, [(Ci, Ti,mi, Hi, ni)]1≤i≤s)

Input: F , G, a sequence of polynomials Ci and Ti in K[X], strings Hi and indices

mi and ni

Output: a sequence [Ji]1≤i≤s, where Ji ∈ Bi[[ξ]] is known modulo ξni and

satisfies (3.4)

1 λ = 1

2 [Ji]1≤i≤s = [Ti]1≤i≤s

3 I = [i | 1 ≤ i ≤ s and λ < ni]

4 IF = [i | 1 ≤ i ≤ s and Hi = ”F”]

5 IG = [i | 1 ≤ i ≤ s and Hi = ”G”]

6 while I is not empty do

7 [ηi]i∈I = [∂
mi−1F
∂Ymi−1 (X + ξ, Ji) mod 〈Ci(X), ξ2λ〉]i∈I∩IF cat

8 [ηi]i∈I = [∂
mi−1G
∂Ymi−1 (X + ξ, Ji) mod 〈Ci(X), ξ2λ〉]i∈I∩IG

9 [η′i]i∈I = [∂
miF
∂Ymi

(X + ξ, Ji) mod 〈Ci(X), ξ2λ〉]i∈I∩IF cat

10 [η′i]i∈I = [∂
miG
∂Ymi

(X + ξ, Ji) mod 〈Ci(X), ξ2λ〉]i∈I∩IG
11 for i in I do

12 Ji = Ji − η/η′ mod 〈Ci(X), ξ2λ〉
13 end

14 λ = 2λ

15 I = [i | 1 ≤ i ≤ s and λ < ni]

16 end

17 return [Ji mod ξni]1≤i≤s we may know Ji at a slightly higher precision than ni

Lemma 19. Algorithm compute J is correct. When K = Fp, for any ε > 0, one

can implement it so that it takes d2+εO (̃log(p)) bit operations, provided the inequality∑
1≤i≤s(ni + 1)(mi + 1) deg(Ci) = O(d2) holds.

71

Proof. The algorithm essentially implements Newton iteration, over all Bi[[ξ]] indepen-

dently. We saw that by construction, for all i, ∂mi−1Hi
∂Ymi−1 (xi, yi) = 0 in Bi and ∂miHi

∂Ymi
(xi, yi)

is a unit in Bi; thus, we can indeed run Newton iteration. The sequence I indicates the

indices for which we have not reached the required precision yet; these are the indices for

which we do further iteration steps. Sequences IF and IG indicate which indices use F

or G to do the lifting.

It remains to do the cost analysis, in the case where K = Fp; all the cost is spent in

the main loop (at the beginning, the Ti’s are already reduced modulo the respective Ci’s;

at the end, truncation is free).

First, remark that the highest value λ will reach will be O(maxi ni), which is O(d2) by

assumption. As a consequence, the number of times we will enter the loop is O(log(d)),

which we will be able to absorb in the term d2+ε. Thus, we can focus on the cost of a

single pass through the loop.

The inversion and multiplication at Step 12 take O (̃
∑

i∈I deg(Ci)λ) operations in Fp,
or O (̃

∑
i∈I deg(Ci)λ log(p)) bit operations. The most delicate steps are 7 and 9. To keep

their cost admissible, we use algorithm normal forms to compute the values ηi and η′i,

simultaneously for all indices i in I. We call this algorithm twice: once for the indices i

in IF , then for those indices i in IG; it is enough to analyze the cost for, say, F .

We call algorithm normal forms with an input size tF (the cardinality of I ∩ IF),

lists L,L′, L′′ and polynomial F ; we set L = [(2λ − 1,mi)]i∈I∩IF , L′ = [Ci]i∈I∩IF and

L′′ = [Ji]i∈I∩IF . The input size satisfies∑
i∈I∩IF

2λ(mi + 1) deg(Ci) ≤
∑
i∈I∩IF

(4ni + 1)(mi + 1) deg(Ci),

which is O(d2) by assumption. Thus, for any ε > 0, we can compute

Di,µ =
∂µF

∂Y µ
(X + ξ, Ji) mod 〈Ci(X), ξ2λ〉,

for all i in I ∩ IF and µ = 0, . . . ,mi, using d2+εO (̃log(p)) bit operations. Keeping those

derivatives of order mi and mi−1 gives us the requires values ηi and η′i.

When K = Q, all computations can be reduced modulo p, for any prime p that satisfies

the assumptions of Lemma 18. Indeed, for such a p and for i in {1, . . . , s}, ∂miHi
∂Ymi

(X,Si)

is a unit modulo Pi mod p; this remains true for any factor Ci of Pi.

72

3.6.3 Computing all ni’s, ai’s and Ki’s

Finally, we want to compute the values of n, a and K at all points in V . As input, we

start from the sequence [(Pi, Si,mi, Hi)]1≤i≤s computed in Section 3.6.1; recall that these

sequences define the partition of V into sets (Vmi,Hi)1≤i≤s

The σ-partition of V that we wish to compute is a refinement of the par-

tition (Vmi,Hi)1≤i≤s; in other words, we obtain it by partitioning each Vmi,Hi into

subsets (Vσi,j)j∈Di , for some index set Di; each σi,j takes the form σi,j =

(mi, Hi, ni,j, ai,j, Ki,j). Our output will consist in a similarly indexed array of the form

[(Ci,j, Ti,j,mi, Hi, ni,j, ai,j, Ki,j)]1≤i≤s,j∈Di , such that for all i, j, (Ci,j, Ti,j) is the Shape

Lemma representation of Vσi,j .

To describe the idea the algorithm, we can fix the index i. Then, we need to compute

the power series Ji defined in the previous section, and deduce the expansions of ∂µF
∂Y µ

(X+

ξ, Ji) and ∂µG
∂Y µ

(X+ξ, Ji) for suitable values of µ; this will be done at successive precisions

λ = 1, 2, 4, . . . in ξ.

Suppose we have obtained these expansions modulo ξλ. If we were over a field,

we would then look for the expansion with smallest valuation in ξ; however, we are

working over Bi = K[X]/〈Pi〉, which is not necessarily a field. Thus, we apply Algorithm

zero index vectorial of Section 3.3; it returns factors of Pi for which we have found the

correct valuation, together with possibly a residual factor, for which we have to increase

the precision in ξ. Thus, we replace Pi by this factor, multiply λ by 2, and start over. In

order to distinguish between the input Pi’s and their factors, we use new variables called

Ci as our current polynomials.

The following algorithm implements this idea; the fact that we have to han-

dle as well the strings Hi to decide with partial derivatives to consider makes for

some admittedly heavy bookkeeping (which we explain in the proof of the following

lemma). In the pseudo-code, we use the subroutine cf(P, ξj) which returns the coeffi-

cient of ξj in polynomial P ; further subroutines infinity, index of and polynomial, that

are only designed for said bookkeeping purposes, are explained in the proof of the lemma.

73

Algorithm 7: compute n a K (F,G, [(Pi, Si, Hi,mi)]1≤i≤s)

Input: the sequence [(Pi, Si,mi, Hi)]1≤i≤s computed in Section 3.6.1

Output: a sequence [(Ci,j, Ti,j,mi, Hi, ni,j, ai,j, Ki,j)]1≤i≤s,j∈Di
1 λ = 1

2 L = []

3 I = [1, . . . , s]

4 IF = [i | 1 ≤ i ≤ s and Hi = ”F”]

5 IG = [i | 1 ≤ i ≤ s and Hi = ”G”]

6 [Ci, Ti]i∈I = [Pi, Si]i∈I

7 while I is not empty do

8 [Ji]i∈I = compute J(F,G, [Ci, Ti, Hi,mi, 2λ]i∈I)

9 [ηi,α]i∈I,α∈[0,...,mi] = [∂
αF
∂Y α

(X + ξ, Ji) mod 〈Ci(X), ξ2λ〉]i∈I,α∈[0,...,mi]

10 [γi,α]i∈I,α∈[0,...,mi] = [∂
αG
∂Y α

(X + ξ, Ji) mod 〈Ci(X), ξ2λ〉]i∈I,α∈[0,...,mi]

11 for i in I do

12 if i is in IF then

13 Ri =

[[cf(ηi,0, ξ
j), . . . , cf(ηi,mi−2, ξ

j)] cat [cf(γi,0, ξ
j), . . . , cf(γi,mi−1, ξ

j)]]j=1,...,2λ−1

14 else

15 Ri =

[[cf(γi,0, ξ
j), . . . , cf(γi,mi−2, ξ

j)] cat [cf(ηi,0, ξ
j), . . . , cf(ηi,mi−1, ξ

j)]]j=1,...,2λ−1

16 Li = zero index vectorial(Ci, Ri) Li has the form [(Ci,j, (ni,j, `i,j))]j∈Di
17 Ci = infinity(Li)

18 if Ci is not constant then

19 remove Ci from Li update Ci and Ti

20 Ti = Ti mod Ci

21 else

22 remove i from I we are done with this index

23 Ti,j = [Ti mod Ai,j]Ai,j∈Li
24 L = L cat [(Ci,j, Ti,j,mi, Hi, ni,j, index of(ni,j, Ri), polynomial(ni,j, Ri))]j∈Di

25 end

26 λ = 2λ

27 end

28 return L

Lemma 20. Algorithm compute n a K terminates and is correct. When K = Fp, for any

ε > 0, one can implement it so that it takes d2+εO (̃log(p)) bit operations.

74

Proof. To establish correctness, we first prove that the following invariant is preserved

throughout the for loop: at the beginning of the loop,

• for all indices i in I, (Ci, Si) is the Shape Lemma representation of the union of all

subsets Vσi,j , for σi,j of the form σi,j = (mi, Hi, n, a, K), for some n ≥ λ.

• L contains the entries [(Ci,j, Ti,j,mi, Hi, ni,j, ai,j, Ki,j)]i,j, for all indices i in {1, . . . , t}
and j in Di such that ni,j < λ.

Initially, λ = 0; since all ni,j are at least equal to one, our loop invariant holds. Supposing

that we maintained the invariant up to some exponent λ, we prove that they will be

maintained through the next pass in the loop.

Step 8 computes the sequence [Ji]i∈I ; those are power series known modulo ξ2λ, such

that, for all i,
∂miHi

∂Y mi
(X + ξ, Ji) = 0 mod ξ2λ and Ji(0) = Ti

holds modulo Ci.

Consider an index i in I; without loss of generality, we assume that I is in IF , that

is, that Hi is ”F”. In this case, Lemma 15 shows that for any (x, y) in V (Ci, Y − Si), the

integer n appearing in its signature satisfies

n = min

({
val

(
∂αF

∂Y α
(x+ ξ, Ji(x, ξ))

)}
0≤α<mi−1

∪
{

val

(
∂αG

∂Y α
(x+ ξ, Ji(x, ξ))

)}
0≤α<mi

)
,

where Ji(x, ξ) denotes the (truncated) power series in K[[ξ]] obtained by evaluating X

at x in Ji (this is valid, since J has coefficients in K[X]/〈Ci〉, and x is a root of Ci). In

view of the calculations at Steps 9 and 10, we see that n can be rewritten as

n = min
(
{val(ηi,α(x))}0≤α<mi−1 ∪ {val(γi,α(x))}0≤α<mi

)
;

if Hi was equal to ”G”, indices would be changed here. Remark that we known the power

series ηi,α and γi,α modulo ξ2λ; on the other hand, since we are still dealing with Ci, their

valuation must be at least λ. The sequence Ri then precisely contains the coefficients of

power series ηi,α and γi,α that we have to test for zero at the roots x of Ci.

The call to zero index vectorial(Ci, Ri) returns a sequence Li = [(Ci,j, (ni,j, `i,j))]j∈Di ,

such that Ci =
∏

j∈Di Ci,j, with either (ni,j, `i,j) in {1, . . . , 2λ−1}×{1, . . . , 2mi−1} (the

former is the length of the entries in Ri, the latter the length of Ri itself) or (ni,j, `i,j) =

(∞,−1); the roots of Ci,j are the roots x of Ci having n = ni,j, when ni,j < ∞, or for

which all we can say is n ≥ 2λ, when ni,j =∞.

75

If ni,j =∞ does not show up, we have found the valuation for all roots of Ci; otherwise,

the roots corresponding to ni,j =∞ will have to enter the next pass in the for loop. This

is decided at Step 17, where subroutine infinity extracts the entry (Ci,j, (ni,j, `i,j)) in Li

having ni,j = ∞, if such an entry exists, and replaces Ci by this polynomial Ci,j. If no

such entry exists, infinity returns and assign 1 to Ci.

If the new value of Ci has positive degree, we update Ti as well, so that (Ci, Ti) is

the Shape Lemma representation of all roots of Pi having n ≥ 2λ — this proves that the

first half of our loop invariant will be satisfied for the next iteration. If the new value of

Ci is equal to 1, we are done with all roots of Pi, so we can remove i from index set I.

It remains to update the sequence L with those entries of Li corresponding to

ni,j < ∞. For all these entries, index `i,j ∈ {1, . . . , 2mi − 1} tells us which polyno-

mial in Ri yielded a nonzero value. Subroutines index of and polynomial deduce the

corresponding index αi,j (in either {0, . . . ,mi−1} or {0, . . . ,mi}), and the corresponding

string Ki,j indicates whether the nonvanishing occurred for one of the ηi,α’s or γi,α’s. This

construction shows that the second half of our loop invariant will be satisfied for the next

iteration, so we are done with our induction proof.

Next, remark that the algorithm terminates: indeed, all ni,j satisfy the crude upper

bound ni,j ≤ d2. Our loop invariant then proves that the output of the algorithm is

correct.

It remains to do the cost analysis, when K = Fp. The number of passes through

the for loop is O(log(d)). Let us consider a given pass through the for loop, for some

precision λ, and let us write ci = deg(Ci) for i in I. The crucial inequality to notice is

that ∑
i∈I

(2λ+ 1)(mi + 1)ci = O(d2).

Indeed, for all indices i remaining in I at this stage, the index n of any root x of Ci is at

least λ (as per our loop invariant). For such a root x, by the deflation lemma, the product

of the indices m and n is at most µ((F,G), (x, S(x))), the intersection multiplicity of F

and G at (x, S(x)) ∈ V . The summand above is O(λmici), and the sum over all i ∈ I of

this quantity is thus at most
∑

(x,y)∈V µ((F,G), (x, y)), which we know to be at most d2.

As a consequence, we can apply Lemma 19, which proves that the cost of computing

all Ji is d2+εO (̃log(p)) bit operations. The computation of all [ηi,α]i∈I,α∈[0,...,mi] is han-

dled by Algorithm normal forms, with input lists L,L′, L′′ given by L = [(2λ−1,mi)]i∈I ,

L′ = [Ci]i∈I and L′′ = [Ji]i∈I ; in view of Proposition 3, the cost is again d2+εO (̃log(p))

bit operations. All other arithmetic operations (remainder at Step 20 and multiple re-

mainders at Step 23) are cheaper, so we are done.

76

The main algorithm of this section, Algorithm σ-dec, is simply the combination of

compute m H, compute J and compute n a K. Combining the results of Lemmas 17, 19

and 20 proves the complexity statement in Proposition 4. It remains to prove Proposi-

tion 5.

Let us thus assume that K = Q. Let p be a prime that satisfies the assumptions

of Lemma 18. Then, the computations in Algorithms compute m H and compute J re-

duce well modulo p. Consider now the output [(Ci,j, Ti,j,mi, Hi, ni,j, ai,j, Ki,j)]1≤i≤s,j∈Di
of compute n a K.

Let us slightly simplify the discussion using the following argument. Consider a com-

ponent (Ci,j, Ti,j,mi, Hi, ni,j, ai,j, Ki,j) of the σ-decomposition of V (F,G). Running Algo-

rithm compute n a K on input F , G and the sequence consisting only of [(Ci,j, Ti,j,mi, Hi)]

returns again (Ci,j, Ti,j,mi, Hi, ni,j, ai,j, Ki,j), since this set is its own σ-decomposition.

Thus, it suffices to give conditions under which this remains the case modulo p.

With such an input, Algorithm compute n a K performs a series of zero-test on the

entries of a sequence of the form

Ri = [[cf(ηi,0, ξ
j), . . . , cf(ηi,mi−2, ξ

j)] cat [cf(γi,0, ξ
j), . . . , cf(γi,mi−1, ξ

j)]]j=1,...,2λ−1,

for increasing values of λ. Each such test amounts to verify whether one of the coefficients,

of the form either cf(ηi,k) or cf(γi,k), is zero or invertible modulo Ci,j. All are found to be

zero, until we discover one of them to be invertible modulo Ci,j. In view of the structure

of the output, we know that this must be the coefficient of ξni,j in
∂ai,jKi,j
∂Y ai,j

.

Lemma 16 now implies that all points in V (Ci,j(X), Y − Ti,j(X)) must be roots of

multiplicity ni,j of the system (∂
miHi
∂Ymi

,
∂ai,jKi,j
∂Y ai,j

). The polynomials Ci,j, Ti,j,
∂miHi
∂Ymi

,
∂ai,jKi,j
∂Y ai,j

thus satisfy the assumptions of Proposition 2.

We deduce that if p does not divide the integer δ2 associated to Ci,j, Ti,j,
∂miHi
∂Ymi

,
∂ai,jKi,j
∂Y ai,j

,

the multiplicity of (∂
miHi
∂Ymi

,
∂ai,jKi,j
∂Y ai,j

) at any root of Ci,j(X), Y − Ti,j(X) taken modulo

p remains ni,j. As a result, applying again Lemma 16 shows that the corresponding

coefficient of either ηi,k or γi,j remains invertible modulo Ci,j mod p, in Fp[X]. Thus,

Algorithm compute n a K behaves in the same manner modulo p as over Q, and we are

done.

Taking all Ci,j into account, we see that to ensure success it is sufficient to ask that

p divides none of the integers δ2 associated to the systems Ci,j, Ti,j,
∂miHi
∂Ymi

,
∂ai,jKi,j
∂Y ai,j

. If H

and K have degree at most d and height at most h, there are at most d2 such systems;

all indices mi and ni,j are at most d2, so the degree and height of polynomials ∂miHi
∂Ymi

and
∂ai,jKi,j
∂Y ai,j

are respectively at most d and O (̃h+ d). If we assume that Ci,j, Ti,j have height

77

at most `, the bounds given in Proposition 2 show that the product of all δ2’s we consider

admits an explicitly computable upper bound of the form (dh`)O(1). Together with the

bound given in Lemma 18, this finishes the proof of Proposition 5.

3.7 Newton iteration

In this section, we give the details of a deflated Newton iteration that follows naturally

from the deflation lemma. The following is essentially a particular case of the general

algorithm from [40]; however, we chose to give a self-contained proofs of the result we

need.

Let B be a ring and let (x∗, y∗) be in B, as well as m ∈ N and H ∈ B[X, Y] be such

that the following holds:

X1. ∂m−1H
∂Ym−1 (x∗, y∗) = 0.

X2. ∂mH
∂Ym

(x∗, y∗) is a unit in B.

We suppose in addition that m is an ideal in B such that m2 = (0). In what follows, we

suppose that we know (x, y) in B, with both x−x∗ and y−y∗ in m, and we will show how

to recover x∗ and y∗; further assumptions on (x∗, y∗) will be introduced when needed.

Solving for Y . Given (x, y) in B, with both x− x∗ and y − y∗ in m, Newton iteration

applied (with respect to Y) to the polynomial ∂m−1H
∂Ym−1 shows that there exist a unique yx

in B such that
∂m−1H

∂Y m−1
(x, yx) = 0, yx = y mod m. (3.5)

Explicitly, yx is given by

yx = y −
∂m−1H
∂Ym−1 (x, y)
∂mH
∂Ym

(x, y)
. (3.6)

This is well-defined, since ∂mH
∂Ym

(x∗, y∗) being a unit implies that ∂mH
∂Ym

(x, y) is a unit as

well. Remark also that since m2 = (0) in B, doing just one step of Newton iteration is

sufficient to find the root yx.

The implicit function(s) J. Let ξ be a new variable, which we will use for power

series over B. Given x in B, with x− x∗ in m, our next goal is to compute, if it exists, a

power series J in B[[ξ]] such that

∂m−1H

∂Y m−1
(x+ ξ, J) = 0, J(0) = y∗ mod m. (3.7)

78

Lemma 21. A power series J satisfies (3.7) if and only if it satisfies

∂m−1H

∂Y m−1
(x+ ξ, J) = 0, J(0) = yx. (3.8)

Proof. Of course, if J satisfies (3.8), it satisfies the seemingly weaker condition (3.7).

Conversely, suppose that J satisfies (3.7); we only have to prove that J(0) = yx. Start

from condition ∂m−1H
∂Ym−1 (x + ξ, J) = 0, and evaluate ξ at 0. This shows that the element

J(0) ∈ B satisfies ∂m−1H
∂Ym−1 (x, J(0)) = 0 and J(0) = y mod m; the uniqueness of the solution

of (3.5) proves that J(0) = yx.

Applying again Newton iteration, these time modulo the powers of ξ, we deduce that

there exits a unique power series Jx in B[[ξ]] that satisfies (3.7), or equivalently (3.8).

Remark that such power series were already considered in Sections 3.5 and 3.6. Of

particular interest will be power series J∗ = Jx∗ , which thus satisfies

∂m−1H

∂Y m−1
(x∗ + ξ, J∗) = 0, J∗(0) = y∗.

Of course, since x∗ and y∗ are unknown to us, we cannot compute J∗. However, modulo

m, we see that for all x such that x− x∗ ∈ m, Jx = J∗ mod m. In fact, something more

precise can be said.

Lemma 22. Let x be in B, such that x = x∗ mod m. Then the equality

Jx = J∗ + (x− x∗)dJ
∗

dξ

holds.

Proof. We prove that the power series Cx = J∗ + (x− x∗)dJ∗
dξ

is equal to Jx. In view

of the uniqueness property, it suffices to prove that Cx satisfies both conditions in (3.7).

We start by evaluating the functional at x+ ξ and Cx; this gives

∂m−1H

∂Y m−1
(x+ ξ, Cx) =

∂m−1H

∂Y m−1
(x∗ + ξ + (x− x∗), J∗ + (x− x∗)dJ

∗

dξ
).

Because x − x∗ is in m, and m2 = (0), we can do a Taylor expansion at the first order,

and deduce that the previous quantity is

∂m−1H

∂Y m−1
(x∗ + ξ, J∗) + (x− x∗) ∂mH

∂X∂Y m−1
(x∗ + ξ, J∗) + (x− x∗)dJ

∗

dξ

∂mH

∂Y m
(x∗ + ξ, J∗).

79

The first term above vanishes by definition of J∗, so we are left with

(x− x∗)
(

∂mH

∂X∂Y m−1
(x∗ + ξ, J∗) +

dJ∗

dξ

∂mH

∂Y m
(x∗ + ξ, J∗)

)
.

The right-hand factor is identically zero, since it is the derivative with respect to ξ of the

defining equation for J∗. Thus, we are done with the first condition for Cx.

To prove the second one, note that because x − x∗ is in m, Cx = J∗ mod m. As a

consequence, Cx(0) = J∗(0) mod m, and thus Cx(0) = y∗ mod m. This proves the second

condition for Cx, and thus that Cx = Jx.

Using the second equation. Let us now consider a further polynomial K in B[X, Y],

together with an integer a ≥ 0. To x in B, such that x = x∗ mod m, we now associate

Sx =
∂aK

∂Y a
(x+ ξ, Jx),

which is a well-defined power series in B[[ξ]]. Inspired by the notation above, we write

S∗ for the particular case x = x∗. The following lemma shows that Sx is a first-order

approximation of S∗.

Lemma 23. Let x be in B, such that x = x∗ mod m. The equality

Sx = S∗ + (x− x∗)dSx
dξ

holds.

Proof. Let us write P = ∂aK
∂Y a

. We have to prove that

P (x+ ξ, Jx) = P (x∗ + ξ, J∗) + (x− x∗) d
dξ

(P (x+ ξ, Jx)) .

The proof is similar to that in the previous lemma. Recall that Jx = J∗ + (x − x∗)dJ∗
dξ

.

Thus, the left-hand side is

P (x∗ + ξ + (x− x∗), J∗ + (x− x∗)dJ
∗

dξ
),

80

which gives, after a first-order Taylor expansion,

P (x∗ + ξ, J∗) + (x− x∗) ∂P
∂X

(x∗ + ξ, J∗) + (x− x∗)dJ
∗

dξ

∂P

∂Y
(x∗ + ξ, J∗).

= P (x∗ + ξ, J∗) + (x− x∗) d
dξ
P (x∗ + ξ, J∗).

Finally, the first equality above proves in particular that P (x+ξ, Jx) = P (x∗+ξ, J∗) mod

m, and this remains true after differentiation with respect to ξ. Thus, the lemma is

proved.

As in Section 3.6, let us write cf(S, ξj) the coefficient of ξj in a power series S ∈ B[[ξ]].

We can then make our last assumptions on (x∗, y∗): there exists an integer n ≥ 1 such

that

X3. cf
(
dn−1S∗

dξn−1 , ξ
0
)

= 0

X4. cf
(
dnS∗

dξn
, ξ0
)

is a unit in B.

The following lemma finally allows us to compute x∗, assuming we know x∗ mod m

and y∗ mod m.

Lemma 24. Let x be in B, such that x = x∗ mod m. If (x∗, y∗) satisfies X1 - X4, then

cf(d
nSx
dξn

, ξ0) is a unit in B and

x∗ = x−
cf
(
dnSx
dξn

, ξ0
)

cf
(
dn−1Sx
dξn−1 , ξ0

) .
Proof. To prove the first item, remark that the previous lemma shows in particular

that Sx = S∗ mod m. This remains true after differentiating n times. Extracting the

constant coefficient, we deduce that cf(d
nS∗

dξn
, ξ0) = cf(d

nSx
dξn

, ξ0) mod m. Since the former

is a unit, the latter must be a unit too.

To conclude, start from the equality Sx = S∗ + (x − x∗)dSx
dξ

proved above, and take

the (n − 1)-th derivative with respect to ξ. This gives dn−1Sx
dξn−1 = dn−1S∗

dξn−1 + (x − x∗)dnSx
dξn

.

Extracting the constant coefficient (with respect to ξ) on both sides, and using X3 gives

cf

(
dn−1Sx
dξn−1

, ξ0

)
= (x− x∗)cf

(
dnSx
dξn

, ξ0

)
.

Since we proved that cf(d
nSx
dξn

, ξ0) is a unit in B, the claim follows.

81

Once x∗ is known, we can also recover y∗. One option is to apply the Newton iteration

of Eq. (3.6), but we will prefer the following method, which will not require further

evaluations. We know that Jx = J∗ + (x − x∗)dJ∗
dξ

; as in the proof of the above lemma,

since J∗ = Jx mod m, we can rewrite Jx = J∗ + (x − x∗)dJx
dξ

. Since cf(J∗, ξ0) = y∗, we

deduce

y∗ = cf(Jx, ξ
0)− (x− x∗)cf(Jx, ξ

1). (3.9)

3.8 Main algorithm

We can finally present the main algorithm and analyze its complexity. All along this

section, we use the following notation. The input is a pair of polynomials F and G

with coefficients in Z, with degree at most d and height at most h. We suppose that

these polynomials satisfy assumption H1 of Section 3.2, so that the associated polynomial

Γ ∈ Z[T] is well-defined.

3.8.1 Choosing parameters

We are going to apply a random change of variables, and compute modulo a random

prime. In this first section, we discuss these choices, and quantify their probability of

success. Given P ≥ 1, our goal is to obtain a probability of success of at least 1− 1/2P .

As in the introduction, we suppose that we have an oracle O, which on input B

returns a random prime in the interval {B + 1, . . . , 2B}, chosen uniformly among those

primes.

Let us first choose an integer t at random in the set {1, . . . , 2P+5d4}; remark in

particular that the height of t is at most P + 5 + 4 log(d). Because Γ is nonzero of degree

at most 12d4, the probability that t cancels it is at most 1/2P+1. In what follows, let us

assume that Γ(t) is nonzero, so that, by Corollary 1, Ft and Gt are in general position.

Besides, remark that we have the following height bounds:

• From Corollary 1 again, all polynomials appearing in the Shape Lemma represen-

tation of V , and of all its Q-definable subsets, have height at most H1(P, d, h) =

BSL(d, h, P + 5 + 4 log(d)), which is (Pdh)O(1).

• For t in {1, . . . , 2P+5d4}, the height of Γ(t) can be bounded by an explicitly com-

putable integer H2(P, d, h) = (Pdh)O(1).

• The polynomials Ft and Gt have degree d; their height is at most H3(P, d, h) =

h+ d(P + 5 + 4 log(d) + 3), which is clearly (Pdh)O(1).

82

Let us then define ∆4(P, d, h) = ∆3(d,H3, H1)H2(d, h), where ∆3 was defined in Propo-

sition 5. This quantity is computable from P, d, h (in time polylogarithmic in P, d, h),

and we have ∆4(P, d, h) = (Pdh)O(1).

Consider now the integer δ4 = Γ(t)δ3, where δ3 was defined in Proposition 5. Thus,

the above construction shows that δ4 is a nonzero integer of height at most ∆4(P, d, h).

Let us finally define ∆′4(P, d, h) = 2P+2∆4(P, d, h), and the set

Λ(P, d, h) = {∆′4(P, d, h) + 1, . . . , 2∆′4(P, d, h)}.

Then, we have the following quantitative estimates:

• The set Λ(P, d, h) contains at least ∆′4(P, d, h)/(2 log ∆′4(P, d, h)) primes [66, The-

orem 18.8].

• There are at most log∆′4(P,d,h)(δ4) primes in Λ(P, d, h) that divide δ4.

Let us call the oracle O, with input ∆′4(P, d, h); as output, we get a random prime p in

Λ(P, d, h). The probability of p dividing δ4 is thus at most

log∆′4(P,d,h)(δ4)
∆′4(P,d,h)

2 log ∆′4(P,d,h)

= 2
log(δ4)

∆′4(P, d, h)
≤ 1

2P+1
.

We will see below that provided Γ(t) is nonzero and δ4 does not reduce to zero modulo

p, our lifting algorithm will compute RUR(F,G). The previous discussion shows that it

happens with probability at least 1− 1/2P , as we wanted.

The last remark we make here is that the prime p we compute with is at most

2P+3∆4(P, d, h), which is 2O(P)(dh)O(1). Thus, log(p) is O(P + log(dh)).

3.8.2 Computations modulo p

In all that follows, we suppose that t and p have been chosen such that Γ(t) is nonzero,

and such that the integer δ4 defined above does not vanish modulo p.

In particular, by Corollary 1, both systems (Ft, Gt) and (Ft mod p,Gt mod p) are in

general position, over respectively Q[X, Y] and Fp[X, Y], and we have the specialization

property SL(Ft, Gt) mod p = SL(Ft mod p,Gt mod p).

Lemma 25. Given F and G, one can compute Ft mod p and Gt mod p, as well as

SL(Ft mod p,Gt mod p), using O (̃d2h+ d3 log(p)) bit operations.

83

Proof. We first reduce F andGmodulo p; this takesO (̃d2(h+log(p)) bit operations, by

fast Euclidean division. Then, we apply the change of variable X 7→ X+ tY for F mod p

and G mod p, which gives Ft mod p and Gt mod p in O (̃d2 log(p)) bit operations.

We know that (Ft mod p,Gt mod p) is in general position. To compute its Shape

Lemma representation, we apply the algorithm of [39, Proposition 1], which runs in time

O (̃d3 log(p)). There is only one minor difference: one step in that algorithm should be

avoided (Step 6, which removes multiple solutions from V (Ft mod p,Gt mod p) – we do

not want to discard them here).

Let Σ = [(Ci,j, Ti,j,mi, Hi, ni,j, ai,j, Ki,j)]1≤i≤s,j∈Di be the σ-decomposition of Ft and

Gt, as computed by Algorithm σ-dec. Since p does not divide Γ(t), Corollary 1 proves

that p cancels the denominator of none of the coefficients of the polynomials Ci,j or Ti,j.

In addition, the fact that p does not cancel the integer δ3 of Proposition 5, applied to Ft

and Gt, implies that Σ mod p is the σ-decomposition of Ft mod p and Gt mod p.

Lemma 26. Given Ft mod p and Gt mod p, one can compute the σ-decomposition of

SL(Ft mod p,Gt mod p) using d3+εO (̃log(p)) bit operations.

Proof. This is Proposition 4, applied to Ft mod p and Gt mod p.

In particular, all polynomials above can be seen in Zp[X]. For a fixed index i, j, we

can then define the residue class ring B∞ = Zp[X]/〈Ci,j〉, as well as the power series

J∞i,j ∈ B∞[[ξ]] characterized by the conditions

∂miHi

∂Y mi
(x∞i,j + ξ, J∞i,j) 6= 0 and J∞i,j (0) = y∞i,j,

where x∞i,j is the residue class of X in B∞, and y∞i,j is the residue class of Ti,j. The following

lemma is then a direct consequence of the previous discussion.

Lemma 27. For any index i, j, the point (x∞i,j, y
∞
i,j) and (mi, Hi, ni,j, ai,j, Ki,j) satisfy

conditions X1 - X4 of Section 3.7 over the ring B∞.

3.8.3 Analysis of one lifting step

Suppose that we know Σ mod N , for N some power of p. In this section, we show how

to compute Σ mod N2. The main result of this section is the following proposition.

Proposition 6. Given Σ mod N , for N a power of p, one can compute Σ mod N2 using

d2+εO (̃log(N)) bit operations.

84

In what follows, we denote by A the ring Z/N2Z, where all computations will be done.

For any i in {1, . . . , s} and j in Di, we thus assume that we know ci,j = Ci,j mod N and

yi,j = Ti,j mod N . Our goal is to compute c′i,j = Ci,j mod N2 and y′i,j = Ti,j mod N2.

Let us write

Bi,j = A[X]/〈ci,j〉 and B′i,j = A[X]/〈c′i,j〉,

where in the former case, we view ci,j as a polynomial in A[X] = Z/N2Z. Thus, we can

compute in Bi,j, but not in B′i,j, since c′i,j is unknown. In what follows, we write xi,j for

the residue class of X in Bi,j.

Starting from the claim in Lemma 27 and reducing modulo N2, we deduce that over

the ring B′i,j, the point (xi,j, t
′
i,j) ∈ B′i,j

2 satisfies assumptions X1 - X4 of Section 3.7. Now,

Proposition 1 in [40] proves that Bi,j and B′i,j are isomorphic, through an isomorphism

that reduces to the identity modulo N , and that leaves Z invariant. Thus, there exists

(x∗i,j, y
∗
i,j) ∈ Bi,j2 such that:

• x∗i,j = xi,j mod N and y∗i,j = yi,j mod N

• (x∗i,j, y
∗
i,j) and (mi, Hi, ni,j, ai,j, Ki,j) satisfy conditions X1 - X4 of Section 3.7 over

the ring Bi,j.

We will thus apply the algorithm of Section 3.7, in order to first compute x∗i,j and y∗i,j in

Bi,j. In a second stage, we will deduce c′i,j and t′i,j.

The computation of x∗i,j and y∗i,j proceeds itself in several steps, which follow the

description in Section 3.7. For the cost analysis, it will be useful to remark that∑
1≤i≤s,j∈Di

ni,jmi,j deg(Ci,j) ≤ d2 (3.10)

holds. Indeed, the deflation lemma shows that for any root x of Ci,j, ni,jmi,j is a lower

bound on the multiplicity of (F,G) at (x, Ti,j(x)). The above inequality then follows

from Bézout’s theorem.

85

Algorithm 8: lift y(F,G,Σ mod N)

Input: polynomials F,G, the σ-decomposition Σ mod N

Output: [vi,j]1≤i≤s,j∈Di

1 I = [(i, j) | 1 ≤ i ≤ s, j ∈ Di]

2 IF = [(i, j) | 1 ≤ i ≤ s, j ∈ Di and Hi = ”F”]

3 IG = [(i, j) | 1 ≤ i ≤ s, j ∈ Di and Hi = ”G”]

4 [ηi,j](i,j)∈IF = [∂
mi−1F
∂Ymi−1 (xi,j, yi,j)]i∈IF calculations are done in Bi,j

5 [η′i,j](i,j)∈IF = [∂
miF
∂Ymi

(xi,j, yi,j)]i∈IF
6 [γi,j](i,j)∈IG = [∂

mi−1G
∂Ymi−1 (xi,j, yi,j)]i∈IG

7 [γ′i,j](i,j)∈IG = [∂
miG
∂Ymi

(xi,j, yi,j)]i∈IG
8 return [vi,j](i,j)∈I = [yi,j − ηi,j/η′i,j]i∈IF cat [yi,j − γi,j/γi,j]i∈IG

Computing all vi,j’s. First, applying Eq. (3.6), we compute the elements vi,j such

that for all i, j, we have
∂mi−1Hi

∂Y mi−1
(xi,j, vi,j) = 0

in Bi,j, and such that vi,j = yi,j mod N .

Correctness follows from Eq. (3.6). Regarding running time, the bulk of the cost is

the computation of sequences [ηi,j], [η′i,j], [γi,j], [γ′i,j]; the divisions at the last step can

all be done in quasi-linear time.

Let us for instance explain how to compute [ηi,j] and [η′i,j]. This is a direct ap-

plication of Algorithm normal forms, with input the lists L,L′, L′′ and F , with L =

[(0,mi)](i,j)∈I , L
′ = [ci,j](i,j)∈I and L′′ = [yi,j](i,j)∈I . Inequality (3.10) implies that∑

1≤i≤s,j∈Di

mi,j deg(Ci,j) ≤ d2,

so we are under the conditions of Proposition 3. This implies that all [ηi,j] and [η′i,j]

can be computed in d2+εO (̃log(N)) bit operations. This concludes the cost analysis of

this step.

Computing all x∗i,j and y∗i,j’s. Next, we consider Algorithm lift x y, which computes

all x∗i,j and y∗i,j in Bi,j.

86

Algorithm 9: lift x y(N,F,G,ΣN)

Input: polynomials F,G, the σ-decomposition Σ mod N

Output: [(x∗i,j, y
∗
i,j]1≤i≤s,j∈Di

1 I = [(i, j) | 1 ≤ i ≤ s, j ∈ Di]

2 IF = [(i, j) | 1 ≤ i ≤ s, j ∈ Di and Hi = ”F”]

3 IG = [(i, j) | 1 ≤ i ≤ s, j ∈ Di and Hi = ”G”]

4 [vi,j](i,j)∈I = lift y(F,G,Σ mod N)

5 [Ji,j](i,j)∈I = compute J(F,G, [(ci,j, ti,j,mi, Hi, ni,j + 1)](i,j)∈I)

6 η = [ηi,j,α](i,j)∈I,α∈[0,...,mi] = [∂
αF
∂Y α

(X + ξ, Ji,j) mod 〈ci,j(X), ξni,j+1〉](i,j)∈I,α∈[0,...,mi]

7 γ = [γi,j,α](i,j)∈I,α∈[0,...,mi] = [∂
αG
∂Y α

(X + ξ, Ji,j) mod 〈ci,j(X), ξni,j+1〉](i,j)∈I,α∈[0,...,mi]

8 L = [](i,j)∈I

9 for (i, j) in I do

10 Si,j = select(Hi, Ki,j, ai,j, η, γ)

11 x∗i,j = xi,j −
cf

(
d
ni,j Si,j

dξ
ni,j

,ξ0
)

cf

(
d
ni,j−1

Si,j

dξ
ni,j−1 ,ξ0

)
12 y∗i,j = cf(Ji,j, ξ

0)− (xi,j − x∗i,j)cf(Ji,j, ξ
1)

13 append (x∗i,j, y
∗
i,j) to L

14 end

15 return L

This stage of the algorithm directly uses the formula derived in Lemma 24, and the

subsequent Equation (3.9). For any index i, j, we need the corresponding power series

Si,j modulo ξni,j+1, which in turn means that we need Ji,j at the same precision.

The power series Ji,j are computed at Step 5 using Algorithm compute J, using the

output vi,j of the previous step as a starting value. Algorithm compute J was written

so as to work modulo a prime, not a prime power; however, it still applies to work

modulo a prime power N without any modification. Inequality (3.10) shows that we are

under the assumptions of Lemma 19, so we deduce that Step 5 can be executed using

d2+εO (̃log(N)) bit operations.

Steps 6 and 7 are done using Algorithm normal forms. Once more, Inequal-

ity (3.10) shows that we are under the assumptions of Proposition 3, so these steps

take d2+εO (̃log(N)) bit operations.

Subroutine select then extracts the power series Ji,j from the vectors η and γ, using

Hi, Ki,j, and ai,j to find the proper entry. The updates necessary to compute x∗i,j and

y∗i,j take quasi-linear time. To summarize, the cost of this step is d2+εO (̃log(N)) bit

87

operations.

Computing all c′i,j’s and t′i,j’s. At this stage, for any index (i, j), we have found

the root (x∗i,j, y
∗
i,j) with coordinates in Bi,j = A[X]/〈ci,j〉. Our goal is to recover c′i,j =

Ci,j mod N2, together with t′i,j = Ti,j mod N2.

Explicit formula exist for this conversion (see for instance [33, Section 6]); in our case,

writing δi,j = x∗i,j − xi,j, they read

c′i,j = ci,j −
(
δi,j

dci,j
dX

mod ci,j

)
and t′i,j = ti,j − δi,j

dti,j
dX

mod ci,j.

In particular, the new polynomials c′i,j and t′i,j can all be computed for a total of

O (̃d2 log(N)) bit operations. Summing all costs seen so far, we conclude the proof

of Proposition 6.

3.8.4 Total cost

We can finally finish the cost analysis of our algorithm. Since t has been chosen with

height O(P + log(d)), Corollary 1 shows that the output RUR(Ft, Gt) has height O (̃dh+

d2P).

We run lifting steps until the precision N goes beyond twice this bound. Using

Chinese remainder techniques, we can then deduce from Σ mod N the polynomials

(P mod N,S mod N) = SL(Ft, Gt) mod N , in quasi-linear time O (̃d2 log(N)). From

this, we compute R = P ′S mod P modulo N , and we apply rational reconstruction to

all coefficients. This takes again quasi-linear time.

The dominant cost is that of lifting, which is d2+εO (̃dh+d2P), or simply d3+εO (̃(h+

d)P).

88

Chapter 4

Univariate Polynomial Factorization

4.1 Introduction

In this chapter we will consider the problem of univariate polynomial factorization

over number fields. As we already said in 1, there are two main approaches to factor

a univariate polynomial over a number field. The first approach which is due to

Trager [62], says that factoring over F (α) is doable if we can factor over F , where F

is a field and α is in the algebraic closure of F . Since we know how to factor over

Q [69, 42, 63], so we can do it over any number fields, using [62].

The other approach is to apply a similar methods as we do over Q, which is done by

Lenstra in 1982 [41]. Then Belabas in [9] combined a modification of Lenstra method and

van Hoeij’s factors combination approach [63] to introduce a polynomial-time algorithm

for factoring univariate polynomials over number fields. These methods are based on

two main steps, modular factorization and factors combination. The first step is just

applying the Hensel lifting on the factors of the given polynomial, say h ∈ Q(α)[x],

modulo some (lucky) prime ideal, say P , up to some precision. The other step deals

with the problem of finding the true factors of h over Q(α) from the P -adic factors.

Our main concern in this chapter is to solve the factorization problem, following the

second approach, in a more efficient way, in practice. To make the chapter more readable,

in Section 4.2, we first explain how to factor a polynomial over Q following van Hoeij’s

approach [63]. Then in Section 4.3 we consider the problem of univariate polynomial fac-

torization over number fields, using multivariate representation, while following a similar

approach as Belabas approach in [9]. Finally in 4.3.5, we will give some experimental re-

sults, comparing our approach with the existed ones using splitting fields computations,

89

as one of the most important applications of polynomial factorization.

4.2 Factoring polynomials over Z and Q

This chapter deals with the question of factoring polynomials over the infinite domains

Z and Q. As we will see, factoring over such finite field turns out to be an essential

step to derive factoring algorithms over infinite domains. We first consider Z[x] as

the polynomial ring of our choice. Later on, we will show that these algorithms can

also be used to factor polynomials over the base domain Q with only slight modifications.

We start with some basic consideration how to factor polynomials over the integers.

Obviously, a prime factor of a monic polynomial over Z is also a factor over any finite field

Fq. Unfortunately, the converse direction fails, i.e., a factor of f in Fq is not necessarily a

factor in Z. As a small example illustrating this fact, let us take q = 7 and f = x2 + 6 ∈
Z[x]. Obviously, f is irreducible in Z[x], but in F7[x] we have:

f = (x+ 6)(x+ 1)

More generally, if we assume that a factorization of f in Z[x] is given by f = f1 · · · fk,
then in Fq[x] the irreducible factorization of f is f = g1 · · · gr, where r ≥ k.

Now, the question arises whether a factorization over finite fields, i.e., the so-called

modular factors, might be useful to factorize polynomials over Z, and how this can be

achieved most efficiently. The factors of f over the integers are usually called the true

factors.

4.2.1 Some basic considerations

Let f ∈ Z[x] be a square-free polynomial. At first, we have to consider the question

for which primes p the polynomial f̄ = f mod p in Fp[x] is square-free, which will be a

necessary condition for the factor recombination phase of the following algorithms. Here,

and also in the following, the bar denotes the modular image of the given element. In

order to determine the right choices of p, the following lemma [66, Lemma 15.1] is useful.

Lemma 28. Let f ∈ Z[x] be a non-zero square-free polynomial, p ∈ N a prime not

dividing lc(f), the leading coefficient of f . Then f̄ is square-free if and only if p does not

90

divide the discriminant of f .

Now, assume that we have found a prime p which fulfils the requirements of Lemma

4.1. Assume further that we have already computed a factorization of f in Fp[x], say

f̄ = lc(f)g1 · · · gr for some r ∈ N, where gi ∈ Fp[x] is a monic polynomial for 1 ≤ i ≤ r,

so we want to find those factors of that can be combined to prime factors over Z. More

formally, for some integers r > k, we have

f = f1 · · · fk = lc(f)g1 · · · gr mod p

Suppose, that we have already computed all the gi , and let fj be an irreducible factor

of f . If we consider the factorization modulo p, some of the gi’s divide fj (but we do

not know which ones). Hence, we want to compute a partition S = {Sj|j ∈ {1, · · · , k}}
of {1, · · · , r}, where the set Sj contains precisely those modular factors that can be

combined to the factor fj. If we could compute such a partition, for all j ∈ {1, · · · , k},
we would obtain

lc(f)

lc(fj)
fj = lc(f)

∏
gi∈Sj

gi mod p

Furthermore, we have to ensure that all prime factors fj can be uniquely restored

from the gi’s, which can be achieved by a suitable choice of the considered modulus p.

Using Mignottes bound
p

2
>
√
n+ 1 2n|lc(f)| ‖ f ‖∞

we ensure that all coefficients of lc(f)
lc(fj)

fj are integers with absolute value less than

p/2 [66, Corolary 6.33]. Thus, we obtain the desired equality if we use {−p−1
2
, · · · , p−1

2
}

as representative, and we can construct the true factors fj from the modular factors

gi ∈ Sj in this case.

By now, we can already outline the idea of how an algorithm for factoring polynomials

over Z may work, formulated in the following two steps:

• Compute a factorization of f in Fp[x] for a suitable choice of p, that is, f̄ should

be square-free and unique restoration should be possible as discussed above.

• Compute the prime factors of f over Z and reconstruct the true factors

Obviously, the first step can easily be achieved by choosing a sufficiently large

prime p, which is usually called big-prime approach. However, this approach is very

expensive in practice, since very large values of p are often needed to obtain the proper

91

factorization over the integers.

Another more sophisticated approach, called Hensel-lifting ([66] Theorem 15.18),

tries to solve the same problem, first by factoring f modulo a suitable small prime p,

satisfying Lemma 28 and then lifting the result up to a sufficiently large power of p, for

which unique restoration should be possible.

A simple possibility to deal with the second step is to build all possible combinations

of factors until we finally find the true factors over Z. This approach has exponential

runtime in the worst case, but fortunately, this worst case does only occur with a very

small probability so this approach is nevertheless commonly used in practice. We only

briefly mention here, that there is also an approach using only a polynomial number

of steps which works by identifying the factors of f with the vectors of a lattice and

computing short vectors in this lattice. Computing the shortest vectors in a lattice is

NP-hard [4], but there is an algorithm computing an approximation that is sufficient for

our purpose, [42] for more details. We will sketch the idea of the algorithm in the next

section since it serves as a foundation for the sophisticated algorithm developed by Mark

van Hoeij in 2002 [63].

4.2.2 The approach of van Hoeij

In this section we review the algorithm of Mark van Hoeij [63] for factoring polynomials

over the integers.

Short vectors in lattices

As we already stated there also exists an algorithm [42] for factoring polynomials over

the integers which ensures correct termination after a polynomial number of steps. This

algorithm is based an short vectors in lattices, and the LLL algorithm by Lenstra,

Lenstra and Lovacz. Since the ideas of this algorithm and of the actual algorithm of

van Hoeij [63] are quite similar, we briefly review the key idea of how short vectors in

lattices can be used to factor polynomials over the integers.

At first, we take a look at the following important lemma. Here and in the following,

the norm ‖ f ‖ of a polynomial f is defined as 2-norm of its coefficients regarded as a

vector v = (a0, · · · , an) , where f =
∑n

i=0 aix
i and ‖ f ‖:=‖ v ‖=

√
a2

0 + · · ·+ a2
n.

Lemma 29. Let f, g ∈ Z[x] with deg(f) = n and deg(g) = d, and assume that u ∈ Z[x]

92

is non-constant, monic, and divides both f, g modulo m for some m ∈ N with ‖ f ‖d‖
g ‖n< m. Then gcd(f, g) ∈ Z[x] is non-constant.

A proof of this lemma can be found in [66, Lemma 16.20].

The idea of factoring polynomials using the above lemma is now as follows. Suppose

that we are given a square-free polynomial f ∈ Z[x] of degree n and we have already

computed a monic polynomial u ∈ Z[x] with degree d < n that divides f modulo m for

some m ∈ N. Then we need to find a short polynomial g, such that ‖ g ‖n< m ‖ f ‖−d,
that is also divisible by u modulo m. Then the above lemma gives us a nontrivial factor

of f in Z[x].

Before going any further, we need the following definition.

Definition 2. Let n ∈ N and f1, · · · , fn ∈ Rn with fi = (fi1, · · · , fin). Then

L :=
n∑
i=1

Zfi = {
n∑
i=1

rifi : r1, · · · , rn ∈ Z}

is the Lattice generated by f1, · · · , fn. The vectors f1, · · · , fn are called a basis for the

lattice L.

In order to find such a polynomial g of degree less than some bound j , we consider

the lattice L ⊂ Zj generated by the coefficient vectors of the polynomials

{uxi | 0 ≤ i < d− j} ∪ {mxi | 0 ≤ i < d}

In the following, we simply identify a polynomial with the vector of its coefficients.

An element g of L has the form

g = qu+ rm , q, r ∈ Z[x], deg(q) < d− j, deg(r) < d

and degree less than j. Thus, u divides g modulo m. On the other hand, if some

g ∈ Z[x] is of degree less than j and divisible by u modulo m, then we have

g = q∗u+ r∗m, q∗, r∗ ∈ Z[x]

Division with remainder by the monic polynomial u yields q∗∗, r∗∗ ∈ Z[x] with q∗ =

q∗∗u + r∗∗ and deg(r∗∗) < deg(u). Let q = q∗ + mq∗∗ and r = r∗∗, we see that the

polynomial g has the claimed form and we conclude that

93

g ∈ L⇐⇒ deg(g) < j and u divides g modulo m

Thus, we only have to compute a short vector in the lattice L. Unfortunately, the

problem of computing the shortest vector of a given lattice is NP-hard[4], so there is no

hope for efficient algorithms in general. However, we can use the LLL algorithm [42] to

compute the set S of short vectors for most instances of the problem. We omit a detailed

description of the LLL algorithm here for the sake of readability. we only state that

the LLL algorithm can find the set S of short vectors, provided that all vectors outside

of Span(S) are sufficiently long in comparison. We now present a small example which

illustrates how factorization with short vectors actually works.

Example 3. Let f = x3 − 1 ∈ Z[x] and m = 76 = 117649. Using factorization over

finite fields and applying Hensel lifting, we obtain

f = (x− 1)(x− 2)(x+ 3) mod 7

and

f = (x− 1)(x− 34967)(x+ 34968) mod 76

We now set u = x − 34967 and j = 3, i.e. we consider the lattice L ⊂ Z3 generated by

the coefficients of the vectors ux, u,m, namely,

(1,−34967, 0), (0, 1,−34967), (0, 0, 117649)

We now apply the LLL algorithm to the lattice L which yields the following three vectors:

(1, 1, 1), (132, 95,−228), (228,−132,−95)

If we take the first one, we obtain the polynomial g = x2 + x+ 1, since gcd(f, g) = g,

so g is a proper factor of f in Z[x].

Solving knapsack problem with LLL

We now present another possibility where the LLL algorithm can be efficiently used. We

will show how to break instances of the subset sum problem and the knapsack problem.

The subset sum problem seeks the answer to the following:

94

given a1, · · · , an, s ∈ N, are there x1, · · · , xn ∈ 0, 1 such that
n∑
i=1

aixi = s?

It is a well-known fact that this problem is NP-complete. A slight generalization of

it is called the knapsack problem which aims computing the xi’s, if there is any solution.

It is well-known that this problem is NP-complete, too [46].

The connection between the subset sum problem and short vectors in lattices is now

given by the fact that a solution of the above problem yields a short vector in the lattice

L ⊂ Zn+1 generated by the rows r1, · · · , rn+1 ∈ Zn+1, of the matrix

1 0 · · · 0 −a1

0 1 · · · 0 −a2

...
...

. . .
...

0 0 · · · 1 −an
0 0 · · · 0 s

∈ Z(n+1)×(n+1)

In order to see this, let the vector (x1, · · · , xn) ∈ {0, 1}n be a solution of the knapsack

problem. Now consider the vector

v =
n∑
i=1

rixi + rn+1 ∈ L

we obtain

v = (x1, · · · , xn,−
n∑
i=1

aixi + s) = (x1, · · · , xn, 0)

Moreover, we have ‖ v ‖2≤
√
n which is very small, at least if the ai’s are reasonably

large numbers. Thus v is a short vector in this case, which we can find using the LLL

algorithm.

95

Example 4. Consider the lattice L ⊂ Z7 generated by the rows of the matrix

1 0 0 0 0 0 −366

0 1 0 0 0 0 −385

0 0 1 0 0 0 −392

0 0 0 1 0 0 −401

0 0 0 0 1 0 −422

0 0 0 0 0 1 −437

0 0 0 0 0 0 1215

∈ Z7×7

Now, the LLL algorithm computes a short vector v = (0, 0, 1, 1, 1, 0, 0) ∈ L. We only

consider the first six entries of the vector as the desired coefficients xi’s, and indeed we

obtain

366× 0 + 385× 0 + 392× 1 + 401× 1 + 422× 1 + 422× 0 + 437× 0 = 1215

The algorithm of van Hoeij will work similarly, i.e., it will encode the desired solution

as a solution of a knapsack problem, which it will solve using the LLL algorithm.

General introduction

Let f =
∑n

i=0 aix
i ∈ Z[x] be a monic and square-free polynomial and define a natural

number D as an upper bound for the number of digits of the coefficients of f .

We assume that we already factored the polynomial f in Zp[x], where Zp denotes

the ring of p-adic integers, yielding a factorization
∏r

i=1 fi where fi ∈ Zp[x] are monic

irreducible factors of f in Zp[x]. Following the algorithm of Zassenhaus [69], we now have

to decide which of these factors fi can be combined to a factor of f in Z[x]. Obviously,

there are 2r possibilities which can be encoded in a vector v = (v1, · · · , vr) ∈ {0, 1}r,
where vi = 1 means that the factor fi is included in the product to build the factor f in

Z[x]. More precisely, we set gv =
∏r

i=1 f
vi
i . Then

{gv : v ∈ {0, 1}r}

is the set of all monic factors of f in Zp[x]. Since we are interested in the factors of

f in Z[x], we set

V := {v : gv ∈ Z[x]}

and so {gv : v ∈ V } is the set of all monic factors of f in Z[x]. Finally, we restrict the

96

set V to all irreducible factors of f which yields

B = {v ∈ V : gv irreducible in Z[x]}

Thus, the set B contains precisely the combinations of factors we are looking

for. Since Z[x] is unique factorization domain, the set V consist of all {0, 1}-linear

combinations of B.

To find the true factors of f , we still need to compute the set B, which corresponds to

computing the ’good’ combinations of modular factors. In the following, let PZ(n,D) be

the complexity of computing the p-adic factorization of f , which is polynomial in n and D.

The factor recombination phase of Zassenhaus’ algorithm tries out every factor

combination, starting with single factors, then moving on to product of two, three

factors and so on. For every combination, it tests whether the computed product gv

divides f in Z[x]. We can assume the time of each test to be constant c.

We know that the complexity of Zassenhaus’ algorithm, in the worst case, is exponen-

tial in the number of modular factors. If we set |v| =
∑
vi then the complexity depends

on M := max{|v| : v ∈ B}. The worst case is M = r, i.e., f is irreducible and all 2r

combinations will be tried. Thus, the total cost is at most:

PZ(n,D) + c2r

or we can bound the cost by

PZ(n,D) + cEZ(M)

where EZ(M) := 2M ≤ 2r depends exponentially on M .

In practice, even for large n, the number M is often low, so PZ(n,D) is the dominant

part of the total cost and the Zassenhaus algorithm works fast. But, for instance, when

f has a large number of factors in Zp[x] for every p, but only a few factors in Z[x], then

M is a large number and cEZ(M) dominates the running time and the algorithm of

Zassenhaus is exponentially slow in this case.

On the other hand, fortunately, there is an algorithm that ensures correct termination

after a polynomial number of steps for every considered polynomial. It is based on a

97

lattice reduction algorithm, the LLL algorithm introduced in [42] by Lenstra, Lenstra

and Lovasz, which can be used to solve many combinatorial problems by encoding the

solutions of the problem as short vectors of a lattice. Let PL denotes the complexity

of the lattice part. In the algorithm of [42] most cases PL � PZ , in other words, the

algorithm of Zassenhaus is must faster, except when cEZ � PZ holds, which only

happens for a few polynomials in practice.

Putting it all together, there exists a polynomial-time algorithm [42], and an

exponential time algorithm [69] which is nevertheless faster most of the time. Now the

question naturally arises whether we can combine the advantages of both approaches,

i.e., to guarantee polynomial-time termination, but nevertheless maintain the fast

runtime in the overall case, this has been done by van Hoeij [63].

Suppose that gv ∈ Z[x]. The algorithm in [42] would find a g = gv by computing a

vector Ug in an n-dimensional lattice whose entries are the coefficients of g. However, if

g is large, i.e., it has high degree and large coefficients, the LLL algorithm will be very

slow. Obviously, if we want a faster computation, we have to consider smaller vectors

instead, which is the key idea behind the van Hoeij algorithm [63].

For this purpose, we need to design a new lattice in such a way that B can be obtained

from the short vectors found by LLL. In order to keep the cost of LLL at a minimum,

we should additionally make sure that the short vectors found by LLL do not contain

any information (other than the set) about the coefficients of the factors f , the input

polynomial, so the cost of LLL will be independent of g. So the LLL cost is independent

of n,D and depends only on r, polynomially. Then, the total cost of the newly designed

algorithm would be

PZ(n,D) + P (r)

where P (r) is the cost of LLL for the new lattice.

Thus, the resulting algorithm is faster than the one of Zassenhaus whenever

P (r) < cEZ(M, r). Experiments show that the cut-off point is low. This means that

when P (r) > cEZ(M, r) then both of them are small. However, when r is larger, then

P (r) can be much smaller than cEZ(M, r). It turns out in experiments that polynomi-

als with r > 400 and n,D > 2000 can be handled, which is far beyond the reach of [42, 69].

98

The construction of the lattice

In order to construct the desired lattice, following [63], we are going to find linear con-

ditions on the vectors v ∈ B . However, the coefficients of the polynomial gv can not

be used because they do not depend linearly on v. In order to circumvent this problem,

we define a vector TA(g) ∈ Zsp with s entries, satisfying the following property for all

polynomials g1, g2 ∈ Zp[x]:

TA(g1g2) = TA(g1) + TA(g2)

This vector TA(g) will be constructed in such a way that the entries of TA(gv) are

p-adic integers for all vectors v ∈ {0, 1}r, and if furthermore TA(gv) ∈ Z[x] holds, then

the entries are integers, bounded in absolute value by 1
2
pb for some integer b. Now,

TA(gv) is a linear combination of TA(fi), TA(gv) =
∑r

i=1 viTA(fi), and the entries are

integers in the case of TA(gv) ∈ Z[x].

Using TA(fi) directly as the input vectors of the lattice has two drawbacks:

• the entries of TA(fi) are p-adic integers, i.e., they cannot be finitely expressed. This

problem can be solved by cutting TA(fi) from the right side.

• if gv ∈ Z[x], then the entries of TA(gv) are integers bounded by 1
2
pb, giving some

partial information about the coefficients of gv. Including such unnecessary infor-

mation in the lattice only leads to inefficiency. This problem can be solved by

cutting TA(fi) from the left side, removing the information as big as the size of gv.

As we said, both problems can be solved by cutting each entry of TA(fi) on two

sides. Let t = TA(fi) for some 1 ≤ i ≤ r, so t is a vector of p-adic integers and can be

written as t =
∑∞

k=0 tkp
k, where ti’s are integers in the interval (−pb

2
, p

b

2
]. Choose a > b

and replace t with
∑a−1

k=b tkp
k−b, i.e., the powers ≥ a and the powers < b in t are removed

and the whole sum is divided by pb. Denote this cutting by T b,aA (fi).

Now let us introduce a candidate for the already mentioned vector TA.

Definition 3. the i’th trace Tri(g) of a polynomial g is defined as the sum of the i’th

powers of the roots (counted with multiplicity) of g.

Obviously for all f1, f2 ∈ Zp[x], we have

Tri(f1f2) = Tri(f1) + Tri(f2)

99

However, what we want is to actually compute the i’th trace of a given polynomial.

This can be achieved using the i’th elementary symmetric polynomials as follows. Con-

sider an arbitrary polynomial as

g = (x− x1) · · · (x− xd)

Then g can be written as

g = xd + Ẽ1x
d−1 + · · ·+ Ẽd

where Ẽi = (−1)iEi and Ei = Ei(x1, · · · , xd) is the i’th symmetric polynomial in the

variables x1, · · · , xd. The i’th power polynomial Pi(x1, · · · , xd) is defined as xi1 + · · ·+xid,

i.e., Pi = Tri(g). Computationally, the polynomials Ei and Pi are related recursively, as

follows.

Pi = −iẼi −
i−1∑
k=1

PiẼi−k

iẼi = −Pi −
i−1∑
k=1

PiẼi−k

A direct conclusion of the above equations, called Newton identities, can be stated as

the following lemma.

Lemma 30. Let F be a field of characteristic 0 , such as the field of p-adic numbers.

Then a monic polynomial g ∈ F[x] of degree d has rational numbers as coefficients if and

only if Tri(g) ∈ Q for all 1 ≤ i ≤ d.

Let

Tr1,··· ,d(g) =

Tr1(g)

Tr2(g)
...

Trd(g)

The following lemma is an extension of Lemma 30 stating that the polynomial g is

in fact a polynomial over Z if and only if Tr1,··· ,d(g) has integer entries, by imposing an

extra assumption on f . The proof can be find in [63, Lemma 2.2].

Lemma 31. Let f be a monic polynomial of degree n in Z[x], and F be a field of char-

acteristic zero. Then for any monic factor g ∈ F[x] of f with degree d, the following

statements are equivalent:

• g ∈ Z[x]

100

• Tr1,··· ,d(g) ∈ Zd

As we already stated, every monic factor g ∈ Zp[x] can be encoded by a 0− 1 vector

v = (v1, · · · , vr) ∈ {0, 1}r as

g =
r∏
i=1

f vii

Let s and d be positive integers and A be a s× d matrix with integer entries. Then

define

TA := ATr1,··· ,d

The key idea behind introducing the matrix A is only for practical efficiency. Indeed

instead of using a vector Tr1,··· ,d with d entries, we use the vector ATr1,··· ,d with s entries

where s is much smaller than d in practice. In order to increase understanding, the

reader may as well think of the trivial choice s = d and let A denote the d × d identity

matrix in the following.

Lemma 32. If g ∈ Zp[x] is a monic factor of f then

g ∈ Z[x] =⇒ TA(g) ∈ Zs

Proof. A direct application of Newton identities, and the fact that A is an integer

matrix.

Let S be a subset of p-adic factors and g be the product of S. Then

TA(g) =
∑
fi∈S

TA(fi)

or equivalently, if we encode this set S as 0− 1 vector v = (v1, · · · , vr), then

TA(g) =
∑

viTA(fi)

So a necessary condition for g to be a true factor is that the sum of TA(fi)’s, fi ∈ S,

has integer entries. However, each TA(fi) is a p-adic integer, so they can only be

determined up to some finite accuracy a. Let Brt be a bound on the absolute value of

the complex roots of f . Then dBi
rt is a bound for |Tri(g)| for any rational factor g of f

of degree less than d. This allows us to compute bounds for the entries of TA(g). Now,

we can compute the symmetric remainder of
∑

fi∈S TA(fi) modulo pa.

101

However, this remainder still includes the powers < b, i.e., at least partial information

about the coefficients of g. For example, if we consider TA = Tr1,··· ,s then the first

s coefficients of g can be computed from TA(g) using the relation between the i’th

elementary symmetric polynomials and the i’th power polynomials. However, we do

not have any good reason for that, since we can compute as well by multiplying all

polynomial fi ∈ S. Therefore, we can cut off this unnecessary information since we

are not interested in the precise value of TA(g), but we only want to know whether

it satisfies the bound or not. Moreover, this cutting of information will speed up the

upcoming algorithm since it significantly simplifies the inputs for the LLL algorithm.

For this purpose, we define the vector T bA as below.

Assume the absolute value of the i’th entry of TA(g) is bounded by Bi for each monic

factor g of f . Also choose a list of positive integers b = (b1, · · · , bs) such that Bi <
1
2
pbi .

Definition 4. Let g ∈ Zp[x] be monic, ri be the i’th entry of TA(g), and r̄i be the

symmetric remainder of ri modulo pbi. Then ri − r̄i is divisible by pbi, so ui := ri−r̄i
pbi

is a

p-adic integer. Then we define

T bA(g) =

u1

u2

...

us

If g is a true factor of f , then ri ≤ Bi <

1
2
pbi , hence ri − r̄i = 0. Thus, all entries of

TA(g) will be zero. This proves the following lemma.

Lemma 33. Let g ∈ Zp[x] be a monic factor of f . then

g ∈ Z[x] =⇒ T bA(g) = 0

We note that if fj was approximated with accuracy a then the i’th entry of T bA(fj)

can be computed modulo pa−bi . So a should be greater than bi. In particular, a needs

to be larger than log(2Bi)/ log(p), since Bi <
1
2
pbi .

As we can see from the definition of T bA(g), everything that is smaller than the bound

Bi has simply been rounded off to 0, which means smaller entries compared to TA(g).

But unfortunately, additivity is lost due to this round off, i.e., the equality T bA(f1f2) =

T bA(f1) +T bA(f2) does not necessarily hold anymore. However, the following lemma states

that T bA(g) is additive up to a small error. The proof can be find in [63, Lemma 2.6].

102

Lemma 34. Let S be a subset of {f1, · · · , fr} and let g be the product of the elements of

S. Then

T bA(g) = ε+
∑
fi∈S

T bA(fi)

where ε = (ε1, · · · , εs) ∈ Zs. Furthermore,

|εi| ≤
|S|
2

Combining the Lemma 33 and 34 yields to the following Lemma.

Lemma 35. Let S be a subset of {f1, · · · , fr} and let g be the product of the elements of

S. If g ∈ Z[x] then

ε+
∑
fi∈S

T bA(fi) = 0

for some vector ε ∈ Zs given as in Lemma 34.

Note that the entries of T bA(g) are still p-adic integers which cannot be expressed using

finite arithmetic. Therefore, we have to additionally cut them at some power pa.

Definition 5. Let c ∈ Zp and 0 ≤ b ≤ a be integers. The symmetric remainder Ca(c),

called the approximation of c with accuracy a, is the unique integer −pa

2
< Ca(c) ≤ pa

2

that is congruent to c modulo pa. Now define Ca
b (c), called a tow-sided cut of c, as

Ca−b((c− Cb(c))/pb)

Now choose integers ai such that bi < ai, Let c̄ji be the i’th entry of TA(fj) and let

c∗ji be the i’th entry of T bA(fj). Define

cji := Cai
bi

(c̄ji) = Cai−bi(c∗ji)

and let

Cj = (cj1, · · · , cjs)

Putting it all together, the vectors Cj are approximations of the vectors T bA(fj) which

are now suitable inputs for the LLL algorithm. We can now reformulate Lemma 35 as

follows. Let e1, · · · , es be the standard basis for Zs, that is for 1 ≤ i ≤ s, ei is a vector

of size s with 1 at the ith position, and zero at the others.

Theorem 5. (The factorization knapsack problem)

Let f be a monic square-free polynomial in Z[x] and f1, · · · , fr the irreducible p-adic

103

factor of f . For every S ⊂ {f1, · · · , fr} if the product g of the elements of S is a rational

factor of f then
s∑
i=1

(εi + γip
ai−bi)ei +

r∑
j=1

vjCj = 0

for some integers εi and γi with absolute value at most |S|
2

, and where

vj =

{
1 if fj ∈ S
0 otherwise

This theorem is the main theoretical result of the section, putting the previous lemmas

all together in one statement as a knapsack problem. Indeed, based on Theorem 5 the

factor recombination phase of Zassenhaus factorization algorithm can be converted to a

knapsack problem that can be solved, as we will see in the following, using LLL technique.

The knapsack lattice

In this section we present the van Hoeij factorization algorithm [63] for univariate

polynomials over Q or Z and explain its correctness and termination.

Let W be the set of all vectors v = (v1, · · · , vr) ∈ Zr for which
∏r

i=1 f
vi
i is in Z[x].

Note that if g1, · · · , gt are the monic irreducible factors of f in Z[x], then {w1, · · · , wt} is a

basis of W in reduced echelon form, where wi is defined as the 0−1 vector (v1, · · · , vr) for

which gk =
∏r

i=1 f
vi
i . Finding this reduced basis is the same as solving the combinatorial

problem in the algorithm of Zassenhaus [69], that is choosing the set of modular factors

correspond to the true irreducible factors of f . If L ⊆ Zr is a lattice, then BL denotes

a basis for L. The matrix whose rows are the elements of BL is denoted by (BL) and

rref(BL) denotes its row echelon form. If we can compute any basis BW of W , then the

combinatorial problem is solved because {w1, · · · , wt} are the rows of rref(BW).

Lemma 36. Let L be a lattice such that W ⊆ L ⊆ Zr and R = rref(BL). Then L = W

if and only if the following two conditions hold:

• each column of R contains precisely one 1, all other entries are 0

• if (v1, · · · , vr) is a row of R then g =
∏r

i=1 f
vi
i is in Z[x]

Proof. refer to the proof of [63, Lemma 2.8].

104

The above lemma gives us a sufficient condition for L to be the desired lattice W . So

the van Hoeij algorithm starts from L = Zr and at each step tests if L is equal to W .

This test can be done using Lemma 36. Now suppose that L 6= W . Then the algorithm

tries to calculate a new lattice L′ with

W ⊆ L′ ⊆ L

Then L is replaced by L′. The algorithm keeps repeating this until we finally obtain

L = W , i.e., both conditions of Lemma 36 are satisfied.

Like any other algorithm, we need to address the following two questions:

• Does the algorithm terminate ?

• If the algorithm terminates, is the output correct ?

For the purpose, assume that we have chosen an s × d matrix A and integers ai, bi

such that a ≥ ai > bi >
log(2Bi)

log(p)
. We will now show how to compute the new lattice

L′ ⊆ L, hopefully of smaller dimension than L, that nevertheless contains all solutions

of the knapsack problem introduced in Theorem 5. Note that the new lattice L′ would

depend on the size of the matrix A and the precisions a, ai, bi, so if we can not find

a new lattice L′ satisfying the required conditions, then we should change this parameters.

Let

M :=
√
C2r + s(r/2)2

where C is a positive integer chosen in such a way that the values of both terms under

the square root do not deviate very much from each other, i.e., they should be roughly

equal. Let BL be a basis for L. Initially L = Zr and BL is the standard basis of Zr. In

order to solve the knapsack-like problem given in Theorem 5 we will construct a knapsack

lattice ∆ such that the vector

vS = (Cv1, · · · , Cvr,−ε1, · · · ,−εs)

is an element of ∆ for every solution S of the knapsack problem. Note that if

(v1, · · · , vr, ε1, · · · , εs, γ1, · · · , γs) ∈ Zr+2s is a solution of the given knapsack problem,

then the vector (Cv1, · · · , Cvr,−ε1, · · · ,−εs) ∈ Zr+s is an element of the lattice ∆.

Since in the following we do not need to know the value of γi’s. We do not put

them in the lattice ∆ to obtain a smaller lattice. Indeed, vi’s are the actual values

105

that we are looking for and εi’s are the given information about the values of vi’s,

we will use information to separate the desired solution of the given knapsack prob-

lem from the others. Information will be encoded in terms of shortness of the desired

solutions, which can be detected by applying LLL algorithm on the constructed lattice ∆.

A vector v in ∆ will be called M -short if ‖ v ‖≤ M . Note that vS is M -short for

every solution S of the knapsack problem, since |S| ≤ r and by applying Lemma 34, we

have

‖ v ‖2≤ C2|S|+ s(|S|/2)2 ≤M2

Let (e1, · · · , es) be the standard basis of Zs and 0s denotes the zero element of Zs.
All of these vectors are now in row notation. The notation (v, w) ∈ Zr+s refers to the

vector obtained by concatenating the vectors v ∈ Zr and w ∈ Zs. The knapsack lattice

∆ ∈ Zr+s is defined by the following basis: B∆ = BC ∪Bp∗ , where

Bp∗ = {(0r, pai−biei) : 1 ≤ i ≤ s}

BC = {(Cv, vm) : v ∈ BL}, m =

C1

C2

...

Cs

In the first step, we have L = Zr. Then BL has r elements and B∆ has r+s elements,

and the matrix of the basis of ∆ is

(B∆) =

C 0 · · · 0 c11 · · · c1s

0 C · · · 0 c21 · · · c2s

...
...

. . .
...

...
. . .

...

0 0 · · · C cr1 · · · crs

0 0 · · · 0 pa1−b1 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · pas−bs

The matrix (B∆) is square, so the determinant of the lattice is then given by

D = Crp(a1−b1)+···+(as−bs)

Let l := |B∆| = s + |BL|, where |.| denotes the cardinality of the set. Note

that the matrix (B∆) is a matrix of size l × (r + s), which is not necessarily square

106

at each step of the algorithm. We can now use LLL to compute a reduced basis

V1, · · · , Vl of ∆. Let V ∗1 , · · · , V ∗l be its Gram-Schmidt basis [66, Section 16.2]. We can

compute approximation V̄ ∗k of V ∗k using floating point arithmetic. Let t ≤ l be the

smallest integer such that V̄ ∗k > M ′ for all t < k ≤ l, where M ′ is M plus a bound

of round-off errors in V̄ ∗k coming from the numerical computation. Thus, we obtain

V̄ ∗k > M for all k > t, i.e., those vectors are not M -short. Now define ∆′ ⊆ ∆ as

the span of {Vk : k ≤ t} and let L′ ⊆ L be the projection of 1
C

∆′ on the first r coordinates.

Roughly speaking, we distinguish between vectors of the basis, which are M -short,

and those which are not. The vectors which are not M -short can obviously simply be

thrown out of the computation, since they cannot yield the desired vectors. This is

captured more formally in the following lemma.

Lemma 37. W ⊆ L′, so if the algorithm terminates, then the output is correct.

Proof. Theorem (1.11) in [42] states that if |V ∗k | > M for all k > t, then all M -short

vectors are in the span of {Vk : k ≤ t}. Now if S is a solution of the knapsack problem,

then the vector vS is M -short, and thus in ∆′. If S corresponds to an irreducible factor gk

and 0− 1 vector wk, then wk is 1/C times the projection of vS on the first r coordinates,

and vS ∈ ∆′, hence wk ∈ L′, and the lemma follows.

Before giving any proof for the termination of the process, let us first state the algo-

rithm. The factorization algorithm over Z or Q introduced by Mark van Hoeij in 2002

can be stated using the following steps. Let F ∈ Z[x] be the input polynomial.

1. Apply the Berlekamp-Zassenhaus [69, 12] algorithm to F , but search only for the

rational factors that consist of at most three p-adic factors (just for practical rea-

son), Whenever a rational factor is found, remove the corresponding p-adic factors

from the list.

2. Let f1, · · · , fr be the remaining p-adic factors, and let f be the polynomial F

divided by the rational factors that were found in Step 1. If r is small then use the

standard Berlekamp-Zassenhaus algorithm to do the rest of the work as well.

3. At this point, r is not small, the p-adic factors f1, · · · , fr have been computed

modulo pa, where the prime p has been chosen to minimize r, and a has been

chosen using the Mignotte bound. Now the knapsack algorithm can begin.

4. Let BL = {e1, · · · , er}, the standard basis for Zr.

107

5. Choose a matrix A, compute an upper bound Bi for the i’th entry of TA(g) for any

rational factor g of f . Choose the integers ai > bi > log(2Bi)/ log(p). If ai > a

then do additional Hensel lifting to increase a.

6. Compute the basis Bp∗ ∪ BC for the lattice ∆ as described above. If the last s

entries of the elements BC are already small, then go back to step 5 and choose a

different matrix A.

7. Apply the LLL algorithm to compute a reduced basis V1, · · · , Vr of the lattice ∆.

Do a floating point Gram-Schmidt computation to determine an as small as possible

integer t such that all M -short vectors of ∆ are in ∆′ := ZV1 + · · · + ZVt. Let L′

be 1/C times the projection of ∆′ on the first r coordinates. Then replace BL by

a basis of L′. If |BL| did not decrease then return to step and use larger values for

ai − bi.

8. Let t = |BL|. Note that dim(W) ≤ r/4, because all rational factors consisting of

less than four p-adic factor have already been removed in step 1. If t = 1 then

f must be irreducible and the computation ends. If t > r/4 then go to step 5,

otherwise proceed to step 9.

9. Compute R = rref(BL). If R does not satisfy the first condition of Lemma 36 then

go to step 5, otherwise proceed to step 10.

10. Check the second condition of Lemma 36 by executing step 11 for k ∈ {1, · · · , t}.

11. Let (v1, · · · , vr) be the k’th row of R. Let gk = Ca(
∏

(f vii)). If gk does not divide

f in Z[x], then go back to step 5.

12. Now f = g1 · · · gt, the irreducibility of the monic polynomials g1, · · · , gt has been

proved, so the computation is done.

We refer the reader to [63, Section 2.3] for discussion on how to choose different param-

eters of the algorithm. Finally, we have the following lemma addressing the termination

of the van Hoeij algorithm. For the proof see [63, Lemma 2.10].

Lemma 38. The algorithm terminates.

The following remarks are addressing the non-monic situation and how to choose an

upper bound on the trace of the factors of a given polynomial over Z.

108

Remark 1. If the polynomial f =
∑n

i=0 aix
i ∈ Z[x] is not monic, so an 6= 1, we need

to make two changes to the algorithm. If g ∈ Q[x] is a monic rational factor of f then

the coefficients of g are no longer automatically integers. As a consequence, Tri(g) is no

longer in Z, which is something that the algorithm uses. However ainTri(g) ∈ Z. Indeed,

if deg(g) = l, and γ1, · · · , γl are the roots of g in some field extension of Q, then we have

g̃(x) := alng(x/an) = (x− anγ1) · · · (x− anγl)

which is a monic polynomial over Q with

Tri(g̃) = ainTri(g)

. To prove ainTri(g) ∈ Z, it is enough to show that g̃ ∈ Z[x]. For the purpose, assume

that f(x) = g(x)h(x) over Q, then

f̃(x) := an−1
n f(x/an) = alng(x/an) an−l−1

n h(x/an) = g̃(x) an−l−1
n h(x/an)

Since f̃ , g̃ are monic polynomials over Q, h̃(x) := an−l−1
n h(x/an) must be a monic

polynomial over Q. Hence we have a factorization of a monic integer polynomial f̃ into

two monic rational polynomials over Q as f̃ = g̃h̃, so the Gauss lemma concludes that

g̃, h̃ ∈ Z[x], as desired. So in the non-monic case Tri needs to be replaced by ainTri in

the algorithm.

The second change is in step 11 of the algorithm which is identical to the difference

between the monic and non-monic case in the Berlekamp-Zassenhaus algorithm. To find

gk, take Ca(an
∏
f vii) instead of Ca(

∏
f vii) and divide it by the gcd of its coefficients.

Remark 2. In step 5 of the algorithm, we need to compute an upper bound Bi for ith

entry of TA(g) for any rational factor g of f . For the purpose it is enough to find an upper

bound on Trj(f) for 1 ≤ j ≤ n, since we have |Trj(g)| ≤ |Trj(f)| for any rational factor

g of f , and TA(g) is a linear combination of Trj(g)’s. Let Broots be an upper bound on the

modulus of the roots of f . For instance, Broots can be
∑
| ai
ai+1
| where f =

∑n
i=0 aix

i [34].

Then by definition, we have

|Trj(f)| = |
∑
f(γ)=0

γj| ≤ nBj
root

109

4.3 Factoring polynomials over number fields

In this section we consider the problem of factoring a univariate polynomial over number

fields, finite algebraic extensions of Q. Let

{H1(t1), · · · , Hq(t1, · · · , tq)} ⊂ Q[t1, · · · , tq]

be a monic triangular set with deg(Hi, ti) = hi, and for each 1 ≤ i ≤ q, Hi is irreducible

over

Q[t1, · · · , ti−1]/〈H1, · · · , Hi−1〉

So then K = Q[t1, · · · , tq]/〈H1, · · · , Hq〉 is a number field with N := [K : Q] =
∏q

i=1 hi.

We let OK be its ring of algebraic integers [67, Section 2.2].

Now let f ∈ K[x] be a monic univariate polynomial of degree n over the number

field K. This section is concerned with the question of factoring f over K. We are

going to follow the same approach as in the previous section by extending the van Hoeij

algorithm [63] to the number field case. Indeed, if q = 1 then our approach would be

exactly the same as what Belabas does in [9]. What we will do in this section is to

extend his method to the case of q > 1.

Before going any further, we first do some modifications on the given input polyno-

mials, which are needed for the following discussions. Note that these modifications are

not any restriction on the input of the factorization algorithm which will be introduced

in this section.

First, we assume that {Hi}qi=1 ⊂ Z[t1, · · · , tq], if not, use the change of variable

t̃i = ti/λi, where λi is the common denominator of the coefficients of Hi.

Secondly, we assume that f is a square-free polynomial over K, otherwise, replace

f by f/gcd(f, f ′), and then we can easily find the complete factorization of f using

gcd(f, f ′) and the factors of f/gcd(f, f ′).

So from now on, f ∈ K[x] is a monic square-free polynomial over the number field K
whose generators over Q are all multivariate polynomials over Z. As in the van Hoeij

factorization algorithm, our algorithm follows two steps.

110

The first step is lifting the factors modulo some power of some suitable prime. Let p

be a prime number such that

• 〈H1 mod p, · · · , Hq mod p〉 is a radical ideal in Z/pZ[t1, · · · , tq]

• K̂ = Z/pZ[t1, · · · , tq]/〈Ĥ1, · · · , Ĥq〉 is a field, where Ĥ1 is an irreducible factor of

the image of H1 modulo p, and for 2 ≤ i ≤ q, Ĥi is an irreducible factor of the

image of Hi modulo p, Ĥ1, · · · , Ĥi−1, deg(Ĥi, ti) = ĥi, and {Ĥ1, · · · , Ĥq} is a monic

triangular set.

• f remains square-free over K̂

• none of the denominators of f and its factors over K vanishes modulo p

For the existence of such a prime p, we refer the reader to [59, 23]. Since K̂ is a finite

field, then we can factor f over K̂ using, e.g. [12]. Then following [59], we can lift the

factors to some required precision. The following theorem summarizes the lifting step.

Theorem 6. Using the above notations and for a given a ∈ N, one can compute the

polynomials fa,1, · · · , fa,r such that

f =
r∏
i=1

fa,i mod p2a , Ĥa
1 , · · · , Ĥa

q

where Ĥa
i mod p = Ĥi, for 1 ≤ i ≤ q, and fa,i’s are monic irreducible polynomials in

K̂a
p = Z/p2aZ[t1, · · · , tq]/〈Ĥa

1 , · · · , Ĥa
q 〉, called modular factors.

Now the next step is to find the true factors of f over K. Following the same approach

as before, we need to address two questions:

• Factor construction: which asks for constructing the irreducible factor of f over K
for a given corresponding modular factor

• Factor combination: which asks for which modular factors correspond to a true

irreducible factor of f over K

In the following we explain how to solve the above questions, using lattice structure

discussed in Section 4.2.

111

4.3.1 Factor construction

Before going any further, we first need to figure out how to construct the true factor

of f over K from its p-adic approximation. In the case of factorization over Z, the

construction phase is nothing but just considering the p-adic factor as a polynomial

over Z. This is because there is an embedding from Z into the ring of p-adic integers

Zp for any prime number p. Since the image of each element of Z under the embedding

has only a finite number of non-zero coefficient as a p-series, so we can distinguish the

element of Z from the other elements of Zp. So we only need to know an upper bound

on the size of the coefficients of the true factor of the given polynomial over Z. Then

any p-adic factor with coefficient size less than the bound can be a candidate for the

true factor over Z, as in the van Hoeij algorithm [63].

But here, when we are working over number fields, the situation is more complicated.

Assume that ĝ =
∑d

j=1 ĝjx
j ∈ K̂a

p[x] is a modular factor of f over K̂ and let g =∑d
j=1 gjx

j ∈ K[x] be the corresponding true factor of f over K. The goal of the section is

to reconstruct the polynomial g from its modular image ĝ, which will be done coefficient-

wisely. Since, for each 1 ≤ j ≤ d, ĝj is the modular image of gj in K̂a
p, we have

ĝj = gj mod p2a , Ĥa
1 , · · · , Ĥa

q

Whence there exist βaj,i ∈ Q[t1, · · · , tq], for 0 ≤ i ≤ q, such that over Q[t1, · · · , tq] we have

gj − ĝj = βaj,0p
2a + βaj,1Ĥ

a
1 + · · ·+ βaj,qĤ

a
q

Note that deg(gj − ĝj, ti) < hi for each i, regarding gj − ĝj as a polynomial in

Q[t1, · · · , tq]. The following lemma gives us an upper bound on the degrees of βaj,i’s

in each variable for some suitably chosen βaj,i’s satisfying the above equality. In the

following we consider Ĥi as a polynomial over Q.

Lemma 39. Let γ ∈ Q[t1, · · · , tq] with deg(γ, ti) < hi. Assume γ = γ0p
2a +γ1Ĥ

a
1 + · · ·+

γqĤ
a
q , where γi ∈ Q[t1, · · · , tq]. Let Ti = {Ĥ1, · · · , Ĥi}, for 1 ≤ i ≤ q − 1. Then there

exist polynomials βi ∈ Q[t1, · · · , tq] such that

• γ = β0p
2a + β1Ĥ

a
1 + (β2Ĥ

a
2 mod T1) + · · ·+ (βqĤ

a
q mod Tq−1)

• deg(β0, tk) < ĥk, for 1 ≤ k ≤ q

• for i ≥ 1

112

– deg(βi, tk) < ĥk, for 1 ≤ k < i

– deg(βi, tk) < hk − ĥk, for k = i

– deg(βi, tk) < hk, for i < k ≤ q

Proof. We will prove the lemma by induction over q. Let q = 1, then γ = γ0p
2a +

γ1Ĥ
a
1 and deg(γ, t1) < h1. Division with remainder by the monic polynomial Ĥa

1 yields

γ0,0, γ0,1 ∈ Q[t1] with γ0 = γ0,0 + γ0,1Ĥ
a
1 and deg(γ0,0, t1) < ĥ1. So then

γ = γ0p
2a + γ1Ĥ

a
1 = (γ0,0 + γ0,1Ĥ

a
1)p2a + γ1Ĥ

a
1

= γ0,0p
2a + (γ0,1p

2a + γ1)Ĥa
1

Taking β0 = γ0,0 and β1 = γ0,1p
2a + γ1 prove the induction base. Note

that deg(β1, t1) < h1 − ĥ1, since deg(β1Ĥ
a
1 , t1) ≤ deg(γ, t1) < h1 and

deg(β1Ĥ
a
1 , t1) = deg(β1, t1) + ĥ1.

Now assume the correctness of lemma for q − 1. Let

γ = γ0p
2a + γ1Ĥ

a
1 + · · ·+ γqĤ

a
q

By reducing γq modulo the polynomials Ĥa
1 , · · · , Ĥa

q−1, we have

γq = γq,0 + γq,1Ĥ
a
1 + · · ·+ γq,q−1Ĥ

a
q−1

where γq,i ∈ Q[t1, · · · , tq] and deg(γq,0, ti) < ĥi, for 1 ≤ i ≤ q − 1. Whence

γ = γ0p
2a + γ1Ĥ

a
1 + · · ·+ γqĤ

a
q

= γ0p
2a + γ1Ĥ

a
1 + · · ·+ (γq,0 + γq,1Ĥ

a
1 + · · ·+ γq,q−1Ĥ

a
q−1)Ĥa

q

= γ0p
2a + (γ1 + γq,1Ĥ

a
q)Ĥa

1 + · · ·+ (γq−1 + γq,q−1Ĥ
a
q)Ĥa

q−1 + γq,0Ĥ
a
q

Let γ̂i := γi + γq,iĤ
a
q for 1 ≤ i ≤ q − 1, then

γ = γ0p
2a + γ̂1Ĥ

a
1 + · · ·+ ˆγq−1Ĥ

a
q−1 + γq,0Ĥ

a
q

Let γq,0 =
∑
ajt

j
q, where ai ∈ L[t1, · · · , tq−1]. Then γq,0Ĥ

a
q =

∑
ajĤ

a
q t
j
q. Using

113

reduction modulo Tq−1, for some bj,i ∈ L[t1, · · · , tq] one can write

γq,0Ĥ
a
q =

∑
j

ajĤ
a
q t
j
q =

∑
j

(ajĤ
a
q mod Tq−1)tjq +

∑
j

q−1∑
i=1

(bj,iĤ
a
i)tjq

=
∑
j

(ajĤ
a
q mod Tq−1)tjq +

q−1∑
i=1

∑
j

(bj,it
j
q)Ĥ

a
i

Taking αi = γ̂i +
∑

j(bj,it
j
q) for 1 ≤ i ≤ q − 1, we have

γ = γ0p
2a + α1Ĥ

a
1 + · · ·+ αq−1Ĥ

a
q−1 +

∑
j

(ajĤ
a
q mod Tq−1)tjq

then obviously,

γ −
∑
j

(ajĤ
a
q mod Tq−1)tjq = γ0p

2a + α1Ĥ
a
1 + · · ·+ αq−1Ĥ

a
q−1

Applying the induction hypothesis to the above equality coefficient-wise in tq, there

exist polynomials α̂i for 0 ≤ i ≤ q − 1, satisfying the degree constraints of the lemma,

such that

γ = α̂0p
2a + α̂1Ĥ

a
1 + (α̂2Ĥ

a
2 mod T1) + · · ·+ (α̂q−1Ĥ

a
q−1 mod Tq−2)

+
∑
j

(ajĤ
a
q mod Tq−1)tjq

which is equal to

γ = α̂0p
2a + α̂1Ĥ

a
1 + (α̂2Ĥ

a
2 mod T1) + · · ·+ (γq,0Ĥ

a
q mod Tq−1)

Now we claim that the degree of the right side in tq is less that hq, which in turn

proves the lemma. The proof of the claim is a direct conclusion of the fact that for any

1 ≤ d ≤ deg((γq,0Ĥ
a
q mod Tq−1), tq) we have

cd,0 + cd,1 + cd,2 + · · ·+ cd,q−1 + cd,q 6= 0

provided that cd,q 6= 0, where cd,0 is the coefficient of tdq in α̂0p
2a , cd,1 is the coefficient of

tdq in α̂1Ĥ
a
1 , and cd,i is the coefficient of tdq in (α̂iĤ

a
i mod Ti−1) for 2 ≤ i ≤ q. This is true

because let ` be the smallest index for which cd,` is non-zero. Then the degree of cd,` in

tl is at least ĥ`, while the degree of all other cd,i for ` < i ≤ q in t` are strictly less that

114

ĥ`, since they are already reduced modulo Ti.

Replacing γ with gj − ĝj, Lemma 39 states that there exist βaj,i ∈ Q[t1, · · · , tq], for

0 ≤ i ≤ q, such that over K we have

gj − ĝj = βaj,0p
2a + βaj,1H̃

a
1 + (βaj,2Ĥ

a
2 mod T1) + · · ·+ (βaj,qĤ

a
q mod Tq−1)

where βaj,i’s satisfy the degree constraints of the lemma. Looking at a polynomial as

a vector of its coefficients, then the above equality states that the polynomial gj − ĝj is

a vector in the vector space over Q given by the following basis B:

By convention let T0 = {}. Assume that Γi be the set of all polynomials

(tα1
1 · · · t

αq
q Ĥa

i mod Ti−1) such that

• 0 ≤ αk < ĥi for 1 ≤ k < i

• 0 ≤ αk < hi − ĥi for k = i

• 0 ≤ αk < hi for i < k ≤ q

then define

B := {tα1
1 · · · tαqq p2a : 0 ≤ αi < ĥi} ∪ Γ1 ∪ · · ·Γq

Now we know that the vector gi− ĝi, that we are looking for, is an element of a vector

space over Q given by B, but the question is how to find such a vector. This can be

done using a lattice with the basis B and its fundamental domain. Before introducing

the lattice, we need some new definitions and notations.

Definition 6. Let E be a Euclidean space, Λ ⊂ E a lattice with given basis U = (ui).

• We define the (open, centred) fundamental domain associated to U by

J := J(U) = {
∑

λiui : (λi) ∈ RU , |λi| < 1/2}

• Let B(0, r) be the open ball of radius r, centred at 0. We denote

rmax = rmax(U) := sup{r ∈ R+, B(0, r) ⊂ J}

the radius of the largest ball inscribed in the closure of J .

115

Now let L be the lattice give by B. The following lemma states how to find the vector

g for a given vector g̃, such that they are congruent modulo the lattice L, which is the

main lemma for factor reconstruction phase.

Lemma 40. Let E,Λ, U, J , be as in Definition 6, and |.|2 the Euclidean norm. If x ∈ E,

there exist one unique y ∈ J such that

x ≡ y mod Λ

In terms of coordinates (on a fixed arbitrary basis), let M be the matrix giving the (ui),

then y is given by

y = x mod M := x−MbM−1xe

As usual, bxe := bx+1/2c is the operator rounding to nearest integer and is to be applied

coordinate-wise.

Proof. We prove the lemma for y = x −MbM−1xe. It is clear that y is congruent

to x modulo Λ, since y − x = MbM−1xe ∈ Λ. Now we need to show that y ∈ J . Let

bM−1xe = M−1x + v, where v = (vi) with |vi| < 1/2. Then MbM−1xe = x + Mv and

hence y = x−MbM−1xe = x− (x + Mv) = −Mv. Now |vi| < 1/2 , for each i, implies

y ∈ J . Finally we have to prove the uniqueness of y ∈ J . For the purpose assume there

exist another y′ ∈ J congruent to x modulo Λ. Hence y′− y ∈ Λ. On the other hand, let

y′− y =
∑
λiui, then |λi| < 1, since both y and y′ are in J . Since y− y′ is an element of

the lattice Λ, it must be a linear combination of ui’s with integer coefficients, so λi = 0

for all i’s, which implies y = y′.

In practice, working with fundamental domain is not easy, since we can not compute

J efficiently. But instead, we can estimate the radius of the largest ball inscribed in the

closure of J . Replacing J with B(0, r) in Lemma 40 gives a weaker version of Lemma 40

as follows.

Lemma 41. Let E,Λ, U, J , rmax be as in Definition 6, and |.|2 the Euclidean norm. If

x ∈ E, there is at most one y ∈ E such that

x ≡ y mod Λ and |y| < rmax

If it exists, y is the unique element in J congruent to x modulo . In terms of coor-

dinates (on a fixed arbitrary basis), let M be the matrix giving the (ui), then y is given

by

y = x mod M := x−MbM−1xe

116

As usual, bxe := bx+1/2c is the operator rounding to nearest integer and is to be applied

coordinate-wise.

Proof. From Lemma 40, we know that there exists a unique y = x −MbM−1xe ∈ J
congruent to x modulo Λ. So If |y| < rmax then the lemma follows.

We first recall the Gram-Schmidt orthogonalization process and LLL-reduced basis

for a given set of vectors.

Definition 7. Given n linearly independent vectors b1, · · · , bn, the Gram-Schmidt or-

thogonalization of b1, · · · , bn is defined by b̂i = bi −
∑i−1

j=1 µi,j b̂j, where µj,i =
〈bi,b̂j〉
〈b̂j ,b̂j〉

and

〈., .〉 stands for inner product of the input vectors.

Definition 8. A basis B = {b1, · · · , bn} ∈ Rn is a LLL-reduced basis with quality ratio α

if the following holds:

• for 1 ≤ i ≤ n and j < i, |µj,i| ≤ 1/2

• for 1 ≤ i ≤ n, α ‖ b̂i ‖≤‖ µi,i+1b̂i + b̂i+1 ‖2

For the actual computation of such a LLL-reduced basis for a given basis B, we refer

to [20, Algorithm 2.6.3]. More precisely,

Theorem 7. Using the above notations, there exists an algorithm that computes the

LLL-reduced basis with quality ratio 1/4 < α ≤ 1 in at most O(n6 log(B)3) bit operations,

where |bi|2 ≤ B for all 1 ≤ i ≤ n.

Following Belabas [9, Proposition 3.10], one can find a lower bound for rmax as below.

Lemma 42. Assume (ui) is LLL-reduced with quality ratio 1/4 < α ≤ 1. Let γ :=

(α− 1/4)−1 ≥ 4/3 and d := dim(E). Then

rmax(U) ≥ |u1|
2(3
√
γ/2)d−1

Let’s go back to the main question of this section. As we said, we are going to

reconstruct each coefficient gj of the polynomial g from its image ĝj. Indeed we had the

following relation between gj and ĝj,

gj − ĝj = βaj,0p
2a + βaj,1H̃

a
1 + (βaj,2Ĥ

a
2 mod T1) + · · ·+ (βaj,qĤ

a
q mod Tq−1)

whence gj − ĝj is an element of the vector space generated by B. Multiplying both

side of the equation by the common denominator θ of all βaj,i, we can consider θ(gj − ĝj)

117

as an element of the lattice generated by B.

Let E be Euclidean space with dimension [K : Q] and Λ ⊂ E be a lattice given by

the basis U = B. Applying Lemma 41 on E,Λ and U for x = ĝj, there exist at most one

vector y congruent to ĝi modulo Λ with |y| < rmax. So Lemma 41 can solve the problem

of finding gj if such a vector exists, and of course, the existence of such a vector depends

on the radius rmax, which in turn depends on the precision a in our approximation of

the modular factor ĝ.

Let Bj be a bound (using Euclidean norm) on the size of the coefficients of gj, regard-

ing as a polynomial in Q[t1, · · · , tq]. Now if rmax ≥ Bj, then we can be sure that such a

vector exists and so Lemma 41 succeeds. If not, then we need to increase the precision

a and try again. Now the question is why for any Bj there exists a precision a for which

rmax ≥ Bj. We need the following definition from [67].

Definition 9. Let K be a number field with ring of integers OK, and I ⊆ OK is an ideal.

We define the norm Norm(I) of an ideal I to be the cardinality of the quotient ring OK/I.

Lemma 43. Let (ui) be a basis of the lattice U = Ia, LLL reduced with quality ratio

α and γ := 1/(1 − α), where Ia = 〈p2a , Ĥa
1 , · · · , Ĥa

q 〉. Let λ > 0 and x ∈ OK such

that T2(x) < λ (see Section4.3.3 for definition of T2). Then we can apply Lemma 41 to

reconstruct x uniquely from x mod Ia, provided that

Norm(Ia) ≥ (2
√
λ/N(3

√
γ/2)N−1)N

Proof. We apply Lemma41 to U . Since u1 ∈ Ia − {0}, we have

T2(u1) ≥ N(Norm(〈u1〉))2/N ≥ N(Norm(Ia)
2/N

where the first inequality follows from the arithmetic geometric means and the second

from the fact that 〈u1〉) ⊆ Ia and Norm(〈u1〉) 6= 0. From Lemma 42, it follows that

rmax ≥
√
N(Norm(Ia)

1/N

2(3
√
γ/2)N−1

and we can apply Lemma 41 as soon as rmax ≥
√
λ.

The above lemma states that if Norm(Ia) is greater than some number, then x can be

constructed from its image. But we need to prove that this can actually happen, which

is equivalent to prove that for any λ there exist a precision a for which rmax ≥
√
λ, which

118

in turn is equivalent to prove that Norm(Ia) > Norm(Ia′) if a > a′. The following lemma

addresses this problem.

Lemma 44. Using the above notations, Ia+1 is a proper subset of Ia for any a ∈ N.

Proof. Since Ĥa
i = Ĥa+1

i mod p2a , so Ia+1 ⊆ Ia. But p2a /∈ Ia+1, since otherwise there

exist polynomials bi ∈ Z[t1, · · · , tq] such that

p2a = b0p
2a+1

+ b1Ĥ
a+1
1 + · · ·+ bqĤ

a+1
1

taking the normal form of both sides with respect to the polynomials Ĥa
1 , · · · , Ĥa

q ,

p2a+1
divides the valuation of the right side, but not that of the left side, a contradiction.

Following the above lemma, we have Norm(Ia+1) > Norm(Ia), since the cardinality of

the quotient ring OK/Ia is strictly less than the cardinality of the quotient ring OK/Ia+1.

Hence by increasing the precision a, after finitely many steps, we can reach a precision a

for which Norm(Ia) satisfies the condition of Lemma 43.

4.3.2 Factor Combination

In this section we solve the question of factor combination using lattice reductions

introduced in Section 4.2.2 for a suitable lattice, similar to the one for factorization over

Q, in such a way that every true combination of the modular factors corresponds to a

vector in the lattice.

Since the definition of trace is independent of the choice of the underlying field, so

we will use all notations and definitions regarding to traces given in Section 4.2.2. It is

also obvious that the recursive relation between the coefficients of a polynomial and its

traces over a field F is independent of the choice of F and it holds over any field. Now

we want to state the equivalent version of all lemmas given in Section 4.2.2 for the case

of number field.

In the following, let Kp = Zp[t1, · · · , tq]/〈H̃∗1 , · · · , H̃∗q 〉, where Zp is the ring of p-adic

integers, and H̃∗i is the p-adic approximation of an irreducible factor of Hi such that

H̃∗i = H̃i modulo p.

The following lemma which is an extension of Lemma 30 to the case of number fields,

is indeed a direct conclusion of the recursive relation between the coefficients of f and

its traces.

119

Lemma 45. Let g ∈ K̃p[x] be a monic p-adic factor of f over K̃p and deg(g) = d. The

monic polynomial g has coefficients in K if and only if Tri(g) ∈ K for all 1 ≤ i ≤ d.

Lemma 47, which is the main lemma of this section, claims the same statement

as Lemma 45 over the ring of algebraic integers OK instead of over K, with an extra

assumption f ∈ 1
λ
OK[x]. For the proof we need the following lemma from [51].

Lemma 46. Let f ∈ 1
λ
OK[x] be a monic polynomial, where 0 6= λ ∈ Z, and suppose

f(x) = g(x)h(x) ∈ K[x], where g, h are monic. Then g, h ∈ 1
λ
OK[x].

Lemma 47. Let f ∈ 1
λ
OK[x] be a monic polynomial of degree n, where 0 6= λ ∈ Z, and

g ∈ K̃p[x] be a monic p-adic factor of f over K̃p and deg(g) = d. The monic polynomial

g of degree d has coefficients in 1
λ
OK if and only if Tri(g) ∈ (1

λ
)nOK for all 1 ≤ i ≤ d.

Proof. If the monic polynomial g of degree d has coefficients in 1
λ
OK, then the recursive

relation between the coefficients of g and its traces implies Tri(g) ∈ (1
λ
)iOK ⊆ (1

λ
)nOK

for all 1 ≤ i ≤ d. Now assume that all traces of g are in (1
λ
)nOK. Then lemma 45 implies

g ∈ K[x], since (1
λ
)nOK ⊂ K. Then Lemma 46 implies g ∈ 1

λ
OK[x], since f ∈ 1

λ
OK[x].

Next lemma is a weaker version of Lemma 47, concerning with only the necessary

condition for g to be in 1
λ
OK[x]. This lemma can be useful in practice, as it says rather

than taking all traces of g, taking only a linear combination of them might be enough.

So it reduces the number of information added to the lattice, resulting in applying LLL

algorithm [42] on a smaller matrix which in turn can significantly improve the running

time of the LLL algorithm, specially when g has a large degree.

Lemma 48. Let f ∈ 1
λ
OK[x] be a monic polynomial of degree n, where 0 6= λ ∈ Z, and

g ∈ K̃p[x] be a monic p-adic factor of f over K̃p and deg(g) = d.

g ∈ 1

λ
OK[x] =⇒ TrA(g) ∈ ((

1

λ
)nOK)s

Proof. A direct application of Newton identities, and the fact that the s× d matrix A

is an integer matrix.

Following Section 4.3.4, there exists an integer D such that

Z[t1, · · · , tq] ⊆ OK ⊆
1

D
Z[t1, · · · , tq]

Then Lemma 47 and 48 still hold if we replace OK with 1
D
Z[t1, · · · , tq]. On the other

hand, since K is the field of fractions of OK, so every coefficient of f ∈ K[x] can be

written as a fraction with numerator and denominator in OK. So then Cnf ∈ OK[x],

120

where Cn ∈ OK is the least common divisor of the denominators of the coefficients of

f . Hence we can always assume that f is a polynomial over OK, but not necessarily

monic. From now on, for simplicity of the following discussion, we will assume that

f ∈ OK[x] is a monic polynomial. The non-monic case can be dealt in the same way

as it was explained in Remark 1. More precisely, we assume that f ∈ 1
D
Z[t1, · · · , tq][x]

for some D ∈ Z. So then , using Lemma 46, each monic factor g of f over K is in
1
D
Z[t1, · · · , tq][x], and Lemma 48 implies that TrA(g) ∈ ((1

D
)nZ[t1, · · · , tq])s.

Now let S ⊂ Kp[x] be a subset of p-adic factors {f1, · · · , fr} of f and let g be the

product of the polynomials in S, and deg(g) = d. Then

TA(g) =
∑
fi∈S

TA(fi)

or equivalently, if we encode the set S as 0− 1 vector v = (v1, · · · , vr), where vi = 1

if fi ∈ S and vi = 0 otherwise, then

TA(g) =
r∑
i=1

viTA(fi)

Following Lemma 48, a necessary condition for g to be in 1
D
Z[t1, · · · , tq][x] is that the

sum of TA(fi)’s, fi ∈ S, has entries in (1
D

)nZ[t1, · · · , tq]. However, the TA(fi) is in Kp[x],

so they can only be determined up to some finite precision. Let Bi be a bound on the

norm of Tri(g) for any factor g of f in K[x], which can be computed using Section 4.3.3.

This allows us to compute an upper bound for the entries of TA(g). Now, a necessary

condition for g to be a polynomial in 1
D
Z[t1, · · · , tq][x] is that TA(g) satisfies the bound

in each row.

From now on, we want to solve the problem of factor combination using the result of

Lemma 48 and following the same approach as in Section 4.2.2. So we need to build a

lattice such that each solution of the factor combination problem be an element of the

lattice and can be obtained as a short vector in the lattice.

Following the notations in Theorem 6, let W be the set of all vectors

v = (v1, · · · , vr) ∈ Zr for which
∏r

i=1 f
vi
a,i corresponds to a true factor of f over

K. Note that if g1, · · · , gt are the monic irreducible factors of f over K, then

{w1, · · · , wt} is a basis of W in reduced echelon form, where wj is defined as the 0 − 1

121

vector (vj,1, · · · , vj,r) for which
∏r

i=1 f
vj,i
a,i corresponds to the true factor gj of f over

K. Note that reconstruction of gj, for 1 ≤ j ≤ t, from its modular image
∏r

i=1 f
vj,i
a,i

can be done using Section 4.3.1. Finding this reduced basis is the same as solving the

combinatorial problem in the algorithm of Zassenhaus [69], that is, finding a partition

of the set of all modular factors {fa,i}ri=1 of f into t distinct subsets, each of which,

corresponds to one of the true factors {g1, · · · , gt}.

Let L ⊆ Zr be a lattice, then BL denotes a basis for L. The matrix whose rows are

the elements of BL is denoted by (BL) and rref(BL) denotes its row echelon form. If

we can compute any basis BW of W , then the combinatorial problem is solved because

{w1, · · · , wt} are the rows of rref(BW).

Lemma 49. Let L be a lattice such that W ⊆ L ⊆ Zr and R = rref(BL). Then L = W

if and only if the following two conditions hold:

(a) Each column of R contains precisely one 1, all other entries are 0

(b) if (v1, · · · , vr) is a row of R then g ∈ OK, where g is a true factor of f over K.

Proof. If L = W then {w1, · · · , wt} must be the rows of R because of the uniqueness

of row echelon form, and thus both conditions hold. Conversely, assume that both

conditions hold. Since each row of R corresponds to a true factor of f and OK has

unique factorization, so each row of R is a linear combination of w1, · · · , wt. But then

(a) and the properties of row echelon form imply that the rows of R are actually the

vectors w1, · · · , wt. Hence L ⊆ W , and so L = W .

Lemma 49 gives us a sufficient condition for L to be the desired lattice W . So, like in

the van Hoeij algorithm [63], we start from L = Zr and at each step we test whether L

is equal to W or not. This test can be done using Lemma 49. Now suppose that L 6= W .

Then the algorithm tries to find a new lattice L′ with

W ⊆ L′ ⊆ L

Then L replaced by L′. The algorithm keeps repeating this until we finally obtain

L = W , i.e., both conditions of Lemma 49 are satisfied. Like any other algorithm, we

need to address the questions of correctness and termination of the process.

Assume that we have chosen an s × d matrix A and all modular factors {fa,i}ri=1

have been computed to the precision 2a. We will now show how to compute the new

lattice L′ ⊆ L, hopefully of smaller dimension than L, that nevertheless contains all

122

solutions of the factor combination problem. Note that the new lattice L′ would depend

on the size of the matrix A and the precisions 2a; if we can not find a new lattice L′

satisfying the required conditions using the following process, then we should change

these parameters.

Let BL be a basis for L. Initially L = Zr and BL is the standard basis of Zr. Now

we will construct a new lattice ∆ such that the vector

vS = (Cv1, · · · , Cvr, TA(ĝ)11, · · · , TA(ĝ)s1)

is an element of ∆ for every solution S of the factor combination problem, where

ĝ =
∏r

i=1 f
vi
a,i and C is a constant described below. Note that vi = 1 if fa,i ∈ S and

vi = 0 otherwise.

The lattice ∆ is given by (
CIr×r S

0 Q

)
where

• S = lift(DnSKp) and

SKp =

TA(f1)11 · · · TA(f1)s1

...
. . .

...

TA(fr)1r · · · TA(fr)sr

and lift(x) = x mod p2a , Ĥa

1 , · · · , Ĥa
q .

• Q is a Ns × Ns block diagonal matrix, with blocks equal to M on the diagonal,

where M is a N ×N matrix obtained from the basis B mentioned in Section 4.3.1.

To any true factor of f corresponds u ∈ {0, 1}r and v ∈ ZNs such that the image of

(u v) has squared L2 norm bounded by

C2r+ ‖ Su+Qv ‖2
2

and we can bound ‖ Su + Qv ‖2≤ Btrace using Section 4.3.3. The constant C is chosen

so that C2r ≈ Btrace. It is not necessary at this point that M be LLL-reduced, nor that

we use the lift specified above, although both conditions certainly speed up the reduction.

123

So any factor of f over K corresponds to a µ-short vector of the new lattice ∆, where

µ is an upper bound on the square root of C2r+ ‖ Su + Qv ‖2
2, and can be computed

using Section 4.3.3.

Now we are ready to present our new algorithm for factoring polynomials over num-

ber fields using multivariate representation. Let K be the algebraic number field, as

before. For a given square-free monic polynomial f ∈ K[x], this algorithm computes the

irreducible factors of f over K using the following steps:

1. Determine D ∈ N, such that f and its factors are in 1
D
Z[t1, · · · , tq][x]

2. Choose a suitable prime p 6 |D, satisfying the conditions explained at the beginning

of the section

3. Compute the modular factors fa,1, · · · , fa,r using Theorem 6, up to some precision

2a, where a should be at least dlog(µ)/ log(p)e and µ is obtained in the next step.

4. Choose a matrix A. Compute the upper bound µ, as explained above

5. Compute the lattice ∆ as above, if the entries of S are already small, that is, all

vectors in the basis of ∆ are already µ-short, go back to step 4 and choose another

matrix A.

6. Apply the LLL algorithm to compute a reduced basis V1, · · · , Vr of the lattice ∆.

Do a floating point Gram-Schmidt computation to determine an as small as possible

integer t such that all µ-short vectors of ∆ are in ∆′ := ZV1 + · · ·+ ZVt. Let L′ be

1/C times the projection of ∆′ on the first r coordinates with the basis BL′ . If the

dimension of L′ did not decrease then return to step 3 and increase the precision.

7. If t = 1 then f must be irreducible and the computation ends. Otherwise continue.

8. Compute R = rref(BL′). If R does not satisfy the first condition of Lemma 49 then

go to step 4, otherwise proceed to the next step.

9. Check the second condition of Lemma 49 by executing step 10 for k ∈ {1, · · · , t}

10. Let (v1, · · · , vr) be the k’th row of R. Then check if gk divides f over K, where gk

is the reconstructed polynomial from its modular image
∏r

i=1 f
vi
i (Section 4.3.1).

Otherwise go back to step 4.

11. Now f = g1 · · · gt

124

The correctness of the algorithm is clear, since the output satisfies the conditions

of Lemma 49 in steps 8-10. Indeed, in step 10, each output polynomial gj is checked

whether it is a true factor of f or not.

Finally we need to prove that the algorithm terminates. Since the termination of the

algorithm depends only on the lattice ∆ and the way that we generate the new lattice

L′, and in this sense, it is the same as van Hoeij’s algorithm [63], so the proof is similar

to the one given for Lemma 8 in [63]. But for more clearness, we give the first part of

the proof which is different

Lemma 50. The algorithm terminates.

Proof. Since in each round of the algorithm, the main goal is to find a new lattice

L′, such that W ⊆ L′ ⊆ L and dim(L′) < dim(L) if L 6= W , so we have to show that

if L 6= W then eventually dim(L′) < dim(L), so that after finitely many steps the

algorithm reaches L = W .

Without loss of generality, we assume that the matrix A has only one row, with the

ith entries equal to one and other entries zero. So then s = 1 and TA(fj) = Tri(fj).

Denote

U(v) =
r∑
j=1

vjTri(fj) ∈ Zp[t1, · · · , tq] : v = (v1, · · · , vr) ∈ L

where Zp is the ring of p-adic integers and define U(v, a1) as the image of DU(v)

modulo pa1 . Denote µ̃ = r2r/2µ, Soli(L) := {v ∈ L : DU(v) ∈ Z[t1, · · · , tq]}, and

B(L, a1) := {v ∈ L : |Cv|2 + |U(v, a1)|2 ≤ µ̃2}. Since µ̃ > µ, then it follows that W is

contained in the span of B(L, a1). The rest of the proof is exactly the same as the one

given in [63] for Lemma 38.

Truncation As we said in Section 4.2.2, truncating the value of TA(g) can have a

significant effect on the efficiency of the van Hoeij factorization algorithm over Z in prac-

tice. Now we want to extend a similar idea to the case of factorization over number fields.

For t > 1 any integer, and any x ∈ K̃a
p, we define the truncation

T a,tK (x) := blift(x)/te

125

Now write

S = S0 + tS1, ‖ S0 ‖∞≤ t/2

Q = Q0 + tQ1, ‖ Q0 ‖∞≤ t/2

Hence

‖ S0 ‖2 ≤
√
rNs

t

2

‖ Q0 ‖2 ≤
√
s N

t

2

From the previous section, there exists u ∈ {0, 1}r and v ∈ ZNs such that

‖ Su+Qv ‖2 ≤ Btrace

whence

‖ S1u+Q1v ‖2 ≤ Btrace/t + ‖ S0u+Q0v ‖2 /t

≤ Btrace/t +

√
rNs

2
‖ u ‖2 +

√
sN

2
‖ v ‖2

Note that in the case of van Hoeij algorithm, Q0 = 0, since Q is divisible by t = pb.

So it is not important to control v, which is necessary in this case. For the purpose, we

have to make the following two assumptions.

• the precision a is so large that we can apply Lemma 41 to the matrix M . From

this we deduce that v = −bQ−1Sue.

• the specified lift is chosen for S, such that ‖ Q−1S ‖∞≤ 1/2

If x ∈ RN , we have bxe = x+ ε, where ‖ ε ‖∞≤ 1/2, hence

‖ bxe ‖2 ≤‖ x ‖2 +
√
N/2

From which we have

‖ v ‖2≤‖ Q−1Su ‖2 +
√
N/2 ≤

√
rNs

2
‖ u ‖2 +

√
N/2

since ‖ u ‖2≤
√
r, we obtain

‖ S1u+Q1v ‖2≤ Bhigh := Btrace/t +
r
√
Ns

2
(1 +N

√
s/2) +

N
√
Ns

4

126

So our final knapsack lattice is given by(
CIt×r S1

0 Q1

)

where C ≥ 1 is chosen so that C2r ≈ B2
high.

Note that if t is a power of p and p divides Q, then Q0 = 0, in which case the bound

becomes Btrace/t + r
√
Ns
2

. Here we essentially recover van Hoeij’s bound of r
√
s/2 in the

case N = 1, since K = Q, provided we can take t � Btrace, i.e., provided that modular

factors have been sufficiently lifted.

4.3.3 Bound on the Traces

In this section we will discuss how to determine an upper bound on the size of the traces

of a polynomial over K. Before explaining how to measure the size of an element of a

field, we first need to know how to measure it. It is classical to measure the size of an

element x ∈ OK in terms of the quadratic form T2(x) =
∑

σ |xσ|2 where σ runs through

the [K : Q] embeddings of K into C and xσ = σ(x).

Lemma 51. Let g be a monic divisor of f over K. then for all integer k ≥ 0 we have

T2(Trk(g)) ≤ deg(f)2
∑
σ

B2k
root(f

σ)

where Broot(h) is any bound for the modulus of the complex roots of h.

Proof. Following equalities come from the definitions of T2 and Trk,

Trk(g) =
∑

r∈Roots(g)

rk

T2(Trk(g)) =
∑
σ

|Trk(g)σ|2

where Roots(g) contains all roots of g ∈ K[x] in algebraic closure of K. Since Roots(g) ⊆
Roots(f), then

T2(Trk(g)) =
∑
σ

|Trk(g)σ|2 =
∑
σ

|(
∑

r∈Roots(g)

rk)σ|2

127

≤
∑
σ

|(
∑

r∈Roots(f)

rk)σ|2 ≤
∑
σ

(
∑

r∈Roots(f)

|rσ|k)2

≤
∑
σ

(
∑

r∈Roots(f)

Bk
root(f

σ))2 =
∑
σ

(deg(f)Bk
root(f

σ))2

= deg(f)2
∑
σ

B2k
root(f

σ)

Now an upper bound B on the all traces of all factors of f over K can be obtained

by adding up T2(Trk(g)) for all k, i.e.,

B = deg(f)2
∑
k

∑
σ

B2k
root(f

σ)

which only depends on f and the number of traces.

In practical computations, it is more convenient to use Euclidean norm related to our

specified basis (ωi), or in our case usually standard basis. For x =
∑
xiωi ∈ K, we let

|x|2 :=
∑
|xi|2. The following lemma states a relation between this norm and T2.

Lemma 52. Let M = (mij) ∈ Md(Q) be the matrix such that (ωi) = (ui)M , where

(ui) is another basis for K as a vector spaces over Q and d = [K : Q]. Now let V =

((uσi)j−1)σ,1≤j≤d. Then

|x|2 ≤ CT2T2(x)

where CT2 =‖M−1V −1 ‖2
2, and ‖ (aij) ‖2= (

∑
|aij|2)1/2.

Proof. Let x = (ωi)
t(xi) = (ui)M(xi), (xi) ∈ Qd. Writing the d different embeddings

of this equation in C, we obtain

(xσ)t = VM t(xi)

hence |x|2 ≤ CT2T2(x) by Cauchy-Schwarz.

The last note which is needed to be mentioned here is how to compute Broot(f
σ),

indeed for any embedding σ, we need to compute an upper bound for the modulus of the

complex roots of fσ. This can be done using the following steps,

• Finding the embedding σ

• Computing fσ

• Computing a bound on the modulus of the complex roots of fσ

128

Let V = v(〈H1, · · · , Hq〉) ⊂ Cq, the variety of the ideal 〈H1, · · · , Hq〉 ⊂ C[t1, · · · , tq].
So, for a given v ∈ V , the embedding σv : K −→ C is just evaluation of each element of

K at v. So one way to compute σv is to compute V in Cq up to some precision. This can

be done using [?, Theorem 19.2] by controlling the precisions of the roots at each step,

that is, we first find the set of roots V1 of the polynomial H1(t1) in C up to some precision

using [?, Theorem 19.2], then for each element u ∈ V1 compute Hu
2 (t2) = H2(u, t2) and

then compute the set of roots Hu
2 in C up to some precision using [?, Theorem 19.2], and

so on. Discussion about how to control the errors on the roots at each step to reach the

required precisions on the elements of V is out of the scope of this section. Having σ,

computing fσ is just an evaluation. A bound on the modulus of the complex roots of fσ

can be found using [34].

4.3.4 Choosing a Denominator

Let K be a number field, and OK its ring of integers. In this section, we will show that

there exists a non-zero integer ∆ such that

Z[t1, · · · , tq] ⊆ OK ⊆
1

∆
Z[t1, · · · , tq]

Recall that K is a Q-vector space of dimension d = [K : Q]. A natural question is

whether or not a similar statement can be made about OK as a Z-module. Remarkably,

it turns out that the strongest analogue of the Q-statement is true: OK is a free

Z-module of rank d. We will prove this fact in this section.

Let α1, · · · , αd be a Q-basis for K. Further assume that the αi are all algebraic

integers; this can be done by applying the following Lemma to any Q-basis for K.

Lemma 53. Let α ∈ K. Then there is some a ∈ Z such that aα ∈ OK.

Proof. Let f(x) = xn + an−1x
n−1 + · · · + a0 ∈ Q[x] be the minimal polynomial of α.

Let a ∈ Z be some integer such that af(x) ∈ Z[x]. Let g(x) be the monic polynomial

xn + aan−1x
n−1 + a2an−2x

n−2 + · · ·+ ana0

which is in Z[x] since af(x) is. We have

g(aα) = anαn + anan−1x
n−1 + · · ·+ ana0 = anf(α) = 0

Thus a satisfies a monic polynomial with integral coefficients, and therefore lies in OK .

129

Since the αi satisfy no linear dependence with Q-coefficients, they certainly satisfy

no linear dependence with Z-coefficients. Thus

Zα1 + Zα2 + · · ·+ Zαd

is a free Z-module of rank d. Furthermore, it is clearly contained in OK, thus OK contains

a free Z-module of rank d. To prove that OK itself is a free Z-module, we need to to find

some free Z-module of rank d which contains OK. for the purpose, we need the following

definition.

Definition 10. Let K be a number field of degree d with complex embeddings σ1, · · · , σd.
Let α1, · · · , αd be elements of K. The discriminant ∆(α1, · · · , αd) of this n-tuple is defined

to be the square of the determinant of the d× d matrix

(σi(αj))

The following Lemma gives an equivalent definition of discriminant ∆.

Lemma 54. Let K be a number field as above and let α1, · · · , αd be elements of K. Then

∆(α1, · · · , αd) is equal to the square of the determinant of the d× d matrix

(TrK/Q(αiαj))

Proof. Let A = (σi(αj)). Since det(At) = det(A) (where At is the transpose of A), we

see that ∆(α1, · · · , αd) is equal to the square of the determinant of At. The ij entry of

this matrix is
d∑

k=1

σk(αi)σk(αj) =
d∑

k=1

σk(αiαj) = TrK/Q(αiαj)

by property of TrK/Q. This proves the lemma.

Lemma 55. ∆(α1, · · · , αd) ∈ Q. If the αi are all algebraic integers, then

∆(α1, · · · , αd) ∈ Z.

Proof. Since TrK/Q(α) for α ∈ K is a map from K into Q, so ∆(α1, · · · , αd) ∈ Q
follows immediately form Lemma 54. Additionally, if α ∈ OK, then TrK/Q(α) ∈ Z,

since its minimal polynomial is a monic polynomial with integer coefficients. Hence

∆(α1, · · · , αd) ∈ Z, if αi ∈ OK for all i.

The following lemma states that ∆ is a common denominator of any Q-linear combi-

nation of αi’s in K.

130

Lemma 56. Let K be a number field of degree d and let α1, · · · , αd be a Q-basis for K
consisting entirely of algebraic integers. Set ∆ = ∆(α1, · · · , αd). Fix α ∈ OK and write

α = a1α1 + · · ·+ adαd

with each ai ∈ Q. Then ∆ai ∈ Z for all i.

Proof. First of all, note that ∆ is a non-zero integers, since αi’s are a Q-basis of K.

Now applying the embedding σi to the expression for α, yields

σi(α) = a1σi(α1) + · · ·+ adσi(αd)

This can be considered to be a system of d linear equations in the d unknowns a1, · · · , ad,
that is, we have the matrix equation

σ1(α)

σ2(α)
...

σd(α)

 =

σ1(α1) σ1(α2) · · · σ1(αd)

σ2(α1) σ2(α2) · · · σ2(αd)
...

...
...

σd(α1) σd(α2) · · · σd(αd)

a1

a2

...

ad

By Cramers rule, this has the unique solution ai = γi/δ, where δ is the determinant

of A = (σi(αj)) (so that δ2 = ∆, in particular, the solution is unique since ∆ 6= 0) and γi

is the determinant of the matrix obtained from A by replacing the ith column by (σj(α)).

Note that both γi and δ are algebraic integers, since each entry in each matrix is. Since

δ2 = ∆, we have

∆ai = δγi

The left-hand side is rational and the right-hand side is an algebraic integer, so both

sides must be rational integers. This proves the lemma.

Finally, the following theorem states that the ring of algebraic integers is a free Z-

module.

Theorem 8. Let K be a number field with ring of integers OK . Let d = [K : Q]. Then

OK is a free Z-module of rank d.

Proof. Let α1, · · · , αd be a Q-basis for K consisting entirely of algebraic integers. We

have

Zα1 + · · ·+ Zαd

131

and by Lemma 56 we have

OK ⊆
1

∆
(Zα1 + · · ·+ Zαd)

where ∆ = ∆(α1, · · · , αd). Thus we have shown that OK lies between two free Z-

modules of rank d, thus OK itself is a free Z-module of rank d.

So far, we have proved that there exists a non-zero integer ∆ such that

Z[t1, · · · , tq] ⊆ OK ⊆
1

∆
Z[t1, · · · , tq]

Note that here by abuse of notation we are denoting ti modulo H1, · · · , Hq by ti. Also

it is necessary to be mentioned that the set S = {tβ11 · · · t
βq
q : 0 ≤ βi < hi, 1 ≤ i ≤ q} is a

Q-basis for K consisting entirely of algebraic integers and Z[t1, · · · , tq] =
⊕

α∈S Zα.

But now the question is how to find such a ∆ in practice. The following theorem

states how the discriminant of elements of S is related to the resultants of generating

polynomials of the number field K.

Theorem 9. Let S be as above, then

∆(S) = (res(H1, · · · res(Hq−1, res(Hq,
∂H1

∂t1
· · · ∂Hq−1

∂tq−1

∂Hq

∂tq
))))2

Proof. We prove the theorem by induction on q. let q = 1, then S = {1, t1, · · · , th1−1
1 }

and we need to prove

∆(S) = (res(H1,
∂H1

∂t1
))2

for the purpose assume that α1, · · · , αh1 are the complex roots of H1 in C. Then

∆(S) = det

1 α1 · · · αh1−1

1

1 α2 · · · αh1−1
2

...
...

. . .
...

1 αh1 · · · αh1−1
h1

2

= (
∏
i<j

(αi − αj))2 = (res(H1,
∂H1

∂t1
))2

which proves the induction base case. Now assume that the statement of theorem holds

for q − 1. To prove it for q, let

V = vC(〈H1, · · · , Hq〉)

132

be the variety of the ideal 〈H1, · · · , Hq〉 over C, and take the standard basis S =

{tβ11 · · · t
βq
q : 0 ≤ βi < hi, 1 ≤ i ≤ q} as the Q-basis for K. Note that |V | = |S|. Let

embedding σv : K → C corresponds to evaluation at the complex root v ∈ V . Consider

the following ordering on the set S,

1 > t1 > · · · > tq

tβ11 · · · tβqq > tγ11 · · · tγqq ←→ (γ1 − β1, · · · , γq − βq) ≥ 0

Now let S̃ = {tβ11 · · · t
βq−1

q−1 : 0 ≤ βi < hi, 1 ≤ i ≤ q − 1} and

Ṽ = vC(〈H1, · · · , Hq−1〉)

be the variety of the ideal 〈H1, · · · , Hq−1〉 over C, which is the projection of V on the

first q − 1 coordinates, and σ̃ṽ the corresponding embeddings for ṽ ∈ Ṽ . Hence

V = {(ṽ, αṽiṽ) : ṽ ∈ Ṽ , 1 ≤ iṽ ≤ hq}

Suppose

∆(S̃) = det(M)2

where by definition,

M = (σ̃ṽ(ũ))ṽ,ũ∈Ṽ

Define the diagonal matrix Wi = (wũṽ) of size |Ṽ | × |Ṽ |, where 1 ≤ i ≤ hq, and

wṽṽ = αṽi

Then

∆(S) = det

M W1M · · · W

hq
1 M

M W2M · · · W
hq
2 M

...
...

. . .
...

M WhqM · · · W
hq
hq
M

2

= det

1 W1 · · · W

hq
1

1 W2 · · · W
hq
2

...
...

. . .
...

1 Whq · · · W
hq
hq

2

× det

M 0 · · · 0

0 M · · · 0
...

...
. . .

...

0 0 · · · M

2

By reordering the rows and columns of the first matrix we have

133

det

1 W1 · · · W

hq
1

1 W2 · · · W
hq
2

...
...

. . .
...

1 Whq · · · W
hq
hq

 =
∏
ṽ∈Ṽ

det

1 αṽ1 · · · α

hq
ṽ1

1 αṽ2 · · · α
hq
ṽ2

...
...

. . .
...

1 αṽhq · · · α
hq
ṽhq

Each determinant in the product is, indeed, the square root of the discriminant of Hq

after evaluation at ṽ, whence

det

1 W1 · · · W

hq
1

1 W2 · · · W
hq
2

...
...

. . .
...

1 Whq · · · W
hq
hq

 = res(H1, · · · res(Hq−1, res(Hq,
∂Hq

∂tq
)))

Also, by induction hypothesis,

det

M 0 · · · 0

0 M · · · 0
...

...
. . .

...

0 0 · · · M

 = (det(M))hq

= (res(H1, · · · res(Hq−2, res(Hq−1,
∂H1

∂t1
· · · ∂Hq−2

∂tq−2

∂Hq−1

∂tq−1

))))hq

Since res(f, ag) = adeg(f)res(f, g) for two polynomials f, g and a constant a, so

∆(S) = (res(H1, · · · res(Hq−1, res(Hq,
∂H1

∂t1
· · · ∂Hq−1

∂tq−1

∂Hq

∂tq
))))2

which proves the theorem.

4.3.5 Splitting Fields

In this section we want to talk about one of the important applications of polynomial

factorization, called splitting fields. In abstract algebra, a splitting field of a polynomial

with coefficients in a field is a smallest field extension of that field over which the poly-

nomial splits or decomposes into linear factors. (Note that for two fields F and L, we

say that L is a field extension of F , if F ⊆ L). More precisely,

Definition 11. A splitting field of a polynomial f(x) with degree n over a field F is

134

the smallest field extension L of F over which f factors into linear factors,

f(x) =
n∏
i=1

(x− ai) ∈ L[x]

Finding roots of polynomials has been an important problem since the time of the

ancient Greeks. Some polynomials, however, have no roots such as x2 + 1 over Q, the

rational numbers. By constructing the splitting field for such a polynomial, one can find

the roots of the polynomial in the new field.

Now let us explain how to actually compute such a splitting field for a given polyno-

mial using factorization. Let F be a field and f(x) be a polynomial of degree n in the

polynomial ring F [x] . The general process for constructing L, the splitting field of f(x)

over F , is to construct a sequence of fields F = K0, K1, · · · , Kr−1, Kr = L such that Ki

is an extension of Ki−1 containing a new root of f(x). Since f(x) has at most n roots,

the construction will require at most n extensions. The steps for constructing Ki+1 from

Ki for i ≥ 0 are given as follows:

• Factorize f(x) over Ki into irreducible factors f1(x), · · · , fk(x)

• Choose any nonlinear irreducible factor g(x) = fi(x)

• Construct the field extension Ki+1 of Ki as the quotient ring Ki+1 = Ki[x]/〈g(x)〉,
where 〈g(x)〉 denotes the ideal in Ki[x] generated by g(x).

Constructing L can be done by repeating this process until f(x) completely factors

over Kr for some r ≥ 0.

The irreducible factor fi used in the quotient construction may be chosen arbitrarily.

Although different choices of factors may lead to different subfield sequences, the

resulting splitting fields will be isomorphic.

Note that since g(x) is irreducible, 〈g(x)〉 is a maximal ideal and hence Ki[x]/〈g(x)〉
is, in fact, a field. Moreover, if we let

π : Ki[x] −→ Ki[x]/〈g(x)〉

h(x) 7−→ h(x) mod g(x)

135

be the natural projection of the ring onto its quotient, then

g(π(x)) = π(g(x)) = g(x) mod g(x) = 0

so π(x) is a root of g(x) and of f(x). The degree of a single extension [Ki+1 : Ki] is equal

to the degree of the irreducible factor g(x). The degree of the extension [L : F] is given

by [Kr : Kr−1] · · · [K2 : K1][K1 : F] and is at most n!.

Example 5. Let f(x) = x2 + 1 ∈ F [x], where F = Q, the field of rational numbers. One

can show that f is irreducible over F . So we make a new field L = K1 = F [x]/〈f(x)〉,
containing the roots of f , which are π(x),−π(x), where

π : F [x] −→ L = F [x]/〈f(x)〉

h(x) 7−→ h(x) mod f(x)

That is, considering f as a polynomial over L, we have

f(x) = (x− π(x))(x+ π(x))

Our approach for computing splitting field is the same the above mentioned steps.

In each step for finding a new field Ki+1, we need to use a factorization algorithm to find

a non-linear irreducible factor of f over Ki. Note that for each 1 ≤ i ≤ r, the field Ki is

a number field, that is, an extension of F , where F = Q in our case. So we can use the

two different representations of the number fields, introduced in previous sections, for

the number field Ki. In the following we are going to apply these two representations

and the corresponding factorization algorithms to find the sequence of fields Ki, and

then we will compare the running time of computing such a sequence in practice, using

our implementation in Magma.

Let us first talk about the univariate representation. In each step, we have a univariate

representation of the number field Ki = Q[t]/〈g(t)〉 as an extension of Q with degree

d = deg(g(x)), and a polynomial f(x) over Ki, that is,

f(x) ∈ Ki[x] =
Q[t]

〈g(t)〉
[x]

so the coefficients of f are elements of the quotient field Q[t]/〈g(t)〉, which can be con-

136

sidered as polynomials of degree less than d. Note that

Q[t]

〈g(t)〉
= {h(t) ∈ Q[t] : deg(h) < d}

Now we can choose any factorization algorithm for univariate representation, such

as, the Belabas factorization algorithm [9], which is indeed our factorization algorithm,

introduced in this chapter, for q = 1, or Trager’s factorization algorithm [62], to factor

the polynomial f over Ki. Assume f1 ∈ Ki[x] is a non-linear irreducible factor of f over

Ki. Now we can define the new field Ki+1 as an extension of Ki as below

Ki+1 =
Ki[x]

〈f1(x)〉
=

Q[t]
〈g(t)〉 [x]

〈f1(x)〉
≈ Q[t, x]

〈g(t), f1(t, x)〉

which contains at least one root of f1 as a polynomial over Ki+1. Note that any root

of f1 is indeed a root of the original polynomial f . Additionally, ≈ denotes for the

isomorphism of the fields.

Since the chosen factorization algorithm always requires the univariate representation

of the base field over Q, to factor f over Ki+1 in the next step, if any, we need a univariate

representation of Ki+1 as a field extension of Q. So we need to convert the above

bivariate representation of Ki+1 to a univariate representation over Q.

Such a univariate representation can be found with the cost of computing the minimal

polynomial α = t̄+ λx̄ ∈ Ki+1 over Q, where t̄, x̄ are the image of t, x in Ki+1 and λ is a

suitable element in Z. So now assume g∗(y) ∈ Q[y] is the computed minimal polynomial.

We have

Ki+1 =
Ki[x]

〈f1(x)〉
=

Q[t]
〈g(t)〉 [x]

〈f1(x)〉
≈ Q[t, x]

〈g(t), f1(t, x)〉
≈ Q[y]

〈g∗(y)〉
Then we are in the same situation as in step i, and we can repeat the process replacing

Ki with Ki+1. In summary, each step of computing the splitting field contains the

following computations:

• factorization over Ki

• converting bivariate representation to univariate one using minimal polynomial

computation of an element of Ki+1 over Q

Now let us look at the same process, but from multivariate representation perspective.

In each step we have a multivariate representation of Ki = Q[t1, · · · , ti]/〈g1, · · · , gi〉,

137

where for 1 ≤ j ≤ i, gj is a monic multivariate polynomial in Q[t1, · · · , tj] of degree dj

in tj, and [Ki : Q] =
∏i

j=1 dj. Let f be a univariate polynomial over Ki,

f ∈ Ki[x] =
Q[t1, · · · , ti]
〈g1, · · · , gi〉

[x]

Since we are in multivariate representation of the number field Ki, we can use our

factorization algorithm to factor f over Ki directly. Assume that f1 ∈ Ki[x] is a non-

linear irreducible factor of f over Ki. So now we can define the new field Ki+1 as below,

Ki+1 :=
Ki[x]

〈f1(x)〉
≈ Q[t1, · · · , ti, x]

〈g1, · · · , gi, f1〉

Since in the next step, to factor f over Ki+1, we can apply directly any multivariate

factorization algorithm, there is no need for any conversion to a new representation and

we can keep Ki+1 in the same format (but may be with different naming for consistency,

taking ti+1 and gi+1 instead of x and f1 in the representation of Ki+1, respectively).

So there is no need for computing any minimal polynomial or any sort of evaluation,

compared to univariate situation.

So far, we know how to compute the splitting fields of a given polynomial over

Q, using two different representations. Since the main goal of the following exper-

iments are to compare the running time of the different factorization algorithms

using different representations, in the cost of the following approaches for computing

the splitting fields, we do not count the cost of computing minimal polynomials in

the total cost of the splitting field computation in the univariate representation approach.

As we discussed above, the choice of different factorization algorithms in the splitting

field computation can effect its total cost, which is what we are going to examine in

this section. In our experiments, we consider the following four different factorization

algorithms:

• BelMR: Our multivariate factorization algorithm, which needs a multivariate rep-

resentation of the number field in each step

• BelUR: Belabas factorization algorithm [9], which needs a univariate representa-

tion of the number field in each step, which is basically BelMR algorithm when

q = 1

138

• Trager: Trager’s factorization algorithm [62], which needs a univariate represen-

tation of the number field in each step

• MagmaMR: Magma implementation of factorization of a univariate polynomial

over a number field with multivariate representation

We implemented BelMR and BelUR in Magma, and we are just using the built-in

methods in Magma for Trager and MagmaMR. We will use BelMRSF, BelURSF,

TragerSF, and MagmaMRSF to refer to the splitting field algorithms using the

corresponding factorization algorithms, respectively. Additionally, Magma has an

implementation of splitting field computation of a given univariate polynomial over Q,

which will be denoted by MagmaSF.

In the following table we compare the running times of the above five splitting field al-

gorithms on different input polynomials. Some of the sample polynomials are taken from

the database http://www.mathematik.uni-kassel.de/ klueners/minimum/minimum.html

by Jürgen Klüners and Gunter Malle, while the others are just random polynomials. In

the table, the degree of the input polynomials and the extension degree of the computed

splitting fields over Q are denoted by n and N , respectively. All computations were

done using Magma 2.18 on a 2.40 GHz Intel(R) Xeon(R) processor.

Table 4.1: Splitting Fields Computation

n N BelMRSF BelURSF TragerSF MagmaMRSF MagmaSF
3 6 0.02 0.09 0.00 0.00 0.00
4 8 0.03 0.70 0.00 0.01 0.01
5 120 272.53 > 1 334.140 235.91 32.31
6 6 0.12 0.34 0.01 0.01 0.01
6 72 28.23 > 1h > 1h 11.38 0.22
7 7 0.13 0.26 0.04 0.02 0.01
7 42 56.97 > 1h 243.72 31.21 0.73

As we can see from Table 4.1, BelMRSF and MagmaMRSF which are using

multivariate representation for the splitting fields almost always beat the BelURSF

and TragerSF which are using univariate representation for the number fields, as we

expected. Note that timings given in Table 4.1 are just the cost of factorization parts,

while ignoring all other costs including the minimal polynomial computation, which

could even dominant the cost of factorization parts in splitting fields computation using

139

the univariate representation.

On the other hand, in our experiments, MagmaMRSF was always faster than

BelMRSF, while both are using multivariate representation for the number fields and

the same approach for computing the splitting fields. The only difference is using

different factorization algorithms as the main core of the splitting fields computation in

our approach. Since we do not know how MagmaMR has been implemented in Magma,

so the comparison between MagmaMRSF and BelMRSF may not be fair. But it still

shows that using multivariate representation in splitting filed computation works much

better than the univariate counterpart.

Additionally, timings showed in the last column of Table 4.1 related to MagmaSF has

a huge gap with other columns in the most cases, specially when the extension degree

of the splitting fields goes higher. Since again we are not aware of the method used in

MagmaSF for computing splitting fields, we can not point out the reason behind such a

huge gap happening in the running time.

Let us go back to the comparison between BelMRSF and BelURSF which is the main

goal of the section. As we already said, since we only count the factorization cost in

the splitting fields computation and also we are using the same approach for computing

them, so the timings given in Table 4.1 can be used for comparing the running time

of the two factorization algorithms BelMR and BelUR. At each step of splitting field

computation, we factor a univariate polynomial, let say f , over the current field, let

say F . BelMRSF uses BelMR as the factorization algorithm to factor f over F in

multivariate representation, while BelURSF uses the BelUR to factor f over the same

field but in univariate representation. Note that since we change the representation of

F , so we need to find the image of f in the new representation; hence f is not necessarily

the same polynomial in both cases. So if we want to compare the running time of BelMR

and BelUR, we need to choose one number field in two representations and take one

polynomial over one of them and compute the image of the polynomial over the other

filed. This is, Indeed, what is happening at each step of the splitting fields computation.

So the timings given in the columns of Table 4.1 related to BelMRSF and BelURSF

are also meaningful for comparison of the factorization algorithms BelMR and BelUR.

So again as we can see from the table, our experiments show that BelMR works better

than BelUR. Of course, there could be some situations for which BelUR factors the given

140

polynomial faster than BelMR, since the size of the input polynomials and the generators

play an important role in the complexity of the two main steps, modular factorization

and factor combination, of the factorization algorithms BelMR and BelMR. Based on our

experiments, in general, we can not claim which one can always beat the other, as we think

this is not true at all. But up to some application of the polynomial factorization, such as

splitting fields computation, our experiments show that using multivariate representation

for the number field and the multivariate version of Belabas factorization algorithm [9]

are better than the univariate counterpart.

141

Bibliography

[1] J. V. A. Leykin and Z. A. Higher-order deflation for polynomial systems with isolated

singular solutions. Math. and its Appl., 146:79–97, 2008.

[2] J. V. A. Leykin and A. Zhao. Newtons method with deflation for isolated singularities

of polynomial systems. TCS, 359(1-3):111–122, 2006.

[3] C. J. Accettella, G. M. D. Corso, and G. Manzini. Inversion of two level circulant

matrices over Zp. Lin. Alg. Appl., 366:5–23, 2003.

[4] M. Ajitai. The shortest vector problem in l2 is NP-hard for randomized reductions.

Electronic Colloquium on Computational Complexity, TR97-047, 1997.

[5] M. E. Alonso, E. Becker, M.-F. Roy, and T. Wörmann. Zeroes, multiplicities and

idempotents for zerodimensional systems. In MEGA’94, volume 142 of Progress in

Mathematics, pages 1–15. Birkhäuser, 1996.

[6] P. Aubry, D. Lazard, and M. M. Maza. On the theories of triangular sets. JSC,

28(1,2):45–124, 1999.

[7] P. Aubry and A. Valibouze. Using Galois ideals for computing relative resolvents.

JSC, 30(6):635–651, 2000.

[8] Z. Z. B. H. Dayton. Computing the multiplicity structure in solving polynomial

systems. ISSAC 05, pages 116–123, 2005.

[9] K. Belabas. A relative van Hoeij algorithm over number fields. Symb. Comp.,

37:641–668, 2004.

[10] K. Belabas, M. van Hoeij, J. Kluners, and A. Steel. Factoring polynomials over

global fields. arXiv:math/0409510v1, 2004.

142

[11] E. Berberich, P. Emeliyanenko, and M. Sagraloff. An elimination method for solving

bivariate polynomial systems: Eliminating the usual drawbacks. In ALENEX, pages

35–47. SIAM, 2011.

[12] E. Berlekamp. Factoring polynomials over large finite fields. Math. Comp.,

24:713735, 1970.

[13] A. Bostan, C.-P. Jeannerod, and É. Schost. Solving structured linear systems with

large displacement rank. Theor. Comput. Sci., 407(1-3):155–181, 2008.

[14] F. Boulier, F. Lemaire, and M. Moreno Maza. Pardi! In ISSAC’01, pages 38–47.

ACM, 2001.

[15] Y. Bouzidi. Résolution de systèmes bivariés et topologie de courbes planes. PhD

thesis, Université de Lorraine, 2014.

[16] Y. Bouzidi, S. Lazard, M. Pouget, and F. Rouillier. Separating linear forms for

bivariate systems. In ISSAC ’13, pages 117–124. ACM, 2013.

[17] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series.

J. ACM, 25(4):581–595, 1978.

[18] L. Cerlienco and M. Mureddu. From algebraic sets to monomial linear bases by

means of combinatorial algorithms. Discrete Math., 139:73–87, 1995.

[19] J. Cheng, S. Lazard, L. M. Peñaranda, M. Pouget, F. Rouillier, and E. P. Tsigaridas.

On the topology of real algebraic plane curves. Mathematics in Computer Science,

4(1):113–137, 2010.

[20] H. Cohen. A course in computational algebraic number theory. Springer-Verlag,

Berlin Heidelberg, third edition, 1996.

[21] D. A. Cox, J. B. Little, and D. O’Shea. Using algebraic geometry, volume 185.

Springer, New-York, 1998.

[22] X. Dahan, X. Jin, M. Moreno Maza, and É. Schost. Change of order for regular

chains in positive dimension. Theor. Comput. Sci., 392(1–3):37–65, 2008.

[23] X. Dahan, M. Moreno Maza, É. Schost, W. Wu, and Y. Xie. Lifting techniques for

triangular decompositions. In ISSAC’05, pages 108–115. ACM, 2005.

[24] X. Dahan and É. Schost. Sharp estimates for triangular sets. In ISSAC, pages

103–110. ACM, 2004.

143

[25] D. Diochnos, I. Emiris, and E. Tsigaridas. On the asymptotic and practical com-

plexity of solving bivariate systems over the reals. JSC, 44(7):818–835, 2009.

[26] M. El Kahoui. Topology of real algebraic space curves. J. Symb. Comput., 43(4):235–

258, 2008.

[27] P. Emeliyanenko and M. Sagraloff. On the complexity of solving a bivariate poly-

nomial system. In ISSAC’12. ACM, 2012.

[28] I. Z. Emiris and E. P. Tsigaridas. Real solving of bivariate polynomial systems. In

CASC, pages 150–161. Springer, 2005.

[29] J. von zur Gathen and J. Gerhard. Fast algorithms for Taylor shifts and certain

difference equations. In ISSAC, pages 40–47. ACM, 1997.

[30] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University

Press, 1999.

[31] P. Gaudry and É. Schost. Construction of secure random curves of genus 2 over

prime fields. In Eurocrypt’04, volume 3027 of LNCS, pages 239–256. Springer, 2004.

[32] P. Gianni and T. Mora. Algebraic solution of systems of polynomial equations using

Groebner bases. In Applied algebra, algebraic algorithms and error-correcting codes

(Menorca, 1987), volume 356 of Lecture Notes in Comput. Sci., pages 247–257.

Springer, 1989.

[33] M. Giusti, G. Lecerf, and B. Salvy. A Gröbner free alternative for polynomial system

solving. J. Comp., 17(1):154–211, 2001.

[34] M. W. Hirst HP. Bounding the roots of polynomials. Coll Math, J 28(4), 1997.

[35] X. Huang and V. Pan. Fast rectangular matrix multiplication and applications. J.

Complexity, 14(2):257–299, 1998.

[36] K. S. Kedlaya and C. Umans. Fast polynomial factorization and modular composi-

tion. SICOMP, 40(6):1767–1802, 2011.

[37] T. Krick, L. M. Pardo, and M. Sombra. Sharp estimates for the arithmetic Nullstel-

lensatz. Duke Math. J., 109:521–598, 2001.

[38] D. Lazard. Ideal bases and primary decomposition: case of two variables. J. Symbolic

Comput., 1(3):261–270, 1985.

144

[39] R. Leberton, E. Mehrabi, and É. Schost. On the complexity of solving bivariate

systems: the case of non-singular solutions. In ISSAC. ACM, 2013.

[40] G. Lecerf. Quadratic newton iteration for systems with multiplicity. Comp. Math.,

2:247–293, 2002.

[41] A. Lenstra. Lattices and factorization of polynomials over algebraic number fields.

LNCS, 144:3239, 1982.

[42] A. Lenstra, H. Lenstra, and L. Lovasz. Factoring polynomials with rational coeffi-

cients. Math. Ann., 261(4):515–534, 1982.

[43] X. Li, M. Moreno Maza, and W. Pan. Computations modulo regular chains. In

ISSAC, pages 239–246. ACM, 2009.

[44] X. Li, M. Moreno Maza, and É. Schost. Fast arithmetic for triangular sets: from

theory to practice. JSC, 44:891–907, 2009.

[45] T. M. M. G. Marinari and H. Moller. Groebner duality and multiplicities in poly-

nomial system solving. ISSAC ’95, pages 167–179, 1995.

[46] D. S. J. M. R. Garey. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman and Co. New York, 1979.

[47] F. Macaulay. The algebraic theory of modular systems. Cambridge University Press,

1916.

[48] M. Moreno Maza. On triangular decompositions of algebraic varieties. Technical

Report 4/99, NAG, UK, Presented at the MEGA-2000 Conference, Bath, UK, 1999.

http://www.csd.uwo.ca/∼moreno.

[49] B. Mourrain. Isolated points, duality and residues. Math. and its Appl., pages

469–493, 1997.

[50] C. Pascal and E. Schost. Change of order for bivariate triangular sets. In ISSAC’06,

pages 277–284. ACM, 2006.

[51] L. R. P.J. Weinberger. Factoring polynomials over algebraic number fields. ACM, 2

Issue 4:335–350, 1976.

[52] S. Pope and A. Szanto. Nearest multivariate system with given root multiplicities.

SCJ, 44(6):606–625, 2009.

145

[53] A. Poteaux and É. Schost. Modular composition modulo triangular sets and appli-

cations. Comput. Comp. (to appear).

[54] A. Poteaux and É. Schost. On the complexity of computing with zero-dimensional

triangular sets. JSC (to appear).

[55] D. Reischert. Asymptotically fast computation of subresultants. In ISSAC’97, pages

233–240. ACM, 1997.

[56] F. Rouillier. Solving zero-dimensional systems through the rational univariate rep-

resentation. Appl. Algebra Engrg. Comm. Comput., 9(5):433–461, 1999.

[57] F. Rouillier. On solving systems of bivariate polynomials. In ICMS, volume 6327 of

LNCS, pages 100–104. Springer, 2010.

[58] A. Schönhage. The fundamental theorem of algebra in terms of computational

complexity. Technical report, Univ. Tübingen, 1982.

[59] É. Schost. Computing parametric geometric resolutions. Appl. Algebra Engrg.

Comm. Comput., 13(5):349–393, 2003.

[60] V. Shoup. A new polynomial factorization algorithm and its implementation. JSC,

20(4):363–397, 1995.

[61] S. W. T. Ojika and T. Mitsui. Deflation algorithm for multiple roots of a system of

nonlinear equations. Math. An. and Appls., 96(2):463479, 1983.

[62] B. Trager. Algebraic factoring and rational function intergration. In SYMSAC,

pages 219–226. ACM, 1976.

[63] M. van Hoeij. Factoring polynomials and the knapsack problem. Number Theory,

95(2):167189, 2002.

[64] M. van Hoeij and A. Novocin. Gradual sub-lattice reduction and a new complexity

for factoring polynomials. LATIN, page 539553, 2010.

[65] V. Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd.

STOC ’12, pages 887–898. ACM, 2012.

[66] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University

Press, Cambridge, second edition, 2003.

[67] T. Weston. Algebraic Number Theory. Lecture Note given at Harvard, 1999.

146

[68] X. Wu and L. Zhi. Computing the multiplicity structure from geometric involutive

form. ISSAC’08, pages 325–332, 2008.

[69] H. Zassenhaus. On Hensel factorization. Journal of Number Theory, pages 291–311,

1969.

147

Curriculum Vitae

Name: Esmaeil Mehrabi

Education and

Degrees:

The University of Western Ontario

London, Ontario, Canada

Ph.D. in Computer Science, 2010-2014

Sharif University of Technology

Tehran, Iran

M.Sc. in Mathematics, 2005-2007

Kharazmi University

Tehran, Iran

B.Sc. in Mathematics, 2001-2005

148

	On The Applications of Lifting Techniques
	Recommended Citation

	Abstract
	Acknowledgements
	List of Algorithms
	List of Tables
	Introduction
	Solving bivariate polynomial systems
	Preliminaries
	Problem statement and related works

	Univariate polynomial factorization

	Solving bivariate polynomial system: the case of non-singular solutions
	Introduction and main results
	Preliminaries
	Notation and basic results
	Chinese Remainder techniques
	Specialization properties

	A direct algorithm
	Normal form algorithms
	Reduction modulo one triangular set
	Reduction modulo several triangular sets

	Proof of the main results
	One lifting step
	Main algorithm

	Experimental results

	Solving bivariate polynomial systems: the case of singular solutions
	Introduction
	Quantitative estimates
	Polynomials in general position
	Non-vanishing conditions
	Conservation of intersection multiplicity

	Finding zeros in a list
	Normal forms for derivatives
	Auxiliary results
	Proof of Proposition 3

	The deflation lemma
	The -decomposition
	Computing all mi's and Hi's
	Computing all Ji's
	Computing all ni's, ai's and Ki's

	Newton iteration
	Main algorithm
	Choosing parameters
	Computations modulo p
	Analysis of one lifting step
	Total cost

	Univariate Polynomial Factorization
	Introduction
	Factoring polynomials over Z and Q
	Some basic considerations
	The approach of van Hoeij

	Factoring polynomials over number fields
	Factor construction
	Factor Combination
	Bound on the Traces
	Choosing a Denominator
	Splitting Fields

