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Abstract
Both deterministic and stochastic volatility models have been used to price and hedge op-

tions. Observation of real market data suggests that volatility, while stochastic, is well modelled
as alternating between two states. Under this two-state regime-switching framework, we derive
coupled pricing partial differential equations (PDEs) with the inclusion of a state-dependent
market price of volatility risk (MPVR) term.

Since there is no closed-form solution for this pricing problem, we apply and compare
two approaches to solving the coupled PDEs, assuming constant Poisson intensities. First we
solve the problem using numerical solution techniques, through the application of the Crank-
Nicolson numerical scheme. We also obtain approximate solutions in terms of known Black-
Scholes formulae by reformulating our problem and applying the Cauchy-Kowalevski PDE
theorem. Both our pricing equations and our approximate solutions give way to the analysis
of the impact of our state-dependent MPVR on theoretical option prices. Using financially
intuitive constraints on our option prices and Deltas, we prove the necessity of a negative
MPVR. An exploration of the regime-switching option prices and their implied volatilities is
given, as well as numerical results and intuition supporting our mathematical proofs.

Given our regime-switching framework, there are several different hedging strategies to
investigate. We consider using an option to hedge against a potential regime shift. Some
practical problems arise with this approach, which lead us to set up portfolios containing a
basket of two hedging options. To be more precise, we consider the effects of an option going
too far in- and out-of-the-money on our hedging strategy, and introduce limits on the magnitude
of such hedging option positions. A complementary approach, where constant volatility is
assumed and investor’s risk preferences are taken into account, is also analysed.

Analysis of empirical data supports the hypothesis that volatility levels are affected by up-
coming financial events. Finally, we present an extension of our regime-switching framework
with deterministic Poisson intensities. In particular, we investigate the impact of time and stock
varying Poisson intensities on option prices and their corresponding implied volatilities, using
numerical solution techniques. A discussion of some event-driven hedging strategies is given.

Keywords: Analytic Approximation; Coupled Partial Differential Equations; European
Option; Hedging; Implied Volatility; Option Pricing; Quantitative Finance; Regime-Switching;
Risk Premia
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Chapter 1

Introduction

Both practitioners and academics have focused for decades on characterizing the randomness
of stock prices and on the underlying market conditions which affect their evolution. One of
the factors affecting stock price evolution is volatility: the degree to which prices fluctuate.
Volatility has long been known to vary over time in an essentially unpredictable way. Study-
ing empirical equity data can provide a way to formulate reasonable and tractable volatility
models. This thesis is based on the assumption that volatility is stochastic in a very particular
way; it fluctuates between a finite number of regimes. Our focus is on formulating financially
appropriate mathematical models to describe the evolution of volatility over time. This thesis
does not consider the important and interesting problem of volatility prediction. We will first
motivate the existence of stochastic volatility by studying empirical equity data.

Consider a price path such as that for the S&P/TSX Composite Index which is currently
composed of 244 of the largest public companies, by market capitalization, trading on the
Toronto Stock Exchange (TSX). One can observe an overall trend in the price path which
covers from 1984 to 2014, as illustrated in Figure 1.1 for the S&P/TSX Composite Index. It is
also immediately evident that daily prices move randomly and it is easy to see how they could
be hard to predict.

A common mathematical finance technique for studying stock price paths is to consider the
log returns of the asset prices. This allows for us to study the distribution of the returns and to
analyse their magnitude. Higher magnitude stock returns are associated with higher volatility
in the underlying stock price path. It is commonly thought that stock returns follow, at least
approximately, a lognormal distribution and as such this distribution is used as a benchmark
model in finance. In general, stock price returns are computed as follows:

u(t + 1) = ln
(
S (t + 1)

S (t)

)
, (1.1)

where S (t) is the price of the underlying asset at time t.

First, we plot a histogram containing the stock returns associated with the daily close prices,
which are illustrated in Figure 1.2.
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Figure 1.1: Historical daily close prices for the S&P/TSX Composite Index. Ticker symbol:
GSPTSE on the Toronto Stock Exchange. Data obtained from Yahoo Canada Finance [51],
covering from April 23, 1984 to March 25, 2014.
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Figure 1.2: Distribution of historical daily log returns for close prices of the S&P/TSX Com-
posite Index. Data obtained from Yahoo Canada Finance [51], covering from April 23, 1984
to March 25, 2014.
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The histogram shown in Figure 1.2 seems to indicates two magnitudes of stock returns,
visible in the separation in the data. It can also be observed that the data do not appear to
follow a lognormal distribution. Instead the data appears fat-tailed with outliers on either side
of the main data peak. Another way to analyze the data, in order to determine if there are
changes in the volatility, is to consider the log returns plotted against time.
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Figure 1.3: S&P/TSX Composite Index historical daily log returns. Data obtained from Yahoo
Canada Finance [51], covering from April 23, 1984 to March 25, 2014.

Looking at Figure 1.3, which depicts a time series of the daily log returns for the S&P/TSX
Composite index from 1984 to 2014 allows us to easily identify periods of abnormal volatility
levels. There are several “bursts” observed in the daily log returns. These bursts, which refer to
the observable increases in the magnitude of the daily log returns, are associated with increased
volatility. After these bursts are observed in the market, they can sometimes be associated with
known economic and financial events in history. High magnitude returns in 1987 can be at-
tributed to the stock market crash, known as Black Monday, on October 19, 1987. Around the
year 2001, increases in volatility levels can be explained by the Dot-Com Bubble and more
recently in the years 2007-2008, increases in volatility can be associated with the Subprime
Mortgage Crisis. This empirical data indicates that volatility is in fact stochastic and is influ-
enced by economic events. Interestingly enough, different economic and financial events could
also in return be a trigger for shifts in volatility levels. One part of this thesis involves explor-
ing the relationship between increases in volatility levels and the arrival of upcoming financial
events.

Although we can now observe that volatility is stochastic, there are several fundamental
frameworks which form the basis of options pricing in mathematical finance. Black and Sc-
holes [6] created the well known options pricing model in which a European option was priced
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on an underlying asset following geometric Brownian motion (GBM) with constant drift and
constant volatility. Although the constant volatility assumption has now been disproven, their
closed-form solution for European options and associated hedging arguments provide for a
nice benchmark model for comparison with subsequent options pricing frameworks.

There has been much recent interest on pricing and hedging options written on stocks fol-
lowing diffusion processes with random volatility coefficients. Heston [27] was a pioneer in
modelling volatility uncertainty, pricing a European option written on an underlying asset, the
price of which followed geometric Brownian motion (GBM) with stochastic volatility. He
chose his volatility process to incorporate mean reversion which allowed for the process to
revert to a long run average volatility level over time at a specified speed. Another popu-
lar stochastic volatility model is the Generalized Autoregressive Conditional Heteroskedas-
ticity (GARCH) model. Hansen and Lunde [24] compared 330 volatility models, including
variations of GARCH and ARCH (Autoregressive Conditional Heteroskedasticity) to forecast
out-of-sample intraday volatility for US equity data. Using a variety of statistical tests, they
showed that for small time intervals, a Markov regime-switching GARCH with two states out-
performed GARCH in forecasting volatility. Although this thesis does not consider parameter
estimation for Markov models, much progress has been made in this area, including work by
Xi and Mamon [53], [55], and Xi, Rodrigo, and Mamon [54].

Economists have long considered that the business cycle fluctuates between different stages,
such as expansion and contraction. Hamilton [22], [23] studied US post-war gross national
product (GNP) data and found that growth rates for specific regimes of a Markov process were
associated with different business cycles. More recently financial literature has proposed that
volatility can be well modelled by shifts between a finite number of regimes. The consideration
of the business cycle, as well as observation of market data, suggests that volatility is well
modelled by random moves between low and high regimes. Hardy [25] showed that a two-
regime lognormal model was sufficient to model equity data, in particular the Canadian Toronto
Stock Exchange (TSX), and was preferable over other statistical approaches used in volatility
modelling. Furthermore, Filardo [19] used a Markov model with time-varying transitional
probabilities to model business cycles, in particular two phases: expansion and contraction.

For simplicity and tractability, as well as for realism, we will consider a two-regime model
in which the volatility can switch between high and low regimes. Similarly to Merton’s [32]
model, which included Poisson jumps in the stock price dynamics, we model the shifts between
regimes by Poisson processes with deterministic intensities. We begin our study of this model
with constant Poisson intensities driving the switches between regimes. Later on, the intensities
are allowed to vary with time and stock price levels. We set up a hedge portfolio where we take
simultaneous positions in an asset and in an option, as suggested by Naik [35], to hedge against
our risk exposure. Using Black and Scholes type hedging and standard arbitrage arguments, we
derive a system of coupled partial differential equations (PDEs) representing state-dependent
option prices in a regime-switching market. Our generalized N-state pricing PDEs have a
similar form to those previously derived by Boyle and Draviam [9], Buffington and Elliott
[11], Di Masi et al. [15], and Naik [35], with the additional inclusion of a market price of
volatility risk term.

Assuming that volatility risk was not priced, Boyle and Draviam solved their PDE to obtain
prices in the risk-neutral measure. They considered the option price as a conditional expecta-
tion and took a Taylor series expansion approach to derive their pricing equations. Buffington
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and Elliott derived their regime-switching PDE using standard stochastic calculus techniques
involving expectations and martingales. On the other hand, Di Masi et al. derived their PDEs
using a hedging approach where they assumed that volatility could not be perfectly hedged and
thus they hedge by locally minimizing the associated risk. Under the risk-neutral measure, Ma-
mon and Rodrigo [31] derived an integral-type solution in terms of the Black-Scholes option
prices. Furthermore, Naik reduced the solution for a European call option on a regime switch-
ing asset, assuming zero market price of volatility risk, to a quadrature. Bollen [7] priced both
European and American options, written on underlying assets with regime-switching returns,
using a pentanomial lattice.

As a benchmark for our volatility framework and pricing problem, we will consistently
consider pricing and hedging a European call option throughout this thesis. We will solve
our regime-switching pricing problem both numerically and by using approximation solution
techniques. Both methods lead to further analysis of parameters such as the volatility risk
premium. It also allows for us to directly compare our model to the constant volatility Black-
Scholes model which allows for useful financial intuition of our switching framework.

Several key words arise frequently throughout our investigation of this framework. They
are defined below for ease of reading.

• Financial option: Contract which gives its owner the right but not the obligation to buy
or sell the underlying asset at a predetermined price (strike price) on or before a prede-
termined date (maturity date).

• European call option: Contract which gives its owner the right but not the obligation to
buy the underlying asset at the strike price on the maturity date.

• Option premium: Price charged for the option at contract initiation (time t = 0).

• Moneyness: Relationship between the underlying asset’s price and the strike price. It
describes the option’s intrinsic value (i.e. the value if the option were to expire today).
Options can be in-the-money, at-the-money, or out-of-the-money.

• Hedging: Trading strategy that aims to reduce or eliminate the risk associated with fi-
nancial instruments in our portfolio.

• Short position: Position in which an investor has sold a financial instrument to a coun-
terparty.

It should be noted that on actual options exchanges such as the Chicago Board Options
Exchange, options are usually exchanged for 100 units of the underlying asset [46]. For sim-
plicity, we will just assume our option is exercised for one unit of the stock.

A summary of the remainder of the thesis is now given. Chapter 2 provides an introduction
to the regime-switching volatility model upon which all subsequent work is based. An outline
of the stochastic equations governing this framework is given as well as a detailed discussion
surrounding the derivation of the corresponding options pricing equations. Chapters 3 through
6 will focus on a two-state volatility switching framework where the intensity of jumping be-
tween regimes is constant and known. Chapter 3 gives an overview of the Crank-Nicolson
numerical scheme as well as a generalized application to the one dimensional heat equation.
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A general application to financial pricing problems including our regime-switching model is
also given. Chapter 4 focuses on the derivation of the approximate solution via the Cauchy-
Kovalewski Theorem of PDEs and the intuition that results from this approximate solution.
Chapter 5 focuses on the effect of the volatility risk premium on option prices as well as fur-
ther investigation into its effect on implied volatility and investor risk preferences. Chapter 6
provides a detailed analysis of naive hedging strategies and those tailored to hedge specifically
against all risks present in a volatility switching model. A mathematical discussion of each
hedging strategy is included as well as a numerical study. Chapter 7 considers deterministic
switching intensities and the resulting hedging insight that can arise from this altered switching
model. Concluding remarks and a discussion of future work is given in Chapter 8.



Chapter 2

Regime-Switching Framework

We start with an introduction to regime-switching models in which the notation used in the
subsequent chapters will be introduced. We will consistently consider throughout a European
call option with payoff (S (T )−K)+ [28], in which we assume the investor takes a short position.
An overview of the market in which we are hedging and pricing is given as well as a description
of geometric Brownian motion. A detailed discussion of the regime-switching framework
follows, first for the generalized N-state, and then for the economically reasonable two-state
case.

2.1 Market Assumptions

In order to derive the option pricing and hedge ratio relations in the subsequent sections, certain
assumptions about the general market in which we are hedging and pricing options must hold.
Many of these assumptions are the same as under the Black-Scholes constant volatility option
pricing model [6].

First, we assume our financial market is such that the volatility can switch between a finite
number of volatility regimes. The stock price follows geometric Brownian motion while inde-
pendent Poisson processes are used to model the jumps between regimes. The expected return
will be independent of state and it is assumed that the state-dependent volatilities have constant
fixed values. The risk-free rate of interest is also assumed to be constant. Furthermore, it is
assumed that we can hedge continuously and buy any quantity of the hedging instruments in
our portfolio. This includes both the underlying asset and any hedging options. Finally, in the
absence of transaction costs, there exists no arbitrage opportunities. In other words, there is no
way for an investor to earn a riskless profit.

2.2 Geometric Brownian Motion

We assume the dynamics of our stock price (i.e. underlying asset) follow a widely used and
well known stochastic differential equation (SDE) in mathematical finance, otherwise known
as geometric Brownian motion (GBM). The stock price dynamics are as follows under the real
world measure P:

7
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dS (t) = µS (t) + σ(t)S (t)dW(t), (2.1)

where dW(t) is an increment of a Wiener process (i.e. W(t) is Brownian motion). The four
properties of a Wiener process are as follows:

• W(0) = 0,

• W(t + dt) −W(t) ∼ N(0, dt) for all t > 0 and dt > 0,

• all increments are independent,

• W(t) is continuous everywhere but differentiable nowhere.

Recall that in our model the expected return (i.e. drift) of the stock price, µ, is constant and
independent of state, while the volatility, σ(t), can switch between a finite number of regimes.

The first term in the SDE represents the deterministic growth of the stock price where the
drift dictates the overall direction in which the stock price evolves. The second term incorpo-
rates randomness into the model, allowing fluctuations in the stock price to vary with the level
of risk (i.e. volatility).

2.3 N-State Case

2.3.1 Regime-Switching Volatility
Given a finite number of volatility regimes, N, assuming volatility occupies volatility state i at
time t, there are N − 1 possible regimes to which the market can transition to at time t + dt.
Therefore at every time point we are exposed to the risk of N − 1 volatility jumps of differing
magnitude and direction. It is possible to remain in the currently occupied regime, however
there is no inherent risk associated with constant volatility, so no hedging option would be
needed in our portfolio if we knew volatility was constant.

Under the real world measure P, the volatility’s stochastic differential equation (SDE) is
governed by:

dσ(t) = σ(t)
N∑

j=1
j,i

(
Ji j − 1

)
dqi j(t), (2.2)

where

Ji j =
σ j − σ(t)
σ(t)

+ 1, (2.3)

and σ(t) = σi for i = 1, . . . ,N. Ji j represents the relative magnitude of the volatility jump from
regime i to regime j such that i , j where σi is the fixed volatility value for regime i.

dqi j(t) =

1 with probability λi j(S , t)dt
0 with probability 1 − λi j(S , t)dt

(2.4)
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where 0 ≤ λi jdt ≤ 1 must old. The independent Poisson processes, qi j(t), are also independent
of the Brownian motion W(t) embedded in the stock price dynamics. The Poisson intensity,
λi j(S , t) controls the likelihood of the jump from volatility state i at time t to volatility state j at
time t + dt.

2.3.2 Regime-Switching Option Dynamics

We want to consider the dynamics of an option, C(S , σi, t), written on an underlying asset, S (t)
with regime-switching volatility, σ(t). There are N−1 possible regime shifts from each regime
i. This does not include the possibility of remaining in the presently occupied regime.

Using the Itô-Doeblin formula for jump processes [39], we derive an expression for the
dynamics of our regime-switching option. For simplicity of notation, Ci(S , t) ≡ C(S , σi, t) and
S ≡ S (t).

Under the assumption that the time increment dt is very small:

dW(t) ≈
√

dt ⇒
(
dW(t)

)2
≈ dt, (2.5)

dW(t)dt ≈ 0, (2.6)(
dt

)2
≈ 0. (2.7)

We utilize the above results to obtain:

(
dS

)2
= µ2S 2(dt

)2
+ 2µσiS 2dtdW(t) + σ2

i S 2(dW(t)
)2

= σ2
i S 2dt, (2.8)

and as a result:

dCi(S , t) =
∂Ci

∂S
(S , t)dS +

∂Ci

∂t
(S , t)dt +

1
2
∂2Ci

∂S 2 (S , t)
(
dS

)2

+

N∑
j=1
j,i

[
C j(S , t) −Ci(S , t)

]
dqi j(t), (2.9)

⇒ dCi(S , t) =

(
∂Ci

∂t
(S , t) +

1
2
σ2

i S 2∂
2Ci

∂S 2 (S , t)
)
dt +

∂Ci

∂S
(S , t)dS

+

N∑
j=1
j,i

[
C j(S , t) −Ci(S , t)

]
dqi j(t). (2.10)

In the generalized N-state case, the regime-switching option is exposed to the risk of the
movements in the underlying asset, denoted by the term with dS . This option is also exposed
to all possible N − 1 jumps between volatility regimes, since the dynamics depend on terms
containing dqi j(t).

It should be noted that any type of option contract, written in a regime-switching volatility
market on an underlying asset following GBM, will be exposed to these same risks and as a
result, possess the same option dynamics.
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2.3.3 Pricing Equation Derivation

Here we present a detailed derivation of the equations for the value of an option contract written
on an asset with regime-switching volatility. The contract price depends, as usual, on the
stock price and time, but also on what state the volatility occupies. The result is a system of
coupled pricing equations, one for each volatility state. These equations may be developed
using standing hedging arguments dating back to Black and Scholes [6], as summarized in
Wilmott [49]. These arguments are shown in detail in the succeeding sections for completeness.

For simplicity, suppose we are hedging against a position in a plain vanilla option. In
particular, we consider an investor who takes a short position in a European call option. We can
hedge against the stock price movements by taking a position in the underlying asset. Since the
call option with price Ci(S , t) is written on an underlying asset with regime-switching volatility,
we need N − 1 hedging options to hedge against all N − 1 possible volatility switches. This is
under the assumption that there are no available instruments that directly hedge volatility risk.

Our portfolio, Πi(S , t), consists of a short position in a European call option Ci
1(S , t) struck

at K1 with maturity date T1. We can minimize and in some cases offset such risk by dynamically
hedging, where we readjust our hedge position in a portfolio as desired. As a result a position
is taken in the underlying asset S and N−1 hedge positions in other call options Ci

n(S , t) where
n = 2, . . . ,N, written on the same underlying asset but with different contract specifications.
In particular, we require that Tn > T1 for all n = 2, . . . ,N.s In order for the hedging strategy
to be non-redundant, we require that at least one of the strike price or the maturity date of our
hedging options differs from the initial shorted call option.

Basic hedging and arbitrage arguments are utilized under our framework to derive the cou-
pled pricing equations. This derivation is shown in complete detail below.

Our portfolio can be represented mathematically as:

Πi(S , t) = −Ci
1(S , t) + ∆i

1S +

N∑
n=2

∆i
nC

i
n(S , t). (2.11)

We are interested in how the randomness inherent in our portfolio affects the actual change
in the value of the hedge portfolio.

dΠi(S , t) = −dCi
1(S , t) + ∆i

1dS +

N∑
n=2

∆i
ndCi

n(S , t). (2.12)

The dynamics of all options are the same since they are all written on the same underlying
asset with volatility following a regime-switching process. Thus we can apply our result given
by equation (2.10) for dCi

n(S , t) for all n = 1, . . . ,N. The change in the portfolio value is now:

dΠi(S , t) = −

{(
∂Ci

1

∂t
(S , t) +

1
2
σ2

i S 2∂
2Ci

1

∂S 2 (S , t)
)
dt +

∂Ci
1

∂S
(S , t) +

N∑
j=1
j,i

[
C j

1(S , t) −Ci
1(S , t)

]}

+ ∆i
1dS +

N∑
n=2

∆i
n

{(
∂Ci

n

∂t
(S , t) +

1
2
σiS 2∂

2Ci
n

∂S 2 (S , t)
)
dt +

∂Ci
n

∂S
(S , t)dS
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+

N∑
j=1
j,i

[
C j

n(S , t) −Ci
n(S , t)

]
dqi j(t)

}
, (2.13)

⇒ dΠi(S , t) =

{
−

(
∂Ci

1

∂t
(S , t) +

1
2
σ2

i S 2∂
2Ci

1

∂S 2 (S , t)
)

+

N∑
n=2

∆i
n

(
∂Ci

n

∂t
(S , t) +

1
2
σ2

i S 2∂
2Ci

n

∂S 2 (S , t)
)}

dt

+

{
∆i

1 −
∂Ci

n

∂S
(S , t) +

N∑
n=2

∆i
n
∂Ci

n

∂S
(S , t)

}
dS

+

N∑
j=1
j,i

{ N∑
n=2

∆i
n

[
C j

n(S , t) −Ci
n(S , t)

]
−

[
C j

1(S , t) −Ci
1(S , t)

]}
dqi j(t). (2.14)

We want to choose our hedge ratios, ∆i
n, in such a way that the randomness associated with

the stock price movements and the volatility switching is eliminated. This is done by setting
the hedge ratios so that the groups of terms associated with dS and with all dqi j(t) vanish.

Thus, to hedge against movements in the underlying asset, choose:

∆i
1 =

∂Ci
1

∂S
(S , t) −

N∑
n=2

∆i
n
∂Ci

n

∂S
(S , t). (2.15)

To hedge against all possible N − 1 volatility jumps at time t,

N∑
n=2

∆i
n

[
C j

n(S , t) −Ci
n(S , t)

]
−

[
C j

1(S , t) −Ci
1(S , t)

]
= 0, (2.16)

for all j = 1, . . . ,N, j , i. (N − 1 equations)
Since we hedged out all the risk associated with movements in the underlying asset and

with jumps in volatility, the value of our portfolio only depends on the deterministic change
in time. Therefore we can set the change in portfolio value equal to the risk-free return on the
portfolio.

dΠi(S , t) = rΠi(S , t)dt, (2.17){
−

(
∂Ci

1

∂t
(S , t) +

1
2
σ2

i S 2∂
2Ci

1

∂S 2 (S , t)
)

+

N∑
n=2

∆i
n

(
∂Ci

n

∂t
(S , t) +

1
2
σ2

i S 2∂Ci
n

∂S 2 (S , t)
)}

dt

= r
{
−Ci

1(S , t) + ∆i
1S +

N∑
n=2

∆i
nC

i
n(S , t)

}
dt, (2.18)

−

(
∂Ci

1

∂t
(S , t) +

1
2
σ2

i S 2∂
2Ci

1

∂S 2 (S , t)
)

+

N∑
n=2

∆i
n

(
∂Ci

n

∂t
(S , t) +

1
2
σ2

i S 2∂Ci
n

∂S 2 (S , t)
)

= −rCi
1(S , t) + rS

(
∂Ci

1

∂S
dS −

N∑
n=2

∆i
n
∂Ci

n

∂S
(S , t)

)
+

N∑
n=2

∆i
nrCi

n(S , t), (2.19)

⇒−

(
∂Ci

1

∂t
(S , t) +

1
2
σ2

i S 2∂
2Ci

1

∂S 2 (S , t) + rS
∂Ci

1

∂S
(S , t) − rCi

1(S , t)
)
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+

N∑
n=2

∆i
n

(
∂Ci

n

∂t
(S , t) +

1
2
σ2

i S 2∂
2Ci

n

∂S 2 (S , t) + rS
∂Ci

n

∂S
(S , t) − rCi

n(S , t)
)

= 0. (2.20)

Defining the Black-Scholes type operator:

LBS (C(S , t)) =
∂C
∂t

(S , t) +
1
2
σ2S 2∂

2C
∂S 2 (S , t) + rS

∂C
∂S

(S , t) − rC(S , t), (2.21)

we can rewrite our equation as follows:

−LBS (Ci
1(S , t)) +

N∑
n=2

∆i
nLBS (Ci

n(S , t)) = 0 (2.22)

The values of ∆i
n, n = 2, . . . ,N are still unknown, however using the following equations

their value can be determined.

N∑
n=2

∆i
n

[
C j

n(S , t) −Ci
n(S , t)

]
−

[
C j

1(S , t) −Ci
1(S , t)

]
= 0, (N − 1 equations) (2.23)

− LBS (Ci
1(S , t)) +

N∑
n=2

∆i
nLBS (Ci

n(S , t)) = 0, (2.24)

for j = 1, . . . ,N where j , i.
We have an overdetermined system of equations, since we have N equations for N − 1

unknown variables. For such a system to be consistent (i.e. to have a solution), in matrix form
we must have det(A) = 0 where A is an N × N matrix. A general version of this matrix, A, for
our system is defined below.

A =



LBS (Ci
1(S , t)) LBS (Ci

2(S , t)) LBS (Ci
3(S , t)) . . . LBS (Ci

N(S , t))
C1

1(S , t) −Ci
1(S , t) C1

2(S , t) −Ci
2(S , t) C1

3(S , t) −Ci
3(S , t) . . . C1

N(S , t) −Ci
N(S , t)

C2
1(S , t) −Ci

1(S , t) C2
2(S , t) −Ci

2(S , t) C2
3(S , t) −Ci

3(S , t) . . . C2
N(S ,t) −Ci

N(S , t)
...

...
...

. . .
...

CN
1 (S , t) −Ci

1(S , t) CN
2 (S , t) −Ci

2(S , t) CN
3 (S , t) −Ci

3(S , t) . . . CN
N (S , t) −Ci

N(S , t)


.

It is important to note that this matrix does not include the case where the volatility does
not switch regimes. This means that the row where the entries are as follows Ci

n(S , t)−Ci
n(S , t)

for any i, n = 1, . . . ,N is removed from the matrix.
Given that we occupy a certain volatility regime i at time t, one of the rows in matrix A

defined above will only consist of zeros. In order to determine our hedge ratios and our pricing
equations, conditional on volatility state i, we remove this row from the matrix in order to
define our matrix A and find what conditions are necessary such that det(A) = 0.

Following methods shown by Wilmott [49] for multi-factor interest rate models, we know
that the only way det(A) = 0 can hold is if the first row of the matrix is a linear combination of
the other N − 1 rows in the matrix. This implies that:
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LBS (Ci(S , t)) =

N∑
j=1
j,i

f (S , t, σi, σ j)
[
C j(S , t) −Ci(S , t)

]
, (2.25)

holds for all options in the portfolio. Now reduce the notation for fi j(S , t) ≡ f (S , t, σi, σ j).
Following previous stochastic volatility techniques [27], we allow this function to be in

terms of the intensity of the Poisson process, λi j(S , t), (i.e. the drift of our volatility process)
and the state-dependent market price of volatility risk, m(S , t, σi, σ j). Under our framework,
the market price of volatility risk (MPVR) is the market’s view of the reward that should be
attached to the risk one takes on by taking a short or long position in a particular hedging
instrument, in our case a European call option. The MPVR for our problem is state-dependent,
as one does not expect to take on the same amount of risk in one volatility state with a fixed
risk level compared to another state with a risk level of differing magnitude. Let mi j(S , t) ≡
m(S , t, σi, σ j) to reduce the notation.

fi j(S , t) = −
(
λi j(S , t) − mi j(S , t)

)
. (2.26)

Thus,

LBS (Ci(S , t)) =

N∑
j=1
j,i

fi j(S , t)
[
C j(S , t) −Ci(S , t)

]
, (2.27)

∂Ci

∂t
(S , t) +

1
2
σ2

i S 2∂
2Ci

∂S 2 (S , t) + rS
∂Ci

∂S
(S , t) − rCi(S , t)

=

N∑
j=1
j,i

fi j(S , t)
[
C j(S , t) −Ci(S , t)

]
, (2.28)

⇒
∂Ci

∂t
(S , t) +

1
2
σ2

i S 2∂
2Ci

∂S 2 (S , t) + rS
∂Ci

∂S
− rCi(S , t)

−

N∑
j=1
j,i

fi j(S , t)
[
C j(S , t) −Ci(S , t)

]
= 0. (2.29)

Our regime-switching system of option pricing partial differential equations (PDEs) are:

∂Ci

∂t
(S , t) +

1
2
σ2

i S 2∂
2Ci

∂S 2 (S , t) + rS
∂Ci

∂S
(S , t) − rCi(S , t)

−

N∑
j=1
j,i

fi j(S , t)
[
C j(S , t) −Ci(S , t)

]
= 0, (2.30)

subject to:

Ci(S ,T ) = C j(S ,T ) =
(
S (T ) − K

)+
, (2.31)
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Ci(0, t) = C j(0, t) = 0, (2.32)

lim
S→∞

∂Ci

∂S
(S , t) = lim

S→∞

∂C j

∂S
(S , t) = 1, (2.33)

where:
fi j(S , t) = −

(
λi j(S , t) − mi j(S , t)

)
, (2.34)

for all i = 1, . . . ,N where i , j.
One special, if not particularly realistic, market contains investors who are indifferent to

the risk inherent in the fluctuations between volatility states. Considering investors of this type
allows us to neglect the risk premium in our pricing equation by assuming mi j(S , t) = 0 for
all i = 1, . . . ,N where i , j. Such investors are not necessarily indifferent to the risk of stock
price fluctuations, however it is rather that the Delta hedging argument removes this type of
risk from their portfolios. Thus our coupled system of PDEs reduces to:

∂Ci

∂t
(S , t) +

1
2
σ2

i S 2∂
2Ci

∂S 2 (S , t) + rS
∂Ci

∂S
(S , t) − rCi(S , t)

+

N∑
j=1
j,i

λi j(S , t)
[
C j(S , t) −Ci(S , t)

]
= 0. (2.35)

The above result is consistent with Boyle and Draviam’s [9] result, which was derived using
a Taylor series expansion of a European call option under the risk-neutral measure. If there is
no chance of switching from the initial volatility state i (i.e. λi j(S , t) = 0 for all i , j), this
result reduces to the standard Black-Scholes options pricing PDE [6].

∂Ci

∂t
(S , t) +

1
2
σ2

i S 2∂
2Ci

∂S 2 (S , t) + rS
∂Ci

∂S
(S , t) − rCi(S , t) = 0. (2.36)

Although we have derived pricing equations for options under our regime-switching frame-
work, the hedge ratios for all N − 1 hedging options used in our portfolio still need to be deter-
mined. To determine their values, we will solve det(A) = 0 by using co-factor expansion along
the first row of the matrix A.

det(A) =

N∑
n=1

(−1)1+na1nM1n = 0, (2.37)

where M1n is the minor of the matrix A and a1n is the nth entry along the first row of the matrix.

N∑
n=1

(−1)1+na1nM1n = 0. (2.38)

Since, a1n = LBS (Ci
n(S , t)) for all n,

N∑
n=1

(−1)1+nLBS (Ci
n(S , t))M1n = 0, (2.39)
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⇒LBS (Ci
1(S , t))M11 +

N∑
n=2

(−1)1+nLBS (Ci
n(S , t))M1n = 0. (2.40)

Making use of equation (2.24),

M11

N∑
n=2

∆i
NLBS (Ci

n(S , t)) +

N∑
n=2

(−1)1+nLBS (Ci
n(S , t))M1n = 0, (2.41)

N∑
n=2

LBS (Ci
n(S , t))

(
∆i

nM11 + (−1)1+nM1n

)
= 0, (2.42)

N∑
n=2

LBS (Ci
n(S , t))

(
∆i

nM11 − (−1)nM1n

)
= 0. (2.43)

Since Ci
n(S , t) is a regime-switching option with non-constant volatility it follows that

LBS (Ci
n(S , t)) , 0. In order for equation (2.43) to hold, we must have:

∆i
n =

(−1)nM1n

M11
, (2.44)

for all n = 2, . . . ,N.
Although we chose to set up and hedge our portfolio for an investor taking a short position

in a European call option, it is important to note that the same coupled pricing PDE can be
derived from other option positions. For our purposes, these include any long position in a
call option or short/long position in a put option. This PDE is not limited to European options
as well. As long as the option is exposed to the risk of the same underlying asset and regime-
switching volatility, the same pricing equations will be derived. It is the terminal condition (i.e.
the payoff of the option) and the boundary conditions applying to the pricing equation which
distinguish option type. The hedge ratios will take on the same form, however whether or not
we choose to short or long our hedging instruments will change depending on our initial option
position.

2.4 Two-State Case
The results from the N-state case can be specialized for a realistic two-state regime-switching
volatility framework. It will be assumed that the volatility can switch between a high volatility
regime and a low volatility regime with respective volatility levels σH and σL such that σH ≥

σL.
Specializing equations (2.2) and (2.3) for two states, our regime-switching framework un-

der the real world measure P is:

dS (t) = µS (t)dt + σ(t)S (t)dW(t), (2.45)
dσ(t) =

(
σH − σ(t)

)
dqLH(t) +

(
σL − σ(t)

)
dqHL(t), (2.46)
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where:

dqi j(t) =

1 with probability λi j(S , t)dt
0 with probability 1 − λi j(S , t)dt

(2.47)

for all i ∈ {H, L} where i , j.
For the two regime case, our coupled system of pricing partial differential equations is:

∂Ci

∂t
(S , t)+

1
2
σ2

i S 2∂
2Ci

∂S 2 (S , t)+ rS
∂Ci

∂S
(S , t)− rCi(S , t)− fi j(S , t)

[
C j(S , t)−Ci(S , t)

]
= 0, (2.48)

subject to:

Ci(S ,T ) = C j(S ,T ) =
(
S (T ) − K

)+
, (2.49)

Ci(0, t) = C j(0, t) = 0, (2.50)

lim
S→∞

∂Ci

∂S
(S , t) = lim

S→∞

∂C j

∂S
(S , t) = 1, (2.51)

where:
fi j(S , t) = −

(
λi j(S , t) − mi j(S , t)

)
, (2.52)

for all i ∈ {H, L} where i , j.
Our hedge ratios used to hedge against the risks of movements in the underlying asset and

the switching between volatility regimes are given below.

∆i
1 =

∂Ci
1

∂S
(S , t) −

(
C j

1(S , t) −Ci
1(S , t)

C j
2(S , t) −Ci

2(S , t)

)
∂Ci

2

∂S
(S , t), (2.53)

∆i
2 =

C j
1(S , t) −Ci

1(S , t)

C j
2(S , t) −Ci

2(S , t)
. (2.54)

It should be noted that since we now only have the risk of switching to the opposing volatil-
ity regime, we only need one hedging option whose position is given by (2.54).

The prices that result from solving equation (2.48) are those priced under the risk neutral
measure Q. The dynamics of both our stock price path and volatility under this risk neutral
measure are given below.

dS (t) = rS (t)dt + σ(t)S (t)dW̃(t), (2.55)
dσ(t) =

(
σH − σ(t)

)
dq̃LH(t) +

(
σL − σ(t)

)
dq̃HL(t), (2.56)

where:

dq̃i j(t) =

1 with probability
(
λi j(S , t) − mi j(S , t)

)
dt

0 with probability 1 −
(
λi j(S , t) − mi j(S , t)

)
dt

(2.57)
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and

dW(t) = dW̃(t) −
(
µ − r
σ

)
dt (2.58)

for all i ∈ {H, L} where i , j. The market price of stock risk (i.e. µ−r
σ

) is taken into account as
we change to the risk neutral measure.

Unless otherwise noted, for the remainder of the thesis both the Poisson intensities λi j(S , t)
and the state-dependent market price of volatility risk mi j(S , t) are assumed to take on constant
values λi j and mi j respectively.

Now that we have introduced our regime-switching framework, which provides the back-
bone for the remainder of this thesis, we must investigate numerical solution techniques for
partial differential equations which can easily be extended to our coupled pricing problem.



Chapter 3

Numerical Solution

In Chapter 2 we introduced a regime-switching framework for volatility. We considered an
investor with a short position in a European call option and derived partial differential equations
to price options on a regime-switching underlying asset. Although we previously introduced
both the generalized N-state case and the two-state case, for the remainder of this thesis we
will focus primarily on the two-state case where the volatility can switch randomly between a
high and a low volatility state. This case provides a nice balance between intuition and realism.

Our pricing problem has no closed-form solution and as such requires a solution via nu-
merical methods. We will employ a finite difference method where derivatives in the equation
in question are replaced by discrete approximations [38]. These discrete approximations are
found by taking a Taylor series expansion of the function.

In general for initial value problems, when the equations are approximated by finite dif-
ference representations of the embedded derivatives, we must solve for the solution on a grid.
Given some initial condition, we can work forward in time to determine the full solution set
over the given time interval. All options pricing problems are considered terminal value prob-
lems as the known option payoff functions give rise to terminal data. Given that most numerical
methods are generally applied to initial value problems, we will apply a time reversal to our
problem to remove tedious discussion of the above mentioned point. Introducing a new vari-
able τ = T − t transforms our terminal value pricing problem to an initial value problem,
allowing us to apply the methods discussed in this chapter directly.

We choose to solve our coupled pricing problem using the Crank-Nicolson numerical
scheme. This method will be discussed in detail in the next section. In this chapter, we will
first show how to apply the Crank-Nicolson method to the classical one-dimensional heat equa-
tion. Our results will then be generalized to the Black-Scholes pricing equation, a well-known
financial mathematics partial differential equation. Then we will apply our numerical method
to a coupled system of one-dimensional heat equations, which produces a slightly more in-
volved numerical problem than the uncoupled case. These results will then be generalized to
our system of regime-switching pricing partial differential equations for the two-state case.

18
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3.1 Overview of Crank-Nicolson Numerical Scheme
To numerically solve our pricing partial differential equations, we choose to use Crank-Nicolson
over other numerical methods, such as an explicit finite difference scheme, due to its mathe-
matical and computational benefits. We chose to implement Crank-Nicolson as it is uncondi-
tionally stable, has second order convergence, and provides increased accuracy in the solution
[38]. These associated benefits have also been proven to hold when the numerical scheme is
applied to coupled partial differential equations [47]. These results hold for all choices of space
and time increment sizes as well as all constant and non-constant coefficients appearing within
the equations.

In general, the Crank-Nicolson numerical scheme takes the average of the implicit and ex-
plicit finite difference methods applied to the space derivatives in the equation. The time deriva-
tive uses a backward difference equation. Consider a general problem for function U(x, t),

∂U
∂t

(x, t) = F

(
U(x, t), x, t,

∂U
∂x

(x, t),
∂2U
∂x2 (x, t)

)
. (3.1)

For all sections discussing the implementation of the Crank-Nicolson method, m will de-
note the space index while l denotes the time index. As a result, dx represents the space
increment and dt represents the time increment. The above PDE is discretized where we de-

note U(x, t) = U(mdx, ldt) ≡ U l
m and F

(
U(x, t), x, t,

∂U
∂x

(x, t),
∂2U
∂x2 (x, t)

)
≡ F l

m. The Crank-

Nicolson numerical scheme implies we rewrite our discretized PDE as follows.

U l+1
m − U l

m

dt
=

1
2

[
F l

m + F l+1
m

]
. (3.2)

In general, we use central differences for the partial derivatives in space:

∂U
∂x

(x, t) =
U l

m+1 − U l
m−1

2dx
, (3.3)

∂2U
∂x2 (x, t) =

U l
m+1 − 2U l

m + U l
m−1

dx2 . (3.4)

After implementing the scheme, we end up with a matrix problem:

Bl+1 ~U l+1 = Al ~U l, (3.5)

where A and B are square tridiagonal matrices of size M − 1. The above system is solved for
every time step moving forward in time given an initial condition ~U1. Since the associated
problem will have defined boundary conditions, for the solution vector ~U l+1 of size M + 1, we
only need to solve for the middle M − 1 entries (i.e. U l+1

1 and U l+1
M+1 are given by the boundary

conditions) at every time iteration. If the coefficients in the original PDE are time dependent,
then both of the tridiagonal matrices must be redefined at every time point before solving for
the solution vector. Given that we have a time vector of size L̃ + 1, we iterate through time L̃
times until we have a solution for the entire time interval defined in the original problem.
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3.2 Application to the One-Dimensional Heat Equation
First, we apply the Crank-Nicolson numerical scheme to a classical applied mathematics partial
differential equation. This equation is called the one-dimensional heat equation, otherwise
known as the diffusion equation.

∂U
∂t

(x, t) = D(x, t)
∂2U
∂x2 (x, t). (3.6)

Initial and boundary conditions are arbitrary, but we assume they are defined. We assume
that the form of the boundary conditions are either Dirichlet or Neumann and homogeneous or
non-homogeneous, or any mixture thereof.

Applying central differences to the space partial derivatives and backwards differences to
the time partial derivative yields:

U l+1
m − U l

m

dt
=

1
2

{
Dl

m

(
U l

m+1 − 2U l
m + U l

m−1

dx2

)
+ Dl+1

m

(
U l+1

m+1 − U l+1
m + U l+1

m−1

dx2

)}
, (3.7)

U l+1
m − U l

m =
1
2

dt
dx2 Dl

m

(
U l

m+1 − 2U l
m + U l

m−1

)
+

1
2

dt
dx2 Dl+1

m

(
U l+1

m+1 − 2U l+1
m + U l+1

m−1

)
. (3.8)

Define:

al
m =

1
2

dt
dx2 Dl

m. (3.9)

Then,

−al+1
m U l+1

m−1 +
(
1 + 2al+1

m

)
U l+1

m − al+1
m U l+1

m+1 = al
mU l

m−1 +
(
1 − 2al

m

)
U l

m + al
mU l

m+1. (3.10)

This results in a linear system that must be solved at every time point l:

Bl+1 ~U l+1 = Al ~U l, (3.11)

where:

Bl+1 =



1 + 2al+1
2 −al+1

3 0 . . . 0

−al+1
2 1 + 2al+1

3 −al+1
4

. . .
...

0 . . .
. . .

. . . 0
...

. . .
. . .

. . . −al+1
M

0 . . . 0 −al+1
M−1 1 + 2al+1

M


,

and

Al =



1 − 2al
2 al

3 0 . . . 0

al
2 1 − 2al

3 al
4

. . .
...

0 . . .
. . .

. . . 0
...

. . .
. . .

. . . al
M

0 . . . 0 al
M−1 1 − 2al

M


.
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Our tridiagonal matrices of size M − 1 defined above are redefined at every time iteration.
We solve for the solution vector, ~U l+1, using the built-in left matrix division function in Matlab,
iterating through for all l = 2 . . . L̃ + 1.

To analyse the effectiveness of this numerical method, we give a comparison of the numer-
ical solution using Crank-Nicolson to the closed-form solution of the following problem with
homogeneous Dirichlet boundary conditions.

∂U
∂t

(x, t) = D
∂2U
∂x2 (x, t), (3.12)

subject to:

U(0, t) = U(M̃, t) = 0, (3.13)

U(x, 0) = sin
(
πx
M̃

)
. (3.14)

The above problem has the solution:

U(x, t) = e−
Dπ2t
M̃2 sin

(
πx
M̃

)
. (3.15)

Diffusion Coefficient D 1
2

Length of Space Interval M̃ 10
Length of Time Interval T 1

Number of Time Increments L̃ 100

Table 3.1: Parameters used in the implementation of the Crank-Nicolson numerical scheme for
the one-dimensional heat equation.

In the left hand plot given in Figure 3.1, we can observe that it is difficult to observe the
discrepancies between the true solution of the PDE and the numerical solution provided by
the Crank-Nicolson method. The plot of the absolute error between the two solutions shows
that, although there is some difference between the solutions, this difference has a magnitude
of 10−6 which is negligible given that the actual solution is of magnitude 10−1. This motivates
us to apply the Crank-Nicolson numerical scheme to the Black-Scholes pricing problem which
has a well-known closed-form solution.
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Figure 3.1: Comparison of the numerical and true solution for one-dimensional heat equation
at time t = 1. All parameters as given in Table 3.1.

3.3 Application to the Black-Scholes PDE

Recall the Black-Scholes pricing partial differential equation for a general option with price
U(S , τ), written on an underlying asset following geometric Brownian motion with constant
drift and volatility. Our space variable is now the stock price variable S . Recall that we
reversed time using τ = T − t, thus our pricing PDE is:

∂U
∂τ

(S , τ) =
1
2
σ2S 2∂

2U
∂S 2 (S , τ) + rS

∂U
∂S

(S , τ) − rU(S , τ). (3.16)

The initial and boundary conditions depend on the type of option contract. We will assume
they are defined for the implementation of numerical methods.

We first need to replace our partial derivatives embedded in our pricing PDE with finite
difference approximations. We assume that our time increment is given by dτ = dt. Then
using the fact that S = mdS where dS is our stock price increment, our pricing PDE becomes:

U l+1
m − U l

m

dt
=

1
2

{[
1
2
σ2(mdS )2

(
U l

m+1 − 2U l
m + U l

m−1

dS 2

)
+ rmdS

(
U l

m+1 − U l
m−1

2dS

)
− rU l

m

]
+

[
1
2
σ2(mdS )2

(
U l+1

m+1 − 2U l+1
m + U l+1

m−1

dS 2

)
+ rmdS

(
U l+1

m+1 − U l+1
m−1

2dS

)
− rU l+1

m

]}
,

(3.17)
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U l+1
m − U l

m =
dt
2

[
1
2
σ2m2

(
U l

m+1 − 2U l
m + U l

m−1

)
+

rm
2

(
U l

m+1 − U l
m−1

)
− rU l

m

+
1
2
σ2m2

(
U l+1

m+1 − 2U l+1
m + U l+1

m−1

)
+

rm
2

(
U l+1

m+1 − U l+1
m−1

)
− rU l+1

m

]
. (3.18)

Rearranging our finite difference approximations with all l + 1 terms on the left hand side
and all the l terms on the right hand side yields:

−
1
4

mdt
(
σ2m − r

)
U l+1

m−1 +

[
1 +

1
2

dt
(
σ2m2 + r

)]
U l+1

m −
1
4

mdt
(
σ2m + r

)
U l+1

m+1

=
1
4

mdt
(
σ2m − r

)
U l

m−1 +

[
1 −

1
2

dt
(
σ2m2 + r

)]
U l

m +
1
4

mdt
(
σ2m + r

)
U l

m+1. (3.19)

Noticing our coefficients in our discretized PDE only vary with stock price, define:

am =
1
4

mdt
(
σ2m − r

)
, (3.20)

bm = −
1
2

dt
(
σ2m2 + r

)
, (3.21)

cm =
1
4

mdt
(
σ2m + r

)
. (3.22)

Then,

−amU l+1
m−1 +

(
1 − bm

)
U l+1

m − cmU l+1
m−1 = amU l

m−1 +
(
1 + bm

)
U l

m + cmU l
m−1. (3.23)

This results in a linear system that needs to be solved for ~U l+1 at every time point l + 1.

B ~U l+1 = A ~U l, (3.24)

where:

B =



1 − b2 −c3 0 . . . 0

−a2 1 − b3 −c4
. . .

...

0 . . .
. . .

. . . 0
...

. . .
. . .

. . . −cM

0 . . . 0 −aM−1 1 − bM


,

and

A =



1 + b2 c3 0 . . . 0

a2 1 + b3 c4
. . .

...

0 . . .
. . .

. . . 0
...

. . .
. . .

. . . cM

0 . . . 0 aM−1 1 + bM


.
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The matrices A and B are square and of size M − 1. Notice that A and B do not vary with
time, therefore we do not need to redefine their entries at every time iteration. Since we have
boundary conditions that account for U l+1

1 and U l+1
M+1 for every time step l+1, we are once again

only solving for the middle entries of the solution vector ~U l+1.
An illustrated example of implementing the Crank-Nicolson numerical scheme to solve for

the call option value for a particular set of parameters given in Table 3.2 is shown in Figure
3.2.

Expected Return r 0%
Volatility σ 30%

Strike Price K $100
Maturity Date T 1 year

Number of Time Increments L̃ 252

Table 3.2: Parameters used in the implementation of the Crank-Nicolson numerical scheme for
the Black-Scholes PDE.
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Figure 3.2: Comparison of the numerical and true solution for the Black-Scholes PDE at time
t = 0. All parameters as given in Table 3.2.

The numerical solution shown in Figure 3.2 behaves as expected, displaying the same prop-
erties and curvature associated with the Black-Scholes call price. Once again the discrepancies
are unobservable in the solution vector plot so the absolute error is considered. Since the call
price solution has a magnitude of either 101 or 102 while the absolute error has a magnitude of
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10−2, the error is considered minimal. Thus solving the Black-Scholes PDE using numerical
methods provides an accurate approximation to our true option price.

Since our regime-switching pricing problem is a coupled system of PDEs, it is advisable
to first test the performance of the Crank-Nicolson numerical scheme on a system of simpler
PDEs, such as coupled one-dimensional heat equations.

3.4 Application to Coupled One-Dimensional Heat Equations
In general, numerical schemes applied to coupled systems of equations are slightly more in-
volved than those applied to uncoupled equations. This is due to the fact that there are now
two solution grids which must be solved simultaneously. If we visualize this scenario, the re-
sult is two solution grids which must ”talk” and provide information to one another at every
time iteration in order for both equations to be solved numerically. Therefore it makes sense to
consider a simple coupled system of equations before generalizing the results to our system of
coupled pricing partial differential equations.

t t
dt dt

x x

dx dx

U2
M

V2
M

U1
M−1

U1
M

U1
M+1

U2
M−1

U2
M+1

V1
M−1

V1
M

V1
M+1

V2
M−1

V2
M+1

Figure 3.3: Visualization of coupled numerical grids interacting simultaneously to solve cou-
pled PDEs for a single set of points (U2

M,V2
M).

Figure 3.3 allows us to visualize how the solution vectors for each grid depend directly on
points from both numerical grids. This dependency adds a layer of complexity in the numerical
methods used to solve the coupled systems. The dashed lines represent the points used to solve
for the point V2

M while the solid lines represent the points used to solve for the point U2
M. When

the Crank-Nicolson method is being fully implemented, the solution vectors for a specific time
point ~U l+1 and ~V l+1 are solved simultaneously.



26 Chapter 3. Numerical Solution

First we will consider a general coupled system of one-dimensional heat equations.

∂U
∂t

(x, t) = P(x, t)
∂2U
∂x2 (x, t) + Q(x, t)V(x, t), (3.25)

∂V
∂t

(x, t) = R(x, t)
∂2V
∂x2 (x, t) + W(x, t)U(x, t). (3.26)

The coefficients P(x, t),Q(x, t),R(x, t) and W(x, t) are assumed to be deterministic. The
initial conditions and boundary conditions for both functions in this system are assumed to be
defined.

For the first PDE, replacing the partial derivatives in the coupled system with finite differ-
ence approximations yields:

U l+1
m − U l

m

dt
=

1
2

{[
Pl

m

(
U l

m+1 − 2U l
m + U l

m−1

dx2

)
+ Ql

mV l
m

]
+

[
Pl+1

m

(
U l+1

m+1 − 2U l
m + U l

m−1

dx2

)
+ Ql+1

m V l+1
m

]}
, (3.27)

U l+1
m − U l

m =
1
2

dt
dx2 Pl

m

(
U l

m+1 − 2U l
m + U l

m−1

)
+

1
2

dtQl
mV l

m

+
1
2

dt
dx2 Pl+1

m

(
U l+1

m+1 − 2U l+1
m + U l+1

m−1

)
+

1
2

dtQl+1
m V l+1

m . (3.28)

Define:

al
m =

1
2

dt
dx2 Pl

m, (3.29)

bl
m =

1
2

dtQl
m. (3.30)

Then,

− al+1
m U l+1

m−1 +
(
1 + 2al+1

m

)
U l+1

m − al+1
m U l+1

m+1 − bl+1
m V l+1

m

= al
mU l

m−1 +
(
1 − 2al

m

)
U l

m + al
mU l

m+1 + bl
mV l

m. (3.31)

Rewritten in matrix form:

Bl+1 ~U l+1 + Cl+1~V l+1 = Am ~U l −Cl~V l, (3.32)

where:

Bl+1 =



1 + 2al+1
2 −al+1

3 0 . . . 0

−al+1
2 1 + 2al+1

3 −al+1
4

. . .
...

0 . . .
. . .

. . . 0
...

. . .
. . .

. . . −al+1
M

0 . . . 0 −al+1
M−1 1 + 2al+1

M


,
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Al+1 =



1 − 2al
2 al

3 0 . . . 0

al
2 1 − 2al

3 al
4

. . .
...

0 . . .
. . .

. . . 0
...

. . .
. . .

. . . al
M

0 . . . 0 al
M−1 1 − 2al

M


,

and

Cl =


−bl

2 0 . . . 0

0 −bl
3

. . .
...

...
. . .

. . . 0
0 . . . 0 −bl

M

 .
Similarly for the second PDE in our coupled system:

V l+1
m − V l

m

dt
=

1
2

{[
Rl

m

(
V l

m+1 − 2V l
m + V l

m−1

dx2

)
+ W l

mU l
m

]
+

[
Rl+1

m

(
V l+1

m+1 − 2V l+1
m + V l+1

m−1

dx2

)
+ W l+1

m U l+1
m

]}
, (3.33)

V l+1
m − V l

m =
1
2

dt
dx2 Rl

m
(
V l

m+1 − 2V l
m + V l

m−1
)

+
1
2

dtW l
mU l

m

+
1
2

dt
dx2 Rl+1

m
(
V l+1

m+1 − 2V l+1
m + V l+1

m−1
)

+
1
2

dtW l+1
m U l+1

m . (3.34)

Define:

ãl
m =

1
2

dt
dx2 Rl

m, (3.35)

b̃l
m =

1
2

dtW l
m. (3.36)

Then,

− ãl+1
m V l+1

m−1 +
(
1 + 2ãl+1

m
)
V l+1

m − ãl+1
m V l+1

m+1 − b̃l+1
m U l+1

m

= ãl
mV l

m−1 +
(
1 − 2ãl

m
)
V l

m + ãl
mV l

m+1 + b̃l
mU l

m. (3.37)

Our linear system of equations is:

B̃l+1~V l+1 + C̃l+1 ~U l+1 = Ãl~V l − C̃l ~U l, (3.38)

where:

B̃l+1 =



1 + 2ãl+1
3 −ãl+1

3 0 . . . 0

−ãl+1
2 1 + 2ãl+1

3 −ãl+1
4

. . .
...

0 . . .
. . .

. . . 0
...

. . .
. . .

. . . −ãl+1
M

0 . . . 0 −ãl+1
M−1 1 + 2ãl+1

M


,
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Ãl =



1 − 2ãl
2 ãl

3 0 . . . 0

ãl
2 1 − 2ãl

3 ãl
4

. . .
...

0 . . .
. . .

. . . 0
...

. . .
. . .

. . . ãl
M

0 . . . 0 ãl
M−1 1 − 2ãl

M


,

and

C̃l =


−b̃l

2 0 . . . 0

0 −b̃l
3

. . .
...

...
. . .

. . . 0
0 . . . 0 −b̃l

M

 .
Thus together, we have a system of two equations with two unknowns.

Bl+1 ~U l+1 + Cl+1~V l+1 = Al ~U l −Cl~V l, (3.39)

B̃l+1~V l+1 + C̃l+1 ~U l+1 = Ãl~V l − C̃l ~U l. (3.40)

Taking linear combinations of the above equations, we can solve for ~U l+1 and ~V l+1 for all
l = 2 . . . L̃ + 1 since we are solving forward in time. First we will solve for the solution vector
~U l+1. Define:

Dl = Al ~U l −Cl~V l, (3.41)

D̃l = Ãl~V l − C̃l ~Um. (3.42)

Then our system becomes:

Dl = Bl+1 ~U l+1 + Cl+1~V l+1, (3.43)

D̃l = B̃l+1~V l+1 + C̃l+1 ~U l+1. (3.44)

By multiplying equation (3.43) by B̃l+1 and subtracting equation (3.44) which has been
multiplied by Cl+1, we get:

B̃l+1Dl −Cl+1D̃l =

(
B̃l+1Bl+1 −Cl+1C̃l+1

)
~U l+1. (3.45)

Defining,

F l+1 = B̃l+1Dl −Cl+1D̃l, (3.46)

El+1 = B̃l+1Bl+1 −Cl+1C̃l+1, (3.47)

we have the linear system of equations:
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F l+1 = El+1 ~U l+1. (3.48)

The above system can be solved quickly in Matlab using the left division built-in function.
We iterate through time, redefining the tridiagonal and diagonal matrices at each time step in
order to solve for the full set of solution vectors. A very similar approach is taken to solve for
the other solution vector, ~V l, for all l = 2 . . . L̃ + 1:

F̃ l+1 = Ẽl+1~V l+1, (3.49)

where:

F̃ l+1 = Bl+1D̃l − C̃l+1Dl, (3.50)

Ẽl+1 = Bl+1B̃l+1 − C̃l+1Cl+1. (3.51)

To test the accuracy of Crank-Nicolson on coupled PDEs, we will compare our numerical
solutions for U(x, t) and V(x, t) to the true solutions for the following system of coupled heat
equations.

∂U
∂t

(x, t) = P
∂2U
∂x2 (x, t) + V(x, t), (3.52)

∂V
∂t

(x, t) = R
∂2V
∂x2 (x, t), (3.53)

subject to:

U(0, t) = U(M̃, t) = 0, (3.54)
V(0, t) = V(M̃, t) = 0, (3.55)

U(x, 0) = V(x, 0) sin
(
πx
M̃

)
. (3.56)

The above problem has the solution:

U(x, t) =

[
e−

Pπ2t
M̃2 +

1
P − R

(
L
π

)2(
e−

Rπ2t
M̃2 − e−

Pπ2t
M̃2

)]
sin

(
πx
M̃

)
, (3.57)

V(x, t) = e−
Rπ2t
M̃2 sin

(
πx
M̃

)
. (3.58)

Diffusion Coefficient for U(x, t) P 1
2

Diffusion Coefficient for V(x, t) R 1
4

Length of Space Interval M̃ 10
Length of Time Interval T 1

Number of Time Increments L̃ 100

Table 3.3: Parameters used in the implementation of the Crank-Nicolson numerical scheme for
the coupled one-dimensional heat equations.
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Figure 3.4: Comparison of the numerical and true solution for the coupled one-dimensional
heat equation, U(x, t), at time t = 1. All parameters as given in Table 3.3.

The results for our coupled system of one-dimensional heat equations mimics the results
from our previous analysis of the uncoupled heat equation. In Figures 3.4 and 3.5, it can
observed that the difference between the true and numerical solutions are unobservable for both
solution vectors. When considering the absolute error associated with our numerical solution,
we can see that for U(x, t) this error is of size 10−6 while for V(x, t) the error has a magnitude
of 10−7. Since the error is so small, it is essentially negligible. This indicates that even for a
coupled system of PDEs, the Crank-Nicolson numerical scheme performs well and is able to
accurately solve coupled equations.

As a result of this method’s exceptional performance on the coupled heat equations, we
will apply this method to solve our coupled system of pricing equations for an option written
in a regime-switching market.
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Figure 3.5: Comparison of the numerical and true solution for the coupled one-dimensional
heat equation, V(x, t), at time t = 1. All parameters as given in Table 3.3.

3.5 Application to Regime-Switching PDEs

Recall the generalized pricing PDE problem for a two-state regime-switching option U i(S , t),
where i is the currently volatility state. With the time reversal τ = T − t, our problem is now:

∂U i

∂τ
(S , τ) =

1
2
σ2

i S 2∂
2U i

∂S 2 (S , τ)+rS
∂U i

∂S
(S , τ)−rU i(S , τ)− fi j(S , τ)

[
U j(S , τ)−U i(S , τ)

]
, (3.59)

where
fi j(S , τ) = −

(
λi j − mi j

)
, (3.60)

for all i ∈ {H, L} and i , j.
Like the constant volatility option, we are considering the generalized application of Crank-

Nicolson where the initial and boundary conditions depend on the type of option contract.
Applying the Crank-Nicolson numerical scheme to the coupled pricing PDEs is slightly

more involved as the value of an option in state i depends also on the value of that same option
in state j. Using central differences for partial derivatives with respect to stock price, backward
difference for the partial derivative with respect to time, and letting S = mdS yields:

U i,l+1
m − U i,l

m

dt
=

1
2

{[
1
2
σ2

i (mdS )2
(
U i,l

m+1 − 2U i,l
m + U i,l

m−1

dS 2

)
+ rmdS

(
U i,l

m+1 − U i,l
m−1

2dS

)
− rU i,l

m
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− f l
i j,m

[
U j,l

m − U i,l
m

]]
+

[
1
2
σ2

i (mdS )2
(
U i,l+1

m+1 − 2U i,l+1
m + U i,l+1

m−1

dS 2

)
+ rmdS

(
U i,l+1

m+1 − U i,l+1
m−1

2dS

)
− rU i,l+1

m − f l+1
i j,m

[
U j,l+1

m − U i,l+1
m

]]}
, (3.61)

U i,l+1
m − U i,l

m =
1
2

dt
[
1
2
σ2

i m2
(
U i,l

m+1 − 2U i,l
m + U i,l

m−1

)
+

rm
2

(
U i,l

m+1 − U i,l
m−1 Big) −

(
r − f l

i j,m
)
U i,l

m

− f l
i j,mU j,l

m +
1
2
σ2

i m2
(
U i,l+1

m+1 − 2U i,l+1
m + U i,l+1

m−1

)
+

rm
2

(
U i,l+1

m+1 − U i,l+1
m−1

)
−

(
r − f l+1

i j,m
)
U i,l+1

m − f l+1
i j,mU j,l+1

m

]
, (3.62)

where dτ = dt represent the time increment and dS represents the stock price increment.
Separating based on the time index,

−
1
4

mdt
(
σ2

i m − r
)
U i,l+1

m−1 +

[
1 +

1
2

dt
(
σ2

i m2 + (r − f l+1
i j,m

)]
U i,l+1

m

−
1
4

mdt
(
σ2

i m + r
)
U i,l+1

m+1 +
1
2

f l+1
i j,mU j,l+1

m

=
1
4

mdt
(
σ2

i m − r
)
U i,l

m−1 +

[
1 −

1
2

dt
(
σ2

i m2 + (r − f l
i j,m

)]
U i,l

m

+
1
4

mdt
(
σ2

i m + r
)
U i,l

m+1 −
1
2

f l+1
i j,mU j,l

m . (3.63)

Define:

ai,l
m =

1
4

mdt
(
σ2

i m − r
)
, (3.64)

bi,l
m = −

1
2

dt
(
σ2

i m2 + r − f l
i j,m

)
, (3.65)

ci,l
m =

1
4

mdt
(
σ2

i m + r
)
. (3.66)

Since the generalized regime-switching framework allows for the coefficients of the source
terms coupling our state-dependent pricing equations to be deterministic, it follows that the
coefficients defined above depend on both stock price and time. This affects how the Crank-
Nicolson numerical scheme is carried out, which will be explained in greater detail later on.
Thus,

− ai,l+1
m U i,l+1

m−1 +
(
1 − bi,l+1

m

)
U i,l+1

m − ci,l+1
m U i,l+1

m+1 +
1
2

f l+1
i j,mU j,l+1

m

= ai,l
mU i,l

m−1 +
(
1 + bi,l

m

)
U i,l

m + ci,l
mU i,l

m+1 −
1
2

f l
i j,mU j,l

m . (3.67)

This results in:
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Bi,l+1 ~U i,l+1 + Ci,l+1 ~U j,l+1 = Ai,l ~U i,l −Ci,l ~U j,l, (3.68)

where:

Bi,l+1 =



1 − bl+1
2 −cl+1

3 0 . . . 0

−al+1
2 1 − bl+1

3 −cl+1
4

. . .
...

0 . . .
. . .

. . . 0
...

. . .
. . .

. . . −cl+1
M

0 . . . 0 −al+1
M−1 1 − bl+1

M


,

Ai,l =



1 + bl
2 cl

3 0 . . . 0

al
2 1 + bl

3 cl
4

. . .
...

0 . . .
. . .

. . . 0
...

. . .
. . .

. . . cl
M

0 . . . 0 al
M−1 1 + bl

M


,

and

Ci,l =


1
2 f l

i j,2dt 0 . . . 0

0 1
2 f l

i j,3dt . . .
...

...
. . .

. . . 0
0 . . . 0 1

2 f l
i j,Mdt

 .
The above matrices hold for all i ∈ {H, L} where i , j. It turns out that when we consider

equation (3.68) for both the high and low volatility states, we get a system of two equations
with two unknowns: ~UH,l+1 and ~UL,l+1 which needs to be solved at every time iteration l + 1.

BH,l+1 ~UH,l+1 + CH,l+1 ~UL,l+1 = AH,l ~UH,l −CH,l ~UL,l, (3.69)

BL,l+1 ~UL,l+1 + CL,l+1 ~UH,l+1 = AL,l ~UL,l −CL,l ~UH,l. (3.70)

For simplicity, define:

DH,l = AH,l ~UH,l −CH,l ~UL,l, (3.71)

DL,l = AL,l ~UL,l −CL,l ~UH,l. (3.72)

Therefore, our coupled matrix system is now written as:

DH,l = BH,l+1 ~UH,l+1 + CH,l+1 ~UL,l+1, (3.73)

DL,l = BL,l+1 ~UL,l+1 + CL,l+1 ~UH,l+1. (3.74)

Multiplying equation (3.73) on the left by BL,l+1 and equation (3.74) by CH,l+1 and subtract-
ing the second from the first:

BL,l+1DH,l −CH,l+1DL,l =
(
BL,l+1BH,l+1 −CH,l+1CL,l+1

)
~UH,l+1. (3.75)
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Define:

FH,l+1 = BL,l+1DH,l −CH,l+1DL,l, (3.76)

EH,l+1 = BL,l+1BH,l+1 −CH,l+1CL,l+1, (3.77)

where FH,l+1 is a vector of size M − 1 and EH,l+1 is a square matrix of size M − 1.
Thus we require to solve the linear system of equations for ~UH,l.

FH,l+1 = EH,l+1 ~UH,l+1. (3.78)

This can be easily solved using Matlab’s built in left division function. A similar process is
repeated to solve for ~UL,l+1, the option price for the low volatility state:

FL,l+1 = EL,l+1 ~UL,l+1, (3.79)

where:

FL,l+1 = BH,l+1DL,l −CL,l+1DH,l, (3.80)

EL,l+1 = BH,l+1BL,l+1 −CL,l+1CH,l+1. (3.81)

Assuming initial conditions given by the payoff function of a European call option and the
associated boundary conditions, we can solve the regime-switching price PDEs for the high
and low volatility call prices. The numerical solution for both the high and low state regime-
switching call options is shown in Figure 3.6.

Expected Return r 0%
High State Volatility σH 40%
Low State Volatility σL 10%

Strike Price K $100
Daily High State Jump Intensity λLH 15%
Daily Low State Jump Intensity λHL 10%

High State MPVR mHL 0
Low State MPVR mLH 0

Maturity Date T 1 year
Number of Time Increments L̃ 252

Table 3.4: Parameters used in the implementation of the Crank-Nicolson numerical scheme for
the regime-switching coupled PDEs.

It can be observed that the numerical solution for the high state option, CH(S , t), and the
solution for the low state option, CL(S , t), are both increasing with respect to the stock price.
The call prices have the general shape and curvature that we expect for a European call price.
Furthermore, the low state option price is less than the high state option price, most noticeably
about the strike price of K = $100, which is expected as financially we know that option prices
increase as volatility levels increase.
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Figure 3.6: Crank-Nicolson numerical solution for the regime-switching coupled pricing PDEs
at time t = 0. All parameters as given in Table 3.4.

By implementing the Crank-Nicolson numerical method on our regime-switching coupled
pricing equations, we have obtained a benchmark solution technique to use in the following
chapters. In particular we will use these numerical results to justify and support the financial
validity of approximate solutions derived for our regimes-switching options. It is determining
these approximate solutions that we turn our attention to in the next chapter.



Chapter 4

Approximate Solution

Our coupled regime-switching pricing partial differential equations derived in Chapter 2 do
not have closed-form solutions for the state-dependent call prices. We are however, interested
in studying the parameters embedded within our option pricing model, to analyse the effect
that they have on the option prices. A parameter of particular interest is the state-dependent
market price of volatility risk as it is a driving factor in the effect the coupled source term has
on a particular regime’s option price. In addition, numerical schemes do not allow as much
insight to be built, driving us to consider an approximation to the solution that can easily be
implemented. It is nice to understand the approximate behaviour of solutions, both for the
insights these approximations bring and for the purpose of verifying more accurate, but more
complicated numerical methods. Thus, obtaining an approximation to the solution of an option
written in a financially realistic two-regime switching market would be useful.

Since our system of coupled PDEs cannot be solved directly, we use the classical Cauchy-
Kowalevski Theorem, usually encountered in the very beginning of a PDE course, to derive
approximate state-dependent option prices. In particular, we choose to reformulate our prob-
lem in terms of the well-known Black-Scholes option pricing equations in order to apply this
applied mathematics theorem directly. This reformulation also provides an avenue to investi-
gate further the financial intuition embedded within our problem. Specifically, the relationship
between the backward error of our pricing problem and the possible trading gains/losses from
our hedged position.

4.1 Review of Cauchy-Kowalevski Theorem
In general, the Cauchy-Kowalevski theorem is applied to an initial value problem, such as the
one-dimensional heat equation. By taking a Taylor series expansion about the initial conditions,
we can derive a series type solution. Existence of a solution is proven given the resulting series
converges (Folland [20]; O’Neil [36]). A formal review of this theorem is given below.

Theorem 4.1.1 (Cauchy-Kowalevski)

Given the general Cauchy problem

∂k
t f = G

(
x, t, (∂αx∂

j
t f )|α|+ j≤k, j<k

)
, (4.1)

36
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with initial condition
∂

j
t f (x, 0) = H j(x). (4.2)

Then if G and H j are analytic near the origin ∀ j, there exists a unique analytic solution in
some neighbourhood about the origin. It follows that the Taylor series∑

α

∂α f (x0)
α!

(x − x0)α, (4.3)

converges absolutely to f (x) if f is analytic near x0 ∈ R
n.

As we shall see, the Cauchy-Kowalevski Theorem will not directly apply to our problem
since for a call option, the initial condition is not analytic for all possible stock prices. We will
overcome this difficulty by using a “viscosity solution” type approach to find our approxima-
tion.

4.2 Reformulating our Regime-Switching Pricing Model
In order to analyse the effects of the state-dependent parameters, in particular the market prices
of volatility risk, we require an approximation to our option price. The existence of a solution to
a general initial value problem can typically be found by applying the Cauchy-Kowalevski The-
orem and taking a Taylor series expansion about the initial point. First our regime-switching
pricing problem is converted into an initial value problem by defining τ = T − t.

∂Ci

∂τ
(S , τ) =

1
2
σ2

i S 2∂
2Ci

∂S 2 (S , τ) + rS
∂Ci

∂S
(S , τ) − rCi(S , τ) − fi j(S , τ)

[
C j(S , τ) −Ci(S , τ)

]
, (4.4)

subject to

Ci(S , 0) = C j(S , 0) = (S (0) − K)+, (4.5)

Ci(0, τ) = C j(0, τ) = 0, (4.6)

lim
S→∞

∂Ci

∂S
(S , τ) = lim

S→∞

∂C j

∂S
(S , τ) = 1, (4.7)

where
fi j(S , τ) = −

(
λi j − mi j

)
, (4.8)

for all i ∈ {H, L} and i , j. It should be noted that from now until otherwise noted, the Poisson
intensities are assumed to be constant and denoted by λi j.

The initial condition for our problem is not differentiable about the strike price, K. Thus
the European call option payoff is not consistent with the initial condition being analytic. We
address this point by redefining our problem using financial intuition. We choose to redefine
our regime-switching option prices to be functions of the corresponding Black-Scholes option
prices. The well known Black-Scholes option pricing model [6] has been studied extensively
and is well understood by practitioners and academics alike. For ease of reading, the following
notation will be reduced: fi j ≡ fi j(S , τ).
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CH(S , τ) = CH
BS (S , τ) − Y(S , τ), (4.9)

CL(S , τ) = CL
BS (S , τ) + X(S , τ). (4.10)

Our regime-switching option prices can be redefined this way due to our financial intuition
regarding the effects of volatility switching. We know that all else being equal, option values
are increasing in volatility. It is expected that the possibility of switching to a more stable
regime makes the high state regime-switching option less valuable than an otherwise similar
option in a single high volatility Black-Scholes world. On the other hand, the possibility of
switching to a more volatile state is an attractive feature for an option and thus makes our
regime-switching option price more valuable than an otherwise similar option in a single low
volatility Black-Scholes world. Thus we need to use our new definitions of the option price
to derive a new set of coupled PDEs. Thus Y(S , τ) and X(S , τ), which represent the difference
between the Black-Scholes option price and the regime-switching price for the high and low
state, respectively, are both non-negative. First, we substitute the newly redefined regime-
switching option prices in the high state PDE.

∂CH
BS

∂τ
(S , τ) −

∂Y
∂τ

(S , τ) =
1
2
σ2

HS 2∂
2CH

BS

∂S 2 (S , τ) −
1
2
σ2

HS 2 ∂
2Y
∂S 2 (S , τ)

+ rS
∂CH

BS

∂S
(S , τ) − rS

∂Y
∂S

(S , τ) − rCH
BS (S , τ) + rY(S , τ)

− fHL

[
CL

BS (S , τ) + X(S , τ) −CH
BS (S , τ) + Y(S , τ)

]
. (4.11)

For the constant volatility world where volatility is given by σi, we know that the Black-
Scholes PDE holds.

∂Ci
BS

∂τ
(S , τ) =

1
2
σ2

i S 2∂
2Ci

BS

∂S 2 (S , τ) + rS
∂Ci

BS

∂S
(S , τ) − rCi

BS (S , τ). (4.12)

It follows that:

∂Y
∂τ

(S , τ) =
1
2
σ2

HS 2 ∂
2Y
∂S 2 (S , τ) + rS

∂Y
∂S
− rY(S , τ)

− fHL

[
CH

BS (S , τ) −CL
BS (S , τ) − X(S , τ) − Y(S , τ)

]
. (4.13)

Now, reformulating the low state PDE using equation (4.12).

∂CL
BS

∂τ
(S , τ) +

∂X
∂τ

(S , τ) =
1
2
σ2

LS 2∂
2CL

BS

∂S 2 (S , τ) +
1
2
σ2

LS 2∂
2X
∂S 2 (S , τ)

+ rS
∂CL

BS

∂S
(S , τ) + rS

∂X
∂S

(S , τ) − rCL
BS (S , τ) − rX(S , τ)

− fLH

[
CH

BS (S , τ) − Y(S , τ) −CL
BS (S , τ) − X(S , τ)

]
, (4.14)
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⇒
∂X
∂τ

(S , τ) =
1
2
σ2

LS 2∂
2X
∂S 2 (S , τ) + rS

∂X
∂S

(S , τ) − rX(S , τ)

− fLH

[
CH

BS (S , τ) −CL
BS (S , τ) − X(S , τ) − Y(S , τ)

]
. (4.15)

We arrive at a new system of coupled PDEs in terms of the new functions Y(S , τ) and
X(S , τ). Our new pricing problem has analytic initial and boundary conditions although the
non-smoothness of the original problem still enters, when τ = 0, via the forcing term.

∂Y
∂τ

(S , τ) =
1
2
σ2

HS 2 ∂
2Y
∂S 2 (S , τ) + rS

∂Y
∂S
− rY(S , τ)

− fHL

[
CH

BS (S , τ) −CL
BS (S , τ) − X(S , τ) − Y(S , τ)

]
, (4.16)

∂X
∂τ

(S , τ) =
1
2
σ2

LS 2∂
2X
∂S 2 (S , τ) + rS

∂X
∂S

(S , τ) − rX(S , τ)

− fLH

[
CH

BS (S , τ) −CL
BS (S , τ) − X(S , τ) − Y(S , τ)

]
, (4.17)

subject to:

Y(S , 0) = X(S , 0) = 0, (4.18)
Y(0, τ) = X(0, τ) = 0, (4.19)

lim
S→∞

∂Y
∂S

(S , τ) = lim
S→∞

∂X
∂S

(S , τ) = 0. (4.20)

We can apply Cauchy-Kowalevski directly to our new coupled initial value problem as
the initial condition is now analytic. Since are boundary conditions are homogeneous on an
unbounded interval, we can ignore them during the application of the theorem and simply
check that they are satisfied later.

Our coupled system depends on both the high and low volatility Black-Scholes option
prices via the forcing term. If τ = 0 in our coupled system for Y(S , τ) and X(S , τ) shown
above, our forcing terms collapse. To consider the effect that the forcing terms have on our
option price differences, we choose τ = ε instead. This motivates us to first apply the Cauchy-
Kowalevski Theorem to the one-dimensional Black-Scholes problem where τ = ε for very
small values of ε, which allow the initial and boundary conditions to be analytic.

4.2.1 Applying Cauchy-Kowalevski to the One-Dimensional Black-Scholes
Problem

Consider the Black-Scholes call option price conditional on volatility state i, Ci
BS (S , τ). The

pricing problem associated with this option is given below.

∂Ci
BS

∂τ
(S , τ) =

1
2
σ2S 2∂

2Ci
BS

∂S 2 (S , τ) + rS
∂Ci

BS

∂S
(S , τ) − rCi

BS (S , τ), (4.21)

subject to:

Ci
BS (S , 0) = (S (0) − K)+, (4.22)
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Ci
BS (0, τ) = 0, (4.23)

lim
S→∞

∂Ci
BS

∂S
(S , τ) = 1. (4.24)

The initial condition is not differentiable about the strike price K, thus the Cauchy-Kowalevski
Theorem can not be applied directly. This motivates us to consider the Black-Scholes pricing
problem under the assumption that there exists a solution for the problem such that the initial
condition is evaluated at ε > 0 where ε is taken to be very small. Assume that there exists
Ci,ε

BS (S , τ) that solves the parallel Black-Scholes pricing problem:

∂Ci,ε
BS

∂τ
(S , τ) =

1
2
σ2

i S 2∂
2Ci,ε

BS

∂S 2 (S , τ) + rS
∂Ci,ε

BS

∂S
(S , τ) − rCi,ε

BS (S , τ), (4.25)

subject to:

Ci,ε
BS (S , 0) = S N(dε1) − Ke−rεN(dε2), (4.26)

Ci,ε
BS (0, τ) = 0, (4.27)

lim
S→∞

∂Ci,ε
BS

∂S
(S , τ) = 1, (4.28)

where:

dε1 =
ln S

K + (r + 1
2σ

2)ε

σ
√
ε

, (4.29)

dε2 = dε1 − σ
√
ε, (4.30)

N(x) =
1
√

2π

∫ x

−∞

e−
z2
2 dz. (4.31)

If we consider ε → 0, the following holds for all n ≥ 0 since Ci,ε
BS (S , 0) is continuously

differentiable with respect to S .

lim
ε→0

∂(n)Ci,ε
BS

∂S (n) (S , 0) =
∂(n)Ci

BS

∂S (n) (S , 0), (4.32)

⇒ lim
ε→0

∂(n)Ci,ε
BS

∂τ(n) (S , 0) =
∂(n)Ci

BS

∂τ(n) (S , 0). (4.33)

Since this initial condition is analytic, we can now take a Taylor series expansion of Ci,ε
BS (S , τ)

about the point (S , 0) and apply the Cauchy-Kowalevski Theorem.

Ci,ε
BS (S , τ) = Ci,ε

BS (S , 0) + τ
∂Ci,ε

BS

∂τ
(S , 0) +

1
2
τ2∂

2Ci,ε
BS

∂τ2 (S , 0) + . . . , (4.34)

⇒ lim
ε→0

Ci,ε
BS (S , τ) = lim

ε→0

[
Ci,ε

BS (S , 0) + τ
∂Ci,ε

BS

∂τ
(S , 0) +

1
2
τ2∂

2Ci,ε
BS

∂τ2 (S , 0) + . . .

]
, (4.35)

= lim
ε→0

Ci,ε
BS (S , 0) + τ lim

ε→0

∂Ci,ε
BS

∂τ
(S , 0) +

1
2
τ2 lim

ε→0

∂2Ci,ε
BS

∂τ2 (S , 0) + . . . , (4.36)
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=

∞∑
n=0

τn

n!
lim
ε→0

∂(n)Ci,ε
BS

∂τ(n) (S , 0), (4.37)

=

∞∑
n=0

τn

n!
∂(n)CBS

∂τ(n) (S , 0), (4.38)

= Ci
BS (S , τ), (4.39)

⇒ Ci
BS (S , τ) =

∞∑
n=0

τn

n!
∂(n)CBS

∂τ(n) (S , 0). (4.40)

Because we know that the one-dimensional Black-Scholes pricing problem has a unique
solution, we can take equation (4.40) as being a shorthand denoting this solution. Before
we can make use of this result, the error introduced into this system by our initial condition
evaluated at ε must be investigated. Since we do not know the solution to our parallel Black-
Scholes problem with the new initial condition, we will compare this problem to the classical
Black-Scholes problem and another variation of the problem. Thus we have three initial value
problems to consider.

The first case is our classical option pricing problem which considers an option V1(S , τ)
maturing at τ = 0 with payoff (S (0) − K)+. The second case considers an option V2(S , τ)
maturing at τ = ε with payoff S N(dε1)−Ke−rεN(dε2). Our final case is that of our parallel Black-
Scholes problem where an option V3(S , τ) expires at τ = 0 with payoff S N(dε1) − Ke−rεN(dε2).
Of interest is the error introduced by using our approximate option V3(S , τ) as a substitution for
V1(S , τ) when applying the Cauchy-Kowalevski Theorem. An estimate of this error is obtained
by examining the relationships between these three options.

It is known that for τ > ε, V1(S , τ) = V2(S , τ), since V2(S , τ) has an initial condition that is
the exact solution of V1(S , τ) at τ = ε. Thus it follows that V3(S , τ) > V2(S , τ) = V1(S , τ − ε)

for all τ. The error estimate that we examine is
∣∣∣V3(S , τ)−V1(S , τ)

∣∣∣ ≈ ε∣∣∣∣∣∣∂V1

∂τ
(S , τ−ε)

∣∣∣∣∣∣ for τ > ε.

Various time points before maturity are considered as well as varying sizes for ε. A list of the
parameters used in the example is given in Table 4.1.

Expected Return r 0%
Volatility σ 40%

Strike Price K $100
Maximum Stock Price S max $300

Maturity Date T 1 year
Number of Time Increments L̃ 200

Table 4.1: Parameters used in investigation of error estimate.

In Figure 4.1, the error introduced by using our parallel Black-Scholes option price diffuses
as we move away from the initial condition. Although the error is the largest initially, it is more
concentrated around the strike price. As we move forward in time, the absolute value of the
error decreases, however it spreads out over more stock values. When considering the error
associated with an option price, we are most interested in the error present when the option
is priced. Options are priced at t = 0, so for our initial value problem this occurs at τ = T .
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Figure 4.1: Comparison of the error estimate for various values of τ. ε = 0.005, all other
parameters as given in Table 4.1.

Therefore the smallest error is present when we price our option however it is distributed over
a wider range of stock prices.

Of greatest interest is the impact that the size of the time increment ε, by which we shift
our parallel problem’s evaluation of the initial condition, has on our error estimate. In Figure
4.2 the error introduced for various sizes of ε is investigated at the time the option is priced
(i.e. τ = T ). It can be observed in Figure 4.2 that for large values of ε the error is quite large,
however as ε → 0 the error becomes minimal. Thus if we consider ε → 0 in our parallel
pricing problem, the approximation to the actual Black-Scholes option price is reasonable.

Now that an estimate of the error introduced into the system has been quantified, we apply
the theorem to our coupled system for Y(S , τ) and X(S , τ).

4.2.2 Applying Cauchy-Kowalevski to the Regime-Switching Problem

We apply the Cauchy-Kowalevksi Theorem to our reformulated regime-switching problem,
making use of the result given by equation (4.40) for the parallel Black-Scholes problem. In
particular, we evaluate the Black-Scholes option prices in the forcing terms of our PDEs by
using our parallel epsilon problem and taking the limit as ε→ 0.

First take a Taylor series expansion about the point (S , 0) for Y(S , τ). In order to apply the
theorem, we have to make use of our previous result for the Black-Scholes prices and the fact

that
∂(n)Y
∂S (n) (S , 0) = 0 for all n ≥ 0.
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Figure 4.2: Comparison of the error estimate for various sizes of ε. τ = 1, all other parameters
as given in Table 4.1.

Y(S , τ) = Y(S , 0) + τ
∂Y
∂τ

(S , 0) +
1
2!
τ2∂

2Y
∂τ2 (S , 0) +

1
3!
τ3∂

3Y
∂τ3 (S , 0) + · · · , (4.41)

= 0 + τ
[
− fHL

(
lim
ε→0

Cε,H
BS (S , 0) − lim

ε→0
Cε,L

BS (S , 0)
)]

+
1
2!
τ2

[
− fHL

(
lim
ε→0

∂Cε,H
BS

∂τ
(S , 0) − lim

ε→0

∂Cε,L
BS

∂τ
(S , 0)

)
− fHL( fHL + fLH)

(
lim
ε→0

Cε,H
BS (S , 0) − lim

ε→0
Cε,L

BS (S , 0)
)]

+
1
3!
τ3

[
− fHL

(
lim
ε→0

∂2Cε,H
BS

∂τ2 (S , 0) − lim
ε→0

∂2Cε,L
BS

∂τ2 (S , 0)
)

− fHL( fHL + fLH)
(

lim
ε→0

∂Cε,H
BS

∂τ
(S , 0) − lim

ε→0

∂Cε,L
BS

∂τ
(S , 0)

)
− fHL( fHL + fLH)2

(
lim
ε→0

Cε,H
BS (S , 0) − lim

ε→0
Cε,L

BS (S , 0)
)]

+ · · · , (4.42)

= − fHLτ

[(
lim
ε→0

Cε,H
BS (S , 0) + τ lim

ε→0

∂Cε,H
BS

∂τ
(S , 0) +

1
2
τ2 lim

ε→0

∂2Cε,H
BS

∂τ2 (S , 0) + · · ·

)
−

(
lim
ε→0

Cε,L
BS (S , 0) + τ lim

ε→0

∂Cε,L
BS

∂τ
(S , 0) +

1
2
τ2 lim

ε→0

∂2Cε,L
BS

∂τ2 (S , 0) + · · ·

)]
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− fHL( fHL + fLH)
τ2

2!

[(
lim
ε→0

Cε,H
BS (S , 0) + τ lim

ε→0

∂Cε,H
BS

∂τ
(S , 0) + · · ·

)
−

(
lim
ε→0

Cε,L
BS (S , 0) + τ lim

ε→0

∂Cε,L
BS

∂τ
(S , 0) + · · ·

)]
− fHL( fHL + fLH)2τ

3

3!

[(
lim
ε→0

Cε,H
BS (S , 0) + · · ·

)
−

(
lim
ε→0

Cε,L
BS (S , 0) + · · ·

)]
+ · · · + additional terms. (4.43)

Much of the algebra is omitted for ease of reading. For further details please see Mielkie and
Davison [33].

The additional terms that arise in our derivation have minimal impact on the regime-
switching option price. This is due to the fact that as options approach their maturity date,
the impact of volatility on their corresponding prices is negligible. In fact, the option prices
written on two different volatility states converge at this point in time since we are considering
the limit as we approach maturity. It follows that the difference between Greeks written on
options with differing volatility is also negligible.

Additional terms arise in our Taylor series expansion that include the difference between the
two state’s Black-Scholes Greeks evaluated close to maturity (i.e. as ε → 0). Since the effect
of volatility is negligible on the option’s Greeks right before expiration, these additional terms
will have minimal impact on our approximate solution, a fact we will check in the subsequent
error analysis discussion. Throwing away these terms in the Taylor series expansion allows us
to write our result as an infinite sum with respect to the coefficients of the respective state’s
PDE source terms. Recall that these coefficients, fi j, are functions of the intensities of the
Poisson processes for all i ∈ {H, L} where i , j.

Y(S , τ) ≈
[ ∞∑

n=0

τn

n!
lim
ε→0

∂(n)Cε,H
BS

∂τ(n) (S , 0) −
∞∑

n=0

τn

n!
lim
ε→0

∂(n)Cε,L
BS

∂τ(n) (S , 0)
]

· (− fHL)
(
τ + ( fHL + fLH)

τ2

2!
+ ( fHL + fLH)2τ

3

3!
+ · · ·

)
, (4.44)

≈ − fHL

[
CH

BS (S , τ) −CL
BS (S , τ)

] ∞∑
n=0

( fHL + fLH)nτn+1

(n + 1)!
. (4.45)

Our solution is now in terms of an infinite series. In order to prove existence of a solu-
tion, convergence must first be established. The series can be tested for convergence using
d’Alembert’s ratio test [41].

∞∑
n=0

( fHL + fLH)nτn+1

(n + 1)!
, (4.46)

⇒ an =
( fHL + fLH)nτn+1

(n + 1)!
, (4.47)

⇒ lim
n→∞

∣∣∣∣∣∣an+1

an

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣ ( fHL + fLH)τ
n + 2

∣∣∣∣∣∣ = 0 < 1 (4.48)
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Our series converges absolutely. Then using the known power series:

ex − 1 =

∞∑
n=0

xn+1

(n + 1)!
, (4.49)

⇒
e( fHL+ fLH)τ − 1

fHL + fLH
=

∞∑
n=0

( fHL + fLH)nτn+1

(n + 1)!
. (4.50)

It follows that

Y(S , τ) ≈ − fHL

[
CH

BS (S , τ) −CL
BS (S , τ)

](e( fHL+ fLH)τ − 1
fHL + fLH

)
. (4.51)

In our approximate solution for Y(S , τ), the Black-Scholes option prices CH
BS (S , τ) and

CL
BS (S , τ) are treated as constant since we only have one value for each for a given S and

τ.
Now, take a Taylor series expansion about (S , 0) for X(S , τ). Once again we make use of

our previous result for the Black-Scholes prices and
∂(n)X
∂S (n) (S , 0) = 0 for all n ≥ 0. The same

logic and assumptions that were used for the derivation of Y(S , τ) are also used in this case.

X(S , τ) = X(S , 0) + τ
∂X
∂τ

(S , 0) +
1
2!
τ2∂

2X
∂τ2 (S , 0) +

1
3!
τ3∂

3X
∂τ3 (S , 0) + · · · , (4.52)

= 0 + τ
[
− fLH

(
lim
ε→0

Cε,H
BS (S , 0) − lim

ε→0
Cε,L

BS (S , 0)
)]

+
1
2!
τ2

[
− fLH

(
lim
ε→0

∂Cε,H
BS

∂τ
(S , 0) − lim

ε→0

∂Cε,L
BS

∂τ
(S , 0)

)
− fLH( fHL + fLH)

(
lim
ε→0

Cε,H
BS (S , 0) − lim

ε→0
Cε,L

BS (S , 0)
)]

+
1
3!
τ3

[
− fLH

(
lim
ε→0

∂2Cε,H
BS

∂τ2 (S , 0) − lim
ε→0

∂2Cε,L
BS

∂τ2 (S , 0)
)

− fLH( fHL + fLH)
(

lim
ε→0

∂Cε,H
BS

∂τ
(S , 0) − lim

ε→0

∂Cε,L
BS

∂τ
(S , 0)

)
− fLH( fHL + fLH)2

(
lim
ε→0

Cε,H
BS (S , 0) − lim

ε→0
Cε,L

BS (S , 0)
)]

+ · · · , (4.53)

= fLHτ

[(
lim
ε→0

Cε,L
BS (S , 0) + τ lim

ε→0

∂Cε,L
BS

∂τ
(S , 0) +

1
2
τ2 lim

ε→0

∂2Cε,L
BS

∂τ2 (S , 0) + · · ·

)
−

(
lim
ε→0

Cε,H
BS (S , 0) + τ lim

ε→0

∂Cε,H
BS

∂τ
(S , 0) +

1
2
τ2 lim

ε→0

∂2Cε,H
BS

∂τ2 (S , 0) + · · ·

)]
− fLH( fHL + fLH)

τ2

2!

[(
lim
ε→0

Cε,L
BS (S , 0) + τ lim

ε→0

∂Cε,L
BS

∂τ
(S , 0) + · · ·

)



46 Chapter 4. Approximate Solution

−

(
lim
ε→0

Cε,H
BS (S , 0) + τ lim

ε→0

∂Cε,H
BS

∂τ
(S , 0) + · · ·

)]
− fLH( fHL + fLH)2τ

3

3!

[(
lim
ε→0

Cε,L
BS (S , 0) + · · ·

)
−

(
lim
ε→0

Cε,H
BS (S , 0) + · · ·

)]
+ · · · + additional terms, (4.54)

≈

[ ∞∑
n=0

τn

n!
lim
ε→0

∂(n)Cε,H
BS

∂τ(n) (S , 0) −
∞∑

n=0

τn

n!
lim
ε→0

∂(n)Cε,L
BS

∂τ(n) (S , 0)
]

· (− fLH)
(
τ + ( fHL + fLH)

τ2

2!
+ ( fHL + fLH)2τ

3

3!
+ · · ·

)
, (4.55)

≈ − fLH

[
CH

BS (S , τ) −CL
BS (S , τ)

] ∞∑
n=0

τn+1

(n + 1)!
( fHL + fLH)n, (4.56)

⇒ X(S , τ) ≈ − fLH

[
CH

BS (S , τ) −CL
BS (S , τ)

](e( fHL+ fLH)τ − 1
fHL + fLH

)
. (4.57)

Algebraic details were omitted and can be found in Mielkie and Davison [33].
We now have approximate solutions for both of our volatility state’s option price differences

X(S , τ) and Y(S , τ).

Y(S , τ) ≈ − fHL

[
CH

BS (S , τ) −CL
BS (S , τ)

](e( fHL+ fLH)τ − 1
fHL + fLH

)
(4.58)

X(S , τ) ≈ − fLH

[
CH

BS (S , τ) −CL
BS (S , τ)

](e( fHL+ fLH)τ − 1
fHL + fLH

)
(4.59)

In our approximate solution for Y(S , τ), the Black-Scholes option prices CH
BS (S , τ) and

CL
BS (S , τ) are treated as constant since we only have one value for a given S and τ. It is left to

show that Y(S , τ) converges for all possible values of fHL, fLH and that Y(S , τ), X(S , τ) ≥ 0 also
holds. Since we are pricing under the risk-neutral measure (i.e. mHL = mLH = 0), it follows
that fHL, fLH ≤ 0 as:

fHL = −λHL, (4.60)
fLH = −λLH, (4.61)

where λHL, λLH ≥ 0. In order to prove convergence of both Y(S , τ) and X(S , τ) and show that
Y(S , τ), X(S , τ) ≥ 0, the limits as fi j → 0 must be investigated for all i. First check the limit
as fi j → 0 for i ∈ {H, L} where i , j. Note if fi j = 0 ⇒ λi j = 0, this essentially removes the
switching effect for state i under the risk-neutral measure. We will also have to make use of the
fact that the Black-Scholes call prices are bounded such that 0 ≤ CL

BS (S , τ) ≤ CH
BS (S , τ) < S

holds. First, for Y(S , τ),

⇒ lim
fHL→0

Y(S , τ) = 0. (4.62)
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lim
fLH→0

Y(S , τ) = −
[
CH

BS (S , τ) −CL
BS (S , τ)

](
e fHLτ − 1

)
, (4.63)

⇒ 0 ≤ lim
fLH→0

Y(S , τ) < S . (4.64)

⇒ lim
fHL= fLH=F→0

Y(S , τ) = −F
[
CH

BS (S , τ) −CL
BS (S , τ)

]e2Fτ − 1
2F

= 0. (4.65)

Then for X(S , τ),

⇒ lim
fLH→0

X(S , τ) = 0. (4.66)

lim
fHL→0

X(S , τ) = −
[
CH

BS (S , τ) −CL
BS (S , τ)

](
e fLHτ − 1

)
, (4.67)

⇒ 0 ≤ lim
fHL→0

X(S , τ) < S . (4.68)

⇒ lim
fHL= fLH=F→0

X(S , τ) = −F
[
CH

BS (S , τ) −CL
BS (S , τ)

]e2Fτ − 1
2F

= 0. (4.69)

Now check all limits as fi j → −∞ for i ∈ {H, L} where i , j. First for Y(S , τ),

lim
fHL→−∞

Y(S , τ) =
[
CH

BS (S , τ) −CL
BS (S , τ)

]
lim

fHL→−∞

fHL

fHL + fLH
(4.70)

L’H
=

[
CH

BS (S , τ) −CL
BS (S , τ)

]
, (4.71)

⇒ 0 ≤ lim
fHL→−∞

Y(S , τ) < S . (4.72)

⇒ lim
fLH→−∞

Y(S , τ) = 0. (4.73)

lim
fHL= fLH=F→−∞

Y(S , τ) = −F
[
CH

BS (S , τ) −CL
BS (S , τ)

]e2Fτ − 1
2F

=
1
2

[
CH

BS (S , τ) −CL
BS (S , τ)

]
, (4.74)

⇒ 0 ≤ lim
fHL= fLH=F→−∞

Y(S , τ) < S . (4.75)

Then for X(S , τ),

lim
fLH→−∞

X(S , τ) =
[
CH

BS (S , τ) −CL
BS (S , τ)

]
lim

fLH→−∞

fLH

fHL + fLH

L’H
=

[
CH

BS (S , τ) −CL
BS (S , τ)

]
,

(4.76)

⇒ 0 ≤ lim
fLH→−∞

X(S , τ) < S . (4.77)

⇒ lim
fHL→−∞

X(S , τ) = 0. (4.78)

lim
fHL= fLH=F→−∞

X(S , τ) = −F
[
CH

BS (S , τ) −CL
BS (S , τ)

]e2Fτ − 1
2F

=
1
2

[
CH

BS (S , τ) −CL
BS (S , τ)

]
, (4.79)

⇒ 0 ≤ lim
fHL= fLH=F→−∞

X(S , τ) < S . (4.80)
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Now that convergence and non-negativity has been proven, we can make use of our approx-
imate solutions for Y(S , τ) and X(S , τ). Reversing time again by letting t = T − τ, we derive
approximate solutions for our state-dependent regime-switching option prices.

CH(S , t) ≈ CH
BS (S , t) + fHL

[
CH

BS (S , t) −CL
BS (S , t)

](e( fHL+ fLH)(T−t) − 1
fHL + fLH

)
, (4.81)

CL(S , t) ≈ CL
BS (S , t) − fLH

[
CH

BS (S , t) −CL
BS (S , t)

](e( fHL+ fLH)(T−t) − 1
fHL + fLH

)
. (4.82)

Since we know the Black-Scholes option prices are differentiable with respect to S (when
τ > 0), we also derive approximate solutions for the regime-switching Deltas. For our pur-
poses, Delta is defined as the sensitivity of the option price to changes in the stock price.

∂CH

∂S
(S , t) ≈

∂CH
BS

∂S
(S , t) + fHL

(
∂CH

BS

∂S
(S , t) −

∂CL
BS

∂S
(S , t)

)(
e( fHL+ fLH)(T−t) − 1

fHL + fLH

)
, (4.83)

∂CL

∂S
(S , t) ≈

∂CL
BS

∂S
(S , t) − fLH

(
∂CH

BS

∂S
(S , t) −

∂CL
BS

∂S
(S , t)

)(
e( fHL+ fLH)(T−t) − 1

fHL + fLH

)
(4.84)

Therefore by applying the Cauchy-Kowalevski Theorem, we can obtain expressions denot-
ing state-dependent regime-switching option prices and their corresponding Deltas. Our ap-
proximate solution converged according to basic calculus techniques and results, thus unique
state-dependent option price and corresponding Delta solutions do exist in a regime-switching
market, given the appropriate initial condition. Below is the generalized version of our result
for the two state case.

Ci(S , t) ≈Ci
BS (S , t) − fi j

(
C j

BS (S , t) −Ci
BS (S , t)

)
g(t,T ), (4.85)

∂Ci

∂S
(S , t) ≈

∂Ci
BS

∂S
(S , t) − fi j

(
∂C j

BS

∂S
(S , t) −

∂Ci
BS

∂S
(S , t)

)
g(t,T ), (4.86)

where for i ∈ {H, L} and i , j,

fi j = −
(
λi j − mi j

)
, (4.87)

g(t,T ) =
e( fi j+ f ji)(T−t) − 1

fi j + f ji
, (4.88)

Ck
BS (S , t) = S (t)N(dk

1) − Ke−r(T−t)N(dk
2), (4.89)

∂Ck
BS

∂S
(S , t) = N(dk

1), (4.90)

dk
1 =

ln S (t)
K +

(
r + 1

2σ
2
k

)
(T − t)

σk
√

T − t
, (4.91)

dk
2 = dk

1 − σk

√
T − t, (4.92)
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N(x) =
1
√

2π

∫ x

−∞

e−
z2
2 dz, (4.93)

k = i, j. (4.94)

4.3 Error Introduced by Approximate Solution
We seek to quantify the error introduced by our approximate continuous-time regime-switching
option price given by equation (4.85). Since the true solution to our coupled pricing problem
is unknown, we treat our problem as a root finding problem to determine the error. Our pricing
equation is treated as an operator on the state-dependent option price. For this section, notation
will be reduced for improved readability where Ci ≡ Ci(S , t) and Ci

BS ≡ Ci
BS (S , t).

LR−S (Ci) =
∂Ci

∂t
+

1
2
σ2

i S 2∂
2Ci

∂S 2 + rS
∂Ci

∂S
− rCi − fi j

[
C j −Ci

]
. (4.95)

Recall that

Ci ≈ Ci
BS − fi j

[
C j

BS −Ci
BS

]
g(t,T ), (4.96)

where for i ∈ {H, L} and i , j:

g(t,T ) =
e( fi j+ f ji)(T−t) − 1

fi j + f ji
, (4.97)

fi j = −
(
λi j − mi j

)
, (4.98)

and Ci
BS is the Black-Scholes call price dependent on volatility state i.

We consider the backward error associated with our approximate solution as a way to quan-
tify the accuracy of our estimate compared to the actual solution (Bradie [10]; Sauer [38]) .
Backward error is found by substituting the approximation back into the original problem, in
our case into the coupled pricing equations. If a solution is exact, the associated backward
error will be zero. To determine the error imposed by our approximate solution we consider
the backward error

∣∣∣∣LR−S (Ci)
∣∣∣∣.

We will first simplify the notation for the regime-switching operator.

LR−S (Ci) = θi +
1
2
σ2

i S 2Γi + rS ∆i − rCi − fi j

[
C j −Ci

]
, (4.99)

such that

∆i ≈ ∆i
BS − fi j

[
∆

j
BS − ∆i

BS

]
g(t,T ), (4.100)

Γi ≈ Γi
BS − fi j

[
Γ

j
BS − Γi

BS

]
g(t,T ), (4.101)

θi ≈ θi
BS − fi j

[
θ

j
BS − θ

i
BS

]
g(t,T ) + fi je( fi j+ f ji)(T−t)

[
θ

j
BS − θ

i
BS

]
, (4.102)

where:
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• ∆i =
∂Ci

∂S
is the sensitivity of the option price with respect to the stock price

• Γi =
∂2Ci

∂S 2 =
∂∆i

∂S
is the sensitivity of Delta with respect to the stock price

• θi =
∂Ci

∂t
is the sensitivity of the option price with respect to time

The Greeks ∆i
BS ,Γ

i
BS , θ

i
BS , refer to those sensitivities with respect to the Black-Scholes op-

tion prices conditional on volatility state i. It was assumed that the Poisson intensities, λi j,
and the state-dependent market prices of risk, mi j(S , t) are constant, thus the coefficients cou-
pling the source terms, fi j, are also constant for i ∈ {H, L} where i , j. Substituting equations
(4.100), (4.101), and (4.102) into equation (4.99), we get:

LR−S (Ci) = θi
BS − fi j

[
θ

j
BS − θ

i
BS

]
g(t,T ) + fi je( fi j+ f ji)(T−t)

[
θ

j
BS − θ

i
BS

]
+

1
2
σ2

i S 2
(
Γi

BS − fi j

[
Γ

j
BS − Γi

BS

]
g(t,T )

)
+ rS

(
∆i

BS − fi j

[
∆

j
BS − ∆i

BS

]
g(t,T )

)
− r

(
Ci

BS − fi j

[
C j

BS −Ci
BS

]
g(t,T )

)
− fi j

(
C j

BS − f ji

[
Ci

BS −C j
BS

]
g(t,T ) −Ci

BS + fi j

[
C j

BS −Ci
BS

]
g(t,T )

)
, (4.103)

⇒ LR−S (Ci) = θi
BS +

1
2
σ2

i S 2Γi
BS + rS ∆i

BS − rCi
BS

+ fi jg(t,T )
(
θi

BS +
1
2
σ2

i S 2Γi
BS + rS ∆i

BS − rCi
BS

)
− fi jg(t,T )

(
θ

j
BS +

1
2
σ2

i S 2Γ
j
BS + rS ∆

j
BS − rC j

BS

)
+ fi je( fi j+ f ji)(T−t)

[
C j

BS −Ci
BS

]
− fi j

(
1 + ( fi j + f ji)g(t,T )

)[
C j

BS −Ci
BS

]
. (4.104)

We know from the Black-Scholes option pricing model [6] that the following holds:

θi
BS +

1
2
σ2

i S 2Γi
BS + rS ∆i

BS − rCi
BS = 0. (4.105)

Then,

LR−S (Ci) = − fi jg(t,T )
(
θ

j
BS +

1
2
σ2

i S 2Γ
j
BS + rS ∆

j
BS − rC j

BS

)
+ fi je( fi j+ f ji)(T−t)

[
C j

BS −Ci
BS

]
− fi j

(
1 + ( fi j + f ji)g(t,T )

)[
C j

BS −Ci
BS

]
+

1
2
σ2

jS
2Γ

j
BS fi jg(t,T ) −

1
2
σ2

jS
2Γ

j
BS fi jg(t,T ), (4.106)

= − fi jg(t,T )
(
θ

j
BS +

1
2
σ2

jS
2Γ

j
BS + rS ∆

j
BS − rC j

BS

)
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−
1
2

(σ2
i − σ

2
j)S

2Γ
j
BS fi jg(t,T )

+ fi j

[
C j

BS −Ci
BS

](
e( fi j+ f ji)(T−t) −

(
1 + ( fi j + f ji)g(t,T )

))
, (4.107)

= −
1
2

(σ2
i − σ

2
j)S

2Γ
j
BS fi jg(t,T )

+ fi j

[
C j

BS −Ci
BS

](
e( fi j+ f ji)(T−t) −

(
1 + ( fi j + f ji)g(t,T )

))
. (4.108)

Substituting in equation (4.97),

LR−S (Ci) = −
1
2

(σ2
i − σ

2
j)S

2Γ
j
BS fi j

(
e( fi j+ f ji)(T−t) − 1

fi j + f ji

)
+ fi j

[
C j

BS −Ci
BS

][
e( fi j+ f ji)(T−t) −

(
1 + ( fi j + f ji)

(
e( fi j+ f ji)(T−t) − 1

fi j + f ji

))]
, (4.109)

⇒ LR−S (Ci) =
1
2

fi j

fi j + f ji
(σ2

i − σ
2
j)
(
1 − e( fi j+ f ji)(T−t)

)
S 2Γ

j
BS . (4.110)

Therefore it follows that the backward error associated with our approximate regime-switching
solution is: ∣∣∣∣LR−S (Ci)

∣∣∣∣ =
1
2

fi j

fi j + f ji

∣∣∣∣σ2
i − σ

2
j

∣∣∣∣(1 − e( fi j+ f ji)(T−t)
)
S 2Γ

j
BS , (4.111)

where for i ∈ {H, L}, i , j,

Γ
j
BS =

N′(d j
1)

Sσ j
√

T − t
, (4.112)

d j
1 =

ln S
K +

(
r + 1

2σ
2
j

)
(T − t)

σ j
√

T − t
, (4.113)

N′(d j
1) =

1
√

2π
e−

1
2 (d j

1)2
. (4.114)

Recall that our regime-switching PDE is derived using standard hedging and arbitrage ar-
guments. Financially, this means that the price of the option obtained by solving this pricing
equation must be the fair price for all investors taking a position in the option. In other words,
since it is assumed that we are continuously rebalancing our hedge position against both volatil-
ity and stock price movements, the investor should not obtain a risk-less profit (i.e. on average
trading gains/losses must net out to zero). If, in this sense, the option is priced fairly, the left
hand side of the PDE should equate to zero when the option value and their corresponding
Greeks are substituted back in. If the price of the option does not allow for the PDE and hence
our backward error to be zero, this means that the price of our option is allowing for an investor
to experience trading gains/losses from their hedged position. Specifically, the backward error
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associated with our problem represents the rate of money generation/loss for an investor hold-
ing a hedged position in the regime-switching option. If a non-zero backward error persists
for a large range of stock price values about the option’s strike price, trading gains/losses are
imminent and unavoidable.

Using financially intuitive checks, we examined the backwards error associated with our
approximate regime-switching option price solution. The first of these checks is to consider
when we can no longer switch out of current volatility regime i. This implies that λi j → 0 ⇒
fi j → 0. It should be pointed that if the market were in the opposing regime j, it still could
switch to regime i but once we entered this regime, we will no longer be able to leave it.

lim
fi j→0

∣∣∣∣LR−S (Ci)
∣∣∣∣ = lim

fi j→0

1
2

fi j

fi j + f ji

∣∣∣∣σ2
i − σ

2
j

∣∣∣∣(1 − e( fi j+ f ji)(T−t)
)
S 2Γ

j
BS = 0. (4.115)

The above result is consistent with intuition as we expect that the error vanishes when
regimes persist forever and thus the pricing equations decouple. When the pricing equations
decouple, our approximate solution for regime i becomes the Black-Scholes option pricing
equation conditional on the current volatility state occupation. We know that the Black-Scholes
PDE can be directly solved by the Black-Scholes call price, so the resulting backwards error is
zero.

We can also consider what happens when we can no longer switch between the two volatil-
ity states in our framework. It should be noted that in order for fi j + f ji = 0 to hold, since fi j ≤ 0
it follows that all fi j = 0 for i ∈ {H, L} where i , j. Thus let fi j = F and take the limit as F
approaches zero.

lim
F→0

∣∣∣∣LR−S (Ci)
∣∣∣∣ = lim

F→0

1
2

F
2F

∣∣∣∣σ2
i − σ

2
j

∣∣∣∣(1 − e2F(T−t)
)
S 2Γ

j
BS (4.116)

=
1
4

∣∣∣∣σ2
i − σ

2
j

∣∣∣∣ lim
F→0

(
1 − e2F(T−t)

)
S 2Γ

j
BS (4.117)

⇒ lim
F→0

∣∣∣∣LR−S (Ci)
∣∣∣∣ = 0 (4.118)

Once again, we expected the error to vanish as our model reduced to a decoupled system
of state-dependent Black-Scholes pricing equations for which we know the exact solution.

Finally, we can check what happens to our error as we approach maturity.

lim
t→T

∣∣∣∣LR−S (Ci)
∣∣∣∣ = lim

fi j→0

1
2

fi j

fi j + f ji

∣∣∣∣σ2
i − σ

2
j

∣∣∣∣(1 − e( fi j+ f ji)(T−t)
)
S 2Γ

j
BS = 0. (4.119)

The error vanishes since the regime-switching option’s payoffs are independent of volatility
state occupation. In other words, since the options priced under our regime-switching frame-
work satisfy the same final conditions as do those under the Black-Scholes framework, it is
expected that the error associated with our approximate solution vanishes.

Overall, the equation derived for our backwards error estimate for the approximate regime-
switching option pricing solution shows that the error introduced into our state-dependent pric-
ing PDEs is a weighted (by Poisson intensities) time-valued measure of the opposing regime’s
sensitivity to changes in the underlying asset’s price. The approximate solution and its back-
ward error are discussed in greater detail in the following section.
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4.4 Discussion
Consider the generalized approximate solutions for our two volatility regimes: high and low,

CH(S , t) ≈ CH
BS (S , t) + fHL

[
CH

BS (S , t) −CL
BS (S , t)

]
g(t,T ), (4.120)

CL(S , t) ≈ CL
BS (S , t) − fLH

[
CH

BS (S , t) −CL
BS (S , t)

]
g(t,T ), (4.121)

∂CH

∂S
(S , t) ≈

∂CH
BS

∂S
(S , t) + fHL

[
∂CH

BS

∂S
(S , t) −

∂CL
BS

∂S
(S , t)

]
g(t,T ), (4.122)

∂CL

∂S
(S , t) ≈

∂CL
BS

∂S
(S , t) − fLH

[
∂CH

BS

∂S
(S , t) −

∂CL
BS

∂S
(S , t)

]
g(t,T ), (4.123)

where:

g(t,T ) =
e( fHL+ fLH)(T−t) − 1

fHL + fLH
, (4.124)

fHL = −
(
λHL − mHL

)
, (4.125)

fLH = −
(
λLH − mLH

)
. (4.126)

It would seem logical to state an ansatz where the regime-switching solution is a weighted
combination of the high and low volatility Black-Scholes options prices and solve the corre-
sponding partial differential equations for the state-dependent weights. Unfortunately, assum-
ing that fHL , fLH, the coupled partial differential equations for the weights are in fact more
complicated than those of the original problem and there is no improvement which warrants
using this approach over our proposed method.

Financially, fi j acts as an adjustment term for a particular state’s option price. Given the
intensity of our Poisson process and our current state’s level of volatility, fi j allows for the price
to reflect the immediate market conditions. Intuitively, these state-dependent relations make
financial sense because, if we assumed fHL = fLH = 0, the pricing partial differential equations
decouple and reduce to the state-dependent Black-Scholes pricing equations [6], as expected.
In addition, if the high and low regime volatilities were the same, the source terms driven by
fHL, fLH would vanish, once again leaving Black-Scholes type option pricing equations.

Since the λHL, λLH ≥ 0, it follows that fHL, fLH ≤ 0 under the risk-neutral measure. It is
interesting to consider our approximate option price solution and its associated backward error
under the risk neutral measure, found by substituting equations (4.124), (4.125), and (4.126)
into equations (4.120), (4.121), and (4.111). This gives us the following relations:

CH(S , t) ≈ CH
BS (S , t)

[
1 − αH(t)

]
+ CL

BS (S , t)αH(t), (4.127)

CL(S , t) ≈ CL
BS (S , t)

[
1 − αL(t)

]
+ CH

BS (S , t)αL(t), (4.128)∣∣∣∣LR−S (CH)
∣∣∣∣ =

1
2
αH(t)

(
σ2

H − σ
2
L
)
S 2ΓL

BS , (4.129)∣∣∣∣LR−S (CL)
∣∣∣∣ =

1
2
αL(t)

(
σ2

H − σ
2
L
)
S 2ΓH

BS , (4.130)
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where:

αH(t) =
λHL

λHL + λLH

(
1 − e−(λHL+λLH)(T−t)

)
, (4.131)

αL(t) =
λLH

λHL + λLH

(
1 − e−(λHL+λLH)(T−t)

)
, (4.132)

such that λHL + λHL , 0, which holds due to our previous assumption that the arrival rates of
the Poisson processes must be strictly positive.

The weights αH(t), αL(t) are time dependent, decaying as we approach the maturity date of
the option, T . Our state-dependent regime switching option prices depend on the percentage
of time volatility switches to the opposing regime, conditional on switching regimes at all. The
impact of the probability of switching regimes on our state-dependent option price is greatest
at the initiation of the contract (i.e. at t = 0). For example, it is clear that as t → T , the impact
of switching to the low regime on our high option price becomes less influential and that for
sufficiently small time left until maturity, our regime-switching price can be approximated
by the corresponding Black-Scholes price. Thus as we approach maturity, our option price
solution approaches the corresponding Black-Scholes option price and thus to the given final
conditions. In addition, since both state’s errors decay as t → T , our approximate solution
introduces the most error into the regime-switching pricing PDE about the strike price, K, at
contract initiation, t = 0.

We can consider what occurs to our state-dependent regime-switching option prices as one
of the Poisson intensities becomes infinitely large. First consider when the intensity λHL of the
process driving jumps to the low volatility regime becomes infinitely large:

lim
λHL→∞

CH,L(S , t) = CL
BS (S , t), (4.133)

lim
λHL→∞

∣∣∣∣LR−S (CH)
∣∣∣∣ =

1
2
(
σ2

H − σ
2
L
)
S 2ΓL

BS , (4.134)

lim
λHL→∞

∣∣∣∣LR−S (CL)
∣∣∣∣ = 0. (4.135)

Now consider as the intensity, λLH, of the process driving jumps to the high regime becomes
large:

lim
λLH→∞

CH,L(S , t) = CH
BS (S , t), (4.136)

lim
λLH→∞

∣∣∣∣LR−S (CH)
∣∣∣∣ = 0, (4.137)

lim
λLH→∞

∣∣∣∣LR−S (CL)
∣∣∣∣ =

1
2
(
σ2

H − σ
2
L
)
S 2ΓH

BS . (4.138)

It can be noted that when the intensity of the process governing jumps to one regime is
infinitely large, both state-dependent regime-switching option prices are approximated by the
corresponding Black-Scholes option price. This is due to the fact that the market will always
switch back to this regime no matter what, therefore it makes sense to price the option as if we
are in a constant volatility world.
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Furthermore, it is interesting to consider what values our option prices take on as the inten-
sities of both Poisson processes become extremely large (i.e. approach infinity). We get:

lim
λHL,λLH→∞

CH,L(S , t) ≈
1
2

[
CH

BS (S , t) + CL
BS (S , t)

]
, (4.139)

lim
λHL,λLH→∞

∣∣∣∣LR−S (CH)
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H − σ
2
L
)
S 2ΓL

BS , (4.140)

lim
λHL,λLH→∞

∣∣∣∣LR−S (CL)
∣∣∣∣ =

1
4
(
σ2

H − σ
2
L
)
S 2ΓH

BS . (4.141)

When there are infinitely many regime switches possible, neither the initial regime or cur-
rently occupied regime have an impact on the option price. Thus our regime-switching op-
tion price is written as an equally weighted combination of the possible state’s Black-Scholes
option prices. The error introduced by our regime-switching option price approximations de-
pend directly on the sensitivity of the option with respect to the underlying if it occupied the
other regime. Furthermore, if the intensities of our respective Poisson processes are equal (i.e.
λHL = λLH = λ̃ where λ̃ is a constant), then our regime-switching option price is an equally
weighted combination of Black-Scholes option prices conditional on high or low volatility
state.

CH,L(S , t) ≈
1
2

[
CH

BS (S , t) + CL
BS (S , t)

]
, (4.142)∣∣∣∣LR−S (CH)
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)
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BS , (4.143)∣∣∣∣LR−S (CL)
∣∣∣∣ =
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2
L
)
S 2ΓH

BS . (4.144)

It is important to note that when infinitely many regime switches are allowed, where the
probability of leaving the currently occupied regimes are constant for all possible regimes, the
actual probability has no effect on option price as it is computed using equal weights. The
errors become almost identical but are still weighted with respect to the opposing regime’s
sensitivity to the underlying’s price. For example, a higher volatility option is more sensitive
to underlying movements in stock price, especially when the option is at the money. This is
attributed to the fact that the error of the high volatility option is a function of the low volatility
option’s gamma, which takes on a value of higher magnitude about the strike. Therefore, the
magnitude of the error introduced into the high regime PDE by the high state option increases
as well.
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Expected Return r 0%
High State Volatility σH 40%
Low State Volatility σL 10%

Strike Price K $100
Maximum Stock Price S max $300

Maturity Date T 1 year
Daily High Jump Intensity λHL 5%
Daily Low Jump Intensity λLH 5%

High State MPVR mHL 0
Low State MPVR mLH 0

Number of Time Increments L̃ 252

Table 4.2: Parameters used in the implementation of the Crank-Nicolson numerical scheme.

To determine the reliability of our approximate solution, we compared it to the numerical
solution of our coupled equations. A comparison of our approximate solutions to the numerical
solutions in Figures 4.3 and 4.4 show that our approximate state-dependent solutions are fairly
accurate over most stock prices. However, there is a larger discrepancy near the strike price.
This is because we evaluated our Black-Scholes terms within the forcing terms using our initial
condition evaluated at ε. The error in our approximate solution is largest in magnitude about
the strike price, which is illustrated in the figure. However our goal was to find an approximate
solution that had the same behaviour as the numerical solution, which was in fact realized as
shown in Figures 4.3 and 4.4. Our result provides a quick and easy method to evaluate regime-
switching options, and can be applied to other types of options only exercisable at maturity.

To further support our state-dependent error term, we compare the backward error asso-
ciated with implementing the Crank-Nicolson numerical scheme on both the state-dependent
decoupled Black-Scholes equations and the coupled regime-switching pricing partial differ-
ential equations. The backward error quantifies how the unknown error introduced by the
approximate solution is magnified when introduced back into the original pricing PDE. The
parameters are consistent with those previously used. The results of this calculation are sum-
marized in Figures 4.5, 4.6 and 4.7.

It can be observed that the backward error plots of Figures 4.5, 4.6 and 4.7 all have a similar
shape, suggesting that our approximate solution is a reasonable solution for our coupled pric-
ing equation. Even in the implementation of Crank-Nicolson on the classical Black-Scholes
PDE, the error introduced back into the PDE by the numerical solution has the largest mag-
nitude about the strike price. As well, for our regime-switching error term, the greatest error
is experienced when the option is at-the-money, S = K, although this error does dissipate
as the exercise date of the option is approached. The magnitude of our error term is signifi-
cantly greater, most notably near the money, which is expected as the error introduced from the
approximate solution gets magnified when substituted back into the pricing equation.

In general, when considering the backward error associated with the Crank-Nicolson nu-
merical solution of both the Black-Scholes and regime-switching PDEs, it can be observed
that both states take on the largest error about the strike price, however the high state’s error is
greater or equal to the low state error for all stock prices. In comparison, when we consider our
error term it can be noted that for the high state, the error is concentrated and of largest magni-
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Figure 4.3: Comparison of the numerical and approximate solution of the high state regime-
switching risk-neutral call option at t = 0. Parameters as given in Table 4.2.

tude near the stock price. The low state error is consistently smaller in magnitude but persists
for most stock values. The persistence of the error among the stock prices is the main differ-
ence between our analytical backward error function and the numerical backward error found
using Crank-Nicolson. Using the numerical scheme, the error introduced back into the PDE
persists for almost all possible stock values, however our error is more concentrated around the
strike, especially for the high regime option. This suggests that although our error is of greater
magnitude, there is a smaller range of stock price values for which our method produces inac-
curate approximations compared with the Crank-Nicholson numerical method. It is important
to recall that substituting the approximate option price back into the PDE magnifies the error.
The error between our approximate solution and the true solution are smaller in magnitude, as
illustrated in Figures 4.3 and 4.4. For an option trader, smaller more persistent discrepancies
in the option price could accumulate to more portfolio losses as compared to less likely larger
errors in the price. Although the results produced by our approximate solution are not always
as accurate as those found numerically, our result provides an easily understood, financially
intuitive approximation.

Finally, the L2-norm was computed to analyse the error between our approximate solution
and the numerical solution found through the implementation of the Crank-Nicholson method.
The first case considers the effect of time on the error introduced by our approximation. As
shown in Figure 4.8, for both the high and low state options, the error decreases significantly
as time approaches maturity. All parameters remained the same as in the previous example.
This is consistent with our intuition that our approximate option prices would be the most in-
accurate at the option’s inception date. However, as our option prices diffuse to their boundary
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Figure 4.4: Comparison of the numerical and approximate solution of the low state regime-
switching risk-neutral call option at t = 0. Parameters as given in Table 4.2.

conditions, the error diminishes.
Given that the greatest error observed between our solution and the numerical solution

occurs at option inception, the last case will consider the error introduced at the initial time
step t = 0, while varying the solution grid size. As the grid size increases, the step size, dt,
decreases. The increments shown in Figure 4.9 are those associated with the time steps. As
we decrease the size of the increments, the error increases. It is well known that the finer the
numerical grid (i.e. smaller increments), the more accurate the numerical result. Since the L2-
norm is shown to grow with increased grid size, it can be concluded that it is the approximate
solution, not the numerical solution, that is contributing to this increased error. It should be
pointed out that in all three cases, the high state option price has a greater discrepancy error
(larger L2-norm) than the low state option price, indicating that our approximate solution is
better suited for pricing in the low volatility regime than the high volatility regime.
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Figure 4.5: Comparison of the backward error associated with solving the state-dependent
Black-Scholes PDEs at t = 0 using the Crank-Nicolson numerical scheme. Parameters as
given in Table 4.2.
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Figure 4.6: Comparison of the backward error associated with solving the coupled regime-
switching risk-neutral PDEs at t = 0 using the Crank-Nicolson numerical scheme. Parameters
as given in Table 4.2.
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Figure 4.7: Comparison of the backward error associated with our approximate regime-
switching risk-neutral solution at t = 0. Parameters as given in Table 4.2.
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Figure 4.8: Effect of time on the L2 norm associated with the difference between the approxi-
mate and numerical solutions for the regime-switching risk-neutral coupled PDEs. Parameters
as given in Table 4.2.



4.4. Discussion 61

0.005 0.01 0.015 0.02 0.025

4.5

5

5.5

6

6.5

7

7.5

8

8.5

Time Increment Size, dt

L2  N
or

m

 

 

High State
Low State

Figure 4.9: Effect of varying the time increments, dt, on the L2 norm associated with the
difference between the approximate and numerical solutions at t = 0 for the regime-switching
risk-neutral coupled PDEs. Parameters as given in Table 4.2
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4.5 Summary
In the presence of regime-switching volatility we derived coupled pricing partial differential
equations dependent on the market price of volatility risk. Using the Cauchy-Kowalevski The-
orem, the existence of unique state-dependent option prices was proven, and approximate so-
lutions were derived from a series-type solution. Considering financial intuition, our problem
was redefined to be a function of the corresponding volatility state’s Black-Scholes option
prices. As a result, continuous-time state-dependent solutions for both regime-switching op-
tion prices and Deltas were derived as functions of both the Black-Scholes option prices and the
coefficients coupling the partial differential equation source terms. Overall, an examination of
our results show that the impact of regime-switching is time-sensitive and decays as an option
approaches its maturity date. Our new analytic approximation provides an easy and effective
approximation technique that can easily be applied to other options written on underlyings with
regime-switching volatility.

One of the main parameters embedded within the coefficients of the PDE source terms is
the market price of volatility risk. Given our approximate solutions for the regime-switching
option prices and Deltas, it is interesting to investigate the impact that varying the magnitude
and sign of the risk premia has on these financial terms. This question will be addressed in the
next chapter.



Chapter 5

Impact of Market Price of Volatility Risk

For decades, it has been of great importance to explain the differences between option prices
obtained from option pricing models and the actual prices of options traded on stock exchanges
around the world. Since the introduction of the seminal Black and Scholes [6] option pricing
model, academics and practitioners have tried to quantify the discrepancies between theoreti-
cally predicted and observed option prices: to understand the difference between implied and
realized volatility. Jackwerth and Rubinstein [29] found that an option’s implied volatility is
biased high compared to historical volatility. This difference has been attributed to the exis-
tence of volatility risk premia. Much work in financial econometrics supports the hypothesis
that volatility risk premia are non-positive. Carr and Wu [12] used US equity data to support
the existence of volatility risk premia. Boswijk [8] showed, using Dutch market data, evidence
to prove the existence of the market price of volatility risk in equity markets.

The market price of volatility risk is important as it provides a way to measure a market’s
appetite for risk. Bakshi and Kapadia [5] showed in the presence of stochastic volatility that the
underperformance of a delta-hedged portfolio was related to the existence of a negative market
price of volatility risk. Work has also been done to show the existence of a negative market price
of volatility risk in commodities markets. Doran and Ronn [16] used New York Mercantile
Exchange options and futures data to show that the difference between the implied and realized
volatility was directly related to the existence of a negative market price of volatility risk in
energy markets (i.e. natural gas, crude oil, and heating oil).

The focus of this chapter is to examine the theoretical impact of the market price of volatil-
ity risk on pricing options in a regime-switching market. We saw in Chapter 2 that the market
price of volatility risk arises in a coupled system of partial differential equations (PDEs) rep-
resenting the price of a option written on an underlying with regime-switching volatility. In
this model, the market price of volatility risk is a driving force in the effect the coupled source
term has on a particular regime’s option price. Since closed-form solutions are not available
for the system of equations, approximate solutions for the option prices and hedge ratios were
obtained through an application of a classical PDE theorem. The form of the approximate so-
lutions, particularly with respect to the impact of the market price of volatility risk term, gives
rise to financially intuitive results.

In general, an option seller takes on more risk in the high volatility state since greater
uncertainty exists in the future price of the underlying asset relative to the low state. It is there-
fore natural to investigate the consequence of state-dependent market prices of volatility risk.

63
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Duarte and Jones [17] showed that the volatility risk premium varies positively with the overall
level of market volatility. As well as being positively correlated to volatility movement, Coval
and Shumway [13] previously found evidence that the market price of volatility risk is time
varying through their analysis of Chicago Board Options Exchange call and put price data. We
will show theoretically that the existence of such option prices and their corresponding hedge
ratios depend directly on restrictions placed on the market price of volatility risk, otherwise
financially unrealistic solutions may arise. In particular, we will prove that state-dependent
market prices of volatility risk must be negative, otherwise pricing model results defy basic
financial intuition.

For the analysis presented in this chapter, we assume that λi j and mi j are constant for each
regime i where i ∈ {H, L} such that i , j. In order for the problem to make sense we assume
that λHL > 0 and λLH > 0 to avoid certain pathological cases.

5.1 Restrictions Derived Directly from Coupled Pricing Equa-
tions

Our financial intuition allows us to expect the regime-switching option prices to be bounded
by the corresponding Black-Scholes option prices. Due to the possibility of switching to a
different regime, the high regime option becomes less valuable and the low state option be-
comes more valuable in the presence of volatility switching. This motivates us to consider the
difference between regime-switching and constant-volatility options. Recall that in Chapter 4
we redefined our regime-switching options in terms of these inherent differences, Y(S , t) and
X(S , t), and derived a new set of coupled pricing equations.

CH(S , t) = CH
BS (S , t) − Y(S , t), (5.1)

CL(S , t) = CL
BS (S , t) + X(S , t), (5.2)

where X(S , t),Y(S , t) ≥ 0.
The dynamics of the option prices can be analysed using the coupled PDEs directly. The

time reversal transformation τ = T − t as well as the transformations in equations (5.1) and
(5.2) yielded a new coupled system of PDEs given by equations (4.16) and (4.17) .

Although our new system of coupled equations for X(S , τ) and Y(S , τ) has analytic initial
conditions, non-smoothness arises in the problem via the Black-Scholes relations found in the
forcing terms. Given that the initial condition for the Black-Scholes pricing problem is not
analytic, we previously considered a similar pricing problem conditional on volatility state i
with solution Ci,ε

BS (S , τ) having an analytic initial condition:

Ci,ε
BS (S , 0) = S N(di,ε

1 ) − Ke−rεN(di,ε
2 ), (5.3)

where

di,ε
1 =

ln S
K +

(
r + 1

2σ
2
i
)
ε

σi
√
ε

, (5.4)

di,ε
2 = di,ε

1 − σi
√
ε, (5.5)
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N(x) =
1
√

2π

∫ x

−∞

e−
z2
2 dz. (5.6)

For very small values of ε such that ε approaches zero, we assume the following:

Ci
BS (S , 0) = lim

ε→0
Ci,ε

BS (S , 0). (5.7)

Analyzing our system of PDES at τ = 0 and making use of the analytic initial condition of
the closely related Black-Scholes problem:

∂Y
∂τ

(S , 0) = − fHL

[
lim
ε→0

CH,ε
BS (S , 0) − lim

ε→0
CL,ε

BS (S , 0)
]
, (5.8)

∂X
∂τ

(S , 0) = − fLH

[
lim
ε→0

CH,ε
BS (S , 0) − lim

ε→0
CL,ε

BS (S , 0)
]
. (5.9)

Now, consider a Taylor series expansion of our option price differences about the point
τ = 0.

Y(S , τ) = Y(S , 0) + τ
∂Y
∂τ

(S , 0) +
1
2
τ2∂

2Y
∂τ2 (S , 0) + . . . , (5.10)

X(S , τ) = X(S , 0) + τ
∂X
∂τ

(S , 0) +
1
2
τ2∂

2X
∂τ2 (S , 0) + . . . . (5.11)

Then for very small τ such that τ >> τ2, it follows that all terms of order O(τ2) and higher
may be neglected in our Taylor series expansions.

Y(S , τ) = − fHLτ

[
lim
ε→0

CH,ε
BS (S , 0) − lim

ε→0
CL,ε

BS (S , 0)
]
, (5.12)

X(S , τ) = − fLHτ

[
lim
ε→0

CH,ε
BS (S , 0) − lim

ε→0
CL,ε

BS (S , 0)
]
. (5.13)

We know that X(S , τ),Y(S , τ) ≥ 0 for all values of τ ≥ 0. Since it is well known that
lim
ε→0

CH,ε
BS (S , 0) − lim

ε→0
CL,ε

BS (S , 0) ≥ 0, it follows that:

Y(S , τ) ≥ 0, (5.14)

− fHLτ

[
lim
ε→0

CH,ε
BS (S , 0) − lim

ε→0
CL,ε

BS (S , 0)
]
≥ 0, (5.15)

⇒ fHL < 0. (5.16)

Similarly,

X(S , τ) ≥ 0, (5.17)
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− fLHτ

[
lim
ε→0

CH,ε
BS (S , 0) − lim

ε→0
CL,ε

BS (S , 0)
]
≥ 0, (5.18)

⇒ fLH < 0. (5.19)

From equations (5.12) and (5.13), we can have the following relationship:

Y(S , τ) =
fHL

fLH
X(S , τ). (5.20)

The relation given by (5.20) only holds for very small values of τ. Therefore when we are
approaching maturity, the difference between the high state Black-Scholes option price and the
corresponding regime-switching option price is a scaled difference between the low volatility
Black-Scholes and regime-switching option prices. The scaling of this difference relies explic-
itly on the Poisson intensities and the state-dependent market prices of volatility risk. Since it
was assumed that X(S , τ),Y(S , τ) ≥ 0 and since Black-Scholes option prices are everywhere
positive, it follows that both fHL, fLH < 0 also holds here. For all possible volatility states, if the
coefficient of the source term coupling the pricing equations fi j is negative, the state-dependent
market prices of volatility risk are also negative for any possible Poisson intensity, λi j, as shown
below.

fi j < 0, (5.21)

−
(
λi j − mi j

)
< 0, (5.22)

⇒mi j < λi j. (5.23)

Our regime-switching framework defined λi j > 0 to ensure switching occurs between
volatility states. This implies that mi j ≤ 0 for any choice of hedge rebalancing period and for
all possibly Poisson intensities. Thus in order to get economically reasonable regime-switching
option prices, the state-dependent market prices of volatility risk must be negative. It remains
to show that the same restrictions must hold for our approximate solutions.

5.2 Restrictions Derived from Approximate Solutions
In order to determine if the same restrictions for the state-dependent market prices of volatility
risk exist for our approximate option prices, we write equations (4.85) and (4.86) explicitly for
the high and low volatility regimes.

CH(S , t) ≈ CH
BS (S , t) + fHL

[
CH

BS (S , t) −CL
BS (S , t)

]
g(t,T ), (5.24)

CL(S , t) ≈ CL
BS (S , t) − fLH

[
CH

BS (S , t) −CL
BS (S , t)

]
g(t,T ), (5.25)

∂CH

∂S
(S , t) ≈

∂CH
BS

∂S
(S , t) + fHL

[
∂CH

BS

∂S
(S , t) −

∂CL
BS

∂S
(S , t)

]
g(t,T ), (5.26)

∂CL

∂S
(S , t) ≈

∂CL
BS

∂S
(S , t) − fLH

[
∂CH

BS

∂S
(S , t) −

∂CL
BS

∂S
(S , t)

]
g(t,T ), (5.27)
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where:

fHL = −
(
λHL − mHL

)
, (5.28)

fLH = −
(
λLH − mLH

)
, (5.29)

g(t,T ) =
e( fHL+ fLH)(T−t) − 1

fHL + fLH
. (5.30)

It is easy to show that g(t,T ) ≥ 0 for all t ≤ T and fHL, fLH < 0.

fHL + fLH < 0 and − 1 ≤ e( fHL+ fLH)(T−t) − 1 ≤ 0,

⇒g(t,T ) =
e( fHL+ fLH)(T−t) − 1

fHL + fLH
≥ 0. (5.31)

Since fi j is a function of the market price of volatility risk mi j for i ∈ {H, L} where i , j, we
consider restrictions on fi j which in turn define individual restrictions on mi j. Financially, fi j

acts as an adjustment term for a particular state’s option price, specifically as implied Poisson
intensities for their respective Poisson processes, which will be discussed in more detail in the
subsequent section. Intuitively, these state-dependent relations make financial sense because
the assumption that fHL = fLH = 0 would decouple pricing partial differential equations, reduc-
ing them to the state-dependent Black-Scholes pricing equations. In addition, if the high and
low regime volatilities were the same, the source terms driven by fHL, fLH would vanish, once
again leaving Black-Scholes type option pricing equations.

When options go too far in or out of the money, their state-dependent option prices converge
to the same value, especially towards maturity. At this point the option dynamics no longer
include much of the risk of switching between volatility regimes, as volatility has minimal
effect on the option price. This is consistent with Bakshi and Kapadia’s [5] statement that
options deep in/out of the money cannot provide insight about the market price of volatility
risk. Therefore we are only concerned with the case where CH(S , t) ≈ CL(S , t) does not hold
such that there exists a non-negligible source term coupling the equations. This implies that at
least one of the following must also be true:

λHL , mHL, (5.32)
λLH , mLH. (5.33)

Since our purpose is to determine if any restrictions must be imposed on the market prices
of volatility risk, and thus on the coefficients of the source terms in the pricing equations, we
will consider financially intuitive constraints which the approximate solutions of the option
price and hedge ratios must satisfy.

First, elementary arbitrage considerations imply that a call option price must be positive
and bounded above by the stock price. Second, the Delta of a call option must lie between zero
and one, as its seller need never hold more than one nor less than zero shares to fully hedge
their risk. This is because a call option gives its owner the right to exercise at maturity in order
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to buy one share of the stock from their counterparty (i.e. investor who sold the option). Since
the seller does not want to be stuck with buying the one full share of the stock for a premium
(i.e. market value) if the option is exercised, they accumulate their position in the stock over
time. Third, in a regime-switching market, there exists the possibility of switching to a more
volatile or stable regime, depending on our initial regime, which in turn affects the option
value. For a low state option, we know that the price is bounded below by the low volatility
state Black-Scholes option price, since the possibility of switching to a more volatile state
makes the position more valuable. On the other hand, a high state regime-switching option is
bounded above by the high volatility state Black-Scholes option price. Since it is possible to
shift to a more stable regime, the option is not worth as much. In other words,

0 ≤ CL
BS (S , t) ≤ CL(S , t) ≤ CH(S , t) ≤ CH

BS (S , t) < S . (5.34)

As previously discussed, it is also true that

g(t,T ) ≥ 0 for all fHL, fLH. (5.35)

Our intuition indicates that the coefficients driving the source terms must be negative, how-
ever this can also be proved mathematically.

It can easily be observed that the state-dependent option prices and Deltas depend on a
common term g(t,T ), for all 0 ≤ t ≤ T . Checking the behaviour of this function at the initial
time point and at maturity, it can be noted that the boundedness of the approximate solutions
depend solely on the behaviour of this function.

5.2.1 Behaviour of g(t,T )

As we approach maturity, lim
t→T

g(t,T )→ 0 for all fi j, which decouples the state-dependent solu-
tions, making them solely dependent on the Black-Scholes functions conditional on volatility
state occupation. This is expected as the option boundary conditions are independent of the
volatility model.

On the other hand, as the time to maturity becomes quite large, the convergence of the
function g(t,T ) is not as clear-cut. Since this function depends on the relation fHL + fLH, we
will examine convergence for three cases: fHL + fLH = 0, fHL + fLH > 0, and fHL + fLH < 0.

For fHL + fLH = 0 where both fHL, fLH can’t be zero since we assumed that λHL, λLH > 0 to
ensure regime-switching. First expand e( fHL+ fLH)(T−t) in a Taylor series about ( fHL + fLH)(T − t) =

0.

e( fHL+ fLH)(T−t) =
(
1 + ( fHL + fLH)(T − t) +

1
2

( fHL + fLH)2(T − t)2 + . . .
)
− 1. (5.36)

Consider g(t,T ) now and evaluate at fHL + fLH = 0.

g(t,T )
∣∣∣∣
fHL+ fLH=0

=
1 + ( fHL + fLH)(T − t) + 1

2 ( fHL + fLH)2(T − t)2 + . . .

fHL + fLH

∣∣∣∣
fHL+ fLH=0

, (5.37)

⇒ g(t,T )
∣∣∣∣
fHL+ fLH=0

= T − t. (5.38)
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For fHL + fLH > 0,

e( fHL+ fLH)(T−t) ≥ 1, (5.39)

lim
T−t→∞

g(t,T ) = lim
T−t→∞

e( fHL+ fLH)(T−t) − 1
fHL + fLH

→ ∞. (5.40)

Finally, check fHL + fLH < 0,

0 ≤ e( fHL+ fLH)(T−t) ≤ 1, (5.41)

lim
T−t→∞

g(t,T ) = lim
T−t→∞

e( fHL+ fLH)(T−t) − 1
fHL + fLH

= −
1

fHL + fLH
≥ 0. (5.42)

As the time to maturity becomes quite large, the function g(t,T ) diverges when fHL + fLH ≥

0. Therefore the option prices and hedge ratios are unbounded with respect to time when
fHL + fLH ≥ 0. Since this violates basic financial principles, in order to ensure bounded option
prices and Deltas in a regime-switching market, the coefficients of the source terms must form
a strictly negative sum, fHL + fLH < 0.

This result is intuitive if we consider the difference between the two state’s option prices.

CH(S , t) −CL(S , t) ≈ CH
BS (S , t) −CL

BS (S , t) + ( fHL + fLH)
(
CH

BS (S , t) −CL
BS (S , t)

)
g(t,T ) (5.43)

Since we expect the difference between the option prices to decrease in the presence of
regime-switching, as low regime options become increasingly more valuable and high regime
options less valuable, this is only possible if fHL + fLH < 0.

It remains to show that given fHL + fLH < 0, some individual restrictions on both fHL, fLH

must hold such that following financial constraints are satisfied.

0 ≤ CL
BS (S , t) ≤ CL(S , t) < S , (5.44)

0 ≤ CH(S , t) ≤ CH
BS (S , t) < S , (5.45)

0 ≤
∂CL

∂S
(S , t) ≤ 1, (5.46)

0 ≤
∂CH

∂S
(S , t) ≤ 1. (5.47)

In the following sections, we summarize the results from the mathematical proofs. For
further detail, please see Mielkie and Davison [34]. For the proofs, notation will be reduced as

follows for simplicity: Ci ≡ Ci(S , t),
∂Ci

∂S
≡
∂Ci

∂S
(S , t),Ci

BS ≡ Ci
BS (S , t), and

∂Ci
BS

∂S
≡
∂Ci

BS

∂S
(S , t)

5.2.2 Case 1: fHL ∈ R, fHL + fLH < 0

For this case, we will only consider the effects of the source term coefficient on the high regime
option price and Delta.
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Since fHL + fLH < 0, we will assume that fHL > 0 ⇒ fLH < 0, | fHL| ≥ | fHL + fLH |. Let
fHL + fLH = −A and fHL = B where A, B > 0 and A

B ≥ 1. Hence it follows that g(t,T ) as defined

by equation (5.30) can be rewritten as g(t,T ) =
1 − e−A(T−t)

A
≤

1
A

.

Satisfy 0 ≤ CH ≤ CH
BS < S

0 ≤ CH
BS −CL

BS ≤ CH
BS , (5.48)

⇒0 ≤ CH
BS ≤ CH

BS + Bg(t,T )
[
CH

BS −CL
BS

]
≤

(
1 +

B
A

)
CH

BS <
(
1 +

B
A

)
S , (5.49)

⇒0 ≤ CH
BS ≤ CH <

(
1 +

B
A

)
S . (5.50)

However, since we require 0 ≤ CH ≤ CH
BS < S , and since fHL > 0 ⇒ CH ≥ CH

BS and
CH > S , we have a contradiction. Therefore in order to have bounded and positive high state
option prices, we require that fHL, fLH < 0.

Satisfy 0 ≤
∂CH

∂S
≤ 1

0 ≤
∂CH

BS

∂S
−
∂CL

BS

∂S
≤
∂CH

BS

∂S
, (5.51)

0 ≤
∂CH

BS

∂S
≤
∂CH

BS

∂S
+ Bg(t,T )

[∂CH
BS

∂S
−
∂CL

BS

∂S

]
≤

(
1 +

B
A

)∂CH
BS

∂S
, (5.52)

⇒0 ≤
∂CH

∂S
≤

(
1 +

B
A

)∂CH
BS

∂S
. (5.53)

To satisfy financial intuition, we require 0 ≤ ∂CH

∂S ≤ 1, and since fHL > 0 ⇒ ∂CH

∂S ≥ 1, we
have a contradiction. Therefore in order to have bounded and positive high state Deltas, we
require that fHL, fLH < 0.

5.2.3 Case 2: fLH ∈ R, fHL + fLH < 0

For this case, we will only consider the effects of the source term coefficient on the low regime
option price and Delta.

Since fHL + fLH < 0, we will assume that fLH > 0 ⇒ fHL < 0, | fLH | ≥ | fHL + fLH |. Let
fHL + fLH = −A and fLH = B where A, B > 0 and A

B ≥ 1.

Satisfy 0 ≤ CL
BS ≤ CL < S

0 ≤ CH
BS −CL

BS ≤ CH
BS , (5.54)

CL
BS −

B
A

CH
BS ≤ CL

BS − Bg(t,T )
[
CH

BS −CL
BS

]
≤ CL

BS < S , (5.55)

⇒CL
BS

[
1 −

B
A
]
≤ CL ≤ CL

BS < S . (5.56)
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However, since we require 0 ≤ CL
BS ≤ CL < S , and since fLH > 0⇒ CL ≤ 0 and CL ≤ CL

BS ,
we have a contradiction. Therefore in order to have bounded and positive low state option
prices, we require that fHL, fLH < 0.

Satisfy 0 ≤
∂CL

∂S
≤ 1

0 ≤
∂CH

BS

∂S
−
∂CL

BS

∂S
≤
∂CH

BS

∂S
, (5.57)

∂CL
BS

∂S
−

B
A
∂CH

BS

∂S
≤
∂CL

BS

∂S
− Bg(t,T )

[∂CH
BS

∂S
−
∂CL

BS

∂S

]
≤
∂CL

BS

∂S
≤ 1, (5.58)

⇒
∂CL

BS

∂S

[
1 −

B
A

]
≤
∂CL

∂S
≤ 1. (5.59)

Financially, we require 0 ≤ CL
BS ≤ CL < S , and since fLH > 0 ⇒ ∂CL

∂S ≤ 0, we have a
contradiction. Therefore in order to have bounded and positive low state option Deltas, we
require that fHL, fLH < 0.

To summarize we found that for the high state option price and Delta, we found that the
financial constraints were violated when fHL > 0. The high state option was not bounded
above by either the Black-Scholes option price or the stock price and the Delta could take on
values greater than one. On the other hand, when we considered fLH > 0 for the low regime,
it was found that both the option and its Delta violated the non-negativity constraints. As
previously discussed, a negative coefficient coupling the source terms implies that negative
state-dependent market prices of volatility risk are required for financially reasonable regime-
switching option prices.

Further analysis shows that given negative market prices of volatility risk, changing the
magnitude of the low (respectively high) prices of risk has a more pronounced effect on the
low (respectively high) state’s option price and Delta value.

fi j

fi j + f ji
≥

f ji

fi j + f ji
, for all i ∈ {H, L}, i , j. (5.60)

Since

Ci(S , t) ≈ Ci
BS (S , t) − fi j

(
C j

BS (S , t) −Ci
BS (S , t)

)(e( fi j+ f ji)(T−t) − 1
fi j + f ji

)
, (5.61)

∂Ci

∂S
(S , t) ≈

∂Ci
BS

∂S
(S , t) − fi j

(
∂C j

BS

∂S
(S , t) −

∂Ci
BS

∂S
(S , t)

)(
e( fi j+ f ji)(T−t) − 1

fi j + f ji

)
, (5.62)

are our approximate solutions, the relative change in a state-dependent option price and cor-
responding Delta are directly proportional to the change in magnitude of its state-dependent
market price of volatility risk.

It follows that for all regime-switching options in a two state market, no matter what volatil-
ity state is occupied, the corresponding market price of volatility risk must be negative in order
for the option values and hedge ratios to satisfy financially intuitive conditions.
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To illustrate the necessity of the restriction of state-dependent market prices of volatility
risk to negative values, a Crank-Nicolson numerical scheme was used to solve the coupled
PDEs for the two-state case.

Expected Return r 0%
High State Volatility σH 40%
Low State Volatility σL 10%

Strike Price K $100
Maturity Date T 1 year

Daily High State Jump Intensity λHL 5%
Daily Low State Jump Intensity λLH 5%

Number of Time Increments L̃ 252

Table 5.1: Parameters used in the implementation of the Crank-Nicolson numerical scheme.

As can be noted in Figure 5.1, when the low state market price of volatility risk is given
a positive value (i.e. mLH = 4), financially impossible negative option prices can be observed
about the strike price. Therefore the numerical solution exhibits the same behaviour as our
approximate solution, and our claim in support of negative state-dependent market prices of
volatility risk is illustrated.

0 50 100 150 200 250 300
−150

−100

−50

0

50

100

150

200

Stock Price

C
al

l P
ric

e

 

 

CH(S,t)

CL(S,t)

Figure 5.1: Crank-Nicolson numerical solutions for the coupled pricing PDEs. mHL =

−1,mLH = 4, all other parameters as given in Table 5.1.

Furthermore, a comparison of our approximate solutions to the numerical solutions in Fig-
ure 5.2 and Figure 5.3 show that our approximate state-dependent solutions are fairly accurate,
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although with some discrepancy about the strike price. This error was quantified and discussed
in detail in Chapter 4. However given different combinations of state-dependent market prices
of volatility risk, it is observed that the numerical solution has the same behaviour as the ap-
proximate solution. As desired, Figure 5.2 and Figure 5.3 illustrate that given negative state
dependent market prices of volatility risk, regime-switching option prices are in fact positive
and bounded above by the underlying asset’s price.
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Figure 5.2: Comparison of the numerical and approximate solution of the high state pricing
PDE. mHL = mLH = −2, all other parameters as given in Table 5.1.

We have shown that, in order for option prices to make sense financially, the state-dependent
market price of volatility risk must take on negative values. However, what does this negative
market price of volatility risk imply financially for regime-switching options? Doran and Ronn
[16] stated that, in energy markets, options buyers pay a premium for downside protection
against declines in the market, which in turn leads to a increase in implied volatility levels.
Delta hedged option sellers favour low volatility as larger price movements could lead to them
losing money from their hedged position in the stock. On the other hand, investors with a
hedged position in a long option desire high volatility since to hedge their exposure to the op-
tion they buy low and sell high in the underlying asset thus earning a small profit every time
they rebalance their portfolio. We can extend this logic to our regime-switching framework
from an unhedged point of view. When we occupy the low volatility state, option buyers are
motivated to pay a premium as there exists the risk of transitioning to a more volatile state
where the future value of the underlying asset is more unknown. In a more volatile state, the
probability of the underlying asset price moving until the option is in- or out-of-the-money
increases. Although in the high volatility state since the market can switch to a stabler regime,
investors need to hedge against the current volatility state occupation and will pay a premium
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Figure 5.3: Comparison of the numerical and approximation solution of the low state pricing
PDE. mHL = mLH = −2, all other parameters as given in Table 5.1.

to do so. Thus under the regime-switching framework, investors justify incorporating a pre-
mium within the option prices, through the existence of negative volatility risk premia, for
options that allow to hedge the exposure to either the current volatility state occupation or the
possibility of future volatility state occupation.

5.3 Implied Volatility Smiles

The difference between implied volatility and historical volatility can be used to measure the
discrepancy between market and model prices of options. Traders make daily use of implied
volatility as it allows them to determine the risk associated with an option struck at a particular
strike price. Since there are usually a handful of options corresponding to a particular maturity
date available on financial markets, determining the associated implied volatility with these
options will help them decide which option fits their trading strategy and also fits the risk
preferences of their clients.

Volatility smiles describe the relationship between the strike price of an option and an
option’s implied volatility, and are similar for both calls and puts. The observed smile shows
that in- and out-of-the-money options’ corresponding implied volatility is higher than those
options trading at-the-money. A common explanation for this result is of more demand for
these options by traders for use in their trading activities, and for use as leverage when the
price of the underlying asset changes (Hull [28]).

Volatility smiles have been observed by practitioners in modern equity markets; their exis-



5.3. Implied Volatility Smiles 75

tence was first noticed after the financial crisis in October 1987. Furthermore, volatility smiles
have been found in various option pricing models derived within the last few decades. In
fact, many models are derived for the sole purpose of fitting the volatility smile phenomenon.
Bollen [7] showed that volatility smiles could be backed out from regime-switching European
options for various strike prices and maturity dates, priced using a pentanomial lattice. More
recently, Yao et al. [56] illustrated the volatility smiles and volatility term structures that can
be computed from options priced under a risk-neutral regime-switching model. They showed
that the existence of this phenomenon remained consistent when the jump size between the
two regimes and the frequency of jumps were varied. These results are not surprising as the
dependence of an option’s price on its underlying volatility becomes inconsequential when an
option is too far in- or out-of-the-money.

We have already demonstrated that the state-dependent market prices of volatility risk must
be negative in order to produce option prices satisfying basic financial intuition. Building
upon our earlier claim that volatility risk premia must be negative, we investigate the effect
of different values for the price of risk on the implied volatility smiles. Our benchmark for
analysis is shown in Figure 5.4, when the corresponding high and low state implied volatility
smiles are shown for a risk-neutral regime-switching European call option. The European call
options with a one year maturity, were priced using a Crank-Nicolson numerical scheme. Using
Matlab’s built-in implied volatility solver ’blsimpv’ found in the Financial Toolbox, implied
volatility was backed out from our numerical option prices for a range of strike prices.
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Figure 5.4: Implied volatility smile corresponding to high and low state risk-neutral regime-
switching options prices. mHL = mLH = 0 and S = $100, all other parameters as given in Table
5.1.

With the parameters given in Table 5.1, Figure 5.4 shows the volatility smile for the low
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regime option is more pronounced than that for the high regime option. The state transitions in
the market have a greater impact on those options priced in a low volatility state than those in
a high volatility state, as they are more sensitive to movements in the underlying asset.
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Figure 5.5: State-dependent implied volatility smiles resulting from varying the market prices
of volatility risk. mHL = {0,−1}, mLH = {0,−1}, S = $100, all other parameters as given in
Table 5.1.

Both the magnitude of the high and low state-dependent market prices of volatility risk were
varied in order to observe the effect on the option’s implied volatility smiles. It was found, as
shown in Figure 5.5, that increasing just the magnitude of the high state price of risk caused
both state’s implied volatility smiles to shift lower and become more pronounced. On the other
hand, increasing the magnitude of the low state price of risk while leaving the high state price
constant caused both states’ smiles to shift upwards and become less pronounced. Both these
effects were more significant with respect to the price of risk’s corresponding state’s option
price. Since the market price of volatility risk can be thought of as a premium compensating
investors for the possibility of the market switching to a differing volatility regime, these ob-
servations make intuitive sense. Recall that increasing the magnitude of the high state market
price of volatility risk decreases the high state option value due to the possibility of switching
to a stabler regime. In turn this would also decrease the implied volatility with respect to the
risk neutral case. Low state options were found to increase in value when their state’s price of
risk was increased in magnitude. Since there is a possible switch to a more volatile regime,
the option is now worth more. As a result, the implied volatility increases as well. When both
states’ prices of risk are altered by the same amount, the observed effects are the same, however
the change from our benchmark case is not as much.

Many investors are concerned with the overall level of risk they acquire when taking a
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position in the market. When trading in a market with underlying regime-switching volatility,
there always exists some risk that the volatility will switch to a less desirable regime. To
account for this, many investors require compensation through the premia embedded in the
option price. Of interest, in relation to volatility smiles, is how big do these premia need to be
in order for a risk-averse investor to take a position in a particular option.

Recall that the coupling coefficients of the pricing PDEs given by equation (2.48) and
fHL, fLH as given by equation (2.52), are functions of the Poisson arrival rates governing the
switching between the two regimes. Since they are also functions of the state-dependent market
prices of volatility risk, which compensate for the risk of switching regimes, we may consider
these coefficients to be risk-adjusted Poisson arrival rates, interpreted as implied transitional
probabilities which compensate for the current market conditions as well as the market’s aver-
sion to these conditions. Doing so lends to further analysis of the market price of volatility risk
and the resulting implied volatility.

First, consider an investor who has a long position in an option. This individual fears low
volatility since an option price at a lower volatility level is worth less than an otherwise identical
option priced at a higher volatility level. Such an investor would require a fairly large high state
market price of risk to compensate for the possibility of switching to a lower volatility regime.
Given that mHL(S , t) → −∞ it follows that fHL → −∞ as well. We will first analyse the effect
that the high state coupling coefficient has on the approximate regime-switching option prices.
To do so, we will assume that the low state coefficient takes on a constant and finite negative
value fLH = −F where F ≥ 0.

First, check the high state price.

lim
fHL→−∞
fLH=−F

CH(S , t) ≈ lim
fHL→−∞
fLH=−F

[
CH

BS (S , t) + fHL

(
CH

BS (S , t) −CL
BS (S , t)

)(e( fHL+ fLH)(T−t) − 1
fHL + fLH

)]
,

(5.63)

≈ CH
BS (S , t)

+
(
CH

BS (S , t) −CL
BS (S , t)

)
·

[
lim

fHL→−∞

fHL

fHL − F

]
·

[
lim

fHL→−∞

(
e( fHL−F)(T−t) − 1

)]
,

(5.64)
L’H
≈ CH

BS (S , t) −
(
CH

BS (S , t) −CL
BS (S , t)

)
, (5.65)

⇒ lim
fHL→−∞
fLH=−F

CH(S , t) ≈ CL
BS (S , t). (5.66)

Now for the low state call price,

lim
fHL→−∞
fLH=−F

CL(S , t) ≈ lim
fHL→−∞
fLH=−F

[
CL

BS (S , t) − fLH

(
CH

BS (S , t) −CL
BS (S , t)

)(e( fHL+ fLH)(T−t) − 1
fHL + fLH

)]
,

(5.67)

≈ CL
BS (S , t) + F

(
CH

BS (S , t) −CL
BS (S , t)

)
·

[
lim

fHL→−∞

(
e( fHL−F)(T−t) − 1

)
fHL − F

]
, (5.68)
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⇒ lim
fHL→−∞
fLH=−F

CL(S , t) ≈ CL
BS (S , t). (5.69)

Therefore if a market compensates for the possible switch to the low regime, our option
will be priced as though we are in a constant low volatility world. A flat implied volatility
smile is shown to exist under these circumstances.

σH,imp = σL,imp = σL. (5.70)

This makes economic sense as investors would like to price their options to minimize the
risk of switching to an undesirable regime. This is equivalent to picking mHL large enough that
the option is priced assuming that switches to the low regime happen with absolute certainty
(i.e. λHLdt = 1).

Investors worried about switching into a low regime want to be compensated for the risk
associated with possibly staying in this regime given they at some point switch into it. Since
volatility can switch continuously, this can be intuitively associated with a higher risk premium
demanded. If this compensation is given, the option they sell will be priced as if it were trading
in a low regime constant volatility world. It turns out that a risk-averse option buyer would
rather buy an option at a lower price than face the risks associated with switching regimes.

Now we can investigate the risks faced by option sellers and what price of risk a risk-averse
short position in an option would require. Option sellers fear the volatility rising over the life
of the option. Using the same logic as before, we know that these types of investors would
require a fairly large price of risk to compensate for the risk of switching to the more volatile
state. In order to analyse the effect of the low state coefficient, the high state coefficient will
take on a constant, negative value fHL = −F where F ≥ 0.

For the high state switching option,

lim
fHL=−F
fLH→−∞

CH(S , t) ≈ lim
fHL=−F
fLH→−∞

[
CH

BS (S , t) + fHL

(
CH

BS (S , t) −CL
BS (S , t)

)(e( fHL+ fLH)(T−t) − 1
fHL + fLH

)]
,

(5.71)

≈ CH
BS (S , t) − F

(
CH

BS (S , t) −CL
BS (S , t)

)
·

[
lim

fHL=−F
fLH→−∞

e(−F+ fLH)(T−t) − 1
−F + fLH

]
, (5.72)

⇒ lim
fHL=−F
fLH→−∞

CH(S , t) ≈ CH
BS (S , t). (5.73)

Now for the low state option,

lim
fHL=−F
fLH→−∞

CL(S , t) ≈ lim
fHL=−F
fLH→−∞

[
CL

BS (S , t) − fLH

(
CH

BS (S , t) −CL
BS (S , t)

)(e( fHL+ fLH)(T−t) − 1
fHL + fLH

)]
,

(5.74)

≈ CL
BS (S , t)
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−
(
CH

BS (S , t) −CL
BS (S , t)

)
·

[
lim

fLH→−∞

fLH

−F + fLH

]
·

[
lim

fLH→−∞

(
e(−F+ fLH)(T−t) − 1

)]
,

(5.75)
L’H
≈ CL

BS (S , t) +
(
CH

BS (S , t) −CL
BS (S , t)

)
, (5.76)

⇒ lim
fHL=−F
fLH→−∞

CL(S , t) ≈ CH
BS (S , t). (5.77)

The risk associated with a short position in our regime-switching options results in the
state-dependent options being priced as if they were in a constant high volatility world. As a
result, a flat implied volatility smile taking on the high volatility value across all strike prices
arises from the model.

σH,imp = σL,imp = σH. (5.78)

Like before, pricing our option in such a way is equivalent to picking our risk premium
large enough so that it mimics a framework where the volatility switches to the high regime
with absolute certainty (i.e. λLHdt = 1).

Our option buyers want to be compensated for the risk of the volatility staying high that
they have taken on by entering into a position in this option. Once again, investors require a
higher risk premium. This is equivalent to our risk-averse option seller requesting more for an
option from their counterparty in order to minimize their potential future risks than face the
uncertainty of the underlying volatility in the market.

Finally, both risk-averse option buyers and sellers may consider the most extreme cases
when negotiating the premia added to their option prices. An interesting case is to consider
that volatility in a two-regime world will on average spend half of its time in the high regime,
and the other half in the low regime. It turns out that if both investors require large prices of
risk to compensate for their opposing risks, we would price the options in such a way. Now
consider what occurs to the state-dependent option prices as the magnitude of both coefficients
of the coupling source terms become infinitely large.

For simplicity, let fHL = a fLH where fLH = F and a ≥ 0. Take the limit as F → −∞. For
the high state option,

lim
fHL=aF, fLH=F

F→−∞

CH(S , t) ≈ lim
fHL=aF, fLH=F

F→−∞

[
CH

BS (S , t) + fHL

(
CH

BS (S , t) −CL
BS (S , t)

)(e( fHL+ fLH)(T−t) − 1
fHL + fLH

)]
,

(5.79)

≈ CH
BS (S , t)

+
(
CH

BS (S , t) −CL
BS (S , t)

)
·

[
lim

F→−∞

aF
(a + 1)F

]
·

[
lim

F→−∞

(
e(a+1)F(T−t) − 1

)]
,

(5.80)

≈ CH
BS (S , t) −

a
a + 1

(
CH

BS (S , t) −CL
BS (S , t)

)
, (5.81)

⇒ lim
fHL=aF, fLH=F

F→−∞

CH(S , t) ≈
1

a + 1
CH

BS (S , t) +
a

a + 1
CL

BS (S , t). (5.82)
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Finally, for the low state call option,

lim
fHL=aF, fLH=F

F→−∞

CL(S , t) ≈ lim
fHL=aF, fLH=F

F→−∞

[
CL

BS (S , t) − fLH

(
CH

BS (S , t) −CL
BS (S , t)

)(e( fHL+ fLH)(T−t) − 1
fHL + fLH

)]
,

(5.83)

≈ CL
BS (S , t)

−
(
CH

BS (S , t) −CL
BS (S , t)

)
·

[
lim

F→−∞

F
(a + 1)F

]
·

[
lim

F→−∞

(
e(a+1)F(T−t) − 1

)]
,

(5.84)

≈ CL
BS (S , t) +

1
a + 1

(
CH

BS (S , t) −CL
BS (S , t)

)
, (5.85)

⇒ lim
fHL=aF, fLH=F

F→−∞

CL(S , t) ≈
1

a + 1
CH

BS (S , t) +
a

a + 1
CL

BS (S , t). (5.86)

If investors are concerned about a market which ends up permanently in the opposing
regime, then paying a weighted average of the two regime’s option prices will eliminate some
risk associated with both of their positions. This is equivalent to the fair price that both investors
(i.e. long and short position) would accept to set up their positions in the presence of uncertain
volatility. It should be noted that the implied volatility arising under these assumptions is not a
weighted average of the volatility values of the two regimes.

σH,imp = σL,imp ,
1

a + 1
σH +

a
a + 1

σL. (5.87)

A special case of our generalized result is when a = 1. This implies that our Poisson
intensities controlling our switches into the opposing regimes have the same magnitude. If this
were the case, investors would simply take the average of the two state option prices to set up
their hedge positions.

5.4 Summary
By using the approximate solutions for state-dependent option prices and corresponding Deltas,
we were able to analyse the impact of the market price of volatility risk on these relations, both
intuitively and mathematically. Utilizing basic financial principles, we were able to show that
negative state-dependent market prices of volatility risk were necessary to have reasonable
theoretical option prices in a regime-switching market. The proof of existence of such negative
state-dependent market prices of volatility risk allowed us to quantify the market’s attitudes
about uncertainty in a regime-switching volatility framework. Specifically, the negative market
price of volatility risk acts as an option premium. The option will be worth more due to its
ability to hedge against movements between volatility regimes. It was found that the both the
occupation and potential occupation of a volatile regime causes investors to pay this premium
for options that allow them to hedge against this risk. We investigated the state-dependent
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premia required by risk-averse option buyers and sellers to eliminate the risk they face in the
market. Finally, the consequence of varying the magnitude of the state-dependent market prices
of volatility risk on the implied volatility smiles was shown to alter both the slope and the
magnitude of the smile when compared to the risk-neutral case.

Now that our regime-switching coupled pricing equations have been solved using both a
numerical method and an approximation technique, we can now consider what hedging strate-
gies we can use to effectively hedge against both the movements in the underlying asset and
in the unknown jumps between volatility regimes. A basic introduction to hedging and ar-
bitrage arguments follows along with an empirical analysis of both volatility-dependent and
naive hedging strategies.



Chapter 6

Hedging Strategies

Throughout this chapter, we consider an investor who takes a short position in a European call
option. Recall that a European call option gives its owner the right but not the obligation to
buy the underlying asset for the strike price K at the maturity date of the option T . This right
will only be exercised if it is cheaper to buy the stock at the strike price than it would be to go
directly to the market and do so. An investor having shorted (i.e. sold) the option is exposed
to the risk of the contract’s counterparty coming at maturity to buy the share, one unit of the
underlying asset. Due to this, a short position in a call option has an asymmetric loss/gain
profile where we are exposed to unlimited downside risk if the option expires in-the-money.
As a result, we must hedge against this risk by cleverly investing in a portfolio of financial
instruments.

In this chapter, we will be comparing various different hedging strategies that can be em-
ployed to hedge both against random movements in the volatility and in the underlying asset.
As we will see, these strategies will give us distinct hedge ratios for our different hedging in-
struments employed in our portfolios. The number of hedging instruments and their respective
hedge positions will be defined by each strategy. However there are a few similarities between
the strategies studied, in particular we will always take a position in the underlying asset to
directly hedge against asset risk. This position will be unique for each strategy and defined
by ∆i

1. The discrepancies lie in how we approach hedging out our regime-switching volatility
risk. Recall that we assume that volatility cannot be hedged directly and thus we choose to take
positions in hedging options to do so. Given N volatility regimes, we will assume that we have
N −1 hedging options available to us. The positions in these hedging instruments will be given
by ∆i

n for n = 2, . . . ,N and will be hedging strategy and volatility state dependent.

In particular we will focus on strategies that allow us to completely hedge out all the risks
embedded within our model. Mathematically we show that we can fully hedge against these
risks, however financial implications arise motivating more advanced hedging techniques. Fi-
nally, we will compare our regime-switching hedging strategies with more naive Black-Scholes
style hedge portfolios conditional on different estimates of constant volatility. An overview of
the Black-Scholes hedging model is presented as a benchmark model for hedging, setting the
stage for the set-up and derivation of our regime-switching hedge portfolios. All strategies are
first presented mathematically and then compared within a numerical simulation study.

82
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6.1 Simulation Framework
In order to compare the mean profit/loss of different hedging strategies employed under our
regime-switching volatility framework, we must first discuss how the stock price and volatility
paths are simulated. All simulations in this chapter are implemented in Matlab.

6.1.1 Simulating Regime-Switching Volatility
This thesis is based on the assumption that volatility can switch between a finite number of
regimes, in particular a high and low volatility state. The equation below shows how our
stochastic volatility path is simulated at every time increment dt.

σt+dt = σt +
(
σH − σt

)
dqLH,t +

(
σL − σt

)
dqHL,t, (6.1)

where dqLH,t, dqHL,t are draws from independent binomial distributions with respective proba-
bilities λLHdt, λHLdt. Draws for random variables occur at every time increment. Recall that λi j

is the intensity of the Poisson process associated with the jump from the ith volatility regime
to the jth volatility regime while dt represents the time increment used for simulating GBM.

For simulation purposes, we assume that the initial volatility state occupation, σ0, depends
on the unconditional probability of being in either of the two regimes.

[
PH

PL

]
unconditional

=


λLH

λLH + λHL
λHL

λLH + λHL

 .
A fraction PH,unconditional of paths begin in the high volatility state while a fraction PL,unconditional

begin in the low volatility state.

6.1.2 Simulating Geometric Brownian Motion
As discussed in Chapter 2, it is assumed that our underlying asset (i.e. stock) follows geometric
Brownian motion (GBM). In order to simulate the price paths, we must choose a time increment
dt at which every increment the stock can change price. The equation below illustrates how we
simulate the stochastic differential equation for GBM.

S t+dt = S te
(
µ− 1

2σ
2
t

)
dt+σt

√
dtZt , (6.2)

where Z is a draw from a standard normal distribution. Recall that a standard normal random
variable has mean 0 and variance 1. Due to the dependency of the volatility state on the price
path, the volatility state at time t, σt, is simulated first. The initial stock price S 0 is always
assumed to be given.

6.2 Simulating Hedging Strategies
After simulating sample volatility paths and their corresponding stock price paths, we are ready
to implement all of our hedging strategies on these paths. First we need to compute the regime-
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switching option prices. In Chapter 3 we saw that numerical methods were necessary to solve
our coupled system of regime-switching pricing equations. Solving these equations using the
Crank-Nicolson numerical scheme gives us both the high and low volatility option prices. Since
we computed our option prices on a numerical grid, if the value of the stock price falls between
two grid points, we use linear interpolation to find the exact option price for a particular choice
of S and t. For simplicity, linear interpolation was implemented via a built-in Matlab function
’interp2’. If a stock price in our sample path exceeds the maximum stock price in our numerical
grid, we use the following approximation for the call option price.

Ci(S , t) = S − Ke−r(T−t), (6.3)

for all i ∈ {H, L}.
The above approximation was employed when S > S max. It is important to note that

when we numerically solved our PDEs, the stock vector used could be generalized by S =

[0 . . . S max]T . Since we know that stock prices must be non-negative, no approximation was
necessary on the lower bound since the stock prices cannot fall below the lower bound of the
vector used in our numerical scheme, however they can go above S max. Finally, we require that
our option price corresponds to the correct volatility state, thus we must identify which state
we occupy at every time point to determine if we use the high or low price and the high or
low hedge ratios. The strategy specific hedge ratios will be described in detail later on in the
chapter.

C(S , t) =

CH(S , t) if σ(t) = σH

CL(S , t) if σ(t) = σL
, (6.4)

∆n =

∆H
n if σ(t) = σH

∆L
n if σ(t) = σL

, (6.5)

for all n = 1 · · ·N.
The best indication of how our hedging strategies perform is to compute the mean profit/loss

over Q sample stock price and volatility paths. The mean and 95% confidence interval will give
us a good indication of whether or not an investor utilizing a hedge portfolio would break-even
or lose/earn money on average. The equations below give us an idea of how profit/loss is
computed for our hedge portfolios initially, at every time increment, and when we close out
our portfolio. For a finite number N of hedging instruments,

Profit0 = C1,0 − ∆1,0S 0(1 + sgn(∆1,0)TCstock) −
N∑

n=2

∆n,0Cn,0(1 + sgn(∆n,0)TCoption), (6.6)

Profitt+dt = (1 + rdt)Profitt − (∆1,t+dt − ∆1,t)S t+dt

(
1 + sgn(∆1,t+dt − ∆1,t)TCstock

)
−

N∑
n=2

(∆n,t+dt − ∆n,t)Cn,t+dt

(
1 + sgn(∆n,t+dt − ∆n,t)TCoption

)
, (6.7)

ProfitT = (1 + rdt)ProfitT−dt − (∆1,T − ∆1,T−dt)S T

(
1 + sgn(∆1,T − ∆1,T−dt)TCstock

)
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−

N∑
n=2

(∆n,T − ∆n,T−dt)Cn,t+dt

(
1 + sgn(∆n,T − ∆n,T−dt)TCoption

)
+ ∆1,T S T − (S T − K1)+ +

N∑
n=2

∆n,T (S T − Kn)+, (6.8)

where:

sgn(x) =


−1 if x < 0
0 if x = 0
1 if x > 0

.

Since we are setting up all hedging strategies from the point of view of an investor with a
short position in a European call option, we will initially sell this option to a counterparty for
C1,0 ≡ C1(S (0), 0) dollars. We then either earn additional profit or spend money when setting
up our positions (long/short) in our financial hedging instruments. We assume that the profit
from time t earns the risk-free rate of interest over every time increment dt. If profit is non-
negative, this means that we earn the risk-free rate of interest; if profit is negative, this means
we are being charged the risk-free rate of interest for borrowing money from a counterparty
(i.e. a bank).

At maturity, we must close out our hedge portfolios by fulfilling our side of the multiple
contracts we have entered into. A detailed discussion about how hedge portfolios are closed
out will be given in the proceeding sections detailing the different hedging strategies.

For all our hedging models, we assume that the transaction costs incurred are proportional.
This means that the total amount charged per transaction depends directly on the amount of
a particular financial product traded. The transaction cost, measured in basis points, is con-
stant. Typically, proportional option transaction costs are much greater than proportional stock
transaction costs. For simplicity we assume that all hedging options are changed the same
transaction costs, TCoption, while the changes in position in our underlying asset are charged
the rate defined by TCstock where TCoption >> TCstock.

6.3 Black-Scholes Hedging
We will first discuss a benchmark model for hedging to illustrate how and why hedge portfolios
are set up. In the constant volatility world, otherwise known as the Black-Scholes framework
[6], we must consider what risks we are exposed to as an investor. From a hedging perspective,
risks can be defined as things that can affect the profit/loss of our portfolio and are unknown
and uncontrollable. If we consider taking a position in any financial option contract written on
a stock, we are exposed to the movements in this stock. Stock prices cannot be predicted nor
controlled, thus there exists huge stock risk associated with buying or selling an option.

Under the constant volatility framework, we can assume that the stock price follows ge-
ometric Brownian motion and as a result, we can mathematically determine how to hedge
against this risk. To hedge against the risk of movements in an underlying asset, intuitively it
makes sense for us to hold some fraction, ∆i

1, of the asset in our portfolio. Our notation for the
Black-Scholes call price will remain the same as in previous chapters, to maintain consistency.
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Thus Ci
BS (S , t) represents the Black-Scholes call option price conditional on volatility state i.

Our portfolio Πi(S , t) is represented mathematically as follows:

Πi(S , t) = −Ci
BS (S , t) + ∆i

1S . (6.9)

We are interested in investigating the effect that the stock price has on changes in the value
of the hedge portfolio, thus:

dΠi(S , t) = −dCi
BS (S , t) + ∆i

1dS . (6.10)

The dynamics of our constant volatility option show that the option is only exposed to
random movements, dS , in the underlying asset.

dCi(S , t) =

(
∂Ci

∂t
(S , t) +

1
2
σ2

i S 2∂
2Ci

∂S 2 (S , t)
)
dt +

∂Ci

∂S
(S , t)dS . (6.11)

It follows that:

dΠi(S , t) = −

[(
∂Ci

∂t
(S , t) +

1
2
σ2

i S 2∂
2Ci

∂S 2 (S , t)
)
dt +

∂Ci

∂S
(S , t)dS

]
+ ∆i

1dS , (6.12)

= −

(
∂Ci

∂t
(S , t) +

1
2
σ2

i S 2∂
2Ci

∂S 2 (S , t)
)
dt +

(
∆i

1 −
∂Ci

∂S
(S , t)

)
dS . (6.13)

To eliminate the risk from our portfolio, we must choose our hedge ratio ∆i
1 =

∂Ci
BS

∂S
(S , t)

so that the coefficient in front of dS vanishes, to eliminate all risk in our hedge portfolio. We
end up with the Black-Scholes pricing PDE:

∂Ci

∂t
(S , t) +

1
2
σ2

i S 2∂
2Ci

∂S 2 (S , t) + rS
∂Ci

∂S
(S , t) − rCi(S , t) = 0, (6.14)

subject to the standard payoff function and boundary conditions associated with a European
call option as denoted in equations (2.49) - (2.51).

This well-known pricing equation has a closed-form solution for the value of a European
call option and for the hedge ratio (Delta). The hedge ratio is used to determine the number
of shares of the underlying asset an investor needs to own in order to hedge against the risk of
movement in the underlying asset.

Ci
BS (S , t) = S N(di

1) − Ke−r(T−t)N(di
2), (6.15)

∆i
1 = N(di

1), (6.16)

where:

di
1 =

ln S
K +

(
r + 1

2σ
2
i

)
(T − t)

σi
√

T − t
, (6.17)

di
2 = di

1 − σi

√
T − t, (6.18)

and N(x) represents the standard normal cumulative distribution function (CDF). From the
properties of the normal distribution we know that 0 ≤ N(di

1) ≤ 1. The hedge ratio for our
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position in the underlying asset is defined by ∆i
1 = N(di

1), which is a bounded, increasing
function in the stock price. This result makes sense financially as we only ever need one full
share of the stock to completely hedge out the risk of our counterparty exercising the option
at maturity. Thus as the stock price rises, we buy a higher quantity of the stock to hedge
against the risk of the option being exercised. When the stock price falls, we will sell off small
quantities of our stock as the likelihood of the option being exercised decreases. This results
in option sellers like us buying high and selling low in order to hedge against the inherent
stock price movement risk. Over time, the money used to hedge out our risk will eat away at
the profit we initially obtained by selling the call option. However, since under the constant
volatility framework there exists no arbitrage opportunity, our profits and losses will net out as
there is no way to make a risk-less profit from our hedge portfolio. This is of course given that
transaction costs are neglected.

6.4 Overview of Hedging Strategies
We will once again assume that our volatility process can only switch between the high and low
volatility regimes. For all hedging strategies we consider that we have available three options
Ci

1(S , t),Ci
2(S , t),Ci

3(S , t) with strike prices K1,K2,K3 respectively such that K3 < K1 < K2. We
also have access to the underlying asset, S . The first option Ci

1(S , t) is the option in which we
take a short position, also known as our pricing option. Options Ci

2(S , t) and Ci
3(S , t) will be

our hedging options for which strategies will be devised to use them to hedge against volatility
risk. It is important to note that whatever hedging options we use, the maturity date of these
options must be dated at or after the maturity date of the original option sold (i.e. T1 ≤ Tn for
n = 2, 3). Since we are hedging against the switching risk, we must always have a hedging
option available while the original option is still exposed to volatility risk.

A detailed discussion of all the hedging strategies used follows. A numerical study of these
hedging portfolios and a detailed analysis follows in Section 6.5.

6.4.1 Portfolio I: Hedging with One Option
We assume an investor takes a short position in a European call option Ci

1(S , t) struck at price
K1 and maturing at time T1. To hedge the exposure taken on by selling an option, we will
also continuously adjust positions in the underlying asset S , and another call option Ci

n(S , t)
struck at Kn, maturing at Tn for n = 2, 3. We generalize our hedge ratio and pricing equation
derivations for either one of the two possible hedging options Ci

2(S , t) or Ci
3(S , t) where K3 <

K1 < K2 is assumed to hold. We will investigate later the effects of choosing one over the other
in our portfolio. For simplicity, ∆i

n will refer only to the hedge ratio used for the particular
hedging option Ci

n(S , t).
Since we only have the risk of switching out of our currently occupied volatility regime, we

only require one hedging option in our portfolio. Our state-dependent portfolio is as follows:

Πi(S , t) = −Ci
1(S , t) + ∆i

1S + ∆i
nC

i
n(S , t). (6.19)

Both Ci
1(S , t) and Ci

n(S , t) have the same dynamics but at least one of K1 , Kn and/or
T1 , Tn must hold. Recall the dynamics of a regime-switching option which hold for all
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options in our portfolio.

dCi(S , t) =

(
∂Ci

∂t
(S , t)+

1
2
σ2

i S 2∂
2Ci

∂S 2 (S , t)
)
dt +

∂Ci

∂S
(S , t)dS +

[
C j(S , t)−Ci(S , t)

]
dqi j(t). (6.20)

Then the change in portfolio value is:

dΠi(S , t) = −dCi
1(S , t) + ∆i

1dS + ∆i
ndCi

n(S , t), (6.21)

= −

[(
∂Ci

1

∂t
(S , t) +

1
2
σ2

i S 2∂
2Ci

1

∂S 2 (S , t)
)
dt +

∂Ci
1

∂S
(S , t)dS

+
[
C j

1(S , t) −Ci
1(S , t)

]
dqi j(t)

]
+ ∆i

1dS + ∆i
n

[(
∂Ci

n

∂t
(S , t) +

1
2
σ2

i S 2∂
2Ci

n

∂S 2 (S , t)
)
dt +

∂Ci
n

∂S
(S , t)dS

+
[
C j

n(S , t) −Ci
n(S , t)

]
dqi j(t)

]
, (6.22)

=

[
∆i

n

(
∂Ci

n

∂t
(S , t) +

1
2
σ2

i S 2∂Ci
n

∂S 2 (S , t)
)
−
∂Ci

1

∂t
(S , t) −

1
2
σ2

i S 2∂
2Ci

1

∂S 2 (S , t)
]
dt

+

[
∆i

1 −
∂Ci

1

∂S
(S , t) + ∆i

n
∂Ci

n

∂S
(S , t)

]
dS

+
[
∆i

n

(
C j

n(S , t) −Ci
n(S , t)

)
−

(
C j

n(S , t) −Ci
n(S , t)

)]
dqi j(t). (6.23)

To hedge against movements in the stock price,

∆i
1 =

∂Ci
1

∂S
(S , t) − ∆i

n
∂Ci

n

∂S
(S , t). (6.24)

To hedge against upwards and downwards jumps in volatility,

∆i
n =

C j
1(S , t) −Ci

1(S , t)

C j
n(S , t) −Ci

n(S , t)
. (6.25)

It is interesting to note a mathematical characteristic of our above hedge ratio for the hedg-
ing option our portfolio. It is known that option prices are monotonically increasing with
respect to volatility levels. Thus if σi ≤ σ j, it follows that Ci

n(S , t) ≤ C j
n(S , t) and ∆i

n ≥ 0 for
all S , t, n. Even if we assumed σi ≥ σ j it still follows that ∆i

n ≥ 0 due to the structure of the
equation. Thus it is clear that to hedge against our shorted option, we will be taking a dynamic
long position in our hedging option.

In general, given the current volatility regime i, our hedging strategy is

∆i
1 =

∂Ci
1

∂S
(S , t) −

[
C j

1(S , t) −Ci
1(S , t)

C j
n(S , t) −Ci

n(S , t)

]
∂Ci

n

∂S
(S , t), (6.26)
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∆i
n =

C j
1(S , t) −Ci

1(S , t)

C j
n(S , t) −Ci

n(S , t)
. (6.27)

Such a hedging strategy makes financial sense, since if both call options Ci
1(S , t) and

Ci
n(S , t) were struck at the same strike price and expired on the same date, their values would

be equivalent and the hedging strategy would reduce to ∆i
1 = 0 and ∆i

n = 1. This is just a static
hedge in which we take an opposite position, in our case a long position, in the call option we
originally sold.

Taking into account our hedging strategy, our state-dependent portfolio is

dΠi(S , t) =

[
C j

1(S , t) −Ci
1(S , t)

C j
n(S , t) −Ci

n(S , t)

(
∂Ci

n

∂t
(S , t) +

1
2
σ2

i S 2∂
2Ci

n

∂S 2 (S , t)
)

(6.28)

−
∂Ci

1

∂t
(S , t) −

1
2
σ2

i S 2∂
2Ci

1

∂S 2 (S , t)
]
dt.

With our choice of ∆i
1,∆

i
n, the change in the value of the portfolio only depends on the

deterministic change in time. Therefore the no arbitrage conditions allow this to be equated to
the risk-free return on the portfolio.

dΠi(S , t) = rΠi(S , t)dt, (6.29)

= r
(
−Ci

1(S , t) + ∆i
1S + ∆i

nC
i
n(S , t)

)
dt (6.30)(
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⇒
1
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1(S , t)

[
∂Ci

1

∂t
(S , t) +

1
2
σ2

i S 2∂
2Ci

1

∂S 2 (S , t) + rS
∂Ci

1

∂S
(S , t) − rCi

1(S , t)
]

=
1

C j
n(S , t) −Ci

n(S , t)

[
∂Ci

n

∂t
(S , t) +

1
2
σ2

i S 2∂
2Ci

n
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∂S
(S , t) − rCi
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]
.

(6.32)

Since we selected the two options Ci
1(S , t) and Ci

n(S , t) such that at least one of T1 , Tn,
K1 , Kn applies, the only way the above relation can hold is if both sides are independent
of their type of option contract. Thus both sides can only be a function of their dependent
variables, S , σ, t. Therefore the state-dependent function fi j(S , t) is introduced.

1
C j(S , t) −Ci(S , t)

[
∂Ci

∂t
(S , t) +

1
2
σ2

i S 2∂
2Ci

∂S 2 (S , t) + rS
∂Ci

∂S
(S , t) − rCi(S , t)

]
= fi j(S , t). (6.33)
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Motivated by Heston [27], let fi j(S , t) be a function of the volatility’s drift and the market
price of volatility risk where fi j(S , t) = −

(
λi j − mi j

)
and mi j represents the state-dependent

market price of volatility risk. Then we get our general coupled pricing final value problem for
i ∈ {H, L} where i , j.

∂Ci

∂t
(S , t) +

1
2
σ2

i S 2∂
2Ci

∂S 2 (S , t) + rS
∂Ci

∂S
(S , t) − rCi(S , t) − fi j

[
C j(S , t) −Ci(S , t)

]
, (6.34)

subject to the standard European call payoff function and boundary conditions given in equa-
tions (2.49) - (2.51).

The above pricing PDE can be solved numerically, as shown in Chapter 3, or by using an
approximation technique detailed in Chapter 4. Although mathematically, the inherent risks are
completely hedged against using our choice of portfolio, it turns out that issues can nonetheless
arise. These financially rooted issues will be discussed later on in this section. First, we will
discuss the two different ways to utilize this portfolio given our arsenal of hedging options
available.

Hedging with Ci
2(S , t)

Since we assumed that K1 < K2, ideally we would choose to hedge with Ci
2(S , t) given that we

expected the stock price to rise. Intuitively, if the stock price rises, we know that eventually
the option we shorted will be exercised by the counterparty. Upon exercise, it is our obligation
to sell one share of the underlying asset to our counterparty for K1 dollars. It turns out that
if the stock price rises high enough such that S T > K2, if we have a long position in our
hedging option Ci

2(S , t), we can choose to exercise this option at maturity to obtain ownership
of one share of a stock by only paying K2. We then turn around and close out our short
position with our counterparty. In this scenario, our costs to close out our portfolio are lower
since exercising our hedging option allowed us to take ownership of the stock for less than the
trading price on the market. On the other hand, if the stock price at option expiration was such
that K1 < S T < K2, the strike price of our hedging option, we would simply choose to buy the
remaining quantity of our stock directly from the market in order to have one share on hand to
sell to our counterparty. For completeness, the portfolio and hedge ratios for this strategy are
outlined below.

Πi(S , t) = −Ci
1(S , t) + ∆i

1S + ∆i
2C

i
2(S , t), (6.35)

∆i
1 =

∂Ci
1

∂S
(S , t) −

(
C j

1(S , t) −Ci
1(S , t)

C j
2(S , t) −Ci

2(S , t)

)
∂Ci

2

∂S
(S , t), (6.36)

∆i
2 =

C j
1(S , t) −Ci

1(S , t)

C j
2(S , t) −Ci

2(S , t)
. (6.37)

Hedging with Ci
3(S , t)

On the other hand, if as an investor we expected the stock price to fall, we would choose to
hedge against volatility risk with Ci

3(S , t) since K3 < K1. Our main concern is the possibility
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that the counterparty from our original short option position may choose to exercise the option
at maturity. If this occurs, we need to have one share of the stock on hand to sell to them for K1.
If the stock price falls enough such that S T < K1, the counterparty will choose to not exercise
their option as it is now out-of-the-money and has no intrinsic value to them. The concern is
if the stock price falls slightly but remains in-the-money. This occurs when S T > K1 at which
point the option will be exercised by the counterparty. Since we are hedging with Ci

3(S , t)
which is also in-the-money at expiration, we will choose to exercise our option and buy one
share of the underlying asset for K3. we then turn around and sell the share of the stock to our
counterparty for K1, thus pocketing the difference K1 − K3. The portfolio and hedge ratios for
this strategy are given below.

Πi(S , t) = −Ci
1(S , t) + ∆i

1S + ∆i
3C

i
3(S , t), (6.38)

∆i
1 =

∂Ci
1

∂S
(S , t) −

(
C j

1(S , t) −Ci
1(S , t)

C j
3(S , t) −Ci

3(S , t)

)
∂Ci

3

∂S
(S , t), (6.39)

∆i
3 =

C j
1(S , t) −Ci

1(S , t)

C j
3(S , t) −Ci

3(S , t)
. (6.40)

In reality, we cannot predict long or short term variations in the stock price. As a result,
an investor does not know which hedging option is ideal to use in their portfolio. The risk of
going deep in-the-money or deep out-of-the-money can change the dynamics of some or all
of the options in the portfolio. When setting up our arbitrage arguments to derive our pricing
equation, it was assumed that all options dynamics were exposed to the same market risks. If
this is not the case, financially rooted issues arise with our portfolio which will be discussed in
detail in the next section.

Issues with Portfolio I

When hedging against various uncontrollable random factors such as stock price movement
and stochastic volatility, issues are bound to arise. In particular, it is a well known fact in
mathematical finance that there exists cases of moneyness in which the option price is no
longer impacted by the volatility levels. When this occurs the options prices in all volatility
states are approximately equivalent C j

n(S , t) ≈ Ci
n(S , t).

In general, moneyness refers to the relationship between the trading price of an underlying
asset and the strike price of our option. Of concern to us is the effect that an option being
too deep in-the-money and too deep out-of-the-money has on the hedging positions in our
portfolio. A call option is considered in-the-money when the stock price is trading above the
strike price and is considered out-of-the-money when the stock price is trading below the strike
price [28]. If a European call option is too deep in the money, this implies that S >> K such
that C(S , t) = S − Ke−r(T−t). On the other hand if a European call option is too deep out-of-
the-money, this implies that S << K such that C(S , t) = 0. In both of these cases we can
clearly see that the option values are independent of volatility levels. If Tn >> T1 the issue
with respect to being too deep in-the-money could be minimized, however it does not take care
of the out-of-the-money case.

We concern ourselves with two call options in our portfolio: the option we initially sold,
Ci

1(S , t), and the hedging option, Ci
n(S , t), we use to hedge our volatility exposure. When the
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option’s values are no longer dependent on volatility levels, it turns out that their dynamics
change as well:

dCi
n(S , t) =

(
∂Ci

n

∂t
(S , t) +

1
2
σ2

i S 2∂
2Ci

n

∂S 2 (S , t)
)
dt +

∂Ci
n

∂S
(S , t)dS , (6.41)

for all n = 1, . . . , 3.
It can be noted that an option being too deep in- or out-of-the-money has dynamics now

only exposed to movements in the underlying asset.
If the option originally shorted, Ci

1(S , t), no longer possesses regime-switching volatility
dynamics, it is intuitive to realize that we no longer need an additional hedging instrument in
our portfolio as we are now only exposed to movements in the underlying asset. This is due to
the fact that our short call option is no longer sensitive to volatility movement and we would
proceed by hedging Black-Scholes [6] style. This would involve us continuously adjusting
our position in the underlying asset. It makes sense as this point to liquidate our position in
our hedging option by letting ∆i

n = 0. It follows that our hedge ratio for the hedging option
given by equation (6.27), is defined in such a way that allows for the position to be liquidated
automatically.

The more involved situation is when the hedging option Ci
n(S , t), where n = 2, 3, no longer

possesses the regime-switching volatility dynamics. Recall that we want to hedge against our
volatility switching with an option written on the same underlying with the same switching
dynamics. If this option is no longer exposed (or sufficiently exposed) to volatility switching,
it is now considered an inappropriate hedging instrument. It should be noted that although
the hedging option price becomes insensitive to volatility movements, as a result, the associ-
ated hedge ratio becomes hugely sensitive. As can be noted in equation (6.27), insensitivity to
volatility in the hedging option causes the magnitude of the hedge ratio to become quite large.
The main issue lies with the case where our hedging option is no longer sensitive to volatility
but the original option we shorted is. This motivates us to consider a new portfolio incorpo-
rating an additional hedging option with different contract specifications. Although there is
a immense basket of options available, we choose our hedging option in such a way that the
structure the two hedging options strike prices straddle the shorted option’s strike price. We
must choose our options to have strike prices to exist in some range around K1 such that they
do not begin deep in- or out-of-the-money. This is realistic as options on financial markets
have strike prices that allow them to be sold at- or about-the-money. This ensures that one of
two hedging options used will still be sensitive to volatility switching when the other hedging
option is not. Setting up our portfolio in this way can be though of as a type of insurance option
straddling to insure that we always have appropriate hedging options available to hedge against
the embedded switching risk. Such a portfolio will be presented in the next section.

6.4.2 Portfolio II: Hedging with Two Options

Given the issues that can possibly arise while hedging using Portfolio I, we introduce an ad-
ditional arbitrary hedging option to our portfolio Ci

3(S , t) struck at K3 and maturing at T3, to
also be used to hedge against movements in the volatility. It is assumed that K3 < K1 < K2.
Choosing hedging options with strike prices straddling the original strike price is deliberate as
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this ensures that if and when one hedging option can no longer be used to hedge volatility risk,
there is another option available in the portfolio to do so with. This set up also ensures that the
original option will lose its exposure to volatility before both of the hedging options do.
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Figure 6.1: Example of Portfolio II set-up when S T < K3.

This is more clear by considering Figures 6.1 and 6.2 which depict the two cases that
our portfolio set-up protects against. In Figure 6.1, it is observed that the stock price falls
below all the strike prices at the maturity date. As the stock price begins to fall, the first
option to go deep out-of-the-money is Ci

2(S , t) with strike price K2. Therefore this option is
no longer a useful hedging option for us. However, while the shorted option is still exposed to
the switching volatility dynamics, we have our other hedging option Ci

3(S , t) with strike price
K3 that we can still use. As the stock price continues to fall, the option we shorted will go
deep out-of-the-money before our last hedging option, at which point we only need to proceed
with taking a position in our underlying asset. Thus it was illustrated that as the stock price
falls, we are assured that there will always be a hedging option available to us containing the
regime-switching dynamics, as long as our original option so requires.
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Figure 6.2: Example of Portfolio II set-up when S T > K2.

Figure 6.2 depicts the opposite scenario where the stock price rises above all the strike
prices at the maturity date. As the stock price begins to rise, the first option to go deep in-the-
money and to be no longer dependent on volatility levels is our hedging option Ci

3(S , t) with
strike price K3. However, given the clever set-up of our portfolio, there still is another hedging
option Ci

2(S , t) available to use against volatility switching. As the stock price continues to
rise, the option we shorted will first become deep in-the-money before our remaining hedging
option. At this point, we would only need to hedge as if we were in the Black-Scholes world.
Once again, for the life of the shorted option in which it was exposed to volatility switching
dynamics, our portfolio always contained a hedging option that could be utilized.

Now that the motivation behind the set-up of Portfolio II is clear, we can investigate what
hedge ratios and pricing equations follow under this framework. Our new hedge portfolio,
Portfolio II, is given below.

Πi(S , t) = −Ci
1(S , t) + ∆i

1S + ∆i
2C

i
2(S , t) + ∆i

3C
i
3(S , t). (6.42)

The change in value of our portfolio is:

dΠi(S , t) = −dCi
1(S , t) + ∆i

1dS + ∆i
2dCi

2(S , t) + ∆i
3dCi

3(S , t). (6.43)

Since all options in the portfolio are written on the same underlying asset with regime-
switching volatility, they all have the same option dynamics.
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(6.45)

To hedge against movements in the underlying asset,

∆i
1 =

∂Ci
1

∂S
(S , t) − ∆i

2

∂Ci
2

∂S
(S , t) − ∆i

3

∂Ci
3

∂S
(S , t). (6.46)

To hedge against movements between the volatility regimes,

∆i
2

[
C j

2(S , t) −Ci
2(S , t)

]
+ ∆i

3

[
C j

3(S , t) −Ci
3(S , t)

]
= C j

1(S , t) −Ci
1(S , t). (6.47)

Since we have more unknown variables (i.e. our hedge ratios) than equations, either ∆i
2 or

∆i
3 can be arbitrarily chosen. For us, this would depend on our initial choice of hedging option.

For Portfolio I, we had two hedge ratios to determine with two equations. That procedure
was straightforward and involved solving a linear system of equations. For Portfolio II, both
mathematical methods and methods motivated by financial intuition will be investigated.

Minimum Variance Hedging Approach

We will first approach this problem by investigating what hedge ratio is necessary for our
second hedging option in order to minimize the variance of the portfolio. Since we previously
saw that our choice of hedge ratios hedged against all risks, our change in portfolio value
depends solely on the deterministic change in time. Thus it follows that:

dΠi(S , t) = rΠi(S , t)dt, (6.48)

= r
[
−Ci

1(S , t) + ∆i
1S + ∆i

2C
i
2(S , t) + ∆i

3C
i
3(S , t)

]
dt. (6.49)

Since we chose ∆i
3 to be arbitrary, we will rewrite equation (6.47) to represent the hedge

ratio ∆i
2.

∆i
2 =

C j
1(S , t) −Ci

1(S , t)

C j
2(S , t) −Ci

2(S , t)
− ∆i

3

(
C j

3(S , t) −Ci
3(S , t)

C j
2(S , t) −Ci

2(S , t)

)
. (6.50)
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As we will be minimizing the variance of our portfolio, we need to first derive an expression
for the portfolio variance.

Var[dΠi(S , t)] = E[(dΠi(S , t) − E[dΠi(S , t)])2], (6.51)

= E[(dΠi(S , t))2] − (E[dΠi(S , t)])2, (6.52)

= −(E[dΠi(S , t)])2, (6.53)

since E[dt2] = 0.

E[dΠi(S , t)] = r
[
−Ci

1(S , t) + ∆i
1S + ∆i

2C
i
2(S , t) + ∆i

3C
i
3(S , t)

]
, (6.54)

Var[dΠi(S , t)] = −r2
(
−Ci

1(S , t) + ∆i
1S + ∆i

2C
i
2(S , t) + ∆i

3C
i
3(S , t)

)2
. (6.55)

We want to solve
dVar[dΠi(S , t)]

d∆i
3

= 0 for ∆i
3.

d
d∆i

3

[
− r2

(
−Ci

1(S , t) + ∆i
1S + ∆i

2C
i
2(S , t) + ∆i

3C
i
3(S , t)

)2
]

= 0, (6.56)

− 2r2
(
−Ci

1(S , t) + ∆i
1S + ∆i

2C
i
2(S , t) + ∆i

3C
i
3(S , t)

)(d∆i
1

d∆i
3

S +
d∆i

2

d∆i
3

Ci
2(S , t) + Ci

3(S , t)
)

= 0,

(6.57)

where:

d∆i
1

d∆i
3

(S , t) = −
d∆i

2

d∆i
3

∂Ci
2

∂S
(S , t) −

∂Ci
3

∂S
(S , t), (6.58)

d∆i
2

d∆i
3

(S , t) = −
C j

3(S , t) −Ci
3(S , t)

C j
2(S , t) −Ci

2(S , t)
. (6.59)

The above derivatives are constant for a given value of S and t (i.e. they no longer depend
on the hedge ratio ∆i

3). Then,

−Ci
1(S , t) + ∆i

1S + ∆i
2C

i
2(S , t) + ∆i

3C
i
3(S , t) = 0, (6.60)(

∂Ci
1

∂S
(S , t) − ∆i

2

∂Ci
2

∂S
(S , t) − ∆i

3

∂Ci
3

∂S
(S , t)

)
S + ∆i

2C
i
2(S , t) + ∆i

3C
i
3(S , t) = Ci

1(S , t), (6.61)

∆i
2

(
Ci

2(S , t) − S
∂Ci

2

∂S
(S , t)

)
+ ∆i

3

(
Ci

3(S , t) − S
∂Ci

3

∂S
(S , t)

)
= Ci

1(S , t) − S
∂Ci

1

∂S
(S , t), (6.62)[

C j
1(S , t) −Ci

1(S , t)

C j
2(S , t) −Ci

2(S , t)
− ∆i

3

C j
3(S , t) −Ci

3(S , t)

C j
2(S , t) −Ci

2(S , t)

](
Ci

2(S , t) − S
∂Ci

2

∂S
(S , t)

)
+ ∆i

3

(
Ci

3(S , t) − S
∂Ci

3

∂S
(S , t)

)
= Ci

1(S , t) − S
∂Ci

1

∂S
(S , t). (6.63)
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Rearranging for ∆i
3 yields our minimum variance hedge ratio for our arbitrary hedging

option Ci
3(S , t).

∆i
3 =

[
C j

2(S , t) −Ci
2(S , t)

](
Ci

1(S , t) − S ∂Ci
1

∂S (S , t)
)
−

[
C j

1(S , t) −Ci
1(S , t)

](
Ci

2(S , t) − S ∂Ci
2

∂S (S , t)
)

[
C j

2(S , t) −Ci
2(S , t)

](
Ci

3(S , t) − S ∂Ci
3

∂S (S , t)
)
−

[
C j

3(S , t) −Ci
3(S , t)

](
Ci

2(S , t) − S ∂Ci
2

∂S (S , t)
) .

(6.64)
It follows that:

∆i
2 =

[
C j

1(S , t) −Ci
1(S , t)

](
Ci

3(S , t) − S ∂Ci
3

∂S (S , t)
)
−

[
C j

3(S , t) −Ci
3(S , t)

](
Ci

1(S , t) − S ∂Ci
1

∂S (S , t)
)

[
C j

2(S , t) −Ci
2(S , t)

](
Ci

3(S , t) − S ∂Ci
3

∂S (S , t)
)
−

[
C j

3(S , t) −Ci
3(S , t)

](
Ci

2(S , t) − S ∂Ci
2

∂S (S , t)
) .

(6.65)
Although these hedge ratios are chosen such that our portfolio variance is minimized, it

turns out that they do not make sense intuitively. In financial mathematics, intuition is a huge
guide to the appropriateness of mathematical assumptions and methodologies chosen. The
results obtained by these models must also be supported by expert financial intuition in order
for them to be justified. This cyclical pattern of intuition and mathematics is common in applied
mathematics. In our case, the minimized variance hedge ratios give us results that show that in
times when we do not need to be hedged against volatility switching, we are taking unnecessary
positions in options. This in turn can eat away at our initial profit obtained from selling the
option especially if transaction costs are considered. Thus it makes more financially intuitive
sense to employ a strategy to minimize the use of hedging options such that our profit is not
whittled away by unnecessary trades in our hedging option. We can consider initially hedging
with one hedging option and if and when this option becomes unusable to us (i.e. its dynamics
no longer contain regime-switching properties), we can begin employing our other hedging
option to counteract this issue. This will resolve all financial issues that arose in our initial
hedging portfolio, Portfolio I, while not taking and/or maintaining unnecessary positions in
options.

Given that K3 < K1 < K2, there are several cases that naturally arise for which we can inves-
tigate whether or not our minimized hedge ratios allow us to properly hedge against our under-
lying market risks. Two main subsets of cases are: Ci

1(S , t) , C j
1(S , t) and Ci

1(S , t) ≈ C j
1(S , t).

Case 1: Ci
1(S , t) , C j

1(S , t)

Given that K1 < K2, Ci
2(S , t) ≈ C j

2(S , t) occurs when the stock price falls significantly such
that S << K2. Our positions for our hedging options are as follows:

∆i
2 =

[
C j

3(S , t) −Ci
3(S , t)

](
S ∂Ci

1
∂S (S , t) −Ci

1(S , t)
)
−

[
C j

1(S , t) −Ci
1(S , t))

](
S ∂Ci

3
∂S (S , t) −Ci

3(S , t)
)

[
C j

3(S , t) −Ci
3(S , t)

](
S ∂Ci

2
∂S (S , t) −Ci

2(S , t)
) ,

(6.66)

∆i
3 =

C j
1(S , t) −Ci

1(S , t)

C j
3(S , t) −Ci

3(S , t)
. (6.67)
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Since the dynamics of the hedging option Ci
2(S , t) no longer include the risk of volatility

switching, we intuitively expected that ∆i
2 = 0. This is due to the fact that if the hedging

option’s dynamics are not exposed to the same risks are our original shorted option then it can
no longer be used to hedge against the volatility switching. Since we have another option in
our portfolio to use, it makes the most sense to liquidate our position in the asset completely.
Even maintaining a static position in this unusable option would be more efficient as we would
not incur any additional transaction costs.

The other scenario is when the stock price rises where S >> K3. At this point, one of our
hedging options Ci

3(S , t) is deep in-the-money where option value is independent of volatility
level. Our positions for our hedging options are as follows:

∆i
2 =

C j
1(S , t) −Ci

1(S , t)

C j
2(S , t) −Ci

2(S , t)
, (6.68)

∆i
3 =

[
C j

2(S , t) −Ci
2(S , t)

](
S ∂Ci

1
∂S (S , t) −Ci

1(S , t)
)
−

[
C j

1(S , t) −Ci
1(S , t)

](
S ∂Ci

2
∂S (S , t) −Ci

2(S , t)
)

[
C j

2(S , t) −Ci
2(S , t)

](
S ∂Ci

3
∂S (S , t) −Ci

3(S , t)
) .

(6.69)

Since the hedging option Ci
3(S , t) becomes independent of volatility level, we would ex-

pect to liquidate our position in this option, ∆i
3 = 0, and fully hedge with our other hedging

option Ci
2(S , t). However, the minimized variance approach dictates that we should still keep

a dynamic position in this hedging instrument, thus continuously incurring unnecessary hedg-
ing costs through changing our position and transaction costs over time. Technically, we only
need one hedging option to hedge against the possible jump to another volatility regime, thus
holding a dynamic position in two options seems excessive and costly.

Overall, we can see that when we still require to hedge against all risks (i.e. stock price
movement and volatility switching) associated with our shorted call option, the minimized
variance method does not seem to fully satisfy financial intuition and may cause additional
costs over time. It remains to analyse what happens when the shorted option no longer posses
regime-switching dynamics.

Case 2: Ci
1(S , t) ≈ C j

1(S , t)

We know that we need to hedge against the option we sold: Ci
1(S , t). Given the dynamics of

all regime-switching call options, we know that if C j
l (S , t) ≈ Ci

l(S , t) then the option no longer
possesses an exposure to volatility switching. If this occurs for the option we sold, intuitively
we know that we should only need to hedge Black-Scholes style (i.e. against movement in the
underlying asset). Given the structure of our hedging options (i.e. K3 < K1 < K2), C j

1(S , t) ≈
Ci

1(S , t) can only occur if one of C j
2(S , t) ≈ Ci

2(S , t) or C j
3(S , t) ≈ Ci

3(S , t) also holds.
First, we examine what happens when the stock price falls where S << K1 < K2 such that

both Ci
1(S , t) and Ci

2(S , t) become insensitive to volatility. Our hedge ratios are:
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∆i
2 =

S ∂Ci
1

∂S (S , t) −Ci
1(S , t)

S ∂Ci
2

∂S (S , t) −Ci
2(S , t)

, 0, (6.70)

∆i
3 = 0. (6.71)

Given that our original option no longer is exposed to volatility switching, we should only
have to take a position in the underlying asset in order to hedge against our remaining risk
from movements in the stock price. However, the minimized variance method denotes that we
should liquidate our position in one of our hedging options, while still maintaining a position
in our other hedging option. Intuitively, this is not what we would expect financially and we
would be incurring additional hedging costs by keeping a dynamic position in an additional,
unnecessary hedging instrument.

On the other hand, when the stock price rises such that S >> K1 > K3 and Ci
3(S , t) ≈

C j
3(S , t), our positions for our hedging options are as follows:

∆i
2 = 0 (6.72)

∆i
3 =

S ∂Ci
1

∂S (S , t) −Ci
1(S , t)

S ∂Ci
3

∂S (S , t) −Ci
3(S , t)

, 0 (6.73)

Once again, we expect to liquidate positions in both of our hedging options, although the
minimum variance method dictates that we do so for one only option. By keeping a hedge
position in an additional hedging instrument, over time more and more hedging losses can be
easily incurred especially when proportional transaction costs are taken into consideration.

The inconsistencies that arise when choosing our hedge ratios for Portfolio II via minimized
variance motivate us to consider putting restrictions in place on our hedge portfolio. This
would ensure that we are not losing unnecessary money from dynamically changing positions
in hedging instruments not deemed appropriate to use for hedging.

Hedging with a Limit

Thinking back to Portfolio I, we recall that our hedge ratio for our hedging options as follows:

∆i
n =

C j
1(S , t) −Ci

1(S , t)

C j
n(S , t) −Ci

n(S , t)
. (6.74)

We can easily see that as Ci
n(S , t) → C j

n(S , t), the above hedge ratio ”blows up”. This is
equivalent with taking a non-finite position in the hedging option. It is not realistic to take a
infinite position in an option nor is it realistic to take a large finite position in this option. This
motivates us to put a limit on the number of hedging options we can buy in order to hedge
against the inherent volatility switching risk of our shorted option. In addition, the further we
go in- or out-of-the-money, the less volatility impacts option value (i.e. Ci

n(S , t) ≈ C j
n(S , t).

In such cases, it would make sense to completely liquidate our position in this hedging option
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and begin to hedge using only the additional hedging option whose value is still dependent on
volatility level. We will assume that we start hedging with one hedging option Ci

n(S , t) where
n ∈ {2, 3} in addition to hedging with the underlying asset S . Our additional hedging option
Ci

n?(S , t) will be available for use, but only utilized if the original hedging option’s hedging
ratio breaches a limit or when it goes too deep in- or out-of-the-money. If the hedging limit is
not breached, we will hedge using the initial hedging instruments in our portfolio. Our initial
portfolio is as follows:

Πi(S , t) = −Ci
1(S , t) + ∆i

1S + ∆i
nC

i
n(S , t) + ∆i

n?Ci
n?(S , t), (6.75)

where:

∆i
1 =

∂Ci
1

∂S
(S , t) − ∆i

n
∂Ci

n

∂S
(S , t) − ∆i

n?
∂Ci

n?

∂S
(S , t). (6.76)

Initially, ∆i
n? = 0, since we do not utilize this hedging option unless absolutely necessary.

The values for ∆i
n and ∆i

n? are case dependent and as such there are three scenarios that can
arise that are described in detail below. We are generalizing our results for all possible cases.
The following cases hold for both Kn? < K1 < Kn and Kn < K1 < Kn? . Note that n?, n = 2, 3
where n? , n.

Case 1: 0 ≤ ∆i
n < Nlim

The first case to consider is when the hedging ratio of our initial hedging option does not
breach the imposed limit. If the limit is not breached, this means two things. First, that the
hedging option still possesses the dynamics containing volatility switching, thus making it an
appropriate financial instrument to hedge volatility. Second, that our equation for our hedge
ratio dictates that we take a position of reasonable finite magnitude in our hedging option,
following with our intuition. The hedge ratios for all possible options we can use are expressed
below.

∆i
n =

C j
1(S , t) −Ci

1(S , t)

C j
n(S , t) −Ci

n(S , t)
, (6.77)

∆i
n? = 0. (6.78)

While the limit is not breached, our hedging strategy is identical to that of Portfolio I, dis-
cussed earlier on in this chapter.

Case 2: ∆i
n ≥ Nlim

Our hedging limit Nlim is breached as the hedging option becomes less and less sensitive
to volatility levels. This occurs as Ci

n(S , t) → C j
n(S , t) which in turn ”blows up” our ratio. In

this case, it is more advisable to maintain a static hedge in our initial hedging option, and bring
in our secondary hedging option Ci

n?(S , t) to dynamically hedge against the possible volatility
switching. The corresponding hedge ratios are defined below.
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∆i
n = Nlim, (6.79)

∆i
n? =

C j
1(S , t) −Ci

1(S , t)

C j
n?(S , t) −Ci

n?(S , t)

[
1 − Nlim

(
C j

n(S , t) −Ci
n(S , t)

C j
1(S , t) −Ci

1(S , t)

)]
. (6.80)

The static hedge in our initial hedging option allows us to avoid unnecessary transactions
costs by closing out this position. At this point in time, this option still possesses the regime-
switching dynamics and is still a usable hedging option if the stock price moves in a direction
such that the limit is no longer breached. If this occurs, it would be far less costly to readjust
our position from the static hedge than it would be to completely re-set-up our position from a
liquidated hedge.

It was shown earlier that
C j

1(S , t) −Ci
1(S , t)

C j
n(S , t) −Ci

n(S , t)
≥ 0 and we chose Nlim > 0 since we take a long

position in our hedging option. Thus it follows that:

Nlim <
C j

1(S , t) −Ci
1(S , t)

C j
n(S , t) −Ci

n(S , t)
, (6.81)

0 ≤ Nlim

(
C j

n(S , t) −Ci
n(S , t)

C j
1(S , t) −Ci

1(S , t)

)
< 1, (6.82)

0 < 1 − Nlim

(
C j

n(S , t) −Ci
n(S , t)

C j
1(S , t) −Ci

1(S , t)

)
≤ 1. (6.83)

Given equation (6.80), and since we know that the limit gets breached as Ci
n(S , t) →

C j
n(S , t). This allows us to assume that while the limit is breached, the follow is true:

∆i
n? ≈

C j
1(S , t) −Ci

1(S , t)

C j
n?(S , t) −Ci

n?(S , t)
. (6.84)

This is the same hedge ratio used if we had assumed we were only going to hedge with our
additional hedging option Ci

n?(S , t).

Case 3: Ci
n(S , t) ≈ C j

n(S , t)

Finally, Case 3 represents the scenario that Portfolio I could not insure against. When the
initial hedging option goes too deep in-the-money or deep out-of-the-money, its value becomes
insensitive to volatility level. At this point, the option’s dynamics are no longer exposed to the
shifts between the two volatility regimes. We know from basic hedging arguments, that the
hedging instrument must be exposed to the same risks as the initial option we sold. Thus it
makes financial sense to liquidate this position and employ our additional hedging option on
hand. It is assumed that this extra hedging option has the same dynamics as our original option.
The new hedge ratios are given below.
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∆i
n = 0, (6.85)

∆i
n? =

C j
1(S , t) −Ci

1(S , t)

C j
n?(S , t) −Ci

n?(S , t)
. (6.86)

It can be observed that these hedge positions are the same as those employed in Portfolio I,
however we are now hedging with Ci

n?(S , t) instead of Ci
n(S , t).

For the above defined cases for Portfolio II, we will price all of the options contained in our
portfolio using the pricing PDE defined by equation (6.34). This is due to the fact that for this
pricing equation holds directly for Cases 1 and 3. In Case 2, where we hold a static hedge in
one of our hedging options, since it is assumed that this option is on its way to be completely
independent of volatility levels, it makes intuitive sense to use the pricing PDE derived from
the portfolio with one hedging option.

Although we have discussed in detail ways to hedge against the additional risk embedded
within our options via volatility switching, it may not always be beneficial for an investor to
take positions in multiple hedging instruments especially when transaction costs are taken into
account. We will now consider several different hedging approaches which assume constant
volatility.

6.4.3 Hedging with Constant Volatility
For an investor it may not always be the most profitable to dynamically change hedge ratios
in multiple financial instruments. This is also more pertinent given the fact that volatility
generally does not shift between regimes too often. Individual state occupation can last a matter
of months or years. Over time, especially in the presence of transaction costs, readjusting a
portfolio too often can accumulate unwanted and unnecessary transaction costs. As a result,
investors might be better off to hedge assuming constant volatility and assuming that switching
will not occur over the life of the option they hold in their portfolio. No matter what, we cannot
assume that a stock price will not change, thus we still need to hedge against the underlying as
defined by the Black-Scholes option pricing model [6]. This hedging method was described in
detail in Section 6.3.

The basic set-up of the constant volatility hedge portfolios and their ratios are consistent
across strategies. What differs per strategy is how we estimate our volatility level, which is
assumed to be constant. This method is equivalent to the Black-Scholes hedge, now conditional
on our volatility estimate σi? where i? represents our constant volatility state occupation.

Πi?(S , t) = −Ci?
BS (S , t) + ∆i?

BS S , (6.87)

Ci?
BS (S , t) = S N(di?

1 ) − Ke−r(T−t)N(di?
2 ), (6.88)

∆i?
BS = N(di?

1 ), (6.89)

where:

di?
1 =

ln S
K +

(
r + 1

2 (σ?
i )2

)
(T − t)

σ?
i

√
T − t

, (6.90)
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di?
2 = di?

1 − σi?
√

T − t, (6.91)

N(x) =
1
√

2π

∫ x

∞

e−
z2
2 dz. (6.92)

We will hedge against movements in the underlying asset using our Black-Scholes Delta
given by equation (6.89). The price at which we sell our call option will be determined by
equation (6.88).

The main issue facing us now is what volatility level would we choose to hedge with.
This choice should not be arbitrary and the estimate of volatility should be rooted in financial
intuition. The current market state and the investor’s risk preferences should both be considered
when determining an estimate of the volatility level. We can consider both a probabilistic
approach to defining the volatility or a financially intuitive method based on the type of investor
setting up the portfolio. Various approaches to estimating the volatility will be discussed in
detail in this section.

Unconditional Volatility

If we consider the long term behaviour of volatility, it may be useful to consider the uncon-
ditional probabilities of occupying either the high or low volatility state. We can use these
unconditional probabilities to compute a weighted average of the high and low volatility levels
in order to give us an estimate for our constant volatility state level.

σi? = σHPH,unconditional + σLPL,unconditional, (6.93)

where: [
PH

PL

]
unconditional

=


λLH

λLH + λHL
λHL

λLH + λHL

 .
This gives us an estimate of the volatility which reflects the market conditions over time.

The estimate will be pulled towards the volatility level for the state that we occupy the majority
of the time.

Hedging Given Investor’s Risk Preferences

In Chapter 5, it was observed that investors are concerned with the overall risk they take on
when setting up a position in a market with a financial instrument. In particular, under our
regime-switching framework investors are highly concerned with the potential to switch to a
less desirable volatility regime which could hinder their hedging strategy. We saw that in-
vestors who are scared of such a switching risk will demand compensation for taking on this
risk via the volatility risk premium. This premium is embedded within the coupling coefficient
of our pricing equations, given by equation (2.52), which acts as a risk-adjusted Poisson inten-
sity. Given that this compensation was considered to be large enough to alleviate their risks,
in all cases, we could approximate our regime-switching call option values by assuming con-
stant volatility. A discussion of these preferences and how they relate to our constant volatility
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hedging strategies is given.

Preferences of a Short Position

We previously saw that an investor with a short position in a regime-switching option fears
high volatility, all else being equal. Option prices are monotonically increasing with respect
to volatility thus, a decrease in volatility leads to a decrease in option value. From the short
position’s perspective, their probability of their counterparty exercising the option increases
with volatility and thus they require a large volatility risk premium to compensate them for
their risk. As we saw, this results in the regime-switching option being priced as if we are in a
constant high volatility world. Thus we will hedge against only movements in the underlying
asset assuming we are occupying the high volatility regime where σi? = σH.

From the analysis in previous chapters we know that Ci(S , t) ≤ CH
BS (S , t) for all i ∈ {H, L}.

Thus the investor sells the option for more than it would have if it had been priced fairly using
the regime-switching pricing PDEs. This premium the short gets paid via the increased option
price compensates them for having a higher possibility of having to fulfill their end of the call
option contract. Since they are charging more than the fair price of the option, it is expected
that they will incur a risk-less profit from their portfolio. Since the investor is not hedging
against volatility movement, over time this will allow them to incur lower hedging costs as
they won’t be readjusting their position in an additional hedging instrument. They will only be
readjusting their position in the underlying asset.

Although this hedging strategy is set up from the perspective of a short position, it is im-
portant to recall that there exists a counterparty with whom they initially sold the call option
to. This counterparty took a long position in the option, having paid a higher premium than
the fair price to do so. It is expected that over time, the long position would lose on average
more money while hedging their risks, in comparison to the case where it is assumed they paid
the fair price for the option. The profits they earn by hedging their risk in the underlying asset
through selling high and buying low, may not be enough to cover the cost of buying the option.

Preferences of a Long Position

Recall that an investor taking a long position in a call option fears low volatility. If the
option is trading out-of-the-money and the volatility is low, the probability of the option going
in-the-money over its lifetime is small. Since the probability of exercising the option decreases,
they require a large volatility risk premium to compensate them for their risk. This results in the
regime-switching option being priced as if the market permanently occupied the low volatility
regime.

As such our estimate of the volatility level, σi? = σL, leads to the option being sold for
a lower price than it would have been otherwise (i.e. CL

BS (S , t) ≤ Ci(S , t) for all i ∈ {H, L}.
Effectively, the investor taking a long position in this option gets a discounted price which is
their way of being compensated for taking on the volatility switching risk and getting a less
desirable option. Since the investor paid less than the fair price and will be hedging their
option position by shorting shares of the underlying asset, over time they should incur a risk-
less trading profit by selling high and buying low in the underlying.

Again, we need to consider the effect of the risk-adjusted option price on the counterparty
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of the option contract. In this case, the counterparty will be an investor with a short position.
Since they sold the option for less than the fair price, it can be expected that over time they
will lose money on average as they hedge against movements in the underlying asset by taking
a long position in the underlying asset. The lower premium they charge for the option will be
eaten away at quicker through the process of buying high and selling low in the stock.

Preferences of Both Long and Short Positions

We saw in Chapter 5 that when both the long and short positions in an option contract have
their respective risks they want to hedge against, the option is priced via a weighted average
of the corresponding Black-Scholes call option prices. This result can be thought of as the
risk-adjusted fair price of the regime-switching call option, as it takes into account the risks of
both counterparties.

C(S , t) =
1

a + 1
CH

BS (S , t) +
a

a + 1
CL

BS (S , t), (6.94)

where fHL = a fLH.
For simplicity in the numerical analysis presented in the next section, we will assume that

fHL = fLH such that a = 1 in the above equation. This allows us to hedge with implied volatility
such that the option price is an average of the high and low state option prices. We compute the
implied volatility using a built-in Black-Scholes implied volatility solver (’blsimpv’) which is
part of the Financial Toolbox in Matlab. It is assumed that the regime-switching option is the
average of the individual Black-Scholes option prices conditional on high and low volatility
regime.

C(S , 0) =
1
2

(
CH

BS (S , 0) + CL
BS (S , 0)

)
. (6.95)

Using the implied volatility solver, we back out an implied volatility value at contract initi-
ation using the option price given by equation (6.95). We then use this implied volatility value
as our estimate for the constant volatility level. This allows us to hedge by taking a dynamic
position in the underlying asset over the lifetime of our shorted call option.

6.5 Hedging Strategies Analysis

Our main goal of this chapter was to compare the performance of the different hedging strate-
gies under our regime-switching volatility framework. The best indicator of hedge portfolio
performance is considered the profit/loss. We perform a Monte Carlo simulation where we
simulate Q = 10, 000 sample volatility paths and their corresponding stock price paths. All
of our hedging strategies are applied to each set of paths, and a mean terminal profit/loss is
computed using all Q paths. We also consider the 95% confidence intervals of our terminal
profit/loss in order to determine the reliability of our estimate of the mean profit resulting from
our strategies. Unless otherwise denoted, the parameters used in our numerical analysis and
comparison of hedging strategies are given in Table 6.1.
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Expected Return r 0%
High State Volatility σH 40%
Low State Volatility σL 10%
Ci

1(S , t) Strike Price K1 $100
Ci

2(S , t) Strike Price K2 $105
Ci

3(S , t) Strike Price K3 $95
High State Daily Jump Intensity λLH 1%
Low State Daily Jump Intensity λHL 1%

High State Market Price of Volatility Risk mHL 0
Low State Market Price of Volatility Risk mLH 0

Maturity Date T 1 year
Number of Time Increments N 252

Initial Stock Price S 0 $100.00
Stock Transaction Cost TCstock 0 bps

Option Transaction Cost TCoption 0 bps
Number of Price Paths Q 10,000

Table 6.1: Parameters used in the analysis of hedging strategies for varying stock price path
drifts.

For simplicity, we assume that the market prices of volatility risk are negligible (mHL =

mLH = 0), as our main focus is on how well the hedging strategies perform under different
market conditions. It is assumed that there are 252 trading days in one year and that volatil-
ity and stock price change daily. In addition, our positions in all financial instruments in our
hedge portfolios are rebalanced every trading day. It is assumed that portfolio rebalancing is
independent of transaction costs. In other words, the presence and level of transaction costs has
no effect on whether or not we rebalance our portfolio. The switching mechanisms between
volatility regimes are driven by the jump intensities which were assumed to be identical and
equal to 1% daily. Thus no matter what state we occupy, we have a 1% chance every trading
day to switch into the opposing regime. We have picked a small switching intensity to corre-
spond with the fact that volatility does not switch states very often, corresponding to a small
probability of switching.

Table 6.2 summarizes state occupation and transition data for our simulation study. For
clarity, the same Q = 10, 000 sample paths were utilized for all of our numerical analysis
presented in this chapter.

It can be observed that on average, volatility spends half of its time in the low volatility
regime and the other half in the high volatility regime. The percentages of state transitions
clarifies that switches between regimes were scarce, occurring on average 0.50% of the time.
On the other hand, staying in a currently occupied regime occurred 50% of the time. We can
conclude that once the market switched into a particular volatility regime, it occupied that
regime for a large percentage of our time. This indicates that flip-flopping between regimes
was infrequent.

Of particular interest in our study is the performance of our hedging strategies given dif-
ferent stock price drifts, µ. In addition we consider the effect of the Delta limit on portfolios
performance as well as the effect of varying transaction costs, TCstock and TCoption. We are
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Data Type Mean (%) 95% C.I. (%)
Total High State Occupation 50.16 [49.61, 50.70]
Total Low State Occupation 49.84 [49.30, 50.39]

Total H|H Transitions 49.66 [49.11, 50.21]
Total L|H Transitions 0.50 [0.49, 0.51]
Total L|L Transitions 49.34 [48.80, 49.89]
Total H|L Transitions 0.50 [0.49, 0.51]

Table 6.2: Summary of total state occupations and total state transitions for price paths used in
hedging analysis.

specifically interested in the effect that the Delta limit has on Portfolio II’s mean profit/loss,
as well as percentage of trading days the Delta limit is actually breached. We will start with
analysing results for the stock drift.

6.5.1 Effect of Stock Price Drift

Given the way in which we set up our hedging option’s strike prices to straddle the shorted
option’s strike prices in Portfolio II, we need to analyse various magnitudes and directions
of stock price drifts, in order to determine the efficacy of our method under differing market
conditions. It is also useful to see how this financially rooted portfolio performs against more
naive strategies and our basic regime-switching strategy of Portfolio I.

Two interesting cases to investigate are when the shorted option finishes either in- or out-
of-the-money. To investigate when the original option we hedge against finishes out-of-the-
money we assume µ = −5%. On average, the terminal stock price finished at $95.35 (S 0eµT =

$95.12), below the strike price of K1. In these instances, the option would not be exercised
by the counterparty. When the shorted option finishes in-the-money, it is expected that the
counterparty is expected to exercise their right to buy one share of the underlying from us. Thus
we must cover our position by taking some position in the underlying asset and/or hedging
option. Depending on where the stock price finishes such that S T > K1, different hedging
instruments in Portfolio II can be utilized to close out our shorted position. This motivates us
to analyse the mean profit/loss when µ = 0%, 5%, 10%.

When µ = 0%, the stock price on average finishes at $100.24 (S 0eµT = $100.00). It can
be expected that some of the paths in our sample data finished above the strike price and some
above. For µ = 5%, the mean terminal stock price was $105.38 (S 0eµT = $105.13). For stock
price paths that finish such that K1 < S T < K2, it is assumed that the hedging option Ci

3(S , t)
would be utilized to close out our short position. It is cheaper to exercise that option and buy
the share of the stock for K3 and then sell it for K1, pocketing the difference. This method also
allows us to take possession of one share of the stock at a cheaper rate than market price.

Finally, when µ = 10% the mean terminal stock price was $110.79 (S 0eµT = $110.52).
Under this scenario, our hedging option Ci

2(S , t) is in-the-money and by exercising this option
we could obtain the stock for K2 < S T allowing us limit our losses from not having to purchase
the share directly off the market for a higher price.

The results from our hedging simulation for varying stock price drifts are given in Table 6.3.
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Hedging Strategy
µ = −5% µ = 0%

Mean 95% C.I. Mean 95% C.I.
Terminal Stock Price $95.35 [$94.78, $95.93] $100.24 [$99.64, $100.84]
Portfolio I: Ci

2(S , t) 0.34¢ [-0.55¢, 1.22¢] 0.97¢ [0.10¢, 1.83¢]
Portfolio I: Ci

3(S , t) 0.82¢ [-0.08¢, 1.71¢] 1.36¢ [0.49¢, 2.23¢]
Portfolio II: Ci

2(S , t), Nlim = 1 0.54¢ [-0.23¢, 1.31¢] 0.06¢ [-0.72¢, 0.83¢]
Portfolio II: Ci

2(S , t), Nlim = 2 0.41¢ [-0.39¢, 1.21¢] 0.00¢ [-0.79¢, 0.79¢]
Portfolio II: Ci

3(S , t), Nlim = 1 0.88¢ [0.07¢, 1.69¢] 0.65¢ [-0.08¢, 1.39¢]
Portfolio II: Ci

3(S , t), Nlim = 2 1.01¢ [0.18¢, 1.83¢] 0.77¢ [0.00¢, 1.54¢]
Implied Volatility -123.10¢ [-130.20¢, -116.00¢] -123.13¢ [-130.33¢, -115.93¢]

High Volatility 457.07¢ [450.00¢, 464.15¢] 467.89¢ [460.68¢, 475.09¢]
Low Volatility -702.22¢ [-713.49¢, -690.95¢] -712.98¢ [-724.20¢, -701.76¢]

Unconditional Volatility -120.39¢ [-127.48¢, -113.29¢] -120.36¢ [-127.56¢, -113.17¢]

Hedging Strategy
µ = 5% µ = 10%

Mean 95% C.I. Mean 95% C.I.
Terminal Stock Price $105.38 [$104.75, $106.01] $110.79 [$110.12, $111.45]
Portfolio I: Ci

2(S , t) 0.76¢ [-0.09¢, 1.62¢] -0.01¢ [-0.86¢, 0.83¢]
Portfolio I: Ci

3(S , t) 1.55¢ [0.64¢, 2.45¢] 0.48¢ [-0.43¢, 1.39¢]
Portfolio II: Ci

2(S , t), Nlim = 1 -0.12¢ [-0.79¢, 0.55¢] -0.11¢ [-0.96¢, 0.74¢]
Portfolio II: Ci

2(S , t), Nlim = 2 -0.28¢ [-0.97¢, 0.42¢] -0.31¢ [-1.17¢, 0.55¢]
Portfolio II: Ci

3(S , t), Nlim = 1 0.42¢ [-0.25¢, 1.09¢] 0.28¢ [-0.53¢, 1.08¢]
Portfolio II: Ci

3(S , t), Nlim = 2 0.58¢ [-0.13¢, 1.29¢] 0.52¢ [-0.29¢, 1.33¢]
Implied Volatility -123.69¢ [-130.91¢, -116.47¢] -126.12¢ [-133.24¢, -118.99¢]

High Volatility 471.42¢ [464.22¢, 478.62¢] 466.21¢ [459.18¢, 473.24¢]
Low Volatility -714.58¢ [-725.81¢, -703.35¢] -706.08¢ [-717.30¢, -694.87¢]

Unconditional Volatility -120.91¢ [-128.12¢, -113.70¢] -123.36¢ [-130.48¢, -116.25¢]

Table 6.3: Hedging analysis for varying stock price path drifts using numerical option prices.
Parameters as given in Table 6.1.

Overall, the performance of each hedging strategy is fairly consistent across market conditions.
First, let’s compare our two hedging strategies tailored to hedge against all of our market risks.
Both Portfolio I and Portfolio II are observed to break-even on average. It should be noted that
the difference in mean profit/loss between these two strategies is on the order of tenths of a cent.
The portfolios hedging with Ci

3(S , t) do tend to perform slightly better which could be attributed
to the fact that this option is more likely in-the-money at maturity, given the average terminal
stock prices, thus the investor can utilize it to close out their initial short position, if necessary.
Overall, Portfolio II does provide a tighter confidence interval than Portfolio I indicating that
the results have less variation. The tightness in these confidence intervals differ by tenths of a
cent, making it almost negligible to the average investor since commonly available market data
is not quoted beyond cents.

Financially, it can be observed that the differences across market conditions are negligible
as they differ by tenths of a cent for both Portfolio I and Portfolio II. This allows us to state
that our portfolios are set up and hedge in such a way that we are indifferent to the overall
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direction of the market. This makes financial sense when we recall our pricing PDE which
only depended on the risk-free rate of interest and the volatility level. By hedging the risk of
the stock price movements, we made our portfolio indifferent to the drift of the stock price,
assuming no transaction costs.

For the cases involving Portfolio II, we chose to investigate the portfolio’s terminal profit/loss
for two values of the option hedge ratio limit: Nlim = 1, 2. The first value, Nlim = 1, was chosen
as intuitively we know that at maturity an investor would only require one share of a hedg-
ing option to close out their original short position, if the shorted option is exercised by their
counterparty. We also chose to investigate mean profit/loss of Portfolio II when the hedge ratio
limit is allowed to be slightly higher. The motivation behind this stems from the fact that the
higher the hedge ratio, the lower the percentage of trading days we will breach this limit. A
more detailed analysis of this relationship follows in Section 6.5.2. Overall, for portfolios with
a higher hedge ratio limit, their confidence intervals were not as tight, indicating that there is a
higher variability in the associated terminal profit/loss. Furthermore, if we began hedging with
Ci

2(S , t), we experience lower terminal profit (or higher loss), than when we imposed a stricter
Nlim = 1 on our hedge ratios. This could be due to the fact that it in most cases, hedging with
Ci

3(S , t) allows for us to have an in-the-money option at maturity to close out our short position
with. When we breach our limit, we can make use of this in-the-money option. The opposite
was true for portfolios when we hedged with Ci

3(S , t) in which we experienced a slightly higher
terminal profit. In this case, we begin hedging with the higher valued option, thus by increasing
the hedge ratio limit, we can continue to use this option for longer as opposed to setting up a
new position in an option that may or may not end up in-the-money. However, the differences
between the two hedging limit cases are on the order of tenths and hundreds of cents, making
them almost negligible in the long run.

Overall, our naive hedging strategies do not perform as well as our strategies developed
specifically to eliminate volatility risk. This can be expected as we are leaving our portfolio
completely exposed to volatility risk, which affects the stock price path. The unconditional
volatility method and the implied volatility method produce approximately the same losses.
Recall that the implied volatility method took into account compensating both the short and
long positions for taking on their respective risks.

Since we set up our portfolio from the perspective of a short position, it makes sense that
the constant high volatility strategy yields a significant profit. All else being equal, if the
short position is compensated for their risk of potentially switching to a lower regime, they
will initially demand more money for the option they sold. Along the same lines, if the short
position decides to follow a constant volatility trading strategy, they will sell their option for
less than it is worth and thus incur significant trading losses as we can see in Table 6.3. Of
course, in the grand scheme of things these losses are considered significant when compared
to the profit/losses of the other strategies.

The hedging strategies that took into account volatility switching were re-run using our
approximate call option prices derived in Chapter 4. These results are given in Table 6.4.
Recall that our approximate option prices are given by equation (4.85). If we consider this
approximation in our generalized hedge ratio, we get:
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∆i
n ≈

C j
1,BS (S , t) −Ci

1,BS (S , t)

C j
n,BS (S , t) −Ci

n,BS (S , t)
, (6.96)

where Ci
n,BS (S , t) and n = 1, 2, 3 denotes the Black-Scholes call price conditional on volatility

state i for all i ∈ {H, L} where i , j.
Analysing the approximate hedge ratio utilized in the comparison of hedge portfolios, gives

rise to some nice intuition. From equation (6.96), it can be observed that the hedge ratio utiliz-
ing the approximate option prices results in a ratio of the difference between the Black-Scholes
constant volatility option prices conditional on volatility states i and j for the shorted option
over the hedging option. Since our volatility process is memoryless, intuitively it is reasonable
to assume that our hedge ratio would only take into account the change in option value if we
switched into the opposing regime, regardless of the frequency of this jump occurring. We
know that this switch is possible at any time point, therefore we need to consistently hedge
against this risk.

Hedging Strategy
µ = −5% µ = 0%

Mean 95% C.I. Mean 95% C.I.
Terminal Stock Price $95.35 [$94.78, $95.93] $100.24 [$99.64, $100.84]
Portfolio I: Ci

2(S , t) -94.38¢ [-99.28¢, -89.48¢] -93.30¢ [-98.21¢, -88.40¢]
Portfolio I: Ci

3(S , t) -93.06¢ [-98.06¢, -88.05¢] -96.40¢ [-101.39¢, -91.40¢]
Portfolio II: Ci

2(S , t), Nlim = 1 -8.43¢ [-9.93¢, -6.92¢] -2.61¢ [-4.17¢, -1.06¢]
Portfolio II: Ci

2(S , t), Nlilm = 2 -31.62¢ [-33.40¢, -29.84¢] -24.36¢ [-26.18¢, -22.53¢]
Portfolio II: Ci

3(S , t), Nlim = 1 7.10¢ [5.56¢, 8.65¢] 0.56¢ [-0.95¢, 2.08¢]
Portfolio II: Ci

3(S , t), Nlim = 2 -16.94¢ [-18.87¢, -15.00¢] -26.38¢ [-28.30¢, -24.46¢]

Hedging Strategy
µ = 5% µ = 10%

Mean 95% C.I. Mean 95% C.I.
Terminal Stock Price $105.38 [$104.75, $106.01] $110.79 [$110.12, $111.45]
Portfolio I: Ci

2(S , t) -89.90¢ [-94.84¢, -84.97¢] -85.13¢ [-90.11¢, -80.15¢]
Portfolio I: Ci

3(S , t) -98.32¢ [-103.36¢, -93.28¢] -98.82¢ [-103.92¢, -93.72¢]
Portfolio II: Ci

2(S , t), Nlim = 1 3.71¢ [2.19¢, 5.22¢] 10.87¢ [9.27¢, 12.46¢]
Portfolio II: Ci

2(S , t), Nlim = 2 -16.34¢ [-18.15¢, -14.53¢] -7.35¢ [-9.23¢-5.47¢]
Portfolio II: Ci

3(S , t), Nlim = 1 -5.98¢ [-7.44¢, -4.52¢] -11.00¢ [-12.48¢, -9.52¢]
Portfolio II: Ci

3(S , t), Nlim = 2 -35.33¢ [-37.21¢, -33.46¢] -42.48¢ [-44.34¢-40.63¢]

Table 6.4: Hedging analysis for varying stock price path drifts using approximate option prices.
Parameters as given in Table 6.1.

It can be observed that on average, when hedging with the approximate solutions, we lose
money. Furthermore, a comparison of Portfolio II for the different hedge ratio limits shows
that having a higher limit results in consistently losing more money and having higher variabil-
ity in our hedging results (i.e. wider confidence interval). These consistent losses across all
portfolios could be attributed to the fact that the approximate option prices may produce prices
which on average are lower than those computed numerically via Crank-Nicolson. This as-
sumption arises from the fact that when we analysed our results for constant volatility, hedging
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a shorted position with low volatility yielded losses while hedging with high volatility resulted
in a substantial profit in proportion to other results. This is consistent with our previous dis-
cussions on investor risk preferences and the market price of volatility risk. Thus it is logical
to assume that the approximate solutions compute lower option prices than their equivalent
numerical solutions thus allowing a short position to incur losses on average. This is due to the
fact that a lower price means the investor will initially receive less money for selling the option
to a counterparty and as a result, can incur losses in their hedge position as this price does not
exactly represent the risk inherent in the market. This absolute error between the approximate
price and the numerical price can be assumed to be the source of the losses observed in our
numerical study. The variation in these results is also wider than previous simulations with
it being of magnitude of cents instead of tenths of cents. Overall, we can see that it is best to
use a numerically accurate option price when implementing hedging strategies especially when
rebalancing occurs more often.

6.5.2 Effect of Delta Limit
Recall that the Delta limit, Nlim was imposed on the initial hedging option employed in Portfolio
II. This was put in place to insure that the hedge ratio would not “blow up” thus requiring that
the investor take an infinite position in an option. We are interested to determine what effect, if
any, the magnitude of this Delta limit has on the mean profit/loss of our trading strategies and
on the percentage of time this limit is actually breached over the course of trading.
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Figure 6.3: Effect of ∆2 limit on mean % of trading days with limit breaches. µ = 0%, all other
parameters as given in Table 6.1.

It was found that the overall percentage of limit breaches was independent of both stock
price drift and on which option we initially hedged with. We only show results for one choice
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Figure 6.4: Effect of ∆3 limit on mean % of trading days with limit breaches. µ = 0%, all other
parameters as given in Table 6.1.

of stock drift, µ = 0%, however similar results follow for other market conditions. Figures 6.3
and 6.4 show that when the limit is a fraction of an option, the limit is breached between 50%
and 90% of the time. There is an exponential decay that can be observed in the percentage of
limit breaches as the Delta limit increases. No observable change is observed for values above
Nlim = 4 as limit breaches become non-existent. It should be noted that almost identical results
are observed for when we start hedging Portfolio II with either Ci

2(S , t) or Ci
3(S , t).

Finally, we investigated the effect that the Delta limit has on the mean profit/loss of Portfolio
II. The same effects for increases in Delta limit were observed for all market conditions. Figure
6.5 illustrates the effect that the Delta limit has on the mean profit/loss of Portfolio I when we
choose to hedge with Ci

2(S , t) such that K1 < K2. The mean profit/loss and corresponding 95%
confidence intervals decrease with respect to the ∆2 limit. As the hedge ratio limit increases,
the mean profit/loss decreases by a magnitude of a few tenths of cents. This decrease appears
to flatten out for larger values of the limit. When ∆2 limit take on the value of zero, financially
this means that we will only be hedging with our additional hedging option Ci

3(S , t). Figure
6.5 indicates that hedging with our additional hedging option produces maximum portfolio
performance.

Similarly, Figure 6.6 shows the effect that the Delta limit has on the mean profit/loss of
Portfolio II when we choose to hedge with Ci

3(S , t) such that K3 < K1. Increases in the Delta
limit are shown to cause increases in our mean profit/loss. This difference in profit/loss is
only a few cents in comparison and this begins to flatten out over time. There is a peak in
the mean profit/loss which occurs between Nlim = 1 and Nlim = 2. This suggests that for this
portfolio, there is an optimal limit to impose to maximize our portfolio performance. When
the limit takes on the value of zero, this is a scenario in which we would only be hedging with



6.5. Hedging Strategies Analysis 113

0 1 2 3 4 5 6 7 8 9 10
−0.01

−0.005

0

0.005

0.01

0.015

0.02

∆
2
 Limit

P
ro

fit
/L

os
s 

($
)

 

 
Mean
95% Confidence Interval

Figure 6.5: Effect of ∆2 limit on profit/loss of Portfolio II. µ = 0%, all other parameters as
given in Table 6.1.

our additional option, Ci
2(S , t). Figure 6.6 indicates that this scenario would lead to our worst

portfolio performance for all values of the hedge ratio limit.
In general, larger values for our Delta limit will allow us to take larger positions in our first

hedging option. If this limit is breached, we must introduce a new hedging option which will
incur additional costs. For the portfolio starting with Ci

2(S , t), when the limit is breached, we
must also start hedging with Ci

3(S , t). Recall that it was assumed that K3 < K1 < K2. All else
being equal, it turns out that Ci

3(S , t) > Ci
2(S , t). However, given that all hedging options are

in-the-money, it will always be cheaper at maturity to exercise Ci
3(S , t) to buy one share of the

stock for the low price of K3. Therefore keeping some dynamic position in this option over the
life of the portfolio is cheaper in the long run, rather than trying to set up a large position in it
closer to maturity. Thus increasing the hedging ratio limit such that we will use our original
hedging option Ci

2(S , t) will result in a lower terminal portfolio profit. On the other hand, for
the portfolio in which we begin hedging with Ci

3(S , t), our initial hedging option is the more
expensive option of the two available to us. However since this option is more likely to finish
in-the-money, making it the most beneficial hedging instrument in our portfolio, it is advisable
to maintain a dynamic position in it for longer through a larger hedging limit. If our hedging
limit is too low, our dynamic position would be in the other option Ci

2(S , t), which due to the
set-up of the portfolio with respect to the strike prices, is less likely to finish in-the-money. This
makes it a less desirable hedging option in the long run since we want an option in our portfolio
which enables us, if necessary, to buy one share of the stock at maturity for the cheapest price
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Figure 6.6: Effect of ∆3 limit on profit/loss of Portfolio II. µ = 0%, all other parameters as
given in Table 6.1.

in order to close out our short position.
Using the results illustrated in Figures 6.3 and 6.5 together, we can observe that it is most

profitable to have a hedge limit as low as possible for Ci
2(S , t), in order to ensure that we will

hedge with our option that has a higher probability of finishing the money. On the other hand,
the results of Figures 6.4 and 6.6, indicate that there is an optimal Delta limit which would
maximize our profit. This limit would ensure that we always have a position in our original
option Ci

3(S , t), whether dynamic or static, which has a higher probability of being in-the-
money at maturity. The additional option would provide some added value in hedging against
the inherent risks, while minimizing trading costs associated with our higher valued, original
hedging option.

6.5.3 Effect of Transaction Costs
In the implementation of our hedging strategies, it was assumed that the transaction costs were
proportional to the amount traded. In other words, how much we are charged to complete
a transaction is dependent on how much we buy/sell of a particular financial instrument in
readjusting our hedge. All transaction costs are denoted in basis points. A basis point is one
percent of one percent. In particular we investigated three sets of stock transaction costs TCstock

and option transaction costs, TCoption and analysed the mean profit/loss of four portfolios for
varying stock drifts. In general, we allowed our option transaction costs to be higher than
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those for the stock due to the fact that they are proportional costs. One basis point of $100
is significantly less than one basis point of $10. Since options usually cost fractions of what
the stock it is written on is trading for, it makes sense to allow the transaction costs to take on
higher values.
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Figure 6.7: Effect of stock price drift, µ, on the mean profit/loss of differing portfolios. Nlim = 1,
TCstock = 0 bps and TCoption = 0 bps, all other parameters as given in Table 6.1.

Figure 6.7 provides a benchmark for future analysis since to compute profit/loss, transac-
tion costs are not included. In the absence of transaction costs, there is no observable pattern
between mean profit/loss and increasing the stock drift. It should be noted that the magni-
tude of the mean profit/loss depicted in this figure are on the magnitude of tenths of cents.
Therefore these differences observed are negligible since all profits/losses would round out to
approximately zero dollars on average.

With the introduction of option transaction costs, we begin to observe differences between
the four portfolios plotted in Figure 6.8. Both variations of Portfolio II began to perform better
than their respective variations of Portfolio I. Since Portfolio II doesn’t allow the investor to
take extreme option positions, fewer transaction costs are incurred over the life of the portfolio.
Thus capping the number of options we can hedge with has a positive impact on our overall
profit/loss as we are not losing money through changing our position by large magnitudes and
as a result, not accumulating unnecessary transaction costs.

Following the assumption that option transaction costs are much greater than stock trans-
action costs, we can see that Portfolio II clearly outperforms Portfolio I in terms of profit/loss,
as shown in Figure 6.9. This performance is indicated by the overall mean loss incurred by
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Figure 6.8: Effect of stock price drift, µ, on the mean profit/loss of differing portfolios. Nlim = 1,
TCstock = 0 bps and TCoption = 10 bps, all other parameters as given in Table 6.1.

the portfolio over time. Now that higher transaction costs are being taken into account, there
exists an observable impact of the stock drift with respect to portfolio profit/loss. As stock
drift increase in the positive direction, all portfolios lose more money. This indicates that as
the stock price drifts upwards and away from the strike prices of all three possible options in
our portfolio, our hedge positions are increasing in magnitude thus incurring more transaction
costs every time we readjust our position (i.e. daily). As a result, these accumulated transaction
costs have a negative effect on the value of our portfolio.

Overall, when transaction costs were introduced into our hedging portfolios, they caused
the portfolios on average to lose money. However these losses varied between $0.05 and $2.10,
depending on the portfolio. It is important to note that the introduction and/or magnitude of
transaction costs did not influence how we readjusted our positions in our financial instruments.
This is directly attributed to the decrease in profit/loss observed in the figures as transaction
costs were increased. Realistically, transaction costs would have a direct impact on how much
and how frequently an investor chooses to adjust their hedged positions.
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Figure 6.9: Effect of stock price drift, µ, on the mean profit/loss of differing portfolios. Nlim = 1,
TCstock = 1 bps and TCoption = 100 bps, all other parameters as given in Table 6.1.

6.6 Summary

The investigation of various hedging strategies under our regime-switching volatility frame-
work were analysed both mathematically and through a numerical study. We considered port-
folios designed to directly hedge out the risk of volatility switching as well as the risk of stock
price movements, in addition to more naive constant volatility hedging approaches. Although
we found that the set up of Portfolio I was mathematically sound, financial issues arose which
limited the practicality of this hedging method. As a result, more sophisticated portfolios were
considered where a basket of two hedging options was available to the investor. Given the
assumption that the strike prices of the hedging options must straddle the strike price of the
shorted option, this portfolio allowed for there always to be a usable hedging option in the
portfolio. A hedging limit was also introduced to ensure that an investor did not take extreme
positions in their hedging options. This hedging limit proved especially useful in limiting
losses when transaction costs were taken into account. Overall, we found that portfolios that
were set up to directly hedge against the volatility switching mechanism in our market per-
formed substantially better than those taking a more naive approach to hedging.

Furthermore, the relationship between the hedge ratio limit and mean profit/loss of the
portfolios was studied, and it was found that this limit has a direct impact on the profitability
of these strategies conditional on initial hedging option choice. Finally, it was found that in
the presence of transaction costs, Portfolio II performs significantly better than an otherwise
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similar Portfolio I. For all volatility switching portfolios, the inclusion of transaction costs
illustrated the existence of a decreasing relationship between stock price drift and portfolio
profitability.

All analysis contained within this thesis up until this point assumed that the Poisson in-
tensities driving the frequency of volatility switching were constant. Now that solid mathe-
matical and financial intuition has been built around this model, it follows to investigate the
consequence of deterministic Poisson intensities on the pricing of options under our regime-
switching framework. A natural extension of our framework is to consider the effect of upcom-
ing financial events on our regime-switching volatility.



Chapter 7

Deterministic Poisson Intensities

In Chapter 2 we introduced a generalized framework for pricing a call written on an underlying
asset in a market with regime-switching volatility. From Chapter 2 until now, the intensities
of the Poisson processes driving the switching mechanisms between states were assumed to
be constant. However, as one might realistically expect, these intensities are non-constant and
fluctuate with changes in the market. These changes can be unsystematic and company specific
or they could be systematic and as a result affect an entire financial market. In particular, there
has been much research into the impact of company specific public information on equity and
fixed income prices, and in particular their volatility levels.

Patell and Wolfson [37] found that earnings releases and dividend announcements affect
the intraday behaviour of stock prices trading on New York Stock Exchange, with these stocks
quickly incorporating the new information into their prices within hours. An interesting result
of their study found that these price adjustments began before the actual announcement was
made. By analysing the relationship between firms’ earnings volatility and earnings forecasts,
Waymire [48] showed that firms who report earnings more frequently experience lower volatil-
ity than firms who do not. The firms compared had earnings forecasts of similar accuracy.
Jennings and Starks [30] were able to show that companies with quarterly earnings reports
containing additional information have stocks whose prices start adjusting before the release
of information. However, the average speed of adjustment is shown to be several trading days
longer than companies with reports containing less information. Furthermore, French and Roll
[21] investigated the impact of information flow during trading days and exchange holidays,
using weekly US equity return data. They concluded that increased volatility is directly related
to the differences in information flow of public and private information during trading hours as
opposed to non-trading hours. Interestingly, Skinner [40] found that companies with exchange
traded options listed on their stock experience smaller stock price reaction associated with the
reporting of earnings releases. This was attributed to the fact that companies with listed options
have more analysts forecasting the earnings for these firms and as a result there exists a lower
level of surprise for investors when earnings are filed.

More recently, Ederington and Lee [18] analysed the impact of the employment report,
consumer price index (CPI) and the producer price index (PPI) on the T-bond, Eurodollar and
Deutsche mark futures markets. They considered intraday volatility patterns during trading
hours over which news releases occurred. They show that news releases do cause an increase
in volatility levels compared to days where no news release were made, with prices adjust-
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ing quickly, within one minute in very active markets. It was found however that increased
volatility persists longer. Harvey and Huang [26] examined the impact of public information
disclosures on market volatility in the Eurodollar and Treasury bill futures markets and found
that bad macroeconomic news, released just before trading begins, is in fact associated with
higher volatility levels. As well, they found there exists a relationship between the size of the
surprise of such news and the magnitude of the increase in volatility levels.
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Figure 7.1: Two types of event studies: discontinuous stock price movement and volatility
regime change.

Although many event studies focus on discrete shifts in stock price, as shown in the left plot
of Figure 7.1, we focus on the shift in the volatility levels associated with stock price paths.
These volatility shifts are observable when considering the daily log returns of a price path, as
illustrated in the right plot contained in Figure 7.1. Recall that increases in the magnitude of
the log returns are associated with an increase in the volatility level.

All in all, there is much empirical evidence and past studies supporting an observed impact
of financial news on volatility, in particular that news tends to cause an increase in volatility lev-
els. Often similar regime-switching frameworks are considered for modelling business phase
cycles and volatility switching. Filardo [19] showed that a Markov model with time-varying
transitional probabilities was better to model business cycles than fixed constant transitional
probabilities. The enhanced model was able to take into account turning points that can occur
where the market shifts states (i.e. between expansions and contractions). Since the release
of information can result in a shift in the volatility states much like Filardo’s shifts between
business cycle phases, we will model our switching intensities to take into account the release
dates of company specific financial news. Since options are written on company stock which
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experience price and volatility changes coinciding with news releases, it is intuitive to want to
price this future risk into our options pricing framework in order to provide the fairest price
possible for investors.

7.1 Motivation
As we have discussed, economic literature has investigated the influence of different financial
and economic events on fixed income and equity volatility. In particular, financial events such
as earnings releases, company mergers and acquisitions, and dividend payments are shown to
trigger changes in the volatility levels of individual publicly traded companies. Uncertainty in
the company may occur, as the known event date approaches, which results in an increase in
short-term volatility levels. As a result, there may be a positive or negative impact on the stock
price, depending on the outcome of the event. Following an empirical study done by Patell
and Wolfson [37] which found that earnings announcements had a more pronounced impact
on stock prices than dividend announcements, we choose to model our Poisson intensities as
functions of upcoming quarterly earnings releases.

All publicly traded companies must report their earnings after every quarter. Earnings are
filed as a report and allow shareholders and the public to know how the company performed
during the last quarter. Usually, companies experience a delay of approximately one month
between the end of the quarter and the date that the quarterly earnings are released. There is
usually uncertainty about a particular company’s financial results. Financial analysts report
their expectations for a company’s quarterly performance which can lead to earnings surprises
when the reports are made publicly available. Earnings surprises, either positive or negative,
occur when the reported earnings are above or below the analyst’s expectations.

Since every publicly traded company has a different risk and return profile affected by their
core business, we will examine empirical data from two companies in different industries. First,
we will consider one of the big six banks in Canada, Toronto-Dominion Bank, a bank involved
in retail, commercial and investment banking headquartered in Toronto, Ontario. We also con-
sider Apple Inc., the second largest technology company in the world, which has experienced
significant growth over the past decade and is headquartered in Cupertino, California. Due to
their differing industries, we expect that the volatility levels of each company’s publicly traded
stock to differ, however for them both to be influenced by the arrival of information pertaining
to earnings.

Quarter
Dates

End of Quarter Earnings Release
Q1 January 31, 2013 February 28, 2013
Q2 April 30, 2013 May 23, 2013
Q3 July 31, 2013 August 29, 2013
Q4 October 31, 2013 December 5, 2013

Table 7.1: Quarter end and earnings release dates for Toronto Dominion bank for fiscal year
2013. Ticker symbol TD.TO on TSX. Data obtained from [42], [43], [44], and [45].
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Quarter
Dates

End of Quarter Earnings Release
Q1 December 29, 2012 January 23, 2013
Q2 March 30, 2013 April 23, 2013
Q3 June 29, 2013 July 23, 2013
Q4 September 28, 2013 October 28, 2013

Table 7.2: Quarter end and earnings release dates for Apple for fiscal year 2013. Ticker symbol
APPL on Nasdaq. Data obtained from [1], [2], [3], and [4].

Tables 7.1 and 7.2 contain the quarter end dates and the subsequent earnings release dates
for Toronto-Dominion (TD) Bank and Apple Inc., respectively. As mentioned above, there is
usually a lag of approximately one month between the end of quarter and the date the earnings
are released. Each quarter’s earnings release date is known well before the quarter end and this
information is made public before the actual release date.

7.1.1 5-Day Moving Average Volatility
It is not expected that the impact of earnings releases on stock prices and on the volatility level
of the company to be long-term. Any observed effects are assumed to be short-term as the price
of the company stock, through trading, is expected to incorporate this information into its price.
This price adjustment occurs through the normal continuous trading in the stock by investors.
Therefore, we consider the weekly (5-day) moving average of historical volatility for each of
these companies, in order to capture any short-term changes in volatility levels around the end
of quarter dates and the earnings release dates.

In both Figures 7.2 and 7.3, we can observe increases in volatility levels occurring just
before or on the earnings release date. One explanation is to assume that there exists uncertainty
in the quarterly results that the company will officially file thus causing the price to fluctuate
at a higher level as investors short/long the stock due to increasing fears. Over the fiscal year
2013, it can be observed that Apple Inc. has higher volatility levels than TD Bank. As was
mentioned before, the technology industry is more volatile than a bank in the stable Canadian
banking system. As a result, Apple Inc. experiences a higher number of transactions in its
company stock. This can be supported by considering the weekly (5-day) moving average
trading volume for both publicly traded companies.
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Figure 7.2: 5-day moving average volatility for TD Bank for fiscal year 2013. Data obtained
from Yahoo Canada Finance [52].
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Figure 7.3: 5-day moving average volatility for Apple for fiscal year 2013. Data obtained from
Yahoo Canada Finance [50].
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7.1.2 5-Day Moving Average Trading Volume
Stock prices are affected by many factors, one of them being their daily trading volume. Bid-
ask spreads are readjusted to account for trading volume. The higher the demand, the higher
the ask price can be for a stock, which shifts the spread upwards. Trading volume on general
can be thought to increase as an uncertain financial event looms, as the outcome of the event
could trigger more permanent shifts in the stock price. Since future movements in the stock are
both unknown and uncontrollable, investors may seek to change their positions dramatically as
the event approaches.
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Figure 7.4: 5-day moving average of daily trading volume for TD Bank for fiscal year 2013.
Data obtained from Yahoo Canada Finance [52].

These sentiments are reflected in Figures 7.4 and 7.5, which plot the 5-day moving average
of daily trading volume against the end of quarter and earnings release dates.

It can be observed that as the quarterly earnings release dates approach, both TD Bank and
Apple Inc. experience large variations in their trading volume. The most observable variation
in the trading volume is for Apple Inc. at the end of their first quarter. On average, we can also
observe that the volume of Apple Inc. shares is much higher than TD Bank shares. It should
be noted that Apple Inc. trades on the Nasdaq in New York City while TD Bank trades on the
Toronto Stock Exchange, which may have some effect on these differences. This data indicates
that investors do care about financial events when readjusting their portfolios. Risk-averse
investors may liquidate their shares if they fear an upcoming downward drift in the stock price
while risk-taking investors may set up options strategies coupled with short stock strategies in
order to profit off of similar financial outcomes. Overall, the empirical evidence along with
previous studies done by economists and practitioners provide a solid foundation for exploring
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Figure 7.5: 5-day moving average of daily trading volume for Apple for fiscal year 2013. Data
obtained from Yahoo Canada Finance [50].

event-driven regime-switching intensities.
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7.2 Earnings Release Framework
Our earnings release volatility switching framework will build upon the regime-switching
framework introduced in Chapter 2. For consistency, we will continue to consider that the
volatility can switch between two regimes, with the switches being driven by independent
Poisson processes. This framework is given by equations (2.45), (2.46) and (2.47). Since our
regime-switching pricing equations were derived under a generalized model where the Pois-
son intensities were taken to be deterministic functions, our pricing PDE remains the same
as in previous chapters and is given by equation (2.48) with payoff and boundary conditions
consistent for a European call option.

For the remainder of this chapter, the difference will be that instead of letting the Poisson
intensities take on constant values, as assumed for Chapters 4 through 6, we will allow our
Poisson intensities to be functions of both time and stock price. Recall that the general form of
our risk-adjusted Poisson intensities for state i is given by:

fi j(S , t) = −
(
λi j(S , t) − mi j

)
, (7.1)

where i ∈ {H, L} such that i , j.
The focus of this chapter is on the different forms that the Poisson intensity λi j(S , t) can

take, reflecting the market and company conditions surrounding a particular underlying asset.
As a result, we also consider the associated pricing and hedging results.

Under our event-driven regime-switching framework, we will assume that the date of quar-
terly earnings release is known and occurs at t = τ?. It will also be assumed that the probability
of switching regimes is an increasing function with respect to the time to event, τ? − t. The
closer we are to the event occurring, the higher the magnitude of our Poisson intensity trigger-
ing the switching process. If the event occurs before option maturity, the intensity will decrease
as we move forward in time away from the event date. A time intensity parameter, κ is intro-
duced to control the time growth and/or decay of our jump intensities. We will also further
extend our framework to incorporate the effect of stock price levels. Throughout this chapter,
we will analyze both mathematically and numerically the differences in pricing and hedging
options where the event occurs at option maturity and when the event occurs before option
maturity. Since several cases of deterministic intensities, depending on both time and stock,
builds upon our model considering solely time as a dependent variable, we will first consider
the time varying Poisson intensity model.

7.2.1 Time Varying Poisson Intensities

First we consider the simpler case in which the intensities of the Poisson processes depend only
on time. Since we expect on average for a shift to an opposing regime to occur as the event
approaches, we model the intensities to increase as the event date approaches. For all cases,
λ?i j is assumed to be the maximum Poisson intensity that the process can ever reach. Thus we
have defined an upper bound on the intensity of our process. As previously stated κ is the time
intensity parameter and mi j(S , t) is the state-dependent market price of volatility risk. For the
discussion presented, assume that the state-dependent market prices of volatility risk take on
constant values (i.e. mi j ≡ mi j(S , t)).
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We restrict our time intensity parameter to only take on strictly positive values such that
κ > 0. If κ = 0, this would insinuate that time has no impact on the switching intensity
and thus our framework reduces to that where the Poisson intensities take on constant fixed
values. When the event occurs at maturity, we model the intensities to increase as the event
date approaches. On the other hand, when the event date does not occur at option maturity, the
intensities increase as we approach the event date and decrease after the event has occurred. In
general our deterministic time-varying model is as follows:

λi j(t) = λ?i je
−κ(τ?−t)sgn(τ?−t), (7.2)

where

sgn(τ? − t) =


−1 if t > τ?

0 if t = τ?

1 if t < τ?
.

When the event occurs at maturity such that τ? = T , it follows that sgn(T − t) = 1 since
t ≤ T for all t. The above result reduces to:

λi j(t) = λ?i je
−κ(T−t). (7.3)

The function e−κ(τ
?−t)sgn(τ?−t) acts as a control on the Poisson intensity and due to its math-

ematical properties, allows it to vary between zero and λ?i j. Thus our deterministic intensity is
a bounded function: 0 ≤ λi j(t) ≤ λ?i j. If κ(τ? − t) → ∞ this would imply that λi j(t) → 0. Thus
if either the time to event or the chosen value for κ is very large, the switching effect would
be turned off completely. This would result in the volatility never being able to switch out of
its currently occupied regime. A more detailed investigation of the time-intensity parameter, κ,
with respect to option maturity dates and event dates is presented in Section 7.3. For now, it is
safe to assume that κ(τ? − t) is finite such that the switching mechanism is enabled within our
regime-switching framework. In other words, we only consider a finite time horizon.

For the remainder of this chapter, we will analyse numerical results pertaining to the time
varying Poisson intensities in two separate cases. Case 1 describes a case in which the financial
event occurs at option maturity, while Case 2 will refer to events that occur before maturity,
τ? < T . We will first analyse how our time varying intensities are modelled for both of these
cases separately. Since our intensities are independent of stock price, Figures 7.6 and 7.7 plot
the intensities against time alone.

In Figure 7.6, we can observe that the Poisson intensity increases as the maturity date of the
option approaches, which coincides with the date of the financial event. Thus as we approach
the financial event, it becomes more and more likely that our Poisson process will trigger a
switch to the opposing regime. The speed at which the intensity changes with respect to time
is controlled by the magnitude of κ and will be discussed later on.

Figure 7.7 illustrates the observable difference when the financial event occurs before op-
tion maturity. As we approach the financial event at τ?, the Poisson intensity increases. It
reaches it maximum intensity at the event date t = τ? and decreases as we move further away
from the date and towards maturity τ? < t ≤ T . The intensity is modelled in this way as it is
assumed that if the switch does not occur before or on the event that, it becomes highly unlikely
that it will switch regimes afterwards. This is due to the fact that after the event has occurred
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Figure 7.6: Time varying Poisson intensity assuming the financial event occurs at maturity.
κ = 1, λ? = 10% (daily), and T = 1 year.

and the information disclosed is now public, investors no longer have this unknown risk in their
portfolio. Thus it is likely that if the volatility does not switch before or on the event date, that
it will not switch at all. Once again, κ controls the speed at which the time varying intensity
grows and decays.
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Figure 7.7: Time varying Poisson intensity assuming the financial event occurs before maturity.
κ = 1, λ? = 10% (daily), τ? = 9 months, and T = 1 year.

7.2.2 Time and Stock Varying Poisson Intensities

Building upon the time varying Poisson intensity model given by equation (7.2), we will now
adjust this expression to be a function of another dependent variable, the stock price. One way
to do so is to use the level that the stock price is trading at with respect to a benchmark level ξ,
as a trigger on the magnitude of the Poisson intensity.

As we previously saw, regime-switching options become insensitive to volatility switching
when the option is too far in- or out-of-the-money. However, when the option is trading around
or at-the-money, volatility levels have a significant effect on pricing and hedging strategies.
Any little movement in the underlying asset about the strike price can effect whether or not the
option has intrinsic value. Incorporating the underlying asset’s value as a dependent variable
within the switching mechanism is a way for the option price to take into acccount the impact
of future volatility levels given a particular price level. One way to consider this trigger within
the Poisson intensity is to have it increase with stock price level. In Wilmott [49], the impact
of Delta hedging a stock is found to have an impact on an underlying asset’s value. Changes in
an asset’s value are directly related to changes in the associated volatility levels. Financially,
it makes sense to incorporate this hedge ratio into our intensity model, allowing our switching
intensities to incorporate the amount the stock was hedged.

Since volatility levels do have a significant impact on the stock price’s level, they also have
an impact on the amount an investor may earn (or have to pay out) at option maturity. In this
scenario, we would want our intensity to reflect the maximum Poisson intensity defined within
our market. Of course, time value would still have to be taken into account, however our stock
price trigger could take on values between zero and one. This results in having our new time
and stock varying Poisson intensities being bounded both above and below.
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0 ≤ λi j(S , t) ≤ λ?i je
−κ(τ?−t)sgn(τ?−t). (7.4)

As previously discussed in detail in Chapter 6, when our regime-switching option is trading
deep in- or out-of-the-money, volatility has little to no impact on the price of the option. It is
important to remember that volatility still has an impact on the actual stock price level. Under
these two scenarios, our regime-switching option is equivalent to a constant volatility option.
The properties of the constant volatility Black-Scholes Delta can fulfill our intuitive constraints
placed on stock price trigger, making it an ideal multiplier within our intensity model. This
constant volatility hedge ratio conditional on volatility level, σi, is given by:

∆i
1 = N(di

1), (7.5)

where:

di
1 =

log
(

S
ξ

)
+

(
r + 1

2σ
2
i

)
(T − t)

σi
√

T − t
, (7.6)

N(x) =
1
√

2π

∫ x

−∞

e−
z2
2 dz. (7.7)

The hedge ratio, ∆i
1, under the Black-Scholes model is defined by the normal cumula-

tive distribution function (CDF). As per the properties of the normal CDF, we know that
0 ≤ N(di

1) ≤ 1. Thus we can use the hedge ratio as our stock price trigger to control the
size of the Poisson intensity, dependent on where the stock price is trading with respect to our
benchmark price ξ. As we can see, if the stock prices are trading at high values compared to
ξ (i.e. deep in-the-money), the trigger’s value will be one. If the stock prices are trading at
levels well below ξ, its value will be zero. When the stock is trading around the stock price,
the trigger will be a factor between zero and one. Thus, the generalized time varying Poisson
intensity model which incorporates a stock trigger is given below.

λi j(S , t) = λ?i jN(di,?
1 )e−κ(τ

?−t)sgn(τ?−t), (7.8)

where:

sgn(τ? − t) =


−1 if t > τ?

0 if t = τ?

1 if t < τ?
,

and

di,?
1 =

log
(

S
ξ

)
+

(
r + 1

2σ
2
i

)
(τ? − t)sgn(τ? − t)

σi
√

(τ? − t)sgn(τ? − t)
, (7.9)

N(x) =
1
√

2π

∫ x

−∞

e−
z2
2 dz. (7.10)

It is important to note that this model is similar in structure to our time varying Poisson
intensity model, with the addition of the new stock price trigger component.
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For completeness, when the event occurs at maturity such that τ? = T , the above result
reduces to:

λi j(S , t) = λ?i jN(di
1)e−κ(T−t), (7.11)

where

di
1 =

log
(

S
ξ

)
+

(
r + 1

2σ
2
i

)
(T − t)

σi
√

T − t
, (7.12)

N(x) =
1
√

2π

∫ x

−∞

e−
z2
2 dz. (7.13)

Once again, we will analyse our time and stock varying Poisson intensities for two different
cases, pertaining to the relationship between event and option maturity dates.

Expected Return r 0%
Volatility σ 30%

Benchmark Price Level ξ $100
Daily Maximum Poisson Intensity λ? 10%

Event Date τ? 9 months
Maturity Date T 1 year

Table 7.3: Parameters used in the analysis of time and stock varying Poisson intensities.
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Figure 7.8: Time and stock varying Poisson intensity assuming the financial event occurs at
maturity. Parameters as given in Table 7.3.
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Figure 7.9: Time and stock varying Poisson intensity assuming the financial event occurs be-
fore maturity. Parameters as given in Table 7.3.

Case 3 will describe when the financial event occurs at option maturity, while Case 4 will
refer to events that occur before maturity, τ? < T . Figures 7.8 and 7.9 plot the intensities solely
against stock price for different time points.

In Figure 7.8, we can observe that for all time points plotted, when the stock price is trading
well below the strike price, the value of the Poisson intensity is zero. On the other hand, when
the stock price is trading above the strike price, the value of the Poisson intensity approaches
the value defined by the maximum Poisson intensity and by the time factor. This is the upper
bound of our function. At maturity, when t = τ? = T , we can see that the Poisson intensity
takes on a value of zero when S ≤ K and a value of λ? when S > K. Thus at option and event
maturity, we can either switch with our maximum defined intensity or not at all. Our plain
vanilla option will inherently be priced based on these factors since its value depends directly
on the Poisson intensities embedded within the model.

Figure 7.9 considers the evolution of the Poisson intensity when the event date occurs
before the maturity date of the option. We notice similar changes in the value of the intensity
as we approach the event date. Once again at event maturity, the Poisson intensity can take on
either the value of zero or the maximum Poisson intensity, dependent on where the stock price
is trading with respect to the strike price. The key difference here is since the option maturity is
after the event date, we see a downwards shift in the intensity function as we move away from
the event date. In particular since both t = 0.5 and t = 1 are equidistant from the event date
and due to the form of our equations, they both have the same resultant Poisson intensities.
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7.3 Effect of the Time Intensity Parameter, κ
Each of the four cases outlined in the previous section depend on the time intensity parameter
κ. Recall that κ is assumed to take on strictly finite positive values in order to incorporate event
timing into our model. Financially, we can interpret κ as a measure of the stock’s sensitivity to
approaching earnings releases. Their sensitivity is based in the market, on which their equity
trades reaction to their quarter end results. Either good or bad performance could trigger an
increase in trading volume and have an impact on short-term price drift and volatility.

Financially, we can consider a small κ value to be associated with a publicly traded company
that is unstable and for whom an earnings announcement would have little impact on stock
volatility levels. The low level of impact would be due to the high volatility of the stock and
thus an increase in volatility would not be uncharacteristic. An exception may be a buyout
or takeover of the company. An example of such a company stock could be a small start-up
technology company. If the company’s stock is not expected to be affected by an upcoming
financial event, κ is taken to be small such that we can consider that particular company’s
switching intensity to be non-time dependent. In other words, if κ → 0 this implies that
λ?i je

−κ(τ?−t)sgn(τ?−t) → λ?i j. Companies with a larger κ are those relatively stable companies for
which the uncertainty of a quarterly earnings release would cause an impact of some magnitude
on their stock price levels. An example of such a company could be any of the big six Canadian
banks.

Since all cases are built upon our original time-varying intensity model, we will explore
varying magnitudes of the time intensity parameter for Cases 1 and 2.
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Figure 7.10: Impact of κ on the time-dependent Poisson intensity assuming the event occurs at
option maturity. λ? = 10% (daily) and T = 1 year.

In Figure 7.10, it can be observed that for small values of κ, the change in the Poisson
intensity appears to be linear in time. The larger κ, the more the Poisson intensity ramps up
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closer to the event. For very large values of κ, the effect of time is almost negligible until just
before the financial event at which point, the intensity increases at a rapid speed to its maximum
value, λ?i j.
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Figure 7.11: Impact of κ on the time-dependent Poisson intensity assuming the event occurs
before option maturity. λ? = 10% (daily), τ? = 9 months, and T = 1 year.

Figure 7.11 shows similar results to those analysed in Figure 7.10. The main difference
is that the financial event occurs before option maturity, and thus the Poisson intensity must
decrease as we move away from the event date. The speed at which the Poisson intensity
decreases depends on the magnitude of κ. For a quick decay in intensity, larger values of κ are
required while a lower value of κ allows for the intensity to decrease linearly.

Since the dates of big financial events are made public within their respective quarter, it
makes financial sense to hedge against these information releases using shorter dated options.
In particular, with earnings release, as we saw the company releases quarterly results approx-
imately one month after the end of quarter. These dates are made publicly available about
three months before they occur, thus allowing investors to set up appropriate hedge portfolios
to profit on these events or at least mitigate potential losses.

7.4 Discussion

Now that the time intensity parameter and different functional forms of the deterministic Pois-
son intensities have been investigated, we now must analyse the effects that these time and
stock varying Poisson intensities have on our regime-switching European option values. We
will separately analyse all cases outlined in this chapter and compare them to a benchmark
case. For ease of analysis, our benchmark case will be the constant Poisson intensity model
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which was discussed in detail in Chapters 4 through 6. The benchmark model assumes we our
Poisson processes takes on the maximum Poisson intensity λ?i j at every time increment.

Expected Return r 0%
High State Volatility σH 40%
Low State Volatility σL 10%

Maximum Daily High State Jump Intensity λ?LH 99%
Maximum Daily Low State Jump Intensity λ?HL 99%
High State Market Price of Volatility Risk mHL 0
Low State Market Price of Volatility Risk mLH 0

Maturity Date T 1 year
Number of Time Increments L̃ 252

Time Intensity Parameter κ 10
Event Date† τ? 9 months

Table 7.4: Parameters used in the analysis of option pricing for deterministic Poisson intensi-
ties. Note: † This event date is only used for Case 2 and Case 4 where it is assumed that the
event occurs before the maturity date of our regime-switching call option.

All options will be priced numerically using the Crank-Nicolson method outlined in Chap-
ter 3. The parameters used are given in Table 7.4 and will be consistent throughout this section,
unless otherwise noted. The maximum daily high and low state jump intensities were taken to
be 99% in order for us to effectively observe and analyse the differences in option prices. Em-
pirical evidence from both Apple Inc. and TD Bank show that as a financial event approaches,
volatility tends to spike upwards, as illustrated in Figures 7.2 and 7.3. This is why our pa-
rameters allow for such a high probability of switching to a more volatile regime as the event
approaches. After said financial event occurs, it is most likely that the stock process will revert
to a lower volatility level since the risk of the event has passed. This accounts for the high
probability of switching from the high to low regime. Another parameter of particular interest
is the magnitude chosen for the time intensity parameter κ. In our analysis of this parameter
in the preceding section, we saw that higher values of κ allowed for the speed of the change in
intensity to increase at a higher rate closer to the event date. Since we want the switch to have
the highest probability of occurring closest to the event, we did not choose a small κ in order
to avoid having a linear-like change in our Poisson intensity parameters. As a result, we chose
a moderate value for the time intensity parameter, κ = 10, to ensure switching is more likely to
occur closer to the event date.

We will show illustrated examples of our numerical option prices in the following subsec-
tions. Option prices are plotted for the entire stock interval over which they are computed.
Figures which zoom in around the strike price can be found in Appendix A.

7.4.1 Case 1: Time Varying, Maturity Event Poisson Intensities
Recall that Case 1 considers switches between volatility regimes driven by deterministic time
varying Poisson intensities. We have priced call options written on underlying assets with these
dynamics.
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Figure 7.12: Comparison of numerical regime-switching option prices between the benchmark
case and Case 1 at t = 0. Parameters as given in Table 7.4.

In Figure 7.12, it can be observed that the introduction of time-varying Poisson intensities
into our regime-switching framework makes the high state option more valuable with respect
to the constant intensity options. On the other hand, the introduction of these deterministic
intensities price our low state option lower than the otherwise similar constant intensity option.

As noted in Figure 7.13, these differences with respect to the benchmark case hit a max-
imum at the strike price. When the option is deep in- or out-of-the-money, the impact of
time-varying intensities is minimal. These differences can also be observed when considering
the implied volatility smiles associated with these numerical option prices.

In Figure 7.14, we can observe that Case 1’s high state implied volatility smile is pulled
upwards in comparison with the benchmark case. However, the low state implied volatility
smile is pulled downwards. This supports the previous observations with respect to the option
prices. It is interesting to note that the difference between both state’s implied volatility smiles
and the benchmark is greater as the strike price increases, with the greatest difference occurring
when the option is at-the-money. This indicates that the impact of event timing has caused
out-of-the-money low state regime-switching call options to be priced at an even lower level
comparatively to the in-the-money options. The reverse is shown for the high state, where out-
of-the-money calls are priced at a relatively higher volatility value than before, in comparison
with the in-the-money options
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Figure 7.13: Difference between the benchmark case and Case 1 numerical option prices at
t = 0. Parameters as given in Table 7.4.
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Figure 7.14: Implied volatility smiles corresponding to option prices for the benchmark case
and Case 1. S = $100, all other parameters as given in Table 7.4.
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7.4.2 Case 2: Time Varying, Non-Maturity Event Poisson Intensities
Case 2 considers a call option priced on an underlying asset whose earnings release date oc-
curs before option expiry. This company stock’s dynamics include regime-switching volatility
which is driven by a deterministic time-dependent Poisson intensities.
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Figure 7.15: Comparison of regime-switching option prices between the benchmark case and
Case 2 at t = 0. Parameters as given in Table 7.4.

For Case 2, we find similar results to those of Case 1. High state option prices are pulled
upwards while low state option prices are pulled downwards with the inclusion of the time
varying intensities, as shown in Figures 7.15 and 7.16. Recall that the only difference between
these two models is the timing of the company’s financial event.

It can be observed that Case 1 experienced a difference of higher magnitude between option
prices than in Case 2. This could be attributed to the fact that the increase in the magnitude of
the Poisson intensities in Case 1 occurs over the whole life of the option. Thus when pricing
the option at option initiation, the cumulative effect of intensities with higher magnitudes has
more of an effect on the option price. In Case 2, the Poisson intensities increase up until the
event date which occurs before the option expiration. During the time between the event date
and option expiration, the Poisson intensities decrease as it becomes more unlikely to have a
volatility state shift at this point. This would result in a lower cumulative effect of the intensities
on the option prices.

Considering the implied volatility allows us to observe that once again the high state im-
plied volatility is pulled upwards and the low state implied volatility is pulled downwards with
respect to the benchmark case, as shown in Figure 7.17. Similarly to Case 1, the difference
between the implied volatility smiles increases as the option becomes out-of-the-money. The
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Figure 7.16: Difference between the benchmark case and Case 2 numerical option prices at
t = 0. Parameters as given in Table 7.4.

greatest difference is observed when the option is at-the-money. However, the difference with
respect to the benchmark case is less than we observed for Case 1. A similar interpretation of
volatility smile results follow from Case 1.
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Figure 7.17: Implied volatility smiles corresponding to option prices for the benchmark case
and Case 2. S = $100, all other parameters as given in Table 7.4.

7.4.3 Case 3: Time and Stock Varying, Maturity Event Poisson Intensi-
ties

In Case 3, we allow for the level of the stock price to have a trigger effect on the magnitude of
the Poisson intensities. It is assumed that the financial event will occur at option maturity.

Although the intensities now vary for different stock price levels, we can observe that the
impact on the initial price of the option is similar to the previous cases where the intensity
was only dependent on time. In Figure 7.18 we can see that the effect of our stock and time
dependent intensities results in the high state option price being pulled upwards while the low
state option price is pulled downwards and priced lower than before. As is confirmed in Figure
7.19, the most observable effects on the option price are about the strike price. Although the
hedge ratio, which we use as a form of stock price trigger for the Poisson intensities, turns off

completely when we are deep out-of-the-money or allows the Poisson intensity to take on the
maximum intensity when the option is deep in-the-money, this is also where volatility has little
to no effect on option prices. If we compare the magnitude of the differences about the strike
price for Figure 7.19 to Figure 7.13, observe that a greater magnitude of difference occurs when
our intensities are both time and stock dependent. This results in our options for Case 3 being
priced at a slightly higher value for the high state option and a slightly lower value for the low
state option in comparison to Case 1. These differences can be attributed to the inclusion of
the stock price trigger. When the stock is trading about the strike price, its future evolution is
important in regards to whether or not the European call option will be exercisable at maturity.
Since the trigger acts as a factor multiplier for the Poisson intensities, the results indicate
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Figure 7.18: Comparison of regime-switching option prices between the benchmark case and
Case 3 at t = 0. Parameters as given in Table 7.4.

that since the stock is trading about the strike price, the switching intensity has a decreased
magnitude, lowering the probability of switching to a stabler less valuable regime. As a result,
the option’s value increases. Similarly, an intensity with decreased magnitude controlling the
switch from the low to high state, results in the process assuming we will stay in a more stable
volatility regime, thus resulting in the call option’s value being lower.

Through an observation of the implied volatility smiles, it is apparent that the shapes of
the smiles changed for Case 3 in comparison to the benchmark case. Figure 7.20 shows that
both state’s volatility smiles now look like volatility skews due to their asymmetric shape.
For the high state, the volatility skew takes on larger values than the benchmark case, with
the difference increasing as the strike price rises and the options become out-of-the-money.
The difference between the low state volatility smiles increase once again with increases in
stock price. This indicates that the combination of the time and stock variables on the Poisson
intensities has more of an impact on implied volatility and thus on option prices as the options
go further out-of-the-money. The impact of the stock trigger via the constant volatility hedge
ratio results in the volatility smile for the high state being a forward skew. The more a high state
option is out-of-the-money, the more less valuables it is, as it is unlikely that we will switch
states to the low regime. On the other hand, the low volatility smile is now a reverse skew.
This corresponds to an out-of-the-money call that is highly unlikely to switch regimes due to
the stock price trigger being turned off. Thus the option is priced at a lower value, reflecting its
permanency in the low volatility regime.
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Figure 7.19: Difference between the benchmark case and Case 3 numerical option prices at
t = 0. Parameters as given in Table 7.4.
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Figure 7.20: Implied volatility smiles corresponding to option prices for the benchmark case
and Case 3. S = $100, all other parameters as given in Table 7.4.



7.4. Discussion 143

7.4.4 Case 4: Time and Stock Varying, Non-Maturity Event Poisson In-
tensities

Our final case, Case 4, differs from Case 3 only with respect to the timing of the financial event.
It is now assumed that the financial event will occur before the expiration of our call option.
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Figure 7.21: Comparison of regime-switching option prices between the benchmark case and
Case 4 at t = 0. Parameters as given in Table 7.4.

The results of Case 4 with respect to the benchmark constant intensity case are very similar
to those of Case 3. Once again the high state option prices are pulled upwards while low state
option prices are pulled downwards as shown in Figures 7.21 and 7.22. The only difference
between these Case 3 and Case 4 is the company’s financial event occurring before the option
expiration.

There is a slight decrease observed in magnitude of the differences between the benchmark
and Case 4 option prices than we previously saw for Case 3. As we previously stated, when
pricing the option at option initiation, the cumulative effect of intensities has more of an effect
on option prices. Since the intensities are increasing for all stock values up until the event and
option maturation date in Case 3, there is this increase in cumulative intensity effect. As we
previously saw during the intensity exploration section, as we move away from the event date,
the intensities reverse and begin to decrease over time. This results in a lower cumulative effect
of daily intensities in the computation of the option price.

The results for the implied volatility are similar to those found in Case 3. In Figure 7.23, a
forward skew is observed for the high volatility smile, while a reverse skew (or volatility smirk)
is observed for the resulting low volatility smile. The main difference when comparing the two
time and stock intensity cases is that the shift upward (downward) in the high (low) volatility
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Figure 7.22: Difference between the benchmark case and Case 4 numerical option prices at
t = 0. Parameters as given in Table 7.4.

smile is not as pronounced for Case 4 as it was in Case 3. Similar intuition arises under our
non-maturity, time and stock varying intensity model as was discussed for Case 3.
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Figure 7.23: Implied volatility smiles corresponding to option prices for the benchmark case
and Case 4. S = $100, all other parameters as given in Table 7.4.

7.5 Hedging Strategies

As we have seen previously, the risks faced by investors are dependent on the position they take
in an option and/or stock. Recall our investor from Chapters 5 and 6, who had a short position
in our regime-switching option. Such an investor was scared of the potential of switching to
a high volatility regime. Since we have shown that volatility levels can increase as a financial
event such as a quarterly earnings release date approaches, this investor would be scared of the
risk associated with the positive or negative outcome of this event. As we saw in our discussion
in Chapter 5, one thing this investor could demand to hedge their risk is a higher risk premium
to compensate them for this event-driven volatility risk. A higher risk premium would result
in them being compensated for their risk by paying a lower price for the option at contract
initiation. Many options are regulated and exchange-traded and as such, there is no negotiation
between the buyer and seller. This type of compensation would have to be inherently priced
within the options value before it hits the market.

A basic and common strategy that one could set up involves shorting one share of the stock
and longing one call option. Usually, investors short a stock with the expectation that the price
will fall over time. With earnings releases, there is no way to predict, without illegal insider
information, whether or not the outcome will be positive or negative. Therefore we do not
know if we should hedge against a decrease or increase in the stock price. If we long an option
and short a share of the stock, we can protect against the drift in the stock. If there is bad news,
it can be expected that company’s stock will become volatile and a price decrease is imminent
as soon as investors start selling off their shares. When the price falls, we buy back the stock
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at market price and return it to our investor. If our option is in-the-money, we will exercise
our right to buy one share of the underlying, otherwise we will buy back the share from the
market directly. Since we originally shorted the stock we must now return it to the owner. If the
earnings release contained good news about the company’s quarterly business, then it is most
likely that the price will increase. At this point, we will have to exercise our option in order to
return the share of the stock to its owner. The only way to ensure profits with this strategy is to
originally short the share for more money than the discounted strike price and option premium
combined.

Investors do have control over which options they can buy based on the expiration dates
set by the exchange. There are several options written on a single stock, with varying maturity
dates as well as with varying strikes. We can take advantage of such options by buying and
exercising these options at an optimal time with respect to earnings release dates. An investor
interested in taking a position in a call option written on a company’s stock with an upcoming
financial event who is however scared of high volatility has choices of hedging strategies re-
lated to the timing of option maturity. An investor can choose to invest in an option that expires
before the earnings release date. This way their payoff is not affected by the risk associated
with the upcoming quarterly earnings filings. Since quarterly earnings releases happen at ap-
proximately three month intervals, it is best for an investor to choose shorter dated call options
as opposed to longer dated options. Since there is more risk associated with owning the stock
around the event date than owning an option on the stock, the investor can roll their options
with maturity dates straddling the earnings release dates. In other words, an investor could
choose to buy a three month call option expiring before the event date. At option expiration,
if the call is in the money, they will exercise and obtain a share of the stock. The investor can
then turn around, sell this share on the market for the current value and then roll their profits
into another option. Since they will sell the stock for more than what they paid (i.e. the strike
price), they will make some profit even after setting up their subsequent long call position.

Finally, it is expected that investors hedging against upcoming financial events, will hedge
more aggressively as the event approaches. This would be reflected in the hedge ratios for
both the positions in the hedging options and in the underlying asset. Both of these hedge
ratios depend directly on the state-dependent option prices which are now more sensitive to the
upcoming financial event. Depending on where the stock is trading, there may be a significant
shift in the number of shares an investor holds in their hedge portfolio. With the underlying
Poisson intensity reaching its maximum switching level as the event approaches, investors who
are especially risk-averse would be willing to take positions in the underlying and possibly
some hedging options in order to ensure they can profit or at the very least break-even.

7.6 Summary
Incorporating deterministic Poisson intensities into our model allowed for the stock price’s
evolution and volatility levels to take into account major upcoming financial events. By allow-
ing our regime-switching volatility framework to have intensities dependent on time and stock
price, we were able to effectively model our volatility as event-driven. We discussed the time
intensity parameter and how its magnitude can be thought of as being company and/or indus-
try specific and is significant in determining the switching behaviour of the volatility process.
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By incorporating the effect of a company’s quarterly earnings release dates into our volatility
model, the resultant options have been priced more fairly as their information is now embedded
within the pricing framework. A summary of the results for each new Poisson intensity model
is given in the table below.

Dependent
Model

Comparison to Benchmark Case
Variables Option Prices Implied Volatility

Time λ?i je
−κ(τ?−t)sgn(τ?−t)

CH(S , t) ↑ σH,imp ↑

CL(S , t) ↓ σL,imp ↓

CH
τ?=T (S , t) ≥ CH

τ?<T (S , t) σH,imp,τ?=T ≥ σH,imp,τ?<T

CL
τ?=T (S , t) ≤ CL

τ?<T (S , t) σL,imp,τ?=T ≤ σL,imp,τ?<T

Time & Stock λ?i jN(di,?
1 )e−κ(τ

?−t)sgn(τ?−t)

CH(S , t) ↑ σH,imp ↑

CL(S , t) ↓ σL,imp ↓

CH
τ?=T (S , t) ≥ CH

τ?<T (S , t) σH,imp,τ?=T ≥ σH,imp,τ?<T

CL
τ?=T (S , t) ≤ CL

τ?<T (S , t) σL,imp,τ?=T ≤ σL,imp,τ?<T

Table 7.5: Summary of results for the time varying and time and stock varying Poisson intensity
cases.

Overall, no matter what hedging strategy is used, since the time line corresponding to most
company’s financial events is short term (i.e. under a year), short-dated options are the best
choice for investors over long-dated options. We discussed how this allows them to protect
themselves against the risk associated with financial events by straddling their option maturity
dates around the event date. More risk-loving investors could take advantage of upcoming
earnings release dates by setting up strategies that may allow them to profit.



Chapter 8

Concluding Remarks

This thesis focused on pricing and hedging options under a realistic two-regime volatility
framework. We conclude with a summary of results presented within this thesis and a brief
overview of possible future research extensions that could arise from this work.

8.1 Summary

In the presence of regime-switching volatility, we derived coupled pricing partial differential
equations dependent on the market price of volatility risk. Numerical solution techniques, in
particular the Crank-Nicolson numerical scheme, were first implemented on a classical initial
value problem, the one-dimensional heat equation, both in singular and system form in order to
justify its accuracy in solving partial differential equations. We used this method to solve our
problem of interest, the coupled regime-switching option pricing PDEs. Doing so provided a
benchmark pricing technique for which we compared our subsequent analysis with.

Redefining our problem in terms of the corresponding volatility state’s Black-Scholes op-
tion prices allowed us to derive continuous-time state-dependent approximate solutions for
both regime-switching option prices and Deltas. These approximate solutions were obtained
through the application of the Cauchy-Kowalevski Theorem which gave a series-type solu-
tion. We quantified the error of our approximate solution by treating our problem as a related
root-finding problem and using backwards error analysis. The performance of our option price
approximations were compared to numerical results. It was found that our approximation per-
formed well, although there exists slight variability around the strike price of the option. In
addition, we showed that regime-switching options are less sensitive to volatility levels near
option expiry. Our new analytic approximation provided an easy and effective approximation
technique that can easily be applied to other options written on underlying assets with regime-
switching volatility.

By using these approximate solutions for the state-dependent option prices and their cor-
responding Deltas, we were able to analyse the impact of the market price of volatility risk
on these relations, both intuitively and mathematically. Utilizing basic financial principles, we
were able to show that negative state-dependent market prices of volatility risk were neces-
sary to have financially meaningful option prices in a regime-switching market. The proof of
existence of such negative state-dependent market prices of volatility risk allowed us to quan-
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tify the investors’ risk attitudes surrounding uncertainty in a market with regime-switching
volatility. Specifically, the negative market price of volatility risk acts as an option premium
compensating investors for taking on volatility risk. It was found that both the occupation and
potential occupation of a volatile regime causes investors to pay this premium for options that
allow them to hedge against this risk. We investigated the state-dependent premia required by
risk-averse option buyers and sellers to eliminate the risk they face in the market. Finally, the
consequence of varying the magnitude of the state-dependent market prices of volatility risk on
the implied volatility smiles was shown to alter both the slope and the magnitude of the smile
when compared to the risk-neutral case.

Building upon basic hedging and arbitrage arguments introduced under the assumption of
constant volatility, we set up portfolios that were mathematically designed to hedge against
both the risk of movement in the underlying asset and the risk of jumping to the opposing
volatility regime. One assumption was that one hedging option was needed to hedge against
our risk of switching to one other volatility regime. We found that financial issues can limit
the practical applicability of this assumption. An option’s moneyness has to be considered
when using it as a hedging option. When an option is too far in- or out-of-the-money, volatility
has little impact on regime-switching option prices thus making them inappropriate hedging
options. We showed that creating a basket of two options, cleverly chosen such that their
respective strike prices straddled the shorted option’s strike price, allowed for our portfolio
to always contain a usable hedging option. The inclusion of a hedging limit in this portfolio
prohibited an investor from taking too extreme a position in a particular hedging option thus
reducing portfolio losses. The financial insight obtained about the volatility risk premium led
to a set of naive hedging strategies against which we compared our more sophisticated regime-
switching portfolios. On average, it was found that the portfolios set up to directly hedge
against volatility switching performed the best in that they broke even on average and had the
least variability in their mean terminal profit/loss, in the absence of transaction costs. It was
also shown that in the presence of increased transaction costs, in particular for the hedging
options, the portfolios containing the basket of options lost less money on average due to the
control of the magnitude of the option positions.

Finally, we extended our regime-switching volatility framework to include deterministic
Poisson intensities. This extension, motivated by the impact of earnings releases on publicly
traded companies’ volatility levels, studied the impact of both time and stock price level on the
frequency of the switching mechanism. We first modelled time-dependency into our frame-
work by allowing the intensities to grow exponentially, constrained by a time-intensity param-
eter, up until the quarterly earnings release date. If the option did not expire on this same date,
the intensity was modelled to decay as we moved forward in time, away from the earnings
date. A similar set up was used for our second set of cases in which the intensity’s magnitude
was now dependent on both the time and stock price levels. It was found that the high state
regime-switching option became more valuable with the inclusion of the deterministic intensi-
ties, while the low state option became less valuable. These differences were most observable
around the strike price, where the option is most sensitive to movements in the underlying asset
and volatility. As a result, the associated implied volatility smiles were pulled upwards for high
state and downwards for the low case. When the earnings releases occurred on option expiry,
there was a more pronounced impact on option prices than when the events occurred before
option expiry. This was attributed to the compounding impact of the varying intensities over
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time due to the fact that options are priced at contract initiation.

8.2 Future Work
The work presented in this thesis can lead to many possible extensions. Throughout this thesis,
it was assumed that the state-dependent market prices of volatility risk were constant within a
respective volatility state occupation. An obvious extension would be to consider non-constant
risk premiums allowing them to be a deterministic function of the dependent variables, stock
price and time. Financial intuition suggests that movement in the underlying asset affects the
risk attitudes of investors dependent on their position (i.e. long/short) in an option. As such the
premium they demand to be compensated for their risk will fluctuate. It may also be interesting
to consider modelling volatility risk premiums using stochastic differential equations, however
this would add a level of complexity to the option pricing problem from an analysis standpoint.

Although work has been done to show that volatility risk premiums are negative within
equity markets, it would be interesting to fit our regime-switching framework to observed op-
tions price data. The focus would be to try and estimate the magnitude and sign of constant
state-dependent MPVR using empirical data, in support of the mathematical results presented
in these thesis.

Furthermore, the scope of research with respect to event-driven deterministic Poisson in-
tensities can easily be broadened. As we showed using empirical data, there is an observable
impact on trading volume due to the uncertainty surrounding an upcoming financial event. Our
framework could be modified to model the evolution of trading volume of a publicly traded
company. Similarly, deterministic Poisson intensities can be used to model changes in credit
ratings due to their relationship with volatility regime shifts and with earnings surprises.
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Additional Deterministic Intensity
Analysis
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Figure A.1: Comparison of benchmark case and Case 1 numerical regime-switching option
prices, zoomed about the strike K = $100. Parameters as given in Table 7.4. Original plot
depicted in Figure 7.12.
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Figure A.2: Comparison of benchmark case and Case 2 numerical regime-switching option
prices, zoomed about the strike K = $100. Parameters as given in Table 7.4. Figure 7.15
depicts original, non-zoomed plot.
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Figure A.3: Comparison of benchmark case and Case 3 numerical regime-switching option
prices, zoomed about the strike K = $100. Parameters as given in Table 7.4. Figure 7.18
depicts original, non-zoomed plot.
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Figure A.4: Comparison of benchmark case and Case 4 numerical regime-switching option
prices, zoomed about the strike K = $100. Parameters as given in Table 7.4. Figure 7.21
depicts original, non-zoomed plot.
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