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ABSTRACT

This thesis is concerned with static and dynamic analysis of linear and
geometrically nonlinear laminated composite plate and shell structures by using the finite
element method.

The emphasis has been o establishing a sound theoretical basis for the
formulation of simple and efficient finite elements for large scale linear and geometrically
nonlinear analysis of laminated composite plate and shell structures.

A series of simple three-node, six degree-of-freedom (DOF) per node, hybrid
strain based flat laminated composite triangular shell finite elements (HLCTS) for linear
analysis were developed. These elements were based on the degenerated three dimensional
solid concept. The first order shear deformation theory was adopted. The element which
had the best performance was further developed for geometrically nonlinear analysis. In
the nonlinear finite element analysis, the updated Lagrangian description was employed.
The nonlinear HLCTS element accounts for large deformations of large rotations and
finite strains. The "exact” geometrical description of a body during large rotations is
realized by using exponential mapping. All the linear and nonlinear elements proposed
in this investigation were derived explicitly by using symbolic computer algebra packages,
MACSYMA and MAPLE. The explicit element stiffness, mass and loading matrices
eliminate the use of numerical inversion and integration.

A relatively large collection of linear and geometrically nonlinear plate and shell

proolems were solved. Static and dynamic responses of such structures under varicus

iii



lamination schemes, boundary and loading conditions were evaluated. In the nonlinear

analysis, structures were analyzed under the considerations of large deformations of large

rotations and finite strains. "Thinning effects” were also examined. The results obtained
in the analysis were compared with those analytical or numerical solutions available in
the literature. The numerical results have demonstrated the excellent performance of the
HLCTS elements in both linear and nonlinear analysis.

The investigation also showed that the HLCTS elements are more accurate and
converge faster when compared with other low-order finite elements. No shear-locking
phenomenon was detected. The improved formulation of the elements has eliminated the

zero energy modes or spurious modes.
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Following is a list of the principal symbols and notations used in this thesis. The

symbols and notations less frequently used and those that have different meanirngs in

different contexts are defined where they are used.

Roman Letters

arca of an element
geometrical parameters of a triangle

components of membrane stiffness matrix
strain-displacement relation matrix

components of membrane-bending coupling stiffness matrix

linear strain-displacement relations matrices for membrane, bending and
shear components

linear and nonlinear strain-displacement matrices

mat.rial stiffness matrix or elasticity matrix

elasticity tensor

configuration at time "t+ At”

components of bending stiffness matrix

Almansi strain vector at time t which is accumulated from assumed

incremental strains

vector of Almansi strains at time t (due to displacement)




Ae’

Ae

EE, E,

-.l

vector of independently assumed incremental updated Green strains
vector of incremental updated Green "geometric” strains or incremental
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components of transverse shear stiffness matrix

Young's moduli
body force vector

element consistent load vector in local co-ordinate

assembled consistent load vector

relative deformation gradient from time "t" to "t+ At"

pseudo-force vector

element consistent load vector in global co-ordinate

shear moduli of laminates

in-plane shear modulus for k'th layer

total thickness of a laminate

layer co-ordinate in transverse direction at the bottom of the k'th layer
element stiffness matrix associated with the drilling degree-of-freedom
based on hybrid formulation

element stiffness matrix associated with the drilling degree-of-freedom
based on displacement formulation

element stiffness matrix in local co-ordinate

element stiffness matrix with linear polynomial used for w

element stiffness matrix with quadratic polynomial used for w

linear element stiffness matrix
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| nonlinear or initial stress element stiffness matrix

K assembled stiffness matrix

K, element stiffness in global co-ordinate

L linear differential operator

m consistent element mass matrix

M vector of bending moment resultant

n number of layers of a laminate

N vector of membrane stress resultant

P matrix of strain distributions

q element nodal displacement vector in local co-ordinate

q' element nodal displacement vector in global co-ordinate

Agq vector of incremental nodal displacements

Q, Q vector of shear stress resultant

Q assembled displacement vector

Q; components of reduced stiffness of laminates

r.s,t local co-ordinates

grat vector of second Piola-Kirchhoff stress at the deformation state "t+ At"
measured with respect to the reference configuration C'

AS vector of incremental second Piola-Kirchhoff stress

t vector of prescribed surface traction

T, T, transformation matrices

u, v, w displacements in local co-ordinate directions

u" assumed displacement field
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Au vector of incremental displacement

U,V, W displacements in global co-ordinate directions

\A volume of an element at the current configuration

\A director of node i at the time "t"

w work done by external forces

AW work-equivalent term corresponding to prescribed body forces and surface
tractions in configuration C'*4,

X,Y,Z global co-ordinates

Greek Letters

a strain parameter vector

Aa vector of incremental strain parameters

Ap virtual rotation of director field

Y transverse shear strain vector

Ay* assumed incremental transverse strain

Ay incremental transverse strain due to displacement

e assumed strain field

e strain calculated from displacement field

Ae’; linear components of incremental Washizu strain Ae*

€ membrane strain

Ae * assumed incremental membrane strain

Ae,’ incremental membrane strain due to displacement

4 co-ordinate along the director direction
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AT

BT

C4

nonlinear components of incremental Washizu strain Ae"
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vector of incremental rotations

rotations about global axes X, Y and Z

shear correction factor for isotropic materials

shear correction factors for iaminated composite materials
side length to thickness ratio

Poisson's ratios

area co-ordinates

density of k'th layer

vector of Cauchy stress

stress vector calculated from the assumed strain field
displacement shape function matrix

virtual displacement at the mid-surface

bending curvature

assumed incremental bending curvature

incremental bending curvature due to displacement

frequency parameter

Allman’s triangle
basic triangle

clamped on four sides
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DDOF
DKT
DOF
HLCTS

HLCTS"

HLCTS*

HLCTS%

HLCTS®"

HLCTS®

HLCTS "

HLCTS "

constant strain triangle

drilling degree-of-freedom

discrete Kirchhoff triangle

degree-of-freedom

hybnd strain laminated composite triangular shell finite element

hybrid strain laminated composite triangular shell finite element with
linear transversal displacement interpolation and displacement type
formulation for the DDOF

hybrid strain laminated composite triangular she!l finite ¢lement with
linear transversal displacement interpolation and hybrid type formulation
for the DDOF

hybrid strain laminated composite triangular shell finite element with
quadratic transversal displacement interpolation and displacement type
formulation for the DDOF

hybrid strain laminated composite triangular shell finite element with
quadratic transversal displacement interpolation and hybrid type
formulation for the DDOF

similar to HLCTS" above, used for dynamic analysis in which rotary
inertia in the element consistent mass matrix is considered

similar to HLCTS" above, used for dynamic analysis in which rotary
inertia in the element consistent mass matrix is considered

similar to HLCTS® above, used for dynamic analysis in which rotary

inertia in the element consistent mass matrix is considered
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inertia in the element cons’stent mass matrix 1s considered
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CHAPTER 1

INTRODUCTION

Over the years, the demand for materials of high strength-to-weight ratio is
dramatically increasing. It is not only the problem of producing durable products and
saving crergy, but also the problem of success or failure in many modern high-technology
engineering projects. Being an important class of these materials, laminated composites
are widely used. Laminated composite shell structures are frequently used in mechanical
and structural systems. The investigation reported in this thesis is directly devoted to
studies of the behaviours of laminated composite shell structures by using the finite
element method. The scope of the cvrrent research is aimed at static and dynamic
response analysis of linear and geometrically nonlinear laminated composite shell

structures.

1.1. General

Because of their distinctive mechanical properties, shell structures have been used
almost everywhere. In mechanical, civil, chemical, aerospace and marine engineering,
shells as components or entire structures are frequently used. The main body of a
submarine and marine vessels, and aerospace systems are good examples. They can all
be classified as the combination of different type of shelis.

In terms of materials employed for these shell structures, apart from the commonly

used traditional materials, varieties of composites have played an important role.
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Composite materials such as fibre-polymer, glass-epoxy, carbon-epoxy or graphite-epoxy
have the properties of easy formability, resisiance to corrosior and high damping. The
most attractive and valuabie properties of composite materials are the high strength-to-
weight ratio and high stiffness-to-weight ratio. During World War II, military applications
of polymer matrix composites led to large-scale commercial exploitation, especially in
marine industry. Today, engineering structures are more dependent on composite
materials. Owing to their larger strength-to-weight ratio, composite materials are more
important to aerospace engineering. The applications are in the fabrication of aircraft
wings, tail planes, helicopter rotor blades, interior panels, fuel tanks and so on. As quite
a large number of composite materials have unidirectional properties, these materials are
often built and used as laminate. A laminate has multi-layers of orthotropic materials
bonded together. The layers may be of different materials or of the same orthotropic
material with the principal material directions of each layer oriented at different angles
to the reference axes. By selecting proper material and orientation for each layer, the
laminate can have the strength and other properties which meet the requirements of
different applications. In moderm industry, composite materials have fully established
themselves as truly workable e~giueering materials.

In parallel, it has long been the interests of scientists and engineers to explore and
understand the behaviours of composite shell structures. The first known ‘nvestigation of
anisotropic shell was reported by Shtayerman [1.1] in 1924. However, before 1940's,
majority of the work on anisotropic plates and shells was on applications of wood,
crystalline solids and reinforced concrete constructions. In the last three decades the

dramatically increated uses of high-performance composite materials in aerospace,
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automotive, marne vassel-building, medical, chemical and recreational industries have
stimulated the interest in comprehensive studies of anisotropic plates and shells. The
literature in this area is overwhelming. The recent survey papers by Bert [1.2, 3], Chia
[1.4], Kapania [1.5], Noor and Burton [1.6, 7], Noor [1.8), Reddy {1.9-11] and Reddy
and Robbins Jr. [1.12] have listed more than one thousand articles in dealing with
anisotropic plates and shells. The mechanics of composite materials is widely covered in
the books by Chia [1.13], Jones [1.14], Tsai and Hahn {1.15] and Vinson and
Sierkowsaky [1.16].

Because of the nature of laminated composite shell structures, the studies of such
structures are more complicated than those of commonly used isotropic materials. The
difficulties brought in by laminated composite materials together with coniplex
geometries, loadings, boundary conditions and thermal effects in real life shell structures,
make the analysis of response of such structures even more challenging. With such a
complex problem analytical techniques can hardly be employed and therefore numerical
approaches are logical choices. Owing to its versatile capability, the finite element method
is adopted in this investigation. In addition to the aforementioned difficuities, there is the
difficulty of including nonlinearities in the analysis. Many composite materials possess
the properties which cannot be described by classical linear theories. The nonlinear
behaviours of these materials are referred to as material nonlinearity. For highly
deformable and flexible structures large deformations and finite rotations of structural
members constitute the so-called geometrical nonlinearity. Despite the advances in

nonlinear theories of structural and material behaviours, very little amount of quantitative

information is available. Only a limited number of exact solutions to specific problems




can be found. This, in turn, calls for application of the finite element method.
Nonlinear finite element analysis of solids and structures has been covered in
relative detail in the books by Bathe [1.17], Crisfield [1.18], Kleiber [1.19], Oden [1.20]
and Owen and Hinton [1.21]. The available literature has quite a few publications in this
subject. However, as can be seen later in Chapter 5 of this thesis, nonlinear static and
dynamic finite element analysis of laminated composite plate and shell structures is
somewhat limited and the understanding of highly nonlinear dynamic behaviours of

laminated composite shell structures, in particular, is far from satisfactory.

1.2 Objectives

Therefore, the objectives of the present investigation are:

(1)  to develop element matrices for the linear static and dynamic analysis of
laminated composite plate and shell structures,

(2)  to investigate and develop a nonlinear theory for the analysis of laminated
composite plate and shell structures,

(3)  to develop an incremental finite element solution procedure for static and
dynamic analysis of geometrically nonlinear laminated composite plate and
shell structures that emphasize large deformations of finite strains and
finite rotations, and

(4)  to implement the derived element matrices in a digital computer program
that has the capability of dealing with large scale computation, general
loading and boundary conditions.

In order to achieve the above objectives, lower order hybrid strain based three



5

node triangular shell elements for isotropic materials are natural candidates for extension

to dealing with laminated composite materials.

1.3 Organization of the thesis

This thesis consists of seven chapters.

Chapter 1 is a brief introduction to the analysis of laminated composite shell
structures. It has three sections. The first section brings about the motivation for the
investigation. The second section posts the objectives of the investigation. The third
section outlines the organization of this thesis.

Chapter 2 discusses the formulations and presents the derivations of hybrid strain
based laminated composite triangular shell elements for linear static analysis. In this
chapter, a series of simple three-node, six degree-of-freedom (DOF) per node, hybrid
strain based laminated composite triangular shell finite elements for linear analysis are
proposed. Their element matrices are obtained explicitly by using a symbolic computer
algebra package.

In Chapter 3, the hybrid strain based triangular laminated composite shell elements
proposed in Chapter 2 are applied to study representative static problems. Several typical
cases are selected to illustrate the performance of the new elements. Both plate and shell
problems are included.

In Chapter 4, the elements are adopted for free vibration analysis of laminated
composite plate and shell structures. As stiffness matrices of the elements have been
derived and obtained explicitly in Chapter 2, here element mass matrices are derived. The

studies of geometrical nonlinearity of laminated composite shell structures are performed
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in Chapter 5. The theory and formulation of simple and efficient laminated composite
shell elements for large scale static and dynamic analysis of geometrically nonlinear
laminated composite shell structures are presented. Derivation of the element stiffness and
mass matrices for a particular element is made. The emphasis here is on large
deformations of finite strains and finite rotations.

To validate the incremental finite element procedure and the element matrices
derived in Chapter 5, a number of nonlinear problems are studied and reported in Chapter
6. These problems cover geometrically nonlinear analysis of static and dynamic cases.
The latter includes isotropic and laminated composite plate as well as shell structures
under different types of static and dynamic loads. As much as possible computed results
are compared with analytical and numerical solutions available in the literature.

The final chapter, Chapter 7 is concerned with the conclusions and
recommendations for future work. There are three sections in this chapter. The first
section is a summary of the work reported in this thesis. The second is the conclusions

while the third section includes recommendations for future work.




CHAPTER 2
FORMULATION AND DERIVATION OF HYBRID
LAMINATED COMPOSITE

TRIANGULAR SHELL ELEMENTS

In finite element analysis of laminated composite structures, the use of accurate
and efficient elements is essential. Specially, for large scale linear and non-linear analysis
of such structures, simple, accurate and efficient elements are critical to success. In this
chapter, a series of simple three-node, six degree-of-freedoms (DOF) per node, hybrid
strain based laminated composite triangular shell finite elements for linear analysis are
proposed. They are derived explicitly by using symbolic computer algebra packages. The
one with the best performance will be further developed for non-linear analysis in
Chapter 5.

This chapter consists of five sections. Section 2.1 reviews previous work on
isotropic plate and shell elements while Section 2.2 reviews lamination theones and
Section 2.3 presents literature survey on laminated composite plate and shell elements.
Section 2.4 states the preparations made before deriving element matrices, which includes
discussions on variational principle, geometrical description of triangular elements and
constitutive equation for laminates. Section 2.5 is concentrated on derivation of element
matrices. Section 2.6 discusses drilling DOF's (DDOF's) and their contribution to
element stiffness matrices. Section 2.7 is concerned with the closing remarks for this

chapter.



2.1 Previous Work on Flat and Low-order Isotropic Plate and Shell Elements

A laminated composite shell element is a general purpose anisotropic shell element
capable of handling arbitrarily layered shell problems. In the case of single layer the
element is an anisotropic shell element.

Since the concept of using flat element in shell analysis was suggested in 1961 by
Greene et al. [2.1], the development of flat shell elements has long been investigators'
interests. A flat shell element is the combination of a membrane element and a plate
bending element by superposition. The membrane element represents stretching behaviour
while the plate bending element models bending action. In the review paper by Yang,
Saigal and Liaw [2.2] the features of this shell modelling were summarized: (1) it is
simple to formulate; (2) it is easy to input data to describe the geometry; (3) it is easy to
mix with other types of element; (4) it is capable of modelling rigid body motions without
including strains; (5) the requirement of using a relatively large number of elements
provides the advantages of convenience in incorporating complex loading and boundary
conditions. It was also pointed out that: (1) the element excludes coupling of stretching
and bending within the element; such coupling is a major contributor towards load
carrying mechanism in shells and other curved members; (2) the restriction to triangular
shapes when general shells are to be treated; (3) the difficulty of treating junctions where
all elements meeting at a point are coplanar; (4) discontinuity bending moments at
element juncture lines, which do not appear in the continuously curved actual structures.
However, it should be noted that the stretching and bending coupling exist in the
assembled finite element model, though they are missed at the element level. Secondly,

the triangular shape is the most flexible shape being used to model complex general shell
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geometry with less distortion. Thirdly, if DDOF are added to flat element the singularity
problems occurring in the case of several flat elements being coplanar will be excluded.
Finally, the discontinued bending moment at elements juncture lines gives no fatal effects
in terms of predicting overall response quantities. Only in the extreme case, when
bending and stretching are strongly coupled flat elements could give poor results.
Reference [2.3] reported that in a free vibration analysis, the results for natural
frequencies showed fairly good agreement with those from axisymmetric curved elements
[2.4]. The results become less accurate for higher modes. However, it is only the lower
modes that are of importance to engineers in most of the practical applications. Flat
elements were also shown to be capable of giving practical solutions to shell buckling
problems [2.5].

It has been pointed out in reference [2.2] that the use of flat elements in shell
analysis has been a major ieature in almost all the popular finite element codes, such as
ABAQUS [2.6], ADINA [2.7], ANSYS [2.8], MARC [2.9], NASTRAN [2.10] and SAP
[2.11]).

It is well recognized that the use of low-order or C° triangular finite elements is
perhaps the most promising approach both from the theoretical and computational
viewpoints to improve computation efficiency and general analysis capabilities for linear
and non-linear shell problems. Three noded flat triangular C° elements were developed
at the early stage in finite element history. In 1968 two such elements were proposed by
Zienkiewicz, Parikh and King, [2.12] and Clough and Johnson {2.13], respectively. These
elements were composed using linear polynomial in in-plane displacement variables and

cubic displacement field for the lateral. Both of the two are displacement types and have
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5-DOF at each node. In 1972, Dawe [2.14] developed a flat thin shell element which is
composed of a constant moment bending element and a constant stress element. Later, in
1977 Argyris, Dunne, Malejannakis and Schelke [2.15] presented an element with the
mixed second-order derivative of the lateral displacement added to the nodal DOF. Thus,
an element with a total of 18 DOF was formulated.

Since a flat shell element is the result of superposing a membrane and a plate
bending element, which represents stretching and bending behaviour, respectively, the
efforts of improving the qualities of flat shell elements have focused on developing high
performance membrane and bending elements. In 1980 Batoz, Bathe and Ho [2.16) re-
examined the earlier work in 1969 by Stricklin, Haisler, Tisdale and Gunderson [2.17],
and found that the discrete Kirchhoff triangle (DKT) was still among the best elements
for analysis of thin plates. Thus, some three node shell elements were developed by
combining the three-node DKT and the constant strain triangle (CST) [2.18, 19].

As a linear C° triangular shell element has too few kinematic degrees of freedom
to provide desired numbers of nodal parameters for allowing accurate approximation of
the unknown field the conventional displacement formulation was found to be rather
limited in deriving a more efficient linear C° triangular element. For example, a three-
node C° triangular element which has three translational DOF and two rotational DOF
(normal rotational DOF not included) can possibly use only CST as stretch evaluation
component. And the CST has been proved to be excessively stiff under in-plane bending
[2.20]. Saleeb, Chang and Yingyeunyong [2.21], in 1988 developed a C° linear triangular
element based on mixed formulation. The element has three translational and three

rotational DOF. The edge shear constraints were introduced and element efficiency was
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improved. But the assumed displacement field for membrane part was still in analogy to
CST.

The important progress on low order plane elasticity element was due to Allman
[2.22]. In Allman's triangle (AT), two in-plane translational DOF and one normal
rotation DOF, called drilling degree-of-freedom (DDOF), are at each of the three nodes.
The edge-tangent displacement is considered linear in the edge tangent co-ordinate. The
AT gave much better results than the CST, but less accurate than the linear strain triangle
(LST). However, in a large mesh the LST may produce more than twice as many DOF.
Later, Cook [2.23] pointed out that AT could be regarded as the result of applying a co-
ordinate transformation to an element that has mid-side nodes or LST. In fact the
compatible quadratic displacements in AT are incomplete quadratic. It is equivalent to
applying edge type constraint at mid-side nodes of LST, and then removing the mid-side
nodes. Carpenter, Stolarski and Belytschko [2.24] independently proposed an element
having the same nine DOF, which turned out to be identical to AT if it was integrated
by one-point quadrature. It has been noticed that AT converges from below [2.22], that
is, the element is stiff, the ‘one-point’ element converges from above [2.24]. Another
plane stress element which has the same DOF as AT was suggested by Bergan and
Felippa [2.25]. The performance of the element was improved by free formulation [2.26].

Cook [2.27] developed a plane hybrid element with rotational DOF and adjustable
stiffness. This element is formed by three subtriangles. For each subtriangle the assumed
stress field has five independent parameters. By adjusting a control coefficient in front of
a submatrix, the element stiffness matrix can be softened. The macro element is finally

formulated by constraining the normal rotation and eliminating the translational DOF at
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the fourth node, that is, the node at the centroid of the macro element. The new plane
stress element was found more accurate than either of the triangles presented in references
[2.22] and [2.25]. But apart from the assembling and static condenation processes in
forming the macro element the element has two mechanisms besides the expected
mechanism in wkich all nodal rotations are the same.

Later, in 1991, Cook [2.28] did further investigation on nine-DOF plane triangles
and a series of elements were obtained. The strategies used in the formulation options are
adjusting the influence of DDOF; adding supplementary stiffness matrices to prevent
mechanisms; combining strain-displacement relationships of full and reduced-integration
elements, or combining stiffness matrices of full-integration and reduced-integration
elements. These elements were subsequently used in forming flat shell elements with
DKT. Cook summarized that a membrane element that was good for plane problems wzs
poor for shell and vice versa, and the goal of nine-DOF flat triangular element that works
well for both types of problem remained unattained.

The effort made in another direction was due to Carpenter, Stolarski and
Belytschko [2.29]. Two membrane formulations for triangular shell element were
examined. The first element was based on Marguerre shallow shell theory and a strain
projection method which eliminated spurious membrane strain energy (membrane
locking). The second element was a flat element. It was based on a linear membrane field
governed by normal rotations and reduced quadrature. Numerical examples showed that
the second element worked well enough to be competitive with curved elements.

Other types of general shell elements are curved and degenerated shell elements.

The curved shell elements are more complicated than flat shell elements. To describe
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element geometry, data must be supplied in addition to nodal co-ordinates. In reference
[2.30] the formulation of curved, two- and three-dimensional elements was illustrated. For
more references the readers are referred to the review paper by Yang, Saigal and Liaw
[2.2].

Degenerated shell element was first presented by Ahmad, Irons and Zienkiewicz
[2.31, 32]. The assumptions are that original normals to the middle surface of a shell are
inextensible and remain straight vut not necessarily normal after deformation, and the
elastic modulus in the normal direction is considered zero. These assumptions allow
transverse shear deformation. Thus, degenerated shell elements are available for thin and
thick shells.

The most recent attempt on the development of iower order three-node flat
degenerated shell element was made by To and Liu [2.33]. A series of hybrid strain based
elements were developed. These elements adopted a set of specially designed strain
distributions in the assumed strain field to avoid shear locking. For the assumed
displacement field, the bending part is degenerated and isoparametric in nature. The
membrane component was built on the basis of CST and AT, while much effort was also
directed at the DDOF. The best element among this series was used to carry out linear

and nonlinear analysis of shell structyres.
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2.2 Theories for Laminates

‘The laminated plate and shell theories can be classified into global approximation
theories and discrete-layer theories.

In global approximation theories, global through-the-thickness displacement, strain
or stress approximations are introduced. The order of the governing equations is
independent of the number of layers.

Discrete-layer theories are based on piece-wise, layer-by-layer approximation of
the response quantities in the thickness direction. The number of the governing equations
depends on the number of layers of shell. Noor [2.34] identified different groups of
discrete-layer theories. They are theories based on purely kinematic hypotheses; theories
based on hybrid combination of kinematic and stress hypotheses and theories based on
uniform. state of stress or strain within each layer. The first group utilizes piece-wise
approximation for in-plane displacement, and constant transverse displacement in the
thickness direction. The continuity of transverse shear stress is not satisfied at the outer
layer interfaces. The second group of discrete-layer theory applies the semi-inverse
aprroach for proper in-plane displacement and satisfies the transverse shear continuity
requirement. The third group of discrete-layer theories imposes the continuity of
transverse stresses at layer interfaces to reduce the total number of generalized
displacement parameters. The fourth group theories are based on subdividing the shell
layers into thin layers and assuming a uniform state of stress or strain within each sub-
layer. In general, discrete-layer theories provide more local details of the laminates. As
displacement parameters were set up for each layer, the response quantities of the layer

may be more precisely predicted.
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The review papers by Noor and Burton [2.34, 35], Reddy [2.36] and Noor [2.37)

had given extensive surveys on the development of lamination theories and computational
models. Early work on the study of laminated composite plate and shell structures were
based on the classical lamination theory [2.38-42]. The classical lamination theory
assumes that the normal of the mid-surface of plates or shells remains straight and normal
after deformation. That is, the transversal shear effect is neglected. Although classical
lamination theory can be applied to many engineering problems, it is restricted to thin
plate or shell problems.

Following the first complete lamination plate theory by Yang, Norris and Stavsky
[2.43], considerable attention has been paid to the development of appropriate plate and
shell theories that can accurately simulate the effects of shear deformations in laminated
plate and shell structures.

The first-order shear deformation theories, draw analogy to Reissner-Mindlin plate
theory and are based on the assumption of linear displacement variations through the
thickness. That is, the normal to the mid-surface of laminated plates or shells before
deformation remains straight, but not necessarily normal to the mid-surface after
deformation of the structures. As the use of constant transverse shear stresses through
thickness to represent actually nearly hyperbolic distribution, shear correction factors are
required [2.44-50). The choice of shear correction factors will affect the range of validity
of first-order shear deformation theory. Nevertheless, the first-order theory with proper
shear correction factor is able to predict very accurate gross response characteristics for
a wide range of lamination and geometric parameters {2.51].

More accurate approximation of transverse shear effect requires higher-order
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polynomials to represent the true transverse shear deformation [2.52-54]. But it is obvious
that more computational effort has to be made in applying high-order shear deformation
theories. Among the shear deformation theories, the first-order theory seems to provide
the best compromise between accuracy and computational efficiency [2.36]). High-order
polynomials introduce more independent displacement parameters in some higher-order
theory formulations. To simplify the problem, the so-called semi-inverse method was
proposed. To conduct this simplification, the in-plane displacemeats which are nonlinear
in the thickness coordinate are obtained by using the constitutive relations. Another type
of simplification is based on imposing the transverse shear stress (and strain) conditions

at the top and bottom surfaces of the shell [2.54-56].

2.3 Literature Survey on Laminated Composite Plate and Shell Elements

Over the years, many of laminated composite finite element have been developed.
Since laminated composite materials are often very flexible in shear, the transverse shear
strains must be included if an accurate representation of the behaviour of laminated shells
is expected. This has almost ruled out the use of classical Kirchhoff type of lamination
shell theories. Earlier laminated composite shell elements were based on classical
lamination theory. For examples see references [2.57-67]. To a certain extent in linear
elastic analysis, these elements may provide a means for quantitative studies of some
problems which are not quite sensitive to transverse shear.

At the beginning of 1980's, th': concept of degenerated shells elements was used
to represent laminated composite plates and shells. Degenerated elements allow transverse

shear deformation and are simpler to formulate than those based on three dimensional
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elastic models. Panda and Natarajan [2.68, 69], and Natarajan and Widera [2.70}

developed a composite shell element by extending the work of Ahmad, Irons and
Zienkiewicz [2.31]. As the integrations were performed for each layer separately using
a three-dimensional Gaussian integration scheme it is cumbersome for the analysis of
structures with a large number of layers. Milford and Schnobrich [2.71] suggested a
linear variation in the thickness co-ordinate for strain components and the determinant of
the Jacobian. This approach was used for laminated composite shell element by Yunus,
Kohnke and Saigal [2.72].

Reddy [2.73] developed a series of isoparametric elements by using the first-order
shear deformation theory. In the study, the four-node, eight-node and nine-node elements
were obtained. As the elements were too stiff, reduced integration was employed. Other
shear flexible laminated composite plate and shell elements were given by
Lakshminarayana and Murthy [2.74], Siede and Chaudhuri [2.75], Kosmatka [2.76},
Lardeur and Batoz [2.77] and Kosmatka [2.78]. In addintion, Reddy [2.79] proposed
mixed finite element formulations of high-order lamination theory. Wu and Yen [2.80]
developed an interlaminar stress mixed finite element based on the local high-order
lamination theory. Robbins and Reddy [2.81] applied the layerwise laminate theory to
develop a layerwise, two-dimensional displacement based finite element model for
laminated composite plates. A piece-wise continuous distribution of the transverse shear
strains through the laminate thickness was assumed. The resulting element is capable of
representing interlaminar stresses and other localized effects with the same level of
accuracy as a conventional three-dimensional finite element model.

Cheung and Kong [2.82] proposed a global-local approach to analyze thick
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laminated plates. This approach treats a thick laminated plate as a three-dimensional
inhomogeneous anisotropic elastic body. The cross-section of a laminated plate is first
discretized into conventional eight-node elements. These elements are used to describe the
local behaviour within the cross-section. The nodal displacements within the cross-section
are then assumed to follow a pattern of variation which is defined by global functions.
Argyris and Tenek [2.83] developed a three-node, six DOF per node, flat triangular
element by using the concept of natural mode and matrix displacement method together
with decomposition and lumpirg ideas. Later, they applied similar ideas and constructed
another triangular element by assembling three edge-beams to carry transverse shear
forces [2.84].

Hybrid and mixed formulations have received considerable attention in the analysis
of laminated composite structures. The earlier paper in 1972 by Mau, Tong and Pian
[2.85] composed of a quadrilateral multilayered plate element using hybrid stress method.
The transverse shear effects were included while in each layer no rotational DOF at each
node was considered. In 1977, Noor and Andersen [2.86] presented mixed shear-flexible
isoparametric triangular and quadrilateral elements for analysis of laminated composite
shatlow shells. The hybrid-stress eight-node isoparametric multilayered plate elements by
Spilker [2.87], the three-dimensional eight-node hybrid stress element by Liou and Sun
[2.88] are notable work published in the 1980's. These two elements used independently
assumed stress field for each layer. The stress parameters are as many as fifty five for
each layer in reference [2.88). A nine-node assumed strain element for composite plate
and shell structures was formulated by Haas and Lee [2.89]. This element is of the

degenerated solid type.
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The foregoing survey shows that, the studies on laminated composite shell
elements are much less common than shell elements. This is mainly due to the
complexities of efficient computational model strategies and advanced laminated theories.
Some of the elements based on three dimensional elastic solid models and high-order or
layerwise lamination theories are very accurate but they are also very expensive or even
infeasible for computing reasons. Simplifications made on lamination theories and
computational models compromised accuracy and computing efficiency. However, the
elements developed with such compromised efforts may still be costly for large scale
linear and non-linear analysis of laminated composite structures. Some very simple
elements may possess drawbacks, such as inaccuracy, slow convergence, locking and
spurious modes. The understanding of mechanical and structural behaviours of laminated
composite plate and shell structures and developing of simple, accurate and efficient finite
elements for analyzing such structures is, therefore, far from adequate.

In the current study, a series of three-node flat triangular, hybrid strain based,
shear deformable laminated composite shell finite elements is derived. They are accurate,
efficient and simple to use for large scale linear and nonlinear analysis of laminated
composite shell structures. In deriving these elements, every aspect discussed previously
is considered. The elements have three translational and three rotational DOF at each
vertex. Thus, these elements are easy to be incorporated into most of the commercial
finite element packages. The assumed displacement fields are quadratic for translational
DOF and linear for rotational DOF. The DDOF are enhanced by considering in-plane
torsional strain energy. The assumed strain field has nine independent strain parameters

for the triangular elements before the DDOF are enforced. The elements are compatible
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with the first-order shear-deformation theory and is degenerated if only the displacement
field is considered. The global response of laminated composite shell structures is the

major interest of this investigation, and therefore global approximation theory is adopted

in forming element matrices.

2.4 Preparation for the Element Derivation
Before starting the element matrices derivation, the variational principle is
introduced. Then, the geometrical description of the triangular elements is presented. The

constitutive equation for laminated composite structures is also discussed in this section.

2.4.1 Variational principle
The discussion on the major variational principles used in developing hybrid finite
elements were recently presented by Kang [2.90]). The modified Hellinger-Reissner

principle is directly applied in the present hybrid strain finite element derivation:

Rallie) = % [ 1Ho9)Ter+ 2(0%Te¥
v 2.1
2uY) f ] dv-[ @Yt da

where,
u'= ¢ q is the assumed displacement field;
¢ is the displacement shape function matrix;
¢’ = P a is the assumed strain field;
P is a matrix of strain distributions;

« is the strain parameter vector;
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L is a linear differential operator;
B is the strain-displacement relation matrix;

o® is the stress vector calculated from the assumed strain field;

t bar is the body force vector;

t bar is the vector of prescribed surface traction;

V is the volume of the body;
a is the surface area of the body;

and
q-{uv,w6,0,060u ... }7 .2

is the generalized nodal displacement vector. The superscripts u and e denote the
quantities in the assumed displacement field and strain field, respectively.

In this thesis, the square brackets, [ ] will be used to denote matrix and the
parentheses, { } to designate vector if confusion with scalar quantities arises.

Then one can write:

[(@*)Te*dV - [(NTe'n+MTx* +QTy*)da (3a)
v a

[TV - [(NTep+MTx"+QTy")da (3b)
v e
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where N, M and Q are, respectively, the membrane, bending and shear stress resultant
vectors; and ¢, x and y are the membrane strain, bending curvature and transverse shear

strain vectors respectively.

Equation (2. 1) represents the total potential energy within the system. Substituting
equations (2.3a,b) into equation (2.1) leads to

nua(Ue) = [ (NTen+MTx"+QTy" ) da

e X NTet M Tyt Tyt 2.4
2[(Ne..,+Mx QTy* ) da (2.4)

-fuy fav-f @Yt da.
v a
This equation will be the basis of deriving the element stiffness matrices and load vectors.

2.4.2 Geometrical description of triangular elements

A series of three-node flat triangular elements are developed in the following
section. As emphasis of the current study is on the linear and non-linear gross responses
of large scale laminated composite shell structures, the global approximation scheme is
applied. Figure 2.1 shows a typical laminated flat triangular shell element. The global and
local Cartesian co-ordinate system are represented by (X, Y, Z) and (1, s, t), respectively.
The origin of the local frame is attached to node 1 on the shell’s middle surface. The r
axis is coincided with the element edge 1-2. As all three element nodes are on the shell
middle surface, they are on the r-s plane. The r-s plane is also the element middle plane.
The t axis is perpendicular to r-s plane, but it is not necessary parallel to the shell surface

normal, With such an arrangement of co-ordinate system the derivation of element



Figure 2.1 A flat ]aminated composite shell element

and its co-ordinate systems

matrices can be simplified.

As indicated in the Figure 2.1, the six nodal variables are u, v, w, 6,, 8,, and 6,,
where

u is the displacement in r direction;

v is the displacement in s direction;

w is the displacement in t direction;

0, is the rotation about r-axis;
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a

- Y

Figurc 2.2 Area co-ordinate for a triangular finite element

e, is the rotation about s-axis;

e, is the rotation about t-axis and it is called the DDOF or normal rotation.

In the derivation, the area co-ordinates are introduced. In Figure 2.2, a triangle
with area a is divided into three subtriangles with the areas a,, a, and a,, by an arbitrarily

located point O. Then, the area co-ordinates are defined as the dimensionless quantities

52’32"- gagﬁ_ 2.5)

&

E1=a
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They satisfy the constraint equation

B, +Ep+ &g =1 . (2.6)

The relations between the local Cartesian and area co-ordinates are

el e

or

o o

where

11 1
[A] =]t T2 T 2.7¢)
8 8; 8
2831382 Sy Iy
[A]" = -21.:- rgS; 1,83 83 Iy3 (2.7d)

Fy8p-T28y 8¢ Iz

in which
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r. - r|—rl 8' - 3|-3|

28 - defA] - FpySy;-Fyy8s,

For the co-ordinate system shown in Figure 2.1, one has

n=5=5=0
111
A]-[0 21y (2.8a)
00 s,
f28y -85 f3-P;
A -0 s -r (2.8b)
f28s
0 0

Later, the formulation of element matrices will require that ¢(§, £, &,) is differentiated

with respect to Cartesian co-ordinates. By applying the chain rule we have

__a_?,_ o) 351 . od 352+ od 353 (2.92)
o OE, o 3, o E, or

ob_o6 9% op K o ks (2.9b)
a8 O, 98  3F, a8  OF, 08

where
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__1 I
Ei r rz' 51 s rz ss
-1 N (2.10)
Ez.' l'2' Ez. rzss *
1
E = o ’ E = — .
3 3.8 33
These leads to
1 1
1o ¢
g,
{d>., } | o l @11
2
L ST U P
TSy T8, sl ¢

in which ",subscript” denotes partial differentiating with respect to the variables indicated
by the subscripts.

Before proceeding further, we define a transformation matrix

I I

where

i my n
[T)=|L m n,
ly my Ny
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it the rotation matrix and I, m;, and n; (i=1,2,3) are the direction cosines. For
example, 1, is the cosine of the angle between X and r axes.

As the element matrices are developed in the local co-ordinate system, they have
to be transferred into the global co-ordinate system, where the entire structure is defined

and analyzed. For element nodal displacement vectors, one can fined the relation

q=-Tq’ (2.13)
where
a T,
T,
T
T = f
Tr
Tl’
Tr 8x18

is the transformat.on matrix, q and q' are the local and global displacement vectors,

respectively.

2.4.3 Constitutive equations for laminated composite structures

The general constitutive equation for three dimensional solids is
oy = Cigtus (2.14)
where Einstein's summation convention for indices has been adopted and i, j, k and 1

assume values of 1, 2, 3 or x, y, z in the commonly used Cartesian co-ordinate systems;

o, is the stress vector;



e,, is the strain vector;

Cjju is the elasticity tensor.
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Since o; and e, are second order tensor, they have nine components each. Owing to

symmetry

0; = O &y = €y

the components are reduced to six. That is

o,, o,

€y, €y, €,, €, €, €

yz

6,, 0,, 6,, 0.,

zx “xy °

The elastic tensor Cy, is a fourth order tensor. It has eighty one components in theory.

However, actual materials always have less elastic constants. To study laminated

composite materials, we can assume the materials for each layer have three mutually

orthogonal nlanes of elastic symmetry or they ¢ be called orthotropic though the

laminates appear to be anisotropic in general. Then, the elastic tensor has only nine

elasticity constants left [2.91]. It becomes

’cﬂ c12 013 0
012 c& czs 0
Cis Copy Cyg O
0 0 0 C,
0 0 0 O Cg

0
0
0
0

0
0
0
0
0

0 0 0 0 0 Cyf

(2.15)

In the case of thin and moderately thick plate and shell problems one would assume that

the stress in the thickness direction is zero. Then the basic constitutive equation becomes
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o
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0
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Figure 2.3 Relationship of the material co-ordinate
and the glcbal co-ordinate systems
o, ey
o C2Cpr 0 0 O e
y y
On*= 0 0 C“ 0 0 Cn} (2-16)
o 10 0 0 Ci Of[=
P10 0 0 0 Cul

One can now see that it has six independent elasticity constants. It should be point out

that in equation (2.16), "he strains are engineering strains rather than those directly from
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the strain tensor in equation (2.14). Equation (2.16) represents the material constitutive
relations when the axes of Cartesian co-ordinate system are coincided with the principal
material axes (or fibre orientation). If we take a piece of such material with constant
thickness, let its principal material axes lay arbitrarily in a chosen global Cartesian co-
ordinate (x-y-z) system and attach a local or material co-ordinate (L-T-Z) to it, see Figure
2.3, the stresses and strains can be transformed from one of the co-ordinate system to

another by the equations below

o =T, Oy &= T, e (2.17a,b)
and
og = T|-1 o| ; eg = T|-1 e' (2.183,[")
where
0, ={ 0, 0y 0y7 05 op [
o,={0, 0,0,0, 0.}
0 = 1 o oy Oz O Oy | (2.19)
ep={e eregen er )
e°={e,eycnenewlT
and
(c2 82 0 0 2cs]
82 ¢c20 0 -2cs
T,=|0 0c-s O (2.20)

0 0s c¢c O
-c8 cs 0 0 c2-8?

is a transformation matrix (2.91], in which

c=cosb, s=sinh,



The inverse of the transformation matrix can be found by replacing 6 by -8 in T,.
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In modem laminate of composite technology, the stress-strain relation for a lamina

of fibre reinforced composite material in terms of the principal material direction ( 1, 2,
3 ) is given as
Q, Q, 0 0 0 ! :
01 t1
o Q,Q, 0 0 O e
o”f =|0 0 Q“ 0 0 8&’ (2'21)
Onf |0 0 0 Qp O™
012 €12)
10 0 0 0 Q)
or
Ol = Q 5|
where Q; is equivalent to C; and called reduced stiffness.
For most of engineering design problems, Q; can be calculated as following
E E,
Q,=——, Q= —>=2a
" (1-v42vy) 2 (1-vi2ve)
E (2.22)
Q, = Q, - vaEy v

(1-vyavay) ) (1-vy2vay)

Qu=Gz;- st=313- Qeo=G12

where E, and E, are Young's moduli, v,, and v,, are Poisson's ratios and G,,, G, and

G, are shear moduli.

To relate equation (2.21) to the x-y-z co-ordinate, it is substituted into equations
(2.17) and (2.18). This leads to




Q

[}
(o]}
(3]

where

a-1'arm 2.24
and it is usually expressed as

Q, @, 0 0 Q
Q. Qp, 0 0 Q
0 0 Q Qg 0 (2.25)
0 0 Q;Qy 0
Qs Qs 0 0 Q|

(9]
H

For a laminate, which is defined as a stack of plies (layers) or laminae bonded

together, the overall constitutive relations are

N =Ae+By, M =Be+Dx, Q, =Ey (2.26a,b,¢)

If each ply or layer of the laminate has constant thickness, then

Y (al)k(hk'hk-1) (ilj=1,26)

k=1

A,

Bn-%kZQ.)k(hk hk1) (ij =1,2,8)

(2.27)
DI'%kE Qq)k(hl(’hk ) (ij=1,26)
Ey = xx; E @)h-h) (1 =4,5)

where h, is the layer co-ordinate in the transverse direction at the bottom of the k'th layer

(see Figure 2.4), and x; and x; are the shear correction factors.

The determination of shear correction factors has been discussed in references
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Figure 2.4 The layer co-ordinate system for
a laminated composite shell element

[2.92, 93] and [2.51]). When first-order shear deformation theory is adopted for analyzing
laminated structures, the assumed transversal shear stress and strain distribution differ
from the true distribution. To account for these differences, the shear correction factors
must be used. For isotropic and homogeneous materials the shear correction factor x =
5/6. However, for laminated structures, the shear correction factors x, and x; are closely
related to detailed laminated constructions. More accurate procedures in determining the

shear correction factors were introduced by Noor in reference [2.51].




2.5 Derivation of Element Matrices

In this section, details of the element matrices derivation are presented. The first
sub-section gives the assumptions. The second and the third introduce the independently
selected assumed displacement fields and strain fields, respectively. The fourth sub-section
describes the procedures of deriving element stiffness matrices and load vectors. The fifth

discusses the issue of explicit expressions.

2.5.1 Assumptions

In the current study, the global approximation of laminates is employed. It predicts
gross responses of laminated structures rather than their local behaviours, such as
delamination. This implies :nat we assume the plies of a laminate are perfectly bonded
together.

The first-order shear deformable lamination theory is applied. In contrast to the
classical lamination theory, the transversal shear effect is considered by assuming the
linear distribution of the in-plane displacements in the thickness direction. It draws
analogy to Reissner-Bolle-Mindlin plate theory and assumes that the normal of a plate or
shell is straight and perpendicular to its middle surface before deformation and remains
straight but not necessarily perpendicular to its surface after deformation. Meanwhile we
assume that the original normal to the middle surface is inextensible and the elastic
modulus in the normal direction is zero. Then, the three-dimensional elastic formulation
is degenerated. However, the transversal shear deformation is still accounted for.

Though the formulation can handle the laminated composite structures with

variable thickness, we assume that the laminates as well as individual ply have constant
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thickness for the sake of simplifying the integrals for explicit element expressions. The

materials of each ply are homogeneous.

2.5.2 Assumed displacement fields

The elements being developed are flat, three-node triangles. There are six DOF
at each node. In formulating a low order hybrid flat shell triangle, To and Liu [2.33]
developed a series of hybrid strain based elements by superposing membrane and bending
elements. Considerable efforts were made in studying various formulations of the DDOF
to further improve the flat shell elements. In their study, AT type of displacement field
in the membrane part and linear in bending together with a nine parameter assumed strain
field gave the best results.

Following in the same direction as To and Liu [2.33], the following sets of
interpolation polynomials are adopted.

The first set for translational DOF is

U=Uy €y +UpEp+ Uska+ PyByy + PO+ Psbyy
V=V &+ Vp€+Va€e+ 6y + 880+ GsBis (2.28)

W=W,E, +Wol,+Wyks

and the second set is

U =Us§y +UpEp+ Usk3+ PyBy +PBp* PeBla

V=Vy&,+V,E, Va4 + 8y, +0,0p + Q3B 2.29)

W =W, +Wok o+ Waks-Dy0,y - P20~ PyBpn

~0y8,1-Q;8,2~ QB -




The displacement field for the rotational DOF is linear. That is

0,=6118,+058, + 0,484
0, =08, +0,58, +04€y (2.30)
0,=0 8, +08, +04k,

where

Pr = (8g,53-818))E,
Ps = (B12f, -8xE9E, (2.31a)
Ps = (Bxfs-84,E,)Es

qQy = (byy&3-byoE))E,
az = (byo€4 -bogfe)E, (2.31b)
Qs = (bxta-bsyE,)Es

in which §,, €, and &, are the area co-ordinates, a; and b; are element geometric

constants. With reference to Figure 2.5, These geometric constants are defined as

1 1
8y, == 20087y, , by =l siny, |,
2 2

1 1
a3 = 2 l3yCO8Y3y, , by = E'm sinyy, .

From equations (2.29-31) one can see that the assumed translational displacement

fields are quadratic when p and q terms are involved. The selection of these terms are
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Figure 2.5 The geometry of the shell element

based on the strategy introduced by Allman [2.22]. The first set of the polynomials for

translational DOF coincides with that used by To and Liu [2.33].

2.5.3 Assumed strain field
The selection of the independently assumed strain field is critical in developing
hybrid finite elements. For low-order triangular elements, it is more difficult. Firstly, the

selected field should be able to suppress all kinematic deformation modes. This

requirement leads to a necessary condition on the minimum number of independent strain
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parameters. In other words, this is the necessary condition to eliminate spurious
mechanisms from the resulting elements and ensure the rank sufficiency for the stiffness
matrices.

Saleeb, Chang and Graf [2.94] had discussed the assumed strain field selection
guidelines. They pointed out that four considerations should be given to the selection of
strain parameters. They should (1) enable stresses calculated from the assumed strain
functions to satisfy the point-wise equilibrium condition; (2) suppress all kinematic
deformation modes; (3) keep the element properties invariant; and (4) possess favourable
constraint index counting.

From equation (2.26) one may notice that the assumed strain field should consist
three parts: membrane strain ¢*,,, bending curvature x* and transverse shear strain y*.

That is,

. . (2.32)

"
U

em=Pnon, 2 =Pyea,, ¥

As the DDOF is formulated independently, we consider a strain field with nine strain

parameters and recast equation (2.32) as

er] [100|f x] [t 0 0],
est =10 1 0fqazy, xt =10 1 0] ixs (2.33a,b)
W 00 1] % ‘1 (00 1]
. _e.(1- - @
{‘:‘} -_-[ S(1-28)  {1-2¢,) 0 : . (2.33¢c)
Yo

t(1-28) (41260 r,01-269) fon
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where
P PRt LISVLES (Yol hd ' LIS AL Y (D04 L

am={a; a, “a}T v ap={e, ag %F , a,={a; ay %F ’

100 100
P,=l010, P,=010,
001 001

[s01-26)  s1-2) 0

tT 280 (ar-28) r01-269)

The nine strain parameters are evenly distributed over membrane, bending and
shear strain fields. Equations (2.33a,b) indicates the constant membrane strain and
bending curvature. In equation (2.33c) the non-constant shear transverse shear strain
distribution was proposed in reference [2.21]. It has been used in both hybrid stress
[2.21] and hybrid strain [2.33] formulations. This independently assumed transverse shear
strain field is designed to eliminate shear locking when the structures being analyzed have
large length-to-thickness ratio, u. Reference [2.21] also pointed out that for elements with
this non-constant shear stress or strain field assumption, accuracy may suffer for very
thick structures. The example of length-to-thickness ratio given in Reference [2.21] is p
= 1/h < 10 to 15. In view of that the strain field assumption made in equations (2.33a-c)
satisfies all four conditions mentioned above and in order to keep the new elements in
their simplest form, this nine parameter strain field is used for the basic triangles, that is,

the triangles without considering DDOF.
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2.5.4 Derivation of element stiffness matrices and load vectors
Based on the degenerated three dimensional elastic sclid theory and the co-

ordinates system shown in Figure 2.1, the stress-strain relationship is then

u

e, u,, Xr 6,., "
ulul oy ul vl ! g u {®_ Wes =0 (2.34)
€ =g (=) Voo [» X “\Xa(= r.c-Y‘“‘w+°

u +V u -6 Yrt oo

s g Vor Drs s8Iy

This constitutive relationship is co..:monly used in formulating degenerated flat shell
elements (for examples see references [2.21], [2.74] and [2.78]).

For the time being, we leave out 6, from the assumed displacement fields and start
to derive element stiffness matrices. However, the elements still have six nodal
parameters, that is u;, v;, w;, 8;, 8,; and 8,;, at each node. From now on we refer these
elements the basic triangles (BT).

Rewrite equations (2.28-30) in matrix form

u' = ¢l q. uY = ¢q q (2353,b)

where the superscripts 1 and q are referred to linear and quadratic terms, respectivelv, and
u'={uvwa®, o)’

q = {u; vy W 8y 6 6 U ... ... 63 )7

and

¢ =[dy & &3],
o =[] o3 ¢3)

(2.36a,b)




in which

¢ =

€, 0 0 0 O p,
0§ 00 0 g
00¢ 000
000EDO00O
0 0 0 0 g O

9

is corresponding to equations (2.28) and (2.30), and

£, 0 0 0 O p,
0 0 0 0 q
00¢g -p q0
000 ¢E O O
000 0 ¢ O

= ]

is corresponding to equations (2.29) and (2.30).

Substituting equations (2.35-37) into equation (2.34) leads to

em=B1Q: X"=BzQ-
v =B3q or y' -BJq
where
31 = [B,, B12 5131 ’ Ba =
=1 Sl nl ot = =aq o
B; = [By; By, Byl , By = [By B
and

§ hr

0 000
Eﬂ"‘ 0 E,,OOO
El.l El.rooo
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(2.37a)

(2.37b)

(2.38)

(2.39)




000 0 ¢,

-B-Zi = 0 0 0 —EL' 0
000 —El.l el.c

- [00¢E, -, 00 _ [00E
Ba||= is i . B;,= Is
OOELr 0 Elo ooEl.r

"Bl.s -& i
- pl,f
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(2.40)

'al.a 0

_ _(241a,b)
'ql,r+El 0

The B matrices are the strain-displacement matrices, in which , . and §,, (i=1, 2, 3)

have been given in equation (2.10) and

- E - £ o~
Pi = B L Y 2o s
2 2

RN
2

B = (fs"’z)as153+as151 P, = %E:J,%Ea

1.8 ' Zs
ISy Sy

S,

Pa.n =

IS

a - (b3153‘b1252)'b1251

8,

1
P

= (b2 -bxula)-byok, Qa, = ﬂ‘:t_@)_eé

ke

- ((ra=ra)Dyp-robys) £+ F3(Dy284 -basla) (2.42d)

Qo = v Y3y
r

18

r28;

G, - ('3"2’(b3'53‘b‘2§-’2]+(91_2£2+.‘131
253

28,
- (("3"'2)331 'aza":a]Ea+ 8382 -84,&,

(2.42b)

(2.42¢)

qz,g 2

\ r2S; /

- ((r3~Tp)D31~F3bgs) £, + b2a%2-bayé,

Q3 8

\ I8, )

M8,

8,



At the element level, applying equation (2.4) and let

l, = [ (NTep+MTx"+Qy" ) da

{2.43)

Substituting equations (2.26), (2.33) and (2.38) into equation (2.43), noticing the fact that
AT = A, BT = B, and E" = E, gives
= [ [{(er)TAT+(x")B e +{(em™B T +(x*)"D Tx"+(v*)"Ev"] da
|

oy ] _
P, 0 O ABO B,
- [lam g aj}|0 PS 0|[B A O[{B,

* o o prilo 0 El|B

(PTAB, +PIBB,]
={«)' [ |P, BB, + P/ DB,

P, E B,

(PTAB,+PIBB,]

P, BB, + P, DB, |da
P] EB,

«={apna, o) ={a a.. al

The second integral in equation (2.4) is
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I, = -% (NTe,+MTx*+QTy* ) da . (2.46)
a
Following the same procedure in deriving equation (2.45) and substituting equations

(2.26) and (2.33) into equation (2.46) leads to

[2 = —1 al Ha (2.47)
2
where
PTAP, PIBP, O
H=(|p,BP, P,DP, O | da. (2.48)
a
0 0 PgEP,

In equations (2.45) and (2.48), the integrands are function of area co-ordinates. Thus, the

integrations are evaluated by

k ol .m _ kil ml
[51 £, £5 da = 2a Bokol o] (2.49)

It is full integration and gives exact results. There is no reduced integration applied.
By making use of equations (2.44) and (2.47), the total potential energy within an

element is
nq(a,q) = aTG,q——;-aTHa -q TU‘V o7t dv+f. o' t da ) (2.50)

Taking the variation with respect to a, one has

G -Hea =0, «=H'"Gq . (2.51a,b)
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Bringing equation (2.51) back into equation (2.50) and recasting the equation results in

Ty = % qT GJH,'q, q - q"(fv o' T dv+f. ¢"t da ) . (2.52)

Taking variation in equation (2.52) with respect to q gives

GJH.)'G, q - ([v o't dv+ [, ¢Tt da ) =0 . (2.53)

Defining

K =GJH'G,, t,=[ ¢"Tav+[ ¢"tda, (2.54a,b)

equation (2.53) can be casted into the simpler form

k‘ q = f. . (2.55)

where
k. is the element stiffness matrix,

f,

€

is the element consistent load vector due to body force and surface traction,
q is the nodal displacement vector in local co-ordinate.
Owing to the choices of using linear or quadratic approximation for w in the assumed
displacement field, see equations (2.37a,b), two stiffness matrices for BT were obtained.
They are indicated by k' and k % with 1 and q denotirg linear and quadratic polynomials
for w.
Up to now, k,' and k9 are still in terms of local co-ordinate. Introducing the co-

ordinate transformation defined by equation (2.13) to equation (2.52) yields

me =3 @ TT T iq) - @7 T7Y, . (2.56)
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Now define

K,=T"k, T, F,=T7f¢, , (2.57a,b)

where

K is the element stiffness in global co-ordinate,

F, in the element consistent load vector in global co-ordinate.
Equation (2.56) represents the total potential energy for a typical element. When the finite
element method is employed to analyze a laminated composite structure, the total potential

energy of the structure is

) in. = nz::(q'TK.q')-g: (q'TF.) (2.58)

=

where the summations are over the total number of elements (nel). Therefore, the

assembled stiffness matrix, load vector and nodal displacement vector can be defined as

nel nel nel
K=k, F=3Fh, -3 (2-3%.b.)

where [K.];, {F.}; and {q'}, are for the i'th element and they are recasted in the forms
which have the same dimensions as K, F and Q', respectively. With these notations, the
equilibrium equation is

KQ =F . (2.60)

The unknown nodal displacement vector Q' is then obtained by solving equation (2.60).
To recover strain and stress vectors, apply equations (2.51b), (2.33) and (2.26). They are

given bellow
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% = (om @ ol = K50
e = Pom, X =Pyey, Y = P,a, , (2.61)

N = Ae,+Bx*, M =Ben+Dx*, Q, = Ey*

2.5.5 Explicit expressions

During the course of derivation, algebraic manipulations were performed by using
the computer algebra packages MACSYMA [2.95] and MAPLE [2.96]. There are no
numerical integration and inversion involved. Thus, the resulting element matrices are
explicit. Errors introduced by applying numerical integration and matrix inversion are
therefore eliminated.

However, whether the obtained explicit solutions are acceptable for use in a
computer program depends on the techniques applied in the process of simplifying the
results. For example, in getting the inversion of the H matrix defined in equation (2.48),
the resulting matrix, that is the inverted H matrix, is about ten thousand lines in Fortran
code, if the original 9 x 9 H matrix is directly given to MACSYMA or MAPLE. Such
a result is obviously not welcome.

To fully utilize the advantages of explicit expressions of element matrices the

technique of inversion by partition is applied. Let

H‘l1 HiZ] (262)
Hyy Hy |

where

H,, is the 4 X 4 submatrix at top-left of H,



is the 5 X 5 submatrix at bottom-right of H,
is the 4 X 5 submatrix at top-right of H,

is the 5 X 4 submatrix at bottom-left of H.

Ry Ryl
Ry Ry

H -

Ry = ( Ha""m”ﬁ‘“m )

R12 = 'H1-11H12Ra ’

The schemes of partitioning had been tried and compared for several times. The one
shown in equation (2.62) gave the simplest solution if no further subpartition is

conducted.

2.6 Improvements of DDOF

In previous sections, as the strain energy aue to normal rotations was neglected,
the total potential energy equation did not include the contribution of 6,. In this section,
the in-plane torsional shear strain energy due to normal rotations is considered. Thus, the
DDOF are enhanced. The first subsection discusses briefly the history and importance of
DDOF. The two subsequent subsections are concerned with formulations of DDOF by

hybrid and displacement method, respectively.
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2.6.1 The history and importance of DDOF
In the analysis of shell structures by using flat shell finite elements, a common
problem may occur if the flat shell elements do not have DDOF in their nodal
displacement vector. This is the singularity problem in the assembled structure stiffness
matrix if several element are coplanar at a certain node. Physical shell structures have six
rigid body motions. The corresponding finite element model should be able to predict
these motions. However, if the normal rotations are neglected from a finite element, the
latter can not correctly represent general rigid body motions. Thus it fails to meet the
convergence criterion.
In the earlier days, efforts were mainly exerted on eliminating the singularities.
One of the schemes is adding fictitious diagonal stiffness components to the element
stiffness matrix. For example, if an three-node flat triangular element has five DOF at
each node, after adding to it the artificial normal rotation stiffness, the element stiffness

matrix becomes

1515 [Olaas
[0lis.s [Keddss

(2.65)

[ K Jigas = [

18x18

where [k'] is the 15X 15 stiffness matrix from the original element, [0)15x3 and [0);,s
are null matrices, and the 3 X3 matrix [kg] is diagonal and contains three equally valued
entries k.. In references [2.97] and [2.21] it was proposed to set ke, = 10, and kg =
102 to 10® times of the smallest bending stiffness, respectively. Cook, Malkus and

Plesha [2.98] and Zienkiewicz and Taylor [2.30] suggested the following matrix for [ke,],
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1.0 -05 -05
[ke ] = ¢EV| -05 1.0 -05
-05 -05 1.0

in which E is the Young's modulus, V the element volume and « a value defined in the
range 10°% < & < 10°2. This (k] provides each DDOF with a fictitious stiffness, but
offers no resistance to the deformation mode 6,, = 6,, = 6,, = 0.0. Note that the
values 10-4, or 10°% to 102, and a are determined from numerical experiments and are
thus truly artificial. This method provided nothing in improving elements' accuracy.

The AT and similar elements developed independently by Carpenter, Stolarski and
Belytschko [2.24], at almost the same time, showed that the elements with DDOF may
converge faster if the DDOF is properly formulated. Reference [2.24] also pointed out
that introducing reduced integration to such formulation was essential if the element was
to be successful in the analysis of shells. It referred this formulation as the degenerated
LST. Later Cook [2.23] proved that AT could be regarded as the result of applying a co-
ordinate transformation to an element that has mid-side nodes. By introducing a
transformation matrix, one can transfer the linear strain triangle (LST) to AT. Similarly,
it can transfer an eight-node quadrilateral element to a four-node Allman type
quadrilateral element. References [2.22] and [2.23] showed that numerical results using
the AT are better than those applying the constant strain triangle (CST), and they are not
as good as those using the LST. However, in a large mesh the LST may produce more
than twice as many DOF as the AT.

In contrast to those efforts solely on the choice of finite element interpolation

fields, references [2.99] and [2.100] developed DDOF which relied on a variational
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formulation employing an independent rotation field. This approach was based on
Reissner's variational formulation [2.101] which utilized the skew-symmetric part of the

stress tensor as a Lagrange multiplier to enforce the equality of independent rotations with

the skew-symmetric part of the displacement gradient. Hughes and Brezzi [2.99] extended

Reissner's formulation by recognizing the instability of discrete approximations and
suggested a way to stabilize the instability of discrete approximation. Subsequently,
reference [2.100] extended the application of Hughes and Brezzi [2.99] to combine an
Allman-type interpolation for the displacement field with an independently interpolated
rotation field. It demonstrated the high accuracy of the element developed by this
approach,

In attempting to incorporate AT type of plane stress element into flat hybrid
triangular shell elements, To and Liu [2.33] took the strategies introduced in references
[2.22], [2.99-2.102] as starting point. They formulated the DDOF in the way of using
constant or linear distribution of 6, within the element. In reference [2.33], the
formulation of DDOF in both hybrid and displacement sense were also proposed. In the
hybrid formulation, the skew symmetric component of the in-plane torsional strain was
considered. One strain parameter, which represents the constant in-plane torsional strain
field within an element, was used. In the displacement type of DDOF formulation, it
started with an energy equation and followed the traditional way of deriving element
stiffness matrices. Numerical studies showed that the displacement type of DDOF
formulation with linear 6, and full integration gave the best results.

The revived interests, and increasing concern on formulating DDOF on a sound

theoretical basis and a straightforward approach have reflected the importance of DDOF.




2.6.2 Hybrid formulation of DDOF

In Section 2.5, stiffness matrices for BT have been developed through the hybrid
approach. In developing these stiffness matrices, the normal rotations at each element
node had been included in the element nodal displacement vectors. But the strain energy
due to normal rotations was neglected, the total potential energy equation did not include
the contribution of 6,. It seems that most of the Aliman type elements available in the
literature have neglected the torsional shear strain energy due to normal rotations. See for
examples, references [2.22 - 2.24]. One may argue that this part of shear strain energy
is very smail compared with the others. Therefore, it can be disregarded. However, this
may lead to problems, such as spurious modes. Reference [2.22] had reported an unusual
type of zero energy mode in the AT. This phenomenon is most likely because the element
lacks the internal "constrain”. To eliminate this problem, the in-plane torsional shear
strain energy due to normal rotations is considered.

By identifying [2.33]

er = 6, - %(v,, - Uy,) (2.66)

as the in-plane torsional she - strain related to the skew symmetric corponent of the in-

plane shear stress tensor, one can write the total in-plane shear strains as

t
g = Ey *8:, ' ctu = Cyg = c:o (2.67)

and the related shear stresses are

t _ ] t s 2.68
O = O+ 0y Ogr = Opg ~ Ogg ( )
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in which

Os = Gty o U:o = G, c:o . (2.69)
It shoul be noted that the symmetric part of the shear strain in equation (2.67) has been
considered in the derivation of stiffness matrices of BT in Section 2.5. For the laminated
composite shell elements, consistent with those BT, the stresses and strains are evaluated
in an average sense. Therefore, the equivalent in-plane shear modulus for the laminate
is

Gn =i (Gn)k(hk'hk-1) (2.70)
et h

where (G,,); is the in-plane shear modulus for k'th layer, h, is the layer co-ordinate (see
Figure 2.4), h the total thickness of the laminate and n the number of layers of the
laminate.

In equation (2.29), the Allman type of interpolation functions has been assigned
to u and v. As they are quadratic, their first order derivatives are linear. This makes
sense to use a linear independent interpolation function of 6, in equation (2.66). Thus, the

linear field of 6, from equation {2.30) is

B = 846y + E20p 5,7 @.71)

s

Substituting equations (2.29) and (2.71) into equation (2.66) yields

et =B,q . 2.72)

B, - | Byr Byz By has (2.733)
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where

1 1 1= =
By = Ee"' "é'el.r 000 El*'z‘(pn.-'ql.r) , (2.73b)

in which i = 1, 2, 3 and q is the nodal displacement vector defined in equation (2.35).
It is noted that in reference [2.33], the hybrid formulation of DDOF, identified
there as k,, was performed by using linear interpolation functions for u and v. Therefore,
the displacement field is not Allman type.
For the assumed strain field of the skew symmetric in-plane shear strain, we use
one strain parameter to represent a constant strain field while the symmetric componets

have already been considered in the assumed strain field for BT in Section 2.5

(c:‘)' = Q4 (2.74)

Here, we do not invoke linear strain field because in that case we have to use three strain
parameters which leads the formulation to its displacement-type counterpart.
With reference tn ©quation (2.1), the strain energy due to the skew symmetric part

of in-plane shear strains is

nt= j [(e,',)'G,,(e:,)u--% (€3G ()| v (2.75)

where the superscripts € and u are again indicate the quantities from assumed strain and
assumed displacement fields, respectively.
By following the same procex - re in Section 2.5, the stiffness matrix kg, due to the

normal rotation is obtained as
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: n = 7
=-;- Y Gu), (-hy)) [ By da [ B, da, (2.76)
L a

k=1

where the subscript ¢h indicates the stiffness of DDOF in hybrid sense.
The integrals are evaluated exactly. There is no numerical integration invoived.
Considering the element as a whole, equation (2.75) should be part of total potential

energy. Adding this part to equation (2.4), the resulting elemert sti.fness matrix in local

co-ordinates becomes
h
ke = Ky + K
In global co-ordinate system, the element stiffness matrix is
h
Ko = K, + Kg,
in which

2.6.3 Displacement formulation of DDOF

Similar to previous hybrid formulation of DDOF, the in-plane torsional shear
strain energy is considered. This consideration enhances the DDOF in the BT.

The in-plane torsional strain has been defined in equation (2.66). The poten:ial
eneigy due to in-plane torsional strain can be written as

2

12 Cafa gt o
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where G, is the 1n-plane shear modulus and defined in equation (2.70). Thus, we can

recast equation (2.78) into a more convenient rorm
1y L : 2.79
= E Z N)k (hk-hk-1) f[at—'é'(v" _un.)] da (‘-- )
-1 a

To adopt a linear field for 8, and quadratic field for u and v, we substitute equations

(2.29) and (2.71) into equation (2.79) and write

1 -—
- 30 -ua]- B 2.0
in whic..
= 1|0~ rz 1
B, = — ,0,0,0,2 '
4% 3 A E4+P1s -0y,
'
-2, -1 0,0,0, 26,45,,-3,,. (2.81)
Sy fp

lo oa on 0! o' 253+53.l-aﬂ

S, o

1x18

Equation {2.81) is identical to that defined in equation (2.73a). By defining

k=1

kea =Y (Gry), (- ) [ BJ B, da, (2.82)
a

equation (2.79) can be rewritten as

7 = % QT ke q . (2.83)
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The stiffness matrix ky, defined in equation (2.82) is that due to the in-plane shear strain
energy of DDOF developed through displacement formulation. As equation (2.83) is the

strain energy due to normal rotations, it should be added to equation (2.4). Therefore,

the overall stiffness matrix for the flat laminated composite shell element in local co-

ordinate system is

k.d = K, + Ky (2.84a)

and the one in global co-ordinate system is

K.d = K, + Ky (2.84b)

where the subscript dd denotes the stiffness of DDOF developed through displacement

aporoach and

ch = TT kdd T . (2'840)

By evaluating the integral in equation (2.82) with exact or full integration, k,, is
obtained explicitly. If the integral is evaluated by one point quadrature or the reduced

integration scheme, one has the equivalent

f'B'JE,da=%f’e'Jdaf§,da
[ ] h a

Therefore, equation (2.76) and (2.82) are identical. It means that one point quadrature

for evaluating equation (2.82), thai is, reduced integration of equation (2.82) is equivalent

to the hybrid formulation of DDOF.
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2.7 Remarks

The hybrid strain based BT developed in Section 2.5 has six fundamental DOF at
their nodes which include DDOF. Because of the absence of the in-plane shear strain
energy due to the skew symmetric part of in-plane shear strain from the total potential
energy equation, the DDOF formulation in the BT is not complete. To enhance DDOF
in the BT, the skew symmetric part of the in-plane torsional shear strain was considered,
which accounted for the contribution from 8,. The resulting stiffness matrices k, and k,,
in Section 2.6 hinge on more sound theoretical basis. Therefore, the proposed laminated
composite shell elements with enhanced DDOF are expected to give the best performance
among those same type and available. In the following chapters, numerical studies will
illustrate superior performance.

To summarize the hybrid laminated composite triangular shell (HLCTS) elements
developed in this chapter, each element is identified as follows

(1) HLCTS" k"™ = k' + ky, , linear w in BT + hybrid DDOF;

(2) HLCTS*® k% = k9 + kg, , quadratic w in BT + hybrid DDOF;

(3) HLCTS® kY =k'+ k,, , linear w in BT + displacement DDOF:;

(4) HLCTS® k% =k + k,, , quadratic w in BT + displacement DDOF.
That is, each of the above element stiffness matrix contains two parts. One is from the
BT, and the another from the independently formulated DDOF. All these elements are
three-node flat laminated composite triangular shell elements. They a!l have six DOF at
each node. Thus, they are the simplest elements for general laminated composite shell
analysis. Note also that for the special cases of single layer shell elements, k" becomes

AT+(k")' and k" reduces to AT+(k})' in reference [2.23).
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Comparing these four elements, HLCTS is most favourable with respect to

accuracy and rank sufficiency. HLCTSY and HLCTS™ are rank sufficient since the

displacement formulation of DDOF is equivalent to employing three strain parameters in
the strain field if the hybrid formulation is performed. In this sense, HLCTS" and
HLCTS* provide no inconsistency to the hybrid formulation though the displacement type
of DDOF is adopted. As HLCTS™ is formulated by assuming a quadratic field for w, it

improves the accuracy over the HLCTSY,




CHAPTER 3
STATIC ANALYSIS OF LAMINATED COMPOSITE

PLATE AND SHELL STRUCTURES

The hybrid strain based triangular laminated composite shell elements proposed
in the last chapter are used to solve static problems in this chapter. Several typical cases
are selected to illustrate the performance of the new elements. Both plate and shell
problems are included. The first section is concentrated on single layer plates. The second
is on multilayer plates. The third section is concerned with the analysis of single layer

shells and the fourth multilayer shells. Closing remarks are included in the final section.

3.1 Analysis of Single Layer Plates

Results of numerical analysis of a variety of plate problems by using the elements
are presented. These numerical studies are used to examine the performance of the flat
shell elements on predicting responses of plates. The samples studied are a plane stress
cantilever beam, square plates and rhombic plates. In the analysis, different loading and

boundary conditions are imposed.

3.1.1 Plane stress cantilever subjected to a tip load
A cantilever beam of rectangular cross-section is selected to test the membrane
part of the new elements. This application has been used for testing plane stress elements,

see for examples, references [3.1-5). The cantilever beam is subiected to a tip load shown
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N M

0.3048 m

12192 m

Figure 3.1 Plane stress cantilever beam
(E=2.0685x10'! N/m?; v=0.25; F=177920 N; thickness = 0.0254 m)

in Figure 3.1. The load is a parabolically distributed shear stress applied at the free end
of the beam. The total load F is 177920 N (40,000 1b). The geometrical dimensions of
the beam are: length = 1.2192 m (48 in); height = 0.348 m (12 in) and thickness =
0.0254 m (1 in). The material properties are: Young's modulus E = 2.0685 x 10'" N/m?
(3.0% 107 psi) and Poisson's ratio v = 0.25. The exact in-plane tip deflection and rotation
were quoted as 9.0373 x10° m (0.3558 in) and 0.0106 radians in references [3.2] and

[3.5]).
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In the numerical studies, the cantilever beam was discretized and modeled by
seven different meshes: 4 X 1B, 4 x 1D, 8 x2C,8 x2D, 16 x4 A, 16 x 4 E
and 16 X 4 D. The detail layout of these meshes are shown in Figures 3.2, 3.3 and 3.4.
The parabolically distributed tip load is approximated by the concentrated loads applied
at the corresponding nodal points. For different meshes, the load distributions on the
nodes at the end of the beam are illustrated in Figure 3.5. In order to test the membrane
part of the elements, all W, 8, and ®, DOF at element nodes were constrain~d. The
boundary conditions at the fixed end are U = V = 8, = 0.0. As the transversal
displacement W has been constrained in the analysis, the linear or quadratic field for w
does not affects the results.

Table 3.1 inclu les computed tip displacements by using the finite elements. The
resuits are normalized with respected to the exact solution. In the table, BT +k 4 denotes
the results obtained by using HLCTS" or HLCTS%; BT +k,, denotes those obtained by
using HLCTS™ or HLCTS®; CST refers to the results given by a hybrid strain based
CST element [2.33] and neq. is the number of unknowns or equati.ins being solved in
which the equations correspond to the constrained DOF have been eliminated. Compared
with CST results, the new elements appeared to be more accurate and converged faster.
The results also show that the cross diagonal meshes, 4 X 1 2,8 X 2Dand 16 X 4 D
give better results. The 4 X 1 D mesh has 16 elements and 24 unknowns predicted the
displacements with errors 5.73% and 5.34% by using BT +ky, and BT +k,,, respectively,
while the corresponding errors given by the 8 X 2 C mesh are 9.39% and 8.93%. The
8 x 2 C mesh has 3z elements and 72 unknowns. Similarly, mesh 8 X 2 D has just half

of the elements that the meshes 16 X 4 A and 16 X 4 E have, but it gives more accurate
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Figure 3.2 4 x 1 meshes for the plane stress cantilever beam

N N

8x2C

8x2 D

Figure 3.3 8 x 2 meshes for the plane stress cantilever beam
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Figure 3.4 16x 4 meshc;s for the plane stress cantilever beam
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Figure 3.5 Load distributions on the nodes at the end of the beam
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Table 3.1 Normalized tip displacement of the cantilever beam

Normalized tip displacement

CST BT + ky, BT + ky,

0.2551 0.7487 0.7584

0.5784 0.9427 0.9466

0.5583 0.9061 0.9107

0.8385 0.9806 0.9817

0.8265 0.9685 0.9694

0.9733 0.9744

0.9944 0.9947
results than the other two. When comparing the results given by BT +< 4 and BT +k,
BT +kg, predicted 0.49% more accurate response than BT +k,y with 4 X 1 B mesh. As
kyy is from displacement formulation, BT +ky, is stiffer than BT +kg,, in which kg, is
obtained by hybrid formulation. When meshes are refined the difference vanished and the
results from both elements converged to the analytical solution.

The normalized tip rotations obtained by using BT +k,, and BT +kg, are given in
Table 3.2. It shows that even the coarse meshes predicted accurate tip rotations. The same
trend shown in Table 3.1 can also be found in Table 3.2. The cross diagonal meshes (D
meshes) provide more accurate results though less elements are used when compared with

other type of meshes.

A comparison made with other finite elements is presented in Table 3.3. These
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elements are those from Olson and Bearden (OB) [3.1], Allman [3.4] and the linear strain
triangle (LST) [3.6], respectively. In the table, the numbers inside brackets are the total
number of DOF before the application of boundary conditions. The values of the tip
displacement obtained by using the present elements are better than OB and very close
to those by AT. The differences given by BT+ky,, with respect to AT, are 1.18%,
1.13% and 0.23% for the meshes 4 X I B, 8 X 2 C and 16 X 4 E, respectively. The
differences by BT +k,, are 0.09%, 0.63% and 0.11%. It can be seen that LST gives the
best result. But for the same mesh, LST has more than twice as many DOF as that

applying the new elements.

Table 3.2 Normalized tip rotation of the cantilever beam

Normalized tip rotation

BT + k,, BT + k,

0.8980 0.9478

0.9896 0.9943

0.8754 0.8617

0.9830 0.9840

0.9774 0.9792

0.9811 0.9849

0.9972 0.9972



Table 3.3 Comparison of the results obtained by using different clements

element Normalized .'p displacement

4xX1B 8x2C 16 X 4 E

0.6470 (30) 0.8384 (81) 0.9250 (255)

0.7577 (30) 0.9165 (81) 0.9755 (255)

0.9977 (170) 0.9994 (594)

0.7487 (30) 0.9061 (81) 0.9733 (255)

0.7584 (30} 0.9107 (81) 0.9744 (255)

3.1.2 Simply supported plate under uniformly distributed lsad
In this sample, we select a square plate which is simply supported at al! four sides
(54). The side length, b, of the plate is I m (39.37 in). The material properties are
Young's modulus E = 2.0685x 10! N/m? (3.0%107 psi); v = 0.3. The analytical
solution for simply supported square plates subjered to uniformly d:stributed loading can
be found in reference [3.7]. If the load with intensity f, transversally applied to the plate,
the maximum deflection occurs at the centre of the plate. The value of the deflection is
W, = 0.00406 %—t (3.1)

where

._Eh
12(1-v¥
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is the bending rigidity, in which h is the thickness of the plate.

Three sets of thicknesses and loadings are used: (1) h = 0.01 m (0.3937 in), f,
= 100G .4/m? (0.14504 psi); (2) h = 0.001 m (0.03937 in), f, = 1 N/m? (V. 14504 x 10~
psi); (3) h = 0.0001 m (0.003937 in), f, = 0.001 N/m? (0.14504 %< 10" psi). The reason
for selecting different loading while changing the thickness is to present some realistic
responses that confine tc the linear theory at this stage of the investigauon.

The analytical solution calculated from equation (3.1) for this problem is 2. 14335
X 10 m for all three sets of data. In the finite element analysis, one quarter of the plate
is considered due to symmetry of geometry and loading ( see Figure 3.6 ). Though
different types of finite element meshes were used during the tests, only a D type is
adopted here. The D type mesh is the cross diagonal mesh shown in Figures 2.6 and 3.7.
Mesh D gives more reliable results when compared with other types of meshes, such as
cross hatch. Figure 3.7 shows six D meshes: 1 X 1 D,2 x2D,. X3D, 4 x4D,
5 x 5 D and 6 X 6 D. The integers indicates the rumber of elements along the sides of
the models. The 1 X 1 D mesh can also be looked at as a macro element which has five
nodes. It consists of four triangular elements. The other meshes are composed by a
number of the macro elements. To test the bending components of the new elements, the
membrane part is constrained: U = V = 8, = 0.0. The boundary conditions for the $4
plate are interpreted and applied to the finite element model as follows: on the
symmetrical lines, ®, = 0.0 for the side parallel to x axis and 8, = 0.0 for the one
parallel to y axis; at the central point 8, = 8y = 0.0; on the simply supported edges,
transversal displacement is constrained, that is W = 0.0, while setting 8, = 0.0 for the

nodes on y axis and 8, = 0.0 for those on x axis (see Figure 3.6). The shear correction



Figure 3.6 A 4 x 4 D mesh for modeling quarter of a square plate

factor is set to x = 5/6. Table 3.4 presents the finite element results. The latter are

normalized by the analytical solution given in equation (3.1). As all normal rotations were

constrained, only the results by HLCTS" and HLCTS* are shown in Table 3.4.

The results in Table 3.4 show good convergence rate. HLCTS® predicted the
maximum deflections with an error of 28% by using the 1 X 1 D mesh (2 elements®
When 2 X 2 D mesh (16 elements) used, the error is about 6.5%. For the refined
meshes, 4 X 4 D (64 elements), 5 X 5 D (100 elements) and 6 X 6 D (144 elements)

the errors rapidly reduced to 1.6%, 1.0% and 0.7%, respectively. Compared with




2x2D

IX1 D

4x4 D

3x3D

6x6 D

5x5D

Figure 3.7 Meshes for square plates




Table 3.4 Normalized maximum displacement of the S4 plate

under uniformly distributed load

fo(N/m?)

neq.

Normalized maximum displacement

HLCTSY

HLCTS%

0.7227

0.7218

0.7218

0.9359

0.9345

0.9345

0.9723

0.9709

0.9695

0.9854

0.9840

0.9840

0.9910

0.9900

0.9900

0.9942

0.9933

0.9928
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HLCTS*, HLCTS" predicted slightly small deflection. In 2 X 2 D mesh case, this

difference is about 2.3% of the analytical solution. For 4 X 4 D and 6 X 6 D mesh, the
respective differences are about 0.6% and 0.25%. It can be seen that HLCTS® results
converged faster than HLCTS". In coarse meshes, HLCTS® provides better solutions.
The analytical solution from equation (3.1) is based on the classical plate theory, and
therefore, is for thin plates. The side length to thickness ratios 4 = b/h tested in this
sample are 100, 1000 and 10000. As p becomes higher, the elements seem to predict less
accurate deflections. However, by using 4 X 4 D and finer meshes, the differences are
never more than 0.14%. In passing it is noted that no shear locking has been detected

during the computational experiments.

3.1.3 Simply supported plate subjected to a point load

The S4 plate considered above is adopted here, except that the uniformly
distributed load is now replaced by a central point load. The geometrical and material
properties remain the same. The analytical solution for simply supported square plates
subjected to a transversal concentrated load was given in reference [3.7]. From reference

[3.7], the maximum displacement at the centre of the plate is

2
W, = 0.01160 EDL . (3.2)

Three cases are considered in this example. The thicknesses and loads for these three
cases are : (1) h = 0.01 m (0.3937 in), F = 1000 N (224.8 Ibf); (2) h = 0.001 m
(0.03937 in), F = 1 N (0.2248 1bf); (3) h = 0.0001 m (0.003937 in), F = 0.001 N

(0.0002248 1bf). The analytical solution calculated from equation (3.2) for this problem
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is 6.1239 x 10 m for all three cases. As one quarter of the plate is considered, the load
applied to the quarter plate is one fourth of the total load. The boundary conditions
applied have been explained previously. The results obtained by using the HLCTS%
element are normalized with respect to the analytical solutions and presented in Table 3.5.
The discrepancies in this case corresponding to the six meshes from coarse to fine are,
respectively, 32.49%, 12.65%, 6.40%, 3.77%, 2.43% and 1.63% for the length to
thickness ratio p = 100. The results for the other two length to thickness ratios, 1000 and
10000, have slightly more discrepancies compared with the ratio of 100. The
discrepancies, with respect to analytical solution, are 4.2%, 2.4% and 2.1 %, respectively
for the 4 X 4 D, 5 X S D and 6 X 6 D meshes. But, one may have noticed that the
results for the ratios of p = 1000 and p = 10000 are closely similar when the same
meshes are used. Another property of the elements shown in Tables 3.4 and 3.5 is that
the results approach the analytical solutions from below, or, the elements predict lower

bound responses.

3.1.4 Fully clamped plate under uniformly distributed load or point load

The plate used for the simply supported cases is now fully clamped. It is
designated by C4. When the clamped boundary condition is applied to the finite element
models, all DOF of the nodes at the clamped boundary are constrained. The boundary
condition at the symmetry lines are the same as in the S4 plates. In this test example, the
membrane component of the shell element is still constrained. Thatis, U=V =8, =

0.0. The analytical solution for uniformly distributed load is
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fo b* 3.3)
Wonay = 0.00126 Z— Q.-
and for central point load is
2
W_., = 0.00560 F; . (3.4)

These solutions are for thin plates [3.7]. For the given loads and corresponding
thicknesses, the analytical solutions calculated from equations (3.3) and (3.4) are W,
= 0.66517 x 10* m and W_,, = 0.2956 x 10> m, respectively.

In Table 3.6, the central displacements, W, predicted by using HLCTS% is
normalized with the analytical solution, W, . The results for the C4 plate under
uniformly distributed loads are again better than point loads. In the case of p = 100 and
6 X 6 D mesh, the discrepancies are 1.8% for distributed load and 3.6% for point load.
Convergence trend similar to Tables 3.4 and 3.5 can be found in Table 3.6. Excellent
convergence rate is observed. The results are less satisfactory than those of the S4 plate.
To improve the accuracy finer meshes are required for the fully clamped plates. Another
method of improving the results is by refining the mesh along the clamped edges where

severe changes of bending moment are expected.

3.1.5 Fully clamped rhombic plate under uniform load
Skew plate problem has been the subject of considerable interest in the finite

clement literature. It was chosen as a finite element test case by many researchers. See,

for examples, references [3.8 - 3.15].




Table 3.5 Normalized maximum displacement of the S4 plate

subjected to central point load

normalized displacement

0.6751
0.6734

0.6734
0.8735
0.8700
0.8699
0.9360
0.9318
0.9300
0.9623
0.9577
0.9576
0.9757
0.9710
0.9710
0.9837
0.9788
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Table 3.6 Normalized maximum displacement of the C4 plate

under uniformly distributed load or central point load

distributed load point load

f,(N/m?) W./W F (N) W./W

C max < max

1000.0 0.7807 1000.0 0.7053

1.0 0.7751 1.0 0.6976

0.775C 0.6976

0.8986 0.8488

0.8917 . 0.8390

0.8870 0.8349

0.9461 0.9120

0.9389 . 0.9012

0.9387 0.9012

0.9689 0.9445

0.9619 . 0.9334

0.9617 0.9334

0.9816 0.9635

0.9746 . 0.9520

0.9737 0.9509
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Figure 3.8 Fully clamped skew rhombic plate

Figure 3.8 shows a fully clamped (C4) rhombic plate under transversally applied
uniform pressure. The load intensity is f, = 766.11 N/m? (16 Ib/ft?). The geometrical and
material properties of the rhombic plate are: side length L = 2.4384 m (8 ft); thickness
h = 0.024384 m (0.08 ft); Young's modulus E = 0.4183 x 10'° N/m? (8.736 x 10’
Ib/ft?) and Poisson's ratio v = 0.3. The length to thickness rauo p = 100. The skew
angle is 45°. The analytical solution for the central displacement (at p« * ** P) was reported
in reference [3.16] to be W,, = 1.8385 x 10° m (6.032 x 107 ft).

In the finite element analysis, type D meshes are used. A 4 X 4 D mesh for the
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rhombic plate is shown in Figure 3.9 (a). The shear correction factor is chosen to be x
= 5/6. The boundary conditions applied at the four clamped edges are W = 8, = 8, =
0.0. All DOF of U, V and 8, are constrained. The finite element results obtained by
using HLCTS% are normalized with respect to W, and presented in Table 3.7. A 10 X
10 A mesh, see Figure 3.9 (b), is also used to solve this problem. The results in the table
show tnat this problem need relatively refired mesh. The mesh 10 x 10 D gives better
results than 10 X 10 A does. Taking into the consideration of the number of unknown
solved, mesh type D gives more accurate results in the foregoing analysis of rectangular
plates, while mesh type A and D in this case provide similar accuracy. This is because
elements in D mesh are distorted when modelling the rhombic plate (see Figure 3.9).
That is, the element side length ratio is large, and the elements in mesh type A have a
side length ratio closed to one which is preferred. Nevertheless, both mesh A and D give

satisfactory results in analyzing the C4 rhombic plate.

Table 3.7 Normalized central displacement of the C4 rhombic plate

mesh

4 X4D

6 X6D

8 X 8D

10 x 10 A

10 X 10D

12 X 12D




=
4

=
=

/
S

(a) 4 X 4D mesh
(b) 4 X 4 A mesh




D free C

free
free

clamped B

Figure 3.10 Cantilever rhombic plate

3.1.6 Cantilever rhombic plate under uniform lead

A cantilever rthombic plate is shown in Figure 3.10. This problem is solved for
the skew angle p = 20°, 40° and 60°, respectively. The plate is subjected to a
transversally applied uniform distributed load with the load intensity f, = 1000 N/m?
(0.1450 psi). The side length L = 1.0 m (39.37 in) and the thickiess h = G.04 m
(1.5748 in). Thus, the length to thickness ratio is p = 25. The material properties are:

Young's modulus E = 2.0685x10'" N/m? (3.0x 107 psi); Poisson's ratio v = 0.3.

The finite element analysis is carried out by using type A meshes. A 4 X 4 A
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mesh layout is illustrated in Figure 3.9 (b). The shear correctior factor is k = 5/6. The
boundary conditions applied at the clamped edge is the same as those for C4 rhombic
plate. The membrane part of the elements is neglected for this bending problem. The
displacements at the point C and D are solved. The dimen.ionless displacements W' =
WEhY/f,L* at point C and D are given in Table 3.8 and 3.9, respectively. The tables
show the convergence rate with the five selected meshes, 2 X 2 A, 4 X 4 A, 6 X6 A,
8 x 8 A and 10 < 10 A. Comparison to results obtained by researchers using other finite
elements or approach are shown in Table 3.10. These results are obtained from a flat
triangular element derived base< nn the concepts of natural mode and martrix displacement
methods toget*.cr with decomposition and lumping ideas (called LACOT) [3.12], a cubic
isopar-inetric element [3.13], parallelogrammic elements [3.14, 15] and the variational
wuethod [3.17]). The HLCTS" and HLCTS% results are given by using the 10 X 10 A
mesh. It can be seen that HLCTS" and HLCTS® results agree very well with those from
other sources. In the p = 20° case, the average dimensionless deflection at point C
predicted by finite elements and variational approach in references [3.12 - 3.15) and
[3.17] is 1.4213. A value of 1.4205 is predicted by using HLCTS" and HLCTS%. The
discrepancy is 0.056% . The maximum discrepancy found is in the case p = 20° and the
deflection at point D. Reference [3.13] reported a value of 1.0442 which is the largest
one reported in the five refe.ences. The current analysis using HLCTS% gives a value of
1.0474 which is 0.31% higher than that reported in reference [3.13]. The defection W'
at point C reported in reference [3.17] for p = 40° and 60° are not considered in this

comparison.



Table 3.8 Dimensionless displacement at point C of the cantilever

rhombic plate under uniformly distributed load

6 x 6 A 126 1.3874 1.3927
8 x 8 A 216 1.4086 1.4125
10 x 10 A 330 1.4205 1.4205 |
S B=sr I
2 x2A 18 0.7980 0.7694 |
4x4A 60 1.0261 1.0179 |
6% 6A 126 1.1110 1.1069 |
8 x 8 A 216 1.1433 1.1409 {
10 x 10 A 330 1.1590 1.1574 |

2% 2A 8 | oell9 05216 |
4% 4A 60 0.7122 0.6875

| 6x6a 126 0.7718 0.7601

[ 8 x 8 A 216 0.8009 0.7943

‘ 10 x 10 A 330 0.8179 0.8135




Table 3.9 Dimensionless displacement at point D of the cantilever

rhombic plate under uniformly distributed load

2X2A

4 X4 A

6 X6A

8 X8A

2X2A

4 X4A

6 X6A

8 xX8A
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Table 3.10 Comparison of the results from different sources for the

cantilever rhombic plate under uniformly distributed load

ref. [3.12]

at point C |

ref. [3.13]

ref. [3.14]

ref. [3.15]

ref. [3.17]

HLCTS"

ref. [3.12]

at point D

ref. [3.13]

ref. [3.14]

ref. [3.15])

ref. [3.17]
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3.2 Analysis of Multilayer Plates
Multilayer plate problems are solved in this section. The test cases chosen for
analysis are cross-ply and angle-ply laminated composite plates and a hybrid cantilever
rhombic plate. Different boundary conditions are imposed. Finite element results are
presented and compared with those obtained by analytical approaches or finite element

method available in the literature.

3.2.1 Cross-ply laminated plate with simply supported edges
In the analysis of laminated composite plates, cross-ply laminates have been given
considerable attention. The cross-ply lay-up is a special case of the general angle-ply layer
arrangement. When the fibre orientations of layers for a laminate are alternately set to
zero and ninety degrees, this set-up is called cross-ply. If each layer of a laminate is
orthotropic, the laminate exhibits orthotropic property as an whole.
A nine layers cross-ply symmetrically laminated square plate is considered here.
The detail lay-up is (0/90/0/90/0/90/0/90/0), where the numbers indicates the fibre
orientation for each layer and they are in degrees. The total thickness of the 0° and 90°
layers is the same. The side length, b, of the plate is 1.0 m (39.37 in). The material used
here is a high modulus graphite/epoxy composite. Its material properties are
E, = 2.0685x10" N/m? (3.0x107 psi);
E;, = 5.1713x10° N/m? (0.75x10° psi);
G,, = 3.1028x10° N/m? (0.45 % 10° psi);
G,; = Gy = 2.5856x10° N/m? (0.375 x 10° psi);

and Poisson’s ratio v;, = 0.25. As the following relation exists
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vie _ B (3.5)

’
vy B

therefore, v,; can be obtained.

The laminated plate is simply supported at four edges and the transversally applied
uniform distributed load has 2 intensity f,. Owing to symmetrical conditions that the
problem has, one quarter of the laminated plate is modeled (see Figure 3.6). The
boundary conditions for the finite element model are the same as the S4 plate in
subsection 3.1.2. The total thickness of the laminate and the load intensity used in the
finite element analysis are: (1) h = 0.1 m (3.9370 in), f, = 10% N/m? (145.04 psi); (2)
h = 0.01 m (0.3937 in), f, = 1000 N/m? (0.14504 psi); and (3) h = 0.001 m (0.03937
in), f, = 1 N/m? (0.14504 x 107 psi).

This problem has been solved in reference [3.8] by using a high-order triangular
plate bending element (called TRIPLT). This element has three nodes and fifteen DOF
at each node. For the purpose of comparison, in the current analysis the shear correction
factors are set to unity. The finite element results obtained by using HLCTS" and
HLCTS® are expressed in dimensionless quantities and are presented in Table 3.11.
Results in Table 3.11 converge as meshes are refined. A comparison is made in Table
3.12 to the results using TRIPLT [3.8] and the analytical solution reported in reference
[3.9]. It can be seen that for the length to thickness ratios p = 100 and 1000, HLCTSY
and HLCTS® give very good results. The discrepancies are 0.09% and 0.37% given by
HLCTS" and HLCTS®, respectively, when compared with the analytical solution for p

= 100. In this case, HLCTS" and HLCTS* results are from 6 X 6 D mesh with 255
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DOF. The corresponding TRIPLT result is from a 4 > « mesh, which has 375 DOF. For
p = 1000, the respective discrepancies made by HLCTS" and HLCTS® are 1.16% and
0.03% compared with analytical solution. Meanwhile, TRIPLT gives a discrepancy of
0.47%. However, to provide this accuracy, a 6 X 6 mesh with 735 DOF has to be used
for the TRIPLT element. The total DOF stated above are thoce before the application of
boundary conditions. For the very thin cross-ply laminated composite plate under
uniformly distributed load, HLCTS* is more efficient and accurate compared with
TRIPLT.

It should be pointed out that for g = 10, HLCTS" and HLCTS® over predict the
deflection by about 27%. This is because the non-constant shear strain field assumption
can not generally admit a non-zero constant state of transverse shear strain. Such shear
deformation states are not important for thin plates, but when the plates is very thick (p
> 15) or extensive bending and membrane deformations are involved the deterioration

effect can be significant [3.10].

3.2.2 Cross-ply laminated plate with clamped edges

The same cross-ply laminated high modulus graphite/epoxy composite square plate
analyzed above is considered here. Now, its four sides are clamped. The boundary
conditions applied have been specified in subsection 3.1.4. The results due to HLCTS%
are given in Table 3.13. For this cross-ply C4 laminated plate, there is no analytical
solution available. But the converged solutions obtained by using TRIPLT [3.8] and
another shear deformable element SQH [3.9] are included for comparison. The element

SQH is a four node quadrilateral element. When used for plate problems, it has 48 DOF.,



Table 3.11 Central displacement of the nin~ layer cross-ply S4 plate

under uniformly distributed '7ad

W_E,h’ x 10°/f,b*

HLCTS"

HLCTS*

5.9573

6.3400

2.8773

3.2341

2.8437

3.1190

7.0381

7.1416

4.1127

4.2167

4.0776

4.1815

7.3691

7.4156

4.3770

4.4.51

4.2968

4.3444

7.3484

7.3743

4.4349

4.4618

4.4039

4.4313

7.4053

7.4156

4.4897

4.5021

4.4602

4.4721
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Table 3.12 Comparison of the solutions from different sources for the nine layer

cross-ply S4 plate under uniformly distributed load

W_E,h* X 10°/fpb*

HLCTS® TRIPLT [3.8]}

7.4156 5.8481

4.5021 4.4846

4.4721 4.4508

These results along with those given by HLCTS* with 6 X 6 D mesh are compared in
Table 3.14. From the table, good agreement can be seen for p = 100 and 1000 cases.
For p = 10, HLCTS™ over predicts about 67% compared with the other two. This is due
to the severe changes of bending moment near the clamped edges. It has been discussed
in the nine layer cross-ply S4 case, that the performance of HLCTS elements will
deteriorate when the plate is thick and undergoing a strong bending action because of the

non-constant strain field.

3.2.3 Angle-ply laminated plate with simply supported edges

To examine the performance of HLCTS elements in the analysis of angle-ply
laminated composite plates, a nine layer, symmetrical, angle-ply laminate of (6/-6/6/-
6/8/-6/6/-6/8) lay-up with 0 < @ < 45° is chosen for the investigation. The total thickness
of the © and -0 layers is equal. The side length, b, of the plate is still 1.0 m (39.37 in).

The material is the same high modulus graphite/epoxy composite as used previously. The



Table 3.13 Central displacement of the nine layer cross-ply C4 plate

under uniformly distributed load

W, E,h’ x 10°/f b*

3.7725

0.7654

0.7188

3.8955

0.9308

0.8765

3.8650

0.9220

0.8781

3.8857

0.9536

0.9148

Table 3.14 Comparison of the solutions from different sources for the nine layer

cross-ply C4 plate under uniformly distributed load

W_Eh® x 10%/f;b*

TRIPLT [3.8] SQH [3.9])

2.3199 2.3191

0.9628 0.9634

0.9341 0.9494
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Figure 3.11 8 x 8 D mesh for a square plate

boundary conditions are similar to those in subsection 3.1.2. The shear correction factor
is unity. The plate is under uniformly distributed load with intensity f,. The HLCTS"
results of the central deflection for 8 = 30° and 6 = 45° are presented in Table 3.15. It
should be noted that, generally, as the symmetry conditions do not exist for angle-ply
laminates, the maximum displacement may not occur at the centre of plate. For the same
reason, the whole structure is represented by the finite elements. In Table 3.15, the
results shown are obtained by using 6 X 6 D, 8 X 8 D, 10 X 10D, and 12 X 12 D

meshes for the entire plate. Figure 3.11 shows a 8 X 8 D mesh for a square plate.
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Table 3.15 Central displacement of nine layer angle-ply S4 plates

under uniformly distributed load

W.E,h® x 10°/f,b*

e = 30° 6 = 45°

- 5.2696
2.3333

2.2961

5.2902

2.3648

2.3276

10 x 10D 5.3006

2.3798

2.3431

12X 12D 5.3109

2.3886

2.3519

For this problem, there are no analytical solutions available. In the (45/-45/4¢ -
45/45/-45/45/-45/45) case, comparison is made with the results from TRIPLT [3.8] and
SQH [3.9]. They are given in Table 3.16. For the length to thickness ratio p = 100, the
results agree very well. The difference is less than 0.8%. For ¢ = 1000, the HLCTS%
result differs from SQH by 1.7%, while it differs from TRIPLT by 7.2%, with respect
to the SQH result. As shown in previous examples, TRIPLT predicts less accurate

response for very thin laminated plates. It is believed that HLCTS% and SQH results are
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more reliable in this case.
When the lay-up is (30/-30/30/-30/30/-30/30/-30/30), the converged results of the
dimensionless central deflection given by HLCTS® are 2.7439 and 2.7097 for p = 100
and 1000, respectively (see Table 3.15). The SQH and TRIPLT results are approximately

2.722 for u = 100 which can be found in Figure 9 of reference [3.8). For p = 1000,

there is no result available for comparison.

Table 3.16 Comparison of the solutions from different sources for the nine layer

45° angle-ply S4 plate under uniformly distributed load

W.E,h? x 10°/f,b*

HLCTS¥ TRIPLT [3.8] SQH [3.9]

5.3109 3.7323 2.7323

2.3886 2.3999 2.4079

3.2.4 Hybrid rhombic cantilever plate

A class of recently emerged hybrid plates [3.12, 3.19] is studied in this
subsection. The hybrid plates combine metals with unidirectional or bidirectional
composite layers. As an example, a cantilever rhombic plate comprising three aluminum
(AL) layers and two unidirectional layers of glass ¢ - carbon fibers impregnated within a

matrix material such as epoxy or thermoplastic is analyzed. The geometry of the rhombic
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plate is shown in Figure 3.10. The side length L = 1.0 m (39.37 in). The length to

thickness ratio 4 = L/h = 100, where h is the total thickness of the hybrid plate. The
skew angle B = 45°. The layer properties are as follows:
Aluminum layer:

Young's modulus E = 9.0 x 10'° N/m? (1.3053 x 107 psi);

Poisson's ratio v = 0.3;

thickness h,; = 0.0025 m (0.0984 in).

Fiber reinforced composite layer:

E, = 14.05 x 10'® N/m? (2.0377 x 107 psi);

E, = 1.0 % 10'° N/m? (1.4503 x 10° psi);

G,, = 5.0 x 10° N/m? (7.2516 x 10° psi);

G;; = Gy = 3.5 x 10° (5.0761 x 10° psi);

v, = 0.3 and h, = 0.00125 m (0.0492 in).
The layer arrangement is (AL/0°/AL/0°/AL). The hybrid rhombic plate is under
uniformly distributed pressure with intensity f, = 100.0 N/m? (0.0145 psi). The boundary
conditions applied in th.c analysis is the same as those introduced in subsection 3.1.6. In
addition, the shear correction factors are x, = x; = (5/6)!”2, which were not specified
in reference [3.12]. The finite element solutions of the transversal displacements at point
C and D with different mesh size are given in Table 3.17. At point C, HLCTS" predicts
larger deflection than HLCTS* does when coarse meshes are employed. At point D, the
HLCTSY results are larger than those given by using HLCTS" for coarse meshes.
However, the discrepancies vanished when meshes are refined. As point D is closer to

the clamped boundary, severe bending moment and stress changes are more likely to



Table 3.17 Displacements at point C and D of the 5-layer cantilever

hybrid rhombic plate under uniformly distributed load

W(Xx10>m)

HLCTS" HLCTS%

2X2A

4x4A

6 xX6A

S8 X8A

10 x 10 A

12X 12A

1a X 14 A

16 X 16 A

4 X4A

6 X6A

SX8A

10 X 10 A

12 X 12 A

ld X 14 A

16 X 16 A
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affect the accuracy. In this case, HLCTS® converges better than HLCTS" does. A

comparison made to the result given in reference [3.12] by using the element called

LACOT is presented in Table 3.18. It is observed that the displacements at point C

predicted by HLCTS and LACOT differ by only about 0.4% with respect to LACOT

result. At point D, the discrepancy is about 3.4%.

In closing, it should be pointed out that the presently developed low-order hybrid

elements, have demonstrated excellent performance in plate problems. Their convergence

rate can even be compared with some high-order displacement type elements, such as

TRIPLT [3.8] and SHQ {3.9]. However, HLCTS are I¢ s satisfactory for thick plates.

Table 3.18 Comparison of different finite element results for

the displacements at point C and D of the hybrid rhombic plate

W(xX10°m)

at point C at point D

LACOT (10x10 A)

1.277 0.506

HLCTS" (14x14 A)

1.272 0.520

HLCTS% (14x14 A)

1.270 0.521

HLCTS" (16x16 A)

1.282 0.523

HLCTS* (16x16 A)

1.282 0.523
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Figure 3.12  Scordelis-Lo roof and a 2 x 2 D mesh for one quarter of the shell

3.3 Analysis of Single Layer Shell

In order to examine the performance of the present elements, HLCTS, in the
analysis of single layer isotropic shell problems, a single layer cylindrical shell and a
single layer spherical shell are chosen for the study. In applying HLCTS for single layer
cases, E = E, = E,, G = G,;, = G;; = G,; and the "fiber orientation" is zero. The

results obtained in the analysis are compared with those available in the literature.

3.3.1 Cylindrical shell under its own dead weight

A cylindrical shell shown in Figure 3.12 is frequently referred to as Scordelis-Lo
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roof. it has been commonly used to assess the performance of shell elements. See for
c<amples, references [3.1], [3.3], [3.10], [3.18] and [3.20 - 3.22]. It is supported at the
two curved edges by diaphragms. The two straight edges are free. The shell is loaded by
its own dead weight. Thus, the load can be characterized as the uniformly distributed load
which is in -Z direction and parallel to Z axis. This load creates significant coupling of
membrane and bending actions in the shell. The pertinent data of the shell are: radius R

= 7.62 m (25.0 ft), length L = 15.24 m (50.0 ft), thickness h = 0.0762 m (0.25 ft),
angle ¢ = 40°, Young's modulus E = 2.0685 x 10'° N/m? (3.0 x 10° psi), Poisson's

ratio v = 0.0 and the dead weight intensity f, = 4309.2 N/m? (90 1b/ft?).

Considering the symmetry of the shell's geometry and load, a quarter of the shell
is modeled by HLCTS elements. Figure 3.12 shows a 2 X 2 D mesh for ihe quarter
shell. The boundary conditions imposed in the finite element analysis are: U = W = 8,
=0.0atthearc AB; V=8, =68, =0.0atthearc DC; U = 8, = 8, = M R at the line
AD and all DOF are free at the free edge BC. At point D, W is free and «.. other DOF
are constrained. The shear correction factor is x = 5/6. Four meshes, 2 X 2 D, 4 X 4
D, 6 x 6 Dand 8 x 8 D, are used in the analysis. The analytical solutions from shallow
shell theory [3.1, 3.23] are used for comparison. The values of the solutions are W,
= - 0.09406 m (- 0.3086 ft), Uc,, = - 0.04988 m (- 0.16364 ft) and Vg, =
0.003894 m (- 0.012775 ft), where the subscripts C and B refer to the respective
displacements at the points and (an) indicates that the result is the analytical solution. The
finite element solutions obtained in the present analysis are reported in Table 3.19. In the
latter, the symbols BT' and BTY denote the basic triangles which have linear or quadratic

field for w, respectively. The finite element results are normalized with the corresponding
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analytical solutions. It is seen that all four HLCTS elements and the two BT give
excellent results. It is also noticed .iat for coarse meshes the six elements predict the
deflections very closed to the converged solution. For examples, with 4 X 4 D mesh the
respective discrepancies of W, by using HLCTS", HLCTS®, HLCTS®, HLCTS®, BT
and BT9 are 3.95%, 4.73%, 3.76%, 4.54%, 3.27% and 4.05% with respect to analytical
solution. This indicates a very rapid converging rate. For W, obtained by using 8 X 8
D mesh, the discrepancies are 2.69%, 2.88%, 2.62%, 2.85, 2.56% and 2.75%,
respectively.

The finite element results converged at a value about 3% lower than that of
analytical solution reported in references [3.1] and [3.23]. As mentioned earlier, this
analytical solution was obtained based on shallow shell theory. The Scordelis-Lo roof is
a marginal problem. There has been analytical solution based on deep shell theory, see
for example, reference [3.24]. The deep shell solution reported in reference [3.24] is W,
= -0.09169 m (- 0.3008 ft). It appears that no deep shell solutions for the displacements
at other points are available. Table 3.20 shows the finite element results normalized with
respect to the deep shell solution. It is seen that the finite element results converged to
values in between the shallow and deep shell solutions. The finite element results are
closer to the deep shell solution. Those obtained by using 8 x 8 D mesh differ from the
deep shell solution by 0.17%, 0.37%, 0.10%, 0.33%, 0.03% and 0.23% for HLCTSY,
HLCTS®, HLCTS™, HLCTS*, BT' and BT, respectively.

To compare HLCTS elements with other flat shell elements, results from different

sources are given in Table 3.21. The results are normalized with respect to the shallow

shell solution.
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Table 3.19 Normalized displacements of the Scordelis-Lo roof

(normalized with respect to the shallow shell solution)

=== =

(sn)
0.8477

-
!
!
|
|
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Table 3.20 Normalized displacements of the Scordelis-Lo roof

(normalized with respect to the deep shell solution)

Table 3.21 Comparison of the displacement at point C of the Scordelis-Lo roof

predicted by using different flat shell finite elements

wC/ wC(nn)

DKT-CST | DKT-LR | HMSH3
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In the table, DKT-CST and DKT-LR results are from reference {3.3]. The DKT-

CST element is the combination of the DKT bending element and the CST membrane
element while DKT-LR is composed of the DKT for bending and an Allman type of
membrane element with reduced integration scheme. Both DKT-CST and DKT-LR are
triangular elements. The HMSH3 results are from reference {3.18]. The element is a C°-
triangular hybrid stress element. The BDS element was proposed in reference [3.20]. The
element is a four-node quadrilateral with bilinear displacement field and degenerated type
of shell element. For triangular elements in Table 3.21, the meshes are of D type. All
these elements have six DOF per node. It should be noted that the results from reference
[3.3] were originally normalized with respect to a value of - 0.09211 m (- 0.3022 ft)
which was reported in reference [3.25]. In Table 3.21, all results are normalized with
respect to the shallow shell solution for the purpose of comparison. As can be seen in the
table, HLCTS elements converge faster and are more accurate than DKT-CST, HMSH3
and BDS, especially for coarse meshes. The convergence rate and accuracy for HLCTS
and DKT-LR are about the same. However, the DKT-LR results converge from upper

bound and tend to converge to a value smaller than the deep shell solution.

3.3.2 Spherical shell segment subjected to concentrated load

A spherical shell segment is shown in Figure 3.13. It is subjected to a
concentrated load at the central point A of the shell. The load is F = 2.0 X 10* N (4.496
X 10° 1bf) and applied in the negative Z direction. The geometrical and material
properties are: radius R = 2.5400 m (100 in); thickness h = 0.09945 m (3.915 in);

projected side length a = 1.5698 m (61.803 in); the ratio p = a/h = 15.78; Young's
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Figure 3.13 Spherical shell segment

modulus E = 6.895 x 107 N/m? (1.0 x 10* psi); v = 0.3. The shell segment is hinged
at four sides.

Taking the advantage of symmetry, one quarter of the shell segment is modeled
and solved. The boundary conditions applied on the model are: V = 8, = 6, = 0.0 at
AB;U =8, =8,=00atAD;U=V=W=08,=8,=00atBCandU =V =
W =8, =8, =0.0at DC. All DOF at point C are constrained. At point A, only W is

free. The finite element results are presented in Table 3.22 for the cases of shear

correction factors x = 5/6 and 1.0.
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This problem has not been found in the literature for linear analysis. However,
it can be compared to those solutions from non-linear analysis if the load and deflection
levels are sufficiently low. Reference [3.26] reported the central deflection W, = -0.028
m for a load of 2.0 X 10* N by using a flat triangular element, and reference [3.27]
predicted a value of W, = -0.029 m with the same load using a four-node element. A
series solution in reference [3.28] based on shallow shell theory was W, = -0.030 m.

The data are obtained from figures in the references. It is seen that HLCTS elements over

Table 3.22 Displacement at point A of the spherical shell segment

subjected to a concentrated load

- 0.02123

- 0.02123

- 0.02125

- 0.02729

- 0.02729

- 0.02731

- 0.02947

- 0.02947

- 0.02948

- 0.03069

- 0.03069

- 0.03070
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predict the central deflection by 2.3% when x = 5/6 and under estimate by 2.0% when

x = 1.0. This comparison is made with respect to the series solution in reference [3.28].
As the ratio p = a/h = 15.78, the shell is reiatively thick. Thus, the slight over estimate
by HLCTS elements, when the shear correction factor is x = 5/6, is consistent with the

findings reported in previous sections.

3.4 Analysis of Multilayer Shells

In this section multilayer laminated composite shells are studied by using HLCTS
elements. The test cases include cylindrical shells and spherical panels. Both cross-ply and
angle-ply cases are considered. For cross-ply laminated composite shells, the laminates
are orthotropic and for angle-ply, the laminates are generally anisotropic. In the case of
angle-ply laminates, bending and membrane coupling exists. The prediction of their
responses is more complicated and difficult. In the current investigation, comparisons
made to the results using other finite elements or analytical solutions show excellent

agreement.

3.4.1 Cross-ply cylindrical shell clamped at both ends

A 4-layer cross ply, (0/90/90/0), cylindrical shell is considered in this subsection.
The shell is subjected to a internal pressure with intensity f, = 1.4068 x 10* N/m?
(2.0404 psi). As shown in Figure 3.14, the cylindrical shell is clamped at both ends. The
length L and the shell radius R are equal. It isL = R = 0.508 m (20.0 in). The layer
material properties are:

E, = 5.1713 x 10" N/m? (7.5 x 10° psi);
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Figure 3.14 Clamped cylindrical shell under intemnal pressure

E, = 1.3790 x 10'° N/m? (2.0 x 10° psi);
G,;, = 8.6188 x 10° N/m? (1.25 x 10° psi);
G,; = Gy = 4.3094 x 10° (0.625 x 10° psi);
and Poisson's ratio v;, = 0.25.
Making use of the symmetry in layup design, geometry and load, we take one
eighth of this cylindrical shell for the analysis. This part of the shell are modeled using

four D type meshes, 2 X 2D, 4 X 4D,6 X6 Dand 8 X 8 D. The 2 X 2 D mesh is
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Figure 3.15 A 2 x 2 D mesh for one eighth of the cylindrical shell

shown in Figure 3.15. As the elements are flat with straight edges, any line betwern two
nodes should be actually a straight line. The curve lines in the figure are used to illustrate
the original shape of the shell only. The boundary conditions applied to the finite element
models are: all DOF are constrained at arc AB; W = 8, = 8, = 0.0 at line AB; V =
8, =6, =00atarcDCand U = 8, = 8, = 0.0 at line AD. For the node at point C,
V=W=8,=08=6,=00@dU+00)andatpointD, U=V =86,=8, =
8, = 0.0 (and W » 0.0). The shear correction factors are x, = x5 = (5/6)2, Two radius

to thickness ratios, p = R/h = 20 and u = 100, are selected, in which h is the total



110
thickness of the shell. Therefore, the thickness of each layer of the shell is h/4.

Membrane action is substantial near the centre of the shell. In the area near the
clamped ends, bending action becomes dominant. The maximum radial displacements
predicted by using HLCTS® and HLCTS®" are given in Table 3.23. It is found that the
results from HLCTS* and HLCTS®" converged to the same value. There is no analytical
solution available for comparison. The comparison is made to the results reported in

reference [3.29] ¢ .d presented in Table 3.24. The results from reference [3.29) were

Table 3.23 Maximum radial displacement of the 4-layer cross-ply

clamped cylindrical shel! under internal pressure

0.020975

0.020960 0.020963

0.021422 0.021425

0.021532 0.021532
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obtained by employing a nine-node assumed strain isoparametric finite element
(CSHEL9). It has five DOF per node, 45 DOF per element. The CSHEL9 results in
Table 3.24 were from a 8 X 8 mesh and the total DOF were 1445. The HLCTS results
are obtained by using the 8 X 8 D mesh and the total DOF are 870. The discrepancies
are, respectively, 0.51% for 4 = 20 and 0.65% for p = 100, with respect to HLCTS
results. The HLCTS elements predict less deflection than CSHEL9 does in p = 20 case
and larger in p = 100 case. There is no sufficient evidence to say which result is more
accurate. However, the small discrepancies showed that HLCTS elements are comparable

to the nine-node isoparametric elemnent in terms of efficiency and accuracy.

Table 3.24 Comparison of the maximum radial displacement

of the 4-layer cross-ply clamped cylindrical shell

W, (x10°m)

HLCTS% CSHEL9

0.004506 0.004506 0.004529

0.021532 0.021532 0.021392

3.4.2 Angle-ply cylindrical shell clamped at both ends

A 4-layer cylindrical shell with the c<ame geometric and layer material properties
in subsection 3.4.1 is now considered with a symmetrical 45° angle-ply layups (45/-45/-
45/45). The shell is under internal pressure with the same intensity as that for the cross-

ply cylindrical shell. Again, one octant of the shell is modeled by the finite elements with
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four different meshes. The shell is also clamped at both ends. Thus, the boundary

conditions applied to the finite element models remain the same. The shear correction
factors are also the same. The HLCTS% and HLCTS® results are reported in Table 3.25
and the comparison to CSHEL9 results are made in Table 3.26. The same trend found
in the cross-ply cylindrical shell case is repeated here. Slightly larger discrepancies
between the HLCTS and CSHEL9 results for the maximum radial displacement are

found. The discrepancies are 3.27% and 2.11%, respectively, for p = 20 and p= 100.

Table 3.25 Maximum radial displacement of the 4-layer 45° angle-ply

clamped cylindrical shell under internal pressure

0.005408

0.005794

0.005910

0.005910

0.005908

0.028677

0.005908

0.028804

0.027635

0.027635

0.027737

0.027737

0.027712

0.027712
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Table 3.26 Comparison of the maximum radial displacement of

the 4-layer 45° angle-ply clamped cylindrical shell

W ( X 10° m)

HLCTSY CSHEL9

0.005908 0.006101

0.027712 0.027127

3.4.3 Simply supported cross-ply spherical panel under uniform load
In the analysis of doubly curved laminated composite shells, a nine layers cross-

ply symmetrically laminated spherical panel is considered here. The shell geometry is
shown in Figure 3.13. Each layer of the laminate is orthotropic and the fibre orientations
of layers for the laminate are alternately set to zero and ninety degrees,
(0/90/0/90/0/90/0/90/0). The total thickness of the 0° and 90° layers is the same. The
projected side length of the shell isa = 1.0 m (39.37 in). The radius, R, is 10 m (393.7
in). Two cross-ply spherical shell panels are solved. One is with the total thickness h =
0.01 m (0.3937 in) and the another is with h = 0.001 m (0.03937 in). The material of
the spherical shell panels is the high modulus graphite/epoxy composite. The material
properties are:

E, = 2.0685x10" N/m? (3.0x 107 psi);

E;, = 5.1713x10° N/m? (0.75 X 10° psi);

G;; = 3.1028 x10° N/m? (0.45 x 10° psi);

G,; = G,; = 2.5856>10° N/m? (0.375 x10° psi);
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and Poisson's ratio v,, = 0.25. Equation (3.5) can be employed to calculate v,,.

The laminated spherical shell panel is simply supported at four curved edges and
a uniformly distributed load, which is always normal and pointing to the shell's inner
surface, is applied. The load intensity f; is 1.0 X 10° N/m? (0.14504 psi) for the thicker
shell panel and is 1.0 N/m? (0.14504 x 107 psi) for the thinner shell panel. One quarter
of the laminated shell panel is modeled by using finite elements. The boundary conditions
applied at the symmetry lines and simply supported boundaries are: V=6, = 8, = 0.0
atAB; U =8, =86, =00atAD; V=W =80, =0.0atBCandU =W =8, = 0.0
at DC. The constraints applied to the four corners of the quarter shell panel are: U = V
=06,=86, =6,=0.0atpoint A; V=W =8, =8, =0.0at point B; all DOF = 0.0
atpoint Cand U = W = 8, = 8, = 0.0 at point D. The shear correction factors are x,
= x; = (5/6).

The results obtained in the current analysis are given in Table 3.27. The central
deflections are presented in dimensionless form: W' = WE,h¥/f;a‘. In the table, the
symbol p is the ratio of the projected length (o thickness, a/h. The results in the table
show a rapid convergence rate. This problem was solved analytically and reported in
reference [3.9). The comparison of HLCTS results to the analytical solution is made in
Table 3.28. The results obtained by using HLCTS® and HLCTS" differ from the
analytical solution by +0.13% and +0.03%, respectively, for p = 100 case. The

corresponding discrepancies are -0.51% and -0.68% for p = 1000.

3.4.4 Simply supported 45° angle-ply spherical panel under uniform load

In this subsection, we consider a laminated composite spherical shell panel
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constructed by using the high modulus graphite/epoxy composite given in subsection

3.4.3. The shell has nine layers. The detail layup is (45/-45/45/-45/45/-45/45/-45/45).

Table 3.27 Dimensionless displacement at point A of the cross-ply

spherical shell panel under uniform pressure load

W' ( x 10%)

p = 100, f, = 1.0 X 10° N/m?

2X2D

4 X4D

6 X6D

8§ x8D

10 X 10D

p = 1000, f, = 1.0 N/m?

2>x2D

4 x4D

6 x6D

8x8D

10X 10D
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Table 3.28 Comparison of the dimensionless displacement at point A of the cross-ply

spherical shell panel under uniform pressure load

W' (X 10°)

HLCTSY analytical [3.8]

2.7144 2.7135

0.0588 0.0592

The total thickness of the 45° and -45° layers are the same. The shell panel is simply
supported at four curved sides. One quarter of the shell is analyzed due to symmetry.
Boundary conditions and load applied are the same as those specified for the cross-ply
spherical shell panel in subsection 3.4.3.

The HLCTS* and HLCTS results obtained by using five different mesh sizes,
2X2D,4x4D,6 x6D,8 x 8Dand 10 X 10 D, are shown in Table 3.29. The
results are the predicted central deflections in the dimensionless form: W' = WE,h%/fza*,
The HLCTS* and HLCTS" results for 10 X 10 D are W' = 0.5259 x 10 and 0.5254
X 103, respectively for p = 100. The analytical solution reported in Figure 21 of
reference [3.9] is about 0.52 x 10>. For p = 1000, the 10 X 10 D HLCTS* and
HLCTSY results are W' = 0.01011 x 10 and 0.01005 x 1073, respectively. In this case

there is no solution available in the literature for comparison.
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Table 3.29 Dimensionless displacement at point A of the 45° angle-ply

spherical shell panel under uniform pressure load

B

2x2D

4 X4D

6 X6D

8 Xx8D

10 X 10D

p = 1000, f, = 1.0 N/m?

0.00812

0.00942

0.00978

0.01011

3.5 Remarks

The HLCTS elements developed in Chapter 2 have been used to study an
extensive collection of single layer, multilayer plate and shell structures. The test cases
selected and presented in this chapter have demonstrated the excellent performance of

HLCTS elements. Comparisons have been made to reliable analytical or numerical
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solutions whenever they are available in the literature to ensure the validity of HLCTS
results. Detail information on geometrical and material properties of the structures, and
load as well as boundary conditions are included in every example.

The numencal study shows that HLCTS elements are more accurate and converge
faster when compared with other low-order finite elements. In some cases they can even
be compared with high-order elements (see, for example, SQH [3.9] in subsection 3.2.3).
No shear-locking phenomenon was detected in using HLCTS elements during the
investigation. However, inferior mesh design, topology or sevc;.rely distorted meshes may
induce shear-locking [3.18, 3.22]). The numerical study also shows that mesh topology
affects the accuracy of triangular finite element results. The consistent use of D type mesh
in this investigation has proved that such mesh can provide good results.

Among the four HLCTS elements, HLCTS¥, HLCTS", HLCTS® and HLCTS™,
and the two basic triangles, BT? and BT', HLCTS® and HLCTS" are the most favourite
ones in terms of both accuracy and rank sufficiency. However, this does not exclude the
use of HLCTS®, HLCTS™, BTY and BT'. With proper mesh layout and introducing
certain constraints, singularity in the entire finite element model of a plate or shell
structure caused by rank-deficient may be avoided. The numerical studies in this chapter
have shown some good results obtained by using HLCTS%, HLCTS™", BTY and BT

In formulating HLCTS elements, see Chapter 2, the elements have been designed
to handle thin and moderately thick laminated composite plate and shell structures. In
some references, researchers had given the limit of length to thickness ratios for
degenerated or shear deformable type of finite elements. See, for example, reference

[3.18]. However, in the current numerical investigation, one can hardly find a clear cut
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on the thickness limit for laminated structures. In other words, in analyzing laminated

plate and shell structures, it is hard to set up a limit to distinguish thick and moderately

thick. It is seen that marginal problems depend very much on boundary conditions, force
applied and the design of layups. This is because all these factors have effects on the
actual distribution of the transversal shear. Multilayer structures make this distribution
more complicated. Thus, relatively thick laminated structures under severe load conditions

should be handled with care.




CHAPTER 4
VIBRATION ANALYSIS OF LAMINATED COMPOSITE

PLATE AND SHELL STRUCTURES

The hybrid strain laminated composite triangular shell finite elements for linear
analysis have been proposed in Chapter 2. In this chapter, these elements are adopted for
vibration analysis of laminated composite plate and shell structures. The focus is on free
vibration. The stiffness matrices of HLCTS elements have been derived and obtained
explicitly in Chapter 3. In vibration analysis element mass matrices are also required and
they are derived in this chapter.

This chapter consists of seven sections. The first section is a brief introduction and
the second section presents the derivation of consistent element mass matrices. The
sections following are the numerical studies of free vibration problems for single layer
plates, multilayer plates, single layer shells and multilayer shells, respectively. The last
section includes closing remarks.

It may be appropriate to note that in the finite element discretizations whole
structures are considered unless stated otherwise. When the whole structure is considered

a complete set of eigenvalues and eigenvectors are obtained.

4.1 Introduction
Dynamic analysis is essential in the design of modern engineering structures.

Natural frequencies, mode shapes and dynamic responses to different kinds of time-

120



121
varying loads are essential and fundamental in dealing with practical problems. The
theoretical basis of dynamic analysis of single layer isotropic structures is extended and
developed for laminated composite structures.

A series of review papers by Leissa [4.1-4.4] covered the general plate vibration
problems during the period of 1970's and earlier 80's. His two monographs [4.5, 6] had
collected enormous information on plate and shell vibration analysis, respectively. A
survey paper on shallow shell vibrations was presented by Qatu [4.7]. The general
surveys on dynamic analysis of composite structures include those of Bert [4.8-11],
Kapania and Raciti [4.12, 13] and Ren [4.14]. Several survey papers have specialized
sections on this subject. For example, Reddy has reviewed finite element modelling of
laminated composite plates [4.15] and refined theories of laminated composite plates
(4.16). Kapania has considered the analysis of laminated shells [4.17]. Yang, Saigal and
Liaw discuss on thin shell finite elements and applications [4. 18] while Noor and Burton
discuss computaiional models for multilayered composite shells [4.19].

Shear deformation theories have received considerable attention in linear vibration
analysis of laminated composite structures. A variety of solution schemes based on first
order shear deformable theory have been employed to solve vibration problems of
laminated composite plates [4.20-24). References [4.25-27] are the application of finite
elements on such structures. Examples of first order shear deformation theory used for
finite element analysis of laminated composite shell structures can be found in references
[4.28, 4.29]. An earlier report by Noor and Mathers [4.30] included shear deformation
effect for a number of displacement and mixed shear-flexible finite laminated composite

plate and shell elements when applied to linear vibration problems. For references on
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applications of high order shear deformation and other theories, readers are referred to
references [4.19] and [4.31].

Generally speaking, shell elements are more complicated than plate elements. If
layer-by -layer theories, three dimensional elastic theories and high order displacement
fields are simultaneously utilized in shell element formulations, the elements developed
are likely to be computationally inflexible for large scale finite element analysis. One of
the objectives of the current study in this chapter is to develop the mass matrices for
HLCTS elements, which have been derived in Chapter 2 and used in linear static analysis
in Chapter 3, and apply these elements to vibration analysis of laminated composite plate
and shell structures. Another objective is to assess the performance of these elements in

vibration analysis.

4.2 Element Mass Matrices

The formulations of element mass matrix are categorized mainly into lumped mass
matrix and consistent mass matrix.

The so-called lumped mass matrix is a diagonal matrix. For simple elements, it

is obtained by placing particle masses m, at the node i of the element, such that the sum

of m, is the total element mass. This method can hardly be used for higher order elements

with both rotationa: and curvature DOF in addition to the translational DOF. A
recommended lumping scheme for arbitrary elements is the Hinton-Rock-Zienkiewicz
(HRZ) lumping method [4.32] which combines the 'consistent’ and 'lumping’ schemes.

Consistent mass formulation involves using the same displacement shape functions

in forming the stiffness matrix. Consistent mass matrix produces more accurate results




123

for flexural problems and therefore it is adopted in the present investigation.

4.2.1 Shape functions

To formulate consistent mass matrix, the same shape functions or displacement
interpolation functions adopted in the derivation of element stiffness matrix are used. In
the following we use the same co-ordinate systems defined in Chapter 2.

There are two sets of displacement interpolation functions used in Chapter 2 to
formulate element stiffness matrices. They are adopted in this subsection to derive the
element mass matrix. The two sets differ only in the interpolating polynomial for w.

Equations (2.28) through (2.31) are applied here.

4.2.2 Derivation of consistent mass matrices

The general expression of consistent mass matrix is given as

m = [ pl¢I"l¢] AV @1

v

where p is the mass density and [¢] is the shape function matrix. When an element has
only translational DOF, equation (4.1) can be adopted directly. For elements which have
translational DOF, rotational DOF and DDOF, Liu and To [4.33] recommended that the

consistent mass matrix should be formulated according to the following equation

m = [ [¢]Tplle] OV @.2)
v

where
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J=p [ r2+83+1y(rs~1) | _ (4.4)
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Equation (4.3) defines the generalized mass density matrix. But, it should be noted that
the density of polar moment of inertia, J, defined in equation (4.4) is particularly for a
three-node flat triangular element with the chosen local co-ordinate.

For the laminated composite HLCTS elements, analogy to equation (4.2) is drawn

and the element consistent mass matrix is defined as

k=1

m, = 3 [ [0F [o) [o] da @.5)

where n is the total number of layers and the mass density matrix for the k'th layer is

[ plhy-hyy) O 0 00 O]
0 Pk(hk‘hk-1) 0 000
0 pk(hi-hk-i) 000

- (4.6)
el 0 0 0 1,00

0 0 6 01,0

0 0 0 00y,

68



L =1

- o -n)
k 3 ’

2 2 .
f2 +83 +7a(fy~T,) ]
Jg = Pk(hk°hk-1) [re 83183(3 ?

In equations (4.6) and (4.7a,b), h, is the layer co-ordinate in the transverse direction at

the top of the k'th layer (see Figure 2.4),

The mass matrix defined in equation (4.5) is in the local co-ordinate system shown

in Figure 2.1. Before assembling mass matrices, they should be transferred to the global
Co-ordinate system by applying equation (2.13). The consistent element mass matrix in
the global co-ordinate is then

The above consistent element mass matrices are derived and obtained explicitly

by using the computer algebra packages MACSYMA f4.34). There are no numerical

integrations involved. The explicit expressions are consistent with the element stiffness

matrices developed in Chapter 2. Thus, the HLCTS elements obtained for vibration

analysis are entirely in explicit expressions.,

Using the mass matrices derived in this subsection and the stiffness matrices

derived in Chapter 2, one can compose six elements for vibration analysis of laminated

composite plate and shel] structures. These elements are denoted

by HLCTS,*, HLCTS ¥,
HLCTS *, HI.CTS *, HLCTS %

and HLCTS* where the meaning of the superscripts q,
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that only the mass corresponding to translational DOF has been considered in the mass
matrix formulation.

When HLCTS elements are employed for vibration analysis of single layer plate
and shell structures of isotropic materials, the HLCTS,* element reduces to that using

formulation 16 proposed by Liu and To in reference [4.33].

4.3 Vibration Analysis of Single Layer Plates

In this section, the results of free vibration analysis of single layer isotropic plate
problems by using the HLCTS elements are presented. The chosen examples are a square
plate and a rhombic plate. The plates are investigated under the boundary conditions of
simply supported at four sides, fully clamped at four sides and cantilevered.

For plate flexural vibration, the two in-plane DOF, U and V, and the DDOF of
the HLCTS elements are constrained. 'the DOF left for HLCTS elements are associated
with the bending part, that is, the transversal displacement W and two rotational DOF,
©, and 8,. Therefore, only the HLCTS %, HLCTS," and HLCTS,* elements are used in
the investigation.

For the analysis of single layer isotropic plates in this section, the shear correction
factor is set to x = 5/6 for all of the cases.

Before describing the details of the free vibration analysis of different sample
cases, it should be mentioned that a single element test has been conducted to detect rigid-
body modes and zero energy modes. In the test, all the eighteen element DOF are left

free. The results are: the HLCTS, %, HLCTS, and HLCTS ele. .ents have six rigid-

body modes and have no zero energy modes; the HLCTS, %, HLCTS* and HLCTS*
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elements have six rigid-body modes and two zero energy modes; the BT? and BT
elements have six rigid-body modes and three zero energy modes. The zero energy modes
are all associated with the in-plane torsional rotations. In other words, the BT elements
developed in Chapter 2 have three zero energy modes; the HLCTS™ and HLCTS"
elements have two zero energy modes and the HLCTS* and HLCTS" elements do not
have any zero energy modes. Thus, the improved formulation of DDOF by displacement

approach introduced in subsection 2.6 has eliminated the spurious modes from the

elements.

4.3.1 Free vibration of square plates

The plate considered here is an isotropic square plate with side lengthb = 1.0 m
and thickness h = 0.005 m. Its material properties are: Young's modulus E = 2.0 X
10'! N/m?; Poisson's ratio v = 0.3 and mass density p = 7800.0 kg/m°.

Four different meshes, 2 X 2D, 4 X 4D, 6 X 6 D and 8 X 8 D shown in
Figure 4.1, are used to discretize the entire plate. The global co-ordinate system for the
finite element model is also shown in the figure.

Firstly, consider the case of a plate simply supported on four sides. The boundary
conditions are: W = 0.0 at all simply supported edges, 8, = 0.0 at the edges paraliel to
Y axis and 8, = 0.0 at the edges parallel to X axis. All DOF at four comers of the plate
are constrained. The first three natural frequencies obtained by using HLCTS elements
are given in Table 4. 1. The frequencies are presented in a dimensionless parameter form.

The frequency parameter is defined as
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Figure 4.1 Four meshes and the co-ordinates for square plates
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Table 4.1 First three dimensionless natural frequencies

of the simply supported isotropic square plate

mode sequence

i
L T
e o o
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Q = 2nf 22 (1_2911‘_"22)"2 . 4.9)
h E
where f is the natural frequency in Hz, b is the side length of the square plate, h is the
thickness of the plate. In the table, neq. is the total number of equations of the
constrained system. Analytical solutions [4.35] are included in the table for comparison,
The results obtained show clearly that the HLCTS,* element converges faster than
HLCTS,". This is due to the use of quadratic polynomials in the displacement field of the
translational DOF w. The quadratic approximation of the transversal displacement field
is more accurate than linear approximation. When using the four meshes, 2 X 2 D, 4 X
4 D, 6 X 6 D and 8 x 8 D, the dimensionless frequency parameters for the first natural
frequency obtained by using the HLCTS,* element differ from the analytical solution by
11.2%, 2.8%, 1.3% and 0.8%, respectively, while HLCTS,"' results differ by 40.6%,
8.4%, 3.7% and 2.1%. For the second and third modes, the HLCTS % element with the
8 X 8 D mesh overestimates the analytical solution by 2.4%. In this case, the HLCTS,%*
results are almost identical to those using HLCTS,%. The small differences appear only
after the third or fourth decimal places. This implies that whether the moment of inertia
and the in-plane rotary inertia are included in the consistent element mass matrix
formulation or not, there is virtually no significant difference in this particular case.
The second case is a fully clamped square plate. The same plate analyzed above
is now clamped at four sides. The clamped boundary conditions are imposed by
constraining all the DOF at the four sides of the plate. The HLCTS rcsults are given in
Table 4.2 together with the analytical solution from reference [4.35].

As expected, slightly larger discrepancies are found with the same mesh for the
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Table 4.2 First three dimensionless natural frequencies

of the fully clamped isotropic square plate

1936.13 1936.13

125.45 125.45

90.05 90.05

81.98 81.98

HLCTS*

oy m T
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simply supported case. For the HLCTS,* results, they overpredict the fundamental
frequency reported in reference [4.35] by 16.5%, 7.0% and 3.9% with 4 X 4 D, 6 X
6 D and 8 X 8 D meshes, respectively. The corresponding discrepancies given by
HLCTS Y are 25.1%, 10.2 and 5.6%. Since there are few equations leftin the2 X 2 D
mesh model, the result is not considered. To obtain more accurate result, either finer
mesh for the plate or finer mesh near the clamped boundaries should be implemented.
Having analyzed the simply supported and clamped square plates, the natural
frequencies for a cantilever plate are computed. The geometrical and material properties
of the plate remain the same. Now only one side of the square plate is clamped. On this
edge, all DOF are constrained and on the other three edges W, 8, and 8, are left free.
Calc'..ced dimensionless natural frequencies for the cantilever plate are given in
Table 4.3. In predicting the fundamental natural frequency and using the four meshes
listed in the first column of the table, the respective discrepancies with respect to the
analytical solution given in reference [4.35] are 4.7%, 1.2%, 0.4% and 0.1% for
HL7TS % results and 3.7%, 1.0%, 0.3% and 0.1% for HLCTS” results. The
comparison shows excellent agreement between HLCTS resuits and analytical solution.

High convergence rate is also seen in this case.

4.3.2 Free vibration of rhombic plates
To further examine the performance of the HLCTS elements in the analysis of
single layer isotropic plates, rhombic plates are studied. An example is shown in Figure

4.2. The side length of the rhombic plate is L = 1.0 m. The thickness h is 0.005 m. The
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Table 4.3 First three dimensionless natural frequencies

of the cantilevered isotropic square plate

mode sequence




134

5

30°

L
A -

Figure 4.2 An isotropic single layer rhombic plate

skew angle is 30 degree. Its material properties are the same as the square plate
considered above.

In the finite element analysis, a global co-ordinate system is attached to the
rhombic plate as shown in Figure 4.2. Four meshes, 2 X 2D, 4 X 4 D, 6 X 6 D and
8 x 8 D are used to model the plate. Two typical mesh layouts are given in Figure 4.3.
The rhombic plate is analyzed under three different boundary conditions, simply
supported at four sides, fully clamped and cantilevered.

When the rhombic plate is simply supported at four sides, the boundary conditions



(@) 2 x2 D mesh

(b) 4 X 4 D mesh

Figure 4.3 Two typical meshes for rhombic plates
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are not straight forward. Here, W is zero at all four simply supported edges. For
rotational DOF, ©, equals zero at the edges parallel to X axis. However, the two
rotational DOF 8, and 8, are unconstrained at the two inclined edges. All DOF at four
corners of the plate are constrained.

Table 4.4 shows the first three natural frequencies obtained by using HLCTS
elements. The frequencies are presented in the form of dimensionless frequency parameter
which is defined by equation (4.9) with b replaced with L in this case. The HLCTS
results are compared with the analytical results from reference [4.36]. By using the 8 X
8 D mesh with HLCTS,* and HLCTS elements, the fundamental frequency results
differ from the analytical solution by 4.1% and 5.5%, respectively.

For the fully clamped rhombic plate, ali the DOF at the clamped edges are
constrained. Numerical results are given in Table 4.5. With the 8 X 8 D mesh and the
first mode, the HLCTS,% result differs the analytical solution [4.36] by 4.7% and the
HLCTS," result differs by 6.6%. The trend is the same as for the fully clamped square
plate.

Finally, the dimensionless frequency parameters caiculated by using HLCTS
elements for the ¢ .tilevered case are reported in Table 4.6. For 8§ x 8 D mesh and the
first mode, the HLCTS,* result overestimates the analytical solution by 0.6% and the
HLCTS,* result overestimates by 0.5%. For the second mode, the discrepancies are

-5.4% and -5.2%, respectively. Both results underestimate the analytical ones.

4.4 Vibration Analysis of Multilayer Plates

This section presents numerical results for laminated plates with different
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Table 4.4 First three dimensionless natural frequencies

of the simply supported isotropic rhombic plate

mode sequence

2




Table 4.5 First three dimensionless natural frequencies

of the fully clamped isotrepic rhombic plate

mode sequence

1502.14 1898.46

127.76 153.25

97.00 122.76

89.39 114.33

1934.19

157.17

105.01

93.37

1502.26 1898.53

127.77 153.27

97.01 122.77

89.39 114.34

{ ref. [4.36]
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Table 4.6 First three dimensionless natural frequencies

of the cantilevered isotropic rhombic plate

mode sequence
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lamination schemes, boundary conditions and aspect ratios. A nine layers crocs-ply
symmetrically laminated square plate, an eight layers antisymmetric laminated angle-ply
square plate, and a four layers antisymmetric laminated angle-ply rectangular plate with
different side-length ratios and length to thickness ratios are studied. The HLCTS results
are compared with analytical or other finite element solutions that are available in the

literature.

4.4.1 Vibration of nine layers cross-ply plate

A nine layers cross-ply symmetrically laminated square plate with fibre orientation
(0/90/0/90/0/90/0/90/0) is chosen for free vibration analysis. The side length, b, of the
plate is 1.0 m (39.37 in). The total thickness of the 0° and 90° layers is the same. The
thickness of the laminate is h = 0.01 m (0.3937 in). The material is the high modulus
graphite/epoxy composite with E,/E, = 40, G,,/E, = 0.6 and G,,/E;, = Gy/E, = 0.5,
in which E, = 2.0685x10"" N/m? (3.0%10” psi), p = 1605 kg/m’ (0.058 Ib/in®) and
Poisson's ratio v, = 0.25.

In this first case, the plate is simply supported at four sides. The whole plate is
modeled by the four finite element meshes shown in Figure 4.1. The shear correction
factors are k, = ks = (5/6)'. The boundary conditions are the same as for the single
layer S4 plates (sce subsection 4.3.1). The HLCTS element results are given in Table 4.7.

Here, the dimensioniess frequency parameters are defined by

Q =2xfb

12
-P-] x 10 . (4.10)
E,




of the 9-layers cross-ply S4 plate

mode sequence

Table 4.7 First three dimensionless natural frequencies

2.08427

2

6.48111

6.83126

1.92484

5.55288

6.00242

1.89712

5.25759

5.70811

2.62976

1.88774

5.17046

13.29262

5.62086

13.92842 |

2.02886

6.35132

6.00242

1.94123

5.56773

5.70811

1.91216

5.33761

6.48249

5.62086

5.55397

6.00359

1.89728

5.25862

5.70922

1.88790

5.17147

5.62195

6.83270 |
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The analytical solution for the first mode in the table is taken from reference [4.30] in
which shear deformation was considered. There is no analytical solution available for the
second and third modes. The HLCTS * results for the first mode differ from the
analytical one by 10.5%, 2.1%, 0.6% and 0.1%, respectively, forthe2 x 2D, 4 x 4
D, 6 X 6 D and 8 x 8 D meshes. The corresponding discrepancies given by HL.CTS *
results are 39.5%, 7.6%, 2.9% and 1.4%. It shows consistently that the HLCTS, %
element has a better performance than the HLCTS * element.

To compare the HLCTS,% element with other finite elements, the numerical
results for the same problem obtained by different finite element models are included in
Table 4.8. Those other finite element results are taken from reference [4.30]. The
elements are all shear-deformable type and vary in formulation, element shape, and
approximation of the displacement field. The relatively detailed descriptions of these
elements are tabulated in Table 4.9. Table 4.8 shows the convergence trend of each
element. The HLCTS,* element is the simplest element listed in the table. Although it
is difficult to make direct comparison when the element shape and number of nodes are
different, the accuracy and efficiency can be compared when the total number of DOF
of a finite element model is taken into consideration. It seems that the HLCTS, % element
results converge faster than the ST6 (displacement type, triangular, 6 nodes, 18 DOF per
element), MT3 (mixed type, triangular, 3 nodes, 24 DOF per element), SQ4
(displacement type, quadrilateral, 4 nodes, 12 DOF per node), SQ8 (displacernent type,
quadrilateral, 8 nodes, 24 DOF per element), SQ9 (displacement type, quad:ilateral, 9
nodes, 27 DOF per element) and comparable to all the remaining elements including

high-order elements, such as ST10 (displacement type, triangular, 10 nodes, 30 DOF per
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Table 4.8 Comparison of the convergence on the dimensionless fundamental natural

frequency of the 9-layers cross-ply S4 plate by using different finite elements

mesh (quarter plate)

I x3 4 X4

analytical [4.30] 1.88576 :



element

Table 4.9 Description of characteristics of the shear-flexible

formulation

displacement

element shape

quadrilateral

finite elements listed in Table 4.8

approximation

bilinear

number
of
nodes
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displacement

triangular

quadratic

displacement

quadrilateral

quadratic

displacement

quadrilateral

quadratic

displacement

quadrilateral

quadratic

displacement

triangular

cubic

displacement

quadrilateral

cubic

displacement

quadrilateral

product of first-order
Hermitian polynomials

mixed

triangular

linear

mixed

quadrilateral

bilinear

mixed

tniangular

quadratic

hybrid

triangular

quadratic for
transversal

|displacement, linear for]

rotations
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element). For example, the MT6 element case has 200 DOF with a2 X 2 mesh and prior
to the application of boundary conditions while the HLCTS,* element model has only 123
DOF with a 4 X 4 D mesh, and yet their results are in excellent agreement.

The nine layers cross-ply laminated square plate is then analyzed with the fully
clamped and cantilevered boundary conditions. The boundary conditions imposed to finite
element models are the same as for the single layer counterparts in subsection 4.3.1. The
results are presented in Table 4.10 and Table 4.11, respectively. There is no analytical
or finite element solution for comparison in the C4 and CFFF cases. In Table 4.10, the
frequency parameter results are defined in equation (4.10). However, in Table 4.11, they

are given as

12
Q=2nfb L] x 100 . 4.11)
G

4.4.2 Vibration of eight layers angle-ply plate

An eight layers angle-ply square plate is considered in this subsection. The plate
is antisymmetrically laminated with a 45 degree angle (45/-45/45/-45/45/-45/45/-45). The
side length of the plate is b = 1.0 m and the thickness is h = 0.01 m. The thickness of
each layer is 0.01/8 m. The material properties are E,/E, = 40, G,/E, = G,/E, = 0.6
and G,/E, = 0.5, in which E; = 2.0685x10'' N/m? (3.0x 107 psi), p = 1605 kg/m’
(0.058 1b/in®) and Poisson's ratio v,; = 0.25. The plate is simply supported at four sides.
The entire plate is modeled in the finite element analysis. The boundary conditions

imposed to finite element models are the same as for previous S4 plates. The shear
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Table 4.10 First three dimensionless natural frequencies

of tne 9-layers cross-ply C4 plate

mode sequence

17.0777 27.8824 27.9487

4.5920 10.2280 10.8644

| 6 X6D 4.2712 8.7165 9.3168

L 4.1768 8.3357 8.9238

|

18.2221 33.4794 33.5038

4,9001 11.9939 12.6767

4.3907 9.2996 9.9290

4.2414 8.6385 9.2435
- a - Il
’- 1 s | 278860 1 zresz
| 4x4D 75 4.5925 10.2304 10.8670
i! 6 x 6D 183 4.2716 8.7184 9.3189
J 8 x 8D 339 4.1772 8.3375 8.9257




Table 4.11 First three dimensionless natural frequencies

of the 9-layers cross-ply cantilever plate

28.6511

27.4863

27.1613

39.3530

29.6046

27.8890

27.3852

28.6551

27.4900

27.1649
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correction factors are x, = x; = (n%/12)",
Results by using HLCTS elements are reported in Table 4.12. The first three

natural frequencies are given in dimensionless frequency parameters defined by

Q = 2at 22 (-&]m . @.12)
h (E

This problem has been solved in reference [4.37) by applying the first-order shear
deformation plate theory (FSDPT) and the high-order shear deformation plate theory
(HSDPT). The corresponding results are included in the table for comparison. The
HLCTS, ™ results differ from the FSDPT solution by 12.7%, 4.2%, 2.8% and 2.3%,
respectively, for the 2 X 2 D, 4 X 4 D, 6 X 6 D and 8 X 8 D meshes. The
corresponding discrepancies given by the HLCTS " element are 42.0%, 9.8%, 5.2% and
3.6%.

4.4.3 Vibration of four layers angle-ply plate

A four layers antisymmetric, angie-ply laminated rectangular plate is considered
here for the effects of plate aspect ratio (a/b) and length to thickness ratio (a/h) on the
fundamental frequency of the plate. The lamination scheme of the simply supported plate
is (45/-45/45/-45). Every ply of the laminate has an equal thickness. The layer material
properties and shear correction factors are the same as the nine layers cross-ply square
plate in subsection 4.4.1.

Firstly, the plate with geometrical properties, a = 2.0 m, b = 1.0 mand h =
0.04 m is analyzed by using the HLCTS elements. The entire plate is discretized by five

finite element meshes, 4 X 2D, 6 X 3D, 8 x 4D, 10 X S D and 12 X 6 D. The first
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Table 4.12 First three dimensionless natural frequencies of

the simply supported eight layers angle-ply square plate

mode sequence

2

35.750

148.149

148.149

27.646

71.505

71.505

26.474

63.211

63.211

26.090

28.385

60.748

60.748

e

73.113

26.237

62.512

25.877

59.702

25.760

58.859
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integer is the number of elements on side a and the second is on side b. The

dimensionless frequency parameter results are given in Table 4.13. They are defined by

Q - 2af & (_P_]m i (4.13)
h \E
The analytical solution from reference [4.38] is also presented.

By ciznging the width and thickness of the rectangular plate, different aspect
ratios and length to thickness ratios are studied. In this analysis, one quarter of the plate
is modeled by the HLCTS,% element. A 7 X 5 D mesh is used for the quarter plate
which has an aspect ratio a/b = 1.4. When a/b = 1.0 and 2.0, the 5 X 5§ D and 10 X
S D meshes are employed, respectively. The computed fundamental frequency parameters
are given in Table 4.14. The frequency parameter is given by equation (4.13). For
comparison, finite element results from reference [4.39] and analytical solutions from
reference [4.38] are also included in the table. Clearly the agreement between the present

results and those from references [4.38, 39] is excellent.
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Table 4.13 First three dimensionless natural frequencies of

the simply supported four layers angle-ply rectangular plate

mode sequence

158.545
144.967

141.141
139.457
138.553

119.742 204.410
102.769 162.452
97.767 150.262
95.600 145.081
142.379

158.724 "
145.244
141.299
139.613
138.709

ref. [.Ré]




Table 4.14 Effects of plate aspect ratio (a/b) and length-to-thickness
ratio (a/h) on the dimensionless fundamental frequency parameter

of a simply supported four layers angle-ply (45/-45/45/-45) rectangular plate

“ | source

HLCTS,* ref. [4.39] ref. [4.38)

j 20 42.798 46789 46.26
Z 30 49.828 51.132 49.98
| 40 53.278 53.012 51.52
i 50 55.145 53.989 52.29
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4.5 Vibration Analysis of Single Layer Shells
This section deals with single layer isotropic shell problems. Free vibration
analysis of a cyIindrical shell panel and a spherical shell segment is performed. The shells
are analyzed undcr simply supported and fully clamped boundary conditions. For the
analysis of single layer isotropic shells employing the developed HLCTS elements, the

shear correction factor is x = 5/6.

4.5.1 Free vibration of cyiindrical shells

An isotropic single layer cylindrical shell panel shown in Figure 3.12 is
considered. This panel has a square projection plane with side length b = 1.0 m, where
b is L in Figure 3.12. The radius of the shell is R = 10.0 m and the thickness of the
shell is h = 0.005 m. Thus, one has the ratios R/b = 10 and b/h = 200. The open angle
of the panel i1s 2¢ = 5.73197 degree. The material properties of the panel are: Young's
modulus E = 2.0 x 10" N/m?, Poisson's ratio v = 0.3 and the density p = 7800.0
kg/m’.

Figure 3.12 shows 22 X 2 D mesh for one quarter of the cylindrical shell panel.
Similar to the 2 X 2 D mesh, meshesof 3 X 3D, 4 Xx 4 Dand 5 X 5 D are also
considered for the quarter shell panel. The global co-ordinate systems for the finite
element model is shown in the figure.

For the case that the panel is simply supported on both curved and straight sides,
the boundary conditions applied to the finite element model are: U = W = e, =0.0at
curve AB, V = W = 8, = 0.0 at straight edge BC, V = 8, = 8, = 0,0 at symmetry

curved line CD and U = 8, = € = 0.0 at symmetry straight line AD. For the four
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comners, V and 8, are free at point A. All DOF are constrained at point B. U and 8, are
free at point C. W is free at D. With this set of boundary conditions imposed, one can
solve for doubly symmetrical modes of the simply supported cylindrical shell panel.
The first three natural frequencies of the double symmetric modes of the panel are
obtained by using HLCTS elements and the numerical results are given in Table 4.15.

The frequencies are non- Jimensionalized by
Q = 2xf R (p/E)® , 4.15)

where Q is the frequency parameter and f is the natural frequency in Hz. An
approximated analytical solution from reference [4.36] for the first double symmetric
mode is included in the table for comparison.

The HLCTS element family consists of eight elements for use in vibration analysis
of single layer and laminated composite shell structures, They are HLCTS,*, HLCTS,",
HLCTS%, HLCTS, %, HLCTS ", HLCTS, %, BT 9 and BT 2. Though, in the analysis these
elements give different predictions, the major difference is due to the quadratic or linear
displacement field adopted for the transversal deflection DOF w. This can be seen clearly
from Table 4.15. The results presented in the table indicate that the elements with
quadratic w are more accurate. This trend is more profound in coarse mesh cases. The
results in Table 4.15 also show a rapid convergence rate. For example, the first doubly
symmetric moue HLCTS% results of 0.59662, 0.58532 and 0.58465 are obtained,
respectively, by using 2 X 2D, 4 X 4 T and 5 X 5 D meshes. The corresponding
differences compared with the value of 0.58242 from reference [4.36) are 2.44%, (0.50%
and 0.38%. In the case of using 2 X 2 D mesh, there are only 47 active DOF. The

HLCTS," element overestimates the approximated analytical solution by 8.01%, 1.81%
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and 1.20%, respectively, with the meshes2 X 2D, 4 X 4Dand5 X 5 D.

Table 4.16 contains the HLCTS results for a fully clamped single layer isotropic
cylindrical panel. The panel has the same material and geometrical properties as the
simply supported one. One quarter of the panel is solved. All DOF at the curved and

straight edges are constrained.

4.5.2 Free vibration of spherical shells

An isotropic single layer spherical shell segment shown in Figure 3.13 is
considered. This spherical shell segment is doubly curved and has a square projection
plane with side length a = 1.0 m. The radius, R is 10.0 m and the thickness, b is 0.005
m. Thus, the ratios R/a = 10 and a/h = 200. The material properties of the shell are:
Young's modulus E = 2.0 x 10" N/m?, Poisson's ratio v = 0.3 and the density p =
7800.0 kg/m’.

In the following the spherical shell segment simply supported on its four curved
edges is considered first. Taking one quarter of the shell for analysis, one may model the
shell withthe 2 X 2D,3 X 3D, 4 X 4D and 5 X 5 D meshes. The simply supported
ooundary conditions are: V = 8, = 8, = 0.0 at symmetry line AB, V=W =8, = 0.0
at curve edge BC, U = W = 8, = 0.0at curveedge CDand U = 6, = 8, = 0.0 at
symmetry line AD. For the four corners of the finite element model ABCD, all DOF are
constrained except W at point A, the centre of the shell segment. U and 8, are free at
point B. Ali DOF are constrained at C while V and 8, are free at point D. Note that these

boundary conditions are for doubly symmetrical raodes.
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Table 4.15 First three dimensionless natural frequencies for the doubly symmetric

modes of the simply supported isotropic cylindrical shell panel

0.59662

HLCTS * 47 0.62910

HLCTS 47 0.59668 1.8784 2.1080
HLCTS * 47 0.59646 1.8779 2.1067
HLCTS * 47 0.62893 2.5973 2.9134
HLCTS 47 0.59648 1.8782 2.1070

0.59282

0.58532

HLCTS ™ 191 0.59295

HLCTS® 191 0.58533 1.5768 1.8161

HLCTS * 191 0.58528 1.5767 1.8158

HLCTS," 191 0.59291 1.6857 1.9414

HLCTS 191 0.58529 1.5768 1.8160
BTJ 191 0.58394 1.5765 1.8146

BT}

HLCTS ¢

0.58395

0.58465

HLCTS

0.58943

HLCTS "

0.58466

HLCTS %

0.58462

HLCTS, "

0.58947

0.58463

BT 3

0.58372

BT

{ HLCTS

0.58373

ref. [4.36] T 0.58242 — :
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Table 4.16 First three dimensionless natural frequencies for the doubly symmetric

modes of the fully clamped isotropic cylindrical shell panel

HLCTS
HLCTS®
HLCTS "

HLCTS %

HLCTS ¥

HLCTS ¥

HLCTS %

HLCTS

HLCTS®
BT,
BT3

HLCTS %
HLCTS ¢
HLCTS
HLCTS *
HLCTS *
HLCTS "
BT
BTS?
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Table +.17 shows the numerical values of the first three non-cdimensional
frequency parameters corresponding to the first three doubly symmetric modes. The
frequency parameters have been defined in equation (4.15). In the table, the result from
reference [4.36] for comparison is an approximated analytical solution for the first mode.

Similar to the cylindrical panel, very good agreement between the HLCTS results
and the approximated analytical solution can be found in the table. In the case of using
the 5 X 5§ D mesh and comparing with the solution from reference [4.36], the
discrepancies in predicting the fundamental frequency are 0.15% by using HLCTS,%,
HLCTS, %, HLCTS, " and HLCTS*, 0.98% by HLCTS Y and HLCTS ", 0.13% by BT 9
and BTS. For the coarse 2 X 2 D mesh with 47 active DOF, the HLCTS % element
result differs the approximated analytical solution by 1.03%. For the 4 X 4 D mesh, this
difference is 0.34%.

It is also observed that the fundamental frequency of the single layer spherical
segment is about 79% higher than that of the single layer cylindrical shell panei
investigated in previous subsection. This is because the double curvatures has stiffened
the simple structure.

The single layer spherical shell segment is then considered for fully clamped
boundary conditions. One quarter of the shell is solved for the first three doubly
symmetric frequencies. The resulting dimensionless frequency parameters defined by
equation (4.15) are given in Table 4.18. It is noticed that the fundamental frequencies
predicted by the HLCTS,* element differ each other by 0.52% or less. For the HLCTS ¥

element, they are not more than 2.52%. Th= number of active DOF in the three finite
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Table 4.17 First three dimensionless natural frequencies for the doubly symmetric

modes of the simply supported isotropic spherical shell segment

sor 1T ~ S mode sequence
1llIIl|llllllll||||||ll|EIiﬁ!i||||||||||||||||||||||||
HLCTS ¥ 47 1.0545 2.1307 |
HLCTS ¢ 47 1.1119 2.9470 ‘
HLCT3 47 1.0545 2.1310
HLCTS * 47 1.0543 2.1297 2.1352
HLCTS," 47 1.1116 2.9456 2.9532
HLCTS® 47 1.0543 2.1300 2.1355
BT 47 1.0529 2.1233 2.1294
BT? 47 1.0529 2.1235 2.1296 |
4% 4D 7
HLCTS * 191 1.0472 1.864 1.8701 {
HLCTS " *91 1.0608 1.9935 1.9991 |
| HLCTS¥ 191 1.0472 1.8647 1.8703 |
| HLCTS® 191 1.0471 1.8643 1.8699 |
HLCTS,* 191 1.0608 1.9933 1.9993 ‘
HLCTS® 191 1.0472 1.8645 1.8701
BT 9 191 1.0468 1.8630 1.8687 |
BTJ 191 1.0469 1.8632 1.8689 1‘

HLCTS "
HLCTS %
HLCTS,*

HLCTS ™
HLCTS *
BT ¢
BTJ
ref. [4.36)
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Table 4.18 First three dimensionless natural frequencies for the doubly symmetric

modes of the fully clamped isotropic spherical shell segment

HLCTS %

HLCTS "

HLCTS

BT?

T

BT?

HLCTS 169 1.4738 2.4843 2.5463 |
HLCTS “ 169 1.5015 2.6898 27481 |
| HLCTS* 169 1.4736 2.4847 2.5466 |
| HLCTS® 169 1.4735 2.4842 2.5462 |
| HLCTS!® 169 1.5014 2.6896 2.7479 |
. HLCTS® 169 1.472 2.4845 2.5465 |
BT, 169 1.4726 2.4829 2.5455
BT, 169 1.4727 2.4832 2.5458 |
—— e ey __ Pysge— Eapeeppers 1
HLCTS® | 271 1,4740 2.3836 24579 |
HLCTS, ¢ 271 1.4921 2.5027 2.5751
HLCTS % 271 1.4741 2.3839 2.4582 i
HLCTS % 271 1.4740 2.3835 2.4579
HLCTS * 271 1.4921 2.5026 2.5750
HLCTS * 771 1.4740 2.3848 2.4581
BTj 271 1.4733 2.3825 2.4574
_BTS | 271 1.4733 2.3828 2.4577
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element models are 91, 169 and 271, respectively. This once again shows the rapid

convergence rate.

4.6 Vibration Analysis of Multilayer Shells

In this section, free vibration behaviours of laminated composite shell structures
are studied. A two layers antisymmetric angle-ply laminated cylindrical panel, a four
layers symmetric cross-ply laminated cylindrical panel and a nine layers s ymmetric cross-
ply laminated spherical shell segment are included. The results by using HLCTS elements

are compared with the existing solutions in the literature.

4.6.1 Free vibration of multilayer cylindrical shells

The first case considered in this subsection is a two layers antisymmetric, angle-
ply cylindrical shell panel. The shell panel is constructed by two equal thickness layers
with fibre orientation of (60/-60). The quantities in the bracket are in degree and
measured from the positive direction of’the X axis (see Figure 3.12 where L is b here).
The cylindrical shell panel has a square projection plan with side length b = 1.0 m. The
total thickness of the shell is h = 0.05 m. The radius is R = 2.8794 m and the open
angle is 2¢ = 20 degree. The radius to side length ratio R/b = 2.8794 and the side
length to thickness ratio b/h = 20. The material used is graphite/epoxy composite with
the moduli ratios: E\/E, = 40, G,)/E, = G 4/E, = 0.6, Gp»/E, = 0.5. The material
properties are

E, = 2.0685x10" 1\t/m2;,(3.0x107 psi),

p = 1605 kg/m’ (0.058 Ib/in%; and v,, = 0.25.
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The cylindrical shell panel is simply supported. However, it is different from those

studied above. For this shell panel, U or V perpendicular to the boundary edges are also
conswained. One quarter of the panel is analyzed. Symmetry conditions are applied. The
details of the constraints are: V = W = 8, = 0.0 atcurve AB, U =W =6, =(0.0at
straight edge BC, V = 8, = 8, = 0.0 at curved symmetry lineCDand U = 8, = 8,
= (.0 at straight symmetry line AD. The constraints for the four comers are the same
as those for the single layer isotropic cylindrical panel in subsection 4.5.1. The shear
correction factors are x, = kx; = (x%/12)'2,

Table 4.19 contains results by using 2 X 2 D and 4 X 4 D mesh of HLCTS
elements. It also contains analytical result from reference [4.40]. The latter gave the
dimensionless frequency parameter of the first mode as 18.80. The parameter is defined
by equation (4.12). In the analysis, the 4 X 4 D mesh results differ from the analytical
solution by no more than 2.20%.

The second laminated cylindrical shell panel considered is a four layer symmetric
cross-ply cylindrical shell panel (see Figure 3.12 where L is b here). The shell is
constructed by four layers with the fibre orientation in zero and ninety degree directions
(0/90/90/0). The geometrical properties of the panel are: R = 1.270 m (50 in), b =
0.254 m (10 in), h = 0.00254 m (0.1 in). Thus, one has R/b = § and b/k = 100. The
layer material properties are

E, = 5.1713x10'® N/m? (7.5 % 10° psi),
p = 27680 kg/m* (1.0 Ib/in’) and v,, = 0.75.
The moduli ratios are E,|/E;, = 25, G,/E, = G;3/E, = 0.5, G,/E, = 0.2.

The cylindrical shell panel is simply supported on four sides. One¢ quarter of the
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shell is solved in the current study. The boundary conditions imposed are the same as

those specified in subsection 4.5.1 for the single layer simply supported cylindrical shell

panel. The shear correction factors are unity. The HLCTS element results with 2 X 2 D

and 4 X 4 D meshes are presented in Table 4.20. The results are given in dimensionless
frequency parameter defined in equation (4.12). The analytical solution for this problem
reported in reference [4.41] is 20.360 for the first mode. This Navier-type solution was
obtained based on the higher-order shear deformation theory. The HLCTS zlement results

n the table differ from the analytical one by no more than 1.3%.

4.6.2 Free vibration of multilayer spherical shells
As shown in Figure 3.13, the laminated spherical shell segment considered here
has a square projection. The spherical shell is a nine layers cross-ply laminate with fibre
orientation (0/90/0/90/0/90/0/90/0). The spherical shell segment is symmetrically
laminated. The side length, a, of the shell segment is 1.0 m (39.37 in). The total
thickness of the 0° and 90° layers is the same. The thickness of the laminate is h = .01
m (0.3937 in). The material of the laminate is high modulus graphite/epoxy composite
with E\/E, = 40, G,/E, = 0.6 and G,,/E, = G,,/E, = 0.5, in which
E, = 2.0685x 10! N/m? (3.0x10 psi),
p = 1605 kg/m* (0.058 1b/in®)
and Poisson’s ratio v,, = 0.25.
The shell segment is simply supported at four sides. One quarter of shell segment
is modeled. Three finite element meshes: 2 X 2 D, 3 X 3 D and 4 X 4 D are

considered. The shear correction factors are x, = ks = (5/6)'%. The boundary conditions
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Table 4.19 First three dimensionless natural frequencies for the doubly symmetric

modes of the simply supported 2-layers angle-ply cylindrical shell panel

HLCTS

mode sequence

HLCTS, ¢

HLCTS*

HLCTS

HLCTS,"®

HLCTS®

68.417

70.789

68.621

68.361

70.734

68.566

65.710

65.9463
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Table 4.20 First three dimensionless natural frequencies for the doubly symmeiric

modes of the simply supported 4-layers cross-ply cylindrical shell panel

HLCTS ¥

mode sequence

92.300

HLCTS M

124.107

153.930

HLCTS%

92.350

116.546

HLCTS*

92.283

116.498

HLCTS "

124.086

153.928

HLCTS

92.334

116.544

91.796

116.478

116.525 ’

HLCTS ¥

118.262

HLCTS *

111.381

HLCTS 3

111.341

HLCTS,*

118.262

HLCTS

111.381

BT ¢

111.338

BT?

ref. [4.41]

111.378
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are the same as for the single layer spherical shell segment studied in subsection 4.5.2.
The HLCTS element results are given in Table 4.21. The numerical values in the table
are dimensionless frequency parameters which are defined in equation (4.11) with b
replaced by h. The analytical solutions for the first three doubly symmetrical modes in
the table are from reference [4.30] in which shear deformation was considered. For the
first mode and by using 4 X 4 D mesh, results applying the HLCTS elements with
quadratic polynomial for w converged at the same value 0.242C which differs from the
analytical solution by 0.37%. The results applying two elements with linear displacement
field for w converged to 0.2451 which is 1.66% higher than the analytical one. When
using .2e coarse mesh, 2 X 2 D, the respective discrepancies given oy these two groups
of elements are about 2.57% and 8.09%. Tnat is, the HLCTS elcments with quadratic
field for w converge faster than those with linear field. The 2.57% discrepancy also
indicates that the elements are very efficient as there are only 47 active DOF for this 2
X 2 D mesh model. For the higher modes, it can be seen in the table that refined meshes
are required for more accurate result.

A comparison with other finite elements is shown in Table 4.22. The elements
include ST6, SQ8, SQ9, SQl1, ST10, SQI2 and SQH. Their properties and
characteristics have been described in Table 4.9. The respective number of DOF for ihe
elements are 30, 40, 45, 55, 50, 60 and 80. The elements are of shear deformable type.
For brevity, the first and second doubly symmetric natural frequencies expressed in the
frequency parameter by equation (4.11) with b replaced by h. are given in the table. As

the other HLCTS element results for this problem are presented in Table 4.21 only the

results of HLCTS,* are included iz the table. The other finite element results and
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analytical solutions in the table are from reference {4.30]. Since the SQ4 results are much
different from the analytical solutions they are not reported here. The overall performance
and efficiency of the HLCTS,* element is the best in Table 4.22.

The non-dimensionalized frequency parameters for the fully clamped spherical
shell segment are include in Table 4.23. All the geometrical and material properties
remzin the same as the simply supported one investigated above. It may be noted that

there is no analytical or numerical solution available in the literature.

4.7 Remarks

In this chapter, the consistent mass matrices for HLCTS elements have been
developed. The following points should be mentioned.

(1) Together with the element stiffness matrices developed in Chapter 2, the
HLCTS elements are all in explicit expressions. There ic no numerical inversion or
integration involved.

«2) The HLCTS elements have been applied to solve free vibration problems of
single layer and multilayer plates and shells in this chapter. These elements show
excellent performance. The comparisons made to the analytical solutions and numerical
results obtained by using other finite elements proved that the HLCTS elements are more
accurate and efficient than other lower-order elements and even comparable to some high-
order elements (see sections 4.4 and 4.6). Note that in the vibration analysis higher mode
natural frequencies and mode shapes were obtained but not included here for brevity.

(3) In the investigation, there is no shear locking phenomenon detecied. The

hybrid strain formulation seems to be effective in eliminating shear locking v-hich is
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Table 4.21 First three dimensionless natural frequencies for the doubly symmetric

modes of the simply supported 9-layers cross-ply spherical shell segment

mode sequence

HLCTS ¥

HLCTS*

HLCTS ®

HLCTS®»

HLCTS

{

| HLCTS ¥ 191 0.2420 1.1281 1.2750

| HLCTS 191 0.2451 1.2003 1.3546 |
[ HLCTS® 191 0.2420 1.1285 1.2755

| HLCTS 191 0.2420 1.1281 1.2750

1 HLCTS * 191 0.2451 1.2003 1.3546

| HLCTS® 191 0.2420 1.1285 1.2755

j BT 191 0.2420 1.1278 1.2748

| BT 191 0.2420 1,1283 12752 |
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Table 4.22 Comparison of convergence on the dimensionless natural frequency of the

9-layers cross-ply S4 spherical shell segment by using different finite elements

.f mesh (quarter plate)

|

| 3 %3

ir first doubly symmetric mode

! ST6 0.2538 0.2459 -

' SQ8 0.2452 0.2422 0.2416

| SQ9 0.2433 0.2422 -

i SQ11 0.2428 - -
ST10 0.2417 - A 7

' Q12 0.2419 ] ]

| SQH 0.2412 - :

| HLCTS® 0.2473 0.2428 0.2420 |

| analytical [4.30} 0.2411

|

second doubly symmetric mode

1.350

1.303

1.265

SQ11

1.182

ST10

1.094

SQI2

1.099

. SQH

1.084

HLCTS *

analytical [4.30]

problematic in lower-order finite elements employing displacement formulation.

(4) The numerical study confirms that the HLCTS elements with quadratic

displacement field for w are more accurate and converge faster than those with linear

field. Whether the moment of inertia is included or not it seems to have no significant
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Table 4.23 First three dimensionless natural frequencies for the doubly symmetric

modes of the fully clamped 9-layers cross-ply spherical shell segment

effect on results of thin plate and shell structures.

(5) The improved formulation of DDOF has eliminated the zero energy modes or
spurious modes from the HLCTS elements. With the displacement formulation of DDOF,
all three zero energy modes are eliminated from the HLCTS elements while the hybrid
formulation eliminates one.

(6) Finally, in Chapter 3, the HLCTS and HLCTS" elements have been found
to be the most favourite ones in terms of both accuracy and rank sufficiency. In this
chapter, the results from vibration analysis show that HLCTS % converges faster than
HLCTS,". Therefore, in the next chapter, the hybrid strain triangular shell element
HLCTS,* is further developed for geometrically non-linear analysis of laminated

composite shell structures.




CHAPTER §
THEORIES AND FINITE ELEMENT FORMULATIONS
FOR GEOMETRICALLY NONLINEAR LAMINATED COMPOSITE

SHELL STRUCTURES

Having formulated the HLCTS finite elements for the linear analysis of laminated
composite shell structures in Chapter 2, studied linear static and dynamic problems of
such structures in Chapter 3 and Chapter 4, the studies of geometrical nonlinearity of
laminated composite shell structures are pursued in this chapter. T2 objectives are
finding a solid theoretical basis for formulating a simple and efficient laminated composite
shell element for geometrically nonlinear analysis, and derivation of the element stiffness
and consistent mass matrices for large scale analysis. Thus, the theories and finite
element formulations for the analysis of geometrically nonlinear laminated composite shell
structures are discussed and the derivation of a simple three-node, six degree-of-freedom
(DOF) per node, hybrid strain based laminated composite triangular shell finite element
for large scale geometrically nonlinear analysis is performed. Numerical studies of
geometrically nonlinear laminated composite plate and shell structures are presented in
the next chapter.

This chapter consists of seven sections. Section 5.1 outlines various features of the
present formulation. Section 5.2 reviews the development on the finite element analysis
of geometrically nonlinear laminated composite shell structures. In particular, the focus

is on triangular shell elements that are efficient for large scale computational analysis.
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Section 5.3 presents the incremental formulation of the hybrid laminated composite
trian-,ular shell clements for geometrically nonlinear shell problems. Constitutive relations
are discussed in section 5.4, while the element mass matrices are derived in section 5.5.
Section 5.6 deals with configuration and stress updating. This chapter concludes with the

remarks in section 5.7.

5.1 Features of Present Formulation

General nonlinear shell analysis is challenged by many conceptual, theoretical, as
well as computational difficulties. Even when the scope is confined to static and quasi-
static analysis, these difficulties may include: (1) consistent linearization of the underlying
variational form of the governing equations; (2) use of objective measures of stress and
strain, and their rate, that are suitable for the particular form of the constitutive relation
used; (3) treatment of large rotations, in both stiffness derivation and configuration
updating; and (4) the proper representation of nonlinear material behaviours. In the
context of isotropic nonlinear shell structures, the foregoing issues were discussed by Liu
and To [5.1]. In their studies hybrid strain based three node flat triangular shell elements
were developed for large scale analysis of general shell structures. They have six degrees-
of-freedom (DOF) per node. The updated Lagrangian formulation and incremental
Hellinger-Reissner variational principle were adopted. The independently assumed fields
were the incremental displacements and strains. The incremental stress and strain
measures selected were the incremental second Piola-Kirchhoff stress and the incremental
Washizu strain. Variable thickness of the shell was also considered so as to account for

the "thinning effect” due to large strain. The companion numerical studies of To and Liu
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[5.2] have shown that the hybrid strain based flat triangular shell elements are excellent
for nonlinear static and dynamic analysis . general shell structures that ar undergoing
large deformation of finite strain and finite rotation. In addition, it is relatively simple to
formulate and easy to input data describing the shell geometry. It is capable of
representing rigid body motions. The element matrices were obtained by making use of
a combination of manual and computer assisted derivations, and therefore it eliminates
the need for numerical integration. They are degenerated in nature and thus are applicable
to moderately thick and thick shells.

Consequently, in the investigation reported here the theory and formulation
presented by Liu and To [5.1] are applied to the derivation of composite laminated shell

finite elements for geometrically nonlinear analysis.

5.2 Review of the Finite Element Analysis of Geometrically Nonlinear Laminated

Composite Shell Structures

A significant amount of work on the study of geometricai nonlinearity of structures
has been directed to laminated composite shells. When the geometry and loading
conditions are complicated analytical approaches often fail to provide adequate solution.
Therefore, the finite element method is the logical alternative. In parallel to the
development of nonlinear shell theories and laminated composite sh?ll theories, the
development of efficient finite elements has been given notable consideration.

Experience in linear and nonlinear analysis of laminated composite structures
indicates tiat the application of shear deformable theory in nonlinear analysis may be very

important due to the fact that the shear moduli are usually much smaller than those of
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principal ones. Earlier work of geometrically nonlinear analysis using finite elements
shown that, in the course of seeking for simple and efficient finite element procedures,
shear deformable theories were commonly employed.

In 1974, Noor and Mathers [5.3] developed an eight node and a twelve node
quadrilateral shell elements to study geometrically nonlinear behaviours of laminated
shells. These elements are displacement type. Later, in 1977, Noor and Hartley [5.4]
proposed a mixed formulation for an eight node and a nine node quadrilateral elements
which are shear deformable. The elements were developed based on a form of the shallow
shell theory. The fundamental unknowns consisted of thirteen stress resultants and
generalized displacements of the shell. The total number of DOF of the eight and nine
node elements were 104 and 117, respectively. In the computational procedure, total
Lagrangian description was adopted. Noor and Anderson [5.5], studied a class of mixed
elements in 1982. These included four, eight, nine, twelve anc sixteen node quadrilateral
elements. Similar to those proposed in reference [5.4], the elements were based on
shallow shell theory with the effects of transverse shear deformation considered. The
fundamental unknowns were eight stress resultants and five generalized displacements.
Total Lagrangian formulation was used. The focuses were on identifying classes of
equivalent mixed models and reduced or selective integration displacement models for
curved shell structures and discussing the merits of using mixed models. These elements
differ from those of reference [5.4] by the fact that the stress resultants are discontinuous
at interelement boundaries and are eliminated on the element level. An eight node and a

nine node degenerated isoparametric elements for large deformation analysis of laminated

anisotropic shells were presented by Chang and Sawamiphakdi [5.6] in 1981. These two
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quadrilateral elements have five DOF at each node. The derivations of the nonlinear
geometric element stiffness matrices were made on the basis of update Lagrangian
description. In the same year, Reddy [5.7] performed the large deformation analysis of
multilayered anisotropic shells using several shell theories. In 1984, Chao and Reddy
[5.8] proposed a degenerated three dimensional element based on the total Lagrangian
description of motion of the layered anisotropic composite medium. The element is
quadrilateral, eight node and displacement type. Both static and dynamic analysis of
geometrically nonlinear laminated anisotropic shells were performed. Later in 1985,
Reddy and Chandrashekhara [5.9] presented a doubly curved shear deformable shell
element. The element has nine nodes and was developed on the basis of extended
Sander’s shell theory that accounts for the shear deformation and the von Karman strains.
This displacement type element was used for bending analysis of laminated composite
shells. At the same time, in their other paper [5.10], Reddy and Chandrashekhara
developed a four node and a nine node quadrilateral shear deformable elements for
transient analysis of geometrically nonlinear (in von Karman sense) lominated composite
shells. These two elements have five DOF at each node. Thus, for the four node element
the total DOF are 20 and for the nine node element are 45. A general curved laminated
composite shell element was given by Saigal, Kapania and Yang [5.11] in 1986. The
formulation and computational procedures were developed for the finite element analysis
of laminated anisotropic composite thin shells including imperfections. The element is
quadrilateral in shape and has four nodes. Each node possesses 12 DOF. There are 48
DOF for this element. It was based on Kirchhoff-Love shell theory with total Lagrangian

description. In this reference, both perfect and imperfect laminated shell were studied and
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numerical results presented. In 1987, Rothert and Dehmel [5.12) derived a class of
degenerated laminated plate and shell elements for nonlinear analysis. The elements could
be four, eight or nine node elements. Hybrid stress approach was utilized in formulating
the elements. To avoid shear locking, the terms for stress and strain were split into two
parts during the derivation. One part satisfied completely the kinematic field equations.
In the part, the strain-di<placement compatibility was satisfied in a weak form. In the
same year, Wu, Yang and Saigal [5.13] performed free and forced vibration analysis of
geometrically nonlinear laminated composite shells of general form. The element used
was a higher-order curved shell element. Similar to the element proposed in reference
[5.11], the element is quadrilateral has four nodes. Each node has 12 DOF. This 48 DOF
displacement type laminated shell element was based on the Kirchhoff-Love theory. Yeom
and Lee [5.14) developed a nine node quadrilateral element for the analysis of
geometrically nonlinear laminated composite shells. It was also based on the degenerated
solid shell concept and a set of assumed strain field was utilized as well as assumed
displacement field. Liao and Reddy [5.15] combined a degenerated three-dimensional
shell element and an associated curved beam element for the analysis of stiffened
composite shells with geometrical nonlinearity. The shell element has nine nodes and the
beam element has three nodes. The incremental equations of motion was developed by
using the total Lagrangian description. The noniinear formulation admits arbitrarily large
displacements of small strain. Large rotations of small strain were claimed tc be included
in the formulation. However, no detailed treaiment of large rotation was given in this
reference [5.15]. It seems that the elements in the foregoing references have sme

common features. They include the ability to deal with large deflections but small strain.
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On the other hand, the problem of accurately representing large rotations has received
relatively less attention over the years. Recently, an element formulated for laminated
anisotropic shells by applying a moderate rotation theory was reported by Palmerio,
Reddy and Schmidt [5.16, 17]. Reference [5.16] discussed the theory and [5.17]
presented the finite element analysis. In this proposed formulation, the magnitude of
strains was limited to a small value. The element proposed was nine node quadrilateral
element with five DOF at each node. More recently, Rothert and Di [5.18] presented a
simple general shell element with four comer nodes and arbitrary curvatures for
geometrically nonlinear analysis of layered shell structures. It is based on a modified
incremental Hellinger-Reissner variational principle and a total Lagrangian description
with large rotation of small strain. Each corner node has 5 DOF. When the higher order
terms of the displacement were included the each corner node has 9 DOF.

Triangular shell elements were also developed for geometrically nonlinear analysis
of laminated composite shell structures. One of the earlier work is due to Noor and
Mathers [5.3]. In the latter a mixed type triangular element was proposed. The element
has six nodes, and 78 DOF. This element is similar to those quadrilateral elements given
in the reference except that it is triangular. It was derived based on shallow shell theory
and was shear deformable. Recently, in 1991, Lin, Fafard, Beaulieu and Massicotte
[5.19] developcd a finite element procedure to analyze composite bridges. The finite
element procedure was based on small elasto-plastic strains and updated Lagrangian
formulation. The element used was flat and constructed by the superposition of a discrete
Kirchhoff bending clement and a linear strain triangular membrane element. It has six

nodes. There are three transiational and three rotational DOF at its corner nodes and three
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translational DOF at mid-side nodes. In 1994, Madenci and Barut [5.20] proposed a flat
triangular shell element based on the free formulation concept for analyzing geometrically
nonlinear thin composite shells. A corotation form of the updated Lagrangian formulation
is utilized. The theoretical basis was on the geometrically nonlinear Kirchhoff plate theory
without considering the effects of tran‘.verse shear deformation. The element is of
displacement type. It has three nodes and six DOF [or each node. A more recent
contribution on triangular elements is made in 1995 by Zhu [5.20]. The natural approach
is used to construct a curved triangular shell element for analysis of geometrically
nonlinear sandwich and composite shell structures. The element has six nodes. There are
six DOF at each corner node and three DOF at each mid-side node. Updated Lagrangian
description was adopted in the procedure. In the element formulation the transverse shear

deformation was considered by assuming constant transverse shear stress distribution.

5.3 Formulation of Element Stiffness Matrices

In this section, finite element formulation for the derivation of a family of simple
three-node, six DOF per node, hybrid strain based laminated composite triangular shell
finite elements for large scale geometrically nonlinear analysis is given. Large deflection
of finite strains and finite rotations are emphasized. The first order shear deformation
theory and the degenerated three dimensional solid concept are adopted. In particular,
element matrices for one member of the family are derived explicitly with the help of the
symbolic computer algebra package MACSYMA [5.22]. To minimize the algebraic
manipulation involved in the derivation, updated Lagrangian descri.ption is employed in

the incremental formulation of the finite element procedure. In essence, the present
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formulation is an extension of the work by Liu and To [5.1] for isotropic materials to
multi-layer laminated composite materials. Therefore, in the development the present
approach follows closely that of reference [5.1]. However, it must be noted that the
amount of algebraic manipulation is substantially increased while the first order

lamination theory is incorporated.

5.3.1 Incremental variation principle

The Hellinger-Reissner Functional m,, can be written as

nn = [ 1(@97Co - %(e')’C(e') av - W 5.1)

e’ is the independently assumed strain field;

e is the strain due to displacement;

C is the material stiffness matrix or elasticity matrix;

W is the work done by external forces,
and the superscripts e and u indicate that the quantities are from independently assumed
strain field and displacement field, respectively.

For geometrically nonlinear analysis with incremental formulation and updated
Lagrangian description, the static and kinematic variables in current equilibrium
configuration at time t are assumed to be known quantities and the objective is to
determine their values in the unknown subsequent equilibrium configuration at time t+ At.

For a time increment At, that is from time t to (t+At), one has

Aty = Aa(AU,A0°) = mp(t+Al) - mglt) (5.2)
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or, with reference to equation (5.1),

-

where,
Au
Ae*

Ae'

AW

anyq = [ [(09)C(a0Y) + (a0°)'Clae")
(5.3)

- %(Ao')TC(Ae‘) - (A0*)TC(e" - eY)] dV - AW .

is the vector of incremental displacement;

is the vector of independently assumed incremental updated Green strains;
is the vector of incremental updated Green ‘'geometric’ strains or
incremental Washizu strains;

is the Almansi strain vector at time t which is accumulated from assumed
incremental strair.,

is the ve.ior of Almansi strains at time t (due to displacement);

is ine work-equivalent term corresponding to prescribed body forces and

surface tractions in configuration C'*4',

Equatic.1 (5.3) represents the incremental form of Hellinger-Reissner variational principle.

Fo: updated Lagrangian description, the integral is evaluated at the current configuration.

In the equation, the term

[(ae")"Cle* - o¥) dV

is the so-called compatibility-mismatch. In reference [S.38], numerical results showed that

though totally discarding the term resulted in convergence difficulties, while including the

term in only the first iteration of every load step yielded essentially the same results as

those having the term under all circumstances. However, references [S.1, 5.22] reported
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no difficulties for convergence when the term was ignored. In these two references,
hybrid strain formulation was employed for the elements. In the current study, this term

is also ignored. Then equation (5.3) can be recasted as

Any = [ [ oTaeY + (ae)'C(ae")
5.9
- %(Ae‘)’C(Ae') 1dV - AW,

where o7 = (e*)"C is the Cauchy (true) stress vector at the current configuration. In this
equation, the incremental Washizu strain Ae" can be expressed in two parts
AQ." = Ae: + An: (5.58)

and they are related to the incremental displacement by

Ae= = ‘%(AUU + AU“) M Aﬂ: = —;-AUUAU” (S.Sb,C)

where the Einstein summation convention for indices has been adopted and the
differentiation is with respect to reference co-ordinates at the current configuration C'.

Substituting equation (5.5a) into (5.4) yields

Angg = [ I- %(Aw)fcm-) + (80%)TC(AeY) + oTAeY

(5.6)
+ 0TAn" + (Ae*)'CAR" | dV - AW,
Discarding the higher order term, (4@')"CAn" | results in
1 T T,
Angn = | [- =(A0%)'C(A0*) + (A0*)'C(Ae
w = [ [- 5(86%7C(ae°) + (a69)"C(ac") 57

+ a'AeY + aTARYj dV - AW,
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5.3.2 Hybrid strain formulation

Element stiffness matrices for an hybrid strain based finite element can be derived
directly from equation (5.7). Generally the independently assumed strain field and

displacement field can be written as
Ae* = P Aa, Au = ¢ Aq (5.8a,b)

where P is the strain distribution matrix, ¢ is the displacement shape function matrix, Aa
is the vector of incremental strain parameters and Aq is the incremental nodal

displacement. Substituting equations (5.8a, b) into (5.7) gives

Anyp(AQ.Ac) = Y { f [- %AaTPTCPAa
v.

+ AP 1'CBLAq + aTB,_Aq .9

+ 2007BlLofByAQ ] AV, - AW},

where the summation 1s over the entire system and V, is the volume of an element at the
current configuration. Note that the following definitions have been employed in obtaining

equation (5.9)

Ac" = BL Aq.

1
2

(5.10a,b)

T
OTAﬂ = —Aq TBNLOEBNLAq .

where B, and By, are the linear and nonlinear strain-dispiacement matrices and o is a
matrix that contains the Cauchy stress components at the current configuration. By

defining




H - fPTcpdv,. G - [ PTCB, dv,,
v

¢.1D
f Bm."cBm. F, = f BJ o dv,,
v.
equation (5.9) becomes,
Ampa(dg.aa) = T - %AaTHAa Aa'GAq
(5.12)

+ FAq + %Aq"kqu - FTaq)

with F being the external nodal force vector in the neighbour configuration associated
with the AW term in equation (5.9).

Taking variation of equation (5.12) with respect to Aa and Aq, respectively, leads

to
A« = H'GAqQ (5.13)
and
(k. +ky)aq =F -F, (5.14)
where
k. =Q'H'G (5.14b)

is the element "linear" stiffness matrix. The term ky, defined in equation (5.11) is the
"nonlinear” or initial stress stiffness matrix and F, is the pseudo-force vector. The right

hand side of equation (5.14a) is the equilibrium imbalance.
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5.3.3 Description of incremental displacement field
In Chapter 2, the derivation of linear HLCTS elements has been presented. Here,
for geometrically nonlinear analysis, the derivation of the element stiffness matrices is
extended from the element HLCTS%. Figure 2.1 shows a flat laminated composite shell
element and its co-ordinate systems. The same co-ordinate systems are selected in the

incremental element formulation. An arbitrary point within an element is defined by the

local co-ordinates as

rt s ! 3

st} = E 5' sg . ct 2 Egvlt (5.15)
. i=1 ! i=1

t 0

where the superscript t denotes at the time "t". In the equation, the element nodal co-
ordinates r;, s, and t; are defined on the mid-surface of the element. Thus, t, is always
zero. The rotations, directors and their increments are also defined on the mid-surface.
The symbol V{ (i=1,2,3) denotes the director of node i at the time "t", and ;
(i=1,2,3), is the patural or area co-ordinates while ' is the co-ordinate along the director

direction and satisfies

- _':'2: < ct < _'_12_' (5-16)

with h' being the total thickness of the laminated composite shell at time "t". In the
current study, h is assumed to be a constant at each incremental time step.

In equation (5.15), the first summation represents the position of the mid-surface
while the second summation indicates that the director orthogonal frame is interpolated

in exactly the same way as the mid-suiface r and s co-ordinates. References [5.23-28)
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named such an interpolation scheme "continuum consistent interpolation”. Compared with
the other two interpolation schemes proposed in references [5.23-28], continuum
consistent interpolation is simple and easy to implement.

The incremental displacements of an arbitrary point within the element can be

expressed as
[ t)
Au' . Ay, .
avt t = T By Av' - OYE (aY)) G.17)
i=1 =1
Aw' aw/

in which, the element's nodal incremental displacements in the first summation are at the
mid-surface of the element.

In equation (5.17) the first summation represents the incremental displacements
of an arbitrary point located on thg mid-surface. The second summation reflects the
change in orientation of director of the arbitrary point on the mid-surface which is
interpolated from AV (i=1,2,3), the increment of director at node i. References 5.1, 2,
23] applied the exponential mapping scheme to obtain the increment of director AV;'. It

is defined by

AV = (A08))'xV! = -V! x (a0}
i = (A6) %V, i x(A6)) (5.18)

= - @) (ae))

where (A0,")' is the incremental rotational vector of node i, relative to the director
orthogonal frame attached to the same node. If the components of V; are [V}, V,), V,/IT,

Q! is then a skew-symmetric matrix associated with V,' of node i:



0 Vi V|
Vt: 0 ‘Vrtl
ViV oo

It should be noted that (A8,")' is defined with respect to V' which generally does not

coincide with the t-axis. The transformation

(A6;)' = Ij(a0)" (5.20)

is the so-called exponential mapping, in which (A8,)' is the incremental rotational vector
relative to the r-s-t axes and I} is an orthogonal matrix associated with node i. The

latter, matrix I}' satisfies

V! = Ile, (5.21)

where e, = [0,0,1]7 is the unit vector of the t-axis and V! is the position vector of
director at node i of the reference configuration and can be calculated from configuration

updating. Another way of determining I! is, according to references [5.30-35],

r-al+8+ 113337 (5.22)

where I, is a 3 X3 identity matrix, a = V. e,, B = ¢, X V' and § is a skew-symmetric

matrix constructed from vector B= [B,, B,, B;]™ according to the following equation

0 -8B B,
8-/8 0 -B,|, (5.23)
"Bz B1 0
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Equation (5.18) indicates that V!, AV, and (A6,)' are mutually ncrmal.

Considering the normality condition between (A8,')' and V!, or: writes

(@et-v,' = [(ag)t]'v' = [(ae) " @) I o,

(5.29)
= [(Aeu)t]Tes = (46,)'e; = 0.
This condition is satisfied only if A8, = 0.
Substituting equations (5.18) and (5.20) into (5.17) leads to
[ ..t [t t ]
Aut . Ay . Ay Az A6
i
AV' b = Y& AV} < O Y& | Ay A o: ' ©-2)
. = i1 A6},
aw | Aw; | Mgy Al |
where the 3 X2 matrix A/ is defined by
A: - - Q:I_‘: (5.26)

in which 1-‘: consists of the first two columns of T'.

Reference [S.1] pointed out that both Q. and I| are dependent of the director V'
while A also depends on the current position of the director. The interpolation of
incremental displacements requires A,' for every node at every time step. Therefore, it is
necessary to update the director. To employ quadratic polynomials for the translational

DOF and include the DDOF as recommended in reference [5.1], equation (5.25) is

extended to
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t [ Ay, [ Al L
Au . | s A:m) A:uz) s,
avt | = Y E] AV ¢ U3 E | Mgy Al '
awt i-1 t i t ) Ae),
| Aw, | | Mgy Aip) |
(5.27)
- ( )
3 0 p‘ Ae:l
+ 2 0 0 al { Ae‘.‘ g
= A
P o-a 0 AB:IJ

where ﬁl and E. have been defined in equations (2.31a,b).

Comparing equations (5.15) and (5.27) it is seen that the present element
formulation is sub-parametric as different interpolation schemes has been employed for

geometry and displacements.
5.3.4 Assumed incremental strain field

The independently assumed incremental strain field is in close analogy to the

assumed strain field in linear analysis (see subsection 2.5.3). It is defined as
b ¢
PP LY O {Ax } (5.28)
Ay* 0

Ae® = { Ae; Ae, Ae,, Ae, Ae,; )T (5.292)

where

and

Aen, = {Ae; Aeg Acpy)T
(5.29b)

Ax® = {Ax; Axs Axn)" ., AY" = {Ayg Avy)T
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in which Aen*, Ax* and Ay* are the assumed incremental membrane strain, bending
curvature and transverse strain, respectively. Consequently the assumed incremental strain

fields are interpolated by nine incremental strain parameters

Ae}, = PoAa, , Ax* = PyAa,, Ay' = PAc, (5.302)
with
Aa,={Aa, Aa, Aay)T,
(5.30b)
Aa,={Aa, Aag Aay)T, Aa,=(Ac, Aa, Aay)T,
and
100 100
P,=[0 10|, P,=10 1 0,
001 001 (5.30c)
-84(1-28,)  84(1-2¢,) 0
b |org(1-28) (rs-r)(1-28,) r(1-284)|
5.3.5 Element stiffness matrices

To derive the incremental form of element linear stiffness matrix, equation (5.27)

is rewritten as

3 3
(8u} = 3 10l{Aa + ¢ 3 [9aklAa) (5.31)

where
{Au} = { Au Av AW |7, (5.32a)

{aq), = { Ay, Av, Aw, A8, A8, A8, )T, (5.32b)
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{00 0 O P

[¢) =/0 &0 0 O ql. (5.32¢)
00¢ -p g0
[ba) = [ [Ols.s &AL (Olss Ly - (5.32d)
and
Aany Mz
(A = | Aey Aea |- (5.32¢)
Mgty Avszy
With the definition of following
&y = [ [&ph [9p]2 [4gls]y, s ¢ (5.33a)
¢ = [ [9als [$ak [bals);.,, - (5.33b)
Aq = { (Aq); (Aq)] {aq); ) (5.330)
equation (5.31) becomes
{Au) = ¢ Aq (5.34)
where
¢ =¢p + {bp (5.35)

is the displacement shape function matrix. Taking the derivatives of the incremental

displacements with respect to the local co-ordinates (j = r,s,t) gives
{Au}-] = (¢p + C¢n)., Aq . (5.36)

It should be noted that
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[b ), =| O & 0 0 O au , (5.37a)
0 0§ -py q O

[6aly = [ [Ols.s €yfA) (Ols.s Ly,q (5.370)

when j = 1, s; while the derivative with respect to the co-ordinate t is

{Au},, = &g AQ . (5.37)

The linear component of incremental Washizu strain has been defined in equation

(5.5b). Writing equation (5.5b) in vector form with engineering strains leads to

Au,,
Av,, {Au},,
Ae’ = {Au,+Av,: = [L,] {Au), (5.38)
AV, +AW,, {Au),,

AW, +AU,
where

'100000000]
000010000
Lij-{010100000| |, (5.39)
000001010
001000100k,

and
{ {Aul,, {Au),, (AU}, )T = (@, + (@, ) AQ (5.40)

in which
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°0 = [ [¢p]'l [4’9]0. [¢H] ]T ’

(5.41a,b)
® = [ [al [4al., 101 )" .
Therefore, equation (5.38) can also be written as
Ac' = B Aq (5.42)
where
P (B ) v.43)

By =[L]® . B =[] .

It should be pointed out that to comply with the first order shear deformation
theory, the transverse shear strain in equation (5.42) should be constant over the
thickness. Thus, the transverse shear components are to be evaluated at the mid-surface
of the element where { = 0.

In accordance with the degenerated 3-D elastic concept, the material stiffness
matrix isa 5 X 5 matrix. The detail construction of this matrix will be discussed in the

next section, see equation (5.71). Here, it is defined as

[cJ3x3 [cd]3x2
[Codlz.s  [Colon

C - (5.44)

As the material stiffness matrix is symmetric, thus

ICd = ICJ". IC] =IC)". [Codd = [CW) .

The general procedures of formulating hybrid strain (.ements has been briefly

reviewed in subsection 5.3.2. However, for laminated composite structures, the
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constitutive equations are more complex. Thus, the derivation of the element linear
stiffness matrix should start with equation (5.7).

Substituting equation (5.28) into the integral
l, = [ (ae")’C(ae*) dv (5.45)
which is part of equation (5.7), it leads to
l, = [ ((Aep)™CoAen+(AY") Caen+(Aer)CuAy +(AY*)'Cyay*) dV
Y
+ [ ((81)TLCAen+(Ax)(CyuAY) AV (5.46)

v

+ [ ((8er)T¢C,ax* A Y)T(C LAY +(Ax)¢C,Ax") OV .
\'4

Applying equation (5.30a) and integrating in the transversal direction results in
= [ (AcnPmAPyAa,+Aa;P CiP Au,) da
|

+ [ (AapPaCP,A0,+Aa;PEP,Ae,) da
a

(5.47)
+ [ (AatPPP ey +Aai? CaP,Aq,) da
a
+ [ (AemPaB'P,aa,+Aa,P,CoP,Aq, +AaPyD/P,Aa,) da
a
where

- 1 « 2 .2

A = gtcak(hu-hu-,) , B = 2 Y Codhi-hey) .
) ket (5.48a)

D’ - % Y. Cohe-he) . E' - 3 Cohyhy.q)
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Cu = 3 Cahli-hd » o = 3 3 CaBENE) G480

k=1
in which x; and x; are the shear correction factors that have been defined in equation

(2.27). By defining

Hup = [ PaAP, da, H,, = [ P/CiP, da,
a a

Hy = [ PuCiP, da, H = [ PJEP, da,
: ‘ (5.49)

Hyy = [ P,B'P, da, H,, = [ P/C4P, da,
a a

Hu = [ PmBP,da, Hy = [ P/CgP, da, Hy = [ P,DP, da
e a a

and
Hom Hoo Hme
equation (5.47) becomes
I; = Aa" H Ac (5.51)
where
Aa = { Aa, Aa, Aa, )T . (5.52)

For the second term in equation (5.7)

l, = [ (ae97C(ae") aV (5.53)

the operation is similar to the foregoing. Writing the linear part of incremental Washizu

strain in the same format as the assumed incremental strains shown in equation (5.28)
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Acv = {“:‘] .l {A""} (5.54)
AyY 0

Ae), = {Ae, Ace, Acy)T,

gives

where

(5.55)
Ax' = {Ax) Axh AxnlT. AY' = [Ayg Ayl

in which Ae,.”, Ax"and Ay" are, respectively, the incremental membrane strain, bending
curvature and transverse strain due to displacements. By substituting from equations

(5.28) and (5.54) for equation (5.53) yields

, = [ ((Ae})"C A e +(8Y)'ClAEm+(Acp)Cpay +(Ay)'CyAYY) AV
v

+ [ {(Ax)T(C,Aem+(ax")(CwAY") AV (5.56)
v

+ [ ((Aer)TIC,Ax"+(AY)(CLAL +(AX")E*C,A2Y) GV .
v

With the consideration of equations (5.30a), (5.42) and (5.48), equation (5.56) can be

rewritten as

l, = [ (AanPmA’B,Aq+Ac,P,C, B,Aq) da

+ [ (AamPnCAB,Aq+Aa,P,E'B,Aq) da
‘ (5.57)
+ [ (AagPyBB,Aq+Aa;P, CgB,AQ) da
a

+ [ (8amPmB/ByAq+Aa P, CyB,aq+Aa;P, D'B,Aq) da
|




196

in which B_,, B, and B, are, respectively, the linear strain-displacement relations matrices
for the membrane, bending and shear components. They have been defined implicitly in
equations (5.43) and (5.37a,b). The B, matrix is the first three rows of B,. The B, is the
first three rows of B, and B, is the last two rows of B,. As mentioned above, to have
constant transverse shear over the thickness, B, is actually the last two rows of matrix B,.

The simpler form of equation (5.57) is

l, = Ad" G Aq

Gom * Gy * G
G-‘— Gm”'Gw\qu

G'm * G'b * G“ x18

Gun = [ PnAB, da, G, = [ P/C/B, da,
a a

Gng = [ PnCiB, da, G, = [ PJEB, da,
L a

(S-w)
Gym = [ P,B'B, da, Gy, = [ PyCgB, da,
a a

Gy = [ PuB'B,da, G, - [ P/CgB, da, G, = [ PyD'B, da .
a a 8

Having obtained H and G matrices, the element linear stiffness cun be constructed
according to equation (5,14b). However, to derive the linear stiffness matrix explicitly,
obtaining the inverse of matrix H is the most difficult part as now H is a full matrix. The
same technique discussed in subsection 2.5.5 is employed here with the help of the

computer algebra package MACSYMA [5.22). All integrals involved in evaluating H and
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G matrix are also obtained explicitly. The improved displacement formulation of DDOF
introduced in section 2.6 is adopted for this linear stiffness matrix. Therefore, the

complete k; is

k, = k{ + Ky (5.61)
where k', is the element linear stiffness matrix defined in equation (S.14b) and k4 is the
stiffness matrix due to the consideration of DDOF and is obtained through the
displacement formulation. The matrix kys has been given in equation (2.82).

The "nonlinear” or initial stress stiffness matrix k,,; defined in equation (5.11) can
be obtained if the nonlinear strain-displacement matrix By, and the matrix o, which
contains the Cauchy stress components at the current configuration are available. The

former By, is defined by
{ {au},, {au}, AU}, )T = (@, + (@) Aq (5.62)
in which ¢, and ¢, have becn given in equations (5.41a,b).
The o matrix is constructed from the Cauchy stress vector o and defined as

04413 0425 044l

oc = | G12l3 022l 025ly (5.63)

O34l 0zl O,

with I, being the 3 X3 identity matrix and O; a 3 X3 null matrix. The transverse stress
components of o are considered constant over the thickness, and all components of o are
calculated and updated for each time step at the centroid of each element.

Having obtained the element stiffness matrices, a simplified version of the stiffness

matrices are also formulated. The derivation procedure is the same as the one introduced
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in reference [5.1]. In the simplified version, it is assumed that V! coincides with the t-
axis all the time. The simplified version can be used in cases where the directors are not

uniquely defined or difficult to determine.

5.4 Constitutive Equations

In subsection 2.4.3, constitutive equations for linear analysis of laminated
composite structures have been discussed. These equations can also be used in
geometrically nonlinear analysis if the structure studied undergoes large deformation but
small strain. However, for finite strain problems in the elastic range, the reduced stiffness
matrix is a function of stresses. In this case the constitutive relations appears to be
nonlinear elastic [5.29]. To incorporate finite strains in the analysis, several approaches
can be applied. References [5.30, 31] recommended to nerform numerical integration on
rate constitutive equations and reference [5.29] suggested using Jaumann rate. These
approaches are relatively complicated and numerical integration has to be employed. A
simpler and more direct approach proposed and utilized in reference 5.1, 32-34] is to
add the linear elastic matrix a correction matrix which is a function of Cauchy stress. The

following equation gives the correction terms in tensor form

c!“ = '%(0*6,*0.6.*0.6**0,&*) (5'64)

where 8, is the Kronecker delta. Note that this equation comes as a result of
transforming the Jaumann stress rate to the incremental second Piola-Kirchhoff stress. If

the stress and strain vectors are

0 = {04y 92 Og3 O4a Ggy Oy }7,

@ ={86, 6,6ye,50,8,]

(5.65)
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the matrix form of equation (5.64) is

(46, 0 O 20, O 20,4
0 4, 0 2, 20, 0
cr. .l 0O 0 404 O 20,4 2044 . (5.66)

2|20y, 20,, 0 o0y+0,n O Coy

0 205 20,4 043 0pt0y 0y

| 20,3 0 20,y oy %12 011%0ys |

As in the current investigation the degenerated concept is adopted, the elastic modulus in
the normal direction to the plane of the shell structures is considered zero and
consequently the stress and strain in the transversal direction are ignored. In the linear
analysis the constitutive relations for a lamina have been defined in equations (2.23-25).

Rearranging the terms in these equations one has

v-Ge (5.67)
where
o = {o, 0, 0, 0, 0y . (5.68)
e-(ee00,0,60,]
and

Q, G, G, 0 O
Q2 Qr Qe 0 ©
Q={Q Qp Qp 0 O . (5.69)
0 0 0 Q, Q,
0 0 0 Q4 Q
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The corresponding matrix from equation (5.66) is

(40, 0 20, O 20,]
0 40, 20,, 20,,z 0
C’ = -% 20,, 20,, o,+c, o, O, (5.70)
0 20,z Opy o, Oy
|20, 0 o, o o,
Then, the material stiffness matrix for a lamina becomes
cC=Q+C (5.71)

This equation is the detailed construction of equation (5.44) which has been used in
subsection 5.3.5 to develop element stiffness matrices.
With the consideration of large deformation and finite strain, the constitutive
equations for a multilayered structure or laminate can be written as
N A’ B’ C, ¢,
M}=|B D G X (5.72)
%) |eled el

or
oy = C ey (5.73)

where N, M and Q, are the vectors of stress resultants corresponding to membrane,
bending and transverse shear, respectively. The matrices A', B', D', E', C, and Cg have
been defined in equations (5.48a,b).
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5.5 Element Mass Matrix

In the current study, with the updated Lagrangian description, the consistent mass
matrix is formulated in the reference configuration. The mass matrix is then updated in
each step as the configuration changing. The assumptions made before the derivation are
that the angular velocities and accelerations are small enough to be discarded. By
following the procedures suggested in reference [S.1] the consistent mass matrix can be
obtained.

Equation (5.15) has defined an arbitrary point within an element. For simplicity,

one may rewrite it as
¢ =9 +V (5.74)
where ¢ and V represent the first and the second summation terms in equation (5.15),

respectively. It should be noted that the quantities are all defined in the reference

configuration C'. For a point on the mid-surface, the linear and angular momentum fields

are defined as
W2 .
p = f p® d{ = ph¢ (5.75)
-2
and
i ; h3,, « (5.76)
= O-9)x® d{ = p—VxV .
¥ -fmp( @)x® d{ ST

where h is the total thickness of the laminate and

2 PP -hy4) 6.7

k=1
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is the density of the laminate obtained in "average” sense, in which, p, is the density of
k'th layer, h, and h,, are the layer co-ordinates of the top and bottom of the k'th layer
(see Figure 2.4). The integer n is the total number of layers of the laminate. Then, the

weak form of momentum balance is

[(A9™P+ABTY) da + Gy (®,49,4p) = O (5.78)

where A is the virtual displacement at the mid-surface and A is the virtual rotation of
the director field. The static part of the weak form equation, G, is in fact the energy
functional related to the static forces discussed in section 5.3. These forces include
internal force, pseudo force and external force. The dynamic part, that is the integral in

equation (5.78), can be decomposed into two parts

Gy =Gy, *+ Gy = [A¢"p da + [ APTY da (5.79)
. a
where
. = h" ,
. p. f f (5.80a,b)
¥ = 1,(VxV+VxV) = | (VxV)
with
-2 5.81
I, =p 3 (5.81)

Taking variation of G,, with respect to P gives

AG,, = [A¢TAp da = [phaeTAp da = Aq™m, A4 (5.82)
a a
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where Aq is the vector of incremental nodal displacement defined in equation (5.33c), A§

is the vector of incremental acceleration of nodal DOF and

my, = [phégé, da (5.83)
a

is the consistent mass matrix associated with translational DOF. In arriving at equations

(5.82, 83), the relations

Ao = dpAq ., Ap = $,A8 (5.84a,b)
have been applied and ¢, has been defined in equation (5.33a). It is seen that m,, is
identical to its counterpart in the consistent mass matrix of the HLCTS,* element derived

in section 4.2 except that m,, is defined in the current configuration and has to be

updated for each incremental time step.
The variation with respect o V and Y leads to
AG,, = [ 1,ApT(AVXV-VxAV) da
&

(5.85)
= [ 1,ABT(VxaV) da

where V represents the angular accelerations as the directors are assumed to be unit

length. In this equation, the term AVxV is ignored because negligible small angular

velocities and accelerations have been assumed. With this assumption in mind and

applying equation (5.18) one has

AV = (ABxV+APxV) = APxV . (5.86)
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Assuming
AP =TdAq , AP =T A4 (5.87a,b)

in which I is the orthogonal matrix defined in equations (5.20, 21) and I''T is an identity
matrix, and substituting equation (5.86) into (5.85) results in
G, = [ 1,AB"Vx(-VxAp) da
a

(5.88)
= [ 1,ABTAD da = AqTm,,Aq

where

My = [ 1,606, da (5.89)

.
is the consistent mass matrix associated with rotations A8, and A6,.

As the DDOF is independent of directors, the mass associated with DDOF has not
been considered so far. Thus, discarding the third row which is in accordance with the

DDOF, the shape functions in equation (5.89) become

¢ = [ M’r]l [¢r12 M’t]a ] (5.90)

where

000 -tAzy bhen O (5.91)

=160 0 EAay  Eday O

Note that here ¢, is different from the ¢, defined in equation (5.33b) because the former
is the shape functions of rotations at an arbitrary point on the mid-surface within an

element, that is
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{a6, A8} = ,Aq . (5.92)
Now, one can write the consistent mass matrix as the sum of three parts

m=mg, + M, + M, (5.93)

in which m,,, and m_, have been given in equations (5.83) and (5.89) respectively. The
matrix my is the part associated with DDOF and is exactly the same in expression as the
components derived for the HLCTS,* element in section 4.2

It should be pointed out that if the directors are coincide with t-axis, the consistent
mass matrix developed in this section reduced to the one for the HLCTS,* element in
section 4,.2. When it is used for the incremental formulation with updated Lagrangian
description, updating relevant quantities at each incremental step are required before
evaluating the mass matrix. To be consistent with element stiffness matrices, the
consistent element mass matrix derived in this section has also a director version and a
simplified version. All these mass matrices are obtained explicitly with the help of the

symbolic computer algebra package MACSYMA [5.22].

5.6 Configuration and Stress Updating

For each incremental step, configurations and stresses should be updated in the
finite element procedure. Concerning configuration updating, position vectors and
directors are the quantities to be updated. The updated position vectors and directors
describe an arbitrary point within an element at configuration C'*#*, The position vector
defines an arbitrary point on the mid-surface of an element. At configuration C'*%', it is

given by



206
rieat rt Au
s teat = st * AV (5 .94)
gt-at tt Aw

in which the co-ordinates and displacements are all defined on the mid-surface. To update
directors, one may follow the procedure employed in references [5.1, 23-28, 35]). Once
the incremental rotation A8 = { A6, A6, A8, }” are solved, the director at configuration

C'*4! can be calculated by using

vtm T,V,' (5.95)
where
T, = cos(|A6]), + ;“El(i-:T"llAé (5.96)
in which
0 -A8, Ae,
A =| a6, O -ae,|. (5.97)
-8, A6, O

Crasequently, the angular velocity and acceleration of the directors are updated by

'8 = —LAB-T {o'o(l-fr.‘) (0'1»—@ )}
(5.98a,b)

d’toﬂl = _1_wl+At_T'{__1_ (0"(1 -1 )d’t}
s y8 \v

in which the parameters P (it should not be confused with B in section 5.5) and y are

those from the Newmark family of direct integration algorithms, and & is the size of time

step.
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As the continuous changes in the geometry and volume, the updating procedure

for mass density and thickness requires the calculation of “relative” deformation gradient

[5.27], which is

[ Au) HAu) ¥Au) |
x a8 &

pra .| (4Y) 3J4Av) XAv) (5.99)
> a8 &

HAw) ¥aw) HAw)
or os ot

where the incremental displacements have been defined in equation (5.17). Then the mass
density and thickness at configuration C'*4* are given by

pteat o p

det(F""“) | (5.100a,b)

et _ pt tean,_a'
h h' det(F ')atont

where det( ) denotes the "determinant of” and a is the area of the triangular element.
The calculation of updated stress is considered. From equations (5.8a) and (5.13)
the incremental Green strain can be obtained. Then, the incremental second Piola-

Kirchhoff stress is

AS = C Ae . (5.101)

As AS and the Cauchy stress o' are both defined with respect to the current configuration

C!, one has

S™at . ot + AS (5.102)

which is the second Piola-Kirchhoff stress at the deformation state "t+ At" measured with
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respect to the reference configuration C*. The following equation [5.1, 32, 35] defines
the relation or transformation between the second Piola-Kirchhoff stress and the Cauchy

stress

olvAt = -:“-_t-(-:?hTt)FbM St-at (FreayT (5.103)

where F'*4 is the deformation gradient given in equation (5.99).

5.7 Remarks

In this chapter, the theories for the analysis of geometrically nonlinear laminated
composite shell structures have been presented. The emphasis has been on establishing
a sound theoretical basis for the formulation of simple and efficient finite elements for
large scale geometrically nonlinear analysis of laminated composite shell structures.
Clearly, geometrically nonlinear problems for laminated composite shell structures are
more complicated than isotropic shells.

In the course of developing the finite elements, the updated Lagrangian description
has been employed. The cons:deration of reducing the algebra manipulations in obtaining
element matrices to a minimum is one of the major reasons for using updated Lagrangian
description. Consequently, the element linear and nonlinear stiffness matrices, the element
consistent mass matrix and the pseudo-load vector hive all been obtained explicitly.

In particular, the element developed in this chapter is based on the HLCTS®
element proposed in Chapter 2 and Chapter 4 for linear analysis. It is an extension of the
work in reference [S.1] which is for the analysis of isotropic shell structures. The element

has independently assumed incrememal strain and displacement fields. The formulation
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has taken in consideration many important aspects of geometrically nonlinear analysis of
laminated composite structures, such as, transverse shear deformation, large deflection
of finite strain and large rotation. The finite element procedure developed here is also
capable of dealing with the "thinning" effect and handling cases in which the directors are
not unique or difficult to evaluate.

To verify the effectiveness and simplicity of using the element developed in this

chapter, applications of the element for various geometrically nonlinear problems are

made and presented in the next chapter.




CHAPTER 6
NUMERICAL STUDIES OF
GEOMETRICALLY NONLINEAR LAMINATED COMPOSITE
PLATE AND SHELL STRUCTURES

The incremental finite element procedure developed in ihe last chapter is expected
to be simple and efficient for the analysis of large scale geometrically nonlinear laminated
composite plate and shell structures. This is because the formulation has incorporated
considerations of large deformation with finite rotations and finite strains. In this chapter,
to verify the validity of the derived element matrices in geometrically nonlinear analysis,
a number of nonlinear problems are studied. These problems cover geometrically
nonlinear analysis of both static and dynamic cases. The latter includes plates and shells
of isotropic and laminated composite structures subjected to different types of static and
dynamic loads. The HLCTS element results are compared with analytical or numerical
solutions available in the literature.

This chapter consists of five sections. The first two sections are concerned with
static analysis of plate and shell structures of isotropic and laminated composite materials,
respectively, while the third and fourth deal with dynamic analysis. The final section

presents closing remarks.

6.1 Static Analysis of Structures of Isotropic Materials

The current finite element formulations are developed for the analysis of

210
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geometrically nonlinear laminated composite structures. However, for the structures of
isotropic matenials, they are special cases. In this section three problems are studied to
show the excellent performance of HLCTS elements in geometrically nonlinear analysis
of structures made of isotropic materials, which include a cantilever beam subjected to
an end moment, cylindrical bending of a plate under a line load and a spherical cap

subjected to a concentrated load.

6.1.1 Cantilever beam subjected to an end moment

The problem considered is a cantilever beam subjected to a concentrated bending
moment at the free end. This example has been used widely as a testing case for large
deformation analysis [6.1-4). The cantilever beam is depicted in Figure 6.1(a). The
geometrical and material properties of the beam are: length L = 12.0 m, widthb = 1.0
m, thickness h = 1.0 m, Young's modulus E = 3.0 x 10’ N/m? and Poisson's ratio v
= 0.0.

In the analysis, the beam is discretized by a 12 X 1 A mesh as shown in Figure
6.1(b). At the fixed end, all DOF are constrained. For the remaining nodes, V = 8, =
8, = 0.0. After applying the boundary conditions, the total number of equations (neq.)
are 72. The shear correction factor is x = 5/6.

Analytical solution for this pure bending problem indicates that the beam is forced
into a circular arc when the end moment is applied. The deformed beam of radius p is

related to the bending moment by

1 M
- = = (6.1
p El )
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Figure 6.1 A cantilever beam subjected to an end moment

It is seen that when M reaches

the beam rolls into a circle with a radius of

pﬂ—

2n
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6.2)

(6.3)

Figure 6.2 shows the computed results obtained by using the HLCTS element with

M = M, applied. The beam indeed rolls into a complete circle. Figure 6.3 gives
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Figure 6.2 Deformed configuration of the cantilever beam at M = M,
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Figure 6.3 Deformed configurations of the cantilever beam at different load level
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deformed configurations of the beam under different levels of loads. In Figure 6.4, the
applied end moments are plotted against the normalized axial displacement U/L, lateral
displacement W/L and the rotation of the normal ¢/2=x at the end of the beam. In the
solution process, 130 steps were used for the load to reach to M,. The total number of
iterations was six.

It should be point out that, the results shown in Figures 6.2-6.3 were obtained
with the options of constant thickness, large strain and inclusion of directors in the
HLCTS element formulation. The options of large strain and small strain in the
computation make no difference in the results as the beam is still within small strain range
though the deflection and rotation are considerably large. The inclusion of directors gives
better results in the investigation. This is mainly due to the large rotations involved. In
reference [6.2], the problem has been discussed in relatively details. For brevity, they are

not repeated here.

6.1.2 Cylindrical bending of a plate under a line load

A very thin plate shown in Figure 6.5 is selected for the study of the so-called
plate cylindrical bending problem. The plate is square with side length 2L = 1280 mm,
thickness h = 0.8 mm, Young's modulus E = 2.07 X 10° N/mm? and Poisson's ratio
v = 0.3. The length to thickness ratio p = 1600. The plate is simply supported at two
opposite sides. The other two sides of the plate are free. It is subjected to a line force 2P
= (.474 N/mm? applied cross the centre line parallel to the simply supported edges.

One quarter of the plate is considered due to the symmetry of geometry, boundary

conditions and loading. A 4 X 4 C mesh which has 32 elements is adopted to model the
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Figure 6.5 A square plate subjected to a line load
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Figure 6.6 A 4X4 C mesh for a quarter of the square plate
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Figure 6.7 Load-displacement curve for the square plate subjected to a line load

quarter plate. The mesh layout is illustrated in Figure 6.6. To ensure cylindrical bending,
8, and 8, at all the nodes are constrained. In addition, W = 0.0 is applied to the nodes
at the simply supported edge BC, V = 0.0 to the symmetry line CD and U = 8, = 0.0
along AD. The total unknowns of the constrained quarter plate are 80. As the plate is
extremely thin, the shear correction factor has no significant effects on the final results.
Thus, it is set to unity in this case.

The HLCTS element results with constant and updated thickness options are

presented in Figure 6.7. The results were obtained by employing 100 load steps without
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iterations. The comparisons are made to the analytical solution from reference [6.5] and
finite element results from reference [6.3]). The finite element results are denoted by
HMSHS. The HMSHS results were obtained by using S X 5 and 7 X 7 mesh for a
quarter of plate. Th~ HMSHS finite element is a quadrilateral C° element of hybrid type.
Figure 6.7 shows that the HLCTS element result with constant thickness option
is in excellent agreement with the analytical solution. It overpredicts the deflection by
approximately 4.0%, with respect to the analytical solotion, at the full load level wh. .
considering thinning effects. As the updated thickness procedure reduces the effective
thickness as the plate deforming, larger deflection is anticipated. It should be pointed that
the maximum deflection in this case is over 600 times larger than the plate thickness.
Thus, the plate is undergoing large deformation. However, the problem is of small strain
type as the options of large or small strain lead to almost the same results. The HLCTS
element results presented here are identical to those reported in reference [6.2] in which

this problem was solved by utilizing the same mesh shown in Figure 6.6.

6.1.3 Spherical cap subjected to a concentrated load

The shell problem considered in this section is a spherical cap. The shell is
clamped circumferentially and subjected to a concentrated load P at its apex as shown in
Figure 6.8. The geometrical and material properties of the shell are: radius R = 0.1209
mm (4.76 in), thickness h = 0.0004 mm (0.01576 in), crown height H = 0.00218 mm
(0.0859 in), open angle 2¢ = 21.8°, Young's modulus E = 6.895 x 10'° N/m? (107 psi)
and Poisson’s ratio v = 0.3.

One quarter of the spherical shell is discretized by 80 nodes, 128 element mesh
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Figure 6.10 Load-displacement curve for the clamped spherical cap

as shown in Figure 6.9. The mesh has finer grid at the apex area and region close to the
clamped circumference. The boundary conditions imposed are: all DOF at the clamped
edge are constrained, V = 6, = 8, = (.0 at the symmetry line cutting by the XOZ plane
and U = 8, = 8, = 0.0 at the symmetry line cutting by the YOZ plane. The shear
correction factor is x = 5/6. The total unknowns to be solved in this case are 364.
The results obtained by using HLCTS element are plotted in Figure 6.10. It is
compared with those given in reference [6.6] which are from an analysis by using 10

eight node axisymmetric shell elements. From the results shown in the figure one can
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observe that a very small increase of the load around P = 200 N causes a relative large
deflection and then the trend suddenly reversed. The softening behaviour turns to
hardening. This indicates that the solution process is relatively difficult near this region.
Coarse meshes or large load increments may induce computational singularity. Solution
procedures which are lack of control near the singularity point may also have difficulties
in this case. Reference [6.2] has reported such difficulties in solving this problem. Later,
they obtained good results [6.13] by refining meshes (one of the meshes is the same as
the one shown in Figure 6.9} and load increments. In the current study, 400 equal load
increments are used without iteration. The efficiency can be improved by applying
varying load increments. That is to say, using smaller load increments in the sensitive
region.

It is found that results with options of including the directors and finite strain have

no significant uifference from those without directors and using constant thickness.

6.2 Static Analysis of Structures of Laminated Composite Materials

The HLCTS elements have given very good results in the analysis of geometrically
nonlinear plate and shell structures of isotropic materials as seen from last section. Now,
the present concern is on laminated composite plate and shell structures. The problems
studied and presented in this section are an angle-ply sandwich plate subjected to tension,
p'ates under uniformly distributed load, antisymmetrically laminated cylindrical panels
subjected to central point load and a symmetrically faminated spherical shell segment

subjected to different loadings.
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6.2.1 Angle-ply sandwich plate subjected to a tension load

The sandwich plate considered here is shown in Figure 6.11(a). It is rectangular
and clamped at X = 0.0. The geometrical properties of the plate are: lengtha = 2.0 m,
width b = 0.8 m, and the total thickness h = 0.04 m. The sandwich plate has three
layers. The top and bottom layers are carbon reinforced epoxy and they have an equal
thickness of 0.C04 m. The fibre orientations of the top and bottom layers are +30° and -
30°, respectively. For the top and bottom layers, the material properties are: E, = 2.11
x 10" N/m?, E, = 5.27 x 10° N/m?, G;; = G;; = Gy, = 2.64 X 10° N/m? and v,
= 0.25. For the kernel, E = 5.00 x 10* N/m? and v = 0.0. The core layer is isotropic
and has a thickness of 0.032 m. The plate is loaded with a concentrated force P = 1.4818
X 10°% N at the middle point of the free end.

Figure 6.11(b) shows a 5 X 2 D mesh nsed for the finite element analysis. All
DOF are constrained at the clamped end. Other boundary conditions are: V = W = 8,
= 8, = 0.0 for nodes on the centre line, and , = 0.0 for the remaining nodes. There
are 110 unknowns to be solved in this finite element model. Shear correction factors are
unity. During the solution process, 15 load increments are utilized without invoking
iteration. The HLCTS element results with those from reference [6.7] are plotted in
Figure 6.12. The results from reference [6.7] are obtained by using a four node
rectangular element with a 4 X 2 mesh. It has been tested that the options of large strain,
updating thickness and including directors lead to insignificant difference between the
results. From Figure 6.12 one can see that the concentrated tension load causes warping.
That is, at point B, there is a large transversal deflection Wy due to the in-plane tension

force P. It may need to point out that if an uniformly distributed tension load, whose
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Figure 6.11 A laminated plate subjected to a concentrated tensional load
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Figure 6.12 Load-displacement curve for the cantilever plate subjected to tension

resultant has an equal value as P, is applied to the free end, Wy is much smaller than the
case of concentrated load. Therefore, in reference [6.7] the statement that "the stresses
o, are represented by the resultant P" seems to be incorrect since their results matches

the case with a concentrated load.

6.2.2 Plates under uniformly distributed load
In the analysis of laminated composite plates, cross-ply laminates have been given

considerable attention. The cross-ply layup is a special case of the general angle-ply layer
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arrangement. Thus, a two layer cross-ply (90/0) square plate under uniformly distributed
load is studied first. This is followed by a four layer symmetrically laminated angle-ply

plate.
The square plate has a side length, b = 0.2286 m (9 in), and a total thickness h

= 1.016 x 10® m (0.04 in). Each layer has an equal thickness. The material is a
graphite/epoxy composite. Its material properties are:

E, = 1.379x10"' N/m? (2.0x10’ psi);

E, = 9.653x10° N/m? (1.4>10° psi);

G,, = G;; = 4.827x10° N/m? (0.7x10° psi);

G,; = 3.448x10° N/m? (0.5 % 10° psi);
and Poisson's ratio v;, = 0.3.

The laminated plate is simply supported at four edges and under transversally
applied uniformly distributed load. Owing to symmetry, one quarter of the laminated plate
is modeled by a 3 x 3 D mesh (see Figure 6.13). For the finite element model, the
boundary conditions imposed are: V = 8, = 0.0at AB,W =0, = 0.0at BC, W = 0,
= 0.0atCD and U = 8, = 0.0 at AD. At point A, centroid of the plate, W is free and
all other DOF are constrained. With these boundary conditions, there are 120 unknowns
to be solved. The shear correction factors are x, = ks = (5/6)!2.

This problem has been solved by Yeom and Lee [6.8], and Sun [6.9]). In reference
[6.8], a degenerated three-dimensional hybrid strain based element was employed. The
element has 9 nodes and 5§ DOF for each node. It is capable of dealing with large
deformation of small strain and finite rotation. It also considered transversal shear effect.

Reference [6.9) uses the von Karman plate theory which can not handle finite rotation.
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Figure 6.13 A 3X3 D mesh for a quarter of the laminated square plate

The results obtained by using the HLCTS element and those from references [6.8] as well
as [6.9] are given in Figure 6.14. In the present investigation, 50 load increments are
applied with a total of 10 iterations. The results of reference [6.8] were obtained from a
3 X 3 mesh.

Under the current level of applied load, this problem remains in the small strain
range as the results differ insignificantly from those applying the large strain and updating
thickness options. r

Now a four layer symmetrically laminated angle-ply plate is analyzed. The
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Figure 6.14 Load-displacement curve for the cross-ply plate

geometrical and material properties of this plate have been given above. The detailed
lamination scheme is (-45/45/45/-45). All the layers of the laminate have equal thickness
and the total thickness of the plate is 1.016 x 10°3 m (0.04 in). The boundary conditions
and load applied are also the same as the two layer cross-ply plate.

Figure 6.15 shows the transversal deflections obtained by using a 3 X 3 D mesh
for one quarter of the plate. The comparison is made between those using 30 and 60 load
increments. In both cases, there is one iteration for every five load increments. The two

set of results appear to be very close to one another except that, the one with 60 load
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Figure 6.15 Load-displacement curve for the angle-ply plate

increments gives a more smooth plot.

6.2.3 Antisymmetrically laminated cylindrical panels subjected to a central point load

A two layers angle-ply cylindrical shell panel is considered here. The panel and
a2 x 2 D mesh for one quarter of the panel are shown in Figure 6.16. It is subjected
to a central point load P. The length of the panel b = 0.508 m (20.0 in), shell radius R
= 2.54 m (100 in), open angle 2¢ = 0.2 rad and total thickness h = 0.0124 m (0.496

in). The layer material properties are:
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Figure 6.16 A laminated cylindrical panel subjected to a point load

E, = 3.2993x10° N/m? (4.785 x 10’ psi);
E, = 1.0998 x10° N/m? (1.595 x 10° psi);
G, = G;; = 6.5985x10® N/m? (0.957 % 10° psi);
Gy, = 4.4128x10® N/m? (0.64 X 10° psi);
and Poisson's ratio v,, = 0.25.
The cylindrical shell panel is constructed as (45/-45) and the angle is measured
from Y-axis in this case. It is hinged along the straight edges and free on the curved

sides. Making use of the symmetry, one quarter of the panel is applied for the analysis.
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Figure 6.17 Load-displacement curve for the angle-ply cylindrical panel

This quarter of panel is modeled by a 4 x 4 D mesh. The boundary conditions imposed
on the finite element modelare: U=V =W =08, =6, =0.0atBC,V=08,=8, =
0.0atCDand U = 8, = 8, = 0.0 at AD. It has 195 unknowns. The shear correction
factors are x, = x; = (5/6)"2.

In this analysis, the load increment adopted is 2.224 N (0.5 1b) and there is no
iteration applied. The computed results denoted by HLCTS are compared with those
presented by Yeom and Lee [6.8) applying the same degenerated three-dimensional hybrid

strain based element mentioned in last subsection. They are given in Figure 6.17. The
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Figure 6.18 Comparison of results from different meshes

results by Yeom and Lee were obtained by using a 4 X 4 mesh for a quarter of the shell
panel. Figure 6. 18 gives the comparison of HLCTS element results by using 4 X 4 D and
3 X 3 D meshes. The two sets of results differ from each other slightly. However, they
have the limit point at the same load level. This singular point is where the snap-through

starts.
The (45/-45) shell panel and a (90/0) cylindrical shell panel which has the same
geometrical and layer material properties as those given above are also investigated under

a uniformly distributed pressure load p. The boundary conditions are still the same.
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Figure 6.19 Load-displacement curve for cylindrical panels under pressure load

Figure 6.19 shows the results obtained by using the HLCTS element. It can be seen that
the (90/0) lamination schere provides larger stiffness or stiffer panel. In the solution
process, 150 load increments were applied without introducing iterations. There is no

solution available in the literature for comparison in these cases.

6.2.4 Symmetrically laminated spherical shell segment subjected to different loadings
A nine layers cross-ply symmetrically laminaied doubly curved spherical shell

segment is analyzed first. The shell is shown in Figure 6.20. Its layup is
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Figure 6.20 A laminated spherical shell segment under pressure load

(0/90/0/90/0/90/0/90/0). The total thickness of the shell is h = 0.01 m (0.3937 in). The
thickness of 0° layers is h/10 and 90° layers is h/8. The projected side length of the shell
isb = 1.0 m (39.37 in). The radius, R, is 10 m (393.7 in). The layer material properties
of the spherical shell segment are:

E, = 2.0685x10'' N/m? (3.0x 107 psi);

E, = 5.1713x10° N/m? (0.75 X 10° psi):

G2 = 3.1028 x10° N/m? (0.45 x 10° psi);

Gy3 = Gy = 2.5856x10° N/m? (0.375 X 10° psi):
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Figure 6.21 Load-displacement curve for the spherical shell under pressure load

and Poisson's ratio v,, = 0.25.

It is simply supportcd at four curved edges. A uniformly distributed pressure load
p is applied. The latter is always normal and pointing to the outer surface cf the shell.
One quarter of the shell is modeled by using a 3 X 3 D mesh. The boundary conditions
applied to the finite Llement model are: V=0, = 8, = 0.0 atline AB, V = W = 0,
=0.0atBC,U=W =8 =0.0atDCand U = 8, = 8, = 0.0 at AD. After applying
the bcundary conditions, the total number of equations to be solved are 107. The shear

correction factors are x, = x; = (5/6)'"2.
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The finite element results obtaired by employing the HLCTS element and those
from reference [6.10] are given in Figure 6.21. In this figure, the HLCTS result: are
from a solution process using 150 load increments without iterations. The results deroted
by ref. [6.10] are the converged finite element solutions from reference [6.10]. The finite
elements used for these solutions are of mixed type. They were designated by MT6, MQ?
and MQQ9 in this reference. The MT6 element is triangular and has six nodes. The MQS8
and MQ9 elements are quadrilateral and have eight and nine nodes, respectively. The
respective number of DOF per element for MT6, MQ8 and MQO are 78, 104 and 117.
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The results denoted by MT6 in Figure 6.21 are the MT6 element solutions from a 2 x
2 mesh for one quarter of the shell segment.

Ths= same nine layer cross-ply laminated composite spherical shell segment is then
subjected to a concentrated load at its central point A. The load is applied in the negative
Z direction. The results are obtained by applying 120 load increments without iteration.
Figure 6.22 shows the results. For this case there is no solution in the literature for

comparison.

6.3 Dynamic Analysis of Structures of Isotropic Materials

Static analysis of geometrically nonlinear plate and shell structures of isotropic
materials has been performed in section 6.1 and laminated composite materials in section
6.2. This and next sections are concentrated on dynamic analysis of such structures. In
this section, two cases of single layer structures made of homogeneous isotropic materials
are studied. They are a rectangular plate and a spherical cap subjected to step loadings.
In both cases, the shear correction factor is x = 5/6. The analysis is aimed at providing
a concrete proof of the validity and accuracy of the HLCTS element in dealing with

isotropic plate and shell structures.

6.3.1 Rectangular plate subjected to a step load

A rectangular plate shown in Figure 6.23 is considered lizre. The plate has been
analyzed in references [6.2]. The geometricai and material properties are: side length a
= 1.016 m (40 in), b = 1.524 m (60 in), thickness h = 0.0254 m (1 in), Young's

modulus E = 2.0685 x 10° N/m? (3 x 10* psi), Poisson's ratio v = .25 and density
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Figure 6.23 A 4x4 C mesh for a quarter of the rectangular plate

p = 3204.0 kg/m? (0.0003 Ib-sec?/in*).

It is simply supported at four edges. One quarter of the plate is modeled by a 4
X 4 C mesh depicted in Figure 6.23. In this analysis, the membrane part of the element
is ignored. That is, all V, U and @, DOF are set to zero. In addition, the boundary
conditions imposed on other DOF are: ©, = 0.0at AB, W =8, = 0.0at BC, W = e,
= 0.0 at CD and 6, = 0.0 at AD. The total number of unknowns to be solved in this
case are 48.

A ramp with the amplitude P, = 177.92 N (40 Ib) is applied at the centroid of the
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Figure 6.25 Time history of centre displacement of the rectangular plate

plate. As depicted in Figure 6.24(a), the acceleration time t, = 0.006 second. In the
solution process, the trapezoidal direct integration scheme is adopted and the time step
size is At = 0.002 seconds.

The HLCTS element results obtained with the options of large strain and updated
thickness are included in Figure 6.25 together with those from reference [6.2]. These
results are identical. A comparison between the geometrically nonlinear and linear
solutions of the same plate is given in Figure 6.26. The geometrically nonlinear results
have a shorter period and smaller amplitude. This phenomenon indicates stiffness

hardening effects.
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6.3.2 Spherical cap subjected to a step load

The spherical cap analyzed in subsection 6.1.3 is now subjected to a step load
applied at its apex. The step load function is give in Figure 6.24(b) and P, = 155.68 N
(35 1b). The density of the shell is p = 2617.0 kg/m* (0.000245 Ib-sec?/in*). Other
pertinent data and boundary conditions have been given in subsection 6.1.3.

A relatively coarse mesh is used to model one quarter of the spherical shell. As

shown in Figure 6.27, there are 46 nodes and 72 elements in this mesh. The mesh also

has finer grid at its apex area and where is near the clamped circumference. The
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Figure 6.27 A 46 node, 72 element mesh for a quarter of the spherical cap

constrained computational model has 199 unknowns.

The same trapezoidal rule is employed in the integration and time step size is At
= 0.22 X 10 "% sec. This At is about one-fiftieth of the fundamental period of the
spherical cap. With the options of finite strain, excluding directors and constant consistent
mass matrix, the results obtained by using the HLCTS element and those from reference
[6.2] are plotted in Figure 6.28. To illustrate the effect of geometrical nonlinearity, the
HLCTS element results are compared with those from linear analysis in Figure 6.29. 1t

can be seen that the linear analysis predicts about four times smaller vibration amplitude
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Figure 6.28 Time history of apex displacement of the clamped spherical cap

and five times higher oscillation frequency. The results of geometrical nonlinear analysis

indicate stiffness softening effects, which agree with the observation in subsection 6.1.3.

6.4 Dynamic Analysis of Structures of Laminated Composite Materials

To demonstrate the attractive features of the HLCTS elements in predicting
dynam.c responses of structures of laminated composite materials, several plate and shell
structures are analyzed in this section. These cases are the transient responses of a square

plate, a cylindrical shell panel, a spherical shell segments and a cantilever panel. The
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Figure 6.29 Comparison of nonlinear and linear analysis of the spherical cap

plates and shells are constructed with different numbers of layers and lamination schemes.
For the first three cases the applied load are either concentrated load or uniformly
distributed load which is a step function of time. For the cantilever panel a step moment
is applied at the free end. Though the current HLCTS element formulation allows
updating the consistent mass matrix in each time step, it is kept constant for the purpose
of comparison with results available in the literature. Other options that the HLCTS

element has in the static anaiysis remain valid in the dynamic analysis. The shear

correction factors for these cases are x, = x; = (5/6)'2,
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Figure 6.30 Transient response of a cross-ply plate under

suddenly applied uniform load

6.4.1 Plates under uniformly distributed load

The square plate considered has two layers. Its geometrical dimensions are: side
length a = 2.438 m and total thickness h = 0.00635 m. Each layer of the laminate has
equal thickness. The plate stacking schemes are cross-ply (0/90) and angle-ply (45/-45).
The layer material properties are: E, = 6.8974 x 10'° N/'m?, E, = 25 E,, G, = G,
= 0.5 E;, Gy = 0.2 E,, vj; = C.25 and density p = 2498.61 kg/m’.

It is supported by hinges at its four edges. At these edges U or V paraliel to the
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Figure 6.31 Transient response of a angle-ply plate under
suddenly applied uniform load

edges are not constrained. These boundary conditions are denoted as BC1 in reference
[6.11]. For the purpose of direct comparison with the results reported in the latter

reference, one quarter of the plate is modeled by a 4 X 4 U mesh (see Figure 6.13 for

the plate and Figure 3.7 for 4 x 4 D mesh). Thus, the boundary conditions applied are:
V=6,=00atAB,U=W =86, =0.0atBC,V=W=8,=00aCDand U =

8, = 0.0 at AD. In addition, all 8, are constrained. There are 158 unknowns in “his case.

The uniformly distributed transversal step load with intensity p, = 490.5 N/m?
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Figure 6.32 Comparison of the responses of cross-ply and angle-ply plates

is applied to the plate. Firstly, the (0/90) cross-ply plate is analyzed. In the analysis, the
option of inclusion of directors and small strain are selected. The time step size is At =
0.001 seconds. The rc nonses at the centroid obtained by using tihe HLCTS element are
plotted in Figure 6.30. They are compared with those reported in reference [6.11]. In the
latter the element adopted is a nine-node rectangular isoparametric element, which
considers transverse shear and large rotations. Secondly, the (45/-45) angle-ply plate is
solved with the same boundary and loading conditions, but using just the bending part of

the HLCTS element. That is, all U, V and O, are ignored. This choice is also made in
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reference [6.11]. Thus, the results obtained with the proposed element can be compared
with those taken from the latter reference. They are presented in Figure 6.31. The results
from reference [6.11] were also obtained by using just the bending part of the element.

In2 two layers cross-ply and angle-ply plates are also considered under simply
suppcited boundary conditions. These boundary conditions have been described in
subsection 6.2.2. Here, all 8, are constrained. The number of unknowns are 160. With
the 4 X 4 D mesh and uniformly distributed transversal step load described in the

foregoing, the problems are solved. The HLCTS element results are given in Figure 6.32.

6.4.2 Cylindrical panels under internal pressure
A laminated cylindrical panel is shown in Figure 6.33. Two ply arrangements for

the panel are considered. The first is the eight layers symmetrically laminated (0/-
45/90/45),,,,, panel and the second is the twe layers cross-ply (0/90) panel. Equal layer
thickness is assumed. The pertinent geometrical data are: radius R = 2.54 m (100 in),
arc length a = 0.508 m (20 in), length b = 0.508 m (20 in) and total thickness h =
0.00127 m (0.05 in) while ¢ = 0.1 rad. The material selected is graphite-epoxy. The
material properties are:

E, = 1.3790x10" N/m? (2.0x107 psi);

E, = 9.8599x10° N/m? (1.47" iy’ 9si);

G2 = Gj3 = Gy = 5.2402x10° N/m? (0.76 x 10° psi);

Poisson's ratio v,- = 0.3; and

density p = 1562.2 kg/m* (0.146X 107 1b-sec?/in*).

The cylindrical shell panel is clamped at its curved and straight edges. One quarter
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A clamped cylindrical panel
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Figure 6.34 Transient response of a eight layers cylindrical

panel under suddenly applied step internal pressure

of the panel is modeled by a 4 X 4 D mesh. The boundary conditions imposed on the
finite element model are : V = 8, = 0.0at CD, U = 8, = 0.0 at AD and all DOF are
ronstrained at AB and BC. In this case, all , are also constrained. The total unknowns
are 144. An internal step pressure with intensity p, = 6895.0 N/m? (1.0 psi) is applied
to the panel.

The rusults shown in Figure 6.34 are transient responses at the centre of the eight

layers cylindricai shell panel. In the figure, HLCTS denotes the results obtained by
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Figure 6.35 Transient response of a two layers cress-ply cylindrical

panel under suddenly applied step internal pressure

employing the HLCTS element with the options of directors and large strain. The resu’:
from reference [6.12] were obtained with a curved high-order r,uadrilateral shell element
and one quarter of the stell panel with a 2 X 2 mesh was considered. This element has
48 DOF and was developed based on the classical lamination theory. The present results
are all obtained by using the trapezoidal iategration scheme with a time step At = 0.05
msec. Both sets of results in the figure show excellent agreement. For the two layers

cross-ply shell panel, the HLCTS element results are compared in Figure 6.35 with those
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Figure 6.36 Transient response of a two layers angle-ply spherical

shell segment under suddenly applied pressure load

from reference [6.12].

6.4.3 Spherical shell segments subiec:ed to step loads

Two laminated spherical shell segments are considered. Their geometries are
similar and both are simply supported. However, they are constructed with different
materials and lamination schemes. Figure 6.20 shows the geometry of the laminated

spherical shell segments. The geometrical properties are: radius R = 10.0 m, the side
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length of the projected plane is b = 0.9996 m and the total thickness is h = 0.01 m.

The spherical shell segment is first considered having two equal thickness layers
and they have the (-45/45) lamination scheme. The pertinent material properties are: E,
= 2.5x10" N/m?, E, = 1.0x10'° N/'m?, G,, = G,; = 0.5x10" N/m?, G, =
0.2 10" N/m?, Poisson's ratio v,, = 0.25 and density p = 1.0x 10® kg/m’. One quaster
of the shell is modeled by the HLCTS element with the 4 X 4 D mesh. The boundary
conditions have been explained in subsection 6,2.4. The number of equations to be solved
is 189. A distributed step pressure is applied to its outer surface (pointing toward the
outer surface). It has an intensity p, = 2000.0 N/m2. The time step used is 0.03 seconds.
By using the same options as for the cylindrical panel, the nonlinear transient response
at the apex (central point A of the shell segment) is obtained and plotted in Figure 6.36.
The problem has been solved in reference [6.12] by utilizing the same curved high-order
quadrilateral shell element quoted in last subsection. The results from reference [6.12] are
reproduced in Figure 6.36 for comparison. It is observed that there is a discrepancy of
about 8%, with respect to the HLCTS element results, for the amplitudes between the two
set of results. However, they have the same vibration period.

The second spherical shell segment has the stacking sequence (0/90/0/90/0/90/0
/90/0). The thickness of the 0 degree layers is h/10 and of the 90 degree layers is h/8.
The layer material properties for this shell are the same as those used in subsection 6.2.4.
Two different step loadings are considered for this case. One is similar to the two layers
angle-ply spherical shell segment described above. The another is a concentrated step load
with P, = 2000.0 N applied at the apex and pointed downwards. In the trapezoidal direct

integration process, a time step of 0.0004 seconds :s used. The nonlinear transient



Central deflection -W (mm)

254

8.0 —m—r—mrm—"--1—"""-"-""">>>"r"—T"rT T T 1

8.0 - pressure load
T —— point load

4.0 1

(0/90/0/80/0/90/0/90/0)

_2.0 AU IR S | i | n 1 A 1 i 1 " i M
0 2 4 6 8 10 12 14 16 18 20 22

l & l A l —

Time (msec)

Figure 6.37 Comparison of the transient responses of a nine

layers cross-ply spherical shell segment under different loadings

responses calculated for the central point A are given in Figure 6.37. It is seen that the
vibration amplitudes are much higher than those of the two layer angle-ply shell segment.
The concentrated step load causes even larger vibration amplitude at the central point A

than that due to the distributed pressure.

6.4.4 Cantilever panel with a step moment applied to the free end

The finial case considered is a four layer cross-ply cantilever panel. It is
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Figure 6.38 Transient response of a cross-ply cantilever

beam with a step moment applied at the free end

symmetrically laminated with the stacking scheme (0/90/90/0). Its geometries have been
depicted in Figure 6.1(a). They are: L = 1.2 m, b = 0.1 mand h = 0.01 m. The
material used for this cantilever is the high modulus graphite/epoxy composite. Its
material properties are: E, = 2.0685x10'' N/m?, E, = 5.1713x10° N/'m?, G,, =
3.1028 X 10° N/m?, GG 3 = G,, = 2.5856x 10° N/m?, p = 1605 kg/m® and Poisson's ratio
vi; = 0.25. A step moment M about an axis parallzl to the width of the panel is applied

to the free end. The amplitude of ihis moment is m, = 1000.00 N-m.
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As shown in Figure 6.1(b), the panel is discretized by a 12 X 1 A mesh. At the

fixed end, all DOF are constrained. The remaining nodes are constrained in two different
ways. Firstly, V = 8, = 6, = 0.0 are imposed and secondly all DOF are free. These
two finite element models have 72 (denoted as model 1) and 144 (denoted as model 2)
unknowns, respectively.

For model 1, the time step At = 0.001 sec is employed in the trapezoidal direct
integration. The nonlinear transient responses at the end of the cantilever are solved by
selecting the options of director included, small strain and constant thickness. The total
numbers of iterations are 15. The computed end deflections are plotted in Figure 6.38.
When iterations are suppressed, the HLCTS element predicts a slightly smaller period for
the nonlinear responses and encountered some numerical difficultic after the first period.
These results are included in Figure 6.39. From Figures 6.38 and 6.39 one can see that
the peak values of W have reached about 1.0 m which is 100 times of the thickness of
the cantilever panel. The deflections and rotations are considerably large. In this case, the
inclusion of directors in the formulation is crucial as the direc’ors are important
parameters that constitute the so-called "exact geometry” for large rotation problems.
Figure 6.40 shows the effects, with or without directors, on the responses in addiuon to
small strain and constant thickness options. Without the directors, the solution process
fails at t = 0.08 sec. While the displacements and rotations are very large, the strain level
of this problem is still within the "small strain" range. Figure 6.41 reveals that the
options of small strain and finite strain formulations lead to almost identical solutions. In
these strain formulations the directors are included and thicknesses are kept constant. The

deflection W 1n Figure 6.38 is compared with the linear solution in Figure 6.42. The
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Figure 6.39 Comparison of the results obtained with and without iterations

peak value of the linear solution with the same free end moment for the nonlinear solution
is much larger than the length of the panel. Theoretically, the linear solution is valid if
it peak value is within 5% of the length of the panel. Clearly, this is not the case.

For model 2, the time step At = 0.0005 sec is used. There is one iteration for
every ten steps. To compare with the results presented in Figure 6.38, the same options
as for Figure 6.38 are selected. The results obtained by using model 2 are plotted in
Figure 6.43 together with those from Figure 6.38. Since in model 1, the stretching in the

Y direction has b.2n constrained, that is V = 0.0, it is more stiff than model 2.
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Figure 6.40 Comparison of the results obtained with and without including directors

However, the difference is not very significant. The small and finite strain options are
also tested for model 2. The results are given in Figure 6.44. The same finding as for
Figure 6.41 has been confirmed.

In addition to the inclusion of directors and small strain options, the updated
thickness option is adopted for the calculation by using model 2. The results are suows
in Figure 6.45. Owing to the thinning effect, the panel appears to be softer and larger
deflections have been predicted. This is clearly illustrated in Figure 6.45.

Apparently, model 2 is more realistic. However, the number of unknowns is
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doubled. Thus, the computational time required for their solutions is longer. Furthermore,

unknowns along the Y axis are much smaller than those along the X and Z axes in this

case. Therefore, the equations to be solved may be ill-conditioned. To circumvent this

problem smaller time steps are required for the numerical integration. Therefore, from

the computational efficiency point of view, model 1 seems to be a better choice. Of

course, if the axis of applied step moment is no. parallel to the width of the panel model

2 should be be used in order to provide realistic and accurate solutions.
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Finally, a pictorial description of the evolution of the deformed panel is presented,

for clarity, in Figures 6.46(a) and 6.46(b). Figure 6.46(a) depicts the evolution from t =
0.0 tot = 0.05 sec. Att = 0.0, the panel is undeformed and at t = 0.05 the de. ¢ction
approaches the peak value. The configurations preseated in Figure 6.46(b) are from t =

0.06 to 0.11 sec, which show the deformed panel bouncing back from its peak value.

6.5 Remarks

The HLCTS elements for the analysis of geometrically nonlinear laminated
composite plates and shells have been employed to solve various static and dynamic
problems. Before leaving this chapter, the following main observations and remarks
should be noted:

(1) The HLCTS elements have been employed to solve various static and dynamic
problems. These geometrically nonlinear ~roblems include single layer isotropic plate and
shell structures and multilayer laminated composite plates and shells. Relatively
comprehensive case studies have been performed. The majority of results obtained by
using the HLCTS elements have been compared with those available in the literature. The
comparisons have validated the correctness of the results obtained and shown the accuracy
and efficiency of the proposed elements.

(2) In the case of large rotations (see for examples, the cantilever panel subjected
to an end moment in subsections 6.1.1 and 6.4.4) the option of including directors in the
formulation gives better results in terms of faster convergence and higher accuracy. In
some cases the incorporation of directors is critical. See for example, the case studied in

subsection 6.4,4. In the large deformation problems with small rotations, the computed



Z (m)

0-4 M 1 M ! M 1 M 1 M ] M ! M i
0.2 4
0.0 —
-0.2 | \ .
-0.4 | =
-0.8 |
—— {=0.00
-0.8 > —e t=0.01 ]
i ——e t=0.02
-1.0 F o—se t=0.03
’ o $=0.04
= t=30.05
-1.2 | ~
__1.4 n { M ] n | n A1 i 1 i 1 i 1

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
X (m)

Figure 6.46(a) Deformed configurations of the cantilever panel

during the evolution of nonlinear transient response

1.4

63



of/de

+ M 13%"'x4” PHOTOGRAPHIC MICROCOPY TARGET
NBS 1010a ANSI/ISO #2 EQU!VM.ENT

1O i g

fin

= u §2 "mé

N ——— :
= mab

E
£ |

e

12

==
= "
1.6

L2 L4, e

PRECISIONS™ RESOLUTION TARGETS




0.4 T | M T o T

— t=0.09 |
~1.0 | —x t=0.10
— t=0.11
-1.2 .
_1.4 N ] N | N 1 . { N 1 " i A ] i
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
X (m)

Figure 6.46(b) Deformed configurations of the cantilever panel

during the evolution of nonlinear transient response




265

results predicted by using the elements with or without directors have ro significant

differences. Thus, problems in this category can disregard directors such that
computational time can be saved.

(3) The computed results seem to suggest that all geometrically nonlinear problems
studied in the literature and quoted in the present investigation are within the range of
small strains. However, the incorporation of finite strain deformation in the HLCTS
element formulation can be included in cases with deformations in the plastic range.
Therefore, the HLCTS elements can be extended and modified to analyze problems with
elastic-plastic deformations.

(4) Shear locking has not appeared in the results obtained thus far. This is a
further proof of the excellent performance capability of the HLCTS elements developed.

(3) As the improved DDOF formulation has been considered, there is no zero
energy mode detected in the problers studied in this chapter that employs the particular

member of the HLCTS elements.




CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

This chapter concludes the current investigation. It is divided into three sections.
The first section summarizes the development and studies performed on the finite element
analysis of linear and geometrically nonlinear laminated composite plate and shell
structures. The second presents the conclusions of this investigation. The third section

proposes the recommendations for further investigations.

7.1 Summary

In this investigation, the review shows that the understanding of mechanical and
structural behaviours of laminated composite plate and shell structures and developing of
simple, accurate and efficient finite elements for analyzing such structures is far from
adequate. The complexity in the linear and nonlinear analysis of laminated composite shell
structures requires more efforts in developing efficient computing strategies. To keep up
with the booming applications of laminated composite materials for shell structures in
modern industries, theories and computational models for finite element analysis of linear
and geometrically nonlinear laminated composite plate and shell structures were studied
and developed. This development had led to the derivation of new elements.
Consequently, linear and geometrically nonlinear laminate composite plate and shell
structures were analyzed. The considerations of large deformations of large rotations and

finite strains were emphasized throughout the investigation. Static and dynamic responses



267
of such structures under various lamination schemes, boundary and loading conditions
were evaluated. The investigation consisted of two phases. The first phase focused on
linear analysis and the second concentrated on nonlinear analysis.

In the linear analysis, a series of simple three-node, six DOF per node, hybrid
strain based fiat laminated composite triangular shell finite elements were developed.
They were based on the degenerated three dimensional solid concept. The first order
shear deformation theory was adopted. The element matrices were obtained explicitly by
using a combination of manual and computer assisted algebraic manipulations. Among
these elements, the hybrid strain based BT derived in Section 2.5 has six fundamental
DOF at each of its nodes. These six DOF include the DDOF. Because of the absence of
the in-plane shear strain energy due to the skew symmetric part of the in-plane shear
strain from the total potential energy equation, the DDOF formulation in the BT is not
complete. To enhance the DDOF in the BT elements, the skew symmetric part of the in-
plane torsional shear strain was considered. This accounted for the contribution from @,
The resulting element stiffness matrices kg, and k,, in Section 2.6 are thus hinged on a
more sound theoretical basis. The numerical studies in Chapter 3 and 4, had shown that
the proposed laminated composite shell elements with enhanced DDOF gave the best
performance. The HLCTS elements developed for the linear static analysis are
summarized and identified as follows:

(1) HLCTS* k™ =k ' + kg, , linear w in BT + hybrid DDOF;

(2) HLCTS™ k% = k9 + k,, , quadratic w in BT + hybrid DDOF;

(3) HLCTSY kM = k! + ky , linear w in BT + displacement DDOF;

(4) HLCTS¥ k% = k9 + k, , quadratic w in BT + displacement DDOF.
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Each of the element stiffness matrices consists of two parts. One is from the BT, and the
other is the independently formulated DDOF. Comparing the four elements, HLCTS™ is
the most favourable element with respect to accuracy and rank sufficiency. HLCTS" and
HLCTS® are rank sufficient since the displacement formulation of DDOF is equivalent
to employing three strain parameters in the strain field if the hybrid formulation is
performed. In this sense, HLCTS" and HLCTS® provide no inconsistency to the hybrid
formulation though the displacement type DDOF was adopted. As HLCTS* was
formulated by assuming a quadratic fii d for w, it improved the accuracy over the
HLCTSY.

For the linear dynamic analysis, element consistent mass matrices were developed.
These element mass matrices were formulated with the options of considering or not
considering moment of inertia and the polar moment of inertia. Using these element mass
matrices and the element stiffness matrices derived in Chapter 2, six elements for
vibration analysis of laminated composite plate and shell structures were formed. These
elements are denoted by HLCTS %, HLCTS¥, HLCTS ®, HLCTS", HLCTS* and
HLCTS®. Together with the element stiffness matrices developed in Chapier 2, the
HLCTS elements are all in explicit expressions. There is no numeric:’ inversion and
integration involved.

The HLCTS elements developed in Chapter 2 have been used to study an extensive
collection of single layer, multilayer plate and shell structures in Chapters 3 and 4. The
structures analyzed were considered under different types of loadings with various

boundary conditions and lamination schemes. In the linear dynamic analysis, the study

was concerned with free vibrations. The results obtained in the analysis were compared
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with those analytical and numerical solutions whenever they are available in the literature
so as to ensure the validity of the HLCTS element results. Detailed information on
geometrical and material properties of the structures, loadings and boundary conditions
were given in every example.

In the second phase, geometrical.y nonlinear problems were investigated. Theories
and the finite element formulations for the analysis of geometrically noniinear laminated
composite shell structures were presented in Chapter 5. The emphasis has been on
establishing a sound theoretical basis for the formulation of simple and efficient finite
elements for large scale geometrically nonlinear analysis of laminated composite shell
structures. In the finite element formulations, the updated Lagrangian description has been
adopted. The consideration of reducing the algebraic manipulaticns in cbtaining element
matrices {0 a minimum was one of the major reasons for using updated Lagrangian
description. Consequently, the element linear and nonlinear stiffness matrices, the element
consistent mass matrix and the pseudo-load vector have all been obtained explicitly. In
particular, the element developer' for the analysis of geometrically nonlinear laminated
composite plate and shell structures was based on the HLCTS * element proposed in
Chapter 2 and Chapter 4 for ‘inear analysis. It is an extension of the work in reference
[S.1j which is for the analysis of isotropic shell structures. The element has independently
assumed incremental strain and displacement fields. The formulation has considered many
important aspects of geometrical nonlinear analysis of laminated composite structures,
such as, transverse shear deformation, large deflection of finite strain and large rotation.
The finite element procedure developed here is also capable of dealing with the "thinning"

effect and handling cases in which the directors are not unique or difficult to evaluate.
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To verify the effectiveness and simplicity of using the element proposed.
applications of the element for various geometrically nonlinear static and dynamic

problems were made and presented in Chapter 6.

7.2 Conclusions

The investigation has explored the theories, computational models and strategies
for static and dynamic analysis of linear and geometrically nonlinear laminated composite
plate and shell structures. A series of simple three-node, six DOF per node, hybrid strain
based laminated composite triangular shell finite elements have been developed. The
followings are the conclusions drawn from the investigation.

(1) The HLCTS elements are more accurate and converge faster when compared
with other low-order finite elements. In some cases they can even be compared
favourably with high-order elements. A relatively large collection of linear and
geometrically nonlinear problems were solved. Static and dynamic responses of such
structures under various lamination schemes, boundary and loading conditions were
evaluated. In the nonlinear analysis, structures were analyzed under the considerations of
large deformations of large rotations and finite strains. "Thinning effects” were also
examined. The results obtained in the analysis were compared with analytical or
numerical solutions whenever they are available in the literature. The numerical results
have demonstrated the excellent performance of the HLCTS elements in both linear and
nonlinear analysis.

(2) The numerical studies confirmed that the HLCTS elements with quadratic

displacement field for w are more accurate and converge faster than those with linear




271

field. Whether the moment of inertia is included or not it seems to have no significant
effect on results of thin plate and shell structures studied in this investigation.

(3) The investigation showed that the presence of DDOF, the sound theoretical
basis and straightforward approach in deriving DDOF are absolutely important in
formulating low-order flat shell elements. The improved formulation of DDOF has
eliminated the zero energy modes from the HLCTS elements. With the displacement
formulation of DDOF, all three zero energy modes are eliminated from the HLCTS
elements, while the hybrid formulation of DDOF eliminates one.

(4) No shear-locking phenomenon was detected in using the HLCTS elements. The
hybrid strain formulation seems to be effective in eliminating shear locking which is
problematic in lower-order finite clements derived from employing displacement
formulation. However, inferior mesh design, topology or severely distorted meshes may
induce shear-locking [3.18, 3.22]. The studies in the investigation also showed that mesh
topology affected the accuracy of triangular finite element results. The consistent use of
D type mesh in this investigation had proved that such mesh can provide excellent results.

(5) In the | 1ear static analysis, among the four HLCTS elements, HLCTSY,
HLCTS", HLCTS™ and HLCTS™, and the two basic triangles, BT® and BT!, HLCTS%
and HLCTS" are the inost favourite ones in terms of both accuracy and rank sufficiency.

However, this does not exclude the use of HLCTS%, HLCTS™, BTY and BT'. The results

from free vibration analysis showed that HLCTS,% converges faster than HLCTS Y.

Therefore, the HLCTS % element was further developed for geometrically nonlinear
analysis of laminated composite shell structures.

(6) Each of the HLCTS %, HLCTS and HLCTS,* elements has six rigid-body
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modes and have no zero energy modes. The HLCTS *, HLCTS ™ and HLCTS " elements
have six rigid-body modes and two zero energy modes, while the BT and BT' elements
have six rigid-body modes and three zero energy modes. The zero energy modes are all
associated with the in-plane torsional rotations. In other words, the BT elements
developed in Chapter 2 have three zero energy modes, whereas the HLCTS™ and
HLCTS™ elements have two zero energy modes. The HLCTS* and HLCTS" elements
do not have any zero energy mode. Thus, the improved formulation of DDOF by the
displacement approach introduced in subsection 2.6 has eliminated the spurious modes
from the elements.

(7) All the linear and nonlinear ele.aents proposed in this investigation were
derived explicitly by using a combination of manual and symbolic computer algebra
manipulations. The explicit expressions eliminate the error introduced by employing
numerical inversion and integration. For brevity, these explicit expressions are not
included in the thesis. However, they are documented in references [7.1, 2].

(8) In the case of large rotations (see for examples, the cantilever panel subjected
to an end moment in subsections 6.1.1 and 6.4.4) the option of including directors in the
formulation gives superior results in terms of faster convergence and higher accuracy.
This is due to the "exact” geometrical description of a body undergoing large rotations.
The latter have been realized by using exponential mapping. In the large deformation of
finite rotation cases the incorporation of directors is crucial. See for example, the case
studied in subsection 6.4.4. In the large deformation problems with small rotations, the

computed results predicted by using the elements with or without directors have no

significant differences. Thus, problems in this category can disregard the directors so that
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computational time can be saved.

(9) The computed results seem to suggest that all geometrically nonlinear problems
studied in the literature and quoted in the present investigation are within the range of
small strairs. However, the incorporation of finite strain deformation in the HLCTS
element formulation has been a focus of the investigation. The obtained element can be
modificd to cases with deformations in the plastic range.

(10) Finally, it should be emphasized that the investigation reported in this thesis
is believed to be the only relatively comprehensive work that incorporates linear and
geometrically nonlinear static and dynamic analysis of laminated composite shell
structures. It is also believed to be the first one that considers large deformations of finite
strains as well as large rotations for the static and dynamic analysis of lamnated

composite shell structures by the hybrid strain based finite element method.

7.3 Recommendations

This investigation has covered a relatively wide range of problems on static and
dynamic analysis of laminated composite plates and shell structures. However, the limited
time has not allowed the study to be extended to other interesting aspects. The latter can
be performed in the future and are listed here.

Firstly, to further improve and develop the computational procedure and enable
it for solving snap-through, snap-back buckling, and post buckling problems, the
developed digital computer program can be expanded. This is a very important aspect in
the study of behaviours of laminated composite shell struc »s and programming

techniques are currently available in the literature. Therefore, it is achievable and
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deserves immediate attention.
Secondly, as the HLCTS element developed accounts for large deformations of
large rotations and finite strains it can be extended to analysis of elasto-plastic problems.
Finally, large deformations of finite strains and plastic deformations of laminated
composite shell structures frequently accompanied by very complicated local stress
distributions and delaminations. To provide a means for their examinations layerwise

theories and associated finite elements are required.
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