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ABSTRACT

The examination of inverse problems represents a fascinating. diverse and difficult
area of study. Almost any problem in mathematics, physics and engineering has an asso-
ciated inverse problem. The method of quasi-solutions allows one to reformulate inverse
problems as a function minimization involving the associated forward problem. The function
to minimize is known as a penalty function or cost function and is defined as the least squares
difference between some measured quantity and a quantity computed by the forward solver.
This strategy avoids the need to construct the inverse operator. The forward problem is
often well posed and can be solved quickly and accurately by various numerical solution
techniques. The cost function, however, is typically a complicated multidimensional,
multimodal surface. These properties make it difficult to locate the global minimum where
the quasi-solution exists.

The simulated annealing algorithm performs well at minimizing functions with
multiple focal minima and hence has been employed in the quasi-solwion of the inverse
problem. Regularization techniques in the area of inverse problems attempt to better con-
dition the problem by removing the local minimum from the cost function. Focus in this
work has been placed on finding the global minimum of the multimodal cost function rather
than strongly regularizing the penalty function. Two physicai applications are chosen to
test the feasibility of the proposed inversion method.

The first application involves the mise--la-masse electromagnetic prospecting
technique from geophysics. This technique attempts to recover the size. shape and orien-
tation of buried conductive ore bodies based on surface measurements. Here, a finite dif-
ference method is employed to solve the potential equation in a 3D semi-infinite medium.

The second application focuses on the scattering of acoustic waves by a 2D inho-
mogencous medium. [n this field, acoustic waves scattered from incident waves are used
to reconstruct the index of refraction of the inhomogeniety. The incident waves are time
harmonic plane waves which lie in the resonance region. A special hybrid partial differential

equation/integral equation solution technique is employed to solve the direct problem.
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NOMENCLATURE

Radius which contains inhomogeneous index of refraction for parameterization.
cost function, C(x)=jx' —x"|.

speed of sound in inhomogeniety.

speed of sound in background flurd.

incident wave direction. d = (cos(a), sin(at)).

electric fieid. E = V.

computed electric field on the surface.

measured electric field on the surface.

Hankel function of the first kind of order n. H:"(x) = J, (x}+iY,(x).

complex constant, i = V-

current density. J =coE.

Bessel function of the first kind of integer order n.
wave number of incident wave. k = 2m/A.

(Chapter 3) depth of buried source electrode.
(Chapter 4) number of axiai terms used in the Fourier expansion of /(0. R).

number of radial terms used in the Fourier expansion of /(6. R).
index of refraction defined by n = ¢jjc".

index of refraction found by method of quasi-solutions.

index of refraction parameterized by 2D Fourier series.

(Chapter 3) number of finite difference grid points in x-direction.
(Chapter 4) number of finite difference grid points in axial direction.

(Chapter 3) number of finite difference grid points in v-direction.
(Chapter 4) number of finite difference grid points in radial direction.

number of finite difference grid points in z-direction.

number of uniformly spaced finite difference grid points in x-direction.
number of uniformly spaced finite difference grid points in y-direction.
number of uniformly spaced finite difference grid points in z-direction.
number of irradiation dire<tions.

radial distance variable.
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non-dimensionalized radial distance variable (R = ,—;).

radius of computational domain.

radius  where farficld pattern will be estimated based on
u{0) = \/R_,., exp(—2miR )u,(6.R.).

velocity potential of sound wave. The longitudinal fluid velocity is found from

v(x,f)=pi”VU(x,l).

complex velocity potential for time-harmonic sound waves in the Fourier
domain given by U(x,1) = Re{u(x)e™™}. The superposition of incident and
scattered waves yields « = u, +u,.

incident wave field. For plane parallel waves propagating in direction d,

u,(x)=e"* 4

scattered wave field.

numerical approximation to scattered wave field from finite difference solution
of Helmholtz’s equation.

far-field wave pattern. Related to the scattered wave field by

u(B,R)= "i,—:u,,(e) + O(1/R).

measured far-field wave pattern.

computed far-field wave pattern from finite-difference solution.
grid spacing of 3D rectangular finite difference mesh.

grid spacing for 2D polar coordinate finite difference mesh.

Bessel function of the second kind of order n.

(Chapter 2) regularization paramter.
(Chapter 4) angle of incidence between positive x-axis and direction of incident

wave K,.

angle between unit radial vector and outward normal to face of computational
domain used for the application of the Robbin boundary condition.

dip angle of buried ore body.
wave-length of incident waves.
electrostatic potential.

conductivity of inhomogeneous medium.

(Chapter 3) strike angle of buried ore body.
(Chapter 4) angular position variable.
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angular frequency of incident waves in background fluid. ¢, =
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angular frequency of incident waves, ¢ = .

reduction factor for cooling schedule.
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CHAPTER 1

Introduction

The study of inverse problems is a fascinating one which transcends the boundaries
of any one discipline. Active research in this field can be found in the disciplines of pure
and applied mathematics, computer science, medical physics, geophysics and engineering

to name a few.

In the current work, an inverse problem is posed as a minimization problem through
the use of a cost function. The cost function is based on a least-squares difference between
some measured data and calculated data. The calculated data is collected from the solution
of the associated direct problem. This technique is sometimes referred to as the output
least-squares formulation. The posed minimization problem is solved with the heuristic

technique called simulated annealing.

In Chapter 2, some historical context to the study of inverse problems is provided.
The definition of a well-posed problem is stated as well as the definition of a quasi-solution.
The notion of stability of solutions is also introduced. An illustrative example in the area
of ill-posed problems is found in the backwards heat equation. This classic example exhibits
existence and uniqueness but violates the stability criterion. The method of quasi-solutions
applied to this problem provides illuminating results. Next, the regularization of inverse
problems is discussed. Regularization can be implemented with the addition of penalty
terms to the penalty function or through limiting eligible solutions based on physical rea-
soning. The effects of regularization and regularization error are demonstrated with the
backwards heat equation. An analogy to the solution of systems of linear algebraic equations
can be drawn. Finally, simulated annealing, the proposed minimization technique to be

used to extract the quasi-solution from the penalty function, is introduced.

The field of geophysics contains many interesting and difficult inverse problems. A
class of methods use electromagnetic fields to infer t1e conductivity substructure of the
earth. These fields can be either naturally occurring or artificially generated. Chapter 3
contains the first physical application of the proposed inversion algorithm. Here the

mise-a-1a-masse electromagnetic prospecting technique is examined. A numerical method




is proposed to solve the full 3 dimensional potential equation in a semi-infinite conductively
inhomogeneous domain. This solution represents the solution to the forward problem. A
physically based representation of the conductivity substructure is proposed. This para-
meterization coupled with the simulated annealing algorithm applied to the penalty function
completes the inversion technique. Noisy synthetic data as well as data generated from the

dimensions of a realistic ore body are used to validate the method.

Many inverse problems can be found in the field of medical imaging. These techniques
often involve time harmonic waves to produce a scattered signal. The scattered waves are
measured and used to reconstruct the medium. Ultrasound techniques use time harmonic
acoustic waves to generate a scattering pattern. Differing speeds of sound (index of
refraction) in the medium cause incident waves to scatter. The inverse problem attempts to
reconstruct the index of refraction based on the scattered wave pattern from numerous
incident directions. In Chapter 4 the inverse problem of acoustic waves scattered by an
inhomogeneous medium is examined. The forward problem for time harmonic waves in
two dimensions is governed by Helmholtz’s equation. The only boundary condition is the
Sommerfeld radiation condition. This boundary condition is only valid at infinity, which
makes it difficult for standard numerical techniques. A specialized hybrid solution technique
is developed, which uses a finite-difference mesh in the region of the inhomogeniety and
an integral equation solution to propagate the scattered waves outward. The finite difference
sclution employs non-reflecting boundary conditions to minimize the effect of using the
artificial boundaries of a computational domain. The direct problem is verified against an
analytic solution from obstacle scattering as well as an iterative Born approximation integral
equation solution from medium scattering. A 2D Fourier series is used to parameterize the
index of refraction. Implementation of a quasi-solution minimization with simulated
annealing completes the proposed solution to this inverse problem. The inverse solver is

verified using synthetic data created from three known indices of refraction.



CHAPTER 2

Inverse Problems

2.1 Introduction

Inverse problems often arise from classical direct problems. These direct problems
are motivated by many areas of mathematics and physics. Consider anormed space X known
as the domain space. Let F represent a normed space containing the range space. Consider
the operator A which maps an element x € X from the range space to a solution f € F in
the range space (figure 2-1). The direct problem then appears in the generic form of
2.1.1) Ax=f.

Here, A can be a linear, non-linear, integral or differential operator. Given x, one can apply
the operator A to find the solution f. In the work presented here the solution to the direct
problem is assumed to be well-posed. Application of the operator may require a numerical

approach if analytic methods do not exist.

The inverse problem related to (2.1.1) treats the direct problem in a reverse way.
Instead of using x to find £, the inverse problem requires finding x given f. The solution of
this inverse problem is achieved by application of the inverse operator, A”'. Hence, in

principle the solution is given by
(2.1.2) x=A"'f.
Unfortunately, the inverse operator may be impossible to construct, or the inverse problem

may be ill-posed. The study of inverse problems is intimately connected to the study of

ill-posed problems, to which we now turn our attention.

2.2 Concept of Well-Posedness

Hadamard [24] formulated the concept of well-posed problems. He suggested that a
mathematical problem must exhibit three properties to be considered well-posed:

1) Existence - for every x € X, there exists an image f

2) Uniqueness - A is 1-1

3) Stability - the solution depends continuously on the data



Existence implies that there exists an image f in the range space for any x in the domain
space. Uniqueness is the quality that indicates that two distinct elements in the domain

space, map to two distinct points in the range space. That is

(2.2.1) Ax,=Ax, &S x,=x,, Vx,x,€X.

Stability ensures that the solution depends continuously on the data. Consider two nearby

elements x,, x, such that
(2:22) Ix,—xl <&,

fore 20 and || - an appropriate norm. Let the mappings of these two elements through A

be denoted by f,. f; then there exists a & 2 0 such that
(2.2.3) Ifi— £l <8

The forward problem is stable, if 8 is bounded for all x,, x, € X. This condition is equivalent
tosaying that the inverse operator must be continuous { 10]. A problemisconsidered ill-posed
if its solutions violate any of these criteria. The method of quasi-solutions provides a means

to approximate the solution of ill-posed inverse problems.

2.3 Method of Quasi-solutions

The method of quasi-solutions, as introduced by Tikhonov [49]. involves finding a
solution which best approximates the solution to the inverse problem in 2 least-cq'rares sense.

A quasi-solution x is defined by

(2.3.1) X=infjAx - fl,
1e X

where || -} is an appropriate norm defined on F. Equation (2.3.1) is also referred to as the
output least-squares solution. The quantity to be minimized || Ax - f} is referred to as the
penalty function. The quasi-solution £ is unique for any given f, provided that || || < p for

some p >0 [27])[28]. The advantages of this approach are two-fold.

First. calculation of the inverse operator A™' is not required. This is advantageous

since the operator may be difficult or impossible to construct analytically. Approximating

the inverse operator is also an additional source for error.




Secondly, a quasi-solution exists even for f € R(AX). That is, a quasi-solution can

be found even if the data does not lie in the range space of the operator A. This is an important
concept in solving inverse problems motivated by physical situations. Measured data is
always subject to uncertainty due to instrument error. Even exact data is subject to round-off
error if it is represented using a finite precision computer. The input data to an inverse

problem is more realistically represcnted by f° where

(23.2) If-f4 <8.

Here, 8 2 0 represents the uncertainty level in the measured data. It is quite possible that f°
may lie outside the range space of AX as in figure 2-2a. Application of the exact inverse
operator to f° would yield an undefined result. The quasi-solution, however, would still
find a valid solution sincc 2 minimum must always exist.

Example 2-1: For an example of this phencmenon, consider the simple non-linear

operator defined by
Ax=f
(2.3.3) x€X, feF
X=R F=R
Ax —>x*

The inverse operator can be easily constructed

(2.3.4) Al Hlf, £20.

Note that the inverse operator exhibits non-uniqueness due to the positive and negative roots.
This complication can be remedied by considering, for example, only positive roots. The
range space for this operator is all non-negative real values. In attempting to solve the
inverse problem for the data f=0, suppose that measurement error is present when the data

is acquired such that
(2.3.5) £=-5 &>0.

Applying the inverse operator of (2.3.4) yields an undefined result because of the square

root of a negative number, while the quasi-solution given by

(2.3.6) %= inflx*-7FY,
freX




finds the solution § = () as seen in figure 2-3. In this figure, the surface represents the penalty

function surface as a function ot the data f and the solution x. The locus of minimum values
represent the quasi-solution.. Hence, an inverse problem using quasi-solutions guarantees
existence of a solutiun since a minimum must always exist. The quasi-solution may not be

close to the true solution, but it still exists.

An impurtant concept in solving inverse problems relates to the stability of the solution
calculated. This is Hadamard’s third criterion. A solution must exhibit continuous
dependence upon its data or initial conditions to be considered well-posed. If there is a
small perturbation in the data or the initial conditions (as from measurement or round-off

error), this should lead to a corresponding predictzble and bounded change in the solution.

An excellent example of an ill-posed inverse problem which violates continuous
dependence on its initial conditions is the 1-D backwards heat equation. The well known
classical 1-D diffusion equation with Dirichlet boundary conditions involves the evolution
of a temperature distribution in a finite 1-D rod given the initial temperature profile. The

definition is
D={(x.t)e B]0<x <t 20}
u=u(x,1), u:k->RK

f=fx), fiIR>X

.37 u—-u,=0, inD
u(O,)=u(m,t)=0, 120
u(x,0)=f(x), 0<x<m.

This PDE can be solved using separation of variables to give a temperature profile at any

time greater than zero. The solution is

(2.3.8) u(x,t) =n€:le’":'a,, sin(nx),

whexre the Fourier coefficients a,, can be calculated from the initial profile
(2.3.9) a, =%Lﬂf(4)sin(nx)dx.

The Dirichlet boundary conditions ensure that




(2.3.10) lim u(x,2)=0.

toe
Let the temperature profile at time 7 (7>0) be
(2.3.11) Yix)=u(x,T).
This forward problem is well-posed. Hence, specifying an initial profile f uniquely deter-
mines the profile at time T given by y. An analytic solution to (2.3.7) can be seen in figure
2-4 for the initial profile f(x)=sin(x). Notice that the amplitude of the initial profile
diminishes quickly in time.
The inverse problem associated with this direct problem is known as the backward
heat equation [49]. The backward heat equation attempts to calculate the initial profile f
given the profile y at time 7. Hence, information (tempcrature profile) is projected back-
wards in time.
Example 2-2: The inverse problem representing the backward heat equation is
described by,
u=u(x,1):R* >R
y=y(kx)R =R
(2.3.12) u—-u, =0
uO,t)=u(r,t)=0
u(x,T)=y(x)
The initial profile f can be calculated from y by using

(2.3.13) J(x)=u(x,0),
and
(2.3.14) u(x,1)= I e™'b_sin(mx),

m=1

where the Fourier coefficients are

2.3.15) b, = %e'"” f ") sin(mx)dx.
0




To show the instability of the inverse problem, consider a downstream temperature profile

of (2.3.12) given by

(2.3.16) VY, (x) =k sin(mx),

for m an integer and k an arbitrary real number. The corresponding initial profile can be
calculated using (2.3.14) and (2.3.15) to yield

2.3.17) fi(x)=ke™ sin(mx)

Now consider the nearby function to (2.3.16) described by
(2.3.18) Y,(x) = (k +€)sin(mx),

with € some small parameter. This data has a corresponding initial profile
(2.3.19) fix) =k +€)e" " sin(mx).

The L,-norm difference between y, and v, is

Tt
(2.3.20) hv-wil, ., = z\/;

These two profiles can be made arbitrarily close by allowing € — 0. However, the L,-norm

difference between f; and f, is

(2.3.21) a=Fll o=t

oA

For a fixed error level ¢, the difference in (2.3.21) can be made arbitrarily large by either
increasing m, the frequency of the sine wave profile or by increasing 7, the time at which
the temperature is measured. Thus, the problem is ill-posed due to the lack of stability of

the solutions.

Physical reasoning explains the nature of these instabilities. The instability caused by
the frequency parameter is owed to the smoothing nature of the forward heat equation. High
frequency information is quickly lost to diffusion in the forward heat equation. This is due
to the exp{—n’} term in the forward solution (2.3.8). Thus, the task of trying to project a
high frequency profile backward in time is more difficult than projecting a low frequency
profile. The instability caused by the time parameter T can be attributed to the limit of

(2.3.10). Allinitial profiles f diffuse out over time and converge to zero in the forward heat




equation. In the backward heat equation, T indicates the amount of time that the solu.ion

is projected back. If T is large, then the temperature profile will be nearly zero making it
more difficult to project backwards in time. As T — oo, all temperature profiles converge
to zero making a solution backwards in time impossible. These two properties of the dif-
fusion equation can be seen in figure 2-5. Here, an initial profile f(x) = sinx + sin 10x with
a high and a low frequency component is substituted into the forward heat equation. Notice
that the amplitude of the solutions diminishes quickly in time. This decrease is more pro-

nounced for the high frequencies.

The lack of stable solutions to the backward heat equation can also be illustrated by
application of the quasi-solution method described in (2.3.1). Let A be the linear differential

operator of (2.3.7) which maps initial temperature profiles to temperature profiles at time
T

(2.3.22) Af-wy.

This forward problem is well-posed. Consider a special subset of the range space F such
that

(2.3.23) f(m)=sin(mx).

Hence, all eligible solutions of the inverse problems will be sine functions with an integer
frequency. This restriction severely limits the solution space but is useful for demonstration

purposes. In addition, let the set ‘¥, the range space, be parameterized by

(2.3.23) y(n) = sin(nx).
Hence, application of the operator A in (2.3.22) yields
(2.3.24) Af(m)= e™ 7 sin(mx).
The penalty function to minimize for the quasi-solution i is
(2.3.25a) A= inf JASem) =Wl o
n
2 Slem 1], n=m
(2.3.25b) I |e”"' Tsin(mx) - sin{nx) | I,q,o "=
. n 2
5(]4- -2m T), n+m
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A graph of the penalty function versus the parameters (m,n) can be seen in figure 2-6. The
shallow trench in the surface along the line m=n corresponds to the locus of quasi-solutions
rii. One uses this surface as follows: given the data point n corresponding to the frequency
of the measured profile at time T, the quasi-solution #% corresponds to the minimum of
(2.3.25). For small values of n, the minimum of (2.3.25) is well defined. As the da*~ value
n is increased (higher frequencies) the minimum becomes less distinguishable. The function
flattens out making the task of locating the minimum along n=m nearly impossible, indi-
cating that the continuous dependence of the solution on the data is lost. The other factor
which accelerates the flattening out of this function, and hence the existence of a
distinguishable minimum, is the parameter 7. This parameter represents the length of time
the inverse problem is attempting to project back. As predicted by (2.3.21), increasing T
or increasing n decreases the dependence of the solution on the data and hence reduces the

stability of the problem.

A method similar to the method of quasi-solutions can be seen in the numerical solution
of systems of linear algebraic equations. Consider the linear system
(2.3.26) Ax=b,
where A is an n X n matrix and x, b are vectors in X'. The inverse problem requires finding
x given b. Direct solution methods such as LU decomposition or Gaussian elimination
construct the inverse operator A™' for the solution of (2.3.26). lterative solutions, however,
avoid computing the inverse operator explicitly. Generally, these methods [2) approximate
the solution by minimizing the residual
(2.3.27) r(x)=jAx-bj.
Finding the minimum residual is equivalent to computing the quasi-solution. A consistent

method to add stability to ill-posed inverse problems is through the use of regularization.

2.4 Regularization of Inverse Problems

Regularization heips create well-posed problems from ill-posed problems by adding
stability to the solution method. Two distinct approaches can be taken to regularize an

ill-posed inverse problem.
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The first approach attempts to limit the set of eligible solutions based on physical
arguments. For example, continuity, differentiability, or non-negativity are sometimes
properties associated with the physical data. In the case of the backward heat equation,
physical reasoning could be used to limit the set of initial profiles to continuous and dif-

ferentiable functions.

The second regularization strategy proposed by Tikhonov attempts to condition the
ron-linear inverse operator. This regularization can appear in the use of a penalty term
added to the penalty function. For this reason the method is called penalized least-squares.
A thorough discussion of the convergence behaviour of the penalized least-squares method

can be found in [5]. The quasi-solution expression now becomes

(2.4.1) %= inf {Ax - f] +0E(D)},

where E(x) is the penalty term, and a is the regularization parameter. The penalty term is
chosen such that E(x) 2 0 for all x. Increasing the value of the regularization parameter o
increases the amount of regularization and in turn the stability of the inverse problem. If
a =0, then (2.4.1) returns to the previously posed quasi-solution of (2.3.1). This property
is a requirement of any regularization scheme. A careful choice of the penalty term will
discourage undesired properties or encourage desired properties in the solution. For
example, properties such as entropy, smoothness, or minimum value can be encouraged or
discouraged. The choice of the penalty term is usually left to the physical context of the

inverse problem.

Applying regularization to add stability can be illustrated by example 2-2 of the pre-
vious section. Here, the true solution lies along the line m=n as seen in figure 2-6. Direct
application of the quasi-solution method gives accurate solution values of n up to n=6. For
n>6 the minimum becomes indistinguishable and the problem loses stability. A penalty

term based on the gradient squared is added to regularize the problem. The penalty term is
(2.4.2) I} =m’n.
When the penalty term ‘s included in (2.3.25) the cost function becomes

(24.3) Cinym,T)= ” e™T sin(mx) - sin(nx)l ll.,(o.n) +om’.
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The surface plot of the regularized penalty function with o = 0.01 can be se=n in figure 2-7.
The regularization yields a stable solution for all n as demonstrated by the pronounced
minimum. The true solution lies along the line n=m. While the solution is now stable, it
is only accurate up to n=7. The error in the quasi-solution can be attributed to the regu-

larization.

2.5 Regularization Error

Creating a well-posed problem from an iil-posed problem with the use of regularization

may generate a dubious solution. This phenomenon = known as reguiarization error.

Firstly, limiting the search space of the quasi-solution may actually exclude the true
solution. Care must be taken to ensure that the parameterization of the solution space allows

a reasonable approximation to the solution.

Regularization of the inverse operator increases stability of the solution scheme.
However, this technique allows a stable answer to be found to a different problem. If the
transformed problem is significantly different from the original inverse problem the solution
may be meaningless. For example, a problem with measurement error in the data allows

one to write

(2.5.1) IfF=ri <8.

Here. fis the exact data corresponding to the exact solution x, while f° is the measured data
with some error represented by the small parameter 8. Let the quasi-solution generated with

&

regularization be denoted by x,. The error in the solution to the inverse problem can be

estimated by [10]
(2.5.2) Ix-x3 <SR +HR (Ax)—x|.

where R, is the regularized inverse operator. The regularized operator can be defined in

terms of the previous quasi-solution definition with,

(2.5.3) R,.f —x,
R =% = inf{l Ax - fI +E()}.
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The first term on the right hand side of (2.5.2) represents error due to the uncertainty in the
measured data as well as the norm of the regularized operator. The second term represents
error caused by the regularization. This expression represents the fundamental concern
when regularization is imposed. If weak regularization is used (a0 — 0°), the second term
will disappear since R, = A~'. However, the first term will expand because of the ill-posed
nature of the problem (ie. | A™'] — o). If strong regularization is used, the first term will
diminish since the regularized operator will be well conditioned. The second term will
increase because the regularized operator will be a poorer approximation to the inverse
operator. Hence, strong regularization adds stability to the problem at the expense of
accuracy. Ideally, the value of the regularization parameter is chosen as small as possible
while still yielding stable solutions. Estimation of this parameter a-priori can prove difficult
[(38]{49].

Regularization error is illustrated clearly by examining the backward heat of equation
presented in Example 2-2. Comparing figure 2-8 to figure 2-7 shows differing behaviour
of the quasi-solution. In figure 2-8, the regularization parameter is ¢ =0.1. This value
provides a well pronounced minimum which ensures stability, however, the regularized
solution departs from the true solution after n=5. The solution in figure 2-7, where o = 0.01,
has a less pronounced minimum but provides exact solutions until n=7. Hence, increasing
the value of the regularization parameter causes stability toincrease and accuracy to decrease.

Finding the quasi-solution is now equivalent to locating the global minimum of the
penalty function. The minimization algorithm used in the present work is simulated

annealing.

2.6 Minimization with Simulated Annealing

When using the quasi-solution approach of (2.3.1), the solution of an inverse problem
becomes an exercise in function minimization. The function to minimize in this case is the

output least-squares

(2.6.1) CxN=Ax-1I,
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where C is known as the cost function. Given the data f, the goal is to find an x which yields
aminimum cost. Many algorithms exist for the minimization of functions [7]. For example,
a gradient method such as Newton’s method or conjugate gradient could be used to seek a
minimum. Gradient methods require determination of the derivatives of the cost function
(analytically or otherwise). This could be difficult or costly in the case of a non-linear
function such as (2.6.1). Also, a derivative method could become easily trapped in a local
minimum where no better downhill solutions exist. The cost functions derived from the
quasi-solution method applied to inverse problems are often multimodal allowing for the
possibility of trapping a derivative method. A suitable heuristic technique for this type of
cost function is simulated annealing. It is worth emphasizing that simulated annealing is a
heuristic method. It does not guarantee the discovery of the global minimum, although it

performs well at finding a near global minimum.

Simulated annealing is based on the Metropolis algorithm [15] and draws analogies
to the freezing of crystals. This minimization procedure requires the following formulation:

1) Description of all possible system configurations.

2) Generator of random changes to the current configuration.

3) Cost Function (to maximize or minimize)

4) Control Parameter T to step down (annealing schedule)

Let the current configuration of the system be given by the current value of xin (2.6.1).
Generally, x is a continuous n-dimensional function. It is difficult to describe such a system
state since it has an infinite number of basis vectors. Further, the perturbations to these
configurations is arduous since each of the .nfinite dimensions can achieve a continuum of
values. Itis for this reason that the magnitude of the perturbation raises a difficult question.
In a discrete system such as the Travelling Salesman Problem in [31], the random changes
are straightforward. In the proposed problem, the state x is a real valued function and hence
can achieve a continuum of states in a infinite number of dimensions. Simulated annealing
minimization of functions with continuous variables has been discussed in [6,12]. The
method used in [12] involves choosing at random an n-dimensional vector from the
n-dimensional unit hypersphere, where n is the dimensionality of the function to be mini-

mized. This unit vector is then multiplied by a set of scaling factors for each diimension.




15

The system state is then moved by the scaled vector. The shortcoming of this method lies
inits lack of ability to adjust the scaling factors to changing sensitivities of the cost function
with respect to its free parameters. For example, near the beginning of annealing, large
configuration changes are desirable to allow the algorithm to sample the entire state space.

Near the end of annealing, small changes are required to fine tune the solution.

The annealing process proceeds as follows:
a) start with an initial configuration
b) calculate cost function
c¢) generate random change to configuration
d) recalculate cost function
€) accept or reject step
f) adjust temperature if necessary

g) if annealing is complete, stop. else go to¢)

The temperature parameter 7 is assigned an initial value greater than the average change
in the cost function for any particular random configuration change. This is com.aonly
referred to as the melting temperature. This initial temperature should be high enough so
that the algorithm can choose any state in the solution domain, similar to a molecule being
allowed to move throughout a liquid. Randomly selected configuration changes are per-
formed at a particular temperature level until some maximum number a2 attempted or a
preset limit of successful reconfigurations is achieved. Then the temperature is reduced
based on some relationship. The lowering of temperature is known as the cooling or
annealing schedule. The process is repeated until no successful changes occur or aminimum

temperature is encountered. For Boltzmann annealing, the temperature at the kth level is
(2.6.1) T.=X'T,
where T, is the initial temperature and 0 < < 1 is the reduction factor [19].

The ideal cooling schedule is difficult to predict. Cooling too quickly may result in
quenching in which the cost function achieves a local rather than global minimum. Cooling

too slowly wastes computational effort. Convergence results for the simulated annealing

algorithm as well as ideal cooling schedules can be seen in [19]). As the temperature is
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lowered, the system becomes less like a fluid and more like a solid. By performing the
cooling sufficiently slowly, the system can cool into its crysralline state (global minimum
cost). When no more changes are accepted, it is assumed that the minimum cost is reached,

and the global minimum is found.

The annealing process continues until one of the following two stopping conditions
is met: 1) the minimum value of the cost function is found, or 2) continuous perturbations

of the system produce no acceptances, and hence no new configurations are generated.

The first criteria assumes that the theoretical minimum is known which is not always
the case. Of course, with synthetic noise-free data, the minimum cost that is C=0. This

fact determines exactly when to stop. With the introduction of uncertainty in the data or

error in the forward solver, however, the global mi=imum is some unknown value greater
than zero. The second criteria is usually gauged in terms of the ratio of acceptances to
perturbation attempts. A suitable stopping ceadition exists if this ratio is less than 10%. It
is true that this minimum may be local, but a careful choice of the annealing schedule wili

guarantee that this is a global minimum [19].

During annealing, the algorithm accepts . 2p unconditionally if AC <0. IfAC >0,

then this step is accepted based on the Boltzmann probability
(2.6.2) Pr(AC)~ exp(—%_g )

This algorithm is not greedy, since there is always a finite chance of accepting a state with

a higher cost value in order to jump out of a local minimum [14].

Another acceptance scheme different fiom the Boltzmann probability, was considered
for comparison. Threshold accepting (TA), as proposed by [9], is similar to simulated
annealing, however, the acceptance of a random change that increases the cost function is
slightly different. In TA, a random change with AC >0 is accepted if AC < T, where T is
the control parameter. This prevents accepting new configurations which are far worse. In

Boltzmann annealing, there is always a small but finite probability that a very bad change
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is accepted. The advantages of threshold accepting are seen in the low temperature fine
tuning of the solution. Here, computational effort is saved since poor changes, which would

have to be undone later, are not accepted.
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Figure 2-1. Schematic of the direct problem with the associated inverse problem. The data
often contains some uncertainty represented by j“' where || f - f5|| < 8. Whether or not this
error leads to instability in the solution X is a key aspect in the study of inverse problems.




Figure 22)
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A 1
Figure 2-2¢)
Figure 2-2. Sketches of systems whose inverses violate the axioms of well-posedness. a)

Existence: the data f° lies outside of the range space of A, b) Uniqueness: the operator 4 is

not one-to-one, and c¢) Continuous dependence: a small perturbation in the data leads to a
significant perturbation in the solution of the inverse.
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ary conditions. The initial profile u(x,0) = f(x)

Figure 2-4. Schematic of the 1-D diffusion equation with homogeneous Dirichlet bound
=y(x).

maps to a downstream profile given by u(x, T)
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Figure 2-5. The 1-D diffusion equation with homogeneous Dirichlet boundary conditions for an initi
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CHAPTER 3

An Inverse Problem in Electromagnetic Prospecting

3.1 Introduction

Electromagnetic methods are used extensively in the fteld of mineral exploration.
These techniques involve generating either a constant, sinusoidal or transient electromag-
netic field and measuring the response caused by a buried conductive anomaly. The induced
fields are then used to infer details of the conductivity structure of the subsurface.
Electromagnetic techniques which utilize a constant current source (DC) are referred to as

resistivity methods.

A common resistivity technique for surveying vein-type ore bodies is the mise-a-la-
masse prospecting method which was pioneered by Schlumberger in the 1920’s [44]. In
this method, a constant current source is applied directly to the ore body, either through a
drill hole whict: intersects the body or through an exposed outcropping. The current source
is grounded at a large distance from the body to effectively isolate the source. Measurements
of potential or potential gradient (electric field) are then made at numerous points on the
surface to generate a 2-D response profile. Interpretation of the resultant surface fields
represents a difficult inverse problem. The difficulty arises from the fact that the inverse
operator is often highly non-linear, non-unique, and possesses a high degree of dimen-
sionality. Discussion of the inverse problems associated with electromagnetic prospecting
in geophysics can be found in [37].

Solution of the forward problem (i.e. knowing the conductive properties of the medium
and solving for the surface fields) is achievable numerically. Suitable numerical solution
techniques include finite differences {13], finite elements [36], or integral equation methods
[16,54]. While these researchers consider full three dimensional models of the conductivity
substructure, none attempt to solve the inverse problem; that is, recovering the conductivity
structure through boundary measurements. Not only does the work presented here utilize

a full 3D model, but successful inversion using the surface fields is achieved.

28
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A class of reconstruction algorithms use the method of quasi-solutions which phrase
the solution to an inverse problem in terms of a multidimensional cost function [14,40]. The
cost function in this case is based on fitting the measured surface field data in a least squares
sense. Using the chosen numerical forward solver, one could find an approximate solution
to the inverse problem using a guess and improve method. The global minimum of the cost
function now represents the best solution to the inverse problem. Finding the global
minimum is a task ideally suited to the optimization technique, simulated annealing
[1,6,12,31]. Inversions in geophysics have been attempted before using the simulated
annealing technique. For example in [45), simulated annealing was used in the inversion

of non-linear seismic soundings for a 1D earth model.

This chapter will formulate the mathematical model for the mise-a-la-masse pros-
pecting technique. A numerical method using a finite difference approximation is proposed
to solve this model. A least squares fit to the surface field is suggested as a suitable method
to approximate the inverse problem including geophysically motivated assumptions which
help regularize the problem. The value of the least squares fit is assigned to a cost function.
The minimum value of the cost function is the best-fit of the surface fields and hence the
best approximation to the inverse problem. The search for this best-fii is attempted with
the use of simulated annealing. A proof of principle example using a synthetically generated
data-set is furnished to validate the technique. Further work includes an example which
incorporates the dimensions from a real-life vein-type ore body. Extensions to the model
which investigate the effects of random data noise and conductive overburden are also

considered.

3.2 Formulation

The mise-a-la-masse prospecting method can be modelled by the electrostatic problem
of an electrode buried in an inhomogeneous infinite half-space. The conservation of electric
charge dictates that the current density J satisfies

(3.2.1) V.J=0,
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when no charge flux is contained. In a linear isotropic medium, the relation between current

density and electric field E is

3.2.2) J=¢E,

where o is the conductance of the inhomogeneous medium. Let

(3.2.3) c=0(x,y,2),

be represented in rectangular coordinates, where z increases vertically downward (figure
3-1a). The electric field can be written in terms of a scalar potential ¢ as

(3.2.4) E=Vé.

In terms of the scalar potential, (3.2.1) yields

(3.2.5) V. (cVe)=0.

For a homogeneous conductivity field, ¢ would be constant and (3.2.5) reduces to " .aplace’s

equation.

The boundary conditions consist of the potential field asymptotically approaching zero
at infinity

(3.2.6a) lim o(x,v,2)=0,
{(K.V) =# 20

and

(3.2.6b) lim ¢(x,y,2)=0.

The boundary condition at the surface arises from the continuity of J at the interface. At
any interface, the normal component of the current density must be continuous. In terms

of the electric field. this yields
(3.2-7) ﬁ . (6‘“,‘, - GRI'"“’!JER"'U’IJ) = 0.

Since the air layer is non-conductive (i.e. &, = 0), a no-flux condition is established on the

surface given by

(3.2.8) 9-2 =0.
aZ =0

The buried electrode is assumed to be maintained at a fixed potential. The coresponding

boundary condition is
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3.29) ¢(0,0,L) = ¢y,
where ¢, is some constant.

In the mise-a-la-masse prospecting method, one attempts to reconstruct a buried
conductive anomaly using either the potential or potential gradient (electric field) measured
on the surface. The solution to this inverse problem is highly non-linear and most certainly
non-unique. As is typical in the solution of inverse problems, certain assumptions must be
made to regularize the problem [14,26,39]. That is, physical insight is applied to limit the
set of solutions. For example, negative values of conductivity are not considered nor are
values of conductivity which exceed that of known rock structures. In the proposed model,
geophysical insight is used to construct the 1. “~llowing regularizing assumptions con-

cerning the details of the ore body.

First, the ore body is assumed to be characterized by a high value of conductivity.
Outside of the body, the conductivity is some lesser value. Both the ore body and the
surrounding medium are assumed to be conductively homogeneous; both with conductivities
constant and known. For vein type bodies a high conductivity contrast between ore bearing
and non-ore bearing rock is common. A typical ratio of conductivities is on the order of
101 [36]. Hence, this conductivity ratio can be supplied as a parameter rather than found
as a result of the calculation. This limits some of the degrees of freedom of the inversion;
the algorithm is responsible for finding the extent of the ore body, not the onductivity of

it. This assumption is similar to that found in [26] when incomplete boundary data is known.

Secondly, the shape of the ore body is assumed to be a rectangular prism with the
buried source lying somewhere within this prism. This box-type structure is found com-
monly in modelling [13] as well as in practice [53]. The choice of a box structure provides
an important uniqueness result. Theoretical results from [6} show that the solution for the
potential problem for convex polyhedrons of constant conductivity is unique. Hence, two
ditterent high conductance boxes cannot produce the same external potential. Itis interesting
to note that a similar situation in 2-D does not hold. That is, two distinct polygons can be

constructed that generate the same external potential [47).
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The box of high conductance can be represented uniquely by 8 parameters; three values
(%0, Yo» Z0) denote the position of the box centre, three values (L,,L,,L,) give the length of
each box dimension and two parameters represent the dip and strike angles (7, 0) (see figure
3-2). The dip angle is the angle between the box’s L, axis and the xy-plane, while the strike
angle represents the rotation about the z-axis. As is the practice in prospecting, these are
the fundamental angles which describe an ore vein. Note that the range of the angles is only
between -45° and 45°. This limited rotation is allowed by the fact that a box has constant
conductivity. For example, no difference would be found between a unit cube and a unit
cube rotated 90° about any axis perpendicular to a face. There is a possibility for a third

angle which would describe the rotation about the x-axis, but this angle is generally ignored.

By using the forward solver, potential values ¢ = ¢(x, y,z) can be found for any box

configuration. The electric field at the surface can then be calculated from

_ve-|2® %
(3.2.10) E =V —(Bx (x,y,O),ay (x,y,O),O),

where the superscript ¢ denotes calculated field. Note that E! = 0 from the no-flux boundary
conditionin (3.2.7). Now, one wishes to somehow assign a value of merit to any combination
of the 8 box parameters. This cost value is based on how well the observed electric fields
on the surface are aj proximated by the calculated electric fields. The minimum cost cor-

responds to the best approximation to the inverse problem.

Assuitable cost function C is given by the least-squares difference between the observed

electric field and the calculated electric field summed at points on the surface. That is

(3.2.11) C=|E"-E}| onR,
which can be written

(32.12) c= 3 2l -EY + &7 -EY),
where

(3.2.13) E"=(E",E",0),
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is the observed electric field, and R represents a finite 2-dimensional region on the earth’s
surface where field measurements have been compiled (figure 3-3). The cost is a function

of the 8 box parameters
(3.2.14) ' C = C(Xg. Yoo 20s L1 Ly, L, 1, ©).

The norm type definition of C admits the following two properties: C 20 and C =0 if the
reconstructed box is exactly the generating box. Now, the solution to the inverse problem

becomes a search for the global minimum of the cost function.

An alternative formulation for the cost function of (3.2.11) using the surface potential

¢ rather than the potential gradient was also investigated. The new cost function is

(3.2.15) C =1¢"(x,y,0)- ¢'(x,y,0)| ‘onR.
The inversion results were similar using the cost calculation of (3.2.15) to that of (3.2.11)

and hence are absent from discussion.

3.3 Numerical Procedure

3.3.1 Solution of the Forward Problem

The forward problem denotes the solution of (3.2.5) given the conductivity field of
the inhomogeneous halfspace. The solution is attained numerically using a finite difference
approximation for the derivatives on a 3-dimensional rectangular grid. A fixed potential

was applied at the electrode.

Special consideration must be given to the remaining boundary conditions. The dif-
ficulty arises from the fact that the boundary conditions are prescribed at infinity which is
impossible to facilitate given a finite grid. Fortunately, the asymptotic behaviour of the
potential is
(3.3.1.1) o~1/r,

where r is the distance from the source. Thus, cut-off lengths can be introduced where the
potential, for practical purposes, will lose details of the near source conductivity structure

and approach its asymptotic behaviour. The cut-off lengths were given in each dimension
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by L,,L,,L, thus defining a large finite box which encloses the conductive anomaly (figure

3-1b). If A is some constant, and
(3.3.1.2) ) =é,

then differentiation with respect to r yields [7]

%__A. -
(3.3.1.3) Frie rze, i,

where 7 is the outward normal of any face of the cui-off box, and é, is the unit radial vector.

Using (3.3.1.2) in (3.3.1.3) gives
cos(B)o

(3.3.14) ¥=— .
where f is the angle between the unit radial vector and the normal vector to a face. The
Dirichlet boundary condition at infinity in (3.2.6) is now approximated by the Robbin
boundary condition of (3.3.1.4) at a finite distance from the electrode using the asymptotic
behaviour of the potential. The only inherent length scale to the problem as opposed to the
artificially imposed cut-off lengths is the depth of the electrode below the surface given by

L. This value is used to scale all the length dimensions.

A non-uniform grid was implemented to assist with the boundary conditions at infinity.
The aim is to choose a large domain size on whose fringe the boundary conditions can be
imposed while still maintaining reasonable resolution in the centre. This task is accom-
plished by using a uniformly spaced rectangular grid nested within a non-uniformly spaced
grid (see figure 3-3). The grid spacing in the non-uniform region was chosen to be

exponentially increasing with

(i =Ni)
(3.3.1.5) Ax, = Ar(,exp( ),

where Ax, is the uniform grid spacing. o, a scaling constant, and Mi, is the number of

uniformly spaced points in the x-direction. A similar expression exists for the y and z

directions. The rate of increase of the non-uniform spacing is not without restrictions. This
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can be seen by examining the central finite difference formula for the 2nd derivative of a
function, ¢. The formula with uniform grid spacing Ax is given by

O(x,_1) = 20(x,) + 0(x;. )
Ax!

(3.3.1.6) ”(x,) = + O(AxY).

The truncation error is 2nd order. However, the expression for non-uniformly spaced grid

points is
r” _Axl¢(xl'I)-ZA;¢(xJ)+Ax1+I¢(xH»l)
(3.3.1.7) 0,"(x) = Arhe A%
7 (V)
+2 _,fx‘)(Ax. ~ax, 42 l;""(Axf—Ax.Ax,ﬂ +AXL )F

where Ax, is defined in (3.3.1.5), and Ax = (Ax,. , + Ax,)/2. The grid spacing is no longer a
constant but rather a function of i, the number of grid points from the source. Accordingly,
the truncation error changes from 2nd order in the uniform case to something more com-
plicated in the non-uniform case as demonstrated by the second term in (3.3.1.7). The error
is a product of the third derivative of the potential with the rate at which the grid spacing
increases. Far from the electrode one expects (3.3.1.2) to hold, implying that ¢"“~1/r*. The

difference in grid spacing yields

i-Ni, 1
(3.3.1.8) Ax, —Ax,, | =Axoexp( p ](l —exp(a-D,

which is a growing exponential. The task is to choose a reasonably large o, such that the

truncation error in (3.3.1.7) is kept sufficiently small. One can easily verify that as o, — o,
the grid spacing Ax, — Ax, and hence the truncation error returns to 2nd order.
The finite-difference discretization is performed on the non-homogeneous Laplace’s

equation of (3.2.5). Expanding (3.2.5) for Cartesian coordinates yields

(3.3.1.9) %(G%)+%(G%)+§z_( %?):0.

The firstterm in (3.3.1.9) can be discretized for node (i,j,k) using a central difference formula,

such as
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9( 0] __1 [ A | %
(3.3.1.10) ox (Gax ),.,.k - ZA}'(AX.H )[Gax )

|+%.}.k

MA; a_g L Axr+l _a_?_)
+Ax,Ax“,(63x ),_M_m?[ Ax, )(Gax .

1 —5.].‘

where Ax is the average grid spacing as above, and A% = Ax, , , — Ay, is the difference between
grid spacing. The value of the conductivity ¢ at the midpoint is chosen to be the average

value

Gl + 1.4 + o:.}.lx

H-é._,.k 2

(3.3.1.11)

The derivatives at the midpoints in (3.3.1.10) can be expanded in terms of the central dif-

ference formula to give

@ _ (¢l"|—¢‘\
(33.112a) (oa-r)"l]‘_c"l:'j"\ Ax..¢| /
a¢ (¢|—¢l—|\
(3.3.1.12b) (Gg)l =Ci Ay

(33.1.12¢) (cg—% }..,.‘ = c;,,.‘{ LT +2§§f’lg B )@ }

The terms in (3.3.1.12) can be substituted into (3.3.1.10) to give the complete expression
for the x derivative. This process can be repeated for the y and z derivatives to give the
complete discretized equation for (3.3.1.9). Forauniform grid spacing, AX = 0, which means

that equation (3.3.1.12¢) would not appear in (3.3.1.10).
The finite-difference discretization generates a linear system of N, * N, « N, simulta-

neous algebraic equations
(3.3.1.13) Ado=b

where N,, N, N, represent the number of grid points ineach of the respective (x,y,2) coordinate
directions. One can easily see that the size of the linear system in (3.3.2.13) increases as a
cubic which demonstrates the difficulty of modelling in 3-D. However, the matrix A aas

atmost 7 entries in any row allowing the use of sparse matrix techniques. The sparse matrix
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solver used was Mat! which utilizes the Yale sparse matrix storage technique. Mat! is an
iterative solver that implements an Orthomin acceleration technique as well as an incomplete

factorization to approximate the solution of a linear system of equations [18).

Analytic solutions of (3.2.5) [50] often represent the buried source as a delta function,
which is impossible to represent :xactly using numerical techniques. To validate the
numerical results, the asymptotic behaviour of the computed potential was examined for
the case of a surface electrode on a homogeneous halfspace. Assuming a solution of the

form

(3.3.1.19) o=Ar"
and taking logarithms yields
(3.3.1.15) In(¢) = In(A)+ b In(r).

If (3.3.1.2) is true, one expects the value of b to be constant and equal to -1. This relationship
can be seen in figure 3-4 for the Robbin and Dirichlet boundary conditions. The value of
b is calculated by a linear regression fit of (3.3.1.15) using the value of ¢ at all grid points.
The length scale L, represents the outer edge of the computational domain where the
boundary conditions are applied. The model was run with equal lengths in all the coordinate
directions implyingthat L, =L, and L, = L,. The value of b computed for Dirichlet boundary
conditions improves as the size of the computational domain is increased. The value for

Robbin boundary conditions, however, is exactly -1, independent of the domain size.

3.3.2 Solution of the Inverse Problem

The cost function is an 8-dimensional multimodal scalar function. One possible
technique to find the global minimum is to calculate the cost for all possible configurations
and choose the smallest value calculated. This type of brute force solution is possible

theoretically, but impractical given finite computing time and resources.

Cross-sections of the cost function verify its multimodal nature (figure 3-5). While
some dimensions show C to be strongly unimodal, other dimensions contain several local
minima. It is for this reason that the simulated annealing algorithm is used to perform the

minimization.
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The current state of the system is given by the 8 box parameters described in figure
3-2. The random changes consist of perturbing one of these 8 box parameters. Chuosing
the magnitude of this perturbation raises a difficult question. Each of the parameters is real
valued and hence can assume a continuum of values. In the present example, choosing a
new configuration is fairly straightforward. A change of less than one grid spacing fails to
change the finite difference linearization of (3.3.1.9) since the conductivity is stored only
at discrete grid points. Accordingly, the potential field will remain unchanged leaving the
cost function the same. An appropriate magnitude for any perturbation is then given by the
grid spacing for each dimension. A smaller change would go unnoticed while a larger
change would skip intermediate configurations. A perturbation for parameters in the
x-direction would be x, + Ax, and L, * Ax,. Similarly, the changes in the y and : directions

are y,+ Ay,, L, £ Ay, and z, £ Az, L, Az, respectively. A natural increment does not exist

for the dip and strike angles. A perturbation of Y+ 5° and 0 + 5° was found to give acceptable
resolution as well as providing changes of reasonable magnitude. Thus, at each step an
increase or decrease of one of the 8 box parameters yields a maximum of 16 possible choices

to construct a new configuration.

The temperature parameter T'is assigned an initial value greater than the average change
in the cost function for any particular random configuration change. This is commonly
reterred to as the melting temperature. This initial temperature should be high enough so
that the algorithm can choose any state in the solution domain, similar to a molecule being
allowed to move throughout a liquid. Randomly selected configuration changes are per-
formed at a particular temperature level until some maximum number are attempted or until
a preset limit of successful rcconfigurations is achieved. Then the temperature T is reduced

by 20%, and the process is repeated until no successful changes occur. The temperature at
the kth level is

(3.3.2.1) T, = (0.80)'T,.

where 7, is the initial temperature. By performing the cooling sufficiently slowly, the system
can settle into its crystalline state (global minimum cost). When no more changes are

accepted, it is assumed that the minimum cost is reached and the reconstruction of the i.igh

conductance box is complete.
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The annealing process continues until one of the following two stopping conditions
is met: 1) the minimum value of the cost function is found, or 2) continuous perturbations

of the system produce no acceptances and hence no new configurations are generated.

The first criterion assumes that the theoretical minimum is known, which is not always
the case. Of course, with the synthetic noise-free data, the minimum cost that can be achieved
is C=0 (figure 3-8a). This fact determines exactly when to stop. With the introduction of
noisy data, however, the global minimum is some unknown value greater than zero (figure
3-8b). The second criterion is usually gauged in terms of the ratio of acceptances to per-
turbation attemnpts. A suitable stopping condition is satisfied if this ratio is less than 10%.
Fortunately, the current model possesses a finite number of state changes (16 in total). This
property simplifies the second stopping criterion. Extensive searching at the low temperature
levels of annealing is not necessary since there are only a finite number of changes to the
configuration possible. If all 16 changes are tried and rejected, then a minimum is assumed,
and further searching is pointless. It is true that this minimum may be local, but a careful

choice of the annealing schedule will guarantee that it is a global minimum.

3.4 Validation

Testing of the reconstruction algorithm was done using synthetically generated data.
The synthetic data set is created in the following manner. A set of 8 box parameters (Table
3-1) was chosen to run through the forward solver. The resulting solution ¢ was used to
find the electric field measurements on the surface. These values were regarded as the
experimentally measured values which the algorithm was attempting to recover. There are
two pieces of information one can exploit from this synthetic data: 1) the generating con-
ductivity structure is known, and 2) the global minimum is guaranteed to be zero. The latter
fact is a result of the cost function being non-negative and the linear system in (3.3.1.9)

having a unique solution.

(x01 Yos &)) (Ll ’ lfz, lq) Dip and Strike

(-0.375,0.25,1.0) (1.75,1.0,0.5) Y= 30°,8=-30°

Table 3-1. Box parameters for synthetically generated data set.
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Reconstruction of the original configu ation proceeded by choosing an initial guess
box and then applying the Metropolis algorithm. The initial guess was chosen to be a unit
cube with zero dip and strike angles (see figure 3-6). Solving forthe guess box and calculating
the cost function yields an initial cost of C =90.23. The simulated annealing algorithm is
then allowed to perturb this initial configuration and accept or reject new guesses accord-
ingly. The entire annealing process reqnires 438 iterations (Table 3-2) to successfully

reconstruct the correct box. Of these attempted perturbations 233 changes were accepted.

Minimum Re-configurations Reconstructed Box
Cost

Best | Final | Accept | Attempt (s Voo 0) (L,,L,,L,) ‘
o | o | 233 | 438 |(-375.25.10 |(1.75.1.00.5) [(30°-30")|
2.55 {255 ] 253 | 671 | (-375.25.1.0) | (1.75.1.0,0.5) |(30°,-30")]
2287 [22.86] 314 | 1111 | (-5.251.0) | (2.0.1.00.5) [(30°.-35"]
402 1 401 | 1893 | 3472 |(-05.0.25.0.93)](1.5.1.00.625)|(30".-30°)
504 | 504 | 3345 | 9004 |(-375.0.25,1.0)](1.75.1.00.5) [(30",-30")]
827 | - o - - - -]

Table 3-2. Performance of the annealing reconstruction with uniformly distributed
random noise added to the surface field data

In any real world experiment, errors, whether measurement or otherwise, will be
presert. The ment of an inversion scheme relies upon its ability to deal with random noise
in the data. Uniformly distributed random noise was added to the synthetically generated
data set to test the inversion scheme’s robustness. To add N% noise to a measurement M,

the formula used is

N
( ) Mumn ( 100 U[O )) M

where U[0,1) represents a uniformly distributed random number between 0 and 1. The
effect of 40% random noise added to the surface signal can be seen in figure 3-7. Inversion
results with the noisy data can be seen in Table 3-2. Note that the known minimum cost is
no longer zero. The known minimum value is calculated by substituting the synthetic data
and the synthetic data with noise in the cost formula (3.2.11). This new minimum -ost

should represent the cost when the reconstruc*ion is complete. The inversion worked with
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up to 40% random noise added. The solution effort, however, increases dramatically with
the addition of noise. The number of iterations required by the simulated annealing search
increases by an order of magnitude from 0% noise to 35% noise. This can be attributed to
the blurring of the global minimum of the cost function when noise is added as sketched in
figure 3-8b. In fact, the actual minimum achieved in the 35% noise case is lower than the
minimum cost value expected. This phenomenon represents the theoretical breakdown of
the inversion scheme. If the cost value for the true answer is not the global minimum, then
the simulated annealing search will be unable to locate the conductivity structure which
generated the data in the first place. For 50% random noise, the annealing search failed to

converge to a global minimum.

3.5 Further Results

The reconstruction method was further tested using synthetically generated data that
represents a real-life ore body. The dimensions for this test configuration were extracted
from a vein type body found on the Cavendish Geophysical test range [53]. The test range
conststs of an extensively surveyed hard rock site. It was established in 1967 and is used
for the testing and evaluation of electromagnetic prospecting techniques. The tests con-
ducted include airborne and ground based EM surveys, as well as a comprehensive diamond
drilling program. The drilling program involved removing core samples which were
classified as to type of rock and minerals present. Metals found included Cu, Pb, Ni, and
Sn in sulphide type deposits. The dimensions used were that of the Zone A body which lies
3m below the surface and is the shape of a rectangular slab 200m by 20m by 3m. These
dimensions were non-dimensionalized using the drill hole depth L=8.9m. Borehole
resistivity measurements conducted in [36] measured the conductivity of the ore body and
the surrounding ground. This ratio was approximately 10,000 to 1. The sharp conductivity
contrast, however, proved difficult for the numerical solver. Hence, a conductivity ratio of

100 to | was used. This ratio will provide similar results.

The initial box parameters for the Cavendish Zone A body can be seen in table 3-3
while the details of the recovery can be seen in table 3-4. The inversion achieved a lowest

cost corresponding to C=33.1 starting from an initial cost value of C=1003.0. The non-zero




(X0 Yor %) L, Ly, Ly) Dip and Strike |
(O 25,1 08 1. 50) (O 38 15 18 2 5) _y= -20° 0° |
Table 3-3. Box paramctcrs for thc synthctlcally gencratcd data set modcllcd aftcr

the Zone A ore body found at the Cavendish Geophysical Test Range. The hole
depth L=8.9m was used to non-dimensionalize all the distance rieasurements.

lowest cost is not a shortcoming of the minimization algorithm, but rather a limitation of
the coarseness of the finite difference mesh. A large grid spacing in the y-direction,Ay = 0.5,
was required in order to fit this dimension within the domain. This coarseness makes exact

recovery impossible. Most importantly, the dip and strike angles are in the correct direction

and are close in magnitude.

Re onﬁguranons Reconstructed Box
Accepted [ Attempted (Xas Yo Z0) (L,,L,,Ly)
| | 258 597 | (05 -5,0.0.2.0) |(0.5,15.0, 175)
Tablc 3-4 Recovery of ore body for dlmen.slons from the Cavendnsh Geophys:cal
test range.

The Cavendish Zone A ore body dimensions were also used to test inversion in the
presence of a thin conductive layer near the surface. This layer is known as conductive
overburden. The higher conductivity found in an overburden layer is a result of moisture
and dissolved salts lying in the soil above the bedrock. The effect of this layer i< to partially
shield the electrical response of the buried ore body and thereby reduce the magnitude of
the electric fields measured on the surface. The overburden was given a conductivity ratio
relative to the background of ©,,../6,, = 10 and a scaled thickness L/4. This thickness cor-
responds to a !1yer approximately 2m thick. The results of the inversion with this conductive

layer can be seen in Table 3-5 as well as results with a conductive layer twice as thick (ie.
L72).

The conductive overburden does not seriously effect the length and width recovery of
the inversion algorithm, but it does s 10usly effect the resolving power in the z-direction.
Determination of the width and length of the conductive anomaly relies on the location and
magnitude of the peaks of the surface fields. The recovery of the depth information depends

on the complete structure of the surface fields over a large area on the surface. The smoothing




Layer | Minimum Cost | Re-configurations |  Reconstructed Box
Thickness | Known | Final | Accepted | Attempts (X Yo ) (L,L,L,)
L4 0 25.67 245 587 [(-0.25,1.0,1.75)| (0.5,15.5,1.25)

L2 0 |]16.54] 325 888 (0.0,0.5,2.0) }(0.5,15.0,1.75)

Table 3-5. Recovery of ore body for dimensions from the Cavendish Geophysical
test range with a thin layer of conductive overburden lying on the surface. The
layer of overburden was chosen to have a conductivity ratio G,,,,/0,, = 10.

of the signal on the surface is more pronounced with a highly conductive layer near the
surface as is demonstrated by comparing figure 3-9a and figure 3-9b. This smoothing makes
the recovery of the depth information difficult. Most importantly, the dip and strike angles
are recovered exactly in the case of a layer of thickness L/4. Hence, the proposed inversicn

schemes works reasonably well in the presence of a conductive overburden.

3.6 Discussion

A full 3-dimensional model of the mise-a-la-masse prospecting method is developed.
A finite difference approximation is used to solve the electrostatic potential numerically
when given the conductivity field. By making regularizing assumptions pertaining to the
conductivity sub-structure, the inverse problem is converted to a search for the global
minimum of an 8-dimensional scalar cost function. This idea proves successful with a

simple synthetic noise-free data set.

A more difficult reconstruction occurs when uniformly generated random noise is
added to the surface field data. Here, the simulated annealing minimization requires more
iterations to find the global minimum as the amount of noise is increased. The algorithm
is successful with up to 40% random noise added to the data. The theoretical breakdown
of the method begins to occur beyond 40% noise. This means that the global minimum of
the cost function corresponds to a conductivity structure which is not necessarily the gen-
erating conductivity structure. Hints of this breakdown can be seen in the 35% noise case,
but these false minimums are still close to the correct answer. With 50% random noise, the

search for a global minimum failed outright.
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A realistic ore body reconstruction is successfully completed using dimensions from
the Cavendish Geophysical Test Range. Further extensions to the model included inversion
in the presence of aconductive overburden. A reconstruction using experimentally measured

field data would be the next log.cal step.
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> - Source Electrode

b)
Figure 3-1. a) Coordinate system used for mise-a-la-masse model. The z-direction points
vertically downward into the earth. b) The idealized ore body with length scales shown.
The source electrode lies buried within the ore body at the position (0,0,L). A finite region
R is defined on the surface where the surface field measurements are compiled
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region R, uniform grid spacing is used. Outside this region, a non-uniformly spaced grid is

Figure 3-3. Diagram of the grid used for the finite-difference discietization. Within the
used.
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aconstant. The variable r is the distance from the source electrode, and L, is the size of the
finite domain in the x direction.
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Figure 3-8. Schematic of the cost function for a) noiseless synthetic data and b) noisy data.
The situation in b) foreshadows the theoretical breakdown of the method. If the global
minimum cost does not correspond to the correct solution, then the inversion will fail.
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CHAPTER 4

An Inverse Problem in Acoustic Scattering

4.1 Introduction

Scattering is defined as the refraction, reflection and diffraction of an incident wave
by an obstacle or medium. The scattering obstacle or medium has some sort of different
property than the embedding medium, which causes the wave to scatter. The associated
direct problem (calculate the scattered wave given the properties of the obstacle or medium)
has been studied extensively. Many analytical and numerical solutions exist [29,34,48].
The inverse problem requires one to reconstruct the obstacle or medium given the scattered
wave pattern [10,11,32,41,43,46]. Solution of this inverse problem is important in the fields
of medical imaging, radar imaging, geophysical prospecting, and non-destructive testing.
The forward problem falls into the class of open domain problems. That is, the external
boundary conditions are applied at infinity. The boundary condition at infinity is referred
to as a radiative boundary condition since it is applied to scattered waves radiating outwards.
This class of boundary conditions requires special treatment when using numerical solution

techniques [3,16,28].

In obstacle scattering the object is often assumed impenetrable to incoming waves.
The scattering mechanism is controlled by the boundary of the object. The boundary can
be sound soft, sound hard, or possess properties of each (impedance boundary condition).
Sound soft indicates that the boundary is displaced by the incoming waves. This dis-
placement generates an auxiliary wave. With a sound hard condition, the boundary is
assumed to be rigid. Incident waves simply bounce off the surface. Unlike obstacle
scattering, scattering by an inhomogeneous medium allows incident waves to propagate
through the medium as well as interact at the boundary of the medium. The transmitted
waves are refracted by the inhomogeneous nature of the medium. In the case of electro-
magnetic scattering, differing conductivity will cause a wave to scatter. In acoustic scat-
tering, differing wave speeds of the media (ie. index of refraction) generate the scattered

waves.
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The unbounded domain is difficult to model in wave scattering. A truncated com-
putational domain is often used to represent the unbounded domain. This truncated domain
imposes artificial boundaries which require artificial boundary conditions. Spurious
reflections of outgoing scattered waves often occur on these artificial boundaries leading to
inaccurate solutions. Enquist and Majda [17] construct a pseudo-differential operator to
apply a local houndary condition on the computational boundary. This local condition is
designed to minimize reflections but does not eliminate them. In {48] Tam and Webb
propose an improved version of the Bayliss-Turkel [3] conditions, but problems with the

anisotropy of the underlying Cartesian finite-difference mesh have to be corrected.

This chapter will present the mathematical model for 2D acoustic waves scattered by
an inhomogeneous medium. A numerical method using a finite difference approximation
is proposed to solve the modified wave equation in an unbounded domain. In {30} a novel
non-reflecting boundary condition (NF® ") is applied to the exterior Helmhecitz problem to
approximate the infinite domain. This global boundary condition is adapted for use in the
case of a scattering medium. An approximation for the Sommerfeld radiation condition
(SRC) at infinity (the simplest local boundary condition) is compared with a non-reflecting
boundary condition (a global boundary condition). The difference between a local and
global boundary condition 1s the domain of influence for a discrete point in the finite dif-
ference approximation. With a local boundary condition, a point only depends on its
neighbours as opposed to a global boundary condition, where every point on the boundary
is linked to every other point on the boundary. This linking takes place via a Fourier integral.
Calibration of the numerical solver is sought with an analytic solution from obstacle scat-
tering. A sample index of refraction describing an inhomogeneous medium is chosen to
produce a scattered wave field. The numerical solution for this inhomogeneous medium is
contrasted with a highly accurate iterative integral equation (IE) solution which uses a Born

approximation as the initial guess.

Once the validity of the forward problem is verified, the inverse problem will be posed.
A quasi-solution method as described in chapter 2 is proposed to approximate the inverse

problem. The key to the success of a quasi-solution method is to have a fast, efficient und
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accurate forward solver as well as a robust minimization algorithm. The minimizaiion
scheme that will be used is a vanation of the simulated annealing algorithm which can deal

with the continuous variables in the parameter space.

Three sample indices of refraction are proposed to test the robustness of the inversion
scheme. These sample indices of refraction are substituted into the forward solver to generate
the synthetic far-field data. This synthetic data will then be used to represent the measured
data required for input into the inverse problem. A reasonable parameterization of the index
of refraction to be recovered based on a Fourierexpansion is proposed. This parameterization

is then used to recover the index of refraction from the synthetic far-field wave pattern.

4.2 Formulation

Direct Problem
The wave equation which governs the propagation of acoustic waves can be derived

from the equations of fluid mechanics [10,29]. In acompressible fluid, neglecting viscosity,

non-dispersive acoustic waves are governed by the linear wave equation

(4.2.1) vy=L2Y

¢ or
where U = U(x, t) is the velocity potential of the acoustic wave, and ¢ = ¢(x) is the speed
of sound in the inhomogeneous medium. The velocity potential U is related to the velocity
of the medium v by
4.2.2) v(x,t)=-1-VU,

o]
where p, is the background density of the fluid. Assurning atime harmonic velocity potential
allows one to write
(4.2.3) Ux,t)=Re{u(x)e™},
where u(x) is the complex valued velocity potential in the Fourier domain. and the wave

equation of (4.2.1) becomes the familiar Helmholtz equation or so-called reduced wave

equation




(4.2.4) Viu +

Let ¢, represent the speed of sound in the hoimogeneous surrounding medium. Then (4.2.4)
becomes
4.2.5) Viu +k*nx)u =0.
Here, k = w/c, is the wave number in the homogeneous medium, and n(x) = cglcz(x) is the
refractive index of the inhomogeneous medium.

The scattered waves are induced by some form of incident waves which interact with
the inhomogeneous medium. The simplest form of incident waves which satisfy (4.2.5)

outside the inhomogeneous medium are plane polarized waves given by

(4.2.6) u=e*""

]

where 4 is a unit vector in the direction of propagation of the plane polarized waves. In 2D,

the direction vector d can be written in terms of an angle o as
(4.2.7) d = (cos(ot), sin(o)).
Here, o is the angle measured counter-clockwise from the positive x-axis.

Due to the linearity of the governing equation, the total wave field consists of a

super-position of incident and scattered waves
(4.2.8) u=u+u,.

Substituting (4.2.8) into (4.2.5) yields

(4.2.9) Viu, +k’n(x)u, = f(x),
where
(4.2.10) fx)=(1=-n(x))e™ “.

When in the background fluid, n(x)=1. Hence, the source term of (4.2.8) is zero. In this
region, scattered waves are simply propagated. When in the inhomogenous medium,

however, f(x) is different from zero and represents a driving term.

The only boundary condition is the Sommerfeld radiation condition [29]

0
@.2.11) lim \/7[ —,ﬁ-iku‘) =0.
r —boo a" ’
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Two valid solutions of (4.2.9) consist of scattered waves propagating outwards as well as
scattered waves propagating inwards from infinity. The radiation conditionr >f (4.2.11)

ensures that only outwardly propagating waves are considered.

To simplify the application of the boundary conditions, the problem is formulated in

2D polar coordinates (x =rcos8, y =rsin0) as

o'u, |0u, 1aZu‘

5—'-—2+-r——a—r—+;-5—a?+k2n(r.9)u, =f(r.9). with
(4.2.12) f(r,0)={1-n(r,0)}exp{ikr(cos®,sin0)-d}, and
d
lim Vr —l:‘i—iku‘)=0.
r— oo \ al‘ J

The equations of (4.2.12) are non-dimensionalized. Two characteristic length scales
exist in the problem. They are the wavelength of the incident field given by A = 2w/k and
the length of a typical dimension of the inhomogeneous medium or obstacle given by a. If
the value of & is such that ka » 1, then the wavenumber is said to lie in the high frequency
region. This implies that the second term in Helmholtz’s equation is more important than
the first, and the resulting phenomenon is diffraction. If ka = 1, then this regime is called
the resonance region. Here, bothterms in the reduced wave equation are of equal importance.
Wave phenomena such as refraction will be observed for these values of wave number k.
A third case exists when ka « 1. This implies that k — 0, and hence Helmholtz's equation
becomes Laplace’s equation. In this case, oscillatory solutions are replaced by steady-state
solutions. For the purposes of the present work, the irradiating wave number & is assumed
to lie in the resonance region. A non-dimensional radial distance variable R is achieved by

normalizing by the wave number & to yield

2

The factor of 21 is included to give a wavelength A = 1. The system of (4.2.12) now becomes




2

(4.2.14) F(R,0)=(2n)’(1 - n(R,8))exp{2niR(cos 0,sin8) -d}, and
Rli:x:s’fr( % - 21tiu5) =0.
Inverse Problem

The inverse problem requires an experimentally measured quantity to be used in the
reconstruction. A common measurement in the field of acoustic scattering is derived from
the outgoing scattered waves. This measurement is referred to as the far-field pattern or is
sometimes cailed the scattering amplitude [10]). This quantity refers to the pattern generated
at a large radial distance from the source. At this large distance, specific details of the
scattering medium are not noticeable, but rather the medium appears as point source. Here,
the domain of influence shrinks from a wedge to a line. This allows the solutions to be
separable. That is, the 2D far-field pattern u, is related to the scattered wave u, by the

asymptotic expression

ikr
4.2.15) u,(r, e)—ev_——u,(e)+ o( < ) r— o,

Hence, the far-field pattern represents a function which is defined on the unit circle. The
value of the scattered velocity potential in the far-field is given by the angular value of u,

and how far it has propagated from the centre.

The inverse problem involves the index of refraction mapping onto the far-field pattern.
Given the index of refraction of the inhomogenous medium, the direct problem calculates
the resulting scattered far-field pattern based on an incident wave. Typically, the inho-
mogeneous medium is bombarded with incident waves from many directions. Hence, the
farfield pattern can be thought of as a function of both the angle and the incident wave

direction. That is,

(4.2.16) ug=ul0d).
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The inverse problem now requires one to compute the index of refraction given the set of

far-field patterns. Consider the operator M wuich describes the direct problem. Hence
(4.2.17) Mn(r,0) = ul(0d),

where Mis based on the Helmholtz equation of (4.2.14) and the definition of the far-field
pattern in (4.2.15). Let /7(r,0) represent the quasi-solution to this inverse problem. The

quasi-sotution can be computed from the expression

(4.2.18) W= min{ 2 Mn —ug @) |,

ne NV
where A represents the function space from which valid indices of refraction can be selected.
The superscript m represents the experimentally measured far-field pattern which is used
in the least squares output function and summed over all irradiation directions d. The
expression on the right hand side of (4.2.18) will be referred to as the cost function. Now
the minimization attempts to find the index of refraction which achieves the global minimum
of the cost function. The minimization algorithm which will be implemented is simulated

annealing.

4.3 Numerical Procedure

Direct Problem

Solution of the partial differential equation of (4.2.14) is facilitated using a finite
difference approximation for the derivatives. The computational domain is defined on a

discrete mesh of N, x N, points in the respective (6, R) directions. That is

, . 9,—90

(4.3.1) 0=0,+iA8, i=0.N-1, A0=——
. . Ri-RO
R=R,+jAR, j=O.N-1, AR= ,

N, -1

where (8,, R,) is the bottom left and (0, R,) is the top right corner of the rectangular domain.

This discretization yields a system of linear equations
4.3.2) Aii_=b,

where A is a square matrix with N, x N, rows and &, is the discrete scattered wave field.
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The origin must be given special consideration since there is a singularity in the
coordinate transformation at R=0. For axisymmetric problems, this is of no concern because
the singular terms can be eliminated in (4.2.14) by a straightforward application of I"hopital’s
rule. A more general approach is sought which does not assume this symmetry. The Mean

Value Theorem for Laplace’s equation allows one to write

4.3.3) u(0,0)= ﬁ Ju(a ,0)d0,
o

where C is a circle of radius a, centred on the origin. This result generalizes to the special

case of Helmholtz’s equation by

1

4.3.4) u(0'0)=.l(ka)
0

l‘u(a,e)de.

Hence, an expression for the centre point could be derived in terms of the points at R = AR,
the next ring of points. A simpler approach replaces the computational molecule at the
origin with a single Cartesian molecule. The equation governing this single point is

du, . Fu,
ox? 9y’

This molecule is then rotated through the angles 8 =iA0,i =0.N,—~1. The value at the

4.3.5) +(2r)’n(x)u, = f(x).

origin would then be the average value obtained by all the rotated Cartesian molecules.

The Sommerfeld radiation condition (SRC) of (4.2.12) is the lone boundary condition.
This relation is only satisfied as R — oo, which is impossible to represent exactly given a

finite grid. One suitable treatment is to apply

du,

(4.3.6) (é;- 21l:iu,)

=0,
R=R

where R, is some large but finite number.

A new approach to approximate the boundary conditions at infinity is proposed by
Keller and Givoli [30] with the use of non-reflecting boundary conditions (NRBC). These

NRBC'’s use the analytic solution to the exterior Helmholtz problem to construct a Dirichlet




to Neumann (DtN) map. The DtN map relates the radial derivative on the boundary to

boundary values by

u = H™@rR)
4.3, —_ = —-—f 0-0")}u.(R_, 040,
@437 OR |-n_ 2%, H;“(zuR.,)ocos{"( (R0
where
(4.3.8) HY2)=J,(2)+iY,(2)

is the Hankel function of the first kind of order n. The prime on the summaticn symbeol

indicates that the n=0 term is multiplied by a factor of %

This boundary condition differs from the SRC in that it is a global condition, rather
than a local condition. That is, every point on the boundary depends on every other point
on the boundary due to the integrals in (4.3.7). The effect of this global condition is an
alteration to the sparsity pattern associated with the discrete linear differential operator A
in (4.3.2). The discretized linear operator associated with a local boundary condition has a
block tridiagonal form
(T
D

O N0
OND

D
(4.3.9) A= T D ,
D TD
\ D T

where T is a tridiagonal matrix and D is a diagonal matrix. Matrix A has at most 5 entries
per row. Each block is an N, X N, matrix, and there are N, blocks in total. The sparsity

pattern with the global boundary condition is similar since

(T D 3\
D T D
D T D
(4.3.10) A= D T D
D T D
L D S

J
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Here, S represents a dense matrix since every point on the boundary depends on every other
point on the boundary. This reinforces the idea that NRBC'’s are global boundary conditions,

rather than Jocal boundary conditions.

The NRBC's, while complicating the sparsity structure, eliminate the reflection of
outgoing waves off the artificial boundary. This reflection is minimal for waves travelling
perpendicular to the artificial boundary but increases dramatically with higher angles of
incider.ce. The only issue with the use of a NRBC is the number of terms used to approximate
the infinite sum in the DtN map. Each term in (4.3.7) represents the next highest harmonic
in the angular direction. The highest harmonic representable on a discrete grid is determined

by the grid spacing, similar to a Nyquist frequency. If N is the highest harmonic, then

4.3.11) NAO <-’25.

This allows a minimum of five grid points per wavelength. Since A8 =2m/(N, - 1), the
highest harmonic is given in terms of the number of angular grid points by

N,-1
4

(4.3.12) N<

It is beneficial to use the maximum possible number of terms in (4.3.7) since adding higher
harmonics does not affect the sparsity pattern of A, but simply adds correction terms to the
existing elements of S in (4.3.10). Adding harmonics above the Nyquist frequency of (4.3.12)

causes unpredictable results.

The matrix was stored in compressed row storage (CRS) format [2] which stores only
non-zero matrix elements using a row and column pointer array. This is the most practical
storage scheme since the origin and the global boundary condition cause an irregular sparsity
pattern. The row and column pointers represent extra storage and element access overhead,
but this overhead is offset by the savings in storage and matrix operations. An iterative
solver was implemented with the Bi-CGSTAB accelerator [S0). This convergence accel-
erator was chosen since the coefficient matrix was neither symmetric nor positive definite.

A Jacobi diagonal scaling was the only preconditioning performed on the sparse matrix. A
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more sophisticated preconditioner may reduce the number of iterations required, but it
increases the computational expense per iteration. Note that all the storage and acceleration

methods have been adapted to deal with complex numbers.

The quantity which will be computed by the direct problem is the far-field scattering
pattern for a given index of refraction. Itis necessary to derive the far-field at a large distance
from the scattering medium, where the waves are propagating outward. Solving the scat-
tering equations in the far-field with a finite difference formulation requires a large com-

putational grid. Having a large grid increases computat: onal effort while sacrificing accuracy

and resolution. For this reason, specific numerical techniques need to be implemented. A
special hybrid solution technique was employed to solve the direct problem posed in (4.2.18).
The finite difference solution of the governing equations requires a finite domain and does
not easily facilitate the calculation of the far-field scattering patterns. On the other hand,
an integral equation formulation requires no special treatment of the boundary conditions,
but it is difficult to solve numerically due to the singularity in the kernel. The proposed
hybrid method exploits the strengths of both these techniques. A finite difference solution
is used in the region of the inhomogeniety. Then, an integral equation is used to propagate

this solution into the far-field.

For the finite difference solution, the inhomogeniety in the index of refraction is
assumed to be contained within a finite domain. The index of refraction n(x) 2 1 is different
from one within this finite domain, while outside this domain n(x)=1. Let

~1 '651:}

(4.3.13) D, ={(9.R)e ' K <R
A

represent this two dimensional domain. This domain will also be chosen for the .ompu-

tational domain described in (4.3.1). Let the computational domain be

D 6. R -n<0,<n, i=0.N -1

- =10-R) O<R <R, j=0.N-I
(4.3.14) 0 =—n+irg, 48=2—CF
N, -1
—RA-O

R =0+ /AR, = —
, =0+/AR AR N1
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The far-field pattern is now calculated based on the velocity potential calculated by
the finite-difference solution. Let the value R, denote the radial distance where the far-field
pattern will be computed. This value is large but finite. The error in using this approximation

is O(1/R*). The scattered velocity potential at the distanc R. is calculated using

(4.3.15) u,0,R)=-1’i f f HY'rA) (1 —n@', R )u(®’,R")dA’,
D

where

(4.3.16) P =R:+r?=2R_r'cos(0-6"),

and (0’,R’) represent the integration variables. This integral can be easily comput.d
explicitly using u (0, R ) from the finite difference solution. There is no singularity to consider
since (6, R_) does not lie in D, and thus the argument of the Hankel function never vanishes
(F~0). If (8,R.) € D, then 7 =0 for (6',R’) = (6,R.), and the singularity in the kernel is

encountered. The far-field pattern u, is now achieved by rearranging (4.2.15) to give

(4.3.17) u(0.d) ~ vR.e u,(0,R_d).
In summary, the hybrid technique involves two steps: 1) solve the PDE in the region of the

2R

inhomogeniety, 2) use the solution there as input to the associated integral equation in order
to propagate the scattered wave to a large radial distance where the far-field pattern can be

approximated accurately.

Inverse Problem

To perform the quasi-solution minimization with simulated annealing, it is necessary
to parameterize the index of refraction. One reasonable parameterization is to use the finite
difference mesh so that

4.3... n,=n,r).

This gives a total number of free parameters equal to the total number of gridpoints, N, X N,.
A reasonably fine mesh u: :d in the computations was 41 x 17 grid points, which would
represent 697 degrees of freedom. This number is fairly intractable for any minimization

algorithm. A more sensible parameterization would utilize a Fourier series to reduce the
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number of free parameters [23]. The two dimensiona! finite Fourier series representation

chosen was

L M
l+aj1-Z ]+ 3 3 e sin nmr \ O<r<A
A lze-lm=} A

(4.3.19) #(O,r)=
1, rzA i
where a, 2 0 represents the value at the origin, A (0 <A <R,) is the radius of a circle
which completely contains the inhomogeneity, and c,,, represent the complex-valued Fourier
coefficients. Note that if we consider only pure real functions for the index~ - f refraction,
then c,,, =c,, and Im{c,,} =0. Now the total number of free parameters is (2L+1)M+2.
where L is the number of Fourier terms in the angular direction, and M is the number of
Fourierterms in the radial direction. These parameters can be chosen to produce considerably
fewer degrees of freedom (han N, x N, while still yielding reasonable approximations to the

function.

The advantage of using a Fourier series representation of the index of refraction is that
high order terms can be truncated. These high order terms contribute little to the recon-
struction but can cause great difficulty for the quasi-solution minimization. The finite Fourier
series also provides a certain degree of regularization. By using this representation, we limit
the set of eligible tunctions to those which are continuous and differentiable on (0,A).

The cost function to be minimized is

Nu
(4.3.20) Cineyd) = EHT"”—_—"@
2hugl
.

where the sum is over all the incident wave directions. The factor Xj uy} is included to

b4

scale the cost function for different numbers of incident wave directions. A variant of the
simulated annealing algorithm is applied to find the global minimum of the cost function.
This method provides a clever way to choose the random steps on continuous parameter
spaces. In a combinatorial problem, moving between states involves taking discrete steps.
The problem when dealing with a continuous paraineter space is that a step in a direction

could take a continuum of value.. No step lengths are defined a priori. Taking steps that
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are too small wastes computat'. nal effort, while failing to fully explore the domain of the
cost function. Steps that are too large will be rejected, and no information on the cost
function is gained. In the method proposed by Vanderbilt and Louie [S1], the excursioas
of the random walk itself are used to azcumulate statistics on the size and shape of the
multidimensional cost function. The first and second moments of the walk segments are
accumulated based on the accepted reconfigurations. At the end of the kth temperature
level, the mean and ~9-v.riance are used to compute the scaling factors for each dimension.
These scaling factr. are then used to compute the random steps for the k+ /st temperature
level. As the temperature is decreased, the average accepted step length shrinks since the
minimum is being approached. The step statistics can account for this and shrink the scaling
factors automatically. The other aspects of the simulated annealing algorithm, such as

cooling schedule and stopping criteria are exactly the same as detailed in section 2.6.

4.4 Validation of the Direct Problem

Calibration of the numerical scheme was achieved using two examples. The first
comparison uses an analytic solution from obstacle scattering to test the validity of the
radiative boundary conditions. The second example uses a sample index of refraction and
a numerical integral equation solution to gauge the accuracy of the proposed method for
medivm scattering. Analytic solutions in obstacle scattering are available for various
obstacle geometries and boundary conditions The example chosen from Morse and
Feshbach v.2 {34] calculats the scattered wave when plane polarized waves bombard a
circular cylinder with a sound-soft boundary. A sound-soft boundary implies that u =0
when R=4, where A is the cylinder radius. Physically, this would refer to a cylinder of Jello
which would vibrate freely in the presence ¢f oncoming sound waves. The incident wave
displaces the boundarv and generates a secondary or scattered wave. This process is much

like the noise made when a piece of paper vibrates in front of a loud speaker.




The physical problem is described in non-dimensional coordinates by

44.1) Viu+@2rYu=0 (6,R)e D
u=0 onC.
Since u = u, + u, and the incident waves are plane polarized,
(4.4.2) u, = exp(2mix).
Then (4.4.1) becomes
Viu +(2nYu, =0  (6,R)e D

4.4.3) u, =—exp(2niR cos 6) onC

. du, _
Rll-lﬂ\rﬁ(a—R-— 2mu_‘] =0.

This system is closely related to (4.2.14) and allows assessment and comparison of the two

different boundary conditions SRC and NRBC. The analytic solution of (4.4.3) is

(444) u,(0,R)=-2i 20 ! exp{ ( %t -0, ]i } sin(5, )H,‘,l (2R ) cos(n®),
where
(4.4.5) 8, =arg{H"(21A)} + g

is the phase angle of the Hankel {*inction.

The computational domain D is

Oc [-mal; AB-=——|
(4.4.6) D={(0,R) N -1 j

Re (LR}, Ar=2"
The analytic solution represented by (4.4.4) can be seen in figure 4-5. Note the peak
amplitude is in the wake of the cylinder where the inc:dent waves are re“-~ +*~g. Two error
measures were used {~r evaluation purposes. One was the || -| 1, of the difference between

the analytic solution and the ni.merical solution. That is

Hu -l
SHire D
4.4.7) Error = \
B i 00e o
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where g, is the numerical solution. The difference in (4.4.7) is normalized by | 1} Lir8)e D
to allow comparison between different computational domains. The other error measure

was the percentage norm error given by

|u — i
(4.4.8) %Error(8,R) = ————

" —— - 100%.

The percentage error plot (figure 4-6a) for the SRC shows a maximum error of about 1.5%.
This maximum occurs near 8 = 0, which represents the area in the wake of the plane polai. _ed
incident waves. Most error is expected in this region since this is where most refraction
occurs. Reflection off the surface of the obstacle generates outgoing waves which strike
the computational boundary at near normal incidence. This is the case near 8 =m. The
refracted waves, however, strike the computational boundary at an oblique angle causing
erroneous reflections. The maximum error for the NRBC (figure 4-6b) is < 0.1%, which is

an order of magnitude better than the numerical solution with the SRC.

Another useful comparison is to see how the accuracy of the numerical solution scales
with the mesh spacings. The finite difference approximation for a second derivative using

a central difference formula is deemed second order since

Jia=2h+f
Ax?

(4.4.9) = +0(AxY).

Assuming ihat the truncation error is a function of the mesii spacing (A0, Ar) and is inde-

pendent for each direction allows one to write

(4.4.10a) E,(A8) = (A0)°, and
(4.4.10b) E,(Ar) = (Ar),

where E, and E, represent the defect in the solution due to truncation error in the finite

difference approximation. If the number of points are doubled, the error should behave like
(44.11a) E,(A6/2) = (A6/2)%, and

(4.4.116) E(Ar12) = (Ar/2)b,

Dividing (4.4.10) by (4.4.11) and solving for o and B yields
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44.12 =1 E(a8) In2
(44.12a) a—nE.(AG/Z) n(2)
Ez(Ar)
(4.4.12b) B= ln( T )/m(z).

Ar =27
A0
240

21/80
f 2

Table 4-1. Values of the Error exponents o and P for various mesh spacings. A
theoretical maximum of 2 exists since a second order finite difference fornula is
used to discretize the derivatives in the PDE.

Table 4-1 shows the results of these calculations. A theoretical maximum ¢. ™ <hould
be reached if there are no other sources of error other than truncation error. This is not true
in the present case due to the approximation of the infinite boundary condition. Note that
the values for the NRBC are much closer to the theoretical limit than the values . or the SRC
case. Also, the exponent o is larger than the exponent 3 for the NRBC case, which indicates
that the error in the solution is more sensitive to changes in the angular mesh width. This
is due to the fact that the angular mesh spacing limits the highest harmonic which can be
resolved in the application of the integral bouudary conditions of (4.3.6). Note that when
increasing the number of points in the 8 dgirection from 81 to 161 points, there is virtually
no increase in the accuracy of the solution for the SRC case. Here, the method has saturated
the possible accuracy of the numerical solution. Any savings at this point in truncation error
are offset by the approximation of the boundary condition at infinity. This observation can
also be seen in figure 4-7. Here, the solution error is plotted for various combinations of
gridspacings AB, AR. The error is less with the NRBC than the SRC for all grid spacings.

Best performance of the finite difference solution is found when A8 and AR are of the same

magnitude.
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Validation of the scattering solution in the presence of an inhomogeneous medium
was performed by comparing the finite difference solution to an numerical integral equation

solution for a sample index of refraction. The function given by

2-5/3R, O<R <O.6}
1, R20.6

4.4.13) n,(R)={
was chosen since it is continuous and independent of 0. A sketch of this scalar field can be
seen in figure 4-8. The real and imaginary parts of the velocity potential « scattered by the
inhomogeneous medium can be seen in figure 4-9. This solution was generated using NRBC
on the computational domain

(4.4.14) D= {(G,R) be (-mnl A= 2"“60}

Re [0,2] AR=2"

The maximum values of the scattered potential occur on the ray 6 =0. This is expected

since this area is in the wake of the medium.

The integral equation (IE) describing this system is

4.4.15) w(r) = ufr)-in’ f f HOCrr=r)(1 -n@)u)dA’,

where r = (8, R) is the space variable, and r’ = (0’, R’) is the integration variable. This is a
Fredholm integral equation of the second kind. The Born approximation repiaces 4 under
the integral sign with «, allowiny (4.4.15) to be solved explicitly. This approximation
eliminates secondary scattering effects since only incident waves are assumed to scatter;
scattered waves do not scatter again. This is referred to as the zeroth order Born approxi-
mation. A more accurate numerical solution to the integral equation of (4.4.15) can be
achieved by using an iterative method where successive approximat.ons for u are substituted

under the integrai sign. That is,

(4.4.16) u"* ey = u(r)-in f f H"@2rlr—r)(1 =n(@)u " )dA’
D
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Solutions can be found to high accuracy by taking a large number of iterations. The iterates
converge to the exact solution provided that the kernel in (4.4.16) is contractive. This
method, however, is computationally intensive. For example, each iteration in the integral
equation solution takes 374.7 CPU seconds on a Pentium/90. The corresponding PDE
solution on a 81x33 point grid takes only 65.1 CPU seconds in total. The first iteration
yields the Born approximation as suggested above. The 50th order solution is computed
and displayed in figure 4-10. Estimates of the accuracy of this solution were drawn from

the magnitude of the difference between successive iterates

(4.4.17) = u"" <107,

Comparison between the 50th order Born approximation and the PDE solution with non-
reflecting boundary conditions is seen in figure 4-11. Here the absolute value of the dif-
ference between the IE and the PDE solutions is plotted per grid point. The maximum
absolute difference of 0.097 occurs on the centreline in the wake of the medium near the
outer boundary. This corresponds to a relacive difference of 1.3%. The L, norm o: the error
was found to be 0.13. The integral equation solution, while accurate, is not feasible for a
reconstruction algorithm since it requires significant amounts of CPU every time it is solved.
‘che finite difference solution with non-reflecting boundary conditiors provides accurate

results in a fraction of the time.

4.5 Validation of the Inverse Problem

Three proof of principle examples were used to evaluate the performance of the
inversion. Synthetic far-field data is generated by substituting the known indices of
refraction into the forward solver developed in (4.3.1). The synthetic far-field data from
the forward solution represents the measured far-field values. Two indices of refraction are
chosen to be axisymmetric, while the other one is non-axisymmetric. The inversion scheme
is applied to the synthetic data to see if the generating indices of refraction can be recon-
structed. The performance of the reconstruction is measured in terms of the reconstruction

error defined as

4.5.1)
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A fine grid (161x33 points) was used to generate the synthetic data to high precision.
The method used to generate the synthetic data for the inversion should be independent of
the solver for the direct problem. This is to avoid what Colton and Kress [10] refer to as an
inverse crime. If the same solution scheme generates both the synthetic data and the forward
solutions for the quasi-solution minimization, then one is merely testing the reproducibility
of the direct problem. Identical calculation errors will be seen in both far-field computations.
Generating synthetic data using a different method which uses different approximations and
creates different round-off errors will give a true test of the robustness of the inversion

scheme.
Example 4-1: Conical cap

This index is an axisymmetric index of refraction which was used in the validation of the

direct problem. The function is given by

2—-5/3R, O0<R<06
(4.5.2) .(R)—{ L R>06 }
Let s7, represent the parameterization of this function. The parameterization is
A=0.6
(4.5.3) i, ={ ag=1
€ =0

Table 4-2 contains the parameters and results for the reconstruction of this function for two
different grid resolutions. The parameterization of this simple function is exact as can be
seen by the best possible reconstruction eicor of 0%. The function was assumed to be
axisymmetric by choosing L=0. This also allows one incident wave direction to be used,
N, = 1. The algorithm finds a minimum cost of 2.168 x 10~* when the 41x17 point mesh is
used. This corresponds to a reconstruction error of 1.4%. Comparison of the two recon-
structed functions is seen in figure 4-17. Notice w.t the 41x17 grid reproduces a sharper

function.

Interesting result. are observed when the function to be reconstructed is assumed to
be non-axisymmetric (see Table 4-3). Here, two Fourier terms in the axial direction are
assumed (L=2). The best possible reconstruction has an error of 0% because the simple

conical cap can be represented exactly with the chosen parameterization. The minimum




Minimum Cost

L d U

- 100%

Possible

Found

Possible

Found

6.7e-3

6.8e-3

0%

1.3%

5.6e-4

2.2e-3 0% | 1.4%

Tablc 4.2, Performncc of th reconstruction algorithm for the conical cap of figure
4-8,

possible cost is non-zero since the far-field data was generated by an independent means.
This over-parameterization makes it more difficult for the reconstruction if only one irra-
diation direction is used. The reconstruction with N, = | and L=M=2 is pictuied in figure
4-18a. Notice that the centre peak is shifted forward in the direction of the incoming wave.
Hence, the silhouette of the function seen by the incoming wave appears unchanged. Itis
only when the reconstructed function is observed transverse to the irradiation direction that
the poor reconstruction is noticeable. To perform a realistic reconstruction, more than one
wave direction is required such as in figure 4-18b where N, = 3. Here, the centre peak is
correctly located at the origin. Slight asymmetries affect the function. However, the
reconstruction results in an error of 4.4%. This is less than half of the reconstruction error

that results when only one incident wave direction is used.

Minimu:n Cost

Possible

Found

Possible

5.6e-4

0.038

0%

4

L

2.4¢e-3

9Ll

0%

Table 4-3. Performance of the reconstruction algorithm for the conical cap when
a n,-axisymmetric function is assumed.

Example 4-2: Top hat Function

This index is an axisymmetric index of refraction given by

2, 0<R<Qﬂ

(4.54)
1, R =206

n.(0,R) =

This function was used as an example in [23,11]. Let #i, represent the parameterization of

this function. The parameterization is,
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( A =06 ]
a,=1
(4.5.5) n2=wcm=(_”m+|;2;tb,
. =0, 120

as illustrated in figure 4-14b. Note the Gibb's ringing near the sharp edge of the hat at
R=0.6. This sharp edgs makes it more difficult for the inversion process since the Fourier

series contains significant power in the higher frequencies.

fn—nf/Mn} - 100%

Minimum Cost

Possible

Found

Possible

Found

0.07

0.025

7.2%

13.0%

0.07

0.024

2.7%

12.9%

0.07

0.019

3.8%

19.1%

0.01022

0.01025

10.2%

9.9%

Table 4-4. Performance of the reconstruction algorithm for the top hat of figure
4-14a.

The results for the reconstruction of the top hat function can bz viewed in Table 4-4.
The first three reconstructions use a very coarse numerical grid for the solution of the direct
problem and a single incident direction N, = 1. These results illustrate a serious danger in
the application .f this inversion scheme. The quasi-solution method relies on the minimum
cost solution to be the best approximation to the inverse problem. Hers the cost found is
significantly less than the cost generated by the true index of refraction, yet the reconstruction
error is greater than the error when the best possible parameterization is used. Increasii.g
the number of terms in the parameterization decreases the minimum cost found but worsens
the reconstruction results as seen when M=6. This phenomenon represents the theoretical
breakdown of the method. Here, the minimam cost is not the best reconstruction. The only
way the quasi-solution method can distinguish between competing functions for recon-
struction is based on their output least-squares cost. If a function has a lower cost but actually

is a worse approximation, then the inversion by quasi-solution fails.
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The breakdown of the quasi-solution inversion as detailed above can be attributed to

(4.5.6)

Example 4-3: Twin Peaks

This index is an asymmetric index of refraction used as Example 2 of [11] given by

the poor resolution used in the forward problem. The 21x9 point mesh is too coarse to give
an accurate solution of the forward problem. Doubling the number of meshpoints in each
dimension remedies the problem. The 41x17 point mesh in Table 4-4 has a minimum
theoretical cost of 0.01022. The best recovered cost was 0.01025, which is very close to

the theoretical minimum. The corresponding reconstruction error was 9.9%.

. 3
—;—(3+c0521tr,). O0<r <05

ny{r) = %(3 +¢0s 21tr,), 0<r,<0.5 L
. otherwise

Let /i, represent the parameterization of this function. The parameterization was computed

numerically using a Fourier integral. The parameterized function for L=2 and M=2, is

(4.5.7)

A=1
a,=0
m=0, le€odd

iy={ €u=02731
cp; =0.04211

c;, =0.2021 +0i

| €22 =0.0138+0i

h
.

J

The error in using this parameterization is 6.6%.

Cost

frn—=rif/in}] - 100%

Possible | Found

Pcsible | Found

6.42¢-3 | 0.1352

Tabsle 4-5. Performance of the reconstruction aorilhm for the twin peaks of figure
4-15a.

9.2%

The performance of the twin peaks reconstruction can be seen in Table 4-4. Here nine

irradiation directions were used since the iunction is not axisymmetric. There is still room

for improvement in the minimization since the best found cost is still 3 orders of magnitude
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larger than the theoretical global minimum. Nonetheless, the reconstructed function was
only in error by 9.2%. In [11] where this function was suggested, Colton and Monk were
able to achieve a reconstruction with only 1% error by using 51 incident wave directions as
well as 4 different wavenumbers. This gives considerably larger amounts of measured data
tocompare with. Forthe current inversion algorithm, this number of incident wave directions

and wavenumbers would be unfeasible.

4.6 Discussion

A fast, computationally efficient numerical solver was developed for the solution of
2D acoustic scattering in an inhomogeneous medium. Calibration of the numerical scheme
was achieved using an analytic solution in obstacle scattering. The obstacle scattering
example also allowed comparison of two separate approximate boundary conditions. The
numerical solution with non-reflecting boundary conditions proved superior as compared
to the numerical solution which uses a straightforward application of the Sommerfeld

radiation condition at a finite distance.

An accurate numerical solution to the inhomogeneous medium problem was generated
using an iterative Born approximation. This integral equation solution was used to compare
with the numerical solution of the associated PDE with non-reflecting boundary conditions.

The NRBC was found to be in error by no more than 2% in the wake of the inhomogeneous

medium. The real advantage is the savings in compuiation time. The finite difference
solution used approximately one minute of CPU. The integral equation solver used
approximately six minutes of CPU per iteration. Hence, the 50th order solution requires

five hours to arhieve an accurate solution.

The reconstruction algorithm used the finite difference forward solver along with a
simulated annealing minimization scheme to approximate the inverse problem. A suitable
parameterization for the index of refraction in terms of a 2D Fourier series was proposed.

The reconstruction was tested using three sample indices of refraction.

The reconstruction of axisymmetric profiles is performed well if the parameterized
function is assumed to be axisymmetric. Only one irradiation direction is required to g:ve

good results. If the parameterized function is assumed to be not axisymmetric, then the
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resolving power of the reconstruction in the direction of the incident wave is severely limited.
More than one incident wave direction is required to achieve accurate reconstructions. Also,
truncating the Fourier series can benefit the reconstruction since higher order terms do not
necessarily mean more accurate reconstruction. The four term reconstruction of the top hat
on a 21x9 point mesh achieved a reconstruction error of 12.9%. The corresponding six term
reconstruction had a reconstruction of 19.1%. The complicated twin peaks function was

reconstructed using nine incident wave directions for an error of 9.2%.

While the proposed inversion method is feasible, the computational load of the si. a-
ulated annealing algorithm is considerable. For example, the reconstruction of the top hat
function on a 21x9 grid required 7614 function evaluations to find the global minimum
which corresponds to 7.9 hours of CPU time. Possible remedies include reducing the cost
of each penalty function evaluation. A penalty function evaluation requires the iterative
solution of the finite difference matrix. Increasing the efficiency of the iterative sparse

matrix solver would reduce the loac of each function evaluation. The sparse matrix solver

uses the Bi-CGSTAB accelerater. More sophisticated pre-conditioning may reduce the
number of iterations required. Also, a careful choice of annealing param-ters is required
to reduce the number of i‘erations while being careful not to quench the system into a local

minimum.
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Figure 4-4. Boundary Conditions on the cylinder (R=A) for the obstacle scattering problem.

Houndary condions usitheta Ay = -exp2pid
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Sound soft boundaries imply that «=0, hence u, = —exp{2nix -d} at R=A.
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Figure 4-5. a) Real and b) imaginary parts of the scattered waves for the analytic solution
of the obstacle scattering problem. Note the larger magnitude of the waves in the wak: of

the cylinder (0 = 0) indicating that refraction of the waves around the cylinder is occurring.
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Figure 4-7. Error vs. griaspacing for both SRC and NRBC boundary conditions. The error
measure is given by Jlu, —a.l /I 1. The normalization factor || 1|, is include to allow

for comparison of solutions on different size domains. The SRC formulation saturates as
the gridspacing decreases. The NRBC method outperforms the SRC formulation for all

grid spacings.
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Index of Refraction Discrete Field (Realy: 161pts from -3 1410 3 14 by (1L.0393 and 33pts from Oto | by 0.0312
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Figure 4-8. Real part of the sample index of refraction, n(0.K) used to compare the PDE
solution to the IE solution. The index of refraction was chosen such that Im{n(8.R}} =0.
The imaginary part can be used to model an absorbing medium.
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Figure 4- 14. a) Real part of the top hat function of example 4-2 used to test the reconstruction
algorithm. While this function is axi-symmetric. it contains many high frequencies du to
the sharp cut-off. b) Paraumeterization of the top hat using L=0 and M=2. Note the ringing
in the function near the sharp edge.
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b)
Figure 4-17. Reconstructions of the index of refractions using the far-field data for the
conical cap. One irradiation direction is used. The reconstruction is attempted wit*: a
function parameterized with L=0 and M=2. In a) a 21x9 point mesh gives a reconstruction
error of 1.3%. In b) a 41x17 point mesh yields an error of 1.4%. The reconstruction in b)

produces a sharper function. The reconstruction error is defined as jn ~ 7}/ n)l - 100%.
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Figure 4-18. Reconstructions of the index of refractions using the far-field data for the
conical cap. One irradiation direction is used in a) giving a reconstruction error of 9.8%.
In b) three incident wave directions are used to give an error of 4.4%. More than one wave

direction is required because a non-axisymmetric parameterization of the index of refraction
is used.
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Figure 4-19. Reconstructions of the index of refractions using the far-field data for the top

hat. One irradiation direction is used on a 41x17 grid. In a) 2 radial terms (L=0.M=_ in
the Fourier vcries were used giving a reconstruction error of 9.2% . Inb) 4 radial (L=0.M=4)
terms in the Fourier series were used giving a reconstruction error of 9.9%. In this case,
more terms do not reduce the reconstruction error but they do sharpen the profile.
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CHAPTER 5

Conclusions

5.1 Current Work

The quasi-solutions technique yields a workable way to solve ill-posed inverse
problems provided that one has a reasonable parameterization of the solution space based
on the physics of the problem. Existence and uniqueness are guaranteed by this method.
Only the stability of the solutions need be considered. Regularization of the problem provides
the required stability. There is a compromise of course between stability and accuracy.
Strong regularization of the problem provides stability but reduces accuracy. The simulated
annealing algorithm applied to the cost function formulated by the quasi-solution performed
reasonably well at selecting out the global minima from numerous local minima. However,
the simulated annealing minimization requires numerous function evaluations. For this

reason, it is imperative to have a fast, efficient, and accurate solution to the forward problem.

The inversion algorithm was successfully applied to two inverse problems motivated
by physical situations. The associated direct problem of both examples were open domain
problems which require special techniques to be solved numerically. Finite difference
expansions were used to approxirmate the derivatives in both cases. The infinite boundary
conditions for the electrostatic potential problem were approximated using a Robbin con-
dition on the boundary. This boundary condition is a local condition. The second example
solved Helmholtz’s equation with non-reflecting boundary conditions to approximate the
Sommerfeld radiation condition. This is a global boundary condition. Successful recon-
structions were performed in both examples using synthetically generated data. The inverse
conductivity problem included inversion with random uniform noise added to the synthetic

data.

5.2 Future Work

An obvious extension to the mise-a-la-masse inversion algorithm is to test it with
experimentally measured data. This would be a true test of the usefulness of the proposed

inversion method. In the inverse acoustic scattering problem more incident wave directions
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maybe with multiple frequencies would provide better resolution of the inhomogenous
medium. In addition, the simulated annealing algorithm while able to deal with multimodal
cost functions uoes not economize on function evaluations. Eacu function evaluation is
quite costly when fine grids and numerous incident wave directions are used. It would be
worthwhile exploring the use of other minimization techniques. Even a combination of
minimization algorithms could prove useful. For example, one could use simulated
annealing to perform a rough exploration of the cost function to find some valleys which
may contain the global minimum. Then the depth of each valley could be explored using

a traditional gradient method.

I was allowed the pleasure, in the discourse of this work, of sampling many areas of
research. The field of inverse problems is intimately connected to the fields of integral
equations, partial differential equations, numerical analysis and functional analysis as well
as many applied sciences such as geophysics and medical biophysics. For inverse problems:
I have gained an appreciation for them as well as a respect for them, while inspired by them

I do remain humbled by them.
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