Western University

Scholarship@Western

Digitized Theses Digitized Special Collections
1995

A Logic For Object-oriented Databases

Machmudin Junus

Follow this and additional works at: https://irlib.uwo.ca/digitizedtheses

Recommended Citation

Junus, Machmudin, "A Logic For Object-oriented Databases" (1995). Digitized Theses. 2565.
https://irlib.uwo.ca/digitizedtheses/2565

This Dissertation is brought to you for free and open access by the Digitized Special Collections at Scholarship@Western. It has been accepted for
inclusion in Digitized Theses by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca,

wlswadmin@uwo.ca.

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F2565&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F2565&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/disc?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F2565&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F2565&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/2565?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F2565&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tadam@uwo.ca,%20wlswadmin@uwo.ca
mailto:tadam@uwo.ca,%20wlswadmin@uwo.ca

National Lib
Bl e

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions el

Bibhographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontano
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Wellington
Ottawa (Oniano)

Your fue Volire té'drence

Ow hle Notre référence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, vetuillez
communiquer avec ['université
qui a conféré le grade.

La qualité dimpression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont éte
dactylographiées a l'aide d’un
ruban usé ou si I'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’autet ., SRC 1970, c. C-39, et
ses amendements subséquents.

A LOGIC
FOR OBJECT-ORIENTED DATABASES

by

Machmudin Junus

Department of Computer Science

Submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

Faculty of Graduate Studies
The University of Western Ontario
London, Ontario

April 1995

(© Machmudin Junus 1995

. * . National Library Bibli nationale
of Canada du
Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des services bibliographiques
395 Welli St ' :
Won reet g awn:(wuk)g)tm
K1A ON4 K1ANNS

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

ISBN 0-612-03474-7

Canadi

Your hie Volire téidconce

Ouwr fle Notre rétérence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

CONTENTS

ABSTRACT i1
ACKNOWLEDGEMENTS v
CONTENTS vi
LIST OF FIGURES xii
LIST OF TABLES xiii
CHAPTER 1 Introduction 1
1.1 Object-Oriented Databases 1
1.2 Importance of These Features for Databases 4
1.3 The Goalof This Thesis 9

1.4 Significanceof the Work 9

1.5 Organization of the Thesis 11
CHAPTER 2 Related Work 12
2.1 O-Logic [Maier86] 12
2.1.1 Introduction 12

2.1.2 O-Logic Object-Oriented Modeling 13

2.1.3 O-LogicSyntax0...... 14

vi

ABSTRACT

When E. F. Codd [Codd70] designed relational databases, he made use of mathe-
matic.l logic concerning Predicate Calculus. However, when object-oriented databases

were designed, there was no such support from any established mathematical logic.

In this thesis, we present a logic suitable for reasoning about object-oriented
database systems. '—I"his“logic is the result of the modification of F-logic [KifLa89,
KifLaWu90]. The main difference between our proposed logic and F-logic, is the way

our logic treats class objects and instance objects.

Our designed logic has the ability to represent: object identities, attributes, meth-
ods, classes, class hierarchies and inheritance. Similar to F-logic, the designed logic
also has a sound and complete proof procedure based on resolutiou. In addition, the

logic has advantages over F-logic.

Key Words: object-oriented databases, deductive databases. logic programming,

formal logic, proof theory.

i

For my mother and father

ACKNOWLEDGEMENTS

I am deeply grateful to Dr. James K. Mullin, my advisor, for the many patient
hours spent on useful discussions of this research and reading the drafts of this the-
sis, and for partially funding me in my latest stages. Especially, his understanding
and constant encouragement has helped me not to give up on this research. I am
also deeply grateful to Dr. A. Nait Abdallah, my advisor, for his useful criticism
and suggestions on this thesis. The presentation of this thesis has been much im-
proved with his help. I wish to thank Dr. M. Kifer who sent me some of his papers
that helped me a lot in initiating the research on this subject several years ago.
I also wish to express my gratitude to the examining board: the external examiner,
Dr. M. Ozsoyoglu, the extra-departmental examiner, Dr. A. M. Dawes, and the
departmental examiners, Dr. H. Jurgensen and Dr. R. E. Mercer, for their helpful

criticism and corrections that have improved the writing quality of this thesis.

I am deeply grateful to The Ministry of Education and Culture of the Republic
of Indonesia for providing me a scholarship that made it possible to study here, at
U.W.0. I am also deeply grateful to Dr. E. W. Elcock for partially funding me
through his research grant, and to The Department of Computer Science and The
Faculty of Graduate Studies for partially funding me through teaching assistantships
and The Special University Scholarship. Finally, I express my love and gratitude to
my mother, S. Zaleha Yunus, my father, H. M. Yunus Umar, my wife, Kasivah, and

my daughter, Inas, for their patient and constant support.

CONTENTS

ABSTRACT i1l
ACKNOWLEDGEMENTS v
CONTENTS vi
LIST OF FIGURES xii
LIST OF TABLES x1ii
CHAPTER 1 Introduction 1
1.1 Object-Oriented Databases 1
1.2 Importance of These Features for Databases 4

1.3 The Goal of This Thesis 9

1.4 Significanceof the Work 9
1.5 Organization of the Thesis 11
CHAPTER 2 Related Work 12
2.1 O-Logic [Maier86) 12
2.1.1 Introduction 12

2.1.2 O-Logic Object-Oriented Modeling 13

2.1.3 O-LogicSyntax 14

Vi

2.2

2.3

2.1.3.1 O-Terms (Object Terms)

2132 O-Formulae
2.1.4 O-Logic Semantics,
215 O-LogicQueries,
2.1.6 O-Lo ic Stores Structures as a Database
2.1.7 O-Logic Update Commands
2.1.8 O-Logic Limited Negation
219 O-Rules
2.1.10 Discussion of O-Logic
2.1.11 Concluding Remarkson O-Logic.
RO-Logic [KifWu89]
2.2.1 Introduction oo
2.2.2 RO-Logic Syntax

2221 RO-Terms

2222 RO-Formulae 00000
2.2.3 RO-Logic Semantics
2.2.4 RO-Logic Databases
225 RO-Logic Queries
2.2.6 Examples of RO-Logic Programs,
2.2.7 Discussion of RO-Logic
2.2.8 Concluding Remarks on RO-Logic
C-Logic [CheWaB9]
2.3.1 Introductiono
2.3.2 C-Logic Complex-Object Modeling

2.3.2.1 Object Identity,

2.3.2.2 Using Labels for Representing Properties,

2323 Type.

22

2.33 C-logicSyntax, 45

2331 C-Terms., 45

2332 C-Formulae 47

2.34 C-Logic Semantics 00000, 47
2.3.5 Specification and Computation of Complex Objects in C-Logic 50
2.3.6 An Example of C-Logic Program 51
2.3.7 Multi-Valued Labels and Setsin C-Logic 52
238 Discussionof C-Logic 53
2.3.9 Concluding Remarks on C-Logic ISR Y:

24 F-Logic [KifLa89] i 54
241 Introduction 54

242 F-LogicSyntax 55
2421 F-Terms 37

2422 F-Formulae 59

243 F-LogicSemantics 60
2.44 VF-Logic Databases 64
24.5 F-LogicQueries 65
2.4.6 Examples of F-Logic Databases 65
2.4.7 F-Logic Inheritance 69
248 F-logicMethods 71
249 Discussionof F-Logic 72
2.4.10 Concluding Remarkson F-Logic 73

2.5 Comparison Study and Weaknesses to be Overcome 74
CHAPTER 3 Object-Oriented Logic 77
3.1 Introduction 77
3.2 Design Considerations 78

3.21 ObjectIdentity 79

3.2.1.1 An Alternative Solution, g0
322 Class o o o e e e e e e 81
3.3 The Syntax of Languages of
Object-Oriented Logic (OOL) 84
3.4 The Semantics of an OOL Language a3
3.4.1 Variable Assignment 101
3.4.2 The Meaning of a Formula Under a Semantic
Structure L e 101
3.4.2.1 Satisfaction of Data Terms 102
3.4.2.2 Satisfaction of C'llass Terms 105
3.5 Incorporating Predicates, 107
3.5.1 Encoding Predicates as OOL Terms 108

3.5.2 Syntax of The Logic Extended with Predicates 109

3.5.3 Semantics of The Logic Extended with Predicates 109

3.6 Properties of Semantic Entailment. 110
3.7 Herbrand Interpretations 119
3.8 Herbrand Interpretations and
Semantic Structures L. 126
3.9 Herbrand's Theorem 129
3.10 Proof Theory 132
3.10.1 Substitutiono 132
3.10.2 Unification L 133
3.10.2.1 A Term Unification Algorithm 135
3.10.3 Inference Rules 139
3.10.4 Soundnesso 147
3.10.5 Completeness 149

ix

CHAPTER 4 OOL as a Programning Language

4.1
4.2
4.3
4.4
4.5
4.6

4.7
4.8
4.9
4.10

4.11

Databases and Queries
Untyped-Semantic Structure
Program Components
Subclass-Relationship Definitions
Instance-Of Relationship Definitions
Signature (Type) Definitions
4.6.1 The Well-Typing Conditions
4.6.2 Enforcing The Well-Typing Conditions
Monotonic Inheritance of Signatures

Class Methods

4.10.1 Subclass-Relationship Definitions
4.10.2 Instance-of and Data Definitions
4.10.3 Signature Definitions,
4.10.4 Inference Rule Definitions
110.5 Sample Queries,

Discussion e e e e

CHAPTER 5 Conclusions and Future Work

5.1
5.2

5.3
5.4
3.9

OOL and F-Logic [KifLa89, KifLaWu90]
OOL and the New F-Logic [KifLaWu94]
5.2.1 A Contradiction in the New F-Logic
Specification of OODB Concepts Based on OOL
Some Benefits of OOL
Future Work

REFERENCES

APPENDIX A The New F-Logic

A.l
A2

A3

A4

VITA

Introduction

A.2.2 Complex Formulae

Semantics

A.3.1 NF-Structures

.................................

........................

........................

.................................

...........................

A.3.3 Attachment of .ypestoMethods

Discussion

X1

201

208
208
208
209
211
212
212
213
215
215

217

2.1
2.2
2.3

3.1

4.1
4.2
4.3
4.4
4.5

LIST OF FIGURES

An Example of a Class Hierarchy (from [Maier86]) 17
Part of the IS-A lattice (from[KifLa89)) 66
A Sampl= Database (from [KifLa89]) 67
An Algorithm for Finding a Complete Set of mguc’s 138
Subclass-Relationship Definitions 184
Instance-of and Data Definitions 185
Signature Definitions L. 186
Inference Rule Definitions 187
Sample Queries 188

xii

2.1 Comparison Table]
2.2 Comparison Table II

........

Xiii

LIST OF TABLES

The author of this thesis has granted The University of Western Ontario a non-exclusive
license to reproduce and distribute copies of this thesis to users of Western Libraries.
Copyright remains with the author.

Electronic theses and dissertations available in The University of Western Ontario’s
institutional repository (Scholarship@Western) are solely for the purpose of private study
and research. They may not be copied or reproduced, except as permitted by copyright
laws, without written authority of the copyright owner. Any commercial use or
publication is strictly prohibited.

The original copyright license attesting to these terms and signed by the author of this
thesis may be found in the original print version of the thesis, held by Western Libraries.

The thesis approval page signed by the examining committee may also be found in the
original print version of the thesis held in Western Libraries.

Please contact Western Libraries for further information:
E-mail: libadmin@uwo.ca

Telephone: (519) 661-2111 Ext. 84796

Web site: http://www.lib.uwo.ca/

CHAPTER 1

Introduction

Currently, many studies are being conducted on object-oriented database systems,
both from a practical and a theoretical point of view. One problern that can be
quickly recognized about these studies is the lack of a common data model, which can
be traced to the lack of a common formal foundation. According to [Maier89, AtBa92),
there is no clear specification of an object-oriented database system comparable with

the specification of a relational database system proposed by Codd [Codd70].

In this thesis we propose a logic that is suitable for object-oriented databases. Qur
motivation is to produce a logic which may be used for object-oriented databases in a
manner si- 1ilar to the way Predicate Calculus was used as a basis for the specification

of relational database systems.

1.1 Object-Oriented Databases

Applications of object-oriented (OO) concepts have been important research topics in
several areas such as programming languages, databases, knowledge representations
and computer architectures. However, it is still not clear what object oriented means
in general, especially in the context of object-oriented databases. Won Kim [Kim90]

1

tried to formulate the core concepts of object-oriented databases. The main basis for
his view of the core concepts in object-oriented databases comes from his experiences
with the ORION series [Ban87, Kim88, Kim89]. According to him, the core concepts
of OO0 databases are:

o Object and Object Identity.
This means that in OO systems and languages, everyv real-world entity is uni-
formly modeled as an object. Each object is associated with a unique identifier,

which is commonly called object identity.

o Attributes and Methods.
Each object has a state and a behaviour. An object’s state is a set of values for
the object’s attributes. An object’s behaviour is the set of methods (program

code) which operate on the object’s state.

The value of an attribute can be a single value or a set of values. Although
each element of a set is an object, the set itself is not an object. The state and
behaviour of an object can only be accessed from outside the object through

explicit message passing or function calls.

o C(lass.
A class is used for grouping all the objects sharing the same set of attributes and
methods. Furthermore, an object is allowed to belong to only one class as that
class’ instance. A class corresponds to the concept of abstract data types or
primitive types. A primitiwve class is a class whose instances have no attributes,
for example: integer, string and Boolean. The value of an object’s attribute

also belongs to some class, which is the domain of that object’s attribute.

e Class Hierarchy and Inheritance.

A new class can be derived from an existing class, this new class is called a

subclass. A subclass inherits all attributes and methods of the existing class.

Additional attributes and methods can also be defined for a subclass. A class

may have any number of subclasses.

Some OO systems allow a class to have only one superclass. This is called single
tnheritance, because a class inherits attributes and methods from only a single
class. In this single-inheritance system, the classes form a tree-like hierarchy
which is called a class hierarchy. Other OO systems allow a class to have any
number of superclasses. This is called multiple inheritance, because a class
inherits attributes and methods from more than one class. In this multiple-
inheritance system, the classes form a rooted and connected directed acyclic
graph (DAG), which is sometimes called a class lattice. The hierarchy (or
DAG) has only one root, which is a system designed class named CLASS. Since
the hierarchy is rooted and connected, there is no isolated class, and every class
is reachable from the root. Every class in the class hierarchy (or DAG) has a
distinct name. Similarly, every attribute and method in a class has a distinct

name.

In this thesis we do not assume the existence of either one root or a connected
DAG. We will use the term class hierarchy for either a tree-like hierarchy or the

more general directed acyclic graph (DAG).

It is also worth noting here j. D. Ullman’s view of the essential features in object-

oriented databases [Ullm88], especially because he explicitly includes encapsulation as

part of the essential features. According to him the essential features of OO database

systems are:

o Complex Objects.

This paradigm means: the system’s ability to define data types with a nested

structure.

o FEncapsulation.
This is the ability to define procedures applying only to objects from a certain
type, and the ability to ensure that all access to those objects is by means of

application of one of these procedures.

e Object-Identity.
This means the ability to distinguish two objects that “seem™ equal, because all
their components of primitive type are the same. Examples of primitive types

are characters, strings and numbers.

Furthermore, J. D). Ullman states: a system that supports encapsulation and complex
objects is said to support abstract data types (ADT’s), or classes. A class or ADT
is the definition of some structure together w-th the operations by which objects of
that class can be manipulated. It should be noted here also that the definitions of
the words class and type in [Ullm88] are slightly different from those of [Kim90].
The meaning of the word type in [Ullm88] is the same as the meaning of the phrase
primitive class defined in [Kim90], and the meaning of the phrase abstract data type
is similar to the meaning of the word class described in [Kim90]. In this thesis we use

the word class as interpreted in [Kim90].

1.2 Importance of These Features for Databases

This section summarizes the importance of the core concepts required in object-

oriented databases.

Object Identity. In an object-identity based model, one is able to distinguish
between equal objects and identical objects [AtBa92]. This is the direct result of the

characteristics of an object identity, because by using an object identity an object

has an existence which is independent from its values. Two objects are identical if
they are the same object, while two objects are equal if they have the same values.
We can distinguish between identical objects and equal objects in two ways: object

sharing and object updates [AtBa92):

e Object sharing. In an identity based model, two objects can share the same
components. So, the pictorial representation of a complex object is a graph;
in contrast, in a system without object identity its pictorial representation is
limited to a tree. For example, John and Mary have a one-year-old child named
Jean. In real life, John and Mary may be the parents of the same child, or
perhaps there are two children involved. In an identity-less system, John is

represented by
(john,33,{(jean,1,{})})

and Mary is represented by

(mary,31,{(jean,1,{}}})

In an identity-less system, there is no way of expressing whether or not John
and Mary are the parents of the same child. However, in an identity-based
model, we can represent whether the two structures share the common part
{(jean,1,{})} or not; this allows us to distinguish between equal objects and

identical objects.

e Object updates. Let John and Mary be the parents of the same daughter, Jean.
In this case, all updates concerning John’s daughter will also apply to Mary’s
daughter. In a value based system the two updates should be executed sepa-
rately. On the contrary, in an identity-based model, we only need to do the

update once.

Parallel to the above benefit, object identities are useful to prevent giving more than
one reference to the same object. For example, a married woman, who has more than
one legal name, will not have more than one object identity; on the contrary, in a

value based system, the same woman may have more than one reference.

Complex Objects. We build complex objects from simpler ones by applying
object constructors. Examples of simplest objects are integers, characters and strings.
According to [AtBa92], the minimal set of constructors that the system should have
are sets, tuples and lists (or arrays). Sets are important because they are a natural way
of representing collections from the real world, for example: a set of graduate students.
Tuples are important because they provide a natural way of representing properties of
an entity. Lists (or arrays) are important because they capture order which occurs in
the real world, for example the need for time-series data. The importance of a¢/tributes
and methods is captured by the importance of tuples as object constructors. since

attributes and methods are constructed using tuples.

Classes or Types. Classes (or types) are important because they serve as a form
of data-structuring mechanism. Thus, the classical notion of a database schema can

be replaced by that of a set of classes or a set of types.

There are similarities between classes and types. Both terminologies have been used
for the same meanings i.e.. to specify the common features of a set of objects. How-
ever, the differences can be subtle for some systems [AtBa92]. We can categorize
object-oriented systems into those supporting the notion of class and those support-

ing the notion of type. The following are the concepts of types and classes based on

[AtBa92].

A type in an object-oriented system specifies the common features of a set of objects;
it corresponds to the notion of an abstract data type. It consists of the interface part

and the implementation part. Users can only see the interface part, whereas the type

designer can see the implementation part as well. The interface part contains the list
of operations together with their signatures. The signatures specify the types of the
input parameters and the types of the results of the operations. The implementation
part consist of a data part and an operation part. The data part describes the
internal structure of the object’s data. The operation part contains the procedures

that implement the operations of the interface part.

In programming languages, types are used to help programmers in ensuring program
correctness. By typing, the system can do type checking at compile time. Thus types

are mainly used at compile time to check the correctness of the programs.

The specification of a class is the same as that of type i.e., it summarizes the common
features of a set of objects. However, the notion of class is different from that of
type [AtBa92]. Class is more a run time notion. It contains two aspects, the object
factory and an object warehouse. The object factory is used to create new objects.
The object warehouse allows the class to be attached to the set of its instance objects.
Then the user can manipulate the warehouse by applying operations on all instances
of the class. Classes are not used for checking the correctness of a program but they

are used for creating and manipulating objects [AtBa92].

Class Hierarchies. Class hierarchies are important because they give a concise
description of the world and they help us in factoring out shared specification and
implementations in applications [AtBa92). For example, consider three kinds of ob-
jects: Persons, Employees, and Students. Students and Employees are Persons. Say
initially we introduce the class Person with attributes name and age and we write
an operation (method) die for instances of this class. Then we declare the class Em-
ployee as a subclass of Person. It inherits the attributes and methods from Person.
In addition, we define an attribute salary for the class Employee. Similarly, we then

declare the class Student as a subclass of Person and we define the attribute setOf-

Grade. The class Student will inherit the attributes and methods from Person. This

illustration shows that we can reduce the number of specifications of attributes and
methods for each class because we can reuse the specifications of its superclass. Thus
we can have a better-structured and more concise description of the schema because

we can factor out specifications.

Fncapsulation. According to [AtBa92], the idea of encapsulation comes from:

1. The need for a clear distinction between specification and implementation of an

operation.

2. The need for modularity. Modularity is required to structure complex applica-
tions designed and implemented by a team of programmers. It is also important

as a tool for protection and authorization.

The principle of encapsulation in object-oriented databases is to encapsulate both
program and data. In a relational system, the data are stored in a database, but the
programs that manipulate the data are stored in an ordinary file (they are not part
of the database). Moreover, there are distinctions between the query language, which
is usually declarative, and the programming language used for a» slications programs
such as update. On the other hand, in an object-oriented system. both the data and
the operations are stored in the database. Thus, there is a single model for data and
operations and we can hide both types of informiation. Relating to this, we specify the
interface of an object, so that no operations other than those given in the interface

can be performed.

Encapsulation serves as a kind of “logical data independence” [AtBa92]. This means
that we can change the implementation of an abstract data type (or a class) without
changing any of the programs using that type (or class). This way the application

programs are protected from implementation changes in the lower layers of the sys-

tem. It is argued in [AtBa92] that proper encapsulation is obtained only when the

operations are visible, and the data and the implementation of the operations are
hidden in the objects. However, there are some cases where encapsulation is not
required, for example, ad-hoc queries that do not change the database’s contents. In
this case, perhaps we want to allow encapsulation to be violated because the issue of

maintainability is not important.

1.3 The Goal of This Thesis

The goal of this thesis is to design a logic that can be used as the basis in designing
object-oriented databases, similar to Predicate Calculus which was used by Codd as
the basis for designing relational databases [Codd70]. We want a logic that can be
used for reasoning about object-oriented database systems. The resulting logic will
become a logical framework for natural representation and manipulation of complex
objects. In other words, we attempt to put in place a formal basis for combining the
ideas of deductive database and object-oriented database that can evolve to actual

computer software.

1.4 Significance of the Work

When Codd [Codd 70] designed relational databases, he relied on the established
mathematical logic concerning Predicate Calculus. In this thesis we design a logic that
is appropriate for reasoning about object-oriented database systems. A success of that
design would remove some di~advantages of current deductive and object-oriented
databases, and provide a strong logical basis for object-oriented database systems. In

addition, the logic would be able to serv- as a flexible modeling environment [Page89).

10

In designing the logic we attempt to overcome the weaknesses of both deductive and
object-oriented databases, and to capture most advantages from these two types of

databases. The following are the advantageous properties of deductive databases:

e Having non-procedural queries. Many users prcfer a declarative style of quer;
language because it allows them to concentrate more on expressing what they
want than spending time on how their queries will be answered, or on how
to produce answers on their queries algorithmically. This it proven from the

success of SQL as a query language for relatioi.al database systems.

e Having a uniform language for querying, updating, defining virtual data, and
constraining. By having a uniform language, users need to learn only one lan-

guage for different purposes.

The following are advantageous properties of object-oriented databases:

e having object identities, which will help in determining quickly whether two

objects are ident cal;

e the ability to represent complex objects, methods, inheritance, and classification

hier:.cchies for organizing database schema.
Some problems encountered in each type of these database systems are:

e from deductive databases: the flat database models and problems related to the

absence of support for object identities, data abstraction and inheritance;

e from object-oriented databases: the lack of formal semantics, the lack of non-
procedural methods. Current existing object-oriented database management

systems have different properties, and even the same terminologies have different

meanings.

11

1.5 Organization of the Thesis

Chapter 2 presents related work which also serves as necessary background material

and historical overview.

Chapter 3 discusses the design process of the logic, the syntax and semantics of the
logic, the properties of the semantic entailment, and the soundness and completeness

of the proof procedure.

Chapter 4 discusses the logic as a programming language, several extensions of the

logic, and examples.

Finally, in Chapter 5, we summarize what we have done, our contribution, a compar-
ison between our designed logic and F-logic [KifLa89, KifLaWu90] as well as the new
F-logic [KifLaWu94], a summary of object-oriented database concepts based on our

logic, and possible future work.

CHAPTER 2

Related Work

This chapter introduces scveral important closely related work on the effort of com-
bining deductive and object-oriented databases. This chapter also serves as historical

background to this research area.

2.1 O-Logic [Maier86]

In this section, we present a sumnmary of David Maier's O-logic paper [Maier86] which

is an carly paper in designing a formal basis for deductive object-oriented databases.

2.1.1 Introduction

Maier’s O-logic is considered as the first attempt in the effort of combining logic and
object-oriented (O0) programming as it is applied to databases. The goal of O-logic
development was to provide a formal basis for the application of this combination.
Since [Maier86] contains David Maier’s initial ideas presented in a workshop, we found
that some terminology and concepts that he used are not clearly defined (respectively,

explained) or not defined (respectively, explained) at all. However, some ideas from

12

13

this paper are used in several papers about object-oriented logic written afterwards.

The O-logic was designed to capture some of the advantageous characteristics from
both logic and OO programming. From logic programming, O-logic adapts non-
procedural queries, a uniform language for queries, updates, defining virtual data and
constraints. On the other hand, from OO programming, O-logic takes the following
characteristics: complex objects that can change their internal structures, object
identities, and class hierarchies. A database built based on O-logic stores an explicit
model of the database, or its portion, which is a departure to storing a theory (a set

of formulae) and using its implicit model as in Prolog.

2.1.2 O-Logic Object-Oriented Modeling

Updating in a logic based system is rather awkward, because we must do this by
changing some siatements about the world rather than by changing the structure
of the world (the notion of structure will be explained later in Subsection 2.1.4).
As an example in logic programming, two facts cannot share the same sub parts.
When an object belongs to two facts, then we should represent these facts as two
statements with duplicate information about the object. If the information about the
object changes, the two statements must be updated as weil. The following example,

adapted from [Maier86], illustrates this kind of problem.
dept(“Sales”, manager(name(“Joe”, “Doe”), addr(“24-455 PlattsLn")).
dept(“Marketing”, manager(name(“Joe”, “Doe”), addr(“24-455 PlattsLn”)).

The two statements talk about the same individual, and when he moves we must up-
date both facts. Moreover, the change is made by retracting both facts and asserting

the following new facts.

dept(“Sales”, manager(name(“Joe”, “Doe”), addr{ “22A-939 WesternRd”")).

14

dept(*“Marketing”, manager(name(“Joe”, “Doe”), addr(“22A-939 WesternRd")).

In Prolog, we carnot say something like “Everything is still the same except the

address”. This is why we should do what is described above.

In an O-logic based database, all terms are construed as assertions of existences
of objects in the world, and relationships among them. The database admits an
interpretation as a special model for the terms. This interpretation is useful for

updating especially as it avoids problems such as illustrated in the above example.

A database never abstracts everything about the world. In other words, we cannot
expect that the description about an ohject to be comprehensive. For example,
we may have two people having the same name and they both work in the same
department, if the information that we have is only these two attributes, we might
think that both people are the same object. For this reason, in a database, it is useful
to represent two different objects differently, so that lo not have to investigate
or to make up properties for distinguishing them [MacLe83]. This is why O-logic
uses object identities to distinguish objects, so that we do not need to check the
internal properties of objects to determine whether they are the same or not, and we
do not fall into a false conclusion that two objects are the same simply because their

explicitly asserted internal properties are the same.

2.1.3 O-Logic Syntax

The alphabet of an O-logic language consists of:

1. a countable set! D of basic terms called data values;

2. a countable set L of labels;

1A set is denumerable if and only if it is one-to-one c:rrespondent with the set of all natural

numbers, and a set is countable if and only if it is either finite or denumerable.

15

3. a countable set £ of class names;

4. a countable set V of object variables, each object variable is denoted by a capital

letter;
5. logical connectives: V, A, =, - and quantifiers V, 3;

6. a set of auxiliary symbols: “: 7,)7, “(7, “ o 7 Y@= 7, “ 7,

2.1.3.1 O-Terms (Object Terms)

O-teims are built recursively from D, X, and L. The set of basic terms D is the
names of all objects with no further internal structures. For exposition purposes, the
set of basic terms, D, is limited to integers and strings. The set of labels L is used
to build a set of terms which is disjoint from D. An O-term is recursively defined as

follows:

1. a simple O-term,

wherec€ £, andd€ Dord € V;
2. a complex O-term
c: X(labely = ¢y : ¢y, ..., label, — c, : t,)

where ¢, ¢, ..., ¢, € £, X € V, labely, ..., label, € L, and ¢4, ...,1t,

are Q-terms.

The component label; — ¢; : t; is also called a field, where t; is the field value.

Let E,N,Y,Z € V. The following are examples of O-terms.

16

employee : E

string : “Joe”

employee: E(name — personName : N(first — string : “Joe”,
last — string : “Doe”),
degree — degree : Y (level — string : “M.Sc.”, year — number : 1990,
school — unwversity : Z(name — string : “U.W.0O",

prov — string : “ON”)))

2.1.3.2 O-Formulae

An O-term is an aelomic formula. More complex formulae are built from O-terms,
logical connectives (A, V,—, =) and quantifiers (¥, 3) in the same way as formulae in

Predicate Calculus are built from atomic formulae.

2.1.4 O-Logic Semantics

In O-logic all O-terms are construed as assertions of existences of objects in the world,

and relationships among them.

A set of objects may form a class. The notion of class is not defined explicitly in
[Maier86). However, from the examples given, it seems that O-logic uses the common
definition of class as given in [Kim90], i.e.. a class is a set of objects sharing the same
set of attributes and methods. However, unlike the related concept in [Kim90}, an
object is not restricted to belong to only one class, it is even allowed to have multiple
unrelated classes. Classes may form a class hierarchy or a more general directed
acyclic grapl if multiple inheritance is allowed. Figure 2.1 gives an example of a

hierarchy H of classes.

The following defines the semantic structure for a formula f, and the conditions und.r

17

object

dept person personName degree school

employee university

Figure 2.1: An Example of a Class Hierarchy (from [Maier86))

which a formula is true for a structure. Let W be a set of objects (called entities
in [Maier86]) which is disjoint from D. A structure ST for a formula f is a triple
(U,g,h), where U is the universe which is the set DU W. Thus, U is the set of all
defined objects. The second component g interprets labels as functions which map
labels in L to partial functions from W to U, i.e., g : L —+ (W — U) (maps labels
to functions from entities to the set of all defined objects). The third component, k,
maps the classes to sets of entities, i.e., h : £ — P(W), where P is the power set
operator. The classes of basic terms /) are mapped in a fixed way. It should be noted

that the function A must respect the class hierarchy, so if C; is a superclass of C;,

then A(Cy) 2 h(C3).

Variable Assignment
A variable assignment V is a mapping from variables to U/. The variable assignment

V is extended to O-terms as follows:

Given an O-term t, V() is defined as follows:

18

1. V() = V(Y) ift =c: Y, where ¢ is a class name and Y is an object variable;
2. V(t) =dif t = ¢ : d, where c is a class name and d € D;

3. V(t) = V(Y) ift = ¢: Y(...), where c is a class name and Y is an object

variable.

This variable assignment is called instantiation in [Maier86). Notice that the result

of the application of V in item 1 and 3 is similar.

The Meaning of a Formula
Given a structure ST = (U, g, k) and variable assignment V. The meaning structure
Msry for an O-term (an atomic formula) is a constant mapping that is defined as

follows:

e For any O-term ¢ : d, where d € D, Msry(c : d) = true if d € h(c) where h

maps the class ¢ into a set of entities, otherwise Mgy y(c:d) = false.

e For any O-term ¢ : X, where X is an object variable, Msryv(c : X) = true if
V(X) € h(c) (ie, objecc V(X) exists in the right class) otherwise
Msrv(c: X) = false.

e For any complex term ¢t = ¢: X(labely — ¢y : 4. ..., label, — ¢, : t,). if:

1. V(X) is an entity, not a data value, and V(X)) € h(c);
2. for ¢ = V(X) and ¢, = V(1,). g(lab,)(¢) = ¢,, and ¢, € h(c));
3. Mstyv(c, : t,) = true;
then Mgsry(t) = true, otherwise Msry(t) = false. Informally, a term ¢ is true

if the values of its fields and its subfields correspond to those given by ¢, and

respects their classes which is given by h.

19

The definition of Msr,v on an O-term (i.e., an atomic formula) is extended to a more
complex formula. If a and b are O-terms then Msr,y(aAb), Msr,v(aVb), Msty(a = b)
and Msz y(—a) are defined as usual as in Predicate Calculus. For quantifiers, O-logic

has

o Msrv(VX f) = true if for every V' that agrees with V except possibly on X,
Mgt yvi(f) = true; and

o Msrv(3X f) = true if for some V' that agrees with V except possibly on X,
MsTyi(f) = true.

A structure ST = (U, g,h) is called a model for a formula f if Msry(f) = true.
It should be noted that for a closed formula (a formula with no free variables) f,
Mstv(f) does not depend on the variable assignment V. So, if f is a closed formula

and Mgsr,y(f) is true, then the structure ST is a model of f.

Example (from [Maier86)):
Suppose we have a structure ST = (U, g, k) as follows:
U = {e,ez,e3,e4,¢5} UD
g(manager)(e)) = ez, g(manager)(es) = eq, g(worksIn)(ez) = e,
g(worksIn)(es) = es, g(dname)(ey) = “Sales”, g(dname)(esz) = “Manuf”,
g(dname)(es) = “RandD”.
Let A be a mapping such that:
h(object) = {e1, ez, €3,€4,€5}
h(person) = {ez,e4} = h(employee)
h(dept) = {e1,e3,€s5}
Assume that:

t = dept : R(manager — employee : M)

Let V; be a variable assignment where Vi(R) = ¢; and V(M) = e,, then Mgty (t)

is true because e; € h(dept), g(manager)(e;) = e; and e, € h(employee). However,

if we have another variable assignment V,, where Vy(R) = €; and V(M) = es,
then Msr,y,(t) is false because although e, € h(dept), but g(manager)(e;) = e;

furthermore e3 & h(employee).

2.1.5 O-Logic Queries

An existentially-quantified formula can be treated either as a query that needs answers
(for the binding of its existentially-quantified variables) or as a query that needs only
a yes-no response. For example, formula 3X3Y3Z f is true in a structure ST if there
is a variable assignment V with Mgr yv(f) = true. If we are interested in the particular
values of X,Y, and Z that make the formula f true, the answers to f under ST are
defined as

(VXY Z]| Moru(f) = true)

where V[XY Z] is the restriction of the variable assignment V to only a three-element
domain of the variables of interest. The expression V[XY Z] is basically an XY Z-
tuple that can have entities and also data values in it. So the answer is actually

pointing to objects (elements of /) in the database.

2.1.6 O-Logic Stores Structures as a Database

Let an entity finite structure ({/,g,h), where U, g, and h are defined as before, be a
structure in which the set of entities (W) is finite and the set of labels (L), for which
g is defined, is finite as well. Then we can store such an entity-finite structure as
database in lieu of a set of formulae. The database system manages unique surrogates
to identify entities in W. The g and k parts of the structure could be stored as binary

and unary relations respectively. Then, O-logic formulae can be evaluated against this

21

structure (see the example in Section 2.1.4).

For a database schema, apart from the class hierarchy, we can add typing constraints.
A typing constraint defines what fields every member of a class bas, and what classes

the values of those fields should belong to. For example:

VE3Y 3N (employee : E = employee : E(worksIn — dept : R,

name — personName : N))

This declaration means that every employee entity has a wori:sIn field and a name

field. This implication can be abstracted into a more familiar schema description:
employee(worksIn — dept,name — personName)

This description says that certain fields must exist for an object from the class em-
ployee. However, an object is allowed to have more fields than what is specified. Since
an object is allowed to belong to more than one class, it is possible that an object
has more fields than what is specified. Some restrictions must be put on schemata
between subclasses and superclasses. They must satisfy the condition that a subclass
must have at least the fields of the superclass, and the typing of those fields must be

at least as restrictive as in the superclass.

Relations are represented as tuples of objects. For example, a supplier-parts relation

may have a schema
SP(supplier — Company, provides — Part)

It should be not. .nat this relation is not in the first normal form (of relational

databases) because attribute values may not be basic values i.e., they could be entities.

22

2.1.7 O-Logic Update Commands

Update commands are used to add entities, to set field values, and to create new
entities. Let ¢t be an O-term and f be an O-logic formula. The update-command

form is

tea= f

Formula f is used to provide a sequence of variable bindings to be used for in-
stantiating ¢. O-logic interprets every variable assignment of ¢ as a property that
must be made true in the current structure ST = (U,g,h). More precisely, this
command means that for all answers to f (i.e., variable assignments that make

Msty(f) = true), the current structure ST is modified into a new structure ST’ so

that Mgr y(t) = true.
Example (frorm [Maier86]):

The following stateinent is intended to express that Joe Doe is promoted to the

manager of the Purchasing department:

manager : F(manages — dept : R)&=
employee : F'(name — personName :
N(first — stiing : “Joe” . last — string : *Doe™)),
dept : R(dname — string : *Purchasing”)

2.1.8 O-Logic Limited Negation

Limited forms of structural negation in the head part of update commands are allowed

for removing an entity from a class or removing a field (label) from an entity.

Examples (from [Maier86)):
(1) Taking the manager of Purchasing out of the Stockholder class:

23

—stockholder : M <=

dept : R(name — string : “Purchasing”,manager — employee : M)

(2) Removing the “worksIn” field:

E(~worksIn)<= employee : E(name — personName :

N{first — string : “Joe”, last — string : “Doe”)

Unfortunately, in [Maier 86], there is no explanation about what kind of limitation is

imposed on the negation of the head part of update commands, or why it is limited.

2.1.9 O-Rules

Similar to Prolog, rules in O-logic are limited ‘0 Horn-type rules in order to get a
minimal model semantics for a database with rules. These Horn-type rules are called
O-rules. The head of a rule is either one O-term or none, and the body of the rule
consists of a conjunction of O-terms. The syntax of O-rules is the same as updates
except for “<” in place of “&= .”

Semantically, O-rules behave like deferred updates. A query i~ answered as if all of the

rules have been executed before answering the query. This interpretation is similar

to the minimal model semantics of Prolog.

In O-logic, since an update can change a field value, we should be more careful than
in Prolog. The change of a field value may cause a contradiction to be expressed
without negation. For example, given a fixed interpretation of data values in D, we

could have the following contradiction:

V(field — 1) A V(field — 2)

Thus, we might have a situation where the head contradicts the information already

in the database without negation.

24

An entity-creating rule i.e., a rule that has a variable in the head and not in the
body, might cause serious problems. Although this kind of rule will not cause a
contradiction, it causes a problem for defining a minimal model semantics. On the
other hand, O-rules that add fields or add entities to classes would not be a problem

for the minimal model.

Before we define the minimal model in O-logic, we define first the containment

prog :rty between two structures. Structure ST’ = (U’,¢',h'}) contains structure

ST = (U, g, h) if the following holds:

1. U' DU,
2. ¢’(lab) is defined at least where g(lab) is, for every label lab, and

3. R'(C) 2 h(C) for every class C.

Let U,g and h be defined as before. A minimal model for a structure ST = ([', g. h)

under a set of rules is the structure S7” such that

1. ST’ contains ST. and
2. the rules, which are interpreted as updates, will not add anything to S7’. and

3. no structure smaller than S7" has these properties.

Applying a rule as an update pc s problems. Suppose an entity that satisfies the
head of a rule already exists, then the rule will still add anothe. entity to ST', In
principle, we can apply the rule many times, generating more and more entities,
hecause the corresponding update introduces a new entity. As a result there will be

no ST’ that is unchanged under the rules, a situation that will make U/’ infinite.

23

O-logic solves the problem by using meta axioms that put a limit on the applications
of an entity-creating rule. By the definition of an update command, an update that
creates a new entity gets an answer, A, from the body of the command and extends it
to the variables in the head of the command. A meta-axiom says that any answer gets
extended eractly once. Let’s use the previous update’s example of adding Joe Doe
as a manager. However, this time we view it as a rule. Then we have a meta-axiom
stating that exactly only one set of bindings of F and N are made for each binding
of R.

manager :E(manages — dept : R, worksIn — dept : R,
name — personName : N(first — string : “Joe”,
last — string : “Doe” ,age — integer : 26) <

dept : R(dname — string : “Purchasing”)

The meta axiom will allow us to say when a rule has been applied “enough” times.

2.1.10 Discussion of O-Logic

In this section, we will discuss quantification of object variables in an entity creating
rule. The following example from [Maier86] is an entity creating rule to form an

interesting pair entity for each employee whose manaser has the same name.

interestPair : P(emp — employee : £, manager — empioyee : M) <
employece : E(name — string : N,works — dept :

R(manager — employee : M(name — string : N)))

It is argued in [Maier86] that a universal quantification over variable P will not
make auny sense in this example, because we do not want to exp.~ss that every

interestPair object has E in its label emp and M in its label manager. Iustead, we

26

want an existential quantifier that matches the update semantics, i.e., there is some
interestPair object P for each £ and M value that the body matches. Thus, the
following quantification is suggested: (VE)(VM)(VN)(3P). It is pointed out in
[CheWa89] and [KifWu89] that Maier’s argument for this choice is not clear and
they claim that the correct quantification is (VE)(VM)(IP)(VN). It is also said in
[KifWu89] that Maier’s quantification is true only if E and M functionally determine
N. So, if the label name is set valued, the two quantifications will yield different

results.

It is argued in [KifWu89] that the quantification for the object variable in the head,
which does not appear in the body, should be quantified explicitly. Thus, we do
not need to determine the quantification in an ad-hoc manner. Later we will find in
[CheWa86] and [KifWu89] that this quantification problem is solved by introducing
an object identifier as a function of several object variables appearing in the rule’s
body (see Section 2.2.6 and 2.3.2.1). The idea of this kind of object identifier is

similar to the idea of a Skolem function.

2.1.11 Concluding Remarks on O-Logic

O-logic [Maier86] is the first serious attempt we know about which merged ideas from

the field of object-oriented databases and logic programming.

Some of Maier’s ideas in [Maier86] have been adapted in subsequent papers of logic
formalisms for object-oriented databases. Unlike traditional deductive databases, an
O-logic database stores a structure rather than a set of formulae. In other words, its
extensional database is identical to its interpretation. The word eztensional here has

the same meaning as the one used in Datalog, which is the existing tables (objects).

The space of objects in O-logic is divided into a set of basic terms (also called data

27

values) and a set of entities. It should be noted that any element of the set of basic

objects cannot have attributes.

O-logic possesses the following concepts of object-oriented databases: object, object
identity, attributes, class and class hierarchy. The core concepts of object-oriented

databases [Kim90] that are still missing are method definition and inkeritance.

2.2 RO-Logic [KifWu89]

This section summarizes a revision and significant extension of Maier’s O-logic. Al-
though this revision of O-logic [KifWu89)] is still called O-logic, in this thesis we call
it RO-logic to avoid confusion with the the original O-logic [Maier86).

2.2.1 Introduction

RO-logic supports complex objects, object identity, class, and class hierarchy. It con-
tains all of the Predicate-Calculus features as a special case. It is a result of a
combination of object-oriented, value-oriented and logic-programming paradigms. It

also tolerates inconsistent data.

It was claimed in [Ullm87] that the deductive approach is intrinsically “value-ctiented”
so that it cannot be combined with the inherent object-oriented features, such as ob-
ject identities. However, the work presented in [KifWu89] proves that this claim is
not really true. The presented logic has a well-defined logical semantics that keeps

some significant properties of object-oriented database systems.

When RO-logic was designed, it was intended to have a deductive system that would
capture the following features of object-oriented databases: complex objects, typing,

and object identity.

28

RO-logic was designed on the basis of Maier’s O-logic [Maier86). O-logic is claimed
to suffer from some semantic problems, especially quantification related problems
[KifWu89]. These semantic problems is solved in RO-logic [KifWu89). The semantics
of O-logic is extended to include sets and to handle inconsistent information. In
addition, RO-logic also has a resolution-based proof procedure which is sound and

complete.

The language of RO-logic is closely related to frame languages [Minski81, FiKe85]).
There have been several efforts in combining frames with deduction such as [FiKe85].
It is claimed in [KifWu89] that frame languages can be regarded as a scaled-down
version of RO-logic languages plus inheritance. Pointers in frame languages which

are used to refer to other frames are essentially the same as object identities.

The next two subsections describes the syntax and semantics of RO-logic.

2.2.2 RO-Logic Syntax

The alphabet of an RO-logic language consists of:

1. a set O of basic objects i.e., objects from basic types such as integer and string.
This set also includes a pair of distinguished basic objects: 1 (the nil object)

and T (the meaningless object).
2. a set I of function symbols, which are called object constructors;
3. a countable set Ly of single-valued (or functional) labels;
4. a countable set L, of set-valued labels;
5. a countable set ¥ of class names;

6. a countable set V of object variables;

29

7. logical connectives: V, A, <, - and quantifiers: V,3;

8. a set of auxiliary symbols: “: 7, “)” «(7, 4|7, 7, «}7, {7, « " « 47,

The set of all labels (Ly U L,) is denoted by L. Some additional alphabet symbols
such as parentheses and arrows are introduced later. It is assumed that the sets

O,F,Ly,L,,V and ¥ are disjoint.

2.2.2.1 RO-Terms

An id-term is constructed from object constructors (from F’), basic objects {from O)
and object variables. Similar to the way a functional term is formed in Predicate
Calculus, for example: f(a,p(X,c)), where f and p are function symbols, a, ¢ are
basic objects, and X is an object variable. The set of all ground id-terms is denoted
by O* (playing the role analogous to that of Herbrand Universe in classical logic).
This set O* consists of the set of basic objects O and the set of constructed objects

O* \ O (the set O* minus O).

In RO-logic, typing constraints are defined similar to that of Maier’s O-logic, except
that they are extended to include set-valued labels. An RO-term is defined as one of

the following:

1. a simple RO-term, p : T, where p is a class and T is an id-term;

2. a complex RO-term,

p:T[flaby — 4, ..., flab, —t,,

slaby — {311, ..., S1,m}, ..., slabe — {Sk1, ..., Skm, }]

where p is a class name, T is an id-term, and ¢, for 1 < ¢ < n and s;,, for

30

1 <7 £k, 1 £m are RO-terms; the labels flab; for 1 < 7 < n are functional,

that is, from L4, and labels slab; for 1 < j < k are set-valued, that is, from L,.

2.2.2.2 RO-Formulae

An RO-term is an atomic formula. A more complex formula is constructed from
simpler formulae by means of logical connectives Vv, A, =, and quantifiers 3and ¥V in a
similar way to that of classical first-order logic. The implication f <« ¢ is equivalent

to fV g.

A Flat Lattice on Ground RO-Terms

A structure of a flat lattice on ground RO-terms is defined as follows. The partial
order <o is defined on O® by making L and T the minimal and the maximal ele-
ments respectively. In addition, it is assumed that the elements in O* \ {1, T} are
incomparable with respect to <¢o. This means that we say a <o b if and only if either
a=1landbe O*\{L},orb- Tanda€ O"\{T}. As usual, a <o bmeansa <o b

ora=>:.

A Complete Lattice on Classes

A complete lattice is formed by classes. The least restrictive class is all (the class of
all objects) and the most restrictive class is none. Ordering on the classes is denoted
by <sx, the more restrictive a class is the bigger it is with respect to <g, for example

all <y none.

Some simplifications used in the syntax are as follows:

¢ if a functional label is omitted in an object specification, then the label’s value

is all: L1:

e if a set-valued label is omitted in an object specification, then the label’s value

31

is { };

e if the class specification is omitted in an RO-term, then the class all is assumed.

As an example, the following two specifications are regarded as the same thing:
empl : john[name — “john”)

empl : john[name — all : “john”, pay — L, children — {}].

2.2.3 RO-Logic Semantics

Before we discuss the semantics itself, we need to introduce a lattice structure on
the set of all subsets of a lattice. Let U be a lattice with the ordering <y, the
maximal element Ty, and the minimal element Ly. Let P be as defined before, i.e.,
the power set operator. An associated ordering Cy on P(U) (also called Hoare’s
ordering [BunOh89)]) is defined as follows: for any X,Y C U, X Cy Y if and only
if for each element z € X there is an element y € Y such that + <y y. This
ordering on sets (in P(U)) is only a preorder, because there may be a cycle. For
example, {e¢} Cy {e, Ly} Cy {e} and {Ty} Cuv U Cy {Ty}. However, this is
an acyclic ordering (partial ordering) on P(U) modulo the equivalence relation ~y,
where X ~y Y ifandonly if X C¢ Y and Y Cy X. Thus P(U) becomes a lattice
modulo ~y with the equivalence classes of {Ty} and the empty set {} being the

largest element and the smallest element respectively.

For a given pair of lattices, U and V, an ordering on the set of mappings U — V

(denoted Map(U,V)) is defined as follows:

f SMapu,v)y g iff for each u € U, f(u) <y g(u).

Interpretation

For a language of RO-logic, its interpretation I is a tuple (U, go,gr,g1,95). U is a

32

possibly infinite universe of all objects. The set U is a lattice with 1y and Ty being
the minimal and the maximal elements respectively and the ordering <y. Recall
that in the original O-logic, there is no lattice structure on the universe of objects.
Function go is a lattice homomorphism O — U, and g interprets each k-ary object
constructor as a mapping U* — U (gr : F — (U* — U). The mapping g1 consists
of 51, and gp, where g1, : Ly — (U — U} and g1, : Le — (U — P(U)). Finally,
function gg maps each class to a subset of U, i.e., gg : ¥ — P(U). Function gg must
respect the class lattice ordering: If a <g b then gs(b) C gx(a) (a higher class is more
restrictive) and whenever u € gs(a) N gs(b) then u € gs(lub(a,bd)), where lub stands
for the least upper bound.

Variable Assignment
A variable assignment, V, is a mapping from object variables to U. Its extension to

id-terms is defined below.

Let t be an id-term, then V(t) is defined as follows:

1. V() = V(Y) if t =Y and Y is a variable:
2. V(t) =V(d) = go(d) if t =d and d € O;

3.9) = V(S(...,T...)) = gr(N(.... V(T),...)ift = f(....T,...) and [is a
function symbol (f € F) and T is an id-term.

We can see that this definition is similar to that of O-logic (in Section 2.1.3.1, ex-
cept that RO-logic has id-terms which are composed out of function symbols (object

constructors), basic objects and variables.

The Meaning of a Formula
For an interpretation / and a variable assignment V, we can define a function M;y

that assigns meaning to each RO-term. Similarly to O-logic, determining the truth of

33

an atomic formula under an interpretation [is equivalent to establishing the existence
of the corresponding object in 7, and this object should have the properties specified
for it. As a consequence, an atomic formula is always true if no properties are specified
and the object is of an appropriate class. Let function M;y assign the meaning to

each RO-term, then
e For any simple RO-term t = p: T, M;y(p: T) = true iff V(T') € gs(p).
e For any complex RO-term, t =
p:T[..., flabi = p, : T3[..],..., slab, > {q1 : Si|..), .., @m : Sml..]}, -],
M;v(t) = true if and only if
1. V(T) € g=(p);
2. for e«ch single-valued label flab,,

V(T:) Su gL, (Flab (V(T)) and Mpy(p, : T3. .]) = true;

3. for each set-valued label slab,, {V(S)), ..., V(Sn)} Cu gr,(slab,)(V(T))
and Myy(q; : S,[...]) =true, 5=1, ..., m.

For a formula, ¢, that contains logical connectives or quantifications, its meaning
(i.e., M1 ,y(¢)) is defined as in Predicate Calculus. An interpretation I, with respect

to V, is called a model of ¢ if M; () = true.

2.2.4 RO-Logic Databases
A database is defined as a set of formulae. If P is a set of formulae and ¢ is a formula,
then P |= ¢ if and only if ¢ is true in every model of P (¢ is logically implied by P).

For a given database which has a set of variables V and a set of basic objects O, a

substitution o is a mapping o : V — {id-terms of P}, where the range are identities

34

outside the domain of . The domain of o is a finite set dom(o) C V. Substitution o
commutes with object constructors (function symbols) as usual. Substitution is also
extended to RO-terms and formulae by letting 0 commute with logical connectives

and assuming;:

o(p:Tl..., flabi,—> ¢;, ..., slab, — {5y, ..., sk}, ...]) =
p:0(T)..., flabi, = a(t,), ..., slab, = {a(s1), ..., o(sk)}, ...

For a formula ¢ and a substitution o, the formula o(¢) is an instance of ¢. A
substitution o is called a ground substitution if for each X € dom(g), o(X) is a

ground id-term. The composition of substitution @ and p is defined as usual. i.e.,

00 u(X) = 0(u(X)).

2.2.5 RO-Logic Queries

A query is defined as a statement of the form @7, where @@ is an RO-term. For a
given database, P, the set of answers to Q7 is the smallest set of ground RO-terms
which is closed under the = defined before and contains all instances of Q logically

implied by P.

2.2.6 Examples of RO-Logic Programs

Example 1 (from [KifWu89]):
'The following example shows how RO-logic solves the quantification problem found

in the original O-logic (see section 2.1.10). The example is about “interesting pair™.

interestPair : P(etnp — employee : £, manager — employee : M) «
employee : E(name — string : N,works — dept :

R(manager — employee : M(name — string : N)))

35

The rule is intended to say that a pair employee-manager is interesting if the em-
ployee’s department’s manager’s name is the same as the employee’s name. A uni-
versal quantification over variable P will not make any sense in this example. Thus,
[Maier86) suggests the following quantification: (VE)(VM)(VN)(3.") with the reason
that a universal quantification on P would not make sense, and an object P exists
for each (E, M, N) triple that matches the body of the rule. [KifWu89] argue that
Maier’s argument for this particular quantification is not quite clear and claim that
the correct quantification is (VE)(VM)(3P)(VN). [KifWu89] further say that Maier’s
quantification is true only if E and M functionally determine N. Note that, if the
label name is set valued, the two quantifications will yield different results. There is
no obvious way in choosing between the two quantifications based on only the syn-
tactic structure of the rule above. [KifWu89] argue that the source of the problem is
that the object variable P does not appear in the body, so that we cannot determine
with certainty the correct quantification solely based on the rule’s syntactic structure.
Since O-logic does not have object constructors, we cannot connect P with the object
variables in the body. This causes us to choose an ad hoc quantification. For this
reason, object constructors are needed so that we can present explicitly the set of
variables that determine the existential variable in the rule head. It is suggested in

[KifWu89] that the correct representation of the problem is:

interestPair : namesake(E, M)[emp — employee : E,manager — employee : M] <
employee : E[name — string : N,works — dept :

R{manager — employee : M[name — string : N]j]

where namesake is an object constructor. This rule format is considered well defined
and it corresponds to the intended meaning. This rule is also domain independent
because all its head variables also appear in the body. The explicit use of object

constructors is intended to clarify the quantification.

36

Example 2 (from [KifWu89)):
In order to show the relation between relational style data and object-c:iented data
of RO-logic, the following example shows how to map a first-order predicate into an

RO-logic term.

For a given ground atomic formula of classical first-order logic,
plar, ..., an)
the corresponding RO-term is
p:dlarg, — a,, ..., arg, — a,]

where p is the corresponding class for predicate p and d is a ground id-term.

In general, for an atom (not necessarily a ground atom) in Predicate Calculus:

p(Th, .o Th)

the corresponding RO-term is
p: folhh, ..., Tlarg, = T, arg, — T,]

where p is the class corresponding to the predicate p, and f, is 2 unique function

symbol corresponding to p.

It should be noted here, that every ground fact p(t;, ..., t,) corresponds to a unique
object with the id f,(¢,, ..., t,) i.e., the 1d-term depends on the values of all the
corresponding object’s attributes. This makes the formed (the resulting) RO-term
value oriented. This example also shows that the mapping to RO-terms allow us
to use object identities, compler objects, and predicates in the same framework. It
also shows that RO-logic classes play a role similar to that of predicate symbols in

Predicate Calculus.

37

2.2.7 Discussion of RO-Logic

The main differences between RO-logic and Maier’s O-logic [Maier86] are

e In RO-logic, extensional databases are not identical to interpretations. Recall
that in O-logic, a database is not a set of formulae but the structure of an
interpretation for a set of formulae. The RO-logic follows the usual way (such
as Datalog) i.e., the extensional database is a finite set of RO-terms (atomic

formulae).

® The object constructors are explicit parts of RO-logic. Although this difference
seems minor, this property is responsible for the elimination of problems related
to the semantics of variables that only exist in the head part but not in the body
part of an entity-creating rule in the original O-logic (see the example in the

previous section);

Inconsistency is included explicitly in RO-logic language by way of the mean-
ingless object T, which will replace inconsistent values of an attribute. This

allows the system to reason about inconsistent data.

There are also some minor differences between RO-logic and the original O-logic as

follows:

e In RO-logic, there is no distinction between basic objects (objects from primitive
classes, these objects are also called data values in [Maier86]) and non-basic
objects (objects that are not from primitive classes, which are called entities in
O-logic). In O-logic [Maier86], basic objects are not allowed to have internal
states. In RO-logic, every basic object, such as a numeral, is both an object

and its own object identity, and there is no restriction on the semantics which

38

prohibits a basic object from having internal states. For example, the following

basic objects have properties:
int : 6[prop — div : even, lypc — types : integer)

“3im”[type — types : charstring, length — int : 3]

The reason for this is that Maier’s restriction on atomic-data values is not

intrinsic in the semantics of O-logic.

Set-valued labels are included in RO-logic. A <et in RO-logic may contain only
id-terms (object identities) as its members but not other sets. However, since a
set can be represented by an object identity (strictly speaking, this set appears
as a value of thai object identity’s set-valued label), then a set of an arbitrary

depth can be modelled. This is a useful feature in representing complex objects.

Complex objects are constructed by combining the usual tuple constructors
and set constructors which create new kinds of objects. For example (fromn
[KifWu89]):

john-children[father — john, kids — {bill.mary}]
is structurally different from

Jjohn[name — “John”. kids — children-of-johr[val — {bill.mary}]j] .
The difference is that the latter object can be obtained by first applying the
set constructor to form childre n-of-john(val — {bill.mary} | and then the tup!.
constructor to form the object john. This sequence is not applicable to the
former one. In the former object the second component, {biil. nary}. is not
an RO-term by itself, because it does not have any associated identity. There-
fore, it cannot be constructed independently of the object john-children. This

component corresponds to weak entities in entity-relationship models.

39

2.2.8 Concluding Remarks on RO-Logic

The proof of the soundness and the completeness of a resolution-based proof procedure
in RO-logic is sketchily given in [KifWu89)] although some theorems are given without

proofs.

The presented logic remedies the quantification problems associated with variables
that appear only in the head part but not in in the body part of an entity-creating
rule in O-logic (see Section 2.1.10). RO-logic also extends O-logic in several directions

such as incorporating sets and inconsistent information.

The concepts of object-oriented databases that RO-logic captures are: object, object-
identity, attributes, class and class hierarchy. Similar to O-logic, two important con-

cepts of object-oriented databases are still missing: methods and inheritance.

2.3 C-Logic [CheWa89]

This section summarizes C-logic [CheWa89]. This logic can be viewed as an extension
of O-Logic [Maier86] in the sense that it solved the quantification problems found in
entity-creating rules of O-Logic. It should be noted that C-logic [CheWa89] and
RO-logic [KifWu89] were published at about the same time.

2.3.1 Introduction

The objective of the development of C-logic is to design a logical framework for nat-
ural representation and manipulation of complex objects [CheWa89]. Its design was
stimulated by the development of O-logic [Maier86]. C-logic solves the quantification-
related problems found in O-logic (see Section 2.1.10). In addition, C-logic has some

features such as multi-valued labels, a dynamic notion of types {which will be ex-

40

plained later in subsection 2.3.2.3), and provides a relatively simple framework for

exploring efficient logic deduction over complex objects.

Chen and Warren claim that the common characteristic in most previous proposals of
reasoning mechanisms on complex objects is that they are language based [CheWa89].
They mean that a language is first presented for describing complex objects, and
then the semantics of the language is given. There are two disadvantages to this
language-based approach mentioned in [CheWa89]. First, different languages have
different features and it is not always clear why those features are needed and how
they support complex objects. Moreover, the same feature may have subtle semantic
differences in different languages. This situation causes difficulties when comparing
the semantics of complex objects across different languages. Second, each language
may make seemin, y unnecessary constraints over complex object specifications. Such

constraints can make the associated language inflexible.

The design of C-logic is based on what needs to be modeled. The main purpose of
complex object modeling is to capture more of the structure of real world data. The
strategy in designing C-logic was to focus on complex object modeling instead of
specific languages. The design of C-logic was started with an analysis of semantic
modeling of complex objects. Based on this analysis, C'-logic was designed to support
what the designers [CheWa89] considered to be essential features of complex objects
including object identity, multi-valued labels and a dynamic notion of types. Other

guiding principles in its design were simplicity and flexibility.

C-logic programs can be translated into first-order logic. Some other higher-order fea-
tures such as single-valued labels and a static .ution of types (which will be explained

later in Subsection 2.3.2.3) can be added to C-logic.

41

2.3.2 C-Logic Complex-Object Modeling

Complex objects are intended to model structured entities in the real world. In this
subsection we describe how, within the C-logic framework, we represent entities, their

properties, and classes by object identities, labels and typing.

2.3.2.1 Object Identity

In O-logic, object entities are referred to by object variables only. This is not adequate,
especially when objects are defined by rules (entity creating rules). Consider the

following example [CheWaR9):

path : C(src — X,dest — Y,length — 1) <

node : X(linkto —» Y')
path : C(src — X,dest — Y,length — L) <

node : X(linkto — Z), path : C'(src — Z,dest — Y,length — L'),

LisL' 41
In O-logic, the above rules would be considered as entity-creating rules. These rul=s
do not determine what entities are to be created, that is how variable C should be
quantified with respect to other variables in the rules. It is pointed out in [Maier86)
that in a rule such as that above, C should be existentially quantified, but its scope
is not specified explicitly. To interpret the rules above, we could have three possible

interpretations [CheWa86]: The path objects can be determined by either:

1. node objects at both ends only, i.e., X and Y; or
2. node objects at both ends and the length of the path, i.e., X,Y and L; or

3. the sequence of node objects along the path,ie., X, ..., Y.

42

For example, consider the variables in the second path rule in the above example. We
can have three different interpretations as enumerated above. In the first case, the
quantification would be VXVY3JC, in the second case: VXVYVLIC, and in the third
case: VXVC'AC. We cannot express these three different interpretations in O-logic,
in other words, we cannot write explicitly our intended semantics. C-logic solves the
problem by requiring the user to specify the intended semantics i.e., by allowing an
explicit construction of an object identity. However, the user needs to specify only
the variables on which the object identity is dependent. The Skolem function of the
existential variable could be given explicitly by the user, or generated automatically
by the system. The following example shows how the previous rules are converted to

C-logic when path objects are determined by node ¢bjects at both ends only, i.e.. the

first case in the three possible interpretations above.

path : id(X,Y)[src — X,dest — Y,length — 1] &
node : X[linktto — Y|

path : id(X,Y)[src = X,dest — Y, length — L] <
node : X[linkto — Z],
path : C'[src — Z,dest — Y, length — L'],
LisL'+1

2.3.2.2 Using Labels for Representing Properties

An object’s properties are represented as labeled values. In O-logic, labels are in-
terpreted as partial functions from objects to objects, so that it has the following
built-in functionality constraint: Whenever a partial function is defined it yields a
single value. Thus, if a program has a multi-valued label, the program will not have

any model. An example is given by the label name in the following C-terms:

43

jlname — “John™]

j[name — “John Doe”)

The label name, from a semantic point of view should yield two values, thus it cannot
be a function. In C-logic, labels are considered as binary predicates over objects, so
that the logic can model multi-valued labels and simulate sets. Multi-valued labels
are very useful in many cases. For example, a person may have several children, or

several addresses.

Another implication of viewing labels as binary predicates is as follows. Representa-
tion of an object with several labeled values can be viewed as a conjunction of several

atomic formulae as illustrated in the following example.
jlname — “John Doe”, age — 28]
can be expressed as:
jlname — “John Doe”] A jlage — 28]
or in standard first-order logic:

name(j, “John Doe”) A age(j,28)

This property is helpful in translating C-logic formulae into standard first-order logic

formulae.

2.3.2.3 Type

In databases, we can divide objects into various classes according to their properties.
According to [CheWa89], there are dynamic and static aspects of a class in databases.
Within the dynamic aspect, a class denotes a set of objects in the class, and such

memberships may be changed by database updates. Within the static aspect, a

44

class represents the common structural properties of all objects in a class i.e., which
properties an object should have in order to belong to a certain class. It is argued
in [CheWa89] that corresponding to these two aspects are the dynamic and static

notions of types.

In the dynamic notion of types, a type is onl; a set of object identities, and it is
essentially part of the database state. There are no further assumptions about what
properties a member object should have. Instead, whenever we add an object to the
database, we also must specify its type. In some cases we may use a default type

such as object that includes all objects.

In the static notion of types, a type denotes a set of properties which must be possessed
by objects of that type. For example. let I}, ..., [, be labels corresponding to all
properties indicated by a type 7, then one possible meaning of 7 is a set of objects
specified as follows:

(X)) < X[= X1, ..., I — X,]

By this rule, every object with all properties specified by type 7 will automatically
belong to that type.

We can organize types into hierarchies. In a dynamic notion, the type hierarchy
should be specified explicitly. However, in a static notion of types, the hierarchy is

implicitly determined by the properties of every type.

C-logic uses the dynamic notion of types. The main reason is to make the framework
simpler. It is simpler because the static notion is some kind of constraint which is
better specified by the database’s schema or by other constraints over the database

state, for example, the constraint regarding the functionality of labels [CheWa89).

It should be noted that there is not any explanation or poiater in [CheWa8%] about

the distinguishing characteristics between the meaning of the word class and the word

45

type used in the paper, eventhough the word class is used for introducing the notions of
types. Moreover, if we look at the informal definitions of class and type in [CheWa89]
as summarized above, they look the same. Furthermore, from the observation of the
way types are used in C-logic syntax and semantics, we cannot see its differences from

the way classes are used in O-logic or RO-logic.

2.3.3 C-Logic Syntax

The alphabet of a C-logic language consists of:

1. a countable set V of variables;

2. a countable set of function symbols;

3. a countable (possibly empty) set of predicate symbols;
4. a countable (possibly empty) set of labels;

5. a countable set of type symbols, which contains a type symbol object. The set
of type symbols is partially ordered by a given relation < such that for any type

T, T < object,
6. logical connectives: A, V, =, &<, V, 3;

7. auxiliary symbols: “[",], “(",)", “{7, “{, “=7", «”, “<”,
It is assumed that these sets of symbols are disjoint.

2.3.3.1 C-Terms

Let 7 be any type symbol. A C-term is defined as one of the following:

46

e T: X

where X is a variable.
erT:cC

where ¢ is a constant symbol;
o 7: f(ty, ..., 1)

where f is an n-ary function symbol, and ¢;, 1 <z < n, are C-terms;
o tjl, —er, ..., ln — en]

where n > 1 and

1. t is a C-term of one of the three forms: 7: X, 7 :¢c, or 7: f(ty, ..., tx);

2. l;,1 <1< nisa label; and

3. e,y 1 <7 € niseither a C-term or a set of C-terms of the form {¢t}, ..., %},

I <k, in which ¢}, ..., t, are C-terms.

As an abbreviation, a C-term of the form object : t can be written as ¢.
The following are examples of C-terms:

object : X

path : p(X,Y){length — 7]

person : joe[children — {person : mark, person : mike}]

The first example above is read intuitively as a variable X from type object. The

second example represents p(X,Y) as an object of type path with length = 7.

47

2.3.3.2 C-Formulae

An atomic formaula is either a C-term or p(t;, ...,t,), where p is an n-ary predicate
symbol, and ¢,, ...,¢, are C-terms. As usual, formulae are constructed from atomic
formulae by using logical connectives and quantifiers. Recall that O-logic does not

have formulae containing predicate symbols.

2.3.4 C-Logic Semantics

Given a language L of C-logic, the semantic structure ST is a pair (U, g), where U
is a non-empty set of all objects called the domain of the structure (or the universe)
and g is the interpretation function that assigns values to non-logical symbols in L.

The interpretation function ¢ is defined as follows:

e g(f) € (U* = U) for every n-ary function symbol f;

e g(p) € P(U™) for every n-ary predicate symbol p (where P is as defined before,

i.e., the power set operator);
o g(l) € P(U?) for every label ;

e g(7) € P(U) for every type symbol 7, such that for any two type symbols 7
and 7, if 1} < 73, then g(71) C g(72)-

Semantically, a label is the same as a binary predicate, and a type is the same as a
unary predicate. However, a label and a type are different from predicates in C-logic
languages. This is because labels and types can appear inside C-terms, and this is

not the case with predicates.

Variable Assignments

Formulae and C-terms may contain free variables, thus their semantics may depend on

48

variable assignments. A C-term could have two meanings because it has two purposes:
for denoting an object and for indicating whether the denoted object satisfies certain

properties.

Given a language L of C-logic, let ¢ be a formula in L, U be the universe, g be the
interpretation function, ST = (U, g) be a semantic structure for L,and ¥V : V — U be

a variable assignment, i.e., a function from the set V of all variables into the domain

U of ST.

Let Term denote the set of all C-terms in L and r denote a type. The extension

VY : Term — U of a variable assignment V to the set of all C-terms is defined

recursively as follows:

e For each variable X, V(r : X) = V(X).

e For each constant symbol ¢, V(7 : ¢) = g(c).

o Ift,, ..., t, are C-terms and f is an n-ary function symbol, then
V(T : f(tie - ta) = (S UV(t) .- V(L))

o iftisaC-termof theformr: X, r:c,or7: f(t;, ..., tn),and [, 1 <i<n
is a label, then

v(t[ll — €1, ... nln . €n]) = v(')

where ¢,, 1 <7 < n,is a C-term or a set {t}, ..., } of C-terms.

Given a semantic structure ST, the definition of the satisfaction of formula ¢ by

structure ST = (U,g) (where U and g are as before) and variable assignment V,

(ST,V) = ¢ is as follows:

e For every variable X, (ST,V) E r: X if V(X) € ¢g(7).

49

e For every constant symbol ¢, (ST,V) [7 : cif g(c) € g(7).

o If¢t,, ...,¢t, are C-terms and f is an n-ary function symbol, then
(ST, V) =7: f(tr, -.-,ta) if V(7 : f(ta, ...,ts)) € g(7) and (ST, V) [t; for

everyt, 1 <:<n.

o Iftis a C-term of the form ¢ : X,7:¢c,0or 7: f(#;, ...,tm),and ;,;1 < i < n,
is a label, then (ST, V) E t[li » €1, ..., I, = €,) if (ST, V) [t, and for every

¢i, is either

- ¢; is a C-term, (ST, V) k= ¢; and (V(t), V(&) € g(li); or

— ¢; is a set of C-terms of the form {t}, ...,#i}, 1 < k, and for every

J» 17 <k, (ST,V) [=t; and (V(2),V(L})) € g(l;).

o If ¢, ...,t, are C-terms and p is an n-ary predicate symbol, then
(ST,V) E p(t1, ...,tn) if (ST,V) E ¢, for every i,1 < i < n and
(V(t1), ..., V(ta)) € g(p).

The meaning of a more general formula, with logical connectives or quantifiers, is

defined from its atomic formulae in the usual way.

Similar to O-logic and RO-logic, a complex object description can be decomposed into
atomic descriptions and various pieces of descriptions can be combined into a complex
one. This is made possible by the following semantic equivalencies. A C-term of the
form t[l; — ¢, ...,l, — t,] is semantically equivalent to t[l; — ;] A ... A t[l, — t.];
and a C-term of the form t[i — {t;, ...,{,}] is semantically equivalent to t[l —

G A .. AL >).

It is claimed in [CheWa89] that any formula of a C-logic language can be transformed
into an equivalent genuine first-order logic formula. This transformation is used to

provide the basis for implementing complex object reasoning in first-order logic. Thus,

50

while providing a framework for natural representation and manipulation of complex
objects, a language of C-logic still has first-order <« _.ntics; this fact inakes C-logic

computationally attractive.

2.3.5 Specification and Computation of Complex Objects
in C-Logic

C-logic allows us to use a logic programming approach to complex objects. This
means we can specify complex objects by facts and rules in the logic, and reasoning

or computation of complex objects can be performed as logical inferences.

For a given language of objects, a clausal subset of formulae is defined as follows:

e A literal is either an atomic formula or the negation of an atomic formula.
o A clause is a disjunction of literals
Livi,v...vL,
where all variables are implicitly universally quantified at the outer-most level.

o A definite clause is a clause that contains only one positive literal. 1.e.,

AV -Byv...v~B, (m > 0), which is also written as
A< B, ...,B,
where A, By, ..., B,, are atomic formulae.

e A negative clause is a clause ihat contains no positive literals, that is,

-B;v...V =B, which is also written as
<= Bl, ‘oo Bm

A negative clause is also called a query or a goal.

51

It is assumed in the definition of C-logic languages that each language should have a
countable partially ordered set of type symbols with the greatest type object which is
a super type of any other type. The user is expected to specify the ordering among

other type symbols. A user may specify a subtype decluration as follows
1<

where 7, and 7; are type symbols.

A program is a finite set of subtype declarations and definite clauses.

2.3.6 An Example of C-Logic Program

The following example from [CheWa89] shows a program that defines objects of type

nounphrase.

name : john

name : bob

determiner : the [num — { singular,plural }, def — definite]
determiner : a [num — singular, def — indef]

determiner : all [num — plural, def — indef |

noun : student [num — singular |

noun : students [num — plural]

proper-np : X[pers — 3, num — singular, def — definite | < name : X
common-np : np(Det, Noun)| pers — 3, num — N, def - T| «
determiner:Det | num — N, def — T,

noun: Noun [aum — N]

proper-np < noun-phrase

common-np < noun-phrase

If we give the following query to find instances of noun-phrase which have plural as
the value of their num labels,

<& noun-phrase : X[num — plural]
we will get two answers for X :

np(the, students) and np(all, students).

2.3.7 Multi-Valued Labels and Sets in C-Logic

Although set manipulation is regarded as an important feature for any system of
complex objects, it is not clear how this feature can be supported in a simple logical
fraivework. C-logic is still first-order logic, so that there are no set values. However,
multi-valued labels allow us to use the concept of sets under the following condition:
by accepting the fact that a set value cannot be bound to a variable and the equality

among sets cannot be checked.

‘The following example illustrates the use of sets in C-logic:
the fact:
person : mike[children — {noah.adam. cvel]
and a query written as:
< person : mike[children — {X.Y'}].
Since the semantics interprets labels as binary predicates (see section 2.3.1) the above

fact and query can be transformed into the following:

person : mike[children — noah, children — adam, children — cve]

53

and

< person : mike[children — X, children — Y]
Variables X and Y will be bound to each noah, adam, eve to make the query succeed.
Users still can think of a label intuitively as a set-valued function. It is expected that
users still can do most set manipulations required. Some manipulations that C-logic

cannot do are returning a set value and checking the equality of sets.

2.3.8 Discussion of C-Logic
The main differences between C-logic and O-logic are:

e In O-logic, only object variables are introduced for referring to object identities.
In C-logic, similar to RO-logic, an object is denoted bv a C-term (called id-term
in RO-logic) constructed from a composition of a i1.action symbol, coustant
symbols, and variable.. The idea of using object constructors for forming object
identities in C-logic and RO-logic is the same (it should be noted that the two
papers appeared at about the same time). As mentioned before, this object-

constructor idea eliminates the quantification problems found in O-logic.

e Labels in C-logic are interpreted as binary relations. Each label can be use | as
single valued or set valued (no syntactic distinction), and basically each label
is set valued. This is different from that of O-logic and RO-logic. In O-logic,
all labels are single valued, and interpreted as partial functions from objects
to objects. In RO-logic, ihere are two kinds of labels: single-valued labels and
set-valued labels.

We think C-logic will have problems when what a user really wants is a single-

valued label, in which case if there is an inconsistency the logic cannot detect

it. This is because basically C-logic has only set-valued labels.

54

2.3.9 Concluding Remarks on C-Logic

C-logic captures several concepts of object-oriented databases, i.e., object-identities,
multi-valued attributes (labels), type and type-hierarchy. However, it does not cap-
ture two of the object-oriented database core concepts specified in [Kim90]. The
missing two concepts are inheritance and methods. These two concepts are captured

by F-logic [KifLa89} which is surnmarized in the next section.

2.4 F-Logic [KifLa89]

In this section, we present a summary of F-logic paper [KifLa89), a significant improve-
ment over O-logic [Maier86], RO-logic [KifWu89] and C-logic [CheWa89] in terms of

object-oriented properties captured.

2.4.1 Introduction

Frame logic [KifLa89], also called F-logic. is a database logic that provide. most
object-oriented database concepts, such as object identities, complex objects. at-
tributes, methods, typing, and inheritance. The name Frame logic (abbreviated,
F-logic) was derived from frame-based languages [Minski81, FiKe85] that are used
in Artificial Intelligence. F-logic has implications for the frame-based languages. Es-
sentially, frame languages can be viewed as scaled-down versions of complex objects

with identity, inheritance, and deduction [KifLag9).

To make a deduction system able to reason about inheritance and a database schema,
some capabilities of higher-order logics are required [KifLa89]. However, there are
some practical problems with higher-order logics. F-logic's sulution is to have a logic

with syntax that has an appearance of a higher-order logic. However, unlike a higher-

55

order logic, F-logic is still tractable and has a natural direct first-order semantics
[KifLa89]. This logic is the result of an extension of RO-logic [KifWu89)]. It eliminates
distinctions among objects, classes and relationships, in order to allow reasoning about

inheritance, methods and schemata.

2.4.2 F-Logic Syntax

The alphabet of an F-logic language consists of

1. a set O of basic objects. This set is partially ordered with T as the unique max-

imal element, and L as the unique mi~*mal element (O is a complete lattice);
2. a set F of object constructors;
3. a countable set V of variables;
4. logical connectives: V, A, -, <, and quantifiers: V, 3;

5. a set of auxiliary symbols: “: 7, “)”, “(”, “|", “[", “}”, “{", %7, ¢« —".

Note that, in F-logic, function symbols are called object constructors. In F-logic,
objects are either complex objects or classes of objects. Unlike O-logic |Maier86],
RO-logic [KifWu89] and C-logic [CheWa89], F-logic puts classes and instances in the
same category. For example, basic object assistant € O can be viewed as representing
the class of assistants (i.e., every individual assistant is an instance of basic object
assistant). Basic object assistant can also be viewed as an instance of its superclass
student € O . Thus, a class is viewed as an instance of its superclass, rather than as
its subclass (this view is similar to that of frame languages). According to [KifLa89],

this particular feature allows inheritance to be built naturally.

56

The constant symbols of F-logic are the basic objects (elements of Q). The object
constructors (i.e., elements of F') are function symbols of arity > 1 which are used
to construct new objects. For convenience, it is assumed that O and F are disjoint,

although basic objects can be viewed as 0-ary object constructors.

Id-Term
An id-term is a term composed, in the usual way, of function symbols (object con-
structors), constant symbols (basic objects, i.e., elements of O), and variables. A

basic object (an element of) is also an id-term.

The symbol O* denotes the set of all ground (variable free) id-terms. O*, essentially,
plays the role of Herbrand Universe of F-logic. In F-logic, ground id-terms should
be seen as objects themselves or abstractions of objects which are commonly called
object identities. Thus object identities are either basic objects or non-basic objects
(recall that non-basic objects are denoted by id-terms other than constant symbols).
In F-logic, objects (object identities, strictly speaking) that are represented by id-
terms other than constant symbels are perceived as being constructed from simpler

objects.

In O-logic and RO-logic, objects and labels belong to distinct categories. Due to this
distinction, it is not easy to treat objects and relationships (identified by labels) in
a uniform framework [KifL.a89]. In contrast, in F-logic. an object identity can be
viewed as an entity or a relationship depending on syntactic position of the object

identity in a formula.

As a label, every nbject identity has a type. There are two types of labels: single-
valued (functional) and set-valued labels. According to this types, the set O* of
ground id-terms is partitioned into two disjoint sets: Ly (functional labels) and L,

(set-valued labels). To make specifying and checking types in O* easy, this partition

57

is required to be congruent in the following sense:
partition O® = Ly U L, is congruent if and only if

Vt;,sl, ...,tn,Sn € O‘, Vf € F, Vi = l, NN
if either (both t;,s; € Ly) or (both t;,s; € L,) then either

(both f(%i, ...,%.), f(8i, ...,8a) € Lg) or (both f(2,, ...,tn), f(5iy ..., 5,) € L,)

Assigning types to elements of O* (the set of ground id-terms) consists of the following

processes:

1. assigning a type (i.e., single-valued or set-valued type) to each element of O;

2. specifying the type of ground id-term f(¢, ...,t¢,) for every n-ary function
symbol f € F and for each n-tuple (¢, ...,t,) where each t,(1 < j < n)is
either t; € Ly or t; € L,.

In practice, this procedure is considered effective because the cardinalities of O and F
are finite [KifL.a89]. Checking the type of a term ¢ € O*, is done by substituting types
for subterms, starting with constant symbols. This procedure requires linear time as
a function of term sizes. Moreover, in practice, we might only need to assign one type
to the range of each function symbol. This makes type specifications linear in the
sizes of O and F, and type checking can be executed in constant time by checking

the range type of the outermost function symbol.

2.4.2.1 F-Terms

For convenience, ground F-terms are denoted by names starting with lower-case let-
ters, while non-ground F-terms are denoted by names starting with capital letters.

An F-term , which is similar to [Maier86] and [KifWu89)’s idea, is defined as either

58

1. a simple F-term,
P:Q
where P and @ are id-terms. Intuitively, @) is an instance of class P, for example

student : john; or

2. a complex F-term,

P:Q[Flaby - T, ..., Flab, — T,,
Slab, — {Sl,l» . ..,Skhl}, seng Slab; - {Sl'l, .o ,Skh[}].

P and Q are id-terms; F'lab, and Slab, are also id-terms, but they are named
differently to emphasize their role as labels. The order of labels in an F-term is

immaterial. 7T, and S,, denote F-terms.

A complex F-term of the form (2) above can be viewed intuitively as a statement
about object @Q: This object @) is an instance of class P and has properties specified
by the labels Flab,. ..., Flab,, Slaby, ...,Slab;. When no labels are specified for
an object @ (i.e., P : Q|]), we may omit the brackets, so that it is equivalent to a

simple F-term P : Q.

In order to have the feature of a higher-order logic without having the overhead of
higher order calculus, class membership is modelled by means of a lattice ordering
instead of a true set-theoretic membership. Formally, the elements of O* are organized
in a complete lattice with ordering <o. The ordering <0, as usual, stands for <¢
or =. The lattice has two special elements: the marimal element T and the minimal
element L. The maximal element is a meaningless object that represents a class with
no instances, while the minimal element represents the biggest class (the unknown
object). The lattice is the static part of the language and it can be perceived as a

part of a schema definition. It represents the transitive closure of the “subclass of”

59

and the “instance of” relationships among classes. Thus, p <o ¢ (such as student
<o assistant) means that q is a subclass or an instance (possibly indirect, i.e., there
may be objects in between) of p. This ordering relation in the lattice is similar
to information ordering of denotational semantics. It should be noted again that
the same object can have both roles as an instance and as a class depending on its
syntactic position. For example, b € O* appears in the “instance position” ina : b[. .]

and in the “class position” in b: ¢[..]

The following monotonicity restriction is imposed on the lattice O*:

iftl jo 8, ...,tn _'58,1 thenf(tl, ...,t,,)jf(sl, ...,Sn)

In other words, object constructors are required to be monotonic functions on the
lattice. For example, if person <o jean (jean is is an instance of a person), then
book(person) <o book(jean) (Jean’s books belong to the class of books owned by
persons). This monotonicity is required for two reasons: first, to make the resolution
procedure complete (not further explained in [KifLa89}), second, to ensure that the
lattice structure in O can be given effectively as part of schema specifications and

that the “instance-of” relation can be verified efficiently.

2.4.2.2 F-Formulae

In F-logic, an F-term is also an atomic formula. An F-logic language consists of a set
of formulae. A formula is built from atomic formulae by means of logical connectives

and quantifiers in the usual way.

The following convention is assumed for the notation. If a single-valued label Lab
is omitted in an F-term then it is equivalent to an F-term that has component

Lab — L : 1. Similarly if a set-valued label Lab’ is omitted in an F-term, then

60

it is equivalent to an F-term that has component Lab’ — {} (a set valued label whose
value is the empty set). Finally, if a class specification in an F-term is omitted then
class 1 is assumed. For example:

csdlname — string : “Computer Science”], and

1 : csd[name — string : “ComputerScience”, budget — L : 1, students — {}]
are considered to be the same F-term. Based on this convention, id-terms can be

viewed as a special case of F-terms by identifying p and L : p[] as the same F-term.

2.4.3 F-Logic Semantics

An ordering, namely Hoare’s ordering [BunOh89)], is used in F-logic. For a given
lattice U with partial ordering <y, the maximal element T;, and the minimal element
Ly, the preorder Cy on the power set P(U) is defined as follows: for any pair of
subsets X, Y C U, X Cy Y iff for every element r € X there is y € Y such that
r <y y. The power set P(l/) can be considered as a lattice modulo the equivalence
relation =y, where X = Y iff X C¢ Y and ¥ T, X. In this lattice, the minimal
element is the equivalence class of {} (the empty set) and the maximal element is the

equivalence class of {Ty/}.

The following is the definition of a lattice structure on the set of mappings. Given a
pair of lattices, [/ and V/, then a lattice structure on the set of mappings {/ — V, which
is denoted Map(l/,V'), 1s defined as: f <Xaqpivy g if for every u € U, f(u) <Xy g(u).
Here, there are two particularly important types of lattice mappings: monotonic
which is denoted AMon(U,V) and homomorphic (the one that preserves lub (least
upper bound) and g¢lb (greatest lower bound)). which is denoted Hom(U/, V). This

set of homomorphic mappings Hom(l/,V') has the following properties: For each

61

f € Hom(U, V), we have:
flub(X)) = lub{ f(z)|z € X}, for each X C U, and

F(gIb(X)) = glb{ f(z)|z € X}, for each X C U.

Interpretation

The semantics of F-logic is defined as the following. Given an F-logic language, its
interpretation, I, is a tuple (U, go, gr, J#, Js), where U is the universe of all objects,
which is required to have a lattice structure with the maximal element Ty, the min-
imal element Ly, and with a lattice ordering <y. U is partitioned into a pair of
subsets Uy (which is associated with functional labels) and U, (which is associated
with set-valued labels) according to the types of elements of O*. The elements of O*
can be perceived as the object identities (or names) of objects, and the elements of

U can be thought of as the objects themselves (in the possible world 7).

The homomorphic mapping, as defined above, go : O* — U is defined as interpreting
objects of O* by elements of U, so that go(Ly) C Ug and go(L,) C U, (see example
in Subsection 2.4.7). The mapping gr : F — Mon(U*,U) interprets each k-ary object
constructor f € F by a monotonic mapping U¥ — U. The mappings go and ¢y are

related as follows:

if t = f(31, ...,5,) € O" then go(t) = gr(f)(go(51), -..,90(sa)).

Constant symbols (basic objects) and function symbols (object constructors) are es-
sentially interpreted in the same way as in Predicate Calculus. The difference is the
existence of lattice structures on the set of ground F-terms O*, and on the domain

U.

Label objects (objects that play roles as labels) are interpreted by associating ap-

propriate mappings to elements of U using functions Jg and J,. The function

62

Jg : Ug — Mon(U,U) associates a monotonic mapping U — U with each element of
Uy, and J, : U, = Mon(U,P(U)) associates a monotonic mapping U — P(U) with
each element of U,. The ordering on P(U) is C¢-. It should be noted that J4 and J,

do not take into account the ordering <y appearing on Uy and U, induced by U.

Variable Assignment
A variable assignment V, is a mapping from a set of variables V to the domain U.

Its extension to id-terms is as follows:
V(d) = go(d) if d € O and,
recursively, V(f(..., T, ...)) =gr(f)..., V(T), ...).

Its further extension to F-terms ic as follows :
V(P:Ql..])=V(Q).

The Meaning of F-Formulae

Recall that in F-logic every F-term is an atomic formula. The meaning of an F-term T
under interpretation / (which is a tuple (/. go, gr, J¢,Js)) and variable assignments
V, denoted M;y(T), is a statement about the existence (true) or nonexistence (false)
in [of an object V(T') wich properties specified in T. The following is the formal

definition of the meaning function M;y(T). For an F-terin T given by
P:Q|..., Flab— R,. ...,Slab, — {S1,S}...]
My y(T) = true if and only if the following conditions hold:

L V(P) 20 V(Q)

Intuitively, object V(Q)) must be in class V(P) of the possible world (interpre-
tation) /.

2. For each id-term Flab, (a functional label):

® V(Flab,) € U#

63

Intuitively, an id-term representing a label must be appropriately typed.

* V(Ri) 2uv Jp(V(Flab))(V(Q))
Intuitively, the possible world I, with respect to V, must have infor-
mation about the object denoted by V(T') regarding label Flab;, i.e.,
J¢(V(Flabd;))(V(Q)), at least as much as the amount of information as-
serted by T (i.e., V(R;)). Recall that the information content of an object
b is at least as much as that of an object a if a <y b.

o M;v(R;) = true
Intuitively, the property of @) asserted by T (i.e., R;) must also be true in
I with respect to V.

3. For each 1d-term Slab; (a set-valuad label):

e V(Slab,) € U,
Intuitively, an id-term representing a label must be appropriately typed.
o {V(51), ..., V(Sm)} Eu Jo(V(Slab))(V(Q))
Intuitively, the possible world I with respect to V, must have information
about the object denoted by V(T'), i.e., its Jo(V(Slab;))(V(Q)), at least as
much as the amount of information asserted by T ,i.e.,, {V(S1), ..., V(Sn)}
e Miy(Sk)=trueiork=1, ...,m
Intuitively, the property of) asserted by T (i.e., Sx) must also be true in
I with respect to V.

If the conditions above are not fulfilled then M;y(T') = false.

For a formula, ¢, that consists of logical connectives and/or quantifications, its mean-
ing (Mr,v(#)) is defined in the usual way. An interpretation / is called a model of ¢
if M1 y(®) = true, briefly denoted as I =y ¢. Let S be a set of formulae. Then an

64

interpretation I, with respect to a variable assignment V, is called a model of S if for

every ¢ € S, I =y ¢.

2.4.4 F-Logic Databases

A database is defined as a finite set of formulae. There are two parts in a database,
the extensional part (i.e., the set of F-terms (atomic formulae), this part is also called
the set of facts) and the intensional part (i.e., the set of formulae “more complex”

than F-terms). Logical implication for a set of formulae S is defined as usual:

S | ¢ (the formula ¢ is logically implied by S) iff ¢ is true in every model of S.

Substitution is defined as follows: given a language L with a set of variables V and a
set of basic objects 0, a substitution & is a mapping V — {id-terms of L}. The range,
i.e., {id-terms of L}, consists of object identities (id-terms) outside the domain of &
(which is some finite set dom(o) C V). This substitution is extended to id-terms,

where o commutes with object constructors, and then extended to F-terms as follows:

eo(f(....T,..))=f(..., a(T),..)

e a(P:Q[..., Flab— R, ...,Slab— {..., S,...}]) =
a(P):o(Q)..., o(Flab) — o(R),o(Slab) — {.... o(5). .. .}]

Substitution o is further extended to formulae by letting it commute with logical
connectives. A ground substitution is the case when o(X) € O* for each X € dom(o).
An instance of a formula ¢ is #(@) where o is a given substitution, and o(¢) is called

a ground instence if there is no variable.

65

2.4.5 F-Logic Queries

A query statemnent is defined as an expression Q7, where Q is an F-term. The set of

its answcrs with respect to a database D is the smallest set of ground F-terms that is

1. closed under = and

2. contains all ground instances of Q logically implied by D.

Examples of queries are given in the next subsection.

2.4.6 Examples of F-Logic Databases

Examples given in Figure 2.2 and Figure 2.3, taken from [KifLa89], show significant

features of F-logic.

Figure 2.2 depicts a part of an IS-A (subclass) hierarchy (or, more precisely, an
IS-A lattice [Kim90]). Classes and individual objects, which are from the same do-
main, are organized in a lattice. In F-logic, the lattice is ordered according to the
“definition” ordering of denotational semantics, or according to the “knowledge con-
tent”. For example, class assistant has more knowledge content than class empl be-
cause every individual assistant is an employee but not vice versa. Thus, statement
assistant : jc .+ ~r= informative than empl : john. We can see in Figure 2.2 that
an instarce is always located “above” (1/ith respect to the ordering <o) its class (or
classes). For example, Figure 2.2 #sserts that assistant, phil and faculty are employees,

“CS”, “EE”, “Mary” and “Bob” are string, etc.

Figure 2.3 shows some facts about fecully, assistant, student, etc. Clause (1) as-
serts that object bob (read as “an object denoted by object identity bobd”) has name

‘Bob”, whose age is 40, works in dept : csy, etc. In clause (2), the attribute (la-

sally john phitl ma\ry bob
i joh.. i facult .
20 30 40(:hlldren(.]oh)| assistant aculty ;
Yyuppiq CcS1 €S2
student empl

66

—

children(person “CS™EE™\iary™Bob™
young midaged ™~ /
dept
yd
y

person o

\\L //

Figu 2.2: Part of the IS-A lattice (from[KifLa89])

string
/

bel) friends is set valued. This is achieved by using the set constructor “{}", eg.

Jricnds — {bob, sally}.

General information about classes is given in clauses (5). (6) and (7). For example,

clause

(5) says that facully is supervised by a faculty and is midaged.

Examples of rules are given by clauses (8) and (9). Clause (9) is a rule that defines

a method. It says that for any person X. the method children is a function. which if

given an argument Y, will return a set containing ail common children of X and Y.

«u. F-logic, the same id-term may denote different things. For exampie, in clause (9),

id-term children(Y') appears twice, in tl. head and in the body. Id-term children(Y')

that appears in the head is an attribute, v-hile its appearance in the hoay serves as

67

Facts:

(1) faculty : boblname — “Bob”, age — 40, works — dept : cs\[dname —

“US”, mngr — empl : phil]

(2) faculty : mary[name -+ “Mary”, age —+ 30, friends — {bob,sally}, works —

dept : csz[dname — 7S”]]
3) assistant: john[name — “John”, works — cs,[drname — “CS”]]

(4) student : sally[age — midaged]

General Class Information:

(5) faculty[supervisor — faculty,age — midaged]

(6) student[age — young]

(7) empl[supervisor — empl]

Rules:

(8) Llsupervisor — M) < empl : E[lworks — dept : Dimngr — empl : M]]

(9) Xichildren(Y) — {Z}] « person : Y[children _obj — children(Y)[members —
{person : Z}]], person : X|children_obj -+ children(X)[members — {person :

Z}]

Queries:
(10) mary[ckildren(Y) — {sally}]?
(11) mary|zhildren(phil) — {Z})?

(12) empl : X[supervisor — Y, age — midaged : Z, works — D[dname — “C’'8”]]?

Figure 2.3: A Sample Database (from [KifLa89])

68

an identity of an object containing the children of Y.

Queries in clause (10) and clause (11) show the application of method children.
Clause (10) asks the father of mary’s child sally, while clause (11) asks the children
of mary with phil. Clause (12) illustrates a query that has contradicting answers.
This query asks information about all middle aged employees working for the “CS”
department. Note that the attribute supervisor is single valued. The answers of these
queries are:

(A1) bob[supervisor — T,age — 40, works — cs,}, and

(A2) mary[supervisor — facully,age — 30, works — cs,)].

In answer (Al), bob’s supervisor is T. This is because based on rule (8), bob’s super-
visur is phil, and based on the general description (5) bob’s supecvisor is a faculty,
but phil is not an instance of faculty, an inconsistency! An inconsistency does not
always end up in T, but it depends on the least upper bound of inconsistent values.
If the restriction midaged : Z in query (12) is deleted. then the following clause will

also be retrieved:
(A3) john[supcrvisor — phil.age — young.works — cs]

where john’s supervisor, phel, is inferred from rule (8) and clause (1). Unlike object
bob, object john is not a faculty <o that the restriction due to clanse (5) is not imposed.

Thus, there is no contradiction.

Figure 2.2 and Figure 2.3 also demonstrate that users can think the objects of the
lattice as sets ordered by a subset relation, and they can use higher-order intuitions
to develop programs and models. However, the underiying semantics is still first
order. This first-order semantics prevents difficulties associated with a real higher-

order logic,

The first-order semrantics of sets is achieved through typing on labels, sc that single-

69

valued and set-valued functions do not mix.

2.4.7 F-Logic Inheritance

In F-logic, inheritance (monotonic) is built into the semantics.

Theorem [KifLa89] Let D be a database, T = pllab, — q,lab; — {r}] be a ground
F-term, and D = T. Assume p’ € O* is an id-term such that p <o p', i.c., p' is an

instance of class p. Then

D = p'llaby — q,lab; — {r}]

Intuitively, this theorem says that if p <o p’, then properties of p also hold for p'; or,
we can say that p’ inherits properties of p. In the previous example, we can see that

because faculty <o mary, mary inherits supervisor — faculty from clause (5).
Proof: The proof follows directly from the definitions of interj retation structure
and of the meaning of formulae. Let S denote p'[laby — g,lab; — {r}], and I =
(U,90,9F, Jg,Js) be a model of D. Then we conclude J = T Ybecause D = T. F-
terms T' and .S are ground, so that they do not depend on V. Hence, for every variable
assignment V, it follows from the meaning of an F-term described in the semantic
section (section 2.3.3) that we have for F-term 7"

1. V(laby) € Uy (the id-term representing the label is appropriately typed)

2. V(labz) € U, (the id-term representing the label is zppropriately typed)

3. V(g) 2u Jx(V(lab))(V(p))

4. {V(r)} E Jo(V(laby))(V(p))

5. IEqAT

70

Then, since V(p) <v V(p'), by the monotonicity of Jg and J,, we have for F-term S:

1. V(q) v Jg(V(lab))(V(p')), because Jg(V(lab},(V(p)) <v Je(V(lab)))(V(p))
and V(q) Zv Jg(V(laby))(V(p))-

2. {V(r)} Cv Jo(V(lah))(V(p')), for a similar reason with above, only this time
for J,.

3. IEqAr.

Now, I | S follows from the definition of the truth of an F-term in the semantic

section. o

The following is an analysis of a more complex case about sally (clause (4)) from the
previous example. Because student <o sally, sally inherits age — young from clause
(6). However, because clause (4) asserts that sally is midaged; in each interpretation
where both

sallylage — young] and sallylage — midaged)

are true, it is necessarily the case that
sallylage — lublyoung, midaged)] = sallylage — yuppie]

is also true. That is clause (4) and clause (6) logically entail sallylage — yuppie].
In every interpretation I the label age. which is interpreted as a monotonic single-
valued function Jg(age), has to map go(sally) into sotnething which is an upper
bound of both go(young) and go(midaged). Because go : O* — U/ is a lattice
homomorphism, we have lub(go(young), go(midaged)) = go(lub(you..g. midaged)) =
go(yuppie). Thus, for the chosen I, we might derive saliy[age — yuppie]. Here we see
that although the inherited property age — young is still true, in fact we have also:

age — yuppie. This effect is called monotonic overwriting of inheritance [KifLag9].

71

The monotonic overwriting property of F-logic inheritance might not satisfy all real
world situations. For instance, in the previous example, we might want sally to be still
midaged (based on clause (4)) although based on clause (6) sally inherits young. This
is a disc.dvantage of the monotonic overwriting property that resolves inconsistent,
values by their lub. We could solve the problem by making a method’s value defined
on a subclass overwriie its inherited value, but this property, which can be categorized

as non-monotonic, is likely to cause problems in the logic.

2.4.8 F-Logic Methods

Methods are considered as the procedural aspect of OO paradigms. This is why some
researchers argue that methods cannot be expressed in declarative ways [KifLa89).
For example, a formal data model to support a procedural OO language is proposed

in [LecRi88, LecRV88],

Kifer and Lausen |KifLa89] argue that impedance mismatch between programs and
data should be overcome in a declarative fashion, which requires methods to be defined
declaratively. Thus the procedural cornponent should be integrated in a declarative

framework in a clean way.

F-logic allows declarative definition of methods because non-ground id-terms are al-
lowed to appear in the label positions of F-terms. An example was given in Figure 2.3
(clause (9)) . The following is another example (from [KifLa89}). This example shows
F-logic’s ability to inherit methods and build them incrementally. Suppose that
person <o male, person <o female, and person <o writer. Although normally
the legal name is a person’s last name, a maiden name of a married female and a pen
name of a writer are also considered to be legal names. The method legal-names at

any given year (represented by variable Y) is firstly defined for each person as follows:

72

X(legal-names(Y) — {N}] < year : Y, person : X[last-name(Y') — string : N]

and then the definitions for married females and writers:
X([legal-names(Y') — {N}] < year : Y, female : X[meciden-name(Y') — string : N]
X{legal-names(Y) — {N}] < year : Y, writer: X[pen-name(Y) — string : N]

As an illustration, if Joe is a male and not a writer. this method will return only one
legal name. On the other hand, if in year 1991 mary was a married female, a writer,
and uses her husband’s last name, she will have three different legal names in that

year.

This example also demonstrates the capability of operator overloading, which means
that the same method name can represent different procedures depending on the class

where this name is used.

Essentially, methods in F-logic are “labels with parameters.” Thus, plain labels can be
viewed as non-parametric methods. It is pointed out by Kifer and Lausen [KifLa89]
that this property is a pleasing one and corresponds to situations in abstract data
types. We also consider that this is an elegant solution to the problems of expressing

variety of methods in a object-oriented logic programming.

2.4.9 Discussion of F-Logic

F-logic has all basic properties required to be called object oriented (based on [Kim
90]). However, the treatment of the same object as a class and an instance object
may cause problems. A simple example follows. Suppose we have data student : joe
which means that an object denoted by joe is an instance of a class denoted by

student. F-logic allows us to write something like joe : mary which asserts that mary

73

is an instance of joe. This example illustrates how an object which we intended to
be an individual object can have an instance object. In other words, F-logic cannot
distinguish between class objects and instance objects, and we cannot express an

object that is supposed to represent itself (i.e., as an individual object only).

The main differences between F-logic and its predecessors, i.e., O-logic, RO-logic and

C-Logic, are:

e In F-logic, objects and labels are put in the san.e category, they all are rep-
resented by id-terms. The reason is to be able to treat them in the same

framework.

e In F-logic, instance objects are also class objects, the reason for this is to make
the inheritance property natural. It is worth noting that F-logic follows the way
frame languages treat a class as an instance of its superclass rather than as its

subclass.

e F-logic incorporates some inheritance concept which is not available at all in

O-logic, RO-logic or C-logic.

2.4.10 Concluding Remarks on F-Logic

F-logic has all the core concepts of object-oriented databases (based on [Kim90]),
i.e., object identity, attribute, method, class, class hiei.rchy, and inheritance. One
concept that seems counter ii:ituitive is that the same object can play a role as a
class or as an individual objec' depending on its syntactic position (occurrence) in an
F-term. In consequence, we cannot express an object that represents only itself (i.e.,

an individual object).

T4

2.5 Comparison Study and Weaknesses to be Over-

come

Table 2.1 shows the comparison among logics that we have discussed.

Table 2.1: Comparison Table I

Language Complex | Typing | Object | Inheri- | Method | Encapsul-
Object identity | tance ation

O-logic no sets yes yes no no no

[Mzier86]

C-logic sets only yes yes no no no

[CheWaS9]

RO-logic yes yes yes no no no

[KifWug9]

F-logic [KifLaR9], yes yes yes yes yes no

[KifLaWu90]

Table 2.2: Comparison Table 11

Language Deduc- | Soundness | Completeness
tion

O-logic not well | yes ?]

{Maier36; defined

C-logic yes ves yes

(C"heWa89)

RO-logic yes yes yes

[KifWu89]

F-logic [KifLa89], yes yes yes

[KifLaWu90)

Bascd on the discussed logic systems, we try to extract some reasonable properties

75

that an OO logic should have. The following is the list of the properties that an
“ideal” logic for OO databases should have:

e well-defined formal semantics;

o a clean declarative fashion for most OO concepts, such as object identity, com-

plex objects, inheritance, methods;
o a well defined deduction;
e a sound and complete proof procedure;

e a uniform language for queries, updates, defining virtual data, and defining

constraints;

e an ability to reason about inheritance and database schema. Usually, for rea-
soning about these, we need a higher order logic. However, as we know, a
higher-order logic would be impractical if it is applied to this problem. One
possible solutior. is what is done in F-logic, a logic that has an appearance of

higher-order logic but has a natural first order semantics.
e an ability to support encapsulation;

e an ability to allow browsing schema and data using the same declarative for-

malism, such as the one demonstrated in F-logic;
e an ability to cefine complex objects in “natural” wajys

e an ability to allow a user to program in a procedural way at some points, if

necessary;

e an ability to reason about inconsistent data, such as what has been demon-

strated by RO-logic;

76

In designing our logic for QO databases, we tried to accommodate the ideal properties

above as much as we could.

There are other researches related to the the integration of deductive and object-
oriented databases that we do not use as the basis in designing our logic. These

include [AbiKan89], [HulYos90], and [LouOzs91].

Besides the direct problem of designing a better logic for OO databases, which is
to make the logic fulfill all OO properties required but still be practical, there are
still some problems awaiting associated with the heterogeneous structure of complex
objects. Examples are: how to store complex objects, how to cluster the components
of complex objects together, how to store shared information, and how to reason

efficiently about complex objects. These are open problems for future research.

CHAPTER 3

Object-Oriented Logic

3.1 Introducticn

Based on a comparison study of existing logics for object-oriented databases in the
previous chapter, we found that F-logic ([KifLa89], [KifLaWu90]) has most object-
oriented (0O0) concepts, i.e., object identity, attribute, method, class, class hierarchy

(or class !attice), and inheritance.

We have tried different approaches from that of F-logic in order to design a logic that
has all the core concepts of OO databases. What is presented here is an improvement
to F-logic’s characteristic regarding class objects and instance (individual) objects.
In F-logic, a class object is also an instance object, depending on where it is used.
For example, ¢ : p asserts that p is an instance of class c. However, in another place
of an F-logic program we may find p : r which asserts r as an instance of class p.
So, in the first sentence, p is an instance object, while in the second sentence p is a
class object. We consider this counter-intuitive. The concept of a class object that is
also an instance object may well cause confusion. A simple example follows. Suppose
we have the datum student : joe which means that an object denoted by joe is an

instance of a class object den.ted by studenf. Assume that we intend to define object

7

78

Jjoe as an object that represents itself (as an individual object). F-logic allows us to
write something like joe : mary which asserts that mary is an instance of joe. This
example illustrates how an object which is supposed to be an individual object can
have an instance. In other words, F-logic has problems in distinguishing class objects

and instance objects.

In general, the argument above is for situations similar to the following. Suppcse
that a system designer of an F-lo_"c program has defined an object intended to be
only an instance (individual) object. Later, other users may misuse that object by
treating it as a class. Unfortunately, it is not possible for the system designer to
prevent such misuse in F-logic, because only instance-class objects (instance objects
that are also class objects) exist. In our logic this kind of problem can be avoided.
We changed the instance-class concept of F-logic. We do this by making a clear
distinction syntactically and semantically between class objects and instance obj=cts.
An instance object can only be an instance object, it cannot be categorized or treated
as a class as well. Conversely, a class object can only be a class object and it cannot
be an instance (individual) object. Note that this distinction is in the same spirit
as that of O-logic [Maier86) , .(O-logic [KifWu89] and C-logic [CheWa89). Further
advantages of our approach will be shown when we discuss class methods and shared

methods in Chapter 4.

3.2 Design Considerations

In this section we will discuss the reasons behind the concepts that we have chosen.

In order to clarify the ideas, we will give several simple examples.

79

3.2.1 Object Identity

We do not see any problem in implementing unique object identities on extensional
databases, because this is just like non-deductive OO databases. However, some
problems might be met in assigning object identities on intensional data as pointed out
by Ullman [Ullm91]. He showed a problem on intensional data, where it is possible to
create an infinite number of object identities (OIDs) for a certain type of object, while
a non-object-oriented deductive system will create only a finite number of objects of
the same typ-e (see [Ullm91]). A similar problem is pointed out by Maier [Maier86]
(see Section 2.1.9 on the discussion about applying a rule as an update). One solution
to this problem is to follow the strategy used in C-logic [CheWa89}, i.e., making the
logic allow only ezpiicit construction of object identities, in order to limit the number
of objects created. We consider this solution to be better than that cf {Grec92] which
does not even provide OIDs 10 intensional data, with the reasoning that we can re-
create those data by using available rules. We do not like the solution in {Grec92]
because if we have two kinds of data, one with object identities and the other without
object identities, then we will not be able to manipulate the two kinds of data in a

uniform way.

We have chesen that our logic should allow ezplicit construction of object identi-
ties. This concept is useful to support Skolemization of existentially quantified object
variables, so that there is no ambiguity in what objects determine the object to be
created, i.e, the kind of ambiguity found in O-logic [Maier86] (see Section 2.1.10
Discussion of O-logic). In our logic, the user is only required to determine “which
varizables participate in determining the object being created,” and one does not need

to worry about supplying a urique identity s‘nce it can be generated by the system.

The following example about path rules illustrates the above idea. Note that, in

80

this example, the path objects are determined by only the node objects at both ends

(recall the discussion about path objects in Section 2.3.2.1).

1. pathID{X,Y)([instOf — path], [src — X], [dest — Y])
:- X([instOf — node], {I‘nkto — Y1)
/*Note that symbol :- is used as in Prolog*/
2. pathID{X,Y)([instOf — path],[src — X], |[dest — Y])
- X([instOf — node], [linkto — Z}),
C\[instOf — path], [src — Z],[dest — Y])

Here, pathID(X,Y) is an id-term similarly defined to the definition of an id-term in
F-logic [KifLa89]. It represents an object identity that is constructed from function
pathiD and variables X and Y. The notation “:-” is defined as what is usually found in
Prolog, Thus, an expression a : — /3 is equivalent to =3V a. The identity is dependent
on the values of X and V. Although one might argue that an object identity should
not depend on any value, this treatment makes sense here, because the nature of the

objects from class path are actually depending on the nodes at both ends.

3.2.1.1 An Alternative Solution

The weakness of the above solution is that object identities become value dependent.
The common interpretation of an object identity (OI1)}) is that it sliould not depend on
any value, otherwise the system would become value based. This is one major point
why Ullinan argues that QO concepts are not compatible with logic programming
[Ullm9'). One possible solution that we are stili investigating is to make an OID

consist of two parts: a unique OID (could be generated by the system or supplied by

the user), and a value based OID (functional OID) which is in the form similar to

PM-13%"x4” PHOTOGRAPHIC MICRCCOPY TARGET
NBS 1010a ANSI/ISO #2 EQUIVALENT

8 2.
" 1.0 '.:-l- Iﬁ
—— m

81

pathID{X,Y) above. If we apply this idea to the same example as above, the entity

creating rule would become:

1’. PathID([instOf — path], /* PathID represents a unique OID*/
[pathFuncID (X,Y)]. /* functional OiD*/
[sre — X], [dest — Y])
- X([tnstOf — node], [linkto — Y])
2’. PathID([instOf — path], /* PathID represents a unique OID*/
[pathFuncID(X,Y)], /* functional OID*/
[sre = X], [dest — Y])
:- X{[instOf — node), [linkto — Z]),
C{([instOf — path], [pathFuncI(Z.Y)], [src — Z], [dest — Y1)

We consider this approach superior to that of (-logic because it has an identity that
is not dependent on any other value, yet it still has the information indicating the
variables considered significant in determining the rule-created object. This functional
OID would be useful when we design a procedure for determining whether two objects

are actually identical. In this thesis we do not discuss this alternative solution further.

3.2.2 Class

A class denotes a set of objects that share a common set of attributes (also called
properties) and a common set of methods (also called behaviour). Unlike F-logic [Ki-
fl.a89, KifLaWu90], we distinguish the relation between a class and its subclasses and
the relation between a class and its instances. We distinguish it syntactically and se-
mantically. Hopefully, with this concept we will overcome the ambiguity encountered
in F-logic where an object identity can represe-t an instance of a class (individual

object) in one place, and the very same object identity could be in the “syntactic

82

position’ (the position of an object identity’s occurrence in a sentence representing

an instance-of relationship) of representing a class object in another place.

The following is an example of how we define classes. Here we use a similar example to

the one used in [KifLaWu90] for easy comparison. This example shows how to define

the classes of person, empl, faculty and dept. In this example, the symbol = (respec-

tively, =) is used to indicate a typing declaration of a single-valued (respectively,

set-valued) attribute.

1. person([isa — object],

[name = string],

[friends=x> {person}],

[children=x> person]

)

2. empl ([isa — person],

[works = dept])
3. faculty ([isa — empl],
(boss = {faculty, hi-paid-empl }],

[age = midaged],
[degrees=x> degrees]

)

4. dept ([isa — object],

[assistants==> {student,empl}])

[*class definition of person™/

/* person is a subclass of object*/
/*typing, single-valued attribute*/
[*typing, set valued attribute*/
/*person: a constant denotes a class*/
/*we may remove curly brackets if*/
/* only one class is involved*/

[*class definition of empl */

/*empl is a subclass of person™/

/* class definition of faculty*/
/*typing, single-valued attribute,*/

/*multiple classes on range*/

[*set-valued attribute, this example
shows name-overloading capability,
as an attribute and as a class name*/

[*class definition of dept */

83

The following is another example adapted from [Page89] about antenna. Here we give
an example of how generic methods “gain” and “capture-area” are defined in a class

definition by using a rule.

1. antenna([isa — object], /*class antenna defn.*/

[wave = real], [capture-area = real],

[gain(real,real) = real] /*signature for */
) /*method gain */
2. par-antenna(fisa — antennal, [*parabolic ant. defn */
[effciency = inleger], /*typing, funct. attrib. */
[diameter = integer], /*typing, funct. attrib.*/
[capture-area(integer, integer) = real] [*typing, 2-ary meth.*/
)
3. Ant([gain(W, A) — div(imult(4, mult(3.14, A))), mult(W, W)]) -
Ant({instOf — antennal, /*deductive rule for */
[wave — W], /*generic meth. gain*/

[capture-arca — A

)
4. Par([capture-arca(E,D) — div{imult(3.14, mult (D, mult(D, E))).1)]) :-
Par([instOf — par-antenna], /*deduct. rule for gen.*/
[efficiency — E}, /*meth. capture-area*/

[diameter — D]

)

The following is an example of an instance object’s definition:

antennal D({instOf — par-antennad}, [diameter — 5}, [e f ficiency — 0.6})

84

In the above example, gain(W, A) and capture-area(E, D) are the generic methods for

instances of the class antenna and the class par-antenna respectively.

3.3 The Syntax of Languages of
Object-Oriented Logic (OOL)

The alphabet of an OOL language consists of:

e a set of logical symbols:

— a countable set V of variables;

— the usual logical connectives: A (and), V(or), = (not), :- (implication), =
(equivalence), 1 (falsehood); quantifiers: V (for all), 3 (there exists);

— a set of auxiliary symbols: “(”, “)”, “[”, “]”, (",)", {7, «}", “=>7, “=7,

b Y= “Yga”, “instOf’;
e a set of non-logical symbols:

— a countable set F of function symbols (possibly 0-ary).

In RO-logic [KifWu89] and F-logic [KifLa89, KifLaWu90], function symbols are called
object constructors. Every function symbol has an arity n > 0. As in Predicate

Calculus, a 0-ary function symbol corresponds to a constant symbol.

As in F-logic {KifLa89], the name “object” is used either for an individual object
(which is called an “instance object™) or a class of objects (which is called a “class

object”). However, unlike the F-logic approach ([KifLa89], [KifLaWu90]), OOL treats

classes ¢" individual objects as different entities (different categories) from instance

85

(individual) objects. By treating instance objects and class objects as different cate-
gories, we eliminate a possible source of ambiguity in determining whether an object
denoted by an OID is a class or an instance object. They are represented differently

and have a clearly different semantics.

Definition An id-term is defined inductively as follows:

1. a variable is an id-term;
2. a Q-ary function symbol is an id-term;

3. if f is an n-ary function symbol and t;, ..., t, are id-terms then f(t;, ...,t,)

is an id-term.

4. There are no other id-terms. |

Hence, an id-term is defined similarly to that of F-logic [KifLa89, KifLaWu90] and the
usual terms found in Predicate Calculus. Notice that we use angle brackets “(” and
“)” to enclose arguments of a function, to prevent a confusion with round brackets
used for enclosing a method’s arguments. The following is an example of an id-term
(which is taken from the previous example about path program): pathID{X,Y), where

pathID is a function symbol and X, Y are variables.

A method name (or method denotation) is an id-term (the role of an id-term as
a method name is indicated by its syntactic position). A 0-ary method (a method
without any argument) is also called an attribute (or a label), to give it a more familiar

terminology in QO concepts.
Definition A ground id-term is an id-term that contains no variables. " |

A ground id-term is regarded as a logical abstraction corresponding to the concept of

object identity in object-oriented databases.

86

In OOL, terms are classified into date terms and class terms as defined below. We
follow the notation con\~ tion in standard Prolog programs, i.e., names for ground
id-terms start with lower-case letters and names for non-ground id-terms start with

upper-case letters.

The following definitions are the result of modifying the F-logic term syntax [Ki-
fLaWu90] to suit our logic. The main differences between OOL syntax and F-logic
syntax [KifLaWu90] are:

e a component of a data term cannot be a component of any class term, and vice

versa,

e we include the special “instOf" attribite (label) intended for asserting the

instance-of relation between instance objects and their classes;

e “empty” data terms or class terms, such as D(), are not allowed.
Definition A data term has the following structure:

D([instOf — ClassOfD),
[FMethy(A11y - -y A1 my) = Vi), ... [FMethi(Ar, .., Ak n,) — Vi,
[SMethi(S. 1, -, 510,) {511, - - SVip, }s -0
[SMethi(Sia, - -y Sto)) = {SViay - ... SVip })

where:

e D is an id-term,

Intuitively, the symbol D represents an id-term denoting an instance object.
The instance object denoted by D is also called the context object, i.e., the con-
text object of each method specified inside the opening round bracket following

D.

87

o The instance-of-assertion component [instOf — ClassOfD}, where instOf is an

auxiliary symbol, and ClassOfD is an id-term.

Intuitively, this component is specially used for defining the relztionship between
an instance object and its class by using the special attribute “instOf 7. The
symbol ClassOfD -epresents the id-term of the class to which the instance object
denoted by D belongs.

o The single-valued-method component [FMeth;(A,,, ..., A,n) — Vi], where

- 1<i<k;n 20.

— FMeth; is an id-term.
Intuitively, the symbol FMeth, represents an id-term denoting a single-
valued (functional) method. As mentioned before. a method name is also
an id-term. The syntactic position of F-Meth, determines its role as a
single-valued method, which is indicated by a single-headed arrow (*—")
following its arguments.

- A,p, ..., Ay p, are id-terms.
Intuitively, the symbols A, ,, ..., A, ., represent id-terms of instance ob-
jects as the proper arguments of FMeth,.

— V. is either an id-term or a data term.
Intuitively, the symbol V; is a meta variable representing either

* a data term as the output of method FMeth;; or

* the id-term of an instance object as the output of method FMeth,.

o The set-valued method component [SMeth,(S,1,S,0,)={SV,1,5V,, }],

where:

-ISjSl;OJZO;pJZO'

88

— SMeth; is an id-term.
Intuitively, the symbol SMeth; represents an id-term denoting a set-valued
method. A set-valued method name is indicated by the double-headed
arrow (“—~") following its arguments, and the curly brackets (“{” and

“}”) enclosing its output of type set.
~ 81y .+, 8,0, are id-terms.

Intuitively, the symbols S;;, ..., S, represent id-terms of instance objects

as the proper arguments of SMeth;.

- SV, ...,S8V;,, areid-terms.

Intuitively, the symbols SV;,, ...,SV;, are meta variables representing

either

* data terms as the output of SMeth;; or

* the id-terms of instance objects as the output of SMeth,.

The order of each component in a data term is immaterial, and the same method
name may occur more than once. Furthermore, a data term does not need to have
all of she different components described above, but at least one of them is required
to indicate that it is a data term. When a method name does not have any proper

argument, we may omit the empty round bracket () following it. For example, instead

of writing D([FMeth,() — Vi]) we may write it as D([F'Meth, — V}]). [

Note that if FMeth, (or respectively SMeth;) is a ground id-term then it represents
only one method, buc if it is a non-ground id-term then it represenis a family of
methods. A non-ground id-term representing a method name could be useful when
we want to express a method that behaves differently according to the instantiation

of the variable(s) in its id-term.

89

A data term is used to define the instance-of assertion and the methods that can be
applied to an instance object. In other words, a data term is used to define the state

and the behaviour of an instance object.

Definition A class term has the following structure:

C([isa — SuperClassOfC},
[(FMethi(Av, -- ., Arny) = {R1g, - Rug }, -,
(FMethi(Axrs -y Acns) = {Rets s Rec)]s
[SMethy(S11, ---5510,) == {SR14, ...SR1 W}, -0
(SMethi(Sis, - -s St0) == {SRits -2 SRiu}])

where:

e (' is an id-term.

Intuitively, the symbol ' represents an id-term denoting a class object whose
instance objects have methods with types given by the method signatures spec-

ified inside the round brackets.

o The subclass-assertion component [isa — SuperClassOfC], where isa is an aux-
iliary symbol, and SuperClassQOfC is an id-term.
Intuitively, this component is specially used for defining the relationship be-
tween the class ' and its superclass by the special attribute “isa.” The symbol
SuperClassOfC" represents the id-term of the class object to which the class

object denoted by (" belongs: and SuperClassOfC’ and C could be the same

id-term.

o The single-valued-method signature [FMeth,(A; 1, ..., Ayn) = {Riy, ..., Ris }],

where;

90

-1<1<k;n; 205t > 0.

— FMeth; is an id-term.
Intuitively, the symbol FMeth; represents an id-termn denoting a single-
valued method. A single-valued method signature is indicated by “="
following its arguments.

- A, ..., A, are id-terms.
Intuitively, the symbols A;,, ..., A; ., represent the id-terms of class ob-
jects as the proper argument of FMeth;.

- Ri,,..., Riy, are id-terms.
Intuitively, the symbols R 3, ..., Ri,, represent the id-terms of class objects

as the output of method FMeth;.

o The set-valued-method signature [SMeth;(S;1, ..., S5,0,) == {SR;1, ..., SR;.,}],

where

-1<j;<lo,20;u,>0.

— SMeth; is an id-term.
Intuitively, the symbol SMeth, represents an id-term denoting a set-valued
method. A set-valued method signature is indicated by “== " following
its arguments.

~ 515 .-, 5,0, are id-terms.
Intuitively, the symbols S, 4, ...,S,,, represent the id-terms of class ob-
jects as the proper arguments of SMeth,.

- SR;y,...,SR,, areid-terms.
Intuitively, the symbols SR;,, ...,SR;,, represent the id-terms of class

objects as the output of SMeth,.

91

As in the case for a data term, the order of each component in . class term is
immaterial, and there is no restriction that the same method should not appear
more than once. Furthermore, a class term does not need to have all of the different
components described above. At least one component is required to indicate that it
is a class term. When a method doe. not have any proper argument, we may omit

the empty round brackets () following the method name. n

Informally, the id-t rms of class objects R, ;, ..., R, represent the type of the output
returned by the FMeth;, when invoked in the context of an instance object from class
C on arguments which are instances of classes A;,,..., A, »,. The id-terms of classes
SR;,, ...,SR, ., represent the type of the outputs returned by the SMeth; when
invoked in the context of an instance object from class C on arguments which are

- v
instances of classes S, ...,5,,,.

The special attribute isa is used to define class hierarchies or the more general directed

acyclic grapas of id-terms denoting class objects. The set of all id-terms denoting

classes is partially ordered by subclass relationships.

Restriction The special attribute isa in class terms (or instOf in data terms) should
be treated like a keyword in Pascal, in the sense that its name cannot be used for
anything else. It is also required in OOL that an id-term that has been used to denote

an instance object cannot be used to denote a class object as well, and vice versa.

Notice that in the previous definition of a data term, the output of methods can also
be data terms. This allows us to embed data terms in other data terms to an arbitrary
depth (nested data terms). On the other hand. th= output of method signatures in
class terms are already restricted to id-terms. The reason for this restriction is that
we do not see many advantages of allowing the output to be class terms: without this
restriction, we may face unnecessary extra complexity in the analysis of the logic and

its presentation.

92

Definition A flat data term is a data term where the outputs of all methods, defined

in it, are restricted to id-terms. In the previous definition of a data term, this means:
e V; is an id-term;
o SV, ...,8V;,, are id-terms. =
Definition A term is denined as follows:

1. Every data term is a term.
2. Every class term is a term.

3. There are no other terms. (]
Definition A flat term is defined as follows:

1. Every flat data term is a flat term.
2. Every class term is a flat term.

3. There are no other flat terms. []

Definition Every term is a molecular formula, simply called a molecule.]
Definition Every flat term is a flat molecular formula, simply called a flat molecule.®

A molecular formula is defined similarly as for F-logic {KifLaWu90]. The reason to
name it a molecular formula is because a data term or a class term of the form
objld([Comp,],...,[Comp,]) is not really atomic and can be decomposed into, for

example, objld([Comp)) A . .. A objld(|Comp,]).

Inforinally, a molecular formula that cannot be decomposed into a simpler one is

called an atomic formula® or simply an atom.

I'This notion of decomposing a formula into its atomic formulae will be defined formally later, in
Section 3.6.

93

The following are examples of molecular form: lae that are not atomic formulae:

objld([instOf — clsld), [fmeth — val-id))
objld([smeth — {val-id,, val-id; }])

The following are examples of atomic formulae:

objld([instOf — clsld)) clsld([isa — superclsid))
objld([fmeth — val-id)) clsld([fmeth = {clsld,}])
objld([smeth — {val-id,}]) cisld([smeth == {clslds}])
objld([smeth — {}]) clsld([smeth == {}])

Definition We define formulae recursively as follows:

1. Every molecular formula is a formula.

2. If A and B are formulae then so are ~A4 and Aop B, where op € {A,V.:-.=}.
3. If A and B are formulae then so are VX A, 3Y B, where X and Y are variables.
4. An expression is a formula only if it can be shown to be a formula by the above

three conditions. []

Definition Given an OOL alphabet. the OOL language over that alphabet is the

set of all formulae constructed from the symbols of the alphabet. [|

3.4 The Semantics of an OOL Language

The interpretation of an OOL language is the result of a modification of the inter-

pretation of an F-logic language [KifLaWu90] to suit our model. While in F-iogic the

94

same object is both a class and an instance, in OQOL we clearly distinguish between
the two kinds of objects. An instai.ce object can only be an instance, and a class

object can only be a class.

The following notation will be used in presenting the semantic structure of OOL. Let
N be the set of all natural numbers, and {S,, }n.ea be a collection of sets, indexed by

the natural numbers. Then [[3%, 5, denotes their Cartesian product. Let U be a set.
n=0 p

Then Partial(U™*?,U) denotes the set of all partial functions U"t'— U, and P(U)

denotes the power-set of U.

Definition For a language £ of OO-logic, its semantic structure (also called inter-

pretation) I is a tuple (U, Lg, <, Lins, I, 1., 15, Is.), where:

1. U : a non-empty set, called the domain of interpretation.

Similar to F-logic, U is considered as the set of all “actual” objects in the

“possible world” /.

2. I,; : a mapping that interprets every n-ary function symbol f € F by a total

function U*—U, where n > 0.

Intuitively, when n = 0, I;4(f) is equal to an element of UU. Thus, function

mbols are interpreted in the same way as in Predicate Calculus. Ground
id-terms are considered as object identities (or object denotations) of “actual”
objects in U. These object identities are interpreted by the “actual” objects in

U through I,4.

3. < : a strict (non-reflexive) partial-order relation on U,

Intuitively, this < ordering is the semantic counterpart of the proper subclass
assertion (through the special attribute isa) in the language, such that if ¢, ¢ €

U, then a statement ¢ < ¢’ is read intuitively as “c is a proper subclass of ¢'.”

95

The ordering < is defined as usual for either < or =. Among the class objects
in U, we have the partial-order relation < (i.e., reflexive, antisymmetric, and
transitive). Notice that, unlike F-logic, the reflexive property is only for class
objects, and the relation < is only among class objects in U. This relation
is extended to tuples over [/ as follows: Let tuples @b e /", where a =

(ai, ...,a,) and b= (bry ...,b0,). Then @ =< Eiﬂ'a, < b foreachi=1,...,n.

. Ins: the interpretation of the special attribute instOf as a binary relation,
Linat(instOf) € P(U?)

such that: Given «,b,c € U/,

if 6 X c and {(a,b) € L,,(instOf), we have {(a,c) € I, (instOf).

Intuitively, for each ordered pair element I, (instOf). the first component is
an instance object and the second component is the class object where it be-
longs. This ordered pair is the semantic counterpart of an instance-of assertion

(through the special label “instOf’) in the language.

By interpreting the special attribute instOf as a binary relation (which is similar
to C-logic [CheWa89] that interprets attributes (labels) as binary relations), an
instance object may belong to several classes and a class object may have more

than one instance object.

5 1. :U— I, Partia(U+ U7)

'This mapping associates each element of {” with a sequence of partial functions

EAa g

This mapping is intended for the interpretation of each single-valued method.

The interpretation is similar to that in F-logic [KifLaWu90].

96

Let p be any grouna id-term denoting a single-valued method. Then, I_. as-
sociates a sequence of partial functions U™*!—U to I;4(u) € U. Each single-
valued method may have different arities. For each single-valued method of

arity n > 0, there is only one partial function U”?*!'—U in the sequence.

Let a method A be an element of U. Then I_.()\) represents a sequence of
mappings. This sequence is indexed by the arity n > 0. Let the notation I ()
refer to the n-th component of such a sequence, i.e., a mapping of arity n + 1.
The actual arity of an n-ary method is (n + 1) because the instance object
from where the method is invoked (also called the context object), is included
as the first argument. The remaining n arguments correspond to the proper

arguments of the method.

In object-oriented programming terminology, the notation
I".(X){(contzt,arg, ...,argy,)

can be thought of as a message to the object contxt to invoke the single-valuad

method A on arguments arg,, ...,arg,.

This interpretation, which associates a partial function to each arity of a method,
allows us to overload method names, i.e., the same id-term (of a method) may
have different numbers of arguments, where each arity has a different inter-
pretation. In the next item, we will see that we can also overload a method
name in another way, i.e., to overload a method name for both single-valued

and set-valued methods.

o I : U= I, Partia(U™, P(U))

n=0
This mapping associates each element of U with a sequence of partial functions

U —P(U).

97

This mapping is intended for the interpretation of every set-valued method.

The interpretation is defined similarly to that in F-logic [KifLaWu90).

Given A € U, n > 0, the explanation for I_..(A) (respectively, I_(\)) is similar
to that for I_.(A) (respectively, I” (X)), with the difference that each n-ary

set-valued method is interpreted by a partial set-valued function.

Before we present the next mapping, i.e., I, we need the following two defini-

tions of upward closed sets and antimonotonic partial functions.

A set of classes S C U is upward closed if for any class ¢ € § and ¢’ € U such
that ¢ < ¢ (i.e., ¢ is a proper subclass of ¢’), we have ¢/ € S. The notation

P;(U) will be used to denote the set of all upward-closed subsets of U.

Let ¢ be a partial function {/"*'—P;(l'), where n > 0. The partial func-
tion o is antimonotonic® if and only if for every pair of (n + 1)-tuples of
classes {contxtel, clargs), (subcontrtcl, clargs) € U™ such that subcontztcl <
contrtel and @(contrtel, cla;'gs) is defined, we have

- @(subcontztcl. clargs) is also defined, and

- the relation p(subcontrtcl, cla?‘gs) 2 s,o(cont.rlcl.cla;'gs) holds.

The notation Antimonotonic(U/"*', Pil7) will be used to denote the set of all

partial functions {/**! —P({’) that are antimonotonic.

'-l

I, - U—TI22, Antimonotonic{U™+ , PylV)

This mapping associates each element of {7 with a sequence of antimonotonic

partial functions U/"*!' —P ().

“We define the antimonotonicity property differently from that in F-logic [KifLaWu90] to avoid
later difficulties in defining the well-typing conditions and in designing the well-typing inference rule.
In [KifLaWu90) this property is defined as follows: if cvery pair of vectors of classes @, b € [/"+!
such that b < & and ©(&) is defined, then o(b) is also defined and the relation gp(l;) 2 ¢(@) holds.

98

This mapping is intended to interpret every single-valued-method signature,
i.e., to interpret the types of every single-valued method’s argument(s) and its

output.

Given A € U, n > 0, the explanation for IZ (1)) is similar to that for I” ()).

8. I : U— I3, Antimonotonic(U*, Py(U))

This mapping associates each element of U, with a sequence of antimonotonic

partial functions U™t —P;(U).

This mapping is intended to capture semantically the type of every set-valued

method’s argument(s) and the type of its output(s).

The Well-Typing Conditions
The following well-typing conditions provide the link between I_, and I, and the

link between I and I=x .

For all m,0bj,a,, ...,a,,cobj,ca,, ..., ca, € U:

1. For single-valued methods:
if 1% (m)(obj,ai1,...,a,) and IZ(m)(cobj,ca,,...,ca,) are defined, and

(obj, cobj) € Ling(instOf), we have:

(@i, ca;) € Ling(instOf) for each e = 1,...,n

For set-valued methods:
if I12,, (m)(obj, a1, ...,a,) and I[Zys(m)(coby,cay, ...,ca,) are defined, and

(0bj, cobj) € Iinu(instOf), we have:

(aiyca;} € Lpgu(instOf) for eachi =1, ...,n

99

2. For single-valued methods:
if for some p € U, p = I™,(m)(obj,ay, ...,a,) and IZ(m)(cobj,cay, ..., ca,) are

defined, and (obj, cobj) € Iin.(instOf), then
for every q € IZ (m)(cobj, ca,, ..., ca,)

we have:
(P, q) € Linat(instOf)

For set-valued methods:
if for some p € U, p € I*,, (m)(0bj,a,, ...,a,) and 2y (m)(cobj, cay, ..., cay)

are defined, and (obj, cobj) € I,,5(instOf), then
for every g € IZ (m)(cobj,cay, ...,ca,)}

we have:

(p.q) € I.a(instOf)

A discussion for I-:

Let IZ () denote the n-th component of sequence I (A). where A € U is an interpre-
tation of a method name. Informally, the intended meaning of IZ()) is the type of
the corresponding (n + 1)-ary function /2, (A). Every element of the domain of IZ ()
(i.e., an (n + 1)-tuple of classes {contxtcl,clarg.....clarg,)) is viewed as the type of
any {n + 1)-tuple of instance objects {contrt,argi,...,arg,), on which /" (\) can be
applied correctly. This means that contrt is an instance of class contrtcl, and arg, is

an instance of class clarg, foreachi =1, ..., n.

Notice that the first argument of I%(A) is the context class where the function is

invcked.

100

On the other hand, IZ ()) (contztel, clarg,, ...,clarg,) is intended to be the type of
IZ,(}) (contxt.arg, ...,arg,) where contzt is an instance of class contzicl, and arg;

is an instance of class clarg; for each : = 1, ...,n. This means that
I".(X)(contzxt,arg,, ...,argy,)

must belong to every class in IZ (A)(contztcl, clarg,,...,clarg,).

An intuitive explanation of the upward-closedness requiremeunt is:

Assume that we have I% ())(contzxt,arg,,...,arg,), as an instance of a class
c € IZ(A) (contxtel, clarg,, ... ,clarg,), then it is natural that I” (\) (contzt,arg, ...,
arg,) must belong to every super class of c¢. For example, if joe is an instance of class
student and student is a subclass of class person then naturally joe is also an instance
of class person. This is why IZ(A)(contztel, clarg, ..., clarg,), should be upward

closed.

An intuitive explanation of the antimonotonicity requirement is:
Assume that IZ(A) is applicable to a tuple of classes (contztcl,clarg,, ..., clarg,),
by antimonotonicity, it should be also applicable to any tuple (subcontzicl,clarg,,

..,clarg,), where subcontzicl is a subclass of contcicl.

Let I7,()A) be applicable to any tuple (subcontzt,arg,, ...,arg,) such that subcontrt
is an instance of class subcontztcl and arg; is an instance of class clarg; for each

1=1,...,n.

The value of I™,()) (subcontzt,arg, ...,arg,) should be compatible with both values
of IZ(A) (subcontztcl, clarg,, ...,clarg,) and I3 (M) (contztcl, clarg,, ..., clarg,).

Then, we have the following relation:
IZ (A)(subcontztcl, clarg,, ..., clarg,) 2 IS (A)(contztcl, clarg, ..., clarg,)

The reason for the superset relation is because I, (A)(subcontzt, arg, ...,arg,) should

101

belong to every class to which I™ (A)(contzt,arg,, ...,arg,) belongs, where contzt is

an instance of contrtcl end arg; 1s an instance of clarg; for each: = 1,...,n.

Given A € U, the explanation for IZ, () is similar to that of IZ (), except for obvious

changes for set-valued methods.

3.4.1 Variable Assignment

A variable assignment V is a mapping from the set of variables V to the domain U.

This variable wssignment is extended to id-terms and terms (molecular formulae).

Definition For an id-term or a term ¢, V(t) is defined as follows:

L V) =WY)ift=Y and Y € V.

2. V(1)

¥(d) = L4(d) if t is an id-term d of arity 0, where d € F.

V() = V(f(...,T,..)) = La(f). ..V(T),...),ift = f(....T,...) is an
id-term of arity > 1, where f € F.

4. V() = V(Oul[...],-...[...]) = V(0.), if t is a data term or a class term with
id-term O,,. |

3.4.2 The Meaning of a Formula Under a Semantic

Structure

Let I be a semantic structure and V be a variable assignment. A molecular formula
T is true under the sermantic structure [with respect to a variable assignment V
(denoted by I |=y T') if and only if I has an object V(T') with properties as specified

in T'. This interpretation is defined formally below.

102

3.4.2.1 Satisfaction of Data Terms
Definition (An instance-of assertion)
Let T be a flat data term of the form
D([instOf — ClassOfD)),
where D, ClassOfD are id terms. Then
I =y T iff (V(D), V(ClassOfD)) € I;pyi(instOf)

Intuitively, I |y T iff V(D) is an instance of V(ClassOfD) under the semantic struc-
ture 1.]

Definition (A flat-single-valued-method assertion)

Let T be a flat data term of the form
D([FMeth(A,, ..., A,) — V]),

where D, FMeth, A,, ..., A,, V are id-terms, and n > 0.
I =y Tiff

o I™ (V(FMeth))(V(D),V(A1), ...,V(An)) is defined; and

o V(V)=I"(V(FMeth))(V(D),V(As), ..., V(An)).]
Definition (A nested-single-valued-method assertion)
Let T be a nested data term of the form

D([FMeth(A,, ..., A,;) — Datd]),

where D, FMeth, A,,..., A,, are id-terms, n > 0, and Data is a meta variable repre-

senting a data term.

Iy Tiff

103

o I (V(FMeth))(V(D),V(A1), ..., V(A,)) is defined;

o V(Data) = I™ (V(FMeth))(V(D),V(Ay), ...,V(A,)), and

e | £y Data. n
Definition (A flat-set-valued-method assertion)
Let T be a flat data term of the form

D([SMeth(S,, ..., S))—{SVi, ...SV,.}]),

where D, SMeth, Sy, ..., S;, SV, ...,5V,, are id terms, | > 0, and m > (.
=y Tiff

o I”_(V(SMeth))(V(D),V(S51), ..., V(S)) is defined; and

o {V(SWV), ..., V(SV,)} C I'_(V(SMeth))(V(D),V(51),V(S)). n
Definition (A nested-set-valued-method assertion)
Let T be a nested data term of the form

D([SMeth(S,, ..., S))—~{Data,. ..., Data,}]),

where D, SMeth, Sy, ..., S; are id-terms, Data,. ..., Data,, are meta variables rep-

resenting data terms, [> 0, and m > 0.
=y Tiff
o 7 (V(SMeth))(V(D),V(S1).V(5)) is defined;
o {V(Data,), ...,V(Datan,)} C IL_,(V(SMeth))(V(D),V(S}), ..., Y(5)) and

e | Ey Data;,fori=1,...,m. a

104

Definition (A data term in general)

Let T be a data term of the form

D([Compl]a cec [Comp,,]),

where D is an id term, and each component Comp; (for ¢ = 1, ...,n) is one of the

following (where the symbols are defined as in the previous definitions of data terms):

o instOf — ClassOfD, i.e., an instance-of-assertion component;

o FMeth(A,, ..., A,) — V,ie., a flat-single-valued-method component;

o FMeth(A,, ..., A,) — Data, i.e., a nested-single-valued-method component;
o SMeth(Sy, ..., S1)—{SV1, ...,SV,, },i.e., a flat-set-valued-method component;
e SMeth(S,, ...,S))—+{Data,, ...,Data,}, i.e., a nested-set-valued-method com-
ponent.
Then I =y T iff I v D([Comp;]) for eachi =1, ... ,n.]

It follows immediately from the last definition that every data term of the form
D([Comp,], ...,[Comp,])
is logically equivalent to formula D([Comp,]) A ... A D([Comp,]), where the meaning

of “A” is as usual, i.e.,

I Ev D([Comp,], ...,[Comp,)) iff I |y D([Comp,]) A...A D([Comp,]).

It also follows from the definition of the satisfaction of a nested data term that a

nested data term such as:

D([FMethy(Ay, ..., As) = V([FMethy(B,, ..., Bi) = C)))

105

is logically equivalent to
D([FMethy(Ay, ..., An) = V]) AV([FMethy(B,, ..., By) — C))

A similar equivalent relation is used for nested-set-valued methods.

3.4.2.2 Satisfaction of Class Terms

Definition (An isa assertion)

Let T be a class term of the form
C(fisa — SuperClassOfC)),
where C, SuperClassOfC’ are id-terms.
I v T iff V(C) X V(SuperClassOfC)

Intuitively, I =y = iff V(C) is a subclass of V(SuperClassOf() under the semantic

structure [. []

Definition (A single-valued method signature)

Let T be a class term of the form

C({FMeth(A,,A,) = {Ry.....R").

“ d

where C, FMeth, Ay, A,, Ry, ..., R, are id-terms, n > 0, and [> 0.

Iey T iff
o I%(V(FMeth))(V(C).V(A)). ..., V(A,)) is defined: and

o {(V(Ry),...,V(R)} C IL(V(FMeth))(V(C),V(A1), ..., V(A,)). .

106

Definition (A set-valued method signature)

Let T be a class term of the form
C([SMeth(S,, ...,S:) == {SR,, ..., SR.}]),

where C SMeth, Sy, ..., S5, SRy, ...,SR, are id-terms, t > 0 and u > 0.
Iy Tiff

o It (V(SMeth))(V(C),V(S1), ..., V(Sy)) is lefined; and

o {V(SR:),...,V(SR.,)} C I, (V(SMeth))(V(C), V(5}), - --,V(5:)). 8
Definition (A class term in general)
Let T be a class term of the form

C([Comp,], ...,[Comp,]),

where C is an id term, and each component Comp, (for : = 1, ...,n) is one of the

following (where the symbols are defined as in the previous definitions of class terms):

o isa — SuperClassOfC;,
o FMeth(A,, ..., A,) = {R1, ..., Ri};

o SMeth(Sy, ...,S.) == {SRy, ...,SR.}.

Then I vy T iff I |y C([Comp)]) foreach i =1, ...,n. [

Following the definition above, each class term of the form C([Comp,],...,[Comp,))
is logically equivalent to formula C([Comp,]) A ... A C([Comp,}), i.e.,

I =y C([Comp,], ...,[Comp,)) iff I |y C([Comp,]) A...AC([Comp,))

107

The meaning of formulae a V 3, a A 8 and —a are all defined in the usual way. For

quantifiers, the meaning is also ordinary as follows:

o I =y (VXa) if for every V' that agrees with V except possibly on X, I |y a;

o I =y (3Xa) if for some V' that agrees with V except possibly on X, I =y a.

From the above definition of quantified formulae, we can conclude that if a formula
a is closed (not containing any free variable) then its ‘neaning is independent of

variable assignments, and the notation that the structure [satisfies a can be denoted

as [= a.

A structure I with respect to a variable assignment V is called a model of a formula
aif I =y a. Let P be a set of formulae. Then, the structure I, with respect to a
variable assignment V, is called a model of P if for every a € P, I =y a. The set of
formulae P logically implies (or semantically entails) a formula o (denoted by P = a)

if and only if every model of P is also a model of a.

3.5 Incorporating Predicates

In certain cases where an application is more appropriately represented in a value-
based s~tting, or wiien we need to mix predicates and objects, we may need to have
first-order predicates as well as objects ([KifWug9, KifLaWu90, CheWa89)). For ex-
ample, we may need to verify that certain objects stand in a particular symmetric
relationship to each cther, such as adjacency and equality. These kinds of relation-
ships can be encoded as objects, but the resulting representations may not be natural.
For example, such a case arises in representing equalities or inequalities among num-

bers. In the next subsection, we will show how predicates are encoded as terms and

108

how to incorporate predicate-atomic formulae into QOL syntactically and semanti-
cally. This is the result of adapting the corresponding techniques used in [KifWu89,
KifLaWu90).

3.5.1 Encoding Predicates as OOL Terms

To encode an n-ary predicate symbol p, we introduce a new class p. Let func, be a

new n-ary function symbol. Then, we assert
(VA;.. . VA func,(Ay, ..., An)([instOf — p])}
and represent an atomic formula of Predicate Calculus of the form
p(Th, ..., Ty)
by means of an OOL term

func,(Th, ..., Tu)([argr — Th),. .., [arg, — T3))

For example, suppose that we have the following atomic formula of Predicate Calculus:

where = is an infix predicate symbol, and a, b are constants. Then, we represent this

atomic formula by the following data terms:
feq(a, 0)([arg, — d], [arg; — b))

feala, b)([instOf — &q])

where f., is a binary function symbol, and a, b are the associated id-terms. We also

introduce class €¢ to simulate the predicate =, and assert the instOf relationship.

Similar to F-logic [KifLaWu90), to avoid the need for converting every predicate into
OOL terms such as given in the example above, we incorporate predicates into the

semantics o” QOL.

109

3.b.2 Syntax of The Logic Extended with Predicates

To include predicates in the object-oriented logic, we extend the alphabet of an OOL

language with a set p of predicate symbols.

Definition If p € p is an n-ary predicate symbol and Id,, ..., Id, are id-terms, then
p(ld,,..., 1d,) is a predicate-atomic formula or simply called a P-atom. [|

Definition A molecular formula is either a term (in the sense of OOL) or a predicate-

atomic formula. a

Definition A flat molecular formula (simply called a flat molecule) is either a flat

term or a predicate-atomic formula. []

Definition Formulae are now defined to be constructed out of terms and predicate-

ato:nic formulae plus the usual logical connectives and quantifiers. [

Definition A literal is either a molecular formula (also called a positive literal) or a

negated molecular formula (also called a negative literal). [

3.5.3 Semantics of The Logic Extended with Predicates

The tuple of the original semantic structure (interpretation) I (which is defined in
Section 3.4) is augmented with a new mapp’ng for predicate symbols. Each n-ary
predicate symbol is interpreted as an n-ary relation on the domain of interpretation

U by using the function I,,, as follows:

I,(p) € U'", for each n-ary predicate symbol p € ¢

The Meaning of a Predicate-Atomic Formula Under a Semantic Structure

Given a semantic structure I = (U, L4, <, Linsts [py [y [I, I= }, let V be a

110

variable assignment, p be a predicate symbol, and Id,, ..., Id, be id-terms. Then

Iy plldy, ..., 1d)iff (V(Idy), ..., V(Idy)) € I.(p)

The interpretation for the equality predicate (=) is defined as follows:

I(=) : {{a,0)|la € U}

It follows immediately from the definition above that: if ; and t; are id-terms, we

have 1 }=v (tl = tg) iff V(tl) = V(fz).

The satisfaction of a formula consisting of different kinds of molecular formulae under

a semantic structure and the notion of a model are defined in the usual way.

3.6 Properties of Semantic Entailment

In this subsection, we shall describe properties of the semantic entailment (}=) of
OOL. For presentation simplicity, the properties are presented through assertions
about ground molecular formulae. All of the assertions follow from the definition
of the semantic structure in Section 3.4 and 3.5. These lemmas shall be used later
as the basis for the semantic-entailment closure of Herbrand interpretations, and for

designing the inference rules ¢f an OQOL proof theory.

For all of the following lemrnas, let G be a set of ground-molecular formulae, F* a set
of ground id-terms, I a semantic structure (U, Lg, <, Linst, Ip, 1, 1, I, I),

and V any variable assignment.

The Equality Predicate (“= ")

Lemma 3.6.1 (Reflexivity of “=")
For eacho € F*, I = (0 = 0).

111

Proof: From the definition I (=) : {{a,a)|a € U} and the definition of V, the proof

follows immediately.]

Lemma 3.6.2 (Symmelry of “=")
Leta,be F*. If 1 = (a = b) then I = (b= a).

Proof: The proof follows immediately from the definition of I,(=) and the definition
of V. |

Lemma 3.6.3 (Transitivity of “=”)
Leta,bce F*. If IE(a=b)and I =(b=c¢c) then | |= (a = ¢).

Proof: The proof follows immediately from the definition of I,(=) and the definition
of V. []

Lemma 3.6.4 (Substitution of “=7)
Let a,b€ F* and L be a literal. If I = (a = b) A L and L' is the result of repiacing

an occurrence of a in L with b, then [= L.

Proof: 'The proof follows immediately from the definitions »f the satisfaction of a

literal, I,(=), and V. []

The Isa Relation

Lemma 3.8.5 (Heflexivity of The Isa Relation)
Let a, by, ... by, c, fln,sm,p,q € F*.

1. If I = a([isa — p]) then I |= a([isa — a]) and | = p([isa — p]).

2. If I = q([instOf — a)) then I k= a([isa — a)).

112

3. If I Ea([fm(by,-..,b,) = {c}], then
! = a([isa — a]),
I = b([isa = b)), ..., I E ba([isa — b)), and
I E ¢([tse — ¢)]).

4. If I = a([sm(by,...,b.)=>{c}], then

I E a([isa — d}),
I = b([itsa = b)), ...,I [ba([isa — b,]), and

I = ¢([isa — ¢]).
Proof:

1. By the definition of the satisfaction of an isa assertion, /I | a([isa — p]) iff
V(a) = V(p). By the definition of <, V(a) and V(p) are class objects. From
the reflexivity of < on any class object, V(a) < V(a) and V(p) < V(p). By

the definition of the satisfaction of an isa assertion, I | a([tsa — a]) and

I = p([isa — p]).

2. By the definition of I;,,:, we have an ordered pair (V(q),V(a)) € ILina(instOf,
where V(a) is a class object. Since V(a) is a class object, by the definition of

=, we have V(a) X V(a). Thus, I = a([ise — a]).

3. By the definition of the satisfaction of a single-valued-method signature, we

have
o IZ(V(fm))(V(a),V(b1), ...,V(by)) is defined, and
o V(c) € IZ(V(fm))(V(a),V(by), ..., V(b)),

where V(a) V(b1), ...,V (b,), and V(c) are class objects. From the reflexivity
of < on any class object, V(a) < V(a), V(&) =% V(b1), ...,V(by) =X V(b,),

113

and V(c) X V(c). Thus I | a([isa — a]), I E bi([isa — b)), ..., I E
bn([zsa — b,]), and I |= ¢([isa — c}).

4. The proof is similar to proof (3), by using I—=x’s definition on V{sm). |

Lemma 3.6.6 (Transitivity of The Isa Relation)
Let a,b,c€ F*. If I = a([|isa — b]) and I |= b([isa — c]), then 1 |= a([isa — c]).

Proof: Since I |= a([isea — b]) and I | b{[isa — ¢]), then V(a) < V(b) and
V(b) <X V(c). By the transitivity of <, V(a) < V(¢). By the definition of the

satisfaction of an isa assertion, I |= a[tsa — c]). n

Lemma 3.8.7 (Antisymmetiry of the Isa Relation)
Leta,be F=. If I = a([isa — b)) and I = b([isa — a}), then I |= (a = b).

Proof: Since I |= a([isa — b]) and I = b{[isa — a]), then V(a) < V(b) and
V(b) < V(a). By the antisymmetry of <, V(a) = V(b). By the definition of =,
I E{a=0b). L

The Instance-of Relation

Lemma 3.6.8 (InstOf-Isa-Transitivity of The Instance-of Relation)
Let a,bc € F*. If I = a([instOf — b)) and I = b([isa — c]), then
I = a([instOf — c}).

Proof: From I E a([instOf — b]), by the definition of I,,,, we have an ordered
pair (V(a), V(b)) € Iinau(instOf) (object V(a) is an instance of class V(b)). From
I = b([zsa — ¢]), we have V(b) = V(c), (V(b) is a subclass of V(c)). By the instOf-
isa transitivity of the instance-of assertion, from instance-of pair (V(a), V(b)) and
subclass pair V(b) < V(c), we have (V(a),V(c)) € Lin(instOf). By the definition of

the satisfaction of an instance-of assertion, we have I |= a([instOf — }). |

114

The Type Inheritance Properties

Lemma 3.6.9 (Single-Valued-Method Type Inheritance)
Let A1y - .3 Qn, fm’paplaq € F‘: and t = p([fm(ala <. 7an) = {q}])

IfIl=t and I = p'([isa — p)), then I |= p'([fm(ay, ...,a.) = {}]).

Intuitively, this lemma says that if p’ is a subclass of p then the signature of a single-

valued method defined on p is inherited by p'.

Proof: Let u denote p'([fm(ay, ...,a,) = {q}]). Given a variable assignment V, it
follows from the satisfaction of a single-valued method signature defined before that

we have for term ¢:
V(g) € Is(V(fm))(V(p), V(a1), ..., V(an))

Since I |= p'([isa — p]), by the definition of the satisfaction of an ise assertion, we

have V(p') < V(p). By the anti-monotonicity of I.(V(fm)), we have:

V(g) € I (V(fm))(V(¢), V(a1), ..., V(az))

Now, I |= u follows from the definition of the satisfaction of a single-valued method

signature. [|

Lemma 3.6.10 (Set-Valued-Method Type Inheritance)
Let ay, ...,a,,8m,p,p',q € F*, and t = p([sm(a,, -..,a,)=>{q}]).

IfI1 =t and I = p'([isa — p)), then I | p'([sm(ay, -..,a.)=={q}])

Intuitively, this lemma says that if p’ is a subclass of p then the signature of a set-

valued method defined on p is inherited by p'.

115

Proof: Let u denote p'([sm(ai, ...,a,)3=>{q}]). For any variable assignment V, it
follows from the satisfaction of a set-valued method signature defined before that we

have for term #:
V(q) € Iz (V(sm))(V(p), V(a1), -..,V(a,))

Since I = p'([ise — p]), by the definition of the satisfaction of an isa assertion, we

have V(p') <X V(p). By the anti-monotonicity of I=e.(V(sm)), we have:

V(q) € I=(V(sm))(V(P'),V(a1), ..., V(an))
Now, I | u follows from the definition of the satisfaction of a set-valued method
signature.]

The Range-Supertyping Properties

Lemma 3.6.11 (Single-Valued-Method Range Supertyping)
Let a, ... 7anvfm1paqr € F-v and let t = p([fm(ah e ﬂan) = {Q}])'

IfI =1t and I |E q([isa — 7). then I = p([fm(ay,a,) = {r}})

Proof: For any variable assigrment V, it follows from the satisfaction of a single-

valued-method signature defined before that we have for term ¢:

V(g) € I (V(fm))(V(p),V(a1). ..., V(a,))

Since I = q([isa — r]), by the definition of the satisfaction of an isa assertion, we
have V(q) < V(r). By the upward-closedness of I (V(fm))(V(p),V(a1), -...V(a,))

we have:
V(r) € I (V(fm))(V(p).V(a1), ..., V(a,))

Now, I = p([fm(a1,...,a,) = {r}]) follows from the definition of the satisfaction of

a single-valued method signature. [

116

Lemma 3.8.12 (Set-Valued-Method Range Supertyping)
Let ay,...,an,sm,p,qr € F*, and let t = p([sm(ay,...,a,)==>{q}]).

IfI1' =t and I | gq([isa — r]), then I |= p([sm(ay,...,as)=>{r}])

Proof: For any variable assignment V, it follows from the satisfaction of a set-valued-

method signature defined before that we have for term ¢:
V() € Iz (V(sm))(V(p), V(a1), . - -, V(asn))

Since I |= g([isa — r]), by the definition of the satisfaction of an isa assertion, we
have V(q) < V(r). By the upward-closedness of I==(V(sm))(V(p), V(a1),...,V(a,))
we have:

V(r) € Iz (V(sm))(V(p), V(a1), . .., V(an))

Now, I |= p([sm(ay, - ..,a.)=={r}]) follows from the definition of the satisfaction of

a set-valued method signature. []

The Well-Typing Conditions

Lemma 3.8.13 (Well-Typing Properties)

s ’
-
Leta,ca,zy, ..., Zp, Ty, ..., Tp,Y,2, fm,sm € F*.

o For single-valued methods:

if I = a([fm(zy,...,20) — y)), I = ca([fm(zy, ...,z,) = {z}], and
I = a([instOf — ca]), then

- I = y([instOf — z]);
— I = z([instOf — z.]) (for 1 <i< n);

117

e For set-valued methods:

if I = a({sm(zy,...,z0)— {y}]), I = ca([sm(z], ..., z,)= {z}], and
I = a([instOf — ca]), then

- I = y([instOf — z]);

~ I |= zi([instOf — z}]) (for 1 < i< n).

Proof: The proof follows immediately from the well-typing conditions. []

Single-Valued Methods

Lemma 3.6.14 (Functionality)
Leta, x,, ..., x,, vy, vy, fm € F*:

Ifl Ea([fm(zy,...,x.) = v1]) and I |= a([fm(xy, ...,7,) = ©3]) then

I (v = vy)
Proof: The proof follows immediately from the interpretation of single-valued meth-
ods by I_.. 8
Before we present the next lemma, we need the following definition.

The following definition of atomic formulae constituting a molecular formula is similar

to that in F-logic [KifLaWu94].

Definition The atomic formulae constituting a molecular formula are defined for-

mally as follows:

¢ Given a predicate-atomic formula, it itself is an atomic formulae.

e Given a class term:

118

C(lisa — SuperClassOfQ},...,
[FM,'(A.'J, ceay A."n.) = {R;‘,l, sy Ri,!.}], ey
[SMJ(S),17 (KRR Sj.l,) = {SRj'l, oo SRj,u, }]7 .- .).

Its atomic formulae are the following class terms:

C([isa — SuperClassOfC)),

C([FMi(Aiay ..., Ain) = {}]),

C([FMi(Ais, ..., Ain) = {Ria}]), ..., C(IFMi(Aiyy - .., Ain,) = {Rit, }),
C([SM;(S;a, -, S50,) = {}]),

C([SMi(S;a, ..., Sis,) == {SR;u}]),-.., C([SM;(Sj1, ---,Siy,) == {SR;.,}])-

e Given a flat data term:

D([instOf — ClassOfD),...,
{FM.'(A.‘.], e 1Ai.n.) - ‘/l]), ey
[SMJ'(SJ'J, e ,Sj.l,)—b-’{SVj,l, “eey SVJ,,, }], .)

its atomic formulae are the following data terms:

D([instOf — ClassOfD)),

D([FMi(A;iy, ..., Ain) — Vi),

D([SM;(S;a; - - -5 Siu,)={}]),

D([SM;(S;a, - -+, Si4,) == {SVsa}]), ..., D(SMi(Sja, ..., Sia,) = {5V, }])

e Given a non-flat data term, we first need to decompose it into its equivalent of
a conjunction of flat data terms. Then we decompose each flat data term as

shown above. s

Definition :1.« atomic formula (or simply called an atom) is a molecular formula such

that either it has only one constituting atomic formula, or it has only two constituting

119

atomic formulae: itself, and an atomic formula whose output is an empty set {}. ®

Satisfaction of a Molecular Formula

Lemma 3.8.15 (Molecular Formulae)

Given any ground molecular formula, t,

I'=tiff I |= o, for each atomic formula a constituting t.

Proof: Follows immediately from the definition of the satisfaction of a molecular

formula. .

3.7 Herbrand Interpretations

The proof theory that we are going to develop is resolution based, where we prove
the truth of a formula from a given set of closed formulae through the unsatisfiability
property. Similar to the resolution-based proof theory in classical first-order logic, we

will use the following definition and proposition about unsatisfiability.

Definition Let S be a set of closed formulae of an OOL language L, and let [be a
semantic structure of L. The semantic structure I is a model for S if I is a model for

each formula of S.)

As usual, for a finite set of closed formulae S = {41, ..., .} of an OOL language L,
a semantic structure is a model of S (I |= S) iff I is a model for the conjunction of

its elements (/ = A...A¢,iff =0, foreachi=1,...,n).

Proposition 3.7.1 Let S be a set of closed formulae and R be a closed formula of an
OOL language L. Then R is a logical implication of S iff S U {—~R} is unsatisfiable.

120

Proof: For the only if direction, assume that R is a logical entailment of S. Let I be
a semantic structure of L and let I be also a model for S. Then, by the assumption,

I is also a model for R. Thus I is not a model for S U {-R}, i.e.,, SU {~R} is

unsatisfiable.

For the if direction, assume that S U {—~R} is unsatisfiable. Let I be any semantic
structure of L. Suppose that I is a model for € Because S U {-~R} is unsatisfiable,
I is not a model for ~R. Hence, I is a model for R (i.e., I = R), this means that R

is a logical entailment of S. .

As in classical first order logic, the problem we have is to determine S U {-R} is
unsatisfiable or not, where S is a set of closed formulae and R is a closed forn-ula
of an OOL language. To prove that S U {—~R} is unsatisfiable, we have to show
that there is no interpretation satisfying S U {—~R}. In classical logic, there exists
a class of interpretations, i.e., Herbrand interpretations, which are the only class of
interpretation for which we need to show unsatisfiability. However, it is required that
the set S must be a set of clauses (a clause is defined as usual, i.e., a disjunction
of literals where all variables are implicitly universally quantified at the outer most
level). We need to find a way of removing existentially quantified variables from a
set of closed formulae so that satisfiability is preserved. Skolemization is well known

in classical first order logic to deal with existentially quantified variables.

Id-terms and quantification in OOL have been defined in a similar way to id-terms and
quantification in F-logic [KifLaWu90], which in turn have been defined in a similar
way to terms and quantification in Predicate Calculus. For this reason, we can use
the Skolemization process and the associated Skolem theorem available in Predicate
Calculus to deal with existentially quantified variables. We begin this section with the
Skolem function and Skolem’s theorem, because we want to assume that all formulae

are Skolemized.

121

Theorem 3.7.1 (Skolem Function) Given a language L of OOL, with the set of
function symbols F, let I = (U, Lg, <, Iinst, Ip, [, I, 1., I), be the semantic
structure. Let VX,...VX,3Y ¢ be a closed formula with distinct variable symbols
X1, ...y Xn, Y. Assumc that p does not contain quantifiers Q1 X, ...,@.X,, where
Q; is either J or V¥, for eachi = 1,...,n. We extend F with a new n-ary function
symbol g. Then, whenever a semantic structure I' (i.e., the expanded I after F is
extended with g) is a model of VX, .. VX, p{Y/g(X1, ..., X))}, I’ is also a model
of VX,...VX,3Y ¢.

Conversely, for every semantic structure I that is a model of VX, ...VX,3Y o, F can
be ertended with a new function g (also called a “Skolem function”) such that I' (i.c.,

the exzpanded I) is a model of VX, .. VX, p{Y/g(X1,..., X2)}.

As a consequence, VX, ... VX, 3Y is satisfiable if and only if

VX:... VX, o{Y/g(X:,..... (»)}is satisfiable.

Proof: For the if part: The proof follows immediately from the fact that every

model of VX, ... VX, o{Y/g(X1,....X,)} is also a model of V.X;...VX,3}Y p is also
satisfiable.

To prove the only if part, assume that the seman.ic structure 7 is a model of
VX,...VX,3Y ¢. This means that for each {(a;..... ¢,) € U™, there is an ele-
ment b € U such that I =y, ». where V(Y/b) is a variable assignment with
VIY/b)Y(X1) = ay, ..., V(Y/b)(X.) = an and V(Y/B)(Y) = b. We define a selec-
tion function G, that supplies such an element 6 = G(a,. ...,a,) for each tuple
(ay, ...,a,) € U". Then I .zy(y/Ga,....any v for all (a1, ...,a,) € U™ and for
any variable assignment V such that V(X;) = a4, ...,V(%\,) = a,. Now we ev-
pand I to I’ by defining I/;(g) to be the chosen selection function G. Therefore,
I' =EVX,..¥X,p(Y/g(ay, ...,a,)), or equivalently, I’ is a model of VX,;...VX,

plY/9(Xa,..., Xu)}. =

Theorem 3.7.2 (cf. Skolem Theorem) Given a closed formula, o, and its Skolem-

ization, o', then a is unsatisfiable if and only if o' is unsatisfiable.

Proof: The proof for this Skolem theorem is almost identical to the proof of Skolem
theorem in Predicate Calculus. As in Predicate Calculus, we first convert the formula
a into its prenex form. Then we replace each existentially quantified variable by a
Skolem function with n arguments, where n > 0. It has been shown in Theorem 3.7.1

that Skolemization preserves satisfiability. »

In OOL, we can embed data terms in other data terms to an arbitrary depth (called
non-flat data terms or nested-datae terms). It has been shown in Section 3.4.2 that
we can transform any nested-data term into an equivalent conjunction of flat data

terms. For example,
a([fmeth, — id([b — ¢])]) is equivalent to a([fmeth; — id]) A id([b — ¢]).

We will use this property to simplify the proof theory and notation by focusing on
clauses consisting of flat terms or P-atoms only. By this assumption, we can avoid
unnecessary complexity of our definitions, notation and analysis, without reducing

the generality of our results.

Assumption
From this point, until the end of this chapter, we assume that, unless otherwise spec-
ified, all formulae are Skolemized and consist of only flat molecular formulae (also

called flat moleculcs).

Definition Given a language £ with a set F' of function symbols, its Herbrand
universe is the set of all ground id-terms F™*. The Herbrand Base (denoted by B) is

defined as the set of all ground molecular formulae. [|

123

Definition A subset H of B is a Herbrand interpretation of the language L if and

only if it is closed under semantic entailment “E” introduced in Section 3.4 and 3.5.8

Similar to F-logic [KifLaWu90], closedness is required here because a set of ground
flat terms may imply other ground flat terms in a non-trivial way. For examples:
{gradStd([isa — student]), student([isa — person])} |= gradStd([isa — person))
{din([children——{inas}]), din([children——{id2}])} k= din(|children—-{inas,id2}])

Definition Truth in the Herbrand interpretation H is defined as follows:

e a ground molecular formula (a ground positive literal) « is true in H iff 4 € H;
e a negative ground literal -/ is true in H iff | ¢ H;

e a ground clause [} V...V [, where I,’s (for 1 €7 < n) are literals, is true in H

iff at least one I, (1 <z < n) is true in H;

e a non-ground clause C is true in H iff all ground instances of ' are true in .

Definition A Herbrand interpretation H is a Herbrand model of a set of clauses S

if every clause in S is true in H (denoted by H | S). []

Closure Properties of a Herbrand Interpretation
Because of the closure requirement under “f=," a Herbrand interpretation has the fol-

lowing closure properties (which can be verified straight forwardly from the semantic-

entailment properties presented in Section 3.6).

e Equality predicate-atomic formulae form a congruence relation, i.e., reflexivity,
symmetry, transitivity, and substitution. Reflexivity, symmetry and transitivity

properties are defined as usual. The substitution property is as follows: if z =

124

y, | € H and !’ is the result of replacing an occurrence of z in ! by y, then

I' € H.

e The isa relationships (subclass relationships) among class objects in H form a

partial order relation (reflezive, transitive, and antisymmetric).

~ reflexivity property:
* If a([tsa — p]) € H then a([tsa — a])H and p([isa — p])H.
* If g([instOf — a]) € H then a([isa — a]) € H.
* If a([fm(bs,...,b) = {c}] € H, then
a([isa — a]) € H,
bi([ise — b1]) € H,..., ba([tisa — b,]) € H, and
c([isa — c]) € H.
* If a([sm(bs, ...,b,)=={c}] € H, then
a([tsa — a]) € H,
bi([tsa — b)) € H, ..., bu([tsa — b,]) € H, and
c([isa — c]) € M.
— transitivity property:
If a([isa — b]), b([isa — c]) € H, then a([isa — c]) € H.
— antisymmetry property:

If I = a([isa — b)), b([isa — a]) € H, then (a =b) € H.

o The instOf and isa attributes have the following property:
if a([instOf — b]) € H and b([ise — c]) € H then a([instOf — c]) € H.

e For class terms, there are properties as follows:

— type inheritance properties:

125

s if a(([fm(z1, ..., 2.) = {y}]), b([isa — a]) € H then
b([fm(zr, ...,za) = {y}]) € H;
* if a([sm(zy, ...,za)==> {y}]), &([¢sa — a]) € H then
b([sm(x1, ...,zn)== {y}]) € H.
— range supertyping properties:
* if a([fm(zq, ..., T0) = {y}]), y([ise — z]) € H then
a([fm(z1, ..., za) = {z}]) € H;
+ if a[sm(zy, ..., z2)= {y}]), y([isa — z]) € H then
a([sm(zy, ...,z.)==> {z}]) € H.

o The well-typing properties:

~ if a([fm(xy, ..., Ts) = y]), cal[fm(z),z,) = {z}]) € H,
and a([instOf — ca]) € H, then
* y([instOf — z]) € H;
+ z,([instOf — r)]) € H {(for 1 <i < n);
— if a{[sm(xy,2.)— {y}]).ca([sm(xy. ...,r,)= {z}]) € M,
and a([instOf — ca]) € H, then
* y([instOf — z}) € H;

x z,([instOf — 1)) € H (for 1 <i < n).

o Data terms have the functionality property. This means that if, as an example,
we have:
a(ffm(zy, ...,25) — w)). a([fm(zy,...,2,) — v2]) € H. then
vy =v; € H.

e For each molecular formula t: ¢t € H iff a € H for every atomic formula a

constituting .

126

3.8 Herbrand Interpretations and

Semantic Structures

This section describes the relation between the Herbrand interpretations and the
semantic structures of QOL described in Section 3.4. The relation between the Her-

brand Interpretations and the semantic structures is defined similarly to that of F-

logic [KifLaWu90).

The Herbrand Interpretation of a Semartic Structure
Given an OOL language L, let I be a semantic stiucture of a set of clauses §. The

Herbrand interpretation of I is the set of ground flat molecules that are true in I.

The Semantic Structure of a Herbrand Interpretation

For a Herbrand interpretation H, the corresponding semantic structure:
I'H = (U, Iid’ <,]inah Icn I—n I ’]=>’ Iﬁ*?)
is defined as follows:
1. The domain of interpretation U is the quotient of the set of all ground id-terms

F* by the equality predicate-atomic formulae in H, i.e., F*/ =. The equivalence

class of an id-term ¢ is denoted by [¢].

2. o I4(c) = [c], for each 0-ary function (constant) symbol ¢ € F.

o Lu(f)([t1], ---,[tn]) = [f(ty, ...,)], for every n-ary (n > 1) function
symbol f € F.

3. The ordering of class objects in U is defined by the isa assertions in H:

for all class objects [a], [b] € U, [a] < [8] iff a([isa — b])} € H.

4. The instance-of relation in U is defined by the instOf assertions in H:

for all objects [c],[d] € U, {[d],[c]) € lins(instOf) iff d([instOf — c]) € H.

127

5. I'([funM])([obj], [t], - - .. [ta]) =
[v] if obj([funM(t1,...,tn) = v]) EH
otherwise: undefined.
6. IZ,, ([setM])([obj],[ta], ..., [ta]) =
{[v] | obj([setM(ty,...,t,)—> {v}]) e H }if
obj([setM(ty, ..., t,)— {}]) e H
otherwise: undefined.

7. I; ([funM])([ObJ]’[fllv "'v[tﬂ]) =
{ [v] | obj([funM(ty, t,) = {v}]) e H }if
obj([funM(ty,t,)=> {}))eH
otherwise: undefined.
8. 12y ([setM])([obl, (1], -, {ta]) =

{ [v] | obj([setM(t,, t.)== {v}]) e H }if
obj([setM(ty,t,)== {}) e H

otherwise: undefined.

9. I(p) ={([ta], --. daD | P(tr, ... t1) EH }.

The constructed Iy = (U, Ly, <, Lingt Iy [, [-5, 5. [=x>) is indeed a semantic
structure because of the way its components are defined and the closure of the Her-

brand interpretation H under the semantic entailment *E=."

It follows from the definition of I™,, ({setM])([obj.[t:].[tn]) in (6) that being
“undefined” and being “empty” are different. It is undefined in (6) if H does not
contain any atom of the form oby([setM(t;,t,)—~...]). nor an atom of the form
obj([setM(ty, ..., tn)—>{}]). On the other hand I, ([setM])([0bj,[t],[t.]) is
empty if H contains obj([setM (¢4, ...,t,)—={}]), but it does not contain any atom of
the form obj([setM(t,, ..., t;)—={v}]) for some v € F*. Similarly for I% ([funM])
(lobg]: {ta], -.- s ta]) and [Zey ([setM])([0bj].[ta], ..., [ta]).

128

Proposition 3.8.1 Given a set S of clauses, In =S if H [S.

Proof: We need to show that for each clause ¢ € S, if H |= ¢ then Iy |= c. We show

this by considering the following cases:

1. cis a ground molecule:

By the definition of Iy it is straight forward to see that In | cif H | c.

2. cis a non-ground molecule:
Iy |= c iff I satisfies every ground instance of c¢. Since H |= ¢, every ground
instance of ¢ is an element of H. Thus, by the first case, Iy = every ground

instance of c. It follows that Iy = ¢

3. cis a negative-ground literal —g:

H | —g iff ¢ § H. By the definition of I, if ¢ € H then Iy ¢ g. Thus
In F —g.

4. cis a negative-non-ground literal —!{:
Iyy | =l iff Iy = every ground instance of I. Since H | -l, every ground
instance of [is not an element of H. Hence, by the first case, Iy £ every

ground instance of [. It follows that Iy | -!.

5. cis a disjunction of literals I, V...V I,:
Iy ELV...V I, iff Ii =]l for some i (by the usual definition of satisfying a

disjunction of literals). From the results of the previous cases, Iy = L if H | [,

The above cases show that if H | c then Iy | c.]

Proposition 3.8.2 Given a set § of clauses, then S is unsatisfiable if and only if §

has no Herbrand model.

129

Proof: The proof for the only if part is shown by a contradiction. Assume that S is
unsatisfiable, but S has a Herbrand model. It follows that because § has a Herbrand

model, by proposition 3.8.1, § is satisfiable. A contradiction!

The if part is proved by a contradiction, too. Assume that there is no Herbrand model
but S is satisfiable. We will show that if S is satisfiable then S has a Herbrand model.
From a semantic structure 7 that satisfies §, a Herbrand interpretation H is defined
as the set of all ground molecules that are true in I. Because I satisfies S, the way
the Herbrand interpretation is defined (i.e., the set of all ground molecules that are
true in /), and the notion of truth in a Herbrand interpretation (as defined earlier),

then H will also satisfy S. Thus S has a Herbrand model. A contradiction! [

3.9 Herbrand’s Theorem

The Herbrand theorem in classical logic says that a set S of clauses is unsatisfiable if
and only if some finite subset of ground instances of clauses in § is unsatisfiable. As
in classical logic, this theorem plays a similar-important role in QOL. This theorem
is proved by considering maximal finitely satisfiable sets, similarly to that of F-logic

[KifLaWu90], which in turn is similar to the proof of compactness theorem in [Ende72).

Definition A set G of ground clauses is finitely satisfiable. if every finite subset of
G is satisfiable. [

Definition A finitely-satisfiable set G of ground clauses is marimal if no other set

of ground clauses containing G is finitely satisfiable. |

Lemma 3.9.1 Let S be a finitely satisfiable set of ground clauses. Then there erists
a mazimal finitely satisfiable set T such that S C T.

130

Proof: Let A be a set of all finitely satisfiable sets of ground clauses that contain
S. A is partially ordered by subset relation C . It is also a non-empty set because
S € A. For every chain® A C A, the least upper bound of the chain, T, is also in
A. This is because T contains S and is finitely satisfiable, thus by definition of A we
conclude that T € A. Based on Zorn’s lemma?* there will be a maximal element T €
A . By the definition of A, the maximal element T contains S (i.e., $ C T)and T

is finitely satisfiable. [|

Lemma 3.8.2 Let T be a mazimal finitely satisfiable set of ground clauses. Then:

1. For every ground molecule g either g€ T or ~g € T.

2. For every ground clause, L V ...V l,, € T if and only if some |, € T, where
1 <1< n.

Proof: (1) Gince T is finitely satisfiable, then we have either TU{g} or TU{~g} is
finitely satisfiable. Because T is maximal, then it contains either g or —g. (2) Similarly
to (1), since T is finitely satisfiable, then we have either TU{l;} or TU{~,} is finitely
satisfiable, where 1 < ¢ < n. Since T is maximal, and for satisfying a disjunction
literals, at least one of the literals must be satisfiable, then T contains {; for some

t=1,...,n. []

Lemma 3.9.3 Let T be a mazimal finitely satisfiable set of ground clauses and H
be the set of all ground molecules (positive literals) in T. Then H is a Herbrand

interpretation.

3Given a set A that is partially ordered by subset relation (C), any subset A C A is a cham (fully

ordered set) if and only if for all z,y € A, either s Cyor y C z.
4Zorn’s Lemma: if X 1s a non-empty partially ordered sel such that every chain C X has an

upper bound, then X contains a marimal element.

131

Proof: The set T is clearly closed under |= because otherwise it is not maximal (by
definition). Since the interpretation H is defined as the set of all ground molecules in
T, H is also closed under |= . Thus, by the definition of a Herbrand interpretation,

H is a Herbrand interpretation. |

Theorem 3.9.1 (cf. Herbrand’s Theorem) A set of clauses S is unsatisfiable if

and only if some finite subset of ground instances of clauses in S is unsatisfiable.

Proof: The proof of the if part: If some finite subset of ground clauses of S is
unsatisfiable, then S is also unsatisfiable, by the definition of satisfiability. The only
if part is proved by contradiction. Assume that S is unsatisfiable, but the set G of
ground instances of clauses in S is finitely satisfiable. Then we will show that § is

satisfiable.

G is assumed to be finitely satisfiable. Based on Lemma 3.9.1, G can be extended to
some maximal finitely satisfiable set of ground clauses, T. H is defined as the set of
all ground molecules (positive literals) in T, then based on Lemima 3.9.3 we conclude
that M is a Herbrand interpretation. Now, we are going to show that for every ground

clause ¢, H |= c if and only if ¢ € T. We show this by considering the following cases:

1. cis a ground molecule: by the definition of H in Lemma 393, Hciffce T:

2. ¢ is a negative-ground literal —~g, then H | —¢ iff ¢ ¢ H. By definition, H

contains all the molecules in T, thus ¢ & H iff g ¢ T. By the first part of
Lemma 3.9.2, ~¢g € T

3. cis a disjunction of ground literals {; V...V [:
HEhLV...vi,if H | for some i (by the usual definition of satisfying a
disjunction of literals) iff /, € T (based on results 1 and 2)
ff i V...V, € T (based on the second part of Lemma 3.9.2).

132

The above cases show that H satisfies every clause in T, thus H is a Herbrand model
of T. Since G C T, H is also a Herbrand model of G. Furthermore, because G is the
set of all ground instances of clauses in S, H is also a Herbrand model of §. Finally,

based on Proposition 3.8.2, § is satisf able. [|

3.10 Proof Theory

We shall present a sound and complete proof theory for the semantic-entailment (=)
relation defined in Section 3.4. There are twelve inference rules in the proof theory to
make the theory complete. The core rules of the proof theory are resolution, factoring

and paramodulation.

3.10.1 Substitution

The notion of substitution is adapted from classical logic. Given a language £ and a

set of variables V, a substitution o is a mapping:
V —{id-terms of L}

where the domain of the substitution is a finite set domain(o) C V, such that for
any Y € domain(z), o(Y) # Y. This notion of substitution is extended to id-terms
(respectively, predicate-atomic formulae) in a similar way to substitution on “terms”

(respectively, “atomic formulae™) in classical first-order logic, as follows:

a‘(f(t,, ...,tn)) = f(d(tl),,O'(tn))
U(P(tla seey tn)) = P("“l)ﬁ s ,O'(t,,))
Where f is a function symbol, P is a predicate symbol, and ¢,, ...,t, are id-terms.

Substitution ¢ is further extended to data terms and class terms as follows:

133

a(D([instOf — E], [FM(A,, ..., A,) —=T),...,
[SM(By, ...,By)—{..., S,...}],..)) =

o(D)([instOf — o(E)], [o(FM)(a(A), ...,0(An)) = a(T)),...,
[0(SM)(a(By), ..., 0(Bn)) = {..., a(S), ..} -..)

o(C([isa = D), [FM(Ay, ..., A)=> {..., T....}]s...,
[SM(By, ..., Ba)={.... S,], ...)) =

o(C)([ise — a(D)], [ec(FM)(a(A),0(A) = {....0(T),...}]....,
[(SM)(a(By), ... 0(Ba))={..., a(S)... }). ...)

Firally, substitution ¢ is extended to OOL formulae by letting the substitution com-

mute with logical connectives and quantifiers.

Substitution o is called a ground substitution if o(Y) € F* (the set of all ground
id-terms) for each Y € domain(o). Let o be a substitution and a be a formula. Then
o(a) is called an instance of a. This instance o(a) is called a ground instance if it

does not contain any variable.

3.10.2 Unification

Unification of id-terms and predicate-atomic formulae (abbreviated. P-atoms) are

defined as in Predicate Calcuius.

Definition Let 7, and 7, be a pair of id-terms. A substitution o is a unifier of
Ty and T, if and only if o(T)) = o(1;). This unifier o is the most general unifier
(mgu(T;,T3)), if for any other unifier g of T} and T,. there exists a substitution «,

such that yy = yo 0. []

The notion of mgu is extended to include ordered tuples of id-terms.

134

Definition Let (A,, ..., A;) and (B, ..., B,) be ordered tuples of id-terms. These
two tuples are unifiable if and only if there is a substitution o such that o(A;) = o(B;),
for each z = 1, ..., n. The unifier o is most general if and only if for any other unifier

st of the two tuples, there exists a substitution v, such that u = yo 0. []

We can observe that the mgu of (A, ..., A,) and (B,, ..., B,) will coincide with the
mgu of f(A,, ..., A,) and f(B,, ..., B,), where f is an n-ary function symbol. This
will allows us to use any standard algorithm for unifying Predicate Calculus’ terms

of this type.

The notions of unifier and the most general unifier are further extended to (OOL)
terms. For an OOL term (i.e., either a data or a class term), a unifier is only required

to have a term be a subterm of the other. First we define what subterm means.

Definition Let Ty = Id(...,[...},...) and T; = Id(...,[...],...) be a pair of OOL
terms (i.e., either data terms or class terms) with the same object identity Id. T, is
a subterm of T,, denoted by T C T, if and only if every atomic formula of T} is also

an atomic formula of T5. |
Definition A substitution o is a unifier of Ty into T; if and only if o[T)]| C o[T,]. B

As in F-logic [KifLaWu90], we need to modify the definition of mgu for this kind of

unification.

Definition Let T} and T3 be a pair of class or data terms and let a and 3 be a pair
of unifiers of T into T,. We say that a is more general than 3 (denoted by a <) if
and only if there is a substitution 4 such that 8 = yoa. A unifier a of T} into T} is

most general if for every other unifier 3, f 94 a implies a 4 3. [|

In order to distinguish this kind of most general unifier from the usual mgu, notation

mguc(TyintoT3) is used to denote a most general unifier of Ty into T;.

135

Examples:

1. Let t; = P([fm(A, B) — C]) and let t, = z([fm(e, f) — g],[sm——{g, h}]).
The term ¢, is unifiable into t; with the unifier {P/z, A/e, B/ f, C/g}. However
t, is not unifiable into ¢, because it is impossible to have every atomic formula

of ¢; also be an atomic formula of ¢;.

2. Let t; = a([sm——B)) and let t; = a([sm—{c,d,e}]). We can find three
different unifiers of ¢, into ¢, i.e., {B/c}, {B/d}, and {B/e}. However we
cannot say that any one of them is more general than another, thus any one
of them can be called most general. This situation has motivated the following

definition of a complete set of mgug [KifLaWu90].

Definition A set X of most general unifiers of T into T3 is complete if for every other

unifier @ of 7} into 7T,, there is an o € ¥ such that a < 6. []

This complete set is a unique-up-to-the-equivalence mgu- case. in which a set of
unifiers ; is equivalent to Q, if for every o, € Q. there is 0, € Q, such that

oy Doy Q oy, and vice versa.

3.10.2.1 A Term Unification Algorithm

We will describe an algorithm to find a complete set of mguc’s for a pair of OOL
terms (i.e., either data or class terms). This algorithm and its correctness lermma are
adapted from [KifLaWu90], witk minor changes. A complete set of mguc’s is not
unique. However, since any two complete sets of mguc’s are equivalent to each other,

we need to find only one of them.

Since an OOL term is equivalent to a conjunction of its constituting atomic formulae,

and an mguc of T, into T; is only required to cause each atom of T; to be also

136

an atom of T3, different correspondences between atoms of T} and T may lead to
different mguc’s. Because of this, an algorithm for finding a complete set of mguc’s

from a pair of terms should consider all such correspondences.

Let a be an atom of one of the following forms:

1. An atom with a non-empty value, in either of the following forms:

o D([M(A,,...,An) — B]); or D([M(A,....,A,) = {B}]); or
o D([M(A,,...,A)—{B}]); or D([M(Ay,...,A;)=={B}]); or

o D([instOf — B]); or D([isa — B]).
2. An atom with an empty value, in either of the following forms:

o D([M(Ay,...,A)= {}]);0or

o D(M(Ay,..., A)—={}]); or D((M(As,..., A== {}]).

In order to simplify the presentation of the unification algorithm, we will use the

following notation:

- 0td(T) = D, i.e., oid returns the context id-term of an OOL term Tj;

- method(a) = M, i.e., returning the id-term of the method in atom a, or for the
instance-of and subclass assertions: method(a) = instOf and method(a) = isa

respectively;
- arg(a) = At =1,...,n);
- val(a) = B if a is of the form 1, or val(a) = @ if « is of the form 2;

- if T is an OOL term, atoms(T) denotes the set of atoms in T.

137

- if T} and T3 are terms, then maps(T,T,) denotes the set of all possible mappings
{¥ : atoms(Ty)— atoms(T;)} such that for each ¥ € maps(T}, I;) and each
a € atoms(T)) the arities, and the arrow symbols of the methods as well as

instance-of /subclass assertions in o , and ¥(a) are the same.

- We have shown earlier that the mgu of a pair of tuples of id-terms (4, ..., A,)
and (B, ..., By) coincides with the mgu of the usual Predicate Calculus terms
f(Ay, ..., Ay) and f(By, ..., Bn). Hence, we cain use any standard unification
algorithm to unify a pair of id-term tuples. We use the following notation:
unify(V;, 172), to denote the unification procedure of a pair of id-term tuples Vi

and 172

The algorithm is given in Figure 3.1.

Lemma 3.10.1 (Term Unification) The given algorithm indeed finds a complete
set of mguc’s of Ty into T

Proof: It is stated explicitly in the algorithm that all elements of ¥ (i.e., oy’s) are

mguc’s of Ty into T;. Thus we just need to show that ¥ is indeed complete.

Let 4 be a unifier of T} into T5:

e By the def. .ition of ¥, there is a mapping ¥ € maps(T,.T,) such that the
mapping of each each a € atoms(T)) into the corresponding atom ¥(a) € 1,

coincides with a mapping associated with the unifier 4.

o [t follows directly from the the alrorithm. that substitution o¢ constructed in
the inner loop of step (2) is a most general unifier that unifies each a € atoms(1;)
into the corresponding atom ¥(a) € T;. Based on the definition of mguc, we

conclude that the unifier o0¢ <9 4 (4 is an inctance of oy).

138

Input: a pair of OOL terms 7T and T5.

Output: a complete set ¥ of mgur’s of T into T>.

1. if 0id(T}) and 0id(T?) are unifiable then 0 «— unify(0id(T}), 0id(T3))
else STOP, T, and T, are NOT unifiable.
2. ¥ {} /*X will be used to denote the complete sets of mguc’s*/
for each mapping ¥ € maps(Ty,T;) do
oy — 0 [*oy is used to store an mguc*/
for each atom a € atoms(T) do
% — ¥(a)
if val(a) =0
then unify(oy(V;),04(V2)), where V; = {method(a), arg\(a),. .., arg.(a))
3 V, = (method(1)),arg,(¥), .. .,arg.(¢))
if o¢(V1) and og(V2) are unifiable
then oy « unify(aw(ﬁ),aw(ﬁ)) o0y
else DISCARD oy and GOTO (*), to select another ¥
endif
else unify(oe(V2),09(V2)),
where V, = (method(a),arg;(a),...,arg,(a),val(a))
Vo = (method(1), argi (), .. ., arga(), val(s))
if o4(V;) and oy (V}) are unifiable
then oy — unify(oe(Vh),o4(V2)) 0 oy
else DISCARD oy and GOTO (*), to select another ¥
endif
endif
endfor
Y — XU {ow}
(*)
endfor
3. Return ¥ which is a complete set of mguc’s of T into T5.
Note that the set ¥ will be empty if T is not unifiable into 7T5.

Figure 3.1: An Algorithm for Finding a Complete Set of mguc’s

139

Based on the two consideration above we conclude that ¥, which is the union of most

general unifiers oy’s, is a complete set of mguc’s of T} into 7). []

3.10.3 Inference Rules

As in classical predicate logic, we have to standardize apart the clauses involved in the
unification operation where variables are renamed so that these clauses will not have
common variable names. Note that in the inference rules to be presented, occasionally
we show only atomic formulae (or their negation) as literals instead of flat molecules.

This is done only to simplify the presentation of the inference rules.

Seven of the inference rules (from a total of twelve rules) are similar to that of F-logic
[KifLaWu90]. The inference rules of this OOL proof theory differ from that of F-logic

in the following rules:

o Isa-Reflexivity Rule.
Since OOL distinguishes between instance objects and class objects, the isa-

reflexivity property is applicable to class objects only.

e Argument-Subtyping Rule.
This rule is not available in the proof theory of OOL, because the antimonotonic

property of a method signature in OOL is applicable to the first argument only,

i.c., for the context class.

o Well-Typing Rule.
In F-logic [KifLaWu90], method signatures may be defined on both the class(es)
of an instance object and the instance object itself. On the other hand, in QOL,

method signatures are defined only on class objects.

o InstOf-Isa Transitivity Rule.

140

The proof theory of F-logic [KifLaWu90] does not have this kind of rule, since
F-logic does not distinguish between instance-of relation and isa (subclass) re-

lation.

e Elimination Rule.
F-logic considers an empty data term or class term of the form Id(), where Id
is an id-term, as a tautology. On the contrary, OOL does not consider such an
empty term as either a data term or a class term (i.e., an empty term is not
an OOL term). Consequently, the proof theory of OOL does not need a rule to

deal with empty terms.

The inference rules of the proof theory for OOL are as follows:
1. Resolution Rule

Let Cy = -TyVC’ and Cy = T,V C" be a pair of clauses with no variables in common
(standardized apart), where 7 and T, represent flat molecular formulae , and C”,
C" represent clauses. Suppose that T is unifiable into 7> with an mguc 6. The

resolution rule is as follows:
from C} and C,, infer 8(C’' v C")

It is worth noting that when the literals involved are non atomic formulae, the reso-
lution process may be asymmetric because the mgugc 8 = mguc (7] into T3) could be

different from mguc(T; into 7T1). Moreover, the latter mgur might not exist.
2. Factoring Rule

Unlike the factoring rule in classical logic, we need different rules for positive and
negative literals, because of the way mguc is defined. For the case of positive literals:

consider a clause of the form C = T; vV T, V C’, where Ty and T; denote positive

141

literals, and C” is a clause. Suppose that T) is unifiable into T, with an mguc 0. The

factoring rule is as follows:

from C, infer (T, v C')

For the case of negative literals: let C = -7, v =T; vV C’, and let T} be unifiable into

T; with an mguc 0, the factoring rule is as follows:

from C, infer 8(~T, v C’)

The clauses inferred by one of the factoring rules are called factors of C.
3. Paramodulation Rule

As in F-logic [KifLaWu90], this rule is used to capture the equality relation that may

arise among id-terms.

Notation. Let E represent a clause or a literal, and let E[/d,] represent an expression
that contains an id-term Id,. If one occurrence of the id-term Id; is replaced by an

id-term Id;, the result is denoted by E[/d,].

Let Cy = L[Id,]v ("’ and €, = (Id; = Id3)V " be a pair of clauses, with no variables
in common, where Id,, Id;, and Id; represent id-terms. ('’ and (" represent clauses,
and L{/d,] represents a literal containing /d,. If the id-terms /d, and Id, are unified

with an mgu 8, the paramodulation rule says:

from Cy and ('3, infer O(L|Id3] v ' v ")

4. Isa-Reflexivity Rule

This rule is intended to capture the semantic-entailment property of isa reflexivity on

class objects.

142

¢ Given a clause C' = A([isa — B]), where A and B represent id-terms, for each
X = A, B infer
X([tsa = X])

e Given a clause C = Z([instOf — A]), where Z and A represent id-terms, we

infer

A([isa — A))

¢ Givenaclause C = A([FunM(B,,...,B,) = {Y}]), where FunM, A, By,...,B,, Y

represent id-terms, for each X = A, B,,..., B,, Y infer

X([isa — X])

e Given aclauseC = A([SetM(B,, ..., B,)=={Y}]), where SetM, A, B,,...,B,, Y

represent id-terms, for each X = A, By,..., B,, Y infer

X([ise — X])

5. Isa- Antisymmetric Rule
This rule is intended to capture the semantic-entailment property of isa-antisymmetry.

Let C; = A([isa — B]) V C’ and C, = B'([isa — A’]) v C” . be clauses with no
variables n common, where C' and C” represent clauses, and A, B, A’, B’ represent
id-terms. Suppose that 6 is an mgu of tuples of id-terms (A, B) and (A’, B’). Then,

the anti-symmetric rule says:

from C, and C; infer 8((A = B) v’ v C”")

6. Isa-Transitivity Rule

This rule is intended to capture the semantic entailment property of isa-transitivity.

143

Let Cy = A(fisa — B]) v C' and C; = B'([isa — D] vV C” be clauses with
no variables in common, where C’,C" represent clauses, and A, B, B’, D represent

id-terms. Suppose that # is an mgu of B and B’. The isa-transitivity rule says that:

from Cy and C,, infer 8(A([isa — D])v C’' v C")

7. Well-Typing Rule
This rule is intended to capture the well-typing conditions.

Let FunM,A Ay, ..., Ap, P, FunM',CA,CA,, ...,CA,,Q, A, and C A’ be symbols

denoting id-terms, and let C,C’ and C” be symbols denoting clauses.

Let
Cy = A([FunM(A,, ..., A,)) = P])) v C,
Cy = CA([FunM'(CA,y, ...,CA,) = {Q}]) v (' and
Cs = A'([instOf — CA')) v ("
be clauses with no variables in common, such that the two tuples (FunM. A, C A)

and (FunM’, A’, C A’} are unifiable with mgu 8. then from C,, ('3, and C3 infer:
O(P([instOf - Q]) VC V' v (") and
O(A,([instOf - CA)) vOCV ' v ("), foreachi=1,...,n

Informally the rule says that, whenever the signature of a method is defined, then

the arguments and the value of a method should be from appropriate types.

For set valued methods, the rule is defined similarly. except several obvious changes

such as Cy and C; are replaced by

Ci = A([SetM(Ay, ..., Ay)— {P}])V C and
C; = CA([SetM'(CA,, ...,CA)= {Q}]) VC".

144

8. Type-Inheritance Rule
This rule is intended to capture the semantic-entailment property of type inheritance.

Let Cy = A([FunM(A,, ..., As) = {T}))VC’ and C; = B([isa — A’]) v C” be
clauses with no variables in common, where FunM, A, A,, ..., A,, T, B, A’ represent
id-terms and C’, C" represent clauses. This rule also applies when the output {T'} is

an empty set {}. Suppose that A and A’ are unified with an mgu 8. The rule says:

from C) and C;, infer 8(B([FunM(A,, ..., A,) = {T}))vC'vC")

Similarly, for set valued methods, aside from the obvious change of replacing the
symbol = with ==,

9. Range-Supertyping Rule

This rule is intended to capture the semantic-entailment property of range-supertyping

of method signatures.

Let Cy = A([FunM(A,, ..., A,) = {P}])V ' and C, = P'(Jisa — Q]) V C” be
clauses with no variables in common, where FunM, A, Ay, ..., A,, P, P’Q represent
id-terms and C’, C"” represent clauses. Suppose that P and P’ are unified with an

mgu 0. The rule says:

from C) and Cj, infer 0(A([FunM(A,y,...,A;) = {Q})VC' v ")

10. InstOf-Isa Transitivity rule
This rule is intended to capture the semantic-entailment property of instance-of-isa
transitivity.

Let Ciy = A({instOf — P]) VC' and C; = P'([isa — Q]) V C” be clauses with
no variables in common, where A, P, P!, Q represent id-terms and C’,C" represent

clauses. Suppose that 8 is an mgu of P and P’. The instOf-isa transitivity rule says:

145

from C, and C,, infer 0(A([instOf —» Q]) v C' v C")

11. Functionality Rule

This rule is intended to capture the semantic-entailment property of the functionality

of a single-valued method.

Let

Cy = A([FunM(Ay,...,A,) = B]) vV C' and
Cy = A'([FunM'(A;....,A)) =» B'))vC”

be clauses with no variables in common, where the symbols FunM, A, A,, ..., A,

B, FunM' A", A, ..., A}, B represent id-terms and (", C” represent clauses.
Suppose that the tuple of id-terms (A, FunM, A,,..., A,) is unified to the tuple of

id-terms (A’, FunM’, A|,..., A,) with an mgu 0. The rule says:

from 'y and (', infer@(B=B" v ("v C")

12. Merging Rule

This rule is intended to combine information contained in different data or class
terms, based on the property that a molecular formula can be decomposed into its

constituting atomic formulae.

Definition Let 7} and 7, be a pair of OOL terms with the same object identity. A
term T is called a merge of Ty and T, if the set of atoms in T is equal to the union

of the sets of atoms in T} and T3. []

For example, consider the following pair of data terms that has a common set-valued

method SetM:

146

D([FunM, — q], [SetM(z)—— {r}]), and
D([FunM,; — s], [SetM(z)—— {t}])

This pair can be merged in more than one way. For example, the two terms can be

merged into one of the following:

D([FunM, — q], [FunM; — s), [SetM(z)— {r}], [SetM(z)— {t}]), or
D([FunM, — q], [FunM; — s3], [SetM(z)— {r,t}])

Hence we have more than one possible merge term. Following the corresponding
F-logic’s definition [KifLaWu90], we can distinguish a certain kind of merge (called

canonical) that has a uniqueness property.

Definition A canonical merge of Ty and T, (denoted by merge(T;,T3)) is a merge
that does not contain repeated identical invocations of set-valued methods, and the
signatures of set-valued and single-valued methods (recall that the output of a single-

valued method’s signature is also a type set). [|

This canonical merge is unique up to a permutation of the elements in the ranges
of set-valued methods, or the ranges of method signatures. Notice that in the above

example the second merge is canonical.

Consider a pair of clauses C, = T v C’ and C; = T’ v C” with no common variables,
where both T and T’ denote data or class terms, and C’, C” denote clauses. Suppose
that there is mgu 8 unifying the object-identity parts of T" and T”, and R denotes the

canonical merge of 8(T) and 6(T’). The merging rule says:

from Cy and C,, infer RV 0(C'v C")

147

3.10.4 Soundness

Let S be a set of clauses, and R be a clause. A deduction of R from § (denoted by
S F R) is a finite sequence of clauses C}, ... 7, such that C, = R, and for each

t=1,...,n, C; is one of the following:

1. an element of S;

2. an inferred clause from Cy, or from Cj and (), or from Cy, C}, and C,,, where
k,l, m < i, by using one of the inference rules. Note that the only inference

rule that needs three previous clauses is the well-typing inference rule.

If C,, is an empty clause, denoted by O, the deduction is called a refutation.

Theorem 3.10.4.1 (Soundness) If a set of clauses S deduces a clause R (S+ R),
then S logically entails R (S = R)

Proof:

A proof for the soundness of the resolution rule:

Given a language £ of OOL, let I be any interpretation. We need to show that if:
o I E-T,v(,
o [ETov (" and
e 0 is an mguc of Ty into T3,

then I E=0(C"v C").

For any given I, we must have either I |= 0(Ty) or I }£ 0(T,), thus we have either one
of the following:

148

1. I 8(Ty).
Since I |= —8(T}) V 8(C"), and I |= O(Ty}), it follows that I |= 8(C").

2. I O(Th).
By the definition of the satisfaction of a molecular formula, from I £ 6(T}) and
0(T1) C 6(T;), we conclude I [~ 0(T3). Sinc: I = 0(T3) vV 6(C”) and I I 6(Ty),
it follows that I |= 6(C").

Collecting the two results above, for any interpretation I, and given preconditions

as above, we have either I |= 8(C’) or I |= 8(C"). By the usual definition of logical
connective V, it follows that I = 6(C v C').

A proof for the soundness of the factoring rule:

1. Given a language £ of OOL, let I be any interpretation. We need to show that
if I =Ty VT,V C and 0 is an mgug of T into T3, then I = 0(Ty vV C').

By the usual semantics of V, the proof is equivalent to showing that whenever

I =Ty VT; and 0 is an mguc of T, into Ty, then I |= 6(T)).

After the substitution 8, I |= 6(7Ty V T;) means that I = 8(Ty) or I | 0(T3).
Since 6(Ty) C 0(T;), whenever I E 6(T,), we also have I | 8(T,). Thus
whenever I |= 6(T, vV Tz), we have I | 0(T).

2. Given a language £ of OOL, let I be any interpretation. We need to show thai
if I | -Ty v -T,V C’and 8 is an mgugc of Ty into T, then I = 6(-T, v ().
By the usual semantics of V, the proof is equivalent to showing that whenever
I = -Ty vV -T; and 8 is an mguc of T; into T3, then [|= 0(—T3).

After the substitution 8, I | 0(-T, Vv -T2) means that I = -6(T)) or
I | -8(T?). Since 0(Ty) C 0(T,), whenever I | —6(T}), we also have I =
—0(T,). Consequently, if I | 8(-T; vV -T3), then I = -0(T3).

149

The proofs for the rest of the inference rules follow straight-forwardly from the forms

of the inference rules and the semantic-entailment properties presented in Section

3.6. a

3.10.5 Completeness

The proof for completeness is carried out in two steps. First, we prove the complete-
ness of the proof theory on ground clauses by using Herbrand’s theorem. Then, we
use a lifting lemma, similar to the one in classical logic, to show that the complete-
ness on ground clauses is also valid for the non-ground case. The proof is the result
of adapting the completeness proof of F-logic [KifLaWu90], with some changes and
additions to suit QOL.

As introduced earlier, the notation O will be used to denote an empty clause.

Lemma 3.10.5.1 (Unsatisfiability of a Set of Ground Literals) Let G be a set
of ground literals. If G is unsatisfiable then there are ground molccules A and B such
that A T B, -A € G and there is a deduction of B from G (G + B). Notec that
if A and B are ground-predicate-atomic formulae. A T B means that A 1s identical

to B.

Proof: Recall that A € B means t'iat A is a subterm or equal to B (i.e.. every
atomic formula constituting A is also an atomic formula constituting B). We will
prcve this lemma by a contradiction. Assume that there are no molecules 4 and B,
such that AC B, mA € G, and G + B. We will show that as a consequence of this
assumption G is satisfiable. Consider the set of molecules (positive literals) that is

defined as follows:

D = {a|ais a subterm of some molecule 3 deducible from G (i.e.. G + 3)}

150

We have shown before (in Section 3.8) how to construct a semantic structure Iy

from any Herbrand interpretation M, such that Ity = S if H |= S, where S is a set

of clauses. By applying the same construction to D, we obtain a semantic structure

Ip = (U, L, <, Linst, Ipy [, I3 , I, Iz). The constructed Ip is indeed a semantic

structure because of the following:

e D is closed under deduction “F,” by the definition of D.

e Each component of the semantic structure Ip has the property prescribed by

the semantic requirement in Section 3.4 that can be shown as follows:

1.

The domain of interpretation U is the quotient of the set of all ground
id-terms of D (dencted by F*, where F is the set of all functions symbols
used in D) by the equality predicate-atomic formulae in D, i.e., F*/ =.

The equivalence class of an id-term ¢t is a ted by [t].
— IL4(c) - - [¢], for each 0-ary function (constant) symbol ¢ € F.
= La(f)[ta]s -- -, [ta)) = [f(ty, - .., ta}], for every n-ary (n > 1) function
symbol f € F.

The ordering of class objects in U is defined by the isa assertions in D:
for all class objects {a],[b] € U, [a] < [8] iff a([zsa — b]) € D. The partial-
order relation, <, among classes is captured by the closure of D under the

following rules: isa-reflexivity, isa-antisymmetry, and isa-transitivity.

The instance-of relation in U is defined by the instOf assertions in D:
for all objects ic], [d] € U, {[d],[c]) € Linu(instOf) iff d([instOf — ¢]) € D.
The instOf-isa transitivity property is captured by the closure of D by the

instOf-isa transitivity rule.

12 ({fun M) ([obg [t ..., [ta]) =

151

otherwise: undefined.

{ [v] if obj([funM(ty,...,t,) — v]) € D

The functionality requirement of I_. is captured by the closure of D under

the functionality rule.

6. Iy, ([setM])([0bj),[t1), - .., [ta]) =

{ [v] | obj([setM(t;,... ta)— {v}]) € D }if
obj([setM(ty,...,t.)— {}He D

otherwise: undefined.

7. I% ([funM))([0bf],[t1], -- ., [tn]) =

{ w] | obj([funM(ty,...,t,) = {v}])e D }if
obj([funM(ty,....t,)= {})eD

otherwise: undefined.

The aniimonotonic and upward-closedness properties are captured by the

closure of D under the type-inheritance and range-supertyping rules.

8. 2 ([setM))([0bj.[t1]), ..., [ta]) =

{ [v]]| obj([setM(ty,... tx)==> {v})) e D }if
obj(lsetM(ty,...,t,)==> {}])) € D

otherwise: undefined.

Similar to the case of I, the antimonotonic and upward-closedness prop-
erties are captured by the closure of D under the vype-inheritance and

range-supertyping rules.
9. Ip(p) = { ([tlla ceey [tn]) | nig,...t,) €D }

e The well-typing conditions are captured by the well-typing rules.

152

Thus Ip is indeed a semantic structure since it fulfills the properties prescribed in

Section 3.4.

Now we need to show that for each molecule A (i.e., a positive literal):

IpkAifAeD (3.1)

The proof for the if part follows directly from the soundness of the inference rules.

To show the only if part, we need to consider the following three cases of A:

1. A is a predicate-atomic formula: from the construction of I,, it follows directly

that if Ip = A thess A € D.

2. A is a data term consisting of a 18 ay,...,0,: Ip = Aiff Ip | a, for each
t = 1,...,n. From the construction of I;,, /.. and I we conclude that
Ip Ea;iffa; € D. Hence, Ip E Aiff Ip Fa;iffa; € D (i =1,. .,n). By
the definition of D, there are terms £, ..., 3, deducible from G such that a,

is a subterm of 3; foreachi =1, ...,n.

By using the merging rule, D contains # which is a canonical mergeof 3, ..., fn.
It follows that A is a subterm of 3, because each atomic formula constituting A

is also an atomic formula constituting 5. By the definition of D, we conclude

that A € D.
3. A is a class term consisting of atoms ay, ...,an: Ip F Aiff Ip E a; (i =
1,...,n). From the construction of <, /o and I=xs we conclude that

Ip F a;ifa; € D. Hence, Ip E Aiff Ip o;if0; € D (1 = 1,...,n).

Then we show that A € D in a similar way to the case of a data term above,

From the above three cases of A we conclude that if Ip = A then A € D. Hence

(3.1) is proved.

153

Let’s consider the two possible cases of each literal element G:

1. For each positive literal A € G, A € D (by the definition of D). Hence, Ip = A
by (3.1).

2. Based on our assumption in the beginning of this proof that no -A € G such
that A C B and G + B, each negative literal -4 € G, A is not a subterm
of any molecule deducible from G. Hence, A € D. From A & D and (3.1), it
follows that Ip }£ A, this means that Ip | - A.

From the two consideration above, Ip satisfies every literal in G, i.e., Ip = G (G is

satisfiable). A contradiction!]

Theorem 3.10.5.1 (Completeness of Ground Deduction) If a set of ground

clauses G 1is unsatisfiable then there ezists a refutation from G.

Proof. Based on the Herbrand theorem (Theorem 3.9.1), we assume that G is finite
and unsatisfiable. We will show that there is a refutation from G. The following
proof is adapted from [KifLaWu90]. The proof is carried out by using a technique
used in [Ande70|. The technique is executed by utilizing (strong) induction on the
parameter ezcess(G'). the number of excess literals in G. The parameter ezcess(G)

is defined as follows:

excess(G)= (the number of occurrences of literals in G) -

(the number of clauses in G)

Basis: excess(G) = 0. In this case, the number of literals in G is equal to the number
of clauses in G. As a result, there are two possible situations: First, the empty clause

O is in G, this means there is a refutation already; second, each clause in G is a

154

literal. In the second situation, based on the previous unsatisfiability property on a
set of ground literals (Lemma 3.10.5.1), we will have G + ~A and G } B for some
molecules A and B such that A C B. If we apply the resolution rule to ~A and B,

we will have the empty clause O.

Induction hypothesis: There exists a refutation for excess(G) = m, for all values

m < n, where m > 0.

Induction Step: excess(G) = n, where n > 0. Under this condition, there exists a
clause in G that contains more than one literal. Assume that C is such a clause. Sep-
arating this clause from the others, we have G = {C}UG’. Based on the assumption
on C,C = LV C(C', where L is a literal and C’ is a clause. Because C is assumed
to contain more than one literal, the clause C’ is not empty. Based on the usual
distributive law, {L V C'}UG" is unsatisfiable if and only if so are G, = {L}UG’ and
G2 = {C'}JUG’. Based on the induction hypothesis, there are separate refutations of
G, and G, because ezcess(G;) < (n — 1) and ezcess(G;) = (rn —1). As a conse-
quence, Gy F O and G, - O. If we apply to G the deduction sequence that deducts O
from G; (G2 = {C'}U G'), we will deduct either L or O. If O is deducted, then there
is a refutation from G already. Otherwise (i.e., when G + L), since G'C G, if we
apply to GU{L} the same deduction sequence that derive O from G, (G; = {L}UG"),
the empty clause O will be derived. So, by combining the two deduction sequences,

a refutation from G is obtained. a

Proposition 3.10.1 Given a pair of OOL terms (molecular formulae) My and M,,
there ezists a unification algorithm that compute a complete set of mguc’s of My into

M,.

Proof: The algorithm and the proof of its correctness has been given in Section

3.10.2.1. |

155

Lemma 3.10.5.2 (Lifting) Suppose that C,,C, (or Cy,C3,Cs if we use the well-
typing inference rule) are clauses and C{, C} (respectively, Cy, C5,C3) are their ground
instances respectively. If R' is inferred from C] and Cj (respectively from Cy,C},C3)
using one of the inference rules, then there ezists a clause R such that R can be in-
ferred from the factors of Cy and C; (respectively, C,,Cs, C3)} using the same inference

rule, and R’ is an instance of R.

Proof: The proof is carried out by considering every inference rule separately. The
proof for each type of inference rule is carried out in a similar way to that in Predicate
Calculus, because the notion of substitution is similar. There are similarities in the
way the proof is carried out for each of the inference rules. The following is an example

of the proof for the resolution rule.

A proof of the Lifting lemma for the resolution rule:

Let Cy = -TYyVv Z,Cy = T, v Z', and let their ground instances be C; = a(C)) =
-a(Ty) V a(Z), C, = B(Cy) = B(Ty) v B(Z'), respectively. Suppose that R =
a(Z) V B(2') is the deduced clause (also called the resolvent) of C; and Cj;. This
means that a(7}) is unified into 3(73).

Let a = {uy/sy,...,ux/sx} and 3 = {en/un,...,vn/wn}, where u,. ..., u; are
variables in ; and vy, ...,v,, are variables in (.
Let ¢ = {vi/tk41, ..., Um/Uksm} (to be applied on ('; only) be the changes of vari-

ables that standardized (', and ('; apart. Then, let

o= {ur/s1, ..., uk/Sk Uks1/ W1y ..., Ukym /Wi }.
Thus, o(Cy) = a(C)) and g0p(C;) = #{(';). This means that R’ = 6(Z)Veop(Z') =
a(Z)V B(Z"), o(Th) = a(T}), and o 0 p(13) = B(T3).

Since o unifies T into ¢(73), there is an mguc 0 of Ty into p(T;) (chosen by, such as,

the previously given unification algorithm), where, if @ # o, there is a substitution

156

v such that ¢ = vy 0 0. Assume that R is deduced as the result of applying the
resolution rule on C; and ¢(C;) with the substitution 8 as the mgug. Since there is
a substitution v such that 6 =v08, R' = a(ZV o(Z')) = yo 0(Z V ¢(Z')) = v(R),

(i.e., R’ is an instance of R). []

Theorem 3.10.5.2 (Completeness of OOL Deduction) If a set P of clauses is

unsatisfiable, then there is a refutation from P.

Proof: Suppose that G is the set of ground instances of P. Based on the completeness
theorem on the ground case (Theorem 3.10.5.1), there is a refutation of G. By using
the lifting lemma (Lemma 3.10.5.2), the ground refutation can be lifted to a refutation

from P.]

CHAPTER 4

OOL as a Programming Language

In this chapter we outline an object-oriented-declarative language based on OOL. We
start with the definitions of a database, a query, and an untyped-semantic structure.
After that, we describe the components of an OOL program, the monotonic inheri-
tance of signatures, an extension of QOL to include class methods, an extension of
OOL to include shared methods with its non-monotonic inheritance, an example of an
OOL program, and finally a discussion. We consider that F-logic [KifLaWu90] would

have difficulties with the two extensions just mentioned.

4.1 Databases and Queries

Definition A database or a program is a finite set of clauses. [
Definition A query is a statement of the form: :-Q). where @ is a molecular formula.f
Given a program P and a query :-Q), the set of answers with respect to the program

P is the smallest set of molecular formulae such that

{. it contains all instances g of ¢ that are logically entailed by P (i.e.. P |= q);

2. the set of answers is closed under logical entailment |=.
157

158

The second condition is adapted from [KifLaWu90]. This condition is required to
overcome problems due to the fact that a variable cannot be substituted by a set of

id-terms (a variable cannot denote a set). Consider the following example:

Suppose that the database contains
joe([children — {jack, jim, john}))
and the query is
:- joe([children — {X}])

Based on the first condition, there are three instances of this query:

1. joe([children —— {jack}]),
2. joe([children — {jim}]), and

3. joe([children — {john}]).

From these three answers, we can conclude that the molecular formula (i.e., a data
term):

joe([children — {jack, jim, john}])
is their logical consequence. However, if we have only the first condition, this molecu-
lar formula cannot be considered as an answer to the query because a variable cannot
be bound to a set. The second condition of being closed under logical entailment

overcomes this problem.

4.2 Untyped-Semantic Structure

F-logic [KifLaWu90] can distinguish between well-typed and ill-typed logic programs

by introducing untyped-semantic structures and untyped models. We will use this

159

concept in OOL. By introducing the concept of untyped-semantic structures and
untyped models, together with the well-typing conditions of OOL, we will be able
to distinguish inconsistency due to type errors and inconsistency arising from other
causes, this feature would be helpful to OOL users. Based on F-logic’s untyped-

semantic structure concept {KifLaWu90], we define untyped-semantic structures for

OOL below.

Definition Given an OOL language L, its untyped-semantic structure:
I = (Lfs Ilds -, Ilﬂsts I—H I=&s I—Hs I:&})

is defined similarly to the kernel (typed) semantic structure of an OOL language de-

fined in Section 3.4, except that it is not required to satisfy the well-typing conditions.®

Definition A satisfaction of a formula o by an untyped-semantic structure is defined
in the same way as the one defined in Section 3.4. We also use the same notation

I Eva(or] Eaif ais a closed formula). [|

Definition An untyped model of a formula a is an untyped-semantic structure / that

satisfies a (denoted I =y a). |

The following lemma is derived from the above definitions.

Lemma 4.2.1 If I is a typed-semantic structure (or respectively, a typed model) then
I is an untyped-semantic structure (respectively, an untyped model). On the other
hand, if I' is an untyped model that 15 also a typed-semantic structure then I' is a

typed model.

Proof: The proof follows from the definition of untyped-semantic structures. Because
a typed-semantic structure {or respectively. a typed model) is an untyped-semantic

structure (respectively, an untyped model) that also satisfies the well-typing condi-

160

tions, therefore every typed-semantic structure (or typed model) is also an untyped-
semantic structure (respectively, an untyped model). On the other hand, an untyped
model that is also a typed-semantic structure means that the untyped model also

satisfies the well-typing conditions. Thus it is a typed model by definition. [|

It should be noted that, in this thesis, the phrase semantic structure (respectively,
model) without any qualifier (“typed” or “untyped”) refers to typed-semantic struc-
«ure (respectively, typed model). This is because the kernel semantic structure of

OOL defined in Section 3.4 includes the well-typing condition.

Minimal Models Given a program P consisting of definite Horn clauses (where each
clause has exactly one positive literal), we can group models of the program P into

typed models and untyped models.
The following definition is adapted from [KifLaWu90].

Definition Formally, We write M <% N, where M and N are models if and only if
for every molecular formula T, whenever M =T then N = T. s

Definition An untyped model M of a program P is minimal if for any other untyped

model N of P, N <’ M implies M <« N. [|

Definition A minimal-typed model is a minimal-untyped model that also satisfies

the well-typing conditions described in Section 3.4.

It follows from the above definition that being a minimal-typed model requires more
conditions than simply being a minimal model among the class of typed models. This

is because the model must be also minimal among the class of untyped models.

161

4.3 Program Components

In this section we discuss the conceptual division of an OOL program, based on the

functionalities of the program components.

As defined before, a program or a database is a finite set of clauses. Similar to
classical logic programming, a clause (also called a deductive rule) is written in the
form: Hy,...Hp :- By,... B,, where H,,..., H,, are the h :ad literals, and B,,..., B,
are the body literals. A deductive rule that has head literals but an empty body is
called a simple fact. By definition, each clausal rule is implicitly universally quantified.
In this chapter, we restrict the programs to contain only definite Horn clauses, i.e.,
no negated literals in each rule’s body and there is exactly one positive literal in each

rule’s head. The reason for this restriction is discussed in the next section.

A program specifies what each method does, each method signature (i.e., the type of
each method’s argument and the type of its output values), class hierarchies (through

subclass assertions), and instance-of assertions.

Because of these different specifications, conceptually, we can divide a program into

four components as follows:

1. Definitions of data: all rules with data terms cor aining method definitions, or
P-atoms in the heads. This component specifies what every method does and
relations among objects (through P-atoms). The output value of a method ma:-
be defined explicitly (the value is given) or defined i-uplicitly by a deductive

rule.

2. Subclass-relationship definitions: all rules with class terms that include the
special attribute “isa” in the heads. This component arranges classes into class

hierarchies (the tree-like hierarchies or the more general directed acyclic graphs)

162

3. Instance-of relationship definitions: all rules with data terms that includes the
special attribute “instOf" in the heads. This component specifies instance: of

each class.

4. Signature (type) definitions: all rules with class terms indicating signatures of
methods in the heads. This component specifies the type of each method’s

argument and the type of its output values.

Generally, the division of deductive rules into the above components is not disjoint.
We may have rules with class terms in the head that can be grouped to the second and
the fourth groups, because they contain isa attributes and method signatures. We
can make the two components disjoint if we separate every class term such that every
class term containing class-hierarchy information (through the isa attribute) will not
contain signature information and on the: other hand every class term containing sig-
nature information will not contain subclass-relationship information. Furthermore,
we can make the separation better if we restrict the literals in every clause to be
an atomic formula or its negation. However, this will reduce the expressiveness of a
literal. In general, we cannot consider one comporent independent of another. This

is because a rule body might contain literals that are defined in other components.

4.4 Subclass-Relationship Definitions

A progr : pecifies class hierarchies based on class terms containing the special
attribute 2sa. To avoid many difficult problems, we restrict the form of clauses to
definite-Horn clauses. Under this restriction, the logic rules cannot specify negative
information such as —a({ise — b]). Suppose that we do not restrict the program
P to definite Horn clauses, then we can specify the negative information explicitly,

such as —a([tsa — b]). Unfortunately, we may need very many such statements for a

163

relatively small database, while we might not need all of the possible combinatorial
relations. To solve this kind of problem, researchers have used various non-monotonic
reasoning techniques. For definite-Horn clauses, a standard technique called Reiter’s
CWA (stands for Closed World Assumption [Reit78]) is widely used. For example,
this technique would say that if program P £ a([isa — b]) then non-monotonically
derive —a([isa — b]). As usual, for definite Hor1 clauses, CWA is equivalent to
confining the | gical entailment to minimal models (there would be a unique minimal

model for the case of Herbrand interpretations).

If we allow negative literals in the body, we will need to use an extension of Re-
iter’s CWA. Several extensions have beer proposed such as the perfect model seman-
tics {[Przym88], the sfotle-model semantics [GelLif88], and the well-founded semantics
[GelRosSch88, Gel89, Przym89]. We might be able to adapt one of these semantics
to OOL. It is pointed out in [KifLaWu90] that there is a common feature of the ap-
proaches mentioned above, i.e., each of them distinguishes a subset of models called
“canonic,” and then defines the program semantics based on those models oniy. For
the case of a set of Horn clauses, minimal Herbrand models coincide with the canonical

models of the aprroaches mentioned above.

4.5 Instance-Of Relationship Definitions

These definitions include all rules that contain the special attribute instOf in their
heads. It coul- be a simple fact such as:

Jjoe([instOf — person))

or a more complex one defined by a rule. In this subsection, we will discuss some
examples of defining instance-of relationships by using rules, as the result of modifying

some ideas from [KifLaWu90] to suit our logic.

164

In the following modified example from [KifLaWu90], we define objects that are in-
stances of unions of two simpler classes, and objects that are instances of intersections

of two simpler classes.

I({instOf — or(Th, T2})}) :- I([instOf — Th])
I([instOf — or(Ty, ™)) - I([instOf — T3))
I([instOf = a. 1T, T2)]) - I([instOf — T)]) A I{[instOf — T5))

Similar to F-logic [KifLaWu90], OOL allows definitions of parametric-polymorphic
classes. These definitions are possible because class objects are represented by id-
terms that may contain variables. For example, the following two clauses define a
parametric-polymorphic class list(Type), whose instances depend on the instantiation

of its argument variable, “Type”.

nil([instOf — list{Type)])

cons{X, Y)([instOf — list(Type)]) - X([instOf -» Type)AY ([instOf — list(T'ype)])
As an example, list(integer) denotes the class of lists of integers. This class may

contain elements such as:

cons{0, nl),
cons(0, cons(1, nil)),
cons{0, cons(1, cons(2, nil))),

cons(0, cons(1, cons(2, cons(3,nil)))), etc.
OOL also allows definitions of classes whose instances are populated dynamically. For

example, the following rule defines a set of classes ¢sStd(Y ear) parameterized by the

variable “Year”™:

S([instOf — csStd{Y ear})]):-
S([+ -stOf — westernStd]) A S([major — computerSc]) A S([enrollYear — Y car))

165

For example, the class ¢sStd(1993) is inhabited by objects representing Western stu-

dents in 1993 and having a major in Computer Science.

4.6 Signature (Type) Definitions

Signature (or type, also called schema in database terminology) definitions wiil help
users in defining correct usage of objects, debugging and maintaining data integrity.
It will let the system detect wrong type data and queries. The purpose of type
definitions is to impose type constraints on the arguments of a method as well as the
outputs returned by the method. As an example, consider the following molecular

formulae:

student([isa — person], [gpa(year) = integer])

joe([instOf — student], [gpa(1993) — 85])
In this example, gpa is a single-valued method that when applied in the context of an
instance of class student to an instance of class year returns a value of type integer.
This type constraint forces the method gpa’s argument to be from type year and its

returned value in any given year to be an integer.

4.6.1 The Well-Typing Conditions

The well-typing conditions of OOL apply only to methods whose signatures are de-
fined. Thus, if a method is defined on an instance object and noe signature is defined
on that method. the well-typing conditions do not app'y. Furthermore, that method
definition will be regarded as correct with respect to the well-typing conditions. In
sther words, OOL does not forc: every method to have a signature. If we want
to enforce typing on every method definition we will need an additional well-typing

condition such as:

166

Fo: all m,o0bj,a,,...,a, € U:

o For single-valued methods:
if 1™ (m)(obj,ay,...,a,) is defined then IZ(m)(cobj,cay,...,ca,) is also de-
fined, where (obj, cobj) € Ilin,(instOf) and (ai,ca;) € I;ns(instOf) for each

t=1,...,n.

For set-valued methods:
if 12, (m)(obj,ay,...,a,) is defined then IZy (m)(cobj,ca,,...,ca,) is also
defined, wnere (0bj,cobj) € I, .(instOf) and (a;,ca;) € Iins(instOf} for each

t=1,...,n.

Unfortunately, if we have an additional condition such as given above, we will have
difficulties in designing the inference rules for accommodating that condition. This is
because such an additional condition requires a rule to infer the context class where
the method signature must be defined. In addition, the rule also must infer the
tuple of classes of the method signature’s proper argument . The difficulties increase
because we allow an instance object to belong to more than one immediate class (this
phrase will be defined after this paragraph). If we restrict an instance to belong to
only one immediate class (such as in [Kim90]), the task of finding the context class
where the method signature must be defined will be easier. However, we consider
this restriction too stringen*, while the task of finding the right class is still difficult.
Thus, having such an additional condition will cause practical problems in inferring
the context class where the signature of a method must be defined, and the tuple of

classes of the method signature’s proper argumenis.

Definition A class ¢, to which an instance w belongs, is called an immediate class

of w if there is no proper subclass of « such that w is its instance. [

As an example of the difficulties just described, let a program P contain:

167

J([instOf — student]) gradstd([isa — student))
J([instOf — gradstd)) employee([wage = integer])
j(linstOf — employee]) student([name = string])

j([wage — 1000])

In this example, instance object ;7 belongs to several classes. Based on the data
term j([wage — 1000}) alone, it is difficult to design an efficient inference rule for
determining the class of j where the signature for the method wage must be defined.
Here, instance j belong to classes student, gradstd, and employee; its immediate classes
are gradstd and employee. The class of j where the method wage could be defined
is either student, or gradstd, or employee. Hence, solely based on the data term
j([wage — 1000]), we will have difficulty in determining on which class the signa*ure
of method wage must be defined. Obviously, we will not have this difficulty, if we put
a restriction such that an instance object is allowed to belong to only one class (as

[Kim90] does).

To avoid the kind of difficulty just described, we did not include the additional well-
typing condition as described above (F-logic [KifLaWu90] can have that kind of ad-
ditional well-typing condition because the signature of every method is defined on
the same object where the method is defined). Despite the obvious disadvantage of
being unable to enforce each method to have a signature, we have some advantageous

properties of the well-typing conditions chosen for QOL:

e We are able to define an instance object that belongs to more than one imme-

diate class.

o The logic has built-in type checking for those method. whosc signatures are

defined.

e As a programming languag: , the logic provides flexibility in the sense that users

168

are allowed to define some methods without forcing them to define the methods’

signatures as well.

o If we want to enforce type checking for every method, it is still possible at the
meta level. For example, because, in practice, the number of classes to which
an instance belongs is likely to be small, the application system can provide a
procedure that will check each method defined on an instance, whether or not

its signature is defined in one of the classes where that instance belongs.

e The chosen well-typing conditions allow us to have a quite simple rule to ac-

commodate the conditions, and to have a complete proof procedure.

o We are still able to distinguish errors due to ill-typing and errors arising from
other causes, by making use of the untyped-semantic structures defined in Sec-

tion 4.2.

4.6.2 Enforcing The Well-Typing Conditions

The properties of minimal-typed models of a set of definite Horn clauses can be used

to enforce the well-typing condit'ons.

Definition We call a program P well-iyped if and only if at lcast one of its minimal-

untyped models is also a ininimal-typed model. [|

The well-typing conditions can be viewed as a restriction such that the domain and
range of every method defined in a program P satisfies all type constraint defined
in P. Then, similar to F-logic [KifLaWu90], the semantics >f OOL is defined by
characterizing models through the minimal condition. This approach allows us to

define type-error conditions by way of model-theoretic semantics.

As defined before, a minimal-typed model of a program P is a minimal-untyped model

169

that also fulfills the well-typing conditions. Hence, the semantics of a program P can

be defined with respect to minimal-typed models as follows:

P = ¢ iff for each minimal-typed model M of P, M |= ¢

The well-typing conditions also provide OOL with the ability to distinguish between
inconsistencies due to type errors and inconsistencies arising from other causes, by

using the following definition.

Definition A program P has a type errorif it has a minimal-untyped model but no

minimal-typed model. a
This definition allows us to develop static type checking.

Let P be a set of definite Horn clauses. The type constraint defined in P would
be the set of all ground signatures that are true in a minimal-untyped model of P.
Here, a well-typed program P means that the domain of definition ana the range of
every method defined in P satisfy the type constraint defined in P. For example, let
program P contain:

person([name = {string}])

joe([instOf — person))

joe([name — “John™))
This program has a minimal-untyped model that also satisfies the well-typing condi-
tions. Hence program P is well-typed (provided that ~John" is an instance of class

string).

On the other hand, if the program P contains:
person([name = {string}])
Joe([instOf — person))
Jjoe([name — 5))

the program P is not well-typed (assuming that output of the method name on object

170

joe, *.e., 5, is not from class string). We can determine that the program P has a
typing problem because it has a minimal-untyped model, but it does not have any
minimal-typed model. It does not have a minimal-typed model because the output of
the method name on joe is not from class string which is a violation of the well-typing

conditions.

4.7 Monotonic Inheritance of Signatures

Signatures are inherited monotonically. A class inherits the signatures of its super-
class (or superclasses). If a class has more than one immmediate superclass, the class is
said to have multiple inheritance. Whenever we have a class t_.at has multiple inheri-
tance, this class will have all o1 1ts superclasses’ signatures monotonically. Every class
accumulates all of the signatures inherited from its superclasses. Consequently, we
need to assume that conflicting multiple-inherited signatures are not allowed, and we
are also not allowed to redefine a method signature whose argument classes conflict
with the inherited ones. We consider this restriction can be enforced at a practical
level. If we allow such corflicts to happen, we will potentially face difficult problems
from the point of view of logic programming such as non-monotonic inheritance and

inconsistencies.

As an example of multiple inheritance, let a program P contain:

person([rame = {string}]) employee([isa — person])
student([courses = {string}]) student([isa--+ person))
employee([wage = {integer}]) assistant([isa — student])

assistant({isa — employee])

171

The class assistant will monotonically inherit signatures of methods name, courses,
and wage from classes person, student, and employee respectively; thus, class assistant

has the following signature:

assistant([name = {string}], [courses = {string}],[wage = {integer}])

The following is an example of redefiriing a method signature:

classA([meth1(cll, cl2) = {cl3}])
classB([isa — classA))

classB([methi(cll’,cl2') = {cI3}])

The redefining of method methl signature on classB is not allowed if either cll’ is

not a subclass of ¢/l, or ¢l2 is not a subclass of ¢l2.

4.8 Class Methods

Class methods (also calleu class attributes for 0-ary methods) are methods defined
on a class. This kind of method (which is inspired by [Kim90]) is not defined in
the kernel of QOL (Section 3.3 and 3.4). Class methods are usually used to capture
an aggregate property of the instances of a class. Examples of class methods are as

follows:

e method average-mark for a class cs28student.
e method marimum-age for a class student;

e method total-wage for a class employee.

172

We keep the class methods apart from the kernel of OOL, to give it a greater flexibility
for further extensions, and to allow us to regard the simpler properties of the kernel

of OOL (Section 3.3 and 3.4) as the core concept of OODB systems.

A class method is only attached to the class where it is defined. It is not inherited by
its subclasses nor inherit-d by its instances. Such methods are useful for aggregation

operations over groups; one might compute average, total, maximum, or minimum.

We can add class methods to the kernel of OOL. Let’s use “5” (or “S-" if set-
valued) for class methods instead of the usual symbols “—” (respectively, “—-"

used for the ordinary methods. We also need additional symbols “=" (respectively,
“=x ") for defining the signatures of single-valued class methods (respectively, set-
valued class methods). Note that these signatures are defined on the same classes

where the corresponding class methods are defined.

To extend the kernel semantics, we need additional interpretation {anctions I,
I_c_H, I;‘} , Ié¢ that are defined similarly to /., I, I, I=n respectively, except
that

e the metho 23 are only defined on classes,

¢ the signatures are defined on the same classes where the corresponding methods

are defined, and

¢ the signatures are nof inherited by subclasses.

The well-typing conditions of the kernel of OOL also need to be extended to capture

the well typing of class methods, as follows:

For all m, cobj, ¢y,...,a, € U:

1. For singie- .alued class methods:

173

if I". (m)(coby,a,,...,a,) and I"é(m)(cobj, cay,...,ca,) are defined, then we
—
have:

(ai,ca;) € Ling(instOf) foreachi=1,...,n

For set-valued class methods:

if I". (m)(cobj,ay,...,a,) and I (m)(cobj,cay,...,ca,) are defined, then
S S

we have:

(ai,ca;) € linulinstOf) foreachi=1,...,n

2. For single-valued class methods:
if for some pe U, p = I:‘S(m)(cobj,a,,.. .,dy) and lg}(m)(cobj, ca,...,cay,)

are defined, then, for every q € I:%(m)(cobj,cal, ...,ca,) we have:
(P, q) € Lnn(instOf)

For set-valued class methods:

ifforsomepe U,p€ I, (m)(cobj.a;,....a,)and I". (m)(cobj, cay..... cay)
— =r>
are defined, then for every ¢ € I';i» (m)(cobj.ca,,....ca,) we have:

(p" q) € lmst(ins,()f)

As examples, the following are class terms with class methods:

student([isa — student], [average-mark = 75], [arerage-mark = integer))

famnily-car{{isa — car], [averagcweight = 2000], [averagewerght = integer))

Note that it would be difficuit to extend F-logi- [KifLaWu90] with class methods
having such properties. Consider the class method average-mark on the class student.
Assume that the class student has instances of individual students and subclasses
such as gradstd, undergradstd and visitingstd. Recall that F-logic does not distinguish

between class objects and individual objects. If we use F-logic, we will have difficulty

174

in calculating the average-mark, because the instances of the class student include
both those intended as individual students and those intended as subclasses. This
example shows the need for distinguishing between class objects and instance objects.

It shows clear superiority of OOL over F-logic in this respect.

4.9 Shared Methods

In general, a shared method is a method that is specified on a class and the method

applies to each instance of that class.

We can extend the kernel of OOL with shared methods. Let’s use “5” (respectively,
“Z”) for single-valued (respectively, set-valued) shared methods instead of the
usual symbol “—” (1=2spectively, “—") used for the ordinary methods. We also need
an additional symboi “=” (or respectively, “2x ") for defining the signature of a
single-valued shared method (respectively, a set-valued shared method). Note that

this signature is defined on the same class where the corresponding shared method is

defined.

The general idea of shared methods is inspired by [Kim90]. We modify the subtle
properties of shared methods to suit OOL. We want each shared method to have the

following properties:

o Kach shared method is specified only on a class.

o A shared method specified on a class is inherited (non-monotonically) by each of
its subclasses, provided that method is not redefined on a subclass. This inher-
itance is non-monotonic, because a subclass is allowed to redefine the value of
the inherited shared method. In other words, the same shared method specified

on a subclass overrides the one it inherited from one of its superclasses.

175

e Every shared method is shared (monotonically inherited) by each immediate
instance! of the class. When an instance belongs to several classes, and the
same shared method is defined on more than one of those classes, that instance

shares the method defined on the most specific one (i.e., its immediate class).

No instance can have a different shared-method value(s) from what is defined

in its immediate class.

e For each instance that belongs to more than one class, we do not allow conflicting
shared methods from some of its classes such that a class is not more specific

than the others. For example, we do not allow the following situation:

gradstd([isa — student)) undergrad([isa — student})
student([passing-grade-+65]) gradstd([passing-grade--80])
doe([instOf — gradstd}) doe([instOf — undergrad))

In this example doe belongs to both classes: gradstd and underg-ad. Class
gradstd and class undergrad have the same shared method passing-grade with
conflicting values (note that class undergrad inherits the method from student).
Since we cannot say that one of them is more specific than the other; this kind

of situation is not ullowed.

o The signature of a shared method is defined on the same class where that
shared method is defined. As usual. the signature is inherited monotonically by

subclasses of the class.

This concept of shared methods is not defined in the kernel of QOL. The benefit of

this is that OOL is not ticd to any particular style of shared method inheritance.

an instance is called an tmmediate mstance of a class if the class is an immediate class of the

instance

176

As mentioned above, a shared method specified on a subclass overrides the sarne
method inherited from its superclass. This .s known as Touretzky’s principle [Tour86]
that states: An inherited property from a more specific superclass should overwrite
the inherited property due tc a less specific sup_..iass. The inheritance that we want
is more general than that of [Tour86], because inherited properties are not limited to

zero-ary methods (also called attributes).

F-logic [KifLaWu90] solved the problem of non-monotonic method inheritance by
introducing preorder relations over models. We adapt this idea to OOL. However,
we need some modification because in F-logic there is no distinction between class

objects and instance objects.

The non-monotonic inheritance in OOL is defined through model-theoretic character-
ization. Following F-logic [KifLaWu90], the semantics of the non-monotonic inheri-
tance is described using Shoham’s minimization principle [Shoh88]. The main idea of
Shoham’s minimization principle is defining a preorder C'** relation over models. In
this ordering, “smaller” means that the value returned by some method changes “less™
when descending down the class hierarchies. We shall explain this by the following

example, which is a modification of an example in [Tour86 and KifL.aWu90).

Suppose that we have the following clauses:

1. elephant([colour=+“grey”])
2. royal-elephant([isa — elephant), [colour=»“white”])

3. strange-elephant([isa — royal-elephant))
Then, assume that we have a model M, such that:

o M, |= royal-elephant([isa — elephant)),

o M, = strange-elephnnt([isa — roual-elephant]),

177

e M, | elephant([colour=“grey”)),
® M, | royal-elephant([colour>>“whit.")), and

o M, |= strange-elephant([colour = “white”)).
and a model M; such that:

o M; k= royal-elephani([isa — elephant)).

M; [strange-elephant([isa — royal-elephant)),

M; E elephant([colour 2rgrey™)),

M; | royal-elephant([colour==white]), and

M; = strar ge-elephant([colour-= “brown™)).

We say that M;'** M, because in model A, the value of the method colour does
not change when we descend from royal-ele phant 1o strange-clephant. i.e.. the colour
for both classes iz white (in model M,. the colour changes from white to brown). This

makes the value of the method colour change less in model M, than the one in model

J‘[) .

Furthermore, consider a semantic <t-neture My such tbat:

o M, |= royal-clephant([isa — clephant]).

® My |= strangc-elephant([isa — royal-¢lephant]).

M3 = clephant([colourv“grey™}),

M; |= royal-elephant([colour->y“grey”)), and

of/de

PM-1 3"»"x4" PHOTOGRAPHIC MICROCOPY TARGET
NBS 1010a ANSI/ISO #2 EQUIVALENT

@

N
O

ol W PE
w 132 mz.z
ve iz

[
L a2 i
[
[ST

—

= [l

178

e Mj; = strange-elephant([colour-5“grey™)).

The structure M3 is smaller than M. It is even smaller than M, (i.e., MaC™* M)
because the value of method colour does not even change when we descend from
elephant to royal-elephant. However, M3 is not a model because it does not satisfy

the second clause. In this example, model M; is T** minimal.

Following F-logic [KifLaWu90], in the case of conflicting muitiple inheritance, we use
the Credulous approach [TouHoTh87] which allows a subclass to inherit either of the
possibilities. Another possible solution is to have the decision up to the user (an

ad-hoc approach).

In order to define preorder C'** | we will use the following additional notation which
is adapted from [KifLaWu90]. Let [be a semantic structure, gm a ground shared
method, curcl a ground id-term (intended to represent the current class), and args

=(¢y....,a;) a vector of ground id-terms.

[{v]] = curcl([gm(arys)>v])}

(2 - if at least one such v exists
I{igm,=)(curel.arygs) = <

-

| undefined, otherwise

[(o)l = curcl([gm(args)>-{r}})}
if [= curcl([gm(args)=-{}])

I{gm, =+)(curel, args) = «

| undefined. otherwise

Notice that I(gm,=)(curcl,args) and I(m, 2)(curel,arys) denote sets of ground
id-terms (distinguish this notation from /_(...)(...) and T—5(...)(...), in Section

3.4, that returns the elements of the domain of I).

179

The preorder C™** is defined formally as foliows. Let I and J be a pair of semant.c

structures. Then, we have JC™* J if one of the following two conditions is satisfied.

1. There are ground id-terms curcl, gm, and a vector of ground id-terms args,

where I(gm,=)(curcl, args) is defined, such that
I(gm, 5)(curcl,args) # J(gm, >)(curcl, arys), or
J(gm,>)(curcl, args) is undefined.

Furthermore, there is a ground class term eqClsuch that the following conditions

are true:

o I = curcl([isa — eqCl]), J = curcl([isa — eqCl]), and
I(gm,>)(eqCl,args) = J(gm,=)(eqCl, arys)

e for every class mid such that
I |= curcl([isa — mid]) and I |= mid([isa — eqCl]).
It is the case that
I(gm,>)(mid,args) = I(gm,>)(eqCl,args) = I(gm,>)(curcl, arys)

2. Similarly for set-valued methods, i.e.,

There are ground id-terms curcl, gm, and a vector of ground id-terms arys,

where I(gm, >~){curel,args) is defined, such that
I(gm, <) (curcl,args) # J(gm,2)(curcl,arys), or
J(gm, >)(curcl, args) is undefined.

Furthermore, there is a ground class term egCl such that the following conditions

are true:

180

o [|= curcl([tsa — eqCl)), J k= curcl([isa — eqCl]), and
I(gm,=)(cqCl, ergs) = J(gm,>)(eqCl, arys)

e for every class mid such that
I |= curcl([isa — mid}) and I = mid([isa — eqCl)).
It is the case that

I(gm,) (mid,args) = I(gm, 2)(eqCl, args) = I{(gm, 2~)(curcl, arys)

Intuitively, we say that JC*** J if for some class curcl, I and J disagree on the
interpretation of a shared method gm on some arguments args, and we can show
that tl.e behaviour of g in [is obtained by inheritance. However, we may also have
JC™* | based on another case of behaviour inheritance, this is why the relation C!"*

is only preorder.
Now, we define models that are minimal for inheritance as follows:

Definition An untyped model M of a program P is minimal for inheritance (called

C*™* minimal) if and only if for every other untyped model N of P, NT™ M implies

MOk N, n

In order to combine inheritance and <*¢-minimization we need to modify the defini-

tion of minimal untyped model in Section 1.2.

Definition Let P be a Horn clause program. A minimal untyped model of P is an
untyped semantic structure that is <*“-minimal among the C'™* -minimal untyped

models of P. [|

A minimal typed model of program P is defined as before, i.e., a minimal untyped

model that also fulfills the well-typing conditions.

We now define the non-monotonic logical entailment, ke, as follows:

131

Definition Let P be a Horn clause program, then P | ¢ if and only if for every
minimal typed model M |= P then M | ¢. [|

Notice from the definition of minimal untyped model of program P that the "™ -
minimization must be done before «*°-minimization. The process of C™™* -minimization
followed by <"*-minimization achieves the intended non-monotonic inheritance. For

example, suppose that we have the following program:

1. elephant([colour-“grey”])

2. royal-elephant([isa -+ elephant), {colour>>“white”])
3. strange-elephant([isa — royal-elephant))
4

strange-elephani([isa — white-animals]) :- strange-elephani([colour— “white”))

If we do «’**-minimization before C*** -minimization, then we will have a minimal
untyped model where the terms strange-elephant([isa — white-animals]) and strange-
elephant([colour= “white”]) are false because of the <*“-minimization. However, if
we do C'™* -minimization first, the two terms will be true because of the inheri-
tance property, where strange-elephant inherits the colour “white”. This example
illustrates the importance of the order of minimization, because the desired effect of

non-monotonic inheritance is only achieved through the correct minimization order.

The following modified example from [KifLaWu90] illustrates the mechanism of in-

heritance overwriting. Let a program P be:

p([isa — q])
q([sm-=>r])

p([sm-t))

Here, we want the clause p([sm-1]) to overwrite the inheritance of [sm-»r]) from the
superclass of p (i.e., ¢). In all models, the clause p([sm~>t]) must be true. In some

model, we may have that p([sm-—r]) is true, and r = t is also true. Although such a

182

model will survive C*** -minimization, it will be eliminated during <*¢-minimization.

Similar to F-logic, inherited methods are overwritten point-wise, as shown by the

following sample program:

p([tsa — q])
g([sm(ar 12)>b], [sm{cy, c2) Sd])

P([sm(ar, az)=e])

In this example, the inheritance of [sm{a;,a;)—+b] is overwritten, but the inheritance

of [sm{cy, c;)>d}) is not.

The inheritance overwriting for set-valued methods is rather peculiar as illustrated in

the following program:

ptlisa — q])

¢([sm1—=—{a, b}], [sma=—{a, b,c}])
p([smi=={b}], [sm={e}])

In this example, the inheritance of [sm;——{a. b, c}] for p is overwritien, but the in-
heritance of [sm;=>-{a, b}] is still valid. We can see here that redefining the inherited
value of method sm, from {a,b} to its subset 5} does not overwrite the inherited
one. In general, based on the satisfaction of set-valued methods in OOL, redefining
with a new value that is a subset of the inherited one will not overwrite the inherited

one.

It should be noted that although the idea of non-monotonic inheritance of shared
methods is the result of a modification of the technique of non-monotonic method
inheritance used in an extension of F-logic [KifLaWu90], F-logic cannot have one
of the properties we imposed: the ability to override an inherited shared method
is limited to subclasses (every instance object cannot override its inherited shared

mecheds). In F-logic, this ability would belong to any instance of the class since we

183

cannot disti.. aish between instance objects and class objects. This shared-method
extension of OOL shows another advantage of making a clear distinction between

class objects and instance objects.

4.10 Example

In this section we present a sample OOL program about a university database that

shows various features of OOL.

4.10.1 Subclass-Relaticuship Definitions

Figure 4.1 shows the subclass-relationship assertions that define part of the class

hierarchies in the university database.

Sentence (1) asserts that class student is a subclass of class person. Similarly sentences
(2) ard (3) assert that employee and child are subclasses of class person. Sentence
(4) asserts that gradstd is a subclass of both classes student and employee. Sentences
(5) and (6) assert that professor is a subclass of employee, and cs365std is a subclass

of student.

4.10.2 Instance-of and Data Definitions

Sentences (7) to (12) in Figure 4.2 define some parts of the instance-of relationships

and data definitions in the university database.

Sentence (7) asserts that instance object john is an instance of class professor. It
also assert the values of the attributes name, address, children, and employedby to
“Johnny”, “London,Ontario”, {jean, tom, jane} , and csd respectively. The attribute

children is set-valued, which is indicated by the double-headed arrow symbol “—-".

184

Similarly, sentences (8), (9), and (10) assert the instance-of relationships and other
properties of objects brian, sarah, and csd. Notice in sentence (10) that it asserts the
1-ary method numberQOfUndergrad and numberOfGrad wnose values for the vear 1993

are 270 anc 30 respectively.
Sentence (11) asserts that doe is an instance of class cs3635std.

Finally, sentence (12) asserts that kelly is an instance of class professor, has jean and

jane as her children, and several other properties.

student([isa — person])
employee([isa — person])

child([isa — person])

= w Ny -

gradstd([isa — student],

{ isa — employec))
5. professor([isa — employee])
6. cs365std([isa — student])

Figure 4.1: Subclass-Relationship Definitions

4.10.3 Signature Definitions
In Figure 4.3, sentences (13) to (19) define some signatures, the class methods and
the sharcd methods of the database.

Sentence (13) defines the typing for instances of class person. It asserts that the
output type of methods name and address is string, and the output type of set-valued

method children is from class child.

Sentence (14) asserts the typing of methods employedby and boss on class employee.

7. john([instOf — professor],
[name — “Johnny”],
[eddress — “London,Ontario”],
[children—{jean, tom, jane}],
[employedby — csd])
8. brian([instOf — professor),
[name — “Brian”],
[address — “London,Ontario”],
[salary — 60000],
[employedby — csd])
9. sarah([instOf — employee],
[name — “Sarah”],
[address — “London,Ontario”],
[employedby — csd])
10. csd([instOf — depart],
[dept Name — “ComputerScience”],
[chair — john],
[address — “London,Ontario”],
[secretaries——+{sarah,rob, jean}],
[numberOfUndergrad(1993) — 270),
[numberOfGrad(1993) — 30])
11. doe([instOf — cs365std))
12. kelly([instOf — professor|,
[rame — “Kelly”],
[address — “London, Ontario”],

[children——{jean, jane}])

Figure 4.2: Instance-of and Data Definitions

185

186

13. person([name = {string}], /*typing, single-valued attribute*/
[eddress = string], /*we may remove curly brackets when*/
[children==> child)) /*only one class is involved®/

14. employee([employedby = depart],
[boss = employee))
15. depart([departName = string],
[chair = professor],
[address = string],
[secretaries== {employee}], [*typing, set-valued attribute,*/
[numberOfUndergrad(year) = integer],
[numberOfGrad(year) = integer].
[numberOfStd(year) = integer])
16. professor([boss = professor),
[degrees==> string |,
[publish==>article],
[salary = integer]),
[highestSalary=> integer]. /*typing. a single-valued class method™/
[highest Salary— 100000]) /* asserting a class method value */
17. student([courses==>string|)
18. gradstd([teaching=x>string])
19. ¢s365std([passing-grade =integer], /*typing. a single-valued shared method*/

[passing-grade —65)) /* asserting a shared method value */

Figure 4.3: Signature Definitions

187

20. E([boss — B]) :- E([instOf — employee]) A
E([employedby — Dept]) A
Dept([chair — B])
21. D([numberOfStd{ Year) — sum(U, G)}) - D([instOf — depart]) A
D([numberOfUndergrad(Year) — U]} A
D([numberOfGrad(Year) — G))

Figure 4.4: [nference Rule Definitions

Sentence (15) asserts that the output of methods depariName, chair, address, and
secretaries are from classes string, professor, string, and employee respectively. It
also asserts that the arguments of 1-ary method numberOfUndergrad and numberOf-

Grad are from class year and their outputs are from class integer.

Sentence (16) defines the output types of methods boss, degrees, publish and salary.
This seatence also asserts the value of class method highestSalary and its signature.
The method is recognized as a class method from the special symbol “=” and the
signature is recognized as a class-method signature from the symbol “=”. Recall

that class methods are not inherited either by subclasses or by instances.

Sentence (17) and (18) assert the output types of methods courses and teaching

respectively.

Sentence (19) asserts the value of shared method passing-grade and its signature.
This shared method and its signature are indicated by the special symbols “” and
“37 respectively. Recall that shared methods are inherited non-monotonically by

subclasses and shared monotonically by their immediate instances.

Signature assertions are not enforced in OOL, but when the signature of a method

188

is defined then the typing constraint is enforced on the argument(s) and output(s) of

the method.

4.10.4 Inference Rule Definitions

Figure 1.4 shows two examples from the rules of the database.

Sentence (20) defines the conditions for the value of method boss on instances from
class employee. Similarly, sentence (21) defines the conditions for the value of method

numberOfStd in any given year for instances of class depart.

4.10.5 Sample Queries

Figure 4.5 shows some sample queries. The first query is asking for the number of
students within csd in year 1993. To answer this query, rule (21) defining the 1-ary
method numberOfStd is used. Based on rule (21) and sentence (10}, the answer of
this query is N = 300.

:- csd({numberOfStd (1993) — NJ)

:- sarah([boss — B])

:- doe([passing-grade — M)

:- john([children —{C'}])

:- john([children —{C'}]) A kelly([children —{C}])

:- E([instOf — employee), [employedby — csd])

- S([instOf — ¢s365std)

Figure 4.5: Sample Queries

The second query is asking for the name of sarah’s boss. In order to answer this

query, rule (20) which defines the attribute boss is used. Based on rule (20), sentence

189

(9), and sentence (10), the answer is B = john.

The third query is asking for the value of method passing-grade on instance doe.
Here, although, the method is not defined on the instance itself, the method value
is obtaincd through the shared method (i.e., passing-grade) which is defined on the

doe’s class, i.e., ¢s365std. So, the answer to this query is M = 65.

The fourth query is asking for the children of john. If we want the actual names of

the children (instead of just the object identities), we can rewrite the query as

:- john({children—~{C([name — N])}})

The fifth query is asking for the children that are shared by both jokn and kelly.

The sixth question is asking for the employees of the csd department (i.e., Computer

Science Department’s employees).

The seventh question is asking for the students who are instances of cs365std (i.e.,

students of the course CS365).

4.11 Discussion

We have seen that the monotonic inheritance of signatures is defined in the kernel
of OOL, while the non-monotonic inheritance of shared methods is defined outside
the kernel of OOL. Shared method inheritance is defined at a meta level through a

minimization principle.

Extending OOL to include class methods requires only minor changes to the kernel
of OOL semantics, because class methods and their signatures are not inherited by
subclasses or instances. The concept of rlass methods also shows one possible exten-

sion, that can be added easily to OOL, but that would cause a problem (pointed out

190

in 4.8) if this extension were done on F-logic. We do not include class methods in the
kernel of OOL. This is done to simplify the kernel of OOL semantics and to include

only the main characteristics of OO databases.

The monotonic inheritance of signatures is defined in the kernel semantics of OQL
for the following reasons: First, this monotonic inheritance is considered unlikely to
reduce the opporturity of having a complete proof procedure. Second, a common
goal in logical modeling of numerous knowledge representation paradigms is to en-
trench the semantics as much as is practical [KifLaWu90]. Thus, since including the
monotonic inheritance does not reduce th« opportunity of finding a complete proof

procedure, integrating it into the kernel semantics of OOL is the best choice.

The reason why the inheritance of shared methods is defined at the meta level is:
Shared method inheritance involves a non-monotonic derivation rule i.e.. inheritance
of shared methods from a more specific superclass overrides inheritance from a less
specific one. Thus if we integrate this principle into the kernel semantics of OOL,
it may potentially reduce our opportunity of finding a complete proof procedure.
However, we actually benefit from taking this decision. By putting the inheritance of
shared methods outside the kernel semantics of QOL. we do not restrict OOL to any
specific method of inheritance principle. Thus we can change the method-inheritance

principle without changing the logic itself.

CHAPTER 5

Conclusions and Future Work

The goal of this thesis is to design a logic that can be used as a basis in designing
object-oriented databases, similar to the role of Predicate Calculus which was used
by Codd as the basis for designing relational databases [Codd 70]. Such an object-
oriented logic can be used for reasoning about object-oriented database systems, and
viewed as a formal basis for integrating the ideas of deductive databases and object-

oriented databases.

We have designed an object-oriented logic (called OOL) that has the key properties
required for object-oriented databases as described in [Kim90]. This logic can be
used as a logical framework for natural representations and manipulations of complex
objects. Similar to F-logic [KifLa89, KifLaWu90], this logic has overcome the objec-
tions to the use of logic-programming for object-oriented databases as stated by J.D.

Ullman [Ullman92].

The main contribution of this thesis is designing a suitable logic for providing a
firm-theoretical ground of OODBs, as Predicate Calculus serves as a firm-theoretical
ground of relational databases. As stated in [NeuSton89], a theoretical ground is
needed so that researchers in OODBs will be able to use a common set of terms and

to define common goals.

191

192

The object-oriented properiies that OOL has are object-identity, the ability to rep-
resent complex objects (including attributes, methods), typing, class, class hierarchy
and inheritance. It also has a sound and complete resolution-based proof procedure,

which makes it interesting computationally.

5.1 OOL and F-Logic [KifLa89, KifLaWu90]

When OOL was designed, we considered that F-logic [KifLa89, KifLaWu90] was the
most comprehensive object-oriented logic known (in the sense of the object-oriented
properties the lcgic has and in the sense of the d° .ussions presented for the logic).
Recall that F-logic [KifLa89, KifLaWu90] does not distinguish between instance-of
relationships and subclass relationships. This property of F-logic causes us to “guess”
from the context whether an object is intended to be an instance (individual) that
cannot have any instance, or a class that can have instances. In other words, we

cannot distinguish an instance from a class in F-logic.

One of the directions in OOL development was to change the situation where “an
instance is also a class™ of F-logic. in order to overcome problems such as mentioned at
the beginning of Chapter 3. We have succeeded in making this change. OOL has clear
syntactic and semantic distinctions between instance-of relationships and subclass
relationships (see Chapter 3), as well as most properties of F-logic. In addition,
we have shown {(in Chapter 4) that OOL can be extended with class methods and

shared methods, and pointed out that these extensions would be difficult to be done

in F-logic [KifLaWu90].

We consider the syntactic distinction between the two kinds of relations in OOL is
important, becaus.: basically a proof theory of a logic is a certain way of manipulating

its symbols (syntactic objects). Thus, syntactic clarity plays an important role in

reading and writing a program. Such clarity in syntax will help programmers and

users in writing correct programs and in debugging.

5.2 OOL and the New F-Logic [KifLaWu94]

During its development, OOL was designed independently from the new F-logic [Ki-
fLaWu94] (we will call it “NF-logic” to distinguish it from previous versions of F-logic

[KifLa89, KifLaWu90]).

The main difference between NF-logic [KifLaWu94] and F-logic [KifWu89, KifLaWu90]
is that NF-logic has additional instance-of assertions. The reason for these additional
assertions is not mentioned in [KifLaWu94). Perhaps the addition is due to problems

such as mentioned in the beginning of Chapter 3.

Despite the additional instance-of assertions, NF-logic [KifLaWu94] still has signifi-

cant differences from QOL as follows:

e NF-logic:
Similar to F-logic [KifLa89, KifLaWu90], an instance can also be a class and

vice versa.

OOL:
One of the basic ideas of OOL is to make a clear distinction between classes
and instances syntactically and semantically. Consequently, no instance can be

a class, and vice versa.

e NF-logic:
The well-typing conditions are not part of the kernel semantics of NF-logic, they
are defined at the meta level of an extension of NF-logic. Thus, for any method

p € U (where U is the domain of interpretation), there is no connection between

194

the interpretation of the single-valued method I_(u) (or respectively, I, (u)
for set-valued method) and the interpretation of the single-valued method sig-

nature I, (u) (respectively, I==(p)).

OOL:
The well-typing conditions are part of the kernel semantics of OOL, which
provide the connection between /_(u) and I (p) and respecuively, J—(p) and

T2 (p).

NF-logic:

Methods can be defined on both classes and instances.

OOL:

Methods can be defined on instances only. This is the logical consequence of a
clear distinction between classes and instances: definitions of methods can only
be for instances and definitions of method signatures can only be for classes.
In Chapter 4, we discussed an extension of OOL that allows us to define class
methods and shared methods. A class method is a different kind of methods
intended to capture an aggregate property of the instances of the class. On the
other hand, a shared method defined in a class is used to capture the shared

property of the class’ instances.

NF-logic:

Method signatures can be defined on both classes and instances.

OOL:

Method signatures can be defined on classes only.

NF-logic:
There is no restriction on the instance-of relation. Particularly, cyclic relation-

ships are allowed, e.g., for any a,b € U, both “the object a is an instance of

195

object b” and “the object b is an instance of object a” are allowed, furthermore

“the object a is an instance of object a” is also allowed.

OOL:

As a direct consequence of a clear distinction between classes and instances,
a cyclic instance-of relationship is not allowed. It is shown in the next section
that NF-logic allows a contradiction because it permits a class to be an instance

of itself.

e The antimonotonicity property of method signatures is defined differently in
OOL from that of F-logic or NF-logic, as described in Section 3.4. This different
definition of antimonotonicity has helped in allowing the well-typing conditions

to be included in the kernel semantics of QOL.

5.2.1 A Contradiction in the New F-Logic

NF-logic [KifLaWu94)] has added a separate instance-of assertion symbol (correspond-
ing to a membership relation in the semantics) to the existing subclass assertion
symbol on F-logic [KifLaWu90]. Interestingly, for a flexibility reason, NF-logic al-
lows a cyclic membership relation. In particular, a class is allowed to be an instance

(member) of itself.

Inspired by how Bertrand Russel showed a paradox in the Frege logic system in 1902,

we will show that a similar paradox can also happen in NF-logic.
We may formulate a set of classes that are not instances of themselves as follows:

Note that NF-logic uses the symbol “:” for the instance-of assertions, where, for

example, I : C is intended to mean that [is an instance of C.

AN YC (C:N & =(C: Q)

Let nsac be the class whose members are classes that cannot be members of them-

selves. Can nsac be a member of nsac? The proof below shows that from each answer

its contradiction follows. Therefore we must conclude that nsac is not a class.

Proof:

(1) 3N VC (C: N & —~(C: C)).

(2) VC (C : nsac & ~(C: C)). From (1).
(3) (nsac : nsac & -(nsac : nsac)). From (2).
(4a) nsac : nsac (4b) —(nsac : nsac).
From (3) From (3)
(5a) —(nsac : nsac). (5b) nsac : nsac.
From (3) and (4a). From (3) and (4b)
A contradiction of (4a)! A contradiction of (4b)! |

The proof above shows a contradiction in NF-logic. This clearly shows the need for
the restriction that a class should not be allowed to be an instance (or a member)
of itself. This restriction is inherent in OOL where a class cannot play a role as an

instance and an instance cannot play a role as a class.

5.3 Specification of OODB Concepts Based on
OOL

In Chapter 3, we present a logic that is suitable for object-oriented databases called
OOL (object oriented logic). We suggest that OOL can play a similar role with regard
to OODBs to that of Predicate Calculus being used as the basis for the specification

of relational database systems.

197

The following is a summary of OO daiabase concepts based on OOL:

o Object and Object Identity.
Every real-world entity is uniformly modeled as an object. Then, every object is

associated with a unique identifier, which is commonly called an object identity.

o Attribute.
A zero-ary method (i.e., a method without any argument) is regarded as an
attribute in the sense of [Kim90]. An object’s state includes the values of ap-

plicable zero-ary methods, and its instance-of relation.

There are two types of attributes: single-valued and set-valued attributes. The
value of & single-valued attribute is also an object. The value of a set-valued
attribute is a set of objects. The set of objects itself is not an object. However,
it is possible to simulate a set of objects as an object with an attribute whose

value is that set of objects.

o Method.
A non-zero-ary method is regarded as a method in the sense of [Kim90]. An
object’s behaviour is the set of applicable non-zero-ary methods and their values.

There are two types of methods: single-valued and set-valued methods.

® Class.
A class is used for grouping all objects sharing the same set of methods, and for
defining the type of a method’s arguments and the type of its output. Unlike
[Kim90], an object is allowed to belong to more than one class as those classes’
instance. A class definition includes: the subclass relation specification, and the
gignatures (the typing) of its instances’ methods. A new class may be defined

using an existing class, this new class is called a subclass.

198

Based on the extension of OOL, we may define class methods (see Section 4.8)

aund shared methods (see Section 4.9).

A class method is a method defined on a class for capturing the aggregate
properties of its instances. The signature of a class method is defined on the
same class. The class methods and their signatures are not inherited either by

subclasses or instances.

A shared method is a method defined on a ciass. This method applies to each

immediate instance of the class (see Subsection 1.8.2 for its detailed properties).

Class Hierarchy and Inheritance.
A subclass inherits the subclass relation and methods’ signatures from its su-
perclass(es). Additional methods may be defined for a subclass. A class may

have any nuinber of subclasses.

We may choose a singie inheritance system or a multiple inheritance system.
In a single inheritance system, we allow a class to have only one immediate
superclass, where a class inherits the subclass relationship and the signatures
of methods from only one immediate superclass (which also means inheriting
all subclass relationships and signatures from the immediate superclass of the
immediate superclass and so on until the root of the hierarchy). In this single-
inheritance system, the classes form a tree like hierarchy (or tree like hierarchies)
which is called a class hierarchy (or respectively, class hierarchies). In a multiple
inheritance system, we allow a class to have any number of immediate super-
clas<es, where a class inherits the subclass relationship and the signatures of
methods from more than one immediate superclass. In this multiple-inheritance
system, the classes form a rooted directed graph (or the more general, directed

acyclic graphs).

Unlike [Kim90], in OOL we do not assume the existence of a system defined

199

class, CLASS, which is the only one root for all othzr classes in the system. We

also do not assumne that the directed acyclic graphs formed are connected.

5.4 Some Benefits of OOL

The following are some benefits of OOL:

e An object-oriented software technology is typically the result of a creative syn-
thesis of previous ideas, tools and concepts [Banc93]. Its different origins make
reaching agreement on its precise specification impractical or even damaging to
the diversity of the field [Banc93]. Since the idea of object-oriented databases is
much influenced by the development in object-oriented software technology,
object-oriented database system developers have problems in determining a

common specification. A strong theoretical framework is needed in this field.

Since there is no commonly accepted formal foundation for object-oriented
database systems, OOL can serve as their formal foundation; which in turn
will help in forming a common data model for object-oriented database sys-
tems. As a formal foundation, we can use the results found in the logic for a

better understanding of object-oriented database systems.

e In its application in a deductive object-oriented database system, OOL can
reduce the immpedance mismatch between the database query language and the

host language.

e OOL as a formal foundation for object-oriented database systems will allow re-
searchers to work on the same specification of an object-oriented database model
for further investigations of its properties, features, limitations, modifiability,

and possible extensions.

200

5.5 Future Work

Future work which could be done in the same direction is:

e The OOL programs we have discussed in Chapter 4 are restricted to Horn
clauses. The restriction of a program to Horn clauses naturally reduces the
complexity of finding a solution. However, this restriction also reduces signif-
icantly the expressive power of the language. There are previous results in
classical logic programming for handling negative literals in the condition part
of rules, such as [ApBIWal88, CavLlo89, Clark78, Reit78, PrzPrz88, Przym88,
GelLif88], we might be able to adapt one of the existing techniques to OOL
program. Research in finding a suitable way in handling non Horn clauses,

especially negations on the rules’ condition part would be a reasonable next

possible step.

e In OO logic programming, we might find situations where some processes are
better expressed in a procedural way. Developing an implementation technique
that allows a user to program in a procedural way at certain points would be a

useful feature.

¢ Solve problems associated with the heterogeneous structure of complex objects.
such as how to store complex objects, how to cluster the components of complex

objects together and how to store shared information.

REFERENCES

[AndeT0]

[AbiKan89]

[ApBIWal8g8]

[AtBa92]

[Banci86]

Anderson, F., and W. Bledsoe. A linear Format Resolution with Merg-
ing and a New Technique for Establishing Completeness. Journal of the

ACM, 17(3), pp. 525-534, 1970.

Abiteboul, S., and P. Kannellakis. Object Identity as a Query Lan-
guage Primitive. In Proceedings of the ACM-SIGMOD 1989, pp. 159-
173, 1989.

Apt, K. R., H. A. Bleir, and A. Walker. Towards a Theory of Declara-
tive Knowledge, In Foundation of Deductive Databases and Logic Pro-
gramming, J. Minker (ed), Los Altos, California, Morgan-Kaufmann,

pp. 89-148, 1988.

Atkinson, M., F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S.
Zdonik. The Object-Oriented Database System Manifesto. In Building
an Object-Oriented Database System, The Story of O,, F. Bancilhon,
C. Delobel, and P. Kanellakis (eds), Morgan-Kaufmann, San Mateo,
California, 1992.

Bancilhon, F. A Logic-Programming/Object-Oriented Cocktail. SIG-
MOD RECORD, Vol. 15, No. 3, September, pp. 11-21, 1986.

201

[Ban87]

[BunOh89]

[CavLlo89]

[CheWa89)

[ChKiW 189

[Clark78]

[Codd70]

[Ende72]

[FiKe85]

202

Banerjee, J., H. T. Chou, J. Garza, W. Kim, D. Woeld, N. Ballon,
and H. J. Kim. Data Model Issues for Object-Oriented Applications. In
ACM Trans. Office Information Systems, January, 1987.

Buneman, P., and A. Ohori. Using Power Domains to Generalize Re-

lational Databases. Theoretical Computer Science, 1989.

Cavedon, L., and J. W. Lloyd. A Completeness Theorem for SLDNF
Resolution. In Journal of Logic Programming, 7, pp. 177-191, 1989.

Chen, W., and D. S. Warren. C-logic for Complex Objects. Proceedings
of the ACM SIGACT-SIGMOID-SIGART Symposium on Principles of
Database Systems, pp. 369-378, March, 1989.

Chen, W., M. Kifer, and D. S. Warren. HiLog: A First-Order Semantics
for Higher-Order Logic Programming Constructs. In Proceedings of the

North American Conference on Logic Programming., October, 1989.

Clark, K. L. Negation as Failure. In Logic and Databases, H. Gallaire
and J. Minker (eds), New York, Plem Press. 1978.

Codd, E. F. A Relational Model For Large Shared Data Banks. Com-
munications of the ACM, 13(6), pp. 377 387. 1970.

Enderton, H. B. A Mathematical Introduction to Logic. Academic
Press, New York, 1972.

Fikes, R., and T. Kehler, The Role of Frame-Based Representation in

Reasoning, In Communication of the ACM, pp. 904-920, September,
1985.

[Gabr85)

[GelLif88)

203

Gabriel, J., T. Lindholm, E. L. Lusk, and R. A. Overbeek. A Tutorial
on the Warren Abstract Machine for Computational Logic. Technical

Report ANL-84-84, Argonne National Laboratory, Argonne, Illinois,
June, 1985.

Gelfond, M., and V. Lifschitz. The Stable Model Semantics for Logic
Programming. In Logic Programming: Proceedings of the Fifth Confer-
ence and Symposium. p. 1070-1080, 1988.

[GelRosSch88] Van Gelder, A., K. A. Ross, and J. S. Schlipf. The well-founded

[Gel89]

[HulYos90]

[Junus94]

[KifLa89)

semantics for general logic programs. In Proceedings of the ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, pp. 221-230, 1988.

Van Gelder, A. The alternating fixpoint of logic programs with nega-
tion. In Proceedings of the ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems, pp. 1-10, 1988.

Hull, R., and M. Yoshikawa. ILOG: Declarative Creation & Manipula-
tion of Object Identifiers. In Proceedings of VLDB 1990, pp. 455- 468,
1990.

Junus, M. A Logic for Object-Oriented Databases, Technical Report
425, Department of Computer Science, The University of Western
Ontario, London, Ontario, May, 1994.

Kifer, M., and G. Lausen. F-Logic: A Higher-Order Language for
R.asoning about Objects, Inheritance, and Scheme. In Proceedings of
the 1989 ACM SIGMOD International Conference on the Management
of Data, P.rtland, Oregon, pp. 134-146, June, 1989.

[KifWu89)]

[KifLaWu90]

[KifLaWu94)

[Kim88]

[Kim89)]

[Kim90]

[LecRi88]

204

Kifer, M., and J. Wu A logic for Object-Oriented Logic Program-
ming (Maier’s O-logic Revisited). In Proceedings of the ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pp.
379-393, March, 1989.

Kifer, M., G. Lausen and J. Wn Logical Foundations of Object-
Oriented and Frame-Based Lang-age. Technical Report 90/1/. Depart-
ment of Computer Science, SUNY, Ne~York, 1990.

Kifer, M., G. Lausen and J. Wu Logical Foundations of Object-
Oriented and Frame-Based Language. Technical Report 93/06, Depart-
ment of Computer Science, SUNY, NewYork, (to appear in Journal of

the ACM, 1995), 1994.

Kim, W_, et al. Integrating an Object-Oriented Programming System
with a Database System. In Proceedings of Second International Con-
ference on Object-Oriented Programming Systeims, Languages, and Ap-

plications, San Diego, California, September, 1988.

Kim, W., et al. Features of The ORION Object-Oriented Database
System. In Object-Oriented Concepts, Applications, and Databases. W.
Kim and F. Lochovsky (eds). Reading. MA. Addison-Wesley. 1989.

Kim, W. Object-Oriented Databases: Definition and Research Direc-
tions. In IEFE Transaction on Knowledge and Data Engineering, Vol.

2, No. 3. September, 1990.

Lecluse, C., and Richard, P. Modeling Inheritance and Genericity in

Object-Oriented Data Model. In Second International Conference on

[LecRV8S]

{Lloyd87]

[LouOzs91]

[Macle83]

[Maier86)

[MaiWa80a)

[MaiWa8Gb)

[Minsky81]

205

Database Theory (ICDT), LNCS # 326, pp. 223-238, Springer Verlag,
Bruges, Belgium, 1988.

Lecluse, C., P. Richard, and F. Velez. O, an Object-Oriented Data
Model. Proc. of the ACM-SIGMOD International Conference on Man-
agement of Data-88, pp. 424-433, 1988.

Lloyd, J. W. Foundations of Logic Programming, Second Edition,
Springer Verlag, Berlin, 1987.

Lou, Y., and M. Ozsoyoglu. LLO: An Object-Oriented Deductive Lan-
guage with Methods and Method Inheritance. In Proceedings of ACM-
SIGMOD 1991, pp. 198-207, 1991.

MacLennan, B. J. A view of object oriented programming, Naval Post-

graduate School, NP552-83-001, February, 1983.

Maier, D. A logic for Objects. Workshop on Foundations ef Deductive
Databases and Logic Programming, Washington DC, pp. 6-26, August,
1986.

Maier, D., and D. S. Warren. A Theory of Computed Relations, Tech-
nical Report 80/12, Department of Computer Science, SUNY, Stony
Brook, New York, November, 1980.

Maier, D., and D. S. Warren. Incorporation Compuled Relalions in Re-
lational Databases, Technical Report 80/17, Department of Computer
Science, SUNY, Stony Brook, New York, December, 1980.

Minsky, M. A Framework for Representing Knowledge. In Mind Design,
J. Haugeland (ed), MIT Press, Cambridge, MA, 1981.

206

[NeuSton89] Neuhold, E., and M. Stonebraker Future Directions in DBMS research.

[Page89]

[Przym88]

[Przym89)

[PrzPrz88]

[ReitT8)

[Tour86]

[Ullm87]

in SIGMOD Record, 18(1), 1989.

Page Jr. T. W. An Object-Oriented Logic Programming Environment
for Modelling. Ph.D. dissertation, UCLA, Los Angeles, 1989.

Przymusinski, T. C. On the Declarative Semantics of Deductive
Databases and Logic Programs. In Foundations of Deductive Databases
and Logic Programming, J. Minker (ed), Morgan-Kaufmann, Los Altos,
California, pp. 193-216, 1988.

Przymusinski, T. C. Every Logic Program Has a Natural Stratifica-
tion and an Iterated Least Fixed Point Model. In Proceedings of ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, 1989.

Przymusinski, H., and T. C. Przymusinski. Weakly Perfect Model Se-
mantics for Logic Programs. In Proceedings of The 5th International
Information Systems and Logic Programming, pp. 1106-1120, Seattle,
1988.

Reiter., R. On Closed World Databases. In logic and Databases, H.
Gallaire and J. Minker (eds), New York, Plem Press, 1978.

Touretzky, D. S. The Mathematics of Inheritance, Morgan-Kaufmann,

Los Altos, California, 1986.

Ullman, J. D. Database Theory: Past and Future. Proc. of the ACM-
SIGACT-SIGMOD Symposium on Principles of Database Systems, pp.
1-10, 1987.

[Ullm88]

[Ullm91]

207

Ullman, J. D. Principles of Database and Knowledge-Base Systems.
Vol. I, Computer Science Press, Rockville, Maryland, 1988.

Ullman, J. D. A Comparison Between Deductive and Object-Oriented
Database Systems. In LNCS # 566: Deductive and Object-Oriented
Databases, Second International Conference on DOOD 1991 Proceed-
ings, D. Delobel, M.Kifer, Y. Masunaga (eds), Munich, Germany, De-
cember 1991, Springer-Verlag, Berlin, 1991.

Appendix A

The New F-Logic

A.1 Introduction

When we finished the design of our proposed logic (see Chapter 3), a new version of
F-logic [KifLLaWu94] appeared (also sec 1nus%4]). From now on, we call this new
version of F-logic as NF-logic to avoid cunfusion. We will surnmarize this NF-logic
although it was not used as the basis of our proposed logic. as it is useful for a

comparison study.

The main distinguishing property of NF-logic from its two previous versions [KifLa89,
KifLaWu90} is the additional membership-relationship assertions between a class and
its instances. This additional relationship is also the main distinguishing property be-
tween our proposed logic and the previous versions of F-logic [KiflLag89, KifL.aWu90).
However, there are still some important distinguishing properties between our pro-

posed logic and NF-logic (see Section 5.2).

A.2 Syntax

The alphabet of an F-logic language, L, consists of:
208

209

e a set of object constructors F;

an infinite set of variables V;

the usual logical connectives and quantifiers, V, A, -, —,V, 3;

a set of auxiliary symbols: (,),[,], =, =, o=, e, = =2 etc.

Object constructors play the role of function symbols that have arities > 0. An
id-term is the usual term in Predicate Calculus composed of function symbols and
variables. The set of all ground id-terms is denoted by U(F), which is commonly
known as the Herbrand Universe. Ground id-terms are considered to play the role of
logical object identities, i.e., a logical abstraction of the implementation concept of

physical object identities.

A.2.1 Molecular Formulae

A language of NF-logic consists of a set of NF-formulae that are formed from the
alphabet symbols. NF-Formulae are constructed from simpler NF-formulae by using
the usual connectives and quantifiers. The simplest kind of NF-formulae are called

molecular NF-formulae (or simply NF-molecules).

Definition An NF-molecule in NF-logic is one of the following:

(1) an is-a assertion of the form C :: D or of the form O : C, where C, D, and O

are id-terms.
(2) An NF-molecule of the form

O[semicolon-separated list of method ezpressions]

A method ezpression can be either a non-inheritable data expression, an inher-

itable data ezpression, or a signature ezpression, as follows:

210

e Non-inheritable data expressions have one of the following two forms:

— A non-inheritable scalar expression (k > 0):
ScalarMethod@Q,,...,Qr — T
— A non-inheritable set-valued expression {I.m > 0):
SetMethodQQ,,...,Qc—{S1,...,5n}

o Inheritable scalar and set-valued data expressions are similar to non-inheritable
expressions except that “—” is replaced with “e-" and “—-" is replaced
with “e7”.

e Signature expressions also take two forms:

— A scalar signature expression (n,r > 0):
ScalarMethod@Vy,V, = (A1,.... A,)
— A set-valued signature expression (s,t > 0):

SetMethodaW,. ... W,=(B,.....B))

In (1), the first isa assertion (" :: I} states that (" is a nonstrict subclass of D, i.e.,
including when €’ and D denote the same class. The second isa-assertion O : (' states
that O is a member of class (". It should be noted that NF-logic allows a class to be

a member of itself.

In (2), O is an id-term that denotes an object. ScalarMethod and SetMethod are
also id-terms. The syntactic position of ScalarMethod points out that it is invoked
on O as a scalar method. Similarly, the syntactic position of SetMethod points out
a set-valued invocation. When a ScalarMethod or a SetMethod contains variables, it

denotes a family of methods instead of a single method. The sing'e-headed arrows,

211

—,e—, and =, point out that the corresponding method is scalar. On the other
hand, the double-headed arrows, ——,e—, and =x>, point out that SetMethod denotes

a set-valued function.

The terms T and S;, in data expressions, are id-terms rep esenting the result of
ScalarMethod and SetMethod respectively, when they are invoked on the host-object
O with the arguments @, ...,Qx and R,y,..., R, respectively. These arguments are

id-terms.

A; and B;, in signature expressions, are id-terms that represent the fypes of the results
returned by the corresponding methods when invoked on an object of a class C' with
arguments of types Vi,...,V, and W,...,W,, respectively. These arguments are
id-terms. The notation (...) in signature expressions means that the output of the

method must belong to all the classes listed on the right of “ = ” or “=2".

The order of data and signature expressions in an NF-molecule is immaterial. NF-
logic allows the same method and the same data/signature expressions to have mul-
tiple occurrences in the same NF-molecule. Similarly, the same id-terms may occur
multiple times inside the braces in a data or signature expression. For convenience,
the symbol “@” may be omitted when a method does not expect arguments. For
example, we may write P[Meth — Val] instead of P[Meth@ — Val]. Furthermore,
if only one element appears inside { }, we may omit the brackets. For example, we

may write P[...—+S5] instead of P[... —+{S}].

A.2.2 Complex Formulae

NF-formulae are defined as foilows.

e Molecular NF-formulae are NF-formulae;

212

e ¢V, ,d A, ¢ are NF-formulae, if ¢ and v are NF-formulae;

e VX ¢, Y1) are NF-formulae, if ¢, are NF-formulae and X, Y are variables.

Furthermore, a literal is defined as either a molecular NF-formula or a negation of a

molecular NF-formula.

A.3 Semantics

The following notation shall be used in presenting the semantics. Given a pair of sets
U and V, the notation Total(U, V) is used for denoting the set of all total functions
{/ = V. The notation Partial(l/,V) denotes the set of all partial functions U — V.
The power-set of U is denoted by P(U). In addition, given a collection of sets {S, }ienar

parameterized by natural numbers, []72, S, will denote the C'artesian product of the

..
‘Si S,

A.3.1 NF-Structures

Semantic structures in NF-logic are called NF-sfructures. Given a language of NF-

logic, L, an NF-structure is a tuple

I = (lr, <t € dp, ol o, loss. [. 1:»)

Where U/ is the domain of I, <;: is an irreflexive partial order on {7, and € is a
binary relation. The notation a <;; b means a <¢ b or a = b. The relation < and
€y is extended to tuples over U, Given @, € U™ and § C U™, we write & <y U or

i €y v if the corresponding relationship holds between @ and ¢ component-wise.

213

The ordering <y on U is a semantic counterpart of the subclass relationship. That
is, a <y b means that a is a subclass of . The binary relation €y is used to model
class membership, i.e., a €y b means that a is a member of class b. The relationship

between <y and €y is as follows: I{ @ €y b and b <y c then a €y c.

NF'-logic does not put any other restriction on the class membership relation (€y).
Especially, €, does not have to be acyclic. For example, s €y s is allowed. The
expression u €y v means that v is an element of U that denotes a subset of U, and

u 1s member of this subset.

U can be viewed as a set of all actual objects in a possible world /. Ground id-
terms (i.e., the elements of U(F)) play the the role of logical object id’s. These
ground id-terms are interpreted by objects in U through the mapping Ir : F —

o Total(U*,U). This mapping interprets every k-ary object constructor, f € F,
by a function U* — U. For k = 0, Ir(f) is identified with an element of U.

The remaining symbols in I denote mappings for interpreting the six types of method

expressions in NF-logic.

A.3.2 Attachment of Functions to Methods

In NF-logic, id-terms are also used to denote methods. A method is a function that
takes a host-object and a list of proper arguments and maps them into another object
or a set of objects depending on whether the method is invoked as a scalar or a set-

valued function.

As mentioned before, NF-logic can use any id-term for a method name. In order
to allow variables to range over methods, NF-logic associates functions with each
element of U instead of U(F') (a set of ground id-terms). Moreover, because methods

can have different arities, NF-logic needs to associate a function with an arity.

214

Formally, objects that play the role of methods are interpreted through an assignment
of appropriate functions to each element of U, by using the mapping I_., le—,—

and Jeus.

For each object, its role as a scalar method is obtained through the mapping:
oI Ies:U [, Partial(U*+',U)

Each of these mappings associates a tuple of partial functions U**! s U with every
element of U; there is exactly one such function in the tuple, for each method of arity

k > 0. This means that the same method can be invoked with different arities.

Furthermore, every method can be invoked as a scalar or as a set-valued function.
“his is achieved semantically by interpreting methods playing the role of set-valued

methods through the mapping:
o Iy, Jom : UV — T2, Partial(Uk', P(U))

Each of these mappings associates a tuple of partial functions {"*+! — P(U) with

every element of U.

The difference between I_. and le— in the mapping above is that the * — ™ versions
are used to interpret non-inheritable data properties, while “e— versions are used to

interpret the inheritable ones.

From the above definitions, for an m € U, I_.(m) (or. I (m), le—(m), Ie+s(m))

is an infinite tuple of partial functions parameterized by the arity £ > 0.

The following notation is used to refer the k-th component of such a tuple: I¥(m)
(resp., 1%L (m), IE,(m). or Ig(nz)). Therefore, a method m which occurs in
a scalar non-inheritable data expression with k proper arguments is interpreted by
1¥®)(m). Similarly for the other three types of occurrences. Notice that I*)(m) and

the other three mappings are (k + 1)-ary functions. The first argument is the host

215

object, the other k arguments correspond to the proper arguments.

A.3.3 Attachment of Types to Methods

Since methods are interpreted as functions, NF-logic interprets a signature expression
as a functional type, for specifying the type of a method. The functional type describes
the types of the arguments to which the function can be applied and the types of the

results returned by the function.

Functional types are described, model-theoretically, through the mappings /- and

I=n as follows:
o I, : U [I2, Partial Anti Monotone, (U, P(U))
o Iow : U v [IR, Partial AntiMonotone,(U*+!, Py(U))

Where P;(U) is a set of all upward-closed subsets of U. A set V C U is upward closed
if v € V and v <y v’/ (where v' € U) imply v/ € V. When V is viewed as a set of
classes, upward closedness simply means that, for each class v € V, the set V also
contains all the superclasses of v. PartialAntiMonotone,(U*+', P;(U)) denotes the
set of partial anti-monotonic functions from U't! to P;(U)). For a partial function
p : U¥t! s Py(U)), antimonotonicity means that if @,% € U, & <y 4, and p(#) is

defined, then p(7) is also defined and p(¥) 2 p(i).

A.4 Discussion

Ir subsection we discuss the properties of I, and /==. Similar to /I, we use
I{¥)(m) to refer to the k-th component of the tuple I(m). Similarly for I(=I§L(m)

which is used for set-valued methods.

216

I¥)(m) is intended as the type of the (k + 1)-ary function I*)(m). This means
that the domain of definition of I¥)(m) is viewed as a set of (k + 1)-tuples of classes,
(hostcls, argtype,, . . .,argtype), that type tuples of arguments, (obj, arg,, ..., args),
on which I%¥)(m) can be invoked correctly. For every tuple of classes, (cls, types) €
U1 if I%)(m)(cls, types) is defined, it represents the type of I'¥)(obj,args) for
any tuple of arguments such that (obj,args) €y (cls,types). This means that if

v = I*)(m)(obj, arys) is defined it must belong to every class in I¥(m)(cls, types).
Similarly for the meaning of I(='§é, as the type of the set-valued function %),

It should be noted that the above relationship between I, I=xs and I_., I, is not
part of the definition of NF-structures. Similarly the relationship between I, I=
and Ie—, Ie++ is not part of the definition of NF-structures. These relationships are

defined at a meta level of NF-logic.

It should be noted again that this new F-logic|KifLaWu94] was not used as the basis
of the development our object-oriented logic, since we found out about it when the
design of our logic was done (also see [Junus94]). The kinds of F-logic that we used

as the basis are [KiflLa89] and [KifLaWu90].

	Western University
	Scholarship@Western
	1995

	A Logic For Object-oriented Databases
	Machmudin Junus
	Recommended Citation

	tmp.1410235638.pdf.lEiz5

