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Abstract

The derived category of coherent sheaves on a smooth projective variety is an

important object of study in algebraic geometry. Over the past decades, a lot of

techniques have been invented to study the structure of derived category of coherent

sheaves. One important device relevant for this study is the notion of tilting sheaf,

which was first introduced by Baer [Ba].

This thesis is concerned with the existence of tilting sheaves on some smooth

projective varieties. The main techniques we use in this thesis are Galois descent

theory and Proposition 4.1.8: a bundle on a smooth projective variety is a tilting

bundle if it is a tilting bundle after a finite Galois extension. First we construct

a tilting bundle on a general Brauer-Severi variety. Our major result shows the

existence of tilting bundles on some Brauer-Severi schemes. As an application, we

prove that there are tilting bundles on an arithmetic toric variety whose split toric

variety has a splitting fan. Our findings extend the works of Costa and Miró-Roig

[CM1] and Blunk [Bl].

Keywords: Derived category of coherent sheaves, tilting sheaf, Brauer group,

Brauer-Severi schemes, arithmetic toric varieties, descent.
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Introduction

The study of the derived categories of coherent sheaves on homogeneous varieties

dates back to the late 1970s when Beilinson [Be] first described the derived categories

of projective spaces. Since then, it has become an increasingly popular subject in

algebraic geometry, and a lot of mathematicians have been working on this field.

Their efforts have put it in the forefront of modern algebraic geometry. In this

thesis, we always assume that X is a smooth projective variety defined over a field

K and denote by Db(X) the bounded derived category of coherent sheaves on X,

which is naturally a triangulated category. The bounded derived category Db(X)

has come to be understood as a homological replacement for the variety X and

it is one of the most important algebraic invariants of a smooth projective variety

X. For example, Bondal and Orlov showed that smooth projective varieties with

ample canonical or anticanonical bundles are uniquely determined by their derived

categories [BO2]. At the beginning of the 1980s, it was discovered that the derived

category of coherent sheaves has connections with a variety of fields of mathematics,

like the Homological Mirror Symmetry Conjecture of Kontsevich [Ko], which states

that there is an equivalence of categories between the derived category of coherent

sheaves on a Calabi-Yau variety and the derived Fukai category of its mirror. Thus

it is vital for us to understand the structure of Db(X).

Over the past decades, a lot of techniques have been invented to study the
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structure of the derived category of coherent sheaves. One important device relevant

for this study is the notion of an exceptional collection. Exceptional collections

provide a way to break up Db(X) into simple components. Let X be a smooth

projective variety over field K. An object E in Db(X) is said to be exceptional if

Hom(E,E) = K and Hom(E,E[k]) = 0 ∀ k 6= 0.

An exceptional collection in Db(X) is an ordered collection (E0, E1, · · · , En) of ex-

ceptional objects, satisfying

Hom(Ej, Ei[k]) = 0 for all k when 0 ≤ i < j ≤ n.

Finally, an exceptional collection is full if the smallest triangulated subcategory of

Db(X) containing all the objects of the collection is Db(X) itself.

The first example of a full exceptional collection is the collection

{OPn ,OPn(1), · · · ,OPn(n)} ⊂ Db(Pn)

in the bounded derived category of coherent sheaves on Pn. It was constructed by

Beilinson in his pioneering work [Be]. After that, in his series of papers [K1], [K2],

[K3] and [K4], Kapranov constructed a vast number of full exceptional collections on

some projective homogeneous varieties (Grassmannians, flag and quadric varieties).

These results naturally suggested the following conjecture.

Conjecture 1. Let X be a projective homogeneous variety of a split semisimple

linear algebraic group over an algebraically closed field of characteristic zero. Then

there exists a full exceptional collection of vector bundles in Db(X).

Up to now, the conjecture remains largely unsolved. Partial results in this direc-

tion can be found in [K4, Sa1, Ku1, Ku2, PS, Ku3, M, FM] and [AAGZ]. In [Ku3,

§1.1], Kuznetsov and Polishchuk listed the known results up to that point according

to types of simple algebraic groups classified by Dynkin diagrams.



3

Recently, Kawamata [Ka] proved the existence of a complete exceptional collec-

tion of sheaves on an arbitrary projective toric variety by means of minimal model

theory.

A generalization of the notion of full exceptional collection is the notion of semi-

orthogonal decomposition, which was introduced by Bondal in [Bon]. Let B be a

full triangulated subcategory of a triangulated category D. The right orthogonal

to B is the full triangulated subcategory B⊥ ⊂ D consisting of the objects C such

that Hom(B,C) = 0 for all B ∈ B. A sequence of triangulated subcategories

(B0, · · · ,Bn) in a triangulated category D is said to be semi-orthogonal if Bj ⊂ B⊥i
whenever 0 ≤ j < i ≤ n. If a semi-orthogonal sequence generates D as a trian-

gulated category, then we say it is a semi-orthogonal decomposition of D. Using

the tools developed in [BK], Orlov gave semi-orthogonal decompositions for projec-

tive bundles, Grassmann bundles and flag bundles. Later, Böhning [Boh] gave a

semi-orthogonal decomposition for quadric bundles. All of these results generalize

the full exceptional collections on the corresponding varieties by Beilinson [Be] and

Kapranov [K4]. Further developments in this direction are the generalization to flat

proper morphisms as in [Sa2] and the extensions to the twisted case, like a semi-

orthogonal decomposition for Brauer-Severi Schemes in [Ber] and semi-orthogonal

decompositions for twisted Grassmann bundles and flag bundles in [B].

Another important approach to determine the structure of Db(X) is to construct

tilting sheaves. This notion was first introduced by Baer [Ba]. A coherent sheaf T

of OX-modules on a smooth projective variety X is called a tilting sheaf (or, a tilting

bundle if it is locally free) if

(i) it has no higher self-extension, i.e. ExtiOX (T ,T ) = 0 for all i > 0,

(ii) the endomorphism algebra of T , HomOX (T ,T ), has finite global homological

dimension,



4

(iii) the direct summands of T generate the bounded derived category Db(X).

The importance of tilting sheaves relies on the fact [Ba, Theorem 3.1.2, 3.1.3]

that they can be characterized as those sheaves T on X such that the functors

RhomX(T ,−) : Db(X) → Db(A) and − ⊗LX T : Db(A) → Db(X) define mutually

inverse equivalences of the bounded derived categories of coherent sheaves on X and

of finitely generated right A-modules, where A := HomOX (T ,T ). The existence

of a tilting sheaf also plays an important role in the problem of characterizing the

smooth projective varieties X [Cr, Corollary 2.6]: if X has a tilting sheaf, then its

Grothendieck group K0(X) is a free finitely generated abelian group.

There is a strong connection between tilting sheaves and full exceptional collec-

tions. Recall that we say a full exceptional collection (F0,F1, · · · ,Fn) is strong if

it satisfies the conditions Homk(Fi,Fj) = 0 for all i and j, with k 6= 0. In [Bon],

Bondal first proved that if (F0,F1, · · · ,Fn) is a full strong exceptional collection

of the bounded derived category Db(X) of coherent sheaves on a smooth manifold

X, then Db(X) is equivalent to the bounded derived category Db(mod−A) of right

finite-dimensional modules over the algebra A := Hom(F ,F ), with F := ⊕ni=0Fi.

By Baer’s theorems, we know that F is actually a tilting sheaf. And we can con-

struct tilting sheaves from full strong exceptional collections. The first few examples

of varieties that have tilting sheaves are projective spaces and Grassmannian man-

ifolds, as these full exceptional collections given in [Be] and [K4] are actually full

strong exceptional collections.

With full generality, the problem of constructing tilting sheaves seems out of

reach and only some particular cases have been addressed (most of them are decom-

posable as line bundles): projective spaces [Be], Grassmannians, flag and quadric

varieties [K4, FM], some fibrations [CRM], some toric varieties [CM1, CM2, Cr,

CM3, CM4, CRM, BT, DLM, U, LM], some Fano varieties [BO3, GK, Ku4], some
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rational surfaces [Ki, HP], etc. Further development in this direction is the exis-

tence of tilting bundles on some twisted varieties. Recently, Blunk, Sierra and Smith

[BSS] proved that there is a tilting sheaf on a degree 6 del Pezzo surface over an ar-

bitrary field, and Blunk [Bl] showed that there exist tilting bundles on some twisted

homogeneous varieties.

The aim of this thesis, in the context of the works mentioned above, is to show the

existence of tilting bundles on some twisted smooth projective varieties. Using Galois

decent theory, we construct tilting bundles on twisted projective spaces (Theorem

4.1.12), which are different from those constructed by Blunk in [Bl]. We also show

that there is a tilting bundle on the twisted projective bundles under some mild

conditions (Theorem 4.1.16). As an application, we show the existence of tilting

bundle on an arithmetic variety whose split toric variety corresponds to a splitting

fan (Theorem 4.2.1), which generalizes the result obtained by Costa and Miró-Roig

in [CM1].

Thesis Organization

Chapter 1: This chapter is basically a survey of the well-known fact that the

isomorphism classes of Azumaya algebras are in a one-to-one correspondence with

isomorphism classes of Brauer-Severi schemes. It starts with a brief introduction

of non-abelian cohomology, and then lists some facts about descent theory and

twisted forms. Next, we give general information about Brauer groups and Brauer-

Severi schemes. The first important result is the relation between the first Galois

cohomology group and twisted forms (Propositions 1.1.16, 1.1.20). Using this result,

we give a brief proof of the well-established fact that the isomorphism classes of
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Azumaya algebras are in one-to-one correspondence with isomorphism classes of

Brauer-Severi schemes (Theorems 1.2.19, 1.2.31). Another important fact is that

the Brauer group of a rational smooth projective variety is equal to the Brauer

group of its base field (Theorem 1.2.28).

Chapter 2: In this chapter, we devote ourself to a quick overview of toric

varieties from the viewpoint of combinatorics. We begin with the construction of a

split toric variety from a fan and establish the important fact that the equivariant

morphisms of two toric varieties are in a one-to-one correspondence with the maps

of their fans (Theorem 2.1.9). Next, with special interest, we study toric fibrations.

After describing how to construct a fan of projective bundles from the fan of the

base toric variety (Corollary 2.1.16), a characterization of toric variety with spliting

fan is given (Corollary 2.1.24). In the final part of this chapter, we briefly introduce

the arithmetic toric varieties, which are twisted forms of split toric varieties.

Chapter 3: This chapter begins with a quick introduction to the construction

of the derived category of an abelian category and derived functors. Then we focus

our discussion on the study of the bounded derived category of coherent sheaves. We

first introduce the important devices for this study, namely, full (strong) exceptional

collections, semi-orthogonal decomposition, tilting sheaf, etc. After this, we give a

sketch of the proof of Belinson’s outstanding result on projective space (Theorem

3.1.10) and recall its generalization—Orlov’s theorem about a semi-orthogonal de-

composition of projective bundles (Theorem 3.1.21). Then we give Costa and Miró-

Roig’s improvement of this result—a full strong exceptional collection for projective

bundles (Theorem 3.1.27), which is the special case of toric variety with splitting

fan (Theorem 3.1.28). Finally, we introduce Blunk’s construction of a tilting sheaf

on Brauer-Severi variety (Theorem 3.1.38).

Chapter 4: This is the most important chapter of this thesis. We first prove an
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important fact which states that a locally free sheaf is a tilting bundle on a smooth

projective variety if it is a tilting bundle after a finite Galois extension (Proposi-

tion 4.1.8). Based on this result and using Galois descent or pushforward of sheaf

(Remark 4.1.13), we give a tilting sheaf on Brauer-Severi variety (Theorem 4.1.12),

which is different from the one given by Blunk (Theorem 3.1.38). An advantage of

this method is that we may use it to construct a tilting bundle on twisted projec-

tive bundles under some mild conditions and obtain our main theorem (Theorem

4.1.16). After this, two special cases are given (Corollary 4.1.18, 4.1.19). Then, as

an application, we show the existence of tilting sheaf on an arithmetic toric variety

whose split toric variety has splitting fan (Theorem 4.2.1), which generalize Costa

and Miró-Roig’s result (Theorem 3.1.28). At the end of this chapter, we give the

conclusion of this thesis and some further interesting questions.



Chapter 1

Brauer Groups and Brauer-Severi

schemes

It is well-known that isomorphism classes of central simple algebras over a field

are in one-to-one correspondence with isomorphism classes of Brauer-Severi varieties

over it. More generally, the isomorphism classes of Azumaya algebras are in a one-

to-one correspondence with isomorphism classes of Brauer-Severi schemes. This

chapter is essentially a brief survey of these facts. We also introduce the Brauer

group in this chapter.

1.1 Non-abelian Cohomology and Twisted Forms

1.1.1 Non-abelian Cohomology

We first recall some basic facts about non-abelian group cohomology (cohomol-

ogy with non-abelian coefficients of discrete groups) in this subsection. The main

reference is [Se2] and all the results presented below can be found in detail there.

Definitions 1.1.1. Let G be a finite group. A G-group is a group A equipped with a

8



CHAPTER 1. BRAUER GROUPS AND BRAUER-SEVERI SCHEMES 9

left G-action. If we write ga for the image of a ∈ A under g ∈ G, then g(a ·b) = ga ·gb

for every g ∈ G and a, b ∈ A. We call A a G-module if it is abelian. The morphism

of G-groups, a G-morphism for short, is a map f : A → B of G-groups such that

the diagram

G× A
id×f

��

· // A

f
��

G×B · // B

commutes.

Now let us define the non-abelian cohomology H0 and H1.

Definitions 1.1.2. Let G be a finite group and A a G-group. We define the zeroth

cohomology group of G with coefficients in A as H0(G,A) := AG, the elements of

A invariant under the action of G. A cocycle c of G in A is a map G → A, g 7→ cg

such that cgh = cg · gch for each g, h ∈ G. Two cocycles c and c′ are said to be

cohomologous if there exists b ∈ A such that c′g = b−1 ·cg · gb for all g ∈ G. This is an

equivalence relation on cocycles and the set of equivalence class, the first cohomology

set of G with coefficients in A, and is denoted by H1(G,A).

Unlike the abelian case, H1(G,A) is not a group, but a pointed set, with a

distinguished element the class of the unit cocycle 1, where 1g = 1, for all g ∈ G.

When G acts trivially on A, then a cocycle is simply a group homomorphism

and H1(G,A) is the set of conjugacy classes of homomorphisms.

The cohomology sets H0(G,A) and H1(G,A) are functorial in both G and A,

i.e. contravariant in G and covariant in A, and they fit into a natural exact sequence

of pointed sets as follows. The kernel of a map of pointed sets f : (X, x) → (Y, y),

where x, y are distinguished elements of X and Y respectively, is f−1(y). Let A and

B be two G-groups and A ⊂ B be a normal G-subgroup, then there is a natural
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exact sequence of pointed sets

1→ H0(G,A)→ H0(G,B)→ H0(G,B/A)
δ→ H1(G,A)→ H1(G,B)→ H1(G,B/A).

The connecting homomorphism δ is defined as follows: let c ∈ H0(G,B/A) =

(B/A)G, then we choose b ∈ B such that c = bA. Since c ∈ (B/A)G, if g ∈ G,

we have cg := b−1 · gb ∈ A, and this defines a cocycle of G in A.

Further, if G-group A is abelian, we can continue the above exact sequence and

define

H1(G,B/A)
δ→ H2(G,A),

where the abelian group H2(G,A) is regarded as a pointed set.

Remark 1.1.3. If the G-group A is abelian, then the definitions above coincide with

usual group cohomology. As in [Gir], one could also define H2(G,A), H3(G,A), etc.

in for nonabelian A.

Let G,G′ be two finite groups and h : G′ → G be a group homomorphism. Then

for any G-group A, we have natural pullback maps h∗ : H i(G,A) → H i(G′, A), i =

0, 1, which are morphisms of pointed sets. If h is the canonical projection on a

quotient group, then infG
′

G := h∗ is said to be the inflation map. The composition

of infG
′

G with some extension of the G′-group is also called inflation.

Using inflation maps, non-abelian group cohomology can easily be extended to

the case where G is a profinite group and A is a discrete G-group on which G acts

continuously. Indeed, we can define

H i(G,A) := lim−→
G′

H i(G/G′, AG
′
), i = 0, 1,

where the direct limit is taken over the inflation maps and G′ runs through all

the normal open subgroups G′ of G such that the quotient group G/G′ is finite;

moreover, the maps H1(G/G′, AG
′
)→ H1(G,A) are injective.
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Now we will discuss non-abelian C̆ech cohomology briefly. The main reference is

the first three chapters of J. S. Milne’s book [Mi1].

We will first recall some concepts. We say a homomorphism of rings h : A→ B

is flat if the functor − ⊗A B from A-modules to B-modules is exact. A morphism

f : X → Y of schemes is flat if for all points x ∈ X, the induced ring homomorphism

OY,f(x) → OX,x is flat. We say f : X → Y is faithfully flat if f is flat and surjective

and f : X → Y is étale if f is flat and unramified.

Let E be a class of morphisms of schemes that satisfies the conditions: all iso-

morphisms are in E, the composition of two morphisms in E is in E and any base

change of a morphism in E is in E. Denoted by E/X the full subcategory of Sch/X

of X-schemes whose structure morphisms are in E. Now fix a scheme X, a class

of morphism E and a full subcategory C/X of Sch/X that is closed under fiber

products and is such that, for any morphism Y → X and any morphism U → Y in

E, the composition U → X is in C/X. An E-covering of an object Y of C/X is

a set {U p→ Y } of morphisms in E which are jointly surjective in the sense that Y

equals to the union of set-theoretic images, i.e. Y =
⋃
p(U). The class of all such

coverings of all objects in C/X is the E-topology on C/X. The E-site over X is the

category C/X together with the E-topology and we denote it by (C/X)E, or simply

XE. The small E-site on X is (E/X)E and, in the case in which all morphism in E

are locally of finite type, the big E-site on X is (LFT/X)E, where LFT/X is the

full subcategory of Sch/X of X-schemes whose structure morphisms are locally of

finite type.

The three particularly important examples are as follows:

• E is (Zar) of all open immersions, we get the Zariski site XZar and the small

(Zar)-site ((Zar)/X)Zar;

• E is (ét) of all étale morphisms of finite type, we get the étale site Xét and the
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small (ét)-site ((ét)/X)ét;

• E is (fl) of all flat morphisms that are locally of finite type, we get the flat site

Xfl and the big (fl)-site (LFT/X)fl.

Once we have the E-topology, then as for ordinary topological space, we can

define presheaves and sheaves on the site and a C̆ech cohomology theory. Notice

that here the morphisms in E play the role of the open subsets in the E-topology.

A presheaf P of groups (not necessary commutative) on a site (C/X)E is a

contravariant functor (C/X)E → Grp, where Grp denotes the category of groups.

A presheaf P on (C/X)E is a sheaf if it satisfies the following two conditions:

(S1) if s ∈ P(U) and there is a covering (Ui → U)i∈I of U such that the

restriction morphism resUi,U(s) = 0 for all i ∈ I, then s = 0;

(S2) if (Ui → U)i∈I is a covering of U and the family (si)i∈I , si ∈P(Ui) satisfies

resUi×UUj ,Ui(si) = resUi×UUj ,Uj(sj)

for all i, j ∈ I, then there exists an s ∈P(U) such that resUi,U(s) = si for all i ∈ I.

Let G be a sheaf of groups on XE and U = (Ui
φi→ X)i∈I be a covering of X. A

cocycle for U with values in G is a family (gij)I×I , gij ∈ G (Uij), such that

(gij|Uijk)(gjk|Uijk) = (gik|Uijk).

Where Uij = Ui ×X Uj and Uijk = Ui ×X Uj ×X Uk.

Two cocycles g and g′ are said to be cohomologous if there is a family (hi)i∈I , hi ∈

G (Ui), such that

g′ij = (hi|Uij)gij(hj|Uij)−1.

This is an equivalence relation on cocycles and the set of equivalence classes, and we

call it the first cohomology set of U with values in G and denote it by Ȟ1(U /X,G ).

It is a pointed set with distinguished element (gij) where gij = 1 for all i, j ∈ I.
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Another covering V = (Vj
ϕj→ X)j∈J of X is called a refinement of U = (Ui

φi→

X)i∈I if there is a map τ : J → I such that for each j ∈ J , ϕi factors through

φτ(j), that is, ϕi = φτ(j)ηj for some ηj : Vj → Uτ(j). Denote by Cp(U ,G ) =∏
Ip+1 G (Ui0···ip), p ≥ 0. The map τ , together with the family (ηj)j∈J , induces a map

τ p : Cp(U ,G )→ Cp(V ,G ) as follows: if g = (gi0···ip) ∈ Cp(U ,G ), then

(τ pg)j0···jp = resηj0×···×ηjp (gτ(j0)···τ(jp)).

Clearly, the map τ 1 maps cohomologous cocycles to cohomologous cocycles, hence

it induces maps on the first cohomology set,

µ(V ,U , τ) : Ȟ1(U /X,G )→ Ȟ1(V /X,G ).

Lemma 1.1.4. The map µ(V ,U , τ) does not depend on the choices of τ or the

family (ηj).

Proof. Suppose that τ ′ : J → I, together with family (η′j), is another map such that

for each j ∈ J , ϕi factor through φτ ′(j). Define κ : C1(U ,G ) → C0(V ,G ). For

g ∈ C1(U ,G ), (κg)j = resη′j×ηj(gτ ′(j)τ(j)). Hence if g is a cocycle for U , then

(τ ′1g)j0j1(κg)j1

= resη′j0×η
′
j1

(gτ ′(j0)τ ′(j1))resη′j1×ηj1
(gτ ′(j1)τ(j1))

= resη′j0×η
′
j1
×ηj1 (gτ ′(j0)τ(j1)|Uτ ′(j0)×τ ′(j1)×τ(j1))

= resη′j0×η
′
j1
×ηj0×ηj1 (gτ ′(j0)τ(j1)|Uτ ′(j0)×τ ′(j1)×τ(j0)×τ(j1))

= resη′j0×ηj0×ηj1
(gτ ′(j0)τ(j1)|Uτ ′(j0)×τ(j0)×τ(j1))

= resη′j0×ηj0
(gτ ′(j0)τ(j0))resηj0×ηj1 (gτ(j0)τ(j1))

= (κg)j0(τ
1g)j0j1
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Thus we have

(τ ′1g)j0j1 = (κg)j0(τ
1g)j0j1(κg)−1

j1
.

Therefore µ(V ,U , τ) and µ(V ,U , τ ′) are the same map.

Hence, if V is a refinement of U , we get a map µ(V ,U ) : Ȟ1(U /X,G ) →

Ȟ1(V /X,G ), which depends only on U and V . It follows that if, moreover, W

is a covering of X such that W is a refinement of U and V , then µ(W ,U ) =

µ(W ,V )µ(V ,U ). Thus we can define the first C̆ech cohomology set of G over

X to be Ȟ1(XE,G ) = lim−→U
Ȟ1(U /X,G ), where the direct limit is taken over all

coverings U of X.

A sequence 1 → G ′ → G → G
′′ → 1 of sheaves of groups is said to be exact if

for every U ∈ C/X, G ′(U) is the kernel of the homomorphism G (U)→ G ′′(U) and

every s ∈ G ′′(U) can be locally lifted to a section of G . As for non-abelian group

cohomology, there is an exact sequence of pointed sets associated to the above exact

sequence:

1→ G ′(X)→ G (X)→ G ′′(X)
δ→ Ȟ1(X,G ′)→ Ȟ1(X,G )→ Ȟ1(X,G

′′
).

The connecting homomorphism δ is defined as follows: let g
′′ ∈ G ′′(X), and let

(Ui → X) be a covering of X such that for each gi ∈ G (Ui), gi maps to g′′|Ui under

the map G (Ui)→ G ′′(Ui). Then we may define (δg
′′
)ij = (gi|Uij)−1(gj|Uij).

1.1.2 Descent

In this subsection, we sketch parts of descent theory and list some facts needed in

this dissertation without proof. We first list some facts about faithfully flat descent,

for which the interested reader can refer to [Gr2, VIII] for more details. As a special

case of faithfully flat descent, we also list some facts of Galois descent. In [J, §2],

Jörg Jahnel gives a very good summary of Galois descent theory.
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Definition 1.1.5. Let f : Y → X be faithfully flat and quasi-compact, and let

F be a sheaf of modules (schemes ...) over Y . A descent datum on F for f is an

isomorphism φ : p∗1F → p∗2F satisfying condition

p∗31(φ) = p∗32(φ)p∗21(φ),

where pi are the various projections Y ×X Y → Y and pij are the various projection

Y ×X Y ×X Y → Y ×X Y . We call this condition the cocycle condition.

Proposition 1.1.6. (Descent for modules) Let f : Y → X be faithfully flat

and quasi-compact, and let F be a quasi-coherent sheaf over Y . Then every descent

datum on F for f arises from a quasi-coherent sheaf on X, that is, there exists a

quasi-coherent sheaf F ′ on X such that F ' f ∗F ′ and the descent datum on F

for f is induced from the following commutative diagram

Y ×X Y //

��

Y

f
��

Y
f // X.

Proposition 1.1.7. (Descent for schemes) Let f : Y → X be faithfully flat and

quasi-compact, and let Y ′ be a scheme over Y and L ′ be a very ample invertible

bundle over Y ′ relative to Y . Suppose φ is a descent datum on Y ′ for f . If φ also

induces an isomorphism of the two base changes of L ′ satisfying the same cocycle

condition, then φ arises from a scheme on X, that is, there exists a scheme X ′ over

X such that Y ′ ' X ′ ×X Y and the descent datum φ on Y ′ for f is induced from

the following commutative diagram

Y ×X Y //

��

Y

f
��

Y
f // X.
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Proposition 1.1.8. (Galois descent for algebras) Let L be a field and K ⊂ L

be a subfield such L/K is a finite Galois extension. Suppose A is a (central simple)

algebra over L equipped with a left Gal(L/K)-action, T : Gal(L/K)×A→ A, such

that the action of g is a g-linear map Tg : A → A for every g ∈ Gal(L/K). Then

there exists a (central simple) algebra A′ over K such that there is an isomorphism

f : A′⊗KL
'→ A, where A′⊗KL is naturally equipped with the left twisted Gal(L/K)-

action induced by the canonical one on L, and the isomorphism f is compatible with

the action of Gal(L/K) on them.

Please see Definition 1.2.1 for the definition of central simple algebra.

Proposition 1.1.9. (Galois descent for quasi-projective schemes) Let L be

a field and K ⊂ L be a subfield such L/K is a finite Galois extension. Suppose X

is a quasi-projective scheme over L equipped with a left Gal(L/K)-action by twisted

morphisms, i.e. the following diagrams

X

��

ρg // X

��
SpecL

tg // SpecL

commute, where tg : SpecL→ SpecL is the morphism of affine schemes induced by

g−1 : L → L. Then there exists a quasiprojective scheme Y over K such that there

is an isomorphism of L-schemes f : Y ×SpecK SpecL
'→ X, where Y ×SpecK SpecL

is naturally equipped with the left twisted Gal(L/K)-action induced by the one on

SpecL, and the isomorphism f is compatible with the action of Gal(L/K) on them.

In this case, we say the scheme X over L descents to the scheme Y over K.

Proposition 1.1.10. (Galois descent for quasi-coherent sheaves) Let K be a

field and L/K a finite Galois extension. Let X be a scheme over K, π : X ×SpecK
SpecL→ X the canonical morphism and ρg : X ×SpecK SpecL→ X ×SpecK SpecL
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the naturally twisted morphism induced by tg : SpecL → SpecL. Suppose F is a

quasi-coherent sheaf over X ×SpecK SpecL with a system (ιg)g∈Gal(L/K) of isomor-

phisms ιg : ρ∗gF → F satisfying the relation ιh◦ρ∗h(ιg) = ιgh for all g, h ∈ Gal(L/K).

Then there exists a quasi-coherent sheaf G over X such that there is an isomorphism

of sheaves f : π∗G
'→ F over X ×SpecK SpecL and for each g ∈ Gal(L/K), the

following diagram

ρ∗gπ
∗G

ıg

��

ρ∗gf // ρ∗gF

ιg

��
π∗G

f //F

commutes, where ıg : ρ∗gπ
∗G ∼= (πρg)

∗G = π∗G
id→ π∗G .

In this case, we say the sheaf F over X ×SpecK SpecL descends to the sheaf G

over X.

Proposition 1.1.11. (Galois descent for homomorphisms of algebras) Let

L be a field and K ⊂ L be a subfield such L/K is a finite Galois extension. Then to

give a homomorphism of (central simple) algebras f : A → B over K is equivalent

to giving a homomorphism of (central simple) algebras fL : A×K L→ B ×K L over

L that is compatible with the Gal(L/K)-actions, that is, for each g ∈ Gal(L/K),

the following diagram

A⊗K L
g

��

fL // B ⊗K L
g

��
B ⊗K L

fL // B ⊗K L
commutes.

Proposition 1.1.12. (Galois descent for morphisms of schemes) Let L be

a field and K ⊂ L be a subfield such L/K is a finite Galois extension. Then to

give a morphism of K-schemes f : X → Y is equivalent to giving a morphism of
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L-schemes fL : X ×SpecK SpecL → Y ×SpecK SpecL that is compatible with the

Gal(L/K)-actions, that is, for each g ∈ Gal(L/K), the following diagram

X ×K SpecL
g

��

fL // Y ×K SpecL
g

��
X ×K SpecL

fL // Y ×K SpecL

commutes.

1.1.3 Twisted Forms and the First Cohomology Set

We will first establish a relationship between the L/K-forms of an object (alge-

bra, scheme, ...) over a field K, where L/K is a finite Galois extension, and a Galois

cohomology set, and then sketch its generalization, that is, a relationship between

twisted forms of an object (scheme, sheaf of modules, algebras ...) over a scheme X

and a first C̆ech cohomology set over X.

For the first part, the main references are Serre’s two books [Se1] and [Se2]. We

begin with a new description of the first cohomology set H1(G,A).

Definition 1.1.13. Let G be a finite group. Let E be a left G-set and A be a

G-group. We say E is a principal homogeneous space (or torsor) over A if there is

a right A-action on E

E × A −→ E

(x, a) 7−→ x · a

such that

(i) for each pair x, y ∈ E, there exists a unique a ∈ A such that y = x · a;

(ii) the action is G-equivariant, i.e. g(x · a) = gx · ga for every g ∈ G, x ∈ E and

a ∈ A.
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Denote by PHS(A) the set of isomorphism classes of principal homogeneous

spaces over A. Let E ∈ PHS(A) and e ∈ E, then for each g ∈ G, there exists

cg ∈ A such that ge = e · cg. Thus e determines a map c : G → A. Moreover, for

g, h ∈ G, we have

e · cgh = ghe = g(he) = g(e · ch) = ge · gch = e · cg · gch.

Thus cgh = cg · gch, so that c is a cocycle. If we choose a different e′ ∈ E, then we

have e′ = e · β for some β ∈ A. Let c′ : G → A be the cocycle corresponding to e′.

Then for every g ∈ G, we have

e′ · c′g = ge′ = g(e · β) = ge · gβ = e · cg · gβ = e′ · β−1 · cg · gβ,

thus c′g = β−1 · cg · gβ, that is, c′ and c are cohomologous cocyles. Hence the

association E 7→ c defines a map

θ : PHS(A) −→ H1(G,A).

On the other hand, let c : G → A be a cocycle, denote by Pc the set of group

A on which G acts by the following formula: g ′a := cg · ga. Let A act on the right

on Pc by translations, then Pc is a principal homogeneous space over A. If c′ is a

cocycle cohomologous to c such that c′g = b−1 · cg · gb for some b ∈ A, then the map

f : Pc′ → Pc, a 7→ b · a, is an isomorphism. Thus the association c 7→ Pc defines a

map

η : H1(G,A) −→ PHS(A).

One checks easily that θ ◦ η = 1 and η ◦ θ = 1, and we get

Proposition 1.1.14. [Se2, Chapter I §5 Proposition 33] The map θ is a bijection.

Now let K be a field, and L/K be a finite Galois extension with Galois group

Gal(L/K). For a Gal(L/K)-group A, write H1(L/K,A) for the cohomology set

H1(Gal(L/K), A), the Galois cohomology set of L/K with coefficients in A.
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Definition 1.1.15. Let K be a field, and L/K be a finite Galois extension. Let X

be a scheme (algebra, central algebra...) over K. We say another object Y over K

of the same type is a L/K-form of X if after a field extension L/K they become

isomorphic, i.e. XL ' YL. Denote by E(L/K,X) the set of classes of L/K-forms of

X under the equivalence relation defined by the K-isomorphisms.

Denote by AutL(XL) the group of L-automorphisms of XL. Let us define a

natural action of Gal(L/K) on AutL(XL) first. If g ∈ Gal(K/L) and α ∈ AutL(XL),

define gα := g ·α·g−1, where g acts in the usual way on XL and the product is simply

composition of maps. We thus have a Gal(L/K)-group structure on AutL(XL), and

the cohomology set H1(L/K,AutL(XL)) is well defined.

Let Y be a L/K-form ofX and denote by IsoL(XL, YL) the set of L-isomorphisms

ϕ : XL
∼→ YL. ThenGal(L/K) naturally acts on IsoL(XL, YL). If g ∈ Gal(L/K) and

ϕ ∈ IsoL(XL, YL), then define gϕ := g·ϕ·g−1. Thus IsoL(XL, YL) is a Gal(L/K)-set.

For α ∈ AutL(XL) and ϕ ∈ IsoL(XL, YL), the composition ϕ · α gives a transitive

and faithful right action of AutL(XL) on IsoL(XL, YL), that is, IsoL(XL, YL) is a

principal homogeneous space over Gal(L/K)-group AutL(XL). Further, two iso-

morphic L/K-forms of X give two L-isomorphic principal homogeneous spaces over

Gal(L/K)-group AutL(XL). Hence we have a map

θL/K : E(L/K,X)→ H1(L/K,AutL(XL)).

Proposition 1.1.16. The map θL/K is injective. Moreover, when X is a (central

simple) algebra, or X is a quasiprojective scheme, θL/K is also surjective.

Proof. For the injection, let Y, Y ′ ∈ E(L/K,X), and suppose that ϕ ∈ IsoL(XL, YL)

and ϕ′ ∈ IsoL(XL, Y
′
L) determine the same cocycle. Then we have ϕ−1gϕ = ϕ′−1gϕ′

for every g ∈ Gal(L/K). Consider the isomorphism ϕϕ′−1 : Y ′L → YL, we have

g(ϕϕ′−1) = ϕϕ′−1. Then by Proposition 1.1.12 for morphism of schemes, or by
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Proposition 1.1.11 for homomorphism of (central simple) algebras, ϕϕ′−1 is actually

an isomorphism Y ′ → Y .

For the surjection, let c be a cocycle of Gal(L/K) in AutL(XL), and for each

g ∈ Gal(L/K), let g act on XL by cg · g (here g : SpecL → SpecL is given by

g−1 : L→ L when X is a scheme), then for any g, h ∈ Gal(L/K), we have

(cg · g) · (ch · h) = cg · g · ch · g−1 · g · h = cg · gch · gh = cgh · gh,

which shows this defines a left twisted action of Gal(L/K) on XL. Then by Propo-

sition 1.1.8 for X a (central simple) algebra over K and by Proposition 1.1.9 for X

a quasiprojective scheme over K, there exists an object Y over K of the same type

and an isomorphism f : XL → YL such that these twisted actions are induced by

f . And the isomorphism f ∈ IsoL(XL, YL) determines the cocycle c. Hence θL/K is

surjective when X is a (central simple) algebra, or X is a quasiprojective scheme.

Definition 1.1.17. Let K be a field and X be a scheme (algebra, central algebra...)

over K. We say another object Y over K of the same type is a K-form of X if

after some finite Galois field extension L/K they become isomorphic, i.e. XL ' YL.

Denote by E(K,X) the set of classes of K-forms of X under the equivalence relation

defined by the K-isomorphisms.

We have E(K,X) =
⋃
L/K E(L/K,X) with L/K all finite Galois field extension.

Moreover, if L′/L is a finite field extension such that L′/K is also a Galois extension,

then the natural inclusion E(L/K,X) ⊂ E(L′/K,X) is compatible with the inflation

map inf
Gal(L′/K)
Gal(L/K) : H1(Gal(L/K), AutL(XL)) → H1(Gal(L′/K), AutL′(XL′)), that
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is, the following diagram

E(L/K,X)

nat.incl.
��

θL/K // H1(Gal(L/K), AutL(XL))

inf
Gal(L′/K)
Gal(L/K)

��
E(L′/X,X)

θL′/K // H1(Gal(L/K), AutL′(XL′))

commutes. Thus there is a unique natural map

θK : E(K,X)→ H1(Gal(Ksep/K), AutKsep(XKsep)).

By Proposition 1.1.16, we can easily get

Corollary 1.1.18. The map θK is injective. Moreover, when X is a (central simple)

algebra, or X is a quasiprojective scheme, θK is also surjective.

For the second part, the main reference is [Mi1, Chapter III, §4].

Definitions 1.1.19. Let Y be a scheme (sheaf of module, algebra ...) over a scheme

X. We say another object Y ′ of the same type over X is a twisted form of Y for the

étale topology on X if there exists a covering U = (Ui → X) for the étale topology

such that Y ×X Ui ' Y ′ ×X Ui for all i. In this case, we say the covering U splits

the twisted form Y ′ of Y .

Denote by E(U /X, Y ) the set of all isomorphism classes of twisted forms of Y

over X which are split by the étale cover U of X.

Let A ut(Y ) be the sheaf of groups associated with the presheaf U 7→ AutU(Y ×X
U). Now suppose Y ′ ∈ E(U /X, Y ), then there exists a étale covering (Ui → X)

of X such that we have a family of isomorphisms (Y ×X Ui
φi→ Y ′ ×X Ui). Setting

αij = φ−1
i φj (omitting the restriction signs), then (αij) is a cocycle for U with values

in A ut(Y ). Thus Y ′ determines an element, say θU (Y ′), in Ȟ1(U /X,A ut(Y )). It

is easy to see that if Y ′′ is another twisted form of Y which is isomorphic to Y ′ over
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X and split by the covering U of X, then θU (Y ′′) = θU (Y ′). Hence the association

Y ′ 7→ θ(Y ′) defines a map

θU : E(U /X, Y )→ Ȟ1(U /X,A ut(Y )),

where the isomorphism class of Y maps to the distinguished element.

Denote U =
⊔
Ui, then every element, say (φij), in Ȟ1(U /X,A ut(Y )) defines

a descent datum on Y × U for the morphism U =
⊔
Ui → X. Thus we have the

following:

Proposition 1.1.20. The map θU defined above is injective, and it is surjective if

every descent datum on Y × U arises from a twisted form.

Similarly, we denote by E(Xét, Y ) the set of all the isomorphic classes of twisted

forms of Y over X under the étale topology, then we have a map

θ : E(Xét, Y )→ Ȟ1(Xét,A ut(Y )).

Corollary 1.1.21. The map θ defined above is injective. Moreover, it is surjective

if every descent datum on some étale covering of Xét arises from a twisted form.
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1.2 Brauer Groups and Brauer-Severi Schemes

1.2.1 Brauer Groups of a Field

Throughout this dissertation, an algebra over a field K is always assumed to

have an unit together with a copy of K in the center of A.

Definition 1.2.1. Let K be a field and A be a finite dimensional K-algebra. We

call A simple if it it has no nontrivial two sided ideals. Moreover, we call it a central

simple algebra over K if its center equals K.

Example 1.2.2. (1) The matrix algebraMn(K) is obviously a central simple algebra

over K.

(2) A finite dimensional division algebra D over K is a central simple algebra.

Indeed, denote by Z(D) the centre of D. For any x ∈ D, y ∈ Z(D), inverting the

relation xy = yx, we get y−1x−1 = x−1y−1. Hence Z(D) is a field and D is a central

simple algebra over Z(D).

We will state the main theorem on simple algebras over a field which says that

every finite dimensional central algebra over K is a matrix algebra over a division

algebra over K. But before that, let us recall some facts from module theory.

Let R be a ring. Recall that an R-module M is Artinian if all descending R-

submodule chains in M stabilize. If R is a simple ring, then it has no nontrivial two

sided ideals.

Lemma 1.2.3. [Dr] Let R be a simple ring and I be a minimal left ideal of R.

Assume that M is a left Artinian R-module, then we have an isomorphism M '⊕n
i=1 I of left R-modules for some integer n.
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Proof. Consider the two sided ideal of R generated by I : I ′ =
∑

r∈R Ir. Since R is

simple, we have I ′ = R. Thus we have

M =
∑
m∈M

Rm =
∑
m∈M

I ′m =
∑
m∈M

∑
r∈R

Irm =
∑
m∈M

Im.

Since M is an Artinian left R-module, there exist some minimal integer n and

mi ∈M, 1 ≤ i ≤ n such that

M =
∑
m∈M

Im =
n∑
i=1

Imi.

So we can use this to construct a surjective left R-module homomorphism

h :
n⊕
i=1

I →M, (r1, r2, · · · , rn) 7→
n∑
i=1

rimi.

We claim h is also injective. Assume
∑n

i=1 rimi = 0 and r1 6= 0, then we have Rr1 =

I since I is minimal. Therefore we have Im1 = Rr1m1 ⊆
∑n

i=2 Rrimi ⊆
∑n

i=2 Imi,

contradicting the minimal choice of n. Hence h is an isomorphism and M '
⊕n

i=1 I.

By Lemma 1.2.3, we can readily get the following two corollaries.

Corollary 1.2.4. [Dr] All minimal left ideals of a simple ring are isomorphic.

Corollary 1.2.5. [Dr] Every left ideal of a simple ring is a direct sum of minimal

left ideals.

Example 1.2.6. Let us describe the simple left modules over the full matrix ring

Mn(D), where D is a division algebra. Denote by Eij, 1 ≤ i, j ≤ n, the matrix

with (i, j)-entry 1 and zero elsewhere. Then each element of Mn(D) is a D-linear

combination of the Eij. We claim that Mn(D) is simple. Indeed, let I be a two

sided ideal of Mn(D). It suffices to show that Eij ∈ I for all 1 ≤ i, j ≤ n. Notice we
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have relation EkiEijEjl = Ekl, so it is enough to show that Eij ∈ I for some i, j. Let

0 6= M = [mij] ∈ I, and suppose mij 6= 0, then we have m−1
ij EiiMEjj = Eij. Thus

Mn(D) is a simple ring. Now for 1 ≤ l ≤ n, consider the subring Il ⊂Mn(D), which

consists all the matrices M = [mij] with mij = 0 for j 6= l. Obviously, these are left

ideals of Mn(D). Using a similar argument as above with matrices Eij, we can show

that they are also minimal left ideals. Note also that all of them are isomorphic to

Dn as left Mn(D)-ideals.

Let R be a ring and M be a left R-module. An endomorphism of M is an

R-homomorphism M → M . It is easy to show that the set of all the endomor-

phisms of M , EndR(M), forms a ring, with multiplication given by composition

of homomorphisms and addition by the rule (φ + ψ)(m) = φ(m) + ψ(m), where

φ, ψ ∈ EndR(M) and m ∈ M . With this ring structure, the module M can be

regarded as a left module over EndR(M), with multiplication given by the rule

φ ·m = φ(m) for m ∈M,φ ∈ EndR(M). In particular, when A is an algebra over a

field K, EndR(M) is a K-algebra, too. Multiplication by an element of K defines

an element in the centre of EndR(M).

Recall that a non-zero R-module is simple if it has no nontrivial R-submodules.

Lemma 1.2.7. [GS](Schur) Let M be a simple module over a K-algebra A. Then

the set of endomorphisms EndA(M) is a division algebra.

Proof. As mentioned above, EndA(M) is an algebra. To prove it is a division

algebra, it suffices to show that every element of EndA(M) has an inverse. Let

φ : M → M be a non-zero endomorphism. Consider the kernel ker(φ), which is an

A-submodule. Since ker(φ) 6= M , we have ker(φ) = 0. Similarly, its image must

equal to M . Thus φ is an isomorphism, which means it has an inverse in EndA(M).
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Now let M be a left R-module and denote by R′ the endomorphism ring. As men-

tioned above, M is naturally a left R′-module, too. So we can consider a new endo-

morphism ring EndR′(M). We define a ring homomorphism: λM : R→ EndR′(M)

by sending r ∈ R to the endomorphism in EndR′(M) which sends m ∈ M to rm.

We claim this map is a ring homomorphism. Indeed, let φ : M → M be a homo-

morphism in R′, we have φ · λM(r)(m) = φ(rm) = rφ(m) = λM(r) · φ(m) for all

m ∈M . Thus φ · λM(r) = λM(r) · φ and λM(r) is indeed a R′-homomorphism.

Lemma 1.2.8. [GS](Rieffel) Let R be a simple algebra and L be a non-zero left ideal

of R. Denote by R′ = EndR(L). Then the ring homomorphism λL : R→ EndR′(L)

defined above is an isomorphism.

Proof. Obviously, λL is injective, since it is a non-zero map and its kernel is a two

sided ideal of R, while R is a simple algebra.

To show that it is surjective, we prove first that λL(L) is a left ideal of EndR′(L).

Let φ ∈ EndR′(L) and l ∈ L, then the composition φ · λL(l) is the homomorphism

which maps x ∈ L to φ(lx). On the other hand, for any x ∈ L, observe the map

ιx : L → L, l 7→ lx. It is easy to see that ιx is an R-endomorphism of L, that is,

ιx ∈ R′. As φ is a R′-endomorphism of L, we have φ(lx) = φ(ιx(l)) = ιx·φ(l) = φ(l)x.

So we have φ ·λL(l) = λL(φ(l)), which is an element in the image λL(L). Thus λL(L)

is a left ideal of EndR′(L). Now consider the two sided ideal LR of R. Obviously

LR 6= 0, thus LR = R. In particular, we have 1 =
∑
li ri for some li ∈ L and

ri ∈ R. So for φ ∈ EndR′(L), we have φ = φ · 1 = φ · λL(1) = φ ·
∑
λL(liri) =∑

φ · λL(li) · λL(ri) =
∑
λL(φ(li)) · λL(ri). Hence φ ∈ λL(R).

Now we state our main theorem:

Theorem 1.2.9. [GS](Wedderburn’s Theorem) Let A be a central simple algebra
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over a field K of finite rank, then

A 'Mn(D)

for some integer n ≥ 1 and some central division K-algebra D. Moreover, the

division algebra D is uniquely determined up to isomorphism.

Proof. Since A is of finite dimension over K, every descending chain of left ideals of

A must stabilize eventually. So we can assume L is a minimal left ideal of A, then

it is a simple A-module. Denote D = EndA(L). By Lemma 1.2.7, D is a division

algebra. And by Lemma 1.2.8, we have an isomorphism A ' EndD(L). As L is also

a left D-module and D is a division algebra, we can regard L as a left vector space

over D. Let n be the dimension of L over D. After choosing a basis of L, then every

endomorphism of L over D can be represented as a matrix in Mn(D); conversely,

every matrix in Mn(D) can be realized as a endomorphism of L over D. So we have

an isomorphism EndD(L) 'Mn(D).

Next we show that D is unique up to isomorphism. Assume that D′ is another

division algebra such that A 'Mm(D′) for some integer m. Since L is a minimal left

ideal of A, as shown in Example 1.2.6, we have isomorphisms L ' Dn and L ' D
′m.

Thus we have isomorphisms D ' EndA(Dn) ' EndA(L) ' EndA(D
′m) ' D′.

Remark 1.2.10. The converse is also true. If D is a central division algebra over

a field K, then the matrix algebra Mn(D) is a central simple algebra over K. Since

the matrix algebra Mn(D) is simple and its centre is same as the centre of D.

Let A and B be two central simple algebras over a field K with A ' Mn(D)

and B ' Mm(D′), where D and D′ are two division algebras over K. We say A is

equivalent to B if the corresponding division algebras are isomorphic to each other,

i.e. D ' D′. This is an equivalence relation and we denote by Br(K) the set of

equivalence classes of central simple K-algebras.
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Let A,B be two algebras over a field K, denote by A⊗K B the algebra over K

with multiplication (a ⊗ b) · (a′ ⊗ b′) = aa′ ⊗ bb′ for all a, a′ ∈ A and b, b′ ∈ B. We

know that every element in A⊗K B has the form a1 ⊗ b1 + a2 ⊗ b2 + · · · + an ⊗ bn
for some integer n with all ai ∈ A, bi ∈ B, 1 ≤ i ≤ n.

Lemma 1.2.11. [Te] Let A,B be two finite dimensional algebras over a field K,

then we have Z(A⊗K B) = Z(A)⊗K Z(B). Moreover, if both A and B are simple

and Z(A) = K, then A⊗K B is also simple with centre Z(B).

Proof. Clearly we have Z(A)⊗K Z(B) ⊆ Z(A⊗K B). Conversely, since B is finite

dimensional over K, suppose its dimension is n and let w1, w2, · · · , wn be a basis of

B over K. Then we have

A⊗K B = A⊗K (⊕ni=1Kwi) = ⊕ni=1Awi

as K-vector spaces, and any element c ∈ A ⊗K B can be uniquely represented as

c = a1 ⊗ w1 + a2 ⊗ w2 + · · · + an ⊗ wn, where ai ∈ A for 1 ≤ i ≤ n. In particular,

let c ∈ Z(A⊗K B), we have

(a⊗ 1) · c = c · (a⊗ 1)⇐⇒

aa1 ⊗ w1 + aa2 ⊗ w2 + · · ·+ aan ⊗ wn = a1a⊗ w1 + a2a⊗ w2 + · · ·+ ana⊗ wn
for any a ∈ A, thus by the uniqueness of the above representation, we have aai = aia

for 1 ≤ i ≤ n, that is, ai ∈ Z(A) for all i. So we have c ∈ Z(A) ⊗K B ⊆ A ⊗K B.

Similarly, by switching the roles of the first and second entries, we can get c ∈

Z(A)⊗K Z(B) ⊆ Z(A)⊗K B. Therefore, we have Z(A⊗K B) = Z(A)⊗K Z(B).

Now assume that both A and B are simple and Z(A) = K. Let I be a non-zero

two sided ideal of A⊗K B and let 0 6= c = a1⊗ b1 + a2⊗ b2 + · · ·+ an⊗ bn ∈ I be an

element with smallest n. If n = 1, c = a⊗ b, a 6= 0, b 6= 0. Since A and B are simple,

the two sided ideals generated by a in A and b in B equal to A and B, respectively.

That is, there exist ai, a
′
i ∈ A for 1 ≤ i ≤ m and bj, b

′
j ∈ B for 1 ≤ j ≤ l such that
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∑m
i=1 aiaa

′
i = 1 and

∑l
j=1 bjbb

′
j = 1. So we have

l∑
j=1

(1⊗ bj) · (
m∑
i=1

(ai⊗1) · (a⊗ b) · (a′i⊗1)) · (1⊗ b′j) = (
m∑
i=1

aiaa
′
i)⊗ (

l∑
j=1

bjbb
′
j) = 1⊗1.

Thus 1 ⊗ 1 ∈ I, and hence I = A ⊗K B. If n > 1, without loss of generality,

we can assume the ai (and bj) are linearly independent over K. Indeed, if, say,

an =
∑n−1

i=1 λiai, then c =
∑n

i=1 ai ⊗ bi =
∑n−1

i=1 ai ⊗ (bi + λibn), contradicting the

minimality of n. With the same argument as above, we can assume a1 = 1, then

a2 /∈ K, otherwise a1 and a2 would be linearly dependent over K. Since Z(A) = K,

there exist a ∈ A such that aa2 6= a2a. Now consider the element

(a⊗ 1) · c− c · (a⊗ 1) = (aa2 − a2a)⊗ b2 + · · ·+ (aan − ana)⊗ bn ∈ I.

Since aa2 − a2a 6= 0 and the bi are linearly independent over K, we have (a ⊗ 1) ·

c− c · (a⊗ 1) 6= 0, which contradicts the minimality of n. Therefore we must have

n = 1. So A⊗K B is a simple algebra with centra Z(A)⊗K Z(B) = Z(B).

From the above lemma, we can easily get the following corollary.

Corollary 1.2.12. Let A and B be two central simple algebras over a field K, then

A⊗K B is also a central simple algebra over K.

The opposite algebra of an algebra A over a field K, which we denote by Ao, is the

K-algebra which has the same underlying set and addition as A, but multiplication

is defined as a · b = ba for all a, b ∈ Ao. It is easy to see that (Ao)o = A and Ao = A

if and only if A is a commutative algebra.

Lemma 1.2.13. Let A ba a central simple algebra over a field K, let Ao be the

opposite algebra of A, then Ao is also a central simple algebra over K, and A⊗KAo '

Mn(K) for some n.
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Proof. It is obvious that the centre of Ao is K. Let I be a nontrivial two-sided ideal

of Ao. Assume 0 6= a ∈ I, we have A · a ·A = AaA as sets, but AaA = A since A is

simple. Thus I = Ao, Ao is simple.

Now considering a K-linear map A⊗KAo → EndK−mod(A) by sending a⊗b to the

map φ ∈ EndK−mod(A) with φ(x) = axb for all x ∈ A. This map is clearly nonzero,

and thus injective, because Ao is simple by the above argument, and A⊗KAo is also

simple by Corollary 1.2.12. But both A ⊗K Ao and EndK−mod(A) have the same

dimension as K-vector spaces, hence this is an isomorphism. On the other hand, we

have EndK−mod(A) 'Mn(K), where n is the dimension of A over K. Therefore we

have A⊗K Ao 'Mn(K).

Now, we can define an abelian group structure on the set Br(K). Define

[A] · [A′] = [A⊗K A′].

By Corollary 1.2.12 and Lemma 1.2.13, this is well-defined. We call Br(K) the

Brauer group of K.

Corollary 1.2.14. Let K be an algebraically closed field, then Br(K) = 0.

Proof. By Wedderburn’s theorem, it suffices to show that there is no finite dimen-

sional division algebra over K other than K itself.

Indeed, if D is a division algebra other than K, choose d ∈ D \K and consider

the set S = {1, d, d2, · · · }. Since D is of finite dimension over K, S is linearly

dependent, so there exists a polynomial f(x) in K[x] such that f(d) = 0. As D

is a division algebra, it has no zero divisors and we may assume f is irreducible.

Thus we get a K-algebra homomorphism K[x]/f(x)→ D whose image contains d.

But since K is algebraically closed, we have K[x]/(f(x)) ∼= K, which contradicts

d ∈ D \K.
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Next, we will discuss central simple algebras under field extension.

Theorem 1.2.15. [GS] Let A be an algebra of finite rank over a field K, then A

is a central simple algebra if and only if there exists a finite Galois field extension

L/K such that A⊗K L is isomorphic to the matrix ring Mn(L) for some integer n.

Proof. For sufficiency, if I is a nontrivial two-sided ideal of A, then I ⊗K L is also a

nontrivial two-sided ideal of A⊗KL 'Mn(L), which is a contradiction, since A⊗KL

is simple by Lemma 1.2.11. Again, by Lemma 1.2.11, we have L = Z(A ⊗K L) =

Z(A)⊗K L, thus Z(A) = K. Hence A is a central simple algebra over K.

Conversely, let A be a central simple algebra over K, we show first that there

exists a finite field extension K ′/K such that A ⊗K K ′ ' Mn(K ′) for some n ≥ 1.

Indeed, denote by K̄ the algebraic closure of K, then by Corollary 1.2.14, we have

A ⊗K (K̄) ' Mn(K̄) for some n ≥ 1. Now observe that every finite field extension

K ′ of K is contained in K̄, and the inclusion K ′ ⊂ K̄ induces an injective map

A ⊗K K ′ ↪→ A ⊗K K̄ and A ⊗K K̄ is the union of the A ⊗K K ′ in this way. Let

e1, e2, · · · , en2 ∈ A ⊗K K̄ be the elements which correspond to the standard basis

element in Mn(K̄) via the isomorphism A ⊗K K̄ ' Mn(K̄). Assume that eiej =∑n2

k=1 aijkek for 1 ≤ i, j ≤ n2. Since the set {ei, aijk : 1 ≤ i, j, k ≤ n2} is finite,

there exists a sufficient large finite field extension K ′/K such that A⊗KK ′ contains

{ei : 1 ≤ i ≤ n2} and K ′ contains {aijk : 1 ≤ i, j, k ≤ n2}. Mapping the ei to the

standard basis elements of Mn(K ′) we have an isomorphism A⊗K K ′ 'Mn(K ′).

Next we show that we can choose a finite separable extension K ′/K such that

A ⊗K K ′ ' Mn(K ′). Otherwise, by the same argument as above, we have A ⊗K
Ksep 6= 0 as an element in Br(Ksep), where Ksep is the separable closure of K.

Thus, by Theorem 1.2.9, A⊗KKsep 'Mn(D), where D is a central division algebra

over Ksep different from Ksep and n is some integer. Then by Corollary 1.2.14

we have D ⊗Ksep K̄ ' Md(K̄) for some d > 1. Now regarding the elements of
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Md(K̄) as K̄-points of the affine space Ad2
K̄

, then the elements of D correspond to

the points of Ad2
K̄

defined over Ksep. Considering the map sending an element of

Md(K̄) viewed as an element of Ad2
K̄

to its determinant, it is given by a polynomial

℘ in the variables x1, x2, · · · , xd2 with all its coefficients 1 or −1. So we have ℘ ∈

Ksep[x1, x2, · · · , xd2 ]. Since D is a division algebra, its non-zero elements give rise

to invertible matrices in Md(K̄), that is, they have non-zero determinant. Thus the

hypersurface determined by the polynomial ℘ contains no points over Ksep except

the origin, which contradicts fact the Ksep-rational points of the above hypersurface

is dense [Sp, Theorem 11.2.7]. Therefore, there exists a finite separable extension

K ′/K such that A⊗K K ′ 'Mn(K ′).

Finally, as every finite separable extension can be embedded into a finite Galois

extension, there exists a finite Galois extension L/K such that K ′ ⊂ L. Hence we

have A⊗K L 'Mn(K ′)⊗K′ L 'Mn(L).

Thus an algebra over K is a central simple algebra if and only if it is a K-form

of Mn(K) for some integer n.

Definition 1.2.16. Let A be a central simple algebra over a field K. A field

extension L/K such that A ⊗K L ' Mn(L) for some integer n is called a splitting

field forA. We also sayA splits over L or L splits A. We call the integer n =
√

dimkA

the degree of A over K.

From the above theorem, we can easily get the following corollary.

Corollary 1.2.17. Let K be a field and denote by Ksep its separable closure, then

Ksep splits every central simple algebra over K, and we have Br(Ksep) = 0.
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1.2.2 Central Simple Algebras and Brauer-Severi Varieties

A variety we always mean an integral, separated scheme of finite type over a field

throughout this thesis.

Definitions 1.2.18. Let X be a scheme over a field K. We call X a Brauer-Severi

variety if there exists a finite Galois extension L/K such that X ⊗K L ' PnL for

some n ∈ N, that is, X is a L/K-form of Pn. In this case, L is said to be a splitting

field for X. We also say X splits over L or L splits X.

From the above definition, we know that a scheme over K is a Brauer-Severi

variety if and only if it is a K-form of PnK for some integer n.

Now we will give the close relation between Brauer-Severi varieties and central

simple algebras through Galois cohomology theory.

Theorem 1.2.19. There is one-to-one correspondence between the set of isomorphic

classes of Brauer-Severi varieties of dimension n − 1 over a field K and the set of

isomorphism classes of central simple algebras of degree n over K.

Sketch of proof. For any field L, the Skolem-Noether Theorem [GS, Theorem 2.7.2]

asserts that AutL(Mn(L)) ' PGLn(L) = GLn(L)/L∗, and AutL(Pn−1
L ) ' PGLn(L),

as shown in [H2, Chapter II, Example 7.1.1]. By Corollary 1.1.18, both sets in the

theorem equal to H1(Gal(Ksep/K), PGLn(Ksep)).

For a detailed proof of this theorem and more, the readers may refer to [J, §3,

4, 5].

Given a central simple algebra over a field K, we give the construction of the

corresponding Brauer-Severi variety as follows [Ar, Se1]:

Let A be a central simple algebra of rank n2 over a field K, then the associated

Brauer-Severi variety is the set of all left ideals L of A of rank n. If we fix a basis
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for A over K, then it is embedded in Grass(n, n2) as a closed subvariety, defined by

the relations stating that each L is a left ideal of A.

Example 1.2.20. [Ar] Let A = Mn(K). Denote by Eij the n× n matrix with 1 in

the (i, j)-th position and 0 elsewhere, and set Ei = Eii. Then for every left ideal L

of rank n, we have a decomposition L = E1L ⊕ · · · ⊕ EnL, with dimKEiL = 1 for

each 1 ≤ i ≤ n and EjiEiL = EjL. Choose x 6= 0 in E1L, then x may be written

as x = ΣajE1j for some (a1, · · · , an) ∈ Kn \ {0}. For another choice of x, we have

x′ = λx. It follows that each left ideal L of A of rank n corresponds to a point

(a1, · · · , an) in Pn−1
K . On the other hand, for every point (a1, · · · , an) ∈ Pn−1

K , let

l = ΣajE1j, then L = Kl ⊕ KE21l ⊕ · · · ⊕ KEn1l is the corresponding left ideal

of rank n in A. Thus the Brauer-Severi variety associated to Mn(K) is projective

space Pn−1
K .

1.2.3 The Brauer Group of a Scheme

We discussed Brauer group over a field in subsection 1.2.1. In this subsection,

we will sketch its generalization to relative case. The main references are Milne’s

book [Mi1] and Grothendieck’s series of papers [Gr1].

Let us begin with the Azumaya algebras of a local ring first.

Definition 1.2.21. [Mi1] Let R be a commutative local ring and A a R-algebra

with the map R → A, r 7→ r1, identifying R with a subring of the center of A. We

say A is an Azumaya algebra over R if it is free of finite rank as an R-module and

there is an isomorphism A⊗R Ao → EndR−mod(A) that sends a⊗ a′ to (x 7→ axa′).

Remark 1.2.22. If R is a field, by Lemma 1.2.11 and Lemma 1.2.13, it is easy

to see that A is an Azumaya algebra if and only if it is a central simple algebra.

Moreover, similar to central simple algebras, using the tensor product, we can also

define the Brauer group of R, Br(R), as in [Mi1, Chapter IV, §1].
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Let A be an Azumaya algebra over a commutative local ring R. Denote by Ã

the sheafification of A as the notation in [H2], the sheaf of algebras A = Ã is called

a sheaf of Azumaya algebra over SpecR.

Definition 1.2.23. [Mi1] Let X be a scheme over K, and A be a coherent sheaf

on X. We call A an Azumaya algebra over X if A is an OX-algebra and for all

closed points x of X, Ax is an Azumaya algebra over the local ring OX,x.

Remark 1.2.24. It follows that A is locally free of finite rank as OX-module as

shown in [Mi1, Chapter I, Theorem 2.9], and Ax is an Azumaya algebra over OX,x,

for any point x of X as in [Mi1, Chapter IV, Proposition 1.2].

Now we can define the Brauer group of a scheme X. Two Azumaya algebras A

and B over X are said to be similar if there exist locally free OX-modules E and

E ′, of finite rank over OX , such that

A ⊗OX E ndOX (E ) ' B ⊗OX E ndOX (E ′).

As for any two locally free OX-modules E and F , of finite rank over OX , we have

E ndOX (E )⊗OX E ndOX (F ) ' E ndOX (E ⊗OX F ), the similarity relation is an equiv-

alence relation.

Let A and B be two Azumaya algebras over a scheme X. Then by definition,

for all closed points x of X, Ax and Bx are Azumaya algebras over the local ring

OX,x. Since (A ⊗OX B)x ' Ax ⊗OX,x Bx, and by Remark 1.2.22, Ax ⊗OX,x Bx is

an Azumaya algebra over OX,x, thus A ⊗OX B is an Azumaya algebra over X by

definition. We can easily see that the tensor product operation is compatible with

the similarity relation defined above.

Finally, let A be an Azumaya algebra over a scheme X, by Remark 1.2.24,

A is locally free as an OX-module and for any point x of X, Ax is an Azumaya

algebra over OX,x. We have (A ⊗OX A o)x = Ax ⊗OX,x A o
x ' EndOX,x(Ax) and
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E ndOX (A )x = EndOX,x(Ax) for every x of X. Thus the canonical homomorphism

A ⊗OX A o → E ndOX (A ) is an isomorphism, by [H2, Proposition II 1.1].

Hence, the set of similarity classes of Azumaya algebra on a scheme X forms

a group under the tensor product operation [A ][B] = [A ⊗OX B]: [OX ] is the

identity element and [A ]−1 = [A o]. We call it the Brauer group of X and denote it

by Br(X). And obviously Br(−) is a functor from schemes to abelian groups.

Next we will show that for a rational smooth projective variety, its Brauer group

is the Brauer group of its ground field. We know that for a variety X over a field,

Br(X) is torsion [Mi1, Chapter IV, proposition 2.7]. Using the Kummer sequence

and Hochschild-Serre spectral sequence, one can prove this if the characteristic of the

ground field is 0. It can also be shown for prime to p components if the characteristic

of the ground field is a prime p, but it is hard to deal with the p-torsion part. To

overcome this difficulty, we need to introduce the unramified Brauer group. The

main reference is Saltman’s notes [S2, Chapter 10] and paper [S1]. Here the author

is very thankful for the kindness of Professor Daniel Krashen to point out the proper

reference.

Recall that a discrete valuation ring is a principal ideal domain with exactly one

non-zero maximal ideal. Auslander-Goldman proved that for a regular domain R

with fraction field K, the natural map Br(R) → Br(K) is injective [S2, Theorem

9.6]. Thus we can give the following definitioin:

Definition 1.2.25. [S2] Let K ⊂ L be two fields and denote by RL/K the set

of all discrete valuation rings containing K with field of fractions L. We define the

unramified Brauer group Bru(L/K) to be the intersection of Br(R) for all R ∈ RL/K .

Proposition 1.2.26. [S2] Let X be a regular projective variety over a field K with

function field L, then Br(X) = Bru(L/K).

Sketch of proof. Note that U 7→ Br(U) defines a sheaf on the Zariski topology of
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X [Mi1, page 147], we have Br(X) =
⋂
Br(OX,P ) for all P ⊂ X irreducible of

codimension one. Thus we have Bru(L/K) ⊆ Br(X). On the other hand, let

R ∈ RL/K . By the Valuative Criterion of Properness [H2, Chapter II, Theorem 4.7],

R is over some curve C ⊆ X and so OX,C ⊆ R. Thus Br(X) ⊆ Br(OX,C) ⊆ Br(R).

As we know that birationally equivalent varieties have isomorphic function fields

[H2, Corollary I 4.5], thus Br(X) is a birational invariant.

Proposition 1.2.27. [S1] Assume L/K be a purely transcendental extension of

field, then Bru(L/K) = Br(K).

Proof. See the proof of Proposition 1.7 in [S1].

Notice that the function field of a projective space is a purely transcendental

extension of its base field, thus, combine the above two propositions, we have

Theorem 1.2.28. Let X be a rational smooth projective variety over a field K, then

we have Br(X) = Br(K).

1.2.4 Azumaya Algebras and Brauer-Severi Schemes

In §1.2.2, we discussed Brauer-Severi varieties and established that the one-to-

one correspondence between the isomorphism classes of Brauer-Severi varieties of

dimension n − 1 over K and the isomorphism classes of central simple algebras of

degree n over K. In this subsection, we will see that this definition and result can

be generalized to a ground scheme. The main reference is [Gr1, I, §5, 7, 8]. The

reader may also read the end of §4 in [Mi1, Chapter III] and the proof of the first

step of Theorem 2.5 in [Mi1, Chapter IV, §2].

Recall that a morphism of schemes f : X → Y is étale if f is flat and unramified

[Mi1]. And an étale cover of a scheme X is a set {U p→ X} of étale morphisms of
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finite type which are jointly surjective in the sense that X equals to the union of

set-theoretic images, i.e. X =
⋃
p(U).

The local structure of an Azumaya algebra over a scheme is given by the following

theorem.

Theorem 1.2.29. Let X be a scheme, A be a sheaf of OX-algebra which is locally

free of finite rank as an OX-module. Then A is a sheaf of Azumaya algebra over X

if only if there is an étale covering {U → X} such that for each map U → X, we

have A ⊗OX OU 'Mn(OU) for some n.

Proof. See [Mi1, Chapter IV, Propositon 2.1].

From the theorem above, we get that A is a sheaf of Azumaya algebras over X

if only if it is a twisted form of Mn(OX) for the étale topology for some integer n.

Now we are going to talk about Brauer-Severi schemes, which generalizes the

notion of Brauer-Severi varieties discussed in §1.2.2, and they are closely related to

Azumaya algebras through étale cohomology theory.

Definition 1.2.30. Let f : P → X be a morphism of schemes. We say P is Brauer-

Severi scheme over X if it is locally isomorphic to a projective space PnX over X in

the étale topology of X for some integer n, that is, P is a twisted form of PnX for

the étale topology.

Theorem 1.2.31. There is a one-to-one correspondence between the set of isomor-

phism classes of Azumaya algebra over X of rank n2 and the set of isomorphism

classes of Brauer-Severi schemes over X of relative dimension n− 1.

Sketch of proof. Every Azumaya algebra over X of rank n2 is a twisted form of

Mn(OX) for the étale topology, and Auslander-Goldman theorem [Gr1, §5, Theorem
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5.10] asserts that A ut(Mn(OX)) ' PGLn. As every étale covering is also a (fl)-

covering, by Corollary 1.1.21 and Proposition 1.1.6, the set of isomorphism classes

of Azumaya algebra over X of rank n2 is equal to Ȟ1(Xét, PGLn).

Similarly, a Brauer-Severi schemes over X of relative dimension n−1 is a twisted

form of Pn−1
X , and A ut(Pn−1

X ) ' PGLn as showed in [Mu, Chapter 0, §5]. Notice that

OPn−1
X

(1) is a very ample invertible bundle over Pn−1
X relative to X, then by Corollary

1.1.21 and Proposition 1.1.7, the set of isomorphism classes of Brauer-Severi schemes

over X of relative dimension n− 1 is equal to Ȟ1(Xét, PGLn).



Chapter 2

Toric Varieties

2.1 Split Toric Varieties

We recall some basic facts about toric varieties (we will define a variety to be an

integral separated scheme of finite type over a field) that are needed in this thesis,

which can be found in many standard texts, such as [D], [F], [O2] and [CLS].

Denote by Gm = SpecK[t, t−1] the affine algebraic group endowed with co-

multiplication t 7→ t⊗ t on the coordinate ring. An algebraic torus T is an algebraic

group isomorphic to Gn
m where n is an integer ≥ 1. A toric variety is a normal

variety X that contains a torus T as a dense Zariski open subset, together with an

action T ×X → X of T on X that extends the natural action of T on itself.

In [D], Michel Demazure first constructed toric varieties as schemes over SpecZ

from the data of a unimodular fan. Later documents, such as [O2, F], start with

fans in lattices and construct varieties over algebraically closed field. These latter

constructions in fact give schemes over SpecZ and can be applied to any field. In

the following, we will follow this treatment.

Let N be a finitely generated free abelian group of rank n, that is, N ' Zn, and

41
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M = Hom(N,Z) denotes the dual of N . We have a canonical Z-linear pairing

〈 , 〉 : M ×N → Z.

By scalar extension to the field R of real numbers, we have R-vector spaces NR =

N ⊗Z R and MR = M ⊗Z R with a canonical R-linear pairing 〈 , 〉 : MR ×NR → R.

In the following, we limit our discussions to strong convex rational polyhedral

cones. For more general convex polyhedral cones, the reader may refer to [F, §1.2].

Definitions 2.1.1. A convex subset σ ⊂ NR is called a strong convex rational

polyhedral cone if it has an apex at the origin and there exists a R linear independent

subset {n1, · · · , nd} ⊂ N such that

σ = {a1n1 + · · · adnd : ai ∈ R, ai ≥ 0}.

The dimension of σ is the dimension of the smallest subspace of NR that contains

σ, that is, dim(σ) := dim(σ + (−σ)).

We will often refer to a strong convex rational polyhedral cone as a cone, when

there is no possibility for confusion. Here rational means that σ is generated by

{n1, · · · , nd}, a subset of elements in N , and we say they are generators of σ.

If σ ⊂ NR is cone, we define the dual of σ:

σ∨ = {u ∈MR : 〈u, v〉 ≥ 0,∀ v ∈ σ}.

By a fundamental fact from the theory of convex sets [F, page 9], we have (σ∨)∨ = σ,

and σ∨ is also rational [F, page 12], i.e. its generators can be taken from M .

A face τ of σ is a subset of σ of the form

τ = σ ∩ u⊥ = {v ∈ σ : 〈u, v〉 = 0}

for some u ∈ σ∨. Actually, such u can be chosen in M ∩ σ∨[O2, Chapter 1, Propo-

sition 1.3], thus a face τ is also a cone generated by those ni in a generating set for
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σ such that 〈u, ni〉 = 0, and it is denoted by τ � σ. Note that any intersection of

faces is also a face.

Example 2.1.2. Let N = Z2 with a fixed basis {n1 = (1, 0), n2 = (0, 1)}, and

n = −(n1 + n2). Look at the following figure:

σ0

σ1

σ2

τ1

τ2

τ3

(a) σ0 is a cone generated by {n1, n2} with faces {τ1, τ2, {0}}, and {0} is the inter-

section of τ1 and τ2;

(b) σ1 is a cone generated by {n, n2} with faces {τ2, τ3, {0}}, and {0} is the inter-

section of τ1 and τ2;

(c) σ2 is a cone generated by {n, n1} with faces {τ1, τ3, {0}}, and {0} is the inter-

section of τ1 and τ2.

If σ is a cone in NR, it determines a commutative semigroup

Sσ = σ∨ ∩M = {u ∈M : 〈u, v〉 ≥ 0, ∀v ∈ σ}.

This semigroup is finitely generated [F, §1.2 Gordon’s Lemma]. Let K[Sσ] be the

commutative K-algebra generated by the set Sσ. It consists of linear combination

of forms χu for u ∈ Sσ, with multiplication given by χu ·χu′ = χu+u′ . Thus K[Sσ] is

a finitely generated K-algebra and it corresponds to an affine variety:

Uσ = SpecK[Sσ].
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Example 2.1.2 (continued). Let M be the dual of N , with basis {n∗1, n∗2}. Con-

sider σ0, a computation shows that the semigroup Sσ0 = σ∨0 ∩M = Z≥0{n∗1, n∗2}. If

we write X = χn
∗
1 and Y = χn

∗
2 , then the corresponding group algebra K[Sσ0 ] is

K[X, Y ].

Similarly, we can get the following table:

cone σ generators of Sσ K[Sσ]

σ0 n∗1, n
∗
2 K[X, Y ]

σ1 −n∗1,−n∗1 + n∗2 K[X−1, X−1Y ]

σ2 n∗1 − n∗2,−n∗2 K[XY −1, Y −1]

τ1 n∗1,±n∗2 K[X, Y, Y −1]

τ2 ±n∗1, n∗2 K[X,X−1, Y ]

τ3 n∗1 − n∗2,−n∗1 + n∗2,−n∗1 − n∗2 K[XY −1, X−1Y,X−1Y −1]

{0} ±n∗1,±n∗2 K[X,X−1, Y, Y −1]

Now let’s see how the torus acts on an affine toric variety. If σ is a cone in NR,

the torus TN = U{0} acts on Uσ,

TN × Uσ → Uσ,

as follows: A point t ∈ TN(K) can be identified with a map M → K∗ of groups,

and a point x ∈ Uσ(K) with a map Sσ → K of semigroups; the product t · x is the

map of semigroups Sσ → K given by

u→ t(u)x(u).

This gives the dual map on algebras: K[Sσ]→ K[Sσ]⊗K[M ], χu 7→ χu⊗ χu for all

u ∈ Sσ. We can see that this is just the ordinary product of the algebraic group TN

when σ = {0}. Thus this action extends the action of TN on itself.
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If τ is a face of σ, then Sσ is contained in Sτ , so K[Sσ] is a subalgebra of K[Sτ ],

which gives a morphism of varieties Uτ → Uσ. In fact, Uτ is a principal open subset

of Uσ: if we choose u ∈ Sσ such that τ = σ∩u⊥, then Sτ = Sσ +Z≥0 · (−u) [F, §1.2,

Proposition 2] and Uτ ' {x ∈ Uσ : u(x) 6= 0} = (Uσ)χu . Thus we have a natural

order-preserving correspondence from cones to affine varieties. And from the above

argument we know that the actions of TN on Uσ and Uτ are compatible with the

open inclusion Uτ → Uσ.

Definition 2.1.3. A fan Σ in NR is a finite collection of cones in NR such that

(a) Any face of a cone in Σ is also a cone in Σ.

(b) The intersection of any two cones in Σ is a common face of each (hence also in

Σ).

If Σ is a fan in NR, the support of Σ is |Σ| =
⋃
σ∈Σ σ ⊂ NR, and we say it is

complete if |Σ| = NR. Denote by Σ(r) the set of r-dimensional cones of Σ.

Given a fan Σ in NR, let us construct the corresponding toric variety XΣ. First

we take the disjoint union of the affine toric varieties
∐

σ∈Σ Uσ, then glue them as

follows: for cones σ and σ′, the intersection σ∩σ′ is a face of both of them, so Uσ∩σ′

is identified as a principal open subvariety of Uσ and of Uσ′ ; glue Uσ and Uσ′ by this

identification on these subvarieties. The compatibility conditions [H2, Ex II 2.12]

comes from the order-preserving nature of the correspondence from cones to affine

varieties. Denote by XΣ the gluing variety. The separability of XΣ comes from the

fact that Sσ∩σ′ = Sσ + Sσ′ [F, §1.2 Proposition 3]. The actions of TN on each Uσ

patch together to give an action of TN on XΣ. Thus we have a toric variety which

corresponds to the fan Σ in NR.

Remark 2.1.4. Let Σ be a fan in NR and σ, σ′ ∈ Σ, and let τ = σ ∩ σ′. The

Separation lemma [F, §1.2, (12)] asserts that there exists a u in σ∨ ∩ (−σ′)∨ such
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that τ = σ ∩ u⊥ = σ′ ∩ u⊥. So we have an isomorphism (Uσ)χu ' (Uσ′)χ−u which is

the identity on Uτ .

Example 2.1.2 (continued). Let Σ be the fan consisting cones σ0, σ1, σ2 and their

faces. Then the toric variety XΣ is covered by the affine opens

Uσ0 = Spec (K[X, Y ]),

Uσ1 = Spec (K[X−1, X−1Y ]),

Uσ2 = Spec (K[XY −1, Y −1]).

Moreover, the gluing data on the coordinate rings is given by

K[X, Y ]X ' K[X−1, X−1Y ]X−1 ,

K[X, Y ]Y ' K[XY −1, Y −1]Y −1 ,

K[X−1, X−1Y ]X−1Y ' K[XY −1, Y −1]XY −1 .

If we use the usual homogeneous coordinates (x0, x1, x2) on P2, then X 7→ x1
x0

and

Y 7→ x2
x0

identify the standard affine open Ui ⊂ P2 with Uσi ⊂ XΣ. Hence XΣ is the

projective space P2.

We state the following theorem without proof. The reader may refer to [O2] for

its proof.

Theorem 2.1.5. [O2, Theorem 1.10] The toric variety X associated to a fan Σ in

NR is smooth if and only if for each σ ∈ Σ, σ is generated by a subset of a basis of

N .

In this case, we say the fan is smooth.

For each σ ∈ Σ, we have a closed point of Uσ defined by

m ∈ Sσ 7→

1, m ∈ Sσ ∩ σ⊥ = σ⊥ ∩M

0, otherwise.
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We denote this point by γσ and call it the distinguished point corresponding to σ.

The fan Σ is closely related to the structure of the toric variety XΣ. Now let us

consider the one-to-one correspondence between the cones in Σ and the orbits for

the action of TN(K) on the toric variety XΣ(K). For each σ ∈ Σ, denote by O(σ)

the orbit containing the distinguished point γσ.

Let σ ∈ Σ, we define Nσ to be the sublattice of N generated (as a group) by

σ ∩N , i.e. Nσ = (σ+ (−σ))∩N , and N(σ) = N/Nσ,M(σ) = σ⊥ ∩M . It is easy to

see that dual pairing 〈 , 〉 : M ×N → Z induces a perfect pairing

〈 , 〉 : M(σ)×N(σ)→ Z.

From which we have TN(σ)(K) = SpecK[M(σ)](K) = HomZ(M(σ), K∗) = N(σ)⊗Z
K∗. And TN(K) acts on TN(σ)(K) transitively via the projection TN(K)→ TN(σ)(K),

which induced by N → N(σ). On the other hand,

TN(K) · γσ = {γ : Sσ → K | γ(m) 6= 0⇔ m ∈ σ⊥ ∩M} ' HomZ(M(σ), K∗),

and it is compatible with the action of TN(K). Thus we have O(σ) = TN(K) · γσ '

HomZ(M(σ), K∗).

Theorem 2.1.6. Let XΣ be the toric variety of the fan Σ in NR. Then we have

(i) There is a one-to-one correspondence

{cones in Σ} ←→ {TN(K)-orbits in XΣ}

σ ←→ O(σ) ' HomZ(σ⊥ ∩M,K∗).

(ii) For each σ ∈ Σ, the corresponding affine open subset Uσ is the union of orbits

Uσ(K) =
⋃
τ�σ

O(τ).
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(iii) For σ, τ ∈ Σ, τ is a face of σ if and only if O(σ) is contained in the closure of

O(τ), i.e. O(σ) ⊆ O(τ), and O(τ) =
⋃
τ�σ O(σ).

Proof. For (i), we only need to show that for every TN(K)-orbit O, O = O(σ) for

some cone σ ∈ Σ. Indeed, as XΣ(K) is covered by the TN(K)-invariant affine open

subsets Uσ(K) ⊂ XΣ(K) and Uσ(K) ∩ Uτ (K) = Uσ∩τ (K), there exist a unique

minimal cone σ ∈ Σ such that O ⊆ Uσ. We claim O = O(σ).

Notice that Uσ(K) = Homsemi.group(Sσ, K), let γ : Sσ → K be a point in O.

Then γ−1(K∗) = σ∨ ∩ τ⊥ ∩M for some face τ of σ. Thus γ ∈ Uτ (K) and O =

TN(K) · γ ⊂ Uτ (K). By the minimality of σ, we have τ = σ. Thus γ−1 = σ⊥ ∩Sσ =

M(σ), and O = TN(K) · γ = O(σ).

For (ii), we know that Uσ(K) is a union of orbits. If τ is a face of σ, then

O(τ) ⊆ Uτ (K) ⊆ Uσ(K), so we have O(τ) ⊆ Uσ(K). On the other hand, from the

proof of part (i), we see that any orbit contained in Uσ(K) must equal to O(τ) for

some face τ � σ. Hence we have Uσ(K) =
⋃
τ�σ O(τ).

For (iii), if O(σ) is contained in the closure of O(τ), then the open neighborhood

Uσ(K) intersects O(τ), and hence contains O(τ). Thus τ is a face of σ by part (ii).

Hence
⋃
τ�σ O(σ) ⊆ O(τ). We claim that

⋃
τ�σ O(σ) is a closed subset. Indeed, as

XΣ(K) is covered by the TN(K)-invariant affine open subsets Uσ(K) ⊂ XΣ(K), and

once again, by part (ii), we have
⋃
τ�σ O(σ) = XΣ(K) \ (

⋃
σ∈Σ,τ�σ Uσ(K)).

Definition 2.1.7. Let XΣ1 , XΣ2 be two toric varieties, with Σ1 a fan in (N1)R and Σ1

a fan in (N2)R. We say a morphism ϕ : XΣ1 → XΣ2 is equivariant if the restriction

ϕ|TN1
is a group homomorphism of the torus TN1 → TN2 and the following diagram

TN1 ×XΣ1

ϕ|TN1
×ϕ
��

// XΣ1

ϕ

��
TN2 ×XΣ2

// XΣ2

commutes.
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Definition 2.1.8. A map of fans φ : (Σ1, N1) → (Σ2, N2) is a Z-linear homomor-

phism φ : N1 → N2 with scalar extension φ : (N1)R → (N2)R satisfying the following

condition: for each σ ∈ Σ1, there exists σ′ ∈ Σ2 such that φ(σ) ⊆ σ′.

Theorem 2.1.9. [CLS, Theorem 3.3.4] Let Xi, i = 1, 2, be toric varieties, cor-

responding to fans (Σi, Ni), i = 1, 2. Then there is a one-to-one correspondence

between the set of equivariant morphisms ϕ : X1 → X2 and the set of maps of fans

φ : (Σ1, N1)→ (Σ2, N2).

Proof. A Z-linear map φ : N1 → N2 gives rise to its dual φ′ : M2 → M1, which

induces a homomorphism of rings K[M2]→ K[M1]. Thus we have a homomorphism

of algebraic tori ϕ{0} : TN1 → TN2 . Now let σ1 ∈ Σ1, there is a cone σ2 ∈ Σ2 such

that φ(σ1) ⊂ σ2. Then we have φ′(σ∨2 ) ⊂ σ∨1 and φ′(Sσ2) ⊂ Sσ1 . Thus we have an

equivariant morphism ϕσ1 : Uσ1 → Uσ2 . By gluing affine pieces together, we obtain

an equivariant morphism ϕ : XΣ1 → XΣ2 .

Conversely, let ϕ : XΣ1 → XΣ2 be an equivariant morphism. Then by com-

position with the homomorphism of algebraic tori ϕ|TN1
: TN1 → TN2 , we have a

homomorphism of the character group M2 → M1 and its dual Z-homomorphism

φ : N1 → N2.

It remains to show that φ is a map of fans. Since ϕ is an equivariant morphism,

the image under ϕ of each TN1(K)-orbit in XΣ1(K) is contained in a TN2(K)-orbit in

XΣ2(K). Let τ1 � σ1 be cones in Σ1. Consider the TN1(K)-orbits O(σ1) and O(τ1).

By part (i) of Theorem 2.1.6, there exist cones σ2, τ2 ∈ Σ2 such that ϕ(O(σ1)) ⊂

O(σ2) and ϕ(O(τ1)) ⊂ O(τ2).

We claim that τ2 is a face of σ2. Indeed, since ϕ is continuous and by part (iii)

of Theorem 2.1.6, O(σ1) ⊂ O(τ1), we have ϕ(O(τ1)) ⊂ O(τ2). Thus O(σ2) ⊂ O(τ2).

But the only orbits contained in the closure of O(τ2) are the orbits corresponding

to cones that have τ2 as a face. Hence τ2 is a face of σ2.
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Consequently, we have ϕ(Uσ1) ⊂ Uσ2 . Look at the corresponding homomorphism

φ′ of rings, we have φ′(Sσ2) ⊂ Sσ1 and φ′(σ∨2 ) ⊂ σ∨1 , equivalently, φ(σ1) ⊂ σ2. Hence

we obtain a map of fans φ : (Σ1, N1) → (Σ2, N2), which obviously induces the

equivariant morphism ϕ.

Definition 2.1.10. Let X, Y, Z be toric varieties and the associated fan of X is

Σ. An equivariant fiber bundle with typical fiber Y is an equivariant morphism

ϕ : Z → X such that for each σ ∈ Σ, we have ϕ−1(Uσ) ' Y × Uσ.

There are close relations between the associated fans. The simplest case is the

product of toric varieties, as stated below:

Proposition 2.1.11. [CLS, Proposition 3.1.14] Let Σ1 in (N1)R and Σ2 in (N2)R

be fans, then

Σ1 × Σ2 = {σ1 × σ2 | σ1 ∈ Σ1, σ2 ∈ Σ2}

is a fan in (N1)R × (N2)R = (N1 ×N2)R and

XΣ1×Σ2 ' XΣ2 ×XΣ2 .

More generally, we have the following description of equivariant fiber bundles.

Proposition 2.1.12. [O2, Proposition 1.33] Consider an equivariant morphism

ϕ : X → X ′, corresponding to a map of fans φ : (Σ, N) → (Σ′, N ′). Let N ′′ be

the kernel of the Z−linear mapping φ : N → N ′ and Σ′′ be a fan in N ′′R. Then

ϕ : X → X ′ is an equivariant fiber bundle with XΣ′′ as typical fiber if and only

if the following is satisfied: φ : N → N ′ is surjective and there exists a subfan

Σ̃′ ⊂ Σ such that φ maps each cone σ̃′ ∈ Σ̃′ bijectively to a cone σ′ ∈ Σ′ such that

φ(σ̃′ ∩N) = σ′ ∩N ′ and it induces a homeomorphism |Σ̃′| → |Σ′|, and furthermore,

Σ = {σ̃′ + σ′′ : σ̃′ ∈ Σ̃′, σ′′ ∈ Σ′′}. In this case, the open set XΣ̃′ ⊂ X is a principal

TN ′′-bundle over X ′.
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Proof. For each σ′ ∈ Σ′, let Σ(σ′) = {σ ∈ Σ | φ(σ) ⊆ σ′}, then we have ϕ−1(Uσ′) =

XΣ(σ′).

For sufficiency, we only need to show that XΣ(σ′) ' XΣ′′ × Uσ′ . By assumption,

there exist a cone σ̃′ ∈ Σ̃′ such that φ(σ̃′) = σ′ and φ(σ̃′ ∩ N) = σ′ ∩ N ′, thus

there exist a Z-linear map φ′ : N ′ → N that splits φ : N → N ′. It induces an

isomorphism N ′′ × N ′ ' N , and the scalar extension N ′′R × N ′R ' NR carries the

product fan (Σ′′, N ′′) × (Σ′, N ′) to the fan (Σ(σ′), N). Thus by Proposition 2.1.11

we have

XΣ(σ′) ' XΣ′′ × Uσ′ .

For necessity, we note for each σ′ ∈ Σ′, we have XΣ(σ′) ' XΣ′′ × Uσ′ . Denote

by σ′ the fan in N ′R containing all the faces of σ′ and let φσ′ : Σ′′ × σ′ → Σ(σ′) be

its corresponding map of fan, then Σ̃′ = {φσ′({0} × σ′) | σ′ ∈ Σ′} satisfies all the

conditions we required.

Now we can give description of a special equivariant fiber bundle: toric Pr−1-

bundle P(E) → X, where X is a toric variety and E is a rank r equivariant vector

bundle on X.

Lemma 2.1.13. [DS, Lemma 1.1] Let E be a vector bundle over a normal toric

variety X. Assume that P(E) is toric over X, then E = ⊕Li with Li equivariant

line bundles on X.

Sketch of Proof. Consider the bundle P(E) → X with fiber F = Pr−1 where r =

rank E. Every fiber has r fixed points which defines an unramified r to one cover of

X, p : Y → X. X is simply connected as X is normal, thus we have Y = ∪Xi and

E = ⊕Li.

As in [O2, §2.1], in what follows we assume all the fans are smooth and finite.

Let X be a smooth toric variety associated with the fan (Σ, N). As usual, denote by
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Div(X) the commutative group of Weil divisors on X, i.e., the free abelian group

generated by all closed integral subschemes in X of codimension 1, CDiv(X) the

group of Cartier divisors, i.e., the locally principal Weil divisors, L (X) the group

of invertible sheaves on X and LB(X) the group of line bundles over X. Since X

is smooth, it is well known that Div(X) = CDiv(X) [H2, Proposition II 6.11], and

by [H2, Proposition II 6.13], there is an isomorphism between L (X) and CDiv(X).

Moreover, if we associate each line bundle with the dual sheaf of the sheaf of its

sections, we get an isomorphism LB(X)→ L (X) [H2, Ex II 5.18]. Thus we have an

isomorphism Div(X) ' LB(X). Furthermore, if we denote by TDiv(X) the group

of equivariant Weil divisors and ELB(X) the group of equivariant line bundles over

X, then we have an isomorphism TDiv(X) ' ELB(X). For each σ ∈ Σ(1), denote

by V (σ) = O(σ), then by Proposition 2.1.6, we have TDiv(X) = ⊕σ∈Σ(1)ZV (σ).

Hence we have an isomorphism

⊕σ∈Σ(1)ZV (σ)
'−→ ELB(X)

given by

D =
∑
%∈Σ(1)

a%V (%) = {(Ui, fi)} 7→ {gij = fj/fi},

where U = {Ui} is an open cover of X and div(fi) = D|Ui .

Definition 2.1.14. [O2, §2.1] Let Σ be a fan in NR, a real valued function h :

|Σ| → R is said to be a Σ-linear support function if it is linear in each cone of Σ and

integral with respect to the lattice N , h(|Σ| ∩N) ⊆ Z.

The set of all such support functions is denoted by SF (N,Σ), and this is an ad-

ditive group. For each h ∈ SF (N,Σ), by definition, it is easy to see that it is deter-

mined by the set {h(n(σ)) | σ ∈ Σ(1) and n(σ) is the minimal generator of σ in σ∩

N}, and thus we obtain an injective homomorphism

SF (N,Σ)→ ZΣ(1).
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On the other hand, let h ∈ SF (N,Σ), there exists mσ ∈ M for each σ ∈ Σ such

that h(n) = 〈mσ, n〉, for n ∈ σ ∩ N and that 〈mσ, n〉 = 〈mτ , n〉 holds whenever

n ∈ τ � σ. Note that mσ ∈ M is a solution in M of the system of equations

{〈mσ, n(%)〉 = h(n(%)) : % ∈ Σ(1), % � σ}. Since Σ is smooth, {n(%) | % ∈ Σ(1), % �

σ} is a part of a Z-basis of N . Thus the above system of equations always has a

solution. Hence we have an isomorphism

SF (N,Σ)
'−→ ZΣ(1).

Remark 2.1.15. When h ∈ SF (N,Σ) is given, the above {mσ : σ ∈ Σ} ⊂ M may

not be uniquely determined, since {m′σ : σ ∈ Σ} satisfying mσ −m′σ ∈ M ∩ σ⊥ for

each σ ∈ Σ gives rise to the same h.

Therefore, there exists an isomorphism

SF (N,Σ)
'−→ ⊕%∈Σ(1)ZV (%)

given by h 7→ −
∑

%∈Σ(1) h(n(%))V (%).

Combining the above two isomorphisms, we obtain an isomorphism

SF (N,Σ)
'−→ ELB(X)

given by

h = {mσ | σ ∈ Σ(1)} 7→ {gστ = χmσ−mτ}.

Now let D =
∑

%∈Σ(1) a%V (%) be a equivariant divisor corresponding to Σ-linear

support function h = {mσ | σ ∈ Σ}, i.e. 〈mσ, n(%)〉 = −a% for all % ∈ σ(1)

and σ ∈ Σ. We construct a new fan in NR × R as follows: for each σ ∈ Σ, let

σ̃ = {(x,−h(x)) | x ∈ σ}. Define Σ′ = {σ̃ + ({0} × R≥0) | σ ∈ Σ}, then by

Proposition 2.1.12, the toric variety XΣ′ associated to the fan Σ′ is an equivariant

line bundle XΣ′ → XΣ.
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Now, we can give a detailed description of the associated fan of an equivariant

projective bundle over a toric variety. We state it below:

Corollary 2.1.16. [O2, page 59] Let X = P(L1 + · · ·Ll) be a projective bundle over

X ′, where L1, · · · ,Ll are equivariant line bundles over toric variety XΣ′. Suppose Σ′-

linear support functions h1, · · · , hl give rise to the equivariant line bundles L1, · · · ,Ll
on X ′, respectively. Let N ′′ be a free Z-module with a basis {n′′2, · · · , n′′l } and let

N := N ′ +N ′′ and n′′1 := −(n′′2 + · · ·+ n′′l ). Denote by σ̃′ the image of each σ′ ∈ Σ′

under the map N ′R → NR which sends y′ ∈ N ′R to (y′,−
∑

1≤j≤l hj(y
′)n′′j ). We then

let Σ̃′ := {σ̃′ : σ′ ∈ Σ′}. On the other hand, let σ′′i := R≥0n
′′
1 + · · · + R≥0n

′′
i−1 +

R≥0n
′′
i+1 + · · · + R≥0n

′′
l for each 1 ≤ i ≤ l and let Σ′′ be the fan in N ′′ consisting

of the faces of σ′′1 , · · · , σ′′l . Then we have Σ := {σ̃′ + σ′′ : σ̃′ ∈ Σ′, σ′′ ∈ Σ′′} and

X ' XΣ.

Example 2.1.17. Let X ′ = P1 and l = 2. For a positive integer r, consider the

rational ruled surface X = P(O ⊕ O(r)), which is called a Hirzebruch surface. The

corresponding map of fans looks like this:

σ1

σ2

σ3

σ4

n1

n2

−n2

−n1 + rn2

0 n1−n1

We always assume in the following that all the fans are complete and smooth.

Definition 2.1.18. [Bat] We call a nonempty subset P = {x1, · · · , xk} ⊆ Σ(1) a

primitive collection if for each element xi ∈ P, the remaining elements P \ {xi}
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generate a (k − 1)-dimensional cone in Σ, while P itself does not generate any

k-dimensional cone in Σ.

Let P = {x1, · · · , xk} ⊆ Σ(1) be a primitive collection in Σ(1). The focus σ(P)

of P is the smallest cone in Σ that contains x1 + · · ·+ xk (such cone exists as Σ is

complete).

Proposition 2.1.19. [Bat] Let P = {x1, · · · , xk} ⊆ Σ(1) be a primitive collection

in Σ(1). Then σ(P) ∩P = ∅.

Proof. Let {y1, · · · , ym} be the set of generators of σ(P). It suffices to show that

P ∩ {y1, · · · , ym} = ∅.

If not, assume, without loss of generality, that x1 = y1, consider the element

x = x2 + · · ·+ xk, then x is in the interior of the cone σ generated by {x2, · · · , xk}.

On the other hand, let x1 + · · · + xk = n1y1 + · · · + nmym, where n1, · · · , nm are

positive integers, then x = (n1 − 1)y1 + n2y2 + · · · + nmym and x is in the interior

of the cone σ′ generated by {y1, · · · , ym} if n1 > 1, or {y2, · · · , ym} if n1 = 1. In

both cases, we have σ = σ′. If σ′ is generated by {y1, · · · , ym}, then y1 must be an

element of {x2, · · · , xk}, this contradicts the assumption that x1, · · · , xk are different

generators of Σ; If σ′ is generated by {y2, · · · , ym}, then P = {y1, · · · , ym}, and this

contradicts the fact that P does not generate a cone in Σ.

Let Σ ⊆ Rn be a complete smooth fan. As we showed above, every generator

x ∈ Σ(1) determines a T -invariant divisor, which is also a toric variety, and its

corresponding fan Σx consists of images of all cones in Σ containing x via the natural

projection Rn → Rn�R〈x〉.

Proposition 2.1.20. [Bat] (i) The set Σx(1) of all generators for Σx consists of the

images x̄′ ∈ Rn�R〈x〉 of all generators x′ such that {x, x′} generate a 2-dimensional

cone in Σ.
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(ii) If {x̄1, · · · , x̄k} is a primitive collection in Σx(1), then

either {x, x1, · · · , xk}, or {x1, · · · , xk}

is a primitive collection in Σ(1).

Proof. (i) is obvious from the construction of Σx. For (ii), let {x̄1, · · · , x̄k} be a

primitive collection in Σx, then {x, x1, · · · , xk} does not generate a cone in Σ. Thus,

there exists a primitive collection in P ⊆ {x, x1, · · · , xk}. Since {x, x1, · · · , xk}\{xi}

generates a cone in Σ for 1 ≤ i ≤ k, we have {x1, · · · , xk} ⊆ P. Thus, P =

{x, x1, · · · , xk}, or P = {x1, · · · , xk}.

Using the new terminologies, we can transform Corollary 2.1.16 as follows.

Corollary 2.1.21. [Bat, Proposition 4.1] A smooth complete n-dimensional fan Σ

corresponds to a toric variety XΣ which is a toric Pk-bundle over a smooth (n− k)-

dimensional toric variety if and only if there exists a primitive collection P =

{x1, x2, · · · , xk+1} ⊆ Σ(1) such that the corresponding primitive relation is x1 +x2 +

· · ·+xk+1 = 0 and any other primitive collection in Σ(1) does not intersect with P.

Definition 2.1.22. [Bat] A smooth complete d-dimensional fan Σ is called a splitting

fan if any two different primitive collections in Σ(1) are disjoint.

Theorem 2.1.23. [Bat, Theorem 4.3] Let X be a toric variety associated with a

splitting fan Σ, then X is a projectivization of a decomposable bundle over a toric

variety which is associated with a splitting fan of a smaller dimension.

Proof. By Corollary 2.1.21, we need only to show that there exists a primitive col-

lection in Σ(1) with zero focus. We may prove this by induction on the number of

element in Σ(1).
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Let ]Σ(1) = m,m ≥ 2. When m = 2, assume Σ(1) = {x1, x2}, then we have

x1 = −x2 and Σ(1) itself is a primitive collection with zero focus. Thus the statement

is true for m = 2.

Assume the statement is true for m < n. Now let ]Σ(1) = n. For every generator

x0 ∈ Σ(1), consider the corresponding fan Σx0 of T -invariant divisor Dx0 . Σx0 is also

a splitting fan and ]Σx0(1) < n, thus there exists at least one primitive collection in

Σx0 with zero focus. For every primitive collection {x̄1, · · · , x̄k} in Σx0 having zero

focus, we have x1 + · · ·+xk = ax0 for some integer a. By Proposition 2.1.20 (ii), we

only need to consider two cases.

Case 1. P = {x0, x1, · · · , xk} is a primitive collection in Σ(1) for some x0 ∈ Σ(1)

and some primitive collection {x̄1, · · · , x̄k} in Σx0 with zero focus. Then we have

S(P) = x0 + x1 + · · · + xk = (a + 1)x0. By Proposition 2.1.19, S(P) cannot be

a positive multiple of x0, thus a + 1 ≤ 0. If a + 1 < 0, then a < −1 and S(P) is

in the interior of the cone σ ∈ Σ generated by {x1, · · · , xk}. By Proposition 2.1.19

again, this is impossible. Thus a + 1 = 0 and P = {x0, x1, · · · , xk} is a primitive

collection in Σ(1) having zero focus.

Case 2. For any x0 ∈ Σ(1) and any primitive collection {x̄1, · · · , x̄k} in Σx0 with

zero focus, P = {x1, · · · , xk} is a primitive collection in Σ(1). Since every primitive

collection contains at least two generators, the number of primitive collections in

Σ(1) is at most a half of the number of generators in Σ(1). Thus, there exist two

different generators x, y ∈ Σ(1) and a primitive collection P = {x1, · · · , xk} such

that S(P) = x1 + · · ·+ xk is an integral multiple of both x and y. This is possible

only if x = −y. Thus {x, y} is a primitive collection in Σ(1) with zero focus.

Hence the statement is also true for ]Σ(1) = n. The induction is done.

Corollary 2.1.24. [Bat, Corollary 4.4] A smooth complete toric variety is produced

from a projective space by a sequence of projectivizations of decomposable bundles if
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and only if its corresponding fan is a splitting fan.
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2.2 Arithmetic Toric Varieties

In this section, we briefly introduce arithmetic toric varieties, the main reference

is [ELST].

Let XΣ be a split toric variety associated with a fan Σ ⊆ NR with torus TN .

Definition 2.2.1. A toric automorphism of XΣ is a pair of (α, φ), where α is an

automorphism of the variety XΣ and φ is a group automorphism of the torus T ,

such that we have the following commutative diagram

TN ×XΣ

φ×α
��

// XΣ

α

��
TN ×XΣ

// XΣ.

In particular, if t ∈ TN(K) and x ∈ XΣ(K) then

α(tx) = φtα(x),

where φt is the image of t under φ. Since N = Hom(Gm, TN), any automorphism of

TN is naturally induced by an automorphism φ on N , and we use the same notation

for both.

Similar to the proof of Theorem 2.1.9, if (α, φ) is a toric automorphism of XΣ,

we have σ ' φ(σ) for every σ ∈ Σ, thus φ is in the group AutNΣ of automorphisms

of N that preserve the fan Σ.

Since O({0}) is the unique dense orbit of TN(K) on XΣ(K) and TN(K) acts

freely on O({0}), given a toric automorphism (α, φ) of XΣ, there exist a unique

tα ∈ TN(K) such that

α(γ{0}) = tαγ{0}.

where γ{0} is the distinguished point of XΣ corresponding to {0} ∈ Σ. If (β, ψ) is

another toric automorphism , then

βα(γ{0}) = β(tαγ{0}) = ψtαtβγ{0},
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and so tβα = tβ
ψtα. Thus the map (α, φ) 7→ (tα, φ) is a homomorphism from the

group of toric automorphisms of XΣ to the semidirect product TN(K)o AutNΣ .

Lemma 2.2.2. [ELST, Lemma 2.1] The map (α, φ) 7→ (tα, φ) is a group isomor-

phism from the group of toric automorphisms of XΣ to TN(K)o AutNΣ .

Proof. It suffices to show that the map (α, φ) 7→ (tα, φ) is invertible.

Given (t, φ) ∈ TN(K)oAutNΣ , with t : M → K∗ a point in TN(K). For every σ ∈

Σ, (t, φ) defines a K-algebra homomorphism φσ : K[φ(Sσ)∨] → K[Sσ] by sending

u ∈ K[φ(Sσ)∨] to t(u)φ−1(u). Thus we have a morphism ασ : Uσ → Uφ(σ). By gluing

these affine pieces together, we have an automorphism α of XΣ. Furthermore, the

action TN×XΣ → XΣ induced by the homomorphisms K[Sσ]→ K[Sσ]⊗K[M ], u 7→

u ⊗ u satisfies α(tx) = φtα(x). Thus the assignment (t, φ) 7→ (α, φ) is the desired

inverse.

Definition 2.2.3. [ELST] Let K be a field. An arithmetic torus over K of rank n

is an algebraic group T over K such that TL ' TN,L for some finite Galois extension

L/K and lattice N of rank n. That is, T is a L/K-form of the split torus TN,L.

As TN is affine and Aut(TN) ' Aut(N), the set of such L/K-forms is in natural

bijection with the Galois cohomology set H1(L/K,Aut(N)), by Proposition 1.1.16.

Since the Galois group Gal(L/K) acts on Aut(N) trivially, we have the following

classification.

Proposition 2.2.4. [ELST, Proposition 2.5] The L/K-forms of the torus TN are

given by conjugacy classes of homomorphisms φ : Gal(L/K)→ Aut(N).

Let φ : Gal(L/K) → Aut(N), the corresponding torus Tφ satisfies Tφ(L) =

TN(L). Now let us describe the twisted action of the Galois group Gal(L/K) ex-

plicitly. For a ∈ Aut(N) we will also write a for its adjoint in Aut(M). Given
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t ∈ TN(L) = Hom(M,L∗), for any g ∈ Gal(L/K), gφt : M → L∗ is defined by the

following composition

gφt : M
φg−→M

t−→ L∗
g−→ L∗.

Definition 2.2.5. [ELST] An arithmetic toric variety over a field K is a pair (Y,T ),

where T is an arithmetic torus over K and Y is a normal variety over K equipped

with a faithful action of T which has a dense orbit.

Let L/K be a finite Galois extension over which the arithmetic torus T splits,

so that TL ' TN,L, where N is the lattice of one-parameter subgroups of T . By

Proposition 2.2.4, there is a conjugacy class of group homomorphisms

φ : Gal(L/K) −→ Aut(N)

such that T = Tφ. Then YL is a normal variety over L and the split torus TL acts

faithfully on YL and it has a dense orbit. As we mentioned at the beginning of the

previous section, every split toric variety can be realized from some fan, thus YL is

isomorphic to a split toric variety XΣ, for some fan Σ ⊆ NR.

Thus we have an isomorphism of pairs

ψ : (YL,TL)
'−→ (XΣ,L, TN,L).

And we can use this isomorphism to obtain a Gal(L/K)-action on (XΣ,L, TN,L)

through the Gal(L/K)-action on (YL,TL), and thus get a Gal(L/K)-action on the

fan Σ ⊆ NR, and thus the homomorphism φ : Gal(L/K)→ Aut(N) for which T =

Tφ may be chosen so that φ(Gal(L/K)) ⊂ AutNΣ . For g ∈ Gal(L/K), tg ∈ TN(L) is

defined by

gγ{0} = tgγ{0},

where γ{0} is the distinguished point of XΣ corresponding to {0} ∈ Σ.
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Just as we showed in §1.1.3, there is a relationship between the L/K-forms of

the pairs (XΣ,L, TN,L) and the first cohomology group, the interested reader may

refer to [ELST, §3] for more information.

To finish this section, we give two examples of arithmetic toric varieties corre-

sponding to the algebra of quaternions over R and cyclic algebra.

Example 2.2.6. Let H be the algebra of quaternions, a 4-dimensional algebra with

basis 1, i, j, k over the real numbers field R, the multiplication being determined by

the rules

i2 = −1, j2 = −1, ij = −ji = k.

This is in fact a division algebra over R, hence a central simple algebra over R. We

have an isomorphism

φ : H⊗R C −→M2(C)

with

φ(i⊗ 1) =

 i 0

0 −i

 , φ(j ⊗ 1) =

 0 1

−1 0

 , φ(k ⊗ 1) =

0 i

i 0

 ,

where i ∈ C satisfying i2 = −1.

Let Gal(C/R) = {e, g}, then for any

a b

c d

 ∈M2(C), we have

g

a b

c d

 =

 d̄ −c̄

−b̄ ā

 .

By Example 1.2.20, the projective curve P1
C is the variety associated to M2(C),

and for t ∈ P1
C, we have g(t) = −t̄−1.

By Lemma 2.2.2, the toric automorphism group of P1
C is C∗o{±I}, where {±I}

acts on C∗ by −I sending t ∈ C∗ to t−1. Thus the arithmetic toric variety associated



CHAPTER 2. TORIC VARIETIES 63

to H is determined by the following homomorphism

c : Gal(C/R) −→ C∗ o {±I}

g 7−→ (−1,−I).

In the following example, for the description of cyclic algebra, the reader may

refer to [Dr] and [GS].

Example 2.2.7. Let L/K is a cyclic extension, n := |L :K| ((char(K), n) =

1), G := Gal(L/K) = 〈σ〉 and a ∈ K∗, then we have a cyclic algebra

(a, L/K, σ) :=
n−1⊕
i=0

Lei

with multiplication en = a, le = eσ(l) for all l ∈ L.

(a, L/K, σ) is a central simple algebra over K with L as its splitting field, i.e.

(a, L/K, σ)⊗K L ∼= Mn(L).

Let

F̃ (a) =



0 0 · · · 0 a

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


∈ GLn(L).

A computation shows that F̃ (a)n = aIn. If we denote by F (a) its image in the group

PGLn(L), we have F (a)n = 1. And the 1-cocycle associated to (a, L/K, σ) is

c(a) : G −→ PGLn(L)

σ 7−→ F (a).

Thus the twisted action of σ on Mn(L) sends M to F̃ (a) · σ(M) · F̃ (a)−1 for any

M ∈Mn(L).
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By Example 1.2.20, the projective space Pn−1
L is the variety associated to Mn(L),

and for [l1, · · · , ln] ∈ Pn−1
L , we have σ([l1, · · · , ln]) = [a−1σ(ln), σ(l1), · · · , σ(ln−1)].

Thus the arithmetic toric variety associated to (a, L/K, σ) is determined by the

following homomorphism

c(a) : G −→ (L∗)n o AutNΣ

σ 7−→ ((a, · · · , a), A),

where (Σ, N) is the standard fan associated to Pn and A =



0 0 · · · 0 −1

1 0 · · · 0 −1

0 1 · · · 0 −1
...

...
. . .

...
...

0 0 · · · 1 −1


.



Chapter 3

Derived Categories of Coherent

sheaves

3.1 Derived Categories of Coherent sheaves

The derived category is a rather complicated object and it was introduced by

Grothendieck at the beginning of the 1960’s. Later its internal structure was ax-

iomatized by Verdier through the notion of triangulated category in his 1967 thesis

[V1] and [V2]. Roughly speaking, given an abelian category A, its derived category

gives a transparent and compact way to handle the totality of cohomological data

attached to A and equates a given object of A to all of its resolutions. For a quick

skimming of the derived categories of sheaves, the reader may refer to [C]; for more

thorough introduction to derived categories, the reader may refer to [GM] and [Hu].

Let us first briefly introduce how we construct the derived category D(A) from

an abelian category A. Let A be an abelian category, then the category of complexes

of A, Kom(A), is the category whose objects are complexes of objects of A, and

morphisms between complexes are chain maps. Any morphism f : A
• → B

•
induces

65
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natural homomorphisms H i(f) : H i(A
•
) → H i(B

•
), i ∈ Z. A short exact sequence

0→ A
• → B

• → C
• → 0 in Kom(A) induces a long exact sequence

· · · → H i(A
•
)→ H i(B

•
)→ H i(C

•
)→ H i+1(A

•
)→ · · ·

We say two morphisms f, g : A
• → B

•
in Kom(A) are homotopy equivalent,

f ∼ g, if there exists a collection of homomorphisms hi : Ai → Bi−1, i ∈ Z, such

that

f i − gi = hi+1 ◦ diA + di−1
B ◦ hi.

This is an equivalence relation, and if f ∼ g, we have H i(f) = H i(g) for all i ∈ Z.

Modulo the homotopy equivalent relation, then we get a new category, the homotopy

category K(A) of A with objects Ob(Kom(A)) and morphisms HomK(A)(A
•
, B

•
) =

HomKom(A)(A
•
, B

•
)/ ∼.

We say a morphism of complexes f : A
• → B

•
is a quasi-isomorphism if it

induces isomorphisms of cohomological groups H i(f) : H i(A
•
)
'−→ H i(B

•
) for all

i ∈ Z. By a process called localization with respect to the class of quasi-isomorphisms

in K(A) (treat the quasi-isomorphisms in K(A) as isomorphisms), we may obtain a

new category – the derived category, D(A), of the abebian category A. For details,

the reader may refer to [GM], we summarize it as follows [Hu, Theorem 2.10]:

There exists a category D(A), the derived category of A, and a functor

Q : Kom(A)→ D(A)

such that:

i) If f : A
• → B

•
is a quasi-isomorphism, then Q(f) ia an isomorphism in D(A).

ii) Any functor F : Kom(A) → D satisfying property i) factorizes uniquely over

Q : Kom(A) → D(A), i.e. there exists a unique functor (up to isomorphism)



CHAPTER 3. DERIVED CATEGORIES OF COHERENT SHEAVES 67

G : D(A)→ D with F ' G ◦Q:

Kom(A)
Q //

F
$$

D(A)

G||
D

Moreover, we have the following facts [Hu, Corollary 2.11]:

i) The objects of the two categories Kom(A) and D(A) are identical.

ii) The cohomology objects H i(A
•
) of an object A

• ∈ D(A) are well-defined.

iii) Viewing any object in A as a complex concentrated in degree zero yields an

equivalence between A and the full subcategory of D(A) that consists of all

complexes A
•

with H i(A
•
) = 0 for i 6= 0.

The derived category D(A) (and K(A)) has two fundamental operations built

in: shifting: A
• 7→ A

•
[k], k ∈ Z such that (A

•
[k])i = Ak+i and cones: for any

morphism of complexes f : A
• → B

•
, its mapping cone is the complex C(f)

•
with

C(f)i = Ai+1 ⊕Bi and diC(f) :=

di+1
A 0

f i+1 diB

 .

Then we may define the maps g : B
• → C(f)

•
and h : C(f)

• → A
•
[1] in the obvious

way and get a distinguished triangle

A
• f−→ B

• g−→ C(f)
• h−→ A

•
[1].

The categories K(A) and D(A) are no longer abelian categories, but are tri-

angulated categories [GM]. Instead of short exact sequences, we deal with exact

triangles, triangles that are isomorphic to distinguished triangles.

Analogously, given an abelian category A, we can construct Kom∗(A), K∗(A)

and D∗(A), with ∗ = +, −, or b, be the categories with objects of complexes A
•

such that Ai = 0 for i� 0, i� 0, respectively |i| � 0.
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Now let us focus on the derived category of coherent sheaves of a scheme X, we

denote by Db(X) the bounded derived category of the abelian category Coh(X),

i.e. Db(X) = Db(Coh(X)).

When dealing with sheaves, we are always interested in functors like f∗, f
∗, Hom,

⊗, Γ(X,−), etc. Now we are going to give a very brief description of the derived

functors between the derived categories (a functor RF in the case of a left exact

functor F ; or LF in the case a right exact functor F ).

As an example, we give the brief construction of Rf∗, the right derived functor

of f∗, which also works for other left exact functors. For simplicity, we assume

f : X → Y is a projective (or proper) morphism of noetherian schemes. Then

f∗ : Qcoh(X)→ Qcoh(X) and f∗ : Coh(X)→ Coh(X) are both left exact, where

the latter one follows from [H2, Theorem III 8.8].

Proposition 3.1.1. [Hu] Let A be an abelian category with enough injectives, then

the natural functor

ι : K+(IA) −→ D+(A)

is an equivalence, where IA are the injectives of A.

Proof. See [Hu]; Proposition 2.40.

It is well known that the category Qcoh(X) has enough injectives [H1, II, 7.18].

For f∗ : Qcoh(X)→ Qcoh(Y ), by Proposition 3.1.1 we may define its right derived

functor

Rf∗ : D+(Qcoh(X)) −→ D+(Qcoh(Y ))

through the composition

D+(Qcoh(X))
ι−1

−→ K+(IQcoh(X))
↪→−→ K+(Qcoh(X))

K(f∗)−→ K+(Qcoh(Y ))
QQcoh(Y )−→ D+(Qcoh(Y )),
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where QQcoh(Y ) is the localization functor.

Note that for any sheaf F ∈ Qcoh(X), regarded as a complex in D+(Qcoh(X))

with just F in position 0 and zero elsewhere, then ι−1(F ) is just the classical

injective resolution of F . What we gained here is that ι−1 maps every complex to

a complex with injective objects that is quasi-isomorphic to itself.

Now, let us state a relation between Db(X) and Db(Qcoh(X)).

Proposition 3.1.2. [Hu] Let X be a noetherian scheme. Then the natural inclusion

functor

Db(X) −→ Db(Qcoh(X))

defines an equivalence between the bounded derived category Db(X) and the full

triangulated subcategory Db
Coh(Qcoh(X)) of bounded complexes of quasi-coherent

sheaves with coherent cohomology.

Proof. See [Hu]; Proposition 3.5.

To construct the right derived functor Rf∗ : Db(X)→ Db(Y ), we need two more

results of higher direct images of sheaves. We state them below.

Theorem 3.1.3. [Hu, Theorme 3.22, Corollary 2.68] Let f : X → Y be a morphism

of noetherian schemes and F a quasi-coherent sheaf on X. Then the higher direct

images Rif∗F are trivial for i > dim(X), and Rf∗(F
•
) ∈ Db(Qcoh(Y )) for any

F
• ∈ Db(Qcoh(X)).

Theorem 3.1.4. [Hu, Theorem 3.23] Let f : X → Y be a projective (or proper)

morphism of noetherian schemes, then the higher direct images Rif∗F of a coherent

sheaf F on X are again coherent sheaves on Y .

Finally, we can give the right derived functor Rf∗ : Db(X) → Db(Y ), which is
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summarized in the following diagram:

D+(Qcoh(X))
Rf∗ // D+(Qcoh(Y ))

Db(Qcoh(X))
?�

OO

Theorem3.1.3 // Db(Qcoh(Y ))
?�

OO

Db(X)
?�

OO

Theorem3.1.4 // Db(Y )
?�

OO

In sheaf theory, while we have enough injectives and we may deal with the right

derived functors of left exact functors like above, there are almost never have enough

projectives. To get around this problem, we may replace injective objects by acyclic

objects. When the class of acyclic objects is rich enough to be able to arrange every

complex in D−(Qcoh(X)) is quasi-isomorphic to a complex of acyclic objects, then

we may use a similar construction for left exact functors as above to define LF , the

left derived functor of a right exact functor F .

In the following we list some great technical advantages of using the derived

category [Hu]. We will make use of them later.

i) Projection formula: let f : X → Y be a proper morphism of projective schemes.

For any F
• ∈ Db(X), E

• ∈ Db(Y ), there exists a natural isomorphism

Rf∗F
• ⊗L E

• '−→ Rf∗(F
• ⊗L Lf ∗E •).

ii) Let F
• ∈ D−(X), we have

RΓ ◦RHom(F
•
,−) = RHom(F

•
,−).

iii) Flat base change: if we are given a cartesian diagram

X ×Z Y v //

g

��

Y

f
��

X
u // Z
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with u : X → Z flat and f : Y → Z proper. Then there exists a functorial

isomorphism:

u∗Rf∗F
• '−→ Rg∗v

∗F
•

for any F
• ∈ D(Qcoh(Y )).

As u and, therefore, v are flat, both functors u∗ and v∗ are exact and need not

be derived.

Definition 3.1.5. Let D be a triangulated category and S be a set of objects in D,

we denote by 〈S〉 the minimal full triangulated subcategory of D containing all the

objects in S, i.e. it contains all the objects in S and is closed under shifting and

taking cones. We say S generates D if 〈S〉 = D, that is, 〈S〉 is equivalent to D.

Actually, 〈S〉 is the intersection of all full triangulated subcategories of D con-

taining all the objects in S. 〈S〉 exists since D contains S.

Definitions 3.1.6. Let D be a K-linear triangulated category. An object E is said

to be exceptional if

Hom(E,E) = K and Hom(E,E[l]) = 0 ∀ l 6= 0.

An exceptional collection in D is an ordered collection (E0, E1, · · · , En) of excep-

tional objects, satisfying

Hom(Ej, Ei[l]) = 0 for all l when 0 ≤ i < j ≤ n.

If in addition

Hom(Ej, Ei[l]) = 0 for 0 ≤ j ≤ i ≤ n, l 6= 0,

we call (E0, E1, · · · , En) a strong exceptional collection. The collection is full (or

complete) if it generates D.
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When dealing with Db(X), we will always limit our discussion of exceptional

objects within the set of coherent sheaves on X. For coherent sheaves E and F , we

have [Hu, Proposition 2.56]

HomDb(X)(E ,F [k]) = ExtkOX (E ,F ).

Definition 3.1.7. [Ba] A coherent sheaf T of OX-module on a smooth projective

variety X is called a tilting sheaf if

(i) it has no higher self-extensions, i.e. ExtiOX (T ,T ) = 0 for all i > 0,

(ii) the endomorphism algebra of T , EndOX (T ), has finite global homological di-

mension,

(iii) the direct summands of T generate the bounded derived category Db(X).

If T is locally free, then it is called a tilting bundle.

The reason why the notion of tilting sheaf is so important is the following result.

Theorem 3.1.8. [Ba, Theorem 3.1.2] Let X be a smooth projective variety and

T be a tilting sheaf over X, with associated algebra A := EndOX (T ). Then the

functors

F := HomOX (T ,−) : Coh(X)→ mod-A

(here mod-A is the category of finitely generated right A-modules) and

G := −⊗A T : mod-A→ Coh(X)

induce equivalences of triangulated categories

RF : Db(X)→ Db(mod-A)

LG : Db(mod-A)→ Db(X)

that are quasi-inverse to each other.
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And the reason why full strong exceptional collections are interesting is the

following lemma.

Lemma 3.1.9. Let (F0,F1, · · · ,Fn) be a full strong exceptional collection of coher-

ent sheaves on X over a field K, then T = ⊕ni=0F
⊕li
i , li ≥ 1 is an integer for 0 ≤

i ≤ n, is a tilting sheaf on X.

Proof. As Ext functor commutes with finite direct sum, we only need to show that

the endomorphism algebra of T , End(T ), has finite global homological dimension.

We can get this by induction on n using Proposition 3.2.6.

Notice that

End(T ) =


Ml0(K) 0 · · · 0

Hom(F0,F
⊕l1
1 ) Ml1(K) · · · 0

...
...

. . .
...

Hom(F0,F⊕ln
n ) Hom(F⊕l1

1 ,F⊕ln
n ) · · · Mln(K))

 .

When n = 0, End(T ) = Ml0(K). By Morita theory, the category of Ml0(K)-

modules is equivalent to the category of K-vector space. As K has finite global

dimension, so does Ml0(K).

If we write

End(T ) =

A 0

M Mln(K)

 ,

where

A =


Ml0(K) 0 · · · 0

Hom(F0,F
⊕l1
1 ) Ml1(K) · · · 0

...
...

. . .
...

Hom(F0,F
⊕ln−1

n−1 ) Hom(F⊕l1
1 ,F⊕ln−1

n−1 ) · · · Mln−1(K))

 ,

M =
(
Hom(F0,F⊕ln

n ) Hom(F⊕l1
1 ,F⊕ln

n ) · · · Hom(F⊕ln−1

n−1 ,F⊕ln
n )

)
.
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By induction, the algebra A has finite global dimension. And Mln(K) has finite

global dimension. So by Proposition 3.2.6, we conclude that End(T ) has finite

global dimension.

There is a partial converse for this lemma. If the tilting bundle T is a direct sum

of line bundles, then its summands give rise to a full strong exceptional collection

[CM1, Lemma 4.5], also see [Cr, Proposition 2.7].

Theorem 3.1.10. [Be] The derived category Db(Pn) is generated by the strong ex-

ceptional collection

{O(−n),O(−n+ 1), · · · ,O(−1),O}.

Sketch of proof. That this is a strong exceptional collection follows from [H2, III

Propositon 6.3, 6.7] and [H2, Theorem 5.1].

To prove this collection is full, we need the Beilinson’s resolution of the diagonal,

i.e. the Koszul resolution of the diagonal M on Pn × Pn:

0→ p∗1Ωn(n)⊗ p∗2O(−n)→ · · · → p∗1Ω1(1)⊗ p∗2O(−1)→ OPn×Pn → OM → 0

where pi : Pn × Pn → Pn, i = 1, 2, are the projections.

Split off this resolution into short exact sequences

0→ p∗1Ωn(n)⊗ p∗2O(−n)→ p∗1Ωn−1(n− 1)⊗ p∗2O(−n+ 1)→Mn−1 → 0

0→Mn−1 → p∗1Ωn−2(n− 2)⊗ p∗2O(−n+ 2)→Mn−2 → 0

...

0→M1 → OPn×Pn → OM → 0.

Each of these short exact sequences can be regarded as a distinguished triangles

in Db(Pn×Pn). For an object F ∈ Db(Pn) [Hu, Ex 2.27], tensor product with Lp∗2F
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and direct image under the first projection p1 yields distinguished triangles on the

second factors (i.e. ΦM(−) = Rp2∗(M ⊗L Lp∗1(−)))

ΦMi+1
(F )→ Φp∗1Ωi(i)⊗p∗2O(−i)(F )→ ΦMi

(F )→ ΦMi+1
(F )[1].

By the projection formula, we have ΦOM(F ) ' F and Φp∗1Ωi(i)⊗p∗2O(−i)(F ) '

RΓ(Pn, F ⊗ Ωi(i)) ⊗K O(−i), a complex generated by O(−i) (actually, it has all

differentials zero and has dimRkΓ(Pn, F ⊗ Ωi(i)) copies of O(−i) in position k).

Therefore, for any object F ∈ Db(Pn), F is generated by the set {O(−n),O(−n+

1), · · · ,O(−1),O}.

Remark 3.1.11. For a more a detailed proof, the reader may refer to §3 in [C] and

§8.3 in [Hu].

Later, in a series of papers [K1], [K2], [K2], [K4], Kapranov gave full strong

exceptional collections for Grassmann, flag and quadric varieties.

Usually, it is hard to find a full strong exceptional collection in a derived cat-

egory. It is occasionally useful to split a derived category into more manageable

building blocks before starting to look for complete exceptional sequences. This is

the motivation for giving the following definitions from [Bon, BK].

Definitions 3.1.12. Let B be a full triangulated subcategory of triangulated cate-

gory D. The right orthogonal to B is the full triangulated subcategory B⊥ consisting

of the objects C such that Hom(B,C) = 0 for all B ∈ B. The left orthogonal ⊥B is

defined analogously.

Let B be a strictly full triangulated subcategory of triangulated category D. We

say that B is right admissible (resp. left admissible) if for each D ∈ D, there is a

distinguished triangle B → D → C, where B ∈ B and C ∈ B⊥ (resp. C ′ → D → B,

where C ′ ∈ ⊥B and B ∈ B). A subcategory is said be admissible if it is left and

right admissible.
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Lemma 3.1.13. Let A, B be two full triangulated subcategories of a triangulated

category D. Suppose A ⊆ B⊥. Let C be the full subcategory whose objects are those

X that fit into triangles B → X → A with B ∈ B, A ∈ A. Then C is closed under

shifts and taking cones. Hence C = 〈A, B〉.

Proof. It is clear that C is closed under shifts. Let f : X → X ′ be a morphism of

objects in C. Then, there exist unique morphisms φ : B → B′ and ϕ : A → A′ up

to isomorphisms such that the following diagram

B
φ //

g

��

B′

��

// Cφ

X
f //

��

X ′

��

// Cf

A
ϕ // A′ // Cϕ

commutes, where Ch denotes the cone of a morphism h; B,B′ ∈ B and A,A′ ∈ A.

Indeed, applying the functor Hom(B,−) to the second column triangle, we have

Hom(B,B′) = Hom(B,X ′). In that case φ is the preimage of f ◦ g under this

isomorphism. And thus there exists a morphism ϕ such that the above diagram

commutes. By the generalized octahedron axiom [BBD, Proposition 1.1.11], the

above diagram can be closed using a distinguished triangle in the last column. This

triangle is the desired triangle.

Proposition 3.1.14. [Bon, Lemma 3.1] Let B be a strictly full triangulated subcat-

egory of a triangulated category D. Then the following are equivalent:

(i) B is right (resp. left) admissible.

(ii) D is generated by B and B⊥ (resp. by ⊥B and B) as a triangulated category.

Proof. It is obvious that (i) implies (ii), and the converse follows from Lemma 3.1.13.
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Corollary 3.1.15. Let A, B be two full triangulated subcategories of a triangulated

category D such that D is generated by A and B. Suppose that A ⊆ B⊥, then B is

right admissible and A = B⊥.

Proof. That B is right admissible follows from Lemma 3.1.13 and Proposition 3.1.14,

since A and B, and hence B and B⊥ generate D. Let B⊥ be an object in B⊥. Then

by Lemma 3.1.13, we have a distinguished triangle B
0−→ B⊥

ϕ−→ A, where B ∈ B

and A ∈ A. Thus we have the following commutative diagram

0 //

��

B⊥ B⊥

ϕ

��
B

0 //

��

B⊥
ϕ // A

φ
��

0 // B⊥ B⊥.

Now consider the morphism from the first triangle to the third triangle, by 2-out-

of-3 property, the morphism φ ◦ ϕ is an isomorphism. Thus ϕ is an isomorphism,

and A = B⊥.

We list some more results in the following. The interested reader may refer the

corresponding paper for details.

Proposition 3.1.16. [BK, Proposition 1.12] Let B be a strictly full triangulated

subcategory of a triangulated category D. Let B1 be a right admissible subcategory of

B, and B2 = (B⊥1 )B. If B1 and B2 are both left (resp. right) admissible in D, then B

is also left (resp. right) admissible in D.

Definition 3.1.17. [BK] Let D be a triangulated category of finite type (i.e., for

any A,B ∈ D, each Exti(A,B) is finite-dimensional and almost all Exti = 0). We

say that D is right (resp. left) saturated if every contravariant (resp. covariant)

cohomology functor D → V ect is representable.
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Proposition 3.1.18. [BK, Proposition 2.6] Let B be right (resp. left) saturated.

Suppose B is imbedded in a triangulated category D as a full triangulated subcategory.

Then B is right (resp. left) admissible.

Theorem 3.1.19. [BK, Theorem 2.14] Let X be a smooth projective variety. Then

Db(X) is right and left saturated.

The concept of an exceptional collection is a very important special case of the

concept of a semiorthogonal set of subcategories:

Definition 3.1.20. A set of admissible subcategories (B0, · · · ,Bn) of a derived

category D is said to be semiorthogonal if the condition Bj ⊂ B⊥i holds when

0 ≤ j < i ≤ n and Bj ⊂ ⊥Bi for j > i. In addition, a semiorthogonal set is said to

be complete if it generates the category D, and in this case, we say (B0, · · · ,Bn) is

a semiorthogonal decomposition of D.

Let E be a vector bundle of rank r over a smooth projective variety X. Then

there exists a projective bundle P(E ) with projection p : P(E ) → X. Using a reso-

lution similar to Beilinson’s resolution, Orlov gave a semiorthogonal decomposition

for projective bundles.

Theorem 3.1.21. [Or, Theorem 2.6] Let D(X)k be the full and faithful subcategory

of Db(P(E )) whose objects are all objects of the form p∗A⊗ OX(k) for an object A

in Db(X). Then the set of admissible subcategories

(Db(X)−r+1, · · · , Db(X)0)

is a semiorthogonal decomposition of the bounded derived category Db(P(E )).

Corollary 3.1.22. [Or] If there exists a complete exceptional set in the derived

category Db(X), then the derived category Db(P(E )) also possesses a complete ex-

ceptional set. More explicitly, if (F0, F1, · · · , Fn) is a full exceptional collection of
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coherent sheaves on X, then

(p∗F0⊗OE (−r+1), p∗F1⊗OE (−r+1), · · · , p∗Fn⊗OE (−r+1), · · · , p∗F0, · · · , p∗Fn)

is a full exceptional collection of coherent sheaves on P(E ).

Proof. See [Or]; Corollary 2.7.

In §3 of the same paper[Or], Orlov gives a semiorthogonal decomposition for the

bounded derived category of Grassmann bundles and flag bundles, which generalizes

Kapranov’s results.

Later, Bernardara extended Theorem 3.1.21 to twisted projective bundles.

Theorem 3.1.23. [Ber] Let f : X → S be a Brauer-Severi scheme of relative

dimension r over a locally Notherian scheme S. Let α be the corresponding class

in H2(S,Gm). Let D(S, α) be the bounded derived category of the abelian category

of α-twisted coherent sheaves on S. Then there exist admissible full subcategories

D(S,X)k of Db(X), such that D(S,X)k is equivalent to the category D(S, α−k) for

all k ∈ Z. Moreover, the set of admissible subcategories

(D(S,X)0, · · · , D(S,X)r)

is a semiorthogonal decomposition for the category Db(X) of bounded derived cate-

gory of X.

Proof. See [Ber]; Theorem 4.1.

In a similar way, Baek generalizes the semiorthogonal decomposition of Grass-

mann bundles to twisted Grassmann bundles in [B], as stated below.

Theorem 3.1.24. [B] Let p : Gr(k,A )→ X be a twisted Grassmann bundle, where

A is a sheaf of Azumaya algebra has rank n2 over X and 1 ≤ k < n. Then there

exists a semi-orthogonal decomposition of Db(Gr(k,A )).
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For toric varieties, by means of minimal model theory, Kawamata in [Ka] gives

a description of their full exceptional collections. We state it below:

Theorem 3.1.25. [Ka] Any smooth projective toric variety has a full exceptional

collection.

Now let us return to the topic of how to find a tilting sheaf. We know in general it

is hard to find a tilting sheaf on a smooth projective variety, not even to mention to

give a full strong exceptional collection. But in some special cases, we may do this,

just as L. Costa and R. M. Miró-Roig did in their paper[CM1], which generalizes

Corollary 3.1.22 in Orlov’s paper [Or], where the collection does not satisfy the

strong condition.

Lemma 3.1.26. [CM1] Let (F0,F1, · · · ,Fn) be a full strong exceptional collection

of locally free sheaves on a smooth projective variety X and let E be a rank r vector

bundle on X. Denote by SaE the a-th symmetric power of E and assume that for

any integer a, 0 ≤ a ≤ r − 1, and any l, m, 0 ≤ l ≤ m ≤ n,

H i(X,SaE ⊗Fm ⊗F∨
l ) = 0, i > 0.

Then,

(p∗F0⊗OE (−r+1), p∗F1⊗OE (−r+1), · · · , p∗Fn⊗OE (−r+1), · · · , p∗F0, · · · , p∗Fn)

is a full strong exceptional collection of locally free sheaves on P(E ).

Sketch of proof. By Corollary 3.1.22, it is sufficient to show that for any k, j, l,m

with 0 ≤ k < j ≤ r − 1 and l ≤ m or 0 ≤ k = j ≤ r − 1 and l < m, we have

Exti(p∗Fl ⊗ OE (k − r + 1), p∗Fm ⊗ OE (j − r + 1)) = 0, i > 0,

or equivalently

H i(P(E ),OE (j − k)⊗ p∗(Fm ⊗F∨
l )) = 0, i > 0.
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By the projection formula [H2, Ex III 8.3], for any locally free sheaf F on X,

we have

Rip∗(OE (a)⊗ p∗F ) ' Rip∗OE (a)⊗F .

On the other hand, by [H2, III Ex 8.4], we have Rip∗OE (a) = 0 for 0 < i < r−1 and

all a ∈ Z, and Rr−1p∗OE (a) = 0 for all a > −r. Therefore, for i ≥ 0 and a > −r,

we have

H i(P(E ),OE (a)⊗ p∗F ) ' H i(X, p∗OE (a)⊗F ).

Substitute the assumption, we obtain what we want.

Proposition 3.1.27. [CM2] Let E be a rank r vector bundle on a smooth projective

variety X. Assume that X has a full strong exceptional collection of locally free

sheaves. Then, P(E ) has a full strong exceptional collection of locally free sheaves.

Proof. Assume that (F0,F1, · · · ,Fn) is a full strong exceptional collection of locally

free sheaves on X, then by Serre’s theorem [H2, III Theorem 5.2], there exists a line

bundle L = OX(k), k >> 0, on X such that for any integer a, 0 ≤ a ≤ r − 1, and

any pair of integers l,m, 0 ≤ l ≤ m ≤ n, we have

H i(X,Sa(E ⊗L )⊗Fm ⊗F∨
l ) = 0, i > 0.

Hence, it follows from Lemma 3.1.26 that

(p∗F0 ⊗ OE⊗L (−r + 1), p∗F1 ⊗ OE⊗L (−r + 1), · · · , p∗Fn ⊗ OE⊗L (−r + 1),

· · · , p∗F0, · · · , p∗Fn)

is a full strong exceptional collection of locally free sheaves on P(E ⊗ L ). Since

P(E ⊗L ) ' P(E ) [H2, Lemma II 7.9], we conclude that P(E ) also has a full strong

exceptional collection of locally free sheaves.

Combine Theorem 3.1.10 and Corollary 2.1.24, we obtain



CHAPTER 3. DERIVED CATEGORIES OF COHERENT SHEAVES 82

Theorem 3.1.28. [CM1] Any smooth, complete toric variety V with a splitting fan

has a tilting bundle whose summands are line bundles.

Definitions 3.1.29. Let D be a triangulated category, a subcategory of D is thick

(épaisse) if it is closed under isomorphisms, shifts, taking cones of morphisms, and

taking direct summands of objects. If S is a set of objects in D, we denote by

〈S〉K the smallest thick full triangulated subcategory of D containing S. We say S

classically generates D if 〈S〉K = D, that is, 〈S〉K is equivalent to D

Let S be a set of objects in a triangulated category D, by the right orthogonal

S⊥ in D we denote the full subcategory of D whose objects A have the property that

HomD(E,A[i]) = 0 for all E ∈ S and i ∈ Z. We may define the left orthogonal ⊥S

analogously. We say S is a right spanning class of D (or right spans D) if S⊥ = 0.

The left spanning class of D is defined analogously. And we say S is a spanning

class of D if it is both right and left spanning class of D.

The following proposition gives one of the most common spanning class in Db(X).

Proposition 3.1.30. [Hu] Let X be a smooth projective variety, then the set {Ox :

x ∈ X closed point} is a spanning class of the bounded derived category Db(X).

Proof. See [Hu]; Proposition 3.17.

Definition 3.1.31. Let D be a triangulated category, we say an object C ∈ D

is compact if the functor HomD(C,−) commutes with direct sums. We denote by

Dc the full subcategory of D consisting of the compact objects. This is a thick

subcategory. If Dc right spans D, we say D is compactly spanned.

Remark 3.1.32. In papers such as [BV, BSS, Bl], they say S generates D if S⊥ = 0.

To avoid confusions with Definition 3.1.5, we say S right spans D if S⊥ = 0. For

the same reason, we say D is compactly spanned instead of compactly generated if

Dc right spans D.
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Clearly, if D is compactly spanned and E ⊆ Dc, if 〈E〉K = Dc, then E right spans

D. The following theorem tells us that the converse is also true.

Theorem 3.1.33. [N1, Ravenel and Neeman] Let D be a compactly spanned tri-

angulated category. Then a set of objects E ⊂ Dc right spans D if and only if

〈E〉K = Dc.

Proof. See [BV]; Theorem 2.1.2.

Denote by D(Qcoh(X)) the derived category of quasi-coherent sheaves over X.

Proposition 3.1.34. [N2] Let X be a quasi-compact, separated scheme. Then the

category D(Qcoh(X)) is compactly spanned.

Proof. See [N2]; proposition 2.5.

An object of D(Qcoh(X)) is perfect if it is locally quasi-isomorphic to a bounded

complex of free sheaves of finite rank. We denote by X-perf the full subcategory of

D(Qcoh(X)) of perfect complexes. This is a thick subcategory of Db(X). If X is

quasi-projective, then a complex is perfect if and only if it is quasi-isomorphic to a

bounded complex of vector bundles. The variety X is regular if and only if Db(X) =

X-perf. [R, §3.2.3]

Lemma 3.1.35. [R] Let C ∈ D(Qcoh(X)). Then C is perfect if and only if it is

compact.

Proof. See [R]; Lemma 3.5.

Let X be a smooth projective variety, by the above argument and Lemma 3.1.35,

we have D(Qcoh(X))c = X-perf = Db(X).

Corollary 3.1.36. Let X be a smooth projective variety. Then D+(Qcoh(X)) is

compactly spanned and (D+(Qcoh(X)))c = Db(X).
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Proof. Since D(Qcoh(X))c = Db(X) ⊆ D+(Qcoh(X)) and D(Qcoh(X)) is com-

pactly spanned (Proposition 3.1.34), we have D+(Qcoh(X)) is compactly spanned.

Now let S ⊂ Db(X) such that S right spans D+(Qcoh(X)). By Theorem 3.1.33,

we have 〈S〉K = (D+(Qcoh(X)))c ⊇ D(Qcoh(X))c = Db(X). But 〈S〉K ⊆ Db(X)

as S ⊂ Db(X), so we have 〈S〉K = (D+(Qcoh(X)))c = Db(X).

Thus, by Theorem 3.1.33, we have

Corollary 3.1.37. Let X be a smooth projective variety and S ⊂ Db(X). Then

〈S〉K = Db(X) if and only if S right spans D+(Qcoh(X)).

Recently, Blunk generalized Beilinson and Kapranov’s results to the twisted case.

Theorem 3.1.38. [Bl] Let X := SB(A) be the Severi-Brauer variety of the algebra

A of rank n2 over field K. Let I be the ’tautological’ sheaf on X and T :=

OX ⊕I 1 ⊕I 2 ⊕ · · · ⊕I n−1. Then T is a tilting sheaf on X.

Sketch of proof. Notice that for some Galois extension L/K, we have canonical mor-

phism p : XL ' Pn−1
L → X and p∗I ' ⊕nOPn−1(−1). Then the results follows from

Proposition 4.1.8, Theorem 3.1.10 and Lemma 3.1.9.

In the same paper, using a similar method, Blunk also constructs a tilting sheaf

for twisted Grassmanns and flag varieties.
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3.2 Global Dimension

Definitions 3.2.1. [W] Let R be a ring and A be a left R-module. The projec-

tive dimension pdR(A) is the minimum integer n (if it exists) such that there is a

resolution of A by left projective R-modules

0→ Pn → · · · → P1 → P0 → A→ 0.

The global (homological) dimension of R, gldim(R), is the supremum of pdR(A) over

all left R-modules A.

Remark 3.2.2. The above definition of global dimension is actually left global

dimension. We can also define the right global dimension similarly. But they are

same when R is left and right Noetherian [W], and in our case this is always true.

We give a useful lemma below:

Lemma 3.2.3. [W, Lemma 4.16] Let A be a left R-module, then pdR(A) ≤ d if and

only if Extd+1
R (A,B) = 0 for any left R-module B.

Proof. ⇒) Since Ext∗(A,B) can be computed using a projective resolution of A, it

is clear that Extd+1
R (A,B) = 0 for any left R-module B.

⇐) Suppose we have an exact sequence 0 → M → Pd−1 → · · · → P1 → P0 →

A → 0 with the P ’s projective, then we have Extd+1(A,B) ' Ext1(M,B) by

dimension shifting, thus Ext1(M,B) = 0 for all B and M is projective. Thus we

have pdR(A) ≤ d.

Lemma 3.2.4. Let 0→ A→ B → C → 0 be a short exact sequence of R-modules.

If any two of pdR(A), pdR(B), pdR(C) are finite, then the third one is finite. More

specifically, pdR(A) ≤ max{pdR(B), pdR(C)−1}, pdR(B) ≤ max{pdR(A), pdR(C)}

and pdR(C) ≤ max{pdR(A) + 1, pdR(B)}.
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Sketch of proof. We can get this easily from Lemma 3.2.3 and the induced long exact

sequence of the functor Ext∗(−,M) of the above short exact sequence for any left

R-module M .

In the following, all the rings we consider will have unit 1 6= 0 and all the

modules will be unital modules. Let T and U be two rings and M be a nonzero U -T -

bimodule, that is, M is a left U -module and right T -module such that (um)t = u(mt)

for all u ∈ U, t ∈ T and m ∈ M . Consider the formal triangular matrix ring

Λ =

T 0

M U

. Let Ω be the category whose objects are the triples (A,B, f) with

A a left T -module, B a left U -module and f : M ⊗T A → B a U -morphism. The

morphisms between two objects (A,B, f) and (A′, B′, f ′) are pairs of morphisms

(α, β) where α : A → A′ is a T -morphism and β : B → B′ is a U -morphism, such

that the diagram

M ⊗T A
M⊗α //

f
��

M ⊗T A′

f ′

��
B

β // B′

commutes. It is well-known [FGR, G] that the category Ω is equivalent to the

category of left Λ-modules. The Λ-module corresponding to the object (A,B, f) ∈ Ω

is the additive group (A⊕B)f with the left Λ-action given by t 0

m u

 (a, b) = (ta, f(m⊗ a) + ub).

If (α, β) : (A,B, f)→ (A′, B′, f ′) is a map in Ω the associated map φ : (A⊕B)f →

(A′ ⊕ B′)f ′ is given by φ(a, b) = (α(a), β(b)) for any a ∈ A, b ∈ B. It is clear φ is

injective (resp. surjective) if and only α, β are injective (resp. surjective).

Now we can give a characterization of projective modules over Λ.

Theorem 3.2.5. [HV, Theorem 3.1] (A ⊕ B)f is projective if and only if A is a
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projective T -module, f : M ⊗T A → B is monic and B = f(M ⊗T A) ⊕ P with P

projective U-module.

Proposition 3.2.6. Let Λ =

A 0

M B

 be a formal triangular matrix ring. If

gldim(T ) = m and gldim(U) = n, then

gldim

T 0

M U

 ≤ m+ n+ 1

.

Proof. It is suffices to show that for any object (A, B, f) ∈ Ω, we have pdΛ((A ⊕

B)f ) ≤ m+ n+ 1.

First consider the short exact sequence

0→ (0, ker(f), 0) ↪→ (A,M ⊗T A, 1M⊗TA)
(1A,f)−→ (A, Im(f), f)→ 0.

By Theorem 3.2.5, we have pdΛ((0 ⊕ ker(f))0) = pdU(ker(f)) ≤ n and pdΛ((A ⊕

M ⊗T A)1M⊗TA
) ≤ pdT (A) + gldim(U) + 1 ≤ m + n + 1, thus by Lemma 3.2.4, we

have pdΛ((A⊕ Im(f))f ) ≤ m+ n+ 1.

Now consider the short exact sequence

0→ (A, Im(f), f) ↪→ (A,B, f)→ (0, B/Im(f), 0)→ 0.

Again, we have pdΛ((0⊕B/Im(f))0) = pdU(B/Im(f)) ≤ n. Thus by Lemma 3.2.4,

we have pdΛ((A⊕B)f ) ≤ m+ n+ 1.



Chapter 4

Main results

4.1 Main Results

Throughout this chapter K will be a field and R will be a (not necessarily

commutative) K-algebra with a unit. We remind the reader what this means. To

be a K-algebra means that R is a K-vector space and a ring such that the vector

space structure and multiplication on R are compatible in the following sense

x(ab) = (xa)b = a(xb) for all x ∈ K a, b ∈ R.

Notice that this implies that K is contained in the center of R. For any field

extension L/K we write RL for the L-algebra L⊗K R, once again L will be in the

center of RL. This fact will be used repeatedly below. Finally for a left A-module,

we write AL for the RL module L⊗K A.

Lemma 4.1.1. Let A,B be left R-modules. If L/K is a field extension, then there

is an isomorphism of L-vector spaces

Φ : HomR(A,BL) −→ HomRL(AL, BL).

88



CHAPTER 4. MAIN RESULTS 89

Proof. Observe that if f ∈ HomR(A,BL) then the map

L× A −→ BL

(x, a) 7−→ xf(a)

is K-bilinear so there is an associated map Φ(f) : AL → BL which sends r ⊗ a to

rf(a) for r ∈ RL and a ∈ A. It is easy to see that Φ(f)(x(r1 ⊗ a1) + r2 ⊗ a2) =

xr1f(a1) + r2f(a2) = xΦ(f)(r1 ⊗ a1) + Φ(f)(r2 ⊗ a2) for all x, r1, r2 ∈ RL and

a1, a2 ∈ A. Thus Φ(f) is a homomorphism of left RL-modules, and Φ is well-defined.

As L is central in RL, HomR(A,BL) is naturally regarded as a L-vector space in

the following way: for l ∈ L and f ∈ HomR(A,BL), l ·f is the homomorphism of left

R-modules which sends a ∈ A to lf(a). It is easy to see that Φ is a homomorphism

of L-vector spaces.

Observe that Φ is injective as A ↪→ AL and Φ(f)|1⊗A = f . Given g : AL → BL

then g|1⊗A is a homomorphism of left R-modules and Φ(g|1⊗A) = g. Hence Φ is an

isomorphism of L-vector spaces.

Lemma 4.1.2. Suppose that L/K is a field extension. If A and B are left R-

modules, then there is a canonical homomorphism of L-vector spaces

Λ : L⊗K HomR(A,B) −→ HomR(A,BL).

Moreover, if L/K is a finite extension then the above map is in fact an isomorphism.

Proof. Consider the pairing

L×HomR(A,B) −→ HomR(A,BL)

sending (x, f) to the map a 7→ xf(a). This map is K-bilinear and hence the map Λ

exists. As in the proof of previous lemma, we can check that Λ is well-defined and

it is a homomorphism of L-vector spaces.
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When L/K is a finite extension of degree d, with basis e1, e2, . . . , ed we have

BL
∼= ⊕d1ei ⊗ B. As the Hom functor commutes with finite direct sums, every

homomorphism g : A→ BL decomposes uniquely as g = (e1 ·g1, · · · , ed ·gd) for some

homomorphisms gi : A → B, 1 ≤ i ≤ d. It follows that Λ(
∑d

i=1 ei ⊗ gi) = g and

thus Λ is surjective. On the other hand, every f ∈ L⊗K HomR(A,B) decomposes

uniquely as
∑d

i=1 ei ⊗ gi we see that Λ is also injective. Hence Λ is an isomorphism

of L-vector spaces.

Corollary 4.1.3. Let R be a K-algebra and A,B be left R-modules. Then for any

finite field extension L/K, we have a canonical isomorphism of L-vector spaces

HomRL(AL, BL)→ L⊗K HomR(A,B).

Proof. Combine the isomorphisms in Lemma 4.1.1 and Lemma 4.1.2.

Consider the two contravariant families of δ-functors on R-modules

ExtiRL((−)L, BL) and L⊗K ExtiR(−, B).

The above argument shows that they agree for i = 0. Further, they are both

coeffaceable as they vanish on free modules for i > 0. Hence

Proposition 4.1.4. Let R be a K-algebra and A, B be two left R-modules, then for

any finite field extension L/K, we have natural isomorphisms

ExtiRL(AL, BL) ∼= L⊗K ExtiR(A,B).

Proof. See [H2]; Theorem III 1.3A.

Lemma 4.1.5. Let R be a K-algebra and L/K be a finite field extension. If RL has

finite global dimension, then R has finite global dimension.
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Proof. Assume that gldim(RL) ≤ d, then by Lemma 3.2.3, we have Extd+1
RL

(M,N) =

0 for any left RL-modules M and N . Let A, B be left R-modules, by Proposition

4.1.4, we have an isomorphism

ExtiRL(AL, BL) ' L⊗K ExtiR(A,B)

for any i ≥ 0. But by assumption, Extd+1
RL

(AL, BL) = 0, hence Extd+1
R (A,B) = 0,

and by Lemma 3.2.3 again, we have gldim(R) ≤ d.

Lemma 4.1.6. Let XK be a smooth projective variety and T be a locally free co-

herent sheaf on XK. If L/K is a separable field extension and v : XL → XK is the

canonical morphism, then T has no higher self-extensions if and only if v∗T has

no higher self-extensions.

Proof. Consider the following cartesian square:

XL
v //

q

��

XK

p

��
Spec(L) u // Spec(K)

By flat base change, the natural map

u∗Rip∗F → Riq∗v
∗F

is an isomorphism of functors of quasi-coherent sheaves F on XK [H2, Proposition

III 9.3].

Thus we have

u∗Rip∗(T
∨ ⊗T ) = Riq∗(v

∗T ∨ ⊗ v∗T ).

Since

ExtiXK (T ,T ) = H i(XK ,T
∨ ⊗T ) = Rip∗(T

∨ ⊗T )
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and

ExtiXL(v∗T , v∗T ) = H i(XL, v
∗T ∨ ⊗ v∗T ) = Riq∗(v

∗T ∨ ⊗ v∗T ),

we have

ExtiXL(v∗T , v∗T ) = 0 if and only if u∗ExtiXK (T ,T ) = 0.

As u is faithfully flat, we get

u∗ExtiXK (T ,T ) = 0 if and only if ExtiXK (T ,T ) = 0.

Thus T has no higher self-extensions if and only if v∗T has no higher self-

extensions.

Lemma 4.1.7. Let XK be a smooth projective variety and L/K be a finite Galois

extension. Let v : XL → XK be the canonical morphism. Let T be a locally free

coherent sheaf on XK. Then 〈v∗T 〉K = Db(XL) if and only if 〈T 〉K = Db(XK).

Proof. Assume 〈v∗T 〉K = Db(XL). By Corollary 3.1.37, we have that {v∗T } right

spans D+(Qcoh(XL)), that is, for any M ∈ D+(Qcoh(XL)), Hom(v∗T ,M[i]) =

0, i ∈ Z, implies M = 0. For the same reason, to show that 〈T 〉K = Db(XK), it is

equivalent to showing that {T } is a right spanning class of D+(Qcoh(XK)), i.e. for

any M∈ D+(Qcoh(XK)) such that Hom(T ,M[i]) = 0, i ∈ Z, we have M = 0.

Since we have Hom(T ,M[i]) = Exti(T ,M) = H i(RHom(T ,M)) for all i ∈

Z [Hu, Remark 2.57], the condition Hom(T ,M[i]) = 0, i ∈ Z is equivalent to

RHom(T ,M) = 0. Notice that T (resp. v∗T ) is locally free, HomXK (T ,−)

and T ∨ ⊗XK − (resp. HomXL(v∗T ,−) and v∗T ∨ ⊗XL −) are exact functors on

Qcoh(XK) (resp. Qcoh(XL)). Thus, for example, RHom(T ,M) can be computed

on D+(Qcoh(XK)) by applying HomXK (T ,−) to each individual term in M.
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Now consider the following cartesian square:

XL
v //

q

��

XK

p

��
Spec(L) u // Spec(K)

By flat base change (see page 68, iii)), the natural map

u∗Rp∗ → Rq∗v
∗

is an isomorphism of functors [Hu, (3.18)].

Let RHomXK (T ,M) = 0, we have

0 = u∗RHom(T ,M)

= u∗Rp∗RHom(T ,M) (see page 68, ii))

= Rq∗v
∗RHom(T ,M)

= Rq∗v
∗(T ∨ ⊗LM)

= Rq∗(v
∗T ∨ ⊗L Lv∗M)

= Rq∗RHom(v∗T , Lv∗M)

= RHom(v∗T , Lv∗M).

Thus we have v∗M = 0. As v is faithfully flat, we get M = 0.

Conversely, assume 〈T 〉K = Db(XK). To complete the proof, it suffices to show

any coherent sheaf on XL is a summand of some coherent sheaf on XL contained in

〈v∗T 〉K . Let F be a coherent sheaf on XL and G be the Galois group of the finite

Galois extension L/K. For g ∈ G, let

ρg : XL = XK ⊗SpecK SpecL→ XL

be the morphism of schemes induced by ρg : SpecL→ SpecL, i.e. by g−1 : L→ L.

Denote

F ′ = ⊕g∈Gρ∗gF .
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For each g ∈ G there are canonical identifications

ιg : ρ∗gF
′ = ⊕g′∈Gρ∗gρ∗g′F = ⊕g′∈Gρ∗g′gF

id−→ ⊕g′∈Gρ∗g′F = F ′

and it is easy to see that they satisfy the relations ιg ◦ρ∗g(ιg′) = ιg′g for any g, g′ ∈ G.

By Galois descent theory, there is a coherent sheaf E on XK such that F ′ ∼= v∗E . So

we have F ′ ∈ v∗〈T 〉K ⊆ 〈v∗T 〉K , further F is a summand of F ′, F ∈ 〈v∗T 〉K .

So we have 〈v∗T 〉K = Db(XL).

Combining Lemmas 4.1.5, 4.1.6 and 4.1.7, we can show

Proposition 4.1.8. Let XK be a smooth projective variety and T a locally free

coherent sheaf on XK. Let L/K be a finite Galois extension and v : XL → XK the

canonical morphism. If v∗T is a tilting sheaf on XL, then T is a tilting sheaf on

XK.

Proof. We need only to show that

EndOXL
(v∗T ) ∼= EndOXK

(T )⊗K L.

Notice that EndOXL
(v∗T ) ∼= Γ(H omOXL

(v∗T , v∗T )) and EndOXK
(T )⊗K L ∼=

Γ(v∗H omOXK
(T ,T )), thus it suffices to show that

H omOXL
(v∗T , v∗T ) ∼= v∗H omOXK

(T ,T ).

By [H2, Ex II 5.1], we have

H omOXL
(v∗T , v∗T ) ∼= v∗T ∨ ⊗OXL

v∗T

and

v∗H omOXK
(T ,T ) ∼= v∗(T ∨ ⊗OXK

T ) ∼= v∗T ∨ ⊗OXL
v∗T .

This completes the proof.
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In general, the converse may be not true.

Definition 4.1.9. Recall that R was a K-algebra with a unit. Suppose R has finite

global dimension, say R is stable of finite global dimension if RL has finite global

dimension for every finite separable extension L/K.

As it is well known that every finite separable extension can be embedded into

a finite Galois extension. Then by Lemma 4.1.5, we can get

Lemma 4.1.10. Suppose R has finite global dimension over K, then R is stable of

finite global dimension if and only if RL has finite global dimension for any finite

Galois extension L/K.

The above lemma, together with Lemma 4.1.6 and 4.1.7, induce

Corollary 4.1.11. Let XK be a smooth projective variety and T be a tilting bundle

on XK whose endomorphism algebra, End(T ), is stable of finite global dimension.

Then for any finite Galois extension L/K, v∗T is a tilting sheaf on XL, where

v : XL → XK is the canonical morphism.

Theorem 4.1.12. Let X be a Brauer-Severi variety over field K, then there exists

a tilting bundle on X.

Proof. Let L/K be a finite Galois extension such that X ⊗K L ' PnL and let π :

PnL → X be the canonical morphism. By Proposition 4.1.8, it suffices to prove there

exists a tilting bundle on PnL which descends to a bundle on X.

Let G = Gal(L/K). For g ∈ G, let ρg : PnL → PnL be the morphism of schemes

induced by ρg : SpecL→ SpecL, i.e. by g−1 : L→ L.

Denote

I = ⊕g∈Gρ∗gOPnL(−1).
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For each g ∈ G there are canonical identifications

ιg : ρ∗gI = ⊕g′∈Gρ∗gρ∗g′OPnL(−1) = ⊕g′∈Gρ∗g′gOPnL(−1)
id−→ ⊕g′∈Gρ∗g′OPnL(−1) = I

and it is easy to see that there is the relation ιg ◦ ρ∗g(ιg′) = ιg′g. By Galois descent

for locally free sheaves, I descends to a locally free sheaf on X.

Let

T = ⊕ni=0I
⊗i,

then T descends to a locally free sheaf on X. We claim T is a tilting bundle on

PnL.

Indeed, since for each g ∈ G, ρg is an isomorphism of PnL over K, it maps

hyperplane sections to hyperplane sections. Thus G acts on Pic(PnL) trivially and

we have I ' ⊕g∈GOPnL(−1). Hence we have

T = ⊕ni=0I
⊗i ∼= OPnL ⊕

n
i=1 OPnL(−i)⊕|G|i .

Beilinson’s Theorem 3.1.10 states that the collection

{OPnL(−n),OPnL(−n+ 1), · · · ,OPnL(−1),OPnL}

is a full strong exceptional collection, thus by Lemma 3.1.9, T is a tilting bundle

on PnL.

Remark 4.1.13. The bundle I constructed above actually descends to the push-

forward of OPnL(−1), that is, π∗OPnL(−1). Thus the pushforward of tilting bundle

⊕ni=0OPnL(−i) on PnL is a tilting bundle on XK .

Remark 4.1.14. (1) The endomorphism algebra of the tilting bundle on a Brauer-

Severi variety constructed above is stable of finite global dimension, as any finite

separable extension of K can be embedded into a finite Galois extension that con-

tains the field L in the above proof.
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(2) In [Bl], Blunk constructs a tilting bundle on Brauer-Severi variety (Theo-

rem 3.1.38), which is different from the one we construct above, as the rank of I

in Blunk’s construction depends on the dimension of the variety, while ours also

depends on the order of the Galois group. His method is to use the ’tautological’

sheaf, but this method may not generalize to Brauer-Severi schemes, as Example

4.1.21 shows. However, it may give a semi-orthogonal decomposition for twisted

Grassmann bundles, similar to the semi-orthogonal decompositions given in [Ber]

and [B].

Before discussing the relative case, we prove a lemma first. This lemma and the

idea its proof are provided by Professor Patrick Brosnan.

Lemma 4.1.15. Suppose X is a rational smooth projective variety over a field K.

Then the Picard group of X, Pic(X) is torsion free.

Proof. Let n be a positive integer. Set

C(X) :=

{
α ∈ K(X)×

K(X)×K×
: div α ≡ 0 (mod n)

}
.

Define a group homorphism

π : C(X) −→ Pic(X)[n]

α 7−→ O(
div α

n
).

It is easy to see that π is well-defined. We claim that π is isomorphism. Indeed,

if L is an n-torsion line bundle in Pic(X) and D is a Cartier divisor associated

to it, then nD is rationally equivalent to 0. So there is an α ∈ K(X)× such that

div α = nD. Hence π(α) = D and π is surjective. On the other hand, notice that

π(α) = 0 if and only if div α = div βn for some β ∈ K(X)×. This implies that

div (α/βn) = 0. Since X is projective, we have α/βn ∈ K×, which implies that α is

0 in C(X), and π is injective.
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Let (f, U) : X 99K Pm be a birational map, where U is a non-empty Zariski

open subset of X with complement of codimension at least 2, then there is a group

homomorphism f̄ : C(Pm) → C(X) sending α to α ◦ f . Since Pm = Z, to show

Pic(X) is torsion free, it is sufficient to show that f̄ is an isomorphism.

Since X and Pm are birational, we have K(X) = K(Pm). Note that, if V is a

non-empty Zariski open subset of X with complement of codimension at least 2, then

C(X)→ C(V ) induced by inclusion V ↪→ X is clearly equal. It we write C(K(X))

for K(X)×/(K(X)×nK×), then C(K(X)) is just the union of C(W ) taken over all

non-empty Zariski opens in X. Thus, C(X) and C(Pm) both inject into C(K(X)),

and to show f̄ is an isomorphism, it suffices to show that they have the same images

there. Suppose α ∈ C(Pm). Then, via the morphism f : U → Pm, we see that it

is also in C(U) which equals to C(X). So C(Pm) is contained in C(X). Similarly,

C(X) is contained in C(Pm).

In certain situations tilting bundles can be obtained via descent theory. Let

XK be a smooth projective variety that becomes a rational variety after some finite

separable extension. Considering p : YK → XK , a Brauer-Severi scheme of relative

dimension r, corresponding to a Azumaya algebra A (see Theorem 1.2.31). By

theorems 1.2.28 and Corollary 1.2.17, there exists a finite Galois extension L/K

such that we have the following cartesian square:

P(E ) v //

q

��

YK

p

��
XL

u // XK

where E is a vector bundle onXL such that u∗A ∼= E nd(E ). DenoteG = Gal(L/K).

For g ∈ G, let ρg : XL → XL and ρg : P(E ) → P(E ) be the morphisms of schemes

induced by ρg : SpecL→ SpecL, i.e. by g−1 : L→ L.
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Theorem 4.1.16. Let p : YK → XK be a morphism as above, and suppose the

Galois group G acts on Pic(XL) trivially. If there exists a tilting bundle on XK

whose endomorphism algebra is stable of finite global dimension, then there exists a

tilting bundle on YK.

Proof. To show there is a tilting bundle on YK , it suffices to prove that there exists

a tilting bundle on P(E ) which descends to a bundle on YK by Proposition 4.1.8.

Let

Ii = ⊕g∈Gρ∗g(OE (i)⊗ q∗L ⊗i), i 6= 0,

where L is some line bundle on XL specified below. For each g ∈ G there are

canonical identifications

ιg : ρ∗gIi = ⊕g′∈Gρ∗gρ∗g′(OE (i)⊗ q∗L ⊗i) = ⊕g′∈Gρ∗g′g(OE (i)⊗ q∗L ⊗i)

id−→ ⊕g′∈Gρ∗g′(OE (i)⊗ q∗L ⊗i) = Ii

and it is easy to see that the relation ιg ◦ ρ∗g(ιg′) = ιg′g. By Galois descent for locally

free sheaves, Ii descends to a locally free sheaf on YK .

Let T be the tilting bundle on XK whose endomorphism algebra is stable of

finite global dimension. Write I0 = OE , let

S = ⊕ri=0q
∗u∗T ⊗Ii,

then S descends to a locally free sheaf on YK . We claim S is a tilting bundle on

P(E ) for some line bundle L on XL.

We have Pic(P(E )) = q∗Pic(XL)×Zξ, ξ = OE (1) [H2, Ex II 7.9]. We will show

G acts on Pic(P(E )) trivially. Since G acts on Pic(XL) trivially, it suffices to show

ρ∗gOE (1) ' OE (1) for each g ∈ G. Suppose ρ∗gOE (1) ' OE (k) ⊗ q∗L ′ for some line

bundle L ′ on XL. Since on the fiber, ρg is an isomorphism of Pr, we have k = 1.

Let the order of g is l, the we have OE (1) = ρ∗
gl
OE (1) ' OE (1) ⊗ q∗L ′⊗l. But by
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Lemma 4.1.15, Pic(XL) is torsion free, so we must have L ′ ' OXL . Thus we have

ρ∗gOE (1) ' OE (1), and Ii ' ⊕g∈GOE (i)⊗ q∗L ⊗i for i 6= 0.

To complete the proof, we will show that S satisfies the conditions in Definition

3.1.7.

For no higher self-extension:

We need to show that

ExtkP(E )(S ,S ) = 0, for all k > 0.

Notice that

S = ⊕ri=0q
∗u∗T ⊗Ii

' ⊕ri=0 ⊕g∈G q∗u∗T ⊗ OE (i)⊗ q∗L i,

We have

ExtkP(E )(S ,S )

= ⊕0≤i,j≤r ⊕g∈G ExtkP(E )(q
∗u∗T ⊗ OE (j)⊗ q∗L ⊗j, q∗u∗T ⊗ OE (i)⊗ q∗L ⊗i)

' ⊕0≤i,j≤r ⊕g∈G ExtkP(E )(OP(E ), q
∗(u∗T ⊗ u∗T ∨)⊗ OE (i− j)⊗ q∗L ⊗(i−j))

' ⊕0≤i,j≤r ⊕g∈G Hk(P(E ), q∗(u∗T ⊗ u∗T ∨)⊗ OE (i− j)⊗ q∗L ⊗(i−j))

' ⊕0≤i,j≤r ⊕g∈G Hk(XL, u
∗T ⊗ u∗T ∨ ⊗L ⊗(i−j) ⊗ q∗OE (i− j)).

Thus, to show ExtkP(E )(S ,S ) = 0, k > 0, is equivalent to show that

Hk(XL, u
∗T ⊗ u∗T ∨ ⊗L ⊗(i−j) ⊗ q∗OE (i− j)) = 0

for k > 0 and 0 ≤ i, j ≤ r.

Since q∗OE (l) ' Sl(E ) for l ≥ 0 and q∗OE (l) = 0 for l < 0 [H2, Ex III 8.4], it is

sufficient to show that

Hk(XL, u
∗T ⊗ u∗T ∨ ⊗L l ⊗ Sl(E ) = 0
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for 0 ≤ l ≤ r.

For the case l = 0, this is true because u∗T is a tilting bundle on XL by Corollary

4.1.11. For the case 0 < l ≤ r, we can choose an ample line bundle L such that the

above equations are satisfied [H2, Proposition III 5.3].

For finite global dimension:

Denote

Si = q∗u∗T ⊗Ii, 0 ≤ i ≤ r,

Write A = End(u∗T ), then A has finite global dimension since u∗T is a tilting

sheaf on XL by Corollary 4.1.11.

For 0 ≤ i < j ≤ r, we have

HomOP(E )
(Sj,Si)

= ⊕HomOP(E )
(q∗(u∗T ⊗L ⊗j)⊗OE (j), q∗(u∗T ⊗L ⊗i)⊗OE (i))

= ⊕Γ(P(E ), q∗(u∗T ⊗ u∗T ∨ ⊗L ⊗(i−j))⊗OE (i− j))

= ⊕Γ(XL, u
∗T ⊗ u∗T ∨ ⊗L ⊗(i−j) ⊗ q∗OE (i− j))

= 0.

Similarly,

HomOP(E )
(Si,Si) ∼= M|G|(A) for all 1 ≤ i ≤ r.

Thus, we have

EndOP(E )
(S ) =


A 0 · · · 0

HomOP(E )
(S0,S1) M|G|(A) · · · 0

...
...

. . .
...

HomOP(E )
(S0,Sr) HomOP(E )

(S1,Sr) · · · M|G|(A)

 .

We show that EndOP(E )
(S ) has finite global dimension by induction in r.
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When r = 0, this is true as EndOP(E )
(S ) = A.

If we write

EndOP(E )
(S ) =

R 0

M M|G|(A),


where

R =


A 0 · · · 0

HomOP(E )
(S0,S1) M|G|(A) · · · 0

...
...

. . .
...

HomOP(E )
(S0,Sr−1) HomOP(E )

(S1,Sr−1) · · · M|G|(A)


M =

(
HomOP(E )

(S0,Sr) HomOP(E )
(S1,Sr) · · · HomOP(E )

(Sr−1,Sr)
)

By induction, the algebra R has finite global dimension. By Morita theory, the

category of M|G|(A)-modules is equivalent to the category of A-modules. As A has

finite global dimension, so does M|G|(A). Thus we conclude that EndOP(E )
(S ) has

finite global dimension by Proposition 3.2.6.

Finally, to prove completeness, we need to show that 〈S 〉K = Db(P(E )). We

know that S = ⊕ri=0q
∗u∗T ⊗Ii, I0 = OE and Ii ' ⊕g∈GOE (i)⊗ q∗L ⊗i for i 6= 0,

we have 〈S 〉K ⊇ D := 〈q∗Db(XL)⊗OE (−r), · · · , q∗Db(XL)⊗OE (−1), q∗Db(XL)〉.

Thus it suffices to show that D = Db(P(E )).

First we claim that D is admissible in Db(P(E )). Indeed, since all q∗Db(XL) ⊗

OE (−i) are equivalent to q∗Db(XL) and are full faithful subcategory of Db(P(E )),

and XL is a smooth projective variety, by Theorem 3.1.19 and Proposition 3.1.18,

q∗Db(XL)⊗OE (−i) is admissible inDb(P(E )) for all 0 ≤ i ≤ r. And the set of the ad-

missible subcategories (q∗Db(XL)⊗OE (−r), · · · , q∗Db(XL)⊗OE (−1), q∗Db(XL)) is

semiorthogonal by Theorem 3.1.21. Let D(−1) = 〈q∗Db(XL)⊗OE (−1), q∗Db(XL)〉.

Then by Corollary 3.1.15, we have q∗Db(XL)⊗OE (−1) = (q∗Db(XL)⊥)D(−1). Thus

by Proposition 3.1.16, we obtain that 〈q∗Db(XL)⊗OE (−1), q∗Db(XL)〉 is admissi-
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ble in Db(P(E )). Iteratively, we can show that 〈q∗Db(XL) ⊗ OE (−2), q∗Db(XL) ⊗

OE (−1), q∗Db(XL)〉, · · · , D are all admissible in Db(P(E )).

Thus, by Proposition 3.1.14, that to show that D = Db(P(E )) is equivalent

to show that the right (or left) orthogonal of D in Db(P(E )) is zero. Hence it is

sufficient to show that D contains all the objects Ox, x ∈ P(E ) a closed point, as the

set {Ox : x ∈ P(E ) closed point} is a spanning class for Db(P(E )) by Proposition

3.1.30. Every closed point x ∈ P(E ) lies in the fibre Fs = v−1(s) ' Pr for some

closed point s ∈ XL. Since OE (i)|Fs ' OPr(i), by Theorem 3.1.10, we have Db(Fs) =

〈OE (i)|Fs : −r ≤ i ≤ 0〉. And hence Ox ∈ 〈OE (i)|Fs : −r ≤ i ≤ 0〉. Notice that

OE (i)|Fs ' OE (i)⊗ OFs and OFs = q∗Os ∈ q∗Db(XL), so we have Ox ∈ D.

This completes the proof.

Remark 4.1.17. In [Or, Theorem 2.6], using the Koszul resolution of the diagonal,

Orlov showed that the semiorthogonal set (q∗Db(XL) ⊗ OE (−r), · · · , q∗Db(XL) ⊗

OE (−1), q∗Db(XL)) is complete in Db(P(E )). Here we give a different proof.

A special case of the above theorem is that the base scheme is a Brauer-Severi

variety, on which, as we already showed (Theorem 4.1.12 and Remark 4.1.14), there

is a tilting bundle whose endomorphism algebra is stable of finite global dimension.

Corollary 4.1.18. Let p : YK → XK be a Brauer-Severi scheme of relative di-

mension r on a Brauer-Severi variety XK, corresponding to a Azumaya algebra A .

Then there exists a tilting bundle on YK.

Proof. There exists a finite Galois extension L/K such that the following is a carte-

sian square:

P(E ) v //

q

��

YK

p

��
PnL

u // XK
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where E is a vector bundle on PnL such that u∗A ∼= E nd(E ).

Denote G = Gal(L/K). Let

I = ⊕g∈Gρ∗g(OE (−1)⊗ q∗L ),

where L is some line bundle on PnL. Since the Galois group G acts on Pic(PnL) = Z

trivially, it acts on Pic(P(E )) = q∗Pic(PnL)×Zξ, ξ = OE (1), trivially, too. Thus we

have I ' ⊕g∈GOE (−1)⊗ q∗L .

Let

S = v∗p∗T ⊗ (⊕ri=0I
⊗i),

where T is a tilting bundle on XK as constructed in Theorem 4.1.12, then we can

show that S is a tilting bundle on P(E ) which descends to a locally free sheaf on

YK for some proper line bundle L on PnL as in the proof in the above theorem.

Moreover, when the base scheme is also an arithmetic toric variety, we may give

a concrete description of the line bundle L :

Corollary 4.1.19. Let p : YK → XK be a Brauer-Severi scheme, which is also

a toric morphism, of relative dimension r on a arithmetic toric variety (XK , T ),

whose split toric variety is a projective space, corresponding to a Azumaya algebra

A . If there exists a tilting bundle T on XK, then there exists a tilting bundle on

YK.

Proof. There exists a finite Galois extension L/K such that we have the following

cartesian square:

P(E ) v //

q

��

YK

p

��
PnL

u // XK

where E ∼= OPnL(k0) ⊕ OPnL(k1) ⊕ · · · ⊕ OPnL(kr) with k0 ≤ k1 ≤ · · · ≤ kr such that

u∗A ∼= E nd(E ).
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Then a line bundle L ' OPnL(k) with k ≥ −k0 works for the constructions as

given in the above theorem.

Remark 4.1.20. It is easy to see that if we choose E ∼= OPnL(k0)⊕OPnL(k1)⊕ · · · ⊕

OPnL(kr) with 0 ≤ k0 ≤ k1 ≤ · · · ≤ kr, then I = ⊕g∈Gρ∗gOE (−1) works.

For projective space Pn, we always choose {OPn(1)} as a basis of Pic(Pn) = Z;

for projective bundle π : P(E )→ Pn, we always choose {π∗OPn(1),OE (1)} as a basis

of Pic(P(E )) = Z⊕ Z; and so on.

In the above corollary, if we assume the line bundle summands of E are in Z≥0

and let O(i, j) := π∗OPn(i)⊗OE (j), then the collection

{O(−n,−r),O(−n− 1,−r), · · · ,O(0,−r), · · · O(−n, 0), · · · ,O(0, 0)}

is a full strong exceptional collection on P(E ). Let

T := OXL ⊕ (⊕ρ∗gO(i, j)),

where the second summand is the sum over the set {(i, j) : −n ≤ i ≤ 0,−r ≤ j ≤

0, i + j ≤ −1} then T is a tilting sheaf on P(E ) by Lemma 3.1.9 and T descends

to YK .

Example 4.1.21. Let p : P(E ) → Pn be a projective bundle with E = OPn ⊕

OPn(k1)⊕ · · · ⊕ OPn(kr), 0 ≤ k1 ≤ · · · ≤ kr and at least one ki > 0. Then

I = OE (−1)⊕ (OE (−1)⊗ p∗OPn(−k1))⊕ · · · ⊕ (OE (−1)⊗ p∗OPn(−kr))

is the ’tautological’ sheaf on P(E ). Let T = OPn(−n) ⊕ · · · ⊕ OPn be the tilting

bundle on Pn. We will show that

S = ⊕ri=0q
∗u∗T ⊗Ii ⊗ p∗L ⊗i

is not a tilting bundle on P(E ).
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Though S satisfies conditions (ii) and (iii) in Definition 3.1.7, it fails condition

(i) and S has higher self-extensions. Indeed, with a similar argument as in the proof

of Theorem 4.1.16, for all k > 0, the equation ExtkP(E )(S ,S ) = 0 is equivalent to

the following equations

Hk(Pn,T ⊗T ∨ ⊗L ⊗(i−j) ⊗ OPn(
r∑
l=1

(sl − tl)kl)⊗ Si−j(E )) = 0,

where sl, tl ≥ 0 for all 0 ≤ l ≤ r and
∑r

l=1 si ≤ i,
∑r

l=1 tl ≤ j for all 0 ≤ j ≤ i ≤ r.

Notice that OPn(−n) is a summand of T ⊗T ∨. Consider the case tr = i = j > 0

and all the other tl, sl are zero. Then by Theorem III 5.1 [H2], we know that

Hn(Pn,OPn(−n− jkr)) 6= 0.

Hence S is not a tilting bundle on P(E ).

4.2 An Application

As an application, we generalize Corollary 4.1.19 to a special class of arithmetic

toric varieties. Consider an arithmetic toric variety (XK , T ), whose split toric variety

XL corresponds to a splitting fan Σ in a lattice N , where L/K is a Galois extension

with Galois group G. Then by Theorem 2.1.23, we have a projectivization XL =

P(E )→ X ′L, which corresponds to a primitive collection P = {x1, x2, · · · , xk+1} ⊆

Σ(1) with primitive relation x1 + x2 + · · · + xk+1 = 0 by Corollary 2.1.21. Let

ϕ : G → Aut(N) be a conjugacy class of group homomorphisms such that T = Tϕ
and ϕ(G) ⊆ AutΣ. As Σ(1) generates Σ, the action of G on Σ is determined by the

action of G on Σ(1). For any g ∈ G, the action of g on Σ(1) preserves the primitive

relationship. Since P has no intersection with any other primitive collection in

Σ(1), we must have either g(P) = P or g(P) ∩P = ∅. Let the distinguished

primitive collections P1, · · · ,Pm be the images of P under the action of G.
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Again, by Corollary 2.1.21, each of these primitive collections P1, · · · ,Pm in-

duces a projective bundle, so we have a series of projective bundles P(E id
1 ) →

P(E id
2 ) → · · · → P(E id

m ) → YL, where YL is a toric variety with splitting fan by

Theorem 2.1.23. By Corollary 2.1.16, we may assume that the fan Σ is built up

from the fan ΣYL . The Galois G-action on XL induces an Galois G-action on YL.

Let YL descends to (YK , T ′), then we have a compatible commutative diagram:

XL
//

��

(XK , T )

��
YL // (YK , T ′).

Actually, for every τ ∈ Sm, the permutation group of the set {1, 2, · · · ,m},

we have a series of projective bundles P(E τ
τ1

) → P(E τ
τ2

) → · · · → P(E τ
τm) → YL.

Thus each of these primitive collections P1, · · · ,Pm induces a projective bundle

P(Ei)→ YL, i = 1, · · · ,m. The G-action on XL induces commutative diagrams

P(Ei)
ρgi,j //

��

P(Ej)

��
YL

ρgi,j // YL

for 1 ≤ i, j ≤ m. So we may assume that {ρ∗g(E1) : g ∈ G} = {E1, · · · ,Em}.

We claim that XL ' P(E1)×YL · · · ×YL P(Em).

Indeed, if we denote by X ′L = P(E1) ×YL · · · ×YL P(Em), by Theorem 2.1.9, it

suffices to prove ΣXL ' ΣX′L
.

First, assume ΣYL-linear support functions hi,1, · · · , hi,k+1 give rise to the e-

quivariant sheaves Ei for 1 ≤ i ≤ m. Let Ni be a free Z-module with a basis

{ni,2, · · · , ni,k+1} and ni,1 = −(ni,2 + · · · + ni,k+1) for 1 ≤ i ≤ m. By Corollary

2.1.16, the fan ΣP(Ei) is determined by R-linear map NYLR → NP(Ei)R := NYLR +NiR

which sends y ∈ NYLR to (y,−
∑

1≤j≤k+1 hi,j(y)ni,j).
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Notice that we have

X ′L = P((pm−1 ◦ · · · ◦ p1)∗Em)
pm−→ · · · p3−→ P(p∗1E2)

p2−→ P(E1)
p1−→ YL,

thus the fan ΣX′L
is determined by the R-linear map

NYLR → NX′LR := NYLR +N1R + · · ·+NmR

which sends y ∈ NYLR to (y,−
∑

1≤j≤k+1 h1,j(y)n1,j, · · · ,−
∑

1≤j≤k+1 hm,j(y)nm,j).

On the other hand, as we showed above, there is a series of projective bundles

P(E ′m) → P(E ′m−1) → · · · → P(E ′1) → YL. Let N ′i be a free Z-module with a basis

{n′i,2, · · · , n′i,k+1} and n′i,1 = −(n′i,2 + · · ·+n′i,k+1) for 1 ≤ i ≤ m. By Corollary 2.1.16,

we may construct a fan ΣXL of XL through the following maps

NYLR → NYLR +N ′1R → · · · → NYLR +N ′1R + · · ·+N ′mR.

Without causing confusion, we use the same symbol n′i,j to denote its image in

NYLR + N ′1R + · · · + N ′mR for all 1 ≤ i ≤ m and 1 ≤ j ≤ k + 1. Choose {n′i,j|1 ≤

i ≤ m, 2 ≤ j ≤ k + 1} as a part a basis of NYLR + N ′1R + · · · + N ′mR, then the

composition of above maps NYLR → NYLR + N ′1R + · · · + N ′mR sends y ∈ NYLR to

(y,−
∑

1≤j≤k+1 h
′
1,j(y)n′1,j, · · · ,−

∑
1≤j≤k+1 h

′
m,j(y)n′m,j), where h′i,j is a ΣYL-support

function for all 1 ≤ i ≤ m and 1 ≤ j ≤ k + 1. As we showed above, for

each i ∈ {1, · · · ,m}, the induced map NYLR → NYLR + N ′iR sends y ∈ NYLR to

(y,−
∑

1≤j≤k+1 h
′
i,j(y)n′i,j) determines a fan in NYLR+N ′iR whose corresponding toric

variety is isomorphic to P(El) for some l ∈ {1, · · · ,m}. Thus we may replace h′i,j

by hl,j for all 1 ≤ j ≤ k + 1. Rearranging the order, we obtain that the ΣXL is

isomorphic to a fan determined by map NYLR → NYLR + N ′1R + · · · + N ′mR which

sends y ∈ NYLR to (y,−
∑

1≤j≤k+1 h1,j(y)n′1,j, · · · ,−
∑

1≤j≤k+1 hm,j(y)n′m,j).

Therefore, we have ΣXL ' ΣX′L
, and hence XL = P(E1)×YL · · · ×YL P(Em).
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Thus we get the following compatible commutative diagram

XL = P(E1)×YL · · · ×YL P(Em) //

��

(XK , T )

��
YL // (YK , T ′).

Iteratively, we get the following diagram:

Xl,L = P(El,1)×Xl−1,L
· · · ×Xl−1,L

P(El,ml)
//

��

(Xl,K , Tl) = (XK , T )

��
...

��

...

��
X2,L = P(E2,1)×X1,L

· · · ×X1,L
P(E2,m2) //

��

(X2,K , T2)

��
X1,L = ×m1

L P(E1) //

��

(X1,K , T1)

��
X0,L = SpecL // SpecK

where E1 is a decomposable vector bundle of rank r1 + 1 over X0,L and Ei,ji is a

decomposable vector bundle of rank ri + 1 over Xi−1,L and {ρ∗g(Ei,1) : g ∈ G} =

{Ei,1, · · · ,Ei,mi} for 2 ≤ i ≤ l and 1 ≤ ji ≤ mi.

As we know that Pic(Xi,L) ' Z⊕(m1+···+mi), we may assume all the line bundle

summands of Ei are in (Z≥0)⊕(m1+···+mi−1) for all 2 ≤ i ≤ l.

Without causing confusion, we use the same notation OP(Ei,j)(k) (1 ≤ i ≤ l, 1 ≤

j ≤ mi) to denote the corresponding component in Pic(Xh,L) for all i ≤ h ≤ l.

Denote by

O(j1,1, · · · , j1,m1 , · · · , jl,1, · · · , jl,ml)

= (OP(E1)(j1,1), · · · ,OP(E1)(j1,m1), · · · ,OP(El,1)(jl,1), · · · ,OP(El,ml )
(jl,ml)),

where −ri ≤ ji,ki ≤ 0 and 1 ≤ ki ≤ mi for 1 ≤ i ≤ l.



CHAPTER 4. MAIN RESULTS 110

Then the set

{O(j1,1, · · · , j1,m1 , · · · , jl,1, · · · , jl,ml) : −ri ≤ ji,ki ≤ 0, 1 ≤ ki ≤ mi}

is a full strong exceptional collection of Db(XL) by the lexicographical order on

(j1,1, · · · , j1,m1 , · · · , jl,1, · · · , jl,ml). For any g ∈ G, we have

ρ∗gO(j1,1, · · · , j1,m1 , · · · , jl,1, · · · , jl,ml)

= O(j1,τ1,g(1), · · · , j1,τ1,g(m1), · · · , jl,τl,g(1), · · · , jl,τl,g(ml)),

where τi,g, 1 ≤ i ≤ l, are permutations of the corresponding sets {1, · · · ,mi}. So it

is also in the same set.

Let

T = ⊕ρ∗gO(j1,1, · · · , j1,m1 , · · · , jl,1, · · · , jl,ml),

where the summand is the sum over the set {(j1,1, · · · , j1,m1 , · · · , jl,1, · · · , jl,ml) :

−ri ≤ ji,ki ≤ 0}, then T is a tilting sheaf on Xl,L by Lemma 3.1.9 and T descends

to XK . Thus by Proposition 4.1.8, we have proved:

Theorem 4.2.1. Let (X, T ) be an arithmetic toric variety, whose split toric variety

corresponding to a splitting fan, then there exists a tilting bundle on X.

4.3 Conclusion and Further Questions

Overall, using Galois descent theory, we give constructions of tilting bundles on

Brauer-Severi varieties (Theorem 4.1.12), which are different from the one construct-

ed by Blunk [Bl]. We also show that for certain families Y → X of Brauer-Severi

Schemes over special rational smooth projective varieties X, the existence of a tilt-

ing bundle on Y depends on the existence of one on X (Theorem 4.1.16). This

result can be viewed as a relative version of the result on Brauer-Severi varieties.
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Finally, as an application, we show the existence of tilting bundle on arithmetic toric

varieties whose associated split toric varieties are obtained as successive projective

bundles (Theorem 4.2.1). This result generalizes the result obtained by Costa and

Miró-Roig in [CM1].

In a series of papers [K1, K2, K2, K4], Kapranov gave full strong exceptional

collections, and hence tilting bundles, on Grassmann and flag varieties with base

field has characteristic zero. And Kaneda [Ka] showed that Kapranov’s construction

works on the Grassmannian in sufficiently large positive characteristic. In addition,

we also know the automorphisms of Grassmann varieties [Ch] and flag varieties [T].

Our first natural interesting question is that whether we can use these results and

Galois descent theory to show the existence of tilting bundles on the generalized

Brauer-Severi varieties. Indeed, this is true for the family of generalized Grassmann

varieties whose associated split varieties are of form Gr(k, n) such that n 6= 2k.

Let π : XL → XK be the canonical morphism of the finite Galois extension

L/K. In cases of Brauer-Severi varieties (Theorem 4.1.12) and certain arithmetic

varieties (Theorem 4.1.12), we can construct the tilting bundle on XK as the as the

pushforward of the known tilting bundle on XL, as indicated in Remark 4.1.13. But

in general, the statement that the pushforward bundle π∗T is a tilting bundle on

XK provided T is a tilting bundle on XL may not be true. A counterexample is

the Grassmannian variety Gr(k, n) with n = 2k. So another interesting question is

to find or characterize the family of varieties such that the statement above is true.
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[DLM] A. Dey, M. Lasoń, M. Michalek, Derived category of toric varieties with

Picard number three, Le Mathematiche 64(2) (2009), 99-116.

[DS] S. Di Rocco, A. J. Sommese, Chern Numbers of Ample Vector Bundles on

Toric Surfaces, arXiv: Math/9911192v1 [math.AG] 24 Nov 1999.

[Dr] P. K. Draxl, Skew Fields, London Mathemmatics Society Lecture Note

Series Vol. 81, Cambridge Univeristy Press (1983).

[ELST] E. J. Elizondo, P. Lima-Filho, F. Sottile, Z. Teitler, Arithmetic Toric Va-

rieties, arXiv: 1003.5141, 26 March 2010.

[FM] D. Faenzi, L. Manivel, On the derived category of the Cayley plane II,

arXiv: 1201.6327v1 [Math.AG] 30 Jan 2012.

[FGR] R. M. Fossum, P. A. Griffith and I. Reiten, Trivial Extensions of Abelian

Categories, Lecture Notes in Math., No. 456, Springer-Verlag, 1975.

[F] W. Fulton, Introduction to Toric Varieties, Princeton Press, Princeton,

NJ, 1993.

[GM] S. I. Gelfand, Yu. I. Manin, Methods of Homological Algebra, (second

edition), Springer Monographs in Mathematics, Springer-Verlag (2010).

[GS] P. Gille, T. Szamuely, Central Simple Algebras and Galois Cohomology,

Cambridge Studies in Advanced Mathematics 101, Cambridge University

Press (2006).



BIBLIOGRAPHY 116

[Gir] J. Giraud, Cohomologie Non Abélienne, Springer-Verlag, 1971.
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Birkhäuser, Basel, 1995.



BIBLIOGRAPHY 118

[Ku1] A. Kuznetsov, Hyperplane sections and derived categories, Izvestiya RAN:

Ser. Mat. 70:3 (2006), 23-128; translation in Izvestiya: Mathematics 70:3

(2006), 447-547.

[Ku2] A. Kuznetsov, Exceptional collections for Grassmannians of isotropic lines,

Proceddings of the London Mathematical Society, V. 97 (2008), N. 1, 155-

182.

[Ku3] A. Kuznetsov, A. Polishchuk, Exceptional collections on isotropic Grass-

mannians, arXiv:1110.5607v1 [Math.AG] 25 Oct 2011.

[Ku4] A. Kuznetsov, Derived category of Fano threefolds, Proc. Steklov Inst.

Math. 2009, 264(1), 110-122.
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