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ABSTRACT

This thesis develops statistical methods and models and applies them to problems
related to forest fires. The unifying goal of the work is to provide a data analytic
basis for quantifying the uncertainty surrounding fire ignition and fire growth which
builds on existing theory where possible.

The main body of the thesis is comprised of three research papers. The Fire
Weather Index (FWI) plays an important role in fire management and is central to the
first two papers. In the first instance, the block bootstrap confidence interval method
is used to deal nonparametrically with the dependence in the FWI data. Because the
actual and nominal confidence levels differ substantially, a double bootstrap is applied
and used to calibrate the confidence intervals. The calibration technique focuses on
interval length-adjustment instead of level-adjustment.

The second paper systematically develops a sequence of parametric time series
models for the FWI, starting from some basic physical observations. The final model
developed is a seasonal random effect mixture tailed minification model. Numerical
approximations using the model allows for calculation of the survival function for
the minimum FWI in one or more consecutive days. Tentative results presented
here suggest that fire danger prediction may be more effectively accomplished using
information on runs of moderately large FWI values, instead of simply using a single-
day cut-off.

The third paper studies the fire growth model, Prometheus and re-analyzes the
data underlying the associated rate of spread formulas. The main goal of the paper
is to incorporate randomness into the deterministic Prometheus model giving rise
to a new simulator called Dionysus. The essential idea is a parametric bootstrap.
Burn probability contours can be created quickly by Dionysus. These can help fire
managers make suppression resource allocation decisions for fires which are currently
burning.
Keywords: Fire Weather Index, Prometheus, Bootstrapping, Time Series
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Chapter 1

INTRODUCTION

This thesis is based on three research papers which develop and apply statistical

methology in the context of forest fire science. The tools developed in these papers

build on and contribute to wildfire science and are readily usable in wildfire manage-

ment.

Wildfire science is about the nature, causes and effects of fire. Examples of wild-

fire science are the connection between lightning and fire ignitions, how wave prop-

agation models can be related to fire growth, and what factors contribute to faster

growth, such as fuel type, topography and weather. These phenomena have tradi-

tionally been understood using deterministic models for fire danger and fire growth.

Of particular importance in Canadian wildfire science are a set of weather-based

indices which guide fire management decisions. These indices derive from empirical

observation combined with scientific principles. The Canadian Forest Fire Weather

Index System (Stocks et al, 1989) outlines the indices and how they are derived from

the underlying weather (temperature, wind speed, relative humidity and precipita-

tion). These indices have been incorporated into a fire behaviour prediction system

(Forestry Canada, 1992 and Wotton et al, 2009) which is used by fire management

agencies across Canada.

The basic level of the system includes the measures Fine Fuel Moisture Code

(FFMC), Duff Moisture Code (DMC) and Drought Code (DC) that quantify, respec-

tively, the wetness of the top layer, moss layer and the deepest layer beneath the

forest floor.

The next level of the system includes the Initial Spread Index and the Buildup

Index. The Initial Spread Index (ISI) that is related to fire rate of spread (ROS) is

calculated from FFMC and DMC. The Buildup Index (BUI) that is related to depth

of fire is calculated from DMC and DC.

Finally, the Fire Weather Index (FWI) that is related to fire intensity, or flame

length, is calculated from ISI and BUI. Thus, the Fire Weather Index is a statistic

that derives from four weather variables that are highly related to fire ignition and

spread.
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The FWI and ROS will play important roles in the entire thesis. Analysis

of the FWI nonparametrically is undertaken in Chapter 2. In Chapter 3, the FWI

will be studied as a collection of time series of observations with the goal being to

derive a sound statistical model which could be used for simulation purposes as well

as testing and prediction. This is important for wildfire management because it can

then be used to assist with the development of daily planning models and strategic

long term planning models. Such models are used to make decisions about allocation

of suppression resources and whether to evacuate a community and so on.

Some fire management agencies are using deterministic fire growth simulators

such as Prometheus (Tymstra et al, 2010) to assist with immediate decision-making

when there are active wildfires. The Prometheus simulator predicts the future fire

shape and area, given curent and forecast weather conditions, together with informa-

tion about topography and fuel. This is an increasingly important tool which can

assist a fire management agency in determining where to deploy fire crews and where

potential trouble spots may be located.

Currently, most of the management decisions are based on a deterministic un-

derstanding of the fire models and indices. However, the deterministic models built

by wildfire science are incapable of managing the ensuing uncertainty following from

the chaotic behaviour of wildfire. It is the role of statistics to quantify the uncertainty,

to identify when it is large and possibly unmanageable and also to indicate when it

is manageable. In Chapter 4, a stochastic version of Prometheus is introduced which

can be used to provide probabilistic assessments of the potential for the spread of an

existing fire.

This thesis aims to contribute statistical tools which can be used to better

understand wildfire and which can be used to assist fire managers in their decision-

making processes. The methods developed and studied are block bootstrap for time

series, simulation tools both in time and space, and visualization tools. These data

analysis tools provide an important unifying theme to this thesis. Time series mod-

elling, both parametric and nonparametric, plays an important role in Chapters 2 and

3, while residual analysis is fundamental to both Chapters 3 and 4, since the results

in both of these chapters rest heavily on parametric assumptions.
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Chapter 2

A NONPARAMETRIC BOOTSTRAP FOR THE FIRE
WEATHER INDEX

2.1 Introduction

The Fire Weather Index (FWI) is a summary measure of fire danger in the Canadian

Fire Behaviour Prediction System (Forestry Canada, 1992). It is a function of recent

and current temperature, relative humidity, precipitation and wind speed. It is related

to moisture content in the surface, DUFF and deep soil layers in the forest floor, and

it gives fire managers an indication of the amount of effort (crews, tankers, etc.) that

would be required to suppress a fire under such conditions. Larger values of FWI are

associated with more effort being required to extinguish a fire.

Martell (1999) developed a Markov chain model for a discretized version of

Ontario FWI using five states characterized by specified ranges. That work expressed

a need to develop a time series model for the Canadian fire weather index; among other

things, a parsimonious time series model would provide a way of characterizing FWI

behaviour in different regions. Fujioka and Tsou (1985) used an autoregressive order

2, or AR(2), model for U.S. Fire Danger Ratings. The definition of the U.S. index

is somewhat different from the Canadian FWI, so we would not expect completely

similar behaviour. In fact, an AR(1) model appears to give an approximately correct

model to non-zero Ontario FWI, though the parameter governing this process may

be changing from year to year.

The purpose of the present paper is to study the Fire Weather Index for a

set of weather stations in Ontario. The approach we take avoids specifying a model

explicitly. Instead, we focus on specific characteristics of the FWI process: the first

lag autocorrelation, the process mean and the process variance. These parameters

can be easily estimated from the data, and a block bootstrap procedure can be used

to obtain the corresponding confidence intervals. Such confidence intervals can have

very poor coverage properties, however. Our objective is to adjust the confidence

intervals coming from a block bootstrap so that coverage probability is closer to the

desired (or nominal) level.
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First, we will set up our notation. Let θ denote the parameter of interest, and

suppose X1, X2, . . . , Xn is the sample coming from a population having parameter θ

and distribution function F (x), so that θ is really a functional of F : θ(F ). Note that

x can be a scalar if the original observations are independent, but we will also use x as

a vector in the case of dependent time series observations. Let θ̂ denote the estimate

of θ based on the sample, i.e. θ(F̂ ), where F̂ (x) denotes the empirical cumulative

distribution function.

We will consider bootstrap confidence intervals of the form which are often re-

ferred to as “percentile” intervals (e.g. Davison and Hinkley, 1997). To compute these

intervals, repeatedly draw resamples X∗1 , X
∗
2 , . . . , X

∗
n from the empirical distribution

function F̂ . Estimates from each resample are called
̂̂
θ or θ(

̂̂
F ). Here,

̂̂
F denotes the

empirical distribution function of the resample, taken from the original sample, thus

acting as an estimate of the original empirical distribution. If we have R resamples,

then we will have a set of R
̂̂
θ estimates.

A 1− α confidence interval is given by

(θ̂ + τ1, θ̂ + τ2) (2.1)

where τ1 is the α/2 sample percentile of the distribution of
̂̂
θ − θ̂ and τ2 is the

corresponding 1− α/2 sample percentile.

It is well known that confidence intervals constructed in this way are asymp-

totically correct to first order under fairly general conditions and provided the data

are independent, and there are several ways of making second order corrections (see,

e.g. Hall, 1992). However, in cases where the independence assumption fails, higher

order asymptotic methods (which fail to account for the incorrectly specified condi-

tion) will not provide a correction. The data we are studying exhibits a definite form

of dependence, and a block bootstrap (with non-overlapping blocks) will be used to

handle this departure from the standard bootstrap assumptions; however, even with

block selection methods such as those proposed by Nordman et al (2007), it is difficult

to ascertain whether the block bootstrap is accurate. In fact, we will demonstrate

that the block bootstrap can be grossly inaccurate. In such situations, a calibration

technique may be an appropriate way to make the correction.

We will now use a very simple example to motivate and demonstrate the two

forms of calibration to be considered in this paper.
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Suppose a random sample of size n has been taken from a normal population

with mean µ and variance σ2, and a parametric bootstrap procedure is used to con-

struct a percentile 1 − α confidence interval for µ. That is, R1 resamples are taken

from the normal distribution with mean X̄ and variance S2, calculated from the origi-

nal sample. The average ̂̄Xi of the ith resample must then have a normal distribution

with mean X̄ and variance S2/n. The percentile confidence interval for µ is given by

X̄ ± τα/2

where τα denotes the α-percentile of the distribution of ̂̄Xi − X̄. If we were able to

simulate from this distribution indefinitely, we would be simulating from a normal

distribution with mean 0 and variance S2/n. Therefore, under the exact bootstrap,

τα is the α-percentile of this normal distribution, and it can be written as szα/
√
n,

where zα is a standard normal percentile. In other words, the percentile confidence

interval is given by

X̄ ± zα/2
s√
n

(2.2)

and its coverage probability is always less than (1− α), although this fact cannot be

detected from the computation of the confidence interval only. This result follows

from noting that

P (µ ∈ X̄ ± zα/2
s√
n

) = P (−zα/2 ≤
X̄ − µ
s/
√
n
≤ zα/2)

< P (−tα/2,n−1 ≤
X̄ − µ
s/
√
n
≤ tα/2,n−1) = 1− α

This example is similar to one given in the nonparametric case by Hall (1992) to

motivate the use of a pivotal statistic. Here we use this example to illustrate the

calibration methods we will study later.

The calibration methods we will consider both employ a double bootstrap. In

the above example, this means we will take re-resamples (of size n) from normal

distributions having mean ̂̄Xi and variance S2
i , for i = 1, 2, . . . , R1. For each of these

re-resamples, the average is computed:
̂̂̄
Xi,j , j = 1, 2, . . . , R2, where R2 denotes the

number of re-resamples taken from each of the original normal distributions. The R1



7

unadjusted percentile confidence intervals for ̂̄X can be computed using

̂̄Xi ± τ̂α/2

where τ̂α denotes the α-percentile of the distribution of
̂̂̄
Xi,j − ̂̄Xi.

Again, this distribution is normal but now with mean 0 and variance S2
i /n, so

that the ith percentile confidence interval for X̄ is really given by

̂̄Xi ± zα/2
si√
n
.

Because X̄ is known, it is possible to determine that the coverage probability of these

intervals is less than 1−α. Furthermore, we can see that the coverage probability can

be corrected to 1−α by replacing zα/2 by tα/2, the α/2 percentile of the t-distribution

on n− 1 degrees of freedom. Thus, in this case, the double bootstrap distribution of

the statistic ̂̂̄
Xi,j − ̂̄Xi

is exactly the same as the bootstrap distribution of the statistic

̂̄Xi − X̄.

Thus, the double bootstrap tells us exactly how to adjust the original confidence

interval in order to obtain correct coverage.

There are at least two points of view that can be taken with this kind of adjust-

ment. Loh’s (1991) level adjustment method involves changing α to a new value α′ so

that the coverage probability of the double bootstrap confidence intervals is actually

1− α. In our example, this amounts to choosing α′ so that zα′ = tα. By replacing α

with α′ in the confidence interval at (2.2), the coverage probability is ensured to be

1− α.

Another approach to adjusting the percentile confidence interval is to determine

the constant c which assures that the proportion of the adjusted double bootstrap

intervals ̂̄Xi ± (τ̂α/2 + c)
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containing X̄ is 1 − α. The constant c can then be used to adjust the length of the

original confidence interval so that its coverage probability is higher:

X̄ ± (τ̂α/2 + c).

For this example, c = s(tα/2 − zα/2)/
√
n.

2.2 Calibration of Block Bootstrap Confidence Intervals

Unadjusted percentile confidence intervals can have poor coverage properties when

used with a block bootstrap. Tables 2.1, 2.5, and 2.9 provide results from a simulation

study (fully described in the next section) involving samples of size 100 coming from

an AR(1) process. The 6th column shows coverage proportions for the unadjusted

percentile 95% confidence interval for the first lag autocorrelation, the process mean

and the process variance, respectively. A block bootstrap with various block sizes has

been employed.

In some cases, the coverage approaches 90%, but in many cases, coverage is very

low, especially where the AR parameter φ is large in absolute value. These results

show sensitivity to block size, and in some cases, there is an indication that correct

specification of the block size will result in reasonable coverage. However, this is not

true in all cases.

2.2.1 α Level Adjustment Method

The method is based on a double bootstrap where the α level is changed to a new

level α′ in an attempt to match the actual coverage with the nominal coverage more

closely. This method was first proposed by Loh (1991) for the i.i.d. case. Lee and

Lai (2009) studied the method for the dependent case. They also gave asymptotic

results.

It is clear that θ̂ is the true parameter underlying the original resamples. We use

the fact that this value is known in a double bootstrap in which confidence intervals for

θ̂ are repeatedly computed and their proportion correct can be calculated. Specifically,

random resamples are taken repeatedly from each of the R original resamples. For

each of these second level resamples, parameter estimates are again obtained:
̂̂̂
θ.
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1− α′ confidence intervals for θ̂ are of the form

(
̂̂
θ + τ̂1,

̂̂
θ + τ̂2) (2.3)

where τ̂1 is the α′/2 sample percentile of the distribution of
̂̂̂
θ − ̂̂θ and τ̂2 is the

corresponding 1− α′/2 sample percentile.

The value of α′ used in (2.3) is chosen so that a proportion 1−α of the resulting

confidence intervals contain θ̂. The α′ value represents the adjusted nominal α-level

which is then to be used in the confidence interval for θ defined at (2.1). The hope

is that the actual confidence level will then be closer to 1 − α. The accuracy and

precision of the method will still depend critically on the choice of block size. Some

recommendations on how to choose the block size are given at the end of Section 3.

2.2.2 Length Adjustment Method

As an alternative to level adjustment, we propose that the length of the confidence

intervals be adjusted directly. This length adjustment method is also based on a

double bootstrap. The second bootstrap is used to calculate the constants to be

added to the original interval endpoints so that the resulting confidence intervals

contain the true parameter with probability 1− α.

Specifically, we take R1 resamples, with replacement, from the original sample,

computing the statistic of interest,
̂̂
θi, for i = 1, 2, . . . , R1. From the ith resample,

R2 re-resamples are taken, and the statistic,
̂̂̂
θi,j is computed for the jth re-resample.

Confidence intervals for θ̂ are computed:

(
̂̂
θi + τ̂1,

̂̂
θi + τ̂2).

where τ̂1 is the α/2 sample percentile of the distribution of
̂̂̂
θi,j −

̂̂
θi and τ̂2 is the

corresponding 1− α/2 sample percentile.

We next find ŝ1 and ŝ2 so that

(
̂̂
θ + τ̂1 + ŝ1,

̂̂
θ + τ̂2 + ŝ2)



10

contains θ̂ with probability 1 − α. The length adjusted confidence interval for θ is

then

(θ̂ + τ1 + ŝ1, θ̂ + τ2 + ŝ2).

where τ1 and τ2 are the α/2 and 1− α/2 percentiles of the distribution of
̂̂
θ− θ̂ as in

the original bootstrap confidence interval.

Finding ŝ1 and ŝ2 in practice may be time-consuming. We have considered two

methods, one which is slow and accurate, and the other which is a quick approxima-

tion.

The first method uses an optimization technique to minimize the quantity

(
P̂

(̂̂
θ + τ̂1 + ŝ1 ≤ θ̂ ≤ ̂̂θ + τ̂2 + ŝ2

)
− (1− α)

)2

with respect to ŝ1 and ŝ2. Here, the notation P̂ indicates that the probabilities we

compute are conditioned on the original sample. Using the optim() function in R (R

Core Team, 2009) under the default settings usually gives satisfactory results, but it

can be very slow.

The second method employs a simple independence approximation:

1− α .
= P̂

(̂̂
θ + τ̂1 + ŝ1 ≤ θ̂

)
P̂

(̂̂
θ + τ̂2 + ŝ2 ≥ θ̂

)
.

so ŝ1 and ŝ2 can be obtained from

√
1− α .

= P̂

(̂̂
θ + τ̂1 + ŝ1 ≤ θ̂

)

and √
1− α .

= P̂

(̂̂
θ + τ̂2 + ŝ2 ≥ θ̂

)
.

The latter method leads to faster computation, and can either be used to get ap-

proximate intervals, or to obtain initial guesses for use in the former, more accurate,

method.

The probability of computing a correct confidence interval which is as narrow

as possible still depends on the block size. Some advice on block size selection is given
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at the end of the next section.

2.3 Simulation Comparison

In order to assess the length-adjustment calibration method, we conducted a simu-

lation study in which coverage proportion and average confidence interval width was

compared for the length-adjusted, level-adjusted and unadjusted methods, respec-

tively.

2.3.1 Study Design

Samples of size 100, 200, 400 and 800 were simulated from order 1 autoregressive

processes:

Xi = φXi−1 + εi

where the process mean is 0, and the innovation variance is 1. It is well known that

for such processes, the first lag autocorrelation ρ coincides with the value φ, and

the process variance is 1/(1 − φ2). For our simulations, we considered φ in the set

{−.9,−.5, .5, .9}. For each parameter setting, 500 samples were generated using the

arima.sim() function in R (R Core Team, 2009).

For each sample, the first lag autocorrelation ρ̂, average X̄ and sample variance

S2 were calculated. Block bootstrap resamples were obtained from each sample, using

block sizes of 10, 20, 30 and 40. For each block size, 500 resamples were created, and

95% percentile confidence intervals were constructed for the first lag autocorrelation,

process mean and variance.

From each of the resamples, 50 double bootstrap resamples were created using

a block size b which was exactly one-half of the original block size (Lee and Lai,

2009). Based on these re-resamples, length-adjusted and level-adjusted 95% percentile

confidence intervals were also constructed for the three parameters. To compute

the length-adjusted confidence intervals, the independence approximation was used,

since the more accurate method was too time-consuming for such an extensive set of

simulations.
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2.3.2 Results

The results from this simulation study are tabulated in Tables 2.1 to 2.12. Each

table lists the parameter being estimated, and the block size being used. The actual

coverage proportions for the length adjusted, level adjusted and unadjusted 95%

confidence intervals in columns 4 through 6.

The widths of each confidence interval were also calculated. Averages of these

widths are listed in Tables 2.1 to 2.12 in columns 7 through 9.

2.3.3 Discussion

From column 4 of Table 2.1, we see that length adjustment gives accurate results

for almost any block size that was tried, with the exception of b = 10 and φ = −.9,

where the coverage proportion was only 69%. Occasionally, the other adjustment

method was slightly more accurate, but for highly autocorrelated data, level adjusted

confidence intervals and unadjusted confidence intervals can be very inaccurate. Un-

adjusted coverage proportions can be as low as 3% and level adjustment only corrects

this to 27% while length adjustment corrects it to 86%.

Column 7 of Table 2.1 shows that this improvement was made without sacri-

ficing precision. The average confidence interval width for the above case actually

decreased from 0.24 (unadjusted) to 0.23 (length-adjusted). At the same time, level

adjustment led to an average confidence interval width of 0.40. In general, we see that

the average confidence interval width for length adjusted intervals is quite similar to

the average width of unadjusted confidence intervals. In one case, the average level

adjusted confidence interval was smaller (b = 10 and φ = −.5), and the coverage

proportion was also higher for level adjustment in that case indicating that level ad-

justment can work well when there is less dependence and when a good block size is

used.

Table 2.5 shows that the confidence intervals for the mean are generally more

accurate than for the first lag autocorrelation. Again, length adjustment is usually

more accurate than level adjustment, which is not really any more accurate than no

adjustment at all. The improvement in accuracy of the length-adjusted intervals has

come at a small price. The last 3 columns of Table 2.5 indicate that both adjustment

methods give wider confidence intervals. Length-adjusted confidence intervals are

slightly wider on average than level-adjusted confidence intervals.

Table 2.9 shows that length adjustment is usually more accurate than level

adjustment when estimating the process variance. However, coverage proportions are
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not always close to the nominal level (e.g. 62% when b = 40 and φ = −.5). Table 2.9

also shows that the length adjusted confidence intervals are wider on average than

the level-adjusted confidence intervals which are wider than the unadjusted confidence

intervals.

For n = 200, we begin to see the effects of poor block size choice when estimating

ρ. That is, when φ = −.9, b = 10 appears to be too small. The calibration methods

offer some improvement in accuracy but are still percentileally incorrect. Larger

block sizes work reasonably well and indicate that length adjustment is usually more

accurate than the other methods, again without compromising precision (as shown in

Table 2.2 ).

As the sample size increases more, we see that both adjustment methods give

accurate confidence intervals for the mean and variance. For cases where |φ| is large,

the unadjusted method is accurate too, but not when |φ| is smaller. Confidence

interval widths are similar, with length adjusted intervals being slightly wider than

the others.

When estimating the first lag autocorrelation with large samples, we see that

if the block size is too small, then coverage is poor even with adjustment. This is

in agreement with asymptotic results such as those given by Nordman et al (2007)

which indicate that the block size should increase as a function of sample size. Level

adjusted confidence interval are substantially wider than length adjusted confidence

intervals which are similar in width to the unadjusted confidence intervals.

The overall conclusion from this simulation study is that length-adjusted con-

fidence intervals for the three types of parameters considered here are almost always

more accurate than unadjusted confidence intervals, and they are often more accu-

rate than level-adjusted confidence intervals. When the length-adjusted intervals are

less accurate than the level-adjusted intervals, the difference in accuracy is rarely

large. This overall gain in accuracy comes at a slight loss in precision relative to the

unadjusted confidence intervals, and often at much greater precision than the level-

adjusted confidence intervals. Thus, the length-adjusted confidence intervals appear

to be more useful from a practical point of view.

2.3.4 Practical Block Size Selection

In addition, the simulation study suggests a practical method for choosing the block

size in order to block bootstrap a time series of length n. Time series of length n with
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similar statistical characteristics (i.e. autocorrelation structure, variance, etc.) to the

observed time series should be simulated repeatedly, and length-adjusted bootstrap

confidence intervals should be computed for the parameter of interest, using a range of

block sizes. The average width and coverage proportions should be computed in each

case. The block size giving the coverage proportion nearest to the nominal coverage

value and giving the narrowest intervals should be chosen.

As an example, consider the problem of computing a length-adjusted bootstrap

95% confidence interval for the variance of time series of length n = 400 which has

properties similar to an AR(1) process with an estimated lag 1 autocorrelation of 0.9.

According to the 4th column of Table 2.3, the coverage proportion of the length-

adjusted 95% confidence intervals is 0.95 for block sizes 10, 20 and 30, but not for 40.

The 7th column of Table 2.3 shows that the average width of the confidence intervals

for block sizes 10 and 20 are 0.52, but only 0.51 for block size 30. Therefore, the

narrowest accurate length-adjusted confidence interval should be obtained with block

size 30.

Similar reasoning, using columns 5 and 8 of Table 2.11 leads to a block size of

20 for a level-adjusted 95% confidence interval for the variance.

For sample sizes not considered in the simulation study, the tables still pro-

vide some guidance in selecting the block size. They can be used to infer coverage

proportions and average confidence interval widths for sample sizes within the range

of sample sizes considered, and thus, appropriate block sizes. For very large sample

sizes, additional simulations would be needed.

In cases where it is not possible to simulate statistically similar time series, one

must resort to methods such as those described by Nordman et al (2009).

2.4 Application to the Fire Weather Index

We studied FWI data from six weather stations in Ontario: Kenora, Dryden, Red

Lake and Sioux Lookout in the northwest region and Timmins and Temagami in the

northeast region. The locations of these six weather stations within the Province of

Ontario are shown in Figure 2.1.

The data for each station were restricted to the FWI values for the period from

April 29 to September 15 for each year from 1963 through 2004. This period was

chosen since it corresponds approximately to the summer fire season in Ontario, and

outside of this period, the FWI values are usually at or near 0. During this period,
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several different truncations were used by the provincial fire agency to define nil FWI;

sometimes, it was defined as any day with FWI less than 0.5 and at other times it was

defined as any day with FWI less than 1. In order to achieve consistency from year to

year, we defined the FWI to be 0 whenever the calculated FWI was less than 1.0. Less

than 1% of the data in the resulting data set was missing, so we felt it unnecessary

to handle missingness in a special way, choosing instead to ignore all missing values.

In the FWI data sets, there are many consecutive 0 values. These runs of 0s

have been removed in order to obtain time series which are closer to linear, since the

probability is zero for a linear process to give rise to more than one 0 in a row. Ana-

lyzing the runs of 0 values is of interest, but lies outside the scope of the present paper

( see Albet-Green et al. (2013) for such an analysis). For a Markov process, censoring

of the runs of 0s can be shown to result in another Markov process. Thus, if Martell’s

(1999) assumptions are correct, the nonzero FWI process should be Markovian, and

a first order autoregressive process could be a useful approximate model.

In order to obtain transformed values of FWI which are more closely approx-

imated by a normal distribution, 1
5 powers were taken. This power transformation

was based on the optimal Box-Cox transformation.

Figure 2.2 shows the trace plot of nonzero FWI for the year 2000 at Red Lake,

and it shows the autocorrelation function at Red Lake for all years of data. These

plots are not atypical of the data for all six weather stations and show why the AR(1)

process could be viewed as a reasonable approximation for the nonzero FWI process.

Thus, the first lag autocorrelation ρ could be a useful summary of the FWI at

each weather station. Larger values of ρ correspond to longer periods of either high

or low FWI. Consequently, longer periods of high FWI have the potential to result in

extreme numbers of fires. A question of immediate interest concerns how ρ might vary

geographically. We are also interested in whether ρ is varying temporally, possibly

taking on different values each year.

We first conducted bootstrap hypothesis tests for temporal homogeneity of the

first lag autocorrelation coefficient ρ at each weather station. The null hypothesis for

this test is that ρ is constant between years. The alternative hypothesis is that ρ is

different for different years.

The test statistic we use is the variance of the first lag autocorrelation estimates

computed for each of the M = 42 years of data:

S2
ρ =

1

M − 1

M∑
i=1

(ρ̂i − ¯̂ρ)2 (2.4)



16

Under the null hypothesis, this statistic should be close to 0, and under the alternative

hypothesis, it should be strictly positive. For the given sample, we denote the statistic

value as s2
ρ.

To construct bootstrap resamples under the null hypothesis, we randomly sam-

ple blocks of data from the entire data set with replacement. For the results given

here, we used a block size of 20. Enough blocks need to be sampled to construct

M “years” of resampled data, each year containing enough values to cover the period

from April 29 through September 15: 139 days. By resampling in this way, the data

in each year are necessarily identically distributed and should have the same first lag

autocorrelation.

Estimates of the first lag autocorrelation are then obtained for each year, and

the variance can be computed using the formula at (2.4). By repeatedly resampling

in the above way (500 times), we can obtain a bootstrap distribution for the statistic

S2
ρ under the null hypothesis. A p-value for the test is then computed by calculating

the proportion of S2
ρ values which exceed s2

ρ.

Results for each weather station are given in Table 2.13. The p-values for the

Northwestern Ontario stations tend to be quite small, and they indicate moderate

evidence against the null hypothesis. The stations in Northeastern Ontario have

p-values which are very large, indicating no evidence against the null hypothesis.

Thus, in the northeastern region, there is no reason to believe that the first lag

autocorrelations are changing from year to year, while there appears to be some kind

of change occurring in the northwestern region.

We can now calculate length-adjusted and unadjusted bootstrap confidence in-

tervals for the average value of ρ:

1

M

M∑
i=1

ρi

Our procedure is based on the conservative assumption that the ρ values could pos-

sibly differ from year to year which we saw is likely true in some areas though not

everywhere.

The first bootstrap sample is constructed by first randomly sampling from the

set of years {1, 2, . . . ,M} with replacement. From within each of the M selected years

of data, bootstrap resamples are constructed using a block bootstrap. For the results

given here, we used a block size of 20, and unadjusted percentile 95% confidence
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confidence intervals for the average of ρ were computed for each weather station,

using 100 resamples. The block size of 20 is partially justified by the simulation

results of Table 2.1 which are based on roughly the same sample size, and size the

autocorrelations in the FWI data are in the vicinity of 0.5.

To compute the length adjusted confidence intervals, a second bootstrap sample

is needed. For each bootstrap resample, the M resampled years are first re-resampled.

For each selected year of data, a block bootstrap re-resample is taken using a block

size which is one-half the original size, according to the procedure recommended by

Lee and Lai (2009). To compute the constants for the length adjusted confidence

intervals, we used the more accurate method described in Section 2.2.

The 95% confidence intervals for the average of ρ are given in Table 2.14 for

each weather station. It can be seen that the length adjusted intervals are quite differ-

ent from the unadjusted intervals. Regional differences are not completely apparent

here. The Temagami station appears to have somewhat different behaviour from the

other stations, but the Timmins station is quite similar to the Northwestern Ontario

stations.

To check on the accuracy of the length adjusted confidence intervals, another

simulation study was conducted. In this study, 500 samples were simulated. Each

sample consisted of M = 42 years worth of data, where each year consisted of 200

simulated observations from AR(1) processes. The autoregressive parameter, for each

year, was randomly sampled from a normal distribution with mean 0.5 and standard

deviation 0.05.

Unadjusted and length adjusted 95% confidence intervals for the average of ρ

were computed for each sample, and compared with the true value (0.5, in this case).

It was found that 87.8% of the length adjusted confidence intervals were correct,

while only 5.6% of the unadjusted intervals were correct. The mean length of the

unadjusted confidence intervals was found to be 0.0554 while the mean length of the

adjusted confidence intervals was 0.0633.

We also obtained 95% confidence intervals for the variance of ρ using the formula

at (2.4). These are given in Table 2.15 for each weather station. Again, the length

adjusted intervals are different from the unadjusted intervals. Noteworthy is the

fact that the length adjusted confidence intervals for the northeastern stations both

contain 0, while the confidence intervals for the northwestern stations do not. This is

in agreement with the result from the hypothesis test described earlier.

To check again on the accuracy of the length adjusted confidence intervals, an

additional simulation study was conducted. Again, 500 samples were simulated in
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exactly the same way as before. Unadjusted and length adjusted 95% confidence

intervals for the variance of ρ were computed for each sample, and compared with

the true value (0.052, in this case). It was found that 94.4% of the length adjusted

confidence intervals were correct, while none of the unadjusted intervals were correct.

The mean length of the unadjusted confidence intervals was found to be 0.00756 while

the mean length of the adjusted confidence intervals was 0.00697.

2.5 Conclusions

In this paper, we have shown that for time series with dependence resembling an

AR(1) process, length-adjusted percentile confidence intervals for the process mean,

variance and first lag autocorrelation are usually accurate, and often much more

accurate than unadjusted confidence intervals.

We applied this methodology to Fire Weather Index data from Ontario and

computed confidence intervals for the mean and variance of the annual first lag auto-

correlations. We found that the unadjusted confidence intervals tend to underestimate

these quantities and that the length adjusted intervals are more accurate and just as

precise. We have found evidence that the autocorrelation coefficients change from

year to year in the northwestern region of the province, but there is no evidence for

such change in the northeastern region. We also found that the first lag autocorrela-

tion behaviour in the extreme northeast region (i.e. Temagami) is somewhat different

from the other parts of the province: lower values appear to occur here, so somewhat

less extreme fire behaviour might be expected in this area.

In future work, it will be important to apply this methodology to other regions

of the boreal forest of Canada.

Further refinement to the methodology will also be addressed in the future. In

particular, it should be noted that we did not explicitly use a block size selector in

our bootstrap procedure, though methods have been proposed in the literature (e.g.

Nordman et al, 2007). The authors have studied another method based on a double

bootstrap procedure which works very well, and which will be the subject of a future

paper. Use of this procedure gives a block size near 20, which is the value we used

for our data analysis.
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Region Weather Station p-value

NW Red Lake .038
NW Sioux Lookout .044
NW Kenora .02
NW Dryden .068
NE Timmins .234
NE Temagami .754

Table 2.13: Results of bootstrap hypothesis test of temporal homogeneity of first lag
autocorrelation.
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Region Station Unadjusted CI Length adj. CI
NW Red Lake (0.296, 0.381) (0.379, 0.453)
NW Sioux Lookout (0.293, 0.393) (0.369, 0.476)
NW Kenora (0.328, 0.405) (0.401, 0.465)
NW Dryden (0.338, 0.420) (0.421, 0.500)
NE Timmins (0.313, 0.401) (0.392, 0.478)
NE Temagami (0.218, 0.349) (0.295, 0.420)

Table 2.14: 95% confidence intervals for mean of the first lag autocorrelation param-
eter at each of 6 weather stations in Northwestern (top 4) and Northeastern Ontario
(bottom 2).

Region Station Unadjusted CI Length adj. CI
NW Red Lake (0.0145, 0.0334) (0.00371, 0.0194)
NW Sioux Lookout (0.0168, 0.0387) (0.00128, 0.0203)
NW Kenora (0.0134, 0.0295) (0.00295, 0.01787)
NW Dryden (0.0122, 0.0270) (0.000541, 0.015225)
NE Timmins (0.0138, 0.0324) (-0.000413, 0.014026)
NE Temagami (0.00903, 0.04717) (-0.0230, 0.0187)

Table 2.15: 95% confidence intervals for variance of the first lag autocorrelation pa-
rameter at each of 6 weather stations in Northwestern and Northeastern Ontario.
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Figure 2.1: Geographical locations of the weather stations: sources of the FWI data.
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Chapter 3

MINIFICATION MODELS FOR FWI

3.1 Introduction

The Fire Weather Index (FWI) is an important measure of fire danger in Canada,

often interpreted as a proxy for the amount of effort that would be required to suppress

extant wildfires. This index is a principal summary measure in the Canadian Forest

Fire Behaviour Prediction System (Forestry Canada, 1992). Each day, during the

Canadian fire season, the FWI is calculated using current and recent precipitation,

temperature, relative humidity and wind speed measurements. These measurements

are recorded at noon each day at several hundred weather stations located across the

country. Our focus will be on the time-evolution behaviour of the FWI at six weather

stations in the Province of Ontario, as test cases for a FWI time series model which

we will propose in this paper.

The FWI was the subject of an important study by Martell (1999) in which

5-state Markov chains were employed as models for the evolution of the FWI at a

number of weather stations in Ontario. Such models are governed by a large number

of parameters, most of which are not easily interpretable. Thus, as pointed out in the

paper itself, time series models for the FWI would be preferable. Such models usually

have fewer parameters, and these parameters may be subject to clearer interpretation.

Another advantage of time series models is that they more clearly reflect the numeric

character of the process that they are emulating. An appropriate time series model

can be used to directly simulate realistic FWI time series, while a 5-state Markov

chain cannot be used for such a purpose. Furthermore, specific probabilities of FWI

exceedance can be calculated from a time series model, while the corresponding ex-

ceedance probabilities coming from a Markov chain are necessarily much coarser. As

we will see, the calculation of such exceedance probabilities for runs of one or more

days of large FWI measurements could be of benefit to wildfire managers in terms of

short-term suppression resource allocation.
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Figure 3.1: Trace plot and histogram of daily FWI measurements at Dryden, Ontario
for April 29, 1987 through September 15, 1987.

3.1.1 Inadequacies of Linear Models for the FWI

Fujioka and Tsou (1985) developed first- and second-order autoregressive time series

models for a related (American) fire weather index. Such models could provide quick

rough approximations for the Canadian FWI, but accuracy may be questionable, as

we now demonstrate.

A fairly typical situation is pictured in Figure 3.1: a trace plot of daily FWI

values at Dryden, Ontario, for spring and summer, 1987 as well as the corresponding

histogram. The histogram shows a high degree of skewness, so transformation of the

data is required before applying an autoregressive model. Because of 0’s in the data,

we add 1 to all observations before applying a log transformation. For day I, set

Zi = log(FWIi + 1).

The histogram in Figure 3.2 indicates that the log transformation has substantially

reduced the skewness in the data, and the sample autocorrelation plot indicates that

a first-order autoregressive process might provide an adequate model for the trans-

formed data.

Using the arima() function in R (R Core Development Team, 2014), the fitted
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Figure 3.2: Histogram and sample autocorrelations of log-transformed Dryden FWI
measurements.

model is found to be

Zi = 1.7087 + 0.5620(Zi−1 − 1.7087) + εi

where εi is a random variable with mean 0 and variance 0.7998.

Standard model checks include a plot of the sample autocorrelations of the

residuals. In this case, all such autocorrelations are very small, indicating a good

model. A normal QQ-plot of the residuals indicates non-normality, as would be

expected, but the model might be considered acceptable as an approximation, and

for some purposes, this may be true. However, we will now show that the model

cannot be used as a basis for simulating realistic FWI sequences.

Simulating from the above model is straightforward. Figure 3.3 shows trace

plots of two simulation runs where the number of simulated observations matches the

size of the 1987 Dryden sample.

The trace plot in the left panel of Figure 3.3 exhibits an FWI value near 70.

This is extremely high; 40 years of observations at Dryden yield a maximum value

of 60. The plot in the right panel is even more extreme: two simulated observations

are in excess of 100, including one above 150. Such values are not expected under
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Figure 3.3: Trace plots for two runs of data, simulated from the fitted first order
autoregressive model, back-transformed to the original scale.

any realistic scenario. Thus, a realistic FWI simulator must be based on an entirely

different kind of time series model.

3.1.2 Model Considerations Based on Data Exploration

Returning to the trace plot in the left panel of Figure 3.1, we see that the FWI

measurements are nonnegative, and we also see occasional runs of 0’s. The histogram

in the right panel indicates that the data are roughly exponentially distributed, though

closer examination of these data as well as measurements from other years and other

weather stations indicates that the tail behaviour may be somewhat lighter than

predicted by an exponential model. The autocorrelation plot in Figure 3.2 shows

short range dependence.

The preceding discussion suggests that the appropriate modelling strategy will

be through the use of nongaussian time series, particularly nonnegative-valued series

which include atoms at 0.
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3.1.3 Some Nonnegative Time Series Models

3.1.3.1 Minification Models

A univariate time series {Xn} follows a minification process when

Xn = kmin(Xn−1, En) (3.1)

for an appropriate constant k > 1. The random innovation En is usually nonnegative

and assumed to be independent of Xn−1.

When En has an exponential distribution, the model at (3.1) is called an ex-

ponential minification process; it was first studied by Tavares (1980) who exploited

the minimum property of exponential distributions to show that the process gives rise

to a stationary time series of exponential random variables, although the use of the

minimization operation to produce multivariate exponential distributions originates

with Marshall and Olkin (1967). Among other things, Tavares showed that if {En} is

an i.i.d. sequence of exponential random variables with rate (k−1)λ, then the process

yields a stationary sequence of random variables {Xn} whose marginal distributions

are exponential with rate λ. He showed that the lag i autocorrelations for this process

are k−i, for i = 1, 2, . . ..

Sim (1986) developed simulation algorithms for a version of the minification

process where the random variables En follow a Weibull distribution. In other words,

Yn = XP
n follows model (3.1) when En is Weibull with shape parameter P and a scale

parameter which matches that of the exponential variable Xn. Adke and Balakr-

ishna (1992) carried out statistical inference for the case where En is exponentially

distributed.

Lewis and McKenzie (1991) studied the minification process for cases where

the innovations are not necessarily exponential or Weibull. Balakrishna and Jacob

(2003) showed that the general minification process is ergodic, and used this result

to establish consistency of the estimators of the mean and k.

3.1.3.2 Related Models

Another important autocorrelated process with exponential marginal distributions is

the first-order exponential autoregressive process (EAR(1)) which is due to Gaver and
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Lewis (1980):

Xn =

ρXn−1, w.p. ρ.

ρXn−1 + En, w.p. 1− ρ.
(3.2)

where the Ei are independent exponential random variables with rate λ.

The EAR(1) process was shown by Chernick et al (1988) to be the time-reversed

process of Tavares’ (1980) exponential minification process.

We note that Lawrance and Lewis (1977) introduced a first-order exponen-

tial moving average model, EMA(1). Lawrance and Lewis (1980) also generalized

the EAR(1) and EMA(1) to higher order and connected the two processes in the

EARMA(p,q) model. Lawrance and Lewis (1981) introduced a generalization of the

EAR(1) model which they called the new exponential autoregressive process, the

NEAR(1) model:

Xn = βBnXn−1 + εn (3.3)

where Bn is a Bernoulli random variable with parameter α, and εn is a mixture of

two exponential random variables: having rate λ, with probability (1 − β)(1 − (1 −
α)β)−1, and rate λ((1 − α)β)−1, otherwise. The i.i.d sequences {Bn} and {εn} are

independent. When α = 1, the process is EAR(1).

The NEAR(1) model was designed to address some problems that were evident

with the EAR(1) (as well as the associated minification) model, namely, that the pro-

cesses are always positively autocorrelated and that runs of geometrically decreasing

values occur. This last problem can be observed from (3.2), where if X1 = x, then

the event {X2 = ρx,X3 = ρ2x, . . . , Xj+1 = ρjx} occurs with probability ρj > 0.

The NEAR(1) model has exponential marginal distributions, but the evolution

from Xn−1 to Xn no longer includes geometrically changing runs.

The NEAR(1) process continues to have nonnegative autocorrelations. To ob-

tain an exponential time series model with negative first lag autocorrelation, Lawrance

and Lewis (1981) proposed a cross-coupled version of the NEAR(1) model using an-

tithetic variable sampling. Specifically, sequences {Xn} and {X ′n} are defined as

follows:

Xn = βBnX
′
n−1 + εn

and

X ′n = βB′nXn−1 + ε′n
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where the pairs (B′n, Bn) and (ε′n, εn) are both negatively related. The marginal

distributions of Xn and X ′n are both exponential, but the lag 1 autocorrelations

within each sequence are negative.

3.1.3.3 Tailed Time Series Models

The models discussed to this point give rise to purely positive time series, if the

innovations are always positive. Note that if the innovations are 0 with nonzero

probability, there is a nonzero probability that these processes will be absorbed at 0

in finite time. In order to properly model the Fire Weather Index, atoms at 0 are

needed, but the process should not be absorbed into the 0 state.

One possibility is to use a tailed model which is a mixture of a point mass at

0 with a continuous distribution on the positive halfline. The terminology “tailed

model” is due to Littlejohn (1994) who introduced an exponential tailed minification

process:

Xn = min(Xn−1, En)/ρ+

γn, w.p. ρ, if min(Xn−1, En) = 0.

0, otherwise.

where

P (En ≥ x) = (1− φ)e
−xλρ +xλ

,

φ =
θ(1− ρ)

ρ(1− θ)

and

P (γn > x) = e−λx.

When ρ = 1− θ, {Xn} is a stationary exponential tailed process.
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3.1.4 Outline of Paper

In Section 2, we consider the physical processes underlying the FWI in order to set

out a basic time series model, and this is checked against the 1987 Dryden FWI

data. A step-by-step approach is taken in Sections 2 through 5 to gradually add

features to the time series model with the goal of matching the characteristics of

the data more closely. At each stage, the current model is checked by comparing a

trace plot and an autocorrelation plot with the plots given in Figure (3.2). We note

that matching the autocorrelation function for a nonlinear time series model with

the sample autocorrelation function is not sufficient to ensure model adequacy, but a

failure to match is an indicator of model inadequacy.

In Section 5, a random coefficient model will be described and studied, both

at a general level and at a level specific enough to be fit to our data. In Section

6, we apply the random coefficient model to the entire set of data from six weather

stations, while considering additional ways to check model adequacy. Applications

of the random coefficient minification model are considered in Section 7. Concluding

remarks can be found in the final section.

3.2 FWI and Exponential Tailed Minification Processes

The FWI is calculated from the fine fuel moisture code (FFMC), wind speed and

the Buildup Index (BUI). The FFMC, in turn, is governed by temperature, relative

humidity, wind speed and precipitation, while the BUI is dominated by precipitation,

with some temperature and relative humidity effects through the dependence of the

BUI on the duff moisture code (DMC). Thus, drying and wetting through atmospheric

processes play a large role in the FWI, with precipitation leading to occasional abrupt

changes (often, but not always, to nil values).

In the Canadian Forest Fire Danger Rating System (Van Wagner, 1987), wetting

and drying towards equilibrium moisture values are described, particularly for the

FFMC. Because of its high degree of dependence on the FFMC, the FWI might

also be thought to have “equilibrium” values which it gravitates towards. Therefore,

when “substantial” precipitation effects are absent, we expect the FWI to gradually

increase or decrease depending upon which side of the “equilibrium” it is. However,

precipitation effects are somewhat likely to cause arbitrarily-sized decreases, though

never to negative values. Thus, it seems reasonable to suppose that drying effects from

day to day, when wetter than the equilibrium value, will be essentially constant, while
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wetting effects, even when drier than equilibrium, will be somewhat less predictable.

A basic model which has this kind of character is a minification model:

Xn = (α + 1) min(Xn−1, α
−1εn) (3.4)

where εn is independent of Xn−1 and has a distribution which is, in a vague sense,

centered at or near the FWI equilibrium value. The sequence of X’s coming from

this model will tend to gradually increase towards the equilibrium from below and

to somewhat unpredictably drop back below the equilibrium value after a period of

increase.

3.2.1 A Basic Model

To more fully model precipitation effects, we need to include a mixture component

at 0. One possibility is

Xn =

(α + 1) min(Xn−1, α
−1εn), if Xn−1 > 0.

εn, if Xn−1 = 0.
(3.5)

where εn has a tailed model which is a mixture of a point mass at 0 with a continuous

distribution on the positive halfline. For our present purpose, we assume that εn

has an exponential tailed distribution with parameters λ and pε (ET(λ, pε)) random

variable if

P (εn ≥ x) = (1− pε)e−λx,

where pε ∈ (0, 1).
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3.2.1.1 Stationarity

It is possible to define a stationary process via (3.5). To see this directly, first note

that

P (Xn = 0) = P (Xn = 0|Xn−1 > 0)P (Xn−1 > 0) +

P (Xn = 0|Xn−1 = 0)P (Xn−1 = 0)

= pε(1− P (Xn−1 = 0)) + pεP (Xn−1 = 0)

= pε.

Now, suppose that

P (Xn−1 ≥ x) = (1− pε)e−λx.

It follows that

P (Xn ≥ x) = pε(1− pε)e−λx +

P
(
Xn−1 ≥ x(α + 1)−1εn ≥ xα(α + 1)−1|Xn−1 > 0

)
P (Xn−1 > 0)

= pε(1− pε)e−λx + (1− pε)(1− pε)e−λx = (1− pε)e−λx.

Therefore, {Xn} is a stationary exponential tailed process. The model for FWI at

(3.5) is essentially equivalent to the Littlejohn (1994) model for Yn.

3.2.1.2 Parameter Estimation

For the exponential tailed case of the minification model (3.5), there are 3 parameters:

λ, pε and α. Results from Balakrishna and Jacob (2003) can be used to show that

consistent parameter estimators using data of the form X1, X2, . . . , Xn are as follows:

α̂ = max
Xj>0

(
Xj
Xj−1

)
− 1

and

p̂ε =
1

n

n∑
j=1

IXj=0
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Figure 3.4: Left panel: simulated run of exponential tailed minification model using
parameters estimated from FWI observations at Dryden, Ontario, for the year 1987.
Right panel: autocorrelation estimates for the simulated data.

where IX=0 denotes the indicator that X = 0. Since

P (εj = 0) = P (Xj = 0)

for this model, the rate parameter can be estimated using

λ̂ =
1− p̂ε
X̄

where X̄ denotes the average of the sample.

Parameter estimates for the exponential tailed minification model fit to the 1987

Dryden data are p̂ε = 0.179, α̂ = 8 and λ̂ = 0.104.

3.2.1.3 Model Checking

We can use simulation again to show that this model is not adequate for the data. In

Figure 3.4, a trace plot and sample autocorrelation plot are displayed for data that

have been simulated from model (3.5).
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We observe that, although the simulated process is providing more realistically

valued measurements, the autocorrelations for the simulated data are all small, com-

pared with the relatively large lag 1 autocorrelation for the observed data.

3.2.1.4 Seasonality

Martell’s (1999) work demonstrates that seasonality plays a role in the behaviour of

the FWI in Ontario. He divided the fire season into 3 subseasons: April 29-June 9,

June 10-July 28, and July 29-September 15. He then estimated his 5-state Markov

chain transition parameters for each subseason.

Adopting a similar strategy, we can estimate the exponential tailed minifica-

tion model parameters for each of Martell’s subseasons. Parameter estimates for the

seasonal version of the exponential tailed minification model fit to the 1987 Dryden

data are given in Table 3.1.

Subseason 1 Subseason 2 Subseason 3
pε 0.14 0.20 0.08
λ 0.09 0.10 0.10
α 9.00 7.00 2.50

Table 3.1: Parameter estimates for the exponential tailed model fit to each of the 3
subseasons of the 1987 Dryden FWI data.

In Table 3.1, pε appears to change from subseason to subseason. This could

be due to different rainfall patterns in the different subseasons; this seems especially

noticeable in the third subseason. The parameter α also appears to change. This

parameter is connected to the rate of drying. The estimates of λ appear to be stable

over the 3 subseasons, indicating that the baseline or mean FWI is essentially constant

over the fire season. The conclusions we have drawn at this point are tentative and

subject to further model validation as well as the study of additional data, to be

carried out later.

The trace plot and autocorrelation plot for data simulated from the seasonal

fitted exponential tailed minification model are displayed in Figure 3.5. Seasonality

gives an improved fit, but there are still problems. The lag 1 autocorrelation is now

clearly nonzero, but it is still much less than for the observed data. The autocorrela-

tions at higher lags do not match those for the observed data at all. The trace plot

indicates a tendency for larger values of the FWI to be generated than we see in the

trace plot for the observed data.
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Figure 3.5: Left panel: simulated run of exponential tailed minification model using
parameters estimated from FWI observations at Dryden, Ontario, for the 3 subseasons
of the 1987 fire season. Right panel: autocorrelation estimates for the simulated data.

There also may not be enough 0’s in the simulated data; the process does not

seem to stay at 0 long enough. This suggests changing the probability of transition

from the 0 state from pε to something else.

3.2.2 A Modified Exponential Tailed Minification Model

More specifically, assume that {δn} is a sequence of independent ET(λ, pδ) random

variables which are independent of {εn}. Define

Xn =

(α + 1) min(Xn−1, α
−1εn), if Xn−1 > 0.

δn, if Xn−1 = 0.
(3.6)

3.2.2.1 Stationarity

It is still possible to define a stationary process via (3.6). To see this, set pX = P (Xn =

0) = P (Xn−1 = 0) = pε(1 + pε − pδ)−1, and suppose that

P (Xn−1 ≥ y) = (1− pX)e−λy.
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It follows that

P (Xn ≥ y) = pX(1− pδ)e−λy +

P
(
Xn−1 ≥ y(α + 1)−1, εn ≥ yλ(α + 1)−1|Xn−1 > 0

)
P (Xn−1 > 0)

= pX(1− pδ)e−λy + (1− pX)(1− pε)e−λy

= (1− pX)e−λy.

Thus, {Xn} is a stationary exponential tailed process.

3.2.2.2 Parameter Estimation

Consistent parameter estimators using data of the form X1, X2, . . . , Xn are as follows:

α̂ = max
Xj>0

(
Xj
Xj−1

)
− 1. (3.7)

and

p̂ε =
1

n+

n∑
j=2

IXj=0,Xj−1>0 (3.8)

where n+ denotes the number of observations in {X1, . . . , Xn−1} which are positive,

since

P (εj = 0) = P (Xj = 0|Xj−1 > 0)

for this model.

p̂δ =
1

n0

n∑
j=2

IXj=0,Xj−1=0 (3.9)

where n0 denotes the number of observations in {X1, . . . , Xn−1} which are 0, since

P (δj = 0) = P (Xj = 0|Xj−1 = 0)

for this model.

λ̂ =
1− p̂X

X̄
(3.10)
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Figure 3.6: Left panel: simulated run of the modified exponential tailed minification
model using parameters estimated from FWI observations at Dryden, Ontario, for
the year 1987. Right panel: autocorrelation estimates for the simulated data.

where p̂X denotes the proportion of 0’s in the sample.

Parameter estimates for this generalization of the minification model fit to the

1987 Dryden data are: p̂ε = 0.149, α̂ = 8, λ̂ = 0.107, and p̂δ = 0.32. We note that

the estimate of pδ is much larger than the estimate of pε. Thus, the probability of

remaining in the nil state is larger than the probability of entering the nil state.

3.2.2.3 Model Checking

We can use simulation again to show that this model is not adequate for the data.

In Figure 3.6, a trace plot and sample autocorrelation plot are displayed for data

that have been simulated from model (3.6) using parameter values estimated from

the 1987 Dryden FWI data.

We observe that short runs of 0’s are somewhat more evident now and the first

lag autocorrelation is clearly nonzero, but still much less than the observed first lag

autocorrelation.
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Figure 3.7: Left panel: simulated run of the modified exponential tailed minification
model using parameters estimated from FWI observations at Dryden, Ontario, for
the 3 subseasons of the 1987 fire season. Right panel: autocorrelation estimates for
the simulated data.

3.2.2.4 Seasonality

We can estimate the modified exponential tailed minification model parameters for

each of Martell’s (1999) subseasons. Parameter estimates for the seasonal version of

the modified exponential tailed minification model fit to the 1987 Dryden data are

given in Table 3.2.

The estimates of λ and α are based on the same estimators as the exponential

tailed model so they remain unchanged. pε still appears to change from subseason to

subseason, and pδ follows the same general pattern but with correspondingly larger

magnitudes. Any conclusions to be drawn remain tentative and subject to further

model validation as well as the study of additional data.

Subseason 1 Subseason 2 Subseason 3
pε 0.11 0.16 0.07
λ 0.09 0.10 0.10
α 9.00 7.00 2.50
pδ 0.33 0.40 0.25

Table 3.2: Parameter estimates for the modified exponential tailed model fit to each
of the 3 subseasons of the 1987 Dryden FWI data.
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Figure 3.8: Left panel: Exponential tailed QQ-plot for FWI observations at Dryden,
Ontario, for the year 1987. Right panel: Exponential tailed QQ-plot for the same
observations raised to the power 1.2.

3.3 A Weibull Tailed Minification Model

3.3.1 Checking the Exponential Tailed Assumption

We can use a QQ-plot to see if the exponential tailed assumption is reasonable and

to determine whether a power transformation will correct the problem. A power

transformation corresponds to a Weibull tailed model. The qth quantile of the ET(λ,

pX) model is

x =
log(1− pX)− log(1− q)

λ

unless log(1− pX)− log(1− q) < 0, in which case x = 0.

Figure 3.8 displays QQ-plots of the 1987 Dryden FWI data. The plot in the

left panel is for the untransformed data and the plot in the right panel is of the data

raised to the power 1.2. We observe that the untransformed data deviate from the 45◦

reference line. Therefore we conclude that transformation is needed. The transformed

data lie close to the reference line indicating that the required power is near 1.2.
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3.3.2 Details of the Model

We continue to assume that {δn} is a sequence of independent ET(λ, pδ) random

variables which are independent of the ET(λ, pε) variables {εn}. Define

Yn = XP

n

for some P > 0 where Xn follows the model (3.6). That is,

Yn =

(α + 1)P min(Yn−1, α
−PεPn), if Yn−1 > 0.

δPn, if Yn−1 = 0.
(3.11)

Yn is said to be Weibull tailed: WT(λ, pY,P). It is easy to see that

pY = pX =
pε

1− pδ + pε
.

The right panel of Figure 3.8 suggests that FWI1.2 is ET(λ, pX). Thus, Y =

FWI ∼WT(λ, pX, 5/6).

3.3.2.1 Stationarity

It is still possible to define a stationary process via (3.11). To see this, set

P (Yn−1 ≥ y) = (1− pX)e−λy
1/P
.

It follows that

P (Yn ≥ y) = P (Xn ≥ y1/P) = (1− pX)e−λy
1/P
.

Therefore, {Yn} is a stationary Weibull tailed process.
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Figure 3.9: Left panel: simulated run of the modified Weibull tailed minification
model using parameters estimated from FWI observations at Dryden, Ontario, for
the year 1987. Right panel: autocorrelation estimates for the simulated data.

3.3.2.2 Parameter Estimation

Given P, consistent parameter estimators using data of the form Y1, Y2, . . . , Yn are

given by equations (3.7) through (3.10) with Xj = Y
1/P
j , for j = 1, . . . , n. Parameter

estimates for the Weibull minification model fit to the 1987 Dryden data, using P =

.833, are: p̂ε = 0.149, α̂ = 12.97, λ̂ = 0.0637, and p̂δ = 0.32.

3.3.2.3 Model Checking

We again use simulation to check adequacy of the fitted Weibull model. In Figure 3.9,

a trace plot and sample autocorrelation plot are displayed for data that have been

simulated from model (3.11). The autocorrelation plot indicates that the Weibull

model is not capturing the dependence in the data properly. This is not surprising in

view of our earlier observation that seasonality is playing a role.

3.3.2.4 Seasonality

Parameter estimates for the seasonal version of the modified Weibull tailed minifica-

tion model fit to the 1987 Dryden data are given in Table 3.3.
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Figure 3.10: Left panel: simulated run of the modified Weibulll tailed minification
model using parameters estimated from FWI observations at Dryden, Ontario, for
the 3 subseasons of the 1987 fire season. Right panel: autocorrelation estimates for
the simulated data.

The estimates of λ appear to be stable across the subseasons, and the estimates

of α and pε still appear to change from subseason to subseason. Estimates of pδ follow

the same general pattern but with correspondingly larger magnitudes.

Subseason 1 Subseason 2 Subseason 3
pε 0.11 0.16 0.07
λ 0.05 0.06 0.06
α 14.85 11.13 3.50
pδ 0.33 0.40 0.25

Table 3.3: Parameter estimates for the modified Weibull tailed model fit to each of
the 3 subseasons of the 1987 Dryden FWI data, assuming P = 5/6.

In Figure 3.10, a trace plot and sample autocorrelation plot are displayed for

data simulated from model (3.11) using parameters estimated for each of the subsea-

sons using parameters estimated for each of the subseasons using the 1987 Dryden

FWI data. The trace plot looks somewhat realistic, but the lag 1 autocorrelation is

still disappointingly small. The model is still not satisfactory.
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3.4 A Mixture Tailed Minification Process

3.4.1 Comparing the Distributions of δ and X

Under the assumptions of a Weibull tailed minification model, the marginal distribu-

tions of the continuous parts of δj and Xj are both Weibull tailed with parameters

P and λ. Our present goal is to check whether the rate parameters for δj and εj are

the same using the 1987 Dryden FWI data.

We can observe δj directly, sinceXj = δj , whenXj−1 = 0. If the rate parameter

for εn is the same, then the marginal distribution of Xj , given Xj−1 > 0 and Xj > 0

should be the same as for εj . Therefore, we can compare the marginal distributions

of δj and εj using a QQ-plot of these quantities.

Figure 3.11 displays such a QQ-plot for the FWI observations for Dryden in

1987 with a 45◦ reference line. There is a clear discrepancy between the observations

and the reference line, indicating that the two distributions are very different. As a

further confirmation, we have simulated five datasets from the fitted model and re-

computed the QQ-plot in each case. In order for the reference plots to be completely

comparable with the QQ-plot of the original data, we have applied the ceiling to all

observations before sorting.

Although some of the reference plots display some departure from the reference

line as well, none is as extreme as the plot of the original data. Also, the scale of the

original dataset is much smaller than for any of the reference datasets. Our conclusion

is that we should allow δj to have a different rate parameter from εj .

3.4.2 The Mixture Tailed Process

We now consider a version of the tailed model (3.6) where εn is ET(λ, pε) and δn is

ET(γ, pδ), where it is possible for γ and λ to be unequal. This leads to a stationary

distribution which is a mixture of exponentials (or Weibulls).

3.4.2.1 Stationary Distribution

A stationary process can still be defined, but the marginal distribution is no longer

exponential tailed. Instead, the continuous part of the distribution is a mixture



57

●●●●●●●●●●●
●●●

● ●
●

0 10 20 30 40

0
10

20
30

40

FWIj > 0|FWIj−1 > 0

FW
I j>

0|F
W

I j−
1

=0

Observed Data

●
●
●●

●
●

●●

●
●

●

●

●

0 10 20 30 40

0
10

20
30

40
50

FWIj > 0|FWIj−1 > 0

FW
I j>

0|F
W

I j−
1

=0

Simulated Data

●●

●
●●

●●

●

●
●

●

●

●

●
●

0 10 20 30

0
10

20
30

FWIj > 0|FWIj−1 > 0

FW
I j>

0|F
W

I j−
1

=0

Simulated Data

●
●
●●
●●●

●
●●
●●

●●
●

●
●

●

●

●

0 10 20 30 40

0
10

20
30

40

FWIj > 0|FWIj−1 > 0

FW
I j>

0|F
W

I j−
1

=0

Simulated Data

●

●●●
●
●●

●
●●

●
●

●

0 10 20 30 40

0
10

20
30

40

FWIj > 0|FWIj−1 > 0

FW
I j>

0|F
W

I j−
1

=0

Simulated Data

●●●●●
●●

●●
●●●

●●
●

●

●

●

●

0 10 30 50

0
10

20
30

40
50

60

FWIj > 0|FWIj−1 > 0

FW
I j>

0|F
W

I j−
1

=0

Simulated Data

Figure 3.11: QQ-plots of δj versusXj for the Weibull tailed minification model applied
to FWI observations at Dryden, Ontario, for the year 1987 and data simulated from
the fitted model.

of exponential tailed distributions. We continue to make the same independence

assumptions as before.

P (Xn ≥ x) = pXP (δn ≥ x | Xn−1 = 0) +

(1− pX)P ((α + 1)min(Xn−1, α
−1εn) ≥ x | Xn−1 > 0)

= (1− pX)P (Xn−1 ≥ x(α + 1)−1, εn ≥ αx(α + 1)−1 | Xn−1 > 0) +

pX(1− pδ)e−γx

= (1− pX)(1− pε)e−λαx(α+1)−1P (Xn−1 ≥ x(α + 1)−1 | Xn−1 > 0) +

pX(1− pδ)e−γx

= (1− pε)e−λαx(α+1)−1P (Xn−1 ≥ x(α + 1)−1, Xn−1 > 0) +

pX(1− pδ)e−γx

= (1− pε)e−λαx(α+1)−1P (Xn−1 ≥ x(α + 1)−1) + pX(1− pδ)e−γx.
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Stationarity of {Xn} implies that

P (Xn ≥ x) = (1− pδ)pXe
−γx + (1− pε)e−αλx(α+1)−1P (Xn ≥ x(α + 1)−1) (3.12)

from which it is possible to derive the formula

P (Xn ≥ x) = pX(1− pδ)e−λx
[ ∞∑
k=1

(1− pε)ke
− (γ−λ)x
(α+1)k

]
+ pX(1− pδ)e−γx. (3.13)

For the mixture Weibull tailed case, we can also obtain an explicit expression.

Specifically, suppose Yn = XP
n for some P 6= 0, and suppose εn and δn are nonnegative

exponential tailed random variables with the same parameter P: ε ∼ ET(λ, pε) and

δ ∼ ET(γ, pδ). Then

P (Yn ≥ x) = P (XP

n ≥ x) = P (Xn ≥ x1/P)

= pX(1− pδ)e−γx
1/P

+ pX(1− pδ)e−λx
1/P

∞∑
k=1

(1− pε)ke
− (γ−λ)x1/P

(α+1)k

3.4.2.2 Numerical Calculation of Stationary Probabilities

Approximate values of P (Xn ≥ x) are obtainable from (3.13) upon truncating the

infinite sum, but (3.12) can also be used directly, since P (Xn > 0) is known to be

1 − pX. Thus, we may approximate P (Xn > ε) by 1 − pX for some small ε > 0.

Then P (Xn ≥ x) can be calculated for any positive x by recursion. This method can

provide better accuracy than (3.13).

To demonstrate the recursion technique clearly, we supply the R code (R Core

Development Team, 2014) which can be used to calculate the stationary probability

P (X ≥ x) for a given set of parameter values:

> survProb<- function(x, p.delta, p.eps, lambda, gamma, alpha) {

+ pX <- p.eps/(1+p.eps-p.delta)

+ if (x < 0.1) {
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+ SP <- 1-pX

+ } else {

+ SP <- survProb(x/(alpha+1), p.delta, p.eps, lambda, gamma,

+ alpha)

+ }

+ (1-p.delta)*exp(-gamma*x)*pX +

+ (1-p.eps)*exp(-alpha*lambda*x/(alpha+1))*SP

+ }

An example of its use is

> survProb(12, .62, .18, .12, .31, 8)

[1] 0.1289089

This is the approximate value of P (X ≥ 12) when pδ = .62, pε = .18, λ = .12, γ = .31

and α = 8.

When Y follows the mixture Weibull tailed process where Y = XP, the same

function can be used, upon recalling that

P (Y ≥ y) = P (X ≥ y1/P).

When P = .9, and the other parameters are as above, we can calculate P (Y ≥ 10) as

> survProb(10^(1/.9), .62, .18, .12, .31, 8)

[1] 0.1147192
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3.4.2.3 Fitting and Checking the Model

We consider the mixture exponential tailed case first. The estimators for α, pε and

pδ remain as given by equations (3.7), (3.8) and (3.9). The maximum likelihood

estimator for γ is

γ̂ =
n0∑n

j=2XjIXj>0,Xj−1=0
. (3.14)

In order to estimate λ, we first note that, provided that the sample is large

enough, the maximum likelihood estimator for α is exact. This type of behaviour has

been noted earlier (e.g. Gaver and Lewis, 1980). The likelihood is given by

L(λ, α, pε, pδ) =
n∏
j=2

f
Xj |Xj−1(Xj | Xj−1)fX1(X1)

because the minification process is Markovian.

The conditional density of Xj , given the Xj−1 = 0 is given by

f
Xj |Xj−1(Xj | 0) = (1− pδ)γe

−γXj + pδI{Xj=0}

and is independent of λ. When Xj−1 > 0, we have

f
Xj |Xj−1(Xj | Xj−1) = P (εj ≥ αy)I{Xj−1=(α+1)−1Xj}

+

α(α + 1)−1fε(α(α + 1)−1Xj)I{Xj−1>(α+1)−1Xj}

since

P (Xj ≥ x | Xj−1 = y) = P (Xj−1 ≥ x(α + 1)−1, εj ≥ αx(α + 1)−1 | Xj−1 = y)

= P (εj ≥ α(α + 1)−1x)I{y≥x(α+1)−1}
= P (εj ≥ αy)I{y=x(α+1)−1} +

P (εj ≥ α(α + 1)−1x)I{y>x(α+1)−1}.
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The expression to be maximized with respect to λ is thus

L(λ) =
∏

j:Xj=(α+1)Xj−1

P (εj ≥ αXj−1)

∏
k:Xk<Xk−1(α+1)

fε(Xkα(α + 1)−1)α(α + 1)−1 · fX1(X1)

(3.15)

where the products are taken over j and k when Xj−1 > 0 and XK−1 > 0. Equation

(3.15) is equal to

L(λ) =
∏

j:Xj=(α+1)Xj−1

(1− pε)e−λαXj−1

∏
k:Xk<Xk−1(α+1)

λ(1− pε)e−λXkα(α+1)−1α(α + 1)−1 · fX1(X1)

Maximizing this numerically gives the MLE for λ. A quick approximation is obtained

by neglecting fX1(X1). This will be justified only when the sample size large enough

to trade X1 as a missing observation. Proceeding this way, and upon differentiating

the log likelihood with respect to λ we have

α
∑

j:Xj=(α+1)Xj−1

Xj−1

∑
k:Xk<Xk−1(α+1)

(λ−1 −Xkα(α + 1)−1) = 0.

Letting nε denote the number of Xk’s for which Xk < (α+ 1)Xk−1, the approximate

maximum likelihood estimator for λ is given by

λ̂ =
−nε

α
∑
j:Xj=(α+1)Xj−1 Xj−1 −

∑
k:Xk<Xk−1(α+1)Xkα(α + 1)−1

. (3.16)

For the 1987 Dryden data, based on the approximate MLE method we found that

λ̂ = 0.120, p̂ε = 0.149, p̂δ = 0.32, γ̂ = 0.607 and α̂ = 8 .

Figure 3.12 displays the trace plot for data simulated from the mixture expo-

nential tailed minification model using parameters estimated by maximum likelihood
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Figure 3.12: Left panel: simulated run of mixture exponential tailed minification
model using parameters estimated from FWI observations at Dryden, Ontario, for the
1987 fire season using maximum likelihood. Right panel: autocorrelation estimates
for the simulated data.

on the 1987 Dryden FWI data. It can be seen that there is no real improvement; the

trace plot shows several unrealistically large FWI values, while the autocorrelations

are all small, with the exception of an anomalous negative value at lag 3.

The maximum likelihood estimator of λ depends very strongly on the correctness

of the model. If the model is misspecified and α is incorrect, then λ could be badly

biased. The next method provides an estimator which is not so heavily dependent on

α. An alternative approach to parameter estimation in nonlinear time series is a least-

squares method which minimizes the distance between the model-based conditional

expectation E[Xj | Xj−1] and the observation Xj :

For our purpose, we are interested in estimating λ so we solve the problem

min
λ

n∑
j=2

(Xj − E[Xj | Xj−1])2 (3.17)

The first conditional lagged moment is

E[Xn|Xn−1 = x] = (1− pε)λ−1(α + 1)α−1(1− e−λxα).
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Figure 3.13: Left panel: simulated run of mixture exponential tailed minification
model using parameters estimated from FWI observations at Dryden, Ontario, for
the 1987 fire season. The λ parameter has been estimated by least-squares. Right
panel: autocorrelation estimates for the simulated data.

The optim() function in R (R Core Development Team 2014) can be used to find the

solution to the equation (3.17).

For the 1987 Dryden data, we found that λ̂ changes to 0.087 when using the

least-squares method. The other parameter estimates are the same as before.

Figure 3.13 contains a trace plot and autocorrelation plot for data simulated

from the fitted model. The trace plot displays more realistic values than before, and

the lag 1 autocorrelation is slightly larger. All other autocorrelations remain small.

Thus, the model is inadequate whether the λ parameter is estimated by maximum

likelihood or least-squares.

We next consider the Weibull case. When the FWI is transformed as FWI6/5,

the parameter estimates for pε and pδ are the same as for the exponential case, while

the maximum likelihood estimates are λ̂ = 0.073, α̂ = 12.967 and γ̂ = 0.607. When

least-squares is used, then λ̂ = 0.049.

A trace plot and autocorrelation plot for data simulated from the fitted mixture

Weibull tailed minification model are given in Figure 3.14. They are similar in pattern

to the exponential case. The model remains insufficient for the data.

When considering seasonality for the mixture exponential case, the estimates

are shown in Table 3.4.
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Figure 3.14: Left panel: simulated run of mixture Weibull tailed minification model
using parameters estimated from FWI observations at Dryden, Ontario, the 1987 fire
season. The estimate of λ was obtained by least squares, and the parameter P is
assumed to be 5/6. Right panel: autocorrelation estimates for the simulated data.
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Figure 3.15: Left panel: simulated run of mixture exponential tailed minification
model using parameters estimated from FWI observations at Dryden, Ontario, for
the 3 subseasons of the 1987 fire season. The estimate of λ was obtained by least
squares. Right panel: autocorrelation estimates for the simulated data.
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Subseason 1 Subseason 2 Subseason 3
pε 0.11 0.16 0.07
λ 0.08 0.09 0.11
α 9.00 7.00 2.50
pδ 0.33 0.40 0.25
γ 0.67 0.67 0.67

Table 3.4: Parameter estimates for the exponential tailed model fit to each of the
3 subseasons of the 1987 Dryden FWI data.The estimates of λ were obtained by
least-squares.

Again over the three subseasons, λ seems stable, pε appears to change and

estimates of α are the same as for the exponential tailed model. Estimates of γ for

the mixture exponential tailed model are the same in all subseasons. pδ appears to

change and is larger than pε.

Subseason 1 Subseason 2 Subseason 3
pε 0.11 0.16 0.07
λ 0.04 0.05 0.06
α 14.85 11.13 3.50
pδ 0.33 0.40 0.25
γ 0.59 0.59 0.59

Table 3.5: Parameter estimates for the mixture Weibull tailed minification model fit
to each of the 3 subseasons of the 1987 Dryden FWI data. The estimates of λ were
obtained by least-squares

Estimates of seasonal effects for the mixture Weibull tailed case are in Table 3.5

where P is taken to be 5/6. Estimates of λ seem stable over the three subseasons. pε

and pδ are the same as before transformation. Estimates of γ remain the same across

the subseasons. As in the case of the untransformed data, α seems to decrease across

the subseasons.

Figure 3.17 contains the trace and autocorrelation plots for the fitted seasonal

mixture Weibull tailed process. The trace plot displays two very large values (over

40), which is not realistic. The low lag autocorrelations are higher than for most

other models we have considered, but still much lower than for the observed data.

The mixture minification model is an improvement, but it is still not an adequate

model for the observed FWI data.
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Figure 3.16: Left panel: simulated run of mixture Weibull tailed minification model
using parameters estimated from FWI observations at Dryden, Ontario, for the 1987
fire season. The parameter λ was estimated by least-squares. Right panel: autocor-
relation estimates for the simulated data.
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Figure 3.17: Left panel: simulated data from mixture Weibull tailed minification
process using parameters estimated from FWI observations at Dryden, Ontario, for
the 3 subseasons of the 1987 fire season. Right panel: autocorrelation estimates for
the simulated data.
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3.5 Random Coefficient Minification Models

We have argued on a physical basis that the tailed minification process is realistic as a

model for FWI. However, if seasonality is accounted for, the first lag autocorrelation

of the fitted process is not satisfactorily close to the first lag autocorrelation of the

observed data.

The difficulty appears to be due to the way in which Xn−1 enters the model

by multiplication through a fixed α coefficient. In order to capture the occasional

large jump in the observed series, the estimated value of α must necessarily be very

large. Thus, the incidence of εn values being less than αXn−1 can be high. Because

εn is supposed to be independent of the Xn−1, a large number of values of Xn will

subsequently be unrelated to Xn−1.

In order to circumvent this problem, we will now allow α to take on values of a

random variable, so that occasionally it can be large (as required by the data), but it

will usually be small, in order to replicate the gradually increasing trends which are

also observed in the data.

The most general form of random coefficient minification model that we will

consider is

Yn =

(αn + 1)min(Yn−1, Zn), if Yn−1 > 0.

Wn, if Yn−1 = 0.
(3.18)

where αn is a nonnegative random variable independent of Zn, Wn and Yn−1. The

sequences {Zn}, {Wn} and {αn} are all assumed to be i.i.d. Zn and Wn are assumed

to be tailed random variables with pZ = P (Zn = 0), and pW = P (Wn = 0). We

denote the marginal distribution of αn by f(α).

We will consider specific cases of this model for the purpose of data analysis,

but beforehand, some theoretical results can be obtained for the general case.

3.5.1 Existence of a Stationary Process

Balakrishna and Jacob (2003) have proved that the minification process with positive

innovations is ergodic. In this section we demonstrate the existence and uniqueness of

a stationary distribution for the general random coefficient tailed minification process,

using a very different proof technique.
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First, note that it is possible to construct a sequence {Yn} such that the sequence

{IYn=0} is stationary. To see this, note that

P (Yn = 0) = P (Yn = 0|Yn−1 = 0)P (Yn−1 = 0) + P (Yn = 0|Yn−1 > 0)P (Yn−1 > 0))

or

P (Yn = 0) = pWP (Yn−1 = 0) + pZ (1− P (Yn−1 = 0)) .

Therefore, there is a unique stationary distribution for {IYn=0} if and only if

pY = pWpY + pZ(1− pY) (3.19)

has a unique solution pY, which is true when and only when

pW − pZ 6= 1. (3.20)

In that case,

pY =
pZ

1 + pZ − pW

.

Thus, the stationary distribution of {IYn=0} is Bernoulli with parameter pY. When

pW = 1 and pZ = 0, (3.19) reduces to

pY = pY

which, trivially, has a solution, but it is not unique. Thus, there are infinitely many

stationary distributions in this case. Note that, as a model for FWI, this is not

sensible, since pW = 1 would effectively imply a constant state of flooding, while

pZ = 0 would usually lead to relatively dry conditions.

For the rest of our discussion, we assume the stationarity condition (3.20), and



69

we set pY = P (Yn = 0) = P (Yn−1 = 0). Then

P (Yn ≥ y) = P ((αn + 1)Yn−1 ≥ y, Zn ≥ y(αn + 1)−1 | Yn−1 > 0)(1− pY) +

P (Wn ≥ y)pY

=

∞∫
0

P (Yn−1 ≥ y(α + 1)−1|Yn−1 > 0)P (Zn ≥ y(α + 1)−1)f(α)dα

(1− pY) + pYP (Wn ≥ y)

=

∞∫
0

P (Yn−1 ≥ y(α + 1)−1)P (Zn ≥ y(α + 1)−1)f(α)dα +

pYP (Wn ≥ y)

which follows from conditioning on αn and from the independence of Yn and Zn. We

now set the following definitions:

SY(y) = P (Yn ≥ y),

SZ(y) = P (Zn ≥ y)

and

SW(y) = P (Wn ≥ y).

The above discussion suggests that {Yn} has a unique stationary distribution if and

only if

SY(y) =

∞∫
0

SY(y(α + 1)−1)SZ(y(α + 1)−1)f(α)dα + SW(y)pY (3.21)

has a unique solution SY(y), since this would imply that P (Yn ≥ y) = P (Yn−1 ≥ y).

We will prove this in a manner analogous to proving the existence and unique-

ness of the solution of a first order differential equation. To this end, let S0(y) =
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pYSW(y) and

Sn(y) =

∞∫
0

Sn−1(y(α + 1)−1)SZ(y(α + 1)−1)f(α) dα + pYSW(y) (3.22)

for n = 1, 2, 3, . . ..

We will now demonstrate existence of a solution to (3.21) by showing that

1. Sn(y) converges uniformly to φ(y), a survival function.

2. the right-hand side of equation (3.22) converges to

∞∫
0

φ(y(α + 1)−1)SZ(y(α + 1)−1)f(α) dα + pYSW(y).

Because SW(y) is a survival function, S0(y) must be a nonincreasing function

that takes values in [0, 1]. Suppose Sn−1(y) is also a nonincreasing function taking

values in [0, 1]. We now show that this implies that Sn(y) is also a survival function.

Clearly, from (3.21), Sn(y) ≥ 0, since all components of the right-hand side of that

equation are nonnegative. Now, suppose that y2 > y1. Then

Sn(y2)−Sn(y1) =

∞∫
0

(Sn−1(y2(α + 1)−1)SZ(y2(α + 1)−1)− Sn−1(y1(α + 1)−1)SZ(y1(α + 1)−1))f(α)dα

+SW(y2)pY − SW(y1)pY ≤ 0

because Sn−1, SZ and SW are nonincreasing. This means that Sn(y) takes its maxi-

mum value on [0,∞) at y = 0, but

Sn(0) =

∞∫
0

Sn−1(0)SZ(0)f(α) dα + pYSW(0).
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Thus,

Sn(0) ≤ (1− pZ) + (1− pW)pY

since Sn−1(0) ≤ 1, SZ(0) = 1 − pZ, f(α) is a probability density function, and

SW(0) = 1− pW. Because

pY =
pZ

1− pW + pZ

it is clear that Sn(0) ≤ 1. Thus, Sn(y) takes values in [0, 1] and is a valid survival

function, and by induction, (3.22) defines a sequence of survival functions.

Furthermore, the fact that Sn(y) ≤ 1 for all n ≥ 0 allows us to argue that

| S1(y)− S0(y) |≤
∞∫

0

S0(y(α + 1)−1)SZ(y(α + 1)−1)f(α) dα ≤ (1− pZ)

and if

| Sn(y)− Sn−1(y) |≤ (1− pZ)n.

for n ≥ 0, then

| Sn+1(y)− Sn(y) | hspace5in

≤
∞∫

0

| Sn(y(α + 1)−1)− Sn−1(y(α + 1)−1) | SZ(y(α + 1)−1)f(α) dα

≤ (1− pZ)n(1− pZ)

∞∫
0

f(α) dα = (1− pZ)n+1.

Therefore, by induction, we have shown that

| Sn(y)− Sn−1(y) |≤ (1− pZ)n. (3.23)
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Our next step is to write

Sn(y) = pYSW(y) +
n∑
j=1

(Sj(y)− Sj−1(y)).

The bound at (3.23) implies that

n∑
j=1

| Sj(y)− Sj−1(y) |≤
n∑
j=1

(1− pZ)j → 1− pZ

pZ

<∞

as n→∞. (Recall that pZ > 0). Therefore, there must be a function L(y) for which

n∑
j=1

| Sj(y)− Sj−1(y) | uniformly

−→
L(y) ≤ 1− pZ

pZ

as n→∞. That is,

lim
n→∞

Sn(y)
uniformly

−→
pYSW(y) + L(y).

We now define

φ(y) = L(y) + pYSW(y),

and conclude that Sn(y) converges uniformly to φ(y). Because Sn(y) is a survival

function for each n, φ(y) must also be a survival function.

Now, we consider the right-hand side of (3.22) and show that it converges as

required. First, note that

|
∞∫

0

Sn(y(α+ 1)−1)SZ(y(α+ 1)−1)f(α) dα−
∞∫

0

φ(y(α+ 1)−1)SZ(y(α+ 1)−1)f(α) dα
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≤
∞∫

0

| Sn(y(α + 1)−1)− φ(y(α + 1)−1) | SZ(y(α + 1)−1)f(α) dα

≤ sup
α∈[0,∞)

| Sn(y(α + 1)−1)− φ(y(α + 1)−1) | (1− pZ)

∞∫
0

f(α) dα→ 0 as n→∞,

because f(α) is a probability density function, (1−pZ) is clearly bounded and because

of our earlier result showing that Sn(y) converges uniformly to φ(y).

Thus, we have established that φ(y) is a solution of equation (3.21). We will

now demonstrate the uniqueness of the solution for that equation, establishing that

SY(y) = φ(y) is a well-defined stationary distribution. We will prove this by contra-

diction: suppose φ(y) and ψ(y) are distinct solutions of equation (3.21). Then

φ(y)− ψ(y) =

∞∫
0

φ(y(α + 1)−1)− ψ(y(α + 1)−1)SZ(y(α + 1)−1)f(α) dα

and

| φ(y)−ψ(y) |≤
∞∫

0

| φ(y(α+ 1)−1)−ψ(y(α+ 1)−1) | SZ(y(α+ 1)−1)f(α) dα (3.24)

Note that φ(y) and ψ(y) are survival functions. That is, 0 ≤ φ(y) ≤ 1 and 0 ≤
ψ(y) ≤ 1. Therefore we have, for all y,

0 ≤| φ(y)− ψ(y) |≤ 1

or

0 ≤| φ(y(α + 1)−1)− ψ(y(α + 1)−1) |≤ 1

and, because of (3.24),

0 ≤| φ(y)− ψ(y) |≤
∞∫

0

SZ(y(α + 1)−1)f(α) dα ≤ (1− pZ)

∞∫
0

f(α) dα = 1− pZ.
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That is, for any α > 0,

| φ(y(α + 1)−1)− ψ(y(α + 1)−1) |≤ 1− pZ. (3.25)

Using result (3.25) in equation (3.24), we see that

| φ(y)− ψ(y) |≤ (1− pZ)2

Repeating this process, inductively, we have

| φ(y)− ψ(y) |≤ (1− pZ)n.

Observe that

lim
n→∞

(1− pZ)n = 0.

Therefore, we have

φ(y) = ψ(y).

Thus, equation (3.21) possesses a unique solution. The random coefficient tailed

minification process has a unique stationary distribution.

3.5.2 The Weibull Tailed Mixture Minification Process

For a positive power P, consider

Yn = XP

n (3.26)

where

Xn =

(αn + 1)min(Xn−1, α
−1
n εn), if Xn−1 > 0.

δn, if Xn−1 = 0.
(3.27)

Again, αn is a nonnegative random variable independent of εn, δn and Xn−1. The

sequences {εn} and {δn} are assumed to be i.i.d. exponential tailed random variables

with parameters λ and γ, and pε = P (εn = 0) and pδ = P (δn = 0): ET(λ, pε) and

ET(γ, pδ). The marginal distribution of αn is f(α).
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3.5.3 Stationarity

We have already considered the stationarity question in general, but we can say more

in this special case.

If γ = λ, it is possible to define a stationary process via (3.27), for any pdf f(α)

having support on the nonnegative real numbers. To see this, suppose that

P (Xn−1 ≥ x) = (1− pX)e−λx,

where pX = pε(1 + pε − pδ)−1. It follows that

P (Xn ≥ x) = pX(1− pδ)e−λx +
∞∫

0

P
(
Xn−1 ≥ x(α + 1)−1, εn ≥ xλ(α + 1)−1|Xn−1 > 0

)
f(α) dα

= pX(1− pδ)e−λx + (1− pX)(1− pε)e−λx
∞∫

0

f(α) dα

= (1− pX)e−λx.

Therefore, {Xn} is a stationary exponential tailed process. Furthermore, when Yn =

XP
n, {Yn} is a stationary Weibull tailed process with parameters pY, λ and P:

WT(λ, pY,P).

When γ 6= λ in (3.27), and stationarity holds, the survival probability P (Xn ≥
x) must satisfy the following equation:

P (Xn ≥ x) = (1− pδ)pXe−γx + (1− pε)
∞∫

0

P
(
Xn ≥ x(α + 1)−1

)
e
− αλxα+1f(α)dα.

(3.28)
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The steps to derive (3.28) are as follows:

P (Xn ≥ x) = P (Xn ≥ x|Xn−1 = 0)P (Xn−1 = 0) +

P (Xn ≥ x)|Xn−1 > 0)P (Xn−1 > 0)

= pX(1− pδ)e−γx +

(1− pX)P (Xn−1 ≥ x(αn + 1)−1, εn ≥ αnx(αn + 1)−1|Xn−1 > 0)

=

∞∫
0

P (Xn−1 ≥ x(α + 1)−1|Xn−1 > 0)(1− pε)e−
αλx
α+1f(α)dα

(1− pX) + pX(1− pδ)e−γx

= pX(1− pδ)e−γx +

(1− pε)
∞∫

0

P (Xn−1 ≥ x(α + 1)−1)e
− αλxα+1f(α)dα

If the process is stationary, then

P (Xn−1 ≥ x(α + 1)−1) = P (Xn ≥ x(α + 1)−1).

Thus, we obtain (3.28).

In the Weibull tailed case, i.e. Yn = X
1/P
n , have

P ((Yn ≥ y) = P (Xn ≥ y1/P)

= (1− pδ)pXe−γy
1/P

+ (3.29)

(1− pε)
∞∫

0

P
(
Xn ≥ y1/P(α + 1)−1

)
e
−αλy

1/P

α+1 f(α)dα.

(3.30)
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so that

P ((Yn ≥ y) = (1− pδ)pY e−γy
1/P

+

(1− pε)
∞∫

0

P
(
Yn ≥ y(α + 1)−P

)
e
−αλy

1/P

α+1 f(α)dα. (3.31)

3.5.4 Conditional Expectation

One step ahead predictions are often made, using the conditional expectation of Xn,

given Xn−1. This expectation can also be used for model-checking or for least-squares

parameter estimation.

For the exponential case, we have

E[Xn|Xn−1 = x] =

E[(αn + 1)xI{εn≥αnx} + (αn + 1)α−1
n εnI{εn<αnx}], if x > 0.

(1− pδ)γ−1, if x = 0.

When x > 0,

E[Xn|Xn−1 = x] =

∞∫
0

(α + 1)xe−λαxf(α) dα(1− pε)+

(1− pε)
∞∫

0

(α + 1)(λα)−1(1− λαxe−λαx − e−λαx)f(α) dα

so that

E[Xn|Xn−1 = x] = (1− pε)
∞∫

0

(α + 1)(αλ)−1(1− e−λαx)f(α) dα (3.32)

It should be noted that when f(α) is an exponential probability density function,

this expression simplifies substantially. However, our main application assumes a

lognormal form for f(α), so further simplication is not possible.
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For the Weibull case, i.e. Yn = XP
n, we have

E[Yn|Yn−1 = 0] = E[δP] = (1− pδ)E[T P]

where T is exponential with parameter γ. Therefore,

E[Yn|Yn−1 = 0] = (1− pδ)Γ(P + 1)γ−P.

When x > 0,

E[Yn|Yn−1 = x] = E[XP

n|Xn−1 = x1/P]

=

∞∫
0

(α + 1)PxPe−λαxf(α) dα(1− pε)

+

∞∫
0

(α + 1)Pα−Pλ−1

 ∞∫
αx

εPe−λεd(ε)

 f(α) dα(1− pε)

(3.33)

3.5.5 Likelihood

The process {Yn} following (3.26) and (3.27) is Markovian. Therefore, the likelihood

for a sample y1, y2, . . . , yn is

L(y1, y2, . . . , yn) =
n∏
i=2

fYi|Yi−1(yi|yi−1) · fY1(y1). (3.34)

The corresponding log likelihood is then given by

logL =
n∑
i=1

log
(
fYi|Yi−1(yi|yi−1)

)
+ log

(
fY1(y1)

)
. (3.35)

Thus, in order to calculate the log likelihood for given data, it is necessary to obtain

an expression for the conditional density of Yn, given Yn−1 as well as the marginal
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density of Y1.

The marginal density for Y1 is obtained by differentiating the survival function

P (Y1 ≥ y1) (obtained in the previous section under the condition of stationarity) with

respect to y1 and multiplying through by −1. When λ 6= γ, a numerical technique is

needed to calculate the derivative.

We obtain the needed conditional densities in the next subsections for the ex-

ponential tailed and Weibull tailed cases.

3.5.5.1 Exponential Tailed Mixture Case

We assume first that P can be specified beforehand. Then Xn = Y
1/P
n follows a

mixture of exponential tailed distributions, and we can condition on αn to show that

P (Xn ≥ y|Xn−1 = x) =

∞∫
0

P (Xn−1 ≥ y(α + 1)−1)f(α) dα

when x > 0 and y > 0,. The probability statement in the integrand is equivalent to

P (εn ≥ yα(α + 1)−1)I(x ≥ y(α + 1)−1)

since εn andXn−1 are independent. Note that x ≥ y(α + 1)−1 if and only if α ≥ y
x−1.

Therefore, we have

P (Xn ≥ y|Xn−1 = x) =

∞∫
max(0,y/x−1)

P (εn ≥ yλ(α + 1)−1)f(α) dα.

Note that it is possible that y < x.

The exponential tailed distribution assumption on εn leads to

P (Xn ≥ y|Xn−1 = x) =

∞∫
max(0,y/x−1)

(1− pε)e−λyα(α+1)−1f(α) dα (3.36)

when x > 0 and y > 0.
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For the case where x = 0, it is easy to see that

P (Xn ≥ y|Xn−1 = 0) =

(1− pδ)e−γy, if y > 0.

1, if y = 0.

Finally,

P (Xn ≥ y|Xn−1 = 0) = 1.

To obtain the conditional pdf of Xn, given Xn−1 = x from the above conditional

survival functions, we must differentiate with respect to y and multiply through by

−1, noting the point masses at 0 which imply that

fXn|Xn−1(y|x) = pδ

when x = y = 0, and fXn|Xn−1(y|x) = pε when x > 0 and y = 0.

When y > 0 and x = 0, we easily obtain

fXn|Xn−1(y|x) = (1− pδ)γe−γy.

The case when y > 0 and x > 0 is a little more complicated. In that case,

fXn|Xn−1(y|x) =

∞∫
max(0, yx−1)

(1− pε)α(α + 1)−1λe
− αλyα+1f(α) dα +

I(1− pε)e
− α
′λy

α′+1f(α′)/x

where α′ = y/x− 1 and I is 1, if y ≥ x and 0, otherwise.

This conditional density can be inserted into the likelihood or log likelihood

expressions given at (3.34) or (3.35). For example, the log likelihood given data of

the form y1, y2, . . . , yn and known Weibull parameter P is

logL =
n∑
i=1

log
(
fXi|Xi−1(y

1/P
i |y

1/P
i−1)

)
+ log

(
fX1

(y
1/P
1 )

)
. (3.37)
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3.5.5.2 Weibull Tailed Mixture Case

Now, we consider the more general case of the model specified by (3.26) and (3.27)

where P is unknown. Since Yn = XP
n, our earlier reasoning leads to

P (Yn ≥ y|Yn−1 = x) = P (Xn ≥ y1/P|Xn−1 = x1/P)

= (1− pε)
∞∫

max(0,( yx )1/P−1)

e
−αλy

1/P

α+1 f(α) dα (3.38)

when x > 0 and y > 0.

P (Yn > y|Yn−1 = x) = (1− pδ)γe−γy
1/P

when y > 0 and x = 0 and P (Yn > y|Yn−1 = x) = 1, when y = 0, x ≥ 0. The

conditional pdf is then

fYn|Yn−1(y|x) =

∞∫
max(0,(y/x)1/P−1)

P−1(1− pε)(α(α + 1)−1)λy1/P−1e
−αλy

1/P

α+1 f(α) dα

I(1− pε)e
−α
′λy1/P
α′+1 f(α′)(Px)−1(y/x)1/P−1)

for x > 0, y > 0, where I = 1, when y/x > 1 and 0, otherwise and α′ = (y/x)1/P−1 .

When y > 0 and x = 0,

fYn|Yn−1(y|x) = γ(P)−1y1/P−1e−γy
1/P

and

fYn|Yn−1(0|x) = pε

when x > 0 and

fYn|Yn−1(0|0) = pδ.

This conditional density can be inserted into the likelihood or log likelihood expres-

sions given at (3.34) or (3.35).
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3.5.6 Estimating the Process Parameters

The log likelihood can be maximized numerically to give estimates of pδ, pε, λ, γ and

P (in the Weibull case), as well as the parameters of the pdf f(α).

The distribution of α must be pre-specified. Since α must be nonnegative, some

possible models are exponential, gamma, Weibull, lognormal. Models such as a scaled

beta distribution could be considered, but this imposes an upper bound on α which

is not necessarily realistic. We have considered two cases of f(α): exponential (with

rate parameter β), and lognormal (with parameters µ and σ, the mean and standard

deviation on the log scale). Since the lognormal distribution gives a better fit to the

data, we restrict our discussion to this case. We should also note that taking µ = 0

appears to work better than to allow µ to be estimated. This may be due to an

identifiability problem which should be addressed in a future study.

3.5.6.1 Application to the 1987 Dryden Data

Parameter estimates for the random coefficient exponential tailed mixture minification

model fit to the 1987 Dryden data are as follows: p̂ε = 0.149, λ̂ = 0.103, γ̂ = 0.607,

p̂δ = 0.32 and σ̂ = 1.36 . Figure 3.18 shows a typical run of data simulated from

this fitted model, together with the corresponding autocorrelation function plot. The

FWI values are fairly realistic, but the autocorrelations at small lags do not match

the autocorrelations in the observed data. This model is not satisfactory for these

data.

Parameter estimates for the random coefficient Weibull tailed mixture minifi-

cation model fit to the 1987 Dryden data are as follows, when the power P is fixed

at 0.833: p̂ε = 0.149, α̂ = 8, λ̂ = 0.057, γ̂ = 0.527, p̂δ = 0.32 and σ̂ = 1.481. Figure

3.19 shows a typical run of data simulated from this fitted model, together with the

corresponding autocorrelation function plot. The FWI values are fairly realistic, if

somewhat low, while the autocorrelations at small lags match the autocorrelations

in the observed data adequately. This model would be viewed as acceptable by this

criterion and will be subject to further scrutiny subsequently.

It is also possible to estimate the Weibull power parameter. Parameter esti-

mates for the random coefficient Weibull tailed mixture minification model fit to the

1987 Dryden data are as follows, when the power P is estimated: P = 0.886, pε =

0.149, pδ = 0.32, λ = 0.0705, γ = 0.555, and σ = 1.42. Figure 3.20 shows a typ-

ical run of data simulated from this fitted model, together with the corresponding

autocorrelation function plot. Again, the FWI values are quite realistic, while the
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Figure 3.18: Left panel: simulated run of random coefficient exponential tailed mix-
ture minification model using parameters estimated from FWI observations at Dry-
den, Ontario, for the 1987 fire season. Right panel: autocorrelation estimates for the
simulated data.
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Figure 3.19: Left panel: simulated run of random coefficient Weibull tailed mixture
minification model using parameters estimated from FWI observations at Dryden,
Ontario, for the 1987 fire season, with P = 5/6. Right panel: autocorrelation esti-
mates for the simulated data.
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Figure 3.20: Left panel: simulated run of random coefficient Weibull tailed mixture
minification model using parameters estimated from FWI observations at Dryden,
Ontario, for the 1987 fire season. In this case, the power parameter P has been
estimated. Right panel: autocorrelation estimates for the simulated data.

autocorrelations at small lags match the autocorrelations in the observed data ade-

quately.

3.5.6.2 Accounting for Seasonality

Based on our earlier observations as well as those of Martell (1999), we have reason

to believe that seasonality plays a role, even with the random coefficient model we

are considering.

Table 3.6 contains maximum likelihood estimates of pε, λ, pδ, γ and σ for each

of Martell’s subseasons for the 1987 Dryden FWI data. The innovations εn and δn are

assumed to be exponential here. The estimates of the first four parameters behave

similarly to the corresponding estimates for other seasonal models we have considered.

The estimate of σ is interesting; it remains constant through the first two subseasons

before dropping substantially in the third.

Tables 3.7 and 3.8 contain the parameter estimates for the seasonal Weibull

model. In the former case, P has been set to 5/6 while in the latter case, P has been

estimated by maximum likelihood. When P was taken to be constant over the whole

season, the estimates of σ have a similar pattern to the exponential case. When P is
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Subseason 1 Subseason 2 Subseason 3
pε 0.11 0.16 0.07
λ 0.09 0.09 0.12
pδ 0.29 0.36 0.20
γ 0.67 0.67 0.67
σ 1.36 1.38 0.65

Table 3.6: Parameter estimates for the random coefficient exponential tailed mixture
model fit to each of the 3 subseasons of the 1987 Dryden FWI data.
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Figure 3.21: Left panel: simulated run of random coefficient exponential tailed mix-
ture minification model using parameters estimated from FWI observations at Dry-
den, Ontario, for the 3 subseasons of the 1987 fire season. Right panel: autocorrelation
estimates for the simulated data.

allowed to vary from subseason to subseason, it has a value near 1 for the first two

subseasons and then a sharp drop in the third subseason. In this case the estimates

of σ are somewhat more stable.

Figures 3.21, 3.22 and 3.23 contain the simulated trace and autocorrelation

plots for the three fitted seasonal models we have considered.

All three trace plots seen to be realistic, displaying patterns of 0’s and runs of

nonzero values that could be seen in real data. Figure 3.22 contains a relatively large

simulated FWI value, indicating a possible hint of trouble. The autocorrelation plots

match the observed autocorrelation plots very well, especially in the Weibull cases.

As a model for the 1987 Dryden FWI data, our informal diagnostic checks
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Figure 3.22: Left panel: simulated run of random coefficient Weibull tailed mixture
minification model using parameters estimated from FWI observations at Dryden,
Ontario, for the 3 subseasons of the 1987 fire season. The Weibull parameter has
been fixed at 5/6. Right panel: autocorrelation estimates for the simulated data.
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Figure 3.23: Left panel: simulated run of random coefficient Weibull tailed mixture
minification model using parameters estimated from FWI observations at Dryden,
Ontario, for the 3 subseasons of the 1987 fire season. The Weibull parameter has
been estimated using Least-Squares. Right panel: autocorrelation estimates for the
simulated data.



87

Subseason 1 Subseason 2 Subseason 3
pε 0.11 0.16 0.07
λ 0.05 0.05 0.07
pδ 0.29 0.36 0.20
γ 0.59 0.59 0.59
σ 1.57 1.49 0.83

Table 3.7: Parameter estimates for the random coefficient Weibull tailed mixture
model fit to each of the 3 subseasons of the 1987 Dryden FWI data, assuming P = 5/6

Subseason 1 Subseason 2 Subseason 3
pε 0.11 0.16 0.07
λ 0.11 0.09 0.02
pδ 0.29 0.36 0.20
γ 0.69 0.69 0.69
σ 1.30 1.38 1.17
P 1.07 0.99 0.57

Table 3.8: Parameter estimates for the random coefficient Weibull tailed mixture
model fit to each of the 3 subseasons of the 1987 Dryden FWI data. In this case, P
has been estimated by maximum likelihood.

indicate that the seasonal random coefficient Weibull tailed minification model may

be a suitable candidate.

In the next section we introduce additional diagnostic checks and consider the

larger set of data covering about 40 fire seasons at six Ontario weather stations.

3.6 Model Checking Using the Larger FWI Data Set

The seasonal random coefficient Weibull tailed minification process appears to be a

candidate model for the 1987 Dryden FWI time series. In this section, we will consider

the seasonal and nonseasonal versions of this model as they apply to other years and

other weather stations in Ontario. We also consider additional techniques for model

checking, since it is well known that assessing linear dependence only is insufficient

in nonlinear models.

3.6.1 Checks Based on Autocorrelations

We will first check lag 1 autocorrelations on all years of data and at each weather

station at our disposal. For each of the 6 weather stations, the random coefficient
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Figure 3.24: Lag 1 autocorrelations for each year of observed FWI data at each
of 6 Ontario weather stations plotted against the corresponding model-based lag 1
autocorrelations. The 45◦ reference line is shown as a solid curve and the least-squares
fitted line is shown as a dashed curve.

minification model has been fit to each year of FWI data. Using the resulting fitted

models, we have simulated 10000 observations in order to calculate approximations

to the lag 1 autocorrelations. Lag 1 autocorrelations have also been estimated for

each year of observed FWI data.

Figure 3.24 displays a plot of the estimated lag 1 autocorrelations versus the

corresponding model-based estimates, for each year of data, at each of the 6 weather

stations. If the first lag autocorrelations in the observed data are being modelled

adequately by the random coefficient minification model, we would expect the plotted

points to scatter along the 45◦ line, which has been plotted as a solid line. The least-

squares fitted line has also been plotted to aid in making the comparison.

As a further aid, we have also constructed a similar plot using simulated datasets

which emulate the original FWI datasets in Figure 3.25. The simulated datasets were

generated from the fitted models, with the annual sample sizes taken to match those

for the original series. Again, lag 1 autocorrelations have been estimated for the sim-

ulated FWI datasets and plotted against the lag 1 autocorrelations calculated from

sequences of 10000 simulated observations. In this case, we are making a compari-

son where we know that there should be an exact match, because the models being

compared are identical.



89

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
● ●

●

●

●

●

●

0.40 0.50 0.60

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Lag 1 Autocorrelation (simulated)

La
g 

1 
Au

to
co

rre
lat

ion
 ('o

bs
er

ve
d')

Red Lake

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

0.40 0.50 0.60

0.
3

0.
4

0.
5

0.
6

0.
7

Lag 1 Autocorrelation (simulated)

La
g 

1 
Au

to
co

rre
lat

ion
 ('o

bs
er

ve
d')

Sioux Lookout

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

0.40 0.50 0.60

0.
3

0.
4

0.
5

0.
6

0.
7

Lag 1 Autocorrelation (simulated)

La
g 

1 
Au

to
co

rre
lat

ion
 ('o

bs
er

ve
d')

Kenora

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

0.45 0.55

0.
35

0.
45

0.
55

0.
65

Lag 1 Autocorrelation (simulated)

La
g 

1 
Au

to
co

rre
lat

ion
 ('o

bs
er

ve
d')

Dryden

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.45 0.55

0.
3

0.
4

0.
5

0.
6

Lag 1 Autocorrelation (simulated)

La
g 

1 
Au

to
co

rre
lat

ion
 ('o

bs
er

ve
d')

Timmins

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

0.45 0.55

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Lag 1 Autocorrelation (simulated)

La
g 

1 
Au

to
co

rre
lat

ion
 ('o

bs
er

ve
d')

Temagami

Figure 3.25: Lag 1 autocorrelations for each year of simulated FWI data as if it
were taken at each of 6 Ontario weather stations plotted against the corresponding
model-based lag 1 autocorrelations using simulated sets of 10000 observations. The
45◦ reference line is shown as a solid curve and the least-squares fitted line is shown
as a dashed curve.

The second set of plots suggests how much vertical scatter should be expected

on the first set of plots. Because the simulation sample sizes are very large, little

horizontal scatter is expected. The plots in Figure 3.25 indicate how close the least-

squares and 45◦ lines should be in Figure 3.25, if the random coefficient minification

model is adequate for the data.

With the exception of the Dryden data, it appears that the lag 1 autocorre-

lation behaviour is captured reasonably well by the fitted models, although there

is some evidence that the autocorrelations are more variable than expected if the

models are true. The nonseasonal minification model is clearly underestimating the

autocorrelation at Dryden.

Figures 3.26 and 3.27 contain the analogous plots for the case where Martell’s

subseasons have been taken into account in the random coefficient minification models.

There are some slight differences in how these plots have been constructed that

should be mentioned. In 3.26 we are still plotting the estimated lag 1 autocorrelations

from the observed FWI data for each year and weather station, these autocorrelations

are plotted against autocorrelations calculated for data simulated from the seasonal

models. These latter datasets are constructed somewhat differently in order for the
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Figure 3.26: Lag 1 autocorrelations for each year of observed FWI data at each of
6 Ontario weather stations plotted against the corresponding (seasonal) model-based
lag 1 autocorrelations. The 45◦ reference line is shown as a solid curve and the
least-squares fitted line is shown as a dashed curve.
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Figure 3.27: Lag 1 autocorrelations for each year of simulated seasonal FWI data as if
it were taken at each of 6 Ontario weather stations plotted against the corresponding
(seasonal) model-based lag 1 autocorrelations using simulated sets of 10000 observa-
tions. The 45◦ reference line is shown as a solid curve and the least-squares fitted line
is shown as a dashed curve.
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Figure 3.28: Left Panel: Sample autocorrelations for the first 100 lags for all years
of FWI data from Red Lake. Right Panel: Sample autocorrelations for the first 100
lags of data simulated from a sequence of models fitted to the Red Lake FWI series.

seasonal effect on the autocorrelations to be demonstrated. Specifically, for each year,

20 “years” of FWI data have been simulated from the fitted seasonal model; the lag

1 autocorrelation has been calculated from this simulated series.

Now there is a closer match between the sets of plots based on comparisons

of observed and expected autocorrelations and sets of plots based on comparisons of

simulated and expected autocorrelations, even in the case of the Dryden data. Thus,

the seasonal minification models offer clear improvement over the nonseasonal models.

Figures 3.28 through 3.33 contain long run autocorrelation plots for all years of

FWI data from the six weather stations. In the left panel of each figure are plotted

the autocorrelations at lags 1 through 100 for the entire set of observed data. In the

right panel, the corresponding autocorrelations are plotted for data simulated from

models fitted to each year of data. Seasonality is not assumed here.

In several of the figures, the autocorrelations at lags 5 through 20 for the sim-

ulated data tend to be much less than the corresponding autocorrelations for the

observed data. The implication is that the model is not adequate for the data.

Figures 3.34 through 3.39 contain the analogous long run autocorrelation plots

for all years of FWI data from the six weather stations using the seasonal random

coefficient minification model.
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Figure 3.29: Left Panel: Sample autocorrelations for the first 100 lags for all years
of FWI data from Sioux Lookout. Right Panel: Sample autocorrelations for the first
100 lags of data simulated from a sequence of models fitted to the Sioux Lookout
FWI series.
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Figure 3.30: Left Panel: Sample autocorrelations for the first 100 lags for all years of
FWI data from Kenora. Right Panel: Sample autocorrelations for the first 100 lags
of data simulated from a sequence of models fitted to the Kenora FWI series.
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Figure 3.31: Left Panel: Sample autocorrelations for the first 100 lags for all years of
FWI data from Dryden. Right Panel: Sample autocorrelations for the first 100 lags
of data simulated from a sequence of models fitted to the Dryden FWI series.
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Figure 3.32: Left Panel: Sample autocorrelations for the first 100 lags for all years of
FWI data from Timmins. Right Panel: Sample autocorrelations for the first 100 lags
of data simulated from a sequence of models fitted to the Timmins FWI series.



94

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Observed Data

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Simulated Data

Figure 3.33: Left Panel: Sample autocorrelations for the first 100 lags for all years
of FWI data from Temagami. Right Panel: Sample autocorrelations for the first 100
lags of data simulated from a sequence of models fitted to the Temagami FWI series.

The simulated and observed autocorrelation plots match fairly closely at lags

up to approximately 30. The implication is that seasonality corrects the model at

higher lags. The seasonal random coefficient minification process accurately models

the linear components of the dependence in the observed data.

3.6.2 Checks Based on Residuals

When possible, time series and regression models are checked against data using a

variety of residual plots. In this section, we apply two graphical residual diagnostic

plots as checks on the appropriateness of the random coefficient minification process

as a model for the Ontario FWI time series.

The first graphic is a type of one-step-ahead prediction residuals, based on

conditional expectations.

For the exponential case, we compute fitted values using the one-step-ahead

conditional expectations, evaluated at their maximum likelihood estimates. Residuals

are calculated as

Rn = Xn ÷ Ê[Xn|Xn−1]
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Figure 3.34: Left Panel: Sample autocorrelations for the first 100 lags for all years of
FWI data from Red Lake. Right Panel: Sample autocorrelations for the first 100 lags
of data simulated from a sequence of seasonal models fitted to the Red Lake FWI
series.
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Figure 3.35: Left Panel: Sample autocorrelations for the first 100 lags for all years
of FWI data from Sioux Lookout. Right Panel: Sample autocorrelations for the first
100 lags of data simulated from a sequence of seasonal models fitted to the Sioux
Lookout FWI series.
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Figure 3.36: Left Panel: Sample autocorrelations for the first 100 lags for all years of
FWI data from Kenora. Right Panel: Sample autocorrelations for the first 100 lags of
data simulated from a sequence of seasonal models fitted to the Kenora FWI series.
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Figure 3.37: Left Panel: Sample autocorrelations for the first 100 lags for all years
of FWI data from Dryden. Right Panel: Sample autocorrelations for the first 100
lags of data simulated from a sequence of seasonal models fitted to the Dryden FWI
series.
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Figure 3.38: Left Panel: Sample autocorrelations for the first 100 lags for all years
of FWI data from Timmins. Right Panel: Sample autocorrelations for the first 100
lags of data simulated from a sequence of seasonal models fitted to the Timmins FWI
series.
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Figure 3.39: Left Panel: Sample autocorrelations for the first 100 lags for all years
of FWI data from Temagami. Right Panel: Sample autocorrelations for the first 100
lags of data simulated from a sequence of seasonal models fitted to the Temagami
FWI series.
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Figure 3.40: Left Panel: One-step-ahead predictive residuals (ratiosXn/E[Xn|Xn−1])
plotted against fitted values (conditional expectations of Xn, given Xn−1, for Red
Lake FWI data for 1963. Right Panel: Observed FWI values (on square root scale)
plotted against the fitted values. A 45◦ reference line has been added, together with
a robust smooth of this scatterplot.

where the conditional expectation is numerically evaluated from the expression given

at (3.32). The lognormal probability density with parameters µ = 0 and σ (estimated

by maximum likelihood) is employed.

For the Weibull case, we use

Y
1/P
n ÷ Ê[Y

1/P
n |Yn−1]

where Y
1/P
n is approximating Xn. This is much simpler to compute than Yn ÷

Ê[Yn|Yn−1] and conveys almost the same information.

These residuals are based on ratios instead of differences, since ratios are more

natural quantities to consider when working with nonnegative data. If differences were

used, variation would be expected to increase with the magnitude of the conditional

expectation. The use of ratios reduces, but does not completely eliminate, these kinds

of spurious effects. Rn has the unfortunate side effect that when Xn−1 is close to 0,

the conditional expectation will be close to 0, but there is a relatively large probability

that Xn could be nonneglible. Thus Rn would be very large in this situation. For
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Figure 3.41: Left Panel: One-step-ahead predictive residuals (ratiosXn/E[Xn|Xn−1])
plotted against fitted values (conditional expectations of Xn, given Xn−1, for Sioux
Lookout FWI data for 1963. Right Panel: Observed FWI values (on square root
scale) plotted against the fitted values. A 45◦ reference line has been added, together
with a least-squares fitted line (dashed).

larger values of Xn−1, we expect Rn to scatter randomly about the horizontal line

y = 1, but according to a distribution which is positively skewed.

The left panels of Figures 3.40 through 3.45 display scatterplots of the one-step-

ahead predictive residuals against the corresponding conditional expectations for the

1963 FWI data for each of the six weather stations. A square root transformation

has been applied to the residuals in order to reduce the distorting effects of the large

residuals found at the left edge of each of the plots as well as the effects of positive

skewness alluded to in the previous paragraph.

If we focus attention on the parts of the plots for which the fitted values exceed

3, we see a fairly uniform random scatter of points about the horizontal reference line.

The behaviour to the left is essentially as expected. Thus, this type of residual plot

is suggesting that the one-step-ahead predictions made by the model (for the 1963

data) are reasonable.

The right panels of Figures 3.40 through 3.45 display scatterplots of the FWI

values (on the square root scale) against the square roots of the conditional expecta-

tions, given the previous day’s FWI value, assuming the random coefficient Weibull

tailed mixture model. If the model is fitting adequately, the plotted points should
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Figure 3.42: Left Panel: One-step-ahead predictive residuals (ratiosXn/E[Xn|Xn−1])
plotted against fitted values (conditional expectations of Xn, given Xn−1, for Kenora
FWI data for 1963. Right Panel: Observed FWI values (on square root scale) plotted
against the fitted values. A 45◦ reference line has been added, together with a least-
squares fitted line (dashed).

scatter along a 45◦ reference line. To assist with this check, we overlaid the least-

squares fitted line relating the observed values to the fitted values. In most of the

figures, the fitted line is located near the reference line, and the plotted points scat-

ter randomly about the reference line. Therefore, by this criterion, the fitted model

appears to be reasonable for the 1963 FWI data.

To check whether the probability distribution of the one-step-ahead predictions

is reasonable, we can use the conditional survival functions such as

U(y) = P (Yn ≥ y|Yn−1)

given for the exponential case by expressions such as (3.36) and in the Weibull case by

(3.38). Note that we are considering only transitions from nonzero states to nonzero

states. (The next subsection considers transitions involving the nil state.)

If {Y ′n} has the same probability law as {Yn}, then U(Y ′n) should follow a

uniform distribution on the interval [0, 1].

Figure 3.46 contains uniform QQ-plots of U(FWIn) for each of six weather
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Figure 3.43: Left Panel: One-step-ahead predictive residuals (ratiosXn/E[Xn|Xn−1])
plotted against fitted values (conditional expectations of Xn, given Xn−1, for Dryden
FWI data for 1963. Right Panel: Observed FWI values (on square root scale) plotted
against the fitted values. A 45◦ reference line has been added, together with a least-
squares fitted line (dashed).

stations under study for 1963. The parameters used to calculate the conditional

survivor functions at (3.38) were estimated from each of the 1963 FWI time series.

On all six of the plots, the points are located near the 45◦ reference line indicating

that the one-step-ahead prediction distribution is accurate.

Figure 3.47 displays the QQ-plots for all years of data at the six weather sta-

tions. In each case, the points plot very close to the reference line indicating that

the predictive distribution is accurate for all years of data. In other words, one step

ahead forecast distributions of FWI using the fitted model are accurate at all sites.

3.6.3 Checks on Transitions from the Nil State

When Yn−1 = 0, the tailed minification model predicts the behaviour of Yn through

the tailed variable δPn. Under the Weibull assumption, the continuous component of

the distribution of δn should be exponential with rate γ.

We can also check this assumption using QQ-plots restricted to those values of

Yn for which Yn−1 = 0. In those cases, Y
1/P
n γ should be a unit exponential random

variable.
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Figure 3.44: Left Panel: One-step-ahead predictive residuals (ratiosXn/E[Xn|Xn−1])
plotted against fitted values (conditional expectations of Xn, given Xn−1, for Tim-
mins FWI data for 1963. Right Panel: Observed FWI values (on square root scale)
plotted against the fitted values. A 45◦ reference line has been added, together with
a least-squares fitted line (dashed).

As an illustration, Figure 3.54 displays the QQ-plots of δn = Y
1/P
n γ using

estimates of γ for each of the 3 subseasons of the 1963 FWI datasets. The points on

the plots for Kenora and Temagami deviate from the 45◦ reference line suggesting a

discrepancy between the model predictions and the data. The other 4 plots appear

satisfactory, but a close look at all of the data is warranted.

In Figure 3.55, Weibull QQ-plots are plotted for all years of data at each of the

weather stations, again using the seasonal estimates of γ and P for each year. This

set of plots suggests more serious trouble than was indicated on the 1963 plots. The

plotted points depart from the reference line, substantially in some cases.

Thus, these plots indicate that the proposed model fails to capture this facet of

the observed data. It is important to note that the pattern of departure is similar from

station to station. This suggests a possible remedy: to allow the Weibull parameter

P associated with δn to differ from the Weibull parameter associated with εn; the

same adjustment can be used at all stations.

Figure 3.56 displays the QQ-plots of Y
1/P
n γ using the same estimates of γ used

in Figure 3.55, but with P replaced by P× 0.9. The resulting plotted points lie much

closer to the reference line indicating a much improved model fit. Thus, we are led
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Figure 3.45: Left Panel: One-step-ahead predictive residuals (ratiosXn/E[Xn|Xn−1])
plotted against fitted values (conditional expectations of Xn, given Xn−1, for
Temagami FWI data for 1963. Right Panel: Observed FWI values (on square root
scale) plotted against the fitted values. A 45◦ reference line has been added, together
with a least-squares fitted line (dashed).
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Figure 3.46: One step prediction residual QQ-plots for 1963 FWI data at all 6 stations,
based on a model which ignores seasonality.
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Figure 3.47: One step prediction residual QQ-plots for all years of data at all 6
stations, based on a model which ignores seasonality.
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Figure 3.48: Transitions from the nil state for 1963 FWI data from Red Lake plotted
against observation number, with model-based 90th percentile overlaid as a dashed
horizontal line. Left panel: subseason 1; middle panel: subseason2; right panel:
subseason 3.
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Figure 3.49: Transitions from the nil state for 1963 FWI data from Sioux Lookout
plotted against observation number, with model-based 90th percentile overlaid as a
dashed horizontal line. Left panel: subseason 1; middle panel: subseason2; right
panel: subseason 3.
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Figure 3.50: Transitions from the nil state for 1963 FWI data from Kenora plotted
against observation number, with model-based 90th percentile overlaid as a dashed
horizontal line. Left panel: subseason 1; middle panel: subseason2; right panel:
subseason 3.
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Figure 3.51: Transitions from the nil state for 1963 FWI data from Dryden plotted
against observation number, with model-based 90th percentile overlaid as a dashed
horizontal line. Left panel: subseason 1; middle panel: subseason2; right panel:
subseason 3.
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Figure 3.52: Transitions from the nil state for 1963 FWI data from Timmins plotted
against observation number, with model-based 90th percentile overlaid as a dashed
horizontal line. Left panel: subseason 1; middle panel: subseason2; right panel:
subseason 3.
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Figure 3.53: Transitions from the nil state for 1963 FWI data from Temagami ob-
servation number, with model-based 90th percentile overlaid as a dashed horizontal
line. Left panel: subseason 1; middle panel: subseason2; right panel: subseason 3.
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Figure 3.54: Weibull tailed QQ-plots for transitions from the nil state for 1963 FWI
data from all 6 weather stations under study.
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Figure 3.55: Weibull tailed δn QQ-plots for transitions from the nil state for all years
of FWI data from all 6 weather stations under study.
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Figure 3.56: Weibull tailed δDn QQ-plots for transitions from the nil state for all years
of FWI data from all 6 weather stations under study. The parameter D = 0.9.



109

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●

●●●●●●
●●●●●

●●●●●
●●●●
●●●●

●●●●●●
●●●●

●●
●●
●●
●

●
●

●
●

●

●

●

●

0 1 2 3 4 5

0
1

2
3

4
5

6

observed quantiles

pr
ed

ict
ed

 q
ua

nt
ile

s

Red Lake

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●

●●●●●●
●●●●●
●●●●●

●●●●
●●●●

●●●
●●●
●●●

●●
●●●

●●
●●

●
●
●

●
●

●

●

●

0 1 2 3 4 5

0
1

2
3

4
5

6

observed quantiles

pr
ed

ict
ed

 q
ua

nt
ile

s

Sioux Lookout

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●
●●●●●

●●●●●
●●●●
●●●●

●●●●
●●●
●●
●●
●●
●●
●●
●
●
●
●

●

●

●

●

0 1 2 3 4 5

0
1

2
3

4
5

6

observed quantiles

pr
ed

ict
ed

 q
ua

nt
ile

s

Kenora

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●

●●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●
●●●
●●●
●●

●●
●●
●●
●
●

●
●

●
●

●

●

●

0 1 2 3 4

0
1

2
3

4
5

6

observed quantiles

pr
ed

ict
ed

 q
ua

nt
ile

s

Dryden

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●
●●●●

●●●●
●●●
●●●

●●●
●●
●●
●●

●●
●
●
●

●
●

●

●

●

0 1 2 3 4 5

0
1

2
3

4
5

observed quantiles

pr
ed

ict
ed

 q
ua

nt
ile

s

Timmins

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●
●●●
●●●
●●
●●
●●
●●
●
●
●

●
●

●

●

●

0 2 4 6 8

0
1

2
3

4
5

6

observed quantiles

pr
ed

ict
ed

 q
ua

nt
ile

s

Temagami

Figure 3.57: Weibull tailed δDn QQ-plots for transitions from the nil state in subseason
1 for all years of FWI data from all 6 weather stations under study. The parameter
D = 0.9.

to the model

Yn = XP

n

where

Xn =

(αn + 1)min(Xn−1, α
−1
n εn), if Xn−1 > 0.

δDn, if Xn−1 = 0.
(3.39)

The new parameter D could be estimated by maximum likelihood or by inspection

of QQ-plots such as displayed in Figure 3.56. These plots suggest that we could take

D̂ = 0.9.

Figures 3.57 to 3.59 show the δn QQ-plots broken down by subseason, again

for all stations under consideration. These plots indicate that there is no apparent

difference in the distribution of δn according to season, since in all cases, the plotted

points line up near the reference line in a satisfactory manner. This confirms that the

same adjustment D = 0.9 can be used for all subseasons.
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Figure 3.58: Weibull tailed QQ-plots for transitions from the nil state in subseason
2 for all years of FWI data from all 6 weather stations under study. The parameter
D = 0.9.
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Figure 3.59: Weibull tailed δDn QQ-plots for transitions from the nil state in subseason
3 for all years of FWI data from all 6 weather stations under study. The parameter
D = 0.9.
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3.7 Applying the Random Coefficient Minification Model

3.7.1 Calculation of Survival Probabilities

The model that we have developed for the Fire Weather Index can be used in many

ways. A particularly important use is in the calculation of probabilities of the occur-

rence of large values of the FWI, since those occurrences should be associated with

increased wildfire activity.

When we considered the fixed coefficient minification model, we saw that it was

possible to write an explicit expression (3.13) for the stationary probability P (Xn ≥
x). We also noted that a recursive solution of the integral equation (3.12) is often

faster and more accurate than a direct approach.

In the random coefficient case, a direct approach to finding P (Xn ≥ x) is

possible, in principle, but it could involve a large number of iterated integrals. It

appears that this approach would be computationally expensive. Instead, we focus

on a numerical approximation to the equation (3.28) for P (Xn ≥ x), but because of

the integration, a recursive method is not available.

In order to calculate the numerical approximation to P (Xn ≥ x), it will be

useful to make a change of variable first. For any x > 0, let S(x) = P (Xn ≥ x), and

let β = x(α + 1)−1 in (3.28), then

S(x) = (1− pε)
x∫

0

xβ−2f(xβ−1 − 1)S(β)e−λβ(xβ−1−1) dβ + pX(1− pδ)e−γx.

Recall that f(α) is the probability density function of the random coefficient.

When x = 0, the above change-of-variable transformation is not valid. Instead,

we note that, from (3.28), the following is true:

S(0) = (1− pδ)pX + (1− pε)(1− pX) =
1− pδ

1− pδ + pε
= 1− pε

1− pδ + pε
= 1− pX.

The following algorithm can then be used in the numerical calculation of S(x0):

1. Set ∆ =
x0
N for some large N .

2. Set C1 = S(0).
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3. Set Ŝ(x) = C1I{[0,∆]}(x). (Note that this is a functional assignment.)

4. For j = 1, 2, . . . , N , set

(a)

Cj+1 = (1−pε)
j∆∫
0

j∆β−2f(j∆β−1−1)Ŝ(β)e−λj∆+λβ dβ+pX(1−pδ)e−γ∆j

(b)

Ŝ(x) = Ŝ(x) + Cj+1I{[j∆,(j+1)∆]}(x)

5. Return CN+1 = Ŝ(N∆) = Ŝ(x0).

The D adjustment can be handled by replacing step 4.(a) by

(a’)

Cj+1 = (1−pε)
j∆∫
0

j∆β−2f(j∆β−1−1)Ŝ(β)e−λj∆+λβ dβ+pX(1−pδ)e−γ(∆j)1/D

The corresponding Weibull-type probabilities are easily obtained through

P (Yn ≥ y) = P (Xn ≥ y1/P),

where P is the appropriate power.

3.7.2 Calculation of Extreme Probabilities

Because of the structure of the minification model, it is particularly easy to calculate

the probability of variables such as

Zn = min(Xn, Xn−1, . . . , Xn−J ).
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To calculate P (Zn ≥ z), proceed as follows:

P (Zn ≥ z) = P (Xn−J ≥ z,Xn−J+1 ≥ z, . . . , Xn ≥ z)

= P (Xn−J ≥ z, . . . , Xn−1 ≥ z,Xn−1 ≥ z(αn + 1)−1, εn ≥ αnz(αn + 1)−1)

Note that z > z(αn + 1)−1 is redundant. so that

P (Zn ≥ z) = P (Zn ≥ z)P (εn ≥ αnz(αn + 1)−1)

Proceeding inductively, we have

P (Zn ≥ z) = P (Xn−J ≥ z)P (εn−J+1 ≥ αn−J+1z(αn−J+1 + 1)−1) . . .

. . . P (εn ≥ αnz(αn + 1)−1)

= P (Xn ≥ z)(P (ε ≥ αz(α + 1)−1))J−1 (3.40)

using the stationarity properties of {Xn}, {εn} and {αn}.
We have seen in the previous subsection how to numerically approximate P (Xn ≥

z). Calculation of the other factor in (3.40) depends on evaluation of the integral

P (ε ≥ αz(α + 1)−1) =

∞∫
0

(1− pε)e−
αλz
α+1f(α) dα

Then (3.40) becomes

P (Zn ≥ z) = P (Xn ≥ z)

 ∞∫
0

(1− pε)e−
αλz
α+1f(α) dα

J−1

3.7.3 Calculation of Model-Based FWI Exceedance Levels

The probability expressions developed in the previous two subsections have potential

use in the wildfire management context. With such formulas, it is possible to deter-
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mine location-specific percentiles for the FWI which could be used to set cut-offs for

local fire danger.

Fire activity may not increase because of a single day of elevated FWI. In-

stead, it may take two or more days of increased FWI to generate fires. Thus, the

probabilities of minima can also be used to set local fire danger cut-offs.

We briefly demonstrate how the percentile cut-offs might be determined at the

six weather station locations. To do this, we need parameter values that are “typical”

for a station. A simple approach is to compute the medians of all annual parameter

estimates at each weather station. Table 3.9 contains the medians of the random

coefficient minification process parameter estimates.

P pε pδ λ γ σ
Red Lake 1.00 0.18 0.62 0.12 0.31 1.17

Sioux Lookout 0.99 0.18 0.64 0.11 0.34 1.20
Kenora 0.95 0.17 0.59 0.11 0.27 1.21
Dryden 0.97 0.18 0.65 0.11 0.30 1.26

Timmins 1.03 0.17 0.60 0.15 0.39 1.18
Temagami 1.01 0.20 0.62 0.12 0.32 1.24

Table 3.9: Medians of parameter estimates for the random coefficient Weibull tailed
mixture model fit to each of the six Ontario weather stations under study.

Tables 3.10 through 3.15 display the probabilities of exceeding the given values

of the FWI listed in the left-most column, for each of the weather stations. The

second column lists the probability of exceeding the FWI value for one day, the third

column lists the probability of exceeding the FWI value for two consecutive days, and

so on. The probability calculations are based on the parameter estimates listed in

Table 3.9.

To illustrate the use of the tables, we can find the probability that the minimum

FWI value on 4 consecutive days exceeds 15.0 under typical conditions at Red Lake;

according to Table 3.10, it is 0.00405, a relatively rare event.

Incorporating the D adjustment into the δn component of the minification model

can be shown to have little effect on these probability calculations. Table 3.16 is a

replicate of Table 3.15 where the only difference in its calculation is to use the D = 0.9

adjustment. It can be seen that the entries in the two tables are very similar. Thus,

for the purpose of calculating these kinds of exceedance probabilities, the simpler

model (without adjustment) is sufficient for practical purposes.
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FWI 1 Day 2 Days 3 Days 4 Days 5 Days
1.000 0.571 0.441 0.3401 0.26248 0.20259
3.000 0.414 0.286 0.1969 0.13575 0.09359
5.000 0.306 0.189 0.1166 0.07202 0.04447
7.000 0.229 0.127 0.0705 0.03910 0.02168
9.000 0.174 0.087 0.0434 0.02165 0.01081

11.000 0.133 0.060 0.0271 0.01220 0.00550
13.000 0.103 0.042 0.0171 0.00699 0.00285
15.000 0.080 0.030 0.0109 0.00405 0.00150
17.000 0.062 0.021 0.0071 0.00238 0.00080
19.000 0.048 0.015 0.0046 0.00142 0.00044
21.000 0.038 0.011 0.0030 0.00085 0.00024
23.000 0.030 0.008 0.0020 0.00052 0.00013
25.000 0.023 0.006 0.0013 0.00032 0.00007
27.000 0.019 0.004 0.0009 0.00019 0.00004
29.000 0.015 0.003 0.0006 0.00012 0.00002

Table 3.10: Probabilities of exceeding a given FWI value for 1, 2, 3, 4 or 5 consecutive
days in the Red Lake district.

3.7.4 Fire Occurrence Prediction

The minification process model may provide new ways of quantifying the use of FWI

in the prediction of fire flaps, events usually associated with multiple fires.

In this subsection, we demonstrate through a few particular examples how FWI

exceedance is associated with fire activity. Simple graphics can be used to visualize

this association. The minification model gives us a way of calculating the probability

of such events.

In our first example (Figure 3.60), a dot plot is used to identify dates on which

the FWI exceeded 21 at Red Lake, for each of the years from 1976 through 1981. The

model-based probability of such occurrences is 0.038, according to Table 3.10.

Red circles are used to indicate days in which fires were reported in the Red

Lake district. A small amount of vertical jittering was used in order to visualize

multiple fires on the same date.

What is noteworthy in this figure is the large concentrations of red circles at

several locations indicating the level of prevalence of fire activity in the district. There

are several concentrations of fire events that are not near black dots, indicating that

the FWI values were not above 21 very often even when fires eventually occurred.

Ideally, one would like to see at least one black dot immediately preceding a con-

centration of red circles on this kind of plot. This would be an indication that FWI
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FWI 1 Day 2 Days 3 Days 4 Days 5 Days
1.000 0.556 0.430 0.3323 0.25694 0.19868
3.000 0.400 0.277 0.1920 0.13307 0.09224
5.000 0.294 0.183 0.1140 0.07095 0.04417
7.000 0.220 0.124 0.0692 0.03881 0.02175
9.000 0.168 0.085 0.0429 0.02169 0.01097

11.000 0.129 0.059 0.0270 0.01235 0.00565
13.000 0.100 0.041 0.0172 0.00714 0.00297
15.000 0.078 0.029 0.0111 0.00419 0.00158
17.000 0.061 0.021 0.0072 0.00248 0.00085
19.000 0.048 0.015 0.0047 0.00149 0.00047
21.000 0.038 0.011 0.0031 0.00090 0.00026
23.000 0.030 0.008 0.0021 0.00055 0.00015
25.000 0.023 0.006 0.0014 0.00034 0.00008
27.000 0.018 0.004 0.0009 0.00021 0.00005
29.000 0.015 0.003 0.0006 0.00013 0.00003

Table 3.11: Probabilities of exceeding a given FWI value for 1, 2, 3, 4 or 5 consecutive
days in the Sioux Lookout district.

levels above 21 are predictive of the occurrence of fire flaps. At the same time, too

many black dots appearing without being followed by a red circle would indicate a

false alarm.

Our conclusion from this analysis is that predicting fire flaps from the observa-

tion that the FWI exceeds 21 does not work well at Red Lake.

In Figure 3.61, the same fire ignitions are plotted as in the previous figure, but

the black dots are located at the dates on which 3 consecutive days with an FWI

value above 13 have occurred. Under typical conditions, the probability of such an

event is .0171. According to the plots, these typically rare events are occurring with

relatively high frequency and appear to be associated more strongly with fire activity.

This analysis is indicating that it may be better to use a warning based on 3 days

worth of FWI measurements than only a single day.

Continuing with the same set of fire ignitions, Figure 3.62 displays the dates

when the minimum FWI over the previous 5 days exceeds 11. Under typical conditions

at Red Lake, Table 3.10 suggests that the probability of this event is 0.00550. In most

cases, the occurrence of such events seems to be associated with fire activity, with the

exception of the plot for 1981 which shows several dates in which this type of extreme

FWI event is not associated with fires.

For a follow-up example, we repeated the above graphical analysis on the

Temagami district for the same time period. Note that Temagami is in a very differ-
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Figure 3.60: FWI exceedances and fire occurrence in the Red Lake district, for 1976
through 1981. Black dots: days when the FWI exceeds 21; red circles: days when
fires have started.
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Figure 3.61: FWI exceedances and fire occurrence in the Red Lake district, for 1976
through 1981. Black dots: days when the FWI has exceeded 13 for at least 3 days;
red circles: days when fires have started.
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Figure 3.62: FWI exceedances and fire occurrence in the Red Lake district, for 1976
through 1981. Black dots: days when the FWI has exceeded 11 for at least 5 days;
red circles: days when fires have started.
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Figure 3.63: FWI exceedances and fire occurrence in the Temagami district, for 1976
through 1981. Black dots: days when the FWI exceeds 21; red circles: days when
fires have started.
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Figure 3.64: FWI exceedances and fire occurrence in the Temagami district, for 1976
through 1981. Black dots: days when the FWI has exceeded 13 for at least 3 days;
red circles: days when fires have started.
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Figure 3.65: FWI exceedances and fire occurrence in the Temagami district, for 1976
through 1981. Black dots: days when the FWI has exceeded 11 for at least 5 days;
red circles: days when fires have started.
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FWI 1 Day 2 Days 3 Days 4 Days 5 Days
1.000 0.605 0.475 0.3726 0.29227 0.22930
3.000 0.447 0.314 0.2202 0.15465 0.10860
5.000 0.331 0.208 0.1306 0.08205 0.05153
7.000 0.247 0.139 0.0782 0.04399 0.02474
9.000 0.186 0.094 0.0474 0.02388 0.01204

11.000 0.141 0.064 0.0290 0.01313 0.00595
13.000 0.107 0.044 0.0179 0.00730 0.00298
15.000 0.082 0.030 0.0111 0.00411 0.00152
17.000 0.063 0.021 0.0070 0.00234 0.00078
19.000 0.048 0.015 0.0044 0.00134 0.00041
21.000 0.037 0.010 0.0028 0.00078 0.00021
23.000 0.029 0.007 0.0018 0.00046 0.00011
25.000 0.022 0.005 0.0012 0.00027 0.00006
27.000 0.017 0.004 0.0008 0.00016 0.00003
29.000 0.013 0.003 0.0005 0.00010 0.00002

Table 3.12: Probabilities of exceeding a given FWI value for 1, 2, 3, 4 or 5 consecutive
days in the Kenora district.

ent part of the province from Red Lake so there is no prior reason to expect the same

kind of fire and weather activity.

Looking at Figure 3.63, we see several concentrations of red circles without any

black dots nearby, as well as several instances of black dots not being followed by red

circles. This means that looking at days when the FWI exceeds 21 is again not a very

predictor of fire activity.

The black dot plot on Figure 3.64 shows the dates when the minimum FWI

on 3 consecutive days exceeds 13 (an event with probability 0.0159 under typical

conditions, according to Table 3.15). Although there are several fire flaps that are

preceded by one or more black dots, there are some fires, notably in the 1980 plot,

which are not predicted by three consecutive days of FWI above 13. In addition,

there are some false alarms in 1978 and 1979.

Finally, Figure 3.65 shows dates when the minimum FWI on 5 consecutive days

exceeds 11 (an event with probability 0.00492, according to Table 3.15). In this case,

the fire flap in 1980 is correctly predicted, but the numbers of false alarms in 1978

and 1979 is even larger than before.

This exploratory analysis is clearly not complete and will be the subject of

further research, but it is highly suggestive of the importance of looking at the FWI

as a predictor for fire activity in nontraditional ways. A formal analysis would require

the study of all fires and different configurations of minimal statistics based on the
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FWI 1 Day 2 Days 3 Days 4 Days 5 Days
1.000 0.566 0.442 0.3445 0.26877 0.20968
3.000 0.409 0.285 0.1980 0.13774 0.09581
5.000 0.299 0.186 0.1153 0.07151 0.04437
7.000 0.222 0.123 0.0681 0.03778 0.02095
9.000 0.166 0.082 0.0409 0.02031 0.01009

11.000 0.125 0.056 0.0249 0.01109 0.00495
13.000 0.095 0.038 0.0153 0.00615 0.00247
15.000 0.072 0.026 0.0095 0.00345 0.00125
17.000 0.055 0.018 0.0060 0.00196 0.00065
19.000 0.042 0.013 0.0038 0.00113 0.00034
21.000 0.032 0.009 0.0024 0.00066 0.00018
23.000 0.025 0.006 0.0015 0.00039 0.00010
25.000 0.019 0.004 0.0010 0.00023 0.00005
27.000 0.015 0.003 0.0007 0.00014 0.00003
29.000 0.011 0.002 0.0004 0.00008 0.00002

Table 3.13: Probabilities of exceeding a given FWI value for 1, 2, 3, 4 or 5 consecutive
days in the Dryden district.

FWI, and is outside the scope of the current study. Our present interest has been in

proposing the minification model and indicating how it might be used in practice.

3.7.5 Bootstrap Hypothesis Testing

With a model that gives a reasonable fit to the data, it is now possible to perform

certain hypothesis tests of interest. In particular, parametric bootstrap tests can be

conducted.

In this section, we will test the hypothesis that all lag 1 autocorrelations are

the same from year to year against the alternative that at least one is different. This

hypothesis was also tested in Han and Braun (2014), and we will use the same test

statistic here. The only difference between the present approach and that one is that

we will construct bootstrap samples by simulating from the fitted model instead of

conducting a block bootstrap.

In order to simulate FWI time series that satisfy the null hypothesis, we use

the median of all parameter estimates given in Table 3.9 as the parameter values to

repeatedly generate bootstrap sample replicates.

As in Han and Braun (2014), the test statistic is calculated as the standard

deviation of the annual lag 1 autocorrelation estimates of the FWI values raised to

the power 0.2.
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FWI 1 Day 2 Days 3 Days 4 Days 5 Days
1.000 0.565 0.434 0.3327 0.25531 0.19591
3.000 0.387 0.259 0.1734 0.11608 0.07769
5.000 0.273 0.161 0.0945 0.05552 0.03263
7.000 0.197 0.102 0.0531 0.02757 0.01431
9.000 0.145 0.067 0.0307 0.01411 0.00650

11.000 0.107 0.044 0.0180 0.00741 0.00304
13.000 0.080 0.029 0.0108 0.00397 0.00146
15.000 0.060 0.020 0.0066 0.00217 0.00072
17.000 0.046 0.014 0.0040 0.00121 0.00036
19.000 0.035 0.009 0.0025 0.00068 0.00018
21.000 0.026 0.006 0.0016 0.00039 0.00010
23.000 0.020 0.005 0.0010 0.00022 0.00005
25.000 0.015 0.003 0.0006 0.00013 0.00003
27.000 0.012 0.002 0.0004 0.00008 0.00001
29.000 0.009 0.002 0.0003 0.00005 0.00001

Table 3.14: Probabilities of exceeding a given FWI value for 1, 2, 3, 4 or 5 consecutive
days in the Timmins district.

Using 500 bootstrap replicates for each weather station, and calculating the

bootstrap p-value as the proportion of bootstrap samples in which the resulting test

statistic exceeds the test statistic for the original sample. The p-values for the six

stations are

Red Lake Sioux Lookout Kenora Dryden Timmins Temagami

0.024 0.004 0.006 0.1 0.248 0.066

The conclusion that we draw from this set of tests is that there is clear evidence

that the lag 1 autocorrelations change from year to year at Red Lake, Sioux Lookout

and Kenora. The evidence is less clear at the other three stations. This result is

slightly different from what was reported in Han and Braun (2014) where a confidence

interval analysis indicated that the annual lag 1 autocorrelations at Dryden are not

constant. Otherwise, the conclusion is the same using both the nonparametric and

parametric procedures.

3.8 Conclusions and Further Work

FWI data are nonnegative and include many zeros. The FWI increases when the

relative humidity is low, as the temperature rises, and with increases in wind speed.

Increases in FWI could also occur when cloud cover is thin or nonexistent. This means
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FWI 1 Day 2 Days 3 Days 4 Days 5 Days
1.000 0.549 0.415 0.3136 0.23688 0.17895
3.000 0.395 0.267 0.1799 0.12132 0.08183
5.000 0.291 0.176 0.1063 0.06425 0.03885
7.000 0.217 0.118 0.0643 0.03497 0.01902
9.000 0.165 0.081 0.0397 0.01949 0.00957

11.000 0.126 0.056 0.0249 0.01108 0.00492
13.000 0.097 0.039 0.0159 0.00641 0.00259
15.000 0.076 0.028 0.0102 0.00377 0.00138
17.000 0.059 0.020 0.0067 0.00224 0.00075
19.000 0.046 0.014 0.0044 0.00135 0.00042
21.000 0.037 0.010 0.0029 0.00083 0.00023
23.000 0.029 0.008 0.0020 0.00051 0.00013
25.000 0.023 0.005 0.0013 0.00032 0.00008
27.000 0.018 0.004 0.0009 0.00020 0.00004
29.000 0.014 0.003 0.0006 0.00013 0.00003

Table 3.15: Probabilities of exceeding a given FWI value for 1, 2, 3, 4 or 5 consecutive
days in the Temagami district.

FWI increases are gradual but random. Sudden rain causes the FWI to decrease, often

to the nil value.

At the beginning of the fire season (Subseason 1), rain events may tend to

happen more often than at other times in the fire season. Thus, in the different

subseasons drying rates and their associated model coefficients are different.

The histogram of FWI excluding zeros shows an exponential-like shape. Through

a sequence of model-building steps, this led to our proposal of a random coefficient

mixture Weibull tailed minification model:

Yn = XP

n

where

Xn =

(αn + 1)min(Xn−1, α
−1
n εn), if Xn−1 > 0.

δn, if Xn−1 = 0.

Here εn, δn are independent exponential tailed random variables and αn is lognormal.

For the Ontario data, we showed that a mixture Weibull tailed distribution works

reasonalbly well, but seasonality should be accounted for.

This model is a Markovian process. Using techniques from ODE theory, we

showed the existence and uniqueness of the stationary distribution of the homoge-
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FWI 1 Day 2 Days 3 Days 4 Days 5 Days
1.000 0.547 0.413 0.3124 0.23598 0.17827
3.000 0.401 0.270 0.1823 0.12299 0.08296
5.000 0.300 0.181 0.1097 0.06633 0.04010
7.000 0.228 0.124 0.0674 0.03663 0.01992
9.000 0.174 0.086 0.0420 0.02062 0.01012

11.000 0.134 0.060 0.0266 0.01181 0.00525
13.000 0.104 0.042 0.0170 0.00686 0.00277
15.000 0.081 0.030 0.0110 0.00404 0.00149
17.000 0.064 0.021 0.0072 0.00241 0.00081
19.000 0.050 0.015 0.0047 0.00145 0.00045
21.000 0.039 0.011 0.0031 0.00089 0.00025
23.000 0.031 0.008 0.0021 0.00055 0.00014
25.000 0.024 0.006 0.0014 0.00034 0.00008
27.000 0.019 0.004 0.0010 0.00021 0.00005
29.000 0.015 0.003 0.0007 0.00014 0.00003

Table 3.16: Probabilities of exceeding a given FWI value for 1, 2, 3, 4 or 5 consecutive
days in the Temagami district.

neous Markov process. Although it gives realistic simulations and accurate probabil-

ity calculations, FWI time series have been shown to not exactly satisfy the properties

of a homogeneous Markovian process in a recent paper by Albert-Green et al (2013).

This could be due in part to seasonality, but there could also be some truly non-

Markovian character to the true process. Nevertheless, the model we propose in this

paper appears to fit the data well.

The model proposed in the current paper will also be subject to certain inac-

curacies. While it is possible to incorporate mechanisms into the random coefficient

minification model which would render it non-Markovian, the price for doing so may

be more than it is worth. The current model is computationally tractable and easily

simulated, providing good approximations to marginal and joint distributions of the

FWI values, but the small improvement in approximation accuracy coming from a

non-Markovian model may result in a model which is difficult to simulate from and

for which probability calculations are prohibitively difficult. One alternative would

be to incorporate further randomization by allowing pδ and/or pε to become random

variables, possibly with beta distributions. This is a subject for further research.

Parameter estimation for the random coefficient minification model by max-

imum likelihood is feasible. Several checks on the fitted model were undertaken.

Comparing long run autocorrelation plots of observed data and simulated data with

and without seasonality for each location, it is evident that seasonality is quite im-
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portant. The seasonal ones can match most of the first 20 lags correlation with slight

underestimation but much better than the nonseasonal model. The predictive resid-

ual plots provide additional evidence of the accuracy of the proposed model. Weibull

tailed δn QQ-plots for transition probabilities from the nil state confirm the model

fitting, but additional adjustment is necessary to handle nil state transitions.

Allowing the Weibull parameter to differ for the δn component of the model

needs further investigation. The model is still a member of the general family for

which we proved existence and uniqueness of a stationary distribution:

Yn =

(αn + 1)min(Yn−1, Zn), if Yn−1 > 0.

Wn, if Yn−1 = 0.

The adjusted model presented here has Wn = δPD. The value of D was selected

informally. Likelihood estimation of the D adjustment should be considered in the

future.

We considered applications of the random coefficient minification model to test-

ing and evaluating probabilities of extreme events. Likelihood ratio testing should be

considered in the future; the asymptotic distribution of the likelihood ratio will re-

quire careful study before it can be applied in practice. The association between

fire events and extreme FWI behaviour warrants additional research, since we have

provided evidence that consideration of runs of several days of moderate FWI values

could be more closely associated with fires than single days of high FWI values. Our

approach has been informal. A systematic formal approach is needed before a firm

conclusion can be reached.
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Chapter 4

RANDOMIZING THE PROMETHEUS FIRE GROWTH
MODEL

4.1 Introduction

When a wildfire is reported, fire management agencies would like to predict its future

growth in order to make an appropriate resource allocation and to assure fire crew

safety. In Canada, these kinds of decisions are currently based on the Canadian

Fire Behaviour Prediction (FBP) system (Forestry Canada, 1992). Some agencies,

such as Alberta Sustainable Resource Development, regularly use the Prometheus

Wildland Fire Growth (Tymstra et al, 2010) simulator to make predictions. The

Prometheus simulator is based on the FBP system combined with a mathematical

model for fire spread. Inputs are weather forecast information, vegetation (fuel)

and topography. The Prometheus program produces a map with overlaid contours

outlining the expected fire perimeter at a specified sequence of times.

Prometheus is a deterministic simulator, but what it is modelling is highly un-

predictable. Therefore, it is not realistic to expect it to give accurate predictions

routinely. Accurate burn probability maps would be preferred, since they would out-

line areas that are likely to burn, and they would give a sense of the uncertainty in

the prediction. The current approach to this problem lies in the use of Monte Carlo

ensemble models which may not be satisfactorily conveying true prediction uncer-

tainty. These methods also suffer from being too time-consuming to be operational

in real-time. In the present work, we outline a statistical modelling strategy which

we believe will take us a step closer to the goal of producing fast, accurate burn

probability maps.

Since Prometheus is a predictive model for fire growth, it has been named

after an entity associated with both forethought and fire. Adding uncertainty or

randomness to its predictions leads us to an entity associated more with chaos and

disorder: Dionysus.

The rest of this paper will proceed as follows. In the next section, we shall give

a description of the Prometheus program and show how it is a predictive model based
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on a set of experimental and wildfire data. We briefly describe a simplified research

version which we have written for use in R. The subsequent section describes our

statistical analysis of that data set. We then describe our proposed Dionysus algo-

rithm, which actually comprises two approaches, both of which employ Prometheus;

the first repeatedly runs randomly perturbed versions of Prometheus, and the sec-

ond runs Prometheus a single time. A theoretical and empirical comparison of the

two approaches is then carried out. The paper concludes with a summary of our

contribution as well as what we see as the limitations of our methodology.

4.2 Background Information

The basic fire prediction question that this paper addresses is: for a given wildfire

ignition, weather forecast, and fuel and topographic map, where is the fire likely to

be burning in a specified period of time? It should be noted that this is only one of

many issues that fire managers face, but this question is one that requires a rapid

response.

Questions concerning more general fire risk are not addressed in this paper

directly. For example, finding the probability that a particular area will burn in the

next year or in the next 50 years is a very different question.

In fact, the Prometheus simulator has been used to try to answer both of the

above kinds of questions. In the first case, it can be applied directly, but the answer

will be deterministic. In the second case, randomly generated ignitions and realistic,

but non-specific weather scenarios have been used as inputs to Prometheus in a Monte

Carlo ensemble procedure to estimate relative frequencies of burning events. This

ensemble approach has also been used to determine probabilities of burning, given

a single fire ignition. The purpose of the present paper is to discuss a methodology

which could provide more realistic probabilities of burning, given a single fire ignition.

We will not address the question of overall fire risk further.

4.2.1 Prometheus

Prometheus is a single-platform implementation of a spatially explicit process model,

derived from Huygens’ principle of wave propagation. Initially, the simulated fire

front is represented by a small circle centered at the ignition point. At subsequent
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times, the fire front is defined as the envelope of ellipses which correspond to small

fires emanating from ignition points located on the previously defined fire front.

The parameters of each ellipse (as illustrated in Figure 4.1) are based on raster-

ized estimates of the rate of spread (ROS) which are, in turn, related to local topog-

raphy, fuel type (i.e vegetation), moisture, and wind speed and direction. Specifically,

a =
(R +B)∆t

2
; b = F ∆t; c =

(R−B)∆t

2
(4.1)

where R = forward ROS, B = back ROS, and F = flank ROS, and ∆t is the time

step size.

●

ignition pt

c a

b

effective 
 wind direction

Figure 4.1: A Prometheus ellipse.

ROS values are calculated, for each grid cell, using an empirical model with

interpolated forecast data, often calibrated with current observations from nearby

weather stations, together with topography and fuel maps. More detail on this can

be found in Tymstra et al. (2010).

The empirical ROS model describes a sigmoidal relationship between ROS and

I, the initial spread index or ISI, a summary of the effects of both wind and moisture:

R = α (1− exp(−βI))γ (4.2)
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The α, β and γ parameters have been estimated for several different fuel types using

an ad hoc curve-fitting procedure (Forestry Canada, 1992).

Back and flank rates of spread (BROS and FROS, respectively) are derived

quantities:

B = α (1− exp(−βk(w)I))γ (4.3)

and

F =
1

2ρ(w)
(R +B). (4.4)

where k(w) is exponentially decreasing function of windspeed with k(0) = 1:

k(w) =

 e−0.10078w, for w < 40
e−.05039w

12(1−e−0.0818(w−28))
, for w ≥ 40

The α, β and γ parameter values used in (4.3) are the same as those used in

(4.2). The length-to-breadth ratio employed in equation (4.4) is calculated from

ρ(w) = 1 + 8.729(1− exp(−0.3w))2.155

where w is the local effective windspeed.

Effective wind speed and direction are determined from the forecast wind speed

and direction, combined with a slope effect. Details are described in the Fire Be-

haviour Prediction document published by Forestry Canada (1992).

The rate of spread calculations are carried out at each time step, and are per-

formed internally to the Prometheus program, using user-supplied weather inputs

(fuel moisture, wind speed, wind direction) and fuel type and topography. These

(local) rates of spread are then substituted into the equations (4.1) giving parameters

for all of the ellipses emanating from the most recently generated fire front.

The successive fire fronts as represented by the ellipse envelopes are governed

by a system of differential equations (Richards, 1990). The Prometheus simulator

program implements a numerical solution of these differential equations, calculating

estimates of the envelopes at a sequence of time steps and drawing them as confocal

contours on a map. A more detailed description of the Prometheus simulator, acces-

sible to statisticians, can be found in the papers by Garcia et al (2008) and Barber

et al (2008).
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What should now be evident is that the Prometheus program is actually an

elaborate statistical predictive model based on an underlying set of data: the predic-

tor variable is the initial spread index, and the response variable is rate of spread.

The successive ellipse envelopes that are produced as output from the Prometheus

program can then be viewed as a transformation, or collection of transformations, of

the response variable.

4.2.2 RPrometheus

We have programmed a slightly simplified research-version of Prometheus in R (R

Core Team, 2013) which maps the burned area at each given time step. This version

does not have all of the functionality of the professional version, but, because it is

open-source, it is more well-suited for basic research purposes of the type we wish to

pursue. In particular, the user of RPrometheus has full control of the FBP inputs, un-

like the professional version. RPrometheus can be executed on a wider range of plat-

forms. It is available at http://www.stats.uwo.ca/faculty/braun/Rpackages.php.

Like Prometheus, RPrometheus is based on Huygens’ principle, but the im-

plementation is somewhat different. Instead of successively, numerically, solving the

differential equation system to obtain the sequence of ellipse envelopes, RPrometheus

is fully rasterized. At the first time step, ellipse parameters are calculated based on

fuel and weather information at the ignition site. All fuel grid cells lying within this

ellipse are assumed to be ignited. At subsequent time steps, ellipses originating at

previously ignited grid cell centers are obtained, and any fuel grid cells lying within

these ellipses are assumed to then ignite. Note that the initial ignition might occupy

more than one grid cell; in that case, the simulation begins with multiple ellipses

emanating from each ignited grid cell center.

One reason for adopting a direct strategy in RPrometheus is that it avoids the

issue of tangles that can occur in the ellipse envelopes. This issue is documented

in Barber et al (2008) and is a side effect of the numerical method being applied

to the differential equations. Coping methods have been developed (see Bose et al,

2009), but these are time-consuming and in an interpreted language like R will make

simulation prohibitively slow. Because the two implementations can be made to

approximate each other arbitrarily closely by appropriate selection of the time step

size and raster size, we will make no further reference to RPrometheus, viewing the

two implementations as essentially equivalent.
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Example output from a Prometheus simulation run is displayed in Figure 4.2

starting at the ignition point of a real fire that burned in the Muskoka Lakes District

of Ontario, Canada in 1999. The wind speed and fuel moisture used in the simulation

correspond to the actual fire record. The wind direction was not recorded, but is

taken from the west (the prevailing direction) in the simulation. The yellow portion

of each panel highlights the predicted burned area at the indicated time from ignition.

The blue areas of the map denote non-fuel areas; most of these areas represent water,

but some may be roads or other substrates that will not burn. The green areas of the

map denote regions of fuel that has not burned. In fact, the fuel grid contains a large

number of types of fuel, but for simplicity of presentation, we have restricted to two

colors, one for coniferous fuels (faster burning) and one (lighter green) for deciduous

fuels.

The actual duration of the fire is not precisely known; the record indicates that

the time between the initial report and when the fire was completely extinguished is

no more than 7 days, but the number of hours of intense burning is probably much

less. The simulation shows what is expected to be burned in 4 hours: an area of 61.1

hectares. The actual final fire area was 75 hectares.
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Figure 4.2: A Prometheus run in a 4km × 4km region of the Muskoka Lakes District.
The yellow region represents the area burned by the simulated fire by 1.12 h, 2.63
h and 3.76 h, respectively. The horizontal coordinates are in meters easting and the
vertical coordinates are in meters northing.
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4.2.3 Variability and the Use of Ensemble Methods

Since Prometheus is deterministic, every run under identical conditions will produce

identical output. However, uncertainty in the fire process leads to unpredictable

outcomes. Cruz and Alexander (2013b) have pointed out that prediction errors in

ROS can be extremely large. Thus, a realistic fire growth simulator, based on ROS,

should have a stochastic component. Modelling this stochastic component is not a

straightforward exercise, however.

Efforts have been made to incorporate randomness in models for ROS and for

fire spread going back to Kourtz (1972). Burn-P3 (Parisien et al, 2005) represents one

way in which randomness has been incorporated into Prometheus. This is an ensemble

procedure based on random weather streams. Weather data are randomly selected

from the historic record and used as input to the Prometheus program, resulting in a

different set of simulated fire fronts each time. Empirical burn probabilities for each

location are calculated by counting the number of simulations in which that location

was burned divided by the total number of simulations.

Ensemble methods are also employed by Anderson et al (2007), Cruz and

Alexander (2009), Finney et al (2010) and Cruz (2010) to obtain empirical burn

probabilities or probability distributions for rates of spread.

4.2.4 A Limitation of the ROS Model Equations

Cruz and Alexander (2013b) have carefully laid out the principal sources of variation

in the rate of fire spread which lead to prediction errors in ROS models. Clearly,

input weather variables such as wind speed and direction, relative humidity, tem-

perature and precipitation play an enormous role. Other factors that must also be

acknowledged are unobservable variations in surface winds, horizontal and vertical

fuel variability, the chaotic nature of turbulent flows, and feedback mechanisms asso-

ciated with the fire and the atmosphere and boundary layer.

Written in its current form, the model expressed by (4.2) is limited in its ability

to include stochastic variation. Variation in ROS appears to only depend on variation

in the weather inputs via the initial spread index, I, hence the focus on ensemble

models which randomize weather inputs. This approach will succeed only if there is

no model error. Cruz and Alexander (2013a, 2013b) demonstrate clearly that ROS

models, including equation (4.2), have error.
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The issue may be easier to appreciate when expressed mathematically. When

model (4.2) is viewed deterministically, it takes the form

R = g(I) (4.5)

for the given function g(.). The only way randomness can enter this model is through

I, the initial spread index.

Let µI = E[R|I], the expected rate of spread for a given initial spread index,

and let µ = E[R], the unconditional mean rate of spread. The main point of the

current paper is that even if the initial spread index is known or well-approximated,

there will still be substantial uncertainty in predictions made about fire spread. Thus,

our interest will center on µI , or a conditional expectation, given the forecast error

distribution. Estimating the unconditional mean may be of interest in a more general

risk assessment problem, but it is not of use when predicting the behaviour of an

individual fire.

Under model (4.5), the conditional variance of R is clearly

V (R|I) = V (g(I)|I) = 0.

Thus, if there is no forecast error in I, there can be no variation in R. Randomizing

I as is done in the current implementation of ensemble methods will possibly address

the issue of forecast error, but it cannot account for the other sources of variation

described by Cruz and Alexander (2013a, 2013b).

We believe a more effective approach is to include a random term representing

the uncertainty associated with the model itself:

R = h(I, ε) (4.6)

where h is some as yet to be determined function, and ε is a random variable that

summarizes unexplained variation. Under model (4.6), the conditional variance of R,

given the initial spread index, is

V (R|I) =

∫
(h(I, x)− µI)2fε(x)dx > 0
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where fε(x) denotes the distribution of the model error. This motivates the approach

we outline in the next section: identifying a useful form for h(I, ε).

4.3 A Statistical Analysis of the ROS Data

The empirical relation described by (4.2) can be augmented by a noise component

which models the uncertainty in ROS. By revisiting the original data on which this

relation was built, we can study this noise component. A scatter plot of the residuals

from (4.2) for one of the conifer fuel types appears in Figure 4.3. Surface fires and

crown fires are distinguished by different plotting characters.
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Figure 4.3: Residuals, observed rates of spread minus predicted rates of spread, using
model (4.2) applied to data from historic fire records. The type of plotting character
indicates fire type: black dots denote surface fires, and open circles denote crown fires.

The plot clearly indicates that the noise variance is not constant; the spread of

the residuals increases with the initial spread index. The plot also indicates that ROS

variability may be quite different for surface fires than for crown fires. Similar kinds

of patterns can be seen for other fuel types. The nonconstancy of the variance has a

serious implication; the least-squares estimates of the model parameters are inefficient,

and could be improved upon with weighted least-squares or with a variance-stabilizing

transformation.
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We seek a variance-stabilizing power transformation:

Rδ = (α (1− exp(−βI))γ)δ + ε = αδ(1− exp(−βI))γδ + ε (4.7)

where ε is approximately normal with mean 0 and variance σ2. Ideally, such a trans-

formation would be determined for each fuel type and fire type combination. However,

data is sparse for many of the fuel types, so we have found it necessary to pool the

data into categories which make physical sense: conifer, deciduous and mixed.

The bulk of the data are in the conifer category, so we have some confidence

in the results we are about to demonstrate. For the deciduous category, there are no

crown fire observations, and there are very few observations in the mixed category.

In view of this, and noting that faster burning (and hence more dangerous) fires are

in the conifer category, we focus on this category for the remainder of this paper.

In order to determine the transformation used in (4.7), a Box-Cox procedure

(e.g. Venables and Ripley, 2002) can be used. For crown fires, the procedure suggests

δ = 0.6, while for surface fires, δ = 0 is recommended, which translates to a log

transformation on ROS. Figure 4.4 contains scale-location plots both before and after

transformation which indicate that the Box-Cox recommendations should work quite

well. To obtain the scale-location plots, residuals were calculated, for each conifer

crown fire, using

e = Rδ − αδ (1− exp(−βI))γδ (4.8)

with δ = 0.6, and using

e = log(R)− (log(α) + γ log(1− exp(−βI))) (4.9)

for the surface fires. A plot of the square root of the absolute values of these residuals

versus the corresponding predicted ROS (on the transformed scale) should show no

pattern if δ is an appropriate power to use. Overlaying the scatter plot with a resistant

nonparametric smooth helps to determine if there is a pattern or not. In our work,

we are using Tukey’s (1977) running median smoother, together with the plotting

routines in the lattice package (Sarkar, 2008).

The leftmost panel in Figure 4.4 shows the residuals for the crown fire ROS

observations when δ = 1 (i.e. the untransformed data). The overlaid smooth curve

shows a clear increase (consistent with what we saw in Figure 4.3).
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The first panel in the right plot of Figure 4.4 shows what happens to the resid-

uals for the coniferous crown fires when δ = 0.6. The pattern disappears and the

overlaid smooth curve is now essentially flat.

The second panel in the left plot of Figure 4.4 shows the residuals for untrans-

formed surface fire ROS observations. As in the crown fire case, there is a clear need

for transformation. The second panel in the right plot of Figure 4.4 shows the resid-

uals after the log transformation is applied. Although still not perfectly constant,

heterogeneity has been greatly reduced.
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Figure 4.4: Left Plot: Residual scale-location plots for raw ROS data, with overlaid
nonparametric smooth curves for crown fires (C, left panel) and surface fires (S, right
panel). Right Plot: Residual scale-location plots and nonparametric curves for the
same data, after transformation.

Normal QQ-plots are also of use. The upper panels in Figure 4.5 show normal

QQ-plots for the residuals from the model (4.2) using untransformed surface and

crown fire ROS. In both cases, the plotted points deviate substantially from the

reference line, indicating non-normality. The crown fire data exhibit noticeable right-

skewness, while the surface fire data are skewed heavily to the left.

The bottom row of plots shows what happens when the δ = .6 power trans-

formation and log transformation are applied to the crown fire and surface fire ROS

values in formulas (4.8) and (4.9). The pattern of points on both QQ-plots is some-

what closer to linear, indicating that the transformations are normalizing as well as

variance-stabilizing, especially in the case of the surface fires.
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Figure 4.5: Residual normal QQ-plots for raw (top row) and transformed (bottom
row) ROS data. The plots on the left correspond to crown fires; surface fires are on
the right.

Based on these observations, we can provide estimates of the probability distri-

bution of R, under the assumption of an accurate weather forecast. Specifically, the

true rate of spread will be less than Rp with probability p when

Rp = hδ(I, εpσ̂),
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where

hδ(I, Z) = (αδ(1− exp(−βI))γδ + Z)1/δ,

for δ 6= 0 and

h0(I, Z) = exp(Z)α(1− exp(−βI))γ

and where εp is the pth quantile of the standard normal distribution. For surface fires,

the error standard deviation is estimated as σ̂ = 0.923 and for crown fires, σ̂ = 1.637.

Variability in BROS is not expected to play a major role in the variability in the

overall growth of a fire when the windspeed is high, but when windspeeds are low to

moderate, BROS will be more important. The relationship at (4.3) relates the scale

in the forward initial spread to the back initial spread; the formula below employs

the same scaling relation to the errors in the back rate of spread. The pth percentile

of BROS is modelled as

Bp = hδ(k(w)I, k(w)σ̂εp).

The virtue of this formula is that when the windspeed is 0, variability in BROS will

match variability in ROS and FROS; this would be expected in such a case of radial

symmetry. As the windspeed increases, BROS and its variation will decrease.

4.4 Dionysus: Randomized Prometheus

This section contains the Dionysus algorithm, the method for creating burn proba-

bility envelopes for a single fire modelled by Prometheus. The method will predict a

shape or contour which should contain the “true” fire with probability p. This means

that any site outside of the pth probability contour should burn with probability

strictly less than 1 − p, and each location inside the pth contour should burn with

probability at least 1− p.
The ignition point (or points) of the fire is assumed known. It is also assumed

that the fire type is known; that is, the fire is known to be either a surface or a

crown fire, although relaxing this assumption poses little difficulty. Hourly weather is

assumed known; let It denote the ISI at time t, and let wt denote the corresponding

windspeed.

We present two methods for producing Dionysus burn probability envelopes,

an ensemble method and a percentile method. The ensemble method will require
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a large amount of simulation time but will be applicable very generally. The per-

centile method is very fast, but it will be applicable only when the weather forecast

is trustworthy.

4.4.1 Ensemble Method

Prometheus is run N times from the same ignition point. For each simulation, the

time steps are t1, t2, . . . , tm.

For k = 1, 2, . . . , N ,

1. Designate one or more grid cell sites as ignited.

2. Generate ε∗k randomly from the standard normal distribution.

3. For t = t1, t2, . . . , tm, do the following:

(a) For all grid cell sites (i, j) that are ignited, do the following:

i. Set

Rijkt = hδ(It, ε
∗
kσ̂)

where the parameters of h: α, β, γ and δ depend on the fuel type,

topography and fire type at grid cell (i, j).

ii. In the same way, set

Bijkt = hδ(k(wt)It, k(wt)ε
∗
kσ̂)

iii. Set

Fijkt =
Bijkt +Rijkt

2ρ(wt)

iv. Set

aijkt =
(Bijkt +Rijkt)∆t

2
,

bijkt = Fijkt∆t,

and

cijkt =
(Rijkt −Bijkt)∆t

2
.
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(b) Designate all sites within the union of the ellipses with parameters aijkt,

bijkt and cijkt as ignited.

4. Let P̂ij be the proportion of simulation runs where grid site (i, j) is ignited by

time tm. The p burn probability envelope is the union of all grid sites where

P̂ij ≥ 1− p.

4.4.2 Percentile-Based Method

In this case, the Prometheus simulator is run once, starting from the given ignition.

The value of p is given. For example, if a 95% burn probability envelope is desired,

then p is taken to be 0.95.

1. Designate one or more grid cell sites as ignited.

2. Define εp as the upper pth quantile of the standard normal distribution.

3. For t = t1, t2, . . . , tm, do the following:

(a) For all grid cell sites (i, j) that are ignited, do the following:

i. Set

Rijpt = hδ(It, εpσ̂)

where the parameters of h: α, β, γ and δ depend on the fuel type,

topography and fire type at grid cell (i, j).

ii. In the same way, set

Bijpt = hδ(k(wt)It, k(wt)εpσ̂)

iii. Set

Fijpt =
Bijpt +Rijpt

2ρ(wt)

iv. Set

aijpt =
(Bijpt +Rijpt)∆t

2
,

bijpt = Fijpt∆t,
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and

cijpt =
(Rijpt −Bijpt)∆t

2
.

(b) Designate all sites within the union of the ellipses with parameters aijpt,

bijpt and cijpt as ignited.

4. The p burn probability envelope is the set of all grid sites that have been des-

ignated as ignited.

4.5 Comparison of the Two Dionysus Algorithms

In this section, we compare the two Dionysus methods and demonstrate both theo-

retically and numerically that they give the same results when the ensemble method

is run a large number of times (so as to minimize simulation error).

4.5.1 Theoretical Comparison

Let En(ε) denote the envelope of Prometheus ellipses at time tn generated according

to one of the iterates of the algorithm described in Section 4.4.1, using the standard

normal variate ε, for given forecast weather and a given fuel grid, for n = 1, 2, . . . ,m.

Ideally, the ensemble method would be run an infinite number of times in order to

reduce simulation error to 0. The pth probability contour for this version of the

ensemble method is constructed from the distribution of the En(ε)’s, identifying sites

which burn with probability at least 1−p. It is this theoretical version of the ensemble

method that we will compare with the percentile method.

Observe first that En(εp) coincides with the pth probability envelope con-

structed from the percentile method. Our objective is to show that En(εp) contains

the pth probability contour produced by the ensemble method, with probability p. In

other words, we claim that

P
(
En(ε) ⊆ En(εp)

)
= P (ε ≤ εp) = p.

The following proposition provides the theoretical justification for the first equality

in the above statement, since it may not be obvious that the En mapping possesses

the needed monotonicity property.
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Proposition. Assume En(εp) is the pth probability envelope produced by the algo-

rithm of Section 4.4.2. If εp1 < εp2, then En(εp1) ⊂ En(εp2) for all n = 1, 2, . . . .

We prove this by induction on the time step.

Suppose εp1 < εp2 . Then E1(εp1) ⊂ E1(εp2), since the two ellipse envelopes

are just ellipses that emanate from the same ignition point, but where the ellipse

parameters based on εp2 are larger than those based on εp1 .

Now, suppose En−1(εp1) ⊂ En−1(εp2) for some n ≥ 1. Then, all ignition points

for the εp1 ellipses must lie in En−1(εp2). Therefore the set of ignition points for the

set of εp1 ellipses is a subset of the set of εp2 ellipse ignition points. The parameters

for the εp2 ellipses originating at ignition points for the εp1 ellipses are larger than

for the εp1 ellipses. Thus, the union of the εp2 ellipses must contain the union of the

εp1 ellipses, but this implies that

En(εp1) ⊂ En(εp2).

4.5.2 A Simulation Comparison

Using realistic fuel grids, burn probability envelopes calculated from the simulation-

based method will be compared with percentile-based envelopes. Under homogeneous

fuel, topography and weather conditions, the true burned area of a fire at a given

time t will be inside the corresponding simulated area with probability p when the

simulation is run with rate of spread Rp.

We use three realistic scenarios from the Muskoka Lake District of Ontario to

demonstrate numerically that the percentile method produces the same output as

the ensemble method. The locations were chosen randomly from among sites where

ignitions have occurred in the past. Historic weather information corresponding to

the given fire was used in the simulation. The wind direction was not recorded, so a

west wind was assumed.

For the ensemble method examples, 500 fires were simulated at each of three

locations. In each case, the proportion of times each site burned was calculated,

and maps showing where the proportions exceeded 0.9,0.75, 0.5, 0.25 and 0.1 were

produced. The results of the three simulations are shown in the top panels of Figures

4.6 - 4.8.

For the percentile method, simulations were conducted for the same length of

time, using the same weather conditions and fuel infomations as for the Ensemble
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method, but using the 0.1, 0.25, 0.5, 0.75 and 0.9 percentiles of the standard normal

distribution in the calculation of ROS and BROS. The results are shown in the bottom

panels of Figures 4.6 to 4.8.

In all cases, it can be seen that the ensemble method and the percentile produce

very similar results as predicted by the theory. The slight differences that are evident

are due to simulation error, and would be eliminated if the ensemble method could

be run infinitely often. Note that the usual Prometheus output corresponds to the

50th percentile of Dionysus.

Figure 4.6: Dionysus runs in a 4 km× 4 km region in the Muskoka Lakes District. The
yellow region represents the area burned by the simulated fire after 1 hour of burning.
Upper panels: 10, 25, 50, 75 and 90 percent burn probability regions obtained by the
simulation approach; lower panels: corresponding burn probability areas obtained by
the percentile approach.

4.6 Discussion

We have proposed a statistical method for modelling fire growth prediction uncer-

tainty based on residual variation in the ROS model. We have shown that the data

originally used to develop fire behaviour prediction models also contain information

about rate of spread variability which is not due to measurement or forecast error

in the weather. Other forest-specific factors are causing substantial variation which
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Figure 4.7: Dionysus runs in a 2 km × 2 km region in the Muskoka Lakes District.
The yellow region represents the area burned by the simulated fire after 4 hours
of burning. Upper panels: 10, 25, 50, 75 and 90 percent burn probability regions
obtained by the simulation approach; lower panels: corresponding burn probability
areas obtained by the percentile approach.

has not been taken into account in past attempts to model variation in fire growth.

Our proposed Dionysus algorithm accounts for this form of uncertainty so that it can

be used to produce burn probability maps, when the weather and fuel are assumed

to be accurately known. There are two methods: Monte Carlo ensemble and per-

centile. Both give similar results. The percentile method is very fast so it can be used

operationally when the weather forecast and fuel map are trustworthy.

We believe that what we are proposing in this paper represents a useful step

in the important problem of assessing fire growth uncertainty, but we are also very

aware that our contribution is just a step. There are serious limitations which must

be acknowledged.

First, our demonstrations of the equivalence of the percentile and ensemble

Dionysus methods have been based on historic data, not forecast data. Both al-

gorithms as outlined in the paper do not explicitly account for weather forecast or

measurement error. Accounting for forecast error with the percentile method will be

a challenge, unless the fuel is relatively homogeneous. Incorporating forecast error

should be relatively straightforward with the ensemble method, but it will require

larger amounts of simulation time. Specifically, we would replace steps 3(a)i. and
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Figure 4.8: Dionysus runs in a 3 km × 3 km region in the Muskoka Lakes District.
The yellow region represents the area burned by the simulated fire after 2 hours
of burning. Upper panels: 10, 25, 50, 75 and 90 percent burn probability regions
obtained by the simulation approach; lower panels: corresponding burn probability
areas obtained by the percentile approach.

3(a)ii of the algorithm in Section 4.4.1 with the following:

i Set

Rijkt = hδ(It + η∗kt, ε
∗
kσ̂)

and

ii Set

Bijpt = hδ(k(wt)(It + η∗kt), k(wt)εpσ̂)

where η∗kt1
, η∗kt2

, . . . , η∗ktm are block-resampled forecast errors (differences between

actual and forecast observations) in the initial spread index. Block-bootstrapping

(e.g., Davison and Hinkley, 1997) the forecast error is currently under study by the

authors.

From an operational point of view, we then offer the following recommendation:

the quick percentile Dionysus method should be used to make short term (i.e., less

than 24 hours) predictions, since very short term weather forecasting may be suffi-

ciently accurate. We would recommend the use of the slower ensemble form method,

with resampled forecast errors, for longer term predictions.
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The remainder of the discussion is concerned with our statistical approach to

ROS modelling, which we believe is sound. However, its accuracy is subject to limits

imposed by the underlying data which we discuss below.

The variance estimates provided here are based on a limited number of wildfire

and prescribed fire observations. Within some of the fuel type categories, the sample

sizes are very small. The experimental fires have been ignited under carefully con-

trolled conditions, so there will naturally be differences in the variability observed

there and what is observed in wildfires. The terrain is relatively flat in most cases;

thus, predictions and our approach to prediction error depend crucially on the incor-

poration of the slope effect into the effective wind speed. Use of our method for error

in prediction in alpine areas without prior field-testing would be inadvisable.

Extrapolation is always an issue in these kinds of situations. Predictions of ROS

and its associated variability at high values of ISI will be somewhat risky without

basing the model on additional wildfire data which includes measurements in this

range. It should also be noted that there may be some effects due to spatial clustering

in the FBP data that have not been accounted for; some of the observations in the

database come from experiments conducted in neighbouring forest stands. There is

bound to be a certain amount of dependence in burn behaviour bound up in such

observations that one won’t see in completely randomly selected fire locations. A

nonlinear mixed effects model would likely lead to more accurate variance estimation;

we have not pursued this here because the FBP ROS equations are firmly established

in the Canadian fire management community and have provided sufficiently accurate

point predictions, so our preference has been to simply assess the variability about

those predictions instead of developing a new model at this point in time.

By using constrained nonlinear least-squares, we can improve upon the original

ad hoc curve-fitting approach to model (4.2). Because of spatial clustering, we also

fit a hierarchical model which improves accuracy. A full spatio-temporal model for

ROS is a next step.

Re-analysis of ROS data by classifying fires as surface fires, passive crown fires

and active crown fires as in Cruz and Alexander (2010) could lead to a more accurate

model with more accurate variance estimates.

There is evidently measurement error in the ISI that is used in the ROS cal-

culation. The fuel moisture value used in the calculation of the index is inferred

from past weather (precipitation, temperature, relative humidity and wind), and is

not measured directly at the fire site. Furthermore, the forecast weather data which

would be used in practice is only available from a location which may be relatively
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remote from the fire site. Rate of spread predictions may be severely biased as a re-

sult; systematic underprediction has been observed by Cruz and Alexander (2013a),

and this measurement error may be at least partly responsible.

The rate of spread for a given fire is actually a moving target, because of the in-

herently nonstationary behaviour of an evolving wildfire (Cruz and Alexander, 2009),

so the question of predicting the ROS for a given fire is not well-posed. Estimating

typical or average ROS behaviour for a given fire would be a more realistic goal, but

unfortunately, it is not clear that the underlying data provide very firm support even

for this.

Application of our approach to predictions made by Dionysus needs to be field

tested. Accuracy will depend on the bias in the Prometheus evolutionary model

itself. The statistical method that we have proposed is more generally applicable.

Any (usually nonlinear) fire growth models which have an FBP-like empirical basis

will be amenable to the approach.
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Chapter 5

CONCLUSIONS AND FUTURE RESEARCH

Statistical methods are useful in wildfire management and prediction. In this thesis,

there were two main statistical techniques used to analyze FWI data. One is the

nonparametric block bootstrap and the other is nonnegative time series models, which

can be used in parametric bootstraps, for example. For modeling fire growth and

incorporating randomness, a parametric bootstrap is used. Thus, a unifying statistical

theme in this thesis is the bootstrap.

The nonparametric block bootstrap is a good way to handle time series since

it makes limited model assumptions. However, confidence intervals from the block

bootstrap are not accurate without adjustment. The α-level adjustment does not

work as well as the proposed length-adjustment calibration method.

We saw that with length-adjustment, the confidence intervals for the variance

of the first lag autocorrelation indicated changes in this correlation from year to year

at several Ontario weather stations. In order to give more precise length-adjusted

confidence intervals, block size selection should be carefully studied in the future. A

practical blocksize selector based on a double bootstrap was subject to a preliminary

investigation and it seems reasonable. However, it needs further study.

Starting from an existing exponential tailed minification time series model, a

random coefficient mixture Weibull tailed minification model was developed through

a sequence of data analysis steps. The stationarity of this new process was studied

in a new way, using techniques from ordinary differential equations theory.

Seasonality was added to the model in agreement with earlier research on this

time series (Martell, 1999). This model could be used as the basis of a parametric

bootstrap simulator. The lag one autocorrelation behaviour at some of the weather

stations confirmed the result obtained with the nonparametric block bootstrap: the

autocorrelations appear to change from year to year.

The plots of FWI exceedances and fire occurrences at six locations show that

using model-based probabilities of FWI minima over consecutive days to set fire dan-

ger cut-offs can be more effective than using single day cut-offs. Association of FWI

and fire occurrence should be investigated more thoroughly so that we can better

predict potential fire danger.
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Dionysus is a parametric block bootstrap for generating probability contours

for given fires that is a completely different method from existing simulators. Again,

data analysis played a principal role in the development of Dionysus. As in the FWI

modelling exercise, residuals and their visualization were useful.

Monte Carlo ensemble and percentile methods can both be employed. The

percentile method is more likely to be used operationally if the weather forecast is

trustworthy because it runs fast. Further validation is required: comparisons between

Dionysus output and actual fire perimeters must be undertaken.

Weather forecast error is part of the uncertainty in the whole fire growth process

(Cruz and Alexander, 2013, 2014) and needs to be modelled before being incorporated

into either the ensemble or percentile forms of Dionysus. In addition, work on ROS

modelling using covariate information related to fuel type, instead of the traditional

nominal fuel types, as described by Cruz and Alexander (2010), will allow Prometheus

and Dionysus to be used more generally in Canada and around the world.
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Appendix A

LIST OF ABBREVIATIONS

AR Autoregressive

BROS Back Rate of Spread

BUI Buildup Index

DC Drought Code

DMC Duff Moisture Code

EAR Exponential Autoregressive

EMA Exponential Moving Average

ET Exponential Tailed

WT Weibull Tailed

FBP Fire Behaviour Prediction

FFMC Fine Fuel Moisture Code

FROS Flank Rate of Spread

FWI Fire Weather Index

i.i.d. independent and identically distributed

ISI Initial Spread Index

NEAR Newer Exponential Autoregressive

ROS Rate of Spread

w.p. with probability
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