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Abstract 

 Exposure to stressful events during early development has consistently 

been shown to produce long lasting effects on the hypothalamic-pituitary-adrenal 

(HPA) axis, which may increase vulnerability to mood and anxiety disorders. 

Recently reported genetic association studies indicate that these disorders may 

be influenced, in part, by gene-environment interactions (GxE) involving 

polymorphisms within the corticotrophin-releasing hormone and monoaminergic 

system genes. However, little is known about how genetic variants and life stress 

work to shape children’s neuroendocrine reactivity and emerging symptoms. 

Therefore, the aim of this thesis is to examine main effects of candidate genes 

and GxE on the neuroendocrine stress response and internalizing symptoms in a 

community sample of 409 preschoolers. 

In Chapter 2 analyses show associations between variants of the CRHR1 

and CRHBP genes and children’s cortisol responses to a standardized laboratory 

stress task. I also found evidence for GxE, where variants of the CRH system 

genes moderated the impact of childhood stress on early-emerging symptoms of 

depression and anxiety.  

A functional polymorphism of the catechol-O-methyltransferase (COMT) 

gene, the val158met, has been implicated in the etiology of stress-related mood 

disorders. Therefore, in Chapter 3, I examined links between the val158met 

polymorphism, cortisol reactivity to stress, and internalizing symptoms. I found 

evidence for association between the val158met genotype and cortisol reactivity 
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to stress. Additionally, the val158met genotype moderated the link between 

childhood stress and emerging symptoms of anxiety.  

Due to the proposed role of dopamine and serotonin gene polymorphisms 

in research on GxE in internalizing disorders, in Chapters 4 and 5, I examined 

whether associations between dopaminergic and serotonin candidate gene 

polymorphisms and childhood cortisol reactivity and internalizing symptoms were 

moderated by childhood life stress. Analyses showed evidence for GxE 

predicting children’s symptoms. Specifically, polymorphisms of DRD2 and DAT1 

genes moderated the effect of childhood stress on emerging symptoms of 

anxiety. With regard to serotonin pathway polymorphisms, I found associations 

between the serotonin transporter promoter polymorphism (5-HTTLPR) and 

children’s anxious symptoms. Additionally, consistent with previously reported 

findings, the interaction between MAOA 30bp VNTR and childhood stress 

predicted child anxiety symptoms. Limitations of this work include a relatively 

small sample size for genetic analyses, as well as the examination of a limited 

number of markers at each gene. Additionally, I did not correct for multiple 

statistical tests in some analyses due to the hypothesis-driven nature of the work.  

Taken together, the analyses show the complex underpinnings of 

individual differences in stress regulation, and highlight specific genetic 

vulnerabilities that influence early psychophysiological reactivity, that may in turn 

contribute to the development of stress-related disorders later in development. 
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Keywords: HPA axis, childhood stress, cortisol, haplotype, polymorphism, early 

development, serotonin, dopamine, gene-environment interactions, depression, 

anxiety. 
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1  Introduction – Hypothalamus-pituitary-adrenal axis stress reactivity: 

The role of genetics, environment and implications for emerging risk for 

depression and anxiety 

 

1.1 The hypothalamic-pituitary-adrenal axis  

The hypothalamic-pituitary-adrenal (HPA) axis is the primary physiological 

regulator of environmental stress in humans (Selye, 1973). In his seminal work, 

Selye defined stress as the result of an organism’s failed attempt to respond 

appropriately to a physical challenge (Selye, 1936). Since then, this definition has 

been further elaborated to include psychological threats, including both 

anticipation and ideation of impending stressors, not just those actually present in 

the current environment (Schulkin et al., 1994). Expanding on this work, an 

alternative view of stress is encapsulated in the concept of allostasis and 

allostatic load (McEwen, 1998; Sterling & Eyer, 1998). Allostatic responses are 

those physiological changes that occur in response to environmental 

disturbances. These responses are not inherently negative, but instead play an 

important positive role in helping an individual adapt to a changing environment. 

Importantly, the concept of allostasis focuses on the mediators of adaptation, 

such that the HPA axis not only promotes adaptation to stressors, but also 

contributes to pathophysiology when it is overused or dysregulated (McEwen, 

2006). For instance, inflammatory cytokines can stimulate the production of 

corticosteroids, which in turn can suppress inflammatory cytokine production. 

Similarly, the sympathetic and parasympathetic systems exert differential effects 
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on inflammatory cytokines, with the former stimulating their production and the 

latter inhibiting them (Sapolsky et al., 2000). However, under allostatic load when 

cortisol is too high, these systems become unbalanced leading to inhibition of an 

appropriate inflammatory response during immune challenge. Conversely, if 

corticosteroid levels are too low, a ‘normal’ immune response can become 

overactive and result in excessive inflammation (Karatsoreos & McEwen, 2011). 

As described by McEwen and Wingfield (2003), when environmental 

stress is encountered, the HPA neuroendocrine cascade (Figure 1.1) initiates the 

release of corticotrophin-releasing hormone (CRH) in the hypothalamus into the 

hypothalamic-pituitary portal. CRH triggers the release of adrenocorticotrophic 

hormone (ACTH) in the anterior pituitary by binding to its receptor, the 

corticotrophin-releasing hormone receptor-1 (CRHR1). The cascade culminates 

at the adrenal cortex with the release of cortisol in primates and corticosterone in 

other mammals (e.g., rodents). Glucocorticoids in turn act on the hypothalamus 

and pituitary to suppress CRH and ACTH production in a negative feedback 

cycle, thus downregulating these hormones once the stressor has terminated. 

Cortisol is a potent glucocorticoid hormone and a key biomarker of HPA axis 

activity in mammals (McEwen, 2007) and its broad role in physiology and 

psychology are briefly reviewed in the following sections.  

1.1.1 Cortisol and its importance in physiological metabolism 

Cortisol is one of the few hormones essential for life; for example, 

adrenalectomy in humans is fatal unless glucocorticoids are administered 
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(Karatsoreos & McEwen, 2011). Cortisol exerts an anabolic effect, such as 

conversion of glucose to glycogen in the liver, and catabolic effects such as 

proteolysis and lipolysis in other tissues including skeletal muscle, adipose 

tissues and lymphoid tissues (Spiga et al., 2007). Further, cortisol also facilitates 

the function of other hormones. For example, cortisol must be present in order for 

glucagon to exert its calorigenic action, and for catecholamines such as 

dopamine, epinephrine and adrenaline to exert their lipolytic effects (Spiga et al., 

2007). Cortisol also acts as an inhibitor of CRH and ACTH secretion by the 

hypothalamus and pituitary glands.  

In addition to its effects on the organs and tissues directly involved in 

metabolic homeostasis, cortisol influences a number of other organs and 

systems. For example, cortisol maintains the responsiveness of vascular smooth 

muscle to catecholamines and therefore participates in blood pressure regulation 

(Danhof-Pont MB, van Veen & Zitman, 2011). When blood pressure is low, 

decreased muscle responsiveness, together with the associated hypovolemia 

caused by mineralocorticoid deficiency, can result in severe hypotension 

(Veldhuis et al., 1987).  

Excessive cortisol production has been etiologically implicated in many 

medical conditions such as inflammatory diseases, musculoskeletal disorders, 

asthma, and heart disease (Negrao et al., 2000; Sharpley, 1998; Sternberg et al., 

1990; Wright et al., 1998). Our understanding of the deleterious effects of 

excessive cortisol production (hypercortisolemia) comes from studies of people 

with Cushing’s disease (for an in-depth review, see Prague, May & Whitelaw, 



 

 

2013). Individuals with hypercortisolemia in Cushing’s syndrome present with 

excessive abdominal fat, obesity and significantly higher 

cardiovascular disease, Type

2002). Further, along with 

health, maladaptive cortisol responses to stress have also been linked to 

psychiatric disorders such as depression, anxiety and panic disorders (McEwen, 

2004, 2008).   

Figure 1.1. The hypothalamic

negative feedback loop of the signalling cascade.

iduals with hypercortisolemia in Cushing’s syndrome present with 

excessive abdominal fat, obesity and significantly higher risk factor for 

ype-II diabetes, and stroke (Miller & O’Callaghan, 

, along with the effects of excessive cortisol exposure on physical 

health, maladaptive cortisol responses to stress have also been linked to 

psychiatric disorders such as depression, anxiety and panic disorders (McEwen, 

 

The hypothalamic-pituitary-adrenal axis. The red line indicates the 

negative feedback loop of the signalling cascade. 

4
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effects of excessive cortisol exposure on physical 

health, maladaptive cortisol responses to stress have also been linked to 

psychiatric disorders such as depression, anxiety and panic disorders (McEwen, 

adrenal axis. The red line indicates the 
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1.1.2 Cortisol function and depression 

HPA axis dysregulation has been a well-documented neuroendocrine 

feature in individuals with depression and anxiety. Abnormal levels of cortisol in 

saliva, plasma, urine, and cerebrospinal fluid have long been known to be 

present during episodes of depression (Carroll, Curtis, & Mendels, 1976; 

Charney, 2004; Heim & Binder, 2012). Cortisol responses are also exaggerated 

after CRH and ACTH administration in patients with depression compared to 

healthy controls (Amsterdam et al., 1986; Nelson & Davis, 1997). Aberrant 

patterns of HPA axis activity is not only found in many adults with depression, but 

has also been reported in depressed children and adolescents. For example, 

compared to healthy controls, depressed children were found to exhibit a 

stronger ACTH response to CRH administration (Kaufman et al., 1997). Similarly, 

an increased cortisol response to psychosocial stress was observed in 

depressed children aged 3 through 6 compared to their healthy counterparts 

(Luby et al., 2003). A recent meta-analysis has confirmed these findings in 

patients with depression (Stetler & Miller, 2011). Literature also suggests that 

normalization of the HPA system may be necessary for stable remission of 

depression and successful antidepressant treatment has been shown to 

attenuate and normalize HPA axis abnormalities (De Bellis et al., 1993; Kling et 

al., 1994; Nemeroff et al., 1991; Ising et al., 2005).  

1.1.3 Salivary cortisol as a biomarker for HPA axis reactivity 
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The primary biomarkers of the HPA axis include CRH, ACTH, and cortisol. 

In studies of human participants, CRH is measured in cerebrospinal fluid, which 

means that this biomarker must be measured in controlled clinical settings. In 

contrast, ACTH and cortisol can be assessed in blood, and unbound levels of 

cortisol can be measured in saliva. Unbound cortisol diffuses from the blood 

stream into salivary glands and is highly correlated with serum cortisol levels 

(McEwen, 2004). As cortisol is transferred from plasma to saliva within a few 

minutes, the short time lag makes it useful in research investigating HPA axis 

responses (Harmon et al., 2007). There are many advantages to using salivary 

biomarkers in stress research. First, sampling is non-invasive and eliminates the 

possibility of needle puncture injuries. Stress related to blood draws during 

collection, which may bias the results, is also minimized, making it useful in 

studies of children. Salivary biomarkers are also useful for research involving 

children as it avoids ethical concerns associated with invasive measures. 

Furthermore, saliva collection can be performed at participants’ homes and does 

not require skilled healthcare professionals, making it highly useful in 

assessments in the subjects’ natural environment, such as at a child’s home. 

Cortisol is also relatively stable in saliva; thus, saliva samples can be stored at 

room temperatures for at least for a couple of weeks (Kirschbaum & Hellhammer, 

2000). For these reasons, salivary cortisol has been widely used in HPA axis 

research and is considered a well-established biomarker of HPA axis function.  

1.2 Correlates of the HPA axis response 
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As previously discussed, literature suggests that HPA axis dysregulation 

measured via cortisol reactivity is a prominent neuroendocrine feature in 

psychiatric disorders such as depression (Charney & Manji, 2004). However, the 

developmental correlates of the cortisol stress response are poorly understood 

(Krishnan & Nestler, 2008). Extant research points to the role of environment and 

individual diatheses in contributing to cortisol reactivity to stress. Therefore, the 

following sections will briefly review current knowledge of the environmental and 

genetic determinants of the HPA axis reactivity to stress.    

1.2.1  Life stress during early childhood and the HPA axis 

Early caregiving has been shown to contribute to the lifelong 

responsiveness of the HPA axis to stressors (Meaney et al., 1988, 1991). 

Perhaps the strongest evidence for the environmental regulation of the 

development of responses to stress comes from postnatal handling research with 

rodents. Handling involves a brief (i.e., 3–15 min), daily period of separation of 

the pup from the mother for the first few weeks of life, and results in hyper-

reactivity to stress in adulthood (Levine et al., 1967; Zarrow et al., 1972; Meaney 

et al., 1989; Viau et al., 1993; Bhatnagar et al., 1995). As adults, rats exposed to 

extended positive maternal care show decreased fearfulness and more modest 

HPA responses to stress; such effects are apparent in animals tested as old as 

26 months of age (Meaney et al 1988, 1992). The handling effects on the 

development of HPA responses to stress have important consequences for 

health. Glucocorticoid levels often rise with age in rats and are associated with 

hippocampal degeneration and the emergence of learning and memory deficits 
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(Landfield et al., 1981, Landfield & Pitler 1984, Sapolsky et al., 1984, Issa et al., 

1990). Such age-related increases in basal and stress-induced pituitary-adrenal 

activity is significantly less apparent in the control or non-handled animals; thus, 

these animals show little evidence of hippocampal aging (Meaney et al., 1988, 

1991). 

Research with rodents has been complemented by work with nonhuman 

primates where maternal separation during early childhood leads to higher 

plasma cortisol levels (Bayart, et al., 1990; Levine, 1993; Sanchez et al., 2005). 

Primate infants separated from their mothers and raised with peers have greater 

HPA axis reactivity in adulthood (Heim & Nemeroff, 1999). In addition to maternal 

separation stress, poor early caregiving can be observed in non-human primates 

as well, where a small number of primate mothers are actively abusive to their 

offspring, subjecting them to behaviours that include dragging, crushing, hitting, 

and biting the infant (Maestripieri, 1998). The infants of abusive and nonabusive 

mothers were administered CRH and their basal cortisol and cortisol reactivity 

tested every 6 months for up to 3 years of age. The authors found no effects of 

abuse on basal cortisol levels but offspring of abusive mothers had greater 

cortisol reactivity to stress contexts (such as facing aggressive males of higher 

social rank) when compared to their nonabused counterparts (Sanchez et al., 

2010).  

In addition to research on links between poor early caregiving and 

abnormal cortisol response in rodents and non-human primates, similar findings 

have been reported in humans as well. For example, Heim and colleagues 
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(2002) and in a later study by Rao and colleagues (2008) showed that a history 

of childhood adversity was associated with increased neuroendocrine stress 

responses in adolescents and adult women. Elevated cortisol reactivity has also 

been documented in children in daycare centers with lower quality of care (Tout 

et al., 1998) and children with poor care in foster homes (Dettling et al., 2000). 

However, the literature also yields contradictory findings as well. For example 

Carpenter and colleagues (2007) and MacMillan and colleagues (2009) failed to 

replicate earlier findings of increased neuroendocrine reactivity to stress and 

found attenuated neuroendocrine stress responses in maltreated adolescents 

and adults, suggesting that the effect of exposure to adversity and caregiving on 

stress reactivity is not straightforward (Ellis & Boyce, 2008; Del Giudice, Ellis & 

Shirtcliff, 2011). However, it is of note that the literature has focused largely on 

extreme forms of negative early care such as physical and sexual abuse, 

although more normative aspects of early care are also likely relevant, and would 

have implications for a larger number of children. For example, a recent study by 

Hackman and colleagues (2013) explored the role of common parenting 

behaviours on adolescents’ stress responses, demonstrating that positive early 

childhood parental care directly predicted adolescent cortisol reactivity to 

psychosocial stress.  

1.2.2 Genetic bases of cortisol responses to stress 

In addition to the influence of early care, genetic factors have been linked 

to cortisol response to stress. Literature from twin studies suggests that salivary 

cortisol responses to acute challenge are significantly influenced by genetic 
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factors. For example, in a seminal pilot study, the heritability of salivary cortisol 

responses was investigated in a sample of 124 monozygotic and 155 dizygotic 

twins who were exposed to laboratory stressors such public speaking, a complex 

arithmetic task, and exhausting physical exercise (Kirschbaum et al., 1992). The 

proportion of variance in cortisol reactivity attributable to heritable factors was 

estimated at 48%. Research over the past decade has supported these findings 

via replications in large independent samples (Bartels et al., 2003; Steptoe et al., 

2009). Therefore, these heritability studies suggest a moderate genetic 

component of cortisol reactivity, and in addition to environmental influences on 

cortisol reactivity. However, only a small number of studies have examined 

associations between polymorphisms of the HPA axis genes and childhood 

cortisol reactivity.  

Due to the genetic underpinnings of HPA axis function, and its links to 

complex traits such as internalizing symptoms, in psychiatric research, cortisol 

reactivity is considered an endophenotype of mood and anxiety disorders. 

Endophenotypes such as cortisol reactivity are quantifiable components in the 

genes-to-behaviors pathways, distinct from psychiatric symptoms, which make 

genetic and biological studies of etiologies for disease categories more 

manageable. Endophenotypes provided a means for identifying the 

“downstream” traits or facets of clinical phenotypes, as well as the “upstream” 

consequences of genes and, in principle, could assist in the identification of 

candidate genes in the hypothesized polygenic systems conferring vulnerabilities 

to disorders (Gottesman & Gould, 2003). Therefore, research is needed to 
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document specific genetic variants linked to individual differences in childhood 

cortisol reactivity to stress, the endophenotype of depression and anxiety.  

1.2.3  Gene-environment interactions influence HPA axis response to stress: 

Implications for etiology of depression and anxiety 

Although so far the extant literature suggests that genes and 

environmental factors influence early cortisol reactivity to stress, a large body of 

molecular genetics research has documented that the impact of genes on 

phenotypes is dependent on environmental exposure (e.g., Kendler et al., 2007). 

Therefore, it is the joint consideration of interactions between genetic diathesis 

and environmental exposure that can help unfold the complex biological 

pathways that contribute to psychological risk. However, limited research in 

adults has examined the role of gene-environment interactions as predictors of 

cortisol responses to stress. For example, Tyrka and colleagues (2009) have 

reported that an interaction between childhood trauma and CRHR1 genotype 

predicted cortisol reactivity in a sample of adults. Expanding on this study, Heim 

and colleagues (2009) reported that interactions between the CRHR1 genotype 

and history of childhood physical abuse predicted significantly higher increases in 

cortisol responses to stress stimuli in a standardized laboratory task in depressed 

patients when compared to healthy controls. Additionally, a study by Alexander 

and colleagues (2009) reported interactions between a functional polymorphism 

of the serotonin transporter gene (also known as 5-HTTLPR) and stressful life 

events predicted cortisol reactivity in a non-clinical sample. To my knowledge, 

the studies of adults briefly reviewed here are the only examples of GxE 
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predicting cortisol reactivity. However, no prior research has examined the role of 

GxE as a predictor of cortisol reactivity in young children; thus, this topic will be 

one focus of this dissertation.  

Even though only a few studies have reported on the role of GxE in 

shaping cortisol responses to stress, a large literature has reported on GxE 

predicting stress-related psychopathologies such as depression and anxiety. 

Specifically, gene polymorphisms of the CRH system and the aminergic 

pathways (serotonin and dopamine) have been shown to interact with early 

childhood adversity to predict later risk for mood and anxiety disorders (for an in 

depth review see Mandelli & Serrtti, 2013).  For example, the effect of early 

caregiving on risk for depression and anxiety was moderated by gene 

polymorphisms of serotonin (Eley et al., 2004; Huang et al., 2004; Karg et al., 

2011), dopamine (Hayden et al., 2010), norandrenergic (Sun et al., 2008; Xu et 

al., 2009) and glutamate pathways (Sokolowski et al., 2013). In sum, based on 

these studies in addition to GxE role on intermediate phenotypes that may 

contribute risk for mood and anxiety problems, I also intend to examine whether 

GxE predict emerging symptoms.     

1.2.4 Rationale for conducting study in preschoolers  

As described above, studies of GxE (see reviews by Heim et al., 2009; 

Uher, 2007) indicate that variation in CRH and monoaminergic system genes 

may influence risk for depressive and anxious symptoms based on early 

childhood environment. One possible explanation for these findings is that a 
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critical period exists for the normative development of an emotional regulatory 

system. A few studies suggest that there might be timing-dependent effects of 

early stress on depression risk. For example, Agid and colleagues (1999) report 

that parental loss before 9 years of age was associated with higher depression 

risk compared to parental loss between 9 and 17 years of age. Although there 

are very few studies that have systematically evaluated neurobiological 

outcomes of childhood stress experienced at different developmental stages, 

studies of rodents and non-human primates suggest that the direction of the 

effects of early life stress on the CRH/HPA system depend on timing of the early 

life stress (Coplan et al., 2006). For example, early weaning of 21-day old rats 

causes faster myelination in the amygdala, decreased brain-derived neurotrophic 

factor protein levels in the hippocampus and prefrontal cortex, and reduced 

neurogenesis in the dentate gyrus (Kikusui & Mori, 2009). Although limited 

evidence from human studies for age-dependent effects of early caregiving have 

been reported, a study by Rogeness and McClure, (1996) showed abnormal 

dopamine metabolism in children who were maltreated in the first 3 years of life, 

but not in children maltreated later in childhood. Carpenter and colleagues (2004) 

reported that preschool life stress, but not later childhood stress, modulates 

adulthood cerebrospinal fluid CRH levels. The same group reported that cortisol 

response to stress in adults decreases with increasing onset age of emotional 

abuse (Carpenter et al., 2009). Taken together, the data described here suggest 

that early childhood is a critical period with consequences for later mental health 

outcomes. 
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In addition to the role of biological mechanisms underlying the phenotype 

in question (internalizing problems) and the environmental factors that may 

contribute to the expression of said phenotype, the study of emerging symptoms 

in preschoolers is an informative tool in the understanding of the etiology of 

depression and anxiety. For example, evidence exists that early symptoms, even 

subthreshold ones of anxiety and depression such as the ones found in 

preschoolers have heterotypic and homotypic continuity for later disorders. 

Specifically literature from our group and others has shown that early emerging 

symptoms of depression and anxiety predict internalizing symptoms later in life 

(Costello et al., 2003; Klein et al., 2008; Luby et al., 2009). Therefore findings in 

this study would help inform early prevention and intervention. 

1.3 Neurotransmitters as mediators of links between early life stress and 

HPA axis response 

The search for candidate genes that shape cortisol responses to stress 

must be informed by an understanding of the neurobiological systems that 

regulate the function of the HPA axis. The hypothalamus and pituitary glands are 

heavily innervated by aminergic neuronal inputs from the limbic system region 

including the prefrontal cortex, hippocampus, and amygdala (Herman et al., 

1996). The two major aminergic neurotransmitter systems linked to HPA axis 

regulation are the dopaminergic and serotonergic systems: these are briefly 

reviewed here. 

1.3.1 The dopaminergic system 
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Dopamine (DA) is released predominantly from the ventral tegmental area 

of the brain and is involved in the control of locomotion, cognition, affect, and 

neuroendocrine secretion (Bunney et al., 1980; Jaber et al., 1996; Smythe, 

1977). At the synaptic level, DA exerts its effects through its interaction with the 

DA receptors. Molecular biology and pharmacology studies have identified two 

classes of receptors consisting of at least five DA receptor subtypes: D1, D2, D3, 

D4, and D5, with the most widely expressed subtypes in the prefrontal regions of 

the brain being the D2 and D4 receptors (LaHoste et al., 2000). On binding an 

agonist, DA receptors activate the adenylate cyclase second messenger system, 

elevating intracellular cyclic adenosine monophosphate concentrations. Cyclic 

adenosine monophosphate increases protein kinase-A activity with resulting 

changes in expression levels of a wide range of proteins within the cell (Dunlop & 

Nemeroff, 2007). DA signalling is terminated via either its reuptake by the 

dopamine transporter (DAT) into the presynaptic neurons or DA inactivation by 

two catabolic enzymes, namely, the catechol-O-methyltransferase (COMT) and 

the monoamine oxidase-A (MAOA).  

DA innervation of the medial prefrontal cortex (mPFC) appears to be 

particularly sensitive to mild and brief stress (Deutch et al., 1985). In addition to 

genetic influences, animal studies of rodents and non-human primates show that 

both acute and chronic stress influence the functioning of the DA system. For 

example, rodents exposed to brief stressors such as low intensity foot shock and 

short periods of restraints show DA release and metabolism in the prefrontal 

cortex (Deutch & Roth, 1990; Thierry et al., 1998; Kalivas & Duffy, 1989). In 
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contrast, chronic stress over time may enhances DA degradation in areas that 

receive DA innervations, such as the hypothalamus and hippocampus, leading to 

overall DA depletion and DA mediated signalling in these important stress 

regulating brain regions (Roth et al., 1988). Thus, mPFC DA metabolism and 

release is related to the occurrence of stress, and suggests the importance of DA 

in stress regulation (Abercrombie et al., 1989; Deutch et al., 1985; Deutch & 

Roth, 1990; Mantz et al., 1989).  

1.3.2 The serotonergic system  

Serotonin (5-HT) is involved in a wide variety of processes including 

anxiety, arousal, vigilance, aggression, mood, impulsivity, and regulation of 

appetite (Charney & Manji, 2004). There is both anatomical and functional 

evidence for a regulatory role of 5-HT on stress-induced HPA activity (Dinan, 

1996; Phelix et al., 1992). Animals exposed to a variety of stressors, including 

restraint and maternal separation, show an increase in 5-HT turnover in limbic 

regions, such as the medial prefrontal cortex (Adell et al., 1988; Inoue et al., 

1994; Pei et al., 1990; Petty & Sherman, 1983), amygdala, and hypothalamus 

(Kaehler et al., 2000). Animals exposed to social stress such as maternal 

separation during early life, also had an increase in activation of 5-HT receptors 

in the hippocampus and dentate gyrus, two regions widely implicated in 

regulation of stress stimuli (McKittrick et al., 1995). Studies of non-human 

primates have provided evidence that increased 5-HT metabolism during 

exposure to inescapable stress prevents anhedonic behaviours, evinced by lack 

of caloric intake (loss of appetite), decrease in sexual activity and withdrawal 
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from social exploration (Ronan et al., 2000), behaviours usually associated with 

depression in humans. 5-HT antagonists also produce behavioural deficits while 

drugs that enhance 5-HT neurotransmission (SSRI) are effective in reversing 

anhedonia-like symptoms (Martin et al., 1990; Sherman & Petty, 1980). 

Additionally, injection of 5-HT into the frontal cortex after stress exposure in adult 

rats reverses stress-related behavioural deficits, such as anhedonia-like 

symptoms described above (Sherman & Petty, 1982).  

There are two key regulators of serotonin levels in the limbic system. First, 

is the 5-HT transporter (5-HTT), which regulates serotonin neurotransmission 

through precise control of extracellular 5-HT levels (Lesch et al., 1996). This 

process is driven by the 5-HTT, which belongs to the sodium ion dependent 

transporter family (Nelson, 1998; Rudnick & Clark, 1993). 5-HTT assumes the 

uptake of extracellular 5-HT across the cell membrane of neuronal and non-

neuronal cells, such as serotonergic neurons of raphe nuclei, basal nuclei and 

platelets. Dysregulation of the tightly controlled external concentration of 5-HT is 

linked to a host of metabolic and psychiatric disorders, including depressive, 

anxious, and obsessive-compulsive disorders (Charney & Manji, 2004). The 

second regulator of synaptic 5-HT levels is the MAOA enzyme, which catabolizes 

serotonin in the neuronal synapse (Martin et al., 1990). In brains of MAOA 

knockout mice, 5-HT concentrations were increased up to nine-fold compared 

with wild-type mice. Additionally, adrenergic concentrations in the prefrontal 

cortex and basal nuclei were increased up to two-fold; however, relative to 5-HT, 

only a small increase in DA levels was observed in infant mice brains (Cases et 
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al., 1995), suggesting that MAOA has a greater affinity for degrading serotonin 

when compared to DA. MAOA deficient mice show a significant increase in brain 

serotonin levels and attenuated reactivity to stress, suggesting a link between 

serotonergic metabolism and HPA axis function (Shih et al., 1999). Due to its 

ability to regulate serotonin availability in the brain, MAOA inhibitors have been 

widely used in psychiatric populations for the treatment of depression, anxiety 

and posttraumatic stress disorder (Liebowitz et al., 1990). Doyle and colleagues 

(1996) reported that an increase in salivary MAOA activity was also correlated 

with levels of life stress. Additionally, MAOA inhibitor therapy in adult patients 

diagnosed with posttraumatic stress disorder leads to normalization of diurnal 

cortisol rhythm (Liebowitz et al., 1990). Taken together, these studies suggest a 

role of serotonin and DA pathways in HPA responses to stress and stress-related 

psychopathologies such as mood and anxiety disorders. 

1.4 Candidate genes examined in the current study 

Based on current literature implicating the dopamine and serotonin 

systems in HPA axis responses to stress (Figure 1.2), a logical starting point for 

examining the underpinnings of psychological risk is to focus on gene variants 

implicated in aminergic signalling. This method (also known as the gene-pathway 

approach; Mormede et al., 2002) of candidate gene identification utilizes a priori 

knowledge of the metabolic pathway involved taking advantage of data from 

previous cellular, biochemical, molecular, or pathological experiments. Candidate 

genes and their variants investigated in this study are listed in Table 1.1. DA 

signalling is widely documented in regulating HPA axis response to stress and 
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stress-related disorders such as depression and anxiety. Therefore, the current 

study will explore common variants of the DA pathway, specifically the D2 and 

D4 receptors (Chapter 4). Additionally, as both COMT and DAT directly affect the 

availability of synaptic DA, thereby controlling the intensity of DA 

neurotransmission in response to stress, genetic variants of the COMT and DAT 

genes will be investigated (Chapters 3 & 4). Similarly, as the serotonin 

transporter gene (commonly known as 5-HTT) and MAOA also regulate the 

availability of the limbic systems extracellular serotonin, the current thesis will 

also examine the role of the variants of the two genes in stress response and 

emerging risk for psychopathology in Chapter 5. 

As discussed in previous sections, the intensity of the cortisol response at 

the adrenal level is based on the release of CRH in the hypothalamus (McEwen, 

2007). The availability of CRH in the brain is directly regulated by the CRHBP 

protein, which sequesters and inactivates CRH and its receptor in the pituitary 

gland (CRHR1) that initiates the release of ACTH. However, the common genetic 

variants that may be associated with cortisol stress reactivity in young children 

are unknown. Therefore, the current study aims to examine the genetic variation 

of the entire coding and regulatory regions of the CRH system genes. These 

associations will be based on constructing haplotypes based on linkage 

disequilibrium. Haplotypes refer to combinations of marker alleles which are 

located closely together on the same chromosome and which tend to be inherited 

together (van West et al., 2004). Methods based on haplotypes can be more 

powerful than those based on single markers in association studies of mapping 
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complex disease genes. The power of single marker-based methods depends on 

the linkage disequilibrium (LD) between the tested marker locus and the disease-

susceptibility locus (Akey et al., 2001). LD information contained in flanking 

markers is not incorporated into such methods, which can result in potential 

reduction of power. In addition, even if the tested marker locus is in strong LD 

with the disease locus, power can be quite low if the frequencies of the marker 

and disease alleles are different (e.g., Kaplan & Morris, 2001). Therefore, 

haplotype-based association methods are generally regarded as being more 

powerful than methods based on single markers (Akey et al., 2001; Morris and 

Kaplan, 2002) as these analyses can detect the combined effects of multiple 

sequence variants on promoter activity or protein structure and/or function 

(Devlin & Roeder 1999; Drysdale et al. 2000; Joosten et al. 2001). The work of 

the International HapMap Project (International HapMap Consortium 2003; 

International HapMap Consortium 2005), dedicated to describing the patterns of 

human genetic variation by developing a map of the linkage maps in the human 

genome, provides a valuable resource for efficient SNP selection in haplotype-

based association studies and forms the basis of Chapter 2 of this thesis. 
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Table 1.1. List of genes investigated for associations with childhood cortisol reactivity to stress and emerging internalizing 

symptoms.  

Gene1 Chromosome Functional mutation Behavioural associations 

CRH 8q13 None reported 
↑behavioural inhibition in children at risk 
for panic disorder (Smoller et al., 2005) 

CRHR1 17q12 None reported 
Increased risk for internalizing problems 

(Bradley et al, 2008) 

CRHBP 5q11 
18 amino acid exon 7 deletion leads to 

truncated messenger RNA 
Suicidal ideation (Roy, 2012) 

COMT 22q11 
Exon 4 Val→Met substitution at 
position 158 leads to changes in 

enzyme activity 
Linked to multiple internalizing disorders  

MAOA X 
30bp VNTR polymorphism in gene 
promoter region leads to decreased 

function 

Polymorphism linked to externalizing 
behaviours such as aggression  

SLC6A4  
(5-HTTLPR) 

17q11 
44-48bp VNTR polymorphism in gene 
promoter region leads to decreased 

transporter protein 

↑ depression and anxiety incidence 
among short allele carriers (Wust et al., 

2009) 

SLC6A3 
(DAT-1) 

5p13 
30bp VNTR in exon 4 leads to 
differential dopamine binding 

Associated with major depression and 
bipolar disorder (Szczepankiewicz et al., 

2011) 

DRD2 11q23 
Single nucleotide polymorphism in the 

promoter region  
Associated with cortisol reactivity in mice 

and non-primate humans  

DRD4 11p15 
48bp VNTR polymorphism in exon 3 

leads to altered receptor function 
Interaction between this variant and early 

life stress predict anxiety problems 

Note: BDNF: Brain derived neurotrophic factor; SLC6A3: Solute carrier family member-3 (dopamine transporter); SLC6A4: Solute 

carrier family member-4 (serotonin transporter); CRH: Corticotrophin releasing hormone; CRHR1: Corticotrophin releasing hormone 
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receptor-1; CRHBP: Corticotrophin releasing hormone binding protein; COMT: Catechol-O-Methyltransferase; MAOA: Monoamine 

oxidase-A; DRD2: Dopamine receptor D2; DRD4: Dopamine receptor D4; bp: base pairs; VNTR: Variable number tandem repeat. 

Val: valine; Met: methionine; Leu: leucine; Phe: phenylalanine; Gly: glycine; Ile: isoleucine. 
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Figure 1.2. Overview of the limbic regulation of the HPA axis via central nervous 

system neurotransmitters. Activation and inhibition of the signalling cascade is denoted 

by the “+” and “-“ signs. Note:  CRH: Corticotrophin releasing hormone; ACTH: 
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Adrenocorticotrophic hormone; COMT: Catechol-O-Methyltransferase; MAOA: 

Monoamine oxidase; DA: Dopamine. 
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1.5 Hypotheses and thesis objectives  

The main focus of this thesis is to investigate the link between genetic 

variants of the dopamine, serotonin and CRH pathway genes and cortisol 

responses to stress in a community sample of preschoolers. I hypothesize that 

the genetic variants of the monoaminergic (DA and 5-HT) and CRH pathway 

genes will be associated with individual differences in children’s cortisol 

reactivity to stress. Further, GxE between candidate gene polymorphisms 

and life stress will predict risk for emerging symptoms of depression and 

anxiety in preschool-aged children.  

Given the role of the HPA axis response to stress in the etiology of 

internalizing problems, I will also examine associations between monoaminergic 

and CRH pathway gene variants and emerging risk for psychopathology. 

Specifically, the following chapters of this dissertation focus on three objectives 

(see conceptual model in Figure 1.3): 

1. Examine the main-effects of CRH system, serotonin and 

dopaminergic system gene variants on early age cortisol 

reactivity to stress. 

2. Examine the main-effects of CRH system, serotonin and 

dopaminergic system gene variants on early age emerging 

symptoms of depression and anxiety. 

3. Investigate whether gene-environment interactions between 

candidate gene variants and childhood stress predict cortisol 
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response to stress and/or emerging symptoms in a community 

sample of preschoolers. 

 

 

 

Figure 1.3. A conceptual model of life stress and genetics interacting through 

HPA axis physiological response to influence emerging symptoms.  
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2   – Genetic variation of the CRH pathway genes and childhood cortisol 

response to stress: The role of early life stress and implications for 

emerging risk  

2.1  Introduction 

As discussed in Chapter 1, dysregulation of the HPA axis in patients with 

major depressive disorder (MDD), demonstrated by abnormal plasma ACTH and 

cortisol concentrations, is one of the most consistent biological markers identified 

in the literature (Gillespie & Nemeroff, 2005; Holsboer et al., 1984). HPA axis 

dysfunction is also often found among patients with anxiety, including panic 

disorder (Abelson et al., 2007), social anxiety disorder (Condren et al., 2002) and 

generalized anxiety disorder (reviewed in Martin et al., 2009). However, a 

significant gap in knowledge remains in research on human participants 

regarding the genetic mechanisms underlying cortisol reactivity to stress, which 

may be an important mediator of genetic risk for depression and anxiety. 

Research using murine and primate models has explored this question in greater 

detail (McEwen, 1998), with extant literature implicating genes expressing the 

cascade initiation molecule, the corticotrophin-releasing hormone (CRH), and its 

components, the CRH receptors and CRH binding protein (CRHBP) in regulating 

glucocorticoid reactivity in response to stress (Behan et al., 1995; Roy et al., 

2012). In this cascade, CRHBP is a passive ligand trap that neutralizes active 

CRH by binding to it, thereby regulating bioavailability of free CRH and 

influencing downstream release of glucocorticoids (Jahn et al., 2005). Null 

mutants of the murine Crh gene (Crh -/-) have markedly impaired production of 
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both ACTH and corticosterone under conditions of stress compared to wild-type 

mice (Muglia, 1995). Other pituitary neuropeptides, such as oxytocin and 

vasopressin, do not compensate for the loss of corticosterone reactivity under 

stress (Schmidt et al., 2003; Venihaki & Majzoub, 2002), highlighting the 

importance of CRH gene expression in normal HPA axis function. Consistent 

with this, murine Crhr1 (Crhr1 -/-) knockouts lack a typical corticosterone 

response to stress. Furthermore, conditional knockouts of Crhr1 in the 

hypothalamus and pituitary lack a stress-induced corticosterone response 

(Schmidt et al., 2003, 2006). Translational research on the effects of stress in 

CRHBP knockout mice is limited, but these knockouts do exhibit higher free CRH 

in their serum and increased anxious behaviours compared to wild-type animals, 

supporting the role of CRHBP gene in the HPA axis function (Gammie et al., 

2008). These findings implicate the importance of CRH system genes in 

maintaining HPA axis function and regulating glucocorticoid reactivity to stress.  

Based on findings from animal studies, and the role CRH system genes 

play in cortisol response in animals, a parallel line of research in humans has 

increasingly focused on the GxE between CRH system genes and the early 

environment in patients with internalizing disorders. For example, variants of both 

CRHR1 and CRHBP genes have been shown to interact with early adversity, 

such as child abuse or maltreatment, to predict risk of depression and even 

suicidality later in life (Bradley et al., 2008; Heim et al., 2009; Grabbe et al., 2010; 

Roy et al., 2012). Additionally, genetic variation in the CRHR1 gene has also 

been linked to consolidation of aversive memories in adults and is thought to 
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mediate the pathway from childhood maltreatment to adulthood depression 

(Polanczyk et al., 2009). Similarly, variation in the DNA region containing the 

CRH gene has also been linked to behavioural inhibition, a personality trait 

associated with increased risk for internalizing disorders (Smoller et al., 2003, 

2006). Taken together, these studies suggest that CRH system genes may play 

a role in moderating the effect of childhood adversity on behaviour outcomes. 

Little is known about whether links between CRH system gene variation 

and cortisol reactivity or emerging risk for psychopathology exist in early 

childhood. Therefore, the aim of this chapter is to examine the links between 

common variation of the CRH system genes and early life cortisol reactivity and 

emerging symptoms. The second aim of this chapter is to extend the adult 

literature on CRH pathway gene variants as moderators of the effect of childhood 

adversity on later psychiatric problems (Bradley, 2008; Ciccetti, 2011). 

Specifically, we examined whether interactions between the CRH system gene 

variants and childhood adversity predicted either cortisol response to stress or 

emerging symptoms of anxiety or depression in young children.  

2.2  METHODS 

2.2.1  Participants 

Participants were an unselected community sample of 409 children (201 

boys; 49.1%) between 36 and 47 months of age (M = 40.72, SD = 3.51) from 

southwestern Ontario, recruited for a study of child emotional development (see 

Table 2.1 for further demographic details). Informed consent was obtained from 
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children’s parents before data were collected. Children with significant medical or 

psychological problems were excluded from participation via a screening 

procedure administered by trained study personnel at the recruitment stage. The 

sample was mostly Caucasian (90.5%) and of average cognitive ability (M = 

111.94, SD = 14.32) as assessed by the Peabody Picture Vocabulary Test–

Fourth Edition (Dunn & Dunn, 1997; PPVT-4). The study protocols were 

reviewed and approved by the University of Western Ontario Human Research 

Ethics Review panel. Finally, as allele frequencies and correlation structures 

between SNPs in a gene differ across populations, we limited all analyses to the 

subsample of 371 Caucasian children in the sample.  
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Table 2.1. Study sample demographics 
 

Characteristic Participants No. (%) 

Sex   

Male 201 (49.1) 

Female 208 (50.9) 

Caregiver-identified Race/Ethnicity   

Caucasian 371 (90.5) 

Asian American  6(2.3) 

Other 28 (68) 

Parent Education   

Some high school  7(1.8) 

High school graduate or some 
college 

212 (52.8) 

College graduate or beyond 181 (45.4) 

Household Income   

<$20K 22 (5.5) 

$20-40K 45 (11.0) 

$40-100K  219 (53.5) 

>$101K  120 (29.5) 

 

2.2.2 DNA preparation 

DNA samples were collected from all participants using buccal swabs 

(Epicentre, Madison, WI, USA) and stored according to the manufacturer’s 

instructions. Qiagen DNA MicroKit (Mississauga, ON, Canada) was used to 

extract DNA from epithelial cells and stored according to the manufacturer’s 

instructions. DNA was successfully extracted from the buccal swab samples of all 

participants.  

2.2.3 SNP selection and genotyping 
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A SNP marker panel (Table 2.1) was used to tag the full-length CRH 

(RefSeq NM_006180, 1.27 kilobases [kb]), CRHR1 (RefSeq NM_001145146, 

27.3 kb) and CRHBP (RefSeq NM_001882, 16.6 kb) according to Human 

HapMap Project phase II data for the central European population. The Tagger 

program (http://www.broad.mit.edu/mpg/tagger/; de Bakker et al., 2005) was 

used to determine the minimum set of SNPs necessary to capture or ‘‘tag’’ all 

HapMap SNPs (through linkage disequilibrium) with minor allele frequencies >5% 

among Caucasians. Tag-SNPs (tSNP) validated in Caucasian populations were 

selected from public databases (dbSNP, 

http://www.ncbi.nlm.nih.gov/projects/SNP/; HapMap, http://www.hapmap.org) 

flanking ±10 kb of the respective gene coding regions. This strategy allowed us 

to genotype variants in the gene promoter regions, which could be functionally 

important in gene transcription. Specifically, this tagging approach allowed us to 

select a limited number of SNPs that account for the entire genetic variation 

across a sequence of DNA by taking into account SNPs that are highly correlated 

with each other. SNPs tagged had a minimum r2 of 0.80 with the tagging SNP 

(mean r2 was 0.98). The suggested number of tSNPs was four for CRH, seven 

for CRHR1 and seven for CRHBP.  

All SNPs were genotyped using a TaqMan allelic discrimination assay 

(Livak, 1999), developed for use on the StepOne® instrument (Applied 

Biosystems, Foster City, California). Assay identification numbers and primer 

sequences for all of the TaqMan probes are provided in Table 2.2. Polymerase 

chain reactions were performed in 10-µL reaction volumes in 48-well plates and 
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contained 10 ng of DNA. Thermal cycler conditions were 95°C for 10 min and 

then 40 cycles of 95°C for 15 s and 60°C for 1 min. The SDS 2.2 software 

(Applied Biosystems) was used for allelic discrimination. For quality control, 10.0 

% of the samples were randomly chosen and genotyped as duplicates across 

and within a 48-well plate. The genotyping success rate for the CRHBP and 

CRHR1 genes was 99.1 % or 369 participants, and 98.1 % or 364 participants for 

the CRH gene. The final number of participants genotyped is provided in Table 

2.1 for each gene region.  
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Table 2.2. The CRH system genes: description of tSNPs. 

SNPs Chromosome location 
Nucleotide 

variant 
MAF in study 

sample 
MAF in HapMap, 

CEU populationsa 
HWE 

p-values 

CRH  Chr 8 Gene     

rs9694082 67066780 3' region C > G 0.18 0.19 0.51 

rs6999100 67082732 Intronic T > C 0.32 0.37 0.70 

rs1870394 67102818 5' region C > T 0.34 0.37 0.72 

rs11996294 67114738 5' region G > T 0.26 0.28 0.49 

N =364       

CRHBP  Chr 5      

rs1715751 76239704 Intergenic C > T 0.36 0.34 0.15 

rs1715747 76250378 5' region T > C 0.45 0.48 0.44 

rs32897b 76250972 Intronic T > C 0.22 0.20 0.26 

rs7728378 76259350 Intronic T > C 0.41 0.47 0.91 

rs10062367 76264354 Intronic G > A 0.24 0.24 0.42 

rs10473984b 76264982 3' UTR G > T 0.12 0.10 0.49 

rs10514082 76266447 Intergenic A > G 0.17 0.14 0.33 

N = 369       

CRHR1  Chr 17      

rs12944712 43871147 3' region G > A 0.28 0.31 0.25 

rs16969853 43880159 Intronic A > C 0.13 0.13 0.83 

rs242924 43885367 Intronic G > T 0.42 0.46 0.13 

rs171441 43893345 Intronic A > G 0.15 0.13 0.26 

rs1396862 43902997 Intronic G > A 0.12 0.12 0.24 

rs17763104b 43905795 Intronic G > A 0.13 0.15 0.65 

rs17689966 43910455 5' region G > A 0.40 0.39 0.54 

N = 369       
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Note: CRH, Corticotrophin releasing hormone; CRHR1, Corticotrophin releasing hormone receptor-1; CRHBP, Corticotrophin 

releasing hormone binding protein; Chr, Chromosome; MAF, Minor allele frequency; SNP, Single Nucleotide Polymorphism; HWE, 

Hardy-Weinberg equilibrium. 

a Frequency in HapMap European (CEU) populations of the minor allele. 

b SNPs associated with cortisol reactivity (See Figure 2.1).  
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Table 2.3: List of tag-SNP-specific primers and their annealing temperatures.  
 

Gene 
 

Allele-specific primer [5' to 3'] 
Annealing 
temp. (°C) 

CRH 
   

 
rs9694082 AACAAAACAAATTTGAGTTCACTCT[C/G]CTGGTGCATGGTGACCTCACACCTG 60 

 
rs6999100 ATGTATGCATGACATTTTGTTTATC[C/T]GCTTCTCCAAGGATGGACTCTTGGG 60 

 
rs1870394 TAAGGTCAGGGTAATAGAAAAGAAT[C/T]ATTCATCATAAGTTTTAAAACTCCC 62 

 
rs11996294 AGAGCCAATCCTTCAGTAAGATGTC[G/T]ATATAAATGCACTGCCCTGAGGTTA 59 

CRHR1 
   

 
rs12944712 TAAAGCTGACAGGGCAGGAGACCTG[A/G]GGTTGGAGCTGACTCAGCCACTTCT 62 

 
rs16969853 AAGGGAAGACTAGCCCTTTGCCTGG[A/C]ATTTGGCTTCATTTTCTGACGAATC 60 

 
rs242924 GCATGGCTGCTGCTGGGCAAAAATG[G/T]AGAGGGTCCCTGCACCTGAGTGTCT 60 

 
rs171441 AAGGAGGGCCAACTTCATTTAGCTG[A/G]TTCTTCCCTGCAGGGCCAGGGTAGA 62 

 
rs1396862 GTTGGACCAGGGCTTCTGAACTGCA[A/G]AGGTGCTTTTTCCTAAAACCAAGCT 63 

 
rs17763104 CGGGGTTGCCCTGATGGTTTAAGAC[A/G]ATAACAGATATGAAAATCCTCTGTA 62 

 
rs17689966 AAGCACTGTCCCTCCCCATGCCATC[A/G]AGGTGGACGCAGATGACCCTTCCTC 60 

CRHBP 
   

 
rs1715751 CACATGCAGAAACCAGAATGGGGCC[C/T]GAGGCAAAAGGAAAAGTCACTGACA 62 

 
rs1715747 ACTTTAAGGGATGAGGAGTTACTTC[C/T]TTTGAATGAGCAAAGAAAGCGGTTT 60 

 
rs32897 GTTCTTGACATTTTAAAGTAATATG[C/T]GATGATATTTTTAAAAAATGAGAAA 60 

 
rs7728378 GATTAAAAAAAAATAAGCACTCCCC[C/T]AATATTTTCTACATTGGAAGGTGAG 61 

 
rs10062367 ATGAGGAGAAAGACTGAATTCAATT[A/G]CACTATTCTATAACTAATTATAAGT 60 

 
rs10473984 AATTTACAGTACCTTTACAGAAGGA[G/T]AAAGGTGCCTTCTTCAAAAGGTTTT 60 

 
rs10514082 CTTCATTTCATAGAAACTAAATTCT[A/G]TGAAGCAGGAGGTTGAACCCTTTTC 60 

Note: CRH, Corticotrophin releasing hormone; CRHR1, Corticotrophin releasing hormone receptor-1; CRHBP, Corticotrophin 

releasing hormone binding protein.  
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2.2.4  Linkage Disequilibrium 

The linkage disequilibrium (LD) pattern and haplotype block delineation 

were determined using Haploview software version 4.0.51. Blocks were defined 

using the confidence interval method described by Gabriel et al. (2002) as 

implemented in Haploview software. Our sample showed a modest LD in the 

CRH, CRHBP and CRHR1 gene coding regions represented by one LD block in 

of 26 kb, 8 kb and 22 kb respectively (Figure 2.1). 
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Figure 2.1. The 5' to 3' gene structures, respective chromosome tracks and r2-

based linkage disequilibrium (LD) structures of CRH system genes included in 

this study. A, CRH; B, CRHR1 and C, CRHBP LD structures, spanning across 31 

kb, 25 kb and 47 kb respectively. Boxes and lines represent exons and introns. 

Arrows represent location of tSNPs in relation to the gene coding region. 

Average distance between SNPs was 7.75 kb for CRH, 3.57 kb for CRHBP and 

4.10 kb for CRHR1. Inset shows expected haplotype frequencies for each block 

based on HapMap CEU populations. dbSNP information for each SNP is 

presented in Table 2.2. SNPs associated with cortisol reactivity are marked by an 

asterisk. 
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2.2.5 Stress task and cortisol sampling procedure 

The stress task and cortisol sampling procedures for this study are 

described in greater detail previously (Kryski et al., 2011) and are outlined in brief 

here. Several steps were taken to increase the accuracy with which children’s 

baseline cortisol levels were indexed. First, to eliminate the influence of a novel 

laboratory setting, which has been shown to increase children’s cortisol (Donzella 

et al., 2008), cortisol data were collected during a visit to the family’s home by a 

female experimenter whom the child had met previously during a laboratory visit 

unrelated to the present study.  All visits began between 12:00 pm and 3:30 pm 

to minimize the effects of diurnal variation on cortisol samples (de Weerth, Zijl & 

Buitelaar, 2003; Donzella et al., 2008). Caregivers were asked to prevent 

children from eating or drinking for a half hour prior to the visit to minimize the 

influence of food/drink on cortisol assays (Magnano, Diamond & Gardner, 1989; 

Schwartz et al., 1998). None of the children were taking corticosteroids. Finally, 

the visit began with the child and a familiar experimenter playing quietly with a 

set of unexciting toys to allow any effect of the experimenter’s arrival on 

children’s cortisol to dissipate. After 30 minutes of quiet play, a baseline salivary 

cortisol sample was collected, followed by the stress task described below.   

The stress task was designed to emphasize social evaluation under 

motivated and uncontrollable circumstances, which has been shown to elicit 

large cortisol responses in both adults (Magnano, Diamond & Gardner, 1989) 

and preschool-aged children (Dickerson & Kemeny, 2004; Gunnar, Talge & 

Harrera, 2009). Briefly, each child attempted to complete a matching task by 
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matching coloured game pieces to animal icons based on an answer key. A large 

toy replica of a traffic light was placed adjacent to the board, and the child was 

instructed that the traffic light would show how much time they had to complete 

the task and win a prize, with “green” indicating that they had time to work, and 

“red” indicating that they were out of time. The experimenter surreptitiously 

controlled the traffic light via remote control to that no child could complete the 

task on time during any of the three trials conducted. The mean duration of the 

task for children who completed all three trials was 15.01 min (SD = 1.5), 

including the instruction period. Supporting the validity of this task as a means of 

inducing stress, our group has previously shown that it successfully elicited a 

mean increase in children’s cortisol, and that child negative affect increased as a 

result of participating in this task (Kryski et al., 2011). Following the stress task, 

the child and experimenter resumed quiet play while the remaining cortisol 

samples were collected every 10, 20, 30, 40, and 50 minutes.  

To obtain cortisol, children chewed on a 2-inch absorbent cotton dental roll 

until it was wet with saliva, which was expunged into a micro tube and frozen at -

20°C.  Studies consistently report high correlations in saliva to serum cortisol 

concentrations (Daniel et al., 2006; Dorn et al., 2009; Eatough et al., 2009). 

Saliva samples were assayed in duplicate using salivary cortisol enzyme 

immunoassay kit (Salimetrics, PA, USA). Optical density was read on a standard 

plate reader at 450 nm and corrected at 650 nm (Molecular Devices, Sunnyvale, 

CA, USA). All samples from the same child were assayed in the same batch with 

no duplicates varying more than 5%. The average intra- and interassay 
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coefficients were 3.5 and 5.1%. Standard curve and concentration of unknown 

samples were generated according to manufacturer’s instructions using a 4-

parameter sigmoid minus curve fit. Cortisol data were skewed and were therefore 

log10 transformed prior to all analyses, a standard procedure with human cortisol 

data (Schwartz et al., 1998).  

Three aspects of cortisol stress reactivity were examined. I calculated 

individual cortisol response for each participant by calculating post-stress-task 

cortisol change scores [baseline cortisol – peak cortisol post stress task], 

hereafter referred to as “baseline to peak change.” I also calculated the area 

under the curve (AUC) as a measure of cortisol response. The AUC is comprised 

two types of information; first, the intensity of the response or AUCi, and second, 

the total response as a function of time or AUCg (Figure 2.2). With 

endocrinological data, AUCg is assumed to be a measure more related to total 

hormonal output, whereas AUCI is a parameter that emphasizes the changes 

over time and is more related to sensitivity of the system (Fekedulegn et al., 

2007; Pruessner et al., 2010).  
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Figure 2.2. Cortisol response over 3 time points in an arbitrary dataset. AUCI is 

the area under the curve above the referent baseline measurement (shaded 

region). (Adapted from Fekedulegn et al., 2007). 

2.2.6 Behaviour measures 

 The child’s primary caregiver completed the Child Behavior Checklist 

(CBCL; Achenbach, 2001), a standardized parent report measure of the 

frequency and intensity of child behavioural and emotional problems exhibited in 

the last 6 months. Since I was primarily interested in the presence and severity of 

children’s specific internalizing disorder symptoms, alternative scale scores 

derived to be consistent with DSM-IV diagnostic criteria for disorders were used 

(Lengua et al., 2001) including empirically-derived scales indexing depression (α 

= 0.81) and anxiety (α = 0.77).   

2.2.7 Assessment of life stress 
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Several factors known to contribute to children’s early development were 

examined: familial chronic stress (Burge & Hammen, 1991); marital discord 

(Hammen, Brennan, & Shih, 2004); and socioeconomic status (SES; Lupien et 

al., 2000). The UCLA Life Stress Interview was used to assess chronic stress as 

reported by the primary caregiver. Trained Ph.D. students in clinical psychology 

gathered information from each child’s primary caregiver related to their intimate 

relationships, close friendships, social life, family relationships, childcare hassles, 

work, finances, health of the primary caregivers, and health of close family 

members (Adrian & Hammen, 1993; Hammen, 1991). The interviewer then 

assigned Likert style ratings to the level of stress present in each domain from 

low (1) to high (5). Reliability was assessed by having a second coder rerate the 

chronic stress descriptions for 12 of the interviews (average ICC = 0.78). Life 

stress ratings for each domain were averaged to create an average life stress 

variable.  

Primary caregiver reports of relationship adjustment were collected using 

the Dyadic Adjustment Scale (DAS; Spanier, 1976). The DAS is a 32-item 

questionnaire of marital adjustment designed for use with either married or 

unmarried cohabiting couples (Spanier, 1976). The instrument provides a global 

score of dyadic adjustment which can range from 0 to 151, with higher scores 

reflecting higher level of dyadic adjustment. For the purposes of this study, the 

global score were reverse-coded so that higher scores reflect greater marital 

discord. Previous research has demonstrated good psychometric properties 
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(Baillargeon, Dubois, & Marineau, 1986). The internal consistency for global 

dyadic adjustment was good (α = 0.83). 

 Family income was reported by one of the child’s caregivers as an index 

of family socio-economic status. This data was collected on a generic 

demographic form along with other basic demographic characteristics. Family 

income scores were generated that ranged from < $20,000 coded as 1 to income 

> $100,000 coded as 5. For the purposes of this study family income was reverse 

coded so that higher scores reflect lower family income and greater 

socioeconomic stress. Following Evans and colleagues (2013), an aggregate 

index of children’s cumulative stress exposure was created by first standardizing 

and then averaging these variables. This overall life stress aggregate, which isI 

referred to as “childhood stress” or CS, was used in all subsequent analyses. 

2.2.8 Data Analyses 

Descriptive statistics for children’s genotypes, gender, age, cortisol 

reactivity, CS and symptoms are presented in Table 2.1. Next, bivariate 

correlations between the main outcome measures were tested using Pearson 

correlation analysis (Table 2.1). I used linear regression to assess whether SNPs 

in the CRH, CRHR1 and CRHBP genes predicted child cortisol reactivity scores. 

I first considered single-SNP analyses that regressed cortisol reactivity on tSNP 

genotype (coded under  additive, recessive & dominant models). I also 

investigated whether epistatic interactions between CRH system polymorphisms 

predicted cortisol reactivity using regression models. I established the 

significance of genotype–mean cortisol reactivity using permutation-based 
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procedures (Schmidt et al., 2002, 2003a) that randomly assigned the sample 

cortisol reactivity scores to subjects (sampled without replacement) while holding 

each subject’s genotype fixed. This permutation method is preferred as it 

accounts for LD among SNPs in a haplotype block therefore conserving power 

compared to commonly used correction techniques such as the Bonferroni 

method (Schmidt et al., 2003b). For each analysis, the empirical P value was 

based on 10,000 permutations. I conducted these analyses using appropriate 

components of PLINK (Purcell et al., 2007). 

To examine whether CRH gene pathway tSNPs moderated associations 

between CS and child internalizing symptoms, multiple regression was used as 

implemented in the macro developed by Hayes (2012). This macro uses a 

regression-based path analytical framework for estimating direct and indirect 

effects in simple and multiple moderation models, two- and three-way 

interactions in moderation models along with simple slopes and regions of 

significance for probing interactions. Bootstrap methods are implemented for 

inference about indirect effects in both unmoderated as well as mediated 

moderation models. All predictor values were centered as needed.   

2.3  RESULTS 

2.3.1  Associations between study variables and CRH system gene 

polymorphisms  

We first looked at whether links existed between study demographics and 

cortisol reactivity measures. Table 2.4 presents correlations between all major 
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study variables. Cortisol response measures (i.e., AUCi, AUCg and baseline to 

peak cortisol change scores) were highly positively correlated with each other. As 

baseline to peak cortisol change and AUCi are highly correlated and capture the 

intensity of cortisol response, we chose to present only the AUCi as a dependent 

variable in subsequent sections. As is frequently found in the literature on cortisol 

reactivity, higher family income was associated with lower cortisol reactivity 

(Chen et al., 2010; Lupien et al., 2001) and with fewer depressive and anxious 

symptoms. Child sex was associated with symptoms such that girls had more 

anxious and depressive symptoms compared to boys in the sample. No 

significant associations between child sex and the three measures of cortisol 

response were found, as expected based on the literature (Mackinaw-Koons & 

Vasey, 2000; Stroud et al., 2004). Anxious symptoms were positively correlated 

with all measures of cortisol reactivity (AUCi, AUCg and baseline to peak cortisol 

change). All symptom measures were positively correlated. Finally, the CS 

measure was positively associated with all measures of cortisol response and 

internalizing symptoms, but negatively correlated with family income.   
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Table 2.4. Correlations among study variables 

  1 2 3 4 5 6 7 8 9 
1. baseline to peak change 
[peak – baseline] -- 

2. AUCi .881*** -- 

3. AUCg .686** .724*** -- 

4. PPVT -.026 .006 .003 -- 

5. Family Income -.074 -.090 -.123* .092 -- 

6. Child Sex .002 .030 -.008 .064 .009 -- 

7. Anxious Symptoms .116* .114* .117* .041 -.125* .133* -- 

8. Depressive Symptoms -.018 -.002 .006 -.032 -.120 .144** .313** -- 

9. Childhood stress .146** .141* .176** -.118* -.624** .017 .161** .264** -- 

Mean 0.065 .050 .180 111.98 3.76 1.498 1.258 1.273 0.096 

(SD) (0.053) (.090) (.123) (14.11) (1.10) (.500) (1.442) (1.533) (.645) 

Note: Child gender was coded as males = 0 and females = 1; Family income was coded as 1 = < $20,000; 2= $20,000-

$40,000; 3= $40,001-$70,000; 4 = $70,001-$100,000; 5 = > $100,001. AUCi = area under curve with respect to baseline; 

AUCg  = area under curve with respect to ground; PPVT = Picture Vocabulary Test–Fourth Edition (Dunn & Dunn, 1997). 

*p < 0.05; **p < 0.01; ***p < 0.001. 
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Regression analyses showed no significant associations between 

demographic variables and the 18 tSNPs genotypes in this study (ps > 0.11). Of 

the 18 tSNPs genotyped, only two tSNPs were significantly associated with 

cortisol reactivity or AUCi after correcting for multiple tests, CRHR1 tSNP 

rs17763104 and CRHBP tSNP rs10473984. The CRHR1 tSNP rs17763104 

genotypes predicted child AUCi under an ancestral recessive model, with the 

CRHR1 tSNP rs17763104 GG homozygote children having significantly lower 

cortisol reactivity (AUCi) relative to heterozygotes and AA homozygotes (β = 

0.13, se = 0.05, t = 1.98, p = 0.01) (Figure 2.3A). Similarly, an association also 

existed between children’s AUCi and CRHBP tSNP rs10473984 when coded 

under a recessive model (β = 0.05, se = 0.03, t =1.14, p = 0.02), such that the 

GG homozygote children had significantly higher AUCi than their counterparts 

who have at least one copy of the T allele (Figure 2.3B). 

An association also existed between children’s total cortisol response or 

AUCg and CRHBP tSNP rs10062367 and cortisol reactivity when coded under a 

recessive model (β = -0.04, se = 0.01, t = -2.74, p < 0.01), such that the GG 

homozygous children had significantly higher AUCg than children with at least 

one copy of the A allele (Figure 2.3C).
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Figure 2.3. Distribution of 

rs17763104 and (B) CRHBP

rs10062367 genotypes (C)

Note: CRHR1, Corticotrophin releasing hormone receptor

releasing hormone binding protein; tSNP, tagging Single Nucleotide Polymorphism. 

Inset, N, represents number of children in each genotypic group. * 
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2.3.2  CRHR1 haplotypes are associated with cortisol reactivity to stress  

One haplotype block extended distally across the gene and included four 

tSNPs from rs16969853 to rs1396862 (Figure 2.1B). There were five haplotypes 

with a frequency > 0.05 accounting for 94% of haplotype diversity. Figure 2.4 

shows the relationship between CRHR1 haplotype carriers inferred from the 22kb 

LD block and children’s cortisol reactivity measured via AUCi. Children with the 

GGTC and AAGC haplotypes had significantly lower cortisol reactivity than the 

GAGT, GGGC and GAGC haplotype groups (all ps < 0.05) but these two 

haplotypes were not significantly different in cortisol reactivity (all ps > 0.05). All 

four tSNPs were in strong LD for the 26kb CRH gene region. There were four 

haplotypes with a frequency of > 0.05 that accounted for 99% of haplotype 

diversity. Similarly two tSNPs were in strong LD in a 8kb CRHBP gene region (all 

ps > 0.23). There were two haplotypes with a frequency of > 0.05. The CRHBP 

haplotypes were also not associated with measures of cortisol reactivity (all ps > 

0.14).  

No links were found between the CRHR1 haplotypes and cortisol 

response measured via AUCg (all ps > 0.05). 
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Figure 2.4. Mean salivary AUCi as a function of CRHR1 haplotypes in linkage block 1 (Figure 2.1). Two haplotype groups 

showed significantly lower cortisol reactivity compared to the rest of the haplotype groups. 

Note: Inset represents pairwise comparisons between haplotype groups.   
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2.3.3 Gene–gene interactions and cortisol reactivity  

I also investigated pairwise interactions between tSNPs genotypes in 

predicting cortisol reactivity, finding effects of three tSNP pairs, illustrated in 

Figure 2.5. Regression analyses showed a significant interaction between two 

tSNP pairs on chromosome 8 and 17. The first significant interaction was 

between CRH rs9694082 and CRHR1 rs171441 (β = -1.10, se = 0.52, corrected 

p < 0.01; Figure 2.5A), such that CRHR1 rs171441 heterozygotes had 

significantly lower cortisol reactivity than their homozygous counterparts (all ps < 

0.01). Figure 2.5B illustrates the second significant interaction that was found 

between CRH rs11996294 and CRHR1 tSNP rs12944712 (β = -2.97, se = 0.50, 

corrected p < 0.01) such that carriers who were heterozygous for the CRH 

rs11996294 tSNP but homozygous for the rs12944712 G or A alleles had 

significantly higher cortisol reactivity than their rs12944712 GA heterozygous 

counterparts (all ps < 0.001). Figure 2.5C illustrates the interaction between the 

CRHR1 rs171441 and CRHBP rs32897 predicting child cortisol reactivity (β 

=1.41, se = 0.25, corrected p = 0.01). Carriers homozygous for the rs32897 G 

allele substitution had significantly higher cortisol reactivity compared to carriers 

with at least one copy of the rs32897 A allele (all ps < 0.01).  
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Gene-gene interactions also predicted overall cortisol response or AUCg. 

Figure 2.6A illustrates the interaction effect between CRHR1 tSNP rs242924 and 

CRHR1 tSNP rs12944712 genotypes predicting AUCg (β =2.81, se = 0.25, 

corrected p = 0.001) such that children heterozygous for the two tSNPs had 

lower cortisol response than children who were not heterozygous for these 

tSNPs. Figure 2.6B illustrates the interaction between CRHR1 tSNP rs16969853 

and CRH tSNP rs17689966 genotypes predicting child AUCg (β =2.07, se = 0.18, 

corrected p < 0.01) such that children homozygous for the G allele had lower 

cortisol response when compared to children who were either heterozygous or 

homozygous for the A allele.  
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Note: AUCg, area under curve with respect to ground; CRHR1, Corticotrophin releasing hormone receptor-1; CRHBP, Corticotrophin 

releasing hormone binding protein; Chr, Chromosome; tSNP, tagging-Single Nucleotide Polymorphism. *p < 0.05, ** p < 0.01, ***p < 

0.001.  
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2.3.4 CRH pathway tSNPs are associated with emerging symptoms of 

depression and anxiety 

Based on the hypotheses that the CRH system gene variants may 

contribute to depressive and anxious symptoms, I examined such links in this 

sample of preschoolers. Results of these analyses are presented in Table 2.5. I 

found significant main effects of the tSNPs and genotype on children’s symptoms 

of depression and anxiety. First, the CRH gene tSNP, rs9694082, was 

associated with child anxious symptoms (Figure 2.7A), such that the carriers for 

at least one copy of the G allele had significantly higher anxious symptoms than 

their counterparts homozygous for the C allele (t = 2.30, df = 368, p = 0.02).  

Similarly, the CRHR1 tSNP, rs242924, was also associated with 

symptoms of depression and anxiety in preschoolers (results presented in 

Figures 2.7B and 2.7C). Children who carried at least one copy of the G allele 

had significantly higher depressive (t = -2.48, df = 368, p = 0.01) and anxious 

symptoms (t = -2.27, df = 368, p = 0.02) compared to children homozygous for 

the T allele. 

One tSNP in the CRHBP gene region was also associated with child 

anxious symptoms (Figure 2.7D), such that children who were carriers of the 

major allele or A allele had significantly higher anxious symptoms than children 

carrying the minor allele or G allele (t = 3.67, df = 360, p < 0.01).  
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Table 2.5. Main effects of CRH system gene variants on emerging depressive and anxious symptoms. 

Depressive symptoms 
 

Anxious symptoms 

Gene (N=369) tSNP Additive model Allelic model Additive model Allelic model 

CRH p-value p-value 

rs9694082* 0.58 0.41 0.06 0.02 

rs6999100 0.92 0.85 0.65 0.71 
rs1870394 0.60 0.51 0.73 0.66 

rs11996294 0.16 0.06 0.75 0.25 
CRHR1 

rs12944712 0.19 0.20 0.80 0.55 

rs16969853 0.55 - 0.81 - 
rs242924** 0.26 0.01 0.05 0.05 

rs171441 0.81 0.14 0.97 0.31 

rs1396862 0.53 0.94 0.13 0.66 
rs17763104 0.22 0.27 0.47 0.68 
rs17689966 0.18 0.15 0.60 0.49 

CRHBP 

rs1715751** 0.32 0.08 0.15 0.01 

rs1715747 0.41 0.26 0.86 0.73 

rs32897 0.98 0.88 0.99 0.94 
rs7728378 0.48 0.31 0.29 0.31 
rs10062367 0.71 0.56 0.94 0.82 

rs10473984 0.08 0.11 0.37 0.22 
rs10514082 0.55 0.31 0.36 0.58 

Note: CRH, Corticotrophin releasing hormone; CRHR1, Corticotrophin releasing hormone receptor-1; CRHBP, Corticotrophin 

releasing hormone binding protein.  
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C.          D. 

 

Figure 2.7. CRH pathway gene tSNPs are associated with emerging symptoms of depression and anxiety. Results 

derived from the best genetic model are reported. Symptoms are plotted as a function of genotype for A) CRH tSNP, 

rs9694082, and anxiety symptoms; B, C) CRHR1 tSNP, rs242924, and depressive and anxious symptoms; D) CRHBP 

tSNP rs1715751 and depressive symptoms in preschoolers. *p < 0.05; **p < 0.01.  
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2.3.5 Interactions between CRH system gene variants and childhood stress 

predict cortisol response to stress in preschoolers 

In the next set of analyses, I examined whether the interactions between 

CRH system tSNPs and CS were associated with children’s cortisol AUCi (Table 

2.6). I found two tSNPs in the CRHBP coding region which acted as moderators 

of the association between CS and children’s AUCi. The first significant 

interaction term included CRHBP rs1715747 tSNP and CS. To understand the 

moderation effect, I plotted the association between cortisol and CS for the two 

allelic groups (Figure 2.8A). My analysis showed that children with at least one 

copy of the G allele showed higher AUCi, as CS levels increased (β = 0.09, se = 

0.02, p < 0.001, 95% CI: 0.04 – 0.13, N = 71); in contrast, the association 

between AUCi and CS in children homozygous for the T allele was not fully 

significant (β = 0.02, se = 0.01, p = 0.07, 95% CI: -0.00 – 0.03, N = 300).1 

I also found a similar evidence for moderation in the CRHBP gene variant 

as well. The interaction term for CRHBP rs32897 tSNP and CS was also 

significant (Table 2.6). I plotted the levels of CS for the two allelic groups (Figure 

2.8B). My analysis showed that children with at least one copy of the G allele 

showed higher AUCi as CS levels increased (β = 0.21, se = 0.04, p < 0.001, 95% 

CI: 0.13 – 0.29, N = 219); in contrast, the association between AUCi and CS in 

                                                        
1
 The gene-environment interaction term did not predict AUCg, p > 0.66.  



 

 81

children homozygous for the T allele was not significant (β = 0.01, se = 0.01, p = 

0.31, 95% CI: -0.01 – 0.03, N = 148).2 

  

                                                        
2
 Similar to rs1715747 tSNP, the interaction between the rs32897 tSNP and CS did not 

predict AUCg, p > 0.23.  
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Table 2.6. Interaction between CRH system tSNPs and childhood stress (CS) 

effect on stress response measured via cortisol AUCi. 

Gene SNP x CS model β se p-value 

CRH 

rs9694082 REC -0.01 0.02 0.59 

rs6999100 REC 0.00 0.02 0.99 

rs1870394 ADD -0.02 0.02 0.25 

rs11996294 REC -0.02 0.02 0.17 

CRHR1 

rs12944712 ADD 0.00 0.01 0.96 

rs16969853 ADD 0.01 0.02 0.73 

rs242924 ADD 0.01 0.01 0.95 

rs171441 REC -0.02 0.03 0.37 

rs1396862 ADD 0.01 0.02 0.69 

rs17763104 ADD 0.03 0.02 0.18 

rs17689966 REC 0.02 0.02 0.33 

CRHBP 

rs1715751 ADD -0.02 0.02 0.26 

rs1715747* DOM 0.24 0.01 0.04 

rs32897*** REC 0.19 0.04 0.00 

rs7728378 ADD 0.01 0.01 0.70 

rs10062367 REC -0.13 0.02 0.07 

rs10473984 ADD 0.00 0.02 0.91 

  rs10514082 ADD 0.02 0.02 0.41 
Note: SNP, single nucleotide polymorphism; AUC, area under curve; ADD, additive 

model; REC, recessive model; DOM, dominant model; CRH, Corticotrophin releasing 

hormone; CRHR1, Corticotrophin releasing hormone receptor-1; CRHBP, Corticotrophin 

releasing hormone binding protein. 
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Figure 2.8. Relationship between 

rs1715747 (A), and (B) CRHBP

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-1SD

C
o

rt
is

o
l 

re
sp

o
n

se
 [

A
U

C
i]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-1SDC
o

rt
is

o
l 

re
sp

o
n

se
 [

A
U

C
i}

Childhood stress

 

 

Relationship between childhood stress and AUCi by CRH

CRHBP tSNP rs32897 genotypes.  

mean +1SD

Childhood stress

CRHBP

rs1715747 TT

CC+CT

mean +1SD

Childhood stress

CRHBP

rs32897 TT

CC+CT

83

CRHBP tSNP 



 

84 
 

2.3.6 GxE between CRH system genetic variation and childhood stress predict 

emerging symptoms of depression and anxiety  

Based on recent findings (Heim et al., 2009), I investigated whether CRH 

pathway gene variation would moderate the link between CS and internalizing 

symptoms in preschoolers. I found three tSNPs which acted as moderators of the 

association between CS and children’s depressive or anxious symptoms. The 

interaction terms for CRHR1 rs242924 tSNP and CS were significant for both 

depressive and anxious symptoms (Table 2.7). I plotted levels of child depressive 

and anxious symptoms as a function of CS and CRHR1 rs242924 tSNP 

genotype (Figure 2.9A). My analysis showed that children with at least one copy 

of the G allele showed an increasing levels of depressive symptoms as the levels 

of CS increased (β = 0.20, se = 0.07, p < 0.001, 95% CI: 0.06 – 0.34, N = 275); in 

contrast, the link between depressive symptoms and CS in children homozygous 

for the T allele was not significant (β = 0.06, se = 0.13, p = 0.38, 95% CI: -0.07 – 

0.14, N = 96). Similarly, my analysis showed that children with at least one copy 

of the G allele showed increasing levels of anxious symptoms as CS increased 

(β = 0.58, se = 0.16, p < 0.001, 95% CI: 0.26 – 0.90, N = 275); in contrast, the 

link between anxious symptoms and CS in children homozygous for the T allele 

was not significant (β = 0.08, se = 0.18, p = 0.65, 95% CI: -0.28 – 0.44, N = 96; 

Figure 2.9B). 

I also found similar evidence for moderation in the CRHBP gene variant as 

well. The interaction term for CRHBP rs7728378 tSNP and CS was also 

significant (Table 2.8). I plotted levels of child depressive symptoms and CS for 
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the two allelic groups (Figure 2.9C). My analysis showed that children with at 

least one copy of the A allele showed an increasing levels of depressive 

symptoms as the life stress increased (β = 0.26, se = 0.29, p = 0.35, 95% CI: -

0.30 – 0.82, N = 217); in contrast, the link between depressive symptoms and CS 

in children homozygous for the G allele was not significant (β = - 1.16, se = 0.33, 

p < 0.001, 95% CI: 0.51 – 1.79, N = 145). 
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Table 2.7. Summary of interactions between CRH system tSNPs and childhood 

stress (CS) predicting emerging anxiety symptoms. Significant model p-values 

are in bolded text. 

Gene SNP x CS model β se p-value 

CRH 

rs9694082 REC 0.23 0.35 0.51 

rs6999100 REC 0.40 0.29 0.17 

rs1870394 ADD 0.32 0.30 0.28 

rs11996294 REC 0.16 0.26 0.54 

CRHR1 

rs12944712 ADD 0.20 0.23 0.38 

rs16969853 ADD -0.27 0.35 0.44 

rs242924* REC 0.38 0.18 0.03 

rs171441 REC -0.45 0.40 0.26 

rs1396862 ADD 0.02 0.27 0.93 

rs17763104 ADD 0.28 0.31 0.48 

rs17689966 REC 0.30 0.23 0.21 

CRHBP 

rs1715751 ADD -0.18 0.27 0.50 

rs1715747 DOM -0.13 0.27 0.62 

rs32897 REC 0.31 0.26 0.25 

rs7728378 ADD 0.08 0.19 0.66 

rs10062367 ADD 0.19 0.17 0.28 

rs10473984 ADD 0.32 0.37 0.17 

  rs10514082 ADD -0.06 0.30 0.85 
Note: SNP, single nucleotide polymorphism; ADD, additive model; REC, recessive 

model; DOM, dominant model; CRH, Corticotrophin releasing hormone; CRHR1, 

Corticotrophin releasing hormone receptor-1; CRHBP, Corticotrophin releasing hormone 

binding protein. *p < 0.05; †p < 0.10. 
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Table 2.8. Summary of interactions between CRH system tSNPs and childhood 

stress (CS) predicting emerging depressive symptoms. Significant model p-

values are in bolded text. 

Gene SNP x CS model β se p-value 

CRH 

rs9694082
†
 REC 0.43 0.25 0.09 

rs6999100 REC 0.20 0.28 0.48 

rs1870394
†
 ADD 0.51 0.29 0.08 

rs11996294 REC 0.38 0.34 0.26 

CRHR1 

rs12944712 ADD 0.12 0.20 0.54 

rs16969853 ADD -0.36 0.34 0.29 

rs242924* ADD 0.47 0.18 0.01 

rs171441
†
 REC -0.66 0.39 0.09 

rs1396862 ADD -0.13 0.26 0.62 

rs17763104 ADD 0.18 0.29 0.54 

rs17689966 REC 0.11 0.17 0.64 

CRHBP 

rs1715751 ADD 0.26 0.25 0.30 

rs1715747 DOM -0.20 0.18 0.25 

rs32897 REC -0.13 0.22 0.55 

rs7728378* ADD -0.42 0.18 0.02 

rs10062367 REC 0.58 0.26 0.58 

rs10473984 ADD -0.55 0.36 0.13 

  rs10514082 ADD 0.30 0.31 0.34 
Note: SNP, single nucleotide polymorphism; ADD, additive; REC, recessive; DOM, 

dominant; CRH, Corticotrophin releasing hormone; CRHR1, Corticotrophin releasing 

hormone receptor-1; CRHBP, Corticotrophin releasing hormone binding protein. *p < 

0.05; †p < 0.10.  
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C. 

 

Figure 2.9.  Relationship between levels of childhood stress and emerging 

symptoms by CRHR1 tSNP rs242924 (A, B) and CRHBP tSNP rs7728378 (C) 

genotypes.  
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2.4  DISCUSSION 

The first aim of this study was to explore links between genetic variation of 

the CRH system genes and children’s cortisol responses to stress. Analyses 

found evidence for associations between CRH pathway gene variations and both 

the intensity (measured via AUCi) and total hormonal response measured via 

AUCg. Specifically, tSNPs of the CRHR1 and CRHBP gene-coding regions were 

associated with preschoolers’ cortisol responses to stress. The CRHR1 tSNP, 

rs17736104 was associated with childhood AUCi. Even though the CRHR1 tSNP 

rs17763104 is intronic, it is likely that this SNP is flanked by nonsynonymous 

SNPs in CRHR1 gene exons 6 through 8. Although speculative, it is possible that 

one of these SNPs may have functional effects on CRHR1 gene transcription, 

thus influencing the number of functional CRH receptors on the pituitary gland 

leading to changes in the release of ACTH, and ultimately affecting cortisol 

release from the adrenal gland. Recent research indicates that most CRHR1 

isoforms are a result of splicing variation within the exon 6 through 10-coding 

regions (van Pett et al., 2000). Furthermore, intronic SNPs have also been 

shown to exert functional effects on gene expression when the intron is part of 

the gene’s regulatory region. It is likely that this tSNP may be linked to such a 

variant, which may be regulating the CRHR1 gene expression. Future research is 

needed to investigate the functional effects this SNP and either the regulatory 

nature or the alternatively spliced variants from this coding region on ACTH 

release from the pituitary and stress sensitivity.  
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I also found associations between CRHR1 haplotypes and cortisol 

reactivity. Children with the GGTC and AAGC haplotypes showed significantly 

lower cortisol reactivity than those with the GAGT, GGGC and GAGC 

haplotypes. The linkage block that encompasses these haplotypes contain exons 

code for the transmembrane parts of the mature CRHR1 protein. It is plausible 

that the genetic variation in this region may lead to changes in the 

transmembrane protein structure, which initiates downstream signaling of this g-

protein couple receptor. Differences in downstream activation could lead to 

altered release of ACTH and eventually cortisol release from the adrenal 

medulla. Animal knockout research lends some support to this hypothesis by 

showing that the CRHR1 gene is critical for normative cortisol reactivity to stress. 

To my knowledge, my study is the first to show that common genetic variation of 

the CRHR1 gene loci is also associated with differences in cortisol reactivity in 

children.  

Association also existed between CRH system gene variants and 

emerging symptoms of depression and anxiety. Specifically, the CRH rs9494082 

and CRHBP rs1715751 were associated with anxious symptoms, whereas the 

CRHR1 tSNP, rs242924, was associated with depressive symptoms. I also found 

evidence for gene-environment interaction between CRH pathway genes and CS 

on emerging symptoms of depression, with the interaction between CRHR1 tSNP 

rs242924 and CS predicting symptoms of depression. Although no main effect of 

these variants on depression or anxiety has been reported, a few studies have 

implicated these variants in gene-environment interactions REFS. For example, 
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polymorphisms within this region of the CRHR1 gene, and rs110402 and 

rs242924 SNP genotypes in particular, have been shown to moderate the link 

between early childhood maltreatment and the development of depressive 

symptoms later in life (Bradley et al., 2008; Heim et al., 2009; Polanczyk et al., 

2009; Wasserman et al., 2009; Grabe et al., 2010), suggesting genetic 

differences are shaped by the environment in CRH-dependent 

neurotransmission. Similarly, Tyrka and colleagues (2009) report that variation in 

the CRHR1 gene, and rs242924 GG homozygotes in particular, moderated the 

effect of childhood maltreatment on cortisol responses to the 

dexamethasone/corticotrophin-releasing hormone test. Thus, pathways between 

CRH system genes and negative outcomes are clearly complex, with evidence 

for both moderation and main effects. These findings contribute to this literature, 

showing that the CRH system genetic variation is associated with early stress 

reactivity and could act as a moderator of CS’ effects on emerging risk for 

psychopathology.  

My analysis also showed that a tSNP in the CRHBP-coding region, 

rs10473984 was associated with intensity of cortisol reactivity, and that CRHBP 

rs10062367 genotype was associated with total cortisol response or AUCg. 

Additionally, the interaction between CRHBP tSNP rs7728378 and CS also 

predicted childhood symptoms of depression. Once again, children homozygous 

for the major allele (A allele) showed greater depressive symptoms as a function 

of life stress; however, this relationship was nonsignificant for children with at 

least one copy of the minor allele or the G allele. Since 65–90% of total CRH is 
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bound to CRHBP (Jahn et al., 2005), the effectiveness of CRH in stimulating 

ACTH to release cortisol may be influenced by a variation in CRHBP expression.  

A number of recent studies have focused on the CRHBP gene as a 

candidate gene for stress-related disorders such as major depression and 

suicidality (De Luca et al., 2010). A study by Binder and colleagues (2010) report 

that allelic variants of rs10473984 are associated with higher ACTH 

concentrations, and these data extend this finding by showing this SNP is 

associated with early childhood cortisol reactivity as well. Although this SNP is 

30kb upstream of the gene-coding region, it is likely that it is in linkage with 

SNP(s) with functional consequences, resulting in decreased affinity for free 

CRH, thus increasing the bioavailability of CRH to activate its receptor, the 

CRHR1. Such a functional change could lead to an increase in subsequent 

ACTH release from the pituitary gland and downstream cortisol release from the 

adrenal glands. Recent work by Enoch et al. (2008) provides some support for 

this speculation, identifying a second CRHBP isoform in the brain in which the 

terminal exon (exon 7) is spliced out, resulting in a truncation of the messenger 

RNA, such that the C-terminus of ancestral 52 amino acids is truncated to only 

18 amino acids. This change in peptide sequence might affect protein folding and 

stability, which might alter CRH binding affinity. Further research including ultra-

deep sequencing of this region and molecular analyses are needed to explain the 

role of the genetic variation in this region and HPA axis function.  

I also found evidence for gene-gene interactions predicting both AUCi 

cortisol reactivity and total cortisol response. The interactions between CRH 
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rs9698042 and CRHR1 rs171441 were such that children heterozygous for the 

CRHR1 rs171441 showed lower cortisol reactivity than the homozygotes for 

these loci. The second interaction, between CRH rs11996294 and CRHR1 

rs12944712 also predicted lower cortisol reactivity for heterozygotes at both gene 

loci. Although I did not find any main effects of genetic variation in the CRH gene 

on cortisol reactivity, the interaction between the CRH and CRHR1 tSNPs 

indicates that CRH gene variants are important in HPA axis function, but only by 

virtue of epistatic effects. An interaction between CRHR1 rs171441 and CRHBP 

rs32897 also predicted cortisol reactivity such that children homozygous for the 

rs32897 GG genotype showed significantly higher cortisol reactivity than the A 

allele carriers. The rs32897 tSNP has been implicated in other studies examining 

the genetic bases of alcoholism (Enoch et al., 2008) and inflammation (Velez et 

al., 2008). However, the interaction I found between the loci on the CRHR1 and 

CRHBP genes and cortisol reactivity is novel. Taken together, the presence of 

multiple interactions between genes that shape different levels of the HPA 

signaling cascade highlights the complex nature of the genetic bases of HPA 

function in humans. 

Overall, these findings illustrate an important relationship between genetic 

variation of the various CRH system genes and early cortisol reactivity and the 

role of these variants in emerging risk for internalizing symptoms. Additionally, 

these findings support and extend recent adult literature where CRH system 

genes were found to moderate the early environment on psychopathological risk. 

These findings have the potential to shed light on the mechanisms involved in the 



 

95 
 

transmission of risk and the origins of stress sensitivity and resilience observed in 

disorders such as major depression and post-traumatic stress disorder. I 

demonstrated that cortisol reactivity to stress in humans has complex polygenic 

underpinnings.   
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Chapter 3 - Catechol-O-Methyltransferase gene (val158met) polymorphisms 

and anxious symptoms in early childhood: The roles of hypothalamus-

pituitary-adrenal axis reactivity and life stress 

 

3.1 Introduction 

Catechol-O-methyltransferase (COMT), a catabolic enzyme that degrades 

cortical catecholamines including dopamine and epinephrine, plays a vital role in 

regulating prefrontal cortex catecholamine levels (Meyer-Lindenberg & 

Weinberger, 2006). The gene encoding COMT (Gene ID: 1312) is mapped to 

chromosome 22p11, and contains four exons (Brahe et al., 1986). Further, a 

non-synonymous G→A single nucleotide polymorphism (rs4680) in exon four 

leads to a valine (val) to methionine (met) peptide change in the mature protein, 

and is called the val158met polymorphism. This substitution impacts the 

thermostability of the COMT protein and reduces the enzyme’s catabolic 

function, thereby reducing dopamine degradation in carriers with at least one 

copy of the met allele by more than one-third compared to carriers homozygous 

for the val allele (Lotta et al. 1995; Chen et al. 2004). Thus, functional differences 

in catecholinergic activity due to this genetic variation appear to lead to individual 

differences in cortical dopamine availability, which may account for associations 

between this gene and various forms of psychopathology (Dickinson & Elvevag, 

2009). For example, Hamilton and colleagues (2002) reported an association 

between the COMT val158met polymorphism and panic disorder in a family-

based sample of 83 parent-offspring triads. Additionally, the val allele has been 
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associated with early-onset major depression (Massat et al., 2005), and other 

studies have shown that this variant may increase risk for panic disorders and 

anxiety in adults (Rothe et al., 2006; Domschke et al., 2007; Hosak, 2007). A 

recent study from our group reported associations between the val158met 

polymorphism and emerging symptoms of depression and anxiety in two large, 

independent community samples of preschoolers (Sheikh et al., 2013). 

Specifically, in both samples, val homozygous children exhibited significantly 

higher symptoms of depression and anxiety compared to children with at least 

one copy of the met allele.  

In addition to main effects on the development of symptoms, a few studies 

have implicated this gene in gene-environment interactions. For example, 

Baumann and colleagues (2013) reported that an interaction between childhood 

adversity and the COMT gene locus predicted anxiety sensitivity and anxious 

apprehension. Similarly, an interaction between COMT genotype and childhood 

trauma predicted risk for psychotic symptoms in adolescents; specifically, val 

homozygotes who were also exposed to childhood trauma also reported more 

psychotic experiences compared to met allele carriers (Ramsay et al., 2013). 

Other studies have linked interactions between the val158met polymorphism and 

childhood maltreatment in shaping cognitive performance, neuroticism, and risk 

for alcohol dependence (Goldberg et al., 2013; Hoth et al., 2006; Schellekens et 

al., 2013). Taken together, recent literature suggests that the val158met 

polymorphism may moderate the effect of childhood adversity on a broad 

spectrum of psychological outcomes later in life, and could hold etiological 
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significance for internalizing disorders. However, research is still lacking on 

whether an interaction between COMT genotype and life stress predicts early 

symptoms of internalizing disorders. 

In addition to gene-environment interactions, a parallel line of research 

has also focused on identifying the mechanistic processes (i.e., mediators) 

through which COMT functional variance may contribute to maladaptive 

outcomes. The hypothalamic–pituitary–adrenal (HPA) axis is widely posited to be 

one such mediator of links between neurotransmitter gene function and risk for 

future psychopathology (Charney, 2004; Krishnan & Nestler, 2008; McEwen, 

1998; Mokrani et al., 1997; Pitchot et al., 2003). Dopaminergic metabolism is 

known to regulate endocrine stress reactivity primarily by affecting extra-

hypothalamic brain structures that regulate HPA axis functioning, such as the 

prefrontal cortex, hippocampus and the amygdala (for in depth reviews see 

Locatelli et al., 2010; Vermetten & Bremner, 2002). For example, distribution of 

dopamine was found to alter HPA axis reactivity in rodents and non-human 

primates exposed to early life stressors paradigms such as maternal separation 

and glucocorticoid administration (Kofman, 2002; Macri et al., 2009; Posener et 

al., 1994, 1999). Additionally, the altered HPA axis functioning was linked to 

anhedonia-like symptoms and high anxiety-like traits. Taken together, the extant 

literature suggests a link between catecholamine metabolism and HPA axis 

function (Moghaddam, 2002), and it is plausible that genetic variations leading to 

functional differences within the catecholamine system, such as the COMT 

val158met polymorphism, may also be linked to HPA axis reactivity.  
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In a complementary line of research, studies have implicated COMT 

val158met variation in stress sensitivity. For example, in a community sample of 

adults, Jabbi and colleagues (2007) showed that the COMT met/met genotype 

was associated with increased adrenocorticotropic hormone responses, although 

the authors did not test cortisol function. Similarly, a recent study conducted in a 

large community sample of adolescents demonstrated an association between 

the COMT val158met polymorphism and cortisol reactivity to stress (Bouma et 

al., 2012). However, the link between genotype and stress reactivity was gender-

specific, such that boys with the met homozygous genotype had higher cortisol 

levels than boys with the val homozygous genotype. Conversely, girls with the 

val homozygous genotype had stronger cortisol responses than the met allele 

carrier girls (Bouma et al., 2012). Recently, in a sample of 8-year-olds, met 

homozygotes were reported to have a higher cortisol response to psychosocial 

stress task when compared to heterozygotes and val homozygotes (Armbruster 

et al., 2011). A brief review of these studies suggests a link between the COMT 

val158met polymorphism and HPA axis function, but the literature is inconsistent 

on the allele associated with cortisol reactivity. Considering the importance of 

cortisol reactivity in the etiology of various mood disorders (McEwen, 2008), 

further research is needed to clarify the link between the val158met 

polymorphism and HPA axis response. 

In sum, separate lines of research show links between COMT val158met 

polymorphism and emotional problems. Literature also suggests that interactions 

between the COMT functional polymorphism and early life stressors may predict 
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psychological outcomes later in life. Additionally, research suggests that the link 

between catecholamine signaling and risk for emerging internalizing symptoms 

may be influenced by psychophysiological response of the HPA axis (Bouma et 

al., 2012). However, whether these processes are at play during early childhood 

and contribute to early symptoms of internalizing disorders has not yet been 

explored. To address these gaps in knowledge, we investigated whether the 

COMT val158met polymorphism would be associated with cortisol responses to 

stress in a community sample of preschoolers. We also explored whether early 

cortisol function mediated links between COMT and emerging symptoms. Finally, 

in an effort to understand the process through which the gene-environment 

interactions may influence early behaviour, we developed an integrated pathway 

(Figure 3.1) where we tested the role of these variables on emerging symptoms 

using path analysis.  

3.2 Methods 

Detailed sample demographic are provided in Chapter 2, pg. 42. Sample 

demographics by COMT genotype are presented in Table 3.1. Children's mean 

age was 36.2 months (SD = 0.16). As in the previous chapter, population 

stratification was minimized by restricting all analyses to include Caucasian 

participants (N = 371) only. 

3.2.1 Genotyping 

Genomic DNA was purified from buccal swab cellular extracts and stored 

according to manufacturer instructions (Qiagen, Valencia, CA, USA). The rs4680 

(val158met) SNP was genotyped using a TaqMan allelic discrimination assay 
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(Assay ID: C_25746809_50), developed for use on the StepOne® instrument 

(Applied Biosystems, Foster City, California). Polymerase chain reactions were 

performed in 10µL reaction volumes in 48-well plates and contained 10 ng of 

DNA. Thermal cycler conditions were 95 °C for 10 min and then 40 cycles of 95 

°C for 15 s and 60 °C for 1 min. The SDS 2.2 software (Applied Biosystems) was 

used for allelic discrimination. For quality control, 10.0% of the samples were 

randomly chosen and genotyped as duplicates across and within a 48-well plate. 

All genotyping was performed by technicians blind to other study data. 

  



 

 

Figure 3.1. Schematic diagram of the human 

are represented by lines. The location of the rs4680 

et al., 1986). 

 

 

Schematic diagram of the human COMT gene. Exon positions are indicated by solid black blocks and introns 

are represented by lines. The location of the rs4680 val158met polymorphism in exon 4 is indicated
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Exon positions are indicated by solid black blocks and introns 

polymorphism in exon 4 is indicated (adapted from Brahe 
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3.2.2 Behaviour and childhood stress measures 

Similar to Chapter 2, we used the child’s primary caregiver reports on the Child 

Behavior Checklist (CBCL; Achenbach, 2000). The stress task used to illicit children’s 

cortisol responses to stress was described on page 54. As described in Chapter 2 (p. 

58), the overall life stress aggregate score was used as a measure of stress during 

childhood in all analyses in this chapter and will be referred to as CS (i.e., childhood 

stress). 

3.2.3 Data Analyses 

To test the hypothesis that COMT val158met genotype moderated the influence 

of CS on emerging symptoms of anxiety and depression, I analyzed the interaction 

between life stress and genotypes using a macro for PASW developed by Hayes (2013) 

with parent reports of children’s anxious and depressive symptoms as the dependent 

variables. This macro uses a regression-based framework for testing two-way 

interactions in moderation models along with simple slopes. All predictor values were 

centered as needed.  This same macro was used to test the hypothesis that HPA axis 

reactivity mediates the link between COMT genotype and emerging symptoms. This 

method uses a bootstrapping procedure which yields mean direct and indirect 

(mediated) effects. The test also generates confidence intervals (CIs) for the means. 

The estimated effect is only significant at a p-value less than 0.05, when CIs do not 

contain a ‘zero’ within them. For further details on this method, see Hayes (2013). All 

analyses were performed using the PASW 20 (IBM Inc., USA). All statistical tests were 

two-tailed with alpha set at p = 0.05.   
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Finally, I tested the integrated pathway in Figure 1.3 using a path analysis 

framework using Mplus software. Path analysis is a form of structural equation 

modeling, which takes a confirmatory (i.e., hypothesis testing) approach to the 

multivariate analysis of a structural model (Byrne, 1998). Using this method, the causal 

associations under investigation are represented by a series of structural (i.e., 

regression) equations, and these structural equations are modeled pictorially (Byrne, 

1998). The chi-square statistic is used as a measure of fit between the sample 

covariance and fitted covariance matrices (Byrne, 1998). The higher the probability 

associated with chi-square, the closer the fit between the hypothesized model and 

perfect fit. In addition, other indices are used to assess the appropriateness of the 

proposed model to the sample data. These indices include the goodness of fit index, the 

non-normed fit index, and the comparative fit index. Values for these indices, in the mid 

.90 range and above, are indicative of optimal fit (e.g., Hu & Bentler, 1995; Schumaker 

& Lomax, 1996). Furthermore, the Root Mean Square of Approximation (RMSEA) is yet 

another fit index which takes into account the error of approximation in the population 

(Byrne, 1998). Values less than .05 indicate good fit, and values of .08 or less indicate 

acceptable fit (Byrne, 1998), whereas values of .08 to .10 indicate mediocre fit, and 

values above .10 indicate poor fit (MacCullum, Browne, & Sugawara, 1996). 

3.3 Results 

3.3.1 Associations between COMT val158met polymorphism and major study variables 

The genotype frequencies were as follows: 118 children (29.4%) were val 

homozygous, 190 (46.3%) were heterozygous, and 93 (23.2%) children were 

homozygous for the met substitution. This distribution was in Hardy-Weinberg 
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equilibrium (χ2
1, 400 = 0.95, p = 0.33). Demographic variables such as child gender and 

family income were not associated with child genotype (all ps > 0.22). However, positive 

associations existed between child gender and symptoms of depression (F1, 369 = 17.89, 

p < 0.01) and anxiety (F1, 369 = 13.50, p = 0.01); therefore, child sex was used a 

covariate in subsequent analyses. No associations existed between COMT genotypes 

and child gender (χ2
4, 380 = 1.73, p = 0.23) or family income (F1, 368 =.005, p = 0.94). No 

evidence for associations existed between COMT genotype and child depressive 

symptoms (mean difference: 0.13, t = 1.22, p = 0.31), but there was a significant 

association between COMT genotype and child anxious symptoms (mean difference: 

0.25, t = 6.74, p < .05). Specifically, children homozygous for the val allele had 

significantly lower symptoms of anxiety when compared to children with at least one 

copy of the met allele. 
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Table 3.1 Demographic and study variables by child COMT val158met genotype.  

COMT genotypes 

val/val (N = 113) val/met + met/met (N = 287) 

 Variable Mean  SD N Mean  SD  N 

Sex (N, boys) 61 134 

PPVT 111.94 12.87 112.04 14.59 

Family income 3.69 1.19 3.75 1.12 

Cortisol response [peak – baseline]* 0.05 0.01 0.03 0.01 

AUCi
† 0.06 0.13 0.04 0.09 

AUCg 0.20 0.16 0.18 0.12 

Depressive symptoms 1.38 1.62 1.25 1.62 

Anxious symptoms* 1.40 1.69     1.15 1.29   
Note: AUC = area under curve; PPVT = Peabody picture vocabulary test; val = valine; met = methionine. Family income 

coded as 1 = < $20,000, 2 = $20,001 – $40000, 3 = $40,001 - $70,000, 4 = $70,001 – $100,000, 5 = >$ 100, 001. 

†p ≤ .10, *p < .05. 
 

 

  



 

 

Figure 3.2 shows the analysis of stress reactivity as a function of 

genotype. I found significant group differences in individual cortisol change scores [peak 

cortisol response – baseline cortisol], such that children homozygous for the 

had significantly higher cortisol reactivity compared to the children with at least one

copy of the met allele (F1, 356 = 3.80, 

the level of a trend (p = .08) when AUC

cortisol response (AUCg) was not associated with the 

Figure 3.2. Main effects of COMT val

0.05. 

Note: Child COMT val158met
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analysis of stress reactivity as a function of COMT

found significant group differences in individual cortisol change scores [peak 

baseline cortisol], such that children homozygous for the 

had significantly higher cortisol reactivity compared to the children with at least one

= 3.80, p < 0.05). Allelic group differences existed only at 

= .08) when AUCi was used as the dependent variable. Total 

) was not associated with the COMT genotype (Table 2). 

 

COMT val158met genotype on child cortisol reactivity. *

met genotype coded as 0 = val/val genotype, 1

genotype; cortisol reactivity was measured via individualized cortisol change 

each child’s peak cortisol sample obtained post-stress task

Val-allele Met-allele

COMT genotype

*

N=89 N=273
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COMT 

found significant group differences in individual cortisol change scores [peak 

baseline cortisol], such that children homozygous for the val allele 

had significantly higher cortisol reactivity compared to the children with at least one 

0.05). Allelic group differences existed only at 

was used as the dependent variable. Total 

genotype (Table 2).  

 
genotype on child cortisol reactivity. *p < 

 = val/met or 

cortisol change 

stress task]. 
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3.3.2 HPA axis reactivity mediates the link between COMT val158met polymorphism 

and child clinical symptoms 

I also conducted mediation analyses to examine whether links between COMT 

genotype and emerging symptoms of depression or anxiety were mediated by child 

cortisol reactivity. As a precondition for testing mediation, associations must be present 

between the predictor and the outcome, the predictor and the hypothesized mediator, 

and the hypothesized mediator and the outcome (Baron and Kenny, 1986). Table 3.1 

shows the associations between COMT genotype and anxiety symptoms, and COMT 

genotype and cortisol reactivity measured via baseline to peak cortisol change. After 

confirming the significant association between cortisol reactivity and anxiety symptoms 

(r = 0.13, p < 0.01), I proceeded with the mediation analysis. The bootstrapping 

procedure showed a significant estimate of the indirect effect of COMT genotype on 

anxiety symptoms mediated via child cortisol reactivity (B= -0.06, 95% CI: -0.17 to -

0.01). The analysis also showed that the direct association between COMT genotype 

and anxiety symptoms was also significant, indicating that the genotype-symptoms link 

was only partially mediated by child cortisol reactivity (Figure 3.3).3   

                                                        
3
 I also modeled child depressive symptoms as the dependent variable in my mediation pathway 

but analysis showed that this model was not significant suggesting that the link between COMT genotype 

and depressive symptoms was not mediated by cortisol response to stress. 
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Figure 3.3. Cortisol reactivity in early childhood mediates the link between the COMT gene and anxious symptoms. * p < 

0.05, ** p < 0.01.  

Note: Child COMT val158met genotype coded as 0 = val/val genotype, 1 = val/met or met/met genotype; cortisol reactivity 

was measured via cortisol reactivity [baseline – peak cortisol post-stress task]; c = coefficient for direct path between child 

COMT genotype and anxious symptoms; c’ = coefficient for path between child COMT genotype and anxious symptoms, 

mediated by cortisol reactivity. 
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3.3.3 COMT val158met polymorphism and childhood life stress interact to predict 

emerging symptoms of anxiety but not depression 

In an effort to replicate and extend findings where an interaction between COMT 

val158met and CS was associated with adult internalizing symptoms (Ramsey et al., 

2013), I tested this interaction in this sample of preschoolers. The interaction term for 

COMT genotype and CS did not predict child depressive symptoms (β = 0.54, se = 

1.03, p = 0.73), but the interaction term was significant for child anxiety symptoms (β = 

4.38, se = 1.98, p = 0.03). Analyses showed that children homozygous for the val allele 

exhibited higher symptoms of anxiety with increasing life stress (β = 3.30, se = 1.14, p < 

0.01), but the interaction between genotype and life stress was nonsignificant in the met 

allele carriers (β = -1.08, se = 1.62, p = 0.51; Figure 3.4).  

 

 

 

 

 

 

 

  



 

 

 

Figure 3.4. Moderation of the 

symptoms by COMT val158met
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3.3.4 Path analyses 

Figure 3.5A shows the results of our path analyses, which aimed to test the 

integrated model of psychological risk based on Figure 1.3. CS was positively 

associated with baseline to peak cortisol change (β = 0.28, p = 0.001), and significant 

associations were found between genotype and cortisol response (β = -0.06, p < 0.05). 

Child cortisol reactivity was also positively associated with symptoms of anxiety (β = 

0.61, p < 0.01). The overall model fit was very good as indexed by chi-square (χ2 = 

25.61, df = 7, p < 0.001), as well as the root mean square error of approximation 

(RMSEA=.00) and the normed fit index, which was 1.00. 

In the next path analysis (Figure 3.5B), we modeled AUCi as an index of total 

cortisol produced post-stress task. Analysis showed that CS was positively associated 

with AUCi (β = 0.19, p = 0.03), although nonsignificant associations were found between 

genotype and this index of cortisol response (i.e., AUCi, β = -0.05, p = 0.30). Child AUCi 

was positively correlated with symptoms of anxiety (β = 0.12, p = 0.01). The overall 

model fit was very good as indexed by chi-square (χ2 = 20.46, df = 7, p < 0.001), as well 

as the root mean square error of approximation (RMSEA=.00) and the normed fit index, 

which was 1.00. 

In our third model (Figure 3.5C), we modeled AUCg as an index of total cortisol 

produced post-stress task. Childhood life stress was positively associated with AUCg (β 

= 0.11, p = 0.001) and positive associations were also found between genotype and 

cortisol response measured via AUCg (β = -0.04, p < 0.05). Child cortisol reactivity was 

also positively correlated with emerging symptoms of anxiety (β = 0.13, p = 0.01). The 

overall model fit was very good as indexed by chi-square (χ2 = 23.70, df = 7, p < 0.001), 
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as well as the root mean square error of approximation (RMSEA=.00) and the normed 

fit index, which was 1.00.4 

 

  

                                                        
4 We also modeled parent reports on child depressive symptoms as a dependent variable in our 

path analysis. However, the overall fit for these models were poor when baseline to peak cortisol change 

(RMSEA = 0.14, fit index = 0.31), AUCi (RMSEA = 0.10, fit index = 0.55) and AUCg (RMSEA = 0.11, fit 

index = 0.53) were used in the path analyses. 
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C. 
 

 
 
 
Figure 3.5. Pathway analysis. The path shows interaction between COMT val158met genotype and early life stress as 

predictor of child anxious symptoms via baseline to peak cortisol change (A), AUCi (B) and AUCg (C). Child anxious 

symptoms are based on parent reports from the Child Behavior Checklist (Achenbach et al., 1991). Standardized β-

weights are shown for each path. †p ≤ 0.10, *p < 0.05, **p < 0.01, ***p <0.001. 

Note: val, valine; met, methionine; AUCg, Area under curve with respect to ground.
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3.4 Discussion 

In this study, I examined whether the COMT val158met genotype and CS 

were linked to emerging symptoms, and whether cortisol reactivity in children 

played a role in this pathway. Based on previous literature linking 

neurotransmitter gene polymorphisms and cortisol reactivity to stress (Derijk et 

al., 2009; Wust et al., 2009), my first set of analyses examined whether the 

COMT val158met genotype predicted early childhood cortisol reactivity to stress. 

I found significant associations between the COMT val158met genotype and 

cortisol reactivity such that children with two copies of the val allele had 

significantly higher cortisol reactivity compared to children with at least one copy 

of the met allele. These findings are consistent with previous studies in adults 

that have found a link between the val allele and higher cortisol reactivity (Jabbi 

et al., 2007; Ramsey et al., 2013). However, a recent study in 8-12-year-olds 

found that the met allele was linked to higher cortisol reactivity to the Trier Social 

Stress Task or TSST (Armbruster et al., 2012). The inconsistency in findings 

could be due to a few reasons. The TSST-C is not only a social stressor but also 

a cognitive challenge compared to the stress task used in the current study, 

which is based on the social evaluative threat model (e.g., threat of social 

rejection and evaluation). Although speculative, it is possible that the nature of 

the stressor is differentially related to catecholamine activity. Supporting this 

notion, studies have documented that met allele carriers perform better at 

cognitive tasks compared to val allele carriers (Dumontheil et al., 2011; Egan et 

al., 2001; Mier et al., 2010). However, additional research is needed to clarify 
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whether associations between COMT val158met polymorphism differ depending 

on stressor paradigms. Also, when compared to previous studies such as 

Armbruster and colleagues (2012), additional factors such as the younger age of 

this sample and a larger sample size may have contributed towards the 

differences in findings.5   

In addition to the association between the COMT val158met polymorphism 

and cortisol reactivity in children, we also found evidence for mediation of links 

between COMT genotype and emerging anxious symptoms by cortisol reactivity. 

Extant literature is scarce on findings where HPA axis function is demonstrated 

to mediate the link between a dopamine gene functional polymorphism and 

emotional problems such as anxiety or depression. A recent study from Burghy 

and colleagues (2013) demonstrated that HPA axis function is linked to anxiety 

symptoms in adolescents via reduced activation of the amygdala-ventromedial 

prefrontal cortex (vmPFC) functional connectivity. Although speculative, its is 

possible that increased dopaminergic clearance in val allele carriers may be one 

of the causes of reduced amygdala-vmPFC activation, which in turn may lead to 

individual differences in evaluation of stress stimuli and HPA axis activation.  

I found evidence for a gene-environment interaction, such that COMT 

genotype moderated the association between childhood stress on child anxiety 

                                                        
5
  Based on previous work by Bouma and colleagues (2012) where girls with the val 

homozygous genotype had stronger cortisol responses than the met allele carrier girls, I also 

conducted these analyses in my sample based on gender, However, I did not find any 

associations between COMT val158met genotype and cortisol response when the sample was 

stratified by gender (p = 0.25). 
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symptoms. Specifically, my analysis showed that under high levels of life stress, 

val allele carriers had significantly more symptoms of anxiety. A number of 

studies have reported on interactions between monoaminergic gene variants and 

childhood maltreatment as predictors of mood disorders. In a large study of over 

5000 participants, significant interaction between COMT gene region haplotypes 

(including the val158met polymorphism) and high early CS predicted depressive 

symptoms during adulthood (Nyman et al., 2011). Similarly, in a study by Klauke 

and colleagues (2012), COMT genotype moderated the effect of childhood 

trauma on startle response, which is widely considered an endophenotype for 

anxiety disorders. Specifically, the val homozygotes showed a higher increase in 

startle response as a function of childhood traumatic events when compared to 

the met allele carriers. Additionally, in a study by Kolassa and colleagues (2010), 

an interaction between COMT genotype and recent traumatic events predicted 

an increased risk for posttraumatic stress disorder but only in val homozygotes. 

Thus, our findings are broadly consistent with research implicating the val allele 

in anxiety disorder risk.  

I did not find evidence for moderation of life stress by the val158met 

polymorphism on emerging depressive symptoms. Depressive symptoms are 

rare at preschool age and emerge during middle to late childhood (Kovacs, 

1996). Therefore, it is possible that any gene-environment effect on depressive 

symptoms may emerge in later childhood years when depressive symptoms are 

more common. Overall, my findings extend existing literature and show that the 
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moderation of CS by COMT genotype contributes to emerging anxiety symptoms 

from an early age.     

In order to understand the pathways by which COMT val158met genotype, 

life stress, and their interaction may be linked to emerging symptoms, and the 

possible role cortisol response may play in this pathway, we tested an integrated 

model of emerging risk (Figure 3.5). My analyses showed that the COMT 

genotype and CS are linked to emerging anxiety symptoms via early age cortisol 

response. A few studies have reported on links between the COMT val158met 

polymorphism and endophenotypes of anxiety. For example, carriers of the 

COMT val allele showed an allele-dose effect on increased left amygdala activity 

in response to fearful/angry facial stimuli (Domschke et al., 2012) and amygdala 

activity has been linked to increases in neuroendocrine reactivity to stress 

(Jankord & Herman, 2008). These findings compliment and extend this literature 

and present a biological pathway in which interaction between catecholamine 

metabolism and CS is linked to emergence of psychological risk. The path 

analysis also demonstrates that the individual differences in neuroendocrine 

stress response are an important part of this pathway and the interaction 

between genotype and childhood stress contributes to childhood anxious 

symptoms via physiological stress response. 

In conclusion, I found an important link between life stress during early 

childhood and emerging symptoms of anxiety in a community sample of 

preschoolers. My findings suggest that functional variant of the COMT gene 

moderated the link of life stress on emerging symptoms in early childhood and 
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that the components of HPA axis function play a mechanistic role in this pathway. 

To my knowledge this is the first study to demonstrate the role of these variables 

in a relatively large community sample of young children. Thus, these findings 

add to the knowledge of underlying pathways involved in emerging risk for 

emotional problems and aid in our understanding of the complex etiology of 

mood disorders.  
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Chapter 4 - Dopamine pathway gene variants and early-emerging 

internalizing symptoms:  The roles of childhood stress and 

psychophysiological reactivity  

 
4.1 Introduction 
 

As discussed in Chapter 1, dopamine (DA) receptors regulate a number of 

neurological processes including cognition, memory, learning, and motor control, 

as well as modulation of neuroendocrine signaling (Money & Stanwood, 2013); 

thus, individual differences in DA receptor density are potentially relevant to 

many psychiatric disorders (Nemoda, Szekely & Sasvari-Szekely, 2011). In 

particular, evidence suggests that the limbic DA system may be involved in a 

number of stress-related pathologies such as depression and anxiety (Willner, 

1991). For example, DA may shape behaviour in the context of "learned 

helplessness," a mental state in which an organism forced to endure aversive 

stimuli, or stimuli that are painful or otherwise unpleasant, becomes unable or 

unwilling to avoid subsequent encounters with those stimuli, even if they are 

escapable, presumably because it has learned that it cannot control the situation 

(Colelli et al., 2010). Animals trained in the learned helplessness paradigm 

commonly exhibit widespread DA depletion in stress-regulating regions such as 

the prefrontal cortex, the caudate nucleus, and the nucleus accumbens 

compared to control animals (Charney, 2004). Similarly, prior treatment with a 

DA agonist prevents the development of learned helplessness and associated 

DA depletion in the prefrontal cortex (Boyce-Rustay, Janos & Holmes, 2008; 

Colelli et al., 2010). Conversely, DA antagonists exacerbate learned 
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helplessness and reduce the improvement produced by antidepressant treatment 

(Mozhui et al., 2010).  

Behavioural despair, which is often assessed using the forced swim test in 

animals, is a model in which animals are forced to swim in a confined space. 

After initial attempts to escape they assume an immobile posture. Animals prone 

to high behavioural despair (i.e., those which do not attempt to escape or swim) 

also show significantly lower levels of DA in the limbic structures of the brain, 

regions commonly associated with stress regulation (Touma et al., 2008). Similar 

to their effects on behaviour during learned helplessness paradigms, 

antidepressants exert an anti-immobility effect whereas DA agonists augment the 

anti-immobility effect (Cabib & Puglisi-Allegra, 2012; Orsini et al., 2002). The 

most consistent finding in human studies is decreased turnover of DA in patients 

with depressive disorders. Homovanillic acid (HVA) is the major metabolite of 

DA, and almost all cerebrospinal fluid (CSF) HVA originates from the brain. Thus, 

CSF HVA reflects CNS DA turnover. Studies have used probenecid to block the 

transport of HVA from the CSF, to increase the validity of CSF HVA as a 

measure of CNS DA turnover (Mineur, Belzung & Crusio, 2007). Most studies 

have found a decrease in the CSF HVA of patients with depression (Nemeroff & 

Dunlop, 2007). In sum, based on animal and human literature there is evidence 

for an important role of DA in behaviours commonly related to depression and 

anxiety; some of this risk may emerge based on genetic variation that influences 

dopaminergic activity in the brain. DA pathway candidate genes commonly 
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implicated in cortisol function and psychopathology are discussed in the following 

sections.  

4.1.1 DRD4 

A number of dopaminergic candidate genes have been examined as 

candidates for depression and anxiety, although most research has focused on 

the major DA receptors and synaptic DA transporter (DRD2, DRD4 & DAT) due 

to their widespread expression in brain regions commonly linked to emotion and 

cognition. The human DA receptor D4 (DRD4) gene (Figure 4.1), located near 

the telomere of chromosome 11p, exhibits an unusual amount of variation, 

including single nucleotide polymorphisms (SNPs) and variable number tandem 

repeats (VNTR). One of the common DRD4 polymorphism implicated in 

psychiatric literature is a 48-bp VNTR in the third exon (Schoots & Van Tol, 

2003). The VNTR consists of 2-11 repeats, with the most common versions 

being 2 (2R), 4 (4R) and 7 (7R) repeats. Amongst these the 4R allele is the most 

common, whereas 2R and 7R allele frequencies vary widely in Caucasians 

(Zalsman et al., 2004). The 48-bp VNTR is part of the third cytoplasmic loop of 

the receptor protein and molecular genetics studies have shown to affect the 

function of the D4 receptor. Specifically, in vitro studies suggest that the 7R 

variant exhibits decreased signal transduction efficiency relative to the 4R variant 

(Asghari et al., 1995), and may have decreased RNA stability or translational 

efficiency (Schoots & Van Tol, 2003). Furthermore, there are robust differences 

between receptor variants in folding efficiency when shaping the final protein 

product, such that the mRNA transcript of the DRD4 2R allele folds more quickly 
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into a protein product than the transcripts of longer alleles, thus increasing DRD4 

transmission (van Craenenbroeck et al., 2005). Cumulatively, these effects are 

likely to have a significant impact on the signaling and functioning of neural 

circuits involved in stress regulation. 

Findings of main effects of DRD4 on internalizing problems are less 

consistent. One study reported an association between the 2R of DRD4 and 

unipolar depression (Leon et al., 2005). However, a recent study reported no 

association between the DRD4 VNTR genotype and depression (Kang et al., 

2008) or suicide attempts (Persson et al., 1999; Zalsman et al., 2004). A few 

studies have looked at GxE involving the DRD4 VNTR polymorphism and early 

adversity predicting cortisol response to stress and internalizing outcomes during 

adulthood. For example, Armbruster and colleagues (2011) found that 

adolescent carriers of the 7R allele exhibited lower cortisol stress responses in 

presence of early adversity such as parental loss. The DRD4 genotype also 

moderated associations between stressors during early childhood such as 

parental depression and depressive symptoms during adolescence and early 

adulthood (Adkins et al., 2012). However, conflicting results were published by 

Dragan and colleagues (2009), who reported that participants with at least 1 copy 

of the DRD4 7R allele had more intense post-traumatic stress disorder (PTSD) 

symptoms. Thus, although a number of studies have looked at the role of DRD4 

gene variation and psychopathological outcomes, further research is needed to 

clarify which DRD4 variant is associated with psychopathological symptoms. 

Additionally, it remains unknown whether DRD4 variants are associated with 
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early childhood cortisol response.  Finally, whether the environment moderates 

genetic influences on these outcomes merits further exploration.



 

 

Figure 4.1. Diagrammatic representation of the human 

and introns by lines. The location of the 48bp exon 3 variable number tandem repeat (VNTR) is indicated. The 2

11-repeat variants of the VNTR are indicated below exon 3

Diagrammatic representation of the human DRD4 gene. Exon positions are indicated by solid black blocks 

and introns by lines. The location of the 48bp exon 3 variable number tandem repeat (VNTR) is indicated. The 2

repeat variants of the VNTR are indicated below exon 3 (Adapted from Van Tol et al., 1992). 
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Exon positions are indicated by solid black blocks 

and introns by lines. The location of the 48bp exon 3 variable number tandem repeat (VNTR) is indicated. The 2-repeat to 
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 4.1.2 DRD2 

The DRD2 gene, first described by Grandy et al. (1989), is on 11q22 (Figure 4.2), 

and consists of six exons spanning almost 14kb. The gene has a restriction fragment 

length polymorphism downstream of the 3’UTR, called Taq1A (rs1800497) with two 

alleles referred to as A1 and A2 (Eisenberg et al., 2007). Using radioactively labeled 

agonists to detect D2 ligand binding, autoradiography of the caudate, putamen, and 

nucleus accumbens in tissue from normal middle-aged and elderly individuals without 

histories of substance abuse, neurological disorders, or psychopathology, it was shown 

that one or two A1 alleles was associated with reduced receptor binding throughout the 

striatum, with decreases found in the ventral caudate and putamen, brain regions 

implicated in emotion regulation. This supports findings from a few studies linking the 

Taq1A polymorphism with stress-related mood disorders. For example, a study of 

Chinese participants with bipolar disorder reported an association with Taq1A 

polymorphism (Li et al., 1999). A European multicenter study (Massat et al., 2002) 

reported an association of the (AC)- repeat polymorphism and bipolar, but not unipolar 

disorder. Additionally, studies have implicated the DRD2 A1 allele in posttraumatic 

stress disorder or PTSD (Comings & Blum, 2000; Noble, 2000). The findings of one 

study (Broekman, Olff & Boer, 2007) studied Vietnam veterans who had been exposed 

to severe combat conditions. The authors examined the prevalence of the DRD2 TaqI 

A1 allele in those who developed PTSD versus veterans without PTSD. The prevalence 

of the A1 allele was 60% in those with PTSD compared to 5% in those without PTSD. 

These findings were replicated in Caucasians where the frequency of A1 allele was 

significantly higher in PTSD combat veterans than controls (Young et al., 2000). In 
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addition to PTSD, a recent study has linked the Taq1A polymorphism with major 

depressive disorders as well (Savitz et al., 2013). Additionally, research from our group 

shows an association between the A1 allele and higher emerging symptoms of 

depression and anxiety in preschoolers (Hayden et al., 2010), suggesting a role of this 

variant in young children’s symptoms.   

In addition to main effects on symptoms, a handful of studies have also examined 

gene-environment interaction involving the Taq1A polymorphism. For example, in a 

large study of almost 2500 participants, DRD2 Taq1A variants moderated the role of 

violent victimization experiences on depression (Vaske et al., 2009). The results 

suggest that females who carry the A1 allele of DRD2 may be more vulnerable to the 

negative effects of violent victimization than females who do not carry at least one copy 

of the A1 allele. Similarly, data from our laboratory shows that the interaction between 

Taq1A genotype and early negative parenting, such as parental intrusion, predicted 

children’s symptoms of depression and anxiety (Hayden et al., 2010). In sum, literature 

suggests that the DRD2 polymorphism could have implications for emerging symptoms 

and that this gene may act as moderator of the impact of early stress on negative 

outcomes. However, to date no research exists in literature that has examined links 

between the DRD2 Taq1A variant and cortisol responses to stress.  

Furthermore, a gap in knowledge still remains as to whether this variant also 

moderates the effect of normative aspects of early stress, which are much more 

common for a majority of children, as compared to extreme forms of stress such as 

violent victimization in adults. Exploring these questions is an important addition to 

research examining the role of this variant in the etiology of depression and anxiety. 



 

 

 

 

Figure 4.2. A schematic showing DRD2 gene structure, and physical location of the rs1800497 polymorphism.

indicated with solid black boxes and connecting black lines indicate introns. White boxes represent the 5’

untranslated regions (Adapted from Eubanks et al., 1992)

 

 

gene structure, and physical location of the rs1800497 polymorphism.

indicated with solid black boxes and connecting black lines indicate introns. White boxes represent the 5’

(Adapted from Eubanks et al., 1992). 
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gene structure, and physical location of the rs1800497 polymorphism. Exons are 

indicated with solid black boxes and connecting black lines indicate introns. White boxes represent the 5’- and 3’ -
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4.1.3 DAT1 

The DA transporter (DAT1) gene (Figure 4.3), located on chromosome 5p15.3, is 

heavily expressed in the human striatum, where it acts as the primary means of DA re-

uptake (Sesack et al., 1998). The most studied polymorphism is a 40bp VNTR in the 3’ 

untranslated region (UTR) of the DAT1 gene (Mitchell et al., 2000). Alleles from 3–13 

repeats have been described, but alleles with 9- and 10- repeats are the most frequently 

reported (Mitchell et al., 2000). Since this VNTR is not in the coding region of the gene, 

it does not affect the protein sequence of the DA transporter. However, it is thought to 

have functional significance, with in vitro studies indicating altered expression of the 

transporter as a function of VNTR alleles (Fuke et al., 2001; Miller & Madras, 2002), 

such that carrying 1 or 2 copies of the 10-repeat (10R) allele is associated with 

increased DAT1 expression. In addition, adults who are 10/10 homozygotes have 

significantly reduced DA transporter binding in the striatum relative to those having at 

least one 9-repeat (9R) allele (Jacobsen et al., 2000). In this way, the DAT1 genotype is 

thought to effect DA levels indirectly by altering translational efficiency and the amount 

of protein expressed. 

Given the central role of DA in the regulation of mood, it is unsurprising that 

association studies of DAT1 have linked this gene to various stress-related psychiatric 

problems including depression (Dunlop & Nemeroff, 2007). Literature indicates links 

between DAT1 30bp VNTR and childhood disorders, such as attention-deficit 

hyperactivity disorder/ADHD (Cook et al., 1995; Durston et al., 2008) and conduct 

disorder (Lahey et al., 2011). There is also evidence for interactions between this 

genotype and psychosocial adversity predicts ADHD (Laucht et al., 2007; Neuman et 
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al., 2007). For example, adolescents homozygous for the 10R allele of the DAT1 40bp 

VNTR polymorphism who grew up in greater psychosocial adversity exhibited 

significantly more inattention and hyperactivity-impulsivity than adolescents with other 

genotypes or who lived in less adverse family conditions; a finding recently replicated by 

Li and colleagues (2013) in a sample of six- to nine-year-olds. Furthermore, DAT1 has 

also been implicated in the etiology of depression and anxiety more generally, with 

inconsistencies regarding which genotype confers risk. Some have implicated the 9R 

allele rather than the 10R allele as being the risk allele (Lee et al., 2007; Young et al., 

2002), while others have suggested that it is the 10R. Given this pattern of results from 

previous studies, I will examine links between the 9R and 10R allele and children’s 

cortisol responses and internalizing symptoms.  

Based on this brief review, it seems possible that the DA gene variants discussed 

in the sections above are linked to both cortisol response and stress-related disorders in 

adolescents and adults. However, a gap in knowledge remains concerning whether 

links are evident at an early age, which could have implications for early intervention. 

Therefore, I examined links between variants in DA candidate gene variants (DRD2, 

DRD4, DAT1) and both cortisol reactivity to stress and emerging symptoms of 

depression and anxiety in early childhood. Specifically, I examined the following 

questions: First, given the role of cortisol reactivity to stress in the etiology of stress-

related mood disorders, I examined links between DA gene variants and children’s 

cortisol responses. Second, I examined whether associations existed between DA gene 

variants and children’s symptoms of depression and anxiety. Third, given the evidence 

for moderation of early adversity by DA genes on physiological stress responses and 
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internalizing symptoms, I examined the evidence for gene-environment interaction in 

this community sample of preschoolers.  

 



 

 

 

 

Figure 4.3. Diagrammatic representation of the human 

and introns by lines. The location of the 30bp exon 14 variable number tandem repeat (VNTR) is indicated. The 7

repeat variants of the VNTR are indicated by dashed arrows

  

Diagrammatic representation of the human SLC6A3 (DAT1) gene. Exons are indicated by solid black blocks 

and introns by lines. The location of the 30bp exon 14 variable number tandem repeat (VNTR) is indicated. The 7

repeat variants of the VNTR are indicated by dashed arrows (Vandenberg et al., 1992). 
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Exons are indicated by solid black blocks 

and introns by lines. The location of the 30bp exon 14 variable number tandem repeat (VNTR) is indicated. The 7- to 11-
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4.2 Methods 

Detailed sample demographic are provided in Chapter 2, pg. 44. Similar to 

Chapter 2, I used the child’s primary caregiver reports on the Child Behavior Checklist 

(CBCL; Achenbach, 2000). As described in Chapter 2, the overall life stress aggregate 

score was used as a measure of life stress in all analyses in this chapter. The AUCi, 

baseline to peak cortisol change, and AUCg were used as measures of cortisol 

response as previously described in detail on page 57. Finally, population stratification 

was minimized by restricting all analyses to include Caucasian participants (N = 371) 

only. 

4.2.1 Genotyping methods  

Participant DNA was extracted as described previously in Chapter 2. The 48-

base pair VNTR located in the third exon of the DRD4 gene was amplified using a 25 µl 

reaction containing 25 ng of genomic DNA template with forward primer 5’-

CGCGACTACGTGGTCTACTCG-3’ and reverse primer 5’-AGGACCCTCATGGCCTTG-

3’, and 1 U of NovaTaq polymerase (Novagen, Gibbstown, New Jersey, USA). The 

reaction also included 2 mM each of dATP, dCTP and dTTP, 1mM each of dGTP, dITP, 

with 10% DMSO and 1X PCR amplification buffer (20 mmol/l Tris-HCL pH 8.4, 50 

mmol/L KCL). PCR amplification was carried out in a GeneAmp PCR System 9700 (ABI 

Biosystems, Foster City, California, USA). Following an initial denaturation at 95°C for 5 

minutes, thirty cycles of amplification were run with each cycle consisting of 

denaturation at 95°C for 20 sec, annealing at 54°C for 20 sec, and extension at 72°C for 

40 sec, ending with a final extension step of 5 min at 72°C. The PCR amplicons were 
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then resolved on a 2% agarose gel, stained with ethidium bromide (Sigma, Oakville, 

Ontario, Canada) and documented on the Bio-Rad 1300 Gel documentation system 

(Mississauga, ON, Canada). Product sizes were determined against a 100 bp molecular 

weight standard (Invitrogen, Carlsbad, California, USA). 

The DAT1 exon 3 VNTR was genotyped using the primers: 5'-

TGTGGTGTAGGGAACGGCCTGAG-3' (forward) and 5'-CTTCCTGGAGGTCACGG 

CTCAAGG-3' (reverse).  The PCR conditions were as follows: 5 min initial denaturation 

at 95 °C and 30 cycles of 30 s initial denaturation at 94 °C, 45 s annealing at 67.5 °C, 

45 s extension at 72 °C, followed by 5 min of final extension at 72 °C.  The 9R and 10R 

products yield a 440 bp and 480 bp fragment, respectively.  

For the detection of the polymorphism in the Taq1A site, oligonucleotide primers 

5′-CACGGCTGGCCAAGTTGT CTA-3′ (forward) and 5′-

CACCTTCCTGAGTGTCATCAA-3′ (reverse) were used to amplify a 300-bp region 

comprising the Taq1A site (Grandy et al., 1993). The PCR conditions used were initial 

denaturation for 5 min at 95°C followed by 30 cycles of 30 s denaturation at 94°C, 30 s 

annealing at 58°C, and a 30 s extension at 72°C, followed by a 5 min final extension at 

72°C. The 300 bp PCR product was digested overnight with 1U of TaqαI restriction 

enzyme (New England BioLabs, Massachusetts, USA). 

4.2.2 Data Analysis 

To test the hypothesis that DA candidate gene variants moderated the influence 

of childhood stress (CS) on emerging symptoms of anxiety and depression, similar to 

Chapters 2 and 3 I analyzed the interaction between life stress and genotypes using a 
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macro for PASW developed by Hayes (2013) with parent reports of children’s anxious 

and depressive symptoms as the dependent variables. This macro uses a regression-

based path analytical framework for estimating direct and indirect effects in simple and 

multiple mediator models, along with simple slopes for probing interactions. All predictor 

values were centered as needed. Additionally, I once again tested the integrated 

pathway in Figure 1.3 using a path analysis framework. Details of the path analysis and 

guidelines for model interpretation are provided in Chapter 3, page 120.  

4.3 Results 

The DRD4 VNTR polymorphism, like other VNTRs, has many possible variants 

(Wang et al., 2004), ranging from 2- to 11-repeat copies reported in the literature to 

date. In our sample, the following variants were present: 2/2 (N = 10, 2.4%), 2/4 (N = 

67,16.3%), 2/5 (N = 1, 0.2%), 2/7 (N = 8, 2.0%), 2/8 (N = 2, .5%), 3/3 (N = 3, .7%), 3/4 

(N = 9, 2.2%), 3/5 (N = 7, 1.7%), 3/7 (N = 2, .5%), 3/11 (N = 1, .2%), 4/4 (N = 157, 

38.3%), 4/5 (N = 4, 1.0%), 4/7 (N = 96, 23.4%), 4/8 (N = 3, .7%), 5/5 (N =1, .2%), 7/7 (N 

= 21, 5.1%), and 7/11 (N = 1, .2%). This distribution is not consistent with Hardy-

Weinberg equilibrium (Pearson X2 (45) = 163.31, p < 0.05), but is comparable to 

recently reported frequencies (Ding et al., 2002). Consistent with the majority of 

published research (e.g., Faraone et al., 2001; Sheese et al., 2007), groups for data 

analysis were formed based on whether children had (N = 128) or did not have (N = 

266) a 7R allele. 

Although genotypes were successfully obtained for 371 children, for the 

purposes of our analyses, six participants with rare variants of the DAT1 were excluded. 
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The genotypes of the remaining 365 children were distributed as follows: 177 (48%) 

children had the 10/10 genotype, 153 (42%) had the 9/10 genotype, and 35 (10%) had 

the 9/9 genotype. This distribution is in Hardy-Weinberg equilibrium, X2 = 0.05, p = 0.82. 

For the DRD2 Taq1A polymorphism, 369 children were genotyped successfully and the 

distributed as follows: 12 (3.2%) children had the A1A1 genotype, 114 (30.7%) had the 

A1A2 genotype, and 243 (65.5%) had the A2A2 genotype.  This distribution is in Hardy-

Weinberg equilibrium, X2 = 0.10, p = 0.76. 

4.3.1 Main effects 

Table 4.1 shows associations between study variables and DA pathway gene 

polymorphisms stratified by genotypes. One-way analysis of variance revealed no 

associations existed between DA gene polymorphisms and symptoms of anxiety and 

depression measured via the CBCL. I also did not find any associations between DA 

gene variants and our three indices of cortisol reactivity. The DA gene polymorphisms 

were also not associated with either the child’s gender or ethnicity (all ps > 0.21).  
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Table 4.1. Study variables stratified by DA pathway gene polymorphism genotypes. 

                                 Genotype 

DRD2 DRD4 DAT1 

Variable 
A1A1+A1A2 

(N=143) A2A2 (N=260) 
<7-repeat 
(N=262) 

≥7-repeat 
(N=136) 

9/9 + 9/10  
(N=207) 10/10 (N=183) 

Sex (N, boys) 64 134 125 69 98 94 

Family income 3.67 (1.18) 3.77 (1.12) 3.69 (1.13) 3.80 (1.17) 3.60 (1.16) 3.84 (1.11) 

PPVT 110.35 (15.11) 112.96 (13.45) 112.2 (14.21) 111.70 (13.69) 112.36 (13.68) 111.41 (14.57) 

Baseline to peak 
cortisol change -1.11 (0.35) -1.08 (0.37) -1.09 (0.37) -1.09 (0.36) -1.11 (0.38) -1.06 (0.35) 

AUCi 0.05 (0.09) 0.05 (0.11) 0.05 (0.09) 0.06 (0.10) 0.05 (0.08) 0.05 (0.12) 

AUCg 0.18 (0.13) 0.18 (0.13) 0.18 (0.13) 0.19 (0.15) 0.18 (0.13) 0.18 (0.13) 

CBCL Depression 1.35 (1.46) 1.24 (1.62) 1.39 (1.64) 1.16 (1.58) 1.25 (1.42) 1.37 (1.82) 

CBCL Anxiety  1.17 (1.27) 1.40 (1.71) 1.36 (1.61) 1.25 (1.50) 1.39 (1.51) 1.26 (1.65) 

Note: DRD2, DA receptor-D2; DRD4, DA receptor-D4; DAT1, DA Transporter-1; AUCi, Area Under Curve with respect to 

baseline; AUCg, Area Under Curve with respect to ground; CBCL, Child Behavior Checklist; Family income was coded as 

1 = < $20,000; 2= $20,000-$40,000; 3= $40,001-$70,000; 4 = $70,001-$100,000; 5 = > $100,001.  
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4.3.2 Moderation analyses 

Based on a large body of literature implicating DA pathway genes in gene-

environment interactions, I tested whether DA gene variants moderated the effect of life 

stress on symptoms of depression and anxiety. Details for moderation analyses have 

been discussed in Chapters 2 & 3. 

4.3.2.1 DRD2 

Multiple regression analysis showed evidence for moderation of the association 

between CS and children’s cortisol responses, measured via AUCi by DRD2 genotype 

(β = 0.04, se = 0.21, p = 0.03).6 Analyses showed that children carrying at least one 

copy of the A1 allele exhibited higher cortisol reactivity as function of increasing CS  (β 

= 1.03, se = 0.09, p = 0.001), but for children homozygous for the A2 allele, CS was not 

associated with cortisol response  (β = -0.03, se = 0.13, p = 0.77; Figure 4.4A). 

Similarly, the interaction term predicting AUCg was significant as well (β = 0.04, se = 

0.02, p = 0.03).  Analyses showed that children carrying at least one copy of the A1 

allele exhibited higher AUCg as function of increasing CS (β = 1.05, se = 0.13, p < 

0.001), but for children homozygous for the A2 allele, CS was not associated with 

cortisol response (β = 0.00, se = 0.18, p = 0.86; Figure 4.4B). There was no evidence 

                                                        
6
 Since AUCi and change score analyses yielded virtually identical results, only analyses 

predicting AUCi are reported here. However, the interaction term between DRD2 genotype and CS also 

predicted cortisol response measured via baseline to peak cortisol change (p = 0.02). As both baseline to 

peak cortisol change and AUCi represent the intensity of cortisol response after stress, only one of these 

DVs is reported.   
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for interaction between DRD2 genotype and CS in predicting children’s symptoms of 

depression (β = 0.03, se = 0.27, p = 0.89) or anxiety (β = -0.03, se = 0.26, p = 0.92). 



 

 

 

 
Figure 4.4. Relationship between childhood

groups.
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4.3.2.2 DRD4 

Although I found no main effects of DRD4 genotype on either cortisol response or 

emerging anxious and depressive symptoms, based on previous reports of evidence for 

GxE involving this genotype (Adkins et al., 2012), I proceeded to conduct interaction 

analyses to explore the possibility of GxE in this sample. Using multiple regression 

analyses, I examined whether the DRD4 genotype moderated the effect of early stress 

on cortisol response. The interaction terms were nonsignificant for AUCi (β = -0.03, se = 

0.02, p = 0.08) and AUCg (β = -0.04, se = 0.03, p = 0.10).7 Similarly, in the next set of 

analyses, I examined whether the DRD4 genotype moderated the effect of early stress 

on emerging symptoms of depression or anxiety. Once again, the interaction term for 

DRD4 genotype and CS did not predict child depressive symptoms (β = 0.02, se = 0.28, 

p = 0.93) or child anxiety symptoms (β = -0.14, se = 0.27, p = 0.61).  

4.3.2.3 DAT1 

Once again, multiple regression analyses showed that the interaction between 

DAT1 genotype and CS did not predict AUCi (β = 0.00, se = 0.16, p = 0.87) and AUCg 

(β = -0.02, se = 0.02, p = 0.42). However, the interaction term for DAT1 genotype and 

CS was a significant predictor of children’s depressive symptoms (β = 1.04, se = 0.26, p 

< 0.001). Analyses showed that children homozygous for the 10R allele exhibited higher 

symptoms of depression as a function of CS (β = 1.29, se = 0.20, p = 0.001). However, 

                                                        
7
 The interaction term between DRD4 genotype and CS did not predict cortisol response 

measured via baseline to peak cortisol change or internalizing symptoms (all ps > 0.05). 
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CS was not associated with childhood depressive symptoms in children who had at 

least one copy of the DAT1 9R allele  (β = 0.25, se = 0.16, p = 0.13; Figure 4.5A).  

Similarly, the interaction between DAT1 genotype and CS also predicted child 

anxiety symptoms (β = 0.59, se = 0.26, p = 0.02). Analyses showed that children 

homozygous for the 10R allele exhibited higher symptoms of depression with increasing 

life stress  (β = 0.74, se = 0.20, p < 0.001), but CS was not associated with anxious 

symptoms in children with at least one copy of the 9R allele (β = 0.14, se = 0.16, p = 

0.36; Figure 4.5B). 
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Figure 4.5. Relationship between childhood stress

allelic groups. 
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4.3.3 Path analyses 

 In previous sections, I examined associations between DA genetic variants and 

children’s cortisol responses to stress. Second, I examined the moderating role of DA 

gene polymorphisms on the association between CS and children’s depressive and 

anxious symptoms. In the final set of analyses, I examined an integrative model where I 

tested the moderating role of cortisol response on the effect DA gene polymorphisms 

and CS on emerging symptoms of depression and anxiety in a combined analytical 

framework.  

Figure 4.6A shows the results of the path analyses. The CS measure was 

positively associated with cortisol responses to stress (β = 0.22, p = 0.01), but the 

associations between genotype and cortisol were non-significant (β = 0.06, p = 0.21). 

Child cortisol reactivity, AUCi, was also positively correlated with emerging symptoms of 

anxiety (β = 0.14, p < 0.01). The DRD2-CS interaction path predicting AUCi was also 

non-significant (β = -0.04, p = 0.67). The overall model fit was very good (χ2 = 26.28, df 

= 7, p < 0.001; root mean square error of approximation [RMSEA]= 0.02; normed fit 

index = 0.97 (guidelines for interpreting path analyses are provided on page 118).    

Figure 4.6B shows the results of the path analyses. The CS measure was 

positively associated with cortisol responses to stress (β = 0.18, p < 0.01), but the 

associations between genotype and cortisol were non-significant (β = 0.01 p = 0.87). 

Child cortisol reactivity, AUCi, was also positively correlated with emerging symptoms of 

anxiety (β = 0.14, p < 0.01). The DRD4-CS interaction path predicting AUCi was also 

non-significant (β = -0.04, p = 0.67). The overall model fit was very good (χ2 = 21.25, df 
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= 7, p < 0.01; root mean square error of approximation [RMSEA]= 0.00; normed fit index 

= 1.00. 

Figure 4.6C shows the results of the path analyses. CS was positively associated 

with cortisol responses to stress (β = 0.13, p = 0.04), but the associations between 

genotype and cortisol were non-significant (β = 0.07 p = 0.25). Child cortisol reactivity, 

AUCi, was also positively correlated with emerging symptoms of anxiety (β = 0.14, p < 

0.01). The DAT1-CS interaction path predicting AUCi was also non-significant (β = -

0.04, p = 0.04). However, the overall model fit was mediocre as indexed by the RMSEA 

and normed fit index analyses (χ2 = 28.39, df = 7, p < 0.001; root mean square error of 

approximation [RMSEA]= 0.08; normed fit index = 0.65).8 

 

 

  

                                                        
8
 Similar to AUCi, I also conducted pathway analyses where AUCg was modeled as an index of 

total cortisol produced. The results of these analyses were identical to the models presented in section 

4.3.4 (all ps < 0.001). Therefore, these pathways were not included in the main text.  
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C. 
 
 

 
 
 
Figure 4.6. Pathway analysis. The path shows interaction between DRD2 rs1804973 genotype and childhood stress as 

predictor of child anxious symptoms via AUCi (A) and AUCg (B). Child anxious symptoms are based on parent reports 

from the Child Behavior Checklist (Achenbach et al., 2000). Standardized β-weights are shown for each path. *p < 0.05, 

**p < 0.01, ***p <0.001.  

Childhood stress 

(CS) 
0.13* 

0.10* 
DAT1 Anxious symptoms 

0.07 

DAT1 x CS 

Cortisol 

response (AUCi) 

0.02 



 

 171

4.4 Discussion 

In this chapter, I conducted an analysis of the links between dopaminergic 

gene variants, cortisol reactivity and emerging symptoms of depression and 

anxiety in preschoolers. In the first set of analyses, I found that the DRD2 

rs1800473 SNP was associated with children’s internalizing symptoms. Analyses 

did not show associations between this gene variant and either emerging 

symptoms of depression and anxiety or cortisol reactivity to stress in 

preschoolers. These findings are consistent with a number of studies that have 

also reported no associations between DRD2 Taq1A variant and symptoms (Rot, 

Mathew & Charney, 2009). However, a few studies have reported positive 

associations between DA receptor genes and internalizing problems, including a 

previous study from our group that reported an association between the DRD2 

genotype and symptoms of depression and anxiety (Hayden et al., 2010; Lucht et 

al., 2006). Similarly, there were no associations between the DRD2 genotype 

and cortisol reactivity. However, the interaction between the DRD2 Taq1A 

polymorphism and CS predicted both cortisol intensity (AUCi) and total cortisol 

response over time (AUCg). Specifically, the cortisol response increased as a 

function of CS in carriers with at least one copy of the A1 allele, while childhood 

stress was not associated with cortisol response in A2 homozygous children. My 

findings are the first to report moderation of the association between CS and 

cortisol reactivity by this polymorphism.  
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There was also evidence for moderation of the association between CS 

and symptoms of anxiety and depression by the DAT1 VNTR polymorphism. 

Specifically, the 9R allele carriers had increasing symptoms as a function of CS, 

whereas no association between CS and symptoms was present in children with 

at least one copy of the 10R allele. Previous work from our lab and others has 

shown that genetic influences on children’s psychopathology risk may be 

moderated by contextual factors (Hayden et al., 2013). Other studies have 

reported that interactions between DAT1 and life stress predicted the 

development of conduct disorder and attention-deficit hyperactivity disorder in 

children (Bidwell et al., 2011; Lahey et al., 2011). Specifically, the children 

carriers for the DAT1 9R allele had higher risk as a function of increasing 

negative early life contexts such as negative parenting. My findings complement 

this literature by showing that interaction between CS and DAT1 genotype may 

also contribute to early symptoms of depression and anxiety.  

I also conducted path analyses in which I examined the role of DA gene 

variants, CS and cortisol reactivity in predicting children’s symptoms of 

depression and anxiety. Analyses showed that the path models were only 

significant for anxiety as an outcome. To my knowledge, no research in literature 

to date has explored these variables in a path analysis framework, although 

some research has linked contextual risk exposure to differential DA secretion in 

brain’s limbic regions. Specifically, excessive mesocortical DA released upon 

exposure to varying levels of stressful life events (such as childhood 

maltreatment) may increase vulnerability to depression through an inhibition of 
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subcortical DA transmission (Ventura et al., 2002; Cabib et al., 2002). While 

directly establishing that regional DA levels are different in children exposed 

varying levels of stress is not possible, the analyses in this chapter point to a 

positive link between functional DA gene polymorphisms, levels of CS and 

emerging symptoms of anxiety.   

Taken together, the analyses presented in this chapter suggest that the 

DRD2 and DAT1 gene polymorphisms contribute to emerging risk for anxiety in 

young children. However, there were no associations between DRD4 VNTR and 

cortisol reactivity and emerging symptoms of depression and anxiety. Current 

GxE research involving the DRD4 gene polymorphism suggests that adults with 

the 7R allele are more likely to be affected by life stress than are those with 

carriers of less than 7R allele. Additionally, a large amount of GxE literature 

involving DRD4 comes from cohorts suffering from substance abuse disorders 

where carriers the 2R and 4R allele did not relapse back to drug use when they 

experienced high levels of life stress when compared to 7R carriers, suggesting 

some implication for this gene in stress resilience. Due to the role of DA circuits 

in reward processing in the brain, it is plausible to assume that some of the DA 

receptor polymorphisms may be linked to individual differences towards stress 

contexts. However, future research should examine the role of the DRD4 

polymorphism in contextual processes at various levels of analysis (family, peer, 

school, or neighborhood) over middle and late childhood.  

Some limitations of the research in this chapter should be noted. Only one 

genetic polymorphism for each gene was examined; this does not represent all of 
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the genetic variation important to shaping cortisol reactivity or emerging 

symptoms. As discussed previously, many genetic variants may alter risk, the 

expression of which may emerge only under particular contextual conditions. 

These limitations notwithstanding, the present chapter offers several novel points 

for stress research and examines common DA pathway candidate genes 

implicated in adult psychopathology. Analyses suggest that DA gene 

polymorphisms contribute to early childhood development and likely contribute to 

future behaviour outcomes.   
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Chapter 5 - The serotonin candidate genes and emerging symptoms of 

psychopathology: The roles of cortisol reactivity and childhood stress  

Along with the dopamine pathway, the serotonin pathway has been widely 

implicated in shaping early neurodevelopment. Among the multiple 

neurochemical processes involved, reduced brain serotonin (5-HT) seems to be 

feature of depression and anxiety (Van Praag, 2004). Although there are 

questions about the exact role of 5-HT in the onset and course of depression, 5-

HT dysfunction is commonly found in depressed patients as captured by lower 

brain availability of tryptophan and 5-hydroxytryptophan (Agren & Reibring, 1994; 

Maes et al, 1990). Specifically, impaired reuptake and degradation in the 

synapse have been implicated in stress-related mood disorders such as 

depression (Arango et al. 2002; Markus & Firk, 2011; Malison et al, 1998; 

Sargent et al, 2000) and antidepressant drugs act by improving brain 5-HT 

function (van Praag, 2004). Candidate genes with functional effects on the 5-HT 

reuptake and its degradation, and their links to the stress response, are 

discussed in the following sections. 

5.1.1 5-Hydroxytryptophan transporter (SLC6A4) gene polymorphism 

Probably the most widely-studied and controversial candidate genes for 

depression is the serotonin transporter gene (5-HTT). The 5-HTT (SLC6A4) gene 

spans 31kb and contains 14 exons (Lesch et al., 1994). A common functional 

polymorphism has been described in the promoter region this gene known as the 

5-HTTLPR (Figure 5.1). Variants of the 5-HTTLPR consist of a long (L) allele, 
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comprised of 16 copies of an approximately 22 base pair (bp) repeat unit, and a 

short (S) allele, consisting of 14 copies (for a review, see Hariri & Holmes, 2006). 

Compared to the L allele, the S allele is associated with decreased transcriptional 

efficiency of the promoter (Lesch et al., 1994). Reduced density of the 5-HT 

transporter has been found in subjects with depression and in the postmortem 

brain tissue of suicide victims (Arango et al. 2002, Drevets et al., 1992). In 

addition to associations between 5-HTTLPR and psychopathology, a large body 

of research suggests that the 5-HTTLPR moderates the effects of adverse life 

experiences on the probability and severity of a diverse array of mental health 

related conditions and constructs, including depression (Taylor et al., 2006; 

Caspi et al., 2003), suicide (Roy et al., 2007; Retz et al., 2008) and anxiety 

(Gunthert et al., 2007; Stein et al., 2007). Across these diverse stress-related 

psychological disorders, the majority of studies associate the 5-HTTLPR S-allele, 

and particularly the S/S genotype, with greater psychological sensitivity to stress 

(Uher et al., 2007). However, there is variability in the success of replicating such 

findings as some meta-analysis studies have found no evidence that the 5-

HTTLPR genotype alone or in interaction with stressful life events is associated 

with elevated depression risk (Risch et al., 2009). However, these meta-analyses 

have been criticized on the grounds that they are heavily influenced by large 

studies that typically have the poorest measurement of life events (i.e., self-report 

checklists) and, as a consequence, are poorly equipped to detect conditional 

effects of the environment (Caspi et al., 2010; Karg et al., 2011). However, it is 

also possible that the 5-HTTLPR may be more closely associated with the 
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regulation of the hypothalamic-pituitary-adrenal (HPA) axis response to stress 

than it is with specific psychological states that are influenced by stress (Markus 

& Firk, 2011). Thus, the cortisol response to stressful life events may represent 

an intermediate phenotype between the 5-HTTLPR and psychological disorder. 

Literature shows that serotonin fibers activate the hypothalamic CRH neurons 

(Heisler et al., 2007; Liposits, Phelix & Paul, 1987) that initiate the hormonal 

cascade leading to cortisol release. The S/S genotype of the 5-HTTLPR is 

associated with greater cortisol reactivity to psychosocial stress in adults (Way & 

Taylor, 2010). Additionally, a study by Wust and colleagues (2009) linked this 

polymorphism to basal cortisol secretion over the course of the day, showing a 

link between HPA axis function and this gene. However, two recent independent 

studies in adults have failed to find positive associations between this 

polymorphism and cortisol reactivity in adults (Markus & Firk, 2009; Vinberg et 

al., 2010). Taken together, the present literature suggests a need for further 

research to ascertain the relationship between this polymorphism and cortisol 

responses to stress, as well as links to emerging symptoms of depression and 

anxiety.  
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Figure 5.1. Diagrammatic representation of the human SLC6A4 (5-HTT) gene. Exons are indicated by solid black blocks 

and introns by lines. The location of the 44bp promoter region variable number tandem repeat (VNTR) are indicated. The 

16-repeats (Long) and 14-repeats (Short) variants of the VNTR are indicated by dashed arrows (Adapted from Lesch et 

al., 1996). 
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5.1.2 Monoamine Oxidase-A 

Along with the 5-HTTLPR and its possible role in the etiology of mood disorders, 

the MAOA enzyme also regulates availability of serotonin in the synaptic cleft and 

therefore regulates serotonergic tone in response to external stimuli (Jacob et al., 

2005). MAOA is an enzyme involved in the metabolism of biological amines, including 

the monoaminergic neurotransmitters serotonin and norepinephrine (Jacob et al., 2005). 

MAO contributes to controlling amine availability by oxidative deamination of neuronal 

serotonin (Shih et al., 1999). MAOA enzyme expression is dependent on the MAOA 

gene (Gene ID: 4128), which is located on chromosome Xp11.3 and contains 16 exons, 

spanning 60 kilobases (Figure 5.2). A naturally occurring sequence polymorphism exists 

in the MAOA promoter region with functional effects on MAOA transcription. This VNTR 

polymorphism consists of 30-bp repeat elements with 3, 3.5, 4, 5 or 6 copies (Sabol et 

al., 1998). Relative to the longer alleles, the 3-repeat allele results in a significantly 

decreased expression of MAOA gene, and is therefore commonly referred to as the low 

activity variant compared to the longer or high activity alleles (Deckert et al., 1999). The 

latter allelic variant also results in higher cerebrospinal fluid (CSF) homovanillic acid 

levels, a byproduct of catecholamine catabolysis, indicating functional effects of this 

polymorphism in humans (Zalsman et al, 2005). As the MAOA gene is X linked, males 

(XY) carry only a single copy of the MAOA allele, whereas females (XX) carry two, one 

of which is subject to random X-chromosome inactivation in the cell. Thus, high activity 

boys have a single long or “high activity” allele, whereas girls must have the high/high 

genotype in order to be unequivocally established as having the high activity allele for 
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the purposes of research, as one copy will be randomly inactivated due to X-linked 

inactivation (Deckert et al., 1999). 

Given the functional nature of MAOA VNTR and its effect on serotonin signaling 

(or serotonergic tone) in the brain, it is plausible that this polymorphism may be linked to 

individual differences in cortisol response to stress. Only a single study so far has 

examined associations between the MAOA VNTR polymorphism and cortisol reactivity, 

and found a positive association between the low activity MAOA allele and elevated 

cortisol reactivity to psychosocial stress task (Bouma et al., 2012). In addition to this 

recent study, a few studies have also examined the main effects of MAOA genotype on  

stress-related disorders such as depression and anxiety, but the findings in this 

literature have been mixed. Some have found positive links between the MAOA VNTR 

polymorphism and anxiety (Gutierrez et al., 2004; Tochigi et al., 2006) but others have 

failed to replicate such findings (Arbelle et al., 2003; Eley et al., 2003; Jacob et al., 

2005; Syaglio et al., 2001), suggesting a need for further work to clarify the link between 

this polymorphism and anxiety. There are similar mixed results for associations with 

depression, with depression associated with MAOA VNTR in some studies (Tochigi et 

al., 2006) and not in others (Gutierrez et al., 2004).  

In addition to main effects, this gene has been implicated in GxE. For example, 

GxE has been found for MAOA and adversity (Prom-Wormley et al., 2009), life trauma 

(Frazzetto et al., 2007), and childhood maltreatment (Taylor & Kim-Cohen, 2007) in 

predicting both internalizing and externalizing outcomes. More complex interactions 

have also been noted, with high MAOA activity buffering the effects of early adversity on 

later antisocial behaviour in Caucasian participants (Widom & Brzustowicz, 2006). 
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Similarly, Cicchetti and colleagues (2007) found that depressive symptoms were 

elevated in maltreated children only if they had the low-activity MAOA variant. These 

findings were also replicated in adults by Kinnally and colleagues (2009), who reported 

that adults having lower activity MAOA and exposed to early family stressors showed 

higher impulsivity/aggression than girls with good parental care. Other data (Kim-Cohen 

et al., 2006) indicate that adolescents with the low MAOA activity allele who were 

exposed to physical abuse had more mental health problems. Taken together, these 

studies suggest that MAOA plays a role in moderating the effects of the early 

environment on psychopathology.  
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Figure 5.2. Diagrammatic representation of the human MAOA gene. Exons are indicated by solid black blocks and introns 

by lines. The location of the 30bp promoter region variable number tandem repeat (VNTR) are indicated. The approximate 

location of 3-5 repeats VNTR is indicated by dashed arrows (Adapted from Sabol et al., 1998). 
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In addition to gene-environment interaction in influencing symptoms of 

depression and anxiety, a limited literature has also examined the effect of interaction 

between MAOA and 5-HTTLPR gene polymorphisms (gene-gene interaction; GxG) on 

symptoms of anxiety and depression. For example, interactions between MAOA VNTR 

and 5-HTTLPR have been linked to cognitive performance in a large, population-based 

sample of 6000 children (Barnett et al., 2011). Specifically, an epistatic interaction 

between the two loci was associated with better working memory in children with the 

long alleles of both MAOA and SLC6A4 genes. However, studies to date have not 

reported epistasis between the MAOA and 5-HTTLPR loci in predicting risk for 

psychopathology in humans. In additions to GxG, a report by Eley and colleagues 

(2004) reported that the interaction between MAOA and 5-HTTLPR moderated the 

effect of life stress on anxious and depressive symptoms. Specifically, adults 

homozygous for the low activity alleles of MAOA and 5-HTTLPR VNTR polymorphisms 

interacted with low socio-economic status to predict higher number of anxious and 

depressive symptoms. Taken together, this limited literature suggests GxG are linked to 

emotional problems in adults. However, whether GxG predicts emerging symptoms of 

depression or anxiety remains unexplored.  

  In sum, the aim of this chapter is to explore main effects of 5-HTTLPR and 

MAOA polymorphisms on children’s cortisol responses to stress and emerging 

symptoms of depression and anxiety. Based on research reporting positive associations 

between cortisol function and 5-HTTLPR and MAOA genes (Bouma et al., 2012; Way & 

Taylor, 2010), and the possible role of cortisol reactivity as a vulnerability marker for 

later psychopathology, I examined these links in a community sample of preschoolers. 
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Second, based on previous evidence for moderation of early environment risk contexts 

by serotonin genes on symptoms of internalizing psychopathology risk, I predicted that 

these links would also exist at an early age as well. The final set of analyses in this 

chapter would aim to examine and extend the evidence for epistasis as moderator of 

childhood stress (CS) on cortisol response and emerging symptoms.  

5.2  Methods 

 Participant DNA was extracted as described previously in chapter 2. Also, as 

described in Chapters 2 and 3, parent reports on the Child Behavior Checklist 

(Achenbach et al., 2000) were used to ascertain levels of depression and anxiety. AUCi, 

baseline to cortisol change, and AUCg were used as measures of cortisol response as 

previously described in detail on page 54. Finally, details of the CS variable are detailed 

in Chapter 2 as well. 

5.5.1 Genotyping 

The 5-HTTLPR polymorphisms were assayed using methods described by 

Chorbov et al. (2007). Briefly, the forward primer was 5-

GGCGTTGCCGCTCTGAATGC-3’, and the reverse primer was 5- 

GAGGGACTGAGCTGGACAACCAC-3, which yielded 486-bp (short) and 529-bp (long) 

amplicons. Polymerase chain reaction (PCR) was performed in a total volume of 25µl, 

containing 100 ng of DNA, 160 nM of each primer, 1mM Tris-HCL (pH 8.3), 5mM KCl, 

1.5 mM MgCl2, 2% DMSO (v/v), 2.5 U AmpliTaq Gold DNA polymerase (Applied 

Biosystems, Foster City, CA), 200 µM of dATP, dCTP, dTTP, and 100 µM of dGTP, and 

7-deaza-2-dGTP. After an initial denaturation at 94°C for 5 min, 35 cycles of 
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denaturation (94°C for 30 sec), annealing (63°C for 30 sec), and extension (72°C for 1 

min) was performed followed by a final extension at 72°C for 20 min. Amplicons were 

separated on 6% polyacrylamide gels, visualized using SYBR-Green and documented 

using the Bio-Rad 2000 gel documentation system (Bio-Rad Laboratories, Mississauga, 

ON, Canada).  

MAOA promoter VNTR was amplified using the primer sequences forward 5’-

CCCAGGCTGCTCCAGAAACATG-3’ and reverse 5’-

GTTCGGGACCTGGGCAGTTGTG-3’. Conditions used for amplification were one cycle 

at 94°C for 5 min followed by 30 cycles of 94°C for 15 s, 60°C for 15 s, 72°C for 30s, 

and a final 7 min extension at 72°C (Sabol et al., 1998). To improve reaction fidelity, we 

used the Invitrogen PCRx Enhancer (Invitrogen, Carlsbad, CA, USA) as an adjuvant in 

PCR amplifications. Amplicons were separated on 6% polyacrylamide gels, visualized 

using SYBR-Green and documented using the Bio-Rad 2000 gel documentation system 

(Bio-Rad Laboratories, Mississauga, ON, Canada).  

5.3  Results 

5.3.1 Main effects 

In this sample, 119 children (32.1%) were homozygous for the long (L) allele of 

the 5-HTTLPR, 171 (46.1%) were heterozygous, and 76 (20.5%) were homozygous for 

the short (S) allele. I was unable to genotype five children due to non-specificity of PCR 

amplification. This distribution is in Hardy-Weinberg equilibrium, χ2 = 0.31, p > 0.52. 

Analysis of variance was used to test the associations between genotype and study 

variables including cortisol response and behaviour measures (Table 5.1). The 5-



 

 

HTTLPR polymorphism was not associated with child gender (

family income (χ2 = 41.25, p =

polymorphism on emerging anxiety symptoms such that children with at least one copy 

of the S-allele had higher symptoms of anxiety compared to their L

(365)= 2.14, p = 0.03). 

Figure 5.3. Relationship between the 5HTTLPR 44bp VNTR polymorphism and 

symptoms of anxiety in preschoolers
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Table 5.1. Demographic and study variables by child 5-HTTLPR 44bp VNTR genotype. 

5-HTTLPR genotype     
s/s + s/l  

(short allele) 
(N=241) 

l/l  
(long allele) 

(N=114) 

Variable M SD N M SD N 

Sex (N, boys) 114 69 

Family income 3.80 1.05 3.70 1.2 

PPVT 112.19 13.80 111.22 14.89 

Baseline to peak change -1.10 0.35 -1.06 0.36 

AUCi 0.05 0.10 0.05 0.08 

AUCg 0.17 0.12 0.18 0.12 

CBCL Depression 1.36 1.62 1.22 1.48 

CBCL Anxiety* 1.32 1.09 1.00 1.33 
Note: PPVT = Peabody Picture Vocabulary Test; Family income coded as 1 = < $20,000; 2= $20,000-$40,000; 3= $40,001-$70,000; 

4 = $70,001-$100,000; 5 = > $100,001; AUCi, Area Under Curve with respect to increase; AUCg, Area Under Curve with respect to 

ground; CBCL, Child Behavior Checklist. 

* p < 0.05 †p < 0.10.  
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I was unable to genotype three children for the MAOA polymorphism due to lack 

of PCR amplification. For boys, the MAOA hemizygous frequencies were: 3R (N = 74, 

19.8%), 3.5R (N = 8, 2.2%), 4R (N = 101, 27.2%) and 5R (N = 4, 1.1%). MAOA 

genotypes in girls were, 3/3 (N = 54, 13.7%), 3.5/4 (N = 1, 0.3%), 3/4 (N = 52, 14.0%), 

3/5 (N = 4, 1.1%), 4/4 (N = 65, 17.5%) and 4/5 (N = 5, 1.1%). This distribution is not in 

Hardy-Weinberg equilibrium (Pearson X2 (38) = 91.02, p < 0.05), but is comparable to 

recently reported frequencies (Sabol et al., 1998). Consistent with the majority of 

published research (e.g., Zalsman et al., 2005; Ducci et al., 2006), groups for data 

analysis were formed based on whether children had 3R polymorphism (N = 183) or did 

not have (N = 185) a 3R allele. Following previous studies (Zalsman et al., 2005), 

heterozygous females (N = 62) were excluded from analyses, as it is not possible to 

know which X-chromosome escaped inactivation. Furthermore, four boys homozygous 

for the MAOA 5R allele were excluded from analyses as the literature is unclear with 

respect to functionality of the translated protein associated with this allele. This meant 

that the final sample size available for analyses in the chapter was 301. 
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Table 5.2. Demographic and study variables by child MAOA 30bp VNTR repeat status. 

 

Child MAOA genotypes 

  3-repeats (N = 131) ≥ 3.5 repeats (N = 171) 

Variable M SD N M SD N 

Sex (N, boys) 80 100 

Family income 3.73 1.11 3.8 1.11 

PPVT 113.11 15.46 111.01 13.03 

Baseline to peak change -1.12 0.38 -1.07 0.35 

AUCi 0.05 0.08 0.05 0.10 

AUCg 0.18 0.13 0.18 0.13 

CBCL Depressive symptoms 1.19 1.45 1.25 1.48 

CBCL Anxious symptoms 1.14 1.27 1.22 1.46 
 

Note: PPVT = Peabody Picture Vocabulary Test; Family income coded as 1 = < $20,000; 2= $20,000-$40,000; 3= $40,001-$70,000; 

4 = $70,001-$100,000; 5 = > $100,001; AUCi, Area Under Curve with respect to baseline; AUCg, Area Under Curve with respect to 

ground; CBCL, Child Behavior Checklist; ODD, Oppositional Defiance Disorder; ADHD, Attention-Deficit Hyperactivity Disorder. 
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5.3.2  Moderation analyses 

5.3.2.1 5-HTTLPR 

Using multiple regression, in my next set of analyses I examined whether GxE 

predicted children’s cortisol response and symptoms of depression and anxiety. 

Analyses showed no evidence for moderation of CS by 5-HTTLPR in predicting any 

index of cortisol reactivity or symptoms of depression and anxiety. More specifically, the 

interaction between CS and 5-HTTLPR did not predict baseline to peak cortisol change 

(β = -.03, se = 0.05, p = 0.58), AUCi (β = 0.01, se = 0.02, p = 0.77) or AUCg (β = -0.01, 

se = 0.03, p = 0.59). Similarly, there was no evidence for moderation by 5HTTLPR of 

CS association with emerging symptoms of depression (β = 0.03, se = 0.26, p = 0.88) 

and anxiety (β = 0.40, se = 0.30, p = 0.18).  

5.3.2.2 MAOA 

Similarly, I conducted GxE analysis with MAOA as a moderator variable. 

Regression analyses showed that the interaction between MAOA and CS did not predict 

individual baseline to peak cortisol change (β = 0.02, se = 0.05, p = 0.56), AUCi (β = 

0.01, se = 0.02, p = 0.72) or AUCg (β = 0.01, se = 0.02, p = 0.61). However, analyses 

showed significant moderation of CS by MAOA genotype on child anxious symptoms (β 

= 0.77, se = 0.27, p = 0.004). Further analysis showed that children without the 3-repeat 

allele exhibited higher anxiety symptoms as a function of increasing CS (β = 0.63, se = 

0.17, p = 0.001), but CS was not associated with symptoms of anxiety in children with 

the 3-repeat allele (β = -0.14, se = 0.20, p = 0.50; Figure 5.4). I did not find evidence of 



 

 

moderation of CS by MAOA when 

variable (β = 0.08, se = 0.28, p

Figure 5.4. Relationship between 

MAOA 3-repeat (short allele) status
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5.3.3 Gene-Gene interactions 

 Previous literature has also implicated an interactive effect of the 5-

HTTLPR VNTR and MAOA VNTR on developmental risk for psychopathology 

(Barnett et al., 2011; Roiser et al., 2007). Therefore, I also investigated whether 

such a gene-gene interaction (GxG) also predicted symptoms of depression and 

anxiety in preschoolers. Analysis showed that the GxG terms were nonsignificant 

and did predict either cortisol response or emerging risk for internalizing 

problems (all ps > 0.16; figure not presented).   
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5.4  Discussion 

The aim of this chapter was to examine links between serotogenic gene 

functional polymorphisms and symptoms of depression and anxiety in 

preschoolers. The first finding was a positive association between the 5-HTTLPR 

polymorphism and child anxious symptoms. Specifically, children with at least 

one copy of the S-allele had higher levels of anxiety than children homozygous 

for the L-allele. This finding extends and compliments extant literature linking this 

polymorphism and internalizing symptoms. For example, literature has reported 

that the S-allele of the 5-HTTLPR was associated with anxiety traits (Katsuragi et 

al., 1999; Lesch et al., 1996; Ohara et al., 1998; Gonda et al., 2007) and with 

anxiety-related personality traits such as neuroticism and impulsivity (Gorwood, 

2004; Sen et al., 2004). The presence of associations between emerging anxiety 

symptoms in three-year-olds and this polymorphism is a novel finding and 

suggests a possible role of this variant in the early development of anxiety 

vulnerability. Along with anxiety traits, research has also linked this 

polymorphism with depression in adults (Arya et al., 2009), but such associations 

did not exist in this sample. The lack of associations could be due to a few 

possibilities including the young age and the non-clinical nature of this sample. 

As discussed in Chapter 3 and 4, depressive symptoms are rare during 

preschool years; it is possible that associations between this gene and 

depressive symptoms may emerge later when such symptoms are more 

common and variable across children. A number of prior studies have detected 

an interaction between 5-HTTLPR and stressful life experiences such as 
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childhood abuse (Caspi et al. 2003; Araya et al., 2009) in predicting depressive 

symptoms. However, I did not find evidence for such an interaction in this 

sample. As discussed in earlier chapters, the lack of an extreme stressor context 

could be one of the reasons for the lack of replication in this sample (see this 

discussion in Chapter 4). Additionally, a reason for the failure to find a significant 

association between 5-HTTLPR and emerging symptoms (and cortisol reactivity) 

may reflect insufficient power to detect such associations. 

In addition to 5HTTLPR polymorphism, previous research on GxE in 

adults has implicated the MAOA 30bp VNTR in moderating the effect of 

childhood maltreatment on psychiatric symptoms (Kraft et al., 2006; Wendland et 

al., 2006); therefore, I tested this model in the current sample. My analyses 

complemented this earlier literature in adults by showing that the interaction 

between MAOA genotype and CS predicts children’s anxious symptoms. In 

addition to anxiety problems, previous GxE studies in literature have linked 

MAOA VNTR polymorphism with other psychiatric phenotypes in the presence of 

early adversity. For example, in their seminal work, Caspi et al. (2002) found that 

individuals possessing the 3-repeat genotype of MAOA showed increased risk for 

antisocial behaviour, but only if they had experienced an adverse early 

environment. Other studies have found similar interactions between MAOA gene 

polymorphism and early maltreatment for behaviours reflecting conduct disorder 

(Foley et al., 2004), antisocial behaviour (Kim-Cohen et al., 2006), antisocial 

alcoholism (Ducci et al., 2007), and physical aggression (Frazzetto et al., 2007). 

These findings add to this literature by showing the moderation of symptoms by 



 

 203

MAOA VNTR genotype in the presence of more subtle forms of life stress. As 

most research has reported the moderation effect of this genotype on extreme 

forms of adverse experience (such as physical and sexual abuse), the findings in 

this chapter suggests that this variant may moderate a broad contexts of early life 

stressors, and is a novel finding in literature with implications on early childhood 

development.  

In my final set of analyses, I looked at the effect of MAOA and SLC6A4 (5-

HTTLPR) on either cortisol response or emerging symptoms at preschool age 

and found no evidence for GxG. My analyses did not support literature from 

previous adult studies, which reported that GxG predicted symptoms of 

psychopathology (Roiser et al., 2007). However, my findings are in line with 

literature from young samples such as adolescents, which show that the 

interaction between MAOA and 5HTTLPR variants did not predict symptoms of 

anxiety (Armbruster et al., 2011). Although speculative, these findings suggest 

that the interaction between these two variants may be evident at a later age 

rather than in early childhood.  

In sum, I present evidence that functional polymorphisms in 5-HTTLPR 

and MAOA, two gene involved in the functional deactivation of serotonin, are 

linked to emerging symptoms of anxiety in young children. While neither gene 

has been unquestionably linked to psychiatric symptoms, the data in this chapter 

suggests that serotonergic polymorphisms linked to normal variation in brain 

function are at play in influencing early-emerging symptoms of depression and 

anxiety in the presence of life stress. The lack of links between these genes and 
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cortisol reactivity suggests that such links may possible be influenced by other 

hormone and/or components of the HPA axis pathway or more evident at a later 

age.   
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Chapter 6 - Discussion 

The current thesis is an examination of genetic markers of children’s 

cortisol responses to stress and their possible role in contributing to emerging 

internalizing disorder symptoms. The implications of my findings for our 

understanding of the biological and environmental bases of children’s 

internalizing disorders risk are discussed in the following sections.  

6.1  Context of study findings 

6.1.1 Chapter 2 – The CRH system genes 

Chapter 2 expanded on the hypothesis that variation of the CRH system 

genes would be linked to individual differences in cortisol responses to stress. 

Specifically, single nucleotide polymorphisms (SNPs) spanning the coding and 

regulatory regions of CRH, CRHR1 and CRHBP genes were examined. I 

identified significant main effects of gene variants of CRHR1 and CRHBP coding 

regions on childhood cortisol reactivity. In addition to main effects, I identified 

GxE with multiple individual SNPs, as well as with common variants of the 

CRHR1 and CRHBP locus, that were associated with children’s internalizing 

symptoms in the presence of stress (Figures 2.7 & 2.9). The associations 

between SNPs of the CRHR1 and CRHBP coding region and cortisol reactivity 

are the first reported in the literature. Additionally, the GxEs I found are an 

extension of previous work suggesting that CRH system gene variant SNPs 

moderate the effect of early adversity on future psychopathology (Bradley et al., 

2008). The SNP variants involved in these studies were the same as those 
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described previously in two separate studies by Bradley and colleagues (2008) 

and Polanczyk and colleagues (2009). However, the stress contexts in the 

present study and previous studies by Bradley and colleagues (2008) were 

different. Specifically, the CS variable used in this study included family income, 

dyadic adjustment and family stressors such as illness, job loss, etc. over the 

past 12 months, and were in some cases less extreme forms of stress than those 

typically examined in the field. For example, Bradley and colleagues (2008) 

examined severe or extreme forms of stressors such as physical and sexual 

abuse. Taken together, findings in Chapter 2 and previous findings (Bradley et 

al., 2008; Cicchetti et al., 2009; Heim et al., 2009; Polancyzk et al., 2009) 

suggest that the CRH gene variants interact with a broad range of forms of early 

adversity to influence adjustment in childhood and later in life. 

6.1.2  Chapter 3 - The Catechol-O-Methyltransferase (COMT) gene  

As an important regulator of dopaminergic signaling in the prefrontal and 

limbic systems of the brain, the functional polymorphism of the COMT gene 

(val158met) has been extensively studied in psychiatric literature (Meyer-

Lindenberg & Weinberger, 2006). Based on previous findings in animal models 

where COMT gene knockouts exhibited abnormal HPA axis function, I examined 

the association between the val158met polymorphism and cortisol reactivity in 

preschoolers. The analyses showed a main effect of the val158met 

polymorphism on children’s cortisol reactivity, supporting previous work by Jabbi 

and colleagues (2005), who showed that adolescents who were val homozygotes 

showed heightened cortisol responses to psychosocial stress tasks.  
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In addition to evidence for direct associations, I also investigated GxE. 

Analyses showed that the val158met polymorphism moderated the link between 

CS and emerging symptoms of anxiety; expanding on recent work by Klauke and 

colleagues (2012) who found that COMT genotype moderated the effect of 

childhood trauma on startle response, which is considered an endophenotype for 

anxiety disorders. Additionally, in a study by Kolassa and colleagues (2010), the 

interaction between COMT genotype and recent traumatic events predicted an 

increased risk for posttraumatic stress disorder, such that val homozygotes who 

experienced trauma were more likely to develop posttraumatic stress disorder. In 

sum, analyses in Chapter 3 along with recent studies in the literature suggest 

that val homozygous carriers are especially vulnerable to stress during early 

childhood.  

6.1.3  Chapter 4 - The dopamine pathway candidate genes 

 In Chapter 4 of this dissertation, I looked at common variants of the 

dopamine (DA) pathway and their links to cortisol reactivity to stress and 

children’s symptoms of depression and anxiety. Analyses did not yield evidence 

for main effects of DA candidate genes on any of these outcomes; however, I did 

find evidence for GxE in my analyses. Specifically, the DRD2 genotype 

moderated the effect of CS on children’s cortisol responses to stress. Although 

this is the first study to report such an effect, these findings expand on a previous 

study from our group that reported a positive association between the DRD2 

genotype and symptoms of depression and anxiety (Hayden et al., 2010). In 

Chapter 4, I also reported evidence for moderation of the association between 
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CS and symptoms of anxiety and depression in preschoolers by the DAT1 VNTR 

polymorphism. Specifically, the 9R allele carriers had increasing symptoms as a 

function of CS, whereas there was no significant association between CS and 

symptoms in children with at least one copy of the 10R allele. These findings 

extend previous work from our lab showing that genetic influences on children’s 

psychopathology risk were moderated by contextual factors (Hayden et al., 

2013). Other studies have reported an interaction between DAT1 and life stress 

in shaping the development of conduct disorder and attention-deficit hyperactivity 

disorder in children (Bidwell et al., 2011; Lahey et al., 2011). Specifically, the 

children carriers for the DAT1 9R allele had higher risk as a function of increasing 

negative early life contexts such as negative parenting. Taken together, these 

studies combined with my findings suggest that this polymorphisms may play a 

role in etiology of mood and emotion problems. 

I did not find associations between the DRD4 VNTR genotype and cortisol 

reactivity or internalizing symptoms. The lack of associations could be due to 

several factors. Recent work from our lab suggests that DRD4 genotype 

moderated the association between parenting and child effortful control, a 

temperament trait associated with both internalizing and externalizing 

psychopathology (Smith et al., 2013). Specifically, the association between 

children’s effortful control and positive parenting was moderated by children’s 

DRD4 7R status, such that children with at least one 7R allele displayed both 

better and worse effortful control than children without this allele, depending on 

the degree of positive parenting. These findings suggest that this gene may be 
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linked to other endophenotypes, such as child temperament, rather than 

children’s psychophysiological stress responses.  

6.1.4  Chapter 5 - The serotonin pathway candidate genes 

 In Chapter 5, I reported analyses examining links between serotonin 

pathway candidate gene variants and cortisol reactivity. There was no evidence 

for associations between MAOA and 5-HTTLPR and measures of children’s 

cortisol responses to stress. However, I did find evidence for a main effect of 5-

HTTLPR genotype on symptoms of anxiety in preschoolers. This finding extends 

previous work showing that the S-allele of the 5-HTTLPR is associated with 

anxiety traits (Katsuragi et al., 1999; Lesch et al., 1996; Ohara et al., 1998; 

Gonda et al., 2007) and with anxiety traits such as neuroticism and impulsivity 

(Gorwood, 2004; Sen et al., 2004). In addition to main effects, I also tested gene-

environment interactions and found significant evidence for moderation of the 

effect of CS on child anxiety symptoms by MAOA genotype. Specifically, children 

without the 3-repeat allele exhibited higher anxious symptoms as a function of 

increasing CS. These results extended previous findings where MAOA genotype 

moderated the link between childhood adversity and risk for conduct disorder and 

antisocial behaviour (Foley et al., 2004; Kim-Cohen et al., 2006), although this 

report of GxE predicting symptoms of anxiety in preschoolers is the first to be 

reported, to my knowledge.  

   In addition to GxE, literature has suggested that interactions between 

these serotonin candidate gene variants may also moderate the effect of life 
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stress on psychopathology in adults (Roiser et al., 2007). My analyses extended 

the work by Roiser and colleagues (2007) and recent work by Barnett and 

colleagues (2013), suggesting that interaction between MAOA and 5-HTTLPR 

moderated the effect of childhood stress also predicted symptoms of anxiety. 

6.2 Implications for risk and resilience 

Epidemiological and clinical research studies have consistently identified 

early exposure to stress as a major risk factor for mood and anxiety disorders 

(Chapman et al., 2004; Dube et al., 2001; Felitti et al., 1998; Gladstone et al., 

2004). The parallel study of individuals who emerge from such adverse 

environments without significant mood or anxiety disorder (Rutter, 2006) has 

resulted in the identification of psychosocial and biological variables associated 

with psychological resilience (Feder et al., 2009). As with environmental 

variables, predisposing genetic factors also influence vulnerability (Stein et al., 

2002; Sullivan, Neale & Kendler, 2000) and resilience (Rijsdijk et al., 2003) in 

terms of risk for mood and anxiety disorders. However, the relationship between 

individual genetic variability and exposure to various forms of early life stress and 

how these interactions translate to early risk remains largely unclear and was the 

main focus of this dissertation. 

Analyses in this thesis show the importance of gene-environment 

interactions in predicting cortisol reactivity and symptoms of depression and 

anxiety. More specifically, in Chapters 2, 3 and 4, I report findings that confirm 

gene-environment interactions as predictors of depressive and anxious 
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symptoms. These findings extend a literature which has documented the role of 

gene-environment interaction in conferring risk. This line of work started over a 

decade ago with the publication of seminal studies by Caspi and colleagues 

(2002a, 2002b), where gene-environment interaction, predict risk for conduct 

disorders and risk for depression. In both studies, specific risk alleles drawn from 

prior biological research on candidate genes were shown to predict behaviour 

problems, but only under specific environmental contexts, such as childhood 

maltreatment. Caspi and colleagues (2010) recently provided a cogent review of 

studies based on their initial discovery that variation in the promoter region of the 

serotonin transporter gene (5-HTT/SLC6A4) moderated the link between 

stressful life events and depression. The present work may not have replicated 

the exact finding for this variant, but my analyses nonetheless point to the 

importance of functional monoaminergic variation in moderating the role of more 

subtle contexts of stress faced by a vast majority of children during early 

development.  

Taken together, what’s especially interesting from these studies is that 

some gene variants contribute to vulnerability by virtue of direct and indirect 

pathways. Moreover, the data confirm and extend Caspi and colleagues (2010) 

assertion that risk alleles may carry risk for behavioural disorders because they 

moderate reactions to the environment. The implication, then, is that specific 

gene markers are influential but only in combination with environmental triggers, 

not as main effects on behavioural dimensions and disorders.  

6.3 Methodological considerations 
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6.3.1 Study strengths 

The study had a number of strengths. First, I chose to examine genes that 

are an integral part of the HPA axis pathways activation and inhibition. The gene 

and pathway-based association analysis considers a gene or a pathway as the 

basic unit of analysis, and aim to study simultaneously the association of a group 

of genetic variants in the same biological pathway, in this case, the CRH system 

pathway (Neale & Sham, 2004). This can help unravel the complex genetic 

structure of phenotypes in order to gain insight into the biological processes and 

developmental mechanisms (Curtis, Oresic & Vidal-Puig, 2005). Additionally, in 

case of the CRH system genes (CRH, CRHR1 and CRHBP) the haplotyping of 

tag-SNPs captured entire genetic variation in the coding and regulatory regions 

of these genes, making the analyses comprehensive. Similarly, monoaminergic 

candidate genes polymorphisms examined in this thesis were also functional in 

nature, with well-documented functional effects on brain neurotransmitter 

systems. Furthermore, in Chapter 2, I also controlled for Type I error by using 

permutation-based procedures (Schmidt et al., 2002, 2003) that randomly 

assigned the sample AUCi scores to subjects (sampled without replacement) 

while holding each subject’s genotype fixed. This permutation method is 

preferred as it accounts for linkage disequilibrium among SNPs in a haplotype 

block; therefore conserving power compared to commonly used correction 

techniques such as the Bonferroni method (Schmidt et al., 2003). Moreover, I 

tried to keep population stratification to a minimum by conducting all analyses in 

Caucasians only.  
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In addition to precautions taken during data analyses, conducting this 

research in a young sample should be considered a major strength. Specifically, 

as mood disorders are rare in preschoolers, our data was not confounded by 

previous or current psychopathology. Additionally, literature has linked sex 

hormone status such as estrogen during the menstrual cycle with cortisol 

reactivity to stress. However, sex hormones are not a confounder in my study 

due the young nature of this sample. Similarly, precautions were taken during 

cortisol sampling as well to obtain an accurate index of children’s stress 

reactivity. For example, the stress task was conducted during the same time of 

the day to control for diurnal variance of cortisol in humans (Gunnar, Talge & 

Herrera), and parents were instructed not to feed their children immediately prior 

to cortisol sampling to address the influence of certain foods on cortisol levels 

(Gunnar, Talge & Herrera). The stress task was conducted after an 

acclimatization period of 30 minutes to capture normalized baseline cortisol and 

was conducted by trained study personnel. Additionally, all cortisol samples were 

measured in duplicates in a single batch for a given participant usually within 24 

hours of sample collection. All measurements were repeated if cortisol variance 

within the duplicates or even different plates exceeded >5-6 % variance, a very 

stringent criteria for ELISA assays. Furthermore, 10 % of all genotyping was 

repeated and all probes were sequenced for accuracy. Of the ~13000 genotypes, 

99.8 % were in concordance.  

6.3.2 Limitations 
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 Some limitations of this thesis should be considered as well. Even though 

the sample size of this study was relatively large compared other studies in 

developmental literature, it is small for a genetic study. However, it may be 

logistically challenging and not financially viable to perform stress tasks for 

cortisol assessment on a very large sample. Additionally, due to the sample size, 

all the variants in this thesis are common genetic variants in the Caucasian 

population. Biological interactions that involve rare genetic variants or rare 

environment exposures are unlikely to detect as significant statistical interactions 

(Uher, 2008). In this case, therefore, even a very large sample size will only be 

powerful enough to detect moderately strong GXE. Therefore, replication of 

findings in independent samples is very important.  For some studies, I examined 

a limited number of markers at each gene, and I did not correct for multiple 

statistical tests in some analyses due to the hypothesis-driven nature of the work. 

The study also used parent-reported measures of child behaviour. The 

difference between objective interview and self-report or parent-report measures 

of behaviour is a question of specificity and objective validity (Monroe, 2008). For 

example, parental psychopathology may “color” descriptions of child problems as 

may occur when abusive or depressed mothers provide negative or exaggerated 

descriptions of their children (Gotlib & Hammen, 1992). Similarly, 

dismissive/avoidant adult informants deny the presence of emotional problems at 

the same time that professionals observe a high level of symptoms (Dozier & 

Lee, 1995), or parents downplay the importance of a given behaviour or 

sometimes individuals simply try to avoid thinking of past traumatic events (Uher 
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et al., 2011). In some cases, some parents take the instruction too literally, which 

may lead to omission of data that could otherwise be an important stressful life 

event. Additionally, parents could misunderstand and misinterpret questions; the 

opportunity to clarify symptoms is an important asset of interview measures. 

However, it should be noted that, due to the young age of the sample, parent-

reports were more logistically feasible. Further, the CBCL is the most widely-

used measure of children’s symptoms, and has been shown to be a reliable 

indicator of current symptomatology.  

In addition to the limitations described above, I conducted most analyses 

in candidate genes previously described in psychopathology research. However, 

one of the limitation of the current analyses is that I did not utilize the current 

knowledge from ENCODE or HaploReg databases to predict a possible 

regulatory effect of polymorphisms genotyped in this study on remote genes. It is 

likely that some of the variants genotyped in this study may code for DNA 

regulatory elements with functional effects on genes not investigated here but 

may be linked to early risk for psychopathology. Additionally, complex traits being 

polygenic in nature are also influenced by other gene variants and extant 

literature has documented their associations with stress-related problems such 

as depressive and anxious symptoms. Of importance amongst these are the 

glucocorticoid receptor complex genes such as NR3C1 and FKBP5 (Binder et al., 

2009; Roy et al., 2012). Also widely implicated are the oxytocin receptor gene 

and the brain neurotrophins, which directly influence synaptic plasticity and 

therefore regulate the effects of stress and HPA axis response at the neuronal 
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level (Zheng et al., 2014). Below, some of the current knowledge is discussed to 

add to our understanding of the complex underpinning of the developmental risk.  

6.3.2.1 The glucocorticoid complex genes 

The regulating effects of cortisol on brain and behaviour are mediated by 

binding of the hormone to specific receptors. Glucocorticoid receptors (GR) are 

widely distributed throughout the PFC, amygdala, hippocampus, and brainstem, 

and are critical to regulating responses during conditions of elevated cortisol 

secretion or stress (Myers, McKlveen & Herman, 2014; Timmermans et al., 

2013). Relative GR resistance is a core feature of depression, perhaps leading to 

disinhibition of central CRH secretion and HPA axis hyperactivity (Silverman & 

Sternberg, 2012). For example, Bet and colleagues (2009) demonstrated that, in 

a longitudinal aging study, SNPs in the GR gene interacted with adverse life 

events during youth, including war experiences, sexual abuse, parental loss, or 

physical illness in the prediction of major depressive disorder (MDD). 

However, the sensitivity of the GR is fine-tuned by a co-chaperone 

chaperone protein, FKBP5. When bound to the GR complex, FKBP5 decreases 

GR affinity for cortisol and prevents translocation of the GR to the nucleus 

(Binder et al., 2009). Given the important role of GR in regulating stress 

responses and the evidence for GR resistance in depression, variation of the 

FKBP5 gene likely is a critical modulator of the relationship between childhood 

maltreatment and depression (Binder et al., 2009). In a recent population-

representative sample of more than 2000 Caucasians, Appel et al., (2011) 



 

 226

reported an interaction between the rs1360780 of the FKBP5 gene and 

maltreatment in predicting both depressive symptoms and diagnoses of 

depression. Another recent study in 884 adolescent and young adult individuals 

confirmed an interaction of different FKBP5 variants and traumatic life events in 

predicting the onset of MDD (Zimmermann et al., 2011). These results, taken 

together, strongly implicate the GR and related pathway gene variants in the 

pathogenesis of stress-related depression. My future work will investigate the 

role of these genes and emerging symptoms to inform whether these variants are 

involved in developmental risk pathways. 

6.3.2.2 Oxytocin Receptor 

The human oxytocin (OXT) system mediates social attachment, including 

mother–infant bonding, and demonstrated to buffer emotional and physiological 

responses to stress (Meyer-Lindenberg et al., 2011). For example, in patients 

with MDD, plasma oxytocin concentrations are inversely correlated with symptom 

severity (Scantamburlo et al., 2007). Additionally, women reporting exposure to 

childhood maltreatment exhibit deceases in cerebrospinal fluid oxytocin 

concentrations, which in turn were associated with increased anxiety (Heim et al., 

2009). Similarly, interaction of between oxytocin receptor gene (OXTR) SNP 

rs2254298 and adverse parental environment predicted symptoms of depression 

in 9–14 years old girls (Thompson et al., 2011). Other studies have also reported 

interactions between OXTR variants and childhood stress predicting cortisol 

reactivity in adults (Chen et al., 2011). Future work from our group will investigate 

these links in our sample as well.  
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6.3.2.3 Brain-Derived Neurotrophic Factor 

Brain-derived neurotrophic factor (BDNF) is a widely expressed 

neurotrophin in the brain that is implicated in neuronal growth, synaptic plasticity, 

and neuronal survival. In animal models, prolonged stress exposure and elevated 

glucocorticoid levels down-regulate BDNF expression, whereas administration of 

antidepressant drugs induces BDNF expression; antidepressant treatment 

normalizes hippocampal volume in depressed patients (Nestler et al., 2002). The 

BDNF gene contains a functional polymorphism (rs6265), which is associated 

with a valine to methionine substitution (val66met) and leads to reduced BDNF 

expression in the brain. Literature reports on interaction between this 

polymorphism and childhood sexual abuse in the prediction of adult depression 

(Aguilera et al., 2009). A report from our group demonstrated found that BDNF 

val66met polymorphism moderated the interactive effects between 5-HTTLPR 

and stress on HPA axis reactivity in a sample of preschool children (Dougherty et 

al., 2010). Furthermore, the BDNF val66met × 5-HTTLPR × childhood 

maltreatment interaction also predicted depression (Wichers et al., 2008).  

In addition to DNA sequence variants that may contribute to risk for later 

psychopathology, structural DNA variation also regulates gene expression in 

response to external stress stimuli. The biology of gene regulation via DNA 

structural variation is the emerging field of epigenetics that may provide a 

promising avenue of research, which may aid in our understanding of biological 

bases of psychopathology and briefly discussed in this section. The influence of 

genetic variations in the DNA sequences of HPA axis related genes on mood 
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disorders is clear, but may only be one of the many factors contributing to our 

understanding of mood disorders. One of the most promising pathways of future 

research is the investigation of epigenetic processes modulating the relationship 

between Gene × CS interactions and depression. Epigenetic changes are 

changes in gene expression, which remain stable during cell divisions but do not 

affect the DNA sequence itself. Such changes are heritable and can be caused 

by changes such as those found in DNA methylation, the modeling of chromatin, 

and the deacetylation of histones in the DNA (Spijker & van Rossum, 2012). 

Epigenetic control of gene regulation has been implicated as influencing early 

development. For example, quality of maternal care was found to influence HPA 

function in rats through epigenetic programing of GR expression (Meaney, 2001). 

Poor quality of maternal care was associated with changes in the promoter 

region methylation of the GR gene. These rodents also exhibited enhanced 

hormonal and anxiety-like behavioural responses to stress, suggesting a role of 

epigenetic status in early neurodevelopment. In humans, recent work showed 

that the brain tissue of human suicide victims who were also exposed to 

childhood abuse had considerably higher methylation in the promoter region of 

the GR gene when compared to controls (McGowan et al., 2009). Additionally 

poor maternal rearing conditions led to differential DNA methylation in the 

prefrontal cortex glial cells of rhesus macaques (Provencal et al., 2012). In a 

recent study by Klengel and colleagues (2013), methylation pattern differences 

were observed in FKBP5 gene following childhood trauma. However, a large gap 
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in knowledge still remains when it comes to epigenetic mechanisms that play a 

role in early childhood. 

6.5 Future directions 

6.5.1 Additional stress contexts that contribute to risk: The role of parenting  

Due to the complexity and multifactorial nature of depressive and anxious 

disorders, this thesis focused on well-studied dimensions of life stress such as 

family income, dyadic adjustment and stressful life events in the child’s family in 

the past 12 months. However, along with genetic factors which may be at play 

and described in the previous sections, an equally important contextual risk in the 

child’s life is parenting. Parental effects on children’s emotional development are 

hypothesized to be due, in part, to the influence of early childhood parental care 

on stress reactivity (Leuken et al., 2004; Loman & Gunnar, 2010). In addition, by 

shaping the nature of the response to stress and challenge, such an influence is 

also likely to determine the impact a broad range of environmental factors across 

development (Ellis & Boyce, 2008) and have a broad and lasting influence across 

time. However, despite the importance of the hypothesis that early parenting 

influences stress reactivity, support for this notion is indirect. For example, animal 

research has demonstrated lasting effects of parenting on stress reactivity later in 

life. In rodents, the offspring of mothers who exhibit high levels of licking, 

grooming and arched-back nursing (which facilitates pups’ access to milk) show 

increased hippocampal glucocorticoid receptor expression, enhanced negative 

feedback regulation, decreased hypothalamic CRH expression, more modest 
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HPA-axis responses to stress, and less fearful behaviour (Levine, 2005; Zhang et 

al., 2006; Zhang & Meaney, 2010).  

In addition to the research in rodents, studies in nonhuman primates 

demonstrate that in the presence of low maternal caregiving led to higher levels 

of plasma CRH in the offspring (Coplan et al., 2001). Parenting behaviours may 

alter cortisol levels, potentially representing a link in the overall pathway by which 

low income and cumulative risk eventually disrupts children's cortisol levels. 

Research has examined the relation of parenting to HPA axis functioning both in 

high-risk samples, such as low maternal education and high maternal stress, and 

low risk samples. In general, parenting that is lower in sensitivity, higher in 

intrusiveness and harshness is associated with lower morning cortisol levels 

(Roisman et al., 2009), flatter diurnal slope (Papp, Pendry & Adam, 2009), 

greater reactivity (Bugental et al., 2003), and slower cortisol recovery after a 

stressor (Albers et al., 2008). Studies typically examine one or two parenting 

variables at a time, with more emphasis on affective (i.e. sensitivity, harshness) 

parenting behaviours compared to control-related parenting behaviours (i.e. limit 

setting). This study sought to examine several parenting behaviours 

simultaneously to see which specific parenting behaviours, if any, accounted for 

the relations of income and cumulative family risk to disrupted cortisol patterns. 

Parenting has been posited to mediate the relationship between other 

early risks and child cortisol levels. Specifically, two studies have examined 

environmental risk and parenting as mediators of the relation between poverty 

and disruptions to children's cortisol. In a sample of preschool-aged children 
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representing the full range of income, there was a trend toward an association 

between maternal negative affect and children's diurnal cortisol pattern, with 

negative affect trending toward mediating the relation between poverty status 

and a low, flat diurnal pattern (Zalewski et al., 2012). Another study found that 

positive parenting, but not negative parenting, explained a small but significant 

portion of higher basal cortisol levels in young children, over and above 

environmental risk factors (Blair et al., 2011). These two studies point to the 

possibility that parenting may mediate the relations of poverty and cumulative risk 

to disruptions in children's cortisol levels. In sum, a large amount of literature has 

suggested the importance of parenting in shaping neuroendocrine responsivity to 

childhood stress and will be a focus of future research from our group. 

6.5.2 Differential susceptibility to the environment  

The GxE model described above has historical roots in diathesis-stress 

models of psychopathology. Diathesis-stress models propose that clinically 

relevant phenotypes are the product of both high-risk genes and high-risk 

environments typically to lead to a psychological disorder (Caspi et al., 2010). 

Some of the data in this thesis supports this model by showing risk alleles 

interaction with high early life stressor to predict either high cortisol response to 

stress or higher depressive and/or anxious symptoms. However, my analyses 

also suggest that in some cases the supposed “risk allele” was associated with 

either lower cortisol response to stress or lower symptoms when compares to the 

advantageous or “resilience” gene in the presence of low life stress. For 

example, in Figure 3.4 the COMT val-allele carriers had lower anxiety symptoms 
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than their met-allele counterparts under low stress conditions, even though val-

allele is widely considered the risk allele. This finding, along with other examples 

in this thesis (Figure 5.6B), may not entirely fit the notion that risk alleles only 

lend to vulnerability traits and specifically under high environmental stress. Based 

on similar findings in extant literature, theorists have posited that the “risk” alleles 

may also confer a particular ability to respond positively to environment based on 

the context. The key idea is that specific genes do not confer only vulnerability in 

the face of environmental adversity but they may also sensitize individuals to 

positive experiences and influences. This notion of dual action of a given allele is 

now commonly known as “differential susceptibility” to the environment (Belsky & 

Pluess, 2009; Ellis & Boyce, 2008).  

Theorists suggest that specific genes may function more like “plasticity 

factors” rather than “vulnerability factors.” Data from our group and others 

support this concept. For example, Hankin and colleagues (2011) examined 

interactions between 5-HTTLPR genotype and degree of positive and supportive 

parenting (ranging from low to high) in adolescents and young adults. Other 

studies replicate these findings and show the same effect, that youth 

homozygous for the short allele of 5-HTTLPR were more responsive to 

parenting, whether it was positive or negative. Youth at high genetic risk, or 

homozygous for the short allele, had low-levels of positive affect if their parents 

were unsupportive. However, the same group also had high levels of positive 

affect if their parents were supportive. Thus, the short allele group was not only 

vulnerable to negative parenting but also benefited from positive parenting as 
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well. In sum, based on these findings, the ontogenetic origins of differential 

susceptibility and, more specifically, identifying specific genetic variants linked to 

heightened susceptibility to environmental influence, need further attention in the 

future. 

6.5.3 Beyond GxE: The role of gene-environment correlations  

In large part, studies of gene–environment interplay (including this thesis) 

have been motivated by the search for gene–environment interactions, following 

recent demonstrations of genetic sensitivity to environmental effects on human 

phenotypes. By the late 1970s, behavioural geneticists had amassed a large 

body of research on twins and adoptees that attested to the importance of 

genetic influences on individual differences in personality, cognitive abilities and 

liability to disease (Plomin et al., 1994). These studies demonstrated that genetic 

factors influencing an individual's exposure to particular environments could 

make those environments themselves heritable. This phenomenon is referred to 

as gene-environment correlation, or rGE (Plomin, DeFries & Eaves, 1977).  

rGEs reflect genetic differences in exposure to particular environments 

(Kendler & Eaves, 1986). Three separate types of rGE have been described: 

passive, evocative/ reactive, and active (Plomin, DeFries & Fulker, 1977). In 

passive rGE, parents pass on genes and also provide an environment, both of 

which influence the child’s development. For example, depressed parents may 

pass on depressogenic genes to their children, and also provide low levels of 

warmth and emotional support. These correlated genetic and environmental 
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influences increase the risk of depressive symptoms in the child. In evocative 

rGE, heritable traits influence the reaction of others and hence the environment 

provided by others. For example, a shy child may be perceived as less fun by 

other children, making other children less likely to spend time with him or her. In 

active rGE, a child’s heritable traits influence his or her choice of environment. 

For example, a shy child may have reduced motivation to engage with peers. 

This reduced exposure to positive environments may increase depressive 

symptoms. The presence of significant correlation between genetic and 

environmental factors can make interpretation of results difficult, because it is 

difficult to distinguish whether it is the genes, the environment, or both that 

influence an outcome of interest (Jaffee & Price, 2013). 

Developmental studies looking at evidence for rGE are rare (only 5 

publications), but some studies from our group (Hayden et al., 2010, 2013) and 

others (Dick et al., 2006; Lucht et al., 2006) reported rGE in community samples. 

For example, Lucht et al. (2006) reported an association between perceived 

negative paternal parenting (reported retrospectively by adult offspring) and 

offspring variants of both DRD2 and GABRA6. Similarly, DAT1 9-repeat variant 

was associated with child negative affect expressed toward the parent during 

parent-child interactions, and parents of children with a DAT1 9-repeat allele 

exhibited more hostility and lower guidance/engagement during the tasks than 

parents of children without a copy of the DAT1 9-repeat polymorphism. These 

gene-environment associations were partially mediated by child negative affect 

toward the parent, suggesting that evocative associations play a role in elevating 
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children’s psychopathology risk (Hayden et al., 2013). Even though examining 

rGEs was beyond the scope of this thesis, the implications of this phenomenon 

on emerging risk for mood and anxiety disorders will receive further attention in 

my future research. 

6.6 Conclusions 

This thesis set out to examine the role of neurotransmitter systems 

commonly implicated in stress reactivity and pathogenesis of stress-related 

disorders. The findings support a role for CRH system gene variants in early age 

cortisol response and internalizing symptoms. Along with direct associations, 

common variants of CRH and monoaminergic system genes also acted as 

moderators of early environment’s effect on developmental risk in young 

preschool age children. This research further supports a large body of GxE 

literature implicating the role of both genes and environment in etiology of mood 

disorders. Identifying the genetic underpinnings of stress response and emerging 

risk may ultimately aid in public health prevention efforts and help identifying at-

risk individuals or subgroups of the population. This knowledge could eventually 

guide intervention efforts and may help to reduce the effects of chronic life stress 

on at-risk children. Since many of the genes studied here are targets of drug 

development for stress-related disorders, it may be possible to pharmacologically 

treat intermediate phenotypes that share genetic etiology with internalizing 

problems. In closing, the better understanding of nature and nurture will help 

reduce the tremendous toll mental health disorders exact of individuals and 

society. 
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