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Abstract 

 

Introduction: The ability to identify tissues planes is a fundamental surgical skill. This study 

attempts to validate a previously developed test for assessing this ability.  

Methods: 48 video captured images from laparoscopic right hemicolectomies were presented 

on an iPad to 18 surgeons who were grouped based on experience (Consultants (C), Senior 

trainees (S), and the Junior trainees (J)). Subjects were asked to draw a line indicating the 

tissue plane of dissection. Lines were compared by a modified Hausdorff measure. Within 

group variability represented group precision and trainee accuracy was determined from 

comparison to Consultants. 

Results:  Within group comparisons demonstrated Consultants to be most precise with 

statistical significance in 14/25 images. Comparing Seniors and Juniors with Consultants 

demonstrated Seniors were significantly more accurate than Juniors in 14/22 images.  

Conclusion: This tool is sufficiently sensitive to discriminate between surgeons of different 

levels of experience based on measures of precision and accuracy. 
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Preface  

 

“There are pleasures that involve no pain or appetite, such as contemplation. Neither 

practical wisdom nor any state of being is impeded by the pleasure arising from it; it is 

foreign pleasures that impede, for the pleasures arising from thinking and learning will make 

us think and learn all the more”. 

Aristotle
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Chapter 1  

1  Introduction 

 

1.1 Tissue planes of dissection during surgical 
procedures 

Performing surgical procedures requires a great deal of skill across a wide range of 

levels. It involves a sound knowledge of human anatomy, a comprehensive understanding 

of the procedure itself, and a certain standard of acceptable technical skill. Mastering 

surgical skills necessary for a surgical procedure requires expertise in several domains.  

Anatomical and functional knowledge, capacities for diagnostic reasoning and procedural 

planning, visuospatial ability (1), and the ability to perform complex sensory-motor tasks 

in a dynamic and unstructured workspace are all critical to overall performance of the 

overarching surgical task.  Such skills can be refined with repeated practice using the 

prevalent Halsteadian apprenticeship approach (41, 42) to surgical training. 

Most surgical training programs in North America are five years in length. An average 

surgery resident works more than 85 hours a week (2). Surgical trainees devote a 

considerable amount of time working directly in the clinical setting in order to gain first-

hand experience. This is particularly applicable to their intraoperative exposure. Surgical 

educators continue to work and research methods to streamline and standardize teaching 

technical skills to better utilize trainee time and resources. The foremost focus of this 

research is towards the development of simulation based teaching, where trainees can 

focus on the development of specific skills required to achieve acceptable competency 

standards. 

One of the most critical portions of teaching a surgical procedure is correct identification 

of the surgical tissue planes of dissection. Surgical tissue planes of dissection are natural 

separations between various anatomical structures in the human body. With regards to 

abdominal surgery, these planes are formed during embryological development of the 
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human body when various internal organs align into their final anatomical position (4). 

As these developments take place the various organs are separated from each other by 

zones of fusion forming layers between the various abdominal organs. Identifying the 

correct tissue plane to separate these layers from each other is of paramount importance 

for abdominal surgeons, since doing so forms the foundation of separating a particular 

abdominal organ from the surrounding structures safely in order to remove or maneuver 

it during an operation. An example of tissue plane of dissection is illustrated in the figure 

below. 

 

Figure 1.1: Identification of Surgical Tissue planes 

  

These and the many other planes of dissection encountered by surgeons are not straight 

uniform lines. Rather they are convoluted and can appear in a complicated series of 

patterns. Only an expert in this field can claim intuition of these patterns. Staying in the 

correct tissue plane results in an efficient and safe surgery since these lines of fusion are 

avascular and do not contain vital structures which need to be preserved during an 

operation. Critical mistakes and complications occur when the surgeon fails to recognize 

the correct tissue plane and this increases the likelihood of bleeding and inadvertent 

tissue injury (5). 

 

The surgeon has identified the white line of 

Told’s (A) which separates the colon from the 

reteroperitoneum. Cutting tissue in this correct 

plane will eventually separate the colon 

completely from its embryological attachments. 

(Taken from the Atlas of Pelvic Surgery Online 

edition) (40) 

 

A 
A 
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1.2 How trainees learn the correct tissue plane 

The traditional methods of teaching localization of surgical tissue planes have involved 

the use of anatomical textbooks and surgical atlases, as well as didactic methods and 

interactive hands-on teaching in the operating room. 

 

 

  

 

 

 

Figure 1.2: Comparing textbook picture to real life intra operative view.  

Both images show the same step of the procedure showing the tissue plane between 

the Reteroperitoneum (RP) and the Mesocolon (MC) highlighted by the red line. 

Notice the complex visual cues in the real life image on the right (Taken from The 

Atlas of Pelvic Surgery- Online edition (40)). 

 

            

                         RP 

                            MC                        

 

               RP 

MC 

A 
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Figure 1.2 demonstrates a very simplistic representation of the anatomy highlighting the 

correct tissue plane in the image on the left. The picture on the right is the same 

anatomical representation taken from a still captured image from a real laparoscopic case. 

The reader’s attention is drawn to the extent of visual detail in this picture along with the 

complex visuospatial arrangement of different structures as compared to its simplistic 

representation in the textbook image (47, 48).  

The practical method of learning to identify correct tissue planes lies in the traditional 

apprenticeship system of learning operative skills. The trainee sees the anatomy or 

structures in the operating room, interprets the visual information presented to him or her 

and then responds by cutting where they estimate the location of the tissue plane to be. 

They are given feedback immediately if they are not correct by the surgical instructor. 

With repetition of this process, it is expected that the trainee will ultimately learn how to 

reason about the visual scene and estimate the location of the tissue plane. This method of 

education, although more effective than didactic learning, still requires a considerable 

amount of time, effort and has an unpredictable learning curve (49, 35). Since the 

literature clearly demonstrates that skills requiring visuospatial ability (VSA) can be 

enhanced with practice, identification of the correct surgical dissection plane is an area 

which is ripe for simulation based education (6, 7). The authors of this study propose that 

simulation can act on the interaction between feedback and response and has the potential 

to improve educational experience for surgical trainees. Ultimately, the goal of this study   

is to design a meaningful simulation based educational tool to facilitate surgeons’ tissue 

plane identification. 

 

1.3 Task Analysis and Context Integration 

In order to develop an effective teaching tool to facilitate surgical tissue plane 

identification, one must first try to understand the nature of skills required for 

accomplishing the overarching surgical procedure in an effective way to assess and 

compare the surgeon’s ability to perform the task. Surgical educators and researchers 

have tried to quantify surgical technical skill such that its assessment and comparison can 
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be standardized and applied to a broad range of surgeons. The challenge in this case is the 

complexity and broad nature of surgical tasks, and the difficulty of acquisition of surgical 

skills. Ringsted et al. (8) have shown that the specific content of the task including the 

kind and complexity of the procedure serve as important factors involved in the 

acquisition of technical skills required by surgeons. 

Tissue plane identification during an operation is a specific task which involves 

interpreting complex visual stimulus within variable anatomical arrangements of human 

organs. The plane of dissection tends to lie between the various anatomical structures 

(Figure 1.3).  

 

Figure 1.3: Intraoperative view of a right hemicolectomy.  

The goal is to separate the Mesocolon (M) from the Kidney (K) by staying and 

dividing in the correct tissue plane indicated by the red line. The surgeon has to 

appreciate the anatomical relations, distances and 3 dimensional visuospatial cues. 

 

The surgeon requires the ability to interpret the visual stimulus. Correct interpretation 

also involves situational awareness towards the three-dimensional relationships between 

anatomical structures.  Thus an individual’s innate visuospatial ability can play a major 

 M                                         
                                    K 
 
                 D          
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role in this performance (6). Surgeons’ experience tends to play a role as well, since 

experienced surgeons in actual clinical settings have a better understanding of the 

location of the tissue plane. Therefore it would seem that experienced surgeons can make 

use of their visuospatial skills and spatial memory during this task (18).  

Although it would seem that visualizing the tissue plane primarily involves the use of 

visuospatial skills, issues like manual dexterity and tactile sensations might also play a 

role in this process, since the surgeon needs to know how to manipulate tissues correctly 

by grasping or applying force on the tissues to expose the tissue plane. In other words the 

task is a sensorimotor interaction.  

The precise extent of the involvement of visuospatial ability and its integration with other 

human cognitive abilities like manual dexterity, human intelligence and other 

psychomotor skills is the subject of a number of studies (19). The human intelligence 

model proposed by Caroll (45) has widely been accepted in human psychology. 

According to this model human intelligence includes three components: verbal ability, 

nonverbal reasoning ability, and spatial ability (45). These components are partially 

separable but are not completely independent. This study chooses to focus on one 

important task: that of surgical tissue plane identification.  The visuospatial component of 

tissue interaction comes into play when the trainee looks at the surgical field, 

visuospatially processes what he/she sees, and comes to a conclusion about where the 

tissue plane is located. Furthermore, the authors of this study propose that trainee 

performance in this sub-task can be measured and possibly learned separate from motor 

skills. The focus of this research is to assess and quantify the use of a surgeon’s 

visuospatial ability in identifying tissue planes, which is the first step towards ultimately 

developing a teaching tool to facilitate this skill. 
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1.4 What is visuospatial ability and what is its role in 
tissue plane identification? 

To put it in simple terms visuospatial ability means to visually perceive objects and their 

spatial relationships in the surrounding environment.  

It is visuospatial ability which allows humans to retrace their way across the city because 

of having a visual map in their memory from repeated trips in the past. It allows humans 

to know that a car is closer to them and smaller than the building just behind the car. 

Visuospatial skills include a wide variety of individual skills that vary from recognizing 

brightness/darkness, identifying complex intersecting angles and curves to recognizing 

faces from the shape of eyes, noses, mouths and hair. It also involves complex human 

tasks like using maps, solving geometry questions, and recognizing two dimensional 

representations of three-dimensional objects (9). Visuospatial functions represent the 

brain's highest level of visual processing, and require the proper functioning of the 

parietal cortex. This is a complex human skill which is not composed of one construct but 

in fact is subdivided into various different domains of abilities (9). 

Oliveira (10) draws attention to the fact that while spatial ability is a term which is used 

frequently by psychologists and human factor design experts, there are contradictions in 

what the different constituents of visuospatial ability are and what roles they play. Many 

times researchers use the same description under different abilities and vice versa. There 

is also a general disagreement on the number of components of spatial ability and the 

exact contents of a component.  

One of the most comprehensive works in this field was done by Carroll (11, 45) who did 

a meta-analysis of more than 140 datasets and detected five major clusters or subdomains 

which collectively constitute visuospatial ability. Further studies done by Hegarty, Waller 

and Halpern (12, 13, and 43) added three more to these five domains. What should be 

emphasized is the lack of general agreement in the actual number and specific definitions 

of each of these domains. Some of these domains are listed below (20, 43, 45): 

 Visual Processing (Gv): The ability to perceive, analyze, synthesize, and think 

with visual patterns, including the ability to store and recall visual representations. 

 

 Visualization (Vz): The ability to apprehend, encode and manipulate visuospatial 

representations, often involving rotation in two or three dimensions. 
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 Spatial relations (SR): The speed of manipulating simple visuospatial 

representations by transformation. 

 

 Closure speed (CS): The speed of retrieving visuospatial representations from 

long-term memory when presented with incomplete, disguised or obscured forms 

of those representations. 

 

 Closure flexibility (CF): The speed of identifying given visuospatial patterns in a 

complex visual environment. 

 

  Perceptual speed (P): The speed of making correct comparisons when given a 

number of alternative patterns (11). 

 

 Dynamic Spatial Ability (DSA) or Spatiotemporal Ability (SA): Judgments 

regarding a moving stimulus (12). 

 

  Environmental Ability (EA): Integrating spatial information about natural and 

artificial objects and surfaces in an individual’s surroundings. These abilities are 

considered essential for way-finding and navigation (14 and 15). 

Figure 1.4 further explains some of the above definitions. 

 

 

Figure 1.4: Various domains of visuospatial ability (6) [Figure 1.4 removed because 

of unavailability of copyright permission, original reference in references section 

(6)].  
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1.5 Measurements of Visuospatial Ability (VSA) 

Human behavioral experts have developed several different performance based tests to 

measure an individual’s visuospatial ability. Figures 1.5 A, B, C and D illustrate some 

examples (16, 17). 

1) The paper folding test (Figure 1.5 A): The subject must imagine that a sheet of paper 

has been folded in a certain way, a hole is punched through all thicknesses of the paper at 

a certain point, and the sheet is unfolded. The folding and punching are indicated on the 

left side of the vertical line, and the subject must select which of the five unfolded sheets 

on the right of the vertical line is the result.  

2) The mental rotations task (Figure 1.5 B): The subject must imagine rotating three-

dimensional block figures. The target/criterion figure is represented on the far left, and 

the subject must determine as quickly and accurately as possible which two of the four 

option figures on the right are rotations of the target figure. 

3) The hidden figures test (Figure 1.5 C): For each pair of figures, the complex pattern on 

the right includes the simple geometric pattern drawn on the left. The participant must 

recognize it and pencil it in (highlighted patterns in each complex pattern). 

4) The space relations test (Figure 1.5 D): This test measures the ability to visualize a 

three-dimensional object from a two-dimensional pattern and to visualize how this object 

would look if rotated in space. It assesses the ability to "think in three dimensions." 

Subjects would be asked to identify which figure out of the four options (F, G, H, I) 

would result from the pattern on the left.  

 

Figure 1.5  A, B, C and D: Different tests to assess visuospatial ability. [Removed 

because of unavailability of copyright permission, original reference in References 

section (16, 17)]. 
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Detailed analysis of the different tests of VSA suggest that they have a least two aspects 

in common – each seems to require the execution of a series of mental transformations in 

two or three dimensions, and in each, intermediate products must be stored temporarily in 

visuospatial working memory during the processing of other information (11,13). For 

example, in the mental rotations task, two or more of the block figures must be rotated in 

order to determine whether the blocks are rotations of the target. Furthermore, the 

orientations of various parts of a block have to be remembered while other parts are 

rotated (11, 13). 

 

1.6 Differences in visuospatial ability and genetic links 

Human beings tend to differ in their visuospatial ability as has been demonstrated by their 

variability in performance on the tests mentioned above and a battery of other similar 

tests checking various aspects of visuospatial perception (18). Individuals who score 

higher on these tasks are not only faster, have more working memory resources for 

storing and processing visuospatial information, but also tend to adopt more efficient 

strategies for solving visuospatial problems.  

Environmental, cultural, and social factors as well as gender have been known to affect 

the development of visuospatial skills in children but the exact influence of all of these 

factors tends to be a controversial topic (19).             

 

1.7 Literature foundations of visuospatial ability in surgery  

While it is not known which sub constructs of human visuospatial ability affect the skills 

to operate in the correct tissue plane and up to what extent, it is well known that 

visuospatial ability plays a very important part in the acquisition and practice of surgical 

technical skills particularly trainees. 
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One of the first studies in this subject was done by Shuneman et. al (23). One hundred 

and twenty general surgery residents were tested with a neuropsychological test battery 

and then rated by attending surgeons on surgical skills exhibited during the course of 

1445 surgical procedures. The battery of tests included the Minnesota paper folding test 

(test similar to the example in figure 1.5 A) and a hidden figures test (Figure 1.5 C). The 

investigators found a statistically significant correlation between general surgical ability 

of the trainee and performance on the paper folding test but not on the hidden figures test. 

They also found a surprisingly negative correlation with usual markers of academic 

excellence (MCAT). As would be expected, the experience of the trainee was strongly 

correlated with surgical performance. This begs the question of how important 

visuospatial ability is as surgical experience increases. The authors did not address if a 

difference existed among trainees with similar experience and whether that difference 

could be attributed to differing visuospatial skills. Anastakis et al. (24) in their review of 

this study correctly pointed out the lack of a rationale for choosing the particular battery 

of tests. Also the fact that residents with better technical skill scored higher on one of the 

tests (Paper folding test) but not on the other was not explained. Thus it can only be 

speculated what aspect of VSA correlates with improved performance in the operating 

room. Also measuring surgical abilities on 1445 different surgical procedures is a very 

heterogeneous group of tasks which would have required a multitude of abilities and 

skills not only visuospatial but also others. It is hard to conclude which domains of 

visuospatial ability were checked and correlated with better surgical performance of a 

particular set of skills. The surgical skill is rated with a comprehensive but subjective 

checklist and there is no measurable variable. 

Murdoch et al. (25) conducted a study which was relatively specific in terms of the 

participant characteristics, task involved and VSA test used. They tested microsurgery 

trainees on their ability to perform a microsurgical anastomosis and tested their VSA by a 

space relations test which involved perception of a three-dimensional representation from 

a two-dimensional image. The investigators found that trainees who got better ratings 

also scored higher on the space relations test. This gave some weight to the hypothesis 

that visuospatial ability specifically pertaining to three-dimensional interpretation of two- 

dimensional images positively correlates with performance on a specific microsurgical 
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task. The surgical ratings received by trainees when actually performing the surgical task 

(i.e. the microsurgical anastomosis), however, did not have an objective measure 

associated with them. Also, what aspect of the task was specifically related to 

visuospatial ability cannot be ascertained with confidence. 

Gibbons et al. (26) did a similar study on trainees as Scheuneman et. al. and found a 

positive correlation between average rating of technical skills and performance in the 

hidden figures test (Figure 1.5 C). Again the ratings of technical ability were subjective 

and what particular aspect of technical skill positively correlated with the hidden figures 

test was unknown. 

An interesting aspect of VSA and surgical skills is the effect it has on experience of the 

surgeon. This was demonstrated by a study done by Keehner et al. (28). The study was 

done on junior surgical trainees and experienced surgeons who were attending a 

simulation course. The experience of the surgeon was gauged by the number of 

procedures done and the technical skill was assessed based on a previously validated 

scale while performing procedures on a cadaver (29). The VSA was measured by the 

Paper folding test (Figure 1.5 A).  In the junior surgeons, surgical skill and VSA strongly 

correlated with each other while no such difference was appreciated in the experienced 

surgeon group. This according to the authors was consistent with the findings of skill 

acquisition researchers (30), who have shown that cognitive abilities such as spatial 

ability are important during the initial phase of learning a new skill, but less important in 

later phases in which skills become increasingly proceduralized. 

Keehner et al. did another study on this subject using a different set of skills (27). This 

time they used the ability to drive a 30 degree laparoscopic camera by novices and also 

allowed them to practice their skills on this task in a simulation based environment for a 

total of 12 learning sessions. This skill is technically a complex visuospatial task and 

involves three-dimensional interpretation of two-dimensional views. The authors tested 

all participants on general reasoning ability and VSA at the beginning of these sessions. 

General reasoning ability was assessed by the Differential Aptitude Test battery as 

described by Bennet et al. (32). The test comprised sequences of geometric figures with 
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elements changing systematically according to a logical rule.  Mental Rotation Test 

(Figure 1.5 B) and Guay’s Visualization of Views Test (31) were used to check for VSA. 

In Guay’s Visualization of Views Test, participants saw a depiction of a 3D object in the 

center of a cube. The same object from a different viewpoint was depicted below the 

cube. The task was to indicate the corner of the cube from which the new view was taken. 

Both the VSA and general reasoning were correlated with the ability to drive a 30 degree 

laparoscopic camera at the beginning of the training sessions but at the end of the 

sessions only VSA still correlated with better performance. In fact general reasoning and 

VSA had a positive correlation amongst each other and when this correlation was 

eliminated out of the analysis, the effect of VSA became more pronounced, particularly 

towards the last of the sessions as the experience of the participant increases. The 

researchers also showed that with repeated practice the participants with low VSA scores 

also had comparable performance to expert laparoscopic surgeons which were tested in a 

separate cohort. This study has an interesting result and contrary to earlier held beliefs, 

shows that even after gaining acceptable proficiency with repeated practice, 

visuospatially gifted individuals continue to perform better in complex visuospatial tasks 

(Figure 1.6). The author’s hypothesis on this is that the changing correlations reflect a 

shift from a reliance on strategic or executive processes as assessed by abstract reasoning 

to exclusively spatial transformation processes. Thus with practice, the strategic 

component of performance on the laparoscope task decreases, whereas its dependence on 

the ability to maintain and transform spatial information persists. Besides the fact that this 

was a purely simulation based environment, one of the other drawbacks of this study is 

the paucity of long term assessment of these participants, since it is not known if the 

effect would have continued to persist between VSA and performance on the 30 degree 

camera if practice even after the 12th training session would have continued. 

 

 

Figure 1.6: Performance with a laparoscope as impacted by general and spatial ability 

[figure removed because of copyright, original source in reference (27)]. 
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Another study which highlights the importance of practice in enhancing performance on 

VSA tasks and differentiating how visuospatial ability affects performance was done by 

Wanzel et al. (33). The authors compared performance on Z-plasty, a spatially complex 

surgical procedure, to performance on six standardized visuospatial tests. These tests 

ranged in complexity from relatively simple two-dimensional items such as the snowy 

pictures test (16) to more complex three-dimensional visualization items such as the form 

board (16) and mental rotation tests (Figure 1.5 B). They found that only the latter two 

tests predicted performance on the surgical procedure, which they interpreted as evidence 

for the involvement of three-dimensional visualization processes in the surgical task. The 

correlations were strongest for the most spatially complex surgical procedures. 

Furthermore, only participants who scored higher on visuospatial tests were able to 

successfully transfer their learning to a more complex version of the Z-plasty procedure. 

One possible explanation of these findings is that processes such as visualization, mental 

rotation, and spatial orientation help to support and maintain a mental model of 

anatomical structure during surgical procedures, and help formulate an end product in 

mind before the procedure is started. The authors also showed that with practice, subjects 

who scored low in the VSA tests ultimately were able to perform the Z-pasty at an 

acceptable standard. 

It seems that studies focussing on aspects of VSA pertaining to three-dimensional 

interpretation reveal the strongest correlation between task performance and innate VSA. 

Vlez et al. (34) did a study on healthy volunteers and found that individuals who score 

highly on VSA tests also perform better at a computer based visualization battery of tests 

which involves interpreting three-dimensional information from two-dimensional 

representation of objects. They also showed that subjects with higher spatial ability had 

less difficulty with object complexity and hidden properties of an object. 

These effects would perhaps play a very important role in surgery and specifically 

laparoscopic abdominal surgery, which involves working in a two-dimensional 

environment in a limited space and visually interpreting three-dimensional information. 

This would also mean that individuals with high visuospatial ability would perhaps 

perform better in such environments. Also in surgery, there is a degree of variability in 
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performing the same procedure on a different patient—an environment similar to air 

traffic control where it has been shown that the phenomena of automation of learning 

does not improve performance to such an extent so as to nullify the effect of visuospatial 

skills (35). 

While most studies point towards a positive correlation between VSA and surgical 

performance, some studies show no such correlation. Deary et al. (36) rated 22 surgical 

trainees on operating ability and assessed them with a battery of tests on visuospatial 

ability, intelligence, and personality. There were no significant correlations between 

surgical ability and visuospatial ability. Thus, these findings contradict earlier studies like 

Sheuneman et.al. (23). Again, this was a heterogeneous sample, with very general ratings 

of surgical ability as the dependent variable, and little rationale provided for the choice of 

the specific spatial ability tests used. Thus, the same limitations exist in interpreting both 

this study and the study by Scheuneman et.al (23).  It also has been shown that expert 

surgeons as a group are not exceptional visuospatially (8, 10). Sidhu et al. (37) did a 

study on expert vascular surgeons and novices in assessing their ability of interpretation 

of three-dimensional structures from two-dimensional endovascular images. They found 

that perception of overall surface contours of three-dimensional structures from two-

dimensional angiographic images was affected by experience and training and was not 

related to innate visuospatial ability. Contrary to studies by Keehner, Wanzel and Vlez 

(27, 28, 33, 34), this study does not support the hypothesis that innate VSA affects three-

dimensional interpretation of objects. 

A rather comprehensive systematic review was done by Maan et al. (50). This review 

explored predictors of better surgical skill by analyzing a total of 27 studies out of which 

13 showed VSA to be a predictor of better surgical performance.  
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1.8 Summary of literature review 

Although the above-mentioned studies show some conflicting findings, and many lack 

specificity and objectivity in what is being tested, certain conclusions can be fairly 

drawn. 

1) VSA does tend to play a role in the acquisition and practice of technical skills in the 

operating room. These skills play an important role in novices. There is some evidence 

(27, 33) that they continue to play some role even with increasing experience. 

 

2) Subjects with low VSA are also able to perform at acceptable level of competence with 

repetitive practice but take longer and more practice to get to that level.  

 

3) The clinical relevance of point 2 is debatable. For educators an important question is 

whether this variability in time to train and final performance has practical significance in 

the context of real surgery. 

The fact that practice causes improvement in ability introduces the topic of simulation in 

surgical education which is the focus of this thesis as will be elaborated in the next few 

chapters.  

While there is no methodology available to the authors’ knowledge which has focused on 

developing a simulation based teaching tool to facilitate tissue plane identification by 

trainees, there is considerable literature that suggests that simulation based surgical 

education does enhance the educational experience of trainees as pointed out earlier 

(27,33). Dawe et al. (44) reviewed a total of 12 randomized controlled trials involving 

surgical simulation and operating room performance and found statistically significant 

improvement in trainee performance as a result of simulation on a number of procedures.  

An extensive meta-analysis was done in this regard by Sutherland et al. (33) who 

reviewed 30 randomized controlled trials with more than 700 participants. This meta-

analysis found mixed role for simulation in surgical education, but noted the small 

volumes and under powering of a number of trials along with the presence of multiple 

confounding variables. Most of these studies lacked specificity in explaining which 



17 

 

subsets of surgical skills were checked and enhanced while participating in simulation. 

Still most randomized controlled trials in this review showed that both simulator and 

standard training groups improved significantly from baseline. Participants' final scores 

usually did not show differences between the simulator and standard training. The 

authors concluded from this review that simulation based training might be as good as 

standard training and has the potential of substituting it in this age of increasing patient 

safety and accountability. Anastakis et al. (24) suggested that in order to understand 

visual perception and its role in surgical education, subjects need to be assessed on 

specific tasks and with specific tools. The authors of this study believe that in studying a 

trainees understanding of the surgical tissue planes they are attempting to analyze a 

specific skill set of surgery. 

 

1.9 Challenges 

There are significant numbers of challenges when attempting to assess this ability and 

developing a teaching tool. While some surgical simulation devices do assess a 

participant’s ability to stay in correct tissue planes as part of a simulation's procedure 

based assessment (PBA) (38), the criterion used to assess these abilities are often vague 

and ill-defined. Thus, this research tends to be of exploratory nature and there appears to 

be the lack of a pre-set criteria or methodology to follow in order to assess a trainee’s 

ability to identify correct tissue planes.  

The other challenge is defining a gold standard with which to compare. Surgical tissue 

planes are approached differently by experts. Thus, one consultant surgeon would 

approach the surgical plane from medial to lateral whereas the other from the opposite 

direction. Even more importantly there is often disagreement on the exact location of the 

tissue plane itself among expert surgeons. There is also a lack of comprehensive task 

analysis of surgical tissue planes. From the literature review it can be concluded that 

VSA tends to play a major role in this process and a surgeon’s experience does enhance 

their use of such skills; but what other cognitive and procedural skills are involved and to 

what extent is speculation. One major factor might be the use of other psychometric 
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abilities to improve a surgeon’s visualization of tissue planes, including pushing and 

pulling the tissue in the right direction. Hence seeing the tissue plane is a complex ability 

which might involve several domains of human intelligence and several subsets of VSA. 

Therefore the first step towards facilitating this learning process is to develop an 

assessment tool which gauges a surgeon's ability to identify tissue planes. It is only when   

the ability of a surgeon to identify tissue planes can be quantified then one can develop 

meaningful simulation. Such an assessment tool should be able to discriminate a surgeon 

based on their ability to identify a tissue plane. This is based on a prior hypothesis that 

the most experienced surgeons (consultants) are better than the trainees in identifying the 

tissue planes, since it is known that they do these operations independently, safely and 

with an acceptable complication rate.  Therefore, the challenge boils down to develop a 

quantitative assessment of this ability of identifying tissue planes. 

 

1.10 Assessment tool 

The authors have devised a novel methodology to derive meaningful information from 

surgeon-drawn lines highlighting the tissue planes on still captured images from real 

surgeries. This methodology was used to conduct a pilot study (39).  This study showed 

statistically significant differences in accuracy and precision of participants’ ability to 

identify surgical tissue planes based on surgeon’s experience. Thus, more experienced 

surgeons performed better on this teaching tool. 

 

1.11 Hypothesis 

Applying this novel methodology for assessing surgeons’ ability to identify tissue planes 

during  laparoscopic right hemicolectomies will demonstrate a correlation between 

surgeons’ experience level and both accuracy and precision, providing content validity to 

this tool. 
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1.12 Pilot study 

A total of 16 still images were captured from a single laparoscopic rectal cancer case. The 

images were selected by a surgeon with more than 10 years of experience with this 

procedure. These images were shown to 12 participant surgeons of variable experience 

and the participants were asked to draw a line where they believed the tissue plane of 

dissection existed. The participants were divided into junior trainees, senior trainees and 

consultants based on their level of experience. Once the lines were drawn, a distance 

based metric (discussed later) was used to give each line a numerical value. 

The lines within a group were compared amongst each other to get intragroup precision 

values. The results showed that the consultants were the most precise group and these 

differences reached statistical significance in nine out of the 16 images on a one-way 

ANOVA. Since there was no gold standard, the consultants were used as the gold 

standard and the junior and senior trainee lines were compared to the consultant lines as a 

measure of accuracy. The seniors were more accurate than the juniors as a group (P<0.05 

in 10/16 images). It was concluded that this methodology represented the foundations of 

an assessment tool which may reliably distinguish surgeons based on their ability to 

identify tissue planes. This assessment tool was able to distinguish a surgeon with more 

experience on measures of precision and accuracy. 

 

1.13  Aims and Objectives 

The key objectives of this study are:  

 1. To generate a simulation tool consisting of a library of images from laparoscopic 

colon surgery suitable for testing trainees.  

2. To validate this simulation tool for assessment on a panel of surgeons of different 

levels of experience. 
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 3. To develop a library of images with the most discriminative value to be used in the 

future for further studies and ultimately as a teaching tool. 
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2 Methodology 

 

2.1 Overview of study design 

This is a prospective study. A total of 48 images taken from various laparoscopic right 

hemicolectomies done on real patients were shown to a total of 18 participants with 

different levels of experience. Participants were asked to draw a line to indicate where 

they thought the tissue planes were located. Lines were analyzed based on the assessment 

tool developed and utilized during the pilot study (2). Performance of each group was 

compared for precision. The senior and junior trainee lines were also compared with the 

consultants to get a measure of accuracy. 

 

2.2  Choice of procedure 

The first step towards choosing images for this study was to choose an operation. The 

pilot study had collected images from a single case of laparoscopic low anterior resection. 

This is a fairly advanced procedure which requires considerable surgical skills and 

experience. For the purposes of that study, it held the advantage of providing many 

opportunities for tissue plane identification. On the other hand, because of the advanced 

nature of the procedure many trainee participants had minimal experience with this 

procedure and thus the content validity of the methodology could be questioned i.e. 

performance on those images will not only differ with the surgeons’ experience resulting 

from the lack of knowledge of the correct tissue plane but also a general sense of 

unfamiliarity with the anatomical orientation of the procedure.  

Based on these considerations, laparoscopic right hemicolectomy was chosen as the 

procedure to use for this study. This procedure confers the following advantages: 



28 

 

 Broad applicability since the procedure is performed very commonly amongst 

general surgeons. Trainees get exposed to it at an earlier point of their learning 

cycle. 

 There are several opportunities during the procedure which involve identification 

of the tissue planes of dissection. 

 The procedure is performed by the authors of this study in considerable numbers, 

thus the authors have access to a large archive of video library for this procedure. 

This resulted in a large sample of images for testing. 

 

2.3 Determination of sample size 

Since this is an exploratory study with no previously done standard to determine an 

accurate estimate of participant sample size, the pilot study was used to determine sample 

size as below: 

In the pilot study, the mean pairwise distance between lines for consultants (c) was found 

to range from 366 to 1685 pixels. For trainees (t), the range was 343 to 2917 pixels.  

 Assuming: μc = 750 pixels, μt = 1500 pixels, σ = 500 pixels with  

 α = 0.017 (Sidak correction for multiple comparisons of three groups)  

 β = 0.8  

Thus, sample size would be 10 comparisons per group, based on a single image analysis. 

To obtain 10 pairwise comparisons in a group, the group needs to have at least five 

participants. One more participant per group was recruited than what was required based 

on this analysis. 
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2.4  Ethics approval 

An ethics approval was obtained before the start of the study from the ethics board 

associated with the Western University.  

 

2.5 Selection of images 

 This study involved capturing a large number of images from a video archive of a total 

of 12 cases of laparoscopic right colectomy performed by a single surgeon during the 

times of 2006-2010 at London Health Sciences Center. These videos had been recorded 

from a high definition laparoscopic camera. These videos were then reviewed on a 

standard video playing computer software (VLC player, École Centrale Paris) and 

relevant still images were captured for this study. Relevant images mean images which 

highlight the steps of the procedure where dissection through the tissue planes is 

necessary.  

This entire process generated a total of 1126 images. An expert panel consisting of the 

investigators of this study which include Christopher Schlachta, Syed Ali, and Roy 

Eagleson, then reviewed these images. These individuals represent expertise in advanced 

laparoscopic surgery training, and specific cognitive and perceptual-motor skills 

respectively. The panel shortlisted a total of 48 images based on the following criteria:  

1) The image represents an operative moment where a tissue plane of dissection 

should be identified and   

2) The ability to identify the dissection plane in these images would likely be of 

variable difficulty for novices and experts. 

3) In selecting an image all three members of the panel had to agree on point 1 and 

point 2. 

There was no prior knowledge of how many images would be required for an overall 

study score nor how many images will be of discriminating value. The pilot study 

included 16 images only. The aim in selecting images for this study was to incorporate all 

http://en.wikipedia.org/wiki/%C3%89cole_Centrale_Paris
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the different steps of the procedure which highlight the importance of identifying tissue 

planes. It was desired that the selected images should represent all the different aspects of 

the operation in a broad and comprehensive manner but at the same time achieve 

feasibility of time required by the study subjects to perform on the assessment tool. 

Because of these reasons the expert panel decided on 48 images. 

 

2.6 Labelling and identification of images 

Each selected image was given a unique name which was based on the procedure type, 

the confidential unique identifier attributed to the patient, the step of the procedure and 

the timestamp of the captured image from its original video. Thus an individual image’s 

name would be: 

RHC72-S6-T01223210 

Where RHC= Right hemicolectomy, 72 is the unique video identifier, s6 =step number 

six of the procedure, T01223210= time stamp from the video capturing the hour, minutes, 

seconds and frame number from the video. Thus in the above example 1 hour 22 minutes 

32 seconds and 10
th

 frame of the video is the exact time location of the still captured 

image. Information on the unique identifier was kept in a master list and was only 

accessible to the principle investigator because of patient confidentiality as approved by 

the REB. Although there is no standard classification which divides a right 

hemicolectomy, for this research each image was divided and labeled to one of the seven 

steps: 

Step 1: Isolation of the illeocolic pedicle 

Step 2: Medial mobilization 

Step 3: Separation of small bowel mesentery from reteroperitoneum 

Step 4: Lateral mobilization 
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Step 5: Hepatic flexure mobilization 

Step 6: Opening of the lesser sac  

Most surgeons agree that the above steps are required while performing a right 

hemicolectomy via a medial to lateral approach (6).  

 

2.7 Identification of Subjects  

Volunteer participants were recruited from surgical colleagues and trainees in the 

Division of General Surgery at Western University and the University of Toronto. After 

obtaining informed consent for the study, participants were divided into three groups 

based on their levels of experience (6 surgeons per group).  

1. The consultant group (C) included general surgeons with Royal College certification in 

general surgery, already in practice at one of the hospitals affiliated with Western 

University or the University of Toronto. They perform colorectal surgery as part of their 

clinical practice. This is considered the expert group with which trainees were referenced. 

To be included in the consultant group a consultant had to have performed more than 50 

laparoscopic right hemicolectomies independently. This number is expected to be 

associated with reasonable technical competence in performing this procedure 

(8,9,10,11). 

2. The senior trainees group (S) were residents in their third to fifth years of general 

surgery residency at Western University.  

3. The junior trainee (J) group were in their first two years of general surgery residency at 

Western University, which is a Royal College accredited Canadian general surgery 

residency program.  
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2.8 Plane identification exercise 

Images were transferred to an iPad 2 (Apple Computers) and presented in Sketchbook 

Pro software (Autodesk Inc. San Rafael, California). Subjects were able to draw on the 

presented images using a stylus for capacitive touch screens (Slim stylus, Targus, 

Anaheim, California). Each subject’s line was saved in a separate layer for later analysis. 

For each of the images, the subjects were asked to draw a line clearly and precisely where 

they saw the tissue plane of dissection. 

The images were not labeled but there was a standard set of instructions for each image. 

The purpose of this was to make sure participants were oriented to the step of the 

procedure involved and oriented anatomically. Uniform sets of instructions were given to 

each participant. 

 

2.9 Transfer of images from a tablet to a personal 
computer for analysis 

After data collection, the images were transferred onto a secure personal computer for 

analysis. Size and pixel quality of every image was kept the same. This was necessary to 

ensure the accuracy of the analysis. 

 

2.10 Analysis of performance 

Once data collection was complete, lines were analyzed by a novel methodology (Figure 

2.1). This methodology involved using a distance metric similar to the Hausdorff measure 

used in computational geometry (3), which is based on the Euclidean distance between 

evenly-spaced points along the arc. 
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2.11 Hausdorff distance 

Hausdorff distance was proposed by Felix Hausdorff (1868-1942) to measure distances 

between different sets of objects. Modified versions of this distance metric have broad 

applications in the fields of geometrics and computer graphics but have also been used in 

the health industry (5).  

This distance metric measures how far two subsets of a metric space are from each other. 

Instead of just taking the shortest distance between two geometric figures, lines or arcs, it 

also takes into account the maximum distance possible between two objects. The distance 

metric used in this study is different from the Hausdorff distance in that it preserves the 

sequence of pairs of each line in performing a pairwise Euclidean distance calculation. 

Each line is sampled into a discrete set of points (same number of points for each line) 

and the distance metric is established by summing the pairwise distances. 

Using MS Paint (Microsoft Office Professional Edition, 2011, Microsoft Corporation, 

Seattle, WA), each line was iteratively bisected three times resulting in eight equidistant 

spaces which are represented by nine equidistant points (Figure 2.1). Cartesian 

coordinates (X,Y) are plotted on each of these nine points, thus giving a numerical 

representation of the lines’ location. For each study group (G), this distance metric 

between any two lines (a, b) for a given image (i) was calculated as the summed distance 

(d), in pixels, between each of the (p=9) coordinate pairs (j) as follows: 

 (     )   ∑√(         )   (         ) 
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Figure 2.1: Comparing 2 lines with each other. 

                                                     

2.12 Order of the Cartesian co-ordinates 

While calculating this distance metric, lines were marked with the points in ascending 

order of their Euclidian distance  i.e. Point 1 on a line would be the lowest value of 

Cartesian coordinates whereas Point 9 would be the highest. 

 

2.13 Analysis of precision 

The lines within a group were compared amongst each other for each image to get 

intragroup precision values. The smaller the values of the distance metric, the closer the 

lines are to each other within that group, and the more precise the group is. Since there 

are six participants within a group and each member of a group is being compared with 

every other member of the same group, there are 15 comparisons per group per image 

(Figure 2.2).  

Mean of these 15 values was calculated to get an estimate of the precision of the 

particular group for each image. For each image, precision values of the three groups 

were compared using one way analysis of variance (ANOVA). Where statistically 

(axj,  ayj)            Participant  a 

                            Participant b  

                                           

               ( bxj, byj)  

)        

B       
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significant differences were found, pairwise comparisons were performed with t-tests (2-

tailed unequal variance) with level of significance corrected for multiple comparisons 

(Sidak’s correction: p<0.017). These steps are summarized in figure 2.3.  

 

 

Figure 2.2: Obtaining the number of precision comparisons per group.  

When six participants are compared to each other, 15 comparisons of precision per 

group are obtained.  
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Figure 2.3: Summary sketch of the methodology—Precision   

 

2.14 Analysis of accuracy 

As part of the analysis, accuracy of the trainees was also looked at. The interesting 

methodological problem encountered here was that there was no single “correct” line 

which all the experts had an agreement upon regarding the correct tissue plane. Therefore 

there is lack of a ‘gold standard’ of reference to compare accuracy of trainees. Still it was 

presumed that the consultants being the experts at performing this operation should be the 

Participant 

Surgeons (18)  

Consultants(C) 

(6) 

Senior Trainees (S) 

(6) 

Junior Trainees(J) 

(6) 

 

(s1VSs2+s1VSs3+…

….s3VSs4/15) 

Average Senior 

Precision 

(j1VSj2+j1VSj3+…….j3V

Sj4/15) 

Average Junior 

Precision 

Image 1  

Image 48 

(C1VSC2+C1VSC3+…….

C3VSC4/15) 

Average Consultant 

Precision 

ANOVA 
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most accurate and their lines were used as the standard. Lines drawn by each junior and 

senior trainee were compared to each line drawn by consultants to assess which lines 

were nearer to the consultants’. These were pairwise comparisons between each junior 

and consultant and each senior and consultant (Figure 2.4). If the hypothesis is valid, 

senior trainees who are better at performing these operations than juniors should have 

their lines being more accurate than juniors, thus adding to the validity of this assessment 

tool. 
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Figure 2.4: Summary sketch of the methodology used for assessing accuracy of 

trainees.  

For each image, an individual trainee’s lines (J1-J6 and S1-S6) were compared to all 

consultant lines (C1-C6).  

 

2.15 Sub Analysis 

It was noticed that consultants tended to draw longer lines during the course of the study 

as compared to the trainees. In order to show this, lines drawn by each participant was 
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measured. This was done by the methodology discussed previously but the sum of the 

point to point distance between each of the nine points was also taken to estimate the 

variable curvature of the lines. For each participant line A, this total distance of the line 

i.e. line length for a given image (i) was calculated as the summed distance (d), in pixels, 

between sequential points on the same line (n1-n8). 

 (        )   ∑√(          )
   (          )

 

 

   

 

Where n’= n+1  

This method to calculate for line length measures the line in curvilinear distances thus 

providing a true measure of the line’s length since most of the lines drawn by surgeons 

are curved rather than straight lines. 

 

2.16 Time record and experience 

Although the subjects were not given a specific time to complete the entire exercise, the 

time required by each participant to complete the exercise was recorded. The subjects 

were not aware that they were being timed. In addition, the experience which each 

candidate had with laparoscopic surgery was also recorded.  

All the statistical analysis was performed by the SPSS software. 
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3 Integrated Article: Validation of A Novel Method for 
Assessing Visual Perception of Surgical Planes 

             Syed Ali MD, Roy Eagleson PhD, Christopher M. Schlachta MDCM 

 

3.1 Introduction 

It is considered a fundamental principle of good surgical technique to respect tissue 

planes during surgery. Tissues planes tend to be avascular and therefore bleeding can be 

reduced. In addition, there is growing evidence of improved oncologic outcomes 

associated with adherence to dissection along tissue planes. This has been demonstrated 

clearly for rectal cancer resections (1). There is compelling evidence to suggest this is 

also true for colon cancer surgery (2) and hepatobiliary surgery (3).Various academic 

surgical societies have mandated that trainees have a clear understanding of the correct 

tissue plane as a prerequisite for competency in the operating room (4). 

One of the challenges encountered in teaching trainees to operate within tissue planes is 

to facilitate the trainee’s recognition of the plane.  What is intuitively obvious to the 

expert surgeon is not always obvious to the trainee. Currently it is believed that this skill 

is learned though repeated exposure through the course of clinical apprentice-based 

training. In the current era of surgical training there has been an overall restriction in 

trainee work hours and thus an overall decrease in trainee exposure in the operating room 

because of various reasons including patient and trainee safety. Simulation based surgical 

assessment and training is an attempt to compensate for this and this has been proven to 

be an effective way to assess and teach surgical trainees (5). There have been numerous 

successful and validated attempts to assess and teach surgical trainees based on 

simulation outside the operating room (6, 7). While most simulation based tools focus on 
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assessing and teaching various different aspects of surgical skills, to the authors’ 

knowledge, there have been no attempts at developing and validating a simulation based 

teaching tool which specifically focuses on trainee’s identification of correct surgical 

tissue planes.  

The authors have developed a novel assessment tool to assess this ability. The pilot study 

conducted on this assessment tool has shown promising results by distinguishing 

surgeons by their ability to identify surgical planes and this ability correlated strongly 

with surgeons’ level of experience. Thus more experienced surgeons performed better 

when assessed (8).  

The purpose of the current study is to refine and validate this assessment tool by applying 

it on a larger surgical population. The hypothesis of this study is that this assessment tool 

accurately distinguishes surgeons based on their ability to identify surgical tissue planes 

and is able to discriminate between novice and expert surgeons. 

 

3.2 Methods 

 

3.2.1 Selection of Images  

A total of 1126 images were initially still captured on a standard video playing computer 

software, VLC player. These were collected from a video archive consisting of 12 cases 

of laparoscopic right colectomy. All these surgeries were performed by a single surgeon 

during 2006-2010 at London Health Sciences Center. These images were thought to 

represent moments during the surgery where the tissue plane of dissection was visible.  

An expert panel consisting of the investigators of this study then reviewed these images. 

These individuals represent expertise in advanced laparoscopic surgery training, and 

specific cognitive and perceptual-motor skills. The panel shortlisted a total of 48 images 

based on the following criteria:  

1)   The image represents an operative moment where a tissue plane of dissection 
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should be identified.  

2)   The ability to identify the dissection plane in these images would likely be of 

variable difficulty for novices and experts. 

3)   In selecting an image all three member of the panel had to agree on (1) and (2). 

 

3.2.2 Identification of Subjects 

 Volunteer participants were recruited from surgical colleagues and trainees in the 

Division of General Surgery at Western University and the University of Toronto. 

Participants were divided into three groups based on their level of experience, with a total 

of six surgeons per group.  

1. The consultant group (C) included general surgeons at one of the hospitals affiliated 

with Western University or the University of Toronto with Royal College certification in 

general surgery that perform colorectal surgery as a part of their clinical practice. This 

was  considered the expert group with which trainees were referenced. To be included in 

the consultant group a consultant had to have performed more than 50 laparoscopic right 

hemicolectomies independently. This number is expected to be associated with 

reasonable technical competence in performing this procedure. (9, 10, 11, 12) 

2. The senior trainees group (S) included residents in their third to fifth years of General 

Surgery residency at Western University. 

3. The junior trainee (J) group included residents in their first two years of general 

surgery residency at Western University, which is a Royal College accredited Canadian 

general surgery residency program. 

  

3.2.3 Plane Identification exercise 

Images were transferred to an iPad 2 (Apple Computers) and presented in Sketchbook 

Pro software. Subjects were able to draw on the presented images using a stylus for 

capacitive touch screens (Slim stylus, Targus, Anaheim, California). For each of the 
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images the subjects were asked to draw a line clearly and precisely where they saw the 

tissue plane of dissection. Each subjects’ line was saved in a separate layer for later 

analysis.  

 

3.2.4 Analysis of performance 

Once data collection was completed, the lines were analyzed by a novel methodology 

(Figure 3.1). This methodology involved using a distance metric similar to the Hausdorff 

measure used in computational geometry (13). This distance metric measures how far 

two subsets of a metric space are from each other. Instead of just taking the shortest 

distance between two geometric figures, lines or arcs, it also takes into account the 

maximum distance possible between two objects. This distance metric is different from 

the Hausdorff distance in that it preserves the sequence of pairs of each line in 

performing a pairwise Euclidean distance calculation. Each line is sampled into a discrete 

set of points (same number of points for each line) and the distance metric is established 

by summing the pairwise distances. 

Using MS Paint (Microsoft Office Professional Edition, 2011, Microsoft Corporation, 

Seattle, WA), each line was iteratively bisected three times resulting in eight equidistant 

spaces which are represented by nine equidistant points (Figure 3.1). Cartesian 

coordinates (X,Y) are plotted on each of these nine points, thus giving a numerical 

representation of the lines’ location. For each study group (G), this distance metric 

between any two lines (a, b) for a given image (i) was calculated as the summed distance 

(d), in pixels, between each of the (p=9) coordinate pairs (j) as follows: 

 (     )   ∑√(         )   (         ) 
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Figure 3.1: Comparing two lines to determine precision.  

Each line is sampled into a discrete set of points (same number of points for each 

line) and the distance metric is established by summing the pairwise distances. 

.                                                 

3.2.5 Analysis of precision: 

The lines within a group were compared amongst each other for each image to get 

intragroup precision values. The smaller the values of the distance metric, the closer the 

lines are to each other within that group, and the more precise the group. Since there are 

six participants within a group and each member of a group is being compared with every 

other member of the same group, there are 15 comparisons per group per image (Figure 

3.2). 

Mean of these 15 values was calculated to get an estimate of the precision of the 

particular group for each image. Precision values of each group for each image were 

compared with the other two groups using one way analysis of variance (ANOVA) as 

well as student’s t-tests (2 tailed unequal variance). One way ANOVA was used since 

three groups are being compared amongst each other. Once a statistically significant 

value was obtained with one way ANOVA between the three groups (F-critical >3.354), 

pairwise comparison was performed between the groups with 2 tailed students t-test of 

(axj,  ayj)                         

                                                                                                                     Participant a 

        

  Participant b  
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unequal variance. A Sidak’s correction is used for comparing multiple groups (p<0.017).  

These steps are summarized in Figure 3.3 

 

 

Figure 3.2: Obtaining the number of precision comparisons per group.  

When six participants are compared to each other, 15 comparisons of precision per 

group are obtained. 
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Figure 3.3: Summary of the Methodology-Precision 

Participant 

Surgeons (18)  

Consultants(C) 

(6) 

Senior Trainees (S) 

(6) 

Junior Trainees(J) 

(6) 

(s1VSs2+s1VSs3+…….s

3VSs4/15) 

Average Senior 

Precision 

(j1VSj2+j1VSj3+…….j3V

Sj4/15) 

Average Junior 

Precision 

Image 1  

Image 48 

(C1VSC2+C1VSC3+…….

C3VSC4/15) 

Average Consultant 

Precision 

ANOVA 
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3.2.6 Analysis of accuracy 

As part of the analysis accuracy was also looked at. The interesting phenomena 

encountered here was that there was no one line which all the experts had an agreement 

upon regarding the correct tissue plane. Therefore there is no standard of reference to 

compare accuracy of trainees. Still it was felt that the consultants being the experts at 

performing this operation should be the most precise and their lines were used as the 

standard. Lines drawn by each junior and senior trainee were compared to each line 

drawn by consultants to assess which lines were nearer to the consultants. These were 

pairwise comparisons between each junior and consultant and each senior and consultant 

(Figure 3.4). 
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Figure 3.4:  Summary sketch of the methodology used for assessing accuracy of 

trainees.  

For each image, an individual trainee’s lines (J1-J6 and S1-S6) were compared to all 

consultant lines (C1-C6).  

 

3.2.7 Sub Analysis 

Consultants tend to draw longer lines during the course of the study as compared to the 

trainees. In order to show this, lines drawn by each participant was measured. This was 

done by the methodology as discussed previously but the sum of the point to point 
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distance between each of the nine points was also taken to estimate the variable curvature 

of the lines. For each participant line A, this total distance of the line i.e. line length for a 

given image (i) was calculated as the summed distance (d), in pixels, between sequential 

points on the same line (n1-n8). 

 (        )   ∑√(          )   (          ) 
 

   

 

Where n’= n+1  

This method to calculate for line length measures the line in curvilinear distances thus 

providing a true measure of the lines length since most of the lines drawn by surgeons are 

curved rather than straight lines. 

 

3.2.8 Time Record and Experience 

Time required by each participant to complete the exercise was recorded, as was each 

candidate’s self-reported experience with laparoscopic surgery. Subjects were not given a 

specific time to complete the entire exercise and they were not aware that they were 

being timed. In addition, the experience which each candidate had with right 

hemicolectomies was also recorded.  

The statistical analysis was performed by the SPSS software. 

 

3.3 Results  

A total of 18 participants in three groups were tested on a total of 48 images. Analysis 

was performed as per the proposed methodology on a total of 864 drawn lines (18 

participant lines × 48 images).   
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3.3.1 Analysis of precision  

Out of all 48 images, one way analysis of variance (1-WAY ANOVA)  revealed 

statistically significant differences amongst the three groups (P<0.05, F>Fcrtical=3.21994) 

in  25 out of 48 images. On pairwise comparison, consultants were significantly more 

precise than trainees (Seniors, Juniors or both) in 14 images. Seniors were significantly 

more precise than Juniors in nine images. Table 3.1 highlights this data with statistically 

significant results. Figure 3.5 is a flow chart summarising the precision results and figure 

3.6 describes the distribution of all the statistically significant pairwise comparisons. 

Seniors were significantly more precise than consultants in five images. On direct review 

of these images it was appreciated that in three cases trainees, albeit more precise, were 

drawing their lines in a different location on the image. They had the wrong tissue plane. 

In a further two images, there were significant differences of opinion between consultants 

as to the location of the ideal tissue plane resulting in orthogonally oriented lines. This 

seems to generate much larger measures on the modified Hausdorff analysis. 

 

3.3.2 Analysis of accuracy  

The differences in accuracy between the senior and junior trainees reached statistical 

significance in favor of seniors in 14 images whereas junior trainees were statistically 

more accurate in eight images (Table 3.2 and Figure 3.7). 

 

3.3.3 Duration per participant 

Each participant’s time required to complete the exercise is recorded in Table 3.3. The 

average time taken by Consultants was the greatest amongst the three groups. Average 

Seniors’ time was shorter than Consultants’ with Juniors’ time being the shortest. These 

differences reached statistical significance on one-way ANOVA and remained significant 

on pairwise comparison with a two-sided student’s t- test between Consultants and both 
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levels of trainees (C vs J and C vs S). The time taken by Junior and Senior trainees (J vs 

S) was however not significantly different (Table 3.3). 

 

3.3.4 Accuracy of each trainee group 

The senior trainees scored better than the junior trainees as a group. When the group 

average is compared between seniors and juniors, these differences do not reach 

statistical significance.  

There was considerable variability in the self-reported experience with laparoscopic and 

open right hemicolectomies done by trainees (Tables 3.4 A and B). 

 

3.3.5 Length of lines 

Each participant’s lines drawn on each image were also analysed by the modified 

Hausdorff distance calculation formula. The average line length of consultants was 

statistically longer as compared to lines drawn by trainees (Tables 3.5 A and B).  

 

Table 3.1 : Selected images showing comparison of precision between consultant and 

trainee groups. 

Image** 

 

Mean 

Distance±S.D 

in pixels 

 

ANOVA(P)* C vs S (P) C vs J(P) J vs S(P) 

 

Consultant Senior Junior 

    
7 

445±221 

 

 

1778 ±771 1710±707 
1.93E-07* 5.55E-06* 4.2E-06* 0.800914 

11 597±271 1155±657 1470±694 0.0006* 0.007* 0.0002* 0.212 

42 853± 496 2080±1061 1532± 551 0.0002* 0.0006* 0.0006* 0.09 
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46 853±309 1382±723 1243±611 0.04* 0.01* 0.01* 0.57 

22 932±514 1907±731 1770±761 0.0005* 0.0003* 0.001* 0.62 

5 969±398  1848±627 1105±335 0.00001* 0.0001* 0.3 0.0007* 

23 973±442 1614±927 1722±1089 0.047* 0.02 0.02 0.77 

8 1009±409 1560±700 2111±1259 0.0056* 0.016* 0.0055* 0.152952 

2 1056±402 2021±1139 1254±616 0.003* 0.006* 0.3 0.03 

17 1152±351 2137±807 1484±520 0.0001* 0.0004* 0.05 0.015* 

6 1197± 384 1996± 661 2014± 787 0.001* 0.005* 0.001* 0.34 

27 1497±669 2114±686 2344±736 0.005* 0.01* 0.01* 0.38 

19 1688±830 2500±1201 2732±1081 0.02* 0.04 0.006* 0.58 

39 1282±822 2143±669 1178±602 0.0008* 0.004* 0.691 0.0002* 

14 1364±574 952±511 865±584 0.04* 0.047 0.026 0.667343 

41 989±446 847±441 1390±301 0.002* 0.36 0.01* 0.0007* 

9 1072±563 608±210 1973±945 4.707E-06* 0.008* 0.00427* 0.00006* 

25 1115±535 829±350 1290±523 0.04* 0.09 0.09 0.009* 

47 1205±754 782±228 1450±660 0.01* 0.05 0.05 0.001* 

13 1270± 591 770±294 1743±774 0.001* 0.008* 0.121 0.002* 

20 1680± 935 996±507  

2183± 

1158 0.005* 0.01* 0.2 0.001* 

18 1684 ±1074 1297± 1455 3833±753 2.88E-07* 0.264 0.00009* 5.522E-06* 
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40 1783± 733 875±279 1925±748 5.77E-05* 0.002* 0.61 0.0000785* 

36 1967±1158 1121±386  1497±674 0.02* 0.01* 0.1 0.07 

26 2191±801 1566±412 2489±1222 0.02* 0.01* 0.43 0.01* 

 

*statistically significant difference with Sidak’s correction for multiple comparisons (P < 

0.017)  

** 
Images are arranged in descending order of consultant precision. 

SD= Standard Deviation 

 

Table 3.2:  Images showing comparison of accuracy between trainee groups.  

Image  More accurate Mean distance in pixels ±SD  P value(Accuracy) 

 S or J S vs C  J vs C  

1 S 1237±770 1564±817 0.08 

2 J 1512±903 1171±517 0.03* 

3 S 1793±815 2503±911 0.0008* 

4 J 1502±711 1359±629 0.47 

5 J 1503±729 1106±450 0.0007* 

6 S 1552±663 1698±748 0.38 

7 S 1218±883 1390±774 0.34 
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8 S 1400±897 2229±873 0.001* 

9 S 866±329 1453±686 0.00003* 

10 S 1511±823 1822±852 0.11 

11 S 1083±483 1196±542 0.35 

12 J 1123±763 956±473 0.27 

13 S 1019±503 1467±767 0.004* 

14 J 1422±494 1360±581 0.6 

15 S 721±300 1128±567 0.0003* 

16 S 1428±906 1597±893 0.4 

17 J 1712±702 1518±482 0.17 

18 S 1699±1218 3148±1258 4.65E-06* 

19 S 2250±1001 2260±1226 0.12 

20 J 2099±1200 1861±1139 0.39 

21 J 1251±545 1159±509 0.46 

22 S 1385±668 1540±897 0.42 

23 S 1495±915 1509±681 0.94 

24 S 1113±552 1453±808 0.04* 
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25 S 925±424 1414±685 0.003* 

26 S 1779±735 2330±903 0.005* 

27 J 1923±650 2006±664 0.5 

28 J 1745±980 1285±570 0.01* 

29 J 2260±1189 2550±1060 0.27 

30 S 1969±800 1807±848 0.4 

31 S 2117±1287 2482±1158 0.2 

32 S 1512±750 2129±1085 0.006* 

33 J 2655±803 2179±1121 0.04* 

34 S 2870±1509 2389±1387 0.16 

35 J 1557±779 1597±816 0.83 

36 J 2375±1036 1648±843 0.001* 

37 J 1659±704 1697±776 0.82 

38 J 1923±930 1491±721 0.03* 

39 J 2699±951 1335±783 0.00000000638* 

40 S 1552±814 1734±777 7.85E-05* 

41 S 925±432 1191±444 0.0007** 
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42 J 1494±716 1310±590 0.09 

43 S 1880±858 2337±838 0.02* 

44 J 1317±579 985±474 0.009* 

45 J 1055±445 961±468 0.42 

46 S 1294±412 1376±765 0.57 

47 S 1184±751 1553±1034 0.001* 

48 S 1134±598 1165±655 0.99 
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Figure 3.5: Images with statistically significant results based on precision. 

The green shaded boxes represent the number of images supporting the hypothesis 

while the yellow shaded boxes indicate images with conflicting results. 
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Figure 3.6: Distribution of all the statistically significant pairwise comparisons 

amongst the three groups. 

When the Sidak’s corrected P value is used for multiple comparisons (P<0.017), 43 

pairwise comparisons show statistical significance. Three quarters of the results 

support the hypothesis (indicated by the green area) while one quarter consists of 

conflicting results (yellow area).  

 

 

 

C>S, 13 

C>J, 11 

S>J, 9 

S>C, 5 

J>S, 4 

J>C, 1 

    N = 43                    p<0.017 
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Figure 3.7: Bar chart representing accuracy of trainees. 

The y-axis indicates the number of images in which the respective trainee group 

were more accurate. 

 

Table 3.3: Total time taken by each participant.  

Consultants Time taken Seniors 

Time 

Taken Juniors 

Time 

Taken 

C1 55 S1 42 J1 29 

C2 64 S2 48 J2 32 

C3 48 S3 40 J3 31 

C4 39 S4 46 J4 28 

C5 59 S5 48 J5 36 

14 

8 

0

2

4

6

8

10

12

14

16

Significantly acc seniors significantly acc juniors

Significantly acc seniors significantly acc juniors

Number of 

images 
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C6 62 S6 43 J6 35 

Mean time 

(min)±SD 60.75±14.3 

 

40.38±10.7 

 

33±3.54 

T-test- C vs S 0.006* C vs  J 0.0009* J vs S 0.09 

  

Table 3.4 A: Comparing accuracy score of senior trainees to their experience. 

Seniors S1 S2 S3 S4 S5 S6 Mean±SD 

Experienc

e 

40 30 10 3 2 5 15±16.04 

Accuracy 1689.62

1 

1650.31

9 

1313.23

1 

1518.53

1 

1634.82

8 

1658.10

4 

1577±131.

3 

 

Table 3.4 B: Comparing accuracy score of junior trainees to their experience. 

 

Junior 

Trainees 

J1 

 

J2 J3 J4 J5 J6 Mean±SD 

       

Experience-

number of 

cases 

3 3 15 20 9 10 10±6.69 

Accuracy 1703.111 1646 1807 1487 1603 1682 1655±106.91 
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Table 3.5A:  Length of lines drawn by participants for each image. 

Image  

senior 

lines Consultants Juniors 

Image Senior 

Line 

Length 

C-line 

Length 

J-line 

Length 

1 185.5787 240.9684 251.9261 25 364.5669 500.452 372.0759 

2 239.086 356.7852 323.3773 26 332.3228 517.3985 375.1137 

3 304.664 523.4079 350.7598 27 341.8356 576.6979 422.4217 

4 427.6495 582.3615 466.2588 28 338.4264 515.9522 399.4577 

5 431.9403 316.2208 306.0027 29 428.386 460.8107 569.4562 

6 361.1794 365.2964 340.6466 30 311.3882 591.1223 370.2004 

7 385.5398 331.1948 406.2185 31 328.6989 611.3787 480.4163 

8 309.1987 331.0611 409.9014 32 379.6094 393.9628 351.7307 

9 368.001 462.5503 403.3229 33 341.3999 584.9601 411.7855 

10 432 533 487 34 265.5962 465.0855 394.1451 

11 278.3433 442.06 262.6241 35 353.39 432.234 388.5816 

12 296.12 363.6632 399.64 36 260.0219 491.7312 394.854 

13 450.0211 621.224 463.6962 37 280.9558 456.7309 336.1078 

14 409.0713 702.437 428.2759 38 346.1049 428.6113 365.1958 
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15 410.3743 437.088 512.389 39 379.7473 700.1542 453.3542 

16 355.0476 569.69 327.4889 40 225.0254 421.7729 361.6587 

17 320.9317 548.3923 295.9106 41 184.951 209.1826 278.2078 

18 244.3948 407.85 324.7139 42 274.115 362.75 368.6424 

19 391.5561 491.085 302.9425 43 314.4082 381.2255 346.0547 

20 238.431 316.25 262.4664 44 207.1525 298.6695 237.7277 

21 467.6933 567.203 391.3248 45 251.2541 371.6456 323.5073 

22 439.4454 458.83 281.3172 46 256.2958 484.12 417.723 

23 303.4169 434.87 359.7755 47 356.3475 423.9026 438.0473 

24 341.2639 485.981 394.5471 48 244.0614 348.783 263.3926 

 

Table 3.5 B: Comparing average line length drawn by consultants, seniors and 

juniors. 

Consultants ± SD Seniors ±SD Juniors ±SD 

 

456.641

8 ± 72 

 

 

372.3413 ± 109 328.271 ± 71 

Pairwise t-test for line length   

C versus S C versus J J versus S 

1.53174E-12 1.16679E-07 4.05259E-05 
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3.4 Discussion 

Based on these results it can be fairly concluded that the assessment tool designed to 

measure the ability to identify tissue planes is successful in doing so. It is able to 

distinguish surgeons based on their levels of experience on measures of accuracy and 

precision. When all the images are considered together, the senior most participants (C) 

appear to be the most precise while the junior most (J) are the least precise. Similarly 

senior trainees are more accurate than juniors trainees when compared with consultants.  

This study is a robust attempt to validate the pilot study. The hypothesis was supported 

by the results on statistical grounds by using an ANOVA with traditional critical F values 

and a two sided t test for pairwise comparisons.  It is known from previously done studies 

that accuracy and precision based analysis are a valid way to assess surgical performance 

(17). Employing an expert panel to select images added to the content validity of the 

assessment tool. Having access to a large archive of images gave investigators 

considerable extent of leverage in selecting the final set of images (48 out of 1000+ 

images). Though the sample size was still not very large, one more participant per group 

was recruited then what was required by the power analysis. A heterogeneous sample of 

surgeons with variable experience and training was utilized, which is fairly representative 

of the North American General Surgical population.  

The visual processing of the spatial relations of image properties is known as visuospatial 

ability. The visuospatial ability of a surgeon plays a very important role in identifying 

tissue planes. There has been sufficient evidence in literature pointing towards the 

importance of visuospatial abilities in surgical task performance (18 and 19). Literature 

review shows that experience results in enhancement of performance on visuospatial 

tasks as pointed out by Keehner et al. (18). These finding can also be appreciated in this 

study with consultants performing the best in terms of precision.  

Current training in surgery is going through drastic changes with restrictions in work 

hours because of patient and trainee safety issues (20). This has resulted in reduction in 

the amount of exposure the trainee gets in the operating room. Simulation can play a very 
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useful role in narrowing this gap and is on the top agenda of most North American 

surgical education and accreditation societies (21).  Current simulation models focus on 

overall performance and the assessment metrics employed by these simulations are not 

very content specific (22, 23). Additionally, literature pertaining to visual perception 

suggests that it is complex heterogeneous skill with various subdomains. In order to 

understand its role in surgical performance there is a need to assess a surgeon’s ability on 

specific tasks which require visuospatial ability (24). This study is an attempt towards the 

development of a meaningful simulation tool which attempts to develop a valid 

assessment metric for a very content specific surgical skill, an ability which most 

simulation tools lack (22).  The performance of each junior and senior trainee was 

compared on this assessment tool, thus opening the door towards practical applications of 

this tool for assessing surgical trainee performances in actual clinical settings.  

Interestingly, time taken by the participant seems to be inversely proportional to 

experience with the consultants taking the most time to complete the exercise. This might 

be because consultants were putting an extra effort to complete the exercise and since 

they had the most familiarity with the extent of visual detail in these images, so they 

spend extra time in visually analyzing the depth of information in these images. 

An important question which can be raised regarding the content validity of this tool is 

that is the surgeon’s ability to identify tissue planes being accurately measured? This 

methodology is based on the assumption that this is an exclusively visuospatial task but it 

is well known that surgical tasks often fall into overlapping domains of human 

intelligence, visuospatial and psychomotor skills. In actual clinical settings, surgeons tend 

to use refined manual techniques to expose the tissue such as to improve their visual 

stimulus and thus this manual dexterity does tend to play a role in facilitating dissection 

in the correct tissue plane. The pictures used in this study are images in which the tissue 

plane is already exposed. It can still be stated with confidence that this tool does assess 

the visuospatial aspect of the ability required to identify a tissue plane.  

Seniors were significantly more precise than consultants in five images because of 

reasons explained above. The lower consultant precision values seen in some of these 
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images can be addressed in the future by getting more input from consultants when 

selecting images for testing. 

The results indicate the significant line length discrepancy between the groups. This was 

attributed to the fact that consultants were surer about the location of the tissue plane in 

the whole image and thus were drawing bigger lines. It is postulated that this line length 

discrepancy might result in decreasing the variability and accuracy estimate of the 

modified Hausdorff distance metric. When the line length is smaller, the nine equidistant 

points might be tightly clustered together and lines having tightly clustered Cartesian 

points might give smaller differences in the Hausdorff distance. To adjust for line length 

in the distance metric could be one of the future projects arising from this study. 

An interesting finding encountered is the large variability in trainee experience with right 

hemicolectomy. Some of the junior trainees have more experience with this procedure 

then the seniors and both groups have large standard deviations. This assessment tool 

measures a unique surgical ability which is not necessarily acquired specifically by 

exposure to a right hemicolecotmy. Identifying the surgical tissue plane between the 

mesocolon and the reteroperitoneum is a skill which is very commonly employed in a 

large number of abdominal procedures and the skills learned are probably transferable 

from one procedure to another. Reported experience with right hemicolectomy does not 

necessarily reflect total operative experience on abdominal procedures. In order to 

evaluate the impact which trainee experience has on the analysis, the senior and junior 

trainee groups were re-divided based on the trainee’s specific experience of a right 

hemicolectomies. The results of this diminished the statistical significance of the 

difference in the measures obtained for all three groups, thus potentially adding an 

element of contamination to the data and did not contribute positively towards the 

analysis. This supports findings from earlier studies indicating that surgical trainees with 

similar experience might have very high variability in their learning curve and this has 

been demonstrated specifically for tasks involving visuospatial abilities (17). It would 

seem that surgical trainees are using spatial reasoning to identify tissue planes rather than 

just memory of the specific procedure.   
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Also the accuracy data tends to point towards the junior trainees being more accurate than 

the seniors in a few images. The differences can be attributed to the variability in trainee 

learning curve as explained above but can also be because of a lack of a clear gold 

standard for determining accuracy. The consultants are being used based on their clinical 

experience but it is clear that all the consultants do not have an absolute agreement on the 

precise location of the dissection plane. 

To conclude, this study is a unique exploratory study which has a tremendous potential in 

the field of simulation based surgical education. The addition of dynamic visuals, 

adjusting for line length discrepancy and getting more input from experts are some of the 

future directions this study might take. It can be concluded that this assessment metric 

has the potential to be used in actual clinical settings and can play an important role in the 

assessment and training of surgical trainees. 
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4 Results  

The results were divided primarily based on precision versus accuracy analysis. The 

scores of the distance metric in pixels are to be interpreted in a reverse numerical order, 

i.e. the lower the score, the higher the accuracy and precision of the participant. A total of 

18 participants in three groups were tested on a total of 48 images. Analysis was 

performed as per the proposed methodology on a total of 864 lines (18 participant lines x 

48 images).   

 

4.1.1 Analysis of precision  

Out of all 48 images, one way analysis of variance (1-WAY ANOVA)  revealed 

statistically significant differences amongst the three groups (P<0.05, F>Fcrtical=3.21994) 

in  25 out of 48 images. On pairwise comparison, consultants were significantly more 

precise than trainees (Seniors, Juniors or both) in 14 images. Seniors were significantly 

more precise than Juniors in nine images. Table 4.1 highlights this data with statistically 

significant results. Figure 4.2 is a flow chart summarising the precision results of the 

participant groups in the statistically significant images and figure 4.3 describes the 

distribution of all the statistically significant pairwise comparisons. 

Seniors were significantly more precise than consultants in five images. On direct review 

of these images it was appreciated that in three cases trainees, albeit more precise, were 

drawing their lines in a different location on the image. They had the wrong tissue plane. 

In a further two images, there were significant differences of opinion between consultants 

as to the location of the ideal tissue plane resulting in orthogonally oriented lines. This 

seems to generate much larger measures on the modified Hausdorff analysis. 

 

4.1.2 Analysis of accuracy 

The differences in accuracy between the senior and junior trainees reached statistical 

significance in favor of seniors in 14 images whereas junior trainees were statistically 
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more accurate in eight images (Table 4.2 and Figure 4.3). 

 

4.1.3 Duration per participant 

Each participant’s time required to complete the exercise is recorded in Table 4.3. The 

average time taken by Consultants was the greatest amongst the three groups. Average 

seniors’ time was shorter than consultants’ with juniors’ time being the shortest. These 

differences reached statistical significance on one-way ANOVA and remained significant 

on pairwise comparison with a two-sided student’s t- test between consultants and both 

levels of trainees (C vs J and C vs S). The time taken by senior and junior trainees (J vs 

S) was however not significantly different (Table 4.3). 

 

4.1.4 Trainee Experience  

There was considerable variability in the self-reported experience with laparoscopic and 

open right hemicolectomies done by trainees (Tables 4.4A and B). 

 

4.1.5 Length of lines 

Each participant’s lines drawn on each image were also analysed by the modified 

Hausdorff distance calculation formula. The average line length of consultants was 

statistically longer as compared to lines drawn by the trainees (Table 4.5 A and B).  

The study took one year to complete (March 2013-Feb 2014). The timeline of the project 

is elaborated in Table 4.6. 
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Table 4.1 : Selected images showing comparison of precision between consultant and 

trainee groups. 

Image** 

 

Mean 

Distance±S.D 

in pixels 

 

ANOVA(P)* C vs S (P) C vs J(P) J vs S(P) 

 

Consultant Senior Junior 

    
7 

445±221 

 

 

1778 ±771 1710±707 
1.93E-07* 5.55E-06* 4.2E-06* 0.800914 

11 597±271 1155±657 1470±694 0.0006* 0.007* 0.0002* 0.212 

42 853± 496 2080±1061 1532± 551 0.0002* 0.0006* 0.0006* 0.09 

46 853±309 1382±723 1243±611 0.04* 0.01* 0.01* 0.57 

22 932±514 1907±731 1770±761 0.0005* 0.0003* 0.001* 0.62 

5 969±398  1848±627 1105±335 0.00001* 0.0001* 0.3 0.0007* 

23 973±442 1614±927 1722±1089 0.047* 0.02 0.02 0.77 

8 1009±409 1560±700 2111±1259 0.0056* 0.016* 0.0055* 0.152952 

2 1056±402 2021±1139 1254±616 0.003* 0.006* 0.3 0.03 

17 1152±351 2137±807 1484±520 0.0001* 0.0004* 0.05 0.015* 

6 1197± 384 1996± 661 2014± 787 0.001* 0.005* 0.001* 0.34 

27 1497±669 2114±686 2344±736 0.005* 0.01* 0.01* 0.38 

19 1688±830 2500±1201 2732±1081 0.02* 0.04 0.006* 0.58 

39 1282±822 2143±669 1178±602 0.0008* 0.004* 0.691 0.0002* 
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14 1364±574 952±511 865±584 0.04* 0.047 0.026 0.667343 

41 989±446 847±441 1390±301 0.002* 0.36 0.01* 0.0007* 

9 1072±563 608±210 1973±945 4.707E-06* 0.008* 0.00427* 0.00006* 

25 1115±535 829±350 1290±523 0.04* 0.09 0.09 0.009* 

47 1205±754 782±228 1450±660 0.01* 0.05 0.05 0.001* 

13 1270± 591 770±294 1743±774 0.001* 0.008* 0.121 0.002* 

20 1680± 935 996±507  

2183± 

1158 0.005* 0.01* 0.2 0.001* 

18 1684 ±1074 1297± 1455 3833±753 2.88E-07* 0.264 0.00009* 5.522E-06* 

40 1783± 733 875±279 1925±748 5.77E-05* 0.002* 0.61 0.0000785* 

36 1967±1158 1121±386  1497±674 0.02* 0.01* 0.1 0.07 

26 2191±801 1566±412 2489±1222 0.02* 0.01* 0.43 0.01* 

*statistically significant difference with Sidak’s correction for multiple comparisons (P < 

0.017)  

** 
Images are arranged in descending order of consultant precision. 

SD= Standard Deviation 

 

Table 4.2:  Images showing comparison of accuracy between trainee groups.  

Image  More accurate Mean distance in pixels ±SD  P value(Accuracy) 

 S or J S vs C  J vs C  

1 S 1237±770 1564±817 0.08 



75 

 

2 J 1512±903 1171±517 0.03* 

3 S 1793±815 2503±911 0.0008* 

4 J 1502±711 1359±629 0.47 

5 J 1503±729 1106±450 0.0007* 

6 S 1552±663 1698±748 0.38 

7 S 1218±883 1390±774 0.34 

8 S 1400±897 2229±873 0.001* 

9 S 866±329 1453±686 0.00003* 

10 S 1511±823 1822±852 0.11 

11 S 1083±483 1196±542 0.35 

12 J 1123±763 956±473 0.27 

13 S 1019±503 1467±767 0.004* 

14 J 1422±494 1360±581 0.6 

15 S 721±300 1128±567 0.0003* 

16 S 1428±906 1597±893 0.4 

17 J 1712±702 1518±482 0.17 

18 S 1699±1218 3148±1258 4.65E-06* 
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19 S 2250±1001 2260±1226 0.12 

20 J 2099±1200 1861±1139 0.39 

21 J 1251±545 1159±509 0.46 

22 S 1385±668 1540±897 0.42 

23 S 1495±915 1509±681 0.94 

24 S 1113±552 1453±808 0.04* 

25 S 925±424 1414±685 0.003* 

26 S 1779±735 2330±903 0.005* 

27 J 1923±650 2006±664 0.5 

28 J 1745±980 1285±570 0.01* 

29 J 2260±1189 2550±1060 0.27 

30 S 1969±800 1807±848 0.4 

31 S 2117±1287 2482±1158 0.2 

32 S 1512±750 2129±1085 0.006* 

33 J 2655±803 2179±1121 0.04* 

34 S 2870±1509 2389±1387 0.16 

35 J 1557±779 1597±816 0.83 
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36 J 2375±1036 1648±843 0.001* 

37 J 1659±704 1697±776 0.82 

38 J 1923±930 1491±721 0.03* 

39 J 2699±951 1335±783 0.00000000638* 

40 S 1552±814 1734±777 7.85E-05* 

41 S 925±432 1191±444 0.0007** 

42 J 1494±716 1310±590 0.09 

43 S 1880±858 2337±838 0.02* 

44 J 1317±579 985±474 0.009* 

45 J 1055±445 961±468 0.42 

46 S 1294±412 1376±765 0.57 

47 S 1184±751 1553±1034 0.001* 

48 S 1134±598 1165±655 0.99 

*statistically significant results (p<0.05)  
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Figure 4.1: Images with statistically significant results based on precision. 

The green shaded boxes represent the number of images supporting the hypothesis 

while the yellow shaded boxes indicate images with conflicting results. 

 

48 Images 
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ANOVA  
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Figure 4.2: Distribution of all the statistically significant pairwise comparisons 

amongst the three groups. 

Three quarters of the results support the hypothesis (indicated by the green area) 

while one quarter consists of conflicting results (yellow area). When the Sidak’s 

corrected P value is used for multiple comparisons (P<0.017), 43 pairwise 

comparisons show statistical significance. 

 

 

 

C>S, 13 

C>J, 11 

S>J, 9 

S>C, 5 

J>S, 4 

J>C, 1 

    N = 43                    p<0.017 
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Figure 4.3: Bar chart representing accuracy of trainees. 

The y-axis indicates the number of images in which the respective trainee group 

were more accurate. 

 

Table 4.3: Total time taken by each participant.  

Consultants Time taken Seniors 

Time 

Taken Juniors 

Time 

Taken 

C1 55 S1 42 J1 29 

C2 64 S2 48 J2 32 

C3 48 S3 40 J3 31 

C4 39 S4 46 J4 28 

C5 59 S5 48 J5 36 

14 

8 

0

2

4

6

8

10

12

14

16

Significantly acc seniors significantly acc juniors

Significantly acc seniors significantly acc juniors

Number of 

images 
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C6 62 S6 43 J6 35 

Mean time 

(min)±SD 60.75±14.3 

 

40.38±10.7 

 

33±3.54 

T-test- C vs S 0.006* C vs  J 0.0009* J vs S 0.09 

  

Table 4.4 A: Comparing accuracy score of senior trainees to their experience. 

Seniors S1 S2 S3 S4 S5 S6 Mean±SD 

Experienc

e 

40 30 10 3 2 5 15±16.04 

Accuracy 1689.62

1 

1650.31

9 

1313.23

1 

1518.53

1 

1634.82

8 

1658.10

4 

1577±131.

3 

 

Table 4.4 B: Comparing accuracy score of junior trainees to their experience. 

 

Junior 

Trainees 

J1 

 

J2 J3 J4 J5 J6 Mean±SD 

       

Experience-

number of 

cases 

3 3 15 20 9 10 10±6.69 

Accuracy 1703.111 1646 1807 1487 1603 1682 1655±106.91 

 

 

Table 4.5A:  Length of lines drawn by participants for each image. 

Image  senior Consultants Juniors Image Senior C-line J-line 
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lines Line 

Length 

Length Length 

1 185.5787 240.9684 251.9261 25 364.5669 500.452 372.0759 

2 239.086 356.7852 323.3773 26 332.3228 517.3985 375.1137 

3 304.664 523.4079 350.7598 27 341.8356 576.6979 422.4217 

4 427.6495 582.3615 466.2588 28 338.4264 515.9522 399.4577 

5 431.9403 316.2208 306.0027 29 428.386 460.8107 569.4562 

6 361.1794 365.2964 340.6466 30 311.3882 591.1223 370.2004 

7 385.5398 331.1948 406.2185 31 328.6989 611.3787 480.4163 

8 309.1987 331.0611 409.9014 32 379.6094 393.9628 351.7307 

9 368.001 462.5503 403.3229 33 341.3999 584.9601 411.7855 

10 432 533 487 34 265.5962 465.0855 394.1451 

11 278.3433 442.06 262.6241 35 353.39 432.234 388.5816 

12 296.12 363.6632 399.64 36 260.0219 491.7312 394.854 

13 450.0211 621.224 463.6962 37 280.9558 456.7309 336.1078 

14 409.0713 702.437 428.2759 38 346.1049 428.6113 365.1958 

15 410.3743 437.088 512.389 39 379.7473 700.1542 453.3542 
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16 355.0476 569.69 327.4889 40 225.0254 421.7729 361.6587 

17 320.9317 548.3923 295.9106 41 184.951 209.1826 278.2078 

18 244.3948 407.85 324.7139 42 274.115 362.75 368.6424 

19 391.5561 491.085 302.9425 43 314.4082 381.2255 346.0547 

20 238.431 316.25 262.4664 44 207.1525 298.6695 237.7277 

21 467.6933 567.203 391.3248 45 251.2541 371.6456 323.5073 

22 439.4454 458.83 281.3172 46 256.2958 484.12 417.723 

23 303.4169 434.87 359.7755 47 356.3475 423.9026 438.0473 

24 341.2639 485.981 394.5471 48 244.0614 348.783 263.3926 

 

Table 4.5 B: Comparing average line length drawn by consultants, seniors and 

juniors. 

Consultants ± SD Seniors ±SD Juniors ±SD 

 

456.641

8 ± 72 

 

 

372.3413 ± 109 328.271 ± 71 

Pairwise t-test for line length   

C versus S C versus J J versus S 

1.53174E-12 1.16679E-07 4.05259E-05 
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Table 4.6: Timeline of Research Project 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

May June July Aug Sept Oct Nov Dec Jan Feb Mar April 

13 13 13 13 13 13 13 13 14 14 14 14 

Image 

selection 

Subject 

recruitment 

Testing and data 

collection 

Data Analysis 

and interpretation 

Thesis Defense 
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5 Discussion 

 

5.1 General Overview 

This study was a robust attempt to validate the pilot study. Previously done studies have 

shown that accuracy and precision based analyses are a valid way to assess surgical 

performance (2, 3, 4, 16). This study increased the number of participants and images. 

Secondly an expert panel was employed to select the images from a large archive of 

images. This gave the investigators considerable extent of leverage in selecting the final 

set of images (48 out of 1000+ images), which again added to the validity of this study. 

Though the sample size was still not very large, two more participants per group were 

recruited as compared to the pilot study and this was more than what was required by the 

power analysis. It was a reasonably heterogeneous sample, which attempted a 

resemblance with North American general surgeon population by recruiting surgeons of 

variable experience and training. 

It was ensured that all the participants received the same subset of instructions regarding 

each image. These instructions were limited to orienting the participant to the procedure 

and did not have any hints or cues pointing towards the correct tissue plane.  

 

5.2 Significance 

There is growing evidence of improved oncologic outcomes associated with adherence to 

dissection along tissue planes. This has been demonstrated clearly for rectal cancer 

resections (1). There is compelling evidence to suggest this is also true for colon cancer 

surgery and hepatobiliary surgery (5, 6). This is a unique exploratory study which to the 

knowledge of the authors represents a first attempt in designing a simulation based tool to 

assess a surgeon’s ability to identify tissue planes, which may have important 

implications with regards to patient outcomes. There has been sufficient evidence in 

literature pointing towards the importance of visuospatial abilities in surgical task 
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performance and also that with repeated practice, performance on visuospatial tasks can 

be enhanced (7, 8). These findings can be appreciated in this study as well with 

consultants performing the best in terms of precision. Literature on simulation based 

surgical education points towards its importance in enhancing trainee performance in 

actual clinical settings (9, 10, 11) and this study is a successful attempt towards designing 

an assessment tool—the first step towards meaningful simulation.  

Current training in surgery is going through drastic changes with restrictions in work 

hours because of patient and trainee safety issues (12). This has resulted in the reduction 

in the amount of exposure the trainee gets in the operating room. Simulation can play a 

very useful role in narrowing this gap and is on the top agendas of most North American 

surgical education and accreditation societies (13). 

Current simulation models focus on overall performance and the assessment metrics 

employed by these simulations are not very content specific (10, 11). In addition, these 

simulation models have room for improvement in actually simulating the real operative 

environment. This study is an attempt towards the development of a meaningful 

simulation tool which attempts to develop a valid assessment metric for a very content 

specific surgical skill—an ability which most simulation tools lack (10). Specifically 

pertaining to visual perception, literature suggests the need for gauging performance on 

very specific visuospatial tasks to assess a surgeon’s visuospatial ability (15). This study 

is a step in that direction. 

This assessment tool once developed and enhanced further has the potential to narrow 

gaps in trainee exposure and experience and can ultimately be part of the standard general 

surgical curriculum for various North American surgical training programs. 

 

5.3 Criticism 

An interesting finding encountered is the large variability in trainee experience with right 

hemicolectomy. Some of the junior trainees have more experience with this procedure 

then the seniors and both groups have large standard deviations. This assessment tool 
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measures a unique surgical ability which is not necessarily acquired specifically by 

exposure to a right hemicolecotmy. Identifying the surgical tissue plane between the 

mesocolon and the reteroperitoneum is a skill which is very commonly employed in a 

large number of abdominal procedures and the skills learned are probably transferable 

from one procedure to another. Reported experience with right hemicolectomy does not 

necessarily reflect total operative experience on abdominal procedures. In order to 

evaluate the impact which trainee experience has on the analysis the senior and junior 

trainee groups were re-divided based on the trainee’s specific experience of a right 

hemicolectomies. The results of this diminished the statistical significance of the 

difference in the measures obtained for all three groups, thus potentially adding an 

element of contamination to the data and did not contribute positively towards the 

analysis. This supports findings from earlier studies indicating that surgical trainees with 

similar experience might have very high variability in their learning curve and this has 

been demonstrated specifically for tasks involving visuospatial abilities (17). It would 

seem that surgical trainees are using spatial reasoning to identify tissue planes rather than 

just memory of the specific procedure.   

One of the biggest criticisms for this study would be its content validity. Is a surgeon’s 

ability to identify tissue planes being accurately measured? This methodology is based on 

the assumption that this is an exclusively visuospatial task but it is well known that all 

surgical tasks and broadly speaking all human tasks fall into overlapping domains of 

human intelligence, visuospatial and psychomotor skills. It can be seen in actual clinical 

settings that surgeons tend to use refined manual techniques to expose the tissue such as 

to improve their visual stimulus and thus this manual dexterity does tend to play a role in 

facilitating dissection in the correct tissue plane. The pictures used in this study are 

mostly images in which the tissue plane is already exposed. Therefore it can be 

confidently stated that this tool does assess the visuospatial ability required to identify a 

tissue plane. Also exposing tissue is a skill which is more easily acquired through hands 

on teaching in the operating room where the instructor can actually guide the hand of the 

trainee to teach them this tactile perceptual skill, unlike visual perception which is often 

learned by verbal communication and anecdotally. Thus this tool is measuring a unique 
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surgical ability which has not been measured previously and attempts to teach it have also 

been nonspecific. 

Junior trainees’ less accurate performances and their large variability in precision can be 

not only because of failure to recognize the tissue plane but a general lack of familiarity 

with the anatomical details of the procedure. This is a potential confounding factor in this 

study.  Junior trainees in this study already had some exposure towards a right 

hemicolecotmy (at least three operations in the case of the least experienced) and at this 

level one can presume that a trainee would have a basic understanding of the procedure. 

However, comparisons between senior trainees and consultants tends to overcome this 

shortcoming, as senior trainees who have at least three years of intraoperative experience 

still underperform on precision compared to consultants. 

 

5.4 Unexpected Findings: 

5.4.1 Precision 

When individual images are considered, the senior trainees are statistically more precise 

as compared to consultants in five images. These are unexpected results since it was 

expected that most images would show the consultants being the most precise group. 

These discrepancies can be explained as follows. 

5.4.1.1 Senior Trainees more precise but less accurate 

A detailed look at these five images showed that in three of them the seniors had drawn 

their line consistently at a spot which was clearly away from the actual plane of 

dissection. Thus they were precise but inaccurate. 

5.4.1.2 Disagreement of Consultants   

In two of these five images there was a significant disagreement amongst the experts 

regarding the location of the tissue plane, thus increasing the consultant variability and 

decreasing precision. This resulted in consultants drawing lines which were orthogonally 

oriented. This seems to generate much larger measures on the modified Hausdorff 
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analysis. In the future more input from consultants can be obtained while selecting 

images to overcome this problem. 

5.4.2 Accuracy 

The accuracy data also tends to point towards junior trainees being more accurate than 

seniors in a few images and this is the opposite of what was expected. This can be due to 

several reasons:  

5.4.2.1 Difference in innate visuospatial skills 

Literature review shows that visuospatial performance in the operating room varies with 

innate visuospatial skills. According to Keehner et al. (7), this ability remains 

discriminative even at expert level but the extent of the difference does tend to diminish 

in some ways. Could juniors who scored better than seniors in certain images be 

visuospatially more gifted? Performance of participants on standard battery of 

visuospatial tests was not recorded before they went through the assessment as many 

earlier studies had done (7, 8). Otherwise it would have been interesting to note if 

visuospatial abilities correlate strongly to performance specifically at the trainee level as 

had been suggested by these studies. Also as mentioned above the variability in trainee 

learning curve could cause some of the junior trainees to be more accurate (17). 

5.4.2.2 No gold standard for accuracy 

Unexpected differences in accuracy between the two trainee groups can also be attributed 

to a lack of a clear gold standard for determining accuracy. Consultants are being used to 

assess accuracy based on their clinical experience but all consultants do not have an 

absolute agreement on the precise location of the dissection plane.  
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5.5 Other Findings 

5.5.1 Line-length discrepancy 

During the study, trainees made their lines much shorter than the consultants. This was 

attributed to the fact that consultants were surer about the location of the tissue plane in 

the whole image and thus were drawing bigger lines. The trainees and specifically the 

senior trainees spend a significant amount of their time in the operating room following 

instructions from their instructors who ask them to perform specific tasks in a procedure. 

Thus they intuitively develop a habit of making small specific movements in the 

operating room. The sub analysis showed that the line length was the greatest amongst 

the consultants and was also directly proportional to experience, as there was a 

statistically significant discrepancy in line length amongst the three groups. This line 

length discrepancy might result in decreasing the variability and accuracy estimate of the 

modified Hausdorff distance metric. When line length is smaller, the nine equidistant 

points tend to be tightly clustered together and lines having tightly clustered Cartesian 

points might give only small differences in the Hausdorff distance. No mathematical way 

to adjust for this has been developed yet.  

 

5.6 Future Directions 

5.6.1 Line Length 

As pointed out earlier, differences in length of lines between participants can potentially 

have confounding effects on trainees’ and consultants’ precision. In the future, the plan is 

to give a specific area of the image to participants to draw lines where the expert panel 

agrees on the existence of the tissue plane. This technique can add uniformity to the 

length of lines amongst different group members. Another way to counter this would be 

to add the length of lines into the modified Hausdorff’s distance metric such that if a 

participant draws a line of a greater length, it would decrease that participant’s precision.  
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5.6.2 Most discriminative images 

Images with the strongest discriminative power will be used to conduct further studies. 

These are images where consultant’s precision is statistically higher than the other two 

groups, and the seniors are statistically more accurate than juniors.  

5.6.3 Addition of dynamic visuals 

A field of interest is the effect which this tool would have if video context is added to 

images before showing them to participants. The video would include a few seconds into 

the actual operation before the image is captured. Although the evidence for static versus 

dynamic images for enhancing a simulation is equivocal (18), this is a field which 

requires exploration specially if the plan is to simulate actual surgical environment. 

5.6.4 Teaching tool 

The ultimate goal of this project is to develop a simulation tool for surgical trainees 

which can help them identify correct tissue planes. This project achieves the first step 

towards laying down the foundations of a unique and specific assessment tool. 

 

5.7 Conclusions 

 

From results of this study, there is enough evidence to support the hypothesis that this 

simulation based assessment tool accurately distinguishes surgeon’s ability to identify 

surgical tissue planes, with the more experienced group performing better at this 

simulation. These results reach statistical significance both in terms of precision and 

accuracy. The unexpected results in some images could be a result of several factors 

which include images lacking discriminative power, the consistent inaccuracy of the 

trainees, the lack of a gold standard for comparing accuracy, line length discrepancy, and 

innate differences in visuospatial abilities. In the future, the authors will try to find ways 

to minimize these effects. The ultimate goal of this study is to be transformed from 
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benchmark research into a clinically applicable teaching tool to enhance trainees’ 

learning experience and play a role towards patient safety.       
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