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Abstract 

Landscape changes such as habitat fragmentation and habitat loss are contributing to a global 

decline in biodiversity. While habitat fragmentation research has mainly focused on species 

that avoid edges, or the boundaries between different landcover types  (negative edge 

response), a hypothesized resource distribution model predicts that species that require 

complementary resources in different landcovers will be most abundant at edges (positive 

edge response). Adults of Eastern Tiger (Papilio glaucus) and Spicebush (P. troilus) 

swallowtail butterflies require forests for oviposition sites and meadows for nectar resources. 

I examined the relative abundance and flight orientation of both species in relation to the 

forest/meadow edge to evaluate their edge response. Overall, I found that their distribution 

and flight behaviour was consistent with the positive edge response model, however there 

were differences between species and sexes. My results suggest that some degree of forest 

fragmentation in southernwestern Ontario can actually benefit some native species. 
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Chapter 1  

1 Introduction 

1.1 Habitat loss, habitat fragmentation, and 
connectivity 

Landscape fragmentation involves the loss and division of areas of natural landcover, 

such as forests, prairies and wetlands, and is increasingly common as a consequence of 

the expansion of human settlements and economic activities. These landscape changes 

result in loss and fragmentation of habitat for many species and are major contributing 

factors to a global decline in biodiversity (Brooks et al. 2002, Fischer and Lindenmayer 

2007). Habitat is defined by the combination of biotic and abiotic variables that provide 

the resources necessary for a species’ survival and reproduction, and it is where that 

species is typically found (Taylor et al. 1993, Fahrig 2003, Laurance 2008). Habitat loss 

refers to the conversion of habitat into inhospitable area called the matrix (Taylor et al. 

1993, Fahrig 2003). Habitat fragmentation per se refers explicitly to the process of 

breaking up previously contiguous areas of habitat. Fragmentation leads to multiple 

smaller habitat patches of various sizes and shapes, and in various degrees of isolation 

from one another, thus creating a more heterogeneous landscape (Fahrig 2003). Although 

habitat loss and fragmentation are almost always coupled, and occur simultaneously, each 

is predicted to have distinct effects on the viability of resident populations.  

The effects of habitat loss focus on the restricted amount and area of remaining resources, 

as these constrain the number of individuals and the sizes of the viable populations that 

can potentially be sustained, both within any given habitat patch and across an entire 

landscape (Fahrig 1997, Hanski and Ovaskainen 2000, Krauss et al. 2003, Farrow and 

Broders 2011). Habitat fragmentation per se may have a number of effects beyond those 

of habitat loss, which influence the size, distribution and dynamics of populations, thus 

making them more vulnerable to extinction (Schultz 1998, Dixo et al. 2009). Two of the 

most important effects are loss of connectivity among populations, and increased edge 

effects.  
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The extent to which individuals of a species can move through a landscape, and the 

ability of individuals born in different parts of the landscape to interact with each other, 

reflects the connectivity of that landscape. There are two key ways that connectivity can 

be defined and measured: structural and functional connectivity (Taylor et al. 1993, 

Tischendorf and Fahrig 2000). Structural connectivity reflects the spatial arrangement of 

landcovers and physical features on the landscape, independent of species that may occur 

there (Dunning et al. 1992, Taylor et al. 1993). In contrast, the actual or potential ability 

of individuals to move through a landscape determines the landscape’s functional 

connectivity (Tischendorf and Fahrig 2000). Functional connectivity is, therefore, a 

function of both structural connectivity and the particular behaviours and ecological 

requirements of the species in question. Habitat fragmentation always results in changes 

to the structural connectivity of a landscape, but a species’ smaller scale routine 

movements and potentially larger scale dispersal movements in response to structural 

changes in the landscape will determine the functional connectivity.  

When habitat fragmentation reduces functional connectivity, making it more difficult for 

individuals to traverse the landscape (Ricketts 2001, Boscolo and Metzger 2011), it 

reduces chances of accessing necessary resources such as food (Mortelliti and Boitani 

2007, Blackburn et al. 2011) and mates (Peacock and Smith 1997, Haapakoski and 

Ylönen 2010, Lange et al. 2013), as well as the opportunity to colonize new areas  

(Boscolo and Metzger 2011). Furthermore, loss of functional connectivity can lead to 

more genetically isolated populations (Wells et al. 2009, Dixo et al. 2009) that lose 

genetic diversity and may experience inbreeding depression (Haikola et al. 2001, Zachos 

et al. 2007), potentially leading to population declines and greater vulnerability to 

extripation or even extinction. Many studies suggest corridors or stepping-stones as a 

conservation strategy to increase connectivity in fragmented landscapes (Haddad 1999, 

Leidner and Haddad 2011). However, to effectively use such strategies, one must have a 

solid understanding of movement of individual species, and how each species responds to 

fragmentation of landcover types across the landscape. 
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1.2 Edges and edge-effects 

When a landscape is subjected to fragmentation of natural landcover types, edges or 

ecotones, which are the transitional boundaries between different landcover types that can 

vary in sharpness (e.g., between forest and meadow, or forest and agricultural field), 

become more abundant as smaller patches have a higher perimeter to area ratio. 

Important physical and biological changes occur at these boundaries and create unique 

conditions that are referred to as edge-effects (Saunders et al. 1991, Murcia 1995). For 

example, the degree to which wind and light attenuation are affected by edges creates a 

microclimate that differs from that of adjacent landcover types. Edge-effects, in many 

cases, can be detrimental to species that are strongly associated with the interior of 

patches of a given landcover, such as forests (Laurance 2008).  

For species that depend on resources within the core of landcover patches, edge-effects 

may limit the area that is actually available or suitable for such species’ use within a 

given patch. In such cases, several fragmented patches may offer less usable habitat than 

a single, large patch of the same total area. Thus, species richness and abundance has 

been found to increase with patch size and to decrease with the amount of edge in the 

landscape (Soga et al. 2012, Youngentob et al. 2012). Furthermore, effects may be 

evident up to 150 m from the edge and markedly reduce usable habitat for certain species 

(Murcia 1995).  

The abiotic changes characteristic of edge-effects in fragmented landscapes may be 

beneficial to invasive species (Bartuszevige et al. 2006, Cilliers et al. 2008). The 

encroachment of invasive species can amplify edge-effects (Watling et al. 2010), and in 

turn further reduce resource availability and the quality of remaining habitat for native 

species (Hurst et al. 2013, Lenda et al. 2013).  

Not only can edge-effects influence the amount of suitable habitat area and make habitats 

vulnerable to invasions, edges and edge-effects can also act as physical barriers to 

movement. Structural differences between two landcover types may deter organisms 

from moving between one landcover type to another, and across the landscape (Ross et 

al. 2005). This impediment to species movement can be illustrated most prominently 
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when species exhibit edge avoidance behaviour by turning around and moving away from 

edges when they encounter them (Ross et al. 2005). Edge-effects can therefore add to the 

negative impacts of fragmentation on the landscape’s functional connectivity for some 

species.  

Overall, increased abundance of edges in a landscape can detrimentally impact many 

species and for this reason, edge-effects are considered one of the primary negative 

consequences of landscape fragmentation. However, despite the potential negative effects 

of edges, the literature suggests that species’ response to edges are less predictable than 

this current paradigm may indicate (Debinski and Holt 2000, Fahrig 2003, Laurance 

2008). Indeed, depending on the range of their resource requirements and the spatial 

overlap of those resources, some species could actually benefit from an increased 

abundance of edges in the landscape. 

1.3 Resource distribution model 

A species’ distribution in the landscape generally depends on the distribution of their 

resources (Dunning et al. 1992, Fahrig 2003, Ries et al. 2004) and this could change with 

landscape alterations, particularly habitat fragmentation. While this concept is fairly 

intuitive, Ries et al. (2004) describe a formal, predictive model to explain species 

distributions in heterogeneous landscapes and define mechanisms for their ecological 

responses to edges.  

According to Ries et al. (2004; Figure 1a), a negative edge response occurs when a 

species is found in highest abundance within one landcover, where it has access to all its 

necessary resources. These patches define areas of high quality habitat. The same species 

is found in much lower abundance in adjacent areas, where either resources are absent or 

the same resources can be found in lower quality or quantity, therefore the distribution of 

resources is said to be supplementary. These species are unlikely to cross the boundary to 

move among landcover patches, thus demonstrating a negative edge response (Ries et al. 

2004; Figure 1a). In such species, we can expect edge-effects to create conditions that 

limit movement and reduce the functional connectivity of the landscape. Species that 

exhibit this behaviour are often habitat specialists, with required resources occurring in a  
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Figure 1. Resource distribution model showing species expected edge response 

(Adapted from Ries et al. 2004:502). (a) Shows a negative edge response where there 

is a decline in species abundance from habitat to non-habitat if resources are the 

same (supplementary), (b) shows a neutral edge response where species abundance 

does not change if the supplementary resources are provided in adjacent habitats 

that are of similar quality, and (c) shows a positive edge response where there is 

higher species abundance at the edge when different resources are in different 

habitat types (complementary). 
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narrow range, primarily in one or few landcover types. Studies of habitat fragmentation 

often focus on assessing habitat specialists that exhibit negative edge responses (Schultz 

and Crone 2001, Ross et al. 2005, Schtickzelle et al. 2007, Schlossberg and King 2008, 

Hahn et al. 2011).  

 

A neutral edge response can be predicted by the supplementary distribution of resources 

between areas of similar quality habitat. Adjacent landcover types may both contain, to a 

similar degree, the resources required by a particular species, so individuals are equally 

abundant within the different landcover types as they readily cross the boundary (Ries et 

al. 2004; Figure 1b). Therefore, edge-effects should have little effect on movement and 

functional connectivity. Species that exhibit this distribution are often habitat generalists, 

defined as species that have resources in a number of different landcover types, and can 

therefore occupy and move between them. Studies have demonstrated that habitat 

fragmentation can result in no effect, or even positive effects, for habitat generalists 

(Krauss et al. 2003, Hurst et al. 2013).  

A positive edge response occurs when a species is most abundant at the edge. This can 

arise because an ecotone may represent a unique environment that contains some 

characteristics distinct from both of the adjacent landcovers, and that is particularly 

suitable for certain species. A positive edge response can also be expected when species 

have complementary resources which are divided between two different landcover types 

(e.g., forest and meadow; Ries et al. 2004; Figure 1c). Particular resources can only be 

found in one or the other landcover type, but each resource is necessary. Individuals must 

move between adjacent patches of different landcovers to obtain all necessary resources, 

and are expected to be most abundant at the edges, thus displaying a positive edge 

response, and are therefore edge specialists (Ries et al. 2004; Figure 1c). Edge specialists 

have been less studied than those species that demonstrate negative or neutral edge 

responses. Some studies have suggested that edges can increase diversity (insects: 

Tscharntke et al. 2002, Gavish et al. 2011, Flick et al. 2012; birds: Schlossberg and King 

2008, Fonderflick et al. 2013; mammals: Lidicker 1990, Ethier and Fahrig 2011), but 

there are few empirical examples that have directly used the framework proposed by Ries 

et al. (2004) to assess species’ distributions and the mechanisms underlying those 
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distributions. To understand the range of potential responses to landscape fragmentation 

and to be able to manage fragmented landscapes for multiple taxa, it is important to gain 

a better understanding of the behaviour and movement of species that may respond 

positively to edges in the landscape (Debinski and Holt 2000, Fahrig 2003, Laurance 

2008).  

1.4 Behavioural response to landscape structure  

Ultimately, species’ distributions and responses to changes in structural connectivity 

depend on fine-scale behavioural responses, particularly how individuals orient 

themselves and move in relation to specific landscape features, such as edges. Such fine-

scale behavioural responses depend on how animals perceive the landscape. For example, 

many birds rely heavily on sight to capture moving prey (Garamszegi et al. 2002), while 

insects depend on a combination of olfactory and visual cues to detect mates and host 

plants (Scott 1974, Carlsson et al. 2011, Ockinger and Van Dyck 2012). Depending on 

the species, butterflies may detect landscape features from distances between 5 m to 120 

m away (Conradt et al. 2000, Ross et al. 2005, Schtickzelle et al. 2007). Generally, larger 

sensory organs indicate better sensory ability (Rutowski 2000, Nummela et al. 2013). 

These sensory abilities allow animals to detect and orient towards their resources, in turn 

influencing their movement through the landscape in order to obtain those resources. 

Specific tactics used by animals to obtain their resources can also be important factors in 

determining patterns of movement across heterogeneous landscapes. For example, some 

species adopt mate-locating strategies that require extensive movement such as patrolling 

in butterflies (Scott 1974) or male spiders traveling large distances in search of females 

(Berger-Tal and Lubin 2011), while others may have more sedentary strategies such as 

perching behaviour in butterflies (Scott 1974) or mate guarding in birds (Foote et al. 

2008). Similarly with foraging, different strategies such as ambushing prey versus active 

foraging will involve different levels of mobility (McBrayer and Wylie 2009). Therefore, 

understanding animal behaviour and resource locating strategies can be important in 

determining patterns of movement. 
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Given the need for animals to efficiently detect and obtain resources that vary spatially 

across heterogeneous landscapes, it is not surprising that landscape structural features 

have been found to strongly influence movement. Animal movement may be impeded or 

facilitated by various features of the landscape depending on the extent to which they 

provide necessary resources, are associated with mortality factors, affect the animal’s 

energy expenditures, or constitute a physical barrier to movement (Rayfield et al. 2010). 

For example, in natural landscapes, Murphy et al. (2010) found that large distances 

between habitat patches and mountainous topography impede the landscape’s functional 

connectivity for the Columbia spotted frog, Rana luteiventris. In contrast for more mobile 

animals such as some species of birds, relatively large inhospitable areas may act as 

corridors for movement to avoid predation (Gill et al. 2009). However, as landscapes 

change, resource distributions will be altered and newly created features, such as edges, 

are added. These changes to structure have been shown to influence the fine-scale 

movement patterns of various species, for example agricultural boundaries restricting the 

movement of the nutterjack toad, Bufo calamita, because of low prey abundance found in 

agricultural fields (Stevens et al. 2006). In addition, various insects exhibit distinctly 

different movement behaviour in habitat patches compared to intervening areas of matrix. 

Butterflies have shorter and more exploratory movements, and cover more area within 

habitat patches (Merckx et al. 2003, Van Dyck and Baguette 2005, Skórka et al. 2013), 

while in the matrix they tend to fly in straight lines, and spend less time foraging and 

resting (Schtickzelle et al. 2007, Skórka et al. 2013). 

Many studies have investigated animal behavioural responses to landscape structural 

features and their effect on the species’ broad-scales movements. Some studies have 

experimentally manipulated landscape features in a controlled environment (Stevens et 

al. 2006). Others use tracking devices to assess animal movements (Ousterhout and 

Semlitsch 2014), and direct observational studies have also been conducted (Haddad 

1999, Conradt et al. 2000, Schultz and Crone 2001, Schtickzelle et al. 2007). These 

studies allow greater insight to which specific landscape features impede or facilitate 

movement, the directionality of individual movements, and how species’ distributions 

may change as landscape structure changes.  
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1.5 Butterflies as a model system 

Butterflies are an excellent model system to address many questions in ecology, 

evolution and animal behaviour. For example, studies on the Glanville fritillary butterfly, 

Melitaea cinxia, and the Edith’s checkerspot, Euphydras editha, have provided much of 

the foundational empirical work for metapopulation dynamics (Harrison et al. 1988, 

Hanski et al. 1995) and provided valuable insight for biological conservation (Ehrlich 

1992, Hanski 2011, Ojanen et al. 2013). Furthermore, the use of modern genetic 

technologies have furthered our understanding of the evolutionary consequences of 

landscape changes for these species (Hanski and Saccheri 2006, Wells et al. 2009). Their 

varied patterns of spatial distribution and short generation time make butterflies useful in 

landscape and spatial ecology (Keyghobadi et al. 2005, Flick et al. 2012, Ockinger and 

Van Dyck 2012), as well as population ecology and population genetic studies  (Nowicki 

et al. 2005, Baguette and Stevens 2013). They are relatively easy to catch and observe, 

making them an ideal organism to examine diurnal behaviour (Slamova et al. 2011), 

mating systems (Scott 1974, Rutowski 1991), flight behaviour and orientation (Haddad 

1999, Conradt et al. 2000, Schultz and Crone 2001, Schtickzelle et al. 2007, Skórka et al. 

2013). 

1.6 Thesis objectives 

According to Ries et al.’s (2004) resource distribution model, species that use 

complementary resources in different landcover types are hypothesized to show positive 

edge responses (Figure 1c). I use Papilio glaucus and P. troilus as case studies to test for 

this positive edge response hypothesis, since both swallowtails use forest species as 

oviposition sites, but feed on meadow flowers. This would indicate whether these 

butterflies are indeed edge species, rather than habitat generalists or woodland species as 

they have previously been considered (Scott 1986, Haddad 1999). I predict that both 

species will be more abundant at the edge than in the forest or in the meadow. I also 

predict that when released at points both in the forest and in the meadow, their initial 

flight orientation as well as their overall flight direction will be directed towards the edge. 

Furthermore, I will also examine aspects of fine-scale flight behaviour to provide insight 
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into the ecological and behavioural mechanisms underlying their distribution in the 

landscape. 
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Chapter 2  

2 Materials and Methods 

2.1 Study species 

The northern edge of Papilio. glaucus’ range is the southern Great Lakes region of 

Ontario and the species occurs throughout much of the eastern United States including as 

far south as Georgia and west to the Great Plains (Scott 1986, Scriber et al. 1991). 

Papilio troilus in Canada reaches only southwestern Ontario, just north of Lake Erie, and 

its distribution in the eastern United States is similar to that of P. glaucus (Scott 1986). 

Both species over winter as chrysalides and are bivoltine in southwestern Ontario. The 

flight periods typically last four weeks, with the first flight starting in late May, and the 

second flight occurring in late August (Scott 1986).  

Papilio glaucus females oviposit on deciduous tulip trees (Liriodendron tulipifera L.), 

black cherry (Prunus serotina Ehrh.), and white ash (Fraxinus americana L.), which are 

the larval host species (Scott 1986, Grossmueller and Lederhouse 1987, Scriber et al. 

1991), while P. troilus uses sassafrass (Sassafrass albidum (Nutt.) Nees) and spicebush 

(Lindera benzoin (L.) Blume) (Scott 1986, Nitao et al. 1991). Swallowtails have long 

probosci and nectar feed on flowers with long corollas (Tiple et al. 2009), such as 

butterfly milkweed (Ascelpias tuberosa L.), common milkweed (Ascelpias syriaca L.) 

and wild lupine (Lupinus perennis L.). Other native plants commonly used for nectar, 

observed during this study, were native wild bergamot (Monarda fistulosa L.), hairy 

beardtongue (Penstemone hirutus (L.) Willd), and dwarf blazing-star (Liatris 

cylandracea Michx.). Introduced species used for nectar were dame’s rocket (Hesperis 

matronalis L.), purple vetch (Vicia spp), clover (Trifolium spp) and bouncing bet 

(Saponaria officinalis L.). 

2.2 Study area 

My study was conducted at the northern limit of both species’ distribution in Norfolk 

County, in southwestern Ontario (UTM: 17N E535866 N4727904; Figure 2).  
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Figure 2. Map of Ontario and location of study in Norfolk County (a) and specific 

study sites (b) that were used to evaluate relative abundance in 2013 and conduct 

behaviour trials in 2012. Sites shown in blue were used for both surveying relative 

abundance and conducting flight behaviour trials, sites in black were used to survey 

abundance only, and sites in gray were used for behaviour trials only. 
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Historically, the landscape of southwestern Ontario was a mosaic of mainly deciduous 

forest with some openings for prairie patches, oak savannah and riparian corridors (Argus 

1992, Crins 1997). Fallen trees in the forest or fires would have caused openings for 

prairie species to colonize. However, the forest has been fragmented and converted into 

agricultural lands (Argus 1992, Crins 1997) making this area an ideal region to study 

species’ behavioural responses to edges. My objective was to assess how swallowtail 

adults respond to edges between forest and restored prairies or meadows with native 

vegetation.  
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2.3 Field methods 

Criteria for choosing appropriate sites for this study were a well-defined forest/meadow 

boundary, with larval host plants present in the forest and native nectar plants in the 

adjacent meadows. Temperature and wind speed were recorded at least three times a day 

(morning, mid-day, afternoon) each time that abundance surveys or behavioural trials 

were conducted. Data were only collected when the temperature was at least 16 degrees 

C and the average wind speed was < 9 km/h with gusts no more than of 13 km/h. 

2.3.1 Relative abundance 

The relative swallowtail abundance in the meadow, at the edge, and in the forest was 

assessed at seven sites (WT, HT, AN, KB, DM, W, and S2; Figure 2; Table 1), between 

the late-May to July 2013. To select sites, I created a histogram of the area of contiguous 

forest patches in Norfolk County using landcover data from Southern Ontario Land 

Resource Information System, analyzed in ArcGIS v 10.0 (ESRI Corp., Redlands, CA; 

Figure A.1). There were 3366 forest patches identified in Norfolk County and only forest 

patches that had a large enough area (>10 ha) for at least two transects were considered 

for inclusion in the study. Only five forest patches were >300 ha and were considered not 

to be representative of forest patch size in this area, and were thus excluded. Study sites 

were then chosen such that the sizes of adjacent forest patches were representative of the 

range of forest patches found across Norfolk County, as determined by visual inspection 

of the histogram, and included patches of small (>100 ha), medium (100-200 ha), and 

large area (200-300 ha; Figure A.2). 

Each site had between 2-6 transects spaced at least 20 m apart for a total of 22 transects 

for this study (Figure 3). Each transect was 240 m x 5 m and extended 120 m into the 

meadow and 120 m into the forest (Figure 3), with the exception of two transects that 

were 110 m in the direction of the meadow due to restricted length of the meadow at sites 

KB and W (Figure 2; Table 1). Transects were divided into nine different sections (A-I; 

Figure 3; Fonderflick et al. 2013) to allow more fine-scale recording of the location 

where each butterfly was seen. Sections varied in length to reflect the relative amount of 

habitat; sections were longer further into the forest or meadow and shorter near the edge. 
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Table 1. Location in Universal Transverse Mecator (UTM) of sites used for relative 

abundance surveys of swallowtail butterflies in Norfolk County, Ontario in 2013. 

Numbers of each species recorded at each site are shown. 

Site 
Abbreviation Site Easting Northing NP. glacus NP. troilus  

      WT Wilson  535094 4721111 150 55 
HT Hepburn 536179 4726535 58 32 
AN Anderson 540685 4724847 26 6 
KB Boothby 524705 4723556 35 11 
DM DeMaere 543943 4725806 33 3 
W Weeden 538419 4725368 25 9 
S2 Soenen2 543050 4724946 27 8 
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Figure 3. Sample site with transects used to survey relative abundance of 

swallowtail butterflies during May-July 2013 using the Pollard walk method. Black 

lines represent four transects (5m x 240m) that are divided into nine sections (A-I) 

that span the forest, edge, and meadow. 
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Swallowtail abundance was quantified using an approach similar to the method of a 

Pollard walk using transect counts (Pollard 1977). Two observers each walked along a 

separate transect at a slow and steady pace that took between 14-16 minutes. The same 

two observers surveyed all of the transects. Observers recorded any butterflies seen that 

were certain to be P. glaucus and P. troilus flying within the transects and the specific 

section in which they were seen. Observers were unable to record the sex of the 

butterflies by sight. If the same butterfly was definitely seen repeatedly during the same 

observation period, it was only recorded once. However, if there was any doubt about the 

identity of an individual butterfly, then it was recorded as a new observation, as per the 

Pollard walk method (Pollard 1977). Sites were surveyed regularly at different time 

periods of the day: morning (10:00 – 12:00), mid-day (12:30 – 14:30) and afternoon 

(15:00 – 17:00). Counts of butterflies recorded within each section were summed across 

the total number of times each transect was visited.  

The portions of each transect that were in the meadow and at the edge were also surveyed 

to quantify the abundance of plants that are commonly used as nectar sources. The 

number of individual plants was recorded within each section of each transect. The 

presence of larval host plants for each species within the adjacent forest up to 120 m from 

the edge was also confirmed at each site. 

2.3.2 Flight behaviour trials 

Three sites (WT, HT, and BP; Figure 2; Table 2) were chosen for flight behaviour trials. 

In addition to having the aforementioned site criteria, each of these sites had areas within 

1 km where many butterflies could easily be caught to avoid translocating individuals 

over longer distances.  

Trials were conducted during the flight period from mid-May to mid-July 2012. 

Butterflies engage in various activities and behaviours throughout the day such as 

basking, feeding, male patrolling, and female egg-laying (Slamova et al. 2011). To 

capture these diurnal patterns, trials were conducted during the hours of 9:30 – 18:30 and 

the time of day the trial took place was recorded.  
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Table 2. Location in Universal Transverse Mecator (UTM)s of sites in Norfolk 

County, Ontario used for behaviour trials, where responses of swallowtail 

butterflies to forest/meadow edges were assessed in 2012. Number of trials 

conducted for males and females caught for each species at each site are shown. 

        P. glaucus   P. troilus 
Site 
Abbreviation Site Easting Northing Nmales Nfemales 

 
Nmales Nfemales 

         WT Wilson 535094 4721111 156 89 
 

86 63 
HT Hepburn 536179 4726535 77 22 

 
66 16 

BP Brian 540868 4735379 13 15   0 0 
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At each site, butterflies were netted, uniquely marked with permanent marker, and cooled 

(>10 minutes and < 2 hours) before their release at the trial location. Cooling was done 

using a standard procedure where butterflies are carefully placed in a glassine envelope 

and kept in a cooler with ice packs (similar to Schultz 1998). This ensured that the 

butterfly was calm when they were placed on the ground to be released. The flight 

behaviour of captured and released butterflies has been shown to not differ from their 

natural movement behaviour in some species (Schultz 1998, Kuefler and Haddad 2006; 

Skorka et al. 2013). 

Butterflies were released at specific distances from the edge, in the meadow (10 m, 30 m, 

60 m) and in the forest (10 m, 60 m).  Each individual butterfly was also oriented in one 

of four different directions (towards, away, right or left relative to the forest edge) when 

placed on the ground at their initial release point, to ensure mean flight direction was not 

influenced by their initial placement. After release, each butterfly was followed for a 

maximum of 30 minutes or until they flew out of sight. Butterflies were lost from sight 

more quickly in the forest and more often once they entered the adjacent habitat, however 

at a minimum, the last point where the butterfly was seen was recorded. Locations of 

resting points were recorded using a high-accuracy GPS (Trimble GeoXH 2005) with an 

accuracy of up to 1 m in the field and 2 m in the forest. Behaviour at each resting point 

was recorded (resting, feeding, basking), flights between resting points were timed using 

a stopwatch, and distances and angles between resting points were determined from the 

GPS data after importing into ArcGIS v 10.0. Alighting points were counted only if the 

individual remained at the location for > 3 seconds, so that butterflies came to a complete 

rest. A trial was terminated if a butterfly rested and did not fly for >15 minutes. To ensure 

minimal disturbance to each butterfly’s flight behaviour, its flight and alighting points 

were monitored from approximately 2 m away. Two people were required to track a 

butterfly’s flight. One person focused on following the butterfly, while the other person 

flagged and referenced the exact spot of each alighting point once the butterfly left that 

spot. Trials ended if obvious disturbances were observed (e.g., if an observer 

unintentionally disrupted the butterfly’s flight), which occurred three times. 
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2.4 Statistical analysis 

2.4.1 Relative abundance 
Spatial autocorrelation analysis was performed using multivariate Mantel correlograms as 

implemented by the R package vegan v 2.0-10 (J. Oksanen, F.G. Blanchet, R. Kindt, P. 

Legendre, P.R. Minchin, R. B. O’Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens, and 

H. Wagner, available at http://vegan.r-forge.r-project.org). I used spatial autocorrelation 

to assess whether the number of butterflies seen in one section of a transect was 

significantly correlated with the number seen in any other section (Fonderflick et al. 

2013). For each section of each transect, I calculated the average density of butterflies per 

visit to account for the number of times each transect was surveyed and the different 

lengths of each section. I obtained the average density of butterflies per visit by dividing 

the summed count of butterflies across visits by the number of visits and the length of 

each section. A separate correlogram was examined for each transect. If the correlation 

for at least one distance class was significant, the entire correlogram was considered 

significant (Fonderflick et al. 2013). 

I used a generalized linear mixed model (GLMM) approach to assess landscape and 

ecological factors affecting the distribution of swallowtails along the transects using the 

R package lme4 v 1.0-5 (D. Bates, M. Maechler, B. Bolker, S. Walker, available at 

http://lme4.r-forge.r-project.org). Since data were collected as counts of butterflies, I used 

the Poisson distribution in the GLMM. Abundance of butterflies was analyzed separately 

for the meadow and forest, and for each species, for a total of four GLMMs. The main 

fixed effect of interest in my GLMMs was the distance to the edge, measured at the mid 

point of each section. Other effects in the model were: number of nectar plants in each 

section (meadow only), time of day (morning, mid-day, and afternoon), number of 

surveys conducted for each transect, and the length of each section, since sections were 

not of equal length. Nested random effects included transects within sites, to account for 

the variation among different transects and sites. Butterflies engage in different activities 

during the day, and thus their spatial distribution relative to the edge may change 

throughout the day. Therefore, the interaction between time of day and distance to the 

edge was also included as a fixed effect in the model.   



 

 

21 

I followed a multimodel inference approach to determine the relative importance of each 

factor (Burnham and Anderson 2002) using the R package MuMin v 1.9.13 (K. Barton, 

available at http://mumin.r-forge.r-project.org). A set of candidate models was generated 

and ranked based on the second-order Akaike information criterion value (AICc), which 

accounts for sample sizes relative to the number of parameters (Burnham and Anderson 

2002). Separate sets of candidate models were generated for the meadow and the forest, 

and for each species, for a total of 4 sets of models. The top model in each set has the 

lowest AICc value, and other candidate models were only considered if they had ΔAICc 

less than 4, where ΔAICc indicates the difference between the AICc value for model i and 

the AICc value for the best model (Burnham and Anderson 2002). Akaike weights (wi) of 

each model i were then used to obtain the probability that model i is the best model given 

the data we sampled (Burnham and Anderson 2002). Inferences could be made 

conditionally on a selected best model if w ≥ 0.90 (Burnham and Anderson 2002). 

Since no single best model was obtained based on Akaike weights, I used model 

averaging of the top models (ΔAICc < 4) to determine the relative importance of each 

factor and parameter estimations. I used w+(i), which sums the wi of each model that 

contains predictor variable i over the total, to obtain the relative importance of each 

predictor (Burnham and Anderson 2002). In addition, I used the R package AICcmodavg 

v 1.35 (M.J. Mazerolle, available at http://cran.r-project.org/package=AICcmodavg) to 

obtain the parameter estimate !!, where !! is the linear regression coefficient associated 

with a predictor variable and is averaged across all models that include that predictor 

variable (Burnham and Anderson 2002). 

2.4.2 Flight behaviour trials 

The alighting points referenced for each butterfly flight path and imported into ArcGIS v 

10.0 were used to assess turning angles, as well as the initial and final divergence angles. 

A turning angle is defined as the angle between two lines of the flight path, where the 

intersection of these lines is the alighting point of the butterfly. The trigonometric sine 

and cosine functions were applied to the turning angles for each flight path to assess 

directionality and flight persistence, respectively. Only flight paths that had one or more 
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turning angles could be used for this analysis. The mean sine of turning angles indicates 

that there is a right turning bias if values are positive and significantly different from 

zero, and it indicates a left turning bias if values are negative and significantly different 

from zero (Turchin et al. 1991). Most insects show no directional bias in their turns, and 

therefore the mean sine of the turning angles is typically symmetrical around zero 

(Kareiva and Shigesada 1983; Turchin 1991). Mean cosines of turning angles indicate the 

degree of persistence in the flight path—the extent to which the individual continues 

movement in a particular direction. If the mean cosine of turning angles is not 

significantly different from zero, this indicates that the direction of each move is not 

correlated with the previous movement and that the flight path is random. Mean cosine 

values that are positive and significantly different from zero indicate a forward 

persistence, and values that are negative and significantly different from zero indicate 

reversal movements (Turchin et al. 1991). The Wilcoxon signed-rank test was used to 

determine if the mean sine and cosine of flight paths were significantly different from 

zero. All calculations were done separately for each species, release point and sex. 

A divergence angle is defined as the angle between the shortest straight line to the edge 

from a release point, and a straight line from the same release point to some other point in 

the flight path (Conradt et al. 2000; Figure 4). The initial divergence angle of a flight path 

(β) is the angle between the shortest line to the edge and the line to the location of the 

butterfly at 5 m radius from the release point, and is used to assess the initial orientation 

of the swallowtails’ flight path (Conradt et al. 2000; Figure 4). The final divergence angle 

of a flight path (α) is the angle between the shortest line to the edge and the line to the 

point where the butterfly was last recorded and is used to assess the overall flight path 

direction (Conradt et al. 2000; Figure 4).  

To analyze divergence angles, I employed circular statistics using the R package circular 

v 0.4-7 (U. Lund and C. Agostinelli, available at https://r-forge.r-

project.org/projects/circular/). Distributions of angles were tested to fit the von Mises 

distribution, which is equivalent to a normal distribution for circular data (Zar 2010). The 

Rayleigh test of uniformity was used to test if the initial and final divergence angles were 

uniformly distributed around a circle or if there was significant directionality, where zero  
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Figure 4. Sample flight path showing how initial (β) and final (α) divergence angles 

were measured from flight paths that were obtained during May-July 2012 

(Adapted from Conradt et al. 2000:1506). The initial divergence angle β is the angle 

between the shortest straight line to the edge from the release point, and the straight 

line to the location of the butterfly at 5 m distance from the release point. The final 

divergence angle α is the angle between the shortest straight line to the edge from 

the release point and the straight line to where the butterfly was last recorded. 
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degrees represents the direction of the shortest straight line towards the forest/meadow 

boundary. For data that did not fit the von Mises distribution, non-parametric methods 

were used to determine the mean direction, and confidence intervals (Fisher 1993). If the 

confidence interval for the mean direction was between ±90°, then we fail to reject the 

hypothesis that the mean direction was towards the edge (Fisher 1993). 

All statistical analyses were conducted using R version 3.0.2 (R Development Core Team 

2012; R Foundation for Statistical Computing, Vienna). 
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Chapter 3  

3 Results 

3.1 Relative abundance 

A summary of the abundance data for each species is shown in Table 3. Accounting for 

the different lengths of transect sections and the number of visits, out of the three time 

periods and 22 transects, there were only three significant correlograms for P. glaucus 

and three for P. troilus. As only 4.5% of all correlograms tested were significant, which 

can be expected by chance given a Type I error rate of 0.05, there was no evidence for 

significant spatial autocorrelation in butterfly counts among sections of individual 

transects.  

Model selection results for P. glaucus indicated that relative abundance was associated 

with a number of variables (Table 4), but distance to the edge was consistently an 

important predictor in determining their relative abundance, in both the forest and the 

meadow (w+(i)=1.00 and w+(i)=1.00, respectively; Table 5). Our parameter estimates 

suggest a negative relationship between distance to the edge and relative abundance of 

butterflies, thus abundance increases with proximity to the edge (Table 5). As expected, 

the section length also had a strong effect in both the forest and in the meadow (w+(i) = 

1.00 and w+(i)=1.00, respectively; Table 5). The mean density of P. glaucus also showed 

that they are clearly more abundant at the edge at all time periods of the day (Figure 5). 

Model selection results for P. troilus, showed that relative abundance was associated with 

a number of variables (Table 4). In the meadow, the number of observer visits to the 

transects was a good predictor of butterfly counts (w+(i)= 0.67; Table 5), while distance 

to the edge was not (w +(i) = 0.28; Table 5). However, distance to the edge was important 

in the forest (w +(i) =0.92; Table 5), as was as the length of each section (w +(i)=0.90; 

Table 5), and time of day (w +(i)=0.69; Table 5). The interaction between time of day and 

distance to the edge (w +(i)=0.62; Table 5) was also important in the forest. 
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Table 3: Summary of butterfly abundance relative to the edge data from 2013 in 

Norfolk County. Counts recorded of P. glaucus and P. troilus at each time period of 

the day (morning, mid-day, and afternoon), in each habitat type (meadow, edge, and 

forest), and in each section of the transect (A-I) are shown. 

    Habitat type 

  
Meadow 

 
Edge 

 
Forest 

  
Transect sections 

Species Time of day A B C D   E   F G H I 
P. glaucus Morning 17 11 6 6 

 
39 

 
3 4 5 8 

 
Mid-day 7 17 6 10 

 
51 

 
2 0 4 16 

 
Afternoon 22 13 15 10 

 
57 

 
3 1 1 20 

             P. troilus Morning 6 4 4 7 
 

9 
 

0 1 3 5 

 
Mid-day 4 3 4 5 

 
4 

 
1 2 12 7 

  Afternoon 4 5 2 2   3   0 1 10 16 
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Table 4. Summary of model selection results for relative abundance for both P. glaucus and P. troilus in meadow and forest 

habitat types at the seven selected sites in Norfolk County during May-July 2013. Only models with ΔiAICc < 4 are shown, and 

are ranked by AICc. Factors included are distance to the edge (dis), section length (sl), time period (tim), number of visits (vis), 

and plant count (pl), which is only included in models assessing the meadow. Addition symbols indicate additive effects and 

colons indicate interactions. Log likelihood (logLik), second order Akaike information criterion (AICc), ΔiAICc, and Akaike 

weights (wi) were derived from generalized linear mixed-model 

Model logLik AICc ΔiAICc wi   Model logLik AICc ΔiAICc wi 

           MEADOW 
     

FOREST 
    P. glaucus 

          dis+sl -380.16 770.50 0.00 0.15 
 

dis+sl -275.06 560.30 0.00 0.51 
dis+sl+tim+dis:tim -376.19 770.95 0.45 0.12 

 
dis+vis+sl -274.89 562.05 1.75 0.21 

dis+vis+sl -379.49 771.24 0.74 0.10 
 

dis+sl+tim -274.05 562.45 2.15 0.17 
dis+sl+tim -378.50 771.35 0.85 0.10 

      dis+pl+sl -379.60 771.45 0.95 0.09 
      dis+pl+sl+tim+dis:tim -375.54 771.77 1.26 0.08 
      dis+vis+sl+tim+dis:tim -375.63 771.96 1.45 0.07 
      dis+vis+pl+sl -378.91 772.16 1.66 0.07 
      dis+pl+sl+tim -377.94 772.32 1.82 0.06 
      dis+vis+sl+tim -377.94 772.33 1.82 0.06 
      dis+vis+pl+sl+tim+dis:tim -374.95 772.73 2.22 0.05 
      dis+vis+pl+sl+tim -377.35 773.27 2.76 0.04 
      

           P. troilus 
          vis -167.87 343.87 0.00 0.12 

 
dis+sl+tim+dis:tim -182.27 383.11 0.00 0.31 

vis+pl -167.34 344.87 1.00 0.07 
 

dis+sl -187.24 384.67 1.56 0.14 
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tim -167.56 345.31 1.44 0.06 
 

dis+vis+sl+tim+dis:tim -182.14 384.97 1.86 0.12 
vis+tim -166.57 345.39 1.52 0.06 

 
dis+tim+dis:tim -184.57 385.58 2.47 0.09 

int -169.82 345.71 1.84 0.05 
 

sl -188.97 386.06 2.95 0.07 
dis+vis -167.86 345.90 2.03 0.04 

 
dis+sl+tim -186.11 386.56 3.45 0.05 

vis+sl -167.87 345.93 2.06 0.04 
 

dis+vis+sl -187.24 386.74 3.63 0.05 
dis+vis+pl -166.98 346.21 2.34 0.04 

      pl+tim -166.99 346.23 2.36 0.04 
      vis+pl+tim -166.03 346.41 2.54 0.03 
      vis+pl+sl -167.14 346.55 2.68 0.03 
      pl -169.28 346.68 2.81 0.03 
      dis+vis+sl -167.24 346.74 2.87 0.03 
      dis+vis+pl+sl -166.25 346.84 2.97 0.03 
      dis+tim -167.55 347.35 3.48 0.02 
      sl+tim -167.56 347.38 3.51 0.02 
      dis+vis+tim -166.55 347.45 3.58 0.02 
      vis+sl+tim -166.57 347.48 3.61 0.02 
      dis+pl+tim -166.61 347.58 3.71 0.02 
      dis -169.80 347.73 3.86 0.02 
      sl -169.82 347.76 3.89 0.02 
      dis+vis+pl+tim -165.67 347.80 3.93 0.02             
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Table 5: The effect of distance to the edge and other factors on the relative abundance of 

both P. glaucus and P. troilus in the meadow and forest in Norfolk County during May-

July 2013, as determined by model-averaging.  Factors included are distance to the edge 

(dis), section length (sl), time period (tim), number of visits (vis), and plant count (pl). 

Colons indicate interaction effects. Model-averaged Akaike weights (w+(i)), parameter 

estimates (!!), and standard errors (SE) are derived from generalized linear mixed-models 

and model selection. 

  Meadow   Forest 

Variables w+(i) 
!
!!! SE   w+(i) 

!!
!!! SE 

P. glaucus 
       dis 1.000 -0.130 0.012 

 
1.000 -0.264 0.022 

sl 1.000 0.211 0.022 
 

1.000 0.452 0.039 
tim 0.584 - - 

 
0.194 - - 

vis 0.393 -0.108 0.097 
 

0.237 -0.057 0.098 
pl 0.390 0.003 0.003 

 
- - - 

dis:tim 0.325 - - 
 

- - - 

        P. troilus 
       dis 0.282 -0.013 0.021 

 
0.916 -0.052 0.028 

sl 0.229 0.014 0.033 
 

0.893 0.097 0.051 
tim 0.370 

   
0.687 - - 

vis 0.673 0.271 0.150 
 

0.206 0.068 0.177 
pl 0.372 0.005 44.000 

 
- - - 

dis:tim - - -   0.621 - - 
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Figure 5. Mean density of P. glaucus per visit, in each habitat type: forest, edge, and 

meadow in Norfolk County during May-July 2013, separately for the (a) morning (10:00-

12:00), (b) mid-day (12:30-14:30), and (c) afternoon (15:00-17:00). Standard error bars are 

shown. The distance to the edge in meters, measured by the mid-point in each section, is 

also shown. Mean density was calculated as the number of butterflies observed in each 

section (A-I), divided by section length and averaged over the total number of visits. 
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Although distance to the edge only emerged as an important predictor in our GLMM for P. 

troilus in the forest, and not in the meadow, the trend in Figure 6 suggests that there was higher 

mean density of P. troilus at or near the edge compared to other locations in both the meadow 

and the forest. However, this pattern of higher relative abundance at the edge was much less 

pronounced in P. troilus than it was in P. glaucus. Figure 6 also indicates that for P. troilus in the 

forest, the interaction between time of day and distance to the edge occurs because in the 

morning, P. troilus is most abundant at the edge and few individuals are seen in the forest. 

However, during mid-day and afternoon, P. troilus becomes proportionately less abundant at the 

edge and more individuals are seen in the forest, particularly at 45 m (Figure 6). 
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Figure 6. Mean density of P. troilus per visit, in each habitat type: forest, edge, and meadow 

in Norfolk County during May-July 2013, separately for the (a) morning (10:00-12:00), (b) 

mid-day (12:30-14:30), and (c) afternoon (15:00-17:00). Standard error bars are shown. 

The distance to the edge in meters, measured by the mid-point in each section, is also 

shown. Mean density was calculated as the number of butterflies observed in each section 

(A-I), divided by section length and averaged over the total number of visits. 
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3.2 Flight behaviour trials 

At all release points in both the meadow and in the forest, the mean sines of turning angles, for 

both species and sexes, were not significantly different from zero. This indicates that there was 

no left or right turning bias exhibited by either species (Table 6). 

Both males and females of P. glaucus at 60 m into the forest did not have a mean cosine that 

differed significantly from zero (males: mean cos=0.22, p=0.81 and females: mean cos= 0.28, 

p=0.50; Table 6), meaning that they exhibited more random flight behaviour deep in the forest. 

Male P. glaucus also exhibited random flight behaviour at 10 m into the forest (mean cos=0.20, 

p=0.15, Table 6), but females showed forward persistence (mean cos=0.41, p=0.02, Table 6). At 

all other release distances mean cosines for P. glaucus were significantly greater than zero and 

indicated a forward persistent flight (Table 6). 

Similarly, for P. troilus released at 60 m in the forest, both males and females exhibited more 

random flight behaviour (males: mean cos=-0.09, p=1.00 and females: mean cos=0.47, p=0.25; 

Table 6). For male P. troilus at 10 m into the forest, the mean cosine was also not significantly 

different from zero (mean cos=-0.20, p=0.30, Table 6), also showing random flight behaviour. At 

all other release points, mean cosines were positive and significantly different from zero, 

showing a persistent forward flight for both males and females (Table 6). 

Divergence angles for P. glaucus did not fit the von Mises distribution, thus non-parametric 

confidence intervals were calculated for the mean direction of initial and final divergence angles 

at each release distance, for each sex. Ninety-five percent confidence intervals were used at all 

distances, except at the 10 m release point in the meadow for females. In this case 80% 

confidence intervals were used (Table 7) because the standard errors were so large that using an 

α = 0.025 resulted in a number >1, and thus it was mathematically impossible to calculate the 

inverse sine in order to obtain the confidence intervals in angles. 

At a release point of 60 m into the forest, the mean direction of both male and female P. glaucus 

initial divergence angles was further towards the forest interior (males: mean=123.63, CI= 

111.81-135.44 and females: mean=109.45, CI=93.39-125.51; Table 7). The initial divergence 

angles for females had wider confidence intervals than those for males, particularly at 10 m in  
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Table 6. Trigonometric cosine and sine functions were used to evaluate flight persistence 

and turning bias, respectively. Mean cosine and mean sine are shown for P. glaucus and P. 

troilus, males and females, and at all release points in the forest and the meadow in Norfolk 

County during May-July 2012. The Wilcoxon signed rank test was used to test if means 

significantly differed from zero. Shown are the number of trials included (N), the mean 

cosine/sine (Mean), the standard error (± SE), the test statistic (V), and the p-value (P). 

Positive mean cosines that are significantly different from zero are bolded and indicate a 

forward persistent flight. 

      cos θ   sin θ 
Distance Sex N Mean ± SE V P   Mean ± SE V P 
P. glaucus 
FOREST 

 ! ! ! ! ! ! ! ! ! ! !60m M 5 0.22 0.47 9 0.81 
 

0.16 0.80 14 0.13 

 
F 2 0.28 0.18 3 0.50 

 
0.94 0.05 3 0.50 

10m M 20 0.20 0.15 144 0.15 
 

0.19 0.16 136 0.26 

 
F 18 0.41 0.14 139 0.02 

 
-0.28 0.15 28 0.13 

            MEADOW 

            10m M 20 0.62 0.12 191 <0.01 
 

0.03 0.13 111 0.84 

 
F 48 0.55 0.09 994 <0.01 

 
0.07 0.08 604 0.49 

30m M 41 0.43 0.10 713 <0.01 
 

0.01 0.10 366 0.95 

 
F 22 0.63 0.10 242 <0.01 

 
0.06 0.14 123 0.51 

60m M 71 0.53 0.06 2304 <0.01 
 

0.06 0.08 1289 0.48 

 
F 42 0.53 0.09 774 <0.01 

 
0.03 0.10 408 0.81 

            P. troilus 
FOREST 

            60m M 5 -0.09 0.42 7 1.00 
 

-0.11 0.26 6 0.81 

 
F 4 0.47 0.19 9 0.25 

 
-0.02 0.47 5 1.00 

10m M 14 -0.20 0.19 35 0.30 
 

0.07 0.20 61 0.63 

 
F 16 0.57 0.17 109 0.03 

 
-0.02 0.12 68 1.00 

            MEADOW 

            10m M 53 0.65 0.07 1328 <0.01 
 

-0.04 0.07 610 0.47 

 
F 20 0.42 0.13 168 0.02 

 
0.06 0.16 113 0.78 

30m M 55 0.53 0.08 1331 <0.01 
 

-0.03 0.08 639 0.83 

 
F 25 0.56 0.10 299 <0.01 

 
-0.08 0.13 131 0.60 

60m M 51 0.68 0.05 1309 <0.01 
 

0.08 0.09 756 0.39 
  F 18 0.51 0.13 149 <0.01   -0.05 0.16 76 0.70 
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Table 7. Non-parametric confidence intervals (CI.Low and CI.High), mean direction, and 

standard errors (SE) of both male and female P. glaucus, at all release points in the forest 

and meadow in Norfolk County during May-July 2012. The number of trials conducted is 

also shown (N). Asterisks indicate that 80% confidence intervals were used at the 10 m 

release point in the meadow, while 95% confidence intervals were used for all other release 

points. Bolded values indicate significant directionality towards the edge. 

Distance Sex N Mean direction SE CI.Low CI.High 
Initial divergence angle (initial orientation) 
FOREST 

       60m M 39 123.63 0.10 111.81 135.44 

 
F 19 109.45 0.14 93.39 125.51 

10m M 43 71.96 0.13 56.69 87.23 

 
F 20 52.01 0.18 31.15 72.87 

       MEADOW 
            10m M 43 -14.15 0.22 -39.18 10.88 

 
F 20 -55.92 0.68 -117.31* 5.48* 

30m M 44 -18.29 0.16 -36.46 -0.12 

 
F 21 -35.45 0.25 -65.17 -5.73 

60m M 44 -30.06 0.17 -49.04 -11.08 

 
F 19 -47.63 0.24 -76.22 -19.04 

       Final divergence angle (overall flight direction) 
FOREST 
60m M 39 120.95 0.11 108.59 133.30 

 
F 19 107.74 0.15 91.07 124.41 

10m M 43 61.24 0.14 45.45 77.02 

 
F 20 36.63 0.17 17.12 56.14 

       MEADOW 
            10m M 43 -14.11 0.22 -39.58 11.36 

 
F 20 -53.72 0.77 -136.49* 29.05* 

30m M 44 -21.68 0.18 -52.09 -11.26 

 
F 21 -40.61 0.26 -71.83 -9.39 

60m M 44 -25.03 0.18 -45.31 -4.75 
  F 19 -43.16 0.28 -76.18 -10.13 
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the meadow, where direction of females was not significantly towards the edge (females: mean=-

55.92, CI=-117.31-5.48; Figure 7a; Table 7). However, at all other release distances, both in the 

forest and in the meadow, the mean direction of butterfly initial divergence angles was 

significantly towards the edge (Figure 7a; Table 7). 

Similarly, the mean direction of both male and female P. glaucus final divergence angles were 

directed towards the edge, with the exception of those individuals released at 60 m in the forest, 

(males: mean=120.95, CI=108.59-133.30 and females: mean=107.74, CI=91.07-124.41; Figure 

7b; Table 7) and females released at 10 m in the meadow (females: mean= -53.72, CI=-136.49-

29.05; Figure 7b; Table 7). Females consistently had wider confidence intervals in their final 

divergence angles in the meadow than males (Figure 7b; Table 7). 

Both initial and final divergence angles for P. troilus fit the von Mises distribution. Thus the 

Rayleigh test of uniformity was performed to assess whether significant directionality was 

present in both their initial orientation (Table 8).   

From release points in the forest, the initial divergence angles of both male and female P. troilus 

did not fit a uniform circular distribution and indicated significant directionality in the initial 

flight orientation. At 60 m in the forest, the mean initial divergence angle for both sexes 

indicated a flight direction neither towards nor away from the edge, but rather parallel to the 

edge (male 60 m: p<0.01, mean=98.03, CI=65.53-127.07 and female: 60 m: p<0.01, 

mean=94.33, CI=61.38-128.94; Figure 8a; Table 8). At the 10 m release point in the forest, male 

mean initial divergence angle was also parallel to the edge (p<0.01, mean=97.61, CI=71.34-

121.27; Figure 8a; Table 8), while female mean initial divergence angle indicated flight direction 

towards the edge (p <0.01, mean=56.98, CI=34.40-88.55; Figure 8a; Table 8). From release 

points in the meadow, only the initial divergence angles for males released at 10 m and 30 m did 

not fit a uniform circular distribution, indicating significant directionality in the initial flight 

orientation. Males released at these points had mean initial divergence angles in the direction of 

the edge (10 m: p<0.01, mean=-43.89 CI=-82.58- -7.92 and 30 m: p<0.01, mean=17.01, CI=-

10.40-49.40; Figure 8a; Table 8). For males released at 60 m in the meadow, and for females 

released at all distances in the meadow, the initial divergence angles did not deviate from a 

uniform circular distribution, indicating no significant directionality in the initial flight  
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Figure 7. Rose diagrams show the distribution of (a) initial and (b) final divergence angles 

relative to the edge from all release points in the forest and meadow for P. glaucus. Data 

were collected at three selected sites in Norfolk County during May-July 2012. Points on 

the circle are the mean directions bounded by non-parametric confidence intervals. 

Females are represented by gray and dotted lines, and black and solid lines represent 

males. 
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Table 8. Mean direction and parametric confidence intervals (CI.Low and CI.High) of 

initial and final divergence angles for both male and female P. troilus, at all release points 

in the meadow and forest in Norfolk County during May-July 2012. Numbers of trials 

conducted are also shown (N). Data fit the von Mises distribution and the Rayleigh test was 

performed: dispersion (r) and significance of directionality (P) are shown. Bolded values 

indicate significant directionality (i.e., deviation from a uniform, circular distribution). 

Distance Sex N Mean direction CI. Low CI. High r P 
Initial divergence angle (initial orientation) 
FOREST 

        60m M 28 98.03 65.53 127.07 0.46 0.00 

 
F 14 94.33 61.38 128.94 0.61 0.00 

10m M 26 97.61 71.34 121.27 0.54 0.00 

 
F 13 56.98 34.40 88.55 0.68 0.00 

        MEADOW 
              10m M 26 -43.89 -82.58 -7.92 0.42 0.01 

 
F 13 39.32 -12.93 116.22 0.39 0.14 

30m M 29 17.01 -10.40 49.40 0.50 0.00 

 
F 13 -43.18 -145.67 57.40 0.27 0.40 

60m M 28 -37.66 -140.46 25.53 0.21 0.31 

 
F 10 -59.57 -131.45 5.74 0.37 0.27 

        Final divergence angle (overall flight direction) 
FOREST 
60m M 

 
98.03 65.53 127.07 0.41 0.01 

 
F 

 
94.33 61.38 128.94 0.59 0.01 

10m M 
 

97.61 71.34 121.27 0.51 0.00 

 
F 

 
56.98 34.40 88.55 0.64 0.00 

        MEADOW 
              10m M 
 

-43.89 -82.58 -7.92 0.28 0.13 

 
F 

 
101.52 -12.93 116.22 0.20 0.61 

30m M 
 

17.01 -10.40 49.40 0.61 0.00 

 
F 

 
-43.18 -145.67 57.40 0.20 0.61 

60m M 
 

-37.66 -140.46 25.53 0.29 0.10 
   F   -59.57 -131.45 5.74 0.28 0.48 
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Figure 8. Rose diagrams show the distribution of (a) initial and (b) final divergence angles 

relative to the edge from all release points in the forest and in the meadow for P. troilus. 

Data were collected at three selected sites in Norfolk County during May-July 2012. Points 

on the circle are the mean directions bounded by parametric confidence intervals. Females 

are represented by gray and dotted lines, and black and solid lines represent males. 
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orientation (male: p=0.31 and females: p=0.14 - 0.40; Table 8). In these cases, the mean initial 

divergence angles did show a trend of being oriented towards the edge, however they were 

associated with very high variability and wide confidence intervals (Figure 8a; Table 8). 

From release points in the forest, the final divergence angles of both male and female P. troilus 

also did not fit a uniform circular distribution, indicating significant directionality in the overall 

flight path (male: 60 m: p<0.01, 10 m: p<0.01 and female: 60 m: p<0.01, 10 m: p<0.01; Figure 

8b; Table 8). The mean final divergence angle at the 60 m release point in the forest for both 

sexes (males: mean=98.03, CI=65.53-127.07 and females: mean=94.33, CI=61.38-128.94; 

Figure 8b; Table 8), and at 10 m in the forest for the males was close to 90° (mean=97.61, 

CI=71.34-121.27), suggesting an overall flight direction neither towards nor away from the edge, 

but parallel to the edge. From the 10 m release point in the forest, females did show an overall 

flight direction towards the edge (p<0.01, mean=56.98, CI=34.40-88.55; Figure 8b; Table 8). In 

the meadow, only the final divergence angles for males released at 30 m deviated significantly 

from a uniform circular distribution, with the mean values indicating an overall flight path 

directed towards the edge (p<0.01, mean=17.01 CI=-10.40- -49.40; Figure 8b; Table 8). For 

males released at 10 m and 60 m in the meadow, and females released at all distances in the 

meadow, the final divergence angles did not deviate from a uniform circular distribution, 

indicating no significant directionality in the overall flight orientation (males: p= 0.10 - 0.13 and 

females: p= 0.48 - 0.61; Table 8). While males released at 10 m and 60 m in the meadow, and 

females released at 30 m and 60 m in the meadow, did have mean final divergence angles 

oriented towards the edge, these were associated with very high variability and wide confidence 

intervals (Figure 8b; Table 8).  
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Chapter 4  

4 Discussion 

My work demonstrates that both swallowtail butterfly species, P. glaucus and P. troilus, are 

more abundant at or close to the edge relative to the forest and the meadow. This pattern is 

consistent with the predictive model of ecological responses to habitat edges that Ries et al. 

(2004) proposed, where species exhibit a positive edge response when complementary resources 

are required in two different landcover types. This is especially important for species that require 

different landcover types during different stages of development to complete their life cycle, 

such as insects and frogs (Pope et al. 2000). While many butterfly species can access both nectar 

sources and the larval host plants in one landcover type (Shultz and Crone 2001, Ross et al. 

2005), adult P. glaucus and P. troilus must be able to access forests for oviposition sites and 

meadows for nectar sources. As expected, these swallowtail species are more abundant at the 

edge, which can provide them access to both of these resources. My study corroborates other 

studies looking at multiple species of insects (Ries and Sisk 2008), birds (Fonderflick et al. 

2013), and mammals (Lidicker 1990) that found that the abundance of individuals in the 

landscape corresponds to the distribution of their resources. In the GLMMs, distance to the edge 

emerged as an important predictor of abundance for P. glaucus in both the meadow and the 

forest, and for P. troilus in the forest, suggesting that forest/meadow edges are important 

structural features determining the distribution of these swallowtail butterfly populations across 

the landscape. The occurrence of such species that have complementary resources may explain 

why higher species richness is sometimes observed in more heterogeneous landscapes, where 

edge density is high (Tscharntke et al. 2002, Rossi and van Halder 2010, Ethier and Fahrig 2011, 

Flick et al. 2012, Di Napoli and Caceres 2012). Furthermore, because they require 

forest/meadow edges to persist, my results suggest that some degree of forest fragmentation in 

southwestern Ontario, which would increase the amount of edge in the landscape, may actually 

benefit these swallowtail butterfly populations. 

An underlying mechanism for the spatial pattern that I specifically examined is ecological flows; 

the movement of individuals from one resource patch to another (Ries et al. 2004). Overall, I 

found that the flight behaviour of both P. glaucus and P. troilus indicated a forward persistent 
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movement, particularly within the meadow. By tracking individual butterflies and assessing 

turning angles, I also found that both species can initially orient their flight, and have an overall 

flight path directed towards the edge from release points in both the forest and in the meadow. 

Both species exhibited more random flight behaviour within the forest, which is not surprising 

since the vegetation height and density may limit their visual perception. It is clear that the edge 

is not a barrier to movement for these butterflies, in contrast to many other species (Shultz and 

Crone 2001, Ross et al. 2005). These results support the hypothesis of a preference for the edge 

and provide an underlying process that explains both species’ spatial patterns of abundance as 

other butterflies also exhibit non-random movement and direct their flight towards a desired 

location (Conradt et al. 2000, Schtickzelle et al. 2007). 

4.1 Species-specific differences 

Other studies that have considered the edge response model of Ries et al. (2004) to explain 

patterns of species distribution, have not taken into account species-specific differences and 

additional factors that may alter the resulting patterns of spatial distribution relative to edges 

(Ries and Sisk 2008, Fonderflick et al. 2013). Even though both P. glaucus and P. troilus have 

complementary resources in the meadow and in the forest, and both demonstrated the general 

pattern and mechanism associated with positive edge responses, distinct species-specific 

differences nonetheless exist. Papilio glaucus showed a very clear and strong pattern of edge 

association, with noticeably higher density at the edge and strongly directed movement towards 

the edge. Papilio troilus exhibited a gradual increase in abundance to the edge, proportionally 

higher abundance in the forest later in the day, and also showed more variability in the direction 

of their initial orientation and overall flight path. Given that both species have the same pattern 

of complementary resources distribution between forest and meadow areas, it is clear that 

additional factors must also contribute to species distribution patterns relative to edges in the 

landscape. The observed differences between these two swallowtail species in patterns of 

abundance and movement behaviours could reflect differences in how their respective resources 

are distributed at a fine-scale, as well as differences in their behavioural ecology and life history 

traits. 

Ries et al. (2004) describe that resource mapping is the most common mechanism to explain 

species’ distributions. However, depending on how a species’ resources are distributed at a fine-
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scale, including within a particular type of landcover, this could also determine how they move 

in order to obtain those resources and what their spatial patterns of distribution will be. Studies 

have shown that animal movements are correlated with resource availability, and movement 

patterns shift as resource availability changes (Schultz and Crone 2001, Fryxell et al. 2005, 

Khamcha et al. 2011). In my study, both swallowtail species use the same nectar sources in the 

meadow, but oviposit on different plants in the forest. One possible reason for species-specific 

differences in flight patterns and abundances is that these swallowtails may have evolved under 

conditions that require specific flight behaviours to help locate forest resources. Papilio glaucus’ 

main larval host plant, L. tulipifera, is a tall deciduous tree where oviposition sites are near the 

canopy. Therefore, more direct flights may be suitable to reach these sites with less complex 

vegetation structure to obstruct their flight path and P. glaucus’ visual acuity may be better in 

lighter conditions (Land 1997). In contrast, the host plants for P. troilus are the understory shrub, 

L. benzoin, and understory tree species, S. albidum. Lindera benzoin is found patchily in the 

interior forest (Cipollini et al. 1994, Matlack 1994) and S. albidum is abundant and often seen at 

forest edges. Since these larval host plants are in the understory, it may be necessary for P. 

troilus to exhibit more flight agility to navigate through complex forest vegetation in order to 

locate suitable oviposition sites. The distribution of larval host plants in the canopy versus in the 

understory of the forest may explain the clear flight directionality that P. glaucus demonstrates, 

but not P. troilus. 

In addition to resource distribution, other aspects of a species’ ecology and life history traits can 

affect their movement and spatial patterns of abundance. Another potential hypothesis for the 

differences I observed in movement and abundance patterns of P. glaucus and P. troilus is 

related to movement behaviour in ectotherms and their ability to thermoregulate. Studies have 

shown that heating rates differ between different coloured morphs or species, and this 

corresponds with different types of behaviour and habitat requirements (Watt 1968, Van Dyck 

and Matthysen 1998). Papilio troilus have darker colouration in wings and thorax than P. 

glaucus, and thus are expected to heat up at a faster rate (Watt 1968, Van Dyck and Matthysen 

1998), have more flight activity such as larger displacements, and more manoeuvrability and 

faster take off (Roland 1982, 2006, Samejima and Tsubaki 2010). These flight characteristics 

associated with body temperature may help explain the flight behaviour I observed in the field 

and the directionality of their flight path. Papilio glaucus tended glide and have more direct 
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movements through the landscape, while P. troilus were observed to be faster fliers, harder to 

catch, and to have more erratic flight behaviour. The increased flight activity and agility P. 

troilus exhibited may have lead to the more random flight behaviour and less directionality that 

was observed in the initial orientation and overall direction of their flight paths. 

In addition to fine-scale resource distribution and thermal control of flight behaviour, the 

potential for observer bias in estimating spatial patterns of the abundance of these two 

swallowtail species should also be considered. Overall there were proportionally fewer 

butterflies of both species seen in the forest than in the meadow. This may have been because 

less sunlight in the forest and more complex vegetation structure could make it more difficult for 

the observer to record them. Also, the consistently lower proportion of P. glaucus recorded in the 

forest may be because the canopy of its larval host plant, L. tulipifera, is often not easily seen 

from the ground. Thus, P. glaucus could be in the forest more often than my results would 

suggest, but they may be less visible searching for mates or for oviposition locations on leaves 

near the canopy. In contrast, the larval host plants for P. troilus are found in the understory or 

close to the edge (Cipollini et al. 1994, Matlack 1994, Gram and Sork 1999). The smaller 

vegetation structure of these larval host plants may explain why proportionally higher counts of 

butterflies were recorded in the forest for P. troilus than for P. glaucus; P. troilus may be more 

visible to the observer on the ground while they search for oviposition sites and mates. The 

distribution of butterflies is also likely to change with respect to the edge and time of day 

because in the morning butterflies will bask at the edge or in the meadow, but later in the day 

when temperatures are at their peak, they may seek shade, mates, and oviposition sites. This 

could explain the observed change in the distribution of P. troilus which became more abundant 

in the forest later in the day, but such a pattern may be masked in P. glaucus due to taller and 

larger larval host plants. Nonetheless, while there is some potential for observer bias in recording 

butterfly abundance in the forest, the clear trend for flight that is oriented towards the edge from 

release points in both meadow and forest, particularly in P. glaucus, suggests that the greater 

abundance of individuals recorded at the edge cannot be entirely an artefact of a reduced ability 

to observe these butterflies in the forest. 
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4.2 Detecting the edge from the forest 

Further into the forest both species did not initially orient their flight or direct their overall flight 

path towards the edge, and exhibited random flight behaviour. The lack of directionality and 

random flight behaviour deep in the forest may be interpreted as either that individuals perceive 

their surrounding environment as a preferable location and have low motivation to leave the area 

to locate the edge or meadow, or simply that individuals have more difficulty locating and 

orienting towards the edge.  

Olfactory cues help butterflies perceive their environment and even help them navigate through 

the landscape. Ockinger and Dyck (2012) found that by experimentally removing some 

butterflies’ antennae, thus limiting their olfactory senses, they were less likely to locate their 

habitat, whereas butterflies with antennae intact oriented towards their habitat more quickly and 

more often. Pheromones and chemical compounds may be detected to help locate mates (Pivnick 

et al. 1992), and distinguish and locate suitable oviposition sites (Heinz and Feeny 2005, 

Carlsson et al. 2011). For both swallowtail species deep in the forest, they may be sensing these 

resources that are in close proximity, instead of the edge, and thus choosing to remain in the 

forest. Although olfactory cues have been shown to be important for other species, without 

further experimental evidence it is difficult to discern the role for these swallowtail species. 

Visual cues also play an important role in detecting landscape features, particularly for diurnal 

insects. Butterfly eyes operate as apposition compound eyes, similar to other diurnal insects 

(Land 1997). Larger butterflies, such as swallowtails, are found to have larger eyes suggesting 

that overall they have higher visual sensitivity, larger fields of vision, and higher acuity 

(Rutowski 2000). However, lower light levels in forests, can affect visual acuity and reduce the 

ability to detect contrast (Land 1997), thus it may be more difficult for these swallowtails to 

detect favourable landscape features, such as edges, from locations within the forest.  

Solar radiation and air temperature can be increased at edges compared to interior forest, and 

wind characteristics change as the vegetation type changes in the landscape (Saunders et al. 

1991). Wikström et al. (2009) showed that these abiotic factors can influence butterfly behaviour 

and may act as a signal that the edge can provide access to a nearby meadow with nectar sources. 

These abiotic cues likely become more difficult to perceive deeper in the forest, providing the 
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butterflies with fewer signals that would allow them to efficiently detect and orient towards the 

edge. When butterflies were released closer to the edge from the forest, with the exception of 

male P. troilus, they did exhibit a forward persistent flight behaviour and initially oriented and 

had an overall flight path directed towards the edge. These observations support the hypothesis 

that even from points within the forest, these swallowtail butterflies are motivated to orient 

towards the edge, and therefore their lack of edge-orientation behaviour deeper in the forest may 

be a result of insufficient cues to detect the edge.  

At release points in the forest, the butterflies’ movements may also have been motivated by the 

attraction to light. At the 60 m release point, butterflies often flew in an upward movement 

towards the canopy while at the 10 m release point they were more likely to fly towards the edge. 

It is possible that this orientation to the edge was primarily in response to greater light levels at 

the edge rather than gaining access to food resources.  

4.3 Detecting the edge from the meadow 

Close to the edge, from release points in the meadow, P. troilus exhibited more variability in 

their initial flight orientation and even moreso in their overall flight direction than P. glaucus. 

Conradt et al. (2000) found similar behaviours in the butterfly Maniola jurtina and suggested 

that it may be due to low motivation to direct their flight towards the habitat at very close 

distances, since habitat was so easily accessible at those points (i.e., they perceive that they have 

arrived at their desired location and begin to undertake less directional activities). I suggest that 

P. troilus may demonstrate more variability in flight behaviours close to the edge, particularly in 

their overall flight direction, due to a combination of observed species-specific difference in their 

flight behaviour as previously mentioned and ease of access to resources that the edge provides. 

That is, close to the edge they are at the optimal or desired location and engage in less directional 

movements and behaviours.  

The perceptual range among butterfly species can vary substantially. For example, Parnassius 

smintheus can detect forest up to 5 m from the edge (Ross et al. 2005), Proclossiana eunomia 

can perceive habitat up to 30 m away (Schtickzelle et al. 2007), and M. jurtina exhibit homing 

behaviour as far as 125 m away from their habitat (Conradt et al. 2000). Further from the edge in 

the meadow, P. glaucus showed directed flight towards the edge suggesting that it can detect the 
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edge from up to 60 m away. Papilio troilus, however, shows strong directionality at 30 m from 

the edge but more variability in direction at 60 m. The variation in directionality from such 

distances could indicate species-specific differences in perceptual ranges for P. glaucus and P. 

troilus, however, further examination is necessary to specifically test each species’ visual acuity. 

Previous studies have indicated that size of the species’ sensory organs can generally predict 

their sensory abilities (Rutowski 2000, Nummela et al. 2013), and since these swallowtail species 

are similar in size, this suggests that species-specific differences in perceptual range may not be 

the case. 

Informative data about butterfly flight behaviour can be obtained from their flight paths, and 

methods very similar to those I used have been practiced to study flight behaviour in a large 

number of other butterfly species, as well as other flying insects (Ross et al. 2005, Skórka et al. 

2013). Nonetheless, the flight paths recorded in this manner, by connecting alighting points with 

straight lines, are somewhat coarse in resolution and fine-scale details of flight paths may 

become overlooked. More detailed data on turning angles, for example, may have revealed 

additional insights into flight behaviour. However, considering that I was primarily interested in 

behaviours relating to orientation toward the edge at a scale of tens of meters, the resolution of 

the flight paths I recorded was in line with the scale of the phenomenon I was interested in 

studying. Also, in comparison to many other butterfly species that are highly erratic fliers (i.e. 

Lycaenida or Nymphalidae; Scott 1986), these swallowtail butterflies often fly in more linear 

paths and therefore, finer details of their flight may not be highly relevant to resource acquisition 

or habitat selection. Furthermore, the resolution of the flight paths that I used allowed me to 

obtain a large number of flight paths for butterflies at each release point and thereby gain a more 

representative overview of their flight behaviour.  

4.4 Differences between the sexes 

My results demonstrated distinct differences in flight behaviours and orientation between males 

and females within both species. Females generally showed more variability in their initial 

orientation and overall direction of flight paths compared to males, particularly in the meadow. 

Differences in flight behaviour between sexes may depend on the species’ mating system 

(Wickman 1992). Papilio glaucus and P. troilus are classified as being patrollers, rather than 

perchers in their mate location behaviour (Brower 1959, Scott 1986). Males of patrolling species 
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fly around continuously searching for females, whereas in species that are perchers, males sit and 

wait to intercept females which are the more mobile sex (Scott 1974). The patrolling strategy of 

males of these swallowtail species may explain their less variable flight behaviour relative to 

females. 

Another possible explanation for more variable directionality of females in the meadow is that 

females may spend more time nectar feeding to regain the energy spent locating suitable 

oviposition sites. Dickins et al. (2013) highlight the complexity of finding a suitable oviposition 

location, which can depend on factors at multiple scales, including the site and individual plant. 

Oviposition site location is extremely important since it can influence the survival of offspring to 

adulthood (Rausher 1979), and a butterfly’s ability to find suitable sites can depend on direct 

contact with the plant (Heinz and Feeny 2005). Thus, oviposition that optimizes fitness can 

require much flight activity and a large expenditure of energy. Furthermore, these swallowtail 

species lay their eggs singly (Scott 1986), which further increases the flight distances covered 

and energy expended. Since females are likely expending more energy than males because of 

their oviposition activity, they must nectar feed more often. Therefore, in the meadow their 

directionality may be more variable as they engage in longer and more extensive searches for 

nectar. 

While the females of both species need to find larval host plants in the forest, males may also 

have an incentive to go into the forest to find virgin females to mate with.  Males have been 

shown to prefer unmated females (Klein and Araújo 2010) and spermatophore size decreases 

with successive copulations (Caballero-Mendieta and Cordero 2013). Thus it has been suggested 

that males will have the highest fitness gains when they mate with a virgin female, and that their 

best chance to encounter one is at their pupation sites in the forest (Rutowski 1991, Ide 2004). 

While female swallowtails may exhibit less directional flight behaviour further away from the 

edge within the forest because they are actively searching for oviposition locations, males may 

similarly be searching out pupation sites within the forest for newly emerged virgin females to 

mate with (Schultz and Crone 2001). 
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4.5 Future directions 

I examined butterfly abundance and flight behaviour at well-defined boundaries. This is useful in 

identifying the specific effects of sharp boundaries. It may also be more representative of 

behaviours that are relevant in the current landscape, highlighting how the increased prevalence 

of sharp edges due to landscape changes influence the distribution and behaviour of resident 

species. Future studies can expand on this work by examining how more natural and gradual 

types of edges, such as less sharp ecotones or riparian corridors, can influence the distribution 

and flight behaviour of these swallowtail butterflies and may give insight to how these species 

behaved historically. Kuefler and Haddad (2006) showed that natural ecotone habitats can be 

important and that vegetation cover of these areas can facilitate movement of butterflies. In 

addition, other studies have shown that boundaries between different urban landcover types can 

result in different edge responses (Brearley et al. 2012, Nowicki et al. 2013). Thus, it could also 

be important to examine patterns of distribution and flight behaviour of swallowtail butterflies at 

sites that represent contemporary landscapes with hedgerows or roadsides. Studying swallowtail 

distribution and flight behaviour in areas that have different types of edges can provide insight 

into what natural and modern landscape features are important for movement and inform land 

management plans.  

Future studies could also test the response of these swallowtail species to edges between a wider 

range of, and various combinations of, landcover types including anthropogenic landcovers, such 

as agriculture and forest edges, or agriculture and meadow edges. The quantity or type of 

resources may vary in these different landcover types and such studies help identify how 

landscape change and current landcovers have influenced the species’ distribution and behaviour 

and how this will affect the populations in the future. Finally, it may also be useful to examine 

edges that face in different directions, as edge aspect may influence important abiotic factors 

such as light attenuation or wind exposure (Dignan and Bren 2003). 

Habitat fragmentation has been suggested to have evolutionary consequences on flight and 

movement for butterflies. Ockinger and Van Dyck (2012) showed that Pararge aegeria 

originating from fragmented habitats are more effective at navigating through a fragmented 

landscape than those originating from intact habitats, and suggest that searching strategies 

become adapted to minimize flying costs. Several other studies show changes in morphology of 
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butterflies such as wing colour, wing loading, and flight muscles, in fragmented landscapes, 

which presumably reflect selection on dispersal traits (Davis et al. 2012, Kalarus et al. 2013, 

Rauhamäki et al. 2014). If southernwestern Ontario was historically mostly covered by 

deciduous forest, it is plausible that both swallowtail butterfly species may have been less 

abundant and that the increase in edges due to landscape fragmentation has helped expand both 

their density and geographic range. It is also possible that they have already undergone 

evolutionary change and my results may reflect the effects of adaptations to landscape changes 

that have occurred over the past two centuries. Future studies could compare distribution patterns 

and movement of these butterflies in southernwestern Ontario to areas with greater forest cover, 

such as conserved tracts of forest in the eastern United States. Areas that have experienced less 

forest fragmentation and loss can give insight to the swallowtails’ dispersal capabilities and 

evolutionary potential to adapt to changing landscapes. Comparison of morphological features, 

particularly flight-related morphology, between historical samples and contemporary butterflies 

could also yield some insight into potential evolutionary changes in flight behaviours of these 

butterflies. 

4.6 Conclusion 

The results from my study support the model of positive edge response proposed by Ries et al. 

(2004), while highlighting that species-specific differences in other ecologically important traits, 

for example resource distributions and thermoregulatory ability, can modify these edge 

responses. Other specialist species are often associated with one landcover type and are highly 

sensitive to landscape changes affecting their habitat. In contrast, I have shown that the 

swallowtail butterflies, P. glaucus and P. troilus, which use complementary resources in 

different habitat types, are frequently found in the forest and in the meadow, but most often at or 

near the edge. Furthermore, I have shown that, in general, these species orient their flight 

towards forest/meadow edges. This suggests that these swallowtail species benefit from the 

occurrence of forest/meadow edges, and thus may be considered edge species rather than the 

generalists or woodland species they have been previously labeled (Scott 1986; Haddad 1999). 

My results suggest that some degree of forest fragmentation can actually benefit certain native 

species in contrast to the current paradigm that the creation of edges in landscapes causes only 

negative effects. Most importantly, my study highlights the need to understand mechanisms for 
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fine-scale behaviour, species-specific movements, and species’ distribution to gain a better 

understanding of their habitat requirements and potential responses to landscape change. 
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Appendices 

 

Figure A.1: Frequency distribution of all forest patches by area (hectares) in Norfolk 

County that were considered for relative abundance data collection during May-July 2013. 
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Figure A.2: Area in hectares of forest patches that were chosen study sites in Norfolk 

County used for relative abundance data collection during May-July 2013. The study sites 

KB (Boothby), AN (Anderson), and W (Weeden) were categorized as having small forest 

patch area (<100 ha), DM (DeMaere) was categorized as medium (100-200 ha), and HT 

(Hepburn Tract), WT (Wilson Tract), and S2 (Soenen2) were large (200-300 ha). 
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