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Abstract

The brain’s underlying functional connectivity has been recently studied using tools offered

by graph theory and network theory. Although the primary research focus in this area has so

far been mostly on static graphs, the complex and dynamic nature of the brain’s underlying

mechanism has initiated the usage of dynamic graphs, providing groundwork for time sensi-

tive and finer investigations.

Studying the topological reconfiguration of these dynamic graphs is done by exploiting a pool

of graph metrics, which describe the network’s characteristics at different scales. However,

considering the vast amount of data generated by neuroimaging tools, heavy computation load

and limited amount of time and resources, it is vital to refine this pool of metrics to avoid using

non-informative and redundant ones.

In this study, we use electroencephalographic (EEG) brain signals, taken from recordings in

5 different experimental conditions, to generate the dynamic graphs by moving a sliding win-

dow over the time series. Dynamic graphs are produced under various conditions that are a

combination of different window sizes, different numbers of shared time points and various

frequency bands. Based on each set of these dynamic graphs, time series of 25 graph metrics,

and then their pairwise correlation values are computed. This is done to investigate the metric

correlations under various circumstances, and to detect the ones that are always present.

We conclude by suggesting a set of uniquely informative and orthogonal metrics that is conve-

nient to use for further analysis of brain’s functional connectivity.

Keywords: Dynamic graphs, Orthogonal metrics, Functional connectivity, EEG
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Chapter 1

Introduction and Background

The brain is a highly dynamic and complex system, and the very first step towards improving,

maintaining and repairing any system is having a comprehensive, clear understanding of its

underlying mechanisms. For this purpose, the brain has been studied on many different scales,

from studying the genetic factors affecting the formation of its neuronal connections to analyz-

ing different levels of connections between its anatomical areas.

With the emergence of the disconnection syndromes concept in the late nineteen century, sci-

entific attention was drawn to the notion of networks in neurology [3]. Thereafter, many works

have provided evidence for the brain being a highly complex network, which segregates and

integrates information in a cost effective and dynamic manner by making use of its highly

modular structure. Considering this complexity and dynamicity, network theory can serve as

a powerful tool, providing scale invariant metrics, adjusting quickly to the behavioral changes

in the brain. Furthermore, it has been proven that structural and functional network metrics

are heritable, and that they change with aging [3], making graph metric analysis even more

worthwhile.

Since the realization of the benefits of using network theory and graph theory in neuroscience,

1



2 Chapter 1. Introduction and Background

many studies, such as [36] and [19], have been done by mapping neuroimaging-derived data

to graphs, and analyzing the functional or structural connections by the help of informative

graph metrics. Despite the evidently dynamic nature of the brain, most of the work in this area

focuses on using static graphs, leaving dynamic graphs out of the center of attention they truly

deserve. Only recently, the first steps towards the use of dynamic graphs have been taken by

[30] and [38], in which they compared network topologies across a small set of time points,

leaving the need of further investigations of the topological evolution of graphs in time at a

much finer scale.

Despite the huge role of graph metrics in describing behaviors of the networks under study,

using non-informative and repetitive metrics can only lead to duplicated results and waste of

time and other limited resources. Putting time and effort to find unique and meaningful metrics

is a matter of significant importance, especially considering the possibility of using them as

features for training machine learning algorithms, aimed at diagnosing mental disorders (see

[25] and [33] ). It is worth mentioning that using a lot of redundant or highly correlated metrics

can seriously decrease the accuracy of classification[28].

In this project, we have chosen to focus our attention on analysis of dynamic graphs, created

using brain signals that are recorded by Electroencephalography(EEG), which is a neuroimag-

ing technique that will be explained later in this chapter. The graphs are obtained in various

conditions, such as different window sizes, time epochs, thresholds and bands. Based on these

dynamic graphs, series of metrics, reflecting the changes in the brain’s functional network over

time, are compared with each other to grasp a better understanding of the brain’s behavior in

different conditions, with the goal of reconnoitering the most informative and unique metrics

for further analysis.
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1.1 Overview and Contributions

As mentioned before, this study focuses on the analysis of the topological properties of dy-

namic EEG-derived graphs representing the neural patterns of brain functional connectivity.

EEG signals of 5 types of trials are obtained, pre-processed and filtered into different fre-

quency bands. For each trial type-band combination, we move a sliding window over the data

and use phase lag index (PLI) to obtain a correlation matrix for each time-window. PLI is a

technique that helps with the detection of true synchronization between two time series, and

is explained in detail in Chapter 2. The similarity matrix obtained based on PLI reflects the

strength of relations between different EEG channels. It is then thresholded using a Random

Matrix Theory based approach [16], resulting in a binary adjacency matrix, in which the value

of 1 means that activities of the corresponding channels are synchronized, and 0 means there

is not enough synchronization.

Following this approach, a series of graphs is obtained, in which each graph captures the be-

havior of the network in a specific time interval. It is like putting a camera on burst mode and

taking successive pictures of a moving subject, so that each picture captures the state of the

subject at a certain time (See Figure 1.1). Having these graphs, we compute graph metrics

of three distinguished categories: 1- Macro scale metrics (whole graph metrics), describing

the state of network based on the whole graph characteristics. 2- Micro scale metrics (node

metrics), describing the state of network based on the node properties. 3- Graph motifs.

For each metric belonging to one of these categories, a series of values is obtained, in which

each value belongs to one of the captured graphs in time. By comparing these series to each

other we can gather information on the metric’s uniqueness. Also, since each trial’s data was

obtained based on a special brain task, we may be able to identify the metrics that reflect these

differences, based on the pattern of the changes in their values in comparison to other metrics.



4 Chapter 1. Introduction and Background

Figure 1.1: Different states of a moving subject in time.
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Our overall contributions in this project are as follows:

1- Comparing and analyzing metric correlations of dynamic graphs obtained based on three

different thresholding methods, which resulted in an evaluation of using these thresholding

methods in this project.

2- Reducing a pool of 25 metrics to a set of 10 uniquely informative metrics, which are conve-

nient to use for further functional network analysis based on dynamic graphs.

1.2 Background

The usage of network theory concepts has expedited the progress in various fields (e.g. [8], [66]

and [40]), and since the brain is a highly complex modular network, it comes as no surprise

that there is a vast and diverse usage of network theory in neuroscience as well. Furthermore,

its applicability to any scale makes methodological cross validation and comparing structural

and functional properties of different brain scales possible. As mentioned before, in this project

we only focus on the analysis of the dynamic EEG-derived graphs, thus, it is beneficial to give

a very brief background on EEG and some basic concepts of graph theory (being the basis

for network theory). Afterwards we will briefly cover some of the most important progress in

relation to our current study.

1.2.1 A brief review of graph theory

Graph theory is the study of relations between entities. Considering a popular social network

like Facebook, every person who has an account in this network can be called a node (be-

longing to a set of nodes or V) and two people (nodes) are linked to each other by an edge

(belonging to a set of edges or E) only if they are friends. Simple as that, one can build a graph

G= (V, E) reflecting the relationship patterns in this social network. In the context of functional
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brain networks, each node represents an area in the brain and edges are statistical measures of

association.

Depending on the needs of analyzing a particular network, graphs can be built as weighted or

un-weighted. In weighted graphs (Figure 1.2 b), a value is assigned to each edge. This value

can show the cost, degree of importance or any other aspect of the relationship between two

nodes. If there is no value assigned to edges, the graph is called un-weighted (Figure 1.2 a).

Brain networks have been studied based on both weighted and un-weighted graphs.

A graph is called directed if the directions of relationships between its nodes are annotated with

arrows on its edges (Figure 1.2 c), otherwise it is undirected. Considering current methodologi-

cal tools, it is often more convenient to use undirected graphs to study structural and functional

brain connectivity since estimating directionality is harder than determining whether a connec-

tion exists or not [47].

Since a graph is a complex representation, it is necessary to summarize its characteristics by

some means. For this purpose, various graph metrics have been defined in the field of graph

theory. Back to the Facebook example, to compute the number of friends for each person,

one must count the edges that connect that person to other people. The result is called node

degree. Path length metric answers the question of ”what is the minimum number of people

that connect two non-friend Facebook users to each other?”, while the clustering coefficient is

a measure of the extent to which nodes tend to cluster together.

Graphs can be classified based on their topological properties. A graph is called random if

edges are randomly assigned to its nodes. The Erdos−Renyi graph is a well-known random

graph in which all edges have the same probability of occurrence. Random networks are proven

to have low clustering coefficient and short path length, which makes sense since when build-
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Figure 1.2: An example of Un-weighted (a), Weighted (b) and Directed (c) graphs



8 Chapter 1. Introduction and Background

ing a random graph there is always the chance of choosing long distance edges connecting two

distant nodes, and thus, reducing the average path length in the graph.

On the other hand, if all the nodes in a graph have the same degree, the graph is called regular.

Regular networks (regular lattices) are known to have high clustering coefficient and high av-

erage path length [60].

In other words, considering the range of all possible variations of graphs, random and reg-

ular graphs are located at two ends of this range, representing the most unordered and the most

ordered graphs respectively. Based on experimental observations, networks in real life, such

as social, biological and neural networks, are usually neither completely random nor utterly

ordered. The term small-world was first introduced by Watts et. al (1998) [60] to describe the

common properties of these intermediate networks. Starting from a regular graph, reconnect-

ing each edge with the probability of 0 < P < 1, results in a graph with two main properties:

high clustering coefficient (in comparison with random graphs) and relatively short path length

(comparing to regular graphs). A good example of such small-world networks is again a social

network, in which people belong to a cluster of friends. In this network most people are not

directly friends, but are connected via a series of mutual friendships. An example of regular,

random and small-world networks, as depicted in [60], can be seen in figure 1.3.

Many studies have shown that brain functional networks have small-world properties, and these

network properties are the key factors making the segregation and integration of the informa-

tion possible [10]. A high clustering coefficient helps segregation and as a result increases the

local efficiency of information transfer. On the other hand, low average path length provides

long distance links to distant areas of the brain and thus supports integration, which results in

the global efficiency of information transfer.
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Figure 1.3: An example of regular, small-world and random networks[60]
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1.2.2 Electroencephalography (EEG)

Synchronizing groups of cortical neurons in the brain generates a significant amount of elec-

tricity, which is caused by voltage fluctuations resulting from ionic current flows within them.

EEG electrodes, placed on the scalp in multiple locations, capture this electrical activity over a

wide range of frequencies ( 1 to 100 Hz). In this study we have chosen EEG as the physiolog-

ical methodology since it provides a good enough time resolution (milliseconds) to reflect the

dynamics of graph topology.

On the other hand, working with EEG data has a downside regarding the spatial accuracy that

should be dealt with. The easiest way to map the EEG data to a brain graph is to define each

EEG source as a node. While this is convenient for preserving between-node covariance infor-

mation, nodes which represent anatomically nearby EEG sources might mistakenly show high

correlations with each other due to an effect called volume conduction. Volume conduction is

defined as the fast transmission of electric signals through brain tissue between neighboring

sensors. Another similar problem in EEG is caused by an active reference electrode which

contributes similar components to signals recorded at different electrodes (for more detail on

volume conduction and reference electrode see [39]). Stam et. al (2007) [51] calls these two

phenomena the problem of common sources. The problem of common sources can be dis-

tinguished from real neural synchronization by making use of methods that take the amount

of phase delay into account, such as phase lag index (PLI), knowing that volume conduction

happens with near zero phase lag and that the synchronous activity of neural groups does not

happen as fast as the transmission of electric fields through tissue (happening approximately at

the speed of light) and is accompanied by a non-zero phase delay.

We can avoid the problem of common sources by source reconstruction, in which groups of
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anatomical sources are defined and considered as the graph nodes. On the downside, cur-

rent available source reconstruction methods cause the loss of covariance information between

nodes, which is due to the fact that a given electric potential recorded at the scalp can be ex-

plained by the activity of infinite different configurations of EEG channels [35].

Considering these options, it seems more convenient to map EEG channels to nodes. Though

this approach sacrifices spatial accuracy, it is a good choice for studying dynamic graphs since

it keeps the statistical properties of the data as intact as possible. It is worth mentioning that

each node represents the activity of a particular region in the brain.

1.2.3 Related pioneering works

The idea of the brain being a network was brought to the scientific community’s attention by

Norman Geschwind ([23]) in 1965. His investigations on disconnection syndromes (the discon-

nection of different brain areas in animals and humans) was the onset of many further studies

proving that the brain is in fact a complex network, having functionally specialized connected

parts that work together to perform certain tasks. Emergence of brain-imaging techniques such

as PET, EEG, MEG, MRI and fMRI provided the scientific community with vast amounts of

data, increasing the need for usage of proper mathematical tools such as signal processing and

correlation estimation methods and more importantly, network theory.

As mentioned before, Strogatz and Watts [60] introduced collective dynamics of a special cat-

egory of graphs under the name of small-world networks. Benefiting from their work, Sporns

et. al (2000) [48] was one of the first studies that took the small-world characteristics into

account for investigating the relation between functional and structural networks, proposing

the existence of complex brain dynamics that adapt to different task demands. Concurrently,

Stephan et. al (2000) [52] also benefited from the small-world properties for analysis of the

brain functional connectivity. After these pioneering works, an ample number of studies have
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been conducted to further shed light on the underlying network properties of different cogni-

tive and motor control tasks (e.g. [63],[4], [24]), and to investigate the underlying functional

network properties of disordered brains (e.g. [50] ), using various physiological methodologies.

While good temporal resolution of EEG and its relatively low cost makes it a popular neuro-

imaging technique, the problem of volume conduction has lead to the usage of various methods

such as phase coherence (PC) and imaginary component of coherency (IC), for neat identifica-

tion of statistical dependencies between physiological time series. Stam et. al (2007) [51] have

introduced PLI as an approach to deal with the problem of volume conduction when quanti-

fying phase synchronization. Their results show better performance of PLI comparing to the

well known methods of PC and IC.

Though the majority of the work on the brain network topology is based on static graphs,

dynamic graph analysis has recently started to attract the neuroscience community’s attention,

resulting in pioneering works such as [20] that observed the cortical network dynamics during

foot movements over several time points, or [2] that took the dynamic time scales into account

for studying the modular structures of brain functional networks. Moreover, a more recent

study ([30]) investigated the workspace configuration of brain functional network, benefiting

from dynamic graph metrics obtained in two different trials of response generation state and

working memory stage, while Nichol et. al (2011) [38] observed and analyzed the reconfigura-

tion of brain functional network during an auditory task, using dynamic MEG-derived graphs

obtained from different time windows.

This project follows a similar approach to the ones in [30] and [38].

We explain the materials and methods used in this project in detail in Chapter 2, alongside

a summary of the pipeline which was implemented and used for obtaining the results. In Chap-
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ter 3, we compare 3 different thresholding methods. Metric comparisons are demonstrated

in Chapter 4, and Chapter 5 provides the reader with a summary of the project and our final

conclusions.



Chapter 2

From EEG signals to dynamic graph

metrics

Various steps are taken for obtaining network metric correlations from raw EEG signals. We

start by filtering the EEG data-set so that only desired frequencies are kept for future anal-

ysis. After that, the signals undergo a process of averaging, so that the signal/noise ratio is

increased. Then, the process of building dynamic brain graphs takes place. For building a

graph representing the activities of the brain in a certain time window, first a similarity matrix

is computed, which demonstrates the strength of synchronization between EEG channels. For

building this matrix we use a method called phase lag index (PLI), which takes the problem

of common sources (explained in Chapter 1) into account. Afterwards, based on the obtained

similarity matrix, we use a thresholding method to create an adjacency matrix, which is a bi-

nary representation of the relationships between EEG channels. Having this adjacency matrix,

we can then map it to a brain graph in which the vertices represent the channels, and each

edge between two vertices is an indicator of an existing synchronization between the two cor-

responding channels. The above steps are done for consecutive time intervals in EEG signals,

and thus result in a series of dynamic graphs. By having this temporal series of brain graphs,

we can then compute various metric values and thus obtain time series of these metric values.

14
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These time series are then compared with each other using the Pearson correlation method.

In this chapter we describe all these steps along side other important information and de-

tails regarding graph metrics and the underlying structure of algorithms used in this project. We

start by introducing our EEG data-set, moving towards explaining the process of filtering and

averaging. Then, we focus on the concept of dynamic graphs, PLI method and different types

of thresholding methods that are used in this project. Afterwards, we switch to a graph theo-

retical point of view, introducing the set of metrics exploited for the purpose of our analysis.

Finally, after describing the Pearson correlation method, we end this chapter by summarizing

the pipeline implemented in this project, which results in a correlation matrix for a set of 25

graph metrics.

2.1 General information about the data-set

In this section, we introduce the data-set used in this project and explain all the necessary con-

cepts for understanding the properties of this data-set.

2.1.1 The experiment

The data set used in this project is obtained via EEG. The experiment based on which this data

set was obtained contains 5 trial types:

1- Presenting nothing (the resting state).

2- Presenting non-living auditory stimuli.

3- Presenting non-living visual stimuli.

4- Presenting living auditory stimuli.



16 Chapter 2. From EEG signals to dynamic graph metrics

5- Presenting living visual stimuli.

It is worth mentioning that the stimuli used for these experiments were either written or spo-

ken words. Meaning that the name of non-living objects, or living beings, were either shown

to the subjects as written words (visual stimulus), or were read to them (auditory stimulus).

2.1.2 Sampling rate

Continuous analog signals obtained via EEG are digitized and recorded by computers. This

process is called sampling, in which the channels of analog signals are repeatedly sampled at a

fixed time interval. The sampling rate is defined as the number of samples recorded per second

[55]. The data-set used in this project has the sampling rate of 600 Hz. Also the Nyquist

frequency, which is defined as 1
2 of the sampling rate, is 300 Hz.

2.1.3 Epoching

When presenting a subject with a particular stimulus, the brain processes this stimulus, which

can be seen as oscillatory potentials in neuronal groups. This evoked neural activity can

be detected in EEG recordings as significant voltage fluctuations or event-related potentials

(ERP)[46]. For capturing these important milestones in EEG recordings, the data is cut into

several chunks related to the stimuli presentations [55]. This process is called epoching. The

epochs of the data-set used in this project contain data from 1 second before representing the

stimuli to 2 seconds after the stimuli presentation.
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2.1.4 High pass and low pass analog filters

In the process of recording EEG signals, an analog high-pass filter is used to discard very

low frequencies originating from bio-electric flowing potentials such as breathing. Also, an

analog low-pass filter is used to make the signal band limited, and to discard frequencies that

are higher than one half of the sampling rate. The analog signal is digitized and stored in the

computer after passing through these analog filters [55]. For the EEG recordings used in this

project, cutoffs for the low-pass and high-pass analog filters are respectively 0.5 Hz and 150

Hz.

2.1.5 Dealing with power line interference

EEG signals are often contaminated by a narrow band harmonic signal, with a narrow fre-

quency range around 60 Hz [64] [14]. This unwanted signal can be filtered out using a notch

filter. The EEG data-set used in this project is filtered using a 60 Hz notch filter.

2.2 Further preprocessing of EEG recordings

As it was mentioned in Chapter 1, EEG captures rhythmic neuronal activity of the brain in

the form of electrical signals. This rhythmic activity is a combination of different frequency

bands, which can be categorized in the following ranges: Delta(1-4 Hz), Theta(4.5-7.5 Hz),

Alpha(8-16 Hz), Beta(16-32 Hz), Gamma(32-63 Hz) and high Gamma(63-125 Hz). Depend-

ing on the state of the brain and type of the task that it is engaged in, neural oscillations can

happen in any of these bands, for example, the beta wave is common in normal awake adults

while the presence of the delta wave in alert adults is not expected and can be a sign of mental

disorders [37]. On the other hand, not all the electrical activities recorded by EEG reflect the

oscillations of neuron populations. These unwanted frequencies are considered as noise and
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should be eliminated.

In this section we talk about using digital filters for obtaining certain frequency bands, and also

removing unwanted noise by making an averaged signal for each of the trial types.

2.2.1 Extracting certain frequencies

A digital band-pass filter takes a signal containing a wide range of frequencies and only passes

frequencies within a certain range as out put. For filtering a signal, one way is to convert it

from the time domain to the frequency domain, then multiply it by the desired band-pass filter

to omit all the unwanted frequencies and finally convert it back to the time domain. On the

other hand, based on the convolution theorem, we know that point-wise multiplication in the

frequency domain equals convolution in the time domain. Thus, another way of doing this is

to convolve our sampled signal by a function representing the fourier transform of the desired

filter response. Implementing this convolution can be achieved by a finite impulse response

(FIR) filter which is linear, simple and stable. The following equation represents the structure

of the FIR filter:

y(n) =

N∑
i=0

bix(n − i) (2.1)

In which x(n) are the filter input samples, y(n) are the filter output samples and bi are co-

efficients of FIR filter frequency response. In other words, the output signal is obtained via

convolving the input signal with its impulse response. There are various methods for comput-

ing the coefficients of a finite impulse response filter. In this project the window method is used

due to the simplicity of its design process.

There are ready made functions in the Python’s Scipy.signal library for both calculating the

coefficients based on the window method (scipy.signal.firwin) and performing the filtering pro-

cess using the FIR filter (scipy.signal.lfilter) [29].
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2.2.2 Averaging

The averaging process is defined as calculating the mean value for time-points across all record-

ing periods (epochs), aiming to increase the signal/noise ratio (assuming that noise is dis-

tributed randomly). This process is absolutely necessary for capturing ERPs from EEG signals

since their amplitudes are much smaller than the spontaneous background fluctuations and thus

they are not noticeable in raw EEG signals. After averaging the signal over trials of the same

type, the spontaneous background fluctuations are averaged out and omitted since they are ran-

domly distributed over the signal. Thus, the remaining activities are in fact ERPs evoked by a

stimuli onset, reflecting the patterns of neuronal activity [55].

In this project, averaging is done by using a ready made function in Numpy’s library (Numpy.average),

which computes the weighted average of the input data.

2.3 Building the brain graphs

As explained in Chapter 1, the goal of this project is to analyze metric correlations obtained

based on dynamic graphs. In this way, we can detect possible differences in metric correlations

that happen as a result of changing the circumstances under which we observe the functional

brain network across time. Thus, it is important to explain the notion of dynamic graphs in a

detailed manner.

Furthermore, we explain two key steps that should be taken for obtaining a brain functional

network: First, dealing with the problem of common sources (described in Chapter 1), and

second, using a thresholding method for building a adjacency matrix.
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2.3.1 The concept of dynamic graphs

For observing the changes of a network in time, we use a concept called the time window. The

time window with a certain size is slid over the EEG time series, capturing only the activity

of the brain in that particular time frame. Thus, we can obtain a set of graphs, in which each

graph represents the functional network of the brain based on a certain period of time.

It is important to note that the time windows are not necessarily separate and that they can

share time steps. For adjusting the number of time units shared by adjacent time windows,

we use a measure called step size. Step size represents the distance between a time window

and its neighbor. As the step size increases, fewer time units are shared by neighboring time

windows. Thus, by changing the window size and the step size, we can obtain dynamic graphs

under various circumstances.

2.3.2 Phase lag index (PLI)

As mentioned in Chapter 1, when building a similarity matrix representing phase synchroniza-

tions between time series of different channels in EEG, we might get fake similarities due to

the effects caused by the problem of common sources. There are several methods for address-

ing this problem. One of these methods, which was introduced by [51], is called phase lag

index (PLI). PLI is a measure that helps assessing similarities between time series by reflecting

the amount of phase lag between them. The idea behind this index is that if the dependency

between two time series is caused by the problem of common sources, the phase difference be-

tween these two time series would center around 0 mod π. This is acceptable because electric

fields travel through brain tissue almost at the speed of light, thus, in this case, the synchroniza-

tion between two time series is expected to take place without any delay. As it was mentioned

in Chapter 1, Stam et. al’s results [51] showed that PLI works as well as IC and better than PC,
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thus PLI is a suitable choice for tackling the problem of common sources. The PLI index is

computed as follows:

PLI = |〈sign[∆Φ(tk)]〉| k = 1, 2, ...,N (2.2)

in which 0 ≤ PLI ≤ 1 and ∆Φ(tk) is the time series of phase differences. PLI = 0 means that

there is no real synchronization between two time series, while PLI = 1 assures us of a true

coupling between two time series, which is not caused by the effect of common sources. This

means that the more PLI is close to 1, the more significant the coupling is and vice versa.

The time series of phase differences is computed as follows:

First we obtain the Hilbert transforms of the two desired time series:

xa1 = H(x1)(t) (2.3)

xa2 = H(x2)(t) (2.4)

xa1 and xa2 represent the time series and H is the Hilbert transform function. After obtaining

the Hilbert transforms of the time series, we can compute their phase for each time point, thus

obtaining a time series of phases for each of them:

Φ1(tk) = arctan(
Im(xa1(tk)

x1(tk)
) k = 1, 2, ...,N (2.5)

Φ2(tk) = arctan(
Im(xa2(tk)

x2(tk)
) k = 1, 2, ...,N (2.6)

in which Φ1(tk) and Φ2(tk) are time series of phases, Im(xa1) and Im(xa2) are the imaginary
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parts of the signals at time point t and x1(tk) and x2(tk) are the real parts of the signals at time

point t.

Thus the time series of phase differences is computed as follows:

∆Φ(tk) = Φ2(tk) − Φ1(tk) k = 1, 2, ...,N (2.7)

By obtaining the PLI score for each pair of time series, a similarity matrix is created and

its values reflect the strength of the similarities between all possible pairs of EEG channels.

Having this similarity matrix, we need to apply an appropriate threshold value to reject all the

non-significant similarities, which results in an adjacency matrix, having only binary values,

representing the brain’s functional network.

2.3.3 Thresholding Methods

Here we explain the three thresholding methods used in this project: The S thresholding

method, the false discovery rate (FDR) thresholding method and the random matrix theory

(RMT) thresholding method.

S thresholding method

This thresholding method was first introduced and used by [54], for building fMRI networks.

This method suggests a threshold based on a ratio called S computed as follows:

S =
log(N)
log(K)

(2.8)

in which, N is the number of nodes (vertices) in the network and K is the average node degree.

As stated in [61], this ratio (S ) is in fact the average path length of a small-world network.

Thus, having the similarity matrix and the desired S value, the following steps are taken to

obtain the threshold value:
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1- All values of the matrix are sorted in an ascending order.

2- Having the S value and number of vertices (N), the desired average node degree (K) is com-

puted.

3- The number of edges (|E|) for a graph with this K value is computed considering that

|E| = (N × K)/2.

4- The |E|th value is picked from the previously sorted similarity matrix so that |E| pairs of

nodes with strongest similarity values are chosen as the edges of the graph.

False discovery rate (FDR) thresholding method

The FDR thresholding method was first introduced by [22], for the purpose of analyzing fMRI

imaging data. They suggested a thresholding method based on FDR controlling procedures,

which means that the suggested threshold ensures that, on average, the rate of false discoveries

will be no more than a specified q (0 < q < 1). Here, a false discovery is defined as a falsely

detected synchronization between two EEG channels. The detailed procedure of this method

is as follows:

1- A desired q is chosen.

2- Having a similarity matrix filled with r − values (measures of similarities between EEG

channels), we now compute the corresponding p − value (which shows the statistical signifi-

cance for the observed similarities) for each member of this correlation matrix. We know that

p − values can be computed based on:

p(t < T ) = I d f
d f +t2

(
d f
2
,

1
2

) (2.9)

in which d f is degrees of freedom and equals to n − 2 (here, n = window size). Also, we
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know that the sampling distribution of Pearson’s correlation coefficient follows Student’s t-

distribution with degrees of freedom n − 2, and that

t2 = r2 ×
d f

1−r2 .

I represents the incomplete beta function, which is defined as follows:

Ix(a, b) =
B(x; a, b)
B(a, b)

(2.10)

in which

B(x; a, b) =

∫ x

0
ta−1(1 − t)b−1dt (2.11)

and

B(a, b) =
Γ(x)Γ(y)
Γ(x + y)

(2.12)

considering that

Γ(x) =

∫ ∞

0
yxe−y dy

x
(2.13)

3- After computing the p − values, they are sorted from smallest to largest:

P(1) 6 P(2) 6 ... 6 P(V) (2.14)

With V being the number of members of the similarity matrix.

4- If vi is a member of the similarity matrix corresponding to Pi, and m is the largest i for

which

P(i) 6
i
V

q (2.15)
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Then, the similarity value vm is chosen as the desired threshold value.

Random matrix theory (RMT) thresholding method

Based on the theory of random matrices, proposed by Wigner [62] and Dyson [18], if we sort

the eigenvalues of a random matrix in ascending order, compute the spacings s between adja-

cent eigenvalues and obtain the distribution P(s) of the spacings, this distribution conforms to

the Gaussian Orthogonal Ensemble (GOE).

In the case of similarity matrices obtained in this project, if these spacings follow a GOE dis-

tribution, we can conclude that the similarity matrix is full of false similarities. On the other

hand, if this distribution follows Poisson statistics, the similarity matrix has strong similarities

mostly on its diagonal, and such a matrix is indicative of a very modular system.

Based on this, and considering the fact that brain networks are highly modular organizations

[34], [16] proposed a random matrix theory (RMT) thresholding method that is designed to

find a threshold at which the resulted eigenvalue spacings distribution goes from following the

GOE distribution (P(d) ≈ 1
2πde

−πd2
4 ) to following the Poisson (P(d) ≈ e−d) statistics. In other

words, at this threshold the resulting network goes from being highly dominated by noise to

being modular. Having a similarity matrix of order n, and a range of candidate threshold val-

ues, the following procedures are taken to obtain the best possible threshold value:

1- We first threshold the matrix with the candidate value.

2- Obtain the ascending ordered list of its eigenvalues ( E1, ..., En ).

3- Perform a spectral unfolding procedure to obtain a distribution with constant eigenvalue

density ( e1, ..., en ).

4- Calculate the pair-wise differences between adjacent transformed eigenvalues (d = ei+1−ei).

5- Obtain the probability density P(d) of these spacings.

6- Using the Anderson-Darling test, we evaluate the extent that this distribution follows the

Poisson distribution and keep the score.
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7- If all the thresholds in the proposed range are investigated, we choose the one whose result-

ing spacing distribution fits the Poission distribution best. Otherwise, we increase the threshold

(one step) and go to step 1.

In summary, we start from the lowest threshold value in the suggested range of thresholds, and

do the above steps until we find the first threshold value that leads to a Poisson distribution.

It is obvious that as we lessen the linear steps between thresholds, and thus, investigate more

threshold values in our desired range, the probability of finding the exact transition threshold

value, as well as the computation load, increases.

2.4 Graph metrics

After obtaining the adjacency matrices using a thresholding method, we can now map each

matrix to a graph. This is done as follows: each EEG channel is considered a node in this

graph, and there is an edge between two nodes if and only if the corresponding value in the

adjacency matrix is 1.

In this way, a graph is built for each adjacency matrix, yielding a set of dynamic graphs.

This set represents the consecutive states of the brain functional network through time, which

facilitates the analysis of its changes by the means of graph metrics.

The set of metrics used in this project is composed of 25 metrics, which we found interest-

ing, based on their usage in the related network analysis literature such as [27], [17], [30] and

[38].
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In this section we introduce and explain these metrics, putting them in one of the following

groups:

1- Micro scale metrics

2- Macro scale metrics

3- Motifs

It should be noted that the main goal of comparing time series of these metrics is finding a

set of orthogonal and uniquely informative metrics, so that further brain network analysis can

be done more efficiently. One of the most important factors that should be considered when

choosing this set, is the time necessary for computing each of these metrics. Therefore, in this

section we also talk about the notion of time complexity.

Before we start to group and define the graph metrics used in this project, it is necessary to

fix the following definitions for future reference:

|V | : The number of nodes in the graph.

|E| : The number of edges of the graph (which is also a macro scale metric).

d : The average node degree of the graph. d can be computed as follows:

d =
1
|V |
· 2|E| (2.16)

As mentioned before, the main purpose of comparing time series of graph metrics in this

project is to find an optimal set of graph metrics. When choosing the members of this optimal

set from a pool of candidate metrics, the computation time plays an important role in choosing

a metric over other metrics in the same dependency group. Thus, in addition to defining each

metric, we also provide its computational time complexity as an abstract function of the input

size.
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2.4.1 Micro scale metrics

As mentioned in Chapter 1, these metrics describe the state of the network based on the prop-

erties of its nodes.

Node degree

The degree of a node is the number of edges that are connected to that node. The time required

for computing the node degree for a whole graph is O(|E|) [15].

Average nearest neighbor degree

The set of nearest neighbors of a node contains all the nodes that are adjacent to this node.

Considering this definition, the average nearest neighbor degree of a node is the mean of the

degrees of all the members in this set. The computation time for this metric is O(|V |+ |E|) [15].

Closeness centrality

The closeness centrality for a node is defined as the inverse of the mean length of the shortest

paths between that node and all other nodes in the graph. This metric gives us an estimate

of how close a particular node is to all other nodes in the graph. Closeness centrality can be

computed for the whole graph in time O(|V | · |E|) [15].

Betweenness centrality

Betweenness centrality of a node is the number of shortest paths that pass through that node.

This means that if a node with a high betweenness value is removed, a lot of shortest paths in

the graph would become longer. Betweenness centrality can be computed for the whole graph

in time O(|V | · |E|) [15].
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Eigenvector centrality

Eigenvector centrality (also called Bonacich’s centrality) is a measure for centrality that takes

the importance of the neighbors of a node into account. In other words, the importance of each

node is calculated based on the importance of its neighbors. Consider the node ni for which we

want to compute the eigenvector centrality. This is done as follows:

ci =
1
λ

n∑
j=1

Ai jc j (2.17)

in which ci is the centrality of the node ni, A is the adjacency matrix of the graph and λ is a

constant.

If we define the centralities of the graph as a vector −→c = [c1, c2, ...], we can rewrite the

above sum as a matrix equation:

λ−→c = A · −→c (2.18)

By solving this equation we can obtain the centrality. It is clear that in the above equation

−→c is an eigenvector of A and λ is the corresponding eigenvalue, and that A is optimized when

λ is maximized. The approximate computation time for this metric is O(|V |) [15], but since the

process of finding the best (largest) λ is iterative, it can vary depending on the input graph.

It is also worth mentioning that using this centrality is advantageous from the computation

point of view since it can be computed using simple linear algebraic operations, which pro-

vides the possibility of a fast parallel computation.

PageRank

PageRank is in fact a variation of the eigenvector centrality and it was first introduced by Page

et. al (1998) [9]. This metric measures the importance of each node based on the structure of
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its connections.

Kleinbergs Hub and Authority Scores

Kleinbergs Hub and Authority scores were originally defined by Kleinberg et. al (1999) [31]

for directed graphs, which have both incoming and outgoing edges. Authorities score gives

each node a value based on the number of incoming edges, while hubs score calculates this

value based on the number of outgoing edges. In the case of undirected graphs, such as the

graphs in this project, these two scores become the same [11]. Thus, we only consider one of

them (authorities) in this project.

Also, it is worth mentioning that while PageRank and Kleinberg’s scores are very similar in

definition, comparing to the PageRank, hub and authority scores are based more on the neigh-

borhood graph of a node than the whole graph [12].

These scores are usually computable in time O(|V |) [15].

Core number

Considering that a k-core is a maximal subgraph that all of its nodes have degree k or more,

the core number of a node is defined as the largest k of a k-core, which the node belongs to.

In this project, the core number is obtained using an algorithm suggested by [5], which needs

time O(max(|E|, |V |)) to compute the core number for all nodes of the graph.

Closeness Vitality

Closeness vitality of a node is the change in the sum of shortest path lengths between all nodes

after omitting that node from the graph. In other words, it describes the vitality of a node for

increasing the global efficiency of the graph.
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2.4.2 Macro scale metrics

These metrics are graph-level metrics, meaning that they describe the state of network based

on the whole graph characteristics.

Diameter

If we sort all the shortest path lengths between all nodes of a graph, the largest value is called

the diameter of the graph and it can be computed in time O(|V | · |E|) [15].

Average path length

The average path length of a graph is obtained via averaging over all the shortest path lengths

(between all pairs of nodes) of that graph. The computation time for this metric is O(|V | · |E|)

[15].

Average clustering coefficient

If node v has Av neighbors, then the maximum number of edges that can exist between them is

Av(An − 1)/2. Thus cv is defined as the fraction of these possible edges that exist between v and

it neighbors. Considering this, the average (global) clustering coefficient of a graph is defined

as follows:

ACC =
1
n

∑
vεG

cv (2.19)

Where n is the number of nodes in the graph G.

Average clustering coefficient can be computed in time O( |E|
2

|V | ) [15].
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Number of isolated nodes

An isolated node is a node that has no connections with other nodes (degree = 0). The compu-

tation time for this metric is O(|E|) [15].

Edge connectivity

The edge connectivity of a graph is the minimum number of edges that should be removed to

make the graph disconnected, and can be computed in time O(log(|v|) · |V |2) [15].

Assortativity

Assortativity is a measure that describes a node’s tendency to connect to other nodes with

similar degree. This metric is computed using Pearson correlation coefficient. The value of

this correlation r lies in the range of [−1, 1]. As the network becomes more assortative, the

value of r becomes closer to 1.

Number of maximal cliques

A clique is defined as a subset of a graph’s nodes that are all connected to each other. Thus, a

maximal clique is the largest clique found in the graph, which is not extendable by adding an

adjacent node to it. In other words, a maximal clique is not a subset of a larger clique.

Finding all the maximal cliques in a graph can take upto time O(3|V |/3) [56].

Graph clique number

Graph clique number is the size of the largest clique found in the graph. The computation time

for this metric is O(3|V |/3) [57].
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2.4.3 Motifs

When representing the brain functional network as a graph, one of the best ways of investigat-

ing its underlying mechanisms is to look for recurrent and statistically significant connectivity

subgraphs, called motifs. These subgraphs, which are particular patterns of connections be-

tween vertices, may be efficient ways of performing atomic tasks in the brain. Thus, it is

interesting to investigate the frequency of their occurrence in the brain graphs.

In this project, we study the number of occurrences for seven classes of motifs with up to

4 nodes (See figure 2.1). Each of these types is considered as a network metric, and its time

series is compared with all other metrics.

The reason for investigating limited types of motifs in this project is that motif detection is

a computationally heavy task. It is also worth mentioning that many related works, such as

[27], have also chosen to analyze motifs of size four and three as interesting network patterns.

2.5 Pearson correlation coefficient

The Pearson correlation coefficient, developed by [42], measures the extent of linear depen-

dence between two variables (samples). Pearson correlation coefficient for two variables X and

Y is denoted by rXY and is computed as follows:

rXY =

∑n
i=1(Xi − X)(Yi − Y)√∑n

i=1(Xi − X)2
√∑n

i=1(Yi − Y)2

(2.20)

Where, Xi is the ith element in the time series and X is the mean of the time series. It is

worth mentioning that r is a value in range [−1, 1], where 1 means the two variables have total

positive correlation, while −1 and 0 are indicative of total negative correlation and no correla-
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Figure 2.1: Seven equivalence classes of motifs with up to 4 nodes.
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tion respectively.

The strength of the relationship between two variables is assessed not only by the correla-

tion coefficient but also by considering the size of the variables (number of the pairs in data).

If the correlation coefficient is computed based on a few number of pairs, then the r value

should be very close to +1 (or -1) for the correlation to be considered as statistically signif-

icant. p − value, which is used for analyzing this level of significance, is the probability of

obtaining the r value if the correlation did not exist in the first place. Thus, for the r value

to be accepted as statistically significant, the computed p − value should be less than a cer-

tain value, which is often chosen as 0.05 or 0.01. The calculation of p − value is based on a

number of assumptions that are beyond the scope of this project, but one can refer to standard

statistical tables for obtaining the p−values relevant to the computed r and the sample size [21].

In this project, the Pearson correlation coefficients and their corresponding p − values for time

series of metrics are computed by the pearsonr function provided in the scipy.stats library.

It should be noted that though there is no exact guideline for choosing a proper r value as

a threshold for accepting or denying the correlation between two variables, it is common to

consider r = 0.5 indicative of an existing correlation. Also, the p− value used in this project is

0.01.

2.6 A summary of the pipeline

In summary, the following steps are performed by the implemented pipeline to generate the

correlation matrix:

1. Load the EEG data-set. The data-set includes 5 trial types, and there are multiple trial
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recordings for each trial type.

2. Apply the digital band-pass filter (FIR filter). This is done to extract the desired frequen-

cies from the whole data-set.

3. For each trial type (extracted from the data-set):

(a) Perform the averaging process, to increase the signal to noise ratio.

(b) Choose a desired window size and step size.

(c) Do the following for each time window (the number of time points used = the

window size):

i. Create the similarity matrix using PLI. This matrix contains similarity values

for each pair of channels.

ii. Threshold the obtained similarity matrix using a thresholding method. In this

step we use one of the three thresholding methods introduced in this chapter

(S, FDR and RMT).

iii. Use the adjacency matrix obtained from the previous step to build a graph.

Each channel represents a node, and there is an edge between two nodes, only

if the value between their corresponding channels in the adjacency matrix is 1.

iv. Add the obtained graph to the temporal series of graphs.

v. Move forward in the time-series so that the distance with the next time window

= the desired step size.

vi. If it is still possible to have a time window with the desired size, go back to

step i.

(d) Having the time-series of graphs, do the following for each graph in this series:

i. Define 25 time-series for 25 metrics. Compute each of the 25 metrics for this

graph, and add their values to their corresponding time series of graph metrics.
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(e) Having 25 time-series for graph metrics, compute the Pearson correlation coeffi-

cient for each pair of these 25 time-series. In this way, we can obtain the relation-

ship between all possible pairs of 25 metrics, and see whether or not their pattern

of changes over time is correlated with each other.

(f) To plot the relationship between metrics: keep the values that are greater than 0.5

or smaller than −0.5, with a r − value smaller than 0.01. Otherwise there is no

significant correlation between two metrics. Thus, a 25 × 25 correlation matrix is

created, reflecting the correlation between metrics.

Note that we keep the nodes that do not have any connections with other nodes, because

we want to count the number of isolated nodes as a graph metric. Thus, we only consider the

number of edges dynamic.

2.6.1 Technical details

The whole implementation of this pipeline was done in Python. The generation of all graphs

and graph metrics (except motifs) used in this project was done using the Python’s NetworkX

package [26], which has been used in many scientific articles such as [7]. For computing the

motifs, we have used a Python-based package named graph motif model (GMM), implemented

and introduced by [13].

The correlation matrices were plotted using R’s corrplot package.

The calculation of motif counts was made possible using the facilities of the Shared Hierar-

chical Academic Research Computing Network (SHARCNET), while other analysis was done

on a personal computer with the following technical specifications:

• Intel(R) Core(TM)i7-3520M CPU @ 2.90 GHz.

• 8 GB Ram.
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• Windows 7 64 bit.



Chapter 3

Metric correlations across different

thresholding methods

Choosing an appropriate threshold is a critical step in generating brain connectivity graphs. A

very low threshold can result in a very dense graph, with the high possibility of representing

false synchronizations. On the other hand, choosing a very high threshold value could easily

result in the loss of physiologically relevant connections.

There are various thresholding methods that can be used for generating brain graphs, thus,

it would be interesting to compare the graph metrics correlations based on different thresh-

olding methods to see the extent of the changes in the behavior of these graphs across these

different methods.

In this chapter, we analyze the metric correlations of dynamic graphs obtained from three

different thresholding methods, with a fixed window size, step size and frequency band for

clearer observation of any possible differences solely caused by changing the thresholding

method. We do these analyses separately for each trial type. After detecting the mutual met-

ric correlations that can be seen in the results of all thresholding methods, we suggest metric

39
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dependency groups for each trial type. Also, we talk about interesting contradictions of some

metric correlations that are results of using different thresholding methods. Finally, we suggest

metric dependencies that happen for all trial types, using all three thresholding methods.

All graphs in this section are generated under the following circumstances: window size =

800, step size = 25, frequency band = beta, and using one of three thresholding methods (S,

FDR, RMT) described in Chapter 2. Note that the chosen combination of window size = 800

and step size = 25 is chosen because it generates a smooth transition between dynamic graphs.

We chose beta band as the default frequency band, since the related literature, such as [30],

has shown that using this band results in greater statistical significance for task-related effects

in EEG-derived brain graphs.

For S thresholding method, the S value is set to 2, since it is a liberal threshold that results

in dense graphs [54].

The alpha value for FDR thresholding method is set to 0.01, which is a common value used in

the related literature (such as [41]), for assessing the statistical significance of the results.

Finally, for RMT thresholding method, the min-threshold value is set to the minimum (non-

zero) value in the correlation matrix and the max-threshold value is set to the maximum value

that when used as threshold does not generate a singular matrix. It is worth mentioning that the

RMT function uses 100 values between the min and the max value to threshold the correlation

matrix with, and chooses the best value in terms of yielding the best Anderson-Darling score,

as the final threshold value.

For metric correlations, we consider two metrics correlated only if the r value for their cor-



3.1. Trial type: 1 41

relation is greater than 0.5 or less than -0.5. Thus, only the correlation values in this range have

been plotted.

Note that the definitions of all the abbreviations used in the plots of this chapter and Chap-

ter 4 can be found in the appendix.

The position of clusters in the plots depicted in this chapter and Chapter 4 is not informative

nor important.

3.1 Trial type: 1

By looking at Figure 3.1, we can see that a cluster of positive correlations is seen in the re-

sults of all three thresholding methods. This cluster contains pagerank, eigenvector centrality,

authorities, closeness centrality and degree. These correlations are expected, considering their

mathematical definition and that they are all influenced by degree. Note that closeness central-

ity and degree are also correlated with core number. In addition to this cluster, there is also

a recurrent gathering of diameter, average path length (AvgPL) and betweenness centrality.

While the reason for correlation of diameter and AvgPL is obvious (based on their definitions),

betweenness centrality’s relationship with these metrics is interesting and can be explained as

follows: an increase in the AvgPL means that there are more nodes participating in traveling

routes between every two nodes in the graph, thus, the average betweenness centrality of the

graph rises. Closeness vitality is also correlated with AvgPL and diameter. This relationship

can also be explained based on the same reasoning used for betweenness centrality’s correla-

tion.

Other interesting gatherings mostly concern different motif types. Motif types 3,4 and 7 are

correlated with each other, while motif type 5 is correlated with motif type 4 and 3. Motif types
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Figure 3.1: Metric correlations obtained based on trial type 1, and using window size = 800,
step size = 25 and thresholding methods: (a)S, (b)FDR and (c)RMT.
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3 and 7 are also correlated with graph clique number. Motif types 2 and 6 are correlated with

each other and eigenvector centrality. Other interesting recurrent correlations are: motif type

1 with number of edges, average nearest neighbor degree (AvgNNDeg) with motif type 2 and

core number, and finally, betweenness centrality with pagerank. Note that although pagerank

and eigenvector centrality are both based on the same mathematical reasoning, the correlation

of betweenness centrality and eigenvector centrality is not captured in S thresholding results.

After outlining positive correlations, recurrent negative correlations are also of interest. It

can be seen that number of isolated nodes is negatively correlated with average clustering co-

efficient (ACC), closeness centrality and AvgNNDeg, which is expected since as more nodes

depart from the connected graph, degree related metrics would decrease in value.

Note that motif type 5 is negatively correlated with AvgPL and betweenness centrality, while

motif type 6 is negatively correlated with assortativity. While the negative correlation of motif

type 5 and AvgPL is intuitively understandable, the reason behind the negative correlation of

assortativity and motif type 6 is not clear. Nevertheless, we offer a possible explanation for

this repeated correlation as follows: We know that motif type 6 is relevant to the presence of

hubs in the network (See Figure 2.1). A hub is defined as a high-degree node, which, is in

fact one of the properties of networks with small-world characteristics [10]. On the other hand,

assortatiivty is also expected to be seen in networks with high clustering coefficient, since the

high degree nodes tend to connect to each other. Considering this, the negative correlation of

assortativity with motif type 6 in functional brain networks seems odd and unexpected. But this

observation can be justified by referring to the definition of the rich-club phenomenon. This

phenomenon happens when nodes of higher degree (hubs), are more connected to each other

than the less significant, lower degree nodes. This causes an increase in the local assortativity,

while the global assortativity decreases. It has been observed that the brain functional network

has a rich club organization and that this phenomenon facilitates the global efficiency of trans-
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ferring information through a network [59]. On the other hand, it has also been observed that

in epileptic brain networks, the assortativity increases during seizures [6]. Considering these

facts, it can be assumed that the brain functional network tries to maintain its rich-club organi-

zation by lowering the network’s assortativity as the network hubs become richer. Thus, as the

number of motifs of type 6 increases, the assortativity decreases.

Based on the observations in this section, we summarize the above metric correlations in the

following dependency groups (metrics put together in a group are all correlated with each

other): (pagerank, eigenvector centrality, closeness centrality, degree, authorities), (core num-

ber, degree, closeness centrality), (core number, AvgNNDeg), (motif2, motif6, eigenvector

centrality), (assortativity, motif6), (motif1, number of edges), (AvgPL, diameter, betweenness

centrality), (closeness vitality, AvgPL, diameter), (motif4, motif7, motif3), (motif4, motif5),

(motif6, motif2), (motif2 , AvgNNDeg), (number of isolated nodes, ACC), (number of iso-

lated nodes, closeness centrality), (number of isolated nodes, AvgNNDeg), (motif5 , AvgPL,

betweenness centrality), (pagerank, betweenness centrality).

By comparing metric correlations obtained based on three thresholding methods (S, RMT

and FDR), the following interesting observations are made: it is clearly seen that RMT and

FDR have many mutual correlations, and their results do not contradict each other. On the

other hand, by comparing their results to S threshold’s, we can see that some correlations exist

in opposite directions. Also, note that S thresholding method has failed to capture any corre-

lations regarding edge connectivity. These differences are due to the fact that S thresholding

method generates higher threshold values comparing to FDR and RMT [16], and thus metric

correlations sensitive to density and number of isolated nodes are captured differently.

For metric correlations based on S thresholding method, we can see that ACC is positively

correlated with average path length, while this correlation is negative for FDR and RMT cor-

relations. This is due to the fact that the graphs generated based on this thresholding method
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have noticeable fewer number of connections comparing to the ones created by RMT and FDR.

Because of this, these graphs have a lot of isolated nodes, and since average path length is sus-

ceptible to disconnected nodes (see [53] and [45]), the results may vary based on the number of

these detached nodes. The same reasoning is behind other contradictory correlations between

S and two other thresholding methods. These explanations also account for the results of other

trial types.

3.2 Trial type: 2

Figure 3.2 shows metric correlations based on three thresholding methods for trial type 2. For

this trial, core number has joined the gathering of eigenvector centrality, pagerank, authorities,

degree and closeness centrality, for all thresholding method’s results. Closeness vitality, diam-

eter, AvgPL and betweenness centrality have the same relationships with each other as before.

Motif type 1 and number of edges are again strongly correlated. This correlation is expected to

always be seen, since motif type 1 is in fact representing an edge, thus we will not repeat this

as a correlation from now on. It is interesting to see that the graph clique number has joined

the cluster of motif types 3, 4 and 7. Motif type 4 and 3 are also correlated with ACC and motif

type 5. Their correlation with ACC is due to the fact that they represent connections forming

one or two triangles, which is related to the definition of ACC.

In summary, these dependencies are seen for all thresholding methods: (pagerank, eigen-

vector centrality, closeness centrality, degree, authorities, core number), (core number, AvgN-

NDeg), (motif2, eigenvector centrality), (assortativity, motif6), (motif1, number of edges),

(AvgPL, diameter, betweenness centrality), (closeness vitality, AvgPL, diameter), (motif4, mo-

tif7, motif3, graph clique number), (motif4, motif5, motif3, ACC), (motif2 , AvgNNDeg),

(motif5 , AvgPL, betweenness centrality), (motif5, closeness vitality), (motif2, eigenvector

centrality, closeness centrality), (core number, AvgNNDeg), (pagerank, betweenness central-
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Figure 3.2: Metric correlations obtained based on trial type 2, and using window size = 800,
step size = 25 and thresholding methods: (a)S, (b)FDR and (c)RMT.



3.3. Trial type: 3 47

ity), (closeness vitality with: motif5, motif4 and graph clique number).

3.3 Trial type: 3

Figure 3.3 shows correlation results for trial type 3. By comparing the results of three thresh-

olding methods, we can detect the correlations that can be seen in all three plots. Eigenvector

centrality, degree, closeness centrality, pagerank and authorities are all correlated with each

other, while AvgNNDeg and core number are also partially part of this gathering. This is due

to the fact that AvgNNDeg is only correlated with all members of this cluster in the results of

S thresholding method, and core number is not correlated with pagerank and authorities for

graphs obtained based on RMT thresholding method.

Another recurrent and interesting cluster of correlations is the one containing graph clique

number and motif types 3,4,5 and 7. These motif types are also always negatively correlated

with AvgPL and betweenness centrality. Note that all of these motif types have closed cycles

of length 3 or 4 in them (see Figure 2.1), which can lead to the emergence of bigger cliques

in the graph, confirming their positive correlation with graph clique number. Also, their neg-

ative correlation with distance related metrics, is a sign of increased global efficiency due to

appearance of these motifs in the network. Also, one would assume that ACC should also be

positively correlated with these metrics, since an increase in the number of these motifs adds

to the number of triangles in the graph, and thus leads to more clustering. We can see this ex-

pected correlation in the results of RMT and FDR, while the S thresholding method has failed

to capture it.

By further comparison of the results, we can see that the familiar gathering of diameter, AvgPL,

betweenness centrality and closeness vitality has again taken place for this trial type. But note

that, as for previous trial types, betweenness centrality and closeness centrality are not corre-
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Figure 3.3: Metric correlations obtained based on trial type 3, and using window size = 800,
step size = 25 and thresholding methods: (a)S, (b)FDR and (c)RMT.
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lated.

Other recurrent correlations, plus the ones mentioned above, can be put in the following de-

pendency groups: (eigenvector centrality, pagerank, authorities, closeness centrality, degree),

(core number, eigenvector centrality, closeness centrality, degree), (AvgNNDeg, core number,

closeness centrality, degree), (diameter, AvgPL, betweenness centrality), (diameter, AvgPL,

closeness vitality), (motif3, motif4, motif5, motif7, graph clique number, betweenness cen-

trality), (motif3, motif4, motif5, motif7, AvgPL), (eigenvector centrality, motif2, closeness

centrality), (motif3, core number), (motif3 , ACC).

3.4 Trial type: 4

We now look at Figure 3.4, which shows metric correlation results of three thresholding meth-

ods for trial type 4. For this trial type, we can again see the familiar clustering of eigenvector

centrality, pagerank, authorities, degree and closeness centrality. Unlike trial 2, core number

does not completely participate in this cluster and is only correlated with degree, closeness

centrality and to a lesser extent with eigenvector centrality. It is also always correlated with

AvgNNDeg.

AvgPL is again strongly correlated with closeness vitality and betweenness centrality in the

results of all thresholding methods, but, it can be seen that unlike last trial types, diameter is

not correlated with these metrics. Betweenness centrality is also correlated with pagerank.

By comparing the three sets of results, we notice the recurrent appearance of a cluster of cor-

relations containing motif types 3,4,5 and 7, ACC and to some extent graph clique number.

Graph clique number is always correlated with motif types 4 and 5, except for FDR results. As

it can be seen, the theshold control shows negative correlation with this cluster, which makes
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Figure 3.4: Metric correlations obtained based on trial type 4, and using window size = 800,
step size = 25 and thresholding methods: (a)S, (b)FDR and (c)RMT.
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sense since as the threshold increases the graph loses more connections and thus become less

clustered.

Motif type 2 and number of maximal cliques are also correlated.

When comparing the results of three thresholding methods, we can see that for S thresholding

method, ACC has negative correlation with the number of maximal cliques, whereas, for FDR

and RMT, this correlation is positive. This can be explained as follows: As the threshold value

decreases, more edges are added to the graph, and ACC increases as a result. In FDR and

RMT, new connections are added to the graph with a greater rate than in a graph obtained via S

thresholding method. Thus, while several maximal cliques of size k are joined together to cre-

ate a bigger clique, new connections also create new maximal cliques. On the other hand, for

S thresholding method, the new connections are mostly creating bigger cliques by connecting

several maximal cliques. This decreases the number of maximal cliques because the number

of newly created cliques is less than the number of former maximal cliques, which are now

joined together to make a bigger clique.

In summary, these dependency groups can be seen for this trial type and all the threshold-

ing methods: (eigenvector centrality, pagerank, degree, closeness centrality, authorities), (core

number, eigenvector centrality, closeness centrality, degree), (closeness vitality, AvgPL), (be-

tweenness centrality, AvgPL), (motif2, number of maximal cliques), (motif3, motif4, motif5,

motif7, ACC), (motif3, motif7, ACC, graph clique number), (assortativity, motif6), (graph

clique number, motif6), (eigenvector centrality, motif2).
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Figure 3.5: Metric correlations obtained based on trial type 5, and using window size = 800,
step size = 25 and thresholding methods: (a)S, (b)FDR and (c)RMT.
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3.5 Trial type: 5

Here, in Figure 3.5, we can see that a big cluster of positive correlations keeps showing up for

all the thresholding methods. This cluster contains motif types 1,3,4,5 and 7, number of edges

and the graph clique number. AvgNNDeg is also correlated with most members of this cluster,

except for graph clique size and motif type 3. On the other hand, ACC is positively correlated

with graph clique size and motif type 3.

Furthermore, we can see a clustering of AvgNNDeg, motif types 2 and 6, and closeness cen-

trality, which is logical to be seen, considering the definitions of these metrics. AvgNNDeg is

also correlated with core number and degree.

It is interesting to see that the familiar clustering of degree, pagerank, authorities, eigenvec-

tor centrality and closeness centrality does not appear as complete as before, and suffers from

lack of some correlations. Another noticeable change for this trial type is that closeness vitality

and betweenness centrality are not correlated with AvgPL or diameter as seen in previous trial

types.

The above observations and other recurrent correlations for all thresholding methods can be

categorized as follows: (motif1, motif3, motif4, motif5, motif7, number of edges, graph clique

number), (AvgNNDeg, motif1, number of edges, motif5, motif4, motif7), (AvgPL, diame-

ter), (ACC, graph clique number, motif3), (AvgNNDeg, motif6, motif2, closeness centrality),

(AvgNNDeg, core number, degree), (closeness centrality, core number, degree), (eigenvector

centrality, authorities, pagerank, degree), (betweenness centrality, pagerank), (number of iso-

lated nodes, closeness centrality), (number of maximal cliques, eigenvector centrality, close-

ness centrality).
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3.6 Discussion

We now summarize the dependency groups suggested for each trial type, offering metric cor-

relations that are constantly observed across all thresholding methods and trial types. These

robust metric correlations can be categorized as follows: (motif4, motif3, motif7), (motif5,

motif4, motif3), (graph clique number, motif7, motif3), (degree, pagerank, authorities, eigen-

vector centrality), (core number, closeness centrality, degree), (closeness centrality, degree,

pagerank, eigenvector centrality), (AvgNNDeg, core number).

Note the presence of motif type 3 in three of the dependency groups. This is due to the

fact that this motif acts as a substructure for motif types 4, 5 and 7. Also, motif types 3 and 7

are both complete graphs of 3 and 4 nodes, respectively, and participating in the formation of

cliques in the graph.

Note that some very expected correlations, such as the gathering of AvgPL, diameter and be-

tweenness centrality, do not appear in these groupings. This is due to the fact that they did

not appear in the results of all trial types and thresholding methods, which is mostly due to

different connection densities of graphs generated by these thresholding methods.

Based on the results discussed for all trial types, we can conclude that graphs generated based

on the S thresholding method are somewhat different in structure from the ones generated via

FDR and RMT methods. Graphs obtained based on this method lack many connections due

to very high threshold values, which results in a disconnected network with a lot of isolated

nodes. As discussed before, this is the main reason for some odd correlations between AvgPL,

ACC and other metrics for S thresholding method’s results. While one cannot conclude that

this thresholding method is not useful for generating brain graphs in general, it can be said

that the threshold values generated by S thresholding method are higher than necessary for this
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EEG data-set, and thus, it might be better to use FDR or RMT so that more metric correlations

are captured.

Also note that FDR and RMT employ very different approaches to threshold a graph, and

the fact that they yield very similar correlations increases the credibility of the results, espe-

cially when comparing with S thresholding method correlations.

Considering this, there is still the need of further investigation to reach a final conclusion

about metric dependency groups. Thus, we continue to observe metric correlations of brain

functional networks, generated by RMT thresholding method in various conditions, by using

different window sizes, step sizes and frequency bands.

The reason for choosing the RMT thresholding method in this project is that while this thresh-

olding method’s metric correlations are mostly similar to FDR’s correlations, and agree with

small-world properties, it has not yet received any attention in neuroinformatic literature. On

the other hand, FDR has been used in many neuroscientific literature such as [1], [44], [67] and

[65].



Chapter 4

Metric correlations across different

circumstances

In this chapter, we investigate the effects of using different combinations of window and step

sizes for generating dynamic graphs, on the metric correlation results. We also explore metric

correlations obtained based on dynamic graphs generated in different frequency bands. This

is done in three sections. First, we fix the step size and obtain the dynamic graphs based on

different window sizes. The size of time windows used in this section are set to 200, 500, 800

and 1100 ms, so that we can observe the metric correlations based on different window sizes.

Considering that the step size is fixed to 25 time steps, for all window sizes, more than 90

percent of time points based on which each graph is generated are common with the ones used

for generating the previous graph.

In the second section of this chapter, we set the window size and step sizes in a way that dif-

ferent portions of shared time points between time windows is used for generating the graphs.

This is further explained in section 4.2.

And finally, the third section explores metric correlations in three different frequency bands,

56
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by fixing the window size and the step size.

At the end of this chapter, we suggest metric dependencies that are consistent across the results

of all sections. Moreover, we discuss some interesting metric correlations that are repeatedly

observed for specific trial types.

4.1 Changing the window size

All metric correlations in this section are obtained based on dynamic graphs generated under

the following circumstances:

1- Using RMT thresholding method.

2- Setting step size to 25.

3- In beta frequency band.

Four sets of dynamic graphs are generated based on four different time windows of sizes

1100, 800, 500 and 200 ms.

We now study the metric correlation results for each trial individually.

4.1.1 Trial type 1

Figure 4.1, shows metric correlations obtained based on four different time windows of sizes

200, 500, 800 and 1100 ms. Looking at these metric correlations, we can see that some of them

appear in the results of all window sizes. The biggest cluster of recurrent and persistent corre-
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Figure 4.1: Metric correlations obtained based on trial type 1, in beta frequency band, and using
step size = 25, window sizes: (a)1100, (b)800 and (c)500 and (d)200, and RMT thresholding
method.
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lations includes motif types 1,2,3,4 and 5, ACC, graph clique number, core number, closeness

centrality, degree, number of edges and average path length (AvgPL). These correlations make

perfect sense, since as the node degree increases, all metrics that are directly influenced by the

node degree increase as well. AvgNNDeg is also always correlated with most of the members

of this cluster, except for closeness centrality and degree. Also, as a result of the network’s

growth, ACC increases, which agrees with the expected small-world properties of the brain’s

functional network. Furthermore, motif type 7 is also correlated with all members of the big

cluster of correlations, except for motif types 2 and 5.

Note that closeness centrality and degree also form another cluster of correlations with eigen-

vector centrality, pagerank and authorities.

AvgPL and diameter are always correlated with betweenness centrality and closeness vital-

ity. This correlation is derived from the fact that as the AvgPL and diameter increase, the

number of nodes participating in the paths between all nodes increase as well. Considering

that both betweenness centrality and closeness vitality reflect the amount of participation of a

node in the whole network, their correlation with average path length and diameter is expected.

On the other hand, these metrics do not have a correlation with each other because a node with

high betweenness value does not necessarily create the only possible shortest path between

two other nodes, while a node with high closeness vitality is certainly vital for the existence of

certain paths in the graph.

Other interesting positive correlations involve motif type 7 and number of maximal cliques.

These metrics are strongly correlated with each other, since motif type 7 is a complete graph

of four nodes that plays the role of a building block for forming bigger cliques in the graph.

AvgNNDeg, core number, motif types 3 and 4, closeness centrality, degree, number of edges

and motif type 1 are also always correlated with both of these metrics. Considering the mathe-
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matical definition of these metrics, these correlations are expected. Motif type 7 is also corre-

lated with ACC and graph clique number.

Also, it can be seen that in this trial type, eigenvector centrality is always correlated with

motif types 1,2,3,4,5 and 7. Since all these motif types are related to forming clusters in the

graph, the importance of the nodes in these cluster increase as well, therefore this correlation is

understandable. The expected correlation of motif types 2 and 6 is the last positive correlation

that can be spotted for all window sizes in this trial type.

Moving to detecting recurrent negative correlations, we start by looking at the relationship

between assortativity and motif type 6. As it was previously seen, these metrics are again al-

ways negatively correlated. The reason behind this correlation was thoroughly explained in

section 3.1. Note that motif type 6 is also negatively correlated with AvgPL and betweenness

centrality. This is due to the fact that an increase in the number of this motif type is because of

the increase in the number of hubs and clusters in the graph, decreasing the AvgPL.

Other recurrent negative correlations are as follows: AvgPL is negatively correlated with all

members of the big recurrent cluster of correlations, while diameter, betweenness centrality

and closeness vitality are only negatively correlated with some of them.

As it was mentioned before, the above correlations can always be seen for trial type 1, even

by changing the window size. On the other hand, it is interesting to see if these correlations

keep happening for all other trial types, thus, before suggesting metric dependency groups, we

continue our observations for other trial types to detect any possible changes in these recurrent

correlations.
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4.1.2 Trial type 2

By looking at Figure 4.2, we can see that many correlations are repeatedly seen for trial type 2,

using all four window sizes. The biggest cluster of these correlations contain motif types 1,3,4

and 7, number of maximal cliques, closeness centrality, degree, number of edges, core number,

ACC, graph clique number and AvgPL. Note that motif types 2 and 5, and AvgNNDeg are

strongly correlated with each other while being correlated with most metrics of these cluster.

Eigenvector centrality, authorities, pagerank, closeness centrality and degree are also strongly

correlated with each other.

It is interesting to see that edge connectivity, unlike trial type 1, is now correlated with many

metrics including AvgNNDeg, motif types 1,3,4 and 7, closeness centrality, degree and the

graph clique number, for all four window sizes. Since these metrics are all indicative of den-

sity of the connections in the graph, it is logical to see that as they increase and the graph

acquires more number of connections, the edge connectivity increases as well.

AvgPL, diameter, closeness vitality and betweenness centrality have the same relationships

with each other as before. Moreover, if we put diameter aside, these metrics have mostly the

same negative correlations as before. The only metrics that keep being negatively correlated

with diameter for this trial type are eigenvector and closeness centrality scores.

Also note that assortativity and motif type 6 are again negatively correlated. The positive

correlation of pagerank with betweenness centrality is repeated as well. This correlation is

somewhat intuitive since as a node’s number of connections increase, it participates in more

shortest paths than before.
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Figure 4.2: Metric correlations obtained based on trial type 2, in beta frequency band, and using
step size = 25, window sizes: (a)1100, (b)800 and (c)500 and (d)200, and RMT thresholding
method.
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4.1.3 Trial type 3

We now look at Figure 4.3, which shows the correlation results for trial type 3. Most of the

metric correlations that repeat for each window size are familiar since they were seen in previ-

ous trial types’ results.

The big cluster of positive correlations seen in previous trial types, is again present for this

trial type. As before, this cluster is accompanied by AvgPL, which is negatively correlated

with all other members of this cluster. Diameter, AvgPL, closeness vitality, betweenness cen-

trality, eigenvector centrality, pagerank, authorities, degree and closeness centrality exhibit the

same positive correlations as for previous sections.

Note that edge connectivity is now positively correlated with all members of the big cluster

of correlations except ACC.

As for negative correlations, they are mostly repeated as before, with some exceptions. First,

motif types 6 and assortativity are not correlated in three out of four window sizes. They have

near -0.5 correlation only when window size is set to 200 ms. Second, we can see that edge

connectivity is now negatively correlated with AvgPL, betweenness centrality, closeness vital-

ity and diameter. This is easily explained based on the small-world properties that are expected

of brain networks. As the ACC increases, AvgPL decreases to some degree to maintain the

global efficiency of propagating the information through network, thus, more number of edges

are to be removed to make the network disconnected.

We can also see that unlike trial type 2, diameter is negatively correlated with most mem-

bers of the big blue cluster of correlations (except ACC, clique related metrics and motif types

3 and 7), which appears for all window sizes.
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Figure 4.3: Metric correlations obtained based on trial type 3, in beta frequency band, and using
step size = 25, window sizes: (a)1100, (b)800 and (c)500 and (d)200, and RMT thresholding
method.
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4.1.4 Trial type 4

Here again we can see that most of the recurrent correlations that can be seen for all the win-

dow sizes are familiar and were seen for one or more of the previous trial types.

A big cluster of positive correlations is seen, which includes ACC, graph clique number, core

number, motif types 1,3,4 and 5, closeness centrality, degree, and to some extent, motif type

2, AvgNNDeg and number of maximal cliques. Also, note that eigenvector centrality, edge

connectivity, number of maximal cliques and motif type 7 are also positively correlated with

some members of this cluster, while the last three mentioned metrics are strongly correlated

with each other.

Metrics reflecting the importance of the node in the network, namely eigenvector centrality,

authorities, pagerank and closeness centrality are again strongly correlated with each other

and the node degree, as expected. On the other hand, diameter, AvgPL, closeness central-

ity and betweenness centrality have the same correlations with each other as for the previous

trial types, which is not surprising based on their mathematical definitions. These metrics are

also negatively correlated with most metrics participating in the big blue cluster of correlations

mentioned before.

4.1.5 Trial type 5

The fifth and last trial type correlation results for all window sizes are depicted in Figure 4.5.
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Figure 4.4: Metric correlations obtained based on trial type 4, in beta frequency band, and using
step size = 25, window sizes: (a)1100, (b)800 and (c)500 and (d)200, and RMT thresholding
method.
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Figure 4.5: Metric correlations obtained based on trial type 5, in beta frequency band, and using
step size = 25, window sizes: (a)1100, (b)800 and (c)500 and (d)200, and RMT thresholding
method.
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Although most of the positive and negative correlations are the same as the results of previ-

ous trial types, some interesting observations can be made for this trial type. It can be seen

that edge connectivity, number of maximal cliques and motif types 3,4 and 7 form a cluster of

strong positive correlations.

4.1.6 Recurrent dependencies

Based on the observations made from the results of all window sizes and trial types, we can

now detect the metric correlations that are always present. Figure 4.6 shows metric correlations

that are common between all trial types. Note that the correlation values shown in this figure

are not precise and are in fact averaged over all trial types and windows sizes, with the sole

purpose of making the detection of recurrent correlations easier for the reader.

Based on the previous observations, and by the help of Figure 4.6, we can suggest the fol-

lowing dependency groups for this section:

(pagerank, authorities, eigenvector centrality, degree, closeness centrality), (motif types 1,3,4

and 7, closeness centrality, degree, number of edges, core number, ACC, graph clique num-

ber, AvgPL), (AvgNNDeg, motif types 1,2,3,4 and 5, number of edges, core number, AvgPL),

(pagerank, betweenness centrality), (AvgPL, diameter, betweenness centrality), (AvgPL, diam-

eter, closeness vitality), (AvgNNDeg, motif type 5, AvgPL, ACC, graph clique number), (motif

types 2 and 5, eigenvector centrality, closeness centrality, degree).

In addition to these main dependency groups, we can see that betweenness centrality and

closeness vitality are negatively correlated with all motif types except motif type 6 and graph

clique number, while diameter is negatively correlated with eigenvector and closeness central-
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ity scores. On the other hand, number of maximal cliques is positively correlated with motif

types 1,3,4 and 7, degree and core number, or in another words, metrics that are related to

forming the cliques in the graph.

The appearance of ACC and AvgPL in most of the dependency groups, and the fact that they

are negatively correlated, confirms the small-world characteristics of this network.

4.2 Changing the step size

As it was explained before, the intention of this section is to explore metric correlations by

changing the portion of shared time points between time series, based on which the graphs are

created.

The EEG-derived data set used in this project, offers a time series of 1803 ms for each EEG

channel. Thus, using a big window with a big step size would result in a very small number of

dynamic graphs, which can affect the statistical significance of the metric correlation results.

Considering this, and based on the work of [38], which have used time windows with approxi-

mately 100 ms duration, we set the size of time windows in this section to 100 time points.

All metric correlations in this section are obtained based on dynamic graphs generated un-

der the following circumstances:

1- Using RMT thresholding method.

2- Window size is set to 100 time points.
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Figure 4.6: Recurrent metric correlations which were seen for all trial types and window sizes.
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3- In beta frequency band.

Four sets of dynamic graphs are generated using four different step sizes of 5, 25, 50 and

100 ms, so that consecutive time windows would share 95%, 75%, 50% and 0% of their time

points with each other, respectively.

4.2.1 Trial type 1

We start our observations by looking at Figure 4.7, which shows the metric correlations ob-

tained based on different step sizes, for trial type 1.

By comparing the results of all the step sizes, it can be seen that there is a big cluster of

positive correlations, which contains almost all metric types (except type 6), degree, closeness

centrality and core number. AvgPL is also negatively correlated with all the members of this

cluster. Note that the same cluster of recurrent correlations also appeared in Figure 4.1, ac-

companied by two other metrics, ACC and graph clique number. As it is seen in Figure 4.7,

when the step size is set to 100, these two metrics do not appear as part of this cluster of cor-

relations anymore. This sudden drop in the number of correlations associated with ACC and

graph clique number, when setting the step size to 100, suggests that by increasing the step size

and thus having less number of graphs depicting the topological transformation of the dynamic

graph, some correlations can not be captured.

It can also be seen that ACC and graph clique number are always strongly correlated with

each other and motif types 3 and 7. As the ACC of the network increases, bigger cliques form

and the number of motif types 3 and 7 increase as well, because based on their structures (see

Figure 2.1) they can be seen as the construction units of clusters and cliques in a network. On
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Figure 4.7: Metric correlations obtained based on trial type 1, in beta frequency band, and using
step sizes = (a)5, (b)25, (c)50 and (d)100, window size:100 and RMT thresholding method.
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the other hand, one would expect to also see that these metrics (ACC and graph clique number)

are also correlated with closeness centrality and AvgPL, since these correlations were always

present in previous observations. Furthermore, the mathematical definition for these metrics

also suggests a correlation. The reason behind this observation is again related to the increased

step size and thus poor depiction of topological transformation of the dynamic graph. This

is further confirmed by the fact that AvgPL (and thus closeness centrality) is susceptible to

disconnected graphs (explained in section 3.1), and therefore, if in one of the network’s trans-

formation stages the number of isolated nodes increases, it could affect their values, and thus

their correlation with other metrics. This reasoning also applies for all similar future observa-

tions regarding the lack of expected metrics, when the step size is high, or when there is no

shared time points between consecutive time windows.

Note that AvgNNDeg is also correlated with most members of the previously mentioned clus-

ter, except for degree, closeness centrality and interestingly core number. This lack of corre-

lation with core number is interesting because until now this correlation was present in all the

previous observations. We can again relate this sudden lack of correlation to the lack of shared

time points between two consecutive time windows, which leads to a sharp transition between

different states of the network in time.

On the other hand the lack of correlation between AvgNNDeg, closeness centrality and de-

gree has been frequently seen, and can imply that a central node is not always connected to

other high degree nodes, which agrees with the previously explained rich-club phenomenon in

brain networks (see section 3.1).

Eigenvector centrality, pagerank, authorities, degree and closeness centrality are correlated

with each other, as always. Diameter and AvgPl’s correlation with each other and with be-

tweenness centrality and closeness vitality is another familiar cluster of correlations seen in



74 Chapter 4. Metric correlations across different circumstances

Figure 4.7.

It is interesting to see that edge connectivity is correlated with core number. This can eas-

ily be explained: as the average core number increases, nodes become more interconnected

with each other, meaning that more number of edges should be removed to disconnect the

graph.

Other positive significant correlations seen for all four step sizes are as follows: eigenvector

centrality is correlated with motif types 2 and 5, number of edges and betweenness centrality.

Also, number of maximal cliques is correlated with degree, closeness centrality, core number,

AvgNNDeg and motif types 4 and 1 (number of edges).

By looking at the recurrent negative correlations, the relationship between assortativity and

motif type 6 comes to attention. This recurrent correlation was also persistent for all window

sizes in the trial type 1, in the previous section.

Though betweenness centrality and closeness vitality do not have any correlation with each

other, they are both negatively correlated with motif types 1,2,3,4 and 5. It is intuitively un-

derstandable that as the number of these motifs increase the network becomes more intercon-

nected, and thus the average length of the connections in the graph becomes shorter. In other

words, more nodes are participating in forming the connectivity patterns in the graph.

4.2.2 Trial type 2

By looking at Figure 4.8, one can see that the cluster of positive correlations is bigger than the

one seen for trial 1. This cluster shows that motif types 1,2,3,4,5 and 7, graph clique number,
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Figure 4.8: Metric correlations obtained based on trial type 2, in beta frequency band, and using
step sizes = (a)5, (b)25, (c)50 and (d)100, window size:100 and RMT thresholding method.
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core number, closeness centrality, degree and ACC are all correlated with each other, while

AvgNNDeg, edge connectivity and number of maximal cliques are correlated with each other

and most members of this cluster.

It is also interesting to see that closeness centrality is not correlated with authorities and page

rank for most of the step sizes (see Figure 4.8). On the other hand, betweenness centrality

is always correlated with authorities, pagerank and eigenvector centrality. Closeness vitality,

betweenness centrality, diameter and AvgPL have the same relationships with each other as

before.

While diameter has the same negative correlations as before, it is also negatively correlated

with motif type 2.

Closeness vitality and betweenness centrality are both negatively correlated with motif types

1,2,3,4 and 5, edge connectivity, ACC and graph clique number. AvgPL is negatively corre-

lated with all members of the big positive cluster of correlations except number of maximal

cliques.

4.2.3 Trial type 3

Here again, we see a cluster of mostly familiar correlations (see Figure 4.9). part of this cluster

includes motif types 1,2,3,4 and 5, degree, closeness and core number, which were also seen

in previous trial types. For this trial, graph clique number and motif type 7 are also correlated

with these metrics. AvgNNDeg, ACC and motif type 6 are correlated with each other, and

some metrics of this cluster. All of these correlations can easily be understood based on their

mathematical definitions, and the expected small-world properties of the network. Also, con-



4.2. Changing the step size 77

Figure 4.9: Metric correlations obtained based on trial type 3, in beta frequency band, and using
step sizes = (a)5, (b)25, (c)50 and (d)100, window size:100 and RMT thresholding method.
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sidering previous observations, it is interesting to see that motif type 6’s number of correlations

has increased.

Number of maximal cliques is positively correlated with motif types 1,3 and 4, degree and

core number. Again, these correlations are all expected, because an increase in all of these

metrics can lead to the creation of more cliques in the network.

All other positive and negative correlations are mostly the same as the ones seen for trial type

1.

4.2.4 Trial type 4

The big cluster of correlations that was seen for trial type 3, can also be seen for all step sizes

of this trial type (see Figure 4.10). The only difference is that motif type 6 is not part of this

cluster, and AvgNNDeg is correlated with core number. AvgPL is again negatively correlated

with all members of this cluster.

Other positive correlations are the same as trial type 3.

If one disregards the lack of correlations regarding motif type 6, negative correlations regarding

betweenness centrality, closeness vitality and AvgPL are also almost the same as the previous

trial type. Note that diameter is negatively correlated with motif types 1,2 and 5, degree, AvgN-

NDeg, eigenvector centrality and closeness centrality.
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Figure 4.10: Metric correlations obtained based on trial type 4, in beta frequency band, and us-
ing step sizes = (a)5, (b)25, (c)50 and (d)100, window size:100 and RMT thresholding method.
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4.2.5 Trial type 5

The biggest cluster of recurrent correlations for this trial type (see Figure 4.11) is the same

as the one detected for trial type 1, with the addition correlations regarding motif type 7.

AvgNNDeg and edge connectivity are also correlated with most metrics of this cluster, but

AvgNNDeg is not correlated with degree and closeness centrality, while edge connectivity is

not correlated with motif type 7. Note that ACC and graph clique number are always corre-

lated with each other and most members of the cluster, except for motif type 2 and closeness

centrality. Their lack of expected correlations with closeness centrality and AvgPL is again an

effect of choosing a large step size, which was explained for trial type 1.

Other correlations are mostly the same as previous trials, but some interesting differences can

be seen. There are some differences in the negative correlation of betweenness centrality and

closeness vitality. Also, betweenness centrality is not correlated with eigenvector centrality

and pagerank anymore. Other interesting correlations are regarding motif type 6. This motif is

now negatively correlated with assortativity, betweenness centrality and AvgPL, while is posi-

tively correlated with motif type 2, closeness centrality and AvgNNDeg.

4.2.6 Recurrent dependencies

Based on the above observations, we can suggest the following metric dependency groups that

are consistent across all trial types and step sizes (see Figure 4.12): (number of edges, mo-

tif types 2,3,4 and 5, degree, core number, closeness centrality, AvgPL), (AvgNNDeg, motif

types 2,3,4 and 5, number of edges, AvgPL), (graph clique number, ACC, motif types 3 and

7), (motif type 3,4,5 and 7, core number, degree), (number of maximal cliques, number of

edges, degree, core number, motif type 4), (eigenvector centrality, authorities, pagerank, de-



4.2. Changing the step size 81

Figure 4.11: Metric correlations obtained based on trial type 5, in beta frequency band, and us-
ing step sizes = (a)5, (b)25, (c)50 and (d)100, window size:100 and RMT thresholding method.
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Figure 4.12: Recurrent metric correlations which were seen for all trial types and step sizes.
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gree), (eigenvector centrality, closeness centrality, AvgPL, diameter), (pagerank, betweenness

centrality), (AvgPL, diameter, closeness vitality), (AvgPL, diameter, betweenness centrality),

(betweenness centrality, number of edges, motif types 2,3,4 and 5), (closeness vitality, number

of edges, motif types 2 and 5).

4.3 Changing the frequency band

EEG-derived functional brain networks can be studied in different frequency bands. While it

is more common to study neural synchronizations observed in beta band for adult subjects en-

gaged in different cognitive tasks, brain functional networks are also studied in other frequency

bands, especially alpha and gamma (e.g. [32], [49] and [30]). Therefore, it is interesting to

also analyze metric correlations of dynamic graphs generated in these frequency bands.

All metric correlations in this section are obtained based on the following circumstances:

1- Using RMT thresholding method.

2- Step size = 25.

3- Window size = 800.

Three sets of dynamic graphs are generated based on three different frequency bands: al-

pha, beta and gamma.
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Figure 4.13: Metric correlations obtained based on trial type 1, in frequency bands: (a)alpha,
(b)beta and (c)gamma, and using step size = 25, window size = 800 and RMT thresholding
method.
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4.3.1 Trial type 1

By looking at Figure 4.13, which shows metric correlations obtained based on alpha, beta and

gamma band, we can spot some recurrent correlations that are present for all three bands.

The biggest cluster of recurrent and mostly familiar positive correlations includes number of

edges, motif types 3, 4 and 7, degree, closeness centrality, graph clique number, core number,

ACC and number of maximal cliques. Motif types 2 and 5 are also correlated with most mem-

bers of this cluster (except motif type 7, ACC and number of maximal cliques). Also, AvgN-

NDeg participates in this cluster to some extent. Eigenvector centrality, pagerank, authorities,

closeness centrality and degree have also gathered to form a cluster of strong correlations. Note

that eigenvector centrality is also always correlated with motif types 2 and 5.

Furthermore, AvgPL, diameter, betweenness centrality and closeness vitality have the same

correlations as seen in previous sections of this chapter.

It is very interesting to see that motif type 6 is positively correlated with motif type 2 and

negatively correlated with assortativity. These correlations are always present for trial type 1,

under any circumstances.

As for other recurrent negative correlations, one can see that AvgPL is again negatively cor-

related with almost all members of the big cluster of positive correlations (except number of

maximal cliques). It is also negatively correlated with eigenvector centrality. Closeness vitality

and betweenness centrality are both negatively correlated with motif types 1,2,3,4,5 and 7 and

ACC, while betweenness centrality is also negatively correlated with clique-related metrics.

These correlations imply that as the network becomes more clustered and interconnected, less

number of nodes are involved in each of the graph’s shortest paths.
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We can also see the expected negative correlation of diameter with closeness centrality.

4.3.2 Trial type 2

The first noticeable observation for this trial type is that the big cluster of positive correlations

seen in trial type 1 is also present here (see Figure 4.14). In addition to its previous members,

it now includes edge connectivity, and to some extent eigenvector centrality. Note that AvgN-

NDeg is part of this cluster, but is not correlated with degree and eigenvector centrality, and

eigenvector centrality is not correlated with number of maximal cliques. Other positive clusters

of correlations are as follows: motif types 2 and 5 are correlated with number of edges, mo-

tif type 4, closeness centrality, degree, AvgNNDeg and eigenvector centrality. Motif type 5 is

also correlated with ACC. Also, eigenvector centrality, authorities, pagerank, degree, closeness

centrality are correlated with each other. Pagerank is also correlated with betweenness central-

ity. The relationship between AvgPL, diameter, closeness vitality and betweenness centrality

is same as trial type 1.

When looking for recurrent negative correlations, it can be seen that comparing to the last

trial’s results, their number have increased. For example, diameter is now negatively corre-

lated with all members of the big cluster of positive correlations, AvgPL has formed negative

correlations with number of maximal cliques and edge connectivity, while both closeness vi-

tality and betweenness centrality are now negatively correlated with clique-related metrics and

edge connectivity. As it was mentioned before, though closeness vitality and betweenness

centrality are never correlated with each other, they have many common negative correlations,

which are mostly regarding the metrics that are related to the formation of clusters in the graph.

It is also interesting to see that assortativity is negatively correlated with motif type 6, for
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Figure 4.14: Metric correlations obtained based on trial type 2, in frequency bands: (a)alpha,
(b)beta and (c)gamma, and using step size = 25, window size = 800 and RMT thresholding
method.
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all frequency bands.

4.3.3 Trial type 3

By comparing the metric correlations of three different frequency bands for this trial type,

shown in Figure 4.15, we can see that recurrent positive correlations are almost the same as

the ones that appeared for trial type 2. The differences are as follows: There is no correlation

between pagerank and betweenness centrality, AvgNNDeg and degree are now correlated and

most importantly, edge connectivity has no positive correlations with other metrics.

Recurrent negative correlations seen in this trial type are also mostly similar to the ones seen

for trial type 2. Note that diameter is now negatively correlated with motif types 2 and 5, while

it is not correlated with graph clique number anymore. Also, diameter is the only metric that is

correlated with edge connectivity.

It is also worth mentioning that for this trial type, and using gamma as the frequency band,

we get considerable number of correlations regarding motif type 6.

4.3.4 Trial type 4

In trial type 4 (Figure 4.16), number of edges, motif types 3 and 7, core number, degree,

closeness centrality, ACC, graph clique number and edge connectivity build a cluster of strong

correlations, which is seen for all frequency bands. Motif type 4, edge connectivity and eigen-

vector centrality are also correlated with most members of this cluster. Authorities, page rank,

eigenvector centrality, degree and closeness centrality have also grouped together, while be-

tweenness centrality and closeness vitality are again both correlated with AvgPL and diameter.

Also, motif type 2 and 5 are strongly correlated. Based on the structure of these motifs this

correlation is expected, but it is not clear that why other structurally related motifs, such as



4.3. Changing the frequency band 89

Figure 4.15: Metric correlations obtained based on trial type 3, in frequency bands: (a)alpha,
(b)beta and (c)gamma, and using step size = 25, window size = 800 and RMT thresholding
method.
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Figure 4.16: Metric correlations obtained based on trial type 4, in frequency bands: (a)alpha,
(b)beta and (c)gamma, and using step size = 25, window size = 800 and RMT thresholding
method.
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types 4 and 5, or types 2 and 3, are not correlated.

Negative correlations that are seen for all frequency bands are as follows: AvgPL and diameter

are both negatively correlated with all members of the previously mentioned, big cluster of

positive correlations. Closeness vitality and betweenness centrality, though not correlated with

each other, are both negatively correlated with motif types 1,3,4 and 7, edge connectivity, graph

clique number and ACC. These correlations are again pointing to the fact that as the graph be-

comes more clustered, with bigger cliques, the communications between nodes become more

efficient (AvgPL decreases), and it also becomes harder to disconnect the graph.

Note that motif type 6 and assortativity are also negatively correlated.

4.3.5 Trial type 5

This trial type’s correlations (see Figure 4.17) are again mostly similar to previous trials’. Motif

types 1,3, and 7, ACC, degree, closeness centrality, core number, graph clique number, AvgN-

NDeg and edge connectivity are all strongly correlated, for all frequency bands. Motif type 4,

number of maximal cliques and eigenvector centrality are also correlated with most members

of this cluster. Other groups of positive correlations are as follow: eigenvector centrality, au-

thorities, pagerank, closeness centrality and degree are correlated with each other, AvgPL and

diameter are both correlated with each other and betweenness centrality and closeness vitality,

and finally, motif type 2 is correlated with motif type 5 and 6.

Closeness vitality, betweenness centrality, diameter and AvgPL have almost the same nega-

tive correlations as before.
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Figure 4.17: Metric correlations obtained based on trial type 5, in frequency bands: (a)alpha,
(b)beta and (c)gamma, and using step size = 25, window size = 800 and RMT thresholding
method.
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4.3.6 Recurrent dependencies

Recurrent metric correlations for all trial types and frequency bands (see Figure 4.18) can be

fitted into the following dependency groups: (number of edges, motif types 3,4 and 7, de-

gree, closeness centrality, ACC, core number, AvgPL), (number of edges, motif types 3 and 7,

degree, closeness centrality, ACC, core number, graph clique number, AvgPL), (AvgNNDeg,

motif types 1,3,4 and 7, ACC, graph clique number, AvgPL), (eigenvector centrality, authori-

ties, pagerank, degree, closeness centrality), (eigenvector centrality, motif 1,3 and 4, AvgPL),

(motif 5, motif 2), (diameter, closeness centrality), (AvgPL, betweenness centrality, diameter),

(AvgPL, diameter, closeness vitality), (closeness vitality, motif 1,3,4 and 7, ACC), (between-

ness centrality, motif 1,3,4 and 7, ACC, graph clique number), (diameter, closeness centrality).

4.4 Discussion

The main goal of this chapter is to choose informative and orthogonal metrics, from a pool

of 25 graph metrics, to reduce the computation time and effort for further brain’s functional

network analysis (based on EEG data-sets). Based on the analysis of metric correlations in

all three sections, we can suggest a general guideline for choosing the most informative set of

graph metrics for further network analysis. Based on a plotted correlation matrix, we choose

metrics as follows:

1- All metrics that are not correlated with any other metric should be chosen.

2- From each dependency group, only one metric should be chosen. We suggest choosing

the metric with the lowest computation time, while considering its correlation strength with

other metrics in that dependency group.

By looking at the metric dependencies for each trial type, in each section, one can see that
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Figure 4.18: Recurrent metric correlations seen for all frequency bands and trial types.
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there are a few metric correlations that can always be seen for a particular trial type, regardless

of the chosen frequency band, window size and step size. For trial type 1, we can see that

motif type 6 and assortativity are always negatively correlated. This is indeed interesting since

in this trial type the subjects are not given any stimulus, or in other words, their brain func-

tional network is at a resting state. When the brain is at rest, different regions make functional

connections to each other and form several resting-state networks [58]. Moreover, it has been

shown that the existence of the rich club phenomenon, which explains this negative correlation,

is associated with several resting-state networks [59]. Thus, this particular correlation seems

to be a fingerprint of the brain functional network at the resting-state.

Another interesting observation is regarding trial type 3, in which diameter and edge con-

nectivity are always negatively correlated with each other. Based on the definitions of these

metrics, this correlation is expected to be seen for all trial types. This is due to the fact that as

nodes become more interconnected, the diameter decreases, and thus it would become harder

to disconnect the graph. Saying this, it is not clear why this correlation is not always present for

other trial types. It can be related to a specific pattern of functionality needed to perform this

task, while we cannot rule out the possibility that the persistent appearance of this correlation

for this trial type is merely accidental.

These trial-specific correlations could suggest that some relationships between metrics can

only be seen for specific tasks, and therefore it might be beneficial to observe metric corre-

lations for specific brain tasks and choose robust metrics for each trial type individually, to

further decrease the future cost of computing repetitive metrics.

Another important point is regarding the number of shared time points (windowsize− stepsize)

between consecutive time windows. Based on the observations made in section 4.2, when the

value of the step size is high, capturing the topological transformation of the dynamic graph is
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affected in a way that some expected and recurrent metric correlations are not captured.

Although it is preferred to choose robust metrics based on the specific circumstances in which

the dynamic graphs where generated, we can suggest a pool of robust metrics based on the

observations made in this chapter. This metrics are chosen from the following dependency

groups:

(closeness centrality, core number, degree, number of edges, motif types 1 ,3 and 4, AvgPL),

(closeness centrality, diameter), (AvgNNDeg, motif types 1,3 and 4, AvgPL), (motif types

3,4 and 7, degree, core number), (ACC, graph clique number, motif types 3,7), (authorities,

pagerank, eigenvector centrality, degree), (eigenvector centrality, closeness centrality, degree,

AvgPL), (closeness vitality, AvgPL, diameter), (betweenness centrality, AvgPL, diameter),

(motif type 2, motif type 5), (betweenness centrality, AvgPL, motif types 1,3 and 4, num-

ber of edges), (closeness vitality, AvgPL, number of edges).

These dependency groups cover all metric correlations that were recurrently observed in all

three sections, under all circumstances and for all trial types. Figure 4.18 is obtained by aver-

aging common metric correlations seen in figures 4.1 to 4.17. Note that this figure is generated

only with the purpose of easier detection of recurrent metrics and does not depict the accurate

correlation values.

Based on these final dependency groups, and considering their required computation time

discussed in Chapter 2, we suggest the following metrics as the most informative ones:

1. Diameter

2. Number of edges
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3. Graph clique number

4. Eigenvector centrality

5. Motif type 5

6. Motif type 6

7. Number of isolated nodes

8. Assortativity

9. Number of maximal cliques

10. Edge connectivity

Thus, the pool of 25 metrics is reduced to 10 metrics, which are all uniquely informative

and independent.



Chapter 5

Summary and suggestions for future work

The following contributions were made in this project:

1- Implementing a pipeline for obtaining the correlation matrix of 25 graph metrics, based

on EEG-derived dynamic graphs. This pool of 25 metrics included 9 per-node and 9 whole-

graph metrics, along side the counts of 7 motif types. Using this pipeline, dynamic graphs

can be generated via S, FDR or RMT thresholding methods, in different frequency bands, and

using different window sizes and step sizes.

2- Comparing metric correlations obtained based on S, FDR and RMT thresholding methods,

by fixing the frequency band, window size and step size when generating the dynamic graphs.

This comparison resulted in the following conclusions:

• Using S-thresholding method in this project yields mostly disconnected and relatively

sparse graphs, which is due to the generation of high threshold values. Thus, not only

some correlation values contradict the ones obtained based on the two other methods,

but also comparing to two other thresholding methods, many metric correlations are not

captured.

• Although FDR and RMT thresholding methods use substantially different approaches to

99
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threshold a graph, their metric correlation results are very similar. Considering that FDR

has been frequently used in the functional connectivity literature, this similarity of results

supports choosing the newly introduced RMT thresholding method for further analysis

in this project.

3- Performing a massive comparison of metric correlation results, obtained in different

frequency bands, with different combinations of windows sizes and step sizes, which resulted

in the following outcomes and conclusions:

• Reducing a pool of 25 metrics to a set of 10 orthogonal and uniquely informative metrics

for using in future analysis of EEG-derived dynamic graphs, and thus, making future

analysis less time consuming and more optimized.

• Detection of a trial-specific correlation, between motif type 6 and assortativity, which can

be considered as a fingerprint of the resting state in the brain’s functional connectivity.

• Concluding that lack of shared time points between consecutive time windows may result

in the loss of important metric correlations, by masking some steps in the topological

transformation of dynamic graphs.

Due to the limitation of time and resources in this project, and considering the heavy com-

putation load of motif calculation process, we only investigated correlations for motifs having

up to four nodes (seven total equivalence classes). Thus, our future goal for further extend-

ing the current work is to do an extensive metric correlation analysis in which the main focus

would be on more variant and bigger motif types (having more than 4 nodes), to detect possi-

ble recurrent correlations regarding bigger motifs. This will benefit functional brain network

analysis in two ways. First, by eliminating big motif types that offer no new insight than other

metrics from the pool desired metrics, the analysis of functional brain networks will be further

optimized. And second, the detection of possible recurrent correlations between some motif

types with other per-vertex and whole graph metrics could help understanding the dynamic
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mechanisms which lead to formation of a small-world functional brain network. For example,

in the current project we could see the recurrent correlation between motif type 7 and metrics

related to forming clusters in the graph. While these relationships can be easily understood

based on the metric’s mathematical definitions, bigger motif types participation in improving

the network’s efficiency is harder to grasp and thus would benefit from the approach used in

this project.

Furthermore, the computation of bigger motif types can be done using a newly introduced

motif detection algorithm by [43], which uses colored graphs, or in other words, labeled nodes

and edges, for efficient motif detection in networks. Note that taking the individuality of nodes

into account when finding network motifs is especially useful when investigating the brain

functional connectivity, since each node represents an area in the brain. Thus, categorizing

motifs by considering different brain regions participating in them can further shed light on

the underlying mechanisms of the brain functional network. It is worth mentioning that this

method has not yet been used for motif discovery in functional neural networks. We can also

categorize the graph nodes based on their centrality degrees, especially betweenness centrality,

so that highly central nodes are distinguished from other nodes in the graph. By labeling these

nodes and using the efficient algorithm introduced by [43], we can study the formation of spe-

cific patterns of functionality by different types of nodes.

We also suggest further investigation of the effects of different step sizes and window sizes

for building the functional brain networks. This can be done by taking the size of the brain

signal into account, to see what combination of time points and step sizes can best capture the

dynamic topological changes of the functional brain networks.
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synchrony. Cerebral Cortex, 18(12):2891–2901, 2008.
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Table A.1: Glossary of graph metrics
Abbreviation Metric name Short Description

Assort Assortativity The extent to which nodes in a graph connect to other
nodes with similar degree.

|MaxCls| Number of maximal cliques Number of cliques of largest size in a graph.
ACC Average clustering coefficient A measure of the degree to which nodes in a graph

tend to cluster together.
AvgPL Average path length Average of all shortest paths between all nodes in a

graph.
Diam Diameter Size of the longest path in a graph.
|E| Number of edges Number of edges in a graph.

MaxClSize Graph clique number The number of vertices in a maximum clique.
| IsoNodes | Number of isolated nodes Number of vertices that have no connections with

other vertices in a graph.
EdgeCon Edge connectivity Minimum number of edges that should be removed to

disconnect a graph.
CoreN Core number The core number of a node is the largest value k of a

k − core containing that node. A K-core is a maximal
subgraph that contains nodes of degree k or more.

Author Authorities An estimation of the node’s value based on the incom-
ing connections.

ClsnessV Closeness vitality The change in the sum of distances between all pairs
of vertices when excluding that node.

ClsnessC Closeness centrality A measure of the closeness of a vertex to all other
vertices in a graph.

BtwnessC Betweenness centrality Gives the number of shortest paths from all vertices
to all others, that pass through a certain vertex.

EigC Eigenvector centrality A measure for centrality that takes the importance of
the neighbors of a vertex into account.

Prank Pagerank A measure of the importance of a vertex based on the
structure of its incoming connections.

Deg Node degree Number of connections for each vertex.
AvgNNDeg Average nearest neighbor degree The mean of degrees of all the immediate neighbors

of a vertex.
Motif1 to 7 Seven types of motif See figure 2.1.
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